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ABSTRACT

This paper presents a new set of differential methods for solving the inverse
scattering problem associated to the propagation of waves in an inhomogeneous
medium. By writing the medium equations in the form of a two-component sys-
temn describing the interaction of rightward and leftward propagating waves, the
causality of the propagation phenomena is exploited in order to identify the
medium layer by layer. The recursive procedure that we obtain constitutes a
continuous version of an algorithm first derived by Schur in order to test for the
boundedness of functions analytic inside the unit circle. It recovers the local
reflection coeflicient function of the medium. Using similar ideas, some other
differential methods are also derived to reconstruct alternative parametriza-
tions of the layered medium in terms of the local impedance or of the potential

function. One of these methods is known in the literature as the method of

characteristics.

The differential inverse scattering methods turn out to be very efficient
since, in some sense, they let the medium perform the inversion by itself and
thus fully exploit its structure. They provide an alternative to classical methods
based on integral equati§ns, which, in order to exploit the structure of the prob-

lern, must ultimately resort to differential equations of the same type.




1. INTRODUCTION

The inverse problem for the one-dimensional Schrodinger equation and for
two-component scattering systems has received a large amount of attention
over the years. This interest is motivated by the numerous applications of such
problems existing in fields as varied as geophysics, transmission-line anélysis,

filter design, voice synthesis and quantum physics {1]-[10].

The first complete soluti.on of the inverse scattering problermn was obtained
by Gelfand and Levitan [11], in the context of reconstructing a second order
differential operator from its spectral function. Subsequently, séveral alterna-
tive solutions were proposed by Marchenko [i2], Krein [13], Kay and Moses [14]
and Faddeev [B],[15]. Other inversion procedures were derived by Gopinath and
Sondhi [5],[8] and by Zakharov and Shabat [18],[17] for systems described
respectively by transmission-line type equations and by two-component scatter-

ing models.

Since all the inverse scattering procedures mentioned above were formu-
lated in terms of integral equations it was widely accepted in the scientific com-
munity that inverse problems require the solution of such equations. However,
independently of the work of mathematicians and physicists, geophysicists such
as Goupillaud, Claerbout and Robinson developed approaches which more
directly exploit the physical properties of layered media in which waves pro-
pagate. Their solutions, sometimes referred to as dynamic deconvolution
methods [2].[4]. reconstruct the medium layer by layer, in a recursive manner.
However this work was formulated in terms of a discretized layered earth model

and was therefore not recognized as providing a solution to the general inverse
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scattelring problem. In fact, when dealing with éontinuously varying media geo-

physicists went back to using inﬁegral equations based approaches [1],{3],[:8].
More recently, Deift and Trubowitz [ 19] proposed a potential reconstruction

method based on a trace formula which cealls for the propagation of an ordinary

differential equation and which does not fit the classical inverse scatlering

framework.

The objective of this paper is to give a comprehensive account of
differential inverse scattering methods. 'fhis is done by first deriving an
infinitesimal layer peeling procedure which can be viewed as a continuous ver-
sion of the dynamic deconvolution algorithm. This algorithm is in fact a continu-
ous form of a method used by Schur to test for the boundedness of functions
analytic inside the unit circle [20],{21]. The identification of recursive layer
extraction methods with the Schur algorithm was first made by Dewilde and his
coworkers [22],[23]. The method of characteristics (see e.z. Symes [24]), used
by Santosa and Schwetlick [25] and by Sondhi and Resnick [26] for solving

acoustical inverse problems, can also be interpreted from this point of view. The

relation between the differential inverse scattering methods that we propose

and the classical integral-equations-based apprcaches is then discussed. It is
shown that by exploiting the structure of these integral equations, cne can
obtain a system of differential equations which solves the inverse problem. The
differential equations have the same dynamics as the Schur recursions but
require certain boundary values that have to be successively computed by using
the integral equations. In fact these recursions are of the same type as the
Krein-Levinson equations for factoring the resolvent of a Toeplitz operator
[R7).[28].

The paper is organized as follows. Several physical models of a scattering

medium are presented in Section :. These provide varicus equivalent parametr-
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izations of the medium and give rise to different formulations of inverse scatter-
ing problems. The continuous layer-peeling algorithm and the associated Schur
recursions for reconstructing the reflectivity function parametrization of the
medium are derived in Section 3. They are then used in Section 4 to obtain
other differential methods that reconstruct either the local impedance or the
Schrodinger potential medium parametrizations. Section 5 relates these
differential methods to the integral equations approaches and describes the
Krein-Levinson type differential solution of the inverse problem. In Section 6 the
results of the earlier sections are extended to some cases when the scattering
medium is not lossless and Section 7 concludes with cobservations on possible

extensions of these results.




2. Physical Models of Scattering Media

The inverse scattering methods that we discuss in this paper concern
several classes of physical models which correspond to egquivalent descriptions
of a lossless scattering medium. They arise in the study of transmission-lines
and of vibrating strings, in the analysis of layered acoustic media and of the
vocal tract and in the description of particle scattering in quantum physics [1]-
[9].29].30]. -

The first model that we consider is described by the symmetrized

telegrapher’s equalions

g_['u(z,t)
8x 'L(x,t)

which may be viewed as obtained from the usual transmission-line equations by

[
0 —Z(z)-a%—- {'u(x,t)
T gy @ ('i(:z:,t)

~ assuming that the inductance per unit length equals the inverse of the capaci-
tance. Z{z) m the above equation corresponds to the local impedance for a
transmission-line or to the area function of the vocal tract model [6],[25].[26].
Since in equation (2.1) the "voltage" and "current" variables are expressed in

different units, we also consider the normalized quantities
Viz.t)=v(z,t)Z(z)"V2 and I(zt)=1(z,t)Z(z)¥? (2.2)

which now have the same dimension. In terms of these normalized variables

(2.1) becomes
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where k(z) is the local reflection coefficient {(also called the rgflectivity func-

tion) given by

k(z) = z(z)-vzgi-—z(x)w = ;i_ n Z{z) . (2.4)

Note that, as a direct consequence of this normalization, we have

u(z,t) _ V(z.t) - ’
i(z.t)  I{z.t) Z(z) (2.5)

From the system (2.3) we can obtain directly the second order wave equations

a? 8* _
(EE——WV(ZJ) - P(.’t) V(:z:,t) = 0
‘ (2.6)
(L T 1zt) - @tz) Hzt) = 0
8z?  ot? ' '
where the potentials are given by
d ~ a? -
P(z) = —k(z) + k(=) = Z(z)2 S z(z) 2
\ (2.7)
d - d
Q(z) = Ezz—k(z)+k(z)2 = Z(z)? FZ(::)VZ

In the transform domain the equations {2.8) take the form of Schrodinger equa-
tions, which justifies calling P(z) and Q{z) potentials. From {2.3) we can also
obtain a model where the variables of interest are right and left propagating

waves defined as

(z.t) + I(z,t)
2

Wiz t) = L and  Wy(zt) = LELD=MEl) g

2

The evolution of the wave variables is given by
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To interpret this equation, note that when the impedance is constant over a cer-
tain section of the medium we shall have k(z)=0 and therefore
Wr(z,t) = Wr(t—=z) and Wy(z,t) = W, {t+z), correéponding to non-interacting
right and left propagating waves. The intensity of local interaction between the
waves propagating in opposite directions is quantified by k(z), which justifies
calling it the local reﬁection coeflicient. A simple discretization of (2.9) gives the
lattice model shown in Fig. 1. Such discrete 1at1';ice\structures appear in a large
number of applications, such as the linear prediction algorithms for speech sig-
nals [31], the layered-earth models of Goupillaud [2],[3], and digital filter syn-
thesis [RR]. The model in Fig. 1 is in fact crucial to the intuitive understanding

of the inverse scattering techniques that we shall derive below.

By performing the space transformation

y(z) = Zzus)ds (2.10)

on the telegrapher's equation we obtain the string equation

62

52
572 v(y.t) = uly)

8t?

v(y.t) (2.11)
where u(y) is the mass density of the string and is given by

wy) = 27=z(y)] , L (21R)

where z(y) is the inverse transformation corresponding to (2.10). This model
arises in connection with the use of inverse scattering methods in linear estima-

tion theory [29]. By using the alternate space transformation

«
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y'(z) = {Z(ﬁ)"dé (.13)

we also obtain the conjugate string eguation

8¢ ., N 8% .,
e i(y't) = “'(y>'572—7‘(y 1) (2.14)
with
wy) = Z8z{y")] . (2.15)

Note that ;z,[y(x_)] 2'[y'(z)] = 1, which explains referring to (2.11) and (2.14) as
conjugate equations. '

The four models of a sc.attering medium that we use in the sequel are thus
the telegrapher's equations (2.1) parametrized by Z{z), the Schrodinger equa-
tions (2.6) parametrized by P(z)and@{z), the two-componeni wa;ve system (2.9)
specified by k{z) and the string equations (2.11) and (2&4) parametrized by
w(y) and w'(y') respectively. The objective of the inverse scattering problem
that we address below is to reconstruct any of the above pararnetrizations from
some given scattering data. The scattering data is obtained by probing the
medium in order to determine its impulse or frequency response at one of the
boundaries. The probing signals and the medium response are assumed to be
measured perfectly, i.e. the scattering dafa will be considered noise free. Also
note that, since k{z) and P(x)andQ{:c) are expressed in terms of the first and
second derivatives of the impedance function, the different inversion methods
will require various degrees of smoothness for Z{z). When discussing the vari-
ous cases we therefore assume that the Z(:z:) function is as smooth as necessary
for the expressions involved to be well-defined; fairly standard limiting pro-

cedures can often be used to relax these restrictions.

The inverse scattering problem associated with the Schrodinger equation of

guantum physics is complicated by the possible existence of bound states. A
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consequence of the assumed transmission-line model (2.1) is that energy cannot

be trapped in the medium thereby ruling out the possibility of bound states

(1].[17].




3. Continuous Parameter Schur Recursions

The basic differential inverse scattering method that we discuss in this
paper relies on the wave picture associated with equation (2.9), a discrete
approximation of which is depicted in Fig. 1

-

3.1. The scatteri_ng data

The necessary data for the reconstruction of the scattering medium param-

eters may be obtained in two possible ways.

In the first case the medium is assumed to be quiescent at £=0 and it is
probed by a known rightward propagating waveform incident on the medium
after ¢ =0. This waveform Wp(0,t) will in general be an impulse followed {in time)
by a piecewise continuous function, but we also discuss the case when no leading
impulse is present. The measured data is the leftward propagating wave, as it is
recorded at z=0, #;{0,t). It can be viewed as obtained by convolving the
impulse response 4R(t), of the scattering medium, with the probing wave
Wr(0,t). Since the ultimate objective is to measure the impulse response of the
medium, the nature of the probing wave is not important provided it contains
enough energy at all frequencies. Note, indeed, that as long as Wg{0,t) is given
and #;(0.t) is measured perfectly, we can always obtain the impulse response
by performing a deconvolution.

Another way of gathering scattering data is to perform a measurement of
its frequenéy reéponse }?(o) by sending into the mediumn sinusoidal waveforms
at various frequencies and measuring the magnitude and phase-shift of the

returning sinusoidal wave. This is clearly equivalent to the time-dornain meas-
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urernents described above, since F(w) is the Fourier transiorm of R{t).

From a practical point of view we cannot always directly generate the
waveform Wg(0,t) and measure W;(0,t). However we usually do have access to
the physical variables v(0,t) and (0,f), and by obtaining the medium response
T in terrﬁs of these variables we can reconstruct the corresponding Wz{0.t) and
Wr(0,t) by using (2.8). (In the sequel we assume that Z(0) = 1.) The nature of
the measurements (impulse or freqﬁenoy response) clearly depends on the phy-
sical apparatus that is available. In the geophysical context, approximate
impulse responses are obtained by using explosive sources (dynamite, air-guns)
and frequency response data can be generated by using wide-band acoustic

sources [2],[32]

3.2. The layer peeling procedure

Suppose that the incoming wave Wp(0,t) contains a leading impulse. This
impulse will propagate through the medium and, since the medium is causal, it
is not hard to recognize by examining Fig. 1. that the waves Wg(z,t) and W;(z,t)

" must have the form

We(z,t) = 6(t—z) +wrp(x.t)u(t-z)

(3.1)

Wiz .t) = wy(z t)u(t—-z)

where wg(z,t) and wy(z.t) are some piecewise continuous functions, &{)

denotes the Dirac distribution, and u(-) is the unit step function, i.e.,

1 for t=0
u(t) =10 for t<o | - (82)

The causal nature of Wp{z,t) and W;{z.t), i.e. that they are zero for t <z, is a
direct consequence of the fact that the medium was at rest at £=0 since the

impulse requires an amount of time equal to =z to reach the depth z in the

oo



medium. Note that we assumed that the perturbation in the medium originated
from its left end alone. By substituting (3.1) into the propzgating equations

(2.9) and equating the coeflficients of 6(f —z) on both sides, we find that

wy{z,z+) = é—k(z) and -d%—-w‘q(z,zé-) = - -é—k(x)z . (3.3)

This argument is an application of the classical method of propagation of singu-
larities (see. e.g. [33]). Now, noting that the expression (3.1) for Wz(z.t) and

Wi(z,t) implies that

Viz,t) = 6(t-z) + ¥(z,t)ult-z)

(3.4)
I(z.t) = 6(t—z) + &(z.t) ult-z)
where
V(z ,t) =wpl{z.t) +wr(z,t) and &(z.t)=wplz.t)—wizt) , (3.5
we conclude from (3.3) and {2.7) that the potentials are given by
p( - d I
\2:) = -2 —d?v\z,z+)
(3.8)
d
Qz) = -2 Loz

The above results sho;w that the local reflection coefiicient sequence k(z)
can be reconstructed directly from the reflected waves at depth z in the
scattering medium. However we have assumed that only the reflected wave at
z=0 is measured; the wavés at depth z > 0 will be constructed by a recursive
procedure. Thus let us assume that the waves at point z have already been
‘computed; then k£ (z) can be readily identified as w;(z,z +) using (3.3) and sub-
stituting thi_s value into the propagation equations (2.9), we can compute the'
waves at depth z+A. Therefore, starting at =0, the resulting récursive algo-

rithm can successively identify the local reflection coeflicient for increasing

values of z. This recursive inverse scattering process may also be viewed as a
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layer-peeling algorithm, where at every step one infinitesimal layer of the
scattering medium is identiﬁedAand effectively removed. The right and left pro-
pagating waves inside the medium are recursively generated and can be
regarded at each step as a new set of scat{ering data for the remaining extent of
the medium. For alossless and discrete layvered medium this algorithm is known
in geophysics as a dynamic deconvolution process [4] and it is called the doun-
ward continuation method by Bube and Burridge [34]. Dewilde et al. [22].[23],
noted that this algorithm is equivalent to the Darlington synthesis procedure for
scattering functiéns and pointed out its similarity to a result of Schur {i19i7)
that will be discussed in the next section. In the context of fast algorithms for
linear estimation and operator.factorization theory these recursions are some-
times referred to as the fust Cholesky recursions. The operator factorization

identity associated to these recursions is discussed in {28].

To implement the layer peeling method we can use the following numerical
scheme which was also derived in a slightly different form by Dewilde, Fokkema

and Widya [23]. Denote
ap(z.t) = welz.t+z) and ar(z.t) = wy(z,t+z) . (8.7)

Then, integrating the evolution equations (2.9), we obtain, after some calcula-

tion, the following system of equations

ap(z.t) = wp(0t) —{k(f)ams.nde
(3.8)
a;{z.t) = wr(0t+2z) —]k(g)ak(g,t+2z—2$)d,g
C

together with the formula giving the reflection coeflicient




k(z) = 2a,(z.0) = 2iwL<O.2x>—Zk(é)ag(e.zx—zadfl . (39)

By recursively integrating (3.8)-(3.8) along successive antidiagonals in the {z,t)
plane, as depicted in Fig. 2., we can obtain the lx;cal reflection coeflicients k(z),
for increasing values of z. Note also that we only need to know the probing and
reflected waves Wp(0,t) and W (0,#) over the time span [0,Rz] in order to

recover the transmission line parametrization up to depth z.

From a computational point of view, if we assume that the part of the
medium of interest has total length L, and if we use a difference scheme with
step-size L/ N in the propagation of the layer peeling algorithm, (3.8)-(3.9), the
total number of operations required to reconstruct the local reflection
coeflicient parametrization is O{N%). These algorithms are therefore very
efficient, when compared to the direct deconvolution methods which do not

exploit the physical structure of the medium.

3.3. The Schur recursions

By taking the Fourier transform of the waves Wg(z,t) and W;{z t) the pro-
.pagation equations (2.9) become
5 [Przo)| [ <o -k(z)
axl Wi (z.w) - 1-—1«:(2) o

and the frequency response, or refiection cogfficient function of the section of

| Wr(z.t)

7,(z.6) (3.10)

scattering medium over [z ,=) is given by the ratio

WL(z.a))

s, _ 1
Rz .w) Fozo) (8.11)

Clearly
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B0 = R(w) (3.12)

is provided by the given scattering data. Using these definitions the layer-
peeling algorithm described above can be recast as a recursive procedure for
computing the sequence of reflection coefficient functions K (z,w) for increasing
values of z. Since F(z.w) is the ratio of variables with a linear evolution given by
(3.10), it will not be surprising to find, after some algebra, that it satisfies the

Riccati equation

f:—;ﬁ(z,o) = 2jwR(z,0) + k(z)[R(z.w)? -1] . (3.18)

1t is not clear how this can help, since k() is unknown, but recallinz the identity
(8.3) for k(z) and the form (3.1) for the waves at =, we find by using the initial

value theorem for unilateral transforms that
k(z) = 2wy(z.z+) = limRjwR(z.0) . ‘ (8.14)
(A2

By using (3.14) the equation (3.13) can now be propagated autonomously. In
terms of the causal impulse response R{z,t) corresponding to the reflection

function #(z,»), the equation (3.14) simply states that
k(z) = 2R(z,0+) . (3.15)

The Riccati equation (3.13) for the reflection function is fairly well-known in radi-
ative transfer and transmission-line theory, and is a direct consequence of the
rules of cascading infinitesimal scattering layers [35]. More details about the
evolution of the medium representation under successive compositions of

infinitesimal scattering layers will be givén in Section 5.

In the context of the inverse problem of geophysics the Riccati equation
(3.18) was also obtained by Gjevik et al. [36]. However, they did not notice the

‘relation (3.14) which can be used to propagate the Riccati equation recursively,

starting from the scattering data R (0,0) = % (v). They proposed an iterative ,

s o st e e gt S i e ot ,__,.._.4,_..._.,,:.__.%'“ e e i i T P



rather than recursive procedure to compute the & {z) function. We should note

at this point that the computational issues associated with solving {3.13),(3.14)

have not been 'studied and deserve further investigatioh.

The equations {3.13) and {3.14) constitute the continuous version of a pro-
cedure derived by Schur, in 1917 [20],[21]. for testing boundedness of an ana-
lytic function outside the unit circle of the complex plane. Given a power series
in in 27}, S(z), Schur proved that |S(z)!{<I on the unit circle if and only if the

sequence of coeflicients k, generated by the recursion

Sn(z) - kn

_ 1
Sn-H Tz 1 "knsn(z)

with  k, = lim S,{z) (3.18)
z"w

are such that |k,| =< 1. The discrete parameter recursion (3.16) is in fact a
discretized form of the Riccati recursion (3.13) and can be obtained from it by

using a backwards difference scheme.

The Schur algorithm (3.16) may be interpreted as testing for the existence
of a discrete (i.e. with piecewise constant impedance) transmission-line having
S(z) for the left reflection coeflicient function. Similarly, the continuous version
of this algorithm may be considered as testing for the existence of a lossless
‘transmission-line which synthesizes tﬁe given scattering function }?(w), A con-
dition for the existence of such a transmission-line is that the reconstructed
local impedance function Z(z), appearing in the model (2.1), should be strictly

positive and bounded. Since, from (2.4)

Z(z) = Z(0) exp! { k($)d¢] (3.17)

, z
this implies that we need to have ]fk (£)d ¢} < = for all z. In this case F{w) is
¢

bounded by 1 on the real axis. We note that if a transmission-line is lossless, its

left reflection function ﬁ(w) must be bounded by one on the real axis as a result




- 18-

of energy conservation [5},[7].[9].[15]. The above result is therefore the con-

tinuous equivalent of the boundedness test devised by Schur.




4, Other Differential Inversion Methods

In the previous section our analysis concentrated on the two-component
system of wave equations (2.9), and in this framework we have shown how to
reconstruct the local reflection coeflicient function k(-). By recalling the identi-
ties (2.7) and (8.17), the potentials P(-) and (), and the impedance Z{') may
also be obtained. However, since k(') is expressed as a function of tﬁe first
derivative of the local impeaance function, the reconstruction method that we
have described above reqL.m“es the differentiability of Z(-). When the local
impedance function is only piecewise differentiable the Schur algorithm can be
modified to take the discontinuities into account. Howe§er a more direct
method is to use the method of characterisiics, which can be described as fol-

lows.

4.1. The method of characteristics

Assurne that the probing wave Wp(z.t) does not contain a leading impulse
and is a piecewise continuous function starting at £=0. Then, by causality,

Wg(z.t) and W (z.t) must have the form

Welz.,t) = wplz.t)ult-z)
(¢.1)
Wilz.t) = wp(z,t)u(t-z)
Substituting these expressions into (2.9) we find that
wp(z,z+) = 0 (¢.2)

which implies that
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Vizz+) = IHz,z+) (£.3)
Recalling the identity (2.5) this shows that we have
{ ~
viz.z+) _ 0,
e = z &4
iz ,z+) Z{z) (¢4)

Therefore, to reconstruct the impedance function, Z(-), we only need to meas-
ure the voltage and current variables v{0,t) and 1(0,t) at the left boundary of
the scattering medium and to propagate v{z,t) and i(z.t) by using {4¢.4) and
(2.1) Note that the knowledge of the voltage and current variables at depth z
enables us to compute the impedance Z{z), which in turn can be used to obtain
the functions v(z+At) and i¢{z+At). In this manner the impedance Z{z) is
computed recursively..starting from z=0, and this procedure is known in the

literature as the method of characteristics [24]-[R8].

The above inverse scattering procedure can be interpreted in terms of the
layer-peeling technique of section 3.2 by considering the discretized version of
(2.1) shown in Fig. 3. This figure indicates that the current and voltage variables
at point {(n+:)A, where A is the discretization step-size, are obtained from the
corresponding variables at depth nA by cascading a scattering layer described
by the matrix

[Z(nA)Va 1

$h = (4.5)
" Zinh)  2Z{(nA)?

with time delays and the inverse of the first scattering layver. This result can be
obtained by noting that
e (nat) L (nAt)

= @n
Wr{nAt) H{nht)

—~
o~
(03]

R

where
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V| Zms)E Z(na)y ,
& = 3 = [P.I, + PJ[PL, + PIT (47)
2 —-Z(n.ﬁ)"g Z(n;‘_\)'VE

is the chain scattering or transmission matrix-corresponding to the scattering
representation L, [37]. The projection matrices P, and P_ appearing in the

above formula are defined as follows

_ 1o _lfoo
Pe=Ppo P-=1l1

'
Ps

(£.8)

The method of characteristics exploits the delay structure as displayed in
Fig. 3 and the fact that the left reflection coeflicient {i.e. the 2i entry) of the
matrix X, is fhe lo&al impedance Z{nA). Since both £, and its inverse are
entirely parametrized by the local impedance, the scattering layers associated
to these matrices can be easily "peeled off” (i.e. their effect may be accounted

for) as soon as Z{nA) has been computed.

The identity {4.4) shows that the reconstruction procedure described above
can also be used to obtain the mass densities u{-) and ("), appearing in the

string equations (2.11) and {2.14). This is done by substituting

2
_ iy |
HY) = | T ) (4.9)
and
) = [v( o 2 (4.10)
# [ iy .y +)
into the equations
g a
[y 0 -1l
L‘f‘y't)} - 8t ?\y.t)) )

and
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s lvizy)] | 0 ) grllvw.o Lo
yliwd) | = |_2 ity ) (2.12)
that describe the strings (2.11) and {2.14).

4.2. Direct recovery of the potential

Similarly, there also exists a procedure for computing the potentials P(:)
and Q(-) directly, without first reconstructing the reflection coefficient function

k(). To do solet

F(z,t) = (56;+ aﬁt—w(x,t)
‘ (4.13)
G(z.t) = (—§;+ —é%—)[(x,t) A

Then the Schrodinger equations (2.8) can be rewritten in the form of asym-

metric two-component differential systems, given by

‘ [
o [V=)] _ —33; 1 fV(x.t)] (4.14)
9z | p(z ) P(z) —gt- F(z.t)
and
[
o 18] _["ar t|[i=) (15)
0z | G(z .t) Q(z) —%— G(z.t) B

The layer-peeling technique introduced in Section 3 can again be used to

recover the potentials P(-) and @() directly, by noting that

P(z)

—-RF(z,z+)

£.18)
Q(z)

i

-2G(z,z+)

Consequently, if we propagate the variables {V(z t),F(z,t)] or {J{(z,t),G(z,t)} by

using {4.16) and the propagation equations (4.14)-(£.15), the poteritials P{) and




(-) can be recovered directly from the scattering data.

To obtain the initial conditions for the systems (4.14) and {£.15) we assume
that the scattering data is Wp(0.f) = ¢{¢) and Wg(0.t) = R{t)u{f). Then, by

using equation (2.3) and the fact that £ {0) = 2R{0+), we find that

V(0.t) = 6(t) + R{t)ult)

(4.17)
F(0.2) = —2[-ZR (1) + R(O+)R(1)] u(t)
and
I1(0.t) = 6(t) = R{(t)ult)
(£.8)

Go.t) = =2 ZR(t) + RIODR(E)] ult)

Whereas in Section 3 the potential was reconstructed by using the original
scattering data and then differentiating the reflectivity function, the method
that we propose here first differentiates the scattering data and then recon-

structs the potential directly.

The layer-peeling algorithm for the systems {4.14),(4.15) can be interpreted
as successively truncating the potentials P{-) and @{-) in such a way that the

new potentials

Plz.z)

1]

P(z) u(z-z)

if

Q(z.z) = Qz)u(z-z)

correspond to the part of the original scat'tering medium located to the right of
z. In this interpretation it is assumed that the part of the scattering medium on
the left of z that was removed by the layer-peeling algorithm has been replacea
by free-space {i.e. k(z) = 0 for z < z). The idea of using truncated potentials for

the analysis of direct scattering phencmena was exploited earlier by Bellman
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and \‘;’ing [38] and is discussed in Lamb [39]. This approach may also be
regarded as an invariant imbedd'mg method.

The differential method presented above for the reconstruction of the
potentials P(*) and @(-) seems to be related to the trace method of Deift and
Trubowitz. Their method is based on the recursive computation of the Jost solu-

tion of the Schrodinger equation given by

L7 0 ¢ [~ PE)F (z.0) = 0 (4.20)

with boundary condition
limf {z, w)exp{—jwz] = 1 . (¢.21)
T o

Then, by substituting the trace formula
= —2—-m e B 2 Ned s
P(z) ﬂiij\w)f (z,w)dw (2.22)

into {4.20), f (z.o) and P(z) can be computed recursively for decreasing values
of z. The connection between the approach of Deift and Trubowitz, and the algo-

rithm that we have discussed above is not yet completely understood.



5. Integral Equations Formulation

In Section 3 the Schur recursions were derived by only using causality and
the differential description of the medium. However most classical inversion
methods are formulated in terms of integral. equations. The objective of this sec-
tion is to derive a set of Marchenko integral equations for the two-component
system {2.9) and to show that these equations can be solved efficiently bsr a set

of differential equations similar in form to the Schur recursions.

5.1. Transmission and scattering descriptions of the medium

The svystem (2.9) describes the transmission of waves through an
infinitesimal section of the medium. These infinitesimal layers may be aggre-
gated over the interval [0,z] and by using the linearity of the medium we find

that the waves Wp{z,t) and W (z,t) at depth z are related to the waves at the

right boundary by
Mrzt) | _ u(zt) #ezt)], [weot)]
Wr(z.t) | = [le(z,t) Hao(z . t) [M(D,t} (5.2)

where ¥ denotes the convolution operator. The matrix

5111(2 t) Miz{z,t)

{
M(z.t) = 1'121\:.: £)  Halz.t)

(5.2)

is the transition matrix of the medium over [0,z] and it satisfies the differential

equation
5,
: e k&)
—M{z t) = 3 Mz .t) (5.3)
i “kiz)
ot

with initial condition
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H(0t) = [5(5) 5(%} : (5.4)

The aggregated medium corresponding to ¥ {z,t) can be viewed as obtained by
composing the infinitesimal layers that were peeled off from the medium by the
Schur algorithm over the interval [0,z]. Let # (z,w) be the Fourier transform of
HM(z.t). Then, the composition procedure for generating M {z,2) and the layer

peeling method are compared in Fig. 4.

Instead of using the transmission description of the medium given by (5.1)
we can use an equivalent scattering description which relates the outgoing waves

to the incoming waves, as follows

MWe(z.t)] _ IT(zt)  Relz.t)], [we(0t) . (5.5)
|108) | = |Ralet)  Talet)| " |wi=e)| - -
The Fourier transform S{z,») of the matrix
- TL(x't) R}?(z't)
SEL)Y = R (z.t) TR(z,t)} (5.6)

is the scatiering malriz associated to the medium over [O,:c] and it can be

obtained from #(z,v) by the relation
S(zw) = [P H(z.0)+ PP H(z,w) + Pt (5.7)
The general rules of composition of scattering layers are described in Redheffer
[35].
As a consequence of the delay structure and losslessness of the elementary
(infinitesimal) scattering layers described in Fig. 1, the scattering matrix S(z,t)
is such that

RR(Z,t) =
Te(z,t)

=0 fort<oO
for t <z

1
=
N
q
&0 O
©
-

~—t

i
o3
—
2]
- -
N~
i
o
—~
(&)

and it is lossless, i.e.
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SH(z,w)Szw) =1 . (5.10)
where the superscript F denotes Hermitian transpose. In the transmission
representation domain the relations (5.8) and.(5.9) imply that the entries of
HM(z,) have all éupport over [—z,z]. Finally, by noting that the transmission

medium is invariant when the right and left propagating waves are interchanged

and time is reversed, we get the following useful identities

My(z.t) = Haalz.—t)

(5.11)
Myzlz ~t)

"

Ha(z .t)

5.2. The Marchenko integral equations

¥hen the medium is probed from the left, a consequence of its delay struc-

ture is that
Wg(z,t) = Wi(x,t) = 0 for t<z . (512)

By substituting (5.12) into (5.1) and recalling that M{z,") has support on [—z,z],
we obtain the system of integral equations
(
t . .t .
fWR(D,t —-TYM(z,7)dT + fWL(O,t"‘T)J';{lg(Z’.T)dT =0
-z -z )

(5.13)
¢

t .
fWR(O,t 7)Mo (z,T)dT + fWL(O,t——T)Mgz(z,T)dT
-z

B

which relates the entries of X {z,t) to the measured waves Wz(0,t) and #;{0,t),

"
o

i.e. the scattering data. From the differential equation (5.3)-{5.4) satisfied by

H(z,t), it can be shown that My (z t) and H,{z .t) can be expressed as

fJ“(z,t)

S(z—t) + my(z. ) u{z—t) - ulz+t))]

(5.14)

Moy (z,t) mag(z.t)[u(z~t) ~u(z+t)]

Then, by using {5.14) and the symmetry relations {5.11), we get the Marchenko
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integral equations (for —z <t <z)
f ¢ z
fWR(O,t-'r)mn(x,—r)d7+ fWL(O.t-i-'r)mzl(z.T)d'r =0
1 : : (5.15)
z t
Wr(0.t+z) + fWL(D,t-&-’r)mn(:z:,'r)d‘r-i- IWR(O,t-—T)mgl(z.T)dT =0
~t “z .

\

which need to be solved for the functions m;(z,") and my;(z,"). To guarantee
the existence of solutions to these equations, it is as usual assumed that the
probing wave Wg(0,t) contains a leading impulse, see e.g. (3.1). In this case the
integral equations (5.15) take the form of a systerﬁ of coupled Fredholm equa-

tions of the second kind

t z
my(z.t) +wa(0,t~T)mn(x,'r)d'r+wa(O,t+7)m21(x,'r)d7 =0
22 ~t

(5.18)
t

z
w(0,t+z) + mp(z.t) + j;wL(O;t+T)m1,(z,‘r)d7 + wa(O,t—T)mgl(I,T)dT =0

-z

The solution of these equations can be used to reconstruct the medium since
from (5.3) and exploiting the form (5.14) of M,,(z.t) and M;,(z.t) we find that

k(z) = —Bmg(z.z-) v (5.17)
and

k¥(z) = E%mn(z,x—) . .(5.18)

The equations (5.18) can be solved directly by using a simple discretization
scheme. If the interval [~z,z] is divided into N equal subintervals, this scheme

would require O(N®) operations in order to reconstruct the reflection

coeflicient function over [0,z).

However the kernels wp(0,t +7) and w;{0,t —7) which appear in (5.18) have

respectively a Toeplitz and Hankel structure which can be exploited to reduce
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the number of computations. Thus, note that m;{z.t) and m2(z.f) satisfy the

differential system

—_——— —
e} mu(-"‘?-t)] = 8t k(z) my(z.t) (5.19)
| maGt)| T | oy & | mabn) '
' Bt
for —x = t <z, with initial conditions
m“(0,0) = mgl(O,D) =0 . (520)

When propagating (5.19), it turns out that we need to supply the values of the
kernel mp{z, ) at t=z — {providing k£ (z)) and also the value of m,{z,-) at t=—z.

By using (5.17) and (5.18), k(z') can be expressed as
k(z) = ma(z.z-) =

. .
—wy (0,2z) —-wa(D.:z:+'r)m“(z.'r)d7 - fw;g(O;:c—T)mm(z.T)dT . (6.R1)

Furthermore setting { = —z in {5.18) we find that

myiz,—z) = 0 . " (5.22)
The differential system (5.19), with the boundéry conditions (5.21) and (5.22),
can now be used to compute m,;(z,t) and my,(z.t) recursively. The equations
(5.19) have the same form as the Schur recursions that were derived in Section
3. However the Schur algorithm is formulated as an initial value problem
whereas the recursions derived abbve constitute a boundary value problem.
These recursions are similar to the Krein-Levinson equations for factoring the
resolvent of a Toeplitz kernel [27],[28]. They require the same order of computa-
tions as the Schur recursions. The stability of numerical schemes for propagat-

ing these two types of algorithms is discussed in Gohberg and Koltracht [40].

The differential equations (5.19) could have been derived also by applying

the displacement operators
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-8 .8 -8 _ 8
T= iz + 37 and 3z 3 (5.23)

to the integral equations (5.16), and by using the displacement property
Tf(z-t)=0 and Bf(z+t)=0 (5.24)

of Toeplitz and Hankel kernels. These displacement properties have been
exploited in [2’(‘],[25] and [40] to derive some fast algorithms for the computa-
tion of resolvents of Toeplitz and Hankel operators and to obtain triangular fac-
torizations of these operators. Anderson and Kailath, [41], also poini:ed out that
the resulting fast algorithms can be used to solve the integral equations of clas-

sical inverse scattering theory.

5.3. Relation to classical inverse scattering

The inﬁegral equations (5.18) are expressed in terms of the general scatter-
ing data Wg{(0,t) = 6(t) + wr(0.f)u(t) and Wy (0,t) = 2w, (0,t)u(t). In the litera-
ture, two choices for the probing waves have been made either directly or impli-

citly

(i) wg(0.t) 0 and w;(0.t) = R{t)u(t) (5.25)

I

(i) wg(0.t) = wy(0.8) = h(t) . | : (5.26)

The second choice above arises naturally when the scattering medium is ter-
minated at its left boundary with a perfect reflector. The Marchenko integral
equations that we have obtained above are therefore slightly more general than
those presented in the literature of two-component inverse scattering problems
[17].[89]. Furthermore they can be used to obtain the classical integral equa-
tions that solve the inverse scattering problem for the one-dimensional Schrod-

inger equation. To do so, denote by



Kiz.t) = my(z.t) + maz.t) . (5.27)
Then, by adding the two integral equations {5.18), we obtain
z .
wr(0.t+z) + K(z.t) + f['wg(t -7y +w (t—1)] K(z,7)d7 = 0O (5.28)
~z
where the potential is given by
; ,
P(z) = 2 E—J‘_——K(z.z-—) : (5.29)

In the special case when the scattering data is given by (5.25), the above equa-
tions correspond to the "classical” Marchenko solution of the inverse scattering
problem [9],[15].[33]. Wherr (5.26) is given as scattering data, it can be shown

from (5.28) that the symmetrized kernel

[or

Ks(z,t) = ={ K{z,t) + K{z.-t) ] | (5.30)

]

satisfies the Gelfand-Levitan equation [10],

Ks(z.t) + —;—{h(z+t) +R{z—1)] +

ot u
I\ZLM

R(|t=7]) + R{|t+7)] Ks{z,7)dT = 0 O<t<z (5.31)
and again

- d
P(z) =2 TE{(@:,&?%—) . (5.32)

Note that the symmetric kernel Ks(z,t) is half the sum of all the entries in the

transmission matrix #{z t).

Finally, if we define

L(z.t) = mylz.t) + m(z.t)  (5.33)

and use the scattering data {5.28), replacing ¢ by —¢ in the second equation in

{5.18) and adding it to the first equation, we find that
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I
o

h(z—t) + L{z,t) + _th( [t =7 L{z,7)d7 (5.34)

This result is known as the Krein integral equation [8),[9].[13], and we have
immediately that Ks(z,t) = L{z,t) + L(z,—t). By noting that m,,{z,—z) = 0 and

that 2m,(z,—2z) = k(z) we find that

k(z) = -2 L(z,~z) (5.35)

so that the local reflection coeflicient function, and therefore the potential, can

be reconstructed by this method.

This development shows that all the known solutions of the inverse scatter-
ing problem based on integral equations can be related to the differential
approach that we have described in the previous sectiéns. The integral equa-
tions based method of Gopinath and Sondhi [5],[8] may be regarded as using a
special approach to the solution of Krein's equation. This method is of impor-
tance since the local impedance is directly recovered and a discussion of it can

be found in Bruckstein and Kailath [4R].




'
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6. Inverse Scattering for General Media

The differential inversion methods that we have obtained above were res-
tricted to the case of lossless scattering media. It is however possible to extend
thern to more general media, where the wave propagation is described by the

two-component system

[

[ Wolz.t) L8 ., a(z) B(z) Welz.t)
& Tl=] 9 _ . (6.1)
8z | Wy (z.t) . b(=z) -57—+ alz) -f.t)J

Such systems appear for example in the study of lossy transmission lines and

acoustic media [26],{43]. The local loss function for this system is given by

LT etz )| = | 4z ) 2o =

,7. [Wep(z,w) Wiz, w)] b’ ) z()z> b(zcz‘(-f)’z)]l éx :;} (8.2)

which shows that a necessary and sufficient condition for losslessness is that, for

all z,

Zg; 3 (6.3)

i}

a(z)
b(z)
This is the case that was considered in the previous sections. An infinitesimal

layer of the scattering medium corresponding to {8.1) is depicted in Fig. 5.

Since Lhé scattering medium is parametrized by four different functions
fa (), b(-).a{-).8(:)}, in general it will not be possible to reconstruct all of them
from the pair of waves W(0,t) and #;(0,¢t). The reconstruction techniques that

will be discussed in this section therefore assume either that the parameters
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a{z), a{z) and g{z) can be expressed as some function of & {z), or that we have

more information than the medium impulse response at z=0.

6.1. Reconstruction for a medium parametrized by b (=) only

When the medium is entirely parametrized in terms of b{) - as was the
case, for example, for lossless media - the layer peeling procedure of Section 3
can be extended easily [42]. To do so, note that when the medium is probed by a

wave Wg(0,t) with a leading impulse, the waves at some depth z are of the form

Wa(z,t) = yp(z)6{t—=z) + wrlz .t)ult-z)
(6.4)
Wrlz.t) = wy(z.t)ult-z)
with
7r(Z) = expz{atodss : | (6.5)
In this case
b(z) = 2yrY(z)w(z.z+) (6.8)

and, since yg(z) can be obtained from the previously reconstructed layers,
equation (B.8) may be used to compute b(z) for the next infinitesimal layer,
which in turn determines a(z),a{x) and g{z). This implies that (6.1) and {8.6)
can recursively compute the waves that propagate inside the medium and simul-

taneously recover the medium parameters.

The requirement that the medium be parametrized by b(-) alone might
seem rather strong, however in the literature one often encounters papers that,
after stating the problem in its full generality, introduce an equivalent assump-
tion. It is also interesting to note that, in case the parameters a{z).alz) and
B{z) depend on b(z) in a nontrivial way, it is not clear how the integral equa-

tions based inversion approaches can be extended.



6.2. Inverse scattering for a nonsymmetric system

Another example for which differential reconstruction methods can be dev-
ised is when a(z) = a{z) =0 in (6.1). In this case the resulting asymmetric two-
component system is of the type considered by Zakharov and Shabat (see. e.g
[16].[17]). The system (6.1) can in fact always be reduced to this particular form

by performing the substitution

We(z.t) « ypi(z)Weiz.t)

| (67
Wr(z.t) « yiY(z)Wi(z.t)
where yp(z) is given by (6.5) and
z
y1(z) = exp {“\E)df : (6.8)
In terms of these "normalized” variables, (6.1) becomes
8 7.(z)
5 | Pe(z.t) -5 Bl=) oy [ Wp(z,t) ©5)
551%(:.):) b(z) 22 9 izt ~

7.{z) ot

which is now in the form of an asymmetric two-component system. Let us define

k) = -0E@ A and k) = - ZEL (e

The generalized Schur procedure that we derive next reconstructs the two func-
tions k{-) and k4(:) which are two independent functions of the original
parametrization. Thus, unless a{z) = a(z) = 0 for all z, this method will provide
only a partial reconstruction of the origihal medium. Our presentation follows

that of Yagle and Levy [44
In addition to the causal pair of waves W;{0,t) and W,;(0,t) that was used

earlier as scattering data, it will be assumed that we are also given a noncauscl

wave pair -
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[ WAL = 6(6) + w06 u(~t)

1WHA(O¢> wRA(O.t)u(—t)

"

These waves can be viewed as obtained by exchanging the role of #z(:) and W (-)

and by reversing time in a scattering experiment. The cerresponding reflection

coeflicient function

- Wi (0.
B4w) = -%‘—’)— (6.12)
WL (0,.’.))
is the (1,2) entry of $71(v), where
sy - | Tr(®)  Ri{w)
S = |Br) T (6.13)

is the scattering matrix associated with the medium over [0,=). It can therefore
be obtained by probing the medium from both ends and measuring all the
entries of § (). Thus, even though the knowledge of the noncausal waves
WLA(O,t) and Wz (0,t) is nonphysical, it can be assumed that 24(w) or its anti-
causal inverse Fourier transform R4(¢) is obtainable. For the case of a lossless
medium, since S(w) is unitary, we have

FE4(w) = R(-v) and RA(t) = R(-t) (6.14)
so that this additional information is redundant.

The layer-peeling method can now be used for the asvmmetric two-
component system by noting that, at point z, the anticausal waves WL;‘ (z.t) and
We (z,t) have the form

Witz t) = 6{z+t) + wi(z . ul-z~t)

(6.15)
I‘:’RA(z,t) = wRA(x A)u(—z—t)

and that
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k4 (z) = Rup(z.—(z+))

(6.18)

Therefore, by using the system (8.9) with the relations {3.3) and {8.18) to pro-

pagate both the causal and anticausal pairs ef waves {Wp(z,t), ¥ {z,t)] and

(W (z.t), W5 (z.t)} simultaneously, we can recover both k{-) and k4{cdot) in a

sequential way.

In the transform domain the Riccati equations satisfied by

, 4
o~ w , ~ Wp{z,.
R(I.w) - __I;(_.'E—Ci)—- and RA(I,CJ> - ._.}.?Zlf_:.’z_
. WJ?(-T.Q) WL (x.g}) :
are
%—:‘?(z.u) = 2jwR(z.w) +k*z)Rlz. o) -kliz)
ﬂ?:t R4 (z,0) =-2jwR4(z.0) + k(z)R*(z.0)% - k4{z)

These equations can be propagated recursively by using the relations

lim 2jwR(z.w) = k(z)

W

lim-2j wR4(z.0) = k4(z)

[2 5

which have the effect of coupling (6.18) and (6.19).

(8.17)

(6.18)

(6.19)

(6.20)

An integral equations based solution of the above problem can be found in

Ablowitz and Segur [17].
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7. Conclusions

In this paper we have obtained differential inversion methods for identifying
various parametrizations of lossless and nonlossles scattering media. Crucial in
all the developments was the assumption that the given scattering data is noise-
free, therefore the methods presented are ezact inversion algorithms. These
methods were also related to the classical approaches of Marchenko, Gelfand-

Levitan and Krein which are based on solutions of Fredholm integral equations.

Two types of differential methods were described. The layer-peeling
method, or equivalently the Schur recursions, directly exploited the physical
structure of the medium to cofnpute the propagating ‘waves and to simultane-
ously recover its parameters. The corresponding algorithm was therefore formu-
lated as an initial value problem. A second set of differential equations, the
Krein-Levinson recursions, were also derived by exploiting the structure of the
Marchenko integral equations. These differential equations have the same
dynamics as the Schur recursions, however they require certain boundary
values that have to be successively computed by invoking integral equations.
The algorithms obtained via both approaches are both computationally efficient

and numerically stable {40].

The results described in this paper could be extended in séveral ways. One
of these would be their use for the propagation of solutions of certain nonlinear
differential equations by the inverse scattering transform ['16].[36]. Also, our
analysis has been restricted to physical processes described by second-order
differential equations. It would be interesting to generaﬁze the differential
‘approaches discussed in this paper to the study of inverse problems for more
complex physical structures, described for example by general Hamiltonian sys-

tems.
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FIGURE CAPTIONS

Fig. 1: Discretized wave scattering layer.
Fig. 2: Integration path for the propagation of the layer-peeling algorithm.

Fig. 3: Discretized medium associated with the impedance reconstruction

procedure.
Fig. 4: Comparison of the layer-peeling and layer aggregation methods.

Fig. 5: Wave scattering picture for a general medium.
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