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ABSTRACT

The process by which the neural tube expands into three brain ventricles can be

understood through genetic mutant analysis. Within the framework of a characterization

of zebrafish mutants with brain ventricle phenotypes, I have developed an assay that

looks for evidence of compromised gene expression patterns. I have shown that a

cocktail of krox20, pax2a, shh, and zicl antisense RNA probes hybridizes to domains in

the developing brain that reflect anterior, posterior, dorsal, and ventral axis specification.

In addition, I have investigated the choroid plexus (CP) cells lining the brain ventricles in

the zebrafish. Though we were unable to clearly identify the CP in the adult brain, we

did identify two homologues in zebrafish of a conserved gene expressed in CP of

vertebrates. We found that one of these genes, Drcpllb, was expressed from tailbud into

early larva stage. Further, Drcpllb is expressed in neurula stage embryos in the anterior

neural plate. Through these studies, we established an assay to analyze positional

identity of cells in the neural tube and discovered a potential choroid plexus marker,

shown its expression time course, and outlined its early expression pattern in the

zebrafish.

Thesis Supervisor: Hazel L. Sive
Title: Professor of Biology
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CHAPTER I: CHARACTERIZATION OF ZEBRAFISH MUTANTS WITH
BRAIN VENTRICLE PHENOTYPES

INTRODUCTION

The morphogenesis of brain ventricles begins within the anterior region of the

neural tube, where the epithelia at three distinct locations along the anterior-posterior axis

of the future brain expand into vesicles. These develop into the continuous fore-, mid-,

and hindbrain ventricles that are filled with cerebrospinal fluid (CSF). Classical literature

suggests a role for ventricles in buoying the brain within the skull and serving together as

a drainage route for brain metabolites (Davson and Segal, 1996). More recent literature

suggests that the ventricles form a circulatory system in the brain that, in addition to

removing waste, carries nutrients and chemical signals (Nilsson et al., 1992). It is likely

that the ventricles serve other, unknown functions; for example, an extensive system of

both dendrites and axons of unknown function project into the ventricular cavities (Vigh

and Vigh-Teichmann, 1998). Further, it is known that changes in brain ventricle

structure are associated with severe disorders such as schizophrenia, autism, and

hydrocephaly (Brambilla et al., 2003; Harrison, 1999; Rolf et al., 2001).

Brain ventricle formation is essential for neuronal differentiation, and either an

increase or a decrease in ventricular volume inhibits neurogenesis (Desmond and

Jacobson, 1977). The initial ventricles change shape and become, in mammals, the final

lateral ventricles lying to the telencephalon, the third ventricle in the diencephalon, the

Aqueduct of Sylvius in the midbrain, and the fourth ventricle in the hindbrain. Like

mammals, zebrafish have four ventricles in the adult: the telencephalic ventricle, the

diencephalic ventricle, two tectal ventricles, and a rhombencephalic ventricle. Though
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the appearance of these four ventricles varies greatly across vertebrates, the expansion of

the neural tube into fore-, mid-, and hindbrain ventricles in early development is

conserved among the vertebrates (Desmond and Jacobson, 1977; Schier et al., 1996).

It seems likely that the expansion of the tube to make brain ventricles is an active

process, requiring information within cells of the neural tube and in their surrounding

environment to drive morphological changes. Several cell biological processes are likely

to contribute to ventricle formation. These include cell death, proliferation, and shape

changes. Brain ventricle morphogenesis also requires that cells lie in specific domains

along the anterior-posterior (A-P) and dorsal ventral (D-V) axes, and that they maintain

epithelial polarity within a sheet of cells to facilitate proper cell-cell contact and

communication.

We can uncover the signals required to orchestrate this initial expansion by

characterizing genetic mutants with aberrant brain ventricles. Another graduate student,

Laura Anne Lowery, and I have collaborated on this project. She began collecting from

previous zebrafish mutant screens multiple mutant fish with abnormal brain ventricle

phenotypes (Jiang et al., 1996; Schier et al., 1996) and together we have screened through

heart ventricle mutants (Warren et al., 2000), initially imaging their brain ventricle

abnormalities. Many heart mutants fail to properly make a tube structure, and we have

found several also have abnormal brain ventricles. We viewed the ventricle phenotypes

using a technique developed by Laura Anne Lowery; we injected a Texas-Red conjugated

dextran into the hindbrain ventricles of zebrafish embryos at stage 20-22 hours post

fertilization (20-22 hpf), just as the ventricles have opened (Fig. 1). The dye diffused

through the ventricular cavities of the expanded neural tube, and fluorescence and light
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microscopy were used to image brain ventricle shape. This assay has permitted us to

verify previously identified brain ventricle mutants, as well as identify new brain

ventricle mutants during shelf screening.

Laura Anne Lowery began the mutant characterization, analyzing cell death and

cell proliferation patterns during vesicle expansion, later appearance of known axon

tracts, and cellular movements and shape changes. My role in particular in this

characterization was to design a cocktail of in situ probes against patterning genes. This

cocktail would then be used to assay the degree of patterning along the anterior-posterior

(A-P) and dorsal-ventral (D-V) axes in mutants with brain ventricle phenotypes. In this

chapter, I ask the following:

1. What gene expression patterns convey information about proper A-P and D-V

axes in early zebrafish development?

2. In what proportions should the different probes be combined to give a clear

signal of all gene expression patterns?

8



RESULTS

Identifying patterning genes for characterization

Cells within the developing embryo establish regional identity as they acquire

their cellular fate. The regions that contribute to cell identity are characterized by gene

expression patterns; some of the best defined patterning genes emerged in early

embryogenesis of D. melanogaster (Nusslein-Volhard and Wieschaus, 1980). In

vertebrates as well, expression of many genes establishes the anterior and posterior,

dorsal and ventral, and midline and lateral axes, setting up a sort of Cartesian coordinate

system in the body plan. Gene expression patterns that identify regions can be seen at

early stages of development; in X laevis, the restricted expression ofjkh5 and opl (zicl)

during early gastrulation in presumptive neuroectoderm defines the A/P axis (Gamse and

Sive, 2001). The early set-up of the axes is later refined, and this is reflected in the

subdivisions of the developing CNS, in particular the neural tube.

We would like to know if, in the brain ventricle mutants, cells of the neural tube

lack complete axis specification as reflected in patterning gene expression. Our assay

aims to identify aberrant positional information within cells involved in the ventricle

expansion process. To accomplish this, we have chosen to use in situ hybridization, a

process by which a gene's mRNA transcripts can be identified and labeled, to analyze

patterning gene expression in the developing nervous system. The identification of

transcripts is accomplished by hybridization of a labeled antisense probe.

The expansion of the neural tube in three distinct locations to form vesicles begins

around at the 22 somite stage (Fig. 1C). We have chosen to assay gene expression

patterns at an earlier stage, at 15-16 somites, when the neural rod has formed but not yet
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cavitated. By this point in development, any obvious abnormality in axis specification

will be apparent. As well, at this stage, many positional gene markers have clear

boundaries of expression. Thus, visualization of pattern abnormalities will be easier to

see in the mutant characterization.

The genes we want to look at are those that establish A-P and D-V polarity in the

central nervous system (CNS) of the zebrafish. We wanted to select a small number of

genes to reduce the complexity of cocktail production, yet we wanted genes that would

relay anterior, posterior, dorsal, and ventral positional information. Among several

potential genes, we have chosen four: krox20, zicl, pax2a, and sonic hedgehog (shh).

krox20 encodes a zinc-finger transcription factor, and is expressed in rhombomeres 3 and

5 (r3 and r5) of the hindbrain (Oxtoby and Jowett, 1993), giving information about

posterior brain specification. pax2a, a member of the highly conserved pax family of

transcription factors, is expressed at the midbrain hindbrain boundary (MHB), as well as

the otic vesicle and optic stalk (Lun and Brand, 1998). Its expression in the MHB

outlines the division between the more anterior midbrain and the hindbrain that lies

caudal to it. shh, a signaling molecule with homology to D. melanogaster segment

polarity gene hedgehog (hh), is expressed in the ventral cells of the neural tube, called the

floor plate, as well as in the notochord that lies ventral to the tube (Krauss et al., 1993),

serving as a label for ventral CNS cells. zicl is an odd-paired like protein containing five

zinc fingers and is expressed dorsally from the telencephalon back into the

rhombencephalon (Rohr et al., 1999).
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Quantification and testing of krox20, pax2a, shh, and zicl probes

After identifying the genes ideal for assaying patterning in our mutants, we

synthesized large quantities (between 0.2 to 1.0 mg) of RNA probe for each individual

gene. To get such large quantities, we amplified the amount of starting DNA and

adjusted the protocols accordingly (see Materials and Methods), as well as pooled

together separate reactions containing the same gene probe. These pooled RNA probes

were then run on agarose gels after denaturation (Fig. 2) and compared to known

quantities of RNA in the simultaneously run RNA ladder (see Materials and Methods).

To make the probes work together as a cocktail, we first tested them out

individually in appropriately staged embryos to discover their properties: the strength of

the signals, the amount of background, and the approximate concentration of probe

needed to get the best quality expression pattern.

Testing the krox20, pax2a, shh, and zicl probes was all done in 15-16ss embryos,

the chosen stage of development for the patterning assay in the brain ventricle mutant

characterization. We found that relatively small concentrations of krox20 probe in

hybridization buffer (1.3 ng/ 1) gave a strong signal with little background (Fig. A). An

equally small concentration of zicl probe in hybridization buffer (1.3 ng/ pl) gave a

strong signal (Fig. 3B), but extended incubation time in the color reaction step gave more

background (data not shown). Thepax2a probe required a higher concentration (12.0 ng/

gl, Fig. 3C.), and too showed more background with extended color reaction time (not

shown). The shh probe worked best with a concentration of 8.0 ng/ pg (Fig. 3D.), and

maintained relatively low background in longer reaction times.
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In situ with four-probe cocktail in wild type

We tested the combination of all four probes in a monochromatic in situ reaction

in 15-16ss wild type embryos. The final mass ratio of krox20: zicl : pax2a: shh probes

in the cocktail was 1.0: 1.0: 9.0: 6.0. The embryo showed an expression pattern that

summed all four individual expression patterns (Fig. 4). krox20 labeled r3 and r5, pax2a

labeled the MHB, as well as the otic placode and optic stalk faintly, zicl labeled

throughout the dorsal brain, and shh labeled the ventral neural tube, its anterior most

expression reaching into the forebrain.
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DISCUSSION

We have shown here that a cocktail of four gene probes can be used to identify

axis specification in zebrafish embryos during late somitogenesis. The readout in the

embryo of the krox20, zicl, pax2a, and shh probe combination is a sum of their

individual expression patterns. Prior characterization of genetic mutants with patterning

defects has been done using RNA probes singly (Hoyle et al., 2004; Kikuta et al., 2003;

Rohr et al., 1999; Wiellette and Sive, 2003), and a mutant screen in this lab (Wielette et

al., submitted) used a cocktail with shh, tbx6, krox20, dlx3, pax2a, and rx3. Confirming

what we have found, this cocktail required relatively more pax2a and shh RNA probe in

the overall mix.

This creation of an in situ cocktail probe will allow rapid characterization of

patterning gene expression in the mutants. Since the large pools of individual gene

probes have all been tested for complete hybridization, the same concentrations will be

used in all mutant analysis, eliminating probe differences from experiment to experiment.

The next step is to utilize the probe and identify brain ventricle mutants with patterning

gene misexpression. This information will shed light on what mutants fail to establish

the proper axis specification needed for normal morphogenesis of the three initial brain

ventricles.
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METHODS

Making large quantities of labeled RNA probe:

Standard transcription reactions for 1 jig linear DNA were amplified for 5-15 ig

linear DNA. For each 1 ig of DNA, the following were used: 5x transcription buffer

(Stratagene), 10x DIG RNA labeling mix (Roche), 40 U RNasin® (Promega) and 100 U

T7 RNA polymerase (Stratagene) forpax2a, shh, and zicl or 100 U T3 RNA polymerase

(Stratagene) for krox20. Reaction time at 370 C was extended to 4-5 h, followed by

another 30 min with 1 U DNase/ g DNA added to each reaction, and then heat

inactivated at 65C for 10 min. The reaction products were then run through a Mini

Quickspin column (Roche) according to manufacturer's instructions.

Quantification of probe

Samples of probes (3ul) in 1 g /I Ethidium Bromide and an RNA Buffer of 10x

MOPS buffer, formamide, formaldehyde, 50% glycerol, 10% bromo-phenol blue were

run on a 1% agarose gel in TAE. 3ul of 1 g /l 0.24-9.5 kb RNA ladder (Invitrogen)

were run concomitantly to help gauge probe quantities. Each sample was heated to 65°C

for 10 min, chilled on ice for 5 min before electrophoresis.

The following was used to determine approximate concentrations of each probe:

each of the three most distinct bands in the 0.24-9.5 kb RNA ladder lane contains 0.5 ig

RNA. We compared the intensity of individual bands in the RNA probe lanes to the

intensity of the RNA ladder bands to get a quantity of RNA, and then divided by 3 il, the

amount of sample run. For instance, we approximated that the krox20 band contained 0.5

jig RNA/ 3 gl, and thus the concentration of krox20 RNA probe is 0.17 g /l. The

following concentrations were calculated for the remaining probes: zicl 0.17 ig /1l,
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pax2a 1.5 Igg /l, shh (newly made probe) 1.0 gg /gl, and shh (old probe) 0.33 ig /pl.

The old shh probe was discarded after testing it in an in situ experiment in wild type, 15-

16ss embryos and finding it nonfunctional. The new shh probe hybridized successfully in

a parallel experiment and was used in the cocktail.

Whole mount in situ hybridization with cocktail

In situ hybridization was performed as previously described by Sagerstrom et al.,

1996. Specifically, the following conditions were used: fixed 15-16ss embryos were

incubated at 220 C in 5 gg/ml Proteinase K (Roche) for 2-3 min. Based on RNA

electrophoresis quantification, the following approximate amounts of RNA probe were

used in the 250 jil hybridization cocktail: 0.33 gg krox20 probe, 3.0 ggpax2a probe, 2.0

gg shh probe, 0.33 gg zicl probe. The purple precipitate resulted from a combination of

NBT (Roche) and BCIP (Roche).
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A

B

Figure 3. Expression of individual patterning genes. Whole mount in situz
hybridization (ISH). 15-16ss embryos, lateral view (A-C), dorso-lateral view (D).
(A-D) hybridized with antisense krox20 (A), zicl] (B), pax2a (C). and shh (D) probes.
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Fig. 4. Expression of krox20, pax2a, shh, and zicl in 15-16 somite-stage
wild type embryos. Whole mount in situ hybridization (ISH) A. Dorsal
view of flat-mounted embryo. B. Lateral view of same embryo.
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CHAPTER II: IDENTIFICATION OF THE ZEBRAFISH CHOROID PLEXUSES

INTRODUCTION

The brain ventricles make up a system of cavities within the vertebrate brain, and

are filled with cerebrospinal fluid. The choroid plexuses secrete this fluid, and comprise

cells of the ependymal lining of the brain and closely interdigitate with blood vessels. A

choroid plexus is present in all four ventricles of the mammalian brain. In mice, the CP

arises within the developing brain shortly following neural tube closure, though the

timing of their appearance varies across species (Desmond and Jacobson, 1977;

Dziegielewska et al., 2001). CP cells are thought to secrete CSF by week 9 of human

gestation (Catala, 1997), as suggested by enzyme activity analysis.

The architecture of the CP is stereotyped throughout vertebrate species (Segal,

2000). The CP establishes the blood-CSF barrier, allowing selective passage of organic

substrates from plasma and extracellular fluid and the CSF. The cells of a choroid plexus

compose an epithelial sheet, with the apical side facing the ventricle and the basal facing

the blood compartment. The CP ependyma differs from non-CP ependyma lining the

ventricles in its resemblance to a transporting epithelium and in its proximity to

fenestrated capillaries (Speake et al., 2001). The capillaries of the stroma below the CP

epithelial cells are contiguous with the fluid bathing the basolateral side of the

epithelium. Thus, the tight junctions of the CP epithelium stand as the barrier between

the CSF of the ventricles and the blood. Electron microscopy shows further the defining

features of the apical side of CP epithelia, the dense, clavate-shaped microvilli and the

beating cilia (Nilsson et al., 1992).
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An investigation of the development of brain ventricles would not be complete

without considering the choroid plexuses. Little is known about the zebrafish choroid

plexuses. Research in fish species has been limited to hagfish, in which CP could not be

identified (Murray et al., 1975), and in the adult shark (Villalobos et al., 2002). The latter

study characterized the structure of shark CP cells, and demonstrated their similarity to

mammalian CP cells, as well investigated transepithelial transport across CP cells in the

adult. Though there is a void in the literature on CSF secretion and choroid plexus in the

teleost, zebrafish blood vessel studies do provide a time point at which CP

vascularization begins (Isogai et al., 2001). Fluorescent microspheres were injected into

the sinus venosus at day 1, and the zebrafish vascular wiring was observed through

confocal microscopy in the living animal for 7 days. The resulting atlas of vasculature

revealed the presence of a knot of fluorescing cells in the brain that the authors identify as

the choroidal vascular plexus. This knot is present in fish at 60 hours post fertilization

(hpf) through 7 days, and not present in fish at 26-28hpf.

Two approaches were employed to identify the CP in the zebrafish. First, we

used histology to elucidate the ontogeny of CP cells in zebrafish, as histology in other

vertebrates provides us with the stereotyped architecture of CP. Second, we searched for

a potential marker of the choroid plexuses in the zebrafish so that we could label CP cells

and follow their development during embryogenesis. Several gene candidates were

considered, including transthyretin (ttr) and a brain lipocalin identified in both L.

dumerili (Achen et al., 1992) and X laevis (Lepperdinger et al., 1997), in which it is

called Xlcpll. Further investigation of the literature on ttr ruled it out this candidate;

transthyretin is expressed in the choroid plexuses of humans (Dickson and Schreiber,
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1986), rat (Dickson et al., 1985), pig (Duan et al., 1995), chick (Southwell et al., 1991),

and in the brain of turtles (Richardson et al., 1997), but is expressed only in the liver of

amphibians and fish (Power et al., 2000; Santos and Power, 1999). The brain lipocalin

candidate emerged as a potentially useful marker for choroid plexuses in the zebrafish, as

its expression in the choroid plexuses is apparent in X laevis. Further, Xlcpll has been

suggested to be the amphibian counterpart of tranthyretin (Lepperdinger, 2000), as it too

binds thyroxine and retinol binding protein (RBP). Thus, based on the highly conserved

expression of transthyretin-like proteins in vertebrate choroid plexuses, we consider a

zebrafish form of cpll an attractive candidate marker for zebrafish CP.

In this chapter, I pose the following questions:

1. What does the choroid plexus look like in the adult zebrafish?

2. Is there a zebrafish homologue of Xlcpll? Can this gene serve as a

marker for choroid plexus in the developing embryo?
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RESULTS

Histological sections of zebrafish brain show possible CP structures.

To date, there is no information on the appearance of the choroid plexuses in the

zebrafish. We have sectioned through adult zebrafish heads, making both sagittal (data

not shown) and cross-section cuts (Figure 5). We chose the Milligan Trichrome stain to

outline different cell types. This particular series of stains labels nuclei red, neurons

purple, collagen blue, and erythrocytes orange.

The resulting sections were compared with an atlas of the zebrafish brain

(Wullimann et al., 1996) to help identify gross morphological structures. Sections from

the anterior-most end of the brain to the posterior end showed all four ventricles; the

telencephalic, diencephalic, tegmental, and rhombencephalic ventricles were all present.

In the tegmental ventricle we saw clusters of cells with what appeared to be villi facing

the CSF and extending into the ventricular space (Fig. 5B, arrow). We suggest that these

cells may be CP cells, though our methods of identifying these cells are not complete

enough to conclude that they are indeed epithelial and innervated with blood vessels.

XIcpll has two homologues in the zebrafish

Previous studies in X laevis (Lepperdinger et al., 1997) have identified a gene

expressed exclusively in the choroid plexuses of the adult animal, Xlcpll. The gene

encodes a retinoid binding protein which shares sequence homology with the lipocalin

protein family. This family of small sized proteins is characterized by having

hydrophobic cavities shaped like calyxes; these cavities are binding pockets for small

hydrophobic molecules, such as retinoic acid.
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Using the Xlcpll amino acid sequence (Genbank accession No. S52354) as our

query, we performed a BLAST search against the Ensembl zebrafish cDNA database.

The results gave one clearly high scoring cDNA candidate, ENSDART00000006682,

which we named Drcplla. Further searches in other databases (see Materials and

Methods) revealed an additional EST with 82% identity and 89% similarity in nucleotide

sequence with Drcplla. We named this EST (TC15923) Drcpllb. An alignment of the

translation products of these two sequences with the most similar lipocalins from other

vertebrates, including frog, cane toad, mouse, and human is shown in Figure 5. We

calculated the percentage of similar amino acids between Drcpllb and the other lipocalin

proteins and found the following similarity hierarchy: Drcplla (90.7%), XlcplI (45.6%),

Bmlip (43.5%), Mmmup5 (31.5%), and Hspgds (24.5%).

Drcpllb is expressed in embryos from 10h to 72h of development.

The expression pattern of Xlcpll in X laevis has been studied from late

gastrulation to adulthood. Expression has been shown in X laevis from stage 12 to 25,

when expression decreases, and then later in stage 35 and into adulthood. We sought to

determine the time course of our Drcplla and Drcpllb expression in the developing

zebrafish. Zebrafish embryos from a range of developmental stages (6h to 72h) were

analyzed by a reverse transciptase-PCR (RT-PCR) assay (see Materials and Methods).

The Drcplla assay revealed no bands of expected size (600 bp). The only visible

PCR product was 200 bp in size, and appeared only at the 55h stage of development.

There was clearly cDNA to be amplified, as the same source of cDNA showed

amplification with the /-actin primers. It is possible that Drcplla is not expressed in the

assayed stages of development, though it is also likely that the primers failed to anneal
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specifically to the Drcplla species if it was present. No conclusions can be drawn about

the expression time course of Drcplla in zebrafish. In the Drcpllb RT-PCR assay, we

saw bands of expected size (810 bp) at stages 10h, 20h, 48h, 55h, 60h, and 72h. This

data suggests that Drcpllb is expressed from the end of gastrulation into early larval

stages in the zebrafish.

Drcpllb is expressed in the anterior neural plate

X laevis express Xlcpll in the anterior end of the animal pole in late gastrulation

embryos. At the early neurula stage, regions adjacent to the cement gland and posterior

of the folding plate express Xlcpll. At the mid-neurula stage, expression remains in the

anterior brain, and narrows in a stripe in the dorsal hindbrain. By tailbud, in addition to

the anterior brain expression, Xcpll is expressed in what the authors identify as the future

anlage of the choroid plexus in the dorsal posterior hindbrain. It is not clear if this is

indeed the future choroid plexus.

Though our RT-PCR suggested that the developmental expression of Drcpllb

followed a similar time course as Xlcpll did in X laevis, we lacked information on what

types of cells express Drcpllb. We made an antisense RNA probe for whole mount in

situ hybridization from a plasmid (Imageclone # CK028918) containing the Drcpllb

cDNA insert. After approximating the concentration of RNA in the probe solution, we

assayed embryos for Drcpllb expression at tailbud stage (10hpf), 14ss, 19hpf, and 60hpf.

No specific labeling was observed, and background staining was robust (data not shown).

We repeated the in situ, titrating out the amount of probe in tailbud staged embryos. We

found similar results as before, with no specific labeling, in the two experiments with the

highest concentration of probe used (2 ng/!l and 4 ng/!l; Fig 8C and D, respectively).
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However, we did see cells labeled with the lowest concentration of probe (1 ng/gl) in the

anterior neural plate (Fig. 8A, B). There are labeled cells at the anterior of the animal,

and faint staining at the posterior. Whether this latter staining indicates drcplb expression

in the posterior of the animal is unclear. In the anterior, the labeling appears as two

stripes along the edge of the anterior neural plate (Fig. 8B).
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DISCUSSION

The histology in adult zebrafish brains gave us limited information. Though it

appears that there may be CP cells jutting into the ventricular space in the tegmentum, we

do not have any specific markers or stains to verify the identity of the cells that appear to

be CP. Future histological analysis would be more conclusive if antibodies specific to

CP cells or blood vessels were used. Further, stains that mark basement membrane could

confirm or refute the epithelial identity of these potential CP cells.

Our search for a marker of the choroid plexus has led us to discover a homologue

of Xlcpll in the zebrafish. The BLAST search pointed us to two genes, both showing

homology to previously identified vertebrate brain lipocalin genes. The degree of

homology is not high, but this is not surprising. The lipocalin proteins have low

sequence homology on the primary sequence level, but they do share highly similar

structures (Lepperdinger, 2000). Our similarity analysis has shown, as well, that Drcpllb

protein is most similar to its orthologue in zebrafish, and is least similar to more distant

vertebrate species.

Our RT-PCR experiment shows an expression time course of the Drcpllb gene.

Sometime between mid gastrulation to the completion of gastrulation Drcpllb begins to

be expressed, as a PCR product band of 810 bp is not present at shield stage (6hpf) but is

at tailbud (l0hpf). This expression appears to continue through somitogenesis and into

the beginning of the larval stage (72 hpf). Expression has been shown in anterior neural

cells in X laevis from stage 12 to 25, when expression decreases. Later, around stage 35,

additional expression is seen in what the authors identify as the anlage of the future

choroid plexus (Lepperdinger et al., 1997). Like the frog, zebrafish may have a dip in
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expression between late gastrulation and 20hpf. A more thorough time course with

quantitative RT-PCR could resolve the question of whether or not drcpllb has continuous

expression from 10hpf to 72hpf. The RT-PCR data is inconclusive for the Drcplla gene;

there are currently no plasmids of this gene on which to test our primers.

We have also shown that the expression pattern of Drcpllb is similar to that of

Xlcpll (Lepperdinger et al., 1997) at the neurula stage. Both show expression at the

anterior edges of the neural plate. Our titration experiment shows that in situ

hybridization with the Xlcpll probe works best at a low concentration. This information

will permit further use of the probe in later stages of zebrafish development. In

particular, we would like to look for expression of Drcpllb during the stages of ventricle

expansion, from 1 8hpf to 22hpf. We do not know if clusters of cells in the neural tube

facing the expanded vesicles have differentiated into CP cells. The presence or absence

of Drcpllb expression along the tube could give us clues as to whether or not a defined

CP has emerged in the developing brain yet. Further, Drcpllb in situ experiments in later

stages of development could help us identify when and where the choroid plexuses

appear in the zebrafish.
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METHODS

Histology
Adult zebrafish heads were fixed for at least 24 h in Bouin's Solution. Fixed

tissue was washed over the course of a day in 50% Ethanol (EtOH), and stored overnight

in 70% EtOH. Dehydration washes included 2, lh washes in 95% EtOH, followed by 2x

lh washes in 100% EtOH. Fixed heads were then cleared in 3, 45 min. changes in xylene

(1 at 22°C and two at 60°). To the last xylene soak, an equal amount of melted paraffin

was added and let soak for 30 min in 60°. This solution was removed and replaces with

fresh paraffin for 1 h at 60°. The animal was then removed from the final soak and

embedded in a dish with fresh paraffin, oriented, and cooled at 220 C for several hours.

Sections were cut in 0.9 pm sections and mounted onto charged glass slides.

Paraffin was removed in a dehydration series beginning with xylene to EtOH to 1X PBS.

Slides were stained with Milligan's TriChrome, and then immediately dehydrated back

into xylene. Slides were then coated in a thin layer of Permount, and a slide cover added

atop. Sections were visualized on a Nikon microscope.

BLAST search

To find the zebrafish homologue of Xlcpll, we performed a BLAST (Washington

University) search using the Ensembl Zebrafish Database. The query sequence was the

protein sequence ofXlcpll (GenBank Accession No. S52354), and we searched the

zebrafish EST cDNA database using tblastn to compare our protein query against

nucleotide sequence databases dynamically translated in all reading frames. Our

threshold for significance was e-value <10, and our scoring matrix set at the default for

Ensembl. The highest scoring candidate was a cDNA EST ENSDART00000006682
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(gene: ENSDART00000007476, protein: ENSDARP00000023712), a sequence we

named Drcplla.

Additionally, we performed another BLAST search (Washington University)

using The Institute for Genomic Research (TIGR) Zebrafish Gene Index. We used the

same query sequence as previously identified, and searched the zebrafish cDNA EST

database using tblastn. Our threshold for significance was e-value <10, and our scoring

matrix set at the default for TIGR. Two EST sequences emerged with clearly high scores

(972 and 807 respectively): TC152924 and TC152923. The second of them, TC152923,

shared 100% nucleotide sequence similarity with the previously found Drcplla, and thus

these sequences are the same. We named TC152923 Drcpllb.

RT-PCR

RNA was isolated from embryos at stages 6h, 10h, 20h, 48h, 55h, 60h, and 72h

using Trizol (Invitrogen, Carlsbad, CA), following the manufacturer's instructions,

precipitated using 4M LiCl, and treated with DNase (Promega, Madison, WI) to remove

DNA contamination. First strand cDNA was synthesized with Superscript II Reverse

Transcriptase (Invitrogen) according to the manufacturer's instructions. Primers used in

PCR were: cplla: 5'-CAAACGTCTTCACAACGAAGAG-3' and 5'-

GGAGTAGTTCGCTTCTGTTT-3'; cpllb: 5'-TCTCTCCCCTCTGCTTTTGA-3' and

5'-CACCAGACTCTGCCTTGTGA-3'; /3-actin: 5'-TATCCACGAGACCACCTTCAA

CTCC-3' and 5'-CTGCTTGCTGATCCACATCTGCTGG-3'. The PCR reactions

contained 10x Hotstar Buffer (Qiagen), 10 mM dNTP mix, 20 mM each primer, and 2.5

U HotStar Taq Polymerase (Qiagen). The PCR cycle program began with 15 min 95°C

and cycled through 45 sec 94C, 45 sec 55°C, and 1 min 72°C 37 times. The PCR
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program ended with 10 min 72C and cooled to 4°C. Resulting DNA was run out on a

1% agarose gel and stained with Ethidium Bromide.

Whole mount in situ hybridization with cpllb

Drcpllb probe was made in the following way: a Zebrafish IMAGE cDNA clone

(IMAGE ID No. 7055904) containing a TC152923 insert was cut with EcoRI, the DNA

purified through phenol: chloroform extraction, and DIG-labeled RNA probed

transcribed using T7 RNA polymerase (Stratagene) in the previously described reaction

conditions.

Samples of probes were run as described previously in this text and quantified according

to the same method described for the patterning gene probes.

In situ hybridization followed the protocol described in Sagerstrom et al, 1996.

Specifically, the following conditions were used: fixed embryos at gastrula stage were

not permeabilized after methanol incubation, 10-18ss embryos incubated at 220C in 5

Rg/ml Proteinase K (Roche) for 2-3 min, and 24, 48, and 60 h embryos at 220 C in 10

Rg/ml Proteinase K for 5, 8, and 15 min respectively.

Based on RNA electrophoreses, the first in situ experiments in embryos staged

10 Ohpf-60hpf used probe at a concentration of 5 ng/!l in hybridization buffer. The

second experiment, in which probe was titrated out in embryos at Ohpf, used probes at a

concentration of 1 ng/gl, 2 ng/gl, and 4 ng/gl in hybridization buffer. The purple

precipitate resulted from a combination of NBT (Roche) and BCIP (Roche).
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Fig. 5. Sections of adult zebrafish brain. A. Cross section through tectum. B. Magnification of
boxed section in A. Arrow points to cells with villi facing the ventricle. Red stain labels nuclei,
purple labels neurons. Tectum opticum (TeO), tectal ventricle (TeV), torus longitudinalis (TL).
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Fig. 6. Multiple sequence alignment. Homologous lipocalin protein sequences have been aligned, along
with the translation products of putative zebrafish lipocalin-like prostaglandin D2 synthase homologue cDNAs.
Hyphens (-) represent gaps that were introduced to maximize similarities.Identical amino acid matches are
denoted with an asterisk (*), highly similar amino acids with a colon(:), and weakly similar amino acids with a
period (.). Colors denote type of amino acid as defined by the ClustalX (1.81) program.Xlcpll (Genbank
accession No. S52354), X laevis choroid plexus lipocalin; Bmlip (Q01584), B. marinus; Hspgds (AAA36494),
H. sapiens prostaglandin D2 synthase; DrTC 152924 (tentative annotation: similar to GP19911827), D.rerio
lipocalin-type prostaglandin D synthase like protein (a); DrTC152923 (BAB88223.1), D. rerio lipocalin-type
prostaglandin D synthase-like protein (b); Mmmup5 (P11591), M. musculus major urinary protein 5.
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Fig. 7. RT-PCR analysis of Drcplla and Drcpllb expression throughout a developmental
time course. RNA was extracted from staged embryos and were assayed by reverse
transcriptase-PCR (RT-PCR) for gene expression at stages 6h (lanes 2,9), Oh (lanes 3,10),
20h (lanes 4,11), 48h (lanes 5,12), 55h (lanes 6,13), 60h (lanes 7,14), and 72h (lanes 8,15).
Lanes 1 and 16 contain kb Plus DNA Ladder. Lanes 2-8 in A-C contain samples without RT
added, lanes 9-15 in A-C contain samples with RT added. A. Drcplla assay. B. Drcpllb assay.
C. f3-actin assay.
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C I'
Fig. 8. Expression of Drcpllb in l0hpf stage embryos. Whole mount in situ
hybridization (ISH); lateral view (A, C, D), dorso-lateral view (B). (A, B) hybridized
with 1 ng/pl probe in hybridization buffer, (C) with 2 ng/l probe in hybridization
buffer, and (D) 4 ng/tl probe in hybridization buffer.
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