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Abstract

Prostate cancer's high incidence and high survivability motivate its treatment us-
ing tightly focused radiation therapy. Brachytherapy treatment, the implantation of
radioactive seeds into the prostate, is increasing in popularity, spurred by advances
in medical imaging techniques for prostate visualization. Successful brachytherapy
requires precise positioning of implant seeds within the pelvic anatomy. Following
implantation, precise localization of individual seeds is required to evaluate treat-
ment, but this remains an open challenge. This thesis addresses the seed localization
problem with contributions for improving seed-based registration of MR and CT
post-implant images. A model for non-rigid, affine prostate motion is presented and
demonstrated to improve on current techniques of rigid registration. Also, an eval-
uation of the benefit of using multiple, rather than a few, seeds is presented, along
with a scheme for validating registrations using manually detected seeds in MR and
CT volumes. Finally, a scheme for automatic seed-based MR and CT registration by
aligning all seeds is suggested, with supporting algorithms for CT seed-finding and
unmatched feature registration. A call for an MR seed-finder is issued, for this is the
final component needed to achieve automatic and complete seed-based MR and CT
registration.

Thesis Supervisor: William M. Wells, III
Title: Research Scientist, MIT CSAIL
Associate Professor of Radiology,
Harvard Medical School and Brigham and Women's Hospital
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Chapter 1

Introduction

Medical image analysis has supported the development of diverse clinical treatments,

including image-guided surgeries, biopsies, and radiation therapies, for the brain,

breasts, pelvic and other regions in the body. This thesis presents image registration

techniques for application to the treatment of prostate cancer.

This chapter describes prostate cancer, brachytherapy treatment for prostate can-

cer, the role of medical imaging in brachytherapy, and methods to improve post-

implant evaluation of brachytherapy. It concludes with a description of the organiza-

tion of the thesis.

1.1 Medical context and significance

1.1.1 Prostate cancer

Prostate cancer is the most common non-cutaneous malignancy among American

men, with one in six American men expected to develop prostate cancer in his

lifetime[5]. It is the second leading cause for death from cancer among American

males.[5]. The high incidence of prostate cancer motivates significant research activ-

ity toward the development of treatments for this disease.

11



1.1.2 Motivation for brachytherapy treatment

For patients whose cancer is local to the prostate, three main treatment forms are

available [5]. The first, radical prostatectomy, involves surgical removal of the prostate

gland. The second, external beam radiotherapy, exposes the prostate to high-energy

X-ray beams from outside the body. The third and most novel treatment option,

brachytherapy, involves temporary or permanent implantation of radioactive seeds

into the prostate. Both external beam radiotherapy and brachytherapy depend heav-

ily on medical images for guiding and evaluating treatment.

The anatomy of the male pelvis presents challenges in the treatment of prostate

cancer. The prostate sits immediately anterior to the rectum, and the urethra passes

through the prostate. Therefore, all forms of prostate cancer therapy are known to

damage, to varying degrees, healthy tissues which neighbor the prostate, adversely

affecting urinary, rectal, and sexual functions [23, 7]. Figures 1-1 and 1-2 depict the

prostate's anatomy, including substructures of the prostate, such as the central gland

and the peripheral zone. The peripheral zone has been identified as the site where

most prostate cancers arise, making it a region of special interest for prostate cancer

treatment [13, 14].

Because 98% of all prostate cancer patients survive for five years after diagnosis,

and 84% survive ten years, care providers strive to treat the prostate while preserving

the urethra and rectum [5]. In other words, the ideal prostate cancer treatment

maximizes tumor control while minimizing morbidity (adverse effects of treatment).

Brachytherapy implants deliver a high radiation dose over a small, focused area

[12]. Thus, if precise and accurate implantation can be achieved, brachytherapy

promises to target diseased tissue while preserving healthy tissues. Brachytherapy

is less invasive and less expensive than prostatectomy, and requires fewer hospital

visits than external beam radiotherapy. Due to its promise and practical advantages,

brachytherapy is increasing in popularity [5].

12
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(a) Axial view of the male pelvis
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(b) Sagittal view of the male pelvis, indicating the
location (lower of two cross-sections, marked "B") of the slice shown in (a).

Figure 1-1: Drawings showing axial (from the bottom) and sagittal (from the side)
views of the prostate and surrounding pelvic anatomy. (a) shows the prostate's situ-
ation amidst the entire pelvis. (b) indicates the location of the slice shown in (a).
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Figure 1-2: This drawing shows the prostate, rectum, prostatic urethra, and sub-
structures of the prostate, including the central gland and the peripheral zone. Most
cancers are found in the peripheral zone, making it a special target for brachytherapy.
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1.1.3 History of prostate brachytherapy

In 1903 Alexander Graham Bell proposed treating prostate cancer by inserting ra-

dioactive sources into the prostate [221. Within a decade, the radioisotope 226 Radium

was being temporarily inserted into the prostatic urethra to treat cancer, and soon

after Radium needles were inserted into the prostate, via the perineum, guided by

"ca finger in the rectum" [21]. Despite successful reduction of lumps using this tech-

nique, the medical community paid little attention to prostate brachytherapy until a

small burst of development in the 1970s and 1980s. Only within the last decade has

prostate brachytherapy attracted widespread research attention and clinical use, due

to advances in medical imaging technology [22, 9, 21, 14].

1.1.4 Visualizing the prostate with medical images

Three image modalities are commonly used to visualize the prostate for a variety of

clinical purposes, including brachytherapy treatment. Each modality offers unique

advantages and suffers specific drawbacks.

Computed Tomography (CT)

Computed Tomography (CT) images are three-dimensional X-ray images. CT images

are generated by taking multiple 2D X-ray images in different planes and solving the

tomography (inverse projection) problem. Each discrete, 3D element, or voxel of a CT

image, maps to a grayscale intensity, which corresponds to the density of the material

imaged. Bones, implant seeds, and other dense materials appear in bright white in

CT images. Various soft tissues, such as muscles and organs, all have approximately

the same lower density, and appear in CT with duller intensity, in gray. CT provides

excellent spatial resolution and excellent contrast among hard tissue, soft tissue, and

air. Patients undergo CT scanning within an environment specialized for CT imaging.

In general, the major drawback of CT imaging is its poor differentiation of soft tissues.

CT images visualize brachytherapy implants as crisp, bright spots, but neither

clearly delineate the prostate from the neighboring rectum, nor differentiate the sub-

15



structures of the prostate. As of 2000, the American Brachytherapy Society asserted

that CT is the best modality for imaging seeds [19]

(a) CT scanner (b) CT scan of prostate

Figure 1-3: Brigham and Women's Hospital (BWH) uses the CT scanner (GE Light-
Speed QX/i) shown in (a) to image prostate seeds. An axial slice from a CT volume
of the post-implant prostate is shown in (b).

Ultrasound (US) Imaging

Ultrasound (US) is a nearly ubiquitous technology, best known for imaging fetuses

in pregnant women. US generally produces two-dimensional images, with intensity

values generated using sonar-based echo location. Three-dimensional US has recently

become available, but is not yet popularly used. Soft tissue contrast in US is good,

but air cavities and bones are imaged poorly. Another drawback of US imaging is

limited spatial resolution and noisy image signal. US's primary advantages are its

inexpensive operation and equipment cost, and its flexibility for use in a variety of

environments, including interventional settings.

In the brachytherapy context, ultrasound is popularly used for intraoprative, real-

time imaging feedback because it is inexpensive and easily applicable to the treatment

setting. Unfortunately, US images seeds very poorly, and US signals are disrupted by

the seeds [19]

16



(b) US scan of prostate [6]

Figure 1-4: Ultrasound produces noisy images of the prostate.

Magnetic Resonance (MR) Imaging

Of all medical imaging modalities, magnetic resonance (MR) imaging provides the

best contrast among different types of soft tissue. MR images are three-dimensional,

with intensities corresponding to the nuclear magnetic resonance (NMR) properties

of the materials being imaged. The main drawback of MR imaging is the often-

prohibitively high cost of purchasing and operating an MR scanner. Purchase of an

MR scanner costs millions of dollars. Another disadvantage of MR is that like CT,

most MR scanners are incompatible with a surgical or interventional environment,

and can be used only within specialized imaging settings.

Because of its superior soft tissue differentiation, MR is the imaging modality of

choice for visualizing pelvic anatomy. MR not only cleanly delineates the rectum,

urethra, and prostate, but also defines prostatic substructures. Among the substruc-

tures shown in MR is the peripheral zone, the region where most prostate cancers

originate, and which clinicians are especially keen to target [13, 14]. MR is the best

imaging modality for differentiating the peripheral zone from the central gland.

Unfortunately, seed visualization is problematic in MR. Seeds produce no MR

signal, so MR images represent seeds as amorphous black spots, or signal voids [19].

Where two or more seeds lie close together, MR images present large black spots,

17



from which the number of seeds imaged cannot be determined. A variety MR imaging

sequences, for example Ti-weighted, T2-weighted, and Spoil Gradient Acquisition in

the Steady State (SPGR), can be employed to highlight specific tissue or material

types. The distinctions between these sequences can be seen in Figure 1-5.

Interventional Magnetic Resonance (IMR) imaging

Generally patients' bodies are inaccessible during MR scanning. The patient lies on

a table which is inserted into the bore of a very large, monolithic magnet.

Recently, interventional magnetic resonance (IMR) scanners have been developed,

which split the scanner's magnet into two parts, separated by enough distance to a

physician to access the patient during imaging. Because of its enormous expense, very

few institutions operate IMR devices. IMR devices produce images which allow doc-

tors to produce images with high quality soft tissue differentiation while performing

surgery or other interventions.

1.1.5 Brachytherapy procedure

A brief description of the brachytherapy treatment procedure will be valuable to un-

derstanding the problem addressed by this thesis. The following is a brief overview of

the brachytherapy implantation procedure used by collaborators at the Brigham and

Women's Hospital (BWH) in Boston, MA. This description is summarized from the

protocol published by D'Amico, Cormack, Tempany, et al. [14, 11]. Brachytherapy

treatment is performed in fundamentally similar ways at most institutions. A note

on key procedural variations follows this description of BWH's procedure.

Brachytherapy is performed on patients in the early stages of prostate cancer, at

which point the cancer is local to the prostate. The entire brachytherapy treatment

takes a few hours.

Prior to implantation, clinicians acquire a three-dimensional Magnetic Resonance

(MR) image of the patient's pelvis in order to visualize and identify the target volume

of tissue. Using this pre-operative image, clinicians plan where to implant the seeds.

18



(a) MR traditional scanner

(c) T2-weighted MR axial slice (d) SPGR-weighted MR axial slice.

Figure 1-5: MR images are captured using a large magnet as shown in (a). Different

sequences highlight different tissues, as shown in images (b) of Ti-weighted MR, (c)

of T2-weighted MR, and (d), of SPGR sequence MR. TI- and T2-weighted images

produce superior soft tissue differentiation but poor seed differentiation, while SPGR
sequences resolve seeds as black signal voids but do not differentiate soft tissue well.

These three MR scans were taken in one session, less than an hour long, without
moving the patient between scans. The consistency in patient positioning throughout
these three scans introduces the possibility of easily registering these images to achieve

MR's promised soft tissue differentiation with suggested seed positions.
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(a) Front view of interventional MR scanner. (b) Side view of IMR scanner.

Side-dkd
Couch I

MR MR

L L
S S LJ

(c) Brachytherapy patient in IMR scanner. (d) Patient's position in IMR scanner.

Figure 1-6: Compared with a traditional scanner (see Figure 1-5), an interventional
MR scanner's magnet is cut into two pieces. Shown above, in (a) and (b), is BWH's
interventional MR scanner (GE Signa SP), configured for loading a patient through
th bore of the magnet. Photograph (b) shows why IMR scanners are often called
"open magnets." Photograph (c) shows a prostate brachytherapy patient loaded
from the side, in BWH's IMR scanner, for prostate brachytherapy. The patient's
legs are raised in the lithotomy position, and a needle guidance template is situated
before the patient's perineum [11]. The drawing in (c) offers another perspective of
the patient's position within the IMR scanner [11].
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The planning of seed positions must be precise and accurate because seeds deliver

a high radiation dose to immediately neighboring tissues, and the dose falls rapidly

with distance [12].

Implantation

During implantation, the patient lies on a table, in the lithotomy position, with

legs raised and spread to provide access to the perineum. Large needles are loaded

with radioactive seeds. The physician then inserts needles via the perineum into the

prostate. Following the insertion of each needle, an MR image of the patient's pelvis

is captured within the surgical setting. The resulting intraoperative image provides

real-time feedback about the needle's, and thus the seeds', actual position, which

clinicians compare with planned positions. Discrepancies between the planned and

actual seed positions can be corrected at this time.

When the needle position has been adjusted to fit the plan, the physician deposits

the seeds and removes the needle. This process is repeated until all planned seeds

have been implanted.

Typically 40-120, or an average of about 80, seeds are implanted. Seeds are

titanium cases filled with a radioactive isotope. At BWH and many other institutions

the radioactive isotope used is 12 Iodine, with a half-life of 60 days [12, 21]. Other

institutions use the radioactive isotope "'Palladium, with a half-life of 17 days[21].

Seeds deliver a clinically effective dose of radiation, enough to kill surrounding tissue

faster than the tissue can regenerate, for one to two half-lives [10]. At 4.5 mm in

length and 0.8 mm in diameter, each seed is just smaller than a grain of rice, as can

be seen in Figure 1-7 [21]. At BWH, the seeds are implanted permanently.

Intraoperative image guidance

Intraoperative imaging provides real-time dosimetric feedback, giving clinicians im-

mediate feedback about the dose distribution over pelvic volumes. BWH performs

brachytherapy under interventional MR guidance, a technology described in Section

1.1.4. The IMR scanner's split magnet is a very recently developed, very expensive

21



Figure 1-7: Radioactive seeds, shown here next to a penny, are just smaller than a
grain of rice.[11

technology, used by very few institutions. More popularly, trans-rectal ultrasound

(TRUS) is used to provide real-time dosimetric feedback during brachytherapy. As

described in Section 1.1.4, MR imaging provides significantly higher quality images

and delineation of the prostate and its substructures than does US, making it a much

more powerful intraoperative guidance tool. The advantages of IMR over TRUS-

guidance are discussed by D'Amico, Cormack, Tempany, et al. [14, 11, 12]. CT

intraoperative guidance is also possible, but is very rarely used [19].

No matter the implantation protocol or choice of image-guidance modality, in

all cases, after implantation an evaluation is necessary to determine the actual dose

distributed to the pelvic tissues.

1.2 Post-implant dosimetry and seed localization

Knowledge of the seeds' final resting positions allows doctors to evaluate the success of

the implantation. Precise seed localization with respect to anatomical structures can

indicate whether adequate doses of radiation are being delivered to the targeted tissue,

and whether potentially dangerous doses are being delievered to healthy tissues.

Post-implant dosimetry is the problem of measuring actual dose distributions with

respect to the patient's prostate and neighboring tissues. A necessary precursor to

post-implant dosimetry is precise seed localization, with respect to the prostate, rec-
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tum, and urethra. Some clinicians are also interested in knowing seed positions with

respect to the substructures of the prostate, specifically the peripheral zone [14].

During and after implantation, the prostate and surrounding tissues swell, possibly

causing seeds to shift within the patient's body. Therefore, despite knowing the

locations of seed-bearing needles at implantation time, post-implant seed localization

is not straightforward.

Precise seed localization for post-implant dosimetry remains a major challenge in

prostate brachytherapy. This problem is the clinical motivation for this thesis.

1.2.1 MR and CT registration for seed localization

Given the complementary strengths of MR and CT modalities for visualizing soft

tissue anatomy and implant seeds, MR and CT image registration has emerged as

a popular approach to seed localization. This general technique, also called fusion,

involves reformatting either image to align with the other image to allow for combina-

tion of the visual information in the two images. In the context of seed localization,

the goal of MR and CT image registration is the alignment of seeds.

Early methods in post-implant multi-modal registration between MR and CT or

US and CT aligned anatomical surfaces such as contours of the urethra, bladder,

or rectum between the two images [20] [8]. Similar techniques have been used to

solve registrations for external beam radiotherapy treatment applications. Anatomi-

cal contour-based regitration techniques may roughly align the prostate capsule or the

prostatic urethra between two images, but they do not specifically align individual

seeds. At best they allow localization with respect to the prostate capsule as a whole.

A seed-based alignment was first introduced by Dubois [16], and this style of

registration has since become the standard for MR- and CT-based dosimetry [10].

Commercial vendors now produce software to perform rigid MR and CT alignment

based on manually selected corresponding seeds.
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1.2.2 Limitations of existing seed-based MR and CT regis-

tration methods

The prostate's deformability is a well-known and frequently observed phenomenon.

Van Herk showed that the prostate is subject to deformation due to slight movements

of the legs and filling of the bladder and rectum [18]. Existing post-implant dosimetry

registrations lack a model which captures the prostate's deformability. A non-rigid

model is needed to better represent the movements of the prostate between post-

operative image scans.

Also, in practice, existing seed-based registration methods use only three pairs

of seeds, rather than the 80 or so pairs of seeds which are implanted and which

must be precisely aligned. This effective "three-seed limit" is due primarily to the

inconvenience of seed-finding, which is a manual process. This limitation speaks

to a need for automatic seed registration, and an implied need for automatic seed

detectors.

Finally, there is a lack of methods for validating alignments of seeds.

1.3 Contribution

This thesis addresses the need for a non-rigid model of motion, more automatic reg-

istration, and validation of seed localization.

First, we verify that improved registration accuracy results from the use of a

large number of seeds. Second, we establishe that seed-based registration is improved

using a non-rigid model of prostate motion. Third, we contribute a method for

registering automatically detected seeds. Finally we suggest methods for automatic

seed detection in MR and CT post-implant images. The combination of the above

four contributions culminates in a scheme for validation of post-implant registration

techniques, and suggests an automatic validation scheme.

In short, this thesis immediately meets the first need, by contributing improved

model of non-rigid prostate movement, and addresses the third need by demonstrating
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a manual validation scheme. The second need, for increased automation of post-

implant seed localization presents further research challenges in the area of automatic

seed detection.

1.3.1 Immediate usability in clinical settings

Improved registration with non-rigid affine modeling can be immediately applied in

the clinical setting, to replace the current standard three-point rigid registration al-

gorithm. The concept of validation by multiple seeds can also be immediately applied

to evaluate the the quality of existing registrations.

In the future, if a reliable MR seed-finder can be designed, then this work provides

a registration scheme and a CT seed-finder which will perform automatic, seed-based

non-rigid registration of the prostate, using all seeds. The process will require an

initial registration which can be generated using intensity-based or current three-point

techniques. This technique promises excellent seed localization because all seeds will

be individually aligned.

1.4 Organization of Thesis

This thesis begins by presenting detailed background information which will facilitate

the reading of the remainder of the thesis. An automatic seed detection algorithm,

which works reliably in CT and problematically in MR, is presented in Chapter 3.

Chapters 4, 5, 6, and 7 describe the design and performance of rigid and affine

registration techniques for matched and unmatched features. Experiments in Chapter

7 demonstrate the need for multiple-seed alignment, the utility of a non-rigid affine

model, and the feasibility of registration on unmatched seeds. This thesis concludes

in Chapter 8 with a review of contributions made by this thesis and a survey of

directions for further research.
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Chapter 2

Background

A background on image acquisition, representation, and registration will facilitate an

understanding of the problem of seed localization by MR and CT registration, and

the present research. This chapter provides this background information as well as a

detailed view of current, widely used approaches to post-implant dosimetry.

2.1 Post-implant image acquisition

All data which motivated, and which was used to evaluate, this research was collected,

with appropriate consent, at BWH from patients undergoing prostate brachytherapy

treatment, as described in the Introduction (see 1.1.5). Six weeks following implan-

tation, CT and MR scans were acquired on the same day at separate imaging suites

within the hospital. Time between scans was allowed to span the entire day.

CT images were using a General Electric Medical Systems (Milwaukee, WI) Light-

Speed scanner, typically with 320 mm field of view and 1.25 mm slice thickness; matrix

size 512. This corresponds to voxels of dimension 0.625 x 0.625 x 1.25 mm.

Post-implant MR images were scanned using a conventional MR scanner (Signa

1.5T, General Electric, Milwaukee, WI), typically with 200 mm field of view and

2 mm slice thickness; matrix size 256. For each patient a series of different MR

scans were collected in the same session, including Ti-weighted, T2-weighted, and

Spoil Gradient Acquisition in the Steady State (SPGR) sequences. Each of these MR

27



imaging techniques produces high contrast of a specific type of tissue or material.

T2-weighted images provide the best delineation of the prostate, rectum, urethra

and prostatic substructures. Meanwhile SPGR produces the highest contrast, among

various MR techniques, between seeds and soft tissues, while also providing effective,

if not ideal, differentiation of the prostate from neighboring anatomy. Despite its

leading the MR techniques in seed visualization, SPGR seed imaging is nevertheless

problematic in the ways described in 1.1.4, necessitating registration with CT images.

Since no single post-implant MR technique provides ideal visualization of both

anatomical structures and seeds, the T2 and SPGR datasets can be registered to

produce a dataset featuring excellent soft tissue contrast and slightly problematic

seed visualization. This technique of registering CT with SPGR sequences, and then

registering SPGR with T2-weighted MR is not yet used, but is expected to provide

optimal seed localization.

2.2 Image representation

Of the various MR scans collected postoperatively, the SPGR scan is selected for

registration with CT because of its superior resolution of seeds. In general, this

thesis will use post-implant MR to refer specifically to the SPGR image.

Post-implant CT and MR images are three-dimensional, or volumetric, images.

They are represented as three-dimensional matrices. Each matrix element, called a

voXel, maps to a grayscale intensity (brightness) value. We can think of volumetric

images as functions mapping 3D coordinates to intensities.

Consider an arbitrary image defined over a coordinate space S in R3. The image

is an intensity function f : S --+ intensity over the space. Let each point in the image

PX

p E S be represented as a column vector in R3 , p = py The grayscale intensity

PZ
of the image at any point p in the image is f (p).

28



2.2.1 Homogeneous Coordinates

Often in image processing, and specifically in the present research, we will find it

convenient to use homogeneous coordinates to represent image point coordinates. A

three-dimensional point p = py can be represented in homogeneous coordinates

as

Px

Ph = or Ph PY

1 Pz

1
The additional, fixed, unitary parameter facilitates compact representations of

rigid and affine transformations. The utility of this representation will become ap-

parent in 4.1.1 and 5.1.

2.3 The general image registration problem

Image registration is the problem of reformatting one image, which we will call the

floating image, into the coordinate space of another image, which we will call the

fixed image. Image registration is solved by finding the floating image's position, ro-

tational orientation, and possible deformations in the fixed image's coordinate space.

The solution is given as the parameters of a coordinate transformation which maps

locations in the floating image to their corresponding locations in the fixed image's

space.

A coordinate transformation maps a coordinate p from the floating image to a

coordinate p' in the fixed image, according to a transformation T. In other words,

p' = T(p).

If the floating image moves into the fixed space as a rigid body, then the transfor-

mation represents changes only in position and rotational orientation, and is called

the floating image's pose in the fixed space. In this thesis, we will slightly abuse

this terminology and let pose refer to slight non-rigid deformations as well as rigid
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movements.

2.4 General solution sructure for image registra-

tion

As just explained, the goal of an image registration algorithm is to find the transfor-

mation parameters which move the floating image into optimal alignment with the

fixed image.

An image registration algorithm is comprised of three key components:

* A coordinate transformation, or model of motion or deformation.

* A objective function of similarity, or measurement of the quality of the align-

ment. This should be based on comparisons of the two images' intensities or

features.

" An optimization strategy or method for searching for the optimal transformation

parameters, as measured according to the the similarity objective.

In somewhat rare instances, optimization strategies can be implemented as simple

linear systems. More generally, iterative process are employed to search for an optimal

alignment.

The process of iteratively solving a registration is a loop over the following steps:

1. Produce an alignment; that is, assign values to the parameters of the coordinate

transformation which will align the floating image into the fixed image's space.

2. Reformat the floating image according to the new alignment. Measure the

similarity between the aligned images, in terms of the similarity objective.

3. Use the optimization strategy to guide the next iteration of the process toward

a better similaritiy.
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The result of this iterative process is a set of transformation parameters, also

sometimes called a pose estimate, which describe the optimal alignment, as measured

by the specified similarity objective.

In many cases, the optimization strategy may be a local method, which is subject

to becoming trapped in local extrema. Local strategies also require initialization

to rough estimates of the optimal alignment. Without such an initilaization, local

strategies sometimes converge on false, locally optimal solutions.

2.5 State of the art in dosimetry: three-point rigid

(3PR) registration

Currently BWH performs post-implant dosimetry using commercial MR and CT reg-

istration software.

SPGR sequence MR images are selected for post-implant registration because of

superior resolution of seeds. These MR images are registered with CT using Advan-

tage Fusion software (General Electric Medical Systems, Milwaukee, WI). Advantage

Fusion software produces rigid registrations. It suggests an intensity-based initial rigid

registration, within which the user selects three or more pairs of matching points in

the two images. Advantage Fusion then corrects the registration to the best rigid

alignment of the user-defined control points [?].

At BWH, the physicist, who plans and evaluates seed positions, produces three

alignments using Advantage Fusion software. The physicist first selects one pair

of matching control points to initialize the software's initial, intensity-based regis-

tration. He then refines the suggested rigid alignment by selecting three spatially

extreme, unambiguous seed pairs, as rigid registration control points. The physicist

reports that these seed pairs generally lie outside the prostate organ, within highly

deformable, surrounding tissue. Because these seeds are prone to move in relation to

the prostate organ, the planning physicist deselects these extra-prostatic seed pairs

once the software has used them to update its rigid alignment. Given the updated
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alignment, the planning physicist selects three new, unambiguous seed pairs from the

spatial extremes of the prostate organ itself. Using this second set of three control

points, Advantage Fusion software produces its final, rigid alignment, a three-point

rigid registration (3PR). By personal communication, the BWH planning physicist re-

ports that although commercial software allows alignment by more than three points,

clinicians typically use only the minimum three, as a matter of convenience [10]. Clin-

icians currently perform post-implant dosimetry using a fused dataset, produced by

overlaying high intensity voxels from the CT image over the 3PR-reformatted MR

image. These fused images align seeds well enough to show whether or not they

cover the prostate. However, the 3PR registration can be prone to significant error.

Experiments in registration in Chapter 7 illustrate the limitations of 3PR registration.
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Chapter 3

Seed Detection

The goal of post-implant MR and CT registration is to locate seeds in relation to soft

tissue anatomy in order to facilitate seed localization for dosimetry. Therefore, we

are concerned with improving seed-based registration. Seeds must first be detected

before they can be used to control and evaluate image registration. This chapter

describes the design and performance of a seed detector, whose function is to semi-

automatically find seeds within MR and CT volumes.

3.1 A need for automatic seed detection

The widely used 3PR registration algorithm uses only three seeds to define a rigid

registration and makes no attempt to align each of the remaining seeds. However, if

each seed is to be precisely located within soft tissue anatomy, then all seeds should

be aligned. Manual detection of seeds can be time-consuming and tedious, enough so

that clinicians currently stop at finding a minimal three seed pairs out of convenience.

Registration of all seeds is therefore unfeasible if it depends on the manual detection

of all 40-120 seeds implanted in each patient. Therefore, automated seed detection is

necessary for full, seed-based registration.
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3.2 CT seed-finding

This section describes a simple, semi-automatic seed-finding algorithm. The present

algorithm relies on interactive visualization of axial and sagittal views of the image

volume in question. This algorithm was designed for CT seed-finding and is presented,

and evaluated first in the CT context.

3.2.1 Intensity thresholds

CT image intensity is very high for voxels representing seeds. Generally, only bones

appear with comparably high intensity in CT images. Voxel intensities are generally

the highest in the center of the seed and are slightly lower on the periphery of the

seed. In an image with 0.625mm pixel size and 1.25mm slice thickness, seeds are

typically 2 pixels by 2 pixels by 1 slice at their brightest, with a slightly less bright

border around the center measuring 1-2 pixels or 1 slice in thickness. In other words,

including their less bright periphery, seeds are roughly spherical, with diameter about

3.2-4.8 mm. A closeup view of a typical CT seed is shown in Figure 3-1.

Figure 3-1: An axial (left) and sagittal (right) closeup view of a CT seed. The sagittal
view has been stretched in the vertical axis according to the slice:pixel ratio to form

an isometric view. Each pixel width (and half the vertical pixel height in the sagittal
view) corresponds to 0.625 mm.

To begin the CT detection, the user first defines a region of interest immediately

around the prostate, and excluding bone structures if possible.
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On any slice containing seeds, the user interactively finds an initial threshold

intensity by selecting high intensity seed-center regions. The minimum value from

these selections is used as an initial estimation for CT seed intensity threshold.

From here, the user can view the thresholded regions and adjust the threshold to

capture only seed-like regions.

3.2.2 Connected components as candidate seeds

A comparison of the entire CT volume against the threshold produces a binary vol-

ume, which can be thought of as an indicator function mapping voxels to an indication

of whether or not the voxel has seed-like intensity.

"Connected component analysis" is performed on the threshold-binary to produce

clusters of adjoining seed-colored voxels. Each cluster is a candidate seed.

In an effort to minimize the clustering of multiple seeds into a single candidate

seed, strong connection, specifically 6-connectedness (three-dimensional connection

by full faces), is chosen as criterion for two high intensity voxels to be considered

connected. This eliminates single-point or single-edge connections, both of which are

assumed to be too tenuous to represent cohesion within a concave, cylindrical seed.

3.2.3 Representing seeds

After connected component analysis, further shape or intensity analysis can be per-

formed on candidate seeds to filter out bones, non-seed artifacts, and . However,

at the writing of this thesis, all candidates seeds are simply assumed to be seeds.

Extended techniques are discussed in Section 3.6.

Each seed is represented as a single, three-dimensional point, given by the coor-

dinates of its centroid in the space of the image volume.
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3.3 Performance of the semi-automatic CT seed-

finder

The CT seed-finder finds 89 seeds for the volume shown with automatically detected

seeds in Figure 3-2. A scan through axial and sagittal slices of the volume with found

seeds overlaid reveals that the CT seed-finder detects one false positive, a hollow,

high-intensity structure, about three seeds in diameter. The CT seed-finder counts

3 pairs of closely neighboring seeds as single seeds, and misses three high intensity

regions, which are visibly duller and either significantly larger or smaller than seeds,

which are generally extremely consistent in shape and size. In summary, out of 89

seeds detected, the CT seed-finder produces no certain misses and one false positive,

with three clustering errors, for very successful detection.

User interaction for the CT seed-finder is minimal, as threshold adjustment is fast

and straightforward, and connected component analysis is typically completed within

20 seconds on a high-end workstation.

3.4 Semi-automatic MR seed-finding

In contrast with crisp their crisp appearance in CT, seed visualization in MR is less

than ideal. Figure 3-3 shows a closeup view of a typical MR seed, whose intensity

pattern is darkest in the center, with a gradual increase in intensity with distance

from the center of the seed. At its vaguely defined periphery, a typical MR seed

measures 3.9-5.1 mm in roughly spherical diameter.

Unfortunately, air and some anatomical tissues produce low MR signal, which

can be confused with seed intensities. MR seed visualization is further complicated

because MR signal strengths are known to vary across a single volume. In other

words, whereas seed intensities are roughly constant in CT, this is not so in MR.

For simplicity, the same approach to CT seed-finding is applied to the MR seed-

finding problem. Because seeds produce no MR signal (see 1.1.4), MR intensities are

very low at seed voxels. Therefore, the MR seed-finder's intensity threshold is selected
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Figure 3-2: Seeds detected in CT volume, overlaid on the CT image in an axial (top)
and sagittal (bottom) view. At their centers, seeds appear as bright white spots in the
CT image. Black crosses are overlaid at the centroids of semi-automatically detected
seeds. Some smaller or duller spots appear in the axial view. These are seeds whose
centers are in the preceding or following slices, and are detected in those slices (not
shown). Some dark spots appear in the roughly linear seed patterns in the sagittal
view. These are artifacts which surround the bright white seed spots. The artifacts
can be seen in the axial view. One pair of seeds in the axial view can be seen to have
produced a single detected candidate seed. Corrections for this error are addressed
in Section 3.6
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Figure 3-3: An axial (left) and sagittal (right) closeup view of an MR seed, which
has been reformatted into CT space using 3PR registration. The sagittal view has
been stretched in the vertical axis according to the slice:pixel ratio to form an iso-
metric view. Each pixel width (and half the vertical pixel height in the sagittal view)
corresponds to 0.625 mm.

to accept only very low intensities. As before, the intensity threshold is adjusted

interactively using visual feedback of the voxels captured by the threshold. As with

the CT seed-finder, strong connected component analysis is used to form candidate

seeds, which are at this stage declared to be seeds. This intensity thresholding and

connected component approach is very similar to the CT seed-finder reported by

Brinkmann and Kline, which was validated in comparison with manual seed-finding

in two-dimensional radiographs [?]

3.5 Performance of the MR seed-finder

A constant number of seeds appears in the paired MR and CT volumes used to test

the seed-finders. The CT seed-finder found approximately 90 visually validated seeds.

Given the user-adjusted threshold, the MR seed-finder found 189 candidate seeds.

A scan through the volume reveals that roughly one quarter of these candidate

seeds are false positives, corresponding to regions in bones and the rectum, and other

artifacts which are not shaped like seeds. Another error results from the significant

number of single seeds which produce several "candidate seeds" because their lowest

intensity regions are not connected. Despite the high number of candidate seeds

produced, at least 10 misses also occurred. The results of the MR seed-finder can be
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Figure 3-4: Candidate seeds' bounding boxes generated by the MR seed-finder are
overlaid on the MR image. In the axial view (top), the seed-finder successfully finds
6 seeds in the large, central, circular prostate region. The lower-most seed is most
likely a false positive corresponding to air in the rectum. The seed-finder glaringly
misses a few seeds, which should be completely outlined by their bounding boxes.
In the sagittal view, a vertical swath of about ten seeds, and falsely connected seed
pairs, is successfully detected. It is not clear whether the candidates detected in the
upper right are false positives. The candidates in the dark region are probably false
positives, lying in the rectum. The very large bounding boxes are caused by poorly
defined region of interest, which includes zero signal areas from 3PR reformatting.
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visualized in 3-4.

A visualization of found candidate seeds' bounding boxes, overlaid on the MR

volume indicates the reason for the high number.

3.6 Future directions for automatic seed-finding

The simple seed-finder presented identifies seeds as connected clusters of voxels above

or below fixed intensity thresholds. To improve both MR and CT seed-finding, the

following techniques have been considered but not yet implemented and tested. This

section describes directions for further research in automatic or semi-automatic seed-

finding.

3.6.1 Separating adjacent seeds and excluding large shapes

First of all, the shape of seeds can be used to improve seed detection. Seeds are

consistently small, and round-shaped in both MR and CT images.

To further minimize multiple-seed clustering, connected components with large

bounding boxes can be eroded using a simple, 2-dimensional square-shaped structur-

ing element in an effort to eliminate connections between adjacent seeds. Erosion is a

morphological (shape) operation which reduces the extent of shapes to fit the shape

of the designated structuring element [?].

After erosion, tightly neighboring seeds should have been separated. Therefore,

all remaining large components, which exceed 5 x 5 pixels x 3 slices, can be excluded

on the assumption that they represent bone, or other non-seed objects.

Following erosion and large-size-filtering, all remaining connected components are

assumed to be seeds. This assumption can be confirmed visually by overlaying the

connected components' (that is, the seeds') bounding boxes over the CT image volume

from which they have been found.
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3.6.2 Shading gradients

If the MR seed intensity is variable, MR seeds nevertheless feature an invariant pattern

of low-intensity centers with higher intensity peripheries. Rather than using a simple

intensity threshold to find seeds, intensity gradients can be searched for ball shapes

with low intensities in their centers.

3.7 Conclusion on semi-automatic seed-finding

Semi-automatic seed-finding is an important tool for seed-based registration. This

work verifies that CT seed-finding is straightforward and requires only minimal user

interaction to set the threshold.

On the other hand, simple intensity thresholding has been shown to be problematic

for MR seed-finding. If a semi-automatic MR seed-finder can be achieved, then given

automatically found seeds, full seed-based registration can be automated. Therefore,

automatic seed-finding should receive further research attention.
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Chapter 4

A rigid registration algorithm for

matched seeds

The development of a rigid registration algorithm allows us to eventually answer two

questions. The first asks, can three seeds produce a good alignment of all seeds in the

prostate, or should more seeds be used? The second asks, is it appropriate to perform

registration using a rigid model of the prostate? These questions will be answered

in Chapter 7. The present chapter describes a rigid registration algorithm based on

corresponding seeds.

4.1 The rigid model of motion

As described in Chapter 2, an image registration algorithm consists of a coordinate

transformation, an objective or measure of similarity, and an optimization scheme.

The solution to a registration problem is an assignment of values to the transforma-

tion's parameters.

A rigid registration uses a rigid transformation, which describes the physical mo-

tion of rigid bodies. The characteristic feature of rigid bodies is that the distances

and angles between any two parts of the object remain fixed through any motion of

the object. Likewise, on an image, a rigid transformation preserves distances and

angles between all pairs of coordinates in the image.
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Rigid motion encompasses translation and rotation. In three dimensions, a rigid

transformation is defined by three degrees of freedom for translation, and three for

rotation, for a total of six parameters.

4.1.1 Representing the rigid transformation

First, we recall our representation, introduced in 2.2, of an image as an intensity

function over a coordinate spaces, and we recall our representation of a coordinate

Px

point as a column vector p = py Now, if we think of the rigid transformation

Pz
TRigid as a function which maps the 3D coordinate point p to a new 3D coordinate p',

then we can express the rigid transformation as the composition of a rotation TRotation

and a translation TTranslation on p, as follows

P' Taisi (P),

where

TRigid(p) = TTranslation 0 TRotation(P)- (4.1)

Translation

Translation TTranslation(p) of a point p is usually represented as the addition of the

di

point with a column vector D = d2

d3

which represents the distance and direction traveled. Translation of a 3D point p

to a new 3D coordinate p' can be expressed as

P' = TTranslation (P),

where

TTranslation(p) =p + D (4.2)
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Pr di

= Py + d2

Pz d

Rotation

A rotation is a linear transformation on a coordinate vector. A proper rotation matrix

only rotates coordinates, and does not scale, translate or distort relative distances or

angles. Rotation transformations are constrained to be orthonormal with determini-

nant 1 [27].

As Horn suggests, a multitude of representations for rotation exist. Rodrigues'

formula for rotation, provides a straightforward representation of rotation, written in

terms of a three-dimensional unit vector Lo representing axis of rotation, and a scalar

angle 0 of rotation about the axis [17]. Rodrigues' formula is written as:

TRotation (P) = (cos0)p + (sinr)w x p + (1 - cos0)(w -p)w (4.3)

As shown in [26], Rodrigues' formula can be expanded into matrix form:

TRotation(P) = R py , (4.4)

PZ

where

cosO + w (1 - cosO) wXwy(1 - cosO) - wzsinO wy sinO + wxw,(1 - cosO)

R = w msOin + wXw V(1 - cosO) cosO + w2(1 - cosO) -wxsinO + wyw,(1 - cosO)

-W sinO + wxw(1 - cosO) wzsirnO + wywz(1 - cosO) cosO + w (1 - cosO)
(4.5)

We now compose rotation and translation into a rigid transformation. For a point

p defined as a three-dimensional column vector, equation 4.1 can be rewritten as
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TRigid(p) = Rp + D.

Using homogeneous coordinates, we can represent the rigid transformation of a

3D point p to a new 3D coordinate p' as as a matrix multiplication

TRigid~p

with

T P Rp+D,

where

-11 712 r 13 di

T = r21 r22 r23 d2

r31 r32 r 33 d3

A note on the non-linearity of rigid transformation

Because TRigid(p) can be represented as a matrix multipliciation with a column vec-

tor addition, rigid transformation may at first appear to be linear in its parameters.

Unfortunately, the rotation matrix R's parameters are never simply its elements.

Instead, as we have discussed, R is constrained to be orthogonal. Rodrigues' for-

mula for rotation is obviously non-linear in its parameters 0 and w. While other

parametrizations of rotation are possible, no known parametrization of rotation is

linear in its parameters. This observation will be relevant to the optimization of the

transformation, discussed in 4.3.

4.2 Seed-based similarity criterion

Since our goal is to align seeds, we use seed positions to measure the similarity between

aligned images. A popular similarity objective for a variety of approximation and

estimation problems is the Sum-Squared Error (SSE) criterion. We will use sum-
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squared distance between corresponding seeds as our objective function. In general,

for a transformation T(p) with parameters collected in a column vector 0, we can

write T as a function of both p and 3, or T(3,p). We then define our objective

function as

J(O) = Jui - T(3, vi) 12, (4.6)

where ui and vi are the coordinates of a pair of corresponding seeds in the two

images. According to the objective function J(O), the best rigid transformation is

the one whose parameters 3 minimize the sum-squared distance between seeds. This

can be expressed as

/ argmin J(1 ),

or equivalently

/ = argmin Ui - TRigid(13, Vi)1 2 . (4.7)

3 is the rigid transformation which minimizes the sum-squared distance between

seeds.

4.2.1 Representating transformation parameters in the con-

text of optimization

For a rigid transformation TRotation, 3 is a column vector representing three degrees

of rotational and translational freedom. For convenience in calculating the rigid

transformation, we previously characterized the rotation matrix R using Rodrigues'

formula, in terms of a three-dimensional axis of rotation w and a scalar angle of

rotation 0. Rodrigues' formula represents three rotational degrees of freedom using

four parameters (three in w and one in 0), though w is constrained to be a unit vector.

The constraint makes it difficult to search among values for the parameters for the

solution which optimize our objective function. Another view of the inconvenience
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of optimizing Rodrigues' representation is to consider the shape of the space we

are trying to search. We are essentially trying to find the optimal point on a unit

sphere, which corresponds to the axis of rotation, and some angle, which is difficult to

characterize. We are generally used to maximizing and minimizing functions in R or

R2 or R3 , to optmize a function on a unit sphere with some angle is more complicated.

To make optimization or search for parameter values easier, we can select new

rotational parameters which are convenient to search, and then relate them to Ro-

drigues' parameters. We define our new rotation parameters as the elements of a

three-dimensional column vector Q which is related to Rodrigues' w and 0 as follows.

Q =WO (4.8)

or

q2 = w2  0

q3 W3

While w and 0 have the physical meaning of a unit axis and associated angle of

rotation, Q does not have an actual, physical meaning. However, Q can be geometri-

cally understood as a vector in the direction of w with length 0, or alternatively as a

point in R3. Unlike w, Q is not restricted to lie on the unit sphere. Also, whereas W

previously lacked a clear representation in a searchable space, its value now describes

the length of Q. Q spans R 3, a space over which optimization is very well-developed.

We now have two parametrizations for rotation. The first, Rodrigues', is con-

venient for evaluating the coordinate transformation TRagid. The second, Q, is con-

venient for optimizing search. Equation 4.8 describes how to convert Rodrigues'

representation into Q. To convert Q back to Rodrigues' representation, we can do

_Q

IQI
and
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We now have an easily searchable trio Q of rotation parameters spanning R3 . Our

translation parameters D also span R3. Now satisfied that we have six parameters

which we can optimize using existing techniques, we collect the parameters into a

single, six-dimensional column vector, 0 = [QD]'.

4.3 Nonlinear optimization of rigid sum-squared

error

We must now search a six-dimensional Euclidean space spanned by the parameters

collected in 13 for the values which optimize our objective function. In general, opti-

mizing an objective criterion is equivalent to maximizing or minimizing the objective

function.

Recall our solution 3, as characterized by 4.7. To find /, we might consider trying

to solve

VO J(/3) = 0. (4.9)

Because J(13) is quadratic in Tigid, 4.9 is linear in TRigid. At first 4.9 may seem

at to be a linear equation. Unfortunately, as we saw in 4.1.1, TRigid (0) is not linear

in #, and so 4.9 may be difficult to solve.

To optimize / we can use any of several standard techniques of nonlinear optimiza-

tion. For the experiments discussed in Chapter 7, the Downhill Simplex algorithm

was selected as the nonlinear opimization algorithm.

The Downhill Simplex optimization method, developed by Nelder and Mead,

searches the parameter space by evaluating the objective function at the vertices

of an object which moves about the space according to well-defined rules which direct

the shape toward optimal values of the objective function. In other words, the ob-

jective function is evaluated at points in the search space which eventually converge

upon the optimal points in the search space. The points of evaluation define the
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vertices of the object, called a simplex, which specifically has one more vertex than

the dimensionality of the space. The simplex traverses the search space by reflecting

over one of its edges, by contracting, or by expanding [24].

As a local method for optimization, Downhill Simplex requires the user to provide

an initial, rough pose estimate.

4.4 Rigid registration summary

This chapter has presented a rigid registration algorithm which optimizes a rigid

transformation to minimize the sum-squared distance between corresponding seeds

in the post-implant MR and CT images. Optimization is conducted using the Nelder-

Mead Downhill Simplex method.

The clinically used commercial solutions for rigid registration likely use an algo-

rithm very similar to the one presented in this chapter. The software used at BWH

requires initialization by intensity-based alignment, and can perform registration over

three or multiple seeds. However, in practice, only three seeds are used.

This rigid registration scheme requires knowledge of correspondences between

seeds. It has been provided in this thesis primarily to allow for comparison between

rigid and affine models of prostate movement, and for comparison between three-point

and many-point registrations. These comparisons are made in Chapter 7.
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Chapter 5

An Affine Registration Algorithm

For Matched Seeds

Van Herk reported that the prostate changes shape between image scans, even when

taken with the patient in the same anatomical position [18]. Although patients lie

in the supine position for both post-implant CT and MR image acquisitions, these

scans are performed at different imaging suites, sometimes hours apart. Thus, MR

and CT image acquisition allows for variations in patient positioning, and in bladder

and rectal filling, both of which are factors identified by Van Herk as affecting prostate

shape and position.

Despite van Herk's evidence of non-rigid prostate motion, rigid registration re-

mains the clinical standard [10].

In this chapter, we explore a model fe assume that the post-implant MR and CT

imaging procedures allow the prostate to move non-rigidly betwen scans.

The prostate's shape change motivates the use of a non-rigid transformation for

MR and CT registration. The simplest non-rigid model is the affine transformation,

which generalizes rigid movement to include shears and non-isotropic scaling. Affine

transformations preserve parallel lines.
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5.1 Non-rigid model of motion using affine trans-

formation

Affine motion generalizes rigid motion to include shearing (slanting) and non-isotropic

scaling (that is, stretching along one but not all dimensions). Affine transformations

do not preserve relative distances and angles but they do preserve parallel lines.

The affine transformation of a three-dimensional coordinate point p to a new 3D

coordinate p' is given as p' = TA f ine (P)

As in the rigid case, the affine transformation can be thought of as the composi-

tion of two transformations, a generalized rotation transformation and a translation

transformation. TAf fine (P) = TTranslation 0 TGeneralizedRotation (p) -

Translation can be represented just as it was in the rigid case, as TTranstation(P)

p+ D.

In contrast to the complicated rigid rotation matrix, the generalized rotation

transformation is simply an unconstrained 3 x 3 matrix. That is,

TGeneralizedRotation (p) = Alp

M1 1 M 12 n 13  pX

i 2 1 in 2 2 i 2 3  Py

i 3 1 M3 2  M 3 3  Pz

Composing rotation and translation into the affine transformation, we have

TAffine(P) = Mp + D.

Using homogeneous coordinates, the affine transformation TAf fine (p), which maps

p to a new 3D coordinate p', can be written as a matrix multiplication with the affine

matrix A, as
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TAffine(P) = A

A P]
L1

where

Mil

M21

m31

K I
= Mp+D,

Mi1 2 M 1 3 di

M 2 2 M 2 3 d2

M 3 2 M 33 d3

The affine transformation A is essentially an unconstrained 3 x 4 matrix. Whereas

the rigid transformation was nonlinear in its parameters because of constraings on

the rotation matrix R, the affine's generalized rotation matrix M is unconstrained.

Therefore, the affine transformation's parameters are its elements themselves, and it

is linear in those parameters.

5.2 Seed-based objective criterion

Just as we did for rigid registration, we still desire to align seeds, and so we use the

same sum-squared distance criterion as defined in equation 4.6 and reiterated below.

J(0) =E ui - T(3, vi)12

As before, the optimal affine parametrization 13 is given as

/3 = argmin IU - TAffine(0,Vi) |2.

5.2.1 Linear Least Squares optimization

Linear least squares is the problem of minimizing sum-squared error of a function

which is linear in its parameters.
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Since the affine transformation TAffine(3, vi) is linear in its parameters 0, and

since the objective function is quadratic in the affine transformation, this problem

lends itself to a Linear Least Squares (LLS) optimization. The solution to the problem

is to set the gradient of the objective function equal to zero and then to solve the

resulting linear system.

We have not yet said how the parameters of TAffine are represented in /. Earlier,

for comparison with the rigid transformation, we represented TAf fine(vi) as Avi, where

the parameters of TAf fine are the elements of A. Now to facilitate the solution of these

parameters, we rearrange them into the column vector

3 = [al 1a 1 2 a1 3 al 4 a 21 a 22 a 23 a 24 a 31a 32 a 33 a 34 ]'.

We must now find an equivalent formulation for Avi in terms of 0. We rearrange

the matrix multiplication Avi as Vi# by reformatting vi as the matrix Vi, where

Vi,2 Vi, y Vi2 1 0 0 0 0 0 0 0 0

Vi= 0 0 0 0 vi,rI Vi, Y Vi,z 1 0 0 0 0

0 0 0 0 0 0 0 0 vi,2 Vi, Y Vi,z 1

We can now rewrite

TAf fine (Vi)= Avi

as

TAff ine(3, Vi) = Vi

Our sum-squared distance objective function

/ = argmin I |ui - Tv 211

We optimize it by equating the gradient to 0.

First, we rewrite the objective function in equation 4.6 to reflect our new repre-
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sentation of the affine transformation

J(0) = 1u, - V0112

and expand to get

J(13) = - 3_Vio]T[ui - Vi13]
i

which can be rearranged as

J(0) = - 2E[ TV7'a + o T VT Vi3]

Now, to minimize, we take the gradient and equate it to zero.

0 = voJ(3)

Substituting equation 5.1 we have

0 - V~ Z [ut - 2/3TVTU + f3TVTV]3h 1
i

We take the gradient and evaluate at / and get

0 = E[-2V iu + 2V1jV7K]
i

which we can rearrange as

v Tu

If we define the following two constructs

X ZvTU
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and

Y = vfvi

then we can simplify equation 5.5 as

and solve

3= Y-IX. (5.6)

Since 13 represents twelve parameters, at least four three-dimensional seed coordi-

nate pairs must be defined to solve equation 5.6.

5.3 Affine registration summary

Given known correspondences among seeds, we now have an algorithm for solving

for an affine transformation which minimizes the sum-squared distance between cor-

responding pairs of seeds. The algorithm uses Linear Least Squares to estimate the

parameters of the affine transformation.

This algorithm allows us to solve for the optimal non-rigid, affine transformation

which can bring an unconstrained number of matched seeds into alignment.
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Chapter 6

Iterated Affine Registration for

Unmatched Seeds

In this chapter, the affine registration algorithm (see Chapter 5) is generalized to

allow two collections of seeds to be aligned, even if the correspondences among these

seeds is not known. The rigid and affine registrations presented earlier require that

correspondences be established between pairs of seeds in the two images. In our

application, requiring known correspondences reduces to requiring a user to establish

matches by hand.

Because one aim of this thesis is automatic seed-based registration, we require

a registration algorithm which can take automatically detected seeds as input. As

we saw in Chapter 3, seeds are detected in each image independently. Therefore,

automatic seed-detectors cannot establish correspondence. This chapter describes

an affine registration algorithm for unmatched seeds, such as those which might be

produced by automatic seed-finders.
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6.1 Dual pose and correspondence problems for

unmatched features

In feature-based registration problems, there is frequently a duality among knowing

pose, or knowing feature correspondences. If one is known, it is usually straightfor-

ward to estimate the other. A fully automatic solution to the seed-based registration

problem could use automatic seed finders to detect the features in the input images,

but their correspondences would at that stage be unknown.

If we do not know which features in one image correspond with which features

in the next, the problem of using these features to measure the similarity of the two

images becomes much more challenging. The problem of estimating a transforma-

tion becomes compounded with the problem of estimating correspondences between

features.

We solve for an affine transformation by first generalizing our pose estimation to

a weigted least squares approach, that entertains all possible correspondences, and

weights them according to an estimate of their validity, as

J (1) E:wij I(ui - T ( 1 Vj7))jf (6.1)
ii

where wij are ideally one if features ui and vj correspond, and zero otherwise.

Wells [28, 29] described an algorithm, Posterior Marginal Pose Estimation (PMPE),

that uses the Expectation Maximization (EM) alogorithm [15] to simultaneously esti-

mate pose and correspondences. This approach iterates, in alternating fashion, pose

estimation via equation 6.1, and estimation of the correspondence weights, using

Gv (ui - T(V, 0))

This equation estimates the correspondence weights wij by their posterior prob-

abilities based on the current pose estimate 13, and on a Gaussian model of feature

detection error

GV (x) = (27)-i Iij Aexp(- 2XT f )
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where 4' describes the covariance of the feature detection error along the three

dimensions of the volume. We assume that for our application, feature detection

errors in each direction are independent of other directions. Thus, we can represent

feature error with a covariance that is a scaled identity matrix, where the scaling

factor corresponds to variability in the distance between the detected location and

the true location of each seed. Equation 6.2 also depends on the fixed probability

Bi that some seed from the first image has no counterpart in the second image, on

m, the number of features in the second image, and on Z, the volume of the second

image's space.

This algorithm is similar to the popular Iterated Closest Point (ICP) [2] algorithm,

but it uses a softer estimate of correspondences, and explicitly allows for missing

features.

As an instance of the EM algorithm, this iteration is guaranteed to converge to

a local maximum of the posterior probability of pose. Being a local method, good

initial values are needed. The algorithm may be started with either an initial pose

estimate, or an estimate of the correspondence weights.

In our experiments, we have initialized the algorithm with the pose that was

determined by three-point rigid registration, and run the algorithm to convergence,

typically in 10-30 iterations, within a few seconds on a high end workstation, for

collections of 30 unmatched seeds.

6.2 Conclusion on iterative affine registration

This chapter has described an affine registration algorithm which does not require

prior knowledge of correspondences between seeds. This algorithm is a local method

which requires initialization.

The iterative affine registration method can be used to align automatically de-

tected seeds, for which correspondences are not known. Thus, if we can design au-

tomatic seed detectors, use their output as input to this umatched-feature-based

registration algorithm, which would result in an almost fully automated seed-based
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registration algorithm.
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Chapter 7

Experiments and Results

In this chapter, we demonstrate and compare the quality of alignments produced by

the rigid, affine, and iterated affine registration algorithms previously developed. We

evaluated these algorithms on five patients' post-implant MR and CT images. This

chapter poses three questions which are the focus of this research and answers them

in based on three comparisons of the registration algorithms.

7.1 Questions addressed by experiments

Registration experiments were conducted to answer three questions:

1. What is the effect of aligning many seeds, instead of three?

2. What is the effect of modeling the prostate's motion with a non-rigid, affine

model, instead of a rigid model?

3. If we do not know seed correspondences, how well can we align seeds?

The experiments described in this chapter were conducted on post-implant MR

(SPGR) and CT image pairs, which were taken within hours of each other, six weeks

following brachytherapy implantation, as described in Section 2.1. Image pairs from

five patients were used to conduct the experiments. Because the semi-automatic MR

seedfinder was highly prone to error, automatically detected seed sets were not used
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to evaluate the registration algorithms. Instead, test data was produced by manually

selecting matching seed pairs in paired volumes.

To facilitate manual seed-finding, the MR and CT volumes were aligned using an

initial 3PR rigid alignment, found using commercial software by the method described

in Section 2.5. Therefore, the MR images used for testing are actually reformatted

images, aligned using a commercial 3PR implementation. Within 3PR-aligned MR

and CT volumes, between 27 and 32 pairs of corresponding seeds were manually

selected from the five patients' MR and CT volumes, using interactive display of axial

and sagittal views of the 3PR-aligned volumes. Manual selection took approximately

20 minutes per dataset. The number thirty was chosen to maximize the number of

easily identifiable matches and to maxmize convenience. Seeds were required to have

unambiguous correspondences in order to be selected . The coordinates of the seeds'

centers were used to represent the seeds.

Three registrations were conducted on each set of 30 seed pairs:

" Multi-Point Rigid (MPR) registration

" Multi-Point Affine (MPA) registration

" Iterated Multi-Point Affine (IMPA) registration on unmatched seeds

Both the MPR and MPA techniques require that the two input seed sets U and

V have correspondences established between their elements. One simple way to rep-

resent the correspondences is by putting the seeds in ordered lists with corresponding

seeds having equal indices in their respective lists.

Although a 3PR registration was used to initialize the test data, the MPA al-

gorithm is unaffected by initial registration. However, MPR registration requires a

good initial alignment before it can use a local nonlinear optimization technique to

refine the alignment. The IMPA registration algorithm can solve an alignment on

unmatched seeds, but it requires an initial alignment, which we provide using the

results of 3PR alignment.
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7.2 Measuring performance

Registration performance was quantified for each of the three multi-point registra-

tions, and also for the initial, three-point rigid alignment. Performance was measured

using error statistics on distances between aligned pairs of seeds. Two error statistics,

Root-Mean Squared Distance (RMSD) and Maximum Distance (MD) were calculated.

RMSD error characterizes the success of the alignment collectively over all the seeds

and MD error characterizes the worst alignment of all the seeds in a dataset. MD

error is characterized because clinicians are generally concerned about characterizing

the worst cases which might occur.

We represent a set of corresponding seed pairs as U = ui and V = vi, where ui

corresponds to vi. Given a set of seed pairs U and V represented in the space of an

initial 3PR alignment, and given the alignment being evaluated T,

RMSD(U, V) Z jui - T(vi)II2

and

MD(U, V) = max( zti - T(vi)H)

To measure the performance of the initial 3PR alignment, we calculate the RMSD

and MD error as before, letting T be the identity transformation. The reason for this

is that seeds have been found within a 3PR-aligned dataset. Therefore, we do not

need to transform the seeds to represent the 3PR transformation.

7.3 Registration performance

The tables in Figure 7.3 and Figure 7.3 list the root-mean-squared and maximum

distance errors, respectively, for five patients' images for the four registrations per-

formed. The tables show that the aggregate quality of alignment, as measured by

RMSD error, is better for MPR alignment than for 3PR and better for MPA than

for MPR alignment. We also see that both IMPA for unmatched features, and MPA
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for matched features, produce very similar results, indicating that IMPA converges

on the MPA solution, despite ignorance of correspondences.

The tables also show that worst-case, or maximum-distance errors also decrease as

we use more points or switch to an affine model. Again, as with RMSD error, IMPA

worst-case error is generally similar to affine worst-case error, indicating successful

convergence of the IMPA algorithm to the correct affine solution.

Alignment A B C D E
3PR 5.6 4.2 2.8 3.1 4.9
MPR 2.5 3.3 2.4 2.4 3.4
MPA 1.9 2.2 1.9 2.2 2.5
IMPA 1.9 2.3 1.9 2.2 2.5

Figure 7-1: This figure shows RMS distance (mm) between registered pairs of seeds,
using 3PR, MPR, MPA, and IMPA registration algorithms. The results are shown
for five patients, A, B, C, D, and E. Registration results for each patient are listed
columnwise.

Alignment A B C D E
3PR 9.2 7.2 6.5 5.6 8.7
MPR 5.9 5.7 6.0 3.7 5.7
MPA 3.3 4.0 5.1 3.2 4.4
IMPA 3.7 4.9 5.0 3.3 4.4

Figure 7-2: This figure shows maximum distance (mm) between registered pairs of
seeds, using 3PR, MPR, MPA, and IMPA registration algorithms.

We have seen that for each dataset, errors improve from 3PR to MPR and from

MPR to MPA registration. We can generally characterize these trends using signifi-

cance testing.

7.4 Significance tests of reduction in registration

error

Statistical significance testing was used to answer the questions asked at the beginning

of the chapter about (1) the effect of aligning many instead of few seeds, (2) the
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effect of using a non-rigid model, and (3) the feasibility of registration on unmatched

correspondences.

7.4.1 Constructing t-tests

The statistical significance of the registration error reductions was demonstrated using

a t-test for significance.

RMSD errors for the each registration were collected into populations, each of

whose samples are the RMSD errors for that registration on the five patients' datasets.

Paired, right-sided t-tests were calculated over three pairs of error populations.

A t-test on a population X assumes that X is normally distributed, and givesan

indication of the confidence with which we can say that X is centered around 0. The

t-test works by characterizing X using a statistic t, which is derived using Student's

(actually William Gossett's) t-distribution [25]. The confidence with which we can

model X as having 0-mean is associated with the probability that t will fall within

certain, predefined boundaries.

In most applications, X's non-0 mean value is considered to be significant if p <

0.5. This means that there is only a five percent chance that X apparently has non-0

mean, when in actuality it is 0-mean. More simply, we can be 95% sure that X has

a significant non-0 mean.

For two populations X and Y, with corresponding values, the paired t-test is

essentially just a t-test on their difference X - Y. If the paired t-test indicates that

we can confidently reject a 0-mean for X - Y, this means that X's and Y's values

are significantly different.

In our application, for any two alignments' error populations X and Y , each error

value xi E X corresponds to a value yi E Y, because both errorscome from the same

patient's images. Therefore, we use a paired t-test to test the significance of X's and

Y's difference.

If we are interested in testing whether X and Y are significantly different, then we

use a two-sided t-test. If, instead, we are interested in knowing specifically whether

X is significantly greather than Y, then we can use a right-sided t-test on X - Y.

65



3PR v. MPR right-sided t-test for 3PR error - MPR error
MPR v. MPA right-sided t-test for MPR error - MPA error
MPR v. IMPA two-sided t-test

Figure 7-3: Two right-sided and one two-sided t-tests are used to answer three cen-
tral questions about seed number, transformation model, and unmatched seed-based
registration.

3PR v. MPR .03 Yes
MPR v. MPA .01 Yes
MPA v. IMPA .37 No

Figure 7-4: The top two lines in this table show the results of paired t-tests which
check if RMSD alignment error is signifcantly reduced by using MPR instead of
3PR registration, and when using MPA instead of MPR. For the first and second
t-tests, the p value is less than 0.05, or 5%, indicating that MPR alignment error
is significantly smaller than 3PR error, and that MPA error is significantlysmaller
than MPR error. The third t-test checks the significance of the difference between
the MPA and IMPA solutions. The resulting p-value is .37, indicating far exceeding
the acceptible significance threshold of 0.05. Therefore, we conclude that MPA and
IMPA are not significantly different.

We will use the t-test to answer our three experimental questions. We set up the

t-test as shown in Figure 7-3.

7.4.2 Results of significance tests

Figure 7-4 shows the results of significance tests on our three error comparisons.

Wefind that the probability that we can be 97% confident that MPR registration

produces smaller RMSD alignment error than 3PR registration. We also see that

we can be 99% certain that MPA produces smaller registration error than MPR.

Finally, We see that MPA and IMPA are not significantly different, as the p-value for

their difference is much greater than 5%. Thus, the t-tests indicate that (1) using

many seeds produces better alignments than using just a few, (2) that the non-rigid

affine model produces better alignments than traditional rigid models, and (3) that

an iterated affine registration technique, which can align unmatched seeds, converges

on the same solution as the affine solution produced with known seeds.
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7.5 Visual assessment of registration quality

If we wish to further convince ourselves of the improvements afforded by registration

with many seeds and affine transformations, we can view axial and sagittal slices of

fused, that is, aligned and overlaid, volumes, as shown in 7.5 and 7.5.

The axial views show subtle improvements can be seen beteen MPR and 3PR, and

MPA and MPR alignments. We see much greater improvement in alignment when

comparing the MPR with 3PR and MPA with MPR in the sagittla views.

We can also note that MPA and IMPA alignments are almost identical, confirm-

ing that iterated affine solution with unmatched features can converge on the affine

solution given known features.

7.6 Evaluation of results

We have seen from the root-mean-squared distance and maximum-distance errors,

from significance testing on error reduction, and from visualization of seed alignment,

that (1) many seeds produce better alignments than three seeds, (2) affine regis-

trations are better than rigid, and (3) the iterated affine technique on unmatched

correspondences successfully converges on the optimal affine registration.

7.6.1 A scheme for validation

To measure registration quality, we have calculated error over the distances between

multiple aligned seed pairs. Our conclusions about registration improvements, based

on these error formulations, has been shown to correspond with visual confirmations

of improvements.

The technique of evaluating post-implant MR and CT registrations using multiple

seeds has thus been demonstrated quantitatively and qualitatively to be useful.

The previous observation that 3PR produces a good registration, can be viewed

as a validation of the 3PR result. While it may encounter some areas of problematic

alignment, such as depicted in Figure 7.5, 3PR has been found to generally align most
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Figure 7-5: This figure shows Aligned MR images with overlaid CT edges. CT
images are fixed, while MR images are reformatted according to 3PR, MPR, MPA,
and IMPA registration techniques. These images are mid-volume axial slices of the
volumes, zoomed in on the prostate capsule. Bright spots in the image correspond
to CT seeds. Partially obscured or closely neighboring these white spots are slightly
larger dark spots which generally represent seeds in MR. 3PR (a) shows some slight
vertical errors in aligning the dark MR seeds with the light CT seeds. MPR (b)
clearly improves on this in the leftmost seeds. MPA (c) and IMPA (d) are expectedly
similar, and improve on both 3PR and MPR alignments, as can be seen over all the
seeds.
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Figure 7-6: These slices are sagittal views of the same alignments shown axially in
Figure 7.5. Again, edges found in the CT image are overlaid on reformatted MR slices.
The 3PR alignment (a) shows a consistent error (larger than a seed length) in aligning
dark MR seeds with overlaid white CT seeds. MPR (b) shows improvements over

3PR. MPA (c) and IMPA (c) show improvements over both 3PR and MPR, especialy
in the upper right hand corner. MPA and IMPA are very similar, as expected.
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seeds within two seed lengths of each other, despite the fact that the registration is

based on matches between only three seed pairs.

Manual selection of seeds and comparison of their distances in various registrations

is a way to evaluate these registrations, in terms of our goal of aligning all seeds.
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Chapter 8

Concluding Remarks

8.1 Summary of contributions

This thesis has addressed the challenge of accurate and precise post-implant seed lo-

calization by contributing a non-rigid model for prostate movement and an algorithm

for registering unmatched, automatically found seed pairs.

The experimental evidence presented in this thesis showed improvement in post-

implant MR and CT registration quality by using high numbers of seeds as control

points and by using a non-rigid model of prostate motion.

Automated seed-based registration has been identified as a key goal for achieving

precise seed localization. Currently, the standard technique uses only three seeds to

register images, but as an experimental comparison of registration using many and few

seeds showed, a three-point registration may not accurately describe the relationships

between all seed pairs.

Toward automated seed-based registration, an algorithm for registering unmatched

seeds has been presented and experimentally demonstrated as capable of converging

on the appropriate affine solution. Furthermore, a mostly automatic CT seed-finder

has been presented. Together with an automatic MR seed-finder, which is a goal of

future research, this work has described a scheme by which seeds can be automatically

found and registered, allowing for precise alignment of all implanted seeds.
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8.2 Directions for further research

8.2.1 Improving automatic seed finding

The most enticing challenge remaining in seed localization is to find an automated

solution. This thesis has presented a framework for automated seed-based MR and

CT registration, which leaves unsolved the problem of automatically detecting seeds

in MR images. Chapter 3 discussed possible directions to pursue to achieve automatic

MR seed-finding, including shape- and intensity-based analyses.

8.2.2 Other non-rigid models

The affine model is probably the simplest non-rigid model of motion, but it is limited

to maintaining parallelism. The thin-plate spline [3] generalizes the affine model

to describe non-parallel warpings. Thin-plate splines are described using a variable

number of additional parameters, which represent control points which constrain the

warping. One direction for further research is to apply a thin-plate spline model for

post-implant MR and CT registration. The major challenge in this pursuit would be

to decide how to assign control points to accurately represent what we understand of

prostate motion. Intraoperative prostate registration has been performed using thin

plate splines [4].
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