
GUT-ASSOCIATED MICROBIAL SYMBIONTS OF THE MARSH FIDDLER
CRAB, UCA PUGNAX

By

Lara K. Gulmann

B.A., University of California, Berkeley, 1997

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

September 2004

© 2004 Lara K. Gulmann
All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce paper and
electronic copies of this thesis in whole or in part and to distribute them publicly.

Signature of Author . ..
Joint Program in Oceanography/Applied Ocean Science and Engineering

Massachusetts Institute of Technology
and Woods Hole Oceanographic Institution

September 2004

Certified by
Lauren S. Mullineaux

Thesis Supervisor

Accepted by.
,ohn Waterbury

Chair, Jirt Committee for Biolo/;al Oceanography
Woods Hole Oceanographic Institution

MASSACHUSETTS INS'IUTE
OF TECHNOLOGY

SEP 0 2 2004

I IR ARM IC f::
IL-I , -. I \\ I % .

... A_~~~~~~~~~~~~~~~~~~

ARCHIVES

I
I





Gut-associated microbial symbionts of the marsh fiddler crab, Uca pugnax

by

Lara K. Gulmann

Submitted to the Department of Biology on August 30, 2004 in Partial
Fulfillment of the Requirements for the degree of Doctor of Philosophy in

Biological Oceanography

ABSTRACT

Digestive associations between marine invertebrates and resident
(attached) microbial communities may play a critical role in host physiology and
involve previously unidentified microbial species. The overarching goal of this
thesis was to characterize the ecology and genetic diversity of resident gut
microbes to advance our understanding of their interactions with their host, the
marsh fiddler crab, Uca pugnax. Furthermore, we assessed whether microbes
benefit the host by contributing extracellular enzymes along the digestive tract.
This is the first report of the eccrinid protists, Enteromyces callianassae and
Enterobryus sp., inhabiting U. pugnax. The greatest abundances of both
bacteria and protists were documented in the host stomach and hindgut. For
these sections, we have described morphologies, measured abundances and
characterized the genetic diversity (bacteria) of resident microbes. Presence and
abundance of the Eccrinales protists depends on host molt stage as all eccrinid
biomass is shed with the host's molt. In intermolt crabs, both bacterial and
protozoan symbionts appear to be consistent features of the stomach and
hindgut. Furthermore, bacterial diversity patterns seem to be comparable among
individuals and over time, as assessed by denaturing gradient gel
electrophoresis (DGGE). Community composition, however, does differ between
stomach and hindgut populations, as resolved by DGGE and clone libraries of
the 16S rRNA gene. Many recovered clones were most closely related to other
symbiotic or gut-associated bacteria. Few identified clones, however, shared
more than 95% 16S rRNA gene sequence similarity with their nearest known
relatives, indicating that this environment may support novel bacterial phylotypes.
An exception was the U. pugnax hindgut phylotype most closely related to a
phylotype identified from hindguts of the detritivorous shrimp Neotrypaea
califomiensis. This finding suggests that detritivorous crustacean hindguts may
provide an ecological niche for specific bacterial phylotypes. Functionally,
resident bacteria, particularly in the hindgut, may contribute to total enzyme
activity in the gut of their host.
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Chapter 1: Introduction

Over the past few decades, the scientific community has begun to

recognize how individual organisms are rarely solitary entities, but often hosts of

veritable ecosystems of microbes. While these microbial associates sometimes

compete with or harm their macroscopic hosts, they frequently contribute to the

host's fitness through various diverse and complex relationships. Nutritional

interactions are particularly widespread and highly developed, especially among

herbivorous and detritivorous hosts (Mackie 2002). Although there has been

considerable research into nutritional symbioses in terrestrial invertebrates (i.e.

termites), little is known about the presence or activities of gut microbes in

marine invertebrates, specifically deposit-feeding marine invertebrates. These

types of associations have the potential to impact host physiology as well as

environmental microbiology and geochemistry and therefore demand further

attention.

Gut microbial communities in marine invertebrates have been predicted to

benefit the host in a mutualistic association, although it is possible that they are

commensal or pathogenic (Harris 1993). Gut microbes may contribute to the

host's fitness by: 1) enzymatically increasing the pool of organic matter

accessible to digestion, 2) fermenting organic matter and producing absorbable

concentrations of short chain fatty acids (SCFAs), 3) supplying vitamins or

essential amino acids, 4) favorably altering the geochemistry of the gut

environment, 5) being directly digested via grazing, and/or 6) preventing the

proliferation of pathogenic bacteria (Harris 1993).

In the environment, microbes can be limited in their mobility, vulnerable to

changing environmental conditions, and dependent on episodic input of

substrates. By associating with the digestive tract of active deposit feeders these

limitations could be successfully overcome. Specifically, the host may aid

resident gut microbes by providing: 1) a supply of substrates in the form of the
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host's digestive products, 2) a mixed environment that increases diffusive

exchange, 3) a relatively constant environment, and/or 4) protection from (other)

predators (Plante et al. 1990). Alternatively, microbes may be commensals,

thriving on the host's un-absorbed digestive products without contributing to the

host's fitness. Finally, microbes may be pathogenic if they cause disease or

absorb substrates at the cost of the host's condition. Although some or all of

these interactions have been predicted, no consistent patterns of host-microbiota

interaction have emerged among marine invertebrates (Harris 1993).

Fiddler crab significance

Much of the research on the gut microbiota of marine invertebrates has

focused on crustaceans (Deming et al. 1981; Dempsey and Kitting 1987; Harris

1992; Lau et al. 2002; Pinn et al. 1997; Sochard et al. 1979). Marine

crustaceans are especially interesting subjects by way of analogy with terrestrial

arthropods, many of which host complex and abundant gut microbial

communities (Breznak 1982; Dillon and Charnley 2002). Among crustaceans,

gut microbes have been identified in multiple species, but few studies have

thoroughly described the association in terms of colonization sites, morphologies,

frequency of occurrence, microbial densities, and genetic diversity. There is a

need for complete descriptions of such associations to better understand the

nature of the interactions and potential environmental impacts. Fiddler crabs are

an ideal group for a thorough study because of their widespread distribution

(Crane 1975), concentrated activity in environmentally important habitats (Teal

1958), knowledge of their feeding behaviors (Miller 1961; Robertson and Newell

1982a) and resultant environmental impacts (Hoffman et al. 1984; Shanholtzer

1973). As a group, fiddler crabs have a global distribution and are active in

coastal marshes and mangroves (Crane 1975), both highly productive and

sensitive ecosystems. The genus Uca includes selective, surface deposit

feeders that influence the geochemistry and biotic composition of marsh
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environments (Montague 1982; Reinsel 1995). These crabs are present in high

densities, often over 200 individuals m '2 (Bertness 1985), and are found in most

marshes along the U.S. Atlantic coastline from Cape Cod to Florida (Teal 1958).

Fiddler crab feeding and digestion

Fiddler crabs preferentially ingest the smaller, lighter fraction of the

sediment by exploiting a flotation feeding mechanism. Water from the gill

chambers is used, in coordination with a scrubbing motion, to suspend organic

matter associated with the ingested substrate (Miller 1961). Benthic unicellular

algae, bacteria, fungi, protozoa and detritus are separated from the mineral

fraction on the basis of size and density (Miller 1961; Robertson and Newell

1982b).

Fiddler crabs, and crustaceans in general, have a highly specialized

digestive tract and digestive process (Icely and Nott 1992). A chitin-lined foregut

(esophagus, cardiac and pyloric stomachs) and hindgut typify crustaceans (refer

to Chapter 2, Fig. 2.1, pg. 23). Selected material is passed into the cardiac

stomach where the chitinous 'teeth' of the gastric mill masticate the gut contents

and enzymes from the hepatopancreas initiate chemical breakdown. The pyloric

stomach regulates the movement of solids and filtrates between the foregut and

midgut. Very fine particles (< 2 m) are passed into the hepatopancreas for

intracellular and extracellular digestion (Brunet et al. 1994). Larger particles are

passed directly in the midgut. At the junction of the hepatopancreas and midgut,

glands secrete a peritrophic membrane around the food bolus (Bignell 1984).

This membrane is made of chitin microfibrils embedded in a matrix of protein and

glucosaminoglycans and has a pore size from 6-100's of nanometers (Jarial and

Engstrom 1997). Peritrophic membranes have been variously predicted to

function in: 1) preventing microbial attachment, 2) protecting the midgut from

abrasion, and/or 3) concentrating digestive products between the membrane and

midgut lining (Bignell 1984; Tellam et al. 1999; Terra 2001). The midgut receives
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membrane-bound material from the hepatopancreas and pyloric stomach and

functions to adsorb residual digestive products. Upon passage into the hindgut,

the peritrophic membrane is thought to be eroded by chitinous projections and

muscular contractions (Bignell 1984). The chitin-lined hingut is likely involved in

ion regulation, water re-absorption and, possibly, uptake of small nutrients such

as amino acids and SCFAs (Dall and Moriarty 1983; Hogan et al. 1985).

Theoretical basis of association

Mutualistic associations between attached microbes and detritivorous

invertebrate hosts have been predicted to occur in particular gut sections (Plante

et al. 1990). Based on cost-benefit analysis, resident microbes are expected to

colonize the hindgut. Dade et al. (1990) suggested that animals should optimize

digestive efficiency by processing food until returns were reduced, then ingest

fresh material. Consequently, material in the hindgut is expected to include

unabsorbed digestive products and undigested material. Microbes may exploit

this hindgut residue and avoid exposure to enzymatic digestion. If hindgut

microbes supply beneficial enzymes or products that can be utilized by the host,

these microbial associates may form a mutualism with their host.

In most detritivores, the foregut (stomach) and midgut are expected to be

sites of competition between host and microbes (Plante et al. 1990). This

competition is based, in part, on the theory that attached microbes would occlude

critical absorptive sites along the gut. We expect that competitive interactions

dominate in the non-chitin lined midgut and hepatopancreas. However, in

crustaceans, the chitin-lined stomach is not expected to be absorptive (Brunet et

al. 1994). This characteristic may influence the nature of interactions between

attached microbes and crustaceans. In the stomach, concentrations of digestive

products are high, however so are host-enzyme activities, which may potentially

damage microbial cells. If microbes can survive in these conditions, and if they

release valuable enzymes or other products, they may form a mutualistic
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association in the stomach. Yet resident microbes may compete with the host if

they are only absorbing nutrients.

Possible environmental impact

A poorly understood role of gut microbes is their capacity to influence

environmental microbiology and geochemistry. Because marine deposit feeders

ingest, selectively process and egest microbes, a digestive association should

influence the microbiology of the marine sediments (Plante and Jumars 1993).

Resident microbes may be transferred from gut populations to egested material,

seeding marine sediments with a particular microbial community. This transfer

process has been studied in the terrestrial arthropod Folsomia candida, and

shown to influence microbiology of the feces (Thimm et al. 1998). Furthermore, if

resident bacterial activities modify the geochemistry of material passing through

the crab gut, this effect may factor into salt-marsh geochemical cycles.

Goals of this study

The general goal of this thesis was to characterize the ecology and

genetic diversity of resident gut microbes in order to advance our understanding

of interactions between microbial associates and their host, the marsh fiddler

crab, Uca pugnax. Initially we intended to study only the interaction between U.

pugnax and its bacterial associates. However, early investigations revealed the

presence of eukaryotic gut residents, the Eccrinales. This group has been

reported in numerous species of marine and freshwater arthropods, yet little is

known about their physiology or ecology. We sought to characterize the

presence, abundance and species identity of these resident eukaryotic microbes,

as well as that of the bacterial community. The presence of bacterial gut

microbiota stimulated questions on the extent of bacterial diversity, as well as

consistency of this diversity among individuals and over time. Finally, we
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examined the relationship between dissolved extracellular enzyme activity and

microbial abundances.
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Chapter 2: Eccrinales symbionts of the marsh fiddler crab, Uca pugnax

ABSTRACT

We have identified and studied two species of protists (Class Mesomycetozoa,
Order Eccrinales) that colonize digestive tracts of the marsh fiddler crab, Uca
pugnax. Enteromyces callianassae colonizes the cardiac stomach and
Enterobryus sp. populates the hindgut. Both E. callianassae and Enterobryus sp.
are consistent features of the crab gut: E. callianassae was present in > 50% of
crabs in the intermolt phase and Enterobryus sp. was present in > 90%. Extent
of colonization increases with time since last molt of the host. Within individual
hosts, total lengths of thalli for E. callianassae versus Enterobryus sp. are directly
correlated. The hindgut species, Enterobryus sp., is present in two
morphological forms: a long, spiraling form (< 4.0 mm in length) in the anterior
hindgut and a typically shorter form (0.1-0.2 mm in length), that develop as bushy
clusters towards the posterior hindgut. Phylogenetic analysis of the 18S rRNA
gene of E. callianassae confirms its grouping as a protist in the class
Mesomycetozoa, rather than as a fungal species of the class Trichomycetes.

INTRODUCTION

The order Eccrinales comprises a diverse group of organisms that are

symbionts associated with digestive tracts of marine, freshwater, and terrestrial

mandibulate arthropods. Eccrinales are typically found in detritivorous,

algivorous and omnivorous, mandibulate arthropods, belonging to the groups

Crustacea, Insecta and Diplopoda. They have been documented in hosts from

habitats as disparate as deep-sea hydrothermal vents (Van Dover and Lichtwardt

1986) to tropical streams (Lichtwardt and Williams 1990) and are known from

locations around the globe. This group of organisms lives only in association

with their hosts and in this context have developed complex life histories. The

Eccrinales-arthropod symbiosis is thought to be ancient: congruence in timing of

speciation suggests that they have co-evolved with their hosts for over the past

200 million years (Lichtwardt 1986).

Members of the order Eccrinales were first described by Leidy in 1848,

and were classified as plants living within digestive tracts of several species of
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arthropods (Leidy 1849; Leidy 1853a). Until very recently, the accepted

phylogeny classified eccrinids as an order within the fungal class Trichomycetes

(Misra 1998), and we initially investigated them as such. Molecular analysis of

the 18S rRNA gene has since revealed that they are more closely related to a

class of protists, the Mesomycetozoa (Cafaro 2003). This newly established

phylogenetic group comprises predominantly symbiotic organisms, including fish

pathogens and crustacean gut microbiota, as well as saprotrophic microbes

(Mendoza et al. 2002). This class includes many species previously thought to

have other phylogenetic affliliations, but recent results from molecular

sequencing strongly support the Mesomycetozoa as monophyletic.

The order Eccrinales is distinguished by unbranched, non-septate,

coenocytic thalli in which growth is subapical. Asexual reproduction is

accomplished by spores produced in terminal sporangia. Six types of spore

morphologies have been described (Lichtwardt 1954), and among these

morphologies are two functional categories: primary, uninucleate

sporgangiospores that are passed into the environment to colonize other hosts

and secondary, multinucleate sporangiospores that develop within the same

host. Spore producing and recolonizing abilities are especially important for

success of these species, because their hosts regularly shed their carapaces and

all associated eccrinid thalli with every molt. A better understanding of the

physiology and ecological significance of this group has been limited by the

failure to culture successfully any representatives (Lichtwardt 1986).

Even though Eccrinales are known to colonize many host species around

the globe, relatively little is know about their ecology and their interactions with

their hosts. Eccrinales are thought to be commensal symbionts (Moss 1979) that

obtain nutrition from the material passing through the host gut, but not to the

detriment of the host. However, there are no definitive case studies investigating

the nature of their relationships with their hosts (but see Kimura et al. 2002).

Some, or all, eccrinids could be parasitic if they compete with their hosts for
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absorption of nutrients within the digestive tract. Alternatively, eccrinids could

benefit their hosts if they confer a nutritional advantage via enzyme or vitamin

contribution.

Eccrinales species have been reported in numerous decapod

crustaceans, including the fiddler crab Uca pugilator (Mattson 1988; Tuzet and

Manier 1962; Wagner-Merner 1979). In marine crustaceans, these symbionts

are most commonly found attached to the chitinous hindgut lining, but are also

found on surfaces of the chitin-lined stomach (both cardiac and pyloric sections).

There are no reports of eccrinid species adhering to the midgut or the

hepatopancreas, both of which are lined with tissue rather than chitin.

Detritivorous and burrowing crustaceans such as Uca spp. have

significant influence on the biogeochemistry and hydrology of coastal

ecosystems (Bertness 1985; Howes et al. 1981; Montague 1982). They are

important ecosystem engineers and, as a population, are constantly reworking

the top few centimeters of marsh substrate (Miller 1961). Any impact that

resident eccrinids might have on host physiology or on the geochemical

composition of material passing through the gut could have subsequent effects

on the entire marsh ecosystem.

Too little is known, however, about the natural history of Eccrinales

symbionts to define their interactions with their hosts or constrain speculations

about their impact on marsh ecosystems. The objective of the present study is to

describe and quantify key aspects of Eccrinales life histories and interactions

with an arthropod host. We have chosen to study the Eccrinales of the fiddler

crab Uca pugnax because this host is important ecologically and typically harbors

at least one species of Eccrinales. Our characterization of distributions of

Eccrinales species within the gut and their recolonization after host molting is

designed to identify potential interactions with the host. Specific questions that

we address are: What species of Eccrinales are present and where; what

proportion of crabs is colonized; how does abundance of Eccrinales correlate
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with host size and host molt stage; and, is there any correlation between

abundances of two Eccrinales species within individual hosts?

METHODS

Crab collection

Marsh fiddler crabs, Uca pugnax, were collected regularly from an

intertidal salt marsh in Barnstable Harbor, Massachusetts, USA (41°42'31 N,

70018'17 W) from July, 2001 to September, 2003. To avoid possible seasonal

effects, only crabs collected during summer months (June-September) were

used in the present analyses. Crabs were kept in cooled containers (-15°C) and

brought to the laboratory within 2 h after collection. Gender, molt stage (see

below), and carapace width and length of each specimen were recorded.

Stomach, hepatopancreas, midgut and hindgut sections were removed with

sterile dissecting tools, and each section was examined to determine the

presence and morphotype of Eccrinales symbionts. Adult green crabs, Carcinus

maenus, (n = 5) were collected from the same location in August 2002 and were

investigated in the same manner.

Electron Microscopy

Immediately after dissection, hindgut, midgut, hepatopancreas and both

the cardiac and pyloric stomachs of four crabs were fixed in 3% gluteraldehyde in

0.1 M sodium cacodylate, pH 7.4, for 3 h. Samples were washed three times in

sodium cacodylate buffer, postfixed in 1% osmium tetroxide in 0.1 M sodium

cacodylate for 1 h, and washed another three times before dehydrating in a

series of ethanol dilutions. Samples were critical-point dried using carbon

dioxide as the transitional fluid, mounted on aluminum stubs, coated with gold

palladium and examined in a JEOL JSM-840 scanning electron microscope

(SEM).
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Eccrinales Identification

We observed two distinct morphotypes of Eccrinales: one which appeared

to be E. callianassae, in the host's cardiac stomach, and the other appeared to

belong to the genus Enterobryus, along the hindgut. Species identification was

based on morphology. Enteromyces callianassae is characterized by dimorphic,

unbranched thalli that form tufts with a common holdfast, and produces both uni-

and multinucleate sporangiospores (Misra and Lichtwardt 2000). Enterobryus

sp. has unbranched coenocytic thalli and does not form tufts, but individually

attached thalli (Misra and Lichtwardt, 2000). We refer to this symbiont as

Enterobryus sp. because it lacks sufficient morphological characters to assign it

unambiguously to a particular species. Althought two morphotypes of

Enterobryus sp. were found (long and short forms), they were treated as a single

species in this study.

Eccrinales Length

Each section of the digestive tract was stained with lactophenol cotton

blue (0.5% v/v) in 0.1 M sterile phosphate buffer (Lichtwardt 1954). To improve

visualization, Enteromyces callianassae tufts were removed from the cardiac

stomach and the chitinous lining of the hindgut with attached Enterobryus sp.

was separated from host tissue before staining. Wet mounts were photographed

immediately after staining with a Sony 120X Digital Camera attached via a

phototube to a Zeiss Axiostar plus (either 250, 500, or 1,OOOX magnification).

Images were mosaicked in Adobe Photoshop and the lengths and widths of each

thallus were measured with a Matlab-based image analysis program (Digitizer

0.99). The presence or absence of both species, the number of tufts of E.

callianassae and the molt stage of 66 individuals were determined. For 12 crabs,

total thallus length of both species was measured. Additional measurements

were made of total length of both eccrinid species, but from different individual
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crabs [E. callianassae (n = 3, U. pugax hosts) Enterobryus sp. (n = 5, U. pugax

hosts)]. To compare total length of the two forms of Enterobryus sp., we

measured lengths of anterior and posterior Enterobryus sp. forms in six crab

hosts. A comparison of the total length of E. callianassae and Enterobryus sp.

was made on a set of intermolt and premolt crabs from a single collection date

(n = 12), in which both stomach and hindgut eccrinid lengths were measured.

This approach allowed us to determine if there was a correlation between total

lengths of the two species within individual hosts. Furthermore, by comparing

only crabs from a single collection date we eliminate any possible variation due

to seasonality or daily, weekly, or monthly changes.

Molt Stage Analysis

Molt stage of individual crabs was determined by examining

characteristics of pleopod and abdominal setae as described in Vigh and

Fingerman (1985). Four periods of molt staging were identified: postmolt,

intermolt, premolt and ecdysis (Drach 1939). Setae were removed from crabs

with fine dissecting forceps, immediately wet mounted on slides in 0.1 M NaCI

buffer and photographed with a Sony 120X Digital Camera attached via a

phototube to a Zeiss Axiostar plus (500 or 1,000X magnification). Molt stage was

determined for all crabs dissected and all crabs used for Eccrinales length

measurements.

DNA extraction

DNA was extracted from isolated Eccrinales thalli in 1 X CTAB

(hexadecyltrimethyl-ammonium bromide; Sigma-Aldrich) buffer. Samples had

been frozen at -80°C prior to extraction. Samples were subjected to manual

grinding and at least three freeze-thaw cycles (liquid nitrogen and 650°C water

bath) before adding one volume of chloroform, vortexing and centrifuging (13,000

rpm; 15 min). Supernatants were removed and precipitated in one volume of
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100% isopropanol (-20°C; 16 h) before centrifuging (13,000 rpm; 15 min) and

washing the resulting pellet twice with 70% ethanol. Isolated DNA was

resuspended in 35 I sterile H2 0 and kept at -20°C until use. DNA extraction

attempts using standard extraction kits (DNeasy Tissue Kit, Qiagen and

UltraCleanSoil DNA Kit, Mo Bio Laboratories, Inc.) were unsuccessful.

PCR amplification

Extracted DNA was amplified with universal fungal primers for the

ribosomal 18S gene (NS1, NS2) (White et al. 1990). Fungal primers were used

because the Eccrinales had been classified within the fungal class

Trichomycetes. The PCR reaction mixture included: 200 jtM of each dNTP, 10

mM of each primer, 10% of 10X buffer, 25 mM MgCI2 and sterile, double-distilled

water. Taq DNA polymerase (Promega Corp., Madison, Wisconsin) was added

at 1 unit per 50 jl reaction. Amplifications were performed in an Eppendorf

Mastercycler Gradient thermal cycler.

Phylogenetic analysis

Sequence data from E. callianassae were compared with 18S rRNA gene

sequences from other Eccrinales species (Cafaro pers. comm.), as well as

known representatives of the Mesomycetozoa and Fungi obtained from GenBank

(Benson et al. 1997). Species belonging to the group Stramenopila were used

as an outgroup because the Eccrinales were once thought to be a type of

oomycete fungi within the Stramenopila. Even with multiple attempts, we were

unable to amplify DNA successfully from Enterobryus sp., so only data from E.

callianassae are presented. The symbiont sequence was checked by referring to

predicted protist secondary structures available from the Comparative RNA

Website (http://www.rna.icmb.utexas.edu/members). Sequences were aligned

with Autoassembler sequence editor (Version 2.1) and phylogenetic trees were

constructed with the aligned sequences using PAUP version 4.0b10 (Swofford
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1993). All nucleotide positions that could be unambiguously aligned for all taxa

were included in the analysis. Two large inserts (-100 bp) that did not exist in

any other eccrinid or fungal species were removed before analysis. A

consensus tree was constructed using parsimony analysis and bootstrapping of

1000 replicates.

Statistical Analysis

Differences in total thallus length among crab molt stages were tested with

a two-way ANOVA, with molt stage and eccrinid species as treatments.

Differences in pH values among crab gut sections were tested using a one-way

ANOVA. The Bonferroni multiple comparisons test was used for post hoc,

pairwise comparisons. All statistical analyses were performed with Systat,

Version 10 (SPSS, Inc.).

RESULTS

Of 45 intermolt crabs investigated, 26 had Enteromyces callianassae in

their cardiac stomachs and 41 had Enterobryus sp. in their hindguts; thus 57.8%

and 91.1% were respectively colonized (Table 2.1). All six premolt crabs

Table 2.1 Comparison of host species and presence of Enteromyces callinanassae and Enterobryus sp.

Host species Proportion with Average # of Range of # Proportion with Average #

Gut section Collection site E. callianassae tufts per gut (SD) of tufts Enterobryus sp. of thalli (SD)

Uca pugnax 1 Barnstable, MA
cardiac stomach 57.8% (n=45) 2.0 (2.1) 0-7 0% 0
hindgut 0% 0 0 91.1% (n=45) 227 (86)

Nihonotrypaea harmandi2 Kyushu, Japan
foregut 51.4% (n=31) 8.4 (11.4) 1-36 (n=22) 0 0

Upogebia affinus3 Beaufort, NC
foregut 16.2% (n=37) nd nd 0 0
hindgut 0% 0 0 0% (n=37) nd

'This study, only intermolt crab results included in this table
2 Kimura et al. 2002
3 McCloskey and Caldwell 1965
nd = not determined
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stomach Hepatopancreas

Figure 2.1 Schematic of generalized crustacean digestive tract (modified from Hopkin and
Nott 1980). Grey boxes indicate relative regions of the hindgut that are populated by each
form of Enterobryus sp. A. SEM image of a single tuft of E. callianassae attached to the
chitinous lining of the cardiac stomach (Scale bar = 100 lm). B. Light microscopy image
of anterior hindgut lining and attached long, spiraling form of Enterobryus sp.
(Scale bar = 1 mm) C. Light microscopy image of posterior hindgut lining with attached
short, bushy form of Enterobryus sp. (Scale bar = 100 Lim).

collected were colonized by both E. callianassae in their cardiac stomachs and

by Enterobryus sp. along their hindguts. None of the 15 postmolt crabs had

eccrinid thalli in any gut section. Furthermore, no Eccrinales spores or thalli were

observed in the midgut or in the hepatopancreas of any crab. A single-holdfast

morphotype of E. callianassae was found in the pyloric stomach of two

individuals, but will not be addressed further in this paper. The presence of

eccrinid symbionts did not cause any obvious harm to the host in terms of

maximal size or activity level, even with extensive colonization. None of the
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Figure 2.2 Images of Enteromyces callianassae from Uca pugnax cardiac stomach.
All scale bars are 50 gim. A. E. callianassae holdfast, detached from the cardiac stomach.

B. Comparison of uninucleate macro- and micro-thalli. C. Holdfast with mother thallus
producing multinucleate spores (solid arrow) and immature, undifferentiated thalli with
scattered nuclei (hollow arrow). D. Straight thallus with uni- and bi-nuceate spores with

intact spore case. E. Thallus with bulging uninucleate spores without original spore case.

green crab, Carcinus maenus, individuals observed had any Eccrinales thalli or

spores in the stomach, midgut, hepatopancreas or hindgut.

Enteromyces callianassae attaches to chitinous surfaces of the cardiac

stomach and forms tufts of both macro- and micro thalli (Fig. 2.1A). Tufts

adhered to the surface by means of a secreted, common holdfast (Fig. 2.2A).

Macro-thalli averaged 0.046 mm wide (SD = 0.008), were up to 1.6 mm long, and

averaged 1.01 mm long (SD = 0.4; n = 411). Micro-thalli were narrower but not
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Figure 2.3 Images of Enterobryus sp. from Uca pugnax hindgut. A. SEM image of
individual holdfast. B. SEM image of Enterobryus sp. thalli and terminal angled spore
case. C. Light microscopy image of stained uninuclear spores from posterior form

of Enterobryus sp. Solid arrows point to nuclei. Hollow arrows point to ends of a
single spore (Scale bar = 10 gim).

necessarily shorter, averaging 0.014 mm wide (SD = 0.004), and 0.89 mm long

(SD = 0.38; n = 218). Both macrothalli and microthalli produced uninucleate

spores that were oval or discoidal (Fig. 2.2B). Multinucleate spores were formed

by a curved 'mother thallus' (Fig. 2.2C). These spores re-attach to the original

holdfast and allow multiple thalli to develop from a single holdfast (Hibbits 1978).

They then develop into thalli with haphazardly arranged nuclei (Fig. 2.2C). As
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Figure 2.4 Dot density plot of individual thallus lengths for
anterior long form and posterior short, bushy form of Enterobryus
sp. Each thallus measured is represented by a single symbol.
All hosts (1-6) were in intermolt phase.

the thallus matures, nuclei assemble along the axis and uninucleate or

occasionally binucleate spores are produced (Fig. 2.2D, 2.2E). The most distal

spores tend to bulge out from the thallus wall (Fig. 2.2E), while proximal, and

probably immature, spores are constrained by the thallus wall (Fig. 2.2D). Within

an individual crab, tufts were in various stages of development, having anywhere
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from four short, immature (undifferentiated) thalli to over 50 long, sporulating

thalli. The average number of tufts in intermolt crabs was 2.0 (SD = 2.1) (Table

2.1) but a single cardiac stomach can be colonized by up to 20 well developed

tufts (observed in a molt exuvium). For premolt crabs (n = 6) we found an

average of 3.3 (SD = 1.2) tufts. Tufts were often observed attached to the

anterior dorsal ridge in the cardiac stomach, but were occasionally observed

attached to the gastric mill and seemed to be able to attach to most chitinous

surfaces in the cardiac stomach. Tufts were not found in the esophagus or the

pyloric stomach.

In crabs colonized by Enterobryus sp., thalli were observed along the

entire length of the hindgut. In contrast with E. callianassae, Enterobryus sp.

formed single thalli attached by individual holdfasts rather than tufts (Fig. 2.3A).

There were two general morphologies in the hindgut: a longer, often spiraling

form in the anterior hindgut (Fig. 2.1B) and, commonly in the posterior hindgut, a

shorter form that develops dense clusters of thalli (Fig. 2.1C). Here we define

the anterior hindgut as the forward approximately 8 mm of the hindgut and the

posterior hindgut as the terminal 1-2 mm of the hindgut, according to where each

form exists. Both forms typically have an angled, terminal spore case at the

distal tip (Fig. 2.3B). This spore is believed to be the original spore from which

the observed thallus developed (Hibbits 1978). In the observed U. pugnax hosts,

both uninucleate (Fig. 2.3C) and multinucleate spores were present. Anterior-

form thalli averaged 423 gm (SD = 375) in length and 11.0 m (SD = 4.3) in

diameter (n = 775), but thalli up to 4 mm long were observed. The posterior,

bushy form averaged 114 m (SD = 56) long and 8.3 m (SD = 2.9) in diameter

(n = 577). Total length of the short posterior thalli composed 3.3 - 42% of total

thallus length in individual crabs (Fig. 2.4). All but one crab measured for

Eccrinales length had both the anterior and bushy posterior form present (data

not shown). Total length of Eccrinales present in the gut, in both cardiac
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Figure 2.5 Molt stage and total thallus length in hosts in various
molt stages for both eccrinid species. Results of 2-way ANOVA
and Bonferroni post hoc test: Postmolt < Intermolt < Premolt
(P < 0.01) Underlined terms represent molt stages with
significantly different thallus lengths.

stomach and hindgut, corresponded with the host molt stage. In the postmolt

crabs we inspected, there was no evidence of Eccrinales colonization (Fig. 2.5).

Intermolt crabs were colonized to varying degrees, with anywhere from 0 - 37.0

mm (E. callianassae) and 11.8- 135.6 mm (Enterobryus sp.) of total thallus

length. Premolt crabs had the greatest quantity of Eccrinales thalli in both their

cardiac stomachs and hindguts. There was a significant difference in total

Eccrinales length between molt stages for both eccinids (2-way ANOVA, F =

21.31, df= 2,46, P < 0.01).

In comparing abundances of E. callianassae and Enterobryus sp. within

individual hosts, we found significant correlation (P < 0.05) in total thallus length

between the two species (Fig. 2.6). No significant relationship was found
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Figure 2.6 Correlation between total length of
Enterobryus sp. and E. callianassae, within
individual hosts. A significant Pearson product
moment correlation coefficient (r = 0.89;
P < 0.05) is reported.

between crab size (carapace width) and total length of either E. callianassae (r=

0.26; P > 0.05) or Enterobryus sp. (r = 0.21; P > 0.05) (Fig. 2.7).

The product amplified for the 18S rRNA gene with primers NS1 and NS2

was 715 base pairs (bp) in length (complete eccrinid 18S rRNA gene - 1900 bp).

After excluding 2 large inserts (- 100 bp each) and other ambiguous regions, 452

base pairs were aligned with other Fungal, Mesomycetozoea, and Stramenopila

(outgroup) sequences to create a phylogenetic tree (Fig. 2.8). Distance and

parsimony analyses of these sequences unambiguously placed E. callianassae

within the class Mesomycetozoa, not in the fungal class Trichomycetes.

Enteromyces callianassae was most closely related to a group of eccrinales
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Figure 2.7 Total thallus length of both species
of Eccrinales, in crabs of different sizes (carapace
width) and molt stages. Pearson product moment
correlation coefficients for both E. callianassae
(r = 0.26) and Enterobryus sp. (r = 0.21) were not
significant (P > 0.05).

symbionts (Taeniellopsis sp., E. sexuale, T. carcini, and E. callianassae from N.

californienesis) all associated with marine crustacean hosts (Galt 1971; Johnson

1966). Interestingly, E. callianassae from U. pugnax shares only 94% sequence

similarity (of a 452 bp fragment of the 1 8S rRNA gene) with E. callianassae

reported in Neotrypaea (formerly Callianassae) californiensis.

DISCUSSION

Distribution along host digestive tract

Eccrinales appear to select specific gut sections along the digestive tract

of U. pugax and other hosts. In this study, the two eccrinids never co-occurred
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Figure 2.8 Phylogenetic relationships based on the partial 18S rRNA sequence
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within the same section of the fiddler crab gut. Enteromyces callianassae was

observed only in the cardiac stomach and Enterobryus sp. was observed only

along the hindgut. In other studies, E. callianassae is most commonly reported in

the cardiac stomach or foregut region (Tuzet and Manier 1962; Hibbits 1978;

Kimura et al. 2002), although it is also known to colonize the esophagus and

pyloric stomach in the thalassinid Neotrypaea (formerly Calllianassa) gigas

(Hibbits 1978). In marine crustacean hosts, Enterobryus sp. is typically reported

to attach to the hindgut lining (Mattson 1988; Wagner-Merner 1979). In one

case, however, Enterobryus sp. thalli were observed in the stomach of an

unspecified species of Uca (Lichtwardt 1961). There may be some site-specific

conditions along the gut that serve as germination signals to control where E.

callianassae and Enterobryus sp. attach. Alternatively, certain gut sections may

prohibit development. Alkalinity is unlikely to be a cue because pH does not vary

significantly between the stomach and hindgut (Chapter 5; this thesis).

Although we don't know what the cue might be, we can speculate that the

driving force behind habitat preference is niche selection and that each species

has adapted to its specific region of the digestive tract. At least in the stomach,

competitive exclusion of Enterobryus sp. by E. callianassae is probably not a

factor because there were multiple cases of an individual with a colonized

hindgut and an uninhabitated stomach. Any differences in the nature of the gut

contents between the two regions, due to sequential stages of digestive

processing, could be a selection factor.

Host molt stage and Eccrinales colonization

Both eccrinids have had to adapt life cycles that accommodate periodic

molting of the host, during which the entire chitinous surface of the digestive tract

(i.e. stomach and hindgut lining) is shed and expelled into the environment. In all

postmolt crabs studied, gut linings were devoid of any Eccrinales thalli or spores,

suggesting that all Eccrinales biomass is shed upon molting. Ingested spores
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appear unable to colonize the gut during this molting stage. Lichtwardt (pers.

comm.) has suggested that there might be some quality of the newly exposed

chitin lining which is not amenable to attachment. The postmolt cuticle is soft

and fragile and Eccrinales spores might not attach to a surface from which they

could be easily torn. The molt stage following postmolt, i.e. intermolt, is the

longest stage at 25-171 d (Vigh and Fingerman 1985) and has the greatest range

of Eccrinales colonization (0 - 135.6 mm crab-'). We suspect that extent of

colonization could be a function of duration of intermolt, where likelihood of spore

encounter and in situ Eccrinales reproduction would both be time-dependent

variables.

Significant correlation in total thalli length between E. callianassae and

Enterobryus sp. (Fig. 2.6) could be a consequence of time in intermolt phase. If

a host has been in intermolt phase for short duration it is likely to have a lesser

amount of total Eccrinales thalli, and a correspondingly greater amount the

greater the length of intermolt phase. Premolt crabs have the greatest amount of

both E. callianassae and Enterobryus sp. and, presumably, have had the longest

period of exposure to Eccrinales spores and the longest potential development

time. Alternatively, this pattern could be explained if, for some unknown reason,

a crab gut which is favorable for E. callianassae growth is also favorable for

Enterobryus sp. growth.

The observation that all Eccrinales thalli associated with the stomach and

hindgut are shed upon molting has been noted by other researchers (Lichtwardt

1954; Mccloskey and Caldwell 1965). This is the first quantitative study,

however, to compare Eccrinales thalli abundance with particular host molt

stages. Other papers have contrasted total abundance of an Eccrinales species

among different hosts (Mattson 1988) or have reported percent of hosts

colonized (Kimura et al. 2002; Mccloskey and Caldwell 1965) yet have not

differentiated hosts by molt stage. High variation in colonization observed within

a single host species in the present study suggests that accurate comparisons
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between hosts can be made only if the hosts are in comparable molt stages.

Furthermore, if only post-molt individuals are examined, the absence of

Eccrinales could be inferred mistakenly for all molt stages of that host.

Host size and Eccrinales colonization

There was no clear correlation between host size and total length of

Eccrinales (Fig. 2.7). We expected to detect a direct correlation between crab

size and total amount of Eccrinales because the larger the crab, the greater the

surface area of the stomach and hindgut, therefore the more surface area

available for colonization. Also, larger, older crabs tend to molt less frequently

(Passano 1960) so there could be more time for Eccrinales growth and

reproduction between molt periods. It is likely that we did not observe a direct

correlation due, again, to the uncertainty of timing within intermolt. We have no

way to gauge how long an individual host has been in intermolt phase. Thus we

are potentially grouping individuals that just entered intermolt phase with those

preparing to enter premolt.

Host diet type and Eccrinales colonization

There appears to be a connection between host food preference and

Eccrinales colonization. Eccrinid species are present in a range of detritvorous,

algivorous, and omnivorous crustaceans, but Mattson (1988) found that they are

absent from the guts of many carnivorous and scavenging species, including

Callinectes sapidus, Neopanope texana, Panopeus herbstii, Eurypanopeus

depressus, and Menippe mercenaria. In the present study we inspected

digestive tracts of the carnivorous green crab (Carcinus maenus) and found no

evidence of Eccrinales colonization. It seems that eccrinids: a) aren't ingested by

carnivores, b) aren't cued to germinate, or c) are not able to survive in digestive

tracts of carnivores. Most carnivorous crustaceans do ingest some sediment

along with their target prey, and thereby could consume sediment-associated
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eccrinid spores. Lichtwardt (1986) suggested that carnivores lack some crucial

enzyme(s) or other substrates necessary for germination or growth of spores.

Both E. callianassae and Enterobryus sp. are known to colonize hosts with

a variety of feeding strategies, including both filter and deposit feeders, as well as

detritivores, algivores and omnivores. Enteromyces callianassae has been

reported from both deposit-feeding thallassinids (N. harmandl) and filter-feeding

thallassinids (Upogebia affinus) (McCloskey and Caldwell 1965; Kimura et al.

2002) as well as the detritivorous fiddler crab U. pugilator (Tuzet and Manier

1962). Enterobryus sp. is known from detritivorous and omnivorous fiddler crabs

(U. pugilator, U. rapax, U. Iongisignalis) (Mattson 1988). Thus the mode of food

acquisition does not appear to select for or against Eccrinales colonization. Diet

composition, specifically the presence of detritus and/or plant matter, could be an

important criterion determining host suitability. Carnivores ingest a diet rich in

protein and readily digested starches (Stevens and Hume 1995), have sufficient

endogenous enzymes to process their diets and therefore have been predicted to

have competitive interactions with gut microbes, at least in the foregut (Hungate

1976; Mackie 2002). Yet hosts that consume diets high in fiber and

carbohydrates could benefit from a resident microbiota breaking down refractory

ingested matter and are expected to have cooperative relationships (Hungate

1976).

Phylogenetic position of E. callianassae

Our finding that E. callianassae is more closely affiliated within the newly

coined protist class, the Mesomycetozoa, is corroborated by the results of Cafaro

(2003). Cafaro (2003) sequenced the 18S rRNA gene for numerous Eccrinales

species (including E. callianassae from the ghost shrimp Neotrypaea

califomiensis and Enterobryus sp. from a millipede (class Diplopoda)) and found

that they all aligned within the Mesomycetozoa. Previously, the order Eccrinales

was grouped with a class of arthropod-associated fungi, the Trichomycetes,
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because they shared certain characters, including production of

sporangiospores, attachment via an acellular holdfast and an obligate

association with mandibulate arthropods. Eccrinids have been classified as fungi

due to the coenocytic nature of their thalli, formation of holdfasts, and the

presence of cellulose in their cell walls (Lichtwardt 1961). However, this group

has not always been considered fungal. They were initially described as

nonphotosynthetic plants (Leidy 1853b), and since have been described as either

oomycete fungi (Kingdom Stramenopila) or protists (Galt 1971). Some of the

characters that supported classifying the Eccrinales within the Trichomycetes,

and therefore with the Fungi, could be adaptations to a common lifestyle, rather

than true phylogenetic similarity. Both the Eccrinales and the Trichomycetes are

only known to live within the gut lumen of arthropods. Development of holdfasts

may only be a shared adaptation of unrelated organisms to a habitat where

secure attachment is necessary for survival (Moss 1979). Another arthropod gut

microbe, the Arthromitus stage of Bacillus cereus, also forms spores and

develops a holdfast, yet as a eubacterium, is related to neither the Eccrinales nor

the Trichomycetes (Margulis et al. 1998).

The comparision of our 18S rRNA gene sequence for E. callianassae from

U. pugnax with the sequence for E. callianassae from N. califomiensis (Cafaro

2003), revealed that the two sequences were divergent, and had only 94% of a

452 base-pair fragment in common. There is no commonly accepted definition of

what constitutes a genetic protist species, but if we apply the definition of genetic

bacterial species as those that share at least 97% of their small subunit rRNA

gene (16S rRNA) sequence (Stackebrandt and Goebel 1994), we would assign

these two sequences to two distinct species. Our analysis, however, was based

on only a short fragment, representing approximately 24% of the entire SSU

rRNA gene (452/-1900 bp). Consequently, our sequence information on E.

callianassae is too limited to evaluate the possibility of cryptic species.
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Host specificity and extent of colonization

Enteromyces callianassae and Enterobryus sp. have not been reported

before together in U. pugnax. These two eccrinids are not host-specific, and

each inhabits multiple species of crustacean hosts. Enteromyces callianassae is

commonly found in the foregut of thallassinid burrowing shrimp (Table 2.1) and

has been reported in the stomach of the fiddler crab U. pugilator (Tuzet and

Manier 1962). From these observations it appears that E. callianassae, as

defined morphologically, is not host specific, but our sequence data suggest that

genetically distinct organisms may be associated with different host species.

However, for the present study, we classify E. callianassae based on

morphology, to compare colonization levels to other studies.

The frequency of occurrence of E. callianassae that we documented in U.

pugnax was similar to that found in Nihonotrypaea harmandi and substantially

greater than that reported in Upogebia affinus. However the other reports did not

categorize hosts by molt stage, and could have included postmolt individuals;

possibly reducing the number of observed hosts with E. callianassae as

compared with those from our intermolt hosts. Even so, the burrowing shrimp, N.

harmandi, averaged 8.4 tufts and had up to 36 tufts in a single host foregut

(Kimura et al. 2002). The greater number of tufts, and presumably greater

eccrinid biomass, could result if the host provides a better environment for E.

callianassae growth, if there is a greater surface area for successful attachment

and growth, or if there is a greater number of ingested spores. Although both

hosts are deposit feeders, diet quality could vary substantially, among hosts and

among habitats. Nihonotrypaea harmandi lives in estuarine intertidal sandflats

and Uca pugnax (from this study) inhabits the banks of salt marshes.

Nihonotrypaea harmandi is a much larger crustacean than U. pugnax, and has a

correspondingly larger foregut, with more area for attachment. Spore abundance

was not quantified, but presumably a higher level of colonization would result in a
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greater number of released spores, more spores in the hosts' habitat, and

possibly more ingested spores.

Enterobryus sp. has been reported in hindguts of multiple species within

the genus Uca (Mattson 1988), as well as in the mole crab, Emerita talpoida

(Cronin and Johnson 1958). However the extent of host specificity for

Enterobryus sp. is difficult to interpret without accurate species identification. If

all Enterobryus sp. found in marine crustaceans constitute a single species, then

Enterobryus sp. does not demonstrate host specificity. Furthermore, if the

anterior long form and posterior bushy form are actually distinct species, it is

possible that multiple species of Enterobryus sp. coexist within individual hosts.

We will consider both forms of Enterobryus sp. and literature reports of

Enterobryus sp. all as a single species to facilitate the comparison.

The total thallus length of Enterobyrus sp. that we measured in U. pugnax

is in the upper range reported in other marine crustacean hosts. In the only other

published paper of Enterobryus sp. lengths, Mattson (1988) used an intersection

method (Olson 1950) to estimate total thallus length in decapods. He found that

mean total thallus lengths in the hindguts of the fiddler crabs Uca longisignalis

and Uca rapax (both from Tampa Bay, FL) were 7 and 35 mm per crab,

substantially less than the average total length in both intermolt and premolt U.

pugnax (Fig. 2.5). Yet Mattson (1988) did not distinguish crabs based on molt

staging and these averages include numerous individuals with no eccrinid thalli.

Total thallus length for individual crabs ranged up to 120 mm in U. Iongisignalis

and up to 315 mm in U. rapax. We found that U. pugnax individuals had up to

135.6 mm per crab (intermolt phase) and 201.3 mm per crab (premolt phase).

So in U. pugnax (Barnstable, MA) Enterobryus sp. had a greater average length

of total thallus, when post molt individuals were excluded, yet the hindgut

Eccrinales in the fiddler crab U. rapax (Tampa Bay, FL) can have greater

abundances on an individual basis.
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Possible functional role of Eccrinales

Almost nothing is known about the nature of the interaction between

Eccrinales and their hosts. As a member of the class Mesomycetozoa, the

Eccrinales are now considered most closely related to various fish and

crustacean pathogens, including Ichthyophonus spp. and Dermocystidium spp.

(Mendoza et al. 2002). By phylogenetic affiliation, an argument could be made

for considering the Eccrinales as pathogens of their crustacean hosts.

Mesomycetozoa also includes the Amoebidiales, however, a group of protists

that associate with freshwater crustaceans and insects and are believed to be

commensals (Misra 1998). Furthermore, because we did not observe any

apparent detriment to the host, in terms of activity level or maximal size, we

suggest that the association is not deleterious, but might be classified as a

commensalism or, possibly, a mutualism. Other researchers have noted no

observable impairment to the hosts, even in cases of highly colonized individuals

(Hibbits 1978). In the only published study addressing the functional role of the

Eccrinales, Kimura et al. (2002) found that digestive fluid from ghost shrimp

Nihonotrypaea harmandi with E. callianassae released significantly more

enzymatically hydrolyzable amino acids (EHAA) from natural field sediment as

compared with a population of N. harmandi without E. callianassae. However,

the total environmental sediment EHAA concentrations were also greater from

the habitat of the population with E. callianassae. Therefore the higher EHAA

concentration and predicted nutritional gain might not have been solely, or even

partially, a result of the presence and presumed contribution of E. callianassae.

Eccrinales symbionts must derive some essential nutrient or condition

from their hosts; otherwise they would exist in a free-living form (Moss 1979).

Because these organisms are found only in hosts that consume live or decaying

plant matter, there could be some component(s) of this diet that are crucial for

Eccrinales growth and development. Without any eccrinids in culture, however,

we can only speculate about what these components might be. Also, we have
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no evidence of what, if any, compound(s) E. callianassae and/or Enterobryus sp.

might provide their hosts. The mesomycetozoan parasite, Perkinsus marinus,

has been reported to release a number of extracellular proteins including highly

potent proteases (La Peyre et al. 1995). This parasite relies on extracellular

proteases to degrade host matrix proteins, allowing it to propagate within host

tissue. However, different extracellular proteases released into the gut might

provide a benefit to the host. If eccrinid species produce extracellular proteases

that breakdown organic matter in the gut lumen, the products might be

incorporated by the host. Alternatively, some essential compound, such as a

vitamin, could be released by the Eccrinales and absorbed by the host. Further,

explicit studies of host-Eccrinales interaction are needed to assess the true

nature of the association and possible environmental implications. The most

useful type of study would correlate specific measures of host gain or harm (i.e.

egg production, host growth rate, host size, enzyme production or metabolic

activity level) with the extent of eccrinid colonization.
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Chapter 3: Bacterial gut microbiota of the marsh fiddler crab Uca pugnax:

bacterial morphologies and distributions

ABSTRACT

Via scanning electron microscopy (SEM), we investigated digestive tracts of the
marsh fiddler crab, Uca pugnax, to assess locations and morphologies of
resident (attached) bacteria. The greatest abundances occurred on the pyloric
fingerlets and along the hindgut. Scattered coccoid bacteria colonized the
cardiac stomach and rod-shaped bacteria almost completely coated the pyloric
fingerlets of the pyloric stomach. The midgut contained coccoid bacteria
associated with the epithelium and remnants of the peritrophic membrane. Two
distinct morphologies of rod-shaped bacteria colonized the chitinous hindgut:
curved rods in the anterior hindgut and mats of rods in the posterior hindgut.
Using direct counts, we confirmed that stomach and hindgut sections contained
the greatest numbers of resident bacteria. Transient bacteria were
approximately twice as abundant per section as resident bacteria in these
regions. Attached bacteria, however, are consistently present among individuals,
are more likely to be active and, therefore are expected to play a greater role in
host physiology.

INTRODUCTION

Nutritional symbioses between metazoans and microbes are widespread

in both marine and terrestrial environments and are characterized by high

microbial population density and complex interactions. In terrestrial

environments, nutritional interactions between microbes and arthropods such as

termites, cockroaches and locusts have been studied extensively and are known

to influence host physiology as well as impact the local and global environment

(Brauman et al. 1992; Breznak 1982). In termites, hindgut microbes release

gases (CH 4, CO02 and H2) at sufficient rates to factor into estimates of global

greenhouse gas emissions (Breznak and Brune 1994). Hosts typically consume

detritus, wood or other plant material, and their microbiota assist in degrading the

ligno-cellulose rich fraction of the diet by depolymerizing cellulose and fermenting

the resulting carbohydrates to short-chain fatty acids. Hosts absorb these
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products, thereby increasing their dietary carbon and energy gain. Gut microbial

activities can also impact the environment via chemical alteration of egesta.

Associations between terrestrial arthropods and their gut microbiotas are often

specific, stable and highly evolved (Breznak 1984; Dillon and Charnley 2002).

By housing microbial communities with specific and complementary

metabolisms, hosts are able to utilize ecological niches unavailable to them

without digestive symbionts.

In the marine environment, digestive associations have been found most

commonly among invertebrate detritivores and herbivores, specifically animals

that consume diets low in concentration of labile organic matter and/or high in

concentration of refractory substances (Harris 1993; Plante et al. 1990).

Because of their diets and phylogenetic proximity to terrestrial hosts, marine

detritivorous arthropods are likely candidates to host gut microbial communities.

There is growing evidence that many marine invertebrates, and arthropods in

particular, harbor resident gut microbes that may contribute to nutritional

mutualisms (Harris 1993; Harris et al. 1991; Lau et al. 2002; Pinn et al. 1997).

However, a clear understanding of the specificity and nature of these

associations is lacking. Early literature reported the presence of microbes in

digestive tracts of marine arthropods, but often failed to distinguish between

food-associated microbes and more permanent microbial communities

(Barlocher et al. 1989; Beeson and Johnson 1967).

Gut-associated microbes can be classified into two general categories:

transient, food-associated microbes that are digested or pass through the gut,

and resident bacteria that attach to the gut lining. Types of possible host

interactions with transient bacteria could range from competition for food to direct

digestion (Harris 1993). Resident bacterial communities are expected to have

greater stability than transient bacterial communities and are more likely to have

evolved a symbiotic relationship with the host. Here we define a stable microbial

association as one in which the same bacterial strains are found among
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individuals of a host species and over time. Quantifying abundances of resident

and transient bacteria in each gut section is a necessary first step to assess

potential significance of each population to the host.

Multiple species of detritivorous fiddler crabs harbor particular

morphologies of resident microbes in their hindguts (Harris 1992). It is unknown,

however, if resident bacteria colonize other gut sections. Different gut sections

may have particular chemical environments, each with the potential to support

distinct bacterial communities. Furthermore, each bacterial community may have

a unique digestive function in host physiology. Identifying morphologies,

location(s), and abundances of resident microbes is essential to develop an

understanding of possible bacterial-host interactions.

In this study, we describe and quantify abundances of resident bacterial

communities along the digestive tract of a marine detritivore, the fiddler crab Uca

pugnax. We have chosen Uca pugnax because it is known to host attached

hindgut bacteria (Harris 1992) and is important ecologically. We limit this study

to an investigation of bacterial microbiota (as opposed to eukaryotic microbes) to

allow detailed examination of one component of the gut microbiota. Specific

questions that we address include: 1) Where are resident bacteria located along

the gut and 2) How do resident bacterial abundances compare with transient

bacterial abundances?

METHODS

Crab collection and dissection

Adult marsh fiddler crabs, U. pugnax, were collected in August 2003 from

an intertidal salt marsh in Barnstable Harbor, Massachusetts (41°42'31 N,

700°18'17 W) during low tide. Eight male crabs were collected for bacterial counts

of transient and resident bacteria. Eight crabs (four males and four females)

were collected for scanning electron microscopy and light microscopy of thin

sections. Males and females were inspected initially to confirm that bacterial
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morphologies and attachment locations were consistent among the sexes. Only

males were used for the transient and resident counts to avoid any possible sex-

based bias in bacterial abundances. Crabs were kept in cooled containers

(-15°C) and brought to the laboratory within 2 h after collection. Gender, molt

stage (see below), carapace width and length of each specimen were recorded.

For electron and light microscopy preparations, crabs were allowed to depurate

their gut contents for 3 h in 0.2-jim filtered flowing seawater at the approximate

temperature and salinity of their collection. Crabs collected for transient and

resident bacterial counts were dissected upon arrival in the lab. Eight samples

(-1 g wet weight each) of surficial (top 1 cm) habitat sediment from eight

separate cores were collected in August 2003, during crab collection.

Before dissection, crabs were thoroughly washed with sterile, filtered, 0.1

M phosphate buffer (pH 8.1) and cold-anesthetized (0°C for 8-10 min). We

dissected stomach, hepatopancreas, midgut and hindgut sections from

anesthetized crabs using sterile tools on a sterilized aluminum surface. Gut

sections were removed from the organism and measured for length and diameter

(for midgut and hindgut samples) and for wet weight (hepatopancreas). Gut

contents were collected, transferred to sterile 1.7-ml tubes, and wet weighed.

Stomach samples included both pyloric and cardiac stomach sections. Midgut

samples included the region between anterior and posterior midgut ceca. The

hindgut was considered to be the length of gut from the posterior midgut cecum

to the anus. Tissue samples, gut contents and sediment samples were each

preserved in 1 ml sterile 3% gluteraldehyde in 0.1 M phosphate buffer. All

samples were kept at 40°C until processed.

Molt stage analysis

Molt stages of individual crabs were determined by examining

characteristics of pleopod and abdominal setae as described in (Vigh and

Fingerman 1985). Four molt stages were identified: postmolt, intermolt, premolt
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and ecdysis (Drach 1939). Setae were removed from crabs with fine dissecting

forceps, immediately wet-mounted on slides in 0.1 M NaCI buffer and viewed with

a Zeiss Axiostar Plus Microscope (500 or 1,000X magnification). Only intermolt

crabs were used for this study.

Electron and light microscopy

Immediately after dissection, hindgut, midgut, hepatopancreas and both

the cardiac and pyloric stomachs of eight crabs were fixed in 3%

gluteraldehyde in 0.1 M sodium cacodylate, pH 7.4, for 3 h. Samples were

washed three times in sodium cacodylate buffer, postfixed in 1% osmium

tetroxide in 0.1 M sodium cacodylate for 1 h, and washed another three times

before dehydrating in a series of ethanol dilutions. Samples were critical-point

dried using carbon dioxide as the transitional fluid, mounted on aluminum

stubs, coated with gold palladium and examined in a JEOL JSM-840 scanning

electron microscope (SEM). For thin sectioning, samples were fixed as

described for SEM up to the ethanol dehydration step, when individual samples

were embedded in an Araldite 502-Epon mixture. Thin sections (< 1 m) were

stained with Toluidine Blue (1 %) and examined with a Zeiss Axiostar Plus

microscope (1,000X).

Hindgut bacterial densities were estimated from SEM images. Densities

in both anterior and posterior hindgut regions were determined. For three

crabs, bacterial abundances in five haphazardly selected quadrats (10 x 10

pm), were averaged, for each hindgut region. Total hindgut surface area

(mm2) was estimated for each crab collected for SEM from measured hindgut

lengths and widths by approximating the hindgut as a cylinder. Total midgut

and hindgut volumes (ml) were estimated for each crab collected for bacterial

counts in the same manner (Table 3.1). Resident bacterial counts were

normalized per ml gut volume to compare measured bacterial densities with

literature reports.
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Sonication

To dislodge bacteria from gut linings, gut contents and sediments, we

sonicated, centrifuged and collected sequential supernatants from samples, as

described by Hymel and Plante (1998) with the following modifications. Samples

(1 ml each) were centrifuged at 6000 x g for 12 min, and 0.8 ml of gluteraldehyde

was removed before adding phosphate buffer (4.8 ml, 0.1 M) with 0.05% Triton

X-100 (to enhance dislodgement). Removal of gluteraldehyde fixative increases

cell counts and reduces count variability (Hymel and Plante 1998). These

samples (5 ml each) were vortexed for 30 s, sonicated on ice for two 30-s bursts

and allowed to cool for 30 s between bursts (Branson Ultrasonifier 250; nominal

power output of 15 W). After 10 s of vortexing, samples were centrifuged (400 x

g) for 8 min at 1 0°C to settle large particles. Four milliliters of supernatant from

each sample was pipetted into separate sterile 14-ml tubes. Four ml of fresh 0.1

M phosphate buffer with 0.05% Triton X-1 00 was added to the residue, and this

series (vortex, sonicate, vortex, centrifuge) was repeated a total of three times,

such that 12 ml of supernatant was collected for each sample. Sediment and

gut-content samples were dried at 60°C for 16 h and re-weighed to obtain dry

weights.

Staining and counting

Each 12-ml supernatant was well mixed before taking two, 1.0 ml or 2.0 ml

aliquots. These aliquots were incubated with 10 jzl DAPI (5 pg ml ' ) and 1.0 ml

sterile filtered phosphate buffer for 15 min in darkness (Tso and Taghon 1997).

Samples were filtered onto 0.2 iim black polycarbonate membrane filters (25

mm; Poretics) backed by 0.45 Atm filters (Millipore) and rinsed with 2 ml of 0.2-jim

filtered milliQ water (vacuum pressure < 90 mm Hg). Filters were placed on

glass slides with immersion oil and examined at 1250 or 1500X magnification

using a standard Zeiss DAPI filter combination (365-nm excitation filter, 400-nm

54



barrier filter) with a Zeiss Axiovert S100. Negative controls consisted of sterile

0.1 M phosphate buffer and sterile milliQ water (same volumes as those added to

gut samples) sonicated, stained, and prepared in the same manner described

above. At least 10 haphazard fields were counted (for a total of > 200 cells

counted) and counts from negative controls (average of 10 fields) were

subtracted from total counts. Total bacterial counts were reported as numbers of

bacteria per gut section (resident and transient), per gram dry sediment (transient

and habitat sediments), per mm gut length (resident) or per ml gut volume

(resident).

Statistical analysis

Prior to statistical analyses, data were tested for homogeneity of variances

and for normal distribution. Bacterial counts were square-root transformed to

meet these assumptions. A two-way analysis of variance (ANOVA) was used to

assess whether total bacterial numbers varied among gut sections and between

categories [resident versus transient (gut content-associated)]. One-way ANOVA

tested for differences in transient bacterial densities (per gram dry weight) among

gut contents and habitat sediment. If treatment effects were significant, post hoc

comparisons were carried out with a Bonferroni test. All statistical tests were

performed in SYSTAT (version 10).

RESULTS

Bacterial morphology and distribution within the gut

We observed dense populations of apparent bacteria attached to pyloric

fingerlets (Fig. 3.1A,B) in the pyloric stomach and the hindgut chitin lining (Fig.

3.1C- F) of all four crabs inspected by SEM. We refer to forms observed by SEM

as bacteria if they had common bacterial morphologies (i.e. rods, cocci).

Bacteria did not colonize all surfaces, nor all projections in the pyloric stomach,

but appeared restricted to chitinous pyloric fingerlet projections (Fig. 3.1A), where

55



I

Figure 3.1 SEM images of bacteria in U. pugnax gut, with schematic of generalized crustacean
gut (modified from Hopkin and Nott 1980) for reference. A. Pyloric fingerlets in pyloric stomach,
small, solid arrow designates smaller projections at the base of the fingerlets. B. Close-up of an
individual fingerlet with fine setae and associated bacteria. C. Forward segment of anterior
region of chitin-lined hindgut with curved rod-shaped bacteria and projections. D. Close-up of
rear segment of anterior region with dimpled chitin and associated bacteria and projections.
Small arrow indicates crab chitin projections. E. Posterior region of hindgut lined with smooth,
furrowed chitin and dense mat of attached rod-shaped bacteria. F. Close-up of attached rods
and apparent glycocalyx adhering bacteria to chitin lining. Glycocalyx consists of web-like
fibers between individual cells and chitin lining. Probable sites of recent bacterial divisions
are circled. Scale bars A) 100 g.m; C, E) 10 gm; B, D, F) 1 gm

they colonized from base to tip with approximately uniform density. Rod-shaped

bacterial cells (1-2 x 0.4 gm) were attached to the fingerlets, to fine spines on the
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fingerlets and to other bacteria. Smaller projections, directly at the base of the

fingerlets had very few attached bacteria (Fig. 3.1A, solid arrow).

In the cardiac stomach, curved and spiral-shaped bacteria were attached

to thalli of the resident protist Enteromyces callianassae (Fig. 3.2A) and coccoid

bacteria were observed on the chitinous cardiac lining (Fig. 3.2B). Images of

semi-thin sections revealed coccoid bacteria (< 1.6 jtm diameter) in

hepatopancreatic tissue (Fig. 3.2C) in two of the four crabs inspected. Contrary

to observations in hepatopancreas tissues of some arthropods (Drobne et al.

1999), these cells were neither contained within bacteriocytes nor detected in all
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Figure 3.2 SEM and thin section images of bacteria in U. pugnax cardiac stomach,
hepatopancreas and midgut. All scale bars - 10 m. A. Bacteria associated with
attached resident protist Enteromyces callianassae (large, bulbous projection) in the
cardiac stomach. B. Coccoid bacteria attached to the chitin lining of the cardiac stomach.
C. Cross section of hepatopancreas tissue with associated bacteria (blue cells).
D. Midgut epithelium with secretory cells (arrow), remnants of peritrophic membrane
and associated bacteria (circled).
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thin sections of an individual hepatopancreas. Along the midgut, a few bacterial

cells were attached to remnants of an apparent peritrophic membrane (Fig.

3.2D). The non-chitinized midgut epithelium consists of an anterior microvillous

lining and a posterior epithelial layer with secretory cells (Fig. 3.2D).

At least two distinct bacterial morphologies colonized the hindgut lining,

each consistently observed within a specific region. The anterior region (- 65-

70%) of the hindgut lining had regularly spaced projections that pointed

posteriorly. Within this anterior hindgut region, the forward segment was covered

with individual projections (Fig. 3.1C) and the rear segment had clusters of two to

four projections (Fig. 3.1 D). Curved, rod-shaped bacteria (2-3 x 0.2 gm) were

associated with the anterior hindgut region. These irregularly shaped bacteria

typically adhered to the lining by one end or lengthwise. In this anterior hindgut

region, the chitin lining appeared finely dimpled (Fig. 3.1D). The lining might be

naturally dimpled or this appearance may result from the activities of

chitinoclastic bacteria. The posterior region (-30-35%) of the hindgut had a

smooth, furrowed chitinous lining (Fig. 3.1E). Dense aggregations of rod-shaped

bacteria (0.8-1.2 x 0.3 gm) colonized this posterior region. This form consistently

attached lengthwise and appeared to have a web-like glycocalyx sheath affixing

it to the lining. These bacteria appeared to reproduce by dividing into two

Table 3.1 Midgut and hindgut dimensions and estimated volumes for crabs collected for
transient and resident bacterial counts

Midgut Hindgut

Crab length (mm) diam. (mm) vol. (ml) length (mm) diam. (mm) vol. (ml)

1 4.0 1.5 0.0188 9.0 1.50 0.0424
2 3.3 1.2 0.0124 10.9 1.65 0.0566

3 3.0 1.5 0.0145 10.5 1.70 0.0561

4 3.6 1.7 0.0192 9.0 1.40 0.0340

5 4.9 1.6 0.0246 12.0 1.70 0.0641
6 3.8 1.2 0.0141 11.0 1.40 0.0484
7 3.0 1.4 0.0132 11.2 1.40 0.0493
8 4.5 1.6 0.0226 10.5 1.65 0.0544
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collinear but shorter rods as inferred from apparent recent cleavages (Fig. 3.1F)

and seemed to be actively reproducing, based on the number of recent divisions

observed. As calculated from SEM images, average densities of posterior

hindgut bacteria (x = 1.89 x 106, SD 1.23 x 105 mm 2 ) were approximately four

times as dense as the anterior form (x = 4.59 x 105 , SD 6.30 x 104 mm 2 ).

Transient and resident bacterial abundances

To investigate abundances of resident and transient bacteria, we

compared total numbers of attached bacteria and total numbers of content-

associated bacteria in each section (Fig. 3.3). Two hepatopancreas samples

were uncountable due to tissue interference with DAPI staining, and three crabs

did not contain any midgut sediment. With these exceptions, counts of resident

and transient bacteria were made on all gut sections of all eight crabs. To
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Figure 3.3 Total resident and transient (contents-associated)
bacterial numbers (average +SE; n = 6-8) in each gut section.
Letters indicate groupings with significant differences in ANOVA
and Bonferroni post hoc test (P < 0.05).
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increase comparability among hosts, only intermolt crabs were used for the

presented analyses. Data are presented as bacterial numbers per gut section to

resolve which gut section(s) harbored the greatest total abundances of resident

bacteria. Section(s) with relatively high resident bacterial abundances are most

likely to be sites of bacterial-host interaction. To account for small differences in

midgut and hindgut sizes among crabs, we normalized bacterial densities in the

tubular midgut and hindgut sections by per mm gut length and by per milliliter gut

volume (approximating the gut as a cylinder) (Table 3.1). Resident midgut

bacterial densities averaged 2.71 x 10 5 (SD 1.34 x 105) mm -1 gut length and 5.81

x 10 7 (SD 2.58 x 107) ml-1 gut volume. Hindgut bacterial densities of resident

bacteria averaged 3.79 x 106 (SD 5.01 x 105) mm -1 gut length and 8.04 x 108 (SD

1.69 x 108) ml-1 gut volume. Ideally, we also would normalize hepatopancreas

and stomach counts; however, it was not feasible to estimate the lumen volume

or surface area of these sections due to their irregular shapes.

Abundances of resident bacteria varied significantly among gut sections

(Fig. 3.3, Table 3.2). Because we had only one category for hepatopancreas

counts, this section could not be included in the full 2-way ANOVA and was

excluded from this analysis. Resident bacterial abundances were significantly

different among sections. Bacterial abundances were greatest in the hindgut,

followed by the stomach and the least in the midgut (P < 0.05; Bonferroni post

hoc test). Transient bacterial numbers mirrored the resident abundance pattern

and were significantly different between each pair of sections (P < 0.05;

Bonferroni post hoc test). These transient numbers, however, were assessed

Table 3.2 Two-way ANOVA comparing bacterial abundances among
gut sections and between transient and resident populations (category).

Source df MS F P

Section 2 106,456,000 135.95 < 0.01
Category 1 66,495,300 84.92 < 0.01
Section x category 2 1,354,679 1.73 0.19
Error 39 783,072
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from varying amounts of sediment and indicate only that the total number of

transient bacteria varied with gut section. The number of transient bacteria was

significantly greater than the number of resident bacteria for the stomach, midgut

and hindgut sections (P < 0.01; Bonferroni post hoc test). Numbers of resident

bacteria equaled just 8% of the average transient number in the midgut, but

nearly equaled half the average transient numbers in the stomach and hindgut.

Density of bacteria (g-1 dry wt) in sediment from the host's habitat was

significantly greater than that in all gut content sections (1-way ANOVA, F =

16.58, df = 3, P < 0.01) (Fig. 3.4). Within the gut, average transient bacterial
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Figure 3.4 Transient bacterial densities in gut contents
and habitat sediment (average +SE; n = 8) on a per gram
dry weight basis. Letters indicate groupings with significant
differences (P < 0.05).
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densities (number gram '1 dry sediment) followed the same qualitative trend found

for total transient abundances with greatest density in the hindgut, followed by

the stomach and lowest density measured in the midgut section. However,

differences in transient bacterial densities were insignificant among the three gut

sections (P > 0.05; Bonferroni post hoc test).

DISCUSSION

Significance of bacterial locations and morphotypes

Distinct morphologies of attached bacteria are consistently associated with

different regions of the U. pugnax gut, including the pyloric fingerlets and along

the anterior and posterior hindgut. Bacteria resembling those we observed in the

posterior hindgut of U. pugnax have been reported in other marsh fiddler crabs

and detritivorous thalassinid prawns (Harris 1992; Harris et al. 1991; Pinn et al.

1999). Both U. pugnax and U. minax collected from Sapelo Island, Georgia

harbor morphotypes of hindgut bacteria identical to those in U. pugnax: curved

rods in the anterior projection region and dense mats of rods covering the

smooth hindgut lining (Harris 1992). Hindgut bacteria similar in appearance to

the dense mats of posterior hindgut rods in U. pugnax have been observed in

species of detritivorous thalassinid shrimp, including filter feeders Upogebia

africana and U. pugettensis, and deposit feeders Neotrypaea (formerly

Callianassa) californienesis and N. kraussi (Harris 1991, 1992; Pinn 1997).

Although we cannot draw any conclusions about which or how many bacterial

species are present based on morphology, these hindgut morphotypes seem

conserved among fiddler crab species from different locations and among both

filter-feeding and deposit-feeding, detritivorous mud shrimp.

Length-wise attachment would increase attachment surface area for each

cell, but it would appear to be the least advantageous orientation for diffusive

exchange if the attachment surface were impermeable (Murray and Jumars
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2002). Such bacterial-mat monolayers develop on relatively permeable cuticles

(Bignell 1984), however, in which fluid transfer across the chitin surface would

alleviate boundary-layer depletion for the bacteria. On-end attachment

orientation occurs on less permeable surfaces and exposes the cell to greater

diffusive gains (Murray and Jumars 2002). If these cuticle permeability

generalizations apply to the fiddler crab gut, the observed bacterial arrangement

suggests that the posterior cuticle is the most permeable. Consequently,

bacterial products that accumulated along the hindgut could be absorbed rather

than egested.

Posterior hindgut bacteria appear to use glycocalyx coatings to adhere to

the chitin lining. In addition to having a role in attachment (Dunne 2002), this

coating is thought to immobilize extracellular enzymes, thereby increasing local

product concentrations. In rumen bacteria, attachment of cellulose fibers to

glycocalx coatings facilitates enzymatic breakdown of cellulose (Roger et al.

1990), likely by limiting diffusion distances of product (Vetter et al. 1998).

Additionally, glycocalyx coverings might protect cells from detrimental

substances, such as surfactants and digestive enzymes.

Dense aggregations of attached bacteria within the pyloric stomach have

not been reported previously in marine crustaceans. Furthermore, no resident

foregut bacteria were observed with electron microscopy in any of the nine

thalassinid shrimp species or the three fiddler crab species studied previously

(Harris 1992; Pinn 1999). Observed pyloric stomach bacteria might be transient

bacteria that are collected on the pyloric fingerlets before they are ingested.

However, we propose that this pyloric stomach microbiota is a typical and

resident feature of U. pugnax guts. Four intermolt individuals examined by SEM

had pyloric fingerlet bacteria, and all these crabs had voided any visible gut

contents. Pyloric fingerlets are an adaptation of particle-feeding crustaceans

(Icely and Nott 1992), and we suspect that this region is colonized in other

detritivorous crustaceans. Other researchers might have observed, as we did,
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an absence or low abundance of bacteria on cardiac stomach surfaces and

smaller pyloric projections and concluded that the entire stomach was free of

attached bacteria.

Different regions along the crab gut are expected to have unique chemical

environments and flow regimes due to specialized digestive processing in each

section (Dall and Moriarty 1983). Each of these microenvironments might select

for particular bacterial species and metabolisms. Bacteria associated with the

pyloric stomach have access to ingested food and breakdown products before

the host can absorb this material. At the same time they are exposed to

digestive enzymes that may cause cellular damage. Fluid circulation and

filtration within the crustacean stomachs and hepatopancreas is exceedingly

complicated (Dall and Moriarty 1983; Icely and Nott 1992). Here we present a

simplified description of digestion in U. pugnax with the goal of clarifying what

materials are passed through the pyloric fingerlets. The host ingests a diet

composed predominantly of benthic, unicellular phytoplankton, detrital organic

matter (predominantly marsh grass) and associated bacteria (Miller 1961;

Shanholtzer 1973). The light, organic-rich fraction is separated from denser

mineral grains (see Miller 1961 for detailed description) and crushed by the

gastric mill in the cardiac stomach. Host digestive enzymes are secreted from

the hepatopancreas into the pyloric and cardiac stomachs and initiate organic

matter breakdown (Dall and Moriarty 1983; Icely and Nott 1992). Very fine (< 2

gzm) particles are passed directly into the pyloric stomach and filtered into the

hepatopancreas. Coarser material is retained on filters and compressed by the

pyloric fingerlets, thereby increasing the efficiency of fluid extraction. Fine setae

on the fingerlets (Fig. 3.1 B) collect particles that are then transferred towards the

midgut, while fluid passes into the lumen channel of the hollow fingerlets and

moves towards the hepatopancreas for absorption. Thus enzymes and

breakdown products circulate across the pyloric fingerlets and flow past attached

bacteria as the host processes food. These bacteria are ideally situated for
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maximal exposure to digestive products, as long as the cells can withstand

digestive enzyme activities. Furthermore, the host may absorb any released

bacterial products, or bacteria themselves, along the midgut or in the

hepatopancreas.

Bacteria along the hindgut do not necessarily have access to the same

high-quality digestive products as the pyloric fingerlet bacteria, but avoid

exposure to the same levels of active and potentially harmful digestive enzymes.

Along the hindgut, resident bacteria have access to 'left-overs', that the host has

processed but presumably still have some nutritional value for bacteria.

Digestion theory predicts that detritivores increase their nutritional (absorptive)

gains by ingesting fresh food before all (or even most) nutritional value has been

removed from their gut contents (Dade et al. 1990). Therefore hindgut contents

are likely to retain substantial nutritional value for bacteria.

As in the pyloric stomach, the perimeter of the hindgut is a hypothesized

zone of re-circulation. Some crustacean species can take up water from the

environment through the anus and move it forward via reverse peristalsis along

the hindgut and midgut, at times as far anterior as the hepatopancreas (Dall

1967; Fox 1952; Lovett and Felder 1990). If hindgut bacteria produce

fermentation products or host-beneficial enzymes, this mechanism could

transport both bacterial products and detached bacteria toward the midgut and

hepatopancreas for absorption. Fox (1952) observed that reverse peristalsis was

most vigorous just before defecation, during the host's final opportunity to obtain

any nutritional or energetic gain from its gut contents. Mayer et al. (2001) make

the analogy to a rinse cycle in doing laundry to remove residual material.

Alternatively, or in addition to the flushing mechanism, bacterial products may

cross the hindgut cuticle for host absorption, as occurs in termites and other

insects (Hogan et al. 1985; Maddrell and Gardiner 1980). Passive, cross-cuticle

transport may occur whenever the concentration gradient of product is in the right

direction, and reverse peristalsis may occur intermittently and likely just before
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egestion. Resident bacteria in both the pyloric stomach and hindgut may benefit

from inhabiting fluid recirculation zones. Fluid and digestive product recirculation

would provide greater solute flux and might reduce the thickness of the boundary

layer surrounding the bacteria (Plante et al. 1990).

Although we did not test for fermentation activities in this study, we

observed black patches in the gut contents frequently, especially on the exterior

of the food bolus in the pyloric stomach and hindgut. The pyloric fingerlets

themselves commonly had visible black spots. These black sections result from

sulfate reduction and increased concentrations of precipitated iron sulfides

(Madigan et al. 2003), suggesting that the region may experience anoxic

conditions and could support fermentative metabolisms. Fermentation products

such as short chain fatty acids (SCFAs) are a potential energy source for the

host crab and can be absorbed without active transport, even across the hindgut

cuticle (Hogan et al. 1985; Maddrell and Gardiner 1980). In the hindgut, uptake

of SCFA would allow the host to recover some nutritional value from host-derived

organic matter including peritrophic membrane material and sloughed midgut

cells (Plante et al. 1990).

Resident bacterial abundances

Bacterial abundances calculated from direct counts (DAPI) indicated that

the hindgut and stomach harbored the greatest numbers of resident bacteria per

section (Fig. 3.3). Both of these gut sections are lined with chitin, which may

provide a better surface for attachment than tissue epithelium. In the blue crab,

Callinectes sapidus, (Huq et al. 1986) demonstrated that Vibrio cholerae attaches

more promptly to the chitinous hindgut lining than to the non-chitinous midgut

lining. Although this lining is shed periodically with the host molt, chitin surfaces

probably offer greater stability than midgut tissue from which surface epithelial

cells are continuously sloughed (Dall 1967).
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Hindgut bacterial densities in U. pugnax (8.04 x 108 ml 1) were within the

range reported in four species of thalassinid crustaceans (Neotrypaea

subterranean, Jaxea nocturna, U. stellata and Calocaris macandreae) (1.01 -

9.07 108 ml'1) collected from the Clyde Sea off Scotland (Pinn 1995; Pinn et al.

1997). However per unit of gut length, bacterial densities in U. pugnax were

almost an order of magnitude greater than those in the thalassinids. In these

shrimp species, bacterial densities ranged from 0.5 - 4.6 x 105 mm-1 gut length

(Pinn 1995; Pinn et al. 1997) as compared with averages of 3.79 x 106 mm'1 gut

length in U. pugnax. The thalassinids presumably have longer but narrower guts

than U. pugnax.

We had expected lower densities of bacteria in U. pugnax than in

thalassinids because previous SEM observations showed lower bacterial

densities in fiddler crab hindguts than in thalassinid hindguts (Harris 1992). Two

methodological issues might explain why we obtained surprisingly high bacterial

densities. Firstly, Pinn (1995) did not assess the molt stage of the studied

thalassinid specimens. Therefore some individuals may have been in postmolt

phase and have had a reduced density of resident bacteria due to the limited

time for recolonization. Secondly, differences in methods (homogenization in

Pinn (1995), versus sonication in the present study) would explain the difference

if homogenization detaches fewer resident bacteria than sonication, as reported

in previous studies (Ellery and Schleyer 1984; Epstein and Rossel 1995). Our

results suggest that U. pugnax hindgut bacterial abundances are at least as great

or greater than those reported for four other species of detritivorous crustaceans.

In contrast with the hindgut comparison, densities of midgut bacteria (mm-

') in U. pugnax are similar to those reported in other crustaceans. Four

thalassinid species (N. subterranean, J. nocturna, U. stellata, and Calocaris

macandreae) described above had midgut bacteria at densities of 0.5 - 3.2 x 105

mm-1 (Pinn et al. 1997). Average abundance of resident midgut bacteria in U.

pugnax fell within this range (2.71 x 105 bacteria mm '1 midgut).

67



Within U. pugnax, midgut bacteria were over an order of magnitude less

abundant and less dense than hindgut bacteria. It has been suggested that a

host may protect the midgut from bacterial attachment by radically altering the pH

of absorptive gut sections, as observed in mammals (Drasar et al. 1969;

Giannella et al. 1973). However, this mechanism probably does not occur in U.

pugnax because our measures of along-gut pH indicate that all gut sections have

average pH values between 6.6 and 7.3 (data not shown). These near-neutral

pH measures are in accordance with published results from marine detritivorous

annelids and echinoderms, which generally reflect environmental pH values

(Plante and Jumars 1992) and supports the idea of marine detritivores having

relatively 'open' gut systems (Plante et al. 1990). Recent studies have found that

some insects secrete antibiotic proteins in the anterior midgut to prevent bacterial

colonization in this region (Munks et al. 2001). The presence of endogenous

antibiotic substances has not been studied in fiddler crabs, but the relatively low

abundance of resident midgut bacteria observed in U. pugnax suggests this

could be a viable hypothesis for further study.

Another mechanism predicted to reduce bacterial attachment in the

midguts of insects (Bignell 1984), is the formation of a midgut peritrophic

membrane encasing the food bolus. Uca pugnax does appear to form a

peritrophic membrane (Fig. 3.2D) and we propose that this membrane, likely in

conjunction with 'lytic enzymes' and midgut tissue sloughing, is responsible for

preventing bacterial growth along the midgut. In the hindgut, cuticular projections

(Fig. 3.1C,D) are thought to destroy this peritrophic membrane (Bignell 1984),

allowing hindgut bacteria direct access to gut contents.

It was unclear whether bacteria observed in the hepatopancreas were

resident or transient, possibly in the process of being digested. If these are

resident bacteria and a regular feature of the fiddler crab hepatopancreas, we

would expect them to be present in all crabs inspected, not only half (2/4). Yet,

their bacterial cell membranes appear fully intact, signifying that they are
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probably not being digested but possibly living within the hepatopancreas.

Furthermore, if these were transient bacteria, we would expect to detect more

than a single bacterial morphology. The hepatopancreas is the main site of

crustacean digestion and any bacteria associated with this section may have

substantial impact on the host and material passing through the gut. Further

research on the presence and role of hepatopancreatic bacteria is needed to

clarify possible functions of these bacteria. We chose to focus our study on the

two gut sections with clear resident populations; the stomach and hindgut.

Transient bacterial abundances

Detritivorous fiddler crabs such as U. pugnax ingest bacteria-rich marsh

sediments and are presumed to have high abundances of bacteria passing

through their guts. These transient bacteria may potentially contribute greater

quantities of extracellular enzymes or SCFA products or both compared with

resident bacteria (Harris 1993) or they may compete with the host for absorption

of digestive products (Plante et al. 1990). One of our goals was to compare the

numbers of transient and resident bacteria in each gut section, to assess whether

resident bacteria are likely to play an important role in host digestive physiology.

On a gut-section basis, transient bacteria were roughly twice as abundant

as resident bacteria in both the stomach and hindgut, but these numbers may not

reflect their relative influence on host digestion. At most forty percent of marine

sedimentary bacteria are estimated to be active (Plante and Wilde 2001), and the

actual proportion of active bacteria may be much lower. Furthermore, digestive

enzymes may lyse and/or inactivate many transient bacteria, especially in the

stomach and midgut where enzymatic activities are greatest (unpublished

results). In contrast, we expect that resident bacteria have adapted to gut

conditions and the majority should be active. Therefore the number of active

resident bacteria may be similar to the number of active transient bacteria. Even

if all transient bacteria were active, resident bacteria would still constitute

approximately one third of all gut bacteria in the stomach and hindgut; an ample
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quantity to contribute to bacterially mediated digestion. Also, resident bacteria

form a stable community (Chapter 4; this thesis, Lau et al. 2002) and are likely to

have evolved a more specialized relationship with the host, particularly in the

stomach and hindgut regions.

We expected to find the greatest concentration of transient bacteria in the

stomach because U. pugnax selects for and concentrates the most organic-rich,

and presumably bacteria-rich, fraction of the sediment in its stomach (Miller

1961). Yet, digestive enzymes are also released into the stomach and may lyse

bacterial cells, lowering observed bacterial counts. Sediment in the midgut had

the lowest concentration of transient bacteria, but not significantly less than

sediment in the stomach or hindgut. The midgut section is an absorptive region

where the products of lysed bacteria could be absorbed. Most bacteria are

expected to be lysed and digested between the stomach and hepatopancreas,

whereas the midgut allows further absorption of digestive products (Icely and

Nott 1992). Slight, but non-significant increase in bacterial concentration in the

hindgut may be due to bacterial regrowth in the relative absence of active

digestive enzymes (Chapter 5; this thesis), as found for Abarenicola vagabunda

(Plante et al. 1989). Either resident bacteria shed from the hindgut lining or

surviving transient bacteria could reproduce along the hindgut, possibly thriving

in a habitat relatively rich in organic matter (compared with environmental

sediments) and with reduced enzyme activity (compared with anterior gut

sections).

CONCLUSION

We have demonstrated that the stomach and hindgut of U. pugnax harbor

relatively high abundances of resident bacteria, compared with other gut sections

and with other crustacean hosts. Furthermore we found that resident bacteria

constitute almost half the total transient count in these sections. Yet, with this

information we can still only speculate about what roles these bacterial
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populations have in host digestion. The species composition and stability of

these populations needs to be addressed before further tracer studies and in situ

fluorescent probe work can be done to determine bacterial metabolisms and to

correlate particular species with specific gut sections.
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Chapter 4: Genetic diversity of resident bacteria in the digestive tract of the

marsh fiddler crab, Uca pugnax

ABSTRACT

We assessed phylogenetic diversity of resident (attached) bacterial communities
in the detritivorous salt marsh crab, Uca pugnax, over time and among individual
hosts. DGGE analysis of 16S rRNA genes from gut populations revealed distinct
patterns of bacterial diversity that were relatively conserved among individuals.
Gut community diversity appears to be distinct from that found in habitat
sediments and appears to differ markedly between stomach and hindgut.
Although some changes in diversity patterns were observed between summer
and winter, resident communities were not entirely different. Hindgut bacterial
densities, however, did vary significantly with season. Clone libraries of 16S
rRNA genes were generated from both stomach and hindgut microbiota (pooled
from seven individual hosts), as well as from each of three DGGE bands (from a
single host). We identified six bacterial phylotypes in the stomach and 13 in the
hindgut, indicating that the hindgut hosts a more diverse community than the
stomach. Many clones were most closely related to other symbionts and gut-
associated bacteria. Few identified clones, however, shared more than 95% 16S
rRNA gene sequence similarity with their nearest known relatives. Interestingly,
the most abundant hindgut clone was most closely related to a clone from the
hindgut microbiota of the detritivorous shrimp Neotrypaea (formerly Callianassa)
californiensis, suggesting that detritivorous crustacean hindguts may provide a
niche for specific bacterial phylotypes.

INTRODUCTION

The combination of detritivore and microbial metabolisms in the form of a

digestive association has enormous potential to impact habitat biogeochemistry,

as well as affect host physiology. Carbon and energy flows in marine sediments

are influenced, in part, by activities of both invertebrate detritivores and microbial

communities. Resident (attached) gut bacteria have been identified in multiple

species of detritivorous arthropods (Harris et al. 1991; Pinn et al. 1997).

Researchers have suggested that these bacteria form the basis of mutualisms in

which bacteria contribute enzymes or fermentation products to host digestion
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(Pinn et al. 1997; Lau et al. 2002), as well as alter the chemical composition of

egested matter (Lau et al. 2002).

To understand the roles of gut microbiota in host digestion and habitat

biogeochemistry, information about bacterial diversity should be evaluated in light

of gut morphology, gut chemistry and spatial distribution of microorganisms along

the digestive tract. Estimating bacterial diversity in each gut section is a

necessary first step before more specific questions on microbial function can be

addressed. Early studies on the microbiota of detritivores relied on culture-based

techniques (Harris et al. 1991; Pinn et al. 1997) and probably underestimated

community diversity due to difficulties in simulating gut lumen conditions (Amann

et al. 1995). A recent study has applied culture-independent techniques to the

hindgut communities of a detritivorous marine arthropod (Lau et al. 2002),

providing the first insight into detritivore microbial diversity.

In this study, we investigate the diversity of bacterial communities among

gut sections of the detritivorous fiddler crab Uca pugnax. Our goal is to assess

bacterial diversity within and between individual hosts, as well as changes in

composition and abundance over time. For the temporal abundance

measurements, we focus on the hindgut because it is commonly colonized by

bacteria in various crustacean hosts (Dempsey and Kitting 1987; Harris 1992;

Lau et al. 2002; Pinn et al. 1997) and supports the greatest bacterial abundances

in U. pugnax (Chapter 3; this thesis). To assess variability among individual crab

hosts, we compare individuals with the fingerprinting technique, denaturant

gradient gel electrophoresis (DGGE). To assess seasonal change, we compare

bacterial diversity patterns among representative summer and winter samples.

Finally, we investigate bacterial diversity by sequencing clone libraries of both

stomach and hindgut communities and comparing our findings with those from

other arthropod microbiotas. Given the strong potential for fiddler crab hosts and

resident bacteria to have evolved digestive symbioses, we predict that resident

bacterial communities are consistent among individuals and stable over time.
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Furthermore, we expect that these resident bacteria are related to phylotypes

from other crustacean gut microbiotas and to known symbiotic bacteria. For our

purposes, we define a stable microbial association as one in which the same

bacterial phylotypes are found among individual hosts and over time.

METHODS

Crab collection and dissection

Marsh fiddler crabs, Uca pugnax, were collected from an intertidal salt

marsh in Barnstable Harbor, Massachusetts (41°42'31 N, 70018'17 W) during low

tide. In February and September 2003, male crabs were collected to assess

winter and summer diversity of resident microbiotas (n = 3;8). Only males were

studied to eliminate the possibility of confounding, gender-related differences.

Feeding rates differ between male and female fiddler crabs (Weissburg 1992;

Weissburg 1993) and may influence bacterial diversity. Four samples of habitat

sediment (- 10 g wet weight each) were collected in September 2003 during crab

collection; each was homogenized separately by mixing and frozen at -20°C.

For seasonal counts of hindgut bacteria, crabs were collected monthly (July 2001

- August 2002) during year 1 and then every other month (October 2002 -

August 2003) during year 2 (n = 6-10 month-1 ). Crabs were kept in cooled

containers (-- 15°C) and brought to the laboratory within 2 h after collection.

Gender, molt stage (see below), carapace width and length of each specimen

were recorded. These crabs depurated their gut contents for 24 h in 0.2-rm

filtered flowing seawater at the approximate temperature and salinity of their

collection or were dissected immediately and any gut contents removed by

rinsing with sterile 0.2-tm filtered 0.1 M phosphate buffer. We found no

significant difference in bacterial density between these two approaches

(unpublished data). For bacterial diversity work, crabs were allowed to depurate

for 3 h.

77



Before dissection, crabs were washed thoroughly with sterile filtered 0.1 M

phosphate buffer (pH 8.1) and cold-anesthetized (0°C for 8-10 min).

Anesthetized crabs were measured with calipers, weighed, and dissected using

sterile tools on a sterilized aluminum surface. Stomach, hepatopancreas, midgut

and hindgut sections were removed from the organism, measured for length and

diameter (for hindgut samples), transferred to sterile 1.7-ml tubes and weighed.

For counts of resident hindgut bacteria, tissues were preserved in 1 ml filter-

sterilized 3% gluteraldehyde in 0.1 M phosphate buffer.

Molt stage analysis

Molt stage of individual crabs was determined by examining

characteristics of pleopod and abdominal setae as described in Vigh and

Fingerman (1985). Four molt stages were identified: postmolt, intermolt, premolt

and ecdysis (Drach 1939). Setae were removed from crabs with fine dissecting

forceps, immediately wet-mounted on slides in 0.1 M NaCI buffer and viewed

with a Zeiss Axiostar Plus Microscope (500 or 1,000X magnification). Molt stage

was determined for all crabs dissected after February, 2002. Only intermolt

crabs were used for phylogenetic analysis of gut microbial communities.

Sonication, staining, and counting

Samples were sonicated and counted as described in Chapter 3 (this

thesis). Total bacterial counts were reported as number of bacteria mm-1 gut

length. Due to longitudinal folds in the hindgut lining, it is difficult to measure

accurately the diameter of empty crab hindguts. Therefore we chose to

normalize bacterial abundances by gut length, which we were able to measure

accurately.
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DNA extraction

Stomach, hepatopancreas and hindgut sections were placed in 0.7 ml

DNA extraction buffer composed of 100 mM Tris buffer (pH 8), 100 mM NaEDTA

(pH 8), 100 mM phosphate buffer (pH 8), 1.5 M NaCI, and 1% CTAB

(hexadecyltrimethyl-ammonium bromide; Sigma-Aldrich). To separate bacterial

biomass from host tissue, samples were sonicated as described for DAPI counts

(Chapter 3; this thesis) except that only 0.6 ml supernatant was collected after

each sonication (two total). Complete cell removal was confirmed by microscopic

inspection of DAPI-stained samples. Combined supernatants (1.2 ml) were

collected for each gut section sample and flash frozen in liquid nitrogen.

Supernatant samples were subjected to three freeze-thaw cycles (liquid nitrogen

and 650C water bath) before adding 10 jil filter-sterilized proteinase K (10 mg/ml)

and incubating at 370 C for 30 min. Cell lysis was confirmed by microscope

inspection of DAPI-stained samples. Next, 50 lI sodium dodecyl sulfate (20%

solution) was added, and samples were shaken on a rotary shaker at 300 rpm, at

650 C for 2 h. Mixtures were transferred to pre-pelleted Phase Lock Gel I tubes

(Eppendorf) before extracting DNA twice with an equivalent volume of

phenol:chloroform:isoamyl alcohol (25:24:1, pH 8), followed by three

chloroform:isoamyl alcohol (24:1) extractions. Supernatants were removed and

precipitated in two volumes of 100% isopropanol (-200 C; 16 h) before

centrifuging (12,600 rpm; 30 min) and washing the resulting pellet twice with 70%

ethanol. Isolated DNA was resuspended in 30 tl sterile water and kept at -200 C

until use. DNA was extracted from four sediment subsamples (- 0.2 g each) with

the UltraClean Soil DNA kit (Mo Bio Laboratories) according to the

manufacturer's instructions.
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PCR amplification

Touchdown PCR was used to amplify the 16S rRNA gene for DGGE

(primers 341-GC, 907R) as described by (Muyzer et al. 1998). PCR reaction

mixtures included: 200 jiM of each dNTP, 10 mM of each primer,10% of 10X

buffer, 25 mM MgCI2 and sterile, double-distilled water. Taq DNA polymerase

(Promega) was added at 1 unit per 50 !zl reaction. After a 5-min denaturation

step (940°C), the annealing temperature was lowered from 65 to 550°C over 20

cycles, followed by 10 cycles performed at 55°C. For sediment samples, bovine

serum albumin (Promega) was added to the PCR mixture at a final concentration

of 2 mg ml[' to prevent inhibition of enzymatic amplification by humic compounds

associated with sediments.

For cloning, DNA was extracted from stomachs and hindguts, as well as

from DGGE bands, and the 16S rRNA gene was amplified with universal

bacterial primers (27F and 1492R; or 341 F and 907R for excised DGGE bands).

To reduce PCR bias we combined 10 replicate reactions of 15 cycles each (Polz

and Cavanaugh 1998). Amplifications consisted of 3-min at 94°C followed by 15

cycles of 94°C for 1 min, 50°C for 45 s, 72°C for 1 min, with a final extension step

of 12 min at 72°C, performed in an Eppendorf Mastercycler Gradient thermal

cycler. Combined PCR products were purified with the Wizard SV purification kit

(Promega) and resuspended in 30 l sterile water. Formation of heteroduplexes

was restricted by performing five further PCR cycles with the above conditions

(Thompson et al. 2002). Final PCR products were purified with the Wizard SV

purification kit and cloned immediately.

Denaturing Gradient Gel Electrophoresis (DGGE)

DGGE gels were run on a DCode electrophoresis unit (Bio-Rad).

Samples were electrophoresed for 18 h at 100 V on denaturing gradient gels (1

mm thick, 6% (wt/vol) polyacrylamide, 30-60% or 20-70% denaturant). Gels of

20-70% denaturant were used initially to assess the complete spectrum of
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diversity patterns. A narrower gradient (30-60%) was used subsequently to

provide better resolution of neighboring bands. Amplified 16S rRNA gene

fragments from eight individual crabs from summer 2003 collection (stomachs

and hindguts) were run on both 20-70% and 30-60% DGGE gels. Winter

(collected February, 2003) stomach (n = 3) and hindgut samples (n = 3) and four

samples of homogenized summer Barnstable marsh sediment were run only on

20-70% gels. Running buffer (1X TAE buffer; 40 mM Tris, 20 mM acetic acid, 1

mM EDTA) temperature was maintained at 60°C. Gels were stained with SYBR

Green nucleic acid gel stain (0.01% in 1X TAE buffer, Molecular Probes) and gel

images were taken with a Chemilmager Light Image system (Alpha Innotech) gel

documentation system. All visible bands were sampled with a wide-bore

micropipette tip, and these gel fragments were incubated in 50 !zl sterile water for

24 h at 4°C before storing at -20°C. Aliquots (1 gl) of this water were used to re-

amplify bands by PCR for cloning.

Cloning

One bacterial clone library from the stomach and one from the hindgut

were generated from equal amounts of DNA combined from each of seven

individual stomach and hindgut samples (crabs 1-7). In addition, three bands

were cloned from the 30-60% DGGE for crab 4 (H-A, H-B, and S-D). Purified

PCR products of the 16S rRNA gene (27F, 1492R primers) or DGGE fragments

(341 F, 907R primers) were cloned into the pCR 4 TOPO vector, and transformed

into TOP10 Escherichia coli cells with the TOPO TA cloning kit for sequencing

(Invitrogen). Clones were grown in SuperBroth with ampicillin (100 [tg ml 1-) for

18 h at 370C on a shaker table (250 rpm). Plasmids were purified with a

RevPrep Orbit robot (Genemachines) and resuspended in 60 ul of sterile water.

Clones were screened by restriction analysis with the enzyme EcoR1.

Restriction digests included: 5 lI of each purified plasmid, 0.1 l acetylated BSA

(10 pg ul-1 ), 3.5 p1l sterile water and 0.4 p1 EcoR1 (10 U pl-1). Mixtures were
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incubated at 37°C for 4.5 or 5 h and gel analyzed. Only clones that had a single

restriction pattern and had appropriately sized inserts [either - 1.5 kb or - 550 bp

(DGGE)] were selected to sequence. Each unique restriction pattern was well

represented by selected clones. Nearly complete, double-stranded sequences of

16S rRNA genes (1,349 -1,528 bp) were sequenced on a 96-capillary 3730xl

DNA analyzer (Applied Biosystems) with primers 27F, 341 F, 907R, 1492R, T3F

and T7R.

Phylogenetic tree construction

By aligning both forward and reverse strands, a consensus sequence for

every clone was created with the program Sequencher (version 4.1.2, Applied

Biosystems). Sequences were tested for the presence of chimeras with

CHIMERA_CHECK in the Ribosomal Database Project RDP (Maidak et al. 1997)

and with the Bellerophon server (Huber et al. 2004). The ARB software package

was used to analyze sequence data and construct trees (version 2.5b; O. Strunk

and W. Ludwig, Technische Universitat Munchen, Munich, Germany;

http://www.arb-home.de). Gene sequences (16S rRNA) were aligned with Fast

Aligner tool (version 1.03) and corrected manually. All clonal sequences were

compared to 16S rRNA gene sequences in the BLAST database (Altschul et al.

1990), and related sequences were added to the alignment.

Phylogenetic analyses of full-length sequences were performed in PAUP,

version 4.0b10 (Swofford 1993) and ARB. Neighbor-joining trees were

constructed with the Jukes-Cantor correction, with base frequency filters (50-

100% similarity) and were bootstrapped with 1000 replicates (bootstrapped in

PAUP). For tree construction, 1,305 sequence positions were used. Related

sequences significantly shorter than 1,500 bp (DGGE band and N. californiensis

hindgut clone sequences) were added to the tree with the ARB parsimony tool,

allowing the addition of short sequences without changing overall tree topology.

Trees created in PAUP and ARB produced identical branching patterns.
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Therefore, rather than present both a tree with all full-length sequences and

bootstrap values (from PAUP) and a separate tree with partial sequences (from

ARB), we appended the ARB tree with the PAUP bootstrap values, for all full-

length sequences.

Diversity analysis

Diversity coverage of 16S rRNA gene clone libraries was analyzed with

the analytical rarefaction approximation algorithm of Hurlbert (1971) and 95%

confidence intervals were estimated as described by Heck et al. (1975).

Rarefaction curves were constructed with the Analytical Rarefaction software

(http:llwww.uga.edul-stratalsoftwarel). Total number of phylotypes present

was estimated with the nonparametric indicator, Chao-1 (Chao 1987; Hughes et

al. 2001).

RESULTS

Molt stage

Molt stage was determined for all collected crabs from February 2002 to

September 2003. To improve comparability among hosts, only intermolt crabs

were used for the presented analyses from February, 2002 onward. We suspect

that resident hindgut bacterial measures for July to September 2001 included

some postmolt and possibly premolt crabs for two reasons. Firstly, numerous

postmolt crabs were found in the field in following years. Secondly, hindgut

bacterial densities were highly variable in these crabs (postmolt crabs usually

have lower bacterial densities than intermolt crabs; unpublished data).

Hindgut bacterial counts

Hindgut bacteria densities show strong seasonality, being greatest in

summer and lowest in winter. Monthly variation in bacterial densities was

significant (1-way ANOVA, F = 26.98, df= 19, P < 0.01). The Tukey post hoc
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test indicated that May to August densities are greater than those measured from

October to April, for both 2002 and 2003 (see Fig. 4.1 for groupings). We

suspect that the inclusion of some postmolt individuals in sample sets from July

to September, 2001 was responsible for the relatively high standard deviations

and, in August 2001, the particularly low densities measured.

DGGE profiles

All eight individual stomach microbiotas produced similar banding patterns

on both 30-60% (Fig. 4.2A) and 20-70% denaturant gels [Fig. 4.2B (a single

representative profile is shown)]. Similarly, seven hindgut microbiotas had

similar patterns (one hindgut microbiota produced smears) on both gels (Fig.

4.2A,B), yet the typical hindgut profile was distinct from the typical stomach

profile.

iii ll

Figure 4.1 Seasonal counts of resident hindgut bacterial densities
(average +SE; n = 6-10). Single, double and triple asterisks designate
groupings with significant differences (P < 0.05) (One-way ANOVA and
Tukey post hoc test).
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Figure 4.2 DGGE images A. Profiles (30-60%) of 8 individual crab stomach
microbiotas and 7 individual crab hindgut microbiotas, from summer collections.
Positions of apparent bands labeled S (stomach) A - D and H (hindgut) A - F.
B. Profiles (20-70%) of summer habitat sediment and winter stomach and hindgut
profiles compared with representative stomach and hindgut samples from crabs
collected in the summer. Three representative sediment profiles are shown. Note
that with this gradient of denaturant hindgut bands A and B converged to form a
single band. Bands H-C,D,E were not detectable but bands H-G,H,I,J were resolved.
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All stomach microbiotas, from winter and summer collections, exhibited a

single intense band at position S-D and up to four faint bands (positions S-A, S-

B, S-C, S-E) (Fig. 4.2A,B). Although bands were undetectable at positions S-A,

S-B or S-C in crabs 5, 6, and 7 these individuals also had relatively weak bands

at position S-D, suggesting that a lesser amount of total DNA had been loaded

for these individuals. The 20-70% gel resolved the four stomach bands observed

with the 30-60% gel, and, due to the broader range of denaturant, also revealed

a lower band, S-E (Fig. 4.2B). This S-E band was present in the stomach

microbiota from summer crabs 4-7, on 20-70% gels (not shown).

As determined from 30-60% and 20-70% gels, hindgut bacteria typically

produced two intense bands (H-A, H-B), three strong bands (H-F, H-H, and H-J)

and three faint bands (H-C, H-D, H-E) (Fig. 4.2A,B). All individuals appear to

have the two intense bands (H-A and H-B), except possibly crab 7. For the

hindgut profiles, not all bands detected on the 30-60% gel were evident on the

20-70%; in particular, bands A and B co-migrated (Fig. 4.2B). On the 20-70%

gel, lower bands H-H and H-J were present in all summer crabs except crab 5,

which had bands at positions H-G and H-I (not shown). DNA from excised bands

(30-60% gel) was run on a 20-70% gel to confirm all band positions. None of the

strong stomach and hindgut bands appeared to migrate to the same positions, as

determined by both combinations of denaturant (Fig. 4.2A,B). Weak stomach

band S-B and hindgut band H-C appear to share the same position.

Dominant bands found in typical summer profiles were also detectable in

winter crabs (Fig. 4.2B), as indicated by three hindgut samples (crab 10, 11, 12)

and two stomach samples (crabs 10, 11) from winter crabs (collected February

2003). One winter stomach DGGE sample (crab 12) was unreadable and not

included in the results. Typical summer stomach bands S-D and S-E were

visible, while bands S-A and S-C were barely detectable in winter crabs. Hindgut

bands H-A:B and H-F were present in all three winter crab hindgut profiles.

Lower bands showed greater variability in their presence and position and were

86



either absent (crab 10), consisted of double bands (crab 11, bands H-G and H-l)

or had a single band (crab 12, band H-J). Interestingly bands H-G and H-I were

also found in the hindgut profile from summer crab 5 (not shown).

Amplifying DNA from Barnstable marsh sediments proved difficult,

possibly due to the presence of humic substances (Juniper et al. 2001; Tsai and

Olson 1991). The occurrence of smeared bands may result from high bacterial

diversity, in which the presence of many co-migrating sequences hinders

resolution of distinct bands. These types of smeared bands are commonly

observed in soils containing high bacterial diversity (Nakatsu et al. 2000). Only

one attempt to visualize sediment samples on a DGGE gel was successful, and

still produced only faint bands (Fig. 4.2B). In general, most stomach and hindgut

bands do not seem to be detectable on the sediment profiles. The described

extraction protocol with commercial kits (UltraClean Soil DNA Kit, Mo Bio

Laboratories and DNeasy Tissue Kit, Qiagen) were unsuccessful in extracting

any bacterial DNA from the hepatopancreas. Hepatopancreas tissue is very rich

in lipids (Icely and Nott 1992) that may have hindered our ability to extract

bacterial DNA.

Clone libraries

Two clone libraries were generated from 16S rRNA gene fragments

amplified from stomach and hindgut DNA, each pooled from seven individual

host crabs. We cloned pooled DNA in order to produce stomach and hindgut

clone libraries representative of typical gut bacterial communities, rather than that

of one individual. We justified pooling DNA from seven individuals based on the

similarities in DGGE patterns. Three clone libraries were generated from DGGE

bands: two hindgut bands (H-A and H-B) and one stomach band (S-D) from crab

4. Selected clones from the hindgut (100), stomach (58) and DGGE bands
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Figure 4.3 Neighbor-joining tree with the Jukes-Cantor correction showing the
positions of bacterial 16S rRNA gene sequences recovered from 7 grouped U.
pugnax stomach and hindgut microbiotas. Partial DGGE sequences (-550 bp)
and Neotrypaea californiensis hindgut clone sequences (-500 bp) were inserted
into the tree using maximum parsimony criteria (ARB) without affecting the initial
tree topology. Bootstrap values are based on 1000 replicates and are shown for
values > 50%. Numbers of recovered clones are in parentheses after clone
names. Scale bar represents 10% sequence difference. Accession numbers of
reference sequences are indicated. Species used as the outgroup were
Archaeoglobus fulgidus, Methanomicrobium mobile, and Metallosphaera sedula.
CFB, Cytophaga-Flavobacterium-Bacteriodes phylum.
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[Stmch D (17), HG A (19) and HG B (17)] were sequenced. One hindgut clone

was identified as a chimera and was excluded from further analysis.

By assigning sequences with at least 98% sequence similarity to single

phylotypes (16S rRNA sequence types), stomach and hindgut clones clustered

into six and 13 different phylotypes, respectively (Tables 4.1,4.2). We chose to

group phylotypes by 98% sequence similarity for two reasons. Firstly, this

criterion is at least as stringent as the commonly applied bacterial species

criterion of 97% 16S rRNA sequence identity (Kisand and Wikner 2003; Lau et al.

2002). Secondly, this criterion allows diversity comparison with another study of

detritivore crustacean microbiota diversity that presented phylotypes of > 98%

similarity (Lau et al. 2002).

All identified phylotypes belonged within the Proteobacteria (y, (a, or e),

gram-positive or Cytophaga-Flavobacteria-Bacteroides (CFB) phyla (Fig. 4.3).

Half the identified stomach phylotypes (3/6) affiliated with y-Proteobacteria. The

greatest number of individual stomach clones (66%) belonged with the

Mycoplasma, a group characterized by its lack of a cell wall. Hindgut clones

Table 4.1 Bacterial phylotypes identified from 16S rRNA gene sequences cloned from 7 crab stomachs.

Phylotype Length # of Within group % similarity to DGGE band

name (bp) clones % similarity Nearest neightbor nearest neighbora (# clones)

Stmch-1 1432 2 99.2% Acinetobacterjunii 97%

Stmch-2 1387 6 99.4% Cardiobacterium valvarum 92%

Stmch-3 1421 5 99.9% Lucina pectinata symbiont 89%

Stmch-4 1349 2 99.1% Tetracoccus cechii 92%

Stmch-5 1494 38 98.9% Mycoplasma putrefaciens 85% Stmch D-1 (15)

Stmch D-2 (2)

Stmch-6 1440 5 99.7% Sebaldella termitidis 90%

(termite gut microbe)

a % similiarity is from BLAST results (Altschul 1990).
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associated with the CFB, gram-positives, or (x, or E-Proteobacteria phyla. The

gram-positive clones constituted the most frequent clone type in the hindgut

library (79% of all clones) and within this group, three closely related firmicutes

phylotypes (HG-5, HG-6, and HG-7), comprised 74% of all clones. Most

stomach and hindgut phylotypes were not closely related to known bacterial

species and typically shared only 86-94% sequence similarity with their nearest

neighbors (fully sequenced phylotypes). HG-1, HG-3, and HG-9 and were

exceptions, sharing 96%, 95% and 98% sequence similarity, respectively, with

their nearest neighbors. Also HG-5, HG-6 and HG-7 were all 95% similar to a

published partial sequence (- 450 bp) of a firmicutes bacterial clone from

hindguts of a detritivorous thalassinid shrimp, Neotrypaea (formerly Callianassa)

californiensis (Lau et al. 2002).

DGGE clone libraries

Clones from the stomach DGGE band (S-D) clustered into two phylotypes,

both of which were related to the Mycoplasma-Spiroplasma group within the

Gram-positives (Fig. 4.3) and most closely associated with the most common

stomach clone phylotype, Stmch-5 (Table 4.1). Phylotype Stmch DGGE D-1 is

closely affiliated with Stmch-5, however Stmch DGGE D-2 is more distantly

related and may correspond with another phylotype present in the crab stomach

microbiota, not identified in this study.

The clone library of hindgut DGGE band H-A produced three different

sequences (Table 4.2), two of which associated closely with particular clone

phylotypes and one of which (HG DGGE A-3) may correspond with another

phylotype present within the hindgut microbial community but not recovered by

our clone library (Fig. 4.3). Hindgut DGGE band H-B clone library included three

different sequences, each of which was attributed to identified phylotypes from

the hindgut clone library. We expected that cloned sequences obtained from

strong DGGE bands would associate with the most abundant phylotypes
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Table 4.2 Bacterial phylotypes identified from 16S rRNA gene sequences cloned from 7 different crab hindguts.

Phylotype Length # of Within group % similarity to DGGE band

name (bp) clones % similarity Nearest neightbor nearest neighbora (# clones)

HG-1 1369 2 99.8% Paracoccus denitrificans 96% HG B-1 (2)

HG-2 1453 1 - Sphingomonas macrogoltabidus 85%

HG-3 1419 1 uncultured E-proteobacterium 95%

(North Sea pelagic bacterium)

HG-4 1497 1 - Mycoplasma putrefaciens 86%

HG-5 1528 31 98.9% N. californiensis hindgut clone 95%

HG-6 1524 25 98% N. californiensis hindgut clone 95% HG B-2 (12)

HG-7 1526 18 99.7% N. californiensis hindgut clone 95%

HG-8 1472 3 99.3% Trimyema compressum 91% HG A-1 (1)

(anaerobic ciliate endosymbiont)

HG-9 1420 1 - Cellulosimicrobium variabile 98%

(termite hindgut symbiont)

HG-10 1437 3 98.8% Pachnoda ephippiata gut bacterium 92% HG B-3 (3)

(humus feeding beetle)

HG-11 1485 7 99.5% Cytophaga fermentans 91% HG A-2 (17)
Bacteroides sp. 91%

HG-12 1422 2 99.9% Flavobacteriaceae bacterium 94%

HG-13 1404 4 99.1% Ornithobacterium rhinotracheale 93%

a% similiarity is from BLAST results (Altschul 1990).

recovered from each gut section. Both methodologies, DGGE and clone

libraries, are subject to PCR biases. Therefore amplified phylotypes frequencies

do not necessarily reflect their natural abundances (Polz and Cavanaugh 1998;

Suzuki and Giovannoni 1996). Nevertheless, phylotypes abundant in the crab

microbiota and/or phylotypes with sequences favorably amplified by PCR should

be relatively abundant in DGGE (as indicated by strong bands) and in the clone

library (represented by most abundant phylotype). Indeed, the most abundant

phylotype from hindgut DGGE band H-B corresponded with the three most

abundant, and closely related, hindgut clone phylotypes (HG-5, HG-6, HG-7).

The most common phylotype from hindgut DGGE band H-A corresponded with
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HG-11, which was the next most abundant hindgut phylotype after the HG-5, HG-

6, HG-7 cluster.

Many phylotypes were most closely related to other known symbiotic

bacteria, and relatives of arthropod symbionts were particularly common. Both

Stmch-5 and HG-4 clustered with the Mycoplasma-Spiroplasma group, which

includes known arthropod gut symbionts (Whitcomb 1980; Williamson et al.

1997). Three hindgut phylotypes were most closely aligned with clones from the

hindgut of the detritivorous shrimp, Neotrypaea californiensis. Three other

hindgut phylotypes (HG-8, HG-9, HG-10) were closely related to known symbiotic

bacteria from termites, beetles, and an anaerobic ciliate.

Diversity analysis

Due to an undersampling bias, clone library sequences might not reflect

total community diversity (Von Wintzingerode et al. 1997). For hindgut and

stomach clone libraries, diversity coverage was assessed with rarefaction

analysis (Fig. 4.4). The slope of the curve indicates the extent of total diversity

sampled, with low or zero slope signifying good coverage and steep slope

indicating extent of unsampled diversity. The stomach clone library appeared to

have reached saturation of unique phylotypes. The shape of the hindgut library

curve suggests that more than 13 phylotypes were present in the hindgut. The

Chao-1 estimator confirmed these results and calculated total diversity as six

phylotypes in the stomach microbiota and 17 phylotypes in the hindgut

microbiota.

DGGE profiles also offer an estimate of bacterial diversity. Ideally, each

phylotype is manifested as a separate DGGE band. Stomach bacterial

communities produced five total DGGE bands and hindgut bacterial communities

produced 10 bands. Therefore both clone library results and DGGE patterns

suggest that the hindgut communities are more diverse than those in the

stomach. Yet DGGE patterns underestimate total diversity (as calculated by
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Figure 4.4 Rarefaction curves of observed phylotypes for 58 stomach 16S rRNA sequences and
99 hindgut sequences in which phylotypes are defined by >98% sequence similarity. The slope
of the curves indicates the extent of total diversity sampled, with low or zero slope signifying good
coverage and steep slope indicative of extent of unsampled diversity. Dashed lines delineate 95%
confidence intervals.

Chao-1 estimators), due, most likely, to the occurrence of co-migrating bands as

documented by our finding of two or more phylotypes in a single band.

DISCUSSION

Seasonal densities of hindgut bacteria

Resident hindgut bacteria in U. pugnax are present throughout the year

(Fig. 4.1). Significantly greater abundances in summer may be a function of

bacterial growth from increased food intake, improved food quality and/or

elevated temperatures, compared with winter. Reduction in bacterial densities

coincides with onset of dormancy (pers. observation) in which crabs remain in

their burrows in a state of torpor, coming out to feed only on days when

temperatures exceed - 1 0°C. Because crabs do not molt during winter, one

might expect bacterial densities to increase with time, assuming that resident

bacteria continue to divide. Yet without food passing through the gut regularly,
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there are few nutritional sources available to the resident bacteria. It is possible

that bacterial division rates slow or cease during winter and/or that crab hosts

may digest dislodged bacteria. Resident microbes experience different thermal

and nutritional conditions in winter compared with summer, and these different

conditions might select for an entirely different community. Our DGGE results,

however, suggest that winter microbiotas share at least two to three bands (Fig.

4.2B) with the typical summer microbiota. Therefore, although some bacterial

phylotypes might be lost during winter dormancy, the community is not

completely altered.

Bacterial community profiles among individuals

Distinct bacterial communities appear to associate with specific gut

microhabitats. Finding a common DGGE pattern among individual crab

stomachs and another DGGE pattern common among hindguts, suggests that

resident microbial communities are not a haphazard mix of opportunistic bacteria

from habitat sediment colonizing the gut lining. Although DGGE profiles of

habitat sediment may not have resolved all potential bands, certain bands were

distinct and clearly absent from hindgut and stomach profiles. This absence

suggests that abundant and/or well-amplified sediment sequences were not

present in the crab microbiota and corroborates reports of distinct bacterial

communities in deposit-feeder guts compared with local sediment communities

(Harris et al. 1991; Ward-Rainey et al. 1996). A reduction in bacterial diversity in

the stomach and hindgut, compared with the sediment community, suggests that

gut conditions favor growth of specific populations.

This difference between sediment and gut communities raises the

question of how a particular gut microbiota persists though successive molts if

not re-inoculated from local sediments. Resident bacterial populations may arise

from bacterial strains present in marsh sediments in abundances too low to

detect on the sediment DGGE profile. After molting and shedding their chitinous
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gut linings, crabs take up bacteria with ingested sediment, and some of these

strains may survive gut passage, attach and initiate colonization of the new

lining. If only a limited number of sediment-associated strains are capable of

surviving gut passage and attaching to the gut lining, bacterial diversity would be

conserved among individuals, as suggested by our DGGE profiles. Presumably

some resident gut microbes would exist in local sediments if neighboring crabs

egest fecal material containing resident bacteria shed during gut passage.

Alternatively, crabs may have obtained their resident microbiota early in

development (i.e. during a pelagic larval stage; Lau et al. 2002) and microbial

continuity could be maintained between molts if bacteria are retained within the

gut lumen to reattach to the new cuticle. We think that the former, more

parsimonious explanation is more likely.

Our conclusion that U. pugnax hosts share similar stomach communities

and similar hindgut communities was based on common DGGE banding

patterns. However, we found that three of these DGGE bands comprised more

than one unique sequence. Our clone libraries revealed that the two most

common hindgut bands, HG-A and HG-B, were composed of three phylotypes

each, and the stomach band S-A contained two phylotypes. Therefore the

presence of band HG-B might correspond with the existence of HG-1, HG-6, and

HG-10 or any combination of them. Consequently, there may be more variability

among individual microbiotas than our DGGE patterns indicate. Co-migrating

phylotypes are not unprecedented and have been reported in bacterial

communities (Kowalchuk et al. 1997). Alternatively, a single DGGE band may

yield multiple sequences due to contamination from background DNA, as

evidenced by the relatively high background smear. To resolve which phylotypes

correspond with a particular DGGE band, amplified DNA from clones of these

phylotypes should be run with the original DGGE band. Nonetheless, the

general consistency of DGGE patterns and the differences from the sediment

community suggests that bacterial microbiotas do not colonize at random.
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Although some DGGE sequences were highly similar to particular

phylotypes from clone libraries (< 2% sequence divergence), other DGGE

sequences shared less than 92% sequence similarity (Fig 4.3). If these DGGE

sequences all correspond with clone library phylotypes, we would expect each

sequence to share at least 98% sequence similarity with a specific clone library

phylotype. These sequence differences may result from UV alteration of DNA

during DGGE visualization (Muyzer et al. 1998), uncorrected PCR errors (Polz

and Cavanaugh 1998), and/or use of different sets of primers. Different primers

vary in their binding efficiencies with clone sequences and therefore may

influence the composition of recovered clones.

Furthermore, our rarefaction analysis indicates that bacterial diversity is

reasonably well sampled for the hindgut and thoroughly sampled for the

stomach. Hence, there is a low probability that we should recover any unique

DGGE sequences. However Stmch DGGE D-2 and HG DGGE A-3 both appear

to be unique sequences, unaffiliated with any recovered clone phylotypes.

These DGGE sequences may represent phylotypes not recovered by the original

clone libraries. Again the use of a different set of primers may have selected for

different sequence recovery. Alternatively these two unique sequences may

result from heteroduplex formation (Thompson et al. 2002).

Diversity and phylogenetic affinities in resident bacterial communities

The stomach bacterial community appears to be less diverse than the

hindgut community, based on number of DGGE bands, clone phylotypes,

rarefaction analysis and Chao-1 estimator values. This finding suggests that

some aspect of stomach conditions limits the number of microbial strains able to

survive. Higher enzyme activity levels in the stomach than the hindgut (Chapter

5; this thesis) may restrict stomach bacterial diversity.

Based on scanning electron microscope (SEM) images of the stomach

(Chapter 3; this thesis), we speculated that the numerically dominant, rod-shaped
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form would correspond with the strongest DGGE band and most abundant clone.

However, the most abundant clone (Stmch-5) and corresponding DGGE band

sequences (Stmch DGGE D-1, D-2) were all most closely related to Spiroplasma

sp. and Mycoplasma sp., strains that do not have a cell wall and are

characterized by either corkscrew-shaped (Spiroplasma sp.) or minute (< 1 m)

coccoid forms, respectively (Madigan et al. 2003; Whitcomb 1980). Either the

observed rod-shaped bacteria were not the most abundant form or our

methodologies do not reflect relative strain abundances. The latter explanation is

possible because both DGGE and clone libraries are subject to PCR bias and do

not necessarily reflect environmental abundances. These Spiroplasma sp.-

related sequences may have originated from the corkscrew-shaped bacteria

observed on the gut protist, Enteromyces callianassae (Chapter 3; Fig. 3.2A).

On the other hand, if these gut phylotypes lack cell walls like their Spiroplasma

sp. relatives, they may have been destroyed during SEM sample dehydration.

Strains from the Spiroplasma-Mycoplasma spp. group are known to

inhabit terrestrial arthropod guts (Whitcomb 1980). Spiroplasma sp. have been

found in digestive tracts and hemolymph of a broad range of plant-eating insects

and, although generally considered pathogens, have been described as

beneficial or commensal in some reports (Hackett et al. 1992). Another

Spiroplasma sp.-related phylotype was identified in the gut of the Mid-Atlantic

Ridge hydrothermal vent shrimp, Rimicaris exoculata (Zbinden and Cambon-

Bonavita 2003). Based on the healthy appearance of the host specimens, the

authors speculated that these gut bacteria were not pathogenic. Judging from

the activity levels and generally fit appearance of U. pugnax hosts, we also

expect that resident gut bacteria do not inflict harm on their hosts. We presume

that this Spiroplasma-like phylotype originated from the bacterial community

attached to the stomach lining; however, we cannot exclude the possibility that

the crab hemolymph was the source. Before sonicating to detach resident

bacteria, all visible tissue was removed from the stomach, yet bacteria from the
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host hemolymph may have been present. Further research using phylotype-

specific fluorescent probes and in situ hybridization is necessary to resolve the

specific identity and attachment sites of this phylotype.

Closely related bacterial phylotypes were found in hindgut microbiotas of

both fiddler crab U. pugnax from the Atlantic Ocean (this study) and detritivorous

shrimp Neotrypaea califomiensis from the Pacific (Lau et al. 2002). Although

these two host species were collected from different oceans and different

habitats (intertidal salt marsh and deep intertidal mud flats), they both host

related resident phylotypes from within the gram-positive bacteria, ca-

Proteobacteria, and E-Proteobacteria. In particular, the most abundant hindgut

phylotypes, from both the clone and DGGE band B libraries, in U. pugnax (HG-

5,-6,-7) were most closely related to two N. californiensis gram-positive clone

phylotypes. Yet these clustered hindgut phylotypes were only distantly related to

any other known bacteria (< 85% sequence similarity). We suggest that the

presence of these similar phylotypes among different hosts supports the idea of a

specific association between detritivorous crustaceans and their gut microbiotas.

Furthermore, the abundance of recovered bacterial phylotypes with low similarity

to known strains, from both host species, suggests that crustacean gut

microbiotas may be a source of novel bacteria, as has been suggested for

termite gut microbiotas (Ohkuma and Kudo 1996) and a crustacean gut microbial

community (Lau et al. 2002).

Hindgut bacterial diversity in U. pugnax was similar to that found in the

microbiota of other crustaceans. In the resident hindgut microbiota of N.

califomiensis, Lau et al. (2002) identified 12 phylotypes (> 98% sequence

similarity) and total diversity was estimated to include 13 phylotypes (Chao-1

estimator; our calculation). These phylotypes were found among nine individuals

exposed to different feeding treatments (9 clone libraries: 30 clones each). In the

hydrothermal vent shrimp, R. exoculata, only seven phylotypes were identified in

a gut microbiota clone library (Zbinden and Cambon-Bonavita 2003). Total
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diversity was estimated to include eight phylotypes (Chao-1 estimator; our

calculation). This clone library was created from the entire digestive tract (fore-,

mid- and hindgut) of two individuals. Because all gut sections and both

transients and residents were grouped, this library might have been expected to

contain greater diversity than that found in U. pugnax stomach and hindgut

libraries combined. Two factors may help to explain the lower diversity observed

in vent shrimp. Firstly, some R. exoculata phylotypes were grouped by a less

stringent criterion (> 92% similarity). Secondly, this shrimp species is not a

detritivore and is thought to obtain nutrition by ingesting epibiotic bacteria (Rieley

et al. 1999), vent chimney surface bacteria, and/or incorporating organic matter

produced chemoautotrophically by gut bacteria (Polz et al. 1998; Pond et al.

1997). These three cases highlight the potential for different interactions

between host and gut microbiota, even within marine crustacean hosts. We

speculate that U. pugnax and N. californiensis are likely to have similar types of

interactions with their resident gut microbiotas, based on similarity in hindgut

phylotypes and similar levels of diversity.

Possible roles of bacterial microbiota

Resident bacteria of U. pugnax may be involved in a nutritional mutualism,

particularly if bacteria provide the host with useful enzymes or fermentation

products. Many recovered gut clones were related to other known symbionts,

some identified as having autotrophic, fermentative or cellulose-degrading

metabolisms that may provide nutritional energy to their hosts. Bacterial strains

represented by the observed phylotypes do not necessarily have the same

metabolisms as their closest relatives. Nevertheless, this information can help

refine expectations of possible metabolic activities. In particular one hindgut

phylotype (HG-9) was closely related (98% sequence similarity) to the facultative

anaerobe, Cellulosimicrobium variabile, a cellulytic and fermentative bacterium

isolated from the hindgut of termite Masototermes darwiniensis. Paracoccus
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denitrificans was the closest relative (96% sequence similarity) of another

hindgut phylotype and a DGGE band sequence. This strain is a facultative

anaerobe that can grow autotrophically on hydrogen and carbon dioxide with

nitrate as the electron acceptor (White 1995). If the related gut phylotype is also

capable of autotrophic production, the host may benefit from uptake of any

leaked substrates.

Multiple phylotypes belonging to the Cytophaga-Flavobacterium-

Bacteroides phyla were recovered from the hindgut library and from DGGE

bands. Cytophaga spp. are known for their abilities to degrade polymers such as

chitin and cellulose and often associate with surfaces (Delong et al. 1993) such

as nematode cuticles (Polz et al. 1999). Bacteriodes strains are commonly the

numerically dominant gut microbiota member found in phylogenetically diverse

hosts, including humans, termites, and ruminants (Ohkuma and Kudo 1996;

Suau et al. 1999; Whitford et al. 1998). The Bacteroides group includes mostly

strict anaerobes involved in starch degradation (Mccarthy et al. 1988).

Furthermore, Sebaldella termitidis, previously Bacteroides termitidis, produces

acetate and therefore the related stomach phylotype may be important to host

carbon and energy budgets (Potrikus and Breznak 1980). The abundance of

phylotypes related to facultative anaerobes offers some support for our

expectation that the gut may experience occasional anoxic conditions (Chapter 3;

this thesis).

The absence of certain typical salt marsh and crustacean-associated strains

from both stomach and hindgut libraries supports our hypothesis of a non-

random assemblage of gut microbiota. The 6-Proteobacteria subdivision is

characteristic of salt-marsh sediments (Burke et al. 2002), yet no representatives

were identified in any clone library. In particular, anaerobic, sulfate-reducing

bacteria (SRB) of the 6-subdivision of Proteobacteria are common salt-marsh

bacteria (Devereux et al. 1996; Klepac-Ceraj et al. 2004) and important to marsh

geochemistry, but were not present in gut microbiota libraries.
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Vibrio spp. are typical of estuarine waters and sediments and have been

detected in association with crustacean hosts from around the globe, yet were

conspicuously absent from all clone libraries in this study. Vibrio spp. commonly

associate with chitin carapaces and gut linings and have been identified both with

SEM and by culturing approaches. Vibrio spp. were the dominant forms found

on anal plates of the amphipod Boeckosimus affinus (Atlas et al. 1982), in

stomachs and hindguts of the brown shrimp Penaeus aztecus (Dempsey and

Kitting 1987; Dempsey et al. 1989), and in guts of the deep-sea royal red shrimp,

Pleoticus robustus (Dilmore and Hood 1986). Vibrios have been shown to attach

to the chitinous hindgut lining of the blue crab, Callinectes sapidus, but not to the

midgut (Huq et al. 1986). The presence of gut-associated Vibrio spp. could

depend on diet composition. Most of these identified Vibrio spp. hosts are

carnivores or scavengers, whereas U. pugnax and N. californiensis are

detritivores. Gut chemistries differ between these feeding guilds. Alternatively,

detritivores might be able to lyse and digest Vibrio spp.

CONCLUSION

We have demonstrated that the stomach and hindgut of U. pugnax harbor

distinct bacterial associates, and that these communities differ from those

associated with their habitat sediment. A study of habitat bacterial diversity is

needed to address our hypothesis that resident bacteria arise from low-

abundance sediment populations. Also, to understand better the nature of the

association, specific bacterial morphologies and attachment sites need to be

connected with particular bacterial phylotypes and metabolisms. A study with

phylotype-specific probes for fluorescent in situ hybridization (FISH) and

metabolic tracers would best address these questions. These types of studies

will give further insights into the role resident bacterial communities play in host

digestive physiology and environmental biogeochemistry.
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Chapter 5: Microbial contributions to digestive enzyme activity in the

marsh fiddler crab, Uca pugnax

ABSTRACT

The stomach and hindgut of the salt-marsh fiddler crab, Uca pugnax, harbor
diverse and abundant microbial communities. These microbes may release
extracellular enzymes along the digestive tract, thereby benefiting their host. The
main goal of this research was to determine if the presence and abundance of
resident microbes correspond with dissolved extracellular enzyme activity. We
found that antibiotic treatments typically reduced both total enzyme activity and
total bacterial abundances in the stomach and hindgut. Bacterial and Eccrinales
abundances, however, did not correlate significantly with enzyme activities in the
stomach. On the other hand, hindgut bacterial abundances correlated with
multiple enzymes, generating highly positive correlation coefficients. Hindgut
Enterobryus sp. lengths correlated positively with esterase and protease
activities. We suggest that these bacteria, and possibly Enterobryus sp., may be
degrading the remnants of the chitin- and protein-rich peritrophic membrane.
These enzymes or bacterial products may benefit their host if they are
transferred anterior-ward by fluid flow. We also found that, using the described
methodology, essentially all measured activity was derived from dissolved
extracellular enzymes, rather than from particle-associated or cell-associated
enzymes.

INTRODUCTION

Fiddler crabs may benefit from enzymes and other products generated by

microbes inhabiting their digestive tract, as demonstrated for termites and other

insects (Breznak and Brune 1994). The marsh fiddler crab, Uca pugnax, ingests

surficial marsh sediment, and is adept at selecting for benthic algae and the

organic-rich fraction of the sediment (Miller 1961). Yet detritus, and in particular

refractory marsh-grass detritus, composes the bulk of the crab gut contents

(Shanholtzer 1973). These fiddler crabs, therefore, subsist on a relatively low

quality diet, compared with carnivores, and would benefit from any nutritional

input increasing their total metabolic gain. Microbial enzymes may make a
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substantial contribution to the host's energy budget. In this partnership, resident

(attached) microbes would lose a fraction of their potential metabolic products,

however, this loss might be offset by the provision of a stable habitat and

constant food supply from the host.

Microbial enzyme contribution is a commonly suggested basis of

interaction between marine invertebrates and resident gut microbes (Dempsey

and Kitting 1987; Erasmus et al. 1997; Pinn et al. 1997; Vitalis et al. 1988). In U.

pugax this simple prediction is complicated by the presence of both resident

bacteria and Eccrinales protists in the stomach and the hindgut (Chapter 2, this

thesis). Furthermore, transient (sediment-associated) microbes may be lysed in

the gut, conceivably releasing active enzymes, or may able to survive gut

passage and release enzymes into the gut lumen (Harris 1993). Any or all of

these microbial populations might contribute a novel enzyme not produced by the

host or make a quantitative contribution of an endogenously-produced enzyme.

Therefore, any enzyme activity detected along the digestive tract may have been

produced by the host, bacteria (resident and/or transient), and/or symbiotic

protists. One of the goals of this study is to measure enzyme contributions from

these various sources.

In U. pugnax, hindgut microbes (bacteria and protists) are attached to the

chitinous hindgut lining and stomach microbes are attached to the pyloric

fingerlets or cardiac stomach chitin surfaces (Chapters 2, 3, this thesis).

Presumably, these microbes benefit from attachment by avoiding washout and

by residing in relatively nutrient-rich locations. However, their attached position

necessarily limits resident microbes' exposure to substrates. Firstly, these

microbes are hindered from attaching directly to food particles. Secondly,

resident microbes, and bacteria in particular, sacrifice absorptive surface area

and likely lose access to diffusive transport by attaching to the gut lining (Murray

and Jumars 2002).
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Attached microbes are expected to produce extracellular enzymes that act

on organic material passing through the host's gut. For direct absorption of

substrates, bacteria are limited by the dimensions of pores in their cell walls

(porins) to hydrophilic molecules smaller than approximately 600 Da (Schirmer

1998; Weiss et al. 1991). Therefore, production of extracellular enzymes allows

microbial access to relatively large particles of organic matter. These enzymes

may be attached to the cell surface or may be released into the lumen (cell-free

extracellular enzymes). Attached enzymes have the benefit of concentrating the

product in close proximity to the cell, yet have a very limited physical range to

access organic matter. For the producing cell, released extracellular enzymes

have the advantage of a greater physical ambit and correspondingly greater

likelihood of contact with potential substrates, but also suffer increased likelihood

of loss of enzyme and product (Vetter et al. 1998).

Most active bacterial enzymes are thought to be cell-associated (Chr6st

1991). Yet, in some marine environments, substantial dissolved extracellular

enzyme activity has been documented and attributed to bacterial production

(Overbeck 1991). Vetter et al. (1998) predicted that enzymes could be active

and useful to the producing cell across a distance of 10 pm and up to 500 pm in

certain cases. Based on these results, the authors predicted that dissolved

extracellular enzymes would provide a valuable feeding mechanism in fluid

environments rich in organic matter and with high surface area. In nutrient

enriched, confined spaces, like the crab gut, the energetic benefits obtained from

releasing extracellular enzymes likely outweigh the costs of some enzyme and

product loss.

Moreover, released extracellular enzymes are the form of enzyme most

likely to benefit the host crab. Any enzyme or product 'lost' to the microbiota,

may potentially benefit the host. Specifically, enzymes released from stomach

microbes may act on organic matter along the digestive tract and be absorbed by

the host in the hepatopancreas or midgut (See Chapters 2 and 3 for detailed
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discussions of digestive process). In the hindgut, the products of microbial

extracellular enzymes (i.e. amino acids, short chain fatty acids) may be absorbed

across the hindgut lining, if they are small molecules (Hogan et al. 1985), or may

be passed forward by reverse peristalsis (Dall 1967; Fox 1952; Lovett and Felder

1990) to be absorbed in the midgut.

The main goal of the present study is to determine if the presence of

resident microbes correlates with dissolved extracellular enzyme activity. The

specific questions we address include: 1) Are activities of extracellular enzymes

reduced with a reduction of bacterial and/or Eccrinales abundance; 2) Does

bacterial abundance and/or Eccrinales biomass (length) correlate with enzyme

activity; and 3) Is the measured enzyme activity particle-associated?

METHODS

Crab and sediment collection

Marsh fiddler crabs, Uca pugnax, were collected for pH measurements

from an intertidal salt marsh in Barnstable Harbor, Massachusetts, USA

(41°42'31 N, 70°18'17 W) in October 2002. Both crabs and surficial (top 1 cm)

sediments were collected for enzyme experiments in August, 2003. Shortly after

collection, all sediments were thoroughly homogenized before freezing in -1 kg

batches. Crabs were kept in cooled containers (-15 0C) and brought to the

laboratory within 2 h after collection. Gender, molt stage (see below), and

carapace width and length of each specimen were recorded.

Molt stage analysis

Molt stage of individual crabs was determined as described in Chapter 2

(this thesis).

Gut pH measurements

Immediately after dissection, all four gut sections (stomach,

hepatopancreas, midgut and hindgut) from seven feeding fiddler crabs were
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placed on a wax tray. A needle pH microelectrode (0.89 mm; Diamond General

Develop Corp) with pH meter (Orion Model 720A) was inserted into the gut

lumen to measure the pH of full gut sections after calibration with reference

solutions (pH 4.0, 7.0, and 10.0). For each gut section, three replicate

measurements were taken.

Treatments - Rationale

Four different feeding and molt stage treatments were designed to

determine if the presence of bacteria or Eccrinales increases extracellular

enzyme activity in the crab digestive tract. Antibiotics were used to reduce the

abundances and activities of gut-associated bacteria. No comparable

substances are known to eliminate Eccrinales protists from fiddler crab stomachs

and hindguts, but recently molted crabs (postmolt stage) have been observed to

be free of Eccrinales symbionts (Chapter 2, this thesis). Therefore, postmolt

crabs treated with antibiotics should have no, or substantially reduced, enzyme

contributions from any remaining gut microbiota. A comparison of enzyme

activities in postmolt crabs, treated with antibiotics (PA, Table 5.1), with activities

in intermolt crabs, not treated with antibiotics (IR), was intended to reveal how

activity changed when both bacteria and Eccrinales were removed.

Yet, both molt stage (Peters et al. 1999) and antibiotic exposure

(Donachie et al. 1995) might influence the host and endogenous enzyme

production. Therefore we devised two other treatments, to function dually as

controls and efforts to isolate potential bacterial contributions from those of

Table 5.1 Treatments for enzyme experiment. Expected effect of treatment on
bacterial and Eccrinales abundances are indicated by (NC) for presence at typical
abundances (no change), (-) for reduced abundance and (- -) for greatly reduced
abundances.

Treatment name Antibiotics Molt stage Eccrinales abundance Bacterial abundance

IR no intermolt NC NC
IA yes intermolt NC
PR no postmolt
PA yes postmolt --
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Eccrinales. We compared enzyme activities in intermolt crabs not treated with

antibiotics (IR) and intermolt crabs treated with antibiotics (IA) (Table 5.1) to

determine if reducing only bacterial abundances decreases enzyme activity

levels in the stomach and hindgut sections. To connect enzyme activities with

Eccrinales presence and biomass, we compared activities in postmolt crabs (fed

regular sediment) (PR) with activities measured in intermolt crabs, both with and

without antibiotic treatments (IR and IA).

Treatments

For antibiotic treatments, habitat sediment was dosed with an antibiotic

mixture of equal amounts of penicillin, streptomycin and ampicillin for a total of 10

g antibiotics kg-1 sediment mass, as described in Zimmer et al. (2001). The

same combination of antibiotics was added to filtered (0.2 [tm) seawater (500 mg

1' 4 each antibiotic). These antibiotics, individually or in combination, have been

shown to reduce significantly abundances of gut-associated bacteria in marine

invertebrates (Donachie et al. 1995; Erasmus et al. 1997; Wainwright and Mann

1982). These antibiotics destroy or inactivate both gram-negative and gram-

positive bacteria by two different mechanisms. Streptomycin inhibits prokaryotic

protein synthesis while both penicillin and ampicillin inhibit bacterial cell wall

synthesis. Ampicillin and streptomycin inactivate gram-negative and gram-

positive bacteria, whereas penicillin affects only gram-negative bacteria.

Immediately after collection, crabs were gut-evacuated in 0.2 pm-filtered

seawater in individual containers for 3 h (Fig. 5.1). Over this period, crabs were

removed to fresh sterile containers twice (approx. every 1.5 h). Crabs (IA and

PA) were then exposed to antibiotic treatments, again in individual containers, for

24 h. At the same time, crabs for non-antibiotic treatments (IR and PR) were fed

untreated habitat sediment and kept in 0.2 ptm-filtered seawater. For both

antibiotic and regular feeding treatments, crabs were transferred to fresh

sediments and seawater every 8 h.
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procedures

Crabs collectected from Barnstable Harbor, MA (n = 24)

duration

Gut-evacuated in 0.2 .m-filtered seawater (3 h)

,a( -

(24 h)

All crabs exposed to regular sediment (3 h)
(n = 24)

All crabs dissected and gut sections sampled

Figure 5.1 Summary of crab collection and sediment exposure procedures
for antibiotic and regular treatments.

After exposure to treatment sediment (antibiotic or regular), all crabs were

presented with regular sediment for 3 h before dissecting and collecting gut

sediments (Fig. 5.1). Only feeding crabs were used, as confirmed by observing

feeding behaviors and monitoring fecal pellet production.

During this procedure, crabs treated with antibiotics were presented with

regular sediment, not dosed with antibiotics, rather than antibiotic sediment or no

sediment at all, for multiple reasons. Firstly, in crustaceans, types and activity

levels of enzymes produced depend on the presence of a food stimulus in the gut

(Donachie et al. 1995; Vogt et al. 1989). Hosts and/or resident microbes may

only be stimulated to produce their typical suite of enzymes when natural food,

and therefore transient, food-associated microbes, are present. However, if we
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measured the enzyme activity of crabs with antibiotic-dosed sediment in their

guts and compared this with crabs feeding on regular sediment, we would not be

able to discriminate between effects on resident bacteria and transient bacteria.

We might observe a reduction in enzyme activity due to inactivation of transient

bacteria and resultant reduction in overall enzyme activity, rather than solely due

to the impact on resident bacteria. Finally, undissolved antibiotics have

fluorescent properties that might interfere with our enzyme activity

measurements (see below).

Another concern was that crabs treated with antibiotics would re-acquire

their gut microbiotas after exposure to sediment-associated bacteria. We

conducted preliminary tests to ensure that bacterial counts were not increased

significantly by 3 h exposure to natural (albeit previously frozen) sediments

(results not shown).

Sample preparation and enzyme activity measurement followed

procedures in Mayer et al. (1997) with the following modifications. Crab

stomach, hepatopancreas, midgut and hindgut sections were removed with

sterile dissecting tools. Gut contents and associated digestive fluids were placed

in 1.7-ml sterile tubes. One milliliter of 0.2 ptm-filtered 0.1 M phosphate buffer

was added to gut contents and this mixture was vortexed for 30 s and centrifuged

for 4 min (3,000 rpm). Supernatants were collected, either 400 l

(hepatopancreas) or 700 tIl (all other samples), and each sample was aliquoted

among three tubes. Tubes with pelleted gut contents and sediments were dried

at 60°C for 18 h to obtain dry weight measurements.

In order to assess the extent of particle-associated activity in the collected

digestive fluid samples, we compare activities in paired filtered and unfiltered

samples. One aliquot for each sample was filtered (0.2 [m) and all aliquots were

frozen at -80°C until use. If a substantial fraction of active enzymes were

particle-associated, we would expect filtered activities to be categorically reduced

as compared unfiltered activities. On the other hand, if a significant fraction of
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active enzymes were either inactivated by attachment to particles or attacking

particle-associated organic matter (rather than synthetic substrates), we would

expect to find greater activities in filtered over unfiltered samples.

Enzyme measurements

To measure crab enzymatic activity, diluted digestive fluids were

incubated with substrate monomers bonded to fluorophores with the appropriate

linkage (Sigma-Aldrich; Table 5.2). The fluorophores used, methylumbelliferone

(MUF) and methylcoumarinyl amide (MCA), can be detected at low levels, have a

wide range of detection and have been shown to be a reliable method of

measuring extracellular enzymatic activity in many environments, including within

the guts of deposit feeders (Mayer 1989; Mayer et al. 1997). These synthetic

substrates are relatively non-fluorescent, whereas the hydrolytic products

(fluorophores) are highly fluorescent. Digestive fluids (paired filtered and

unfiltered samples) were diluted with 0.1 M phosphate buffer of appropriate pH

(6.6 for hepatopancreas; 7.3 all other gut sections, see pH results). Midgut and

hindgut fluids and sediments were diluted with buffer to a ratio of 1:25, stomach

and hepatopancreas to 1:80. Various dilutions were tested and these dilutions

were selected because they produced linear activity rate measurements over the

measured time-course, indicating that enzymes were saturated with fluorophore-

linked substrates. In 96-well plates diluted digestive fluid (180 ,l) was combined

with 20 p1 of enzyme substrate (100 ptM) and vortexed. All reactions were run in

Table 5.2 Description of synthetic enzyme substrates, fluorophores and bond types
used in this study.

Fluorophore Monomer Target enzyme activity Bond

MCA alanine protease peptide
MUF palmitate lipase ester
MUF butyrate esterase ester
MUF glucopyranoside glucosidase 3-glucosidase
MUF diacetylchitobioside chitinase P-glucosidase
MUF cellobioside cellobiosidase -glucosidase
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triplicate. The hydrolysis reaction was measured by the evolution of the cleaved

fluorophore via fluorescence (ex 360 Xem 460) on a CytoFluor Multiwell plate

Reader 4000 (PerSeptive Biosystems). Fluorophore release over time was

plotted and slopes were converted to hydrolysis rates in terms of lM MCA or

MUF released min-'. All activities were corrected for fluorescence quenching by

adjusting slopes by the fluorescence of 1 !iM solutions of unbound MCA or MUF

in the same diluted solutions of digestive fluid. Activities were also expressed as

IM MCA or MUF released g min-' dry gut contents in order to normalize activity

to the mass of material in the gut. Hosts and/or microbes may upregulate

enzymes in response to the presence of 'food' in the gut (Brunet et al. 1994).

Although all crabs measured were feeding, gut volume and 'fullness' varied

somewhat. By normalizing to the mass of material in the gut, we can account for

variations in gut fullness and subsequent, possible variations in enzyme activity.

Enzyme activities measured in the hepatopancreas were analyzed

independently of the other gut sections because the hepatopancreas samples

were unique in multiple ways. Digestive fluids collected from entire homogenized

hepaptopancreas sections do not represent one gut volume's worth of released

and active enzymes, as digestive fluids collected for the stomach, midgut and

hindgut do, but likely include all available enzymes stored in this gut section.

Hepatopancreatic tissues are believed to generate all endogenous enzymes

(Brunet et al. 1994; Dall 1967; Icely and Nott 1992) and these cells may be

disrupted by our centrifugation step, releasing any stored enzymes. Secondly,

the gut lumen of this section contains a filtrate, rather than solid material. It is

unfeasible to separate this filtrate from the rest of the hepatopancreas without

rupturing the tissue. Therefore, we could not report activities in terms of gM MCA

or MUF released g-1 dry gut contents min-'. Instead hepatopancreas activities

were reported M MCA or MUF released min-'. Finally, in terms of digestion, the

hepatopancreas is a unique section because digestion can occur via both

intracellular and extracellular mechanisms (Brunet et al. 1994; Icely and Nott
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1992). Measuring only extracellular activity, therefore, does not give a reliable

measure of total digestive ability. Nevertheless, it is important to attempt some

measure of hepatopancreas enzyme activity because all enzymes produced by

the host crab are thought to be generated in this section. Furthermore,

comparisons of relative activities of different enzymes and treatment affects in

the hepatopancreas should offer insight into the host's endogenous enzyme

production.

Sonication, staining and bacterial counts

Samples were sonicated, DAPI stained, and counted as described in

Chapter 3 (this thesis). Total bacterial counts were reported as number of

bacteria per gut section.

Eccrinales identification and length measurement

Eccrinales species, E. callianassae in the stomach and Enterobryus sp. in

the hindgut, were identified and lengths were measured as described in Chapter

2 (this thesis). All crabs were inspected for the presence of Eccrinales and all

Eccrinales hyphae were measured for total length.

Statistical analyses

Prior to statistical analyses, data were tested for homogeneity of variances

and for normal distribution. All bacterial counts and enzyme activities, except

hepatopancreas and sediments, were logarithmically (In +1) transformed to meet

these assumptions (normality, homoscedasticity).

Analyses of stomach, midgut and hindgut enzyme data were performed

with a two-way MANOVA (Systat version 11), testing effects of treatment (four

levels) and gut section (three levels) on enzyme activity. Two-way ANOVAs

tested significance of these effects among individual enzymes. Tukey post hoc

tests were used to ascertain which means differed significantly.
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Separate one-way MANOVAs tested effects of treatment on

hepatopancreas and sediment enzyme activities. One-way ANOVAs tested

significance of these effects among individual enzymes. Tukey post hoc tests

were used to ascertain which means differed significantly. Data for pH results

and bacterial abundances were assessed separately with one-way or two-way

ANOVAs and Bonferroni or Tukey post hoc tests.

Pearson product-moment correlation coefficients were calculated to

assess the relationship between filtered and unfiltered activities, as a group and

for each enzyme. Relationships between both Eccrinales lengths and bacterial

abundances and enzyme activities were also evaluated with pearson product-

moment correlation coefficients. Significance of these correlations was tested

after the Bonferroni adjustment for multiple comparisons was performed.

RESULTS

Gut pH measurements

The mean pH values of stomach, hindgut, midgut, and hepatopancreas

sections were 7.4 (SD = 0.3), 7.3 (0.4), 7.1 (0.4), 6.6 (0.3), respectively. ANOVA

and Bonferroni post hoc tests indicated that the hepatopancreas pH values were

significantly less (F= 6.51, df = 3, P < 0.05) than those in the stomach and

hindgut. The stomach, hindgut and midgut sections were not significantly

different from each other. Therefore, we used the mean pH value from all

stomach, midgut and hindgut measurements (mean pH = 7.3) for enzyme

analyses of these sections. For hepatopancreas enzyme analyses, we used the

mean pH measured in hepatopancreas samples (mean hepatopancreas pH =

6.6). Enzyme activities are sensitive to sample pH, and often have narrow pH

optima (Dall and Moriarty 1983; Lehninger et al. 1993). By measuring activities

at physiological pH in vitro, we expect that these activities most closely reflect in

vivo activities.
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Comparison of filtered and unfiltered enzyme activities

The slope generated by plotting enzyme activities of filtered and unfiltered

samples (Fig. 5.2), approximated a slope value of 1.0, indicating that filtering did

not influence total enzyme activity. Enzyme activities of filtered and unfiltered

samples were significantly correlated in a direct association, as measured both

for all activities (r = 0.997; P < 0.01) and by individual enzymes (P < 0.05) (Table

5.3). Significant, direct correlations persisted for comparisons among treatments

and among sections (results not shown). For further analyses, activities

measured in unfiltered samples are reported.

Cellulase activity

We attempted to measure cellulase activity in the various gut sections and

sediments with the synthetic substrate of cellulobiosidase attached to MUF,

however none of these samples produced a non-zero slope. We ran

representative samples for longer durations (30 min) without observing any

positive slopes, indicating significant activity. Initially we confirmed that MUF-

cellulobiosidase was a reasonable proxy for cellulase activity via incubations with

purified cellulase (results not shown).

Table 5.3 Pearson coefficient for paired filtered and unfiltered samples (n = 24).
Significant correlations (P < 0.05), as adjusted by Bonferroni adjustment
for multiple comparisons, are bolded.

Enzyme Correlation coefficient

chitinase 0.83
glucosidase 0.71
esterase > 0.99
lipase 0.86
protease 0.91
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Table 5.4 MANOVA and univariate ANOVAs comparing enzyme activities, among four
treatments (IR, IA, PR, PA) and among three sections (stomach, midgut, hindgut).

MANOVA Univariate ANOVA
chitinase esterase

Source df Wilks'A F P MS F P MS F P

Treatment 3 0.05 7.74 < 0.01 4.13 4.68 < 0.01 2.83 4.05 0.017
Section 2 0.03 20.69 < 0.01 75.96 86.24 < 0.01 38.39 54.96 < 0.01
Treatment x Section 6 0.31 0.99 0.49 1.39 1.58 0.19 1.63 2.34 0.059
Crab(Treatment) 18 0.01 2.18 < 0.01 0.75 0.85 0.64 2.51 3.59 < 0.01
Error 28 0.88 0.70

Univariate ANOVA
glucosidase lipase protease

Source MS F P MS F P MS F P

Treatment 3 2.92 6.01 < 0.01 10.01 11.76 < 0.01 0.97 7.51 < 0.01
Section 2 78.87 162.17 < 0.01 17.83 20.96 < 0.01 16.22 125.29 < 0.01
Treatment x Section 6 0.86 1.78 0.14 1.45 1.70 0.16 0.19 1.43 0.24
Crab(Treatment) 18 0.43 0.89 0.59 1.96 2.31 0.02 0.18 1.42 0.19
Error 28 0.49 0.85 0.13

Logarithmic transformations [In (x+l)] were performed on all data to validate assumptions of normalacy and
homoscedascity. For tests with a significant treatment or section effect (P < 0.05), Tukey post hoc tests
indicate means that are not significantly different (P > 0.05), connected with underlines. (Sections are
designated as S (stomach), M (midgut), and H (hindgut)).

Chitinase:
S-PR S-IR S-PA S-IA M-PR M-IA M-PA M-IR H-PR H-IR H-PA H-IA

Esterase:
S-IR S-PA S-PR S-IA M-IA M-PR H-PR H-IR H-IA M-IR M-PA H-PA

Glucosidase:
S-IR S-IA S-PR S-PA M-IA M-IR M-PR M-PA H-IR H-PR H-PA H-IA

Lipase:
S-IR S-PR H-PR S-PA M-PR M-IA S-IA M-IR M-PA H-IR H-IA H-PA

Protease:
S-PR S-IR S-PA S-IA M-PR M-IA M-IR M-PA H-IR H-PR H-PA H-IA

Treatment effects on enzyme activity

Enzyme activities varied significantly among treatments and among gut

sections (MANOVA; P < 0.05; Table 5.4). These treatment and section effects

were also significant for individual enzymes, as indicated by separate univariate

ANOVAs. For both esterase and lipase, variation among replicate crabs within a
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treatment was significant, as might be expected due to the many variables that

may influence individual crab enzyme production and activity levels.

In general, enzyme activities in crabs from antibiotic treatments (IA, PA)

were reduced compared with those from regular sediments (IR, PR), in the

stomach and hindgut sections of both intermolt and postmolt individuals, as well

as in the midguts of postmolt individuals (Fig. 5.3). Post hoc tests indicated that

differences between IR and IA as well as PR and PA were significant for some

comparisons within lipase and protease (Table 5.4), however the relatively high

variability among individual samples precluded a greater number of significant

outcomes. In intermolt crabs, midgut activities were not significantly different

between treatments, still, the reverse pattern of elevated IA activity over IR

activity was observed for most enzymes (chitinase, esterase, glucosidase and

protease).

Activities in postmolt individuals were not consistently reduced, as

compared with intermolt individuals. We had anticipated that IR crabs would

have the greatest activities and that PA crabs would have the lowest activities.

Although activities of intermolt regular crabs were greater than those of postmolt

antibiotic crabs for all enzymes, in both the stomach and hindgut, this trend was

not significant for any pairs (Table 5.4). Furthermore, for some enzymes, the

greatest activities measured were in postmolt individuals. Surprisingly, we

observed the greatest overall rates of chitinase and protease activity in postmolt

crabs, in the stomach and hepatopancreas sections (Fig. 5.3, 5.4). These

enzymes may be upregulated by the host during molt and postmolt stages in

conjunction with the molting process.

MANOVA and ANOVA analyses indicated significant differences among

gut sections (Table 5.4). Among the stomach, midgut and hindgut, activities

were typically greatest in the stomach and least in the hindgut. Most stomach

activities were significantly greater than those in the hindgut and some stomach

activities were significantly greater than those in the midguts (see post hoc
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comparisons; Table 5.4). All stomach activities were significantly greater than all

hindgut rates measured for chitinase, glucosidase and protease.

Hepatopancreas enzyme activity

Hepatopancreas activities varied significantly with treatment (P < 0.05;

Table 5.5). For all enzymes, activities were consistently greater in regular

treatments as compared with antibiotic treatments (IR vs IA, PR vs PA). Also,

intermolt regular activities were typically greater than those of postmolt antibiotic

activities, yet these differences were significant only for one comparison within

glucosidase (Table 5.5). Also, for chitinase and protease, the greatest activities

were measured in postmolt regular treatments while, for glucosidase and lipase,

intermolt regular treatments had the greatest activities.

Esterase was excluded from hepatopancreas analysis because for many

samples esterase was not saturated with substrate, as indicated by the observed

non-linear slope for fluorescence change. Although we had tested initially for

Table 5.5 Hepatopancreas: MANOVA and univariate ANOVAs comparing enzyme activities,
among four treatments (IR, IA, PR, PA).

MANOVA Univariate ANOVA
chitinase glucosidase

Source df Wilks' A F P MS F P MS F P

Treatment 3 0.164 3.27 < 0.01 2.93 4.04 0.02 6.74 4.09 0.02
Error 28 0.73 1.65

lipase protease
MS F P MS F P

36.18 1.55 0.24 2.49 2.39 0.10
23.31 1.04

For tests with a significant treatment or section effect (P < 0.05), Tukey post hoc tests
indicate means that are not significantly different (P > 0.05), connected with underlines.

Chitinase:
PR PA IR IA

Glucosidase:
IR IA PR PA
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Table 5.6 Sediment: MANOVA and univariate ANOVAs comparing enzyme activities
among two treatments (antibiotic and regular).

MANOVA Univariate ANOVA
chitinase glucosidase

Source df Wilks'A F P MS F P MS F P

Treatment 1 0.02 8.92 0.025 < 0.01 0.10 0.76 0.02 12.12 0.01
Error 6 < 0.01 < 0.01

Univariate ANOVA
lipase protease esterase

Source df MS F P MS F P MS F P
Treatment 1 0.05 33.29 < 0.01 0.01 10.05 0.02 0.22 16.90 0.01
Error 6 < 0.01 < 0.01 0.01

appropriate dilutions to ensure that hepatopancreas enzymes were saturated

with synthetic substrates, activities do vary among individuals. We did not have

sufficient numbers of accurate esterase activity measurements to report esterase

activity.

Sediment activities

Sediment activities varied significantly with treatment (P < 0.05; Table

5.6). Sediment activities were significantly greater in the antibiotic treatment as

compared the regular treatment (Fig. 5.5) for all enzymes except chitinase (Table

5.6).

Bacterial numbers and enzyme activity

A two-way ANOVA of bacterial numbers along the gut and among

treatments indicated a significant treatment and section effect, but also a

significant interaction term (Table 5.7). This significant interaction term most

likely resulted from the lack of a consistent pattern in the midgut and

hepatopancreas, as compared with the stomach and hindgut. If we exclude the

midgut and hepatopancreas from the analysis, we no longer generate a

significant interaction term. Nevertheless, each section-treatment pair was
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Table 5.7 Two-way ANOVA on bacterial abundances with treatment and section as factors.

Source df MS F P

Treatment 3 2.20 5.09 < 0.01
Section 3 15.72 36.48 < 0.01
Section x Treatment 9 1.49 3.45 0.002
Error 63 0.43

Logarithmic transformations [In (x+l)] were performed to validate assumptions
of normalacy and homoscedascity. Post-hoc Tukey tests indicate means
that are not signficantly different (P > 0.05) connected with underlines.

H-IR H-PR S-IR H-IA HP-PR H-PA HP-PA HP-IA HP-IR S-PR M-PA M-PR S-IA M-IR S-PA M-IA

analyzed individually to test for significance, by means of post hoc tests (Table

5.7).

For the stomach and hindgut, bacterial abundances were greatest in the

IR treatment (Fig. 5.6) and were significantly greater than those in the IA

treatments, for the same sections (Table 5.7, post hoc comparisons). Comparing

intermolt and postmolt stages for these same sections, IR abundances were

significantly greater than PR in the hindgut, but not in the stomach.

Abundances were not significantly different among treatments in the

hepatopancreas and midgut and no clear pattern emerged for these two

sections.

Bacterial abundances and enzyme activity correlations

In all gut sections, no enzyme activities showed significant positive

correlation with bacterial abundance (Table 5.8). Though, in the hindgut, most

enzyme activities correlated positively with hindgut bacterial abundances. In

particular, chitinase, glucosidase and protease activities indicated high positive

correlations with hindgut bacterial abundances for both IR and PR treatments.

Many PR stomach activities were highly negative, but again, not significantly.

Only crabs exposed to regular treatments were used for correlation

analysis of bacterial abundances and enzyme activities. Antibiotic treatments

may lyse bacteria, increasing extracellular enzyme activities. Also, many

bacteria may be inactivated and no longer producing extracellular enzymes, but
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Table 5.8 Pearson coefficient values from bacterial abundances and enzyme
activity correlations (n = 6). After Bonferrroni adjustment for multiple
comparisons, no correlations were significant (P > 0.05).

Treatment Enzyme Section
stomach hepatopancreas midgut hindgut

IR

chitinase -0.32 0.54 0.39 0.77
esterase 0.49 - 0.16 -0.85

glucosidase 0.03 0.14 0.12 0.76
lipase 0.78 -0.53 -0.02 0.51

protease -0.36 0.33 -0.13 0.83

PR
chitinase -0.83 -0.21 0.06 0.78
esterase 0.40 - 0.36 0.17

glucosidase -0.82 -0.60 0.33 0.61
lipase 0.35 -0.61 -0.31 0.07

protease -0.76 -0.003 0.27 0.66

still counted via DAPI counts. These two possibilities may

enzyme activity from bacterial abundances.

decouple extracellular

Eccrinales length and enzyme activity

Correlation coefficients for Enteromyces callianassae lengths and enzyme

activities were not significant (Table 5.9; P > 0.05). Many intermolt crabs,

however, were uncolonized by E. callianassae (Fig. 5.7A). Of the crabs that

were colonized, measured Eccrinales lengths varied only from 33.3 - 44.2 mm.

Therefore our comparison for stomach activity and (non-zero) Eccrinales length

is limited to five samples and restricted range of lengths. Considering only

colonized crabs, there appears to be a weakly positive trend between E.

callianassae length and both protease and esterase activities.

In the hindgut, we measured a broad range of Enterobryus sp. lengths

(Fig. 5.7B). We found significant positive correlation between Enterobryus sp.
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Table 5.9 Pearson coefficient values from Eccrinales length and enzyme activity
correlations. A significant correlation (P < 0.05), as adjusted by Bonferroni
adjustment for multiple comparisons, is bolded.

Enzyme Length
E. callianassae Enterobryus sp.

chitinase 0.03 -0.48
glucosidase 0.37 -0.07

esterase -0.13 0.82
lipase -0.69 -0.38

protease 0.08 0.44

lengths and esterase activity (Table 5.9; P < 0.05). For protease activity we

found a weakly positive correlation with total Enterobryus sp. lengths.

DISCUSSION

Finding a consistent, albeit rarely significant, antibiotic treatment effect in

the stomach and hindgut supports our proposition that bacteria may contribute to

total extracellular enzyme activity in these regions. Not only were enzyme

activities reduced after exposure to antibiotics, but bacterial counts in intermolt

antibiotic treatments were significantly reduced as compared with intermolt

regular treatments, in these two sections. Furthermore, most enzyme activities

measured in the hindgut correlated positively with bacterial abundances, at least

for intermolt crabs.

Filtered and unfiltered activities

In this study, we found no appreciable differences in enzyme activities

among filtered and unfiltered samples. Our methodology was devised to collect

and measure dissolved, extracellular enzyme activity and this result confirms that

essentially all activity measured resulted from dissolved enzymes. Most

enzymes adsorb strongly to particles and the majority of enzyme activity in

marine sediments (Meyer-Reil 1991) is expected to be particle-associated.

However, in the gut of a detritivore, dissolved enzymes released from microbial

cells are presumably more valuable to the host than cell-attached microbial
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enzymes. Products of dissolved enzymes are more likely to be lost to the

producing cell (Vetter et al. 1998) and, consequently, greater microbial loss may

translate into greater host gain, in the form of a greater likelihood of product

absorption by the host.

Enzyme activity trends and bacterial abundances: stomach and

hepatopancreas

In the stomach, enzyme activities and bacterial abundances were

consistently greater in regular treatments than in antibiotic treatments, however,

activities generally did not correlate significantly or positively with bacterial

abundances. If bacterially-produced extracellular enzymes were responsible for

a substantial fraction of the enzyme deficit observed in intermolt antibiotic

treatments (Fig. 5.3; typical IA activities were approximately half that of IR

activities in the stomach), we would expect bacterial abundances to correlate

with enzyme activities, for regular treatments. Two enzymes, lipase and

esterase, had activities that correlated positively with bacterial abundances and

lipase was also significantly greater in intermolt regular crabs than in intermolt

antibiotic crabs (Table 5.4).

The lack of a positive correlation in the stomach between enzyme activity

and bacterial abundance for the other enzymes may result if: 1) bacterial enzyme

release does not scale directly with bacterial numbers, 2) stomach bacteria do

not contribute extracellular enzymes, or 3) the host's enzymes were produced in

such quantities as to overwhelm any bacterial contribution. In general bacterial

abundances are thought to correlate with extracellular enzyme release, as

indicated by stable cell-specific extracellular enzyme activities measured in

various environments (Huston and Deming 2002; Lehman and O'connell 2002).

Yet numerous environmental factors may influence total enzyme production and

cellular release (Chr6st 1991). The absence of a positive correlation between

certain enzyme activities and bacterial abundances has been reported previously

in the stomach of another marine crustacean, the northern krill species,
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Meganyctiphaunes norvnegica (Donachie et al. 1995), however in the Donachie et

al. experiment the krill were not fed and lack of a correlation was attributed to

nutrient limitations. Bacterial abundances may not parallel total enzyme activity,

in both U. pugnax and M. norvegica, if these are commensal bacteria that simply

utilize the concentrated organic matter in the stomach and do not contribute to

the pool of extracellular enzymes. In particular, stomach bacteria attached to

pyloric finglets in U. pugnax (Chapter 3, this thesis) are unlikely to profit from

releasing their own extracellular enzymes because they are in a region of active

fluid circulation, in which released enzymes would be quickly removed from the

site of release. These bacteria may be able to survive on the host's digestive

products or they may produce cell-attached extracellular enzymes, which we did

not measure in this study. While the lack of extracellular enzyme release may

explain the absence of any positive correlations between activity and bacterial

abundance in the stomach, this explanation does not account for the observed

activity reduction in antibiotic treatments.

Two alternative explanations may account for the reduced enzyme

activities detected in the stomach and hindguts of crabs from antibiotic

treatments. Firstly, antibiotics exposure may have had a negative impact on the

hosts, impairing their enzyme production or secretion into the gut.

Hepatopancreas enzyme activities were reduced in antibiotic treatments (IR vs

IA, PR vs PA), but generally not significantly. Although other studies have

applied these antibiotics to invertebrates in a similar manner and observed no

toxic side-effects (Erasmus et al. 1997; Zimmer and Bartholme 2003; Zimmer et

al. 2001), we cannot exclude this possibility. Enzyme activity measured in the

hepatopancreas is the most appropriate estimator of host enzyme production. All

enzymes produced by decapod crustaceans are thought to be generated here

and passed into the stomach and midgut lumen (Brunet et al. 1994; Icely and

Nott 1992). The majority of active enzymes are expected to be retained within

the stomach and midgut, possibly via gut fluid reflux (Jumars 1993; Mayer et al.
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1997). Yet some host-derived enzymes are likely passed with gut contents into

the hindgut. Therefore any negative impact on hepatopancreas enzyme

production may be detected throughout the gut.

A second, alternative, explanation for reduced activities in antibiotic

treatments depends on whether hepatopancreas-associated bacteria are

important for enzyme production. It is possible that these bacteria release

extracellular enzymes and contribute to total enzyme activities observed in the

other gut sections. If these hepatopancreas bacteria were inactivated by the

antibiotic application, this effect may reduce enzyme secretion and activities in

other gut sections, as compared with regular activities. Although we cannot

reject this explanation, bacterial count data do not support this theory. Bacterial

abundances in the hepatopancreas were not significantly different between

regular and antibiotic treatments (Fig. 5.6). It is unclear if these bacterial counts

represent transient (food-associated) bacteria ingested and passed into the

hepatopancreas, or a stable, resident population (see Chapter 3, this thesis).

Either transients or residents may contribute to overall enzyme activity (Harris

1993). The transient bacteria may be lysed during digestion and consequently

release active enzymes, while resident bacteria may release extracellular

enzymes intended for their own gain, but effectively increasing the host's enzyme

activity. Because we did not observe a consistent reduction in bacterial

abundance with antibiotic application, and because enzyme activities were not

significantly correlated with bacterial abundances, we expect that bacteria

detected in the hepatopancreas are transient bacteria. Still, this bacterial

population and its role, if any, in enzyme production warrant further study.

Enzyme activity trends and bacterial abundances: midgut

There was not a consistent treatment effect in midgut activities across

molt stages. Furthermore, we did not detect a significant reduction in midgut

bacterial abundances with antibiotic treatment in either intermolt or postmolt
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crabs. The overall abundance of resident bacteria in the midgut, for regular

treatments, was substantially less than the resident populations found in the

stomach and hindguts (Fig. 5.6, also see Chapter 3, this thesis). Therefore the

total population size of the midgut bacterial population may be insufficient to

contribute measurably to extracellular enzyme activity. However, a more likely

reason that bacterial numbers were not significantly reduced with antibiotics and

no consistent enzyme contribution was detected may be a function of the type of

bacteria present along the midgut. As observed in SEM images (Chapter 3, this

thesis), bacteria appear scattered along the midgut, suggesting that they are

opportunistic transient bacteria, also known as epimural transients (Harris 1993),

rather than a stable, persistent population. These bacteria may have slipped by

the peritrophic membrane or may have been transported anterior-ward from the

hindgut. Abundances of epimural transients may not be consistently reduced

with antibiotics, as we found, if midgut populations are re-seeded from surviving

transient bacteria. Furthermore, transient bacteria are likely to specialize in

adhesion to passing organic matter and may not release large quantities of free

extracellular enzymes.

In postmolt crabs we observed reduced midgut activities in antibiotic

treatments. Midgut bacterial abundances, however, were not reduced in these

crabs and correlations between bacterial numbers and activities were not

significant. We suspect that elevated activities may have been due to the host's

endogenous production, because hepatopancreas-derived enzymes are secreted

into the stomach and midgut. Therefore, if greater quantities of enzymes were

released in postmolt regular crabs, compared with postmolt antibiotic crabs, we

would expect to observe elevated activities in the midguts of postmolt regular

crabs. In particular, chitinase and protease activities were greatest in postmolt

regular individuals, as measured in the hepatopancreas, stomach, midgut and

hindgut.
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Enzyme activity trends and bacterial abundances: hindgut

In the hindgut, the significant reduction of enzyme activities and bacterial

abundances in antibiotic treatments, and the positive correlation between

activities and bacterial abundances all indicate a bacterial contribution of

enzymes. Enzyme activities detected in the hindgut may be produced by

resident or transient microbes or they can be transferred from the midgut, but no

host enzymes are secreted directly into this section (Dall and Moriarty 1983).

Our results, from intermolt crabs, suggest that bacterial enzymes may contribute

to overall dissolved enzyme activity in the hindgut, especially for chitinase,

glucosidase and protease. An alternative possibility, that these elevated hindgut

activities were simply an artifact of up-stream activity passed into the hindgut, is

not substantiated for intermolt crabs because midgut activities did not show the

same activity pattern as observed in the hindgut.

Significant correlations between activity and bacterial abundances may

have only been commonly detected in the hindgut due, in part, to host enzyme

conservation and the consequential reduction in enzyme activities. The

observed decline in hindgut activity, compared with the other gut sections, has

been reported in other invertebrate detritivores (Mayer et al. 1997). In order to

reduce enzyme loss to the environment, the host may reabsorb enzymes in the

posterior midgut and/or may control fluid transport along the gut (Jumars 1993).

Digestion in detritivores has been compared with laundry processing, in which

contents are 'rinsed' before egestion (Mayer et al. 2001). In crustaceans, the

combination of reverse peristalsis and anal uptake of water (Fox 1952) may

facilitate conservation of host-derived enzymes, as well as transport of bacterial

extracellular enzymes and products to the absorptive midgut.

Estimated bacterial enzyme contribution: stomach and hindgut

To assess the potential importance of bacterial contributions to total

enzyme activities, we estimated total possible bacterial enzyme production based
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on literature values (Lehman and O'Connell 2002). These authors calculated

protease and glucosidase activities of attached bacteria and normalized to a per-

cell basis. Using our estimates of total bacterial abundance and Lehman and

O'Connell's (2002) per-cell enzyme activities, we estimated total bacterial

enzyme activities in both the stomach and hindgut and compared these values

with our measurements of total enzyme actitvities for intermolt regular crabs. In

the hindgut, total estimated bacterial production was 4.2 times greater than

measured protease activity and 44.7 times greater than measured glucosidase

activity. Measured activities may be lower than these estimates if many of the

bacterial enzymes in the hindgut are attached to substrates, and therefore not

detected. Alternatively, not all hindgut bacteria may produce glucosidase or

protease. Specifically, if hindgut bacteria are involved in a metabolic consortium,

some bacteria may specialize in particular enzyme production.

In the stomach, total measured enzyme production was greater than

estimated bacterial production, likely due to host enzyme production. Estimated

bacterial production may account for 5% of total protease activity and 45% of

total glucosidase activity, in intermolt regular crabs. Therefore, for glucosidase,

reduced activity measured in antibiotic treatments may be due to loss of bacterial

production.

Enzyme roles: protease and chitinase in the hindgut

Our results suggest that hindgut bacteria may be contributing extracellular

protease, glucosidase and chitinase enzymes to overall hindgut activity.

Although we would expect the host crab to have extracted most of the

proteinaceous material from the diet by the time this material was passed into the

hindgut, resident bacteria may specialize in degrading residual protein in the gut

contents or, more likely, remnants of the peritrophic membrane. The peritrophic

membrane is a protein, chitin and glucosaminoglycan-rich membrane (Tellam et

al. 1999; Terra 2001) formed in the anterior midgut that envelops the food bolus
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as it passes through this section (Bignell 1984). It is thought to function in

protecting the midgut from bacterial colonization, and abraded in the hindgut by

cuticular projections and muscular contractions (Bignell 1984). In U. pugnax, we

have observed indications of a peritrophic membrane along the midgut (Chapter

3, this thesis), however this membrane is not apparent in the hindgut or in fecal

pellets (pers. obs.). Therefore we propose that this membrane is shredded in the

hindgut by the host's projections and that resident bacteria release extracellular

proteases and chitinases to degrade this material. If the host does benefit from

any of these bacterial products, this process would be an efficient means of

'recycling' in which the host may recoup some of its energetic investment in the

protein- and chitin-rich peritrophic membrane.

If resident bacteria are producing substantial quantities of chitinase, they

may also be degrading the chitinous hindgut cuticle. Chitinase activity has been

detected in bacterial cultures established from other crustacean hindgut

communities (Harris 1992; Pinn et al. 1997). Bignell (1984) suggested that

hindgut-associated bacteria may degrade the hindgut cuticle, producing 'thin-

spots' that may increase permeability and facilitate nutrient uptake by the host.

We did observe a dimpled surface along the anterior hindgut lining (Chapter 3,

this thesis), which may result from bacterial activities. Further research using

high-resolution transmission electron micrographs of hindgut cross sections may

indicate if the hindgut cuticle is thinned, in particular around bacterial attachment

sites.

Enzyme roles: cellulose

Although we did not detect any cellulase activity along the digestive tract

of U. pugnax, we suspect that our method was inappropriate for this system. In

order to conclude that no host- or microbially-produced cellulase activity exists

along the digestive tract of U. pugnax, other methods should be tested. In
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particular, a reducing sugar assay has been successfully used in other

crustaceans to detect cellulase activity (Xue et al. 1999).

Postmolt enzyme roles: protease and chitinase

Protease and chitinase activities were greatest in postmolt regular

treatments for the hepatopancreas, stomach and hindgut (Fig. 5.3). However,

these activities may have been due to endogenous production, rather than

bacterial contribution. Digestive enzymes are affected by the molting process

(Vega-Villasante et al. 1999) and these two enzymes, in particular, may have an

important role in host molting. Chitinase and protease enzymes have been

connected with release of the molt (Lustigman et al. 1996; Vega-Villasante et al.

1999), and may be elevated throughout the crab tissue.

Enzyme activity trends and Eccrinales abundances: stomach and hindgut

Because molting removes all Eccrinales from the gut, any eccrinid

contribution of enzymes should have been apparent in a comparison of postmolt

and intermolt activities. Specifically, the difference in activities between intermolt

and postmolt regular treatments should be due to the absence of Eccrinales and

possible reduction in bacterial abundances. However, a substantial reduction in

postmolt regular treatments was observed only for esterase (stomach) and

glucosidase (stomach and hindgut) activities. We expect that these results were

complicated by effects of molt stage on host enzyme production. Protease and

chitinase activities in the hepatopancreas were greatest for postmolt regular

crabs. If these endogenously produced enzymes contributed to activities

throughout the gut, any potential association between Eccrinales biomass and

enzyme activity would have been obscured.

In the stomach, no enzyme activities were significantly, or even highly

positively, correlated with Enteromyces callianassae length. The low stomach

colonization rate of measured intermolt crabs may have prevented us from

detecting any potential relationship. Colonization was more frequent and
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extensive in the hindgut, where we measured a positive, significant correlation

between Enterobryus sp. length and esterase activity and a positive, non-

significant correlation with protease activity (Table 5.9).

Little is known about the physiology of Eccrinales protists and therefore

we have a limited basis of information to generate predictions about which types

of enzymes Eccrinales may produce. However two lines of evidence support the

proposition that Eccrinales may produce and release extracellular protease.

Firstly, (Kimura et al. 2002) found that callianassinid shrimp, Nihonotrypaea

harmandi, colonized by Eccrinales released greater quantities of amino acids

from ingested sediment than uncolonized shrimp. Secondly, Eccrinales are

related to the parasitic protist, Perkinsus marinus, which have been reported to

release a number of extracellular proteins including highly potent proteases (La

Peyre et al. 1995). This parasite relies on extracellular proteases to degrade

host matrix proteins, allowing it to propagate within host tissue. However, if

Enterobryus sp. releases extracellular proteases into the gut lumen, this would

explain the positive correlation between Eccrinales length and protease activity in

the hindgut. Enterobryus sp. proteases may also target peritrophic membrane

proteins, as postulated for hindgut bacterial enzymes. Further research, focusing

on either culturing and/or molecular approaches to detecting enzyme-encoding

genes, is needed to resolve if these protists are producing extracellular enzymes.

Sediment activities compared with gut activities

Enzyme activities in sediment were typically greater in antibiotic

treatments than in regular treatments. We suspect the antibiotics may have

lysed sediment-associated cells and released dissolved enzymes, thereby

increasing sediment enzyme activities. Although crabs in both treatments

(antibiotic and regular) were exposed to regular sediment before measuring

enzyme activities, pre-conditioning crabs on the higher activity sediment may

have altered host enzyme production. The sediment activity differences were
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small compared with those measured along the digestive tract, and even if

sediment-associated enzymes are concentrated in the gut, this effect was not

expected to change our findings.

Enzyme activities in sediments were considerably less than activities

measured along the gut, for all enzymes and treatments. Hindgut enzyme

activities were expected to be greater than sediment activities for multiple

reasons. Firstly, although the crabs may reduce the amount of fluid-associated

enzymes passed from midgut to hindgut, this process is likely to be inefficient

and some enzymes would pass into the hindgut along with the gut contents.

Secondly, fiddler crabs are highly selective detritivores (Miller 1961) and are

adept at selecting for the most organic-rich fraction of the sediment. Therefore

fiddler crabs are also concentrating sediment-associated enzymes upon

ingestion. These sediment-associated enzymes may still be present in the

hindgut contents. Finally, any contribution from resident gut microbiota along the

hindgut would also increase hindgut enzyme activities.

We speculate that if substantial amounts of bacterial enzymes, or other

products, are passed into the environment with the fecal pellets, this effect may

factor into salt-marsh geochemistry. Although hindgut activities were greater

than sediments, we do not know if activities in fecal pellets are also elevated in

comparison with sediment activities. Our measurements of hindgut activities

combined all hindgut contents, obscuring any possible gradients in enzyme

activity. For multiple deposit-feeding species, Mayer et al. (1997) found that the

posterior-most hindgut had lower enzyme activities than the anterior hindgut. If

gut content 'rinsing' efficiently retains most enzyme activity, the egested material

should have relatively low enzyme activities. Mayer et al. (2001) reported that

fecal material from deposit-feeding polychaete Arenicola marina had equivalent

or lower enzyme activity compared with sediments. To assess if U. pugnax

and/or its gut microbes 'export' digestive enzymes into the environment, further

research on enzyme activities in fecal pellets and along the hindgut is needed.
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Antibiotics treatments

Bacterial abundances, as measured by direct counts, were significantly

reduced in the stomach and the hindgut, in crabs exposed to antibiotic

treatments. As a group, the antibiotics used in this study kill or inactivate both

gram-negative and gram-positive bacteria. Due to their synergistic effects, these

three antibiotics are an especially potent combination that reduce bacterial cell

counts more efficiently than if any were used alone (Brown et al. 1989). Penicillin

and ampicillin disrupt the formation of cross-linkages in the bacterial cell wall,

producing leaky cell walls that allow streptomycin to penetrate the cell.

Streptomycin inhibits protein synthesis by binding to ribosomes and should

terminate all enzyme production.

Still, abundances of gut-associated bacteria were reduced only by

approximately half or less in multiple sections. Due to various factors, we did not

expect to eliminate all bacteria from the gut. Observed reductions in bacterial

abundance were consistent with those measured in our method-development

trials (results not shown). Some bacteria may have developed resistance to the

suite of antibiotics applied (Andersson 2003). Alternatively, bacteria may have

been inactivated, but not lysed, and therefore still enumerated. Finally, archaeal

cells were mostly likely unaffected by these antibiotics. Penicillin and ampicillin

would not impact Archaea because they target the bacterial cell wall, which is

unique from the archaeal cell wall (Madigan et al. 2003).

Our measured reductions of associated bacteria for U. pugnax was

comparable to those reported for other aquatic invertebrates, after antibiotic

exposure. As measured by direct counts, bacterial abundances in the stomach

of the krill species, Meganyctiphanes norvegica were reduced by an order of

magnitude after 24 h of antibiotic exposure (Donachie et al. 1995). Yet, for the

same comparison, colony-forming units were reduced by four orders of

magnitude. For the freshwater detritivorous isopod, Asellus aquaticus, bacterial
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application reduced gut-associated bacteria to a third of their untreated

abundances (Zimmer and Bartholme 2003).

Impact on host

A contribution of enzymes from stomach-associated bacteria would be of

greatest value to the host because of the large amount of absorptive gut region

'downstream' of the stomach (Plante et al. 1990). Specifically, released enzymes

or products could be absorbed in the hepatopancreas or along the midgut.

Although our results indicate that enzyme activities and bacterial abundances are

reduced in the stomach, we cannot exclude the possibility that this activity

pattern results from hepatopancreatic contribution. It is possible that stomach

microbes are commensals, utilizing some fraction of digestive products without

contributing substantially to the pool of dissolved enzymes, yet without inflicting

harm on the host.

If the host can absorb the resultant products, hindgut bacterial or

eccrinid enzymes may allow for nutrient recovery from otherwise 'lost' material.

However, it is possible that these enzymes benefit only the hindgut microbes and

that any products are released with fecal material, rather than reclaimed by the

host. Further research is needed to address whether the host can benefit from

microbial enzymes. In particular, if a distinguishing quality existed to discriminate

endogenous from bacterial enzymes (i.e. Km or adsorption measure), this

characteristic could be used to differentiate between total dissolved bacterial

contribution and total host production.
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Figure 5.3 Enzyme activities among each gut section and treatment (mean +
SE). Significant pairwise differences (P < 0.05) between IA and IR or PA and PR
pairs are denoted with an asterisk (*). Note that hindgut activities correspond with
the second Y-axis for chitinase, glucosidase and protease.
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Chapter 6: Conclusions

General summary

The overarching goal of this thesis was to characterize the ecology and

genetic diversity of resident gut microbes in order to advance our understanding

of their interactions with their host, the marsh fiddler crab, Uca pugnax. The

results of this thesis also provide a basis for further studies addressing how these

gut populations may influence marsh microbial ecology and biogeochemistry.

The greatest abundances of both bacteria and protists were documented in the

stomach and hindgut. For these sections, I have described morphologies,

measured abundances and characterized the genetic diversity (bacteria) of

resident microbes. Both bacterial and protozoan symbionts appear to be

consistent features of these sections. Furthermore, bacterial diversity patterns

appear comparable among individuals and, likely, over time. Community

composition, however, differs between stomach and hindgut populations.

Functionally, resident bacteria, particularly in the hindgut, may contribute to total

activities of certain enzymes in the gut of their host. The significance of this

finding in terms of the host physiology is still to be determined.

One unique aspect of this thesis that will contribute to future studies of

invertebrate-microbial interactions was our effort to characterize all communities

of resident microbes in Uca pugnax and our attempt to isolate enzyme

contributions from each. This thesis not only characterized the existence of

resident, symbiotic microbial communities, but also studied these populations

within the ecological context of their host.

I. Chapter 2: Eccrinales

This thesis is the first report of the two protists, Enteromyces callianassae

and Enterobryus sp. together in the fiddler crab, Uca pugnax. These attached

symbionts are a common feature of the crab digestive tract: E. callianassae was

present in > 50% of intermolt crabs and Enterobryus sp. was present in > 90%.

Both Eccrinales symbionts were found to attach exclusively to restricted regions
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of the gut, suggesting that this association is specific and that each species has

adapted to particular gut sections. Furthermore, each form of Enterobryus sp.

colonizes particular sub-sections of the hindgut. The short, bushy form of

Enterobryus sp. is found only in the posterior-most hindgut and the long, spiraling

form is found only in the anterior hindgut.

One clear result of this study was that determination of host molt stage is

critical for comparing Eccrinales abundances among individuals and/or among

species with accuracy. Other researchers have compared total Eccrinales

lengths among different species without reporting molt stage (Hibbits 1978;

Mattson 1988). Yet, if any useful patterns between extent of colonization and

salient host characteristics are to be discovered, molt stage of the host needs to

be considered. Additionally, we propose that our direct method of measuring

Eccrinales length offers an improvement over a previously published method, in

which total length was estimated with an intersection method (Mattson 1988).

Lastly, our results corroborate the established precedent of Eccrinales

species colonizing only detritivorous, algivorous, and/or omnivorous hosts and

not inhabiting carnivores (Lichtwardt 1986; Mattson 1988). We predict that, in

Uca pugnax, the two Eccrinales species may play a role in processing detritus.

Finding that E. callianassae groups with the Mesomycetozoan protists, rather

than with Fungi, may assist in constraining theories on the nature of interactions

with crustacean hosts.

II. Chapter 3: Bacterial microbiota: morphologies, attachment sites,

and abundances

We measured the greatest abundances of bacteria in chitin-lined gut

sections of Uca pugnax, the stomach and hindgut. Specifically, SEM images

indicated dense clusters of bacteria on the pyloric fingerlets in the crab stomach

and along the length of the hindgut. Dense aggregations of attached bacteria in

the pyloric stomach have not been reported previously in crustaceans (Harris

1992; Pinn et al. 1997). We postulate that these bacteria are taking advantage of

a particular location in the stomach (pyloric fingerlets) in which they are exposed
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to both digestive fluid flow and concentrated substrates. It is possible that the

host utilizes released bacterial products or is able to ingest some of these

bacteria directly. Two morphologies of bacteria colonized specific regions along

the hindgut: curved rods along the anterior hindgut and mats of rods in the

posterior hindgut. We suggest that greater densities of bacteria (per mm2

surface area) exist in the posterior hindgut due to enhanced cuticle permeability,

which may allow for increased fluid and nutrient flux, thereby alleviating diffusion

limitations for attached cells. Relatively greater permeability in the posterior

hindgut, compared with the anterior hindgut, would facilitate passive nutrient

(small molecules) and water uptake by the host by generating a sufficient

concentration gradient, in the right direction.

Transient bacteria were approximately twice as abundant as resident

bacteria in the crab stomach and hindgut. Resident bacteria, however, are

consistently present among individuals, are more likely to be active and,

therefore are expected to play a greater role in host physiology.

111. Chapter 4: Bacterial diversity and seasonality

Bacterial diversity patterns appear to be consistent among individual

hosts, based on the fingerprinting technique, DGGE. Furthermore, unique

bacterial communities appear to associate with specific gut sections, as indicated

by distinctive stomach and hindgut DGGE patterns. Although some changes in

diversity patterns were observed between summer and winter, resident

communities were not entirely different. Hindgut bacterial densities, however, did

vary significantly with season. Based on 16S rRNA gene clone libraries, the

hindgut is more diverse than the stomach. One of the most interesting results

from the clone libraries was detecting 16S rRNA sequences with high sequence

similarity to clones from the hindgut of another crustacean, Neotrypaea

californiensis. This finding suggests that detritivorous crustacean hindguts may

provide an ecological niche for certain bacterial phylotypes. Furthermore, many

of the identified clones were most closely related to other symbionts and gut-

associated bacteria, indicating that there may be functional similarities in the

153



nature of these host-microbiota interactions. We propose that these bacterial

associates are not a haphazard mixture of opportunistic bacteria from the

transient community, but rather are a specific assemblage that may play an

important role in host physiology.

IV. Chapter 5: Microbial contributions to digestive enzyme activity

The main goal of this research was to determine if the presence of

resident microbes correlated with dissolved extracellular enzyme activity. We

found that antibiotic treatments reduced both total enzyme activity and total

bacterial abundances in the stomach and hindgut. Stomach bacterial and

Eccrinales abundances did not correlate significantly with enzyme activities. We

propose that most stomach microbes have a commensal relationship with their

hosts, and that they utilize the abundant concentration of organic matter without

contributing substantially to the pool of dissolved enzymes. Hindgut bacterial

abundance correlations with all enzymes, except esterase, were positive, albeit

not significant. We suggest that these bacteria may be degrading the remnants

of the chitin and protein-rich peritrophic membrane. These enzymes or bacterial

products may benefit their host if they are transferred anterior-ward by fluid flow.

We also found that, using the described methodology, essentially all measured

activity was derived from dissolved extracellular enzymes, rather than from

particle-associated or even cell-associated enzymes.

ITEMIZED CONCLUSIONS

1) Bacteria and protists are regular features in the stomach and hindgut of

Uca pugnax. Bacterial abundances change with season (hindgut) and

protozoan abundances (lengths) vary with molt stage. Still these microbes are

not irregular associates, but rather characteristic gut symbionts of U. pugnax.

2) Specific morphologies of bacteria and certain Eccrinales morpho-

species are found in defined regions of the gut. Although these bacterial
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morphologies do not reveal any species-specific information, we can infer some

functional basis of conserved morphologies (i.e. that some aspect of the posterior

hindgut lining allows for attachment and growth of length-wise attached rod-

shaped bacteria).

3) Bacterial diversity in the crab stomach and hindgut appears to be mostly

conserved among individuals, according to DGGE patterns. Furthermore

these diversity patterns are relatively consistent across seasons. Our results

suggest that these microbes are not occasional hitchhikers, randomly latching

onto the gut surfaces, but rather that some more specific process influences

attachment and growth.

4) The stomach microbial community is less diverse than the hindgut

microbial community, as assessed by both DGGE patterns and 16S rRNA

clone libraries.

5) Particular bacterial phylotypes, with low sequence similarity to any

cultured bacteria, may be shared among crustacean detritivores.

6) Hindgut bacteria may release extracellular enzymes, thereby increasing

the overall activities measured in the hindgut. These enzymes and/or their

products may be transported anterior-ward by fluid movement to be absorbed in

the midgut or hepatopancreas. Alternatively, the host may benefit if small

molecular products are absorbed across the hindgut cuticle.
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FUTURE RESEARCH DIRECTIONS

Eccrinales

Our sequencing results of E. callianassae from U. pugnax highlight a gap

in the current knowledge basis concerning the possibility of cryptic species of

Eccrinales among different hosts. Comparisons of complete 18S rRNA gene

sequences of E. callianassae from numerous crustacean hosts would resolve

this uncertainty.

Very little detail is known about the physiology and diversity of the

Eccrinales, as underscored by their recent re-classification as protists, rather

than fungi (Cafaro 2003). Cloning and sequencing the hindgut Enterobryus sp.

would help determine if this organism belongs with other eccrinids in the Phylum

Protista and assess if the two morphologies observed represent a single species,

or multiple species.

We have speculated that these Eccrinales species may contribute

protease or esterase to the gut lumen, however, little is known about the

physiology of these organisms. If these species could be successfully cultured,

further studies on cultured specimens would assist in constraining their possible

range of metabolisms. Alternatively, a molecular study to search for unique

enzyme encoding genes, such as cellulase, as described by (Byrne et al. 1999)

would offer insights into possible enzyme contributions of these Eccrinales.

Bacteria

We have found that diversity patterns appear consistent among individual

crabs, however, we have not resolved the distribution of phylotypes represented

by these diversity patterns, either numerically or in terms of physical locations.

Are many phylotypes present in equal abundances? Is one phylotype numerically

dominant? And how do these phylotypes correspond with the observed

morphologies? A study in which phylotype-specific fluorescent probes are

applied to the fiddler crab gut lining, via fluorescent in situ hybridization (FISH)

(Delong 1993), would elucidate both the distribution of bacterial diversity and

highlight the locations of specific phylotypes along the gut. In particular, these
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results would indicate if the dense mats of bacteria in the posterior hindgut are a

monoculture, or if they comprise a diverse assemblage. If the latter is found, this

community may form a consortium in which bacterial enzymes and/or products

are shared among phylotypes. 'Enzyme-sharing' may also occur in sections with

clonal populations.

Hepatopancreas-associated bacteria need to be studied carefully and

categorized as either transient or resident bacteria, or possibly a combination of

both. Further research on the presence and role of hepatopancreatic bacteria is

needed to clarify any possible functions of these bacteria in host physiology.

The presence and possible roles of Archaea were not addressed by this

thesis. Archaea are present in gut communities of termites (Brauman et al. 2001;

Tokura et al. 2000), in the rumen of terrestrial herbivores (Mackie 2002; Tajima et

al. 2001), and in salt-marsh sediments (Munson et al. 1997). Thus, Archaea may

be present and active in the gut of Uca pugnax, as well as other detritivorous

crustaceans. A similar approach to that described in Chapter 4, but with

archaeal-specific primers, would resolve whether Archaea are present, and the

extent of archaeal diversity in the digestive tract of U. pugnax.

Functional role of microbial community

Although it appears that some enzyme activities correlate with bacterial or

Eccrinales abundance in the hindgut, this research has not definitively resolved if

the host may benefit from these enzymes. A study in which radiolabeled enzyme

products or fermentation products were injected into the hindgut lumen and later

measured to determine if they were incorporated into the crab tissue would

indicate if these products benefit the host.

We observed indications that portions of the gut may experience periodic

anoxia, suggesting that these sections may support fermentative metabolisms.

Fermentation products such as short chain fatty acids (SCFAs) are a potential

energy source for the host crab and can be absorbed without active transport,

even across the hindgut cuticle (Hogan et al. 1985; Maddrell and Gardiner 1980).

Characterizing oxygen concentrations along the gut with microelectrodes and
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measuring SCFA concentrations would indicate if the fiddler crab gut supports

substantial fermentative activities.

BROAD IMPACT OF RESULTS

Conclusions drawn from this thesis will contribute to future studies of

microbial-invertebrate interactions as well as to studies of the diversity and

composition of specific gut communities. In particular, this research will provide

a basis for further studies on the distribution, ecology, genetic identity, and

function of the poorly-understood Eccrinales protists.

Although not tested directly in this thesis, the presence of distinct and

stable microbial communities in the fiddler crab gut may influence salt-marsh

microbiology and geochemistry. If resident microbes are shed from the gut lining

onto egested material, this input may affect microbial diversity of the marsh

sediment. Although the overall sediment diversity pattern (DGGE) differed from

typical stomach and hindgut patterns, certain DGGE bands appeared to be

shared among these communities. These bands may represent shared

phylotypes, and if bacteria of these phylotypes are cast off onto fecal pellets, this

process may augment environmental population abundances. Also, resident

bacteria may contribute enzymes to the gut lumen. If these bacterial enzymes,

or other activities, affect the geochemistry of the gut contents and crab fecal

material, this effect may factor into salt-marsh geochemistry. These hypotheses

are highly speculative, but offer some possibilities for the influence of resident gut

microbes on salt-marsh ecology.

158



REFERENCES

Brauman, A., J. Dore, P. Eggleton, D. Bignell, J. A. Breznak, and M. D. Kane.
2001. Molecular phylogenetic profiling of prokaryotic communities in guts
of termites with different feeding habits. FEMS Microbiology Ecology 35:
27-36.

Byrne, K. A., S. A. Lehnert, S. E. Johnson, and S. S. Moore. 1999. Isolation of a
cDNA encoding a putative cellulase in the red claw crayfish Cherax
quadricarinatus. Gene 239: 317-324.

Cafaro, M. J. 2003. Eccrinales (Trichomycetes) are not Fungi, but a novel clade
of the Class Ichthyosporea, p. 300, Ph.D Thesis. University of Kansas.

DeLong, E. 1993. Single-cell identification using fluorsecently labeled, ribosomasl
RNA-specific probes, p. 285-294. In P. Kemp, B. Sherr, E. Sherr and J.
Cole [eds.], Handbook of Methods in Aquatic Microbial Ecology. Lewis
Publishers.

Harris, J. M. 1992. Relationship between invertebrate detritivores and gut
bacteria in marine systems, p. 273, Ph. D. Thesis. University of Cape
Town.

Hibbits, J. 1978. Marine Eccrinales (Trichomycetes) found in crustaceans of the
San Juan Archipelago, Washington. Syesis 11: 213-261.

Hogan, M., M. Slaytor, and R. O'Brian. 1985. Transport of volatile fatty acids
across the hindgut of the coackroach, Panethia cribata and the termite,
Mastotermes darwiniensis. J. Insect Physiol. 250: 469-474.

Lichtwardt, R. W. 1986. The Trichomycetes, Fungal Associates of Arthropods.
Springer-Verlag.

Mackie, R. . 2002. Mutualistic Fermentative Digestion in the Gastrointestinal
Tract: Diversity and Evolution1. Integrative and Comparative Biology 42:
319-326.

Maddrell, S., and B. Gardiner. 1980. The permeability of the cuticular lining of the
insect alimentary canal. J. Exp. Biol. 85: 227-237.

Mattson, R. A. 1988. Occurrence and abundance of eccrinaceous fungi
(Trichomycetes) in brachyuran crabs from Tampa Bay, Florida. J. Crust.
Biol. 8: 20-30.

Munson, M., D. Nedwell, and T. Embley. 1997. Phylogenetic diversity of Archaea
in sediment samples from a coastal salt marsh. Appl. Environ. Microbiol.
63: 4729-4733.

Pinn, E. H., A. Rogerson, and R. J. A. Atkinson. 1997. Microbial flora associated
with the digestive system of Upogebia stellata (Crustacea: Decapoda:
Thalassinidea). J. Mar. Biol. Ass. U.K. 77: 1083-1096.

Tajima, K., T. Nagamine, H. Matsui, M. Nakamura, and R. . Aminov. 2001.
Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen
suggests the existence of a novel group of archaea not associated with
known methanogens. FEMS Microbiology Letters 200: 67-72.

Tokura, M., M. Ohkuma, and T. Kudo. 2000. Molecular phylogeny of
methanogens associated with flagellated protists in the gut and with the
gut epithelium of termites. FEMS Microbiology Ecology 33: 233-240.

159



160


