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ABSTRACT
This paper presents an efficient method for the evaluation of

performance measures for a class of tandem queuing systems with

finite buffers in which blocking and starvation are important

phenomena. These systems are difficult to evaluate because of

their large state spaces and because they may not be decomposed

exactly. The approximate decomposition approach described here

is based on system characteristics such as conservation of flow.

Comparisons with exact and simulation results indicate that it is

very accurate.

ACKNOWLEDGMENTS
This research has been supported by the U. S. Army Human Enginee-

ring Laboratory under contract DAAK1 l-82-K-0018. I am grateful

for the support and encouragement of Dr. Benjamin E. Cummings and

Mr. Charles Shoemaker. I am also grateful for the suggestions

and comments of Ms. Ellen L. Hahne, Professor Rajan Suri, Profes-

sor Loren K. Platzman, Dr. Daniel Heyman, and a reviewer.



GERSHWIN, Tandem Queue Decomposition 3

This paper presents a method for the analysis (i.e., the cal-

culation of throughput and average buffer levels] of a class of

tandem queuing systems with finite buffers. Such systems are

difficult to treat because of their large state spaces and their

indecomposability. The method is based an a model which approxi-

mates a [k-l)-buffer system by k-l single buffer systems. The

parameters of the single-buffer systems are determined by rela-

tionships ...among_ .the flows through -the_ buffers of the original

system. A simple algorithm is developed to calculate the parame-

ters. Numerical and simulation experience indicate that the

method determines thoughput and average buffer levels accurately.

The tandem queuing system in Figure I consists of a series

of k servers or machines [M1, M2, ... , Mk) separated by

buffers (B 1, B2, ... , B_, 1 of finite capacity. Mate-

rial flows from outside the system to M1, then to B1, then to

M2, and so forth until it reaches Mk,, after which it leaves.

In general, in systems of this type, the machines are as-

sumed to spend a random amount of time processing each item. In

this paper, the randomness is due to the failures and repairs of

machines. When machine Mi is down, buffer B1 _ tends to

accumulate material and buffer B1 tends to lose material. If

this condition persists, Bi l may become full or Bi may

become empty. In that case, machine Mil is blocked and

prevented from working or Mi., is starved and also pre-

vented from working.

While a machine is working (i. e., operational and
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neither starved nor blocked), a fixed amount of time is required

to process a part. This time is the same for all machines and is

taken as the time unit. During a time unit when machine Mi is

working, it has probability Pi of failing. Its mean time

between failures (MTBF] in working time is thus 1/p i. After a

machine has failed, it is under repair and it has probability

ri of being repaired during a time unit. Its mean time to

rep-ai-r-..(MTTR) is therefore 1/r,. -- This '----.is-- measured in clock

time, however, not in working time.

The problem is difficult because of the great size of the

state space. Each machine can be in two states: operational or

under repair. Buffer Bi can be in Ni+ 1 states: n,=0, 1, ....

Ni, where ni is the amount of material in Bi and Ni is

its capacity. As a consequence, the Markov chain representation

of a k-machine line with k-l buffers has a state space of cardi-

nality

k- 

2 ' ll[Ni+]J.
i=O

A 20-machine line with 19 buffers each of capacity 10, for exam-

ple, has over 6.41 x 1025 states.

Decomposition

We approximate the single k-machine line of Figure 1 by a

set of k-l two-machine lines L(i), i = 1, ... , k-I [Figure 2).

The buffer in L[i] has the same capacity as buffer Bi of the k-

machine line. Both the upstream (Mdfi)) and downstream ([Md(i)l ma-
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chine in each of the lines are assumed to have a geometric work-

ing time distribution, described by parameters pu(i) and pd([i],

respectively. Their repair times are assumed to be geometrically

distributed with parameters ru(i) and rd(i), respectively. The

four, parameters are chosen (by the algorithm developed in Section

2] so that the performance of machine Mu(i) [[Md[i)) closely matches

that of the line upstream [downstream) of buffer Bi.

That is, the rate of flow into and out of buffer Bi in

line L[i) approximates that of buffer Bi in line L. The proba-

bility of the buffer of line L(i) being empty or full is close to

that of Bi in L being empty or full. The probability of re-

sumption of flow into (and out of) the buffer in line LUi) in a

time unit after a period during which it was interrupted is close

to the probability of the corresponding event in L. Finally, the

average amount of material in the buffer of line L(i) approxi-

mates the material level in buffer Bi in L. In order to find

such parameter values, we use relationships among parameters and

measures of a transfer line.

Machine Mu(i) models the part of the line upstream of B1

and Md(i) models the part of line downstream from Bi. There

are four parameters per two-machine line (i. e., per buffer

in L): ru(i), pu(i), rd(i, pd(i). The decomposition method requires the

determination of four parameters per two-machine line, or a total

of 4(k-1) parameters. To this end, a system of 4(k-1) polynom-

ial equations is derived in Section 2.
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Literature ; Survey

The Gershwin-Schick (1983) model is based on the transfer

line model of Buzacott (1967). Simulation results for models of

this type appear in Ho et al. (1979), Law (1981), and

Vanderhenst et al. [1981). In the last paper, the authors

refer to historical data that justifies the assumption of expo-

nentially distributed times between failures and until repairs,

although Hanifin, Buzacott and - Taraman, in a simulation paper

[1975), disagree.

Gershwin and Schick (1983) derive an exact solution for

three-machine versions of this system. However, it is difficult

to program, ill-behaved, and is not extendable to larger prob-

lems. Coillard and Proth (1983) describe a method for a related

three-machine model, but again their method does not appear to be

useful for longer lines. Ohmi (1981) provides an approximate me-

thod for larger systems, but he makes certain restrictive as-

sumptions, such as that no more than one machine is down at any

time.

The concept of approximate decomposition of tandem queuing

models was discussed by Hunt (1956), Hillier and Boling (1966),

Takahashi et al. [1980), Altiok [1982), Jafari (1982), Suri

and Diehl (1983), and others. In all papers surveyed, the nu-

merical method sweeps from one end of the line (generally the

upstream end) to the other. The symmetry of the line (as ob-

served by Muth (1979) and Ammar (1980)) has not previously been

exploited. In addition, the interrupted nature of both the
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arrival and service processes in the decomposed line has not been

considered.

The method of this paper has been extended to transfer lines

with random processing times in Choong and Gershwin (1985), and

to lines with machines that have different processing speeds in

Gershwin [1985). It has been generalized to networks involving

assembly and disassembly in Gershwin [1986).

A summary of the decomposition technique appears in Gershwin

(1984). That publication also includes proofs of two key equa-

tions of this paper ((5) and (10)).

Outline of Paper

Section 1 describes two characteristics of production lines

that are used in the decomposition method: conservation of flow

and the relationship between flow rate and idle time. Section 2

estimates the probability of resumption of flow into and out of a

buffer after a period in which material was not flowing. Section

2 also contains the decomposition method and an outline of an

algorithm. Numerical results appear in Sections 3 and 4. Sec-

tion 3 is focussed on the behavior of the method, while Section 4

is concerned with the performance of large transfer lines. Con-

clusions and new research directions are discussed in Section 5.

The Appendix contains formulas for the probability distribution

of the two-machine line.
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1. TRANSFER LINE CHARACTERISTICS
Model Assumptions

A detailed description of the model is presented in Gershwin

and Schick (1983). The assumptions that are relevant to the

present method are:

1. Let a i indicate the repair state of machine M1. If

ai = 1, the machine is operational - (sometimes called

up); if 0a = 0, it is under repair [also called

failed or down). All operational machines require the

same, fixed amount of time for their operations. That length of

time is the time unit.

2. A machine is starved if its upstream buffer is empty.

It is blocked if its downstream buffer is full. The first

machine is never starved and the last machine is never blocked.

3. The amount of material in a buffer at any time is n,

O < n < N. A buffer gains or loses at most one piece

during a time unit. One piece is inserted into the buffer if the

upstream machine is working [i. e., operational and neither

starved nor blocked). One piece is removed if the downstream

machine is working.

4. When machine i is under repair, it has probability ri of

becoming operational during each time unit. That is,

prob [ aoit+l)=l j a(t)=O ] r,.
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5. When machine i is working, it has probability Pi of fail-

ing. That is,

prob [ ai[t+l)=O j ni 1(t)>O, ai[t)=1, ni[t)<Ni ] = Pi'

6. By convention, repairs and failures are assumed to occur at

the beginnings of time units, and changes in buffer levels take

place at the end of the time units. Thus, during periods while

-starvation---and-- ... blockage -do---n.ot -influence buffer i,

n,(t+l] = n,[t) + ot+l] - o,,[(t+l).

More generally,

nj(t+l] = n[(t) + I,[t+l] - Idt+l]),

where I(, t+ 1) is the indicator of whether flow arrives at

buffer i from upstream. That is,

IUI I={1 if ai[tl)=l and ni-l(t)>O and ni[t)<Ni,
i,[t+l) = ctl)=l otherwise.

The indicator Idl(t+l] of flow leaving buffer i is defined

similarly.

The state of the system is

s = n,, ... nk ls, a, ..., ak).

Performance Measures

The production rate (throughput, flow rate,

or line efficiency) of machine M,, in parts per time
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unit, is

Ei = prob [ a i = 1, - > 0, ni < Ni . ([1]

The average level of buffer i is

fii = E n prob ([s) 2]

Formulas for these and related quantities for two-machine

lines are presented in the Appendix.

Conservation of Flow

Because there is no mechanism for the creation or destruc-

tion of material, flow is conserved, or

E = E l = E2 = ... = Ek. (3)

The Flow Rate-Idle Time Relationship

Define ei to be the isolated production rate of machine Mi. It is

what the production rate of Mi would be if it were never im-

peded by other machines or buffers. It is given by (Buzacott,

1967)

ei ri + pi

and it represents the fraction of time that Mi is operational.

The actual production rate Ei of M1 is less because of bloc-

king or starvation. It satisfies

E; = e, prob [ n,t > 0 and ni < N, ]. 5)
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For a proof, see Gershwin and Berman (1981), Gershwin (19843.

This result is counter-intuitive. There is no reason to

expect that the events of machine failure and adjacent buffers

being empty or full are independent. However, failures may occur

only while machines are not idle due to starvation or blockage.

Furthermore, Bi-I can become empty and Bi can become full

only when Mi is operational. Therefore, an idle period can be

thought of as a hiatus in which a clock, measuring working time

until the next machine state change event, is not running. The

fraction of non-idle time that Mi is operational is thus the

same as the fraction of time it would be operational if it were

not in a system with other machines and buffers.

It is useful to observe that

prob [ni- l = 0 and ni = Nit] 0. [6)

The probability of this event is small because such states

can only be reached from states in which ni_ = 1 and ni

= Ni-1 by means of a transition in which

1. Machine Mi. l is either under repair or starved, and

2. a i = 1, and

3. Machine Mll is either under repair or blocked.

The production rate may therefore be approximated by

Ei z ei [1 - prob ( ni_,=O ) - prob ( ni=Ni )]. (7)
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2. DECOMPOSITION METHOD
The decomposition method is based on the equation of conser-

vation of flow [3], the flow rate-idle time relationship (7), and

a set of equations (([[11) and [12)) developed below. The approach

is to characterize the most important features of the transfer

line in a simple, approximate way, and to find a solution to the

resulting set of equations.

Let EWi] be the efficiency or production rate of two-machine

line L(i). Let p5(i) be the probability of buffer Bl being

empty in L(i) and let pb[i] be the probability of buffer Bi

being full in that two-machine line. E(i), p5(i), and pb[i]

are functions of the four unknowns r(i), pu(i), rd(i),

pd(i) through the two-machine line formulas in the Appendix.

Conservation of Flow

One set of conditions is related to conservation of flow:

E(i) = E(1), i=2, ..., k-1. (8)

Flow Rate-Idle Time

The second set of conditions follows from [7):

E(i) = e i [1 - p[i-1) - p(i ), i=2, ... k-. (9)

Equation (9), after some manipulation, can be written

Pd[ i-l ) Pu+i) 1 1
r 1=r, i) = e1
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This is described in Gershwin [1984).

Resumption of Flow

In the following, we derive a set of equations of the form

rdi-1) = rd(i-) Y(i) + r1 (l-Y(i)), i = 1, ..., k-l (12)

which show the relationship between repair probabilities in

neighboring two-machine lines and in the original line. To

characterize the repair probabilities in the two-machine lines,

we consider the meaning of failure and repair in those systems.

Machine Ml(i) in line L(i) represents, to buffer Bi,

everything upstream of Bi in line L. Thus, at time t,

(otui] = 1) iff (a,[t) = 1) and (nj[t-1l > 0)13

(au(i) = 0) iff (ai(t) = 0) or (n,(t-1] = 0) 

A failure of M([i] represents either a failure of machine

Mi or the emptying of buffer Bi I. The emptying of

B i1, in turn, is due to a failure of Mi 1 or the

emptying of Bi- 2. That is, the emptying of Bi i is

due to a failure of Mu[i-l]. A failure of Mui] therefore

results from either a failure of machine Mi or a failure of

Mu( i- 1).

The repair of Mu(i) is the termination of whichever condi-

tion was in effect. Consequently, the probability of repair of
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MCi) is r i if the cause of failure is the failure of Mi

and it is ru(i-1) otherwise. This leads to equation (11), in

which X(i) is the conditional probability that Ml(i-l] is down

given that Mu(i) is down.

We now make this more precise. Assuming that ru(i) is

independent of t, the probability that M1 produces a part at

time t+l given that it did not produce and was not blocked at

time t is

ru[i) = prob [nil[t)>O, o[(t+l)=l 

(nl[(t-l]=O or ot[t)=O) and n,(t-l) < Ni]. (14)

Breaking down this expression by decomposing the condi-

tioning event, we have

ru(i] = A[i-l) X(i) + B(i] X'(i), [15]

where we define

A[i-l] = prob [nil(t) > 0, ao[t+l)=l j ni_,(t-l)=O and n[t-1) < Ni], (16)

X(i) = prob [nl_,(t-l)=O and n , (t-l]) < Ni

(nll(t-l]=0 or cti(t)=0) and nl(t-l] < Nil, (17)

B(i) = prob [ni_J(t) > 0,. al[t+l)=l ai([t)=0 and ni(t-1] < Ni], (18)

X'(i) = prob [Ui(t)=O and n,(t-l) < Ni I

(ni_,(t-l)=O or cL,(t)=O) and n,(t-1) < Nil. (19)

This decomposition is possible because (nil(t-l)=O) and

(al(t)=O) are disjoint events. We now evaluate all four condi-
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tional probabilities.

The transition in [18) occurs when machine M1 goes from

down to up. Therefore,

B[i] = ri.

The first quantity, A(i-l], is the probability of buffer

Bi-I making the transition from empty to non-empty. Buffer

Bi l being empty implies that machine Mi1 is either

down or starved. This is equivalent to saying that M[i-l) is

down. The only way that Bi-, can become non-empty immedi-

ately after being empty is for Mu(i-1) to recover. The proba-

bility of this event is, by definition, ru(i-1). Therefore,

A[i-l1 = rfui-l)

We now show that

p[ = P(i-1] ru(i)
X(i) =P[i) Ei) . 20)

Equation (17) can be written

prob [ni-l[t-l)=O and nitt-l] < Ni ]
X(i]) (21]

prob [ (n,_[t-l]=O or aitt]=O] and n,(t-l] < Ni

We have observed that the probability of B being empty

and Bi being full at the same time is small (17). Therefore,

the numerator of (21) is approximately the probability of Bi_-

being empty. We assume B in L(i) has the same proba-

bility of being empty as B 1I in L, so the numerator is

Ps (i - 1 )
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The denominator of (21) is, according to (13), the probabi-

lity of the following event (the time arguments are suppressed):

(C[i]) = 0) and (n i < Ni) [22)

The probability can be calculated by making use of

r(ji) prob [ (a[i) = 0) and (n < Ni) ]

pu(i prob [ (ali) = T} and (n < N) ] =-pJi]-E[i) (23)

(See Schick and Gershwin [1978), page 114.) Thus, the denomina-

tor of (21) is

prob [ (Co(i = 0) and (n, < N) ]

pu[i) E[(i) (24
rU(i)

and (20) is established.

A comparison of (17) and (19) shows that the events are

complementary. Therefore

X'(i) = 1 - X[i) (25)

All quantities in (15) have now been evaluated, and the

result is (11], in which X(i) is given by (20). A similiar

analysis yields equation (12) for the second machine in the i-l'st

line, where

vr. pb (i) rd([i-) (26]
Y[i] =pdi-l ] Ei-l) 
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Finally, there are boundary conditions:

rul) = r

rd(k-l] = rk
p (1) = p1 ([27)

pd[k -l) = Pk

There are a total of 4[k-1] equations among [8]. (10]. (11].

(12), and (27) in 4(k-1) unknowns: r([i], pu(i], rd i],

Pd(i], i=l, ... , k-i.

Summary of Approximations

We have made the following approximations:

1. We have assumed that two machines for each buffer can be

described whose behavior adequately summarizes the upstream and

downstream parts of the line. We have further assumed that they

can be represented by geometric up- and down-time models.

2. We have made use of approximation (6). This affects equation

(10] as well as the calculation of X(i] and Y[i) in equations

(11) and [12). (The approximation in the calculation of X(i)

occurs in the simplification of the numerator of (21).)

Numerical Technique

Equations (8), (10), ([1), (12), and (27) define a two-point

boundary value problem of the form

f(x(i), x(i+l)) = , i=l.....

xl(O), x2(0), x3(k), x4(k] specified 3
where x(i) is a 4-vector of the parameters of line L[i); x(i) =

(ru(i), Pu i) rd(i), p,1 i)]. The nonlinear function

f ]H involves the evaluation of E[i), ps(i), and pb(i) by
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means of the two-machine line formulas of the Appendix.

The following algorithm produced the numerical results of

the next sections.

1. Initialization. Guess ru(i), pu(i], rd[i], pd(i), i=l, ....., k-1.

2. Evaluate E1), ... , E(k-l) and E, their average.

Loop 3. The outer loop seeks E whose value, used in

...._ _step_ 3 andthe _ following s.teps,_pro.duces--- a nearly equal value

of E in step 15.

3. Using E in place of ECi), calculate new values of rU[i)

and rd(i-1) from 11) and (12).

Loop 2. The middle loop seeks a value of pd(l] so

that E[k-1), as evaluated in Loop 1, is close to El1).

4. Guess pd( )l. (The most recent value may be used.)

5. Evaluate EMl).

6. Calculate pu( 2) from (10) with i=2 and with Eli] re-

placed by E.

Loop 1. For i=2, ... , k-2 the inner loop seeks a

value of pd[i) so that Eli) is close to E[1).

7. Set i - 1.

8. Set i - i+l.

9. Find the value of pd(ij so thila Eli] is suf-
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ficiently close to E(l). This is done by searching and

evaluating the two-machine line formulas of the Appen-

dix.

10. Calculate pu(i+l) from [10) where E(i) is replaced

by E.

11. If i = k-2, go to step 12. Otherwise, go to 8.

12. pu[k-l) has been determined in step 10. All other

parameters of Lfk-l] are already known. Evaluate E(k-l].

13. If E(k-l]) is sufficiently close to E[1), go to step

15. Otherwise, step 14.

14. Modify pd(1] to bring E(k-l) closer to E(1). Go to

step 5.

15. The value of E[1] = ... = E[k-1) is the new E. If it is

sufficiently close to the previous E, stop. Otherwise, modify

the old E and go to step 3.

16. The average buffer levels of the long line are simply those

of the two-machine lines when convergence is reached.

Each loop in the algorithm is characterized by the solution

of a single nonlinear equation in one unknown. For example, Step

9 in Loop 1 (the innermost loop] determines pd(i] such that

IE (i)-E [ 1)[<c as follows. Let FI ( be the function,

determined by the two-machine formulas, that represents the rela-

tionship between E(i) and pdfi) when all other parameters of

Line L(i) are held constant:
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EMi) - F[lpdi)]) (29)

(The superscript 1 refers to Loop 1.) Let p(n-l(i)- and pn)([i) bed d

successive guesses of pd(i and let E(n-l ) and E(n) be the corres-

ponding values of E)i]. The Newton-Raphson method for choosing

the next guess pn+U(i) is
d

_______ _ _-= - i)f pin)-E(i E) (30]Pd d dII dF(Pi )
dF[pdM[i]

where the derivative is evaluated at n) Note that

E[1] is treated as a constant here. We approximate the deriva-

tive by the difference quotient

dFiPd([i)] E-n)(i) - En-i)31)
-dp (i j(i) - pn_)(i)

and (30) becomes

pPn-+1)i)(E(n)(i) - E[l) - pcn)(i)(En-'')(i) - E1]))

d E(n)[i) - E(nl)(i)

Similarly, in Loop 2 we seek a value for pd (1) so that

IE(k-l)-E(l)c<E. In this loop, E(1) is a variable. Here we

apply Newton's method to the equation

E[k-1)-E[1) = F2(pd(1)) (33)

so that the iteration formula is
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PM[el)] p-[1(13n(E(m[(k-l] - E1]) - pm)[1)(E(m-l)hLk- - E(]))
d ) Etn)(k-l) _ E(m)(1) - E(ml)(k-l) + E(m-l)1 ]

Finally, Loop 3 (the outermost loop) determines a value for

E that satisfies the Flow Rate-Idle Time and Resumption of Flow

equations as well as Conservation of Flow. Let e ( be the value

of E used in Step 3 (Resumption of Flow) and Step 6 [Flow Rate-

^(&
Idle Time) in the tth iteration. Then let E be the value of

E(1) to which Loop 2 converges. We seek 6 such that

E = R. One possible iteration process is simply

?*~'I= E = F3[6C )] (35)

but again, the Newton-Raphson method appears to be more effi-

cient. The iteration formula is

,,( +_ -=(e-1F3(gf()) _ g(F3(g( -l) [36)

F3(g () - F3[gl )) 6

Note that in all three loops, two initial values are re-

quired. In all the examples in the following sections, E was

large in the initial iterations and was then reduced to 10- 8.

Analytical results on the iteration process are not avail-

able. Numerical experience suggests that when it converges, it

converges to a unique solution which agrees closely with simula-

tion and is independent of the initial guess. There have been

some cases in which the algorithm failed to converge. These were

lines in which a few machines had much larger values for r and p
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than the others, or where the lines were very long (more than 20

machines].

The speed of the algorithm is best measured by the number of

evaluations of a two-machine line. This is reported below for

many cases.
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3. NUMERICAL RESULTS--
BEHAVIOR OF THE ALGORITHM

In this section, the behavior of the algorithm is described.

The issues investigated are those of accuracy and computational

effort. The behavior of transfer lines, as determined by this

method, is presented in Section 4.

Three-Machine Cases

It is possible to compare the results of this algorithm with

exact results by using the method of Gershwin and Schick (1983).

Table 1A lists the parameters of a set of cases. These cases

represent a wide range of three-machine systems. Simulations

were also performed for comparison. Each simulation was run for

a total of 100,000 time units. The results are shown in Table

lB.

The approximate method produces results that are extremely

close to the exact values obtained by solving the Markov chain

exactly. The error is very small in the production rate E (less

than 0.02)} and only a little larger (less than 2.6Z) in the

average buffer levels. The approximate results are generally as

close or closer to exact as the simulation results.

The table also shows how efficient the method is. The eval-

uation of a two-machine transfer line is a very small computatio-

nal burden. Eighty-eight evaluations requires orders of magni-

tude less computer time than that required for the exact solution

or for the simulations. Note that Case 6 has buffers that are

too large for the exact method, but that the agreement with
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simulation is good.

Longer Lines

Exact methods are not available for systems of more than

three machines or for three-machine cases with very large buf-

fers. Consequently, other techniques are required to assess the

accuracy of the approximation. They include simulation and exact

qualitative results. The cases considered here represent a wide

. .---.------ range-of---.failure-probabilities,--repair--probabilities, and buffer

sizes. The results cover a wide range of production rates and

average buffer levels.

There is close agreement between the approximation and simu-

lation results. In most cases, production rates and buffer

levels agree to within a few percent. This remains true even for

large buffer capacities (over 100) and long lines [20 machines.)

There is no obvious trend indicating that the accuracy of the

approximation decreases as the line length increases.

Cases in which r = pi = .1

The number of evaluations of two-machine lines increases

with the length of the line. Figure 3 shows this for two sets of

cases in which repair and failure probabilities are all equal to

.1. Experience indicates that the number of evaluations ap-

pears to be O(k3 ), where k is the number of machines.

Most of the approximation and simulation results of this and

the next section were produced on the MIT Honeywell 68/DPS compu-

ter with the Multics operating system. All times indicated were
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for runs performed on this machine. Experience indicates that

the computer time for the analytic approximation method appears

to be much less than that of simulation.

Other runs -- both approximate and simulation -- were per-

formed on an IBM PC and a variety of compatible computers.

Table 2 shows the results of a set of cases with repair and

failure probabilities all equal to .1 and buffer sizes all equal

to 5. Production rates (E) are indicated for all cases; average

buffer levels and computer times are indicated for the 20-machine

line. Note the close agreement between approximate and simulated

production rates and average levels. Table 3 contains similar

results but with all buffer capacities equal to 10.

Reversibility and Symmetry.

Several authors have conjectured (Hillier and Boling, 1977)

or shown [Dattatreya, 1978; Muth, 1979; Ammar, 1980; Ammar and

Gershwin, 1981) that two tandem queueing systems which are the

reverse of one another have the same production rates. In addi-

tion (Ammar, 1980; Ammar and Gershwin, 1981), the average levels

of corresponding buffers are complementary.

Symmetric lines are their own reverses. The complementarity

property applies to symmetrically opposite buffers. That is, for

i = 1, ... , k-l,

ni + n ki = Ni = Nki. (37)

Furthermore, the average level in the middle buffer of a
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symmetric line with an odd number of buffers is equal to exactly

half the capacity of that buffer [Ammar, 1980). That is, if k is

even and i = k/2, [37) implies

k/2 = N/2 [38)

The results of the decomposition method agree with these

observations exactly. Simulation, however, produces only ap-

proximate agreement. These properties are exhibited in the last

case of the Table 2;, the first case of Table 3; Cases 1-4; 6; 14

and 15; 18 and 23; and 19 and 21.

Perturb'ed cases

Tables 4A and 4B contain a set of four-machine cases that

are close to three-machine cases already considered. It includes

machines that are nearly, but not quite, perfect. If those

machines were perfect, these cases would be the same as the

earlier cases. We expect the behavior of the perturbed cases to

be close to that of the others.

Case 7 was chosen to be close to Case 4. Case 7 is a four-

machine line whose second machine almost never fails. The first

two buffers of Case 7 have a total capacity which is equal to

that of B, of Case 4, and the other corresponding machines and

buffers are the same. The sum of the average levels of the first

two buffers of Case 7 is 5.977. This should be compared with the

average level of Bl of Case 4 which is 6.063. In addition,

5i, of Case 7 is not far from n2 of Case 4.
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Similarly, Case 8 was chosen to be close to Case 3. Here the

highly efficient machine is the last. The first three machines

and two buffers of Case 8 are identical to Case 3. The results

are also in close agreement. Furthermore, the level in the last

buffer can be explained.

Because the last machine nearly never fails, the last buffer

never has more than one piece in it. If it were initialized with

more than one piece, the number of pieces would diminish whenever

the third machine was down or the second buffer was empty. If

such a condition persisted, the third buffer would become empty.

Eventually, the third buffer would have exactly one piece if the

third machine were working and the second buffer were non-empty;

and it would be empty otherwise. That is, it would have one

piece whenever the three-machine subset was producing parts and

no pieces when it was not.

To calculate the expected level in the third buffer, we need

to know the fraction of time the subset is producing parts. We

do: it is the production rate of the three-machine subset. As a

consequence, the average number of parts in the last buffer [when

the last machine is almost perfectly reliable) is equal to the

production rate, in parts per time unit.

The simulation results also bear this out. Cases 4 and 9

are in the same relationship as Cases 3 and 8 and they demon-

strate this behavior.
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Comparison with Published Simulations

Cases 10-12 (Table SA] are a set of 5-machine lines from

example ([c of Ho, Eyler, and Chien (1979) and the simulation

results (production rates) of Table 5B are theirs (written in a

slightly different form). In each of these cases,

r,=.005, pi=.001, i=l, ..., 5

The approximate and simulation production rates are in good

agreement. Furthermore, both methods calculate production rates

for Case 12 which are greater than those for Case 11, which are

greater than those for Case 10.

Cases 13-23 [Table 6A) are taken from Law (1981) and again

the simulation results (Table 6B) come from the cited paper.

These are all 4-machine lines in which

r,=.05, p,=.00S, i=l, ..., 4

The decomposition results are in close agreement with simu-

lated values. However, Law draws conclusions that are not sup-

ported by reversibility or decomposition results. Cases 13-17

are Buffer Allocations 1-5 of Table 4 of Law (1981). Law finds

Allocations I and 5 to be statistically indistinguishable and to

have a greater production rate than Allocations 2, 3, and 4,

which are also indistinguishable. However, we find that Alloca-

tions 2 and 3 (i.e., Cases 14 and 15) are the same (due to rever-

sibility). Their production rate is less than that of Allocation

4 (Case 16) which is less than that of Allocation 5 (Case 17)

which is less than that of Allocation I (Case 13).
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Cases 18-23 (Table 7) are Patterns 1-6 of Table 2 of Law

(1981). Law is seeking to find the best sequence of four ma-

chines of which two have high efficiency (H) and two have low

efficiency (L). The parameters of the H machines are p=.0025 and

r=.05. The L machines have p=.02 and r=.05. The three buffers

each have capacity 19 in all cases. Law finds that the patterns,

in order of production rate, are

(23,22), 21, 18, 19, 20.

using the case numbers of this paper. That is, Cases 23 and 22

cannot be distinguished, but their production rate is less than

that of Case 21, and so forth.

We find instead the following order:

22, (18,23), ( 19,21]), 20.

The cases that we find indistinguishable are the reverses of one

another.

Cases with Different Machines

Many of the lines treated here have had identical machines.

Table 8B shows the results of two cases with different machines,

whose parameters are listed in Table 8A. These are six- and

twelve-machine cases that consist of the three machines of Case

5, doubled and quadrupled. The buffers are all of capacity 10.

The simulation and approximation results are in close agreement.
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4. NUMERICAL RESULTS--
BEHAVIOR OF TRANSFER LINES

Figure 4 demonstrates how the production rate varies with

the length of the line for two sets of cases. It is not surpri-

sing that production rates decrease as lines grow. This graph

does not, however, settle the question of whether the production

rate approaches zero as the length goes to infinity.

Figure 5 shows how material is distributed in the buffers

for two twenty-machine cases. Note how the average buffer level

in the tenth buffer is equal to half the buffer's capacity. This

is due to the symmetry of both cases, as discussed above. All

the other buffers exhibit complementarity. For example, in the

case where Ni=10 for all i, fi3 +fi17=10.

Cases 3, 4, and 6 of Section 3 show that as the buffer sizes

increase, the production rate increases. In addition, the ave-

rage buffer levels, as a fraction of capacities, approach .5. In

general, production rate increases with buffer capacity, but

buffer levels do not always approach half of buffer capacity as

capacity increases.

Figure 6 shows the effect of increasing total buffer space

and the effect of varying the distribution of buffer space. A

system of nine identical machines with parameters r=.019 and

p=.001 is considered. In one set of cases, there are eight

buffers with equal capacities. In the other, there are two

buffers with equal capacities, located between the third and

fourth machines and between the sixth and seventh machines.
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(Each set of three machines is equivalent to one machine with

parameters r=.01898 and p=.002997.)

The reason the 8-buffer lines are better than the 2-buffer

lines when the space is large is that the production rate is

limited by the least productive machine. In the former case, the

limiting efficiency is .95; in the latter it is .8636 since each

set of three machines acts like a single machine. The behavior

when the buffer space is small may be due to the model of block-

ing and starvation used here; with other models, the 8-buffer

distribution may always be better than the 2-buffer distribution.

Note that the total average buffer levels are the same in the two

sets of cases: half the total capacity (due to symmetry).

The facts that Case 20 is the best of Cases 18-23, that 13

and 17 are the best of 13-17, and that 33 is the best of 31-33

may be instances of the "bowl phenomenon" (Hillier and Boling,

1966), which is that, for maximal production rate, more buffer

space should be allocated to the middle of a line.



GERSHWIN, Tandem Queue Decomposition 32

5. CONCLUSIONS AND FURTHER RESEARCH
A new method has been found for the analysis of tandem

queuing systems with finite buffers in which blocking is impor-

tant. Exact and simulation results indicate that the method,

while approximate, is quite accurate. Current research is aimed

at extending this work in two directions: other service process

behavior, such as reliable and unreliable machines with exponen-

tial and other processing time distributions (Choong and Ger-

shwin, 1985; Gershwin, 1985); and assembly/disassembly networks

[Gershwin, 1986). Future efforts will be devoted to systems such

as Jackson-like networks with blocking.

Research is needed to determine precisely the performance of

this method. That is, analytic techniques rather than only

numerical experiments should be used to develop bounds on the ac-

curacy of the method and to determine convergence properties of

the algorithm.
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APPENDIX
Steady-State Probabilities and Performance Measures for Two-

Machine Lines

In the following, p(n, a l , 0 2) is the probability that

there are n parts in the buffer and that Mi is in state a i.

These probabilities are taken from Gershwin and Schick (1983).

p[O,O,O) = O

p(oo,l) = C X r I + r2 - r 1r 2 - rip2

p(0{l,0) : 0 rIP2

p(O,l,l] =0

p[(l,OO) = C X

p(1,0,1) = C X Y2

p(1,1,O) = 

p1,,l1] =C X rl + r2 - rlr2 - rlp2

P2 p1 + p2 - P IP 2 - rip2

p(N-l,O,0] = C X-'

p(N-l,O,l) = 0

p(N-l,l,O) = C XN-' Y 1

pC-,,l _- C X N- rl + - rr 2 -rr2 r2
P1 pi + P 2 - PIP 2 - P"r2
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p([N,O,O] = 0

p(N,O,l) = 0

p(N,l,0) = C XN -I rl + r 2 - rf r2 - plr 2

p(N,l,1] = 0

p(n, al, c2 ) = C Xn y al Y2 2, 2 < n < N - 2

where

r1 + - rFr 2 - rlP 2

P1 + P2 - PP 2 - Plr 2

rl + r2 - rlr2 - Plr 2

2 P + P2 - PP2 - rip2

X Y2

yi

and C is a normalizing constant. Performance measures are given

by

E = p[n, a, a 2 ) = Sp(n, a 1, a 2 )

n>O n<N
o2 =l al=l

PS = p(O,O,1), the probability of starvation

Pb = p(N,l,0), the probability of blockage

ni= _ n p(n,. o1, a 2)

all n, at, a 2

Note that
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E = e (1 - pb]

= e2 (1 -PS).
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Case rI pi Nl r 2 P2 N2 r3 p3

1 .1 .05 5 .1 .05 5 .1 .05

2 .05 .002 5 .05 .002 5 .05 .002

3 .1 .1 5 .1 .1 5 .1 .1

4 .1 .1 10 .1 .1 10 .1 .1

5 .07 .01 10 .1 .013 10 .05 .007

6 .1 .1 100 .1 .1 100 .1 .1

Table 1A. Three-Machine Cases
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E 2l Evaluations

Case 1

Approximate Results .4542 3.088 1.912 70
Exact Results .4545 3.063 1.937
Simulation 1 .4567 3.030 1.953
Simulation 2 .4554 3.034 1.877
Simulation 3 .4514 3.072 1.969

Case 2

Approximate Results .8993 3.001 1.999 32
Exact Results .8992 2.987 2.013
Simulation 1 .9031 3.087 2.024
Simulation 2 .9030 3.135 2.056
Simulation 3 .8883 2.998 1.982

Case 3

Approximate Results .3105 3.101 1.899 68
Exact Results .3109 3.075 1.925
Simulation 1 .3075 3.060 1.918
Simulation 2 .3126 3.096 1.912
Simulation 3 .3109 3.086 1.926

Case 4

Approximate Results .3563 6.063 3.937 64
Exact Results .3556 6.035 3.965
Simulation 1 .3544 6.089 3.908
Simulation 2 .3572 6.109 4.024
Simulation 3 .3552 6.011 3.903

Case 5

Approximate Results .7546 6.182 3.349 86
Exact Results .7539 6.120 3.437
Simulation 1 .7548 6.107 3.443
Simulation 2 .7478 6.412 3.523
Simulation 3 .7558 6.074 3.310

Case 6

Approximate Results .4722 56.60 43.40 88
Simulation .4676 58.59 45.71

Table lB. Results of Three-Machine Cases
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Line length, k Quantity Eval's Approx. Sim. 1 Sim. 2

4 E 116 .2806 .2830 .2809
5 238 .2630 .2632 .2647
6 399 .2516 .2514 .2519
7 583 .2438 .2418 .2458
8 996 .2382 .2365 .2332
10 2030 .2309 .2306 .2251
13 4110 .2248 .2212 .2193
17 7705 .2206 .2119 .2132

20 E 9467 .2188 .2107 .2117
i1 3.902 3.850 3.909

i5 2.935 3.106 2.856

ilo 2.500 2.684 2.543
nl9 1.098 1.086 1.119

time 6.897 248.169 247.685

Table 2. Performance of Systems with N=5.
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Line length, k Quantity Eval's Approx. Sim. 1 Sim. 2

4 E 131 .3352 .3341 .3390
fil 6.535 6.604 6.556

ni2 5.000 5.133 4.992

113 3.465 3.637 3.564

5 E 234 .3228 .3232 .3175
6 386 .3149 .3075 .3127
7 614 .3095 .3033 .3057
8 1387 .3056 .2970 .2957
10 1899 .3006 .2934 .2910
.... 13 3521 .2964 .2830 .2861
17 10389 .2936 .2768 .2813

20 E 17185 .2924 .2774 .2759
time 12.155 262.188 261.079

Table 3. Performance of Systems with N=10.
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Case Parameters

7 ri=.l i=1, ., 4

pl=p3=p4=.1, p2=.000001
N1=N2=5, N3=10

8 ri=.l, i=l, ..., 4

pl=p2=p3=.1, p4=.000001
Ni=N2=N3=5

9 ri=. 1, i= 1, .... 4
pl=P2=P3=. , p 4=.000001

Nl=N2=N3=10

-- Table-4A.-Parameters of Perturbed Cases.
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Case Quantity Eval's Approx. Sint 1 Sim. 2

7 E 133 .3537 .3550 .3619

ii1 2.656 2.631 2.632

n2 3.321 3.406 3.403

53 3.876 3.986 3.975

8 E 128 .3105 .3095 .3093

iil 3.101 3.058 3.086

112 1.899 1.917 1.882

-n3 .3107 .3095 .3093

9 E 115 .3563 .3546 .3619

fll 6.063 6.042 5.897

fi2 3.937 3.992 3.843

fl3 .3566 .3548 .3619

Table 4B. Results of Perturbed Cases.
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Case Buffer Sizes

10 Ni=100, i=l, ..., 4

11 N 1=80, N2=122, N3=126, N4=72

12 N1=60, N2=146, N3=142, N4=52

Table SA. Parameters of Ho, Eyler, Chien (1979) Simulations.
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Case Eval's Approx. Sim

10 293 .6007 .5927

11 289 .6034 .5948

12 295 .6045 .5958

Table SB. Production Rates from Approximation and Simulation.
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Case Buffer Sizes

13 Ni=40, i=l, ..., 3

14 Nl=10, N2=40, N3=70

15 N1=70, N2=40, N3=10

16 N1=50, N2=40, N3=50

17 N1=30, N2=60, N3=30

Table 6A. Parameters of Law (1981) Simulations.
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Case Eval's Approx. Sim.

13 128 .8337 .8380, .8344

14 133 .8202 .8212
15 94 .8202 .8219

16 117 .8273 .8200
17 137 .8336 .8364

Table 6B. Production Rates from Approximation and Simulation.
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Case SequenceCase SMachince Eval~s Approx. Simr

18 LLHH 898 .6363 .6534

19 LHLH 111 .6707 .6651

20 LHHL 122 .6906 .6767

21 HLHL 148 .6707 .6442

22 HLLH 137 .6351 .6192

-__23 . ---- HHLL-' 146 .6363 .6173

Table 7. Sequences from Law (1981) and Results.
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Case Line Length, k Parameters

24 6 r1=r4=.07, r 2=r5=.l, r 3=r6=.05
pl=p4=.01, P2=p5=.013, p 3=p6=.007

Ni=10, i=l, ..., 5

25 12 rx=r4=r7=rjo=.07
r 2=r 5=r8=rl=. 1,
r 3=r 6=r 9=rl2=.05,

P =p4 =p7=p O=' 0 1,
P2=P5=P8=P= l=.013,
P3=P 6=Pg=PI2= 007,
N=Table A Parameters of, i=nes with Differen...t Machines.11

Table 8A. Parameters of Lines with Different Machines.
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Case Eval's Approx Sim

24 1582 .6692 .6684

25 4455 .6098 .5916

Table 8B. Results from Lines with Different Machines.
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