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ABSTRACT

This paper presents a new set of differential methods for solving the inverse

scattering problem associated to the propagation of waves in an inhomogeneous

medium. By writing the medium equations in the form of a two-component sys-

tem describing the interaction of rightward and leftward propagating waves, the

causality of the propagation phenomena is exploited in order to identify the

medium layer by layer. The recursive procedure that we obtain constitutes a

continuous version of an algorithm first derived by Schur in order to test for the

boundedness of functions analytic inside the unit circle. It recovers the local

reflection coefficient function of the medium. Using similar ideas, some other

differential methods are also derived to reconstruct alternative parametriza-

tions of the layered medium in terms of the local impedance or of the potential

function. One of these methods is known in the literature as the-method of

characteristics.

The differential inverse scattering methods turn out to be very efficient

since, in some sense, they let the medium perform the inversion by itself and

thus fully exploit its structure. They provide an alternative to classical methods

based on integral equations, which, in order to exploit the structure of the prob-

lem, must ultimately resort to differential equations of the same type.



1. IN7RODUCTION

The inverse problem for the one-dimensional Schrodinger equation and for

two-component scattering systems has received a large amount of attention

over the years. This interest is motivated by the numerous applications of such

problems existing in fields as varied as geophysics, transmission-line analysis,

filter design, voice synthesis and quantum physics [!]-[ iO].

The first complete solution of the inverse scattering problem was obtained

by Gelfand and Levitan [11], in the context of reconstructing a second order

differential operator from its spectral function. Subsequently, several alterna-

tive solutions were proposed by Marchenko Ci2], Krein [13], Kay and Moses [14]

and Faddeev [8],[i5]. Other inversion procedures were derived by Gopinath and

Sondhi [5],[6] and by Zakharov and Shabat [16],[i7] for systems described

respectively by transmission-line type equations and by two-component scatter-

ing models.

Since all the inverse scattering procedures mentioned above were formu-

lated in terms of integral equations it was widely accepted in the scientific com-

munity that inverse problems require the solution of such equations. However,

independently of the work of mathematicians and physicists, geophysicists such

as Goupillaud, Claerbout and Robinson developed approaches which more

directly exploit the physical properties of layered media in which waves pro-

pagate. Their solutions, sometimes referred to as dynamic deconvolution

methods [2],[4], reconstruct the medium layer by layer, in a recursive manner.

However this work was formulated in terms of a discretized layered earth model

and was therefore not recognized as providing a solution to the general inverse



scattering problem. In fact, when dealing with continuously varying media geo-

physicists went back to using integral equations based approaches [I],[3],[ 6].

More recently, Deift and Trubowitz [19] proposed a potential reconstruction

method based on a trace formula which calls for the propagation of an ordinary

differential equation and which does not fit the classical inverse scattering

framework.

The objective of this paper is to give a comprehensive account of

differential inverse scattering methods. This is done by first deriving an

infinitesimal layer peeling procedure which can be viewed as a continuous ver-

sion of the dvnamic deconvolution algorithm. This algorithm is in fact a continu-

ous form of a method used by Schur to test for the boundedness of functions

analytic inside the unit circle [20],[ 21]. The identification of recursive layer

extraction methods with the Schur algorithm was first made by Dewilde and his

coworkers F22],235]. The method of characteristics (see e.g. Symes r24'), used

by Santosa and Schwetlick [25] and by Sondhi and Resnick [26] for solving

acoustical inverse problems, can also be interpreted from this point of view. The

relation between the differential inverse scattering methods that we propose

and the classical integral-equations-based approaches is then discussed. It is

shown that by exploiting the structure of these integral equations, one can

obtain a system of differential equations which solves the inverse problem. The

differential equations have the same dynamics as the Schur recursions but

require certain boundary values that have to be successively computed by using

the integral equations. In fact these recursions are of the same type as the

Krein-Levinson equations for factoring the resolvent of a Toeplitz operator

[27],[28].

The paper is organized as follows. Several physical models of a scattering

medium are presented in Section I. These provide various equivalent parametr-



izations of the medium and give rise to different formulations of inverse scatter-

ingr problems. The continuous layer-peeling algorithmi and the associated Schur

recursions for reconstructing the reflectivity function parametrization of the

medium are derived in Section 3. They are then used in Section 4 to obtain

other differential methods that reconstruct either the local impedance or the

Schrodinger potential medium parametrizations. Section 5 relates these

differential methods to the integral equations approaches and describes the

Krein-Levinson type differential solution of the inverse problem. In Section 6 the

results of the earlier sections are extended to some cases when the scattering

medium is not lossless and Section 7 concludes with observations on possible

extensions of these results.



2. Physical Models of Scattering Media

The inverse scattering methods that we discuss in this paper concern

several classes of physical models which correspond to equivalent descriptions

of a lossless scattering medium. They arise in the study of transmission-lines

and of vibrating strings, in the analysis of layered acoustic media and of the

vocal tract and in the description of particle scattering in quantum physics [E]-

[9], [29], 30].

The first model that we consider is described by the syrnmetrized

telegrapher's equations

v(Xt) 1 -z ( )-0 . v(X,t)] (2.1)

at

which may be viewed as obtained from the usual transmission-line equations by

assuming that the inductance per unit length equals the inverse of the capaci-

tance. Z(x) in the above equation corresponds to the local impedance for a

transmission-line or to the area function of the vocal tract model [6],[25],[26].

Since in equation (2.1) the "voltage" and "current" variables are expressed in

different units, we also consider the normalized quantities

V(x,t) = v(z,t)Z(X)-' 12 and I(z:,t) =i(,t)Zz) 11/2 (2.2)

which now have the same dimension. In terms of these normalized variables

(2.1) becomes

---- ---- -··-- ----·-- r ·--=-; '1 ------ ---1--- ·-- --- · ··-



-7-

XV(zt) 1 = -k(z) a ] V(,t)

a I(Z,t) t ) t) 2.

where k (x) is the Loca2 reflection coefficient (also called the reflectitrlty func-

tion) given by

k(z) = Z(z)-l/2 Z(X)1/2 -= 2 d In z(x) (2.4)
dx 2 d--

Note that, as a direct consequence of this normalization, we have

(V(,t xt) Z() . (2.5)
i(x,t) = (z,t)

From the system (2.3) we can obtain directly the second order uwave equzations

02 02
(O2 - at 2)V(z,t) - P(z) V(x,t) = O

(2.6)

( 2a -t 2 ) / ( ,t ) - Q(X) (,t) =(. 0

where the potentials are given by

P(X) = -- kd(x) + k(x)2 z(x)I/ 2 Z()-/2

(2.7)

Q(z) () + (z)2- Z(X)-/2 d 2 Z2 ,'/2

In the transform domain the equations (2.6) take the form of Schrodinger equa-

tions, which justifies calling P(x) and Q(x) potentials. From (2.3) we can also

obtain a model where the variables of interest are right and left propagating

waves defined as

V(Z,t) + I(,t) and L(x,t) = V(x,t)-f(z,t) (
The2 2

The evolution of the wave variabtLes is given by



66

z -k(x)t) - 6k a WR Zt)
w,(z.) t~-k(2)d at ( )

To interpret this equation, note that when the impedance is constant over a cer-

tain section of the medium we shall have k(x) = ) and therefore

WR(x,t) = WFR(t-z) and WL(2,t) = WL(t +x), corresponding to non-interacting

right and left propagating waves. The intensity of local interaction between the

waves propagating in opposite directions is quantified by k (x), which justifies

calling it the local reflection coefficient. A simple discretization of (2.9) gives the

lattice model shown in Fig. 1. Such discrete lattice structures appear in a large

number of applications, such as the linear prediction algorithms for speech sig-

nals [31], the layered-earth models of Goupillaud [2],[3], and digital filter syn-

thesis [22]. The model in Fig. 1 is in fact crucial to the intuitive understanding

of the inverse scattering techniques that we shall derive below.

By performing the space transformation

y(x) = fZ(C)dC (2.10)

on the telegrapher's equation we obtain the string equation

v (Y ,t) = (Y) 2 (,t) (2.11)

where p.(y) is the mass density of the string and is given by

AU(y) = Z 2 [z(y)] (2.12)

where x((y) is the inverse transformation corresponding to (2.10). This model

arises in connection with the use of inverse scattering methods in linear estima-

tion theory [29]. By using the alternate space transformation
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y':z) = Z t-1ed x2.13)
0

we also obtaih the conjugate string equation

is (A t) = ,'l'(w ) aet22 i^M',) "(2.14)

with

,2'ty') = Z 2 [-zy')] . (2.15)

Note that A4y[(z)] jz'[y'(z)] = 1, which explains referring to (2. i1) and (2.14) as

conjugate equations.

The four models of a scattering medium that Nwe use in the sequel are thus

the telegrapher's equations (2.1) parametrized by Z(z), the Schrodinger equa-

tions (2.6) parametrized by P(x)andQ(x), the two-component wave system (2.9)

specified by k(z) and the string equations (2.11) and (2.14) parametrized by

u(?y) and ,'(/y') respectively. The objective of the inverse scattering problem

that we address below is to reconstruct any of the above parametrizations from

some given scattering data. The scattering data is obtained by probing the

medium in order to determine its impulse or frequency response at one of the

boundaries. The probing signals and the medium response are assumed to be

measured perfectly, i.e. the scattering data zi2l be considered noise free. Also

note that, since k(z) and P(z)andQ(x) are expressed in terms of the first and

second derivatives of the impedance function, the different inversion methods

will require various degrees of smoothness for Z(z). When discussing the vari-

ous cases we therefore assume that the Z(z) function is as smooth as necessary

for the expressions involved to be well-defined; fairly standard limiting pro-

cedures can often be used to relax these restrictions.

The inverse scattering problem associated w.vith the Schrodinger equation of

quantum physics is complicated by the possible existence of bound states. A
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consequence of the assumed transmission-line model (2.i) is that energy cannot

be trapped in the medium thereby ruling out the possibility of bound states

[11,1 7 ."



3. Continuous Parameter Schur Recursions

The basic differential inverse scattering method that we discuss in this

paper relies on the wave picture associated with equation (2.9), a discrete

approximation of which is depicted in Fig. 1.

3.1. The scattering data

The necessary data for the reconstruction of the scattering medium param-

eters may be obtained in two possible ways.

In the first case the medium is assumed to be quiescent at t=0 and it is

probed by a known rightward propagating waveform incident on the medium

after t=0. This waveform WpY(O,t) will in general be an impulse followed (in time)

by a piecewise continuous function, but we also discuss the case when no leading

impulse is present. The measured data is the leftward propagating wave, as it is

recorded at x=0O, WL(O,t). It can be viewed as obtained by convolving the

impulse response R(t), of the scattering medium, with the probing wave

WR(O,t). Since the ultimate objective is to measure the impulse response of the

medium, the nature of the probing wave is not important provided it contains

enough energy at all frequencies. >Note, indeed, that as long as r/R(O,t) is given

and WL(O,t) is measured perfectly, we can always obtain the impulse response

by performing a deconvolution.

Another way of gathering scattering data is to perform a measurement of

its frequency response R(X) by sending into the medium sinusoidal waveforms

at various frequencies and measuring the magnitude and phase-shift of the

returning sinusoidal wave. This is clearly equivalent to the time-domain meas-
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urements described above, since R(c,) is the Fourier transform of R(t).

From a practical point of view we cannot always directly generate the

waveform WR(O,t) and measure WL(O,t). However we usually do have access to

the physical variables v(O,t) and i(O,t), and by obtaining the medium response

in terms of these variables we can reconstruct the corresponding WR(O,t) and

WL(O,t) by using (2.8). (In the sequel we assume that Z(O) = 1.) The nature of

the measurements (impulse or frequency response) clearly depends on the phy-

sical apparatus that is available. In the geophysical context, approximate

impulse responses are obtained by using explosive sources (dynamite, air-guns)

and frequency response data can be generated by using wide-band acoustic

sources [2],[321

3.2. The layer peeling procedure

Suppose that the incoming wave WR(O,t) contains a leading impulse. This

impulse will propagate through the medium and, since the medium is causal, it

is not hard to recognize by examining Fig. 1. that the waves W}R(x,t) and WL(z,t)

must have the form

R(:,t) = 6(t-X) + wR(X,t) .u(t-z)

(3.1)
WL(Zt) = L(Xxt)0U(t-X)

where 'wR(z,t) and wL(x,t) are some piecewise continuous functions, 6(')

denotes the Dirac distribution, and u () is the unit step function, i.e.,

1 for t_0
U(t)= 0 for t<O (3.2)

The causal nature of WR(-,t) and WY(z,t), i.e. that they are zero for t < , is a

direct consequence of the fact that the medium was at rest at t=O since the

impulse requires an amount of time equal to x to reach the depth x in the



medium. Note that we assumned that the perturbation in the medium originated

from its left end alone. By substituting (3.1) into the propagating equations

(2.9) and equating the coefficients of 6(t -z) on both sides, we find that

d 2
WL(x,Z+) () and Xi2,+) = -+ ( ) 2 (3.3)

This argument is an application of the classical method of propagcattion of ,sizngz-

iarities (see. e.g. [33]). Now, noting that the expression (3.1) for Wp?(x,t) and

WL (z, t) implies that

IV(z,t) = 6(t-z) + '(zX,t) u It -x)
(3.4)

I(z,t) = 6't-2) + 4(t,t) u(t -z)

where

4(X,t) = R ( ,t) + WL (Z,t) and t(x,t) = w x,t) -. x,t) , (3.5)

we conclude from (3.3) and (2.7) that the potentials are given by

P(z) = - 2-Si ;+)

(3.6)

Q(z) = -2 s ~ , +)

The above results show that the local reflection coefficient sequence k(z)

can be reconstructed directly from the reflected waves at depth x in the

scattering medium. However we have assumed that only the reflected wave at

z=0 is measured; the waves at depth x > 0 will be constructed by a recursive

procedure. Thus let us assume that the waves at point z have already been

computed; then k(z) can be readily identified as W;L(X,z+) using (3.3) and sub-

stituting this value into the propagation equations (2.9), we can compute the

waves at depth z+A. Therefore, starting at x=0, the resulting recursive algo-

rithm can successively identify the local reflection coefficient for increasing

values of z. This recursive inverse scattering process may also be viewed as a



Lcyerpeelinrg algorithm, where at every step one inrfinitesimal layer of the

scattering medium is identified and effectively removed. The right and left pro-

pagating waves inside the medium are recursively generated and can be

regarded at each step as a new set of scattering data for the remainirng extent of

the mediuum. For a lossless and discrete layered medium this algorithms is known

in geophysics as a dynamnic deconvoutiotn process [4] and it its called the dotwn-

ward continuationz method by Bube and Burridge [34]. Dewilde et al. [22],23],

noted that this algorithm is equivalent to the Darlington synthesis procedure for

scattering functions and pointed out its similarity to a result of Schur (1917)

that will be discussed in the next section. In the context of fast algorithms for

linear estimation and operator factorization theory these recursions are some-

times referred to as the fast Cholesky recursions. The operator factorization

identity associated to these recursions is discussed in [28].

To implement the layer peeling method we can use the followqing numerical

scheme which was also derived in a slightly different form by Dewilde, Fokkema

and Widya [23]. Denote

aJR(x,t) = wR(x,t+x) and aL(z,t) = WL(z,t+X) . (3.7)

Then, integrating the evolution equations (2.9), we obtain, after some calcula-

tion, the following system of equations

a(3,t ) = ,w' (Ot) - fk (W)L(,t)d
0

(3.8)

aL(x,t) = wL(O,t +2z) - fket)ae(itt+2z-2t)dt

together trith the formula giving the reflection coefficient



k (z) = 22L(,0) = 2 [WL (,22) -fk (O)aR((,2--24)d( ] (3.9)

By recursively integrating (3.8)-(3.9) along successive antidiagonals in the (x,t)

plane, as depicted in Fig. 2., we can obtain the local reflection coefficients k (x),

for increasing values of z. Note also that we only need to know the probing and

reflected waves Wt(0,t) and WL(O,t) over the time span [0,22] in order to

recover the transmission line parametrization up to depth z.

From a computational point of view, if we assume that the part of the

medium of interest has total length L, and if we use a difference scheme with

step-size L/N in the propagation of the layer peeling algorithm, (3.8)-(3.9), the

total number of operations required to reconstruct the local reflection

coefficient parametrization is 0(N 2 ). These algorithms are therefore very

efficient, when compared to the direct deconvolution methods which do not

exploit the physical structure of the medium.

3.3. The Schur recursions

By taking the Fourier transform of the waves WpR(x,t) and WL (x,t) the pro-

.pagation equations (2.9) become

1?WR(X - ) I -j: -k(Z) J1 (Z t1IPL ~X, W) = k ~x) jW (3.10)

and the frequency response, or re7fect'n ccejficient f!unction of the section of

scattering medium over [zx,) is given by the ratio

RWx,c) = -J(, C) .(3 .11)

Clearly



Ri(oo) = R(:,) (3.:2)

is provided by the given scattering data. Using these definitions the layer-

peeling algorithm described above can be recast as a recursive procedure for

computing the sequence of reflection coefficient functions R(z,w) for increasing

values of x. Since R(z, ) is the ratio of variables with a linear evolution given by

(3.10), it will not be surprising to find, after some algebra, that it satisfies the

Riccati equation

R(_=,,) = ZjcR(x,c) + k(X)[fR(z,X) 2 - 1] (3.13)

It is not clear how this can help, since k () is unknown, but recalling the identity

(3.3) for k(z) and the form (3.1) for the waves at z, we find by using the initial

value theorem for unilateral transforms that

k(x) = 2wL(x,x+) = lim2jcR(x,cw) (3.14)

By using (3.14) the equation (3.13) can now be propagated autonomously. In

terms of the causal impulse response R(z,t) corresponding to the reflection

function R(xz,c), the equation (3.14) simply states that

k (x) 2R(z,0+) (3.15)

The Riccati equation (3.13) for the reflection function is fairly well-known in radi-

ative transfer and transmission-line theory, and is a direct consequence of the

rules of cascading infinitesimal scattering layers [35]. More details about the

evolution of the medium representation under successive compositions of

infinitesimal scattering layers will be given in Section 5.

In the context of the inverse problem of geophysics the Riccati equation

(3.13) was also obtained by Gjevik et al. [36]. However, they did not notice the

relation (3. 14) which can be used to propagate the Riccati equation recursively,

starting from the scattering data R (O,0) -= R (c). The), proposed an iterative

CD an iterative



rather than recursive procedure to compute the k A() function. Wie should note

at this point that the computational issues associated with solving (3.13),3.14)

have not been'studied and deserve further investigation.

The equations (3.13) and (3.14) constitute the continuous version of a pro-

cedure derived by Schur, in 1917 [20],[21], for testing boundedness of an ana-

lytic function outside the unit circle of the complex plane. Given a power series

in in z- 1, S(z), Schur proved that IS(z)j <i on the unit' circle if and only if the

sequence of coefficients k, generated by the recursion

S -L 13 i^S,(z)k v.With kn = lim S(z) (3.16)
z -knS.(z) , .

are such that 1k - 1. The discrete parameter recursion (3.16) is in fact a

discretized form of the Riccati recursion (3.13) and can be obtained from it by

using a backwards difference scheme.

The Schur algorithm (3.16) may be interpreted as testing for the existence

of a discrete (i.e. with piecewise constant impedance) transmission-line having

S(z) for the left reflection coefficient function. Similarly, the continuous version

of this algorithm may be considered as testing for the existence of a lossless

transmission-line which synthesizes the given scattering function R (,). A con-

dition for the existence of such a transmission-line is that the reconstructed

local impedance function Z(z), appearing in the model (2.1), should be strictly

positive and bounded. Since, from (2.4)

Z(x) = .Z(O) exptfk( )dl (3.17)
0

this implies that we need to have Ifk ()dj < - for all z. In this case R'i() is

bounded by 1 on the real axis. We note that if a transmission-line is lossless, its

left reflection function R(w) must be bounded by one on the real axis as a result



of energy conservation [5],[7],[9],[15]. The above result is therefore the con-

tinuous equivalent of the boundedness test devised by Schur.



4. Other Differential inversion Methods

In the previous section our analysis concentrated on the two-component

system of wave equations (2.9), and in this framework we have shown how to

reconstruct the local reflection coefficient function k (.). By recalling the identi-

ties (2.7) and (3.17), the potentials P(-) and Q(.), and the impedance Z(.) may

also be obtained. However, since k(.) is expressed as a function of the first

derivative of the local impedance function, the reconstruction method that we

have described above requires the differentiability of Z(.). When the local

impedance function is only piecewise differentiable the Schur algorithm can be

modified to take the discontinuities into account. However a more direct

method is to use the method of characteristics, which can be described as fol-

lows.

4.1. The method of characteristics

Assume that the probing wave WR(z,t) does not contain a leading impulse

and is a piecewise continuous function starting at t=0. Then, by causality,

WR (Z,t) and WL (z,t) must have the form

WR(X,t) = WR(Z,t) U(t -X)

(L.1)
WL (Z,t) = wz(z,t) u (t-x)

Substituting these expressions into (2.9) we find that

WL(Z,z+) = 0 (4.2)

which implies that
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V(z,z+) = I(z,+) .3)

Recalling the identity (2.5) this shows that we have

v +) - Z)
i (x ,z +

Therefore, to reconstruct the impedance function, Z('), we only need to meas-

ure the voltage and current variables v(O,t) and i(C,t) at the left boundary of

the scattering medium and to propagate v(z,t) and i(z,t) by using (4.4) and

(2.1) Note that the knowledge of the voltage and current variables at depth x

enables us to compute the impedance Z(x), which in turn can be used to obtain

the functions v(r+A,t) and i(x+A,t). In this manner the impedance Z(X) is

computed recursively, starting from =0 , and this procedure is known in the

literature as the method of characteristics )24]-[26].

The above inverse scattering procedure can be interpreted in terms of the

layer-peeling technique of section 3.2 by considering the discretized version of

(2. 1) shown in Fig. 3. This figure indicates that the current and voltage variables

at point (rn+!)A, where A is the discretization step-size, are obtained from the

corresponding variables at depth nA by cascading a scattering layer described

by the matrix

Z(n )71/2 1
= (4.5)

zZ' tn) Z(n A) 2(.

with time delays and the inverse of the first scattering layer. This result can be

obtained by noting that

[TvR(rLA't) = ne i)
I C~n(4. 6 )

WL(n At) V(nA,t)

where

1 ~ ~~~~~ 7--~---
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1Z(riL)/ 2 Z(r r)- / 2

2 -Z(nS. )1/2 Z(n L 1) -J1/ 2,, - -- Z(n') '/ 2 Z(n~,) -' "2 = [ + + p_)[~_:, + p+.-i (4.7)

is the chain scattering or transmission matrix corresponding to the scattering

representation Er. [37]. The projection matrices P+ and P_ appearing in the

above formula are defined as follows

+ lo 81 P [io 1 (4. B)

The method of characteristics exploits the delay structure as displayed in

Fig. 3 and the fact that the left reflection coefficient (i.e. the 21 entry) of the

matrix E, is the local impedance Z(na). Since both En and its inverse are

entirely parametrized by the local impedance, the scattering layers associated

to these matrices can be easily "peeled off" (i.e. their effect may be accounted

for) as soon as Z(ntA) has been computed.

The identity (4.4) shows that the reconstruction procedure described above

can also be used to obtain the mass densities /u.() and ,i'(), appearing in the

string equations (2. 11) and (2.14). This is done by substituting

AM(y) =i y-+) (4.9)

and

.t'(ti') = ['tJ~,'J 32 (4.10)

into the equations

r a
V(Yt) : (,t0

and
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v(x, y) ]= i ° -(y't) i (Y'2)

aI 
that describe the strings (2.11) and (2.14).

4.2. Direct recovery of the potential

Similarly, there also exists a procedure for computing the potentials P(.)

and Q(.) directly, without first reconstructing the reflection coefficient function

k(.). To do so let

F(z,t) = ( + V)V( t)ax at
(4.13)

G(x,t) = ( -+ I(Xt)ax at

Then the Schrodinger equations (2.6) can be rewritten in the form of asym-

metric two-component differential systems, given by

V(:,t)at 1 V(t) (4.4)
ax F(x,t) P(x) .8t F(x,t)

and

a I(z,t) at I(x,t)(5
ax G(x,t) Q(z) a l G(z ,t)

The layer-peeling technique introduced in Section 3 can again be used to

recover the potentials P(.) and Q(.) directly, by noting that

P(x) = -2F(x,x+)
(4.16)

Q(x) = -2G(x,x +)

Consequently, if we propagate the variables f 1(x,t),F(x,t)t or lI(z,t),G(z,t)I by

using (4.16) and the propagation equations (4 .1 ' )- .15), the potentials P() and.z - 1~]-\~ r-r , . ~



Q(') can be recovered directly from the scattering data.

To obtain the initial conditions for the systems (4.14) and (4.15) we assume

that the scattering data is Wp(O,t) = (t) and ?R(Ot) = R(t)u 't). Then, by

using equation (2.3) and the fact that k (0) = 2R(0+), we find that

V(O,t) = 6(t) + R(t)u-(t)
(4. 17)

F(o,t) =-t- ~-2-d(t) + R(o+)R(t)] u(t)

and

I(O,t)= 6(t) - R(t)U(t)

G(Ot)= -R2 d-(t) + R(O+)R(t)] u(t)

Whereas in Section 3 the potential was reconstructed by using the original

scattering data and then differentiatirn the reflectivity function, the method

that we propose here first differentiates the scattering data and then recon-

structs the potential directly.

The layer-peeling algorithm'for the systems (4.14),(4.15) can be interpreted

as successively truncating the potentials P(.) and QQ-) in such a way that the

new potentials

P(z,z) = PZ) t(z:-x)
(4.19)

Q(z,z) QIZ)u3(Z-X)

correspond to the part of the original scattering medium located to the right of

x. In this interpretation it is assumed that the part of the scattering medium on

the left of x that was removed by the layer-peeling algorithm has been replaced

by free-space (i.e. k (z) = 0 for z < z). The idea of using truncated potentials for

the analysis of direct scattering phenomena was exploited earlier by Bellman
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and Winmg [38] and is discussed in Lamb [39]. This approach may also be

regarded as an invariant imbedding method.

The differential method presented above for the reconstruction of the

potentials P(.) and Q(.) seems to be related to the trace method of Deift and

Trubowitz. Their method is based on the recursive computation of the Jost solu-

tion of the Schrodinger equation given by

d 2f (x,) + [2, - P(x)]f (x,W) = 0 (4.20)

with boundary condition

limf,.(x,,)expq-j Ix = 1 . (L4.21)
z_"

Then, by substituting the trace formula

P(X) = fj R())f2(z,)du (4.22)

into (4.20), f (xz,) and P(x) can be computed recursively for decreasing values

of x. The connection between the approach of Deift and Trubowitz, and the algo-

rithm that we have discussed above is not yet completely understood.

·- ;--- ·- ·----- ---- ·----- --·- · - -·- -·------- -- --- -'----- ---…-
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5. Integral Equations Formulation

In Section 3 the Schur recursions were derived by only using causality and

the differential description of the medium. However most classical inversion

methods are formulated in terms of integral equations. The objective of this sec-

tion is to derive a set of Marchenko integral equations for the two-component

system (2.9) and to show that these equations can be solved efficiently by a set

of differential equations similar in form to the Schur recursions.

5.1. Transmission and scattering descriptions of the medium

The system (2.9) describes the transmission of waves through an

infinitesimal section of the medium. These infinitesimal layers may be aggre-

gated over the interval [O,z] and by using the linearity of the mediumn we find

that the waves WR(x,t) and WL(z,t) at depth z are related to the waves at the

right boundary by

WR (x l r[i111(2,X) M1z2(Xt) l '° /t

WL(Xt) = z2,1 ,t) M 22(Xt) l[ (O,t)

where * denotes the convolution operator. The matrix

M(z,t ) = [M2 ,t ) M2(,t ) (5.2)21ixt) t vI22Z\Z t 

is the transition matrix of the medium over [O,x] and it satisfies the differential

equation

-k(z)
a I(Iz,t) a=Jf |( ,t) (5.3)

at

wiqth initial condition
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A(Ot) = 56(t) 4tA (5.)

The aggregated medium corresponding to Ml(z,t) can be viewed as obtained by

composing the infinitesimal layers that were peeled off from the medium by the

Schur algorithm over the interval [O,z]. Let M(z,w) be the Fourier transform of

M(x,t). Then, the composition procedure for generating A J(,) and the layer

peeling method are compared in Fig. 4.

Instead of using the transmission description of the medium given by (5.1)

we can use an equivalent scattering description which relates the outgoing waves

to the incoming waves, as follows

W(z ) 1 I TL(.) R(xt) I , RROt) 1 (55)
WL(O,t) L RL(z,t) TR(x,t) j W(xt)

The Fourier transform S (zx,) of the matrix

S(x,t) = [\ , t) ]R(x,t)1 (5.6)

is the scatterinrg matrix associated to the medium over [Q,z] and it can be

obtained from M(zx,w) by the relation

,) = [P+,(x,c) + P_][PLM(x,cW) + P,.]- (5.7)

The general rules of composition of scattering layers are described in Redheffer

[35].

As a consequence of the delay structure and losslessness of the elementary

(infinitesimal) scattering layers described in Fig. 1, the scattering matrix S(x,t)

is such that

RR(z,t) = RL(.z,t) = 0 for t <O (5.B)

T (z,t) = TL(,t) = O for t < (5.9)

and it is lossless, i.e.
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§sHx- v (2tS(: = I (5.10)

where the superscript H denotes Hermitian transpose. in the transmission

representation domain the relations (5.8) and.(5.9) imply that the entries of

!M(z,) have all support over [-z,z]. Finally, by noting that the transmission

medium is invariant when the right and left propagating waves are interchanged

and time is reversed, we get the following useful identities

M ll(X,t) = M22(z,-t)
(5.11)

M 2 1(z.t) = MI2(z,-t)

5.2. The Marchenko integral equations

W'hen the medium is probed from the left, a consequence of its delay struc-

ture is that

W(,t) = (,t) = 0 for t<x . (5.12)

By substituting (5.12) into (5.1) and recalling that kI(x,) has support on [-z,z],

we obtain the system of integral equations

fWR(°.t T)Mll(x,-)dr + L(Ot- T)-ls(z,T)dl = O

(5. 3)

f '?(O°,t -¢)M221(2,)d. + ,fL (O,t-¢-)MZ2(z,'-)d7 = 0
z -z

which relates the entries of M(zx,t) to the measured waves WR(O,t) and W(0O,t),

i.e. the scattering data. From the differential equation (5.3)-(5.4) satisfied by

?d (x,t), it can be shown that 1ill(x,t) and Mf2 1(x,t) can be expressed as

M 11(z,t) = 6(z-t) + mralz(,t)uz(x-t)- u (z +t)]

(5.14)
M2 1(Xt) = m 2 1(l,t)[u(X-t) - u(xt)]

Then, by using (5.14) and the symmetry relations (5.11), we get the Idarchenko



irntegral equzations (for -x c t _z)

-z

(5.15)
t

WL(O,t+xz) + fWL(O,t+T)mj(z,,-)d, + fwp(Ot--,)m(x,-r)d = 0
z _-Z

which need to be solved for the functions mlx,(z,) and r 2 1(z,.). To guarantee

the existence of solutions to these equations, it is as usual assumed that the

probing wave WR(0,t) contains a leading impulse, see e.g. (3.1). In this case the

integral equations (5.15) take the form of a system of coupled Fredholm equa-

tions of the second kind

tz

mll(X,t) + fjR(0.t--)mll(x.,T)d + fwL(0,+Tm +)l(x.)d. = O

(5.16)
~~~~~z I~~~t

WL(O,t+X) + m 2l(x,t) + fw I(0,t+T)mrlln(z,)d + ftR(O,t-7)ml(x,7)dT = O

The solution of these equations can be used to reconstruct the medium since

from (5.3) and exploiting the form (5.14) of M 11(x,t) and M21(z,t) we find that

k(z) = -2mz2 1(ZX-) (5.17)

and

k 2 (X) = 2-m 1 1(2,x-) .5.18)

The equations (5.16) can be solved directly by using a simple discretization

scheme. If the interval [-xz,x] is divided into N equal subintervals, this scheme

would require O(N 3 ) operations in order to reconstruct the reflection

coefficient function over [0,z).

However the kernels wp(O,t+ T) and wL(O,t -v) which appear in (5.16) have

respectively a Toeplitz and Hankel structure which can be exploited to reduce

-- -------- -
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the number of computations. Thus, note that mli(z,t) and m, 2(z,t) satisfy the

differential system

a r 1(z~) 1 _ ( -k()([mll(x.t) At m(zt)
M2 a 21 m(z t)Sm (--'t) J |-kin) (mZl(,t) 

for -z _ t <z, with initial conditions

ml(O,O) = m 2 1z0,0) = 0 (5.20)

When propagating (5.19), it turns out that we need to supply the values of the

kernel mzl(z,-) at t=z- (providing k(z)) and also the value of m 1 l(x,) at t=-z.

By using (5.17) and (5.18), k() can be expressed as

k (=) = m 1(z,-) =
2 z

--wL (0,2) - fL(o0., + -)mll(z,T)d - fjwR(O0,:-')m 2,(2, )d- . (5.21)
-Z -2z

Furthermore setting t = -z in (5.16) we find that

.m,,( ,-2) =0 (5.22)

The differential system (5.19), with the boundary conditions (5.21) and (5.22),

can now be used to compute mn 1(z,t) and mz2 (z,t) recursively. The equations

(5.19) have the same form as the Schur recursions that were derived in Section

3. However the Schur algorithm is formulated as an initial value problem

whereas the recursions derived above constitute a boundary value problem.

These recursions are similar to the Krein-Levirzson equations for factoring the

resolvent of a Toeplitz kernel [27],jr28]. They require the same order of computa-

tibns as the Schur recursions. The stability of numerical schemes for propagat-

ing these two types of algorithms is discussed in Gohberg and Koltracht [40].

The differential equations (5.19) could have been derived also by applying

the disptlacement operators
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+ a a 8'r: = i + at and 6 = (5.23)
&X at ax at

to the integral equations (5.16), and by using the displacement property

1 f (z-t) = O and i6f (X+t) = O (5.24)

of Toeplitz and Hankel kernels. These displacement properties have been

exploited in [271,[28] and [40] to derive some fast algorithms for the computa-

tion of resolvents of Toeplitz and Hankel operators and to obtain triangular fac-

torizations of these operators. Anderson and Kailath, [41], also pointed out that

the resulting fast algorithms can be used to solve the integral equations of clas-

sical inverse scatterirng theory.

5.3. Relation to classical inverse scattering

The integral equations (5.16) are expressed in terms of the general scatter-

ing data W(0O,t) = 5(t) + WR(O,t)Uz(t) and WL(0O,t) = WL(O,t)U(t). In the litera-

ture, two choices for the probing waves have been made either directly or impli-

citly

(i) WR(O,t) = 0 and WL(O,t) R(t)u(t) (5.25)

(ii) wp(o,t) = WL(0,t) = h(t) (5.26)

The second choice above arises naturally when the scattering medium is ter-

minated at its left boundary with a perfect reflector. The Marchenko integral

equations that we have obtained above are therefore slightly more general than

those presented in the literature of two-component inverse scattering problems

[17],[39]. Furthermore they can be used to obtain the classical integral equa-

tions that solve the inverse scattering problem for the one-dimensional Schrod-

inger equation. To do so, denote by



K(zt.) = ml(z,t) + m 2 1(zt) (5.27)

Then, by adding the two integral equations (5.i6), we obtain

WL(O.t+.t + K(z.t) + f[w?(t-) + uL (t-T-)] K(z, )dT = (5.28)

where the potential is given by

P(z) = s2 -K(=,x-) (5.29)
dx

In the special case when the scattering data is given by (5.25), the above equa-

tions correspond to the "classical" Marchenko solution of the inverse scattering

problem [9],[15],[33]. When (5.26) is given as scattering data, it can be shorwn

from (5.28) that the symmetrized kernel

Ks(x,t) = K(x,t) + KZ-t) (5.30)

satisfies the Gelfand-Levitan equation [10],

_s(, it) + :uh (3: +t) + h (-t)] +

fi{h(It-D +h(lt+ Ks) ] S (xz,)d = 0 O<t <x 5.31)

and again

P(x) = Z -K(: ,x+) . (5.32)

Note that the symmetric kernel Ks(x,t) is half the sum of all the entries in the

transmission matrix M(x,t).

Finally, if we define

L(x,t) t) t) + rn 2 (z,t) (5.33)

and use the scattering data (5.26), replacing t by -t in the second equation in

(5.16) and adding it to the first equation, wie find that
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h(z-t) + L(zt) + fh(lt-, )L(ZxT)d,= O . (5.3)

This result is known as the Krein integral equation [8],[9],[13], and we have

immediately that Ks(z,t) = L(z,t) + L(x,-t). By noting that mll(,-x-) = O and

that 2m 12(X ,-x) = k (z) we find that

k(z) = -2L(z,-z) (5.35)

so that the local reflection coefficient function, and therefore the potential, can

be reconstructed by this method.

This development shows that all the known solutions of the inverse scatter-

ing problem based on integral equations can be related to the differential

approach that we have described in the previous sections. The integral equa-

tions based method of Gopinath and Sondhi [5],[6] may be regarded as using a

special approach to the solution of Krein's equation. This method is of impor-

tance since the local impedance is directly recovered and a discussion of it can

be found in Bruckstein and Kailath [42].



6. Inverse Scattering for General Media

The differential inversion methods that we have obtained above were res-

tricted to the case of lossless scattering media. It is however possible to extend

them to more general media, where the wave propagation is described by the

two-component system

F WR( ,t) | | + a(x) $(x) IW aR( ,t ) 1 

Such systems appear for example in the study of lossy transmission lines and

acoustic media [26],[43]. The local loss function for this system is given by

f [ WI ( z~') I2- _2I Wj7L( ) L )a) 1 2]d ( =

X [W-(x,-) W(xc> l b ()-, x) [ W () (x x,c;) di (6.2)

which shows that a necessary and sufficient condition for losslessness is that, for

all z,

{a(2) = o(z) = 0
| b(z) ( = x () (6.3)

This is the case that was considered in the previous sections. An infinitesimal

layer of the scattering medium corresponding to (6.1) is depicted in Fig. 5.

Since the scattering medium is parametrized by four different functions

t (.),b(.),ta(.),()3, in general it will not be possible to reconstruct all of them

from the pair of waves TW(O,t) and WL(0,t). The reconstruction techniques that

will be discussed in this section therefore assume either that the parameters



-34 -

ae(z), a(x) and (x) can be expressed as some function of b Iz), or that we have

more information than the medium impulse response at z=0.

6.1. Reconstruction for a medium parametrized by b (z) only

When the medium is entirely parametrized in terms of b () - as was the

case, for example, for lossless media - the layer peeling procedure of Section 3

can be extended easily F42]. To do so, note that when the medium is probed by a

wave WR(O,t) with a leading impulse, the waves at some depth x are of the form

WR (x,t) -= R(x)6(t -z) + WR (Z,t)u(t -X)

WLL(z t) = VL (X, t )UtX)

with

7R(x) = explfa(¢)dt . (6.5)

In this case

b(x) = 271 (ZX)wL (2,x +) (6.6)

and, since YR(z) can be obtained from the previously reconstructed layers,

equation (6.6) may be used to compute b (z) for the next infinitesimal layer,

which in turn determines a(z),cx(z) and g(z). This implies that (6.1) and (6.6)

can recursively compute the waves that propagate inside the medium and simul-

taneously recover the medium parameters.

The requirement that the medium be parametrized by b () alone might

seem rather strong, however in the literature one often encounters papers that,

after stating the problem in its full generality, introduce an equivalent assump-

tion. It is also interesting to note that, in case the parameters a(z),a(z) and

(zx) depend on b (z) in a nontrivial way, it is not clear how the integral equa-

tions based inversion approaches can be extended.



6.2. Inverse scattering for a nonsymmetric system

Another example for which differential reconstruction methods can be dev-

ised is when a(z) = cx(z) = 0 in (6.1). In this case the resulting asymmetric two-

component system is of the type considered by Zakharov and Shabat (see. e.g

[!6],[17]). The system (6.1) can in fact always be reduced to this particular form

by performing the substitution

WR(=:, t) v 7Rl(X:)W.( a,t)
(6.7)

WL(z,t) v- y 1 (z) TYL(z,t)

where YR(z) is given by (6.5) and

7L(z) = explfax()d4l . (6.8)
0

In terms of these "normalized" variables, (6. i) becomes

a TWY(zt) a 7).(Z) P(Pt)Z1 (6.)
(6.9)

Oz WL(X,t) b (2)) (ZZ W(X,t) 
L(X ) at

which is now in the form of an asymmetric two-component system. Let us define

k(z) = -b()) and kAL( (6.10)

The generalized Schur procedure that we derive next reconstructs the two func-

tions k .) and kA(.) which are two independent functions of the original

parametrization. Thus, unless a.(z) = a(z) = 0 for all z, this method will provide

only a partial reconstruction of the original medium. Our presentation follows

that of Yagle and Levy [44].

In addition to the causal pair of waves WR(F0,t) and WL(O,t) that was used

earlier as scattering data, it will be assumed that we are also given a noncausal

wave pair
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A JATO(Q[) = d(t) + WL Ot)u -t)

T W (O,t) A w(Ot)UL(-t)

These waves can be viewed as obtained by exchanging the role of WY(() and WL ()

and by reversing time in a scattering experiment. The corresponding reflection

coefficient function

(R (~ o, ) (6.12)
WL (. (°)

is the (1,2) entry of S-l'(), where

-(X) = TR(c) TL(D) (6.!3)RR(cL) TLcd)

is the scattering matrix associated with the medium over [Oa,). It can therefore

be obtained by probing the medium from both ends and measuring all the

entries of S (9). Thus, even though the knowledge of the noncausal waves

WL(0,t) and WR, (0,t) is nonphysical, it can be assumed that RN-D() or its anti-

causal inverse Fourier transform RA(t) is obtainable. For the case of a lossless

medium, since S(') is unitary, we have

RA(O) = R(-c_) and RA(t) = R(-t) (6.14)

so that this additional information is redundant.

The layer-peeling method can now be used for the asymmetric two-

component system by noting that, at point x, the anticausal waves W,'(z,t) and

WR (x,t) have the formILA(X,t) = (z+t) + A,(zt)Uzz- t)
(6.15)

,yP(zt) = AZu( 2,t) )u(-z -t)

and that

____ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1--



kA(z) = 2wpz,-((2-+)) (6.16)

Tnerefore, by using the system (6.9) with the relations (3.3) and (6. 6) to pro-

pagate both the causal and anticausal pairs of waves JWR(z,t),Wp(Z,t)t and

WL (z,t),Wp (xt) simultaneously, we can recover both k(-) and kA(cdot) in a

sequential way.

In the transform domain the Riccati equations satisfied by

R(=,c) = IW(x , ) and RA(,) = ) (6.17)

are

-- R(z,c) = 2jR.(x,:) +k(z) ) 2 -kx) (6 18)

R A (c) =-2j WRA (Z) + kZ).2A )2 _kA Xrz) (6.19)

These equations can be propagated recursively by using the relations

lim 2jwfci(z,,) = k(\--)

(6.20)
lim-2jc RA(z,c) = kA(z)

which have the effect of coupling (6.18) and (6.19).

An integral equations based solution of the above problem can be found in

Ablowitz and Segur [17].
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7. Conclusions

In this paper we have obtained differential inversion methods for identifying

various parametrizations of lossless and nonlossles scattering media. Crucial in

all the developments was the assumption that the given scattering data is noise-

free, therefore the methods presented are ezact inversion a2go7ithms. These

methods were also related to the classical approaches of Miarchenko, Gelfand-

Levitan and Krein which are based on solutions of Fredholm integral equations.

Tw/o types of differential methods were described. The layer-peeling

method, or equivalently the Schur recursions, directly exploited the physical

structure of the medium to compute the propagating waves and to simultane-

ously recover its parameters. The corresponding algorithm was therefore formu-

lated as an initial value problem. A second set of differential equations, the

Krein-Levinson recursions, were also derived by exploiting the structure of the

Marchenko integral equations. These differential equations have the same

dynamics as the Schur recursions, however they require certain boundary

values that have to be successively computed by invoking integral equations.

The algorithms obtained via both approaches are both computationally efficient

and numerically stable [40].

The results described in this paper could be extended in several ways. One

of these would be their use for the propagation of solutions of certain nonlinear

differential equations by the inverse scattering transform [16],[36]. Also, our

analysis has been restricted to physical processes described by second-order

differential equations. It would be interesting to generalize the differential

approaches discussed in this paper to the study of inverse problems for more

complex physical structures, described for example by general Hamiltonian sys-

tems.

--- -- - ---- · - ---- ---- --------- ·-- ·-- · · -· · 1
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FIGURE CAPTIONS

Fig. 1: Discretized wave scattering layer,

Fig. 2: Integration path for the propagation of the layer-peeling algorithm.

Fig. 3: Discretized medium associated with the impedance reconstruction

procedure.

Fig. 4: Comparison of the layer-peeling and layer aggregation methods.

Fig. 5: Wave scattering picture for a general medium.
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