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Abstract

"AdoMet radical" enzymes utilize a 4Fe-4S cluster and S-adenosylmethionine, in
conjunction with a reducing system, to catalyze reactions that proceed through organic
radical intermediates. Genomics studies suggest that at least 600 such enzymes exist
across the archaea, bacteria, and eukaryotes, though few have been purified and
characterized. AdoMet radical enzymes participate in several biomedically important
processes, such as DNA biosynthesis and repair, cofactor biosynthesis, and bacterial
pathogenesis. To gain insight into this enzyme family, the crystal structure biotin
synthase from Escherichia coli, in complex with its substrate dethiobiotin, was
determined to 3.4 A resolution. Biotin synthase catalyzes a remarkable reaction, the
insertion of sulfur into dethiobiotin to form biotin (vitamin B8). The structure of biotin
synthase indicates that adenosylmethionine is coordinated to a unique Fe of the 4Fe-4S
cluster, in agreement with spectroscopic investigations from other laboratories.
Additionally, the structure reveals that the active site, located in the core of an (a/) 8

barrel, contains a unique 2Fe-2S cluster, in addition to the 4Fe-4S cluster,
adenosylmethionine, and dethiobiotin. Multiple lines of evidence suggest that in the
AdoMet radical enzymes, adenosylmethionine is a source of 5 '-deoxyadenosyl radical, an
intermediate that is historically associated with the adenosylcobalamin-dependent radical
enzymes. Interestingly, some of the adenosylcobalamin radical enzymes catalyze
reactions that are very similar to those of AdoMet radical enzymes. One such example is
adenosylcobalamin-dependent lysine 5,6-aminomutase, which is analogous to lysine 2,3-
aminomutase, an AdoMet radical enzyme that is found in the same pathway. To further
probe the relationship of the adenosylmethionine and adenosylcobalamin-dependent
radical enzymes, the crystal structure of lysine 5,6-aminomutase was determined to 2.8 A
resolution. Like biotin synthase, the structure of lysine-5,6-aminomutase adheres to the
general theme of barrels or barrel-like structures for enzymes that utilize 5'-
deoxyadenosyl radicals in catalysis. Additionally, the structure of lysine-5,6-
aminomutase implicates pyridoxal phosphate in a novel role, acting as a lock to prevent
the formation of aberrant radicals in the absence of substrate.

Thesis supervisor: Catherine L. Drennan
Title: Associate professor
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Certain enzymatic reactions require the activation of saturated carbons in order to effect

difficult reactions. One general mode of accomplishing this daunting task is to recruit

metallocofactors, which supply reactivity beyond that of the set of naturally occurring

amino acids and organic cofactors. Carbon-based radical intermediates are sometimes

involved in such metal-based activation processes. Two particular cofactors are

frequently recruited to abstract a hydrogen atom from an organic substrate, generating

free radical intermediates. The first of these, adenosylcobalamin (AdoCbl, or coenzyme

B12, Fig. 1.la), is the coenzyme form of the cobalt-containing vitamin B1 2, one of the

oldest known organometallic compounds. A second common radical-generating cofactor

is S-adenosylmethionine (AdoMet or SAM, Fig. 1.1c) in complex with a 4Fe-4S cluster.

The immediately obvious feature that is common to both cofactors is the adenosyl group.

1.1 AdoCbl-dependent enzymes

The clinical importance of vitamin B12 is rooted in the history of pernicious anemia, an

autoimmune disease of the gastrointestinal system that results in poor nutrient absorption.

If left untreated, the condition invariably results in death. The first reports of the disease

date back to the 18 th and 1 9 th centuries. In 1926, Minot & Murphy demonstrated that

pernicious anemia could be cured by feeding patients large amounts of liver2, a discovery

that would later win them the Nobel Prize in Medicine and Physiology. The groups of

Folkers3 and Lester-Smith4 eventually isolated cyanocobalamin (CNCbl or vitamin B12),

a derivative of the "anti pernicious anemia factor" present in liver. Other serious human

diseases arising from vitamin B12 deficiency were later discovered, including

methylmalonic aciduria and homocysteinuria. Both of these are genetic disease caused
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by mutation in either the MutAB genes5, which encode AdoCbl-dependent

methylmalonyl-CoA mutase (MCM), or in one of the MmmA-H genes, which encode

proteins associated with Cbl uptake and metabolism6 .

In 1958, Barker and coworkers showed that crude cell extracts of Clostridium

tetanomorphum required a coenzyme form of vitamin B12 to convert glutamate to 3-

methylaspartate. This work led to the discovery and purification of AdoCbl7. AdoCbl

dependence in a purified enzyme system (MCM) was first reported by Stadtman and

coworkers8' 9 two years after Barker's discovery of the coenzyme. Eggerer et al proposed

that AdoCbl-dependent MCM catalyzes the formation of paramagnetic species on the

reaction pathway9. Their hypothetical mechanism fell short of recognizing C-Co bond

cleavage, (Fig. 1.2) but made an intellectual leap forward in asserting that the

rearrangement of methylmalonyl-CoA to succinyl-CoA involved radical intermediates.

Thirty years after Minot and Murphy's successful treatment of pernicious anemia,

Hodgkin and coworkers solved the X-ray crystal structure of CNCbll°, for which she was

awarded the 1964 Nobel Prize in Chemistry. The structure revealed a single octahedral

Co(III) center, coordinated equatorially by the four pyrrole nitrogens of a corrin

macrocycle. The lower axial ligand is a nitrogen atom of the cofactor's

dimethylbenzimidazole moiety, and the upper axial ligand is cyanide, an artifact of

purification. In 1961, Hodgkin solved the structure of the coenzyme form of B12
ll,

illuminating the structural basis for the reactivity of AdoCbl. At the heart of AdoCbl's

reactivity is its alkyl cobalt bond: the 5'-deoxyadenosyl group (Ado) is covalently bound
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to Co(III) in the upper axial position. AdoCbl is one of the largest known biological

cofactors; it has the chemical formula C72H100 N1 801 7PCO, and contains 18 chiral centers.

In 1966, R.H. Abeles and P.A. Frey first showed that diol dehydratase (DDH) catalyzes

the transfer of tritium atoms between [1-3H]propanediol and the 5' carbon of AdoCbl'2.

Furthermore, the resultant [5'-3H]AdoCbl was able to transfer its tritium into

propionaldehyde, the product of the diol dehydratase reaction. In the early 1970's, other

key investigators of AdoCbl enzymes, including Blakley and Babior, observed the

kinetically competent formation of a paramagnetic species in the reactions of class II

RNR13 and EAL ' 14 5. These and other pioneering experiments, over years of

investigation, have led to the hypothesis that the C-Co bond of AdoCbl is homolytically

cleaved, resulting in the transient intermediates Cob(II)alamin [Cob(II)] and 5'-

deoxyadenosyl radical (Ado., Fig. l.lb and Fig. 1.2), which is thought to be responsible

for the H atom abstractions that initiate AdoCbl-dependent reactions. Several excellent

reviews covering the reactivity of AdoCbl enzymes are available16 23 .

1.2. AdoMet radical enzymes

Twenty three years after demonstrating the 3H atom transfers in DDH, Frey published

analogous experiments on AdoMet-dependent lysine 2,3-aminomutase24 (2,3-LAM),

supporting the hypothesis that Ado. is the agent that is responsible for H atom

abstraction in the enzymatic reaction. Significantly, Barker's work on 2,3-LAM first

demonstrated that the enzyme is pyridoxal 5'-phosphate-(PLP) and Fe -dependent2 5.
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Compared to AdoCbl, AdoMet is a relatively simple molecule (Fig. 1.1). The C-Co bond

of AdoCbl (-30 kcal/mol) is replaced by a much stronger (-60 kcal/mol) bond between

the 5' carbon of Ado and the sulfur atom of the methionyl group. AdoMet is involved in

a number of unusual reactions (Fig. 1.3). Two such reactions appear in the biotin

(vitamin B8) biosynthetic pathway (Fig. 1.4). In the first of these reactions, AdoMet acts

as an amino group donor in the PLP-dependent transformation of 7-keto-8-

aminoperlargonic acid to 7,8-diaminopelargonic acid2 6. The second unusual reaction is

that of biotin synthase (BioB). BioB is an iron-dependent protein that requires AdoMet

to form biotin from dethiobiotin 27 29 (DTB). Marquet and coworkers have shown that

BioB transfers deuterium from deuterated DTB into 5'-deoxyadenosine (AdoH)30 . These

deuterium transfer experiments support the hypothesis that AdoMet abstracts substrate

hydrogen atoms in BioB, as it does in 2,3-LAM.

1.3. Why two radical cofactors?

Since the early work on AdoCbl enzymes, a total of 10 AdoCbl- and 6 AdoMet-

dependent radical enzymes have been purified and reasonably well characterized (Figs.

1.5 and 1.6). Recently, Sofia and coworkers proposed that over 600 unique sequences of

AdoMet radical enzymes exist31 . Several fascinating questions arise from this work:

Why has nature evolved two analogous cofactors to abstract H atoms from metabolic

intermediates? What is the evolutionary relationship between the two cofactors and the

enzymes that require them? What are the evolutionary determinants of cofactor

preference for a given enzyme? It is tempting, upon initial inspection, to speculate that
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the AdoMet radical enzymes are the molecular ancestors of the AdoCbl radical enzymes.

Proponents of this theory may point to a few salient facts:

1. All of the known AdoMet radical enzymes require a 4Fe-4S cluster and, with one

known exception, anoxic conditions for activity. Fe-S clusters are widely regarded

as ancient and ubiquitous cofactors, capable of carrying out catalysis in the

ancient, anoxic atmosphere32 34.

2. AdoMet biosynthesis (Fig. 1.7) requires far fewer enzymes than does AdoCbl

biosynthesis (this argument does not take into account the enzymes required for

Fe-S cluster biosynthesis or cluster reduction).

3. Several equivalents of AdoMet are required as methylating agents in the

biosynthesis of AdoCbl3 5.

4. Sequence analysis on probable AdoMet radical enzymes by Sofia et al reveals that

some of these enzymes contain part of the "base-off' AdoCbl-binding sequence

motif (DxHxxG...Sxl...GG) that is found in all of the AdoMet-dependent

mutases.

5. Several AdoMet radical enzymes catalyze steps in central pathways of

metabolism, including DNA biosynthesis and repair, acetyl-CoA biosynthesis, and

coenzyme biosynthesis.

These and other reasons have led some to classify AdoMet radical enzymes as the

"molecular fossils" of AdoCbl radical enzymes. In particular, this speculation has been

applied with respect to the ribonucleotide reductases36 3 7. Others believe that AdoCbl
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may be the ancestral radical cofactor, and that the various arguments of the AdoMet

ancestor proponents are weak. This opinion is bolstered by several lines of reasoning:

1. Corrinoid-like molecules are thought to date back to the primordial soup38 .

2. Many (but not all) organisms require methylcobalamin to synthesize AdoMet via

the cobalamin-dependent methionine biosynthetic pathway3 9.

3. The presence of the "base-off' AdoCbl binding motif in AdoMet radical enzyme

sequences implies no directionality in evolution.

4. Several AdoCbl-dependent enzymes catalyze steps in central pathways of

metabolism, including DNA biosynthesis, such as the class II ribonucleotide

reductase (RNR).

5. In comparison to the AdoMet radical enzyme activases, where an entire protein,

AdoMet, and a 4Fe-4S cluster are required to generate a catalytic radical on a

separate enzyme, one can argue that AdoCbl is the simpler radical-generating

machinery.

Some AdoCbl-dependent enzymes, such as the class II RNR, lysine 5,6-aminomutase

(5,6-LAM), and diol dehydratase (DDH) have AdoMet-dependent counterparts that

catalyze similar reactions. Perhaps these enzymes provide the best opportunity for

understanding how the two enzyme superfamilies may be related.
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1.4. The diversity of 5'-deoxyadenosyl radical enzymes

Many AdoCbl radical enzyme share a set of common steps in their reaction mechanisms,

shown in general terms in Fig. 1.2. Briefly, Ado. abstracts a non-activated hydrogen

atom from the substrate. The substrate then rearranges via a vicinal group migration to

the original radical center, and then re-abstracts a hydrogen atom from AdoH, resulting in

the reformation of AdoCbl. The exception to this general mechanistic scheme is the class

II RNR reaction, in which the radical is propagated to a Cys residue, generating a

catalytic thiyl radical'3' 40' 41. A key question in the field is how the AdoCbl enzymes, in

the presence of either substrate or effectors, accelerate C-Co bond homoloysis by a factor

of-1012 over the non-enzymatic cleavage174246.

In contrast, AdoMet radical enzymes catalyze more diverse reactions (Fig. 1.6), and have

substrates that vary in size from small molecules to proteins to DNA. The reaction

mechanisms of AdoMet-dependent radical enzymes cannot be generalized beyond the

abstraction of an H atom by Ado.. While some AdoMet radical enzymes go through a

reaction sequence similar to those of AdoCbl enzymes, others utilize AdoMet as a

substrate rather than a cofactor, resulting in the production of one or more equivalents of

methionine and AdoH per substrate consumed.

Why are AdoMet radical enzymes so much more versatile than AdoCbl radical enzymes?

What are the implications of this diversity on the theory that AdoMet is the ancestral

radical cofactor? Given the current state of the field, the answers to these and other
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questions about the relationship between AdoCbl and AdoMet radical enzymes remain

unknown. Some of the answers may lie in the structural details of the two superfamilies.

1.5. AdoCbl and AdoMet -dependent radical enzymes: structural information

This section briefly reviews some of the more well-characterized AdoCbl and AdoMet-

radical enzymes, with emphasis on structural information. The study of several of these

enzymes has benefited from the availability of X-ray or NMR structures. A unifying

theme in the structures of these enzymes is the dominance of a/od barrel folds4 7, in which

a central f-sheet is surrounded by a helices, and the prevalence of the TIM barrel fold in

particular.

The TIM barrel is an ancient, ubiquitous, and adaptable protein fold484 9. TIM barrel

proteins carry out an astonishing number of diverse metabolic functions. Twenty-six

protein superfamilies use the TIM barrel architecture to bind their substrates and to place

their catalytic elements in their active sites47. There is no apparent theme to the

enzymatic reactions carried out by TIM barrels, and at least one TIM barrel has no

associated enzymatic activity5°. With the exception of class II RNR, all AdoCbl-

dependent radical enzymes of known structure have the same protein motifs, consisting

of a TIM barrel substrate-binding domain and an AdoCbl binding domain that docks on

top of the TIM barrel. The work described in this thesis reveals that BioB, an AdoMet

dependent radical enzyme, is a TIM barrel. Furthermore, the structure of 5,6-LAM, an

enzyme which bridges the AdoCbl and AdoMet radical superfamilies, adheres to the

general scaffold of AdoCbl-dependent radical enzymes.
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One interesting conclusion that is illuminated by structural and biophysical studies of

cobalamin- (Cbl) binding proteins is that they can be grouped based on their mode of

binding to the protein. The group I ("base-off") proteins use a histidine residue to

displace the intrinsic DMB moiety of the cofactor as the lower axial ligand to cobalt.

This group includes methylcobalamin-dependent methionine synthase (MS)51, MCM52 ,

GM53 , 5,6-LAM54 (this work), and, presumably, isobutyryl-CoA mutase (ICM)55,

methyleneglutarte mutase (MGM)56 , and omithine aminomutase (OAM)57. For the group

I enzymes that utilize AdoCbl, catalysis is initiated by abstraction of a H atom from a

non-activated substrate carbon having only hydrocarbon substituents. The group II

("base-on") proteins, which include DDH58, EAL59, class II RNR60 , the periplasmic

CNCbl-binding protein BtuF 61, and the ATP:corrinoid adenosyltransferase 62 , bind the

with the DMB moiety in place as the lower axial ligand. The AdoCbl-dependent group II

enzymes initiate catalysis by abstracting H from a heteroatom (class II RNR) or from a

carbon with heteroatom substituents (EAL, DDH, GDH).

1.5.1. Methionine synthase, the canonical base-off Cbl binding protein

In 1994, Drennan et al solved the crystal structure of the Cbl-binding domain of MS51

(PDB code 1BMT), providing the first structure of protein-bound Cbl and the canonical

model of a base-off Cbl-binding enzyme (Fig. 1.8a). The structure of the Cbl-binding

subunit is a Rossmann-like fold, which is the norm for base-off Cbl binding. One of the

most important results of this study was the establishment of the structural role of the

base-off Cbl binding sequence DxHxxG...Sxl...GG (Fig. 1.8b). This sequence is found

in all base-off Cbl-binding enzymes. The DxH portion is involved in Co ligation, where
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the Asp sidechain hydrogen bonds to the imidazole ring of the His ligand. The

downstream Gly residue leaves a cavity in which the phosphate of the Cbl nucleotide can

bind. The Ser residue of the Sxl portion hydrogen bonds to imidazole ring of DMB, and

the two Gly residues at the end of the sequence pack against the DMB moiety.

1.5.2. Methylmalonyl-CoA mutase: a large-scale conformational change upon substrate

binding

MCM catalyzes the interconversion of methylmalonyl-CoA and succinyl-CoA (Fig.

1.5a). From a structural perspective, MCM is one of the most thoroughly characterized

AdoCbl enzymes. Two years after the publication of the structure of the Cbl-binding

portion of MS, Mancia et al published the structure of MCM in complex with a substrate

fragment and with AdoCbl52 (PDB code 1REQ; Fig. 1.9a). The Ado moiety was not

modeled in this structure due to its poor electron density. As in MS, a His residue

coordinates the Co of Cbl. Remarkably, homolysis of the C-Co bond of the enzyme-

bound cofactor is accelerated by approximately a trillion-fold42 4 5. Unlike MS, the His N-

Co distance in MCM is somewhat long (2.5 A) compared with the DMB N-Co distance

in the crystal structure of free cofactor6 3 (2.237 A), which lead the authors to conclude

that trans effects646 5 in the protein-bound cofactor were responsible for promoting C-Co

bond homolysis when substrate is bound. Structural comparison reveals that the lower

axial His ligand of MCM and the Asp sidechain that hydrogen bonds to it superimpose

with the His/Asp couple in MS, and that relative to MS, the cofactor has elevated B

factors and is slightly farther away from the Rossmann domain. Thus, it is not protein

differences that give rise to variations in N-Co bond length, but rather cofactor disorder
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that appears to be responsible. One source of cofactor disorder may be X-ray irradiation,

which is also responsible for the loss of the Ado ligand6 6 in this crystal structure.

Regardless of the source of cofactor disorder, the long N-Co bond length reported for

MCM is not likely to be catalytically relevant, since extended X-ray absorption fine

structure (EXAFS) analysis67 does not support the trans effects hypothesis in MCM.

The -23 A-long substrate fragment desulfo-CoA (coenzyme A without the terminal thiol

group) is bound along the entire length of the TIM barrel axis, with the end that would

contain the thiol located -11 A from the cobalt of the cofactor, near the C-terminal end of

the barrel. This suggested that the true substrate binds with its methylmalonyl group

positioned near the Ado moiety of AdoCbl. Indeed, when a combination of true

substrate/product was observed in the structure of the AdoCbl-MCM complex68 (PDB

code 4REQ), proximity of the substrate/product to AdoH was confirmed, as well as the

identification of several key residues that bind the true substrate. H244 interacts with the

carbonyl of the thioester, consistent with the thought that partial protonation of the

carbonyl oxygen of the migrating group may facilitate the reaction 69 71 (see Fig. 1.5a).

Mutation of this residue results in a -103-fold reduction in kcat.

The crystal structure of the substrate-free MCM-AdoCbl complex68 (PDB code 3REQ;

Fig. 1.9b) revealed a drastically different conformation of the enzyme. Remarkably, the

TIM barrel is distended to the point of rupture. The carbonyl-amide backbone hydrogen

bonds of the internal beta sheet cylinder are interrupted by a gap in the side of the barrel,

leaving enough room for substrate to enter the TIM barrel. The overall B factor of 80 A2
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suggests that this structure is conformationally dynamic. Unlike crystals of the desulfo-

CoA MCM complex, the spectrum of substrate-free crystals was consistent with the

presence of Co(III), which is expected of an intact, six-coordinate AdoCbl species.

Features of electron density consistent with an Ado group still bonded to Co allowed

Mancia and Evans to model the intact cofactor in this structure. Contrary to the previous

hypothesis concerning trans effects in the presence of substrate, there was no evidence

for a shorter Co-N bond length in the substrate-free structure. As in the desulfo-CoA

MCM complex, the B factors of the cofactor are high. Finally, Mancia and Evans

published structures of two inhibitor-MCM complexes (PDB codes 6REQ, 7REQ)72. In

the CoA MCM complex, the CoA is disordered and the enzyme adopts a conformation

like that of the open-barrel, substrate-free MCM-AdoCbl structure.

One of the most interesting results of the structural work on MCM is the observation of a

conformational change of Y89, a conserved residue of the Cbl-binding site. In the

substrate-free structure, Y89 is located above the intact cofactor, with its aromatic ring

roughly parallel to the adenine of Ado. In the substrate-bound structure68 (PDB code

4REQ), the sidechain of Y89 occupies the former Ado site and hydrogen bonds to the

substrate. This destroys the Ado binding site, and is thought to be a major factor

contributing to the rate acceleration of C-Co bond homolysis in MCM. The significance

of the hydrogen bond between the phenolic oxygen of Y89 and the substrate is reflected

in kinetic studies of the Y89F mutant, which shows a 1000-fold reduction in kat73 .

Moreover, formation of Cob(II) in either the pre-steady state or in the steady state is not

observed in the Y89F mutant73, as it is with the wild-type protein.
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The structural work on MCM, combined with biochemical studies, gives us a more

complete picture of how an AdoCbl enzyme accelerates C-Co bond homolysis in the

presence of substrate. The substrate free structure adopts a conformation which allows

the substrate to enter the active site, causing closure of the TIM barrel. A change in the

conformation of Y89, caused by substrate binding, destroys the Ado binding site and

seems to play a key role in C-Co homolysis.

1.5.3. Diol and glycerol dehydratases: Base-on enzymes with a catalytic K+ ion in their

active sites

Diol dehydratase (DDH) was first purified and characterized by Lee and Abeles, who

found a monovalent cation requirement for activity7 4. DDH and glycerol dehydratase

(GDH) are similar but distinct enzymes that catalyze a 1,2 hydroxyl group shift followed

by the elimination of water to give an aldehyde product75 (Fig. 1.5e, f). The structure of

DDH in complex with CNCbl and (S)-1,2-propanediol76 (PDB code 1DIO), published in

1999 by Yasuoka and coworkers, highlighted several fascinating aspects of this enzyme.

Most strikingly, Cbl is bound in the base-on conformation (Fig. 1.10 Oa). The protein is a

dimer of heterotrimers, (ay) 2, which binds two equivalents of AdoCbl. Cbl is bound by

the subunit, with the upper face of the corrin ring projected into the substrate-binding

TIM barrel (a subunit). The y subunit is proposed to stabilize the heterotrimer. Like

MCM, a long N-Co bond (2.5 A) was observed for the structure of the DDH-CNCbl

complex. The upper axial CN ligand was not modeled due to poor electron density,

presumably caused by radiolytic damage.
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The base-on configuration of DDH-bound Cbl requires a Cbl binding subunit that is

different from the Rossmann-like domain that invariably binds Cbl in MS and the

mutases (Fig. 1.10b). The fi subunit of DDH consists of a central -sheet with peripheral

c-helices. The cofactor binds on the face of the -sheet, flanked by two helices. The

orientation of the cofactor with respect to the fl-sheet does not resemble the arrangement

of AdoCbl in the Rossmann domains of base-off enzymes.

The crystallographic data indicate the presence of a K+ ion in the active site, located deep

in the core of the TIM barrel (Fig. 1.10b). The K+ ion is coordinated by the hydroxyl

groups of the substrate, implying that it participates directly in catalysis76, perhaps by

lowering the energy barrier to a hypothetical oxycation radical transition state (Fig.

1.10c). The observation of a K+ ion in the active site is consistent with Abeles' initial

finding of a monovalent cation requirement for DDH74. Interestingly, in the substrate-

free DDH-CNCbl complex, two water molecules coordinate the K+ ion, rather than the

hydroxyl groups of 1,2-propanediol. A similar observation was made by Liao et al in

their structural studies of substrate-bound vs. substrate-free GDH77.

Structural comparison of the DDH-adeninylpentylcobalamin (APCbl; an AdoCbl analog)

substrate complex58 (PDB code EEX) with the substrate-free DDH-CNCbl complex7 8

(PDB code 1 IWB) reveals that the f subunit and the corrin macrocycle move away from

the a subunit when substrate binds. Assuming that the Ado moiety is held in the same

position as in the substrate-free structure, movement of the corrin macrocycle would

lengthen the C-Co bond and cause its cleavage. This idea has been referred to as an
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adenine-attracting effect; the affinity for the adenine moiety is so strong that when the

Cbl-binding domain moves away as substrates bind, the Ado group is held in place and

the C-Co bond cleaves.

For both MCM and DDH, conformational changes upon substrate binding suggest

mechanisms by which the proteins can enhance the rate of C-Co bond homolysis. For

MCM, substrate binding causes the dramatic closure of the (a/gJ)8 barrel and the

movement of Tyr 89 into the Ado-binding site, displacing Ado from the upper axial

position. In DDH, the enzyme binds both ends of the AdoCbl cofactor, and substrate

binding causes the Ado moiety and the Cbl portion to pull away from each other.

Interestingly, prior to crystallographic analyses of Cbl-dependent enzymes, mechanisms

to explain the increased rates of C-Co bond homolysis of the enzyme-bound cofactor

focused on fine-tuning of the nucleophilicity of the lower axial ligand to Co. Structural

data has shifted the focus to "brute-force" mechanisms for C-Co bond homolysis rate

enhancement.

1.5.4. Glutamate mutase: a theory of radical propagation

Glutamate mutase (GM) catalyzes the interconversion of (S)-glutamate and (2S,3S)-3-

methylaspartate, facilitating the fermentation of glutamate to acetate, CO2, and NH3
79

(Fig. 1.5c). The enzyme is a heterotetramer, 2a2 , where is a large subunit and a is a

small subunit. Kratky and coworkers have determined structures of GM in complex with

AdoCbl and substrate8 0 (PDB code 119C; Fig. 1.11), CNCbl and a substrate mimic (PDB

code 1CCW) 53, and MeCbl and a substrate mimic53 (PDB code 1CB7). GM binds two
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AdoCbl molecules, one in each Rossmann-like domain (a subunit). Like all of the

AdoCbl-dependent mutases, GM binds AdoCbl in the base-off conformation. EXAFS

studies of GM do not indicate an unusually long N-Co bond66 , which is confirmed by the

crystallographic bond length of 2.2 A. The top face of the corrin macrocycle is presented

at the C-terminal end of the substrate-binding TIM barrel ( subunit). Arguably, the most

important result from the crystallographic analysis of GM is the observation of two

conformations of the Ado moiety of AdoCbl. The 1.9 A resolution structure suggests a

mixed conformation for Ado, with one population in the C2'-endo conformation, and the

other in the C3'-endo conformation. The interconversion of these two conformations,

termed "ribose pseudorotation," is proposed to be the basis of radical propagation from

Ado. to the substrate. In the C2'-endo conformation, C5' is positioned -3.1 A directly

above the Co atom, whereas in the C3'-endo state, C5' is -4.5A removed from the Co and

positioned such that it can abstract an H atom from C4 of the substrate, as expected from

mechanistic studies 81.

In addition to the crystallographic structures, solution structures of the a subunit are

available82 8 5. The solution structures are generally similar to the X-ray structures, but

indicate that the loop containing the coordinating His residue, as well as the helix that

precedes this loop, are in a dynamic equilibrium between relatively structured and

unstructured states when AdoCbl is not bound. These studies suggest that the protein

locks onto AdoCbl and adopts a more rigid structure when the cofactor is bound.
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1.5.5. Class II ribonucleotide reductase: a ten-stranded ao0 barrel

Class II RNR carries out a unique AdoCbl-dependent reduction of nucleoside

triphosphates or diphosphates (Fig. 1.5h). The class II RNR from L. Leichmannii, for

which a structure has been determined6 0, acts on nucleoside triphosphates. A system

capable of multiple turnovers requires dithiols or the physiological

thioredoxin/thioredoxin reductase system38687. In addition to nucleoside triphosphate

reduction, L. leichmanii class II RNR catalyzes the exchange of 5' hydrogens of AdoCbl

with solvent, in the presence of effector but not substrate 88 89. A protein based, cysteine

derived thiyl radical has been shown to be generated in a kinetically competent

fashion40'4 ' 86, and several other cysteine residues were shown to play a role in delivering

reducing equivalents to the active site86. Formation of the thiyl radical is AdoCbl

dependent. Whether or not formation of the thiyl radical is concerted with C-Co bond

homolysis has been the subject of several investigations2 3 9

Electron paramagnetic resonance (EPR) studies demonstrated that class II RNR from L.

leichmannii binds AdoCbl in the base-on configuration9 1. This was confirmed by the

crystal structure of the class II RNR in complex with APCbl (PDB code 1LIL; Fig.

1.12)60. The structure of the class II RNR is largely dissimilar to the known structures of

other AdoCbl binding enzymes, including the base-on enzyme DDH. Based on the

location of Cys 408, which gives rise to the catalytic thiyl radical, the active site is

located in the middle of a 10-stranded ol barrel. Cbl is bound to an "AdoCbl binding

region" above the barrel. A structure of the apoenzyme is also available60 , and

comparison with the APCbl-bound structure reveals a clamping-down of the AdoCbl
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binding region over the barrel when Cbl is bound. The solvent accessibility of the active

site Cys residue in the APCbl-bound structure suggests that the AdoCbl binding region is

not fully closed over the barrel, resulting in a -10 A separation between the active site

Cys in the barrel and the Co atom of Cbl. EPR spectroscopy was used to show that the

Co-Cys distance is 5.5-7.5 A in the catalytically active enzyme-coenzyme complex41 .

The openness of the APCbl-RNR structure was attributed to lack of bound effector.

Effector binding promotes C-Co bond homolysis9 2 93 , perhaps by causing a more

complete movement of the AdoCbl binding region, which would also bring the cofactor

and active site Cys residue into proximity. Since the adeninylpentyl moiety of APCbl

was not interpretable, the details of how clamping-down of the AdoCbl binding region

would effect C-Co bond homolysis are unknown at this time.

A striking feature of the class II RNR structure is that the global fold of the enzyme is an

(a13)10 barrel, unlike any other AdoCbl enzyme of known structure. This structure is

similar to those of the class i94 and III95 RNRs and suggests that, as a class of enzymes,

the RNRs are more closely related to one another than the class II enzyme is to other

AdoCbl enzymes.

1.5.6. Lysine 5,6-aminomutase

5,6-LAM is an AdoCbl96 '99 and PLP dependentl °°' l° enzyme in the bacterial lysine

fermentation pathway0 2. This enzyme catalyzes the interconversion of DL-lysine or of

fl-L-lysine to 2,5-diaminohexanoate or to 3,5-diaminohexanoate, respectively (Fig. 1.5i).

5,6-LAM is similar to 2,3-LAM in terms of its substrates and reaction, but 2,3-LAM is an
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AdoMet radical enzyme. Frey and coworkers have overexpressed, purified and

characterized recombinant 5,6-LAM from C. sticklandii54 ,103. Interestingly,

computational analyses suggest a role for PLP in stabilizing radical intermediates on the

reaction pathway'03 , though Danen and West demonstrated that the 1,2 amino shift occurs

in the absence of any aromatic substituent in the simplest model, the aziridylcarbinyl

radical' 0 4. The crystal structure of 5,6-LAM (Fig. 1.13), a major contribution to this

thesis, was determined in collaboration with the Frey laboratory and suggests a novel role

for PLP. The structure will be discussed in further detail in chapter 4.

1.6. AdoMet radical enzymes

In this section, the well or moderately-well -characterized AdoMet radical enzymes are

introduced. Only two X-ray structures for AdoMet radical enzymes are published,

though spectroscopic studies have provided structural insight into the coordination

environment of the 4Fe-4S clusters in these enzymes.

1.6.1. Lysine 2,3-aminomutase: reversible cleavage of AdoMet

2,3-LAM, another enzyme of the bacterial lysine fermentation pathway02 , was purified

by Barker and coworkers from Clostridium subterminale SB425. The enzyme catalyzes

the interconversion of L-lysine and L-fl-lysine (Fig. 1.6c). 2,3-LAM is a homohexamer,

with each monomer containing 1 molecule of PLP0 5, 1 molecule of AdoMet24 '106 1'0 9, and

an oxygen labile 4Fe-4S cluster"l l° '. Like all known AdoMet radical enzymes, 2,3-

LAM has a conserved CxxxCxxC motif. Frey and coworkers have made major

contributions to our understanding of 2,3-LAM, which is one of the best- characterized
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AdoMet radical enzyme. As mentioned earlier in this chapter, 3H transfer from substrate

to AdoMet was demonstrated by Moss and Frey in 198724. Unlike many other AdoMet

radical enzymes, AdoMet cleavage is reversible in the 2,3-LAM reaction 109 , i.e. 2,3-LAM

utilizes AdoMet as a true cofactor rather than as a substrate. Cleavage of AdoMet to

Ado. and Met requires the 4Fe-4S cluster to be reduced to the +1 state, which itself

requires the presence of AdoMet T1 . AdoMet cleavage also requires the presence of

substrate08. Spectroscopic investigations have led to a hypothetical mechanism for

reductive cleavage of AdoMet by the catalytic [4Fe-4S] 1+ cluster (Fig. 1.14), in which the

AdoMet amino and carboxyl groups chelate a unique Fe of the cluster, and the AdoMet

sulfur is a ligand to the unique Fe after cleavage'06 '10 9.

Spectacular model chemistry1 12 and spectroscopicl3-116 investigations with substrate and

with substrate analogs have allowed Frey and coworkers to propose a mechanism for 2,3-

LAM, in which PLP forms a benzylic radical at the imine carbon, facilitating a 1,2 imine

shift via an aziridylcarbinyl radical (Fig. 1.15). In the spectroscopic studies, EPR,

electron spin-echo envelope modulation (ESEEM) spectroscopy, and rapid freeze quench

techniques were used to identify a kinetically competent radical intermediate in the

reaction of 2,3-LAM with substrate. The studies of 2,3-LAM have provided the basis for

many of the mechanistic proposals for 5,6-LAM, which will be discussed further in

chapter 4.
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1.6.2. Pyruvateformate lyase activase: a modelfor AdoMet binding

PFL catalyzes the reversible conversion of pyruvate and CoA to acetyl CoA and formate,

an essential step in anaerobic glucose fermentation. PFL requires an activating enzyme,

first described by Knappe and coworkers'7 9 . PFL activase contains a protein-bound

4Fe-4S cluster120' 1 21, which is ligated by the CxxxCxxC motif, and is active in the 1+

oxidation state122. Cluster reduction is dependent on the flavodoxin/flavodoxin

reductase/NADPH system 23 . PFL activase abstracts an H atom from the ac carbon of

PFL at Gly 734 (Fig. 1.6d), which is incorporated into AdoH, a product of the reaction24 .

PFL activase has been a model system for studying AdoMet-Fe-S cluster interactions in

AdoMet radical enzymes. Mossbauer studies by Huynh and Broderick revealed the

presence of a unique Fe in the 4Fe-4S cluster , and electron nuclear double resonance

(ENDOR) studies by Broderick and Hoffman demonstrated chelation of AdoMet to the

unique Fe of the cluster via the amino acid moiety 2 6 . In these ENDOR studies, the

AdoMet was labeled at the carboxyl group with 170 and '3C, and at the amino group with

15N. The model derived from these studies is shown in Fig. 1.14b. Although details of

the sulfonium interaction with the cluster remain to be established, this model appears to

represent the general mode of AdoMet binding in this superfamily, and has withstood the

test of additional spectroscopic studies on other AdoMet radical enzymes, and two crystal

structure determinations.
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1.6.3. Class III ribonucleotide reductase activase: reductive cleavage of AdoMet

Class III RNR from E. coli is responsible for deoxyribonucleotide biosynthesis under

anaerobic conditions. It was first described by Fontecave et al127 , and like PFL, it is a

glycyl radical enzyme. The reductase is activated by H atom abstraction (Fig. 1.6d)

under anaerobic conditions by an activase, generally called , which is dependent on one

equivalent of AdoMet'28 -'3 0 and contains a 4Fe-4S cluster ligated by a CxxxCxxC

motif31 '13 2. EPR investigations on dithionite-reduced activase by Fontecave and

coworkers showed that the [4Fe-4S]l+ cluster reduces AdoMet to produce AdoH and

Met 129 '30. Flavodoxin/flavodoxin reductase/NADPH is thought to be the physiological

reducing system for the 4Fe-4S cluster and is competent for glycyl radical formation in

vitro 3 3 . These experiments on the class III RNR were crucial in establishing the role of

the essential 4Fe-4S cluster in the AdoMet radical enzymes. Interestingly, Fontecave and

coworkers propose that reduction of the cluster by flavodoxin is thermodynamically

coupled to formation of AdoH and the glycyl radical on the target protein13 3. A crystal

structure of the activase alone, and in complex with flavodoxin and the reductase, would

be invaluable for learning more about the mechanism by which this thermodynamic

coupling is achieved.

1.6.4. Biotin and lipoyl synthases: sulfur insertion enzymes

BioB catalyzes the final step in the biotin (vitamin B8) biosynthetic pathway (Fig. 1.4),

the conversion of dethiobiotin to biotin' 34 ' 13 5 (Fig. 1.6a). BioB contains one 4Fe-4S

cluster and one 2Fe-2S cluster'36 . The 4Fe-4S cluster, which is responsible for radical
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generation, is ligated by AdoMet and by the three cysteines of the CxxxCxxC motif,

which is common to all AdoMet radical enzymes 3 7 - 13 9. The 2Fe-2S cluster is ligated by

three Cys residues and one Arg residue13 7, and has been proposed to be the S donor in

the reaction' 37 '140-143, but this is a subject of dispute144 ,145. BioB is not known for its

catalytic prowess: the E. coli enzyme catalyzes only one turnover at a rate of minutes to

hours. The only report of multiple turnovers is for BioB from Arabidopsis, which

catalyzes >2 turnovers per hour'46 . The crystal structure of BioB'3 7 (PDB code 1R30,

Fig. 1.16) is a major contribution to this thesis. The structure of BioB and the remarkable

reaction this enzyme performs will be discussed in further detail in chapter 3.

The lipoyl group is an essential cofactor in several important enzymes' 47 , including the

pyruvate dehydrogenase complex. Lipoyl synthase (LipA) catalyzes the conversion of

octanoylated proteins to lipoylated proteins 148'15 (Fig. 1.6b). In many respects, LipA is

similar to BioB. Like BioB, LipA catalyzes the formation of C-S bonds at nonactivated

carbon positions and contains two Fe-S clusters per polypeptide (one of which is a 4Fe-

4S cluster that is, presumably, ligated by the protein's CxxxCxxC motif and by AdoMet).

Also like BioB (according to Marquet's report142), LipA consumes two equivalents of

AdoMet per product. Despite the similarities of their reactions, some important

differences between LipA and BioB do exist. Whereas BioB produces one equivalent of

product per monomer, two equivalents of LipA are required to produce one lipoyl

product, and the sulfur insertion reaction proceeds with inversion of configuration4 9 51 ,

in contrast to the retention of configuration in BioB152. As the biochemical and

biophysical characterization of BioB and LipA continue, it will be fascinating to compare
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and contrast how these two enzymes use different types of Fe-S clusters to catalyze

similar reactions.

1.6.5. Coproporphyrinogen III oxidase: a newfoldfor an Ado* enzyme

Coproporphyrinogen III oxidase (HemN) oxidatively decarboxylates propionate side

chains of coproporphyrinogen III to vinyl groups153-156, an essential step in heme and

chlorophyll biosynthesis under certain growth conditions (Fig. 1.6f). The enzyme was

overexpressed and purified from E. coli1 56 and is known to contain a 4Fe-4S cluster,

ligated by the three Cys residues of the CxxxCxxC motif, and by AdoMet at a unique Fe

of the cluster 56 '1 57 . Surprisingly, the crystal structure of HemN5 7 revealed not one, but

two AdoMet molecules bound to the enzyme (PDB code 1 OLT; Fig. 1.17). Both of these

AdoMet sites were interpreted as physiologically relevant, but structural comparison with

BioB suggests that the second AdoMet molecule may be occupying the substrate-binding

site (discussed in chapter 5). Interestingly, the fold of HemN is not the same as that of

BioB, but the interactions of the 4Fe-4S cluster with AdoMet are almost identical

between the two enzymes (discussed in chapter 5).
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1.7. Summary

AdoCbl- and AdoMet- dependent radical enzymes catalyze difficult reactions via radical-

based mechanisms. Both families of enzymes must prevent aberrant free-radical

reactions while still maintaining proper reactivity for catalysis. Ado. is implicated in the

reactions of both enzyme families. The AdoMet radical enzymes require a catalytic [4Fe-

4S]l+ cluster in order to produce Ado., and reduction of the cluster to the 1+ oxidation

state requires a physiological reducing system, whereas AdoCbl-dependent enzymes

require homolytic cleave of the C-Co bond to produce Ado.. Several AdoCbl radical

enzymes have AdoMet radical enzyme analogs, such as the class II and class III RNRs

and 5,6-LAM/2,3-LAM.

This thesis addresses key questions in the field of Ado. enzymes, such as: What is the

structural basis for AdoMet binding by the AdoMet radical enzymes? What, if any,

structural relationship exists between the AdoMet radical enzymes and the AdoCbl

radical enzymes? How do Ado. enzymes prevent radical propagation in the absence of

substrate or effector? Chapters 2 and 3 describe the crystallization, structure

determination, and structure analysis of the AdoMet radical enzyme BioB. Chapter 4

describes the crystallization, structure determination, and structure analysis of the

AdoCbl radical enzyme 5,6-LAM. Chapter 5 provides a few final thoughts on the

relationship between these two superamilies of Ado. radical-producing enzymes.
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1.8. Figures
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Figure 1.1. Molecular structures of (a) AdoCbl, (b) Ado., and (c) AdoMet.
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Na tN Ad =

N HOCJ

H X x H/H HO

AdH

.o ~X H

Ad'H

· - .- . '',

Figure 1.2. Simplified catalytic cycle of AdoCbl-dependent mutases. Carbon-cobalt
bond homolysis leads to the formation of Ado. and Cob(II). Ado. abstracts a hydrogen
atom from the substrate, initiating the 1,2 shift, which is simplified in this scheme. The
product-derived radical abstracts an H atom from AdoH, reforming the Ado./Cob(II)
couple, which recombine to regenerate the intact cofactor. The stereochemical course of
the reaction differs from enzyme to enzyme. Adapted from reference1 58
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H2N N HO
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(d) 0N
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Figure 1.3. Selected AdoMet-dependent enzymatic reactions. The enzymes that carry
out these reactions are: (a) DAPA synthase26 (see also Fig. 1.4); (b) SAM-tRNA
ribosyltransferase-isomerase' 5 9; (c) 5'-deoxyfluoroadenosine synthase 160; (d) 1-
aminocyclopropane-l-carboxylate synthasel 61 ; (e) acylhomoserine lactone synthasel 62

(ACP = acyl carrier protein); (f) 3-(3-amino-3-carboxypropyl) uridine synthase16 3; (g)
SAM decarboxylase 64; (h) Cyclopropane fatty acid synthase16 5. Adapted from
reference' 66 .
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Flavodoxin HN NHHN NH
FNR H H
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Biotin (Vitamin B8)

Figure 1.4. The biotin biosynthetic pathway. Enzymes in the pathway are in bold
typeface. Cofactors, co-substrates, and other enzymes involved in pathway reactions
(flavodoxin, flavodoxin-NADPH oxidoreductase [FNR]) are listed in italics.
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Class I: Carbon skeleton mutases
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Class II: Eliminases
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Class IIl: Aminomutases
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H3N V~~co2
NH3'

NH3+

C02
H3N+
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Figure 1.5. The AdoCbl-dependent enzymatic reactions. Reactions are sorted into
general classes according to Buckel and Golding22. The reactions are catalyzed by: (a)
MCM; (b) ICM; (c) GM; (d) MGM; (e) DDH; (f) GDH; (g) EAL; (h) class II RNR; (i)
5,6-LAM; (j) OAM. See text for references.

- 42 -

(a)

(f)
H [HO, _ OH 

HC ~ OH I OH J

HO %O0

H

+ H20

(i) (J) NH+3N +H3 NH3



Sulfur insertase

J, HN NH
HN NH HN H

0

H 4

0 S S

H 4

Mutase

NH3

H N- -C2 = H3 N--C 2oN
NH3

Activase

(d)

H
o

N
H

0

Oxidoreductase

(f)

Figure 1.6. Several moderately or well -characterized AdoMet radical enzyme reactions,
sorted into categories. The reactions are those of (a) BioB; (b) LipA; (c) 2,3-LAM; (d)
the activases of class III RNR and PFL; (e) SPL; (f) HemN. See text for references.
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Figure 1.7. The AdoMet cycle. Enzymes involved in recycling AdoMet are shown in
italics. The reaction most often associated with AdoMet, methylation of a nucleophile
with production of S-adenosylhomocysteine (SAH), is shown as part of the cycle.
Adapted from referencel66 .
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Figure 1.8. Crystal structure of the MeCbl-binding domain of MS51 . (a) Ribbon
representation of the MeCbl-binding Rossmann domain. fl-strands are colored dark blue
and MeCbl is shown in a ball-and-sphere representation in pink. This coloring scheme is
used in all ribbon diagrams in this chapter. (b) Details of the base-off binding of MeCbl
to MS, showing the conserved residues of the DxHxxG...Sxl...GG sequence
characteristic of all base-off binding enzymes (see text). The coloring scheme for this
and all other Figures is: C, gray; 0, red; N, blue; P, green. The carbon atoms of MeCbl
are shown in black. All structural Figures were made with PyMo1167.
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Figure 1.9. Crystal structure of MCM. (a) The MCM-Cbl-desulfo-CoA complex52 .
Desulfo-CoA is shown in a ball-and-stick representation in black. The substrate-binding
TIM barrel is shown in green. (b) The substrate-free MCM-AdoCbl complex68. The
adenosyl group is colored in red. In this structure, the TIM barrel is spliced open relative
to the MCM-Cbl-desulfo-CoA complex.
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Figure 1.10. Crystal structure of DDH76 . (a) Close-up view of APCbl, the substrate (1,2
propanediol), and a potassium ion (orange sphere) in the active site. (b) Ribbon diagram
of DDH showing the substrate-binding TIM barrel in green and the AdoCbl-binding
subunit in light blue, with the central fl-sheet in dark blue. The adeninylpentyl moiety of
APCbl is shown in red, Cbl in pink, the substrate in dark grey, and the potassium ion is
shown as an orange sphere. (c) A hypothetical mechanism for the 1,2 shift in DDH,
wherein the K+ ion is directly involved in catalysis (adapted from reference1 58).
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Figure 1.11. Crystal structure of GM in complex with substrate and AdoCbl80 . Only the
C2'-endo conformation of Ado (red) is shown. Gruber et al modeled a mixture of
substrate (L-glutamate, shown here in black) and product ([2S,3S]-3-methylaspartate, not
shown) into the active site. The TIM barrel is shown in green.

l

Figure 1.12. Crystal structure of class II RNR6 0 . The AdoCbl-binding region is shown
in blue, with the central B-hairpin highlighted in dark blue. APCbl is bound in the base-
on configuration and shown in pink. The adeninylpentyl moiety is disordered and is not
shown in this Figure.
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Figure 1.13. Crystal structure of the substrate-free AdoCbl-PLP-5,6-LAM complex, a
major contribution to this thesis (discussed in chapter 4). The protein is an a 2 32 tetramer;
only the o unit is shown. The AdoCbl binding Rossmann domain is colored in blue,
with the central $-sheet highlighted in dark blue, and the remainder of the protein is
colored green. Cbl is colored pink, AdoH is colored red, and PLP is colored black. 5,6-
LAM is unusual when compared to other AdoCbl-dependent mutases in that AdoCbl
does not bind directly atop the center of the TIM barrel.
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Figure. 1.14. Radical generation by the 4Fe-4S cluster and AdoMet in the AdoMet
radical enzymes. (a) A model for radical generation, based on Frey and coworkers'
spectroscopic studies of 2,3-LAM °6 °'09. (b) A model of AdoMet interacting with the
reduced 4Fe-4S cluster of PFL activase, from Broderick and coworkers' pioneering
ENDOR experiments'2 5 '26.
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Figure. 1.15. Mechanism proposed by Frey and coworkers for the 2,3-LAM reaction,
modified from reference68 . The boxed intermediate has been observed by EPR and
ESEEM spectroscopy and is kinetically competent1 13'116
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1A'1

Figure 1.16. Crystal structure of BioB'3 7. Only one subunit of the BioB homodimer is
shown. The structure is a major contribution to this thesis. Fe-S clusters are shown as
spheres (Fe, brown; S, yellow), AdoMet (red) and substrate (DTB, black) are shown in
ball-and-stick representations. The central Bf-sheet of the TIM barrel is highlighted in
dark blue.
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Figure 1.17. Crystal structure of HemN'57 . The 4Fe-4S cluster is shown as spheres (Fe,
brown; S, yellow). Two AdoMet molecules were observed in the structure; the one that
chelates a unique Fe of the cluster is shown in red and the second molecule is shown in
black. -strands are colored dark blue.
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Abbreviations:

AdoMet S-adenosyl-L-methionine
ASU Asymmetric unit
BioB Biotin synthase
DTB Dethiobiotin
PEG Polyethylene glycol
Tris Tris(hydroxymethyl)aminomethane

- 66 -



The determination of the structure of BioB was a two year-long collaboration with the

laboratory of J.T. Jarrett at the University of Pennsylvania Department of Biochemistry

and Biophysics. Producing good quality crystals of BioB proved to be a challenging

process, requiring approximately 15 months of experimentation to finally obtain 3.4 A

resolution data. Table 2.1 summarizes developments in the crystallization, and the basic

analysis of the structure of BioB. Only one preparation of BioB ever crystallized in my

hands, and I am convinced that something unique about that purification led to

crystallization. The crystallization of BioB by hanging drop vapor diffusion methods was

unusual in several ways which warrant the attention provided by this chapter.

2.1. Protein purification, Fe-S cluster reconstitution, and addition of substrates

Recombinant histidine-tagged Escherichia coli BioB was purified from E. coli and the

Fe-S clusters were anaerobically reconstituted in the Jarrett laboratory as previously

described1' 2. Additionally, purified AdoMet was produced in the Jarrett laboratory and

used in the crystallization process. Dethiobiotin (DTB) and all other reagents used in

crystallization were purchased from Sigma. The protein solution contained 20 mg/mL

BioB, 25 mM Tris hydrochloride, pH 8.0, and a four-fold molar excess of AdoMet and of

DTB. Protein solutions and all other crystallization materials were handled in a Coy

anaerobic chamber, under an atmosphere of 5% H2 / 95% Ar.

2.2. Crystallization and preliminary analysis

Crystallization experiments were carried out in a Coy anaerobic chamber at room

temperature, under an atmosphere of 95% Ar, 5% H2. To ensure anaerobiosis, the
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chamber contains palladium catalysts mounted on fan systems, which react with H2 gas

and scrub any 02 that may be present in the chamber. All solutions used in

crystallization were thoroughly purged with Ar before transfer into the anaerobic

chamber. Crystallization trays, pipet tips, and all other supplies and apparatus were

subjected to rounds of vacuum and pressurized Ar in order to exchange any adsorbed

oxygen before being transferred to the anaerobic chamber. PEG solutions, cofactors, and

other light-sensitive reagents were kept in a dark box in the anaerobic chamber.

Table 2.2 shows a list of crystallization screens, commercially available from Hampton

Research Corp., that were used in combination with various crystallization methods in an

attempt to crystallize BioB. Initial crystallization experiments were done in glass

capillary tubes (Kimble Products KIMAX-51, 1.5 x 90 mm), using the microbatch

method. For these experiments, 3 gL of protein (20 mg/mL BioB, 25 mM Tris pH 8.0)

were mixed with an equal volume of precipitant solution and deposited in a capillary, a 6

!iL reservoir of precipitant solution was deposited opposite the protein/precipitant

mixture, with a small space separating the two liquid plugs, and the capillary was then

sealed with wax. These experiments did not produce protein crystals of observable size.

Due to the difficulties and large amounts of protein that are associated with microbatch

crystallization, this method was soon abandoned in favor of a somewhat unconventional

hanging drop vapor diffusion method described below.

Typically, the hanging drop vapor diffusion method involves a small amount of protein,

which is placed on a siliconized glass cover slip, mixed with precipitant solution, and
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sealed over a 0.5-1.0 mL well of precipitant solution. The hanging drop method has the

tremendous advantage of requiring far less protein (1 L or less) per crystallization trial

than the microbatch method, while suffering from the disadvantage of requiring far more

precipitant solution, which must be degassed before introduction to the anaerobic

chamber. The degassing step adds a degree of uncertainty to the experiment, since

degassing likely results in a change in concentration of the solution.

Rather than degassing larger volumes of each component of each screen to use as well

solutions, a solution of 2.5 M (NH4)2SO4 was used as a standard well solution, in place of

precipitant solution. The use of ammonium sulfate as well solution was a common

practice, before the availability of commercial crystallization screens. For the purposes

of anaerobic crystallization, this method allows the investigator to reclaim the time that it

would take to degas larger volumes of precipitant solutions, but presents disadvantages as

well. For instance, small amounts of volatile ammonia may evolve from aqueous

(NH4)2SO4, diffuse into the hanging drop, and change its pH over the course of the

experiment3 . Likewise, if the precipitant solution contains volatile components, their

concentrations would be expected to fall as diffusion from the hanging drop to the well

solution proceeds. Nevertheless, it was assumed that the salt-equilibrated hanging drop

method would be useful in screening a large number of precipitant solutions. In later

experiments, the potential problem of ammonia volatility was eliminated by using 2.5 M

NaCl instead of a solution of (NH4)2SO4. For a given precipitant solution, wells

containing the NaCl solution generally produced fewer and better quality crystals than

wells containing (NH4)2SO4.
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The salt-equilibrated hanging drops were set up as follows: 1 tL of protein (20 mg/mL

BioB, 25 mM Tris pH 8.0) was mixed with 1 tL of precipitant solution (see Table 2.2)

on a siliconized cover slip. The cover slip was placed over a well solution of NaCl or

(NH4)2SO4 . Trays were set up and stored in the Coy anaerobic chamber at room

temperature. Approximately two weeks into the salt-equilibrated hanging drop

experiments, small yellow-brown crystals were observed to grow in crystallization

condition BioB1 (Table 2.1). Interestingly, BioB forms a very heavy brown precipitate

within an hour of mixing protein with precipitant solution, indicating a relatively rapid

phase transition of the enzyme under these crystallization conditions. The small crystals

appeared to grow from this precipitate. Unfortunately, these crystals were too small to

manipulate, even with a 0.05 mm nylon cryoloop. It was assumed, for reasons discussed

above, that the salt-equilibrated hanging drop method would add an extra layer of

complications to the crystallization experiment, so efforts to reproduce these crystals and

to screen around this condition were undertaken using the conventional method. During

the course of two weeks, no crystals were observed to grow when the well solution was

replaced with precipitant solution. The salt-equilibrated method was then redeployed,

resulting in the successful reproduction of the initial crystals. Screening around the

original condition (by varying the salt concentration and the molecular weight and

concentration of the PEGs used) resulted in a slightly better crystallization condition

BioB2 (Table 2.1). The crystals grown in condition BioB2 were slightly larger and thus

more intensely brown. As in the original crystallization condition, a heavy brown

precipitate was observed to form several minutes after mixing the precipitant and protein

solutions, and crystals appeared to grow out of this precipitate. Attempts to lessen the

- 70 -



precipitation by decreasing the concentration of PEG resulted in failure to produce

crystals, suggesting once again that precipitate formation is part of the pathway to crystal

growth. The growth of protein crystals out of precipitate is a common phenomenon in

macromolecular crystallography4 .

The crystallization seemed to be extremely sensitive to motion disturbances.

Crystallization trays that were not handled for two weeks after the experiment was started

produced fewer, crystals which were large enough to manipulate with a 0.05 mm

cryoloop. These crystals were used in macro- and micro-seeding experiments. However,

these seeding experiments failed to produce larger crystals.

At this point, crystals grown in condition BioB2 were characterized by SDS-PAGE (Fig.

2.1). Interestingly, lane 3 of Fig. 2.1 contains two distinct bands, one at -39 KDa and a

second band at -36 KDa, instead of one expected single band at -40 KDa (BioB is a

homodimer of -80 kDa). The -36 KDa band is due to a problem with C-terminal

proteolysis that has now been corrected (J. Jarrett, personal communication). Proteolysis

was occurring at the C-terminal end of the protein just after the last alpha-helix of the

TIM barrel, and although this gel suggests that approximately half of the protein in the

crystals should have the last 31 residues, no electron density is observed for these

residues in either molecule in the structure. It is unclear what the function of this C-

terminal region is, since proteolyzed protein shows no reduction in activity compared to

the wild-type enzyme (J. Jarrett, personal communication). It is also not clear whether

proteolysis is an important factor in crystallizing BioB, since the C-terminus of the
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crystallographic model does not participate in lattice contacts (Fig. 2.2). However,

crystallization of C-terminal truncated BioB is probably worth pursuing in order to obtain

higher resolution crystallographic data, since disordered regions of proteins can prevent

the formation of tight lattice contacts.

Crystals produced by condition BioB2 did not diffract synchrotron source X-rays when

cryoprotected and tested for diffraction at 100K. Likewise, no diffraction was observed

when crystals were mounted in capillaries and tested using a rotating copper anode

generator. Attempts were made to improve the crystal quality using detergents and

crystallization additives. Each of Hampton Detergent Screens 1, 2, and 3 was used to

supplement condition BioB2 in crystallization experiments. Due to the surfactant

properties of detergents, the sitting drop vapor diffusion method was used, in which

protein and precipitant solution are mixed and placed in a small reservoir above the well

solution. Like the successful hanging drop experiments, the sitting drops were also salt-

equilibrated. Addition of detergents to condition BioB2 had a deleterious effect on the

crystallization, and detergents were generally excluded from further crystallization

experiments. A small molecule additive screen was designed with the hope that additives

might improve the crystallization. The additive screen, whose formulations are shown in

Table 2.3, included salts, polymers, metals, organic solvents, amino acids, sugars,

reductants, cofactors, polyamines, etc. Through screening with additives, it was observed

that substantially larger crystals (Fig. 2.3a ) are grown in condition BioB2 supplemented

with 100 mM glycine and titrated to pH -6.5 (condition BioB3, Table 2.1). As before,

these crystals appeared only after a heavy brown precipitate was observed.
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Cryo-cooled crystals grown in condition BioB3 diffracted Cu K, source X-rays, albeit

weakly to -10-11 A resolution (Fig. 2.4). Though the resolution is quite low, the

diffraction quality is good, with no evident problems due to cryo-protection or multiple

lattices. Cryo-cooling was accomplished inside the anaerobic chamber by first soaking

the crystal in condition BioB3 supplemented with 20% v/v glycerol for several seconds,

and then plunging the crystal into liquid nitrogen. 50% v/v glycerol was carefully

prepared by degassing for 24 hours in a round-bottom flask with stirring. To ensure that

cryo-protection was not damaging the crystals, a crystal was transferred from the

crystallization drop to a quartz capillary anaerobically, and then tested for diffraction at

room temperature. Crystals tested in this manner produced weak or no discernable

diffraction. A further test was done to see if the resolution limit could be improved by

cryo-cooling crystals in a gaseous stream of nitrogen at 100 K. This method takes

advantage of the transient oxygen stability of BioB in the presence of its substrates5, and

seemed to produce better-quality diffraction than freezing in liquid nitrogen. Cryo-

cooling in the cold stream was adopted as the standard method of cryo-protecting BioB

crystals.

The best crystals grown in condition BioB3 appeared 1 month after the crystallization

experiment was set up, and required that the crystallization tray not be handled during the

duration of the experiment. Such crystals diffracted synchrotron source X-rays to afford

data to 5.5 A resolution (Table 2.4). Data were processed with the programs DENZO and

SCALEPACK6 . While these data were not of high enough resolution to allow us to solve

the structure, the data were useful for the purposes of beginning the characterization of
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the crystals. Crystals are trigonal (P321, P3121, or P3 221), with a=b=155.3 A, c= 91.3 A.

Unfortunately, no data were collected along (001), and it was thus impossible to properly

identify a 31 or 32screw axis at this time. Given the dimensions of the unit cell and the

molecular weight of BioB, a solvent content of -53% (corresponding to a Matthews

coefficient7 of Vm=2.65 A3/Da and 3 molecules per ASU) or -69% (corresponding to

Vm=3.98 A3/Da and 2 molecules per ASU) was expected. Since BioB is a homodimer

and the crystals diffract to low resolution, we suspected that the solvent content was

indeed 69%, and this turned out to be correct. Data collected at the Fe absorption peak

wavelength was processed with DENZO and SCALEPACK6, and SOLVE8 was used to

search for Fe sites in the possible space groups. In (P3121, P3221), four Fe sites were

identified (Fig. 2.6), consistent with expected set of two 4Fe-4S and two 2Fe-2S clusters

per BioB dimer2. Spacegroup P3121 and the sites that were located turned out to be

correct (see below), illustrating the value of low resolution (5.5 A) data in preliminary

crystal characterization.

To improve upon the 5.5 A resolution limit, the crystallization of BioB was revisited.

Upon re-examination of the conventional hanging-drop crystallization experiments, small,

irregularly shaped crystals were observed to grow in condition BioB4. Based on previous

results, it was inferred that the addition of glycine to the precipitant and the use of the

salt-equilibrated hanging drop method might produce better crystals. Condition BioB4

was optimized to give condition BioB5, consisting of 0.1 M Tris hydrochloride, 0.1 M

glycine, 0.2 M MgC12, 20% w/v polyethylene glycol 1000, which was titrated to a final

pH of -6.5. Once again, trays were set up in a Coy anaerobic chamber at room
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temperature, with 1 AtL of protein (20 mg/mL BioB, 25 mM Tris pH 8.0) added to 1 L

of precipitant solution on a siliconized cover slip, and equilibrated over a well containing

0.5 mL 2.5 M NaCl. Crystals grown in condition BioB5 (Fig. 2.3b) were the largest

BioB crystals obtained to date and diffracted synchrotron source X-rays to 3.4 A

resolution (Table 2.5). These crystals belong to space group P3121 (six ASUs), with 2

molecules per ASU (Z=12) and a = b =155.69 A, c = 90.88 A, V=1,908,412 A3 .

Systematic absences distinguished (P3 121, P3 221) from p321, and P3 121 was

differentiated from P3221 by inspection of a helices.

As with previous crystallization conditions, extensive macro- and micro- seeding

experiments under condition BioB5 failed to produce larger or better-quality crystals, and

crystals always appeared several days to weeks after the formation of a heavy brown

precipitate in the crystallization drop. Using Tris that was buffered at pH 7.0 (instead of

titrating the final precipitant solution to pH -6.5) resulted in smaller crystals that

diffracted relatively poorly, suggesting that Tris is serving as an additive rather than as an

effective buffer in condition BioB5. Data collected from crystals grown in condition

BioB5 allowed us to solve the structure of BioB. The protein's intrinsic Fe cofactors

were used to phase the structure by multiwavelength anomalous dispersion (MAD)

methods, as described in chapter 3.
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2.3. Tables

Table 2.1. Timeline of BioB crystallization.

Date Development Crystallization Precipitant formulation Well solution
condition (0.5 mL, 2.5 M)

Jul.
2001

Small crystals BioB1

Sep. Crystals large enough BioB2
2001 to manipulate

Nov. -11 A diffraction (Cu BioB3
2001 Kradiation)

Jan.
2002

5.5 A data
(synchrotron
radiation), location of
two putative Fe-S
cluster sites per BioB
monomer

Crystals observed in
previous
conventional hanging
drop experiments

Aug. 3.7 A data
2002 (synchrotron

radiation)

Sep.
2002

3.4 A data
(synchrotron
radiation)

0.2 M KC1
0.01 M MgC12
0.05 M Na-Cacodylate
pH 6.5, 10% w/v PEG
4000

0.2 M MgC12
0.1 M Na-Cacodylate
pH 6.5 20% w/v PEG
1000

0.2 M MgC12
0.1 M Na-Cacodylate
pH 6.5
0.1 M glycine
20% w/v PEG 1000

BioB3

BioB4

BioB5

0.2 M MgC12
0.1 M Tris-HCI pH 7.0
12% w/v PEG 3000

0.1 M Tris-HCl
0.1 M glycine
0.2 M MgC12
20% w/v PEG 1000
final pH -6.5

BioB5
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Table 2.2. Hampton Research screens used to find BioB crystallization conditions.

For each screen listed, one or more crystallization methods were used in an attempt to
crystallize BioB. For crystallization drops that were equilibrated against either
(NH4 )2 SO4 or NaCi wells, the well solution was 2.5 M.
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Screen Microbatch Conventional (NH4)2S04 NaCl-
capillaries hanging drop -equilibrated equilibrated

hanging drop hanging drop

Sparse-matrix
Crystal Tried Tried Tried Tried
Screen
Crystal Tried Tried Tried Tried
Screen 2
Crystal Tried Tried Tried Tried
Screen Cryo
Crystal Tried Tried Tried Tried
Screen Lite
PEG/Ion Tried Tried Tried Tried
screen
Natrix Tried Tried Tried Tried

MembFac Tried Tried Tried Tried

Grid screens
Grid Screen Not Tried Tried Not Tried Not Tried
(NH 4 )2 SO4

Grid Screen Not Tried Tried Tried Tried
PEG 6000
Grid Screen Not Tried Tried Tried Tried
MPD
Grid Screen Not Tried Tried Tried Tried
PEG/LiCl
Grid Screen Not Tried Tried Not Tried Not Tried
NaCl



Table 2.3. Additives used to optimize BioB crystallization conditions.

# Additive Stock Unit # Additive Stock Unit
Conc. Conc. Conc. Conc.

1 CaC1 2

2 MnC12
3 ZnC12

4 Ethylene Glycol
5 Glycerol
6 MPD
7 PEG 400
8 Urea
9 Ethanol
10 Isopropanol
11 Methanol
12 (NH4 )2SO4
13 KCI
14 LiCI
15 NaCl
16 CH 3CN
17 Acetone
18 DTT
19 CdC12

20 CoC12
21 Saturated FeC12

22 SrC12

23 NiC12

24 CuSo 4
25 Spermine
26 Spermidine.3HCl
27 Octyl Glucoside (n-Octyl-P-D-

Glucoside)
28 LDAO (Lauryldimethylamine

Oxide)
29 Dimethylsulfoxide
30 Glutathione (reduced)
31 Glycine
32 Mg(OAc) 2

33 D-Glucose

34 Guanidine.HCl
35 Hexaaminecobalt(III)Trichlori

de
36 Na 2Malonate

37 Li 2SO4
38 KI
39 Beta alanine
40 NaBr

0.1
0.1
0.01
30
30
30
50
0.1
30
30
30
1.0
1.0
1.0
2.0
40
40
0.1
0.1
0.1
10

0.1
0.1
0.1
0.1
0.1
0.245

M
M
M
% v/v
% v/v
% v/v
% v/v
M
% v/v
% v/v
% v/v
M
M
M
M
% v/v
% v/v
M
M
M
% v/v
M
M
M
M
M
M

0.02 M

30
0.025
1.0
0.1
20

1.0
0.1

% v/v
M
M
M

w/v
M
M

1.0 M

1.0 M
1.0 M
0.1 M

1.0 M

41 NaFormate
42 NaH 2PO 4
43 D-Sucrose
44 NaKTartarate*4H20
45 D-Sorbitol
46 Dioxane
47 Na 2EDTA
48 CsCl
49 KSCN
50 NaOAc
51 NaCitrate
52 BaC12
53 PEG 3000
54 PEG 5000 MME
55 PEG 20,000
56 Jeffamine M 600 pH 7.0
57 L-Lysine
58 L-Arginine
59 Dextran Sulfate
60 Decanedioic acid
61 6-Aminocaproic Acid
62 1,6-Diaminohexane
63 1,8-Diaminooctane
64 1,5-Diaminopentane
65 Azelaic acid
66 (Glycyl) 2-glycine
67 (Glycyl) 2-glycine

(Glycyl) 3-glycine

68 1,10-Diaminodecane

69 Palmitic acid
70 L-Methionine
71 L-Serine
72 L-Threonine
73 L-Glutamate

74 L-Glutamine
75 L-Aspartate

76 Hexadecyltrimethylammoni
um bromide

77 Adenine
78 Biotin

79 Pyridoxal 5'-phosphate

1.0 M
1.0 M
30 % w/v
1.0 M
30 % w/v
30 % v/v
0.1 M
1.0 M
1.0 M
1.0 M
1.0 M
0.1 M
30 % w/v
30 % w/v
30 % w/v
50 % v/v
1.0 M
1.0 M
0.15 % w/v
Sat'd soln.
1.0 M
1.0 M
Sat'd soln.
0.5 M
Sat'd soln.
0.3 M
0.3 M
0.1 M
Sat'd soln.

Sat'd soln.
1 M

1 M

1 M

1 M

1 M

1 M

0.01 M

0.01 M
0.01 M
0.01 M
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Table 2.4. Data collected from a single crystal grown in condition BioB3.

Data were collected at Beamline 9-2, Stanford Synchrotron Radiation Laboratory, at 100
K. 'Rsy = YkI[,i(hkl) - <I(hkl)>] /k<I(hkl)>, where Ii(hkl) is the ith measured
diffraction intensity (no a cutoff) and <I(hkl)> is the mean intensity of the miller index
(hkl). 2 Values for the highest resolution bins are in parentheses. 3For this wavelength,
Friedel pairs were merged during data processing.
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Remote Fe Peak

Wavelength (A) 1.2 1.736
Exposure time (s) 60 80
Oscillation range (deg) 1 1

Resolution (A) 30-5.5 30-5.5

RSym' 2 (%) 6.7 (30.3) 8 (41.6)

Unique reflections 40253 7584

Redundancy 6.3 3.2

I/cF(I)2 11.2 (5.14) 7.5 (2.27)
Completeness (%)2 95.0 (95.5) 95.8 (93.8)



Table 2.5. Data collected from crystals grown in condition BioB5 and used to solve the
structure of BioB.

Data were collected at 100 K, using an inverse 
Source beamline 5.0.2 (1.30000A, 1.73827A,
National Synchrotron Light Source beamline X25
with a charge-coupled device detector (Area

beam geometry,
and 1.74150A

at the Advanced Light
wavelengths) and the

(1.1 0000 wavelength), both equipped
Detector Systems Corp). Data were

processed and scaled with DENZO6 , SCALEPACK 6, and XDS9 . Values for the highest
resolution bins are in parentheses. 2Rsy = DEkl [li(hkl) - <I(hkl)>]l /Ew<I(hkl)>,
where Ii(hkl) is the ith measured diffraction intensity (no a cutoff) and <I(hkl)> is the
mean intensity of the miller index (hkl). 3For this wavelength, Friedel pairs were merged
during data processing.
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Wave- Resolution Unique Redun- Complete- R 12

length (A) range (A) reflections dancy ness (%) ( s

1.30000 100- 3.7 26,018 3.4 99.5 (100.0) 11.8 (2.3) 6.7 (37.5)

1.73827 100- 4.1 19,002 3.1 98.3 (99.7) 14.6 (1.9) 6.4 (29.7)

1.74150 100 - 4.5 14,030 2.8 97.1 (95.7) 14.0 (2.6) 8.2 (36.7)

1.100003 100 - 3.4 17,465 5.4 98.1 (87.9) 15.8 (3.8) 6.6 (25.9)



2.4. Figures

1 2

B
3 4

4050

37

25 o

4

Figure 2.1. SDS-PAGE analysis of BioB crystals grown in condition BioB2. A sample
of the crystallization drop (lane 2) was run on a 15% polyacrylamide gel alongside BioB
crystals that were first washed with fresh precipitant solution and then dissolved in
distilled water (lane 3). 50, 37, and 25 kDa molecular weight markers (lanes 1 and 4) are
labeled.
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Figure 2.2. Lattice contacts in the final structure of BioB, showing the last observable
residue in both molecules in the ASU (each molecule is depicted as an alpha carbon
trace). The model is truncated at residue 315 since no electron density was observed for
the last 31 residues of the protein. Symmetry related molecules are show in shades of
pink, purple, and red. The C-termini do not participate in lattice contacts.
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(a)

(b]

-O.a mm

Figure 2.3. BioB crystals. (a) Crystals grown in condition BioB3 were transferred to a
capillary to check for diffraction at room temperature. The crystals measured less than
10 microns in the largest dimension. The heavy brown precipitate, characteristic of all
BioB crystallizations, is prominent in this image. (b) Crystals grown in condition BioB5.
Crystals appeared as bloated hexagonal rods with a maximal radius of -50 microns and a
maximal length of -200 microns. Such crystals produced the data used to solve the
structure.
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Figure 2.4. First diffraction from a BioB crystal. (a) Crystals grown in condition BioB3
were cryoprotected by briefly soaking in precipitant solution supplemented with 20% v/v
glycerol, followed by plunging into liquid nitrogen in the anaerobic chamber. The
diffraction limit is -10-11 A when tested with Cu Ks radiation. (b) zoomed-out view of
the image in part a.
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Figure 2.5. 5.5 A data from crystals grown in condition BioB3. Data were collected at
SSRL beamline 9-2. Though the resolution is low, the diffraction quality is generally
good.
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(a)

(b) Fe-S 2 4 A Fe-S 4
_ *,' A

g 1 ,-%

k ~~~~~~~~~~~~~-1

i e, S1 Fe-S 3

Figure 2.6. Location of putative Fe sites in BioB. (a) Data collected from crystals
grown in condition BioB3 at the Fe absorption peak wavelength were used to locate
putative Fe-S clusters in unit cell. The unit cell is visualized parallel to the c axis. This
number and arrangement of Fe-S sites is consistent with a structure that reasonably fills
the unit cell and has sensible lattice contacts. (b) Diagram showing the cluster sites in the
asymmetric unit, showing intercluster distances.
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Chapter 3

Crystal structure of biotin synthase
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Abbreviations:

2,3-LAM Lysine 2,3-aminomutase
Ado. 5'-deoxyadenosyl radical
AdoCbl Adenosylcobalamin, coenzyme B12
AdoH 5'-deoxyadenosine
AdoMet S-adenosyl-L-methionine
ASU Asymmetric unit
BioB Biotin synthase
DTB Dethiobiotin
FNR Flavodoxin/NADPH oxidoreductase
HemN Coproporphyrinogen III oxidase
MAD Multiwavelength anomalous dispersion
NADPH Reduced nicotinamide adenine dinucleotide phosphate
NCS Non-crystallographic symmetry
PFL Pyruvate formate-lyase
PLP Pyridoxal 5'-phosphate
SAM S-adenosyl-L-methionine
TIM Triosephosphate isomerase
Tris Tris(hydroxyethyl)aminoethane
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3.1. Introduction

Biotin synthase (BioB) catalyzes the final step in the biotin (vitamin B8) biosynthetic

pathway, the conversion of dethiobiotin (DTB) to biotin. This remarkable reaction

requires the insertion of a sulfur atom between non-activated carbons C6 and C9 of DTB

(Fig. 3.1). BioB contains unusual iron-sulfur clusters that play a role in sulfur insertion

through an AdoMet-dependent radical-based mechanism. Like all AdoMet radical

enzymes, BioB contains a conserved CxxxCxxC sequence motif that coordinates an

essential redox-active 4Fe-4S cluster, with AdoMet coordinating a unique Fe of this

cluster' -5. The crystal structure of BioB in complex with AdoMet and DTB is presented

in this chapter. This work begins to address the disputed cofactor content of BioB, the

two hypothetical mechanisms for the BioB reaction, and AdoMet binding by the AdoMet

radical enzymes. The structure also suggests an evolutionary relationship between the

AdoMet- and AdoCbl-dependent radical enzymes, which is discussed in further detail in

chapter 5. A modified version of this chapter was published in January 20046.

In the reaction catalyzed by BioB, there is general agreement that Ados generated from

AdoMet oxidizes DTB, as demonstrated by Marquet and coworkers7 , but the number and

types of Fe-S clusters and other cofactors involved in the reaction have been a subject of

controversy -15. Protein preparation-dependent cofactor differences have led to two

mechanistic proposals for the method of sulfur insertion in BioB. The "hybrid cluster

model", put forth by Jarrett and coworkers16, involves the use of a 2Fe-2S cluster as the

immediate sulfur donor for biotin (Fig. 3.2a), and is consistent with Marquet's pioneering
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34S isotopic labeling studies17 and with the observed destruction of a 2Fe-2S cluster that

accompanies BioB turnover 6' 18. The hybrid-cluster model of Jarrett and coworkers lead

to a proposal which requires two molecules of AdoMet and two reducing equivalents

(Fig. 3.2a). The stoichiometry of AdoMet and the sulfur source in this mechanism are

both consistent with initial studies from the Marquet laboratory 7 ' 19, but conflict with

studies from Fontecave and coworkers 1,20 . The proposal of Fontecave and coworkers is

based on the activity of BioB from which the 2Fe-2S cluster has been removed, and

suggests that S is provided from an enzyme-bound persulfide, generated via an intrinsic

pyridoxal-5'-phosphate (PLP) -dependent cysteine desulfurase activity"'20 (Fig. 3.2b).

Recently, Johnson and coworkers have obtained evidence that BioB does not bind PLP21,

casting doubt on the intrinsic cysteine desulfurase activity proposed by Fontecave's

group l20. Spectroscopic data from the Johnson and Huynh groups support the presence

of two distinct Fe-S clusters in BioB, a 4Fe-4S cluster and a 2Fe-2S clusterl4' 62 22

These studies are consistent with sulfur donation from the 2Fe-2S cluster to DTB and

destruction of the 2Fe-2S cluster (the hybrid cluster model), but, in contrast to Jarrett and

coworkers, the destruction of the 2Fe-2S cluster was found to be faster than the formation

of biotin22. The mechanism proposed by Jarrett and coworkers can still account for the

results from the laboratories of Johnson and Huynh, but the kinetic analysis does not

exclude additional steps between the 2Fe-2S cluster destruction and formation of biotin.

Our results, presented below, also favor a mechanism that invokes a role for a 2Fe-2S

cluster over a mechanism that involves PLP. Irrespective of whether BioB preparations

contain a 2Fe-2S cluster or PLP, assay mixtures produce one or fewer turnovers per

monomer, over the course of several minutes to hours, although BioB from Arabidopsis
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is reported to catalyze >2 turnovers per hour (Table 3.1). Due to low enzymatic activity,

it has been suggested that BioB is either subject to strong product inhibition by AdoH20 ,

or that it may be a "suicide enzyme," i.e. a stoichiometric reactant rather than a true

catalyst.
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3.2. Materials and methods

The crystallization of BioB was discussed in detail in chapter 2. This section describes

crystallographic methods that were used to arrive at the final model of BioB.

The experimental electron density map was calculated using the phase information

derived from four Fe sites in the asymmetric unit (ASU), corresponding to one 4Fe-4S

clusters and one 2Fe-2S clusters for each of the two molecules in the ASU. The program

SOLVE2 3 was used to refine the sites and to calculate the experimental electron density

map. The non-crystallographic symmetry (NCS) operator that relates thee two molecules

in the ASU was found using the program LSQKAB2 4, after manually placing a helices

into the density corresponding to both molecules in the ASU. The experimental electron

density map, calculated to 3.7 A resolution, was subjected to solvent flattening and

twofold NCS averaging using DM25, which resulted in an electron density map of high-

enough quality to distinguish the 2Fe-2S cluster from the 4Fe-4S cluster of the BioB

monomer, and to model the clusters in their respective densities (Fig. 3.3). Using

SOLVE23 , the coordinates of the twelve Fe atoms in the ASU (4 Fe for each of two 4Fe-

4S clusters + 2 Fe for each of two 2Fe-2S clusters) were refined and used to calculate

phases. The electron density map that resulted was subjected to solvent flattening and

twofold NCS averaging, giving the map that was used to build the initial model (Fig.

3.4). After several rounds of iterative model building using the program 026, refinement

of the model with CNS2 7, and rebuilding of the model into sigma-A weighted, phase-

combined electron density maps, the resolution of the experimental map was extended to

3.4 A (using the programs SIGMAA, SFALL, and FFT from the CCP4 package28), and
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solvent flattening and twofold NCS averaging were performed again. Toward the end of

the model building process, electron density maps with coefficients of 2IFol-IFcI and IFol-

IFc and phases calculated from the model were used, along with the phase-extended

experimental electron density map.

The model was refined against 3.4 A data using the program CNS27, to a final R = 25.6%

and Rfree = 30.0% on F (Table 3.2). Early in the refinement, strict NCS constraints were

applied to the two molecules in the ASU; these were relaxed to moderate restraints (with

a weight of 400) during the last few rounds of refinement. The refined structure of the

dimeric enzyme contains residues 4-315 (molecule A) and 3-315 (molecule B), two DTB,

two AdoMet, two Fe4S4 clusters, two Fe2S2 clusters, and one Tris molecule. There is no

electron density for the N-terminal histidine tag, the first 2 or 3 residues at the N-

terminus, and the last 31 residues at the C-terminus in either molecule.

The final model has 99.3% of all residues residing in the allowed region of the

Ramachandran plot (Fig. 3.5), with 79.8% (molecule A) and 79.8% (molecule B) in the

most favored region, 18.3% (molecule A) and 17.9% (molecule B) in the additional

allowed regions, 1.5% (molecule A) and 1.5% (molecule B) in generously allowed

regions, and 0.7% (molecule A) and 0.5% (molecule B) in disallowed regions, as

calculated by PROCHECK2 9 . One of the residues in the disallowed regions, Asn311, is

at the conformationally flexible C-terminus. The other residue, Asp 155, is in position to

interact with the ribose moiety of AdoMet, and therefore its unusual geometry is likely to

- 94 -



be functionally significant. The equivalent residue in HemN, another AdoMet radical

enzyme, also has disallowed Ramachandran angles30 .

3.3. Results

3.3.1. Overall structure and the location of Fe-S clusters

The fold of each subunit of the BioB homodimer is a TIM barrel, with two additional

helices at the N-terminus and a disordered region at the C-terminus (Figs. 3.6a, 3.7a and

b). The arrangement of the two TIM barrels allows access to the bottom and to the top of

both subunits, forming an elongated structure (Figs. 3.6a and 3.8). BioB joins at least 26

other protein superfamilies incorporating TIM barrel architecture3 1 and four AdoCbl-

dependent enzymes that use this fold for catalysis of radical-based chemistry (see chapter

1). However, to the best of our knowledge, this is the first example of Fe-S clusters

bound within and on top of a TIM barrel.

A 4Fe-4S cluster is located at the C-terminal end of the TIM barrel, far (-30 A) from the

dimer interface, and a 2Fe-2S cluster is located deep inside of the barrel, -25 A from the

C-terminal end (Fig. 3.6a, 3.7a and b). The active site, containing AdoMet and DTB, is

situated between these two clusters (Figs. 3.6a and b, Fig. 3.7a and b). This Fe-S cluster

arrangement suggests an explanation for the reported differences in Fe-S cluster content

of BioB; a surface Fe-S cluster may be more readily lost and reconstituted than a deeply

buried cluster. The 2Fe-2S cluster is observed by M6ssbauer spectroscopy8' 32 in whole

cells containing recombinant BioB, and is always retained in the initial purified

protein9 2' 3'1 5,33. Treatment of BioB with strong chemical reductants and metal

chelators, followed by Fe reconstitution, yields a 2Fe-2S-depleted form of BioB, with an
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intact 4Fe-4S cluster9 '10,4' 34'3 5. Reconstituted protein not subjected to a reduction or

chelation step (such as used in this study) contains both a 4Fe-4S and a 2Fe-2S

cluster 8 '1 4 '1 5' 2 1.

The lattice packing of BioB crystals is shown in Fig. 3.9. Each BioB subunit contacts

three neighboring subunits of neighboring ASUs. The interaction between subunits of

neighboring ASUs is sparse and does not suggest a physiological docking surface for

other proteins, such as flavodoxin.

3.3.2. A PLP binding site is not observed in the structure

With respect to the proposal that PLP is a cofactor in BioB" 2 0, we did not add PLP

during protein purification or crystallization and do not find it in our structure.

Additionally, the structure does not reveal an obvious binding site for PLP. Indeed,

cysteine desulfurases typically bind PLP via an imine linkage to a Lys residue, and all

Lys residues, including the one highly conserved Lys (K49 in BioB) are found at the

surface of the protein (Fig. 3.10), far from the putative site of a cysteine persulfide"l and

the observed DTB binding site. Furthermore, no obvious phosphate-binding site can be

found in the structure. In accord with studies from the Jarrett ' 6 , Marquet1 7'3 6, and

Johnson and Huynh21' 22 groups, and in contrast to results from Fontecave and

coworkers' ' 20, this X-ray structure analysis favors a mechanism that invokes a role for an

2Fe-2S cluster over one that requires PLP.
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3.3.3. The novel 2Fe-2S cluster of BioB

The 2Fe-2S cluster of BioB is unique both in terms of its coordination by -strand

residues in the core of a TIM barrel (Figs. 3.6a and b, 3.7a and b, 3.10), as well as in

terms of the identity of the amino acid ligands: C97, C128, C188, and R260, (Figs. 3.6b,

3.11a-c, 3.12a-g). All four of these residues are conserved, and the assignment of the

fourth ligand as Arg is unambiguous, even at the moderate resolution of this structure; the

amino acid sequence of the TIM barrel has been fully assigned with no breaks or gaps,

and the shape of the omit electron density at position 260 is completely consistent with an

Arg sidechain (Fig. 3.1 b). Our ligand assignment is consistent with Johnson and

coworkers' spectroscopic observation of incomplete cysteinyl ligation for the 2Fe-2S

cluster9'2 1. The assignment of an Arg ligand to a metal is unprecedented in biology,

although guanidine and guanidine-like species have been observed to ligate metals in

small molecules (Fig. 3.13a-e and Table 3.3; discussed below).

3.3.4. The 4Fe-4S cluster and AdoMet

Proteins are classified as members of the AdoMet radical superfamily based on the

presence of the sequence motif CxxxCxxC (C53, C57, and C60 for BioB) 1. This motif is

contained in a 28-residue loop extending from P-strand 1 to helix 1 of the TIM barrel,

and the three cysteines coordinate three of the four irons of the 4Fe-4S cluster, as

expected from mutagenesis studies33 3 7 (Fig. 3.11 a). AdoMet is the fourth ligand to the

cluster and binds as an N/O chelate to a unique Fe position, through the AdoMet amino

group nitrogen and carboxyl group oxygen (Fig. 3.1 la, Table 3.4).
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This binding mode is consistent with spectroscopic results for PFL activase2'3 , and is

likely to be common to AdoMet radical proteins, since spectral changes associated with

AdoMet binding have been reported for several family members3 840. In a report

published at the same time as the BioB structure, Schubert and coworkers noted the same

mode of AdoMet binding in the crystal structure of HemN30 , another AdoMet radical

enzyme. Also consistent with spectroscopic data on BioB and PFL activase3'41 , the

sulfonium of AdoMet does not appear to be a ligand to Fe and is -4.0 A away from the

nearest cluster Fe.

Interestingly, BioB is the only known AdoMet-binding TIM barrel31 '42. AdoMet is bound

to BioB in an extended conformation, stretching across the top of the barrel, such that

contacts are made to AdoMet by residues in or following O-strands 1, 2, and 4-6 (Fig.

3.6b, Table 3.5). The net result of these interactions is that AdoMet is completely buried

from solvent and appears to be ideally positioned for both electron transfer from the 4Fe-

4S cluster and for hydrogen atom abstraction from DTB (discussed below).

Some contacts to AdoMet are made by residues that are homologous across several

AdoMet radical enzymes. For example, 1192, which makes a van der Waal contact to

AdoMet (Fig. 3.1 la), is part of a short sequence motif (192-IxGxxE-196) that is located

near the AdoMet binding site. This sequence corresponds to MxGxxE in LipA, VxGxxD

in PFL activase, LxGxxD in 2,3-LAM, etc. (Fig. 3.14). Additionally, almost all

sequenced AdoMet radical enzymes have an aromatic residue at the penultimate position
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of the CxxxCxxC sequence. In BioB, this is residue Y59, which forms re-stacking

interactions with the adenine ring of AdoMet. Other contacts to AdoMet are made by

D155, which hydrogen bonds to the 2' and 3' -OH groups of the ribose ring, R173, which

forms a salt bridge with the AdoMet carboxylate, and N153, which hydrogen bonds to

both AdoMet and DTB.

3.3.5. The methionyl moiety

In our structure, the adenine and ribose moieties of AdoMet fit the electron density well,

whereas the broad electron density of the methionyl moiety indicates some ambiguity in

the exact location of the sulfonium (Fig. 3.11 a). The electron density may suggest that

we have a combination of cleaved and uncleaved AdoMet, presumably resulting from

radiolytic reduction due to long exposures of the crystal to synchrotron radiation.

Alternatively, the breadth of the methionine might be explained by racemization at the

sulfonium of AdoMet, which is well documented4 3. A racemic mixture of (S,S)-AdoMet

(which is not found in biological systems44 ) and (R,S)-AdoMet is observed in the crystal

structure of HemN30 . A more detailed analysis of the methionyl moiety awaits the

availability of higher resolution data.

3.3.6. The dethiobiotin binding site

The enzyme preparation used for crystallization has DTB bound4 5, and we observe

electron density in the active site that fits this substrate (Fig. 3.11c). DTB binds in the

core of the TIM barrel, between the 2Fe-2S cluster and AdoMet. In contrast to the

reported stoichiometry of bound substrates4 5, we find one DTB and one AdoMet in each
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BioB subunit. This discrepancy is currently under investigation. DTB binding to BioB is

requires the presence of AdoMet4 5, and we find that DTB makes substantial van der Waal

contacts with AdoMet, covering 50% of its surface. These interactions include the

stacking of the carboxylate tail against the AdoMet adenine and the stacking of the DTB

ureido ring with the AdoMet ribose. DTB makes a series of contacts with protein as well

(Table 3.6), the most important of which is the bidentate interaction with N222 that may

play a role in orienting DTB for hydrogen atom abstraction. Finally, the DTB

carboxylate interacts with the backbone amides of T292 and T293, as well as the side

chain of T292 (Fig. 3.15). Interactions with these residues could serve to close a loop

over the top of the barrel upon DTB binding, helping to seal the barrel for the radical-

mediated reaction that follows.
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3.4. Discussion

3.4.1. Arginine as an Fe ligand

The assignment of an Arg ligand to a metal is unprecedented in biology, although

guanidine species have been observed or proposed to ligate Co"', Os"', Pt1, Nil", and Zn"

in small molecules in aqueous solution at pH -3.5 - 104649 (Fig. 3.13, Table 3.3). In

BioB, the metal-nitrogen distance (-2.3-2.4 A) is longer than those observed in the small

molecule crystal structures (1.94 - 2.07 A, Table 3.3). However, at our current resolution

limit of 3.4 A, any discussion of Fe-N distance is premature. It has been predicted that

Arg could serve as a metal ligand in a protein environment where the Arg sidechain were

uncharged4 8, and in BioB, R260 has an unusual environment that should indeed alter its

pKa. It is buried in the center of a TIM barrel and has a high number of potential

hydrogen-bonding partners (S43, S218, S283, and R95, Fig. 3.1 lb). The conservation of

Arg as an Fe-S cluster ligand in BioB, rather than the more common Cys or His residues,

is peculiar and suggests an important role for this residue in modulating the properties of

the cluster or in facilitating catalysis. The choice of metal ligands may be important for

preserving charge neutrality within the core of the (a/) 8 barrel, since one common

mechanism of Fe-S cluster redox modulation by backbone-NH-to-S hydrogen bonds is

not possible with this structural motif. All surrounding main-chain amides are involved

in hydrogen bonding between the -strands of the barrel and can not interact with the

cluster. Thus, the ligands and neighboring sidechains are likely to play a significant role

in redox modulation, and an Arg (or His) ligand would be a better choice than Cys in

terms of reducing the overall net negative charge of this buried cluster. The use of Arg,
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rather than His, is more difficult to explain. In part, the answer may be structural, in that

the long length of the Arg side-chain allows for a barrel that is less compact and able to

fit both substrates. However, R260 may be conserved as a ligand to the 2Fe-2S cluster

for catalytic rather than structural reasons. During turnover of BioB, the 2Fe-2S cluster is

destroyed as one S is transferred into biotin1 6'17'36 . In our structure, the R260 side-chain

could rearrange to bridge the two Fe atoms and facilitate the proposed S transfer. Our

knowledge of how Fe-S clusters are assembled in biological systems is still in its infancy,

and it will be interesting to discover if any of the features observed in the BioB structure

are mimicked in proteins involved in cluster assembly.

3.4.2. Structural insight into the reaction catalyzed by BioB

Although the elucidation of a detailed enzyme mechanism awaits further biochemical

studies, the structure does provide insight into key steps of the BioB reaction. The

observed cooperativity of substrate binding45 can be explained by the extensive

interaction between AdoMet and DTB (described in section 3.3.6), and by the interaction

of both substrates with N153. With respect to radical generation, the electron transfer

from flavodoxin to the 4Fe-4S cluster is made possible by the binding of the cluster close

to the protein surface (-6-7 A). The subsequent electron transfer from the 4Fe-4S cluster

to the AdoMet sulfonium is facilitated by direct O/N coordination of the AdoMet to Fe,

thereby restraining the position of the sulfonium to the proximity of the 4Fe-4S cluster.

The resulting formation of Ado- is likely coupled to hydrogen atom abstraction from C9

of DTB, and we find that DTB is positioned accordingly, with C9 -3.9 A away from the

5' carbon of AdoMet. Closure of the biotin thiophane ring requires the abstraction of a
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second hydrogen atom from C6 of DTB. Deuterium transfer from of the C6 position of

(2H)DTB has demonstrated that a second Ado. is likely also responsible for this second

hydrogen atom abstraction7, although the requirement for two equivalents of AdoMet has

recently been disputed2 0. In our structure, C6 of DTB is positioned -4.1 A from the 5'

carbon position of AdoMet, suggesting that Ado. also accomplishes the second hydrogen

atom abstraction. Exactly how structural changes of the enzyme facilitate the release of

AdoH and Met and the binding of a second AdoMet molecule remains to be determined.

The rearrangements involved in this process will likely involve the movement of loops at

the C-terminal end of the TIM barrel.

The sulfur insertion step is the most controversial part of the mechanism of BioB. The

structure analysis shows that the 2Fe-2S cluster is ideally positioned to play a role in

sulfur insertion. The closest bridging S of the 2Fe-2S cluster is only 4.6 A away from C9

of DTB, a position which is consistent with transfer of this sulfur to biotin as suggested

by results from 3 4S-labeling experiments17 and the observation of 2Fe-2S cluster

degradation during turnover6' 18'22

3.4.3. Questions arisingfrom the structure of BioB

If the in vivo sulfur source for biotin is the 2Fe-2S cluster, is BioB a "suicide enzyme",

capable of performing only a single turnover because of the destruction of the 2Fe-2S

cluster? Only two biotin-requiring proteins are present in E. coli: acetyl-CoA carboxylase

and the bifunctional biotin operon repressor/holocarboxylase synthetase (BirA)5°.

Therefore, a single turnover of multiple BioB proteins may provide enough biotin for the
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life-cycle of E. coli. Alternatively, the 2Fe-2S cluster may be rebuilt after each turnover

by cysteine desulfurases and iron-sulfur cluster assembly proteins, conferring true

catalytic capability to BioB. Although the 2Fe-2S cluster is buried, the movement of R95

and/or Y149 could open access to the 2Fe-2S cluster from the bottom of the barrel. Thus,

the cluster may be destroyed from the top of the TIM barrel and rebuilt from the bottom.

It would not be unexpected to find that BioB requires proteins and other components to

restore its activity after turnover. The requirement of chaperones and reactivases to

repair inactivated AdoCbl-dependent radical enzymes is well documented51 .
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3.5. Tables
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Table 3.1. Maximal BioB activity

Cofactor content
2Fe-2S 4Fe-4S PLP Source Mol biotin produced/ Time (h) Reference

mol BioB monomer

1 1 0 E. coli 1 4 16
1 1 0 E. coli 1 24 22
0 1 1 E. coli 1 4 20

ND ND ND Arabidopsis 7 6 52

'Not determined



Table 3.2. BioB Data collection and refinement statistics

Unique Redun- Complete-Rd- ac? /_<
reflections dancy

26,018 3.4
19,002 3.1
14,030 2.8
17,465 5.4

Non-hydrogen atoms in ASU
Resolution range (A)
Number of reflections (working set / test set)

Rwork (%)2

Rf ee (%)
RMS deviations of protein from ideal geometry

Bonds (A)
Angles (°)

Overall B (A: !) (all atoms)
Group B (A2 )

AdoMet
Methionine
Ribose
Adenine

Dethiobiotin
4Fe-4S
2Fe-2S

4,984
44.5 - 3.4
16,222 / 1242
25.6
30.0

0.009
2.3
Molecule A
87.8

130.5
84.6
68.3
47.4
50.8
35.7

Values in parentheses are for the highest-resolution shell. Rsy = [k a II,(hkl) -
<I(hkl)>l]L /l I(hkl) for hkl independent reflections and i observations of a given
reflection, with no a cutoff. <I(hkl)> is the mean intensity of the miller index (hkl).
2 For this wavelength, Friedel pairs were merged during data processing. 3Rwork = 'Dkl
IlFo(hkl) - IFc(hkl)ll / kl IFo(hkl)l. No a cutoff was used in the refinement. Rfree =
Rwork for a test set of reflections not included in refinement.

- 106-

Wavelength
(A)

1.30000
1.73827
1.74150

1.1000012

Resolution
range (A)

100-3.7
100-4.1
100-4.5
100-3.4

99.5 (100.0)
98.3 (99.7)
97.1 (95.7)
98.1 (87.9)

I/sigma(I)

11.8 (2.3)
14.6 (1.9)
14.0 (2.6)

15.79 (3.78)

Rsym1

6.7 (37.5)
6.4 (29.7)
8.2 (36.7)
6.6 (25.9)

Molecule B
93.3

146.3
84.6
88.6
61.8
71.0
43.0

- -
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Table 3.3. Metal-nitrogen
metal-guanidine complexes.

(guanidine) distances from crystallographic structures of

Metal (M) N-M distance (A) Reference

Pt" 2.06 39
pt" 2.07 39
Pt 2.018 40

Co"'I 1.94 39
Zn" 1.95 38
Fe' l -2.3-2.4 This work
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Table 3.4. Fe-S cluster-ligand distances'.

Atom Contacting residue Contacting atom distance (A)

2Fe-2S
Fel Cys 188 SG 2.3

Arg 260 NH1 -2.3-2.4
Fe2 Cys 97 SG 2.2

Cys 128 SG 2.2

4Fe-4S
Fel Cys 57 SG 2.2
Fe2 AdoMet 0 -3.2

AdoMet N -2.4
Fe3 Cys 60 SG 2.2
Fe4 Cys 53 SG 2.2

'At our current resolution limit of 3.4 A, distances are not precisely known.

.



Table 3.5. Electrostatic interactions and potential hydrogen bonds between BioB and
AdoMet 1 .

AdoMet Atom Contacting residue Contacting atom distance (A)

Methionine
OXT Arg 173 NH2 2.8
O Arg 173 NH2 3.2
N Ala 100 0 3.2
N Trp 102 0 3.5

Ribose
03* Asn 153 ND2 3.5
03* Asp 155 OD1 3.5
02* Asn 153 ND2 3.5
02* Asp 155 OD1 2.8

Adenine
N1 Val 225 N 2.9
N6 Val 225 0 3.2

Tyr 59 0 3.3

'At our current resolution limit of 3.4 A, distances are not precisely known.

Table 3.6. Potential hydrogen bonds between BioB and DTB .

DTB Atom Contacting residue Contacting atom distance (A)

Carboxylate
012 Thr 292 N 3.1
012 Thr 292 OG1 2.8
012 Thr 293 N 3.0

Ureido ring
0 Asn 222 ND2 2.9
0 Asn 153 ND2 3.7
N1 Asn 151 OD1 3.7
N2 Asn 222 OD1 2.8

1At our current resolution limit of 3.4 A, distances are not precisely known.
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3.6. Figures

HN NH

9 6 4 2

Dethiobiotin (DTB)

NH2 +NH3

OH

OH
S-Adenosyl-L-methionine

(AdoMet or SAM)

BioB, DTT
Fe3+, S2 -

Flavodoxin
FNR, NADPH

00-

HN NH
H H

C02
Biotin

(Met)

5'-Deoxyadenosine (AdoH)

Figure 3.1. Overall reaction of BioB. BioB reconstituted anaerobically with Fe3+ and S2-
in the presence of DTT requires flavodoxin, flavodoxin/NADPH oxidoreductase (FNR),
and NADPH to convert DTB to biotin. Numbering schemes for DTB and AdoH are
shown. The number of equivalents of AdoMet required for the reaction is disputed (see
text).
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(a) o
AdoMet Met + AdoH

HNZ NH [4Fe-4S]'+ [4Fe-4S]
r %sfr.H

H3C 

IFe' yfe,

HN NH

0H1R

HN NH
HF-.sH

H s, R1- S,
0"

0

HN NHH2C,, 

HN ) NH

HSr
Fe' zfe I

(b)
(b)~ AdoMet Met + AdoH

HN NH [4Fe-4S] [4Fe-4S]2+ HN NH
H H H H

HC R H R

HCH
/SH 0SH

Cys-S Cys-S CYS-S Cys--SH

e- HN NH

S R

Cys-SH

Figure 3.2. Mechanisms proposed for the BioB reaction. (a) Mechanism put forth by
Jarrett and coworkers'6, which requires two equivalents of AdoMet and a 2Fe-2S cluster
that is intrinsic to BioB. (b) Mechanism proposed by Fontecave and coworkers, which
requires one equivalent of AdoMet, a Cys persulfide generated from one equivalent of
Cys by a PLP-dependent Cys desulfurase activity of BioB, the presence of a thiyl radical,
and an external electron acceptor20.
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1

Figure 3.3. Stereo figure showing the electron density of the Fe-S clusters of BioB. The
map shown is the experimental map, after solvent flattening and two-fold NCS averaging,
at 3.7 A resolution. The map is contoured around the clusters at 3.0 a. All of the cluster
ligands (see text) are shown. The atomic coloring scheme is: grey, C; red, 0; blue, N;
yellow, S; brown, Fe.

Figure 3.4. Solvent flattened, two-fold NCS-averaged experimental electron density of
Trp 7, contoured at 1 a. This electron density map (3.7 A resolution) was used to build
the initial model. Figure prepared with 026.

-111-



180

135

90

45

-45

-90

-135

Phi (degrees)

Figure 3.5. Ramachandran plot of the BioB monomer. The plot is colored as follows:
red, most favored regions; yellow, additional allowed regions; light yellow, generously
allowed regions; white, disallowed regions. Glycine residues are shown as triangles.
Figure made using PROCHECK2 9.
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Figure 3.6. Overall structure of BioB. (a) Structure of the BioB dimer. BioB exists as
a homodimer in solution'2. We find two possible dimeric relationships between BioB
monomers in the crystal. The dimer shown here buries 17.6% of the monomer surface
area (13,249 A2 , see Fig. 3.8) and is likely to be physiologically relevant. An
anomalous Fourier electron density map, calculated with data collected at the Fe
absorption peak wavelength (1.73827 A) and phases from the polypeptide portion of
the model, is contoured at 3 a in green mesh. These electron density peaks represent
the positions of the four Fe-S clusters in this dimeric structure. There are no other
features of similar size in the electron density map. The Fe-S cluster atoms are shown
as large spheres, with brown Fe atoms and yellow S atoms. We observe one AdoMet
(red) and one DTB (black) per subunit. All cartoon and ball-and-stick figures were
prepared with PyMOL53 , unless otherwise noted. (b) Topology diagram of the BioB
TIM barrel showing the location of important residues with respect to the -strands
(shown as arrows, numbered 1-8). The numbers above and to the left of each P-strand
correspond to the N-terminal residue of that strand; those above and to the right of the
beta strands correspond to the C-terminal residue. Ligands to the 4Fe-4S cluster are in
black, ligands to the 2Fe-2S cluster are in red, and residues that contact the 2Fe-2S
cluster ligand R260 are in green. AdoMet contacts (blue) include A100, W102, and
R173, which hydrogen bond to the amino acid moiety; D155 and N153, which
hydrogen bond to the ribose hydroxyl groups; Y59 and 1192 which stack against the
adenine ring; and V225 which forms backbone hydrogen bonds to the adenine ring.
Residues in position to hydrogen bond to DTB (brown) include N151, N153, and
N222, which contact the DTB ureido ring, T292 and T293, which contact the
carboxylate tail. Asterisks (*) denote main-chain interactions.
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(a)

JA7

(b)

Figure 3.7. The BioB monomer. (a) Structure of the BioB monomer. The color
scheme is: red, 0; blue, N; yellow, S, brown, Fe. AdoMet carbon atoms are grey; DTB
carbons are black. (b) A view of the active site.
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Figure 3.8. Space filling model of BioB.
BioB, colored in red and blue.

Stereo figure showing the two subunits of
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Figure 3.9. Lattice packing in BioB crystals. Each BioB homodimer is shown in a
different color and drawn as an alpha carbon trace. Fe-S clusters are shown in brown
(Fe) and yellow (S). The BioB homodimer contacts six neighboring molecules in the
crystal. One of the BioB subunits, shown here in black, contacts a portion of
homodimers 1, 2, and 3; the other subunit, also shown in black, contacts a portion of
homodimers 1', 2', and 3'.

Figure 3.10. Stereo alpha carbon trace of a single BioB subunit, showing the locations of
all Lys residues in the structure. The coloring scheme is the same as that of Fig. 3.3a, but
Lys sidechains are colored in purple (C) and dark blue (No). In some cases, the Lys
sidechain was truncated due to poor electron density. K49, the only highly conserved
Lys residue in BioB, is labeled. All Lys residues are solvent-accessible and far-removed
from the active site.
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(b)

(c)

Figure 3.11. The BioB active site. (a) Stereo view of the 4Fe-4S cluster with AdoMet
bound. Conserved side-chain contacts between BioB and AdoMet are indicated, and
AdoMet is shown in a simulated annealing omit map contoured at 4.5a (orange). DTB is
omitted for clarity. The coloring scheme is: grey, C; red, 0; blue, N; yellow, S, brown,
Fe. (b) Stereo view of the active site, focusing on the 2Fe-2S cluster and its ligands. The
unusual R260 ligand is shown in a simulated annealing omit map contoured at 4.5a. In
addition to the 2Fe-2S cluster, R260 interacts with S43, S218, S283, and R95. Also
shown are the positions of the 4Fe-4S cluster, AdoMet, and DTB with respect to the 2Fe-
2S cluster. (c) Stereo view of DTB interacting with AdoMet and conserved residues
N222, N151, and N153 in the active site. Potential hydrogen bonds between N222 and
DTB are drawn as dashed lines. The stacking of the carboxylate tail of DTB and the
adenine ring of AdoMet is visible in this orientation, although contacts of the DTB
carboxylate to T292 and T293 are not (Fig. 3.15). DTB is shown in a simulated
annealing omit map contoured at 4.0 c.
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Figure 3.12. 2Fe-2S and 4Fe-4S clusters with incomplete cysteinyl ligation. (a) The
Rieske protein 2Fe-2S cluster54 (b) 4Fe-4S cluster of the Fe-only hydrogenase from C.
pasteurianum. (c) 4Fe-4S cluster of the ferredoxin from P. furiosus5 5 . (d) and (e) 4Fe-4S
cluster of aconitase in the resting state and with product bound, respectively5 5' 56. (f) 2Fe-
2S cluster from BioB, as determined in this study. The protonation of the Arg sidechain
is inferred by analogy to small molecule metal-guanidine complexes (see Fig. 3.13), but
the true protonation state remains in question. (g) 4Fe-4S cluster from BioB, also from
this study.
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Figure 3.13. Structures of aqueous metal complexes with guanidine or guanidine-like
ligands. (a) Structure of a Ni"-famotidine complex, proposed from spectroscopic
studies46 . (b) Crystallographic structure of a Zn" complex with a guanidine ligand4 7. (c)
Crystallographic structure of a Co"' complex with a guanidine ligand4 8 . (d) and (e)
Crystallographic structures of Pt" complexes with guanidine ligands .
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192-IVGLGE
217-MVGLGE
262-LRGVND
171-VPGWSD

Figure 3.14. Conservation of residues across the AdoMet radical enzymes. Enzymes are
denoted by their corresponding gene names (BioB, E. coli biotin synthase; LipA, E. coli
lipoyl synthase; KamA, C. subterminale lysine 2,3-aminomutase; PflA, E. coli PFL
activase). Absolutely conserved residues, including the CxxxCxxC motif that ligates the
4Fe-4S cluster, are shown in bold red typeface. Bold black typeface denotes similar
residues. Y59 in BioB, which forms 7e-stacking interactions with AdoMet, corresponds
to an aromatic residue in the other enzymes. 1192 forms van der Waal contacts to
AdoMet and corresponds to a hydrophobic residue in the other enzymes.
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T292

T293

Figure 3.15. The carboxylate tail of DTB interacting with residues T292 and T293.
These two residues are part of the loop that follows strand 8 of the TIM barrel. The
coloring scheme is: grey, C; blue, N; red, 0.
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Chapter 4

Crystal structure of lysine 5,6-aminomutase
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Abbreviations:

2.3-LAM Lysine 2,3-aminomutase
5,6-LAM Lysine 5,6-aminomutase
Ado. 5'-deoxyadenosyl radical
AdoCbl Adenosylcobalamin, Coenzyme B12
AdoH 5'-deoxyadenosine
AdoMet S-adenosyl-L-methionine
Cbl Cobalamin
CNCbl Cyanocobalamin, Vitamin B12

CoA Coenzyme A
Cob(II) Cob(II)alamin
DMB Dimethylbenzimidazole
GM Glutamate mutase
MCM Methylmalonyl coenzyme A mutase
MS Methylcobalamin-dependent methionine synthase
PEG Polyethylene glycol
SAD Single-wavelength anomalous dispersion
SeMet Selenomethionine
OAM Omithine aminomutase
PLP Pyridoxal 5'-phosphate
TIM Triosephosphate isomerase
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Introduction

Lysine 5,6-aminomutase (5,6-LAM) is an enzyme in the bacterial lysine fermentation

pathway. The enzyme catalyzes the interconversion of DL-lysine or of f3-L-lysine to

2,5-diaminohexanoate or to 3,5-diaminohexanoate, respectively (Fig. 4.1). The crystal

structure of 5,6-LAM, a major contribution to this thesis, was determined in collaboration

with the laboratory of P. A. Frey at the University of Wisconsin at Madison. We present

a crystal structure of a substrate-free holoenzyme form of 5,6-LAM from Clostridium

sticklandii, which is the first structure of an enzyme that utilizes both adenosylcobalamin

(AdoCbl) and pyridoxal 5'-phosphate (PLP) cofactors. The structure reveals that AdoCbl

is bound by a Rossmann-like domain, and that PLP, which is tethered to the B12-binding

domain via its imine linkage, is bound in the putative active site, at the top of a

triosephosphate isomerase (TIM) barrel domain. Thus, 5,6-LAM joins a group of three

other AdoCbl-dependent radical enzymes (glutamate mutase [GM], Methylmalonyl-CoA

mutase [MCM], and diol dehydratase, see chapter 1)24 and one adenosylmethionine

(AdoMet) -dependent radical enzyme (biotin synthase, see chapter 3)5 in utilizing the

TIM barrel fold to sequester substrates that form free-radical intermediates. Our structure

is unique among all PLP-dependent enzymes, in that the imine linkage is provided by a

Rossmann-like domain. Strikingly, in the pre-catalytic, substrate-free conformation

captured in our structure, the PLP and AdoCbl cofactors are separated by a distance of

-25A, suggesting that a gross conformational change occurs upon substrate binding. The

work presented in this chapter is in press at the Proceedings of the National Academy of

Sciences6 .
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AdoCbl-dependent isomerases are often present in catabolic pathways and can serve to

rearrange the substrate's carbon skeleton and/or functional groups for further degradation.

One such pathway that operates in several bacterial species is the fermentation of lysine

to yield acetate. Interestingly, the lysine fermentation pathway contains two analogous

enzymes: 5,6-LAM, which is AdoCbl-dependent7 8, and lysine 2,3-aminomutase (2,3-

LAM), which is an AdoMet-dependent radical enzyme9 'l . Both enzymes require PLP9,'12

in addition to AdoCbl or AdoMet, and both catalyze a 1,2 amino group shift with

concomitant H atom migration (Fig. 4.1). In 5,6-LAM, AdoCbl is the source of the

transient 5'-deoxyadenosyl radical (Ado.), whereas in 2,3-LAM, Ado* is produced from

AdoMet coordinated to the unique iron of a 4Fe-4S cluster, and an exogenous electron.

The exogenous electron is transferred first into the [4Fe-4S]2+ cluster and then into

AdoMet, cleaving AdoMet to give methionine and the transient Ado.. Because of the

similarity of their reactions, their requirement for PLP, and their common substrates, 5,6-

LAM may be thought of as the AdoCbl-dependent counterpart of the AdoMet-dependent

2,3-LAM. Studies on both 2,3-LAM and 5,6-LAM have allowed Frey and coworkers to

propose a general mechanism for these reactions (Fig. 4.2a). For both 5,6-LAM and 2,3-

LAM, radical propagation from Ado. to the substrate-PLP covalent complex (known as

the external aldimine) initiates the isomerization, and both reaction mechanisms are likely

to involve analogous intermediates.

The role of PLP in the aminomutase reaction is not completely clear. The 5,6-LAM

mechanism proposed by Frey and coworkers is consistent with computational studies

conducted by Random's laboratory, which suggest that the role of PLP in the AdoCbl-
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dependent aminomutases is to provide a conjugated n system to stabilize the rearranging

radical species1 3 14. This hypothesis is consistent with model chemistry, wherein an imine

with an aromatic substituent undergoes a 1,2-imino shift under radical generating

conditions15 (Fig. 4.3a). Significantly, the rearrangement of the aziridylcarbinyl radical,

which is the simplest model for the 5,6-LAM reaction, takes place at cryogenic

temperatures, despite the absence of an aromatic substituent'6 (Fig. 4.3b), indicating that

PLP is not necessary for the rearrangement to occur.

All AdoMet- or AdoCbl-dependent radical enzymes rely on Ado. for catalysis, yet the

formation of this highly oxidative intermediate must be controlled in order to prevent

aberrant reactions. C-Co bond homolysis and the transient formation of Ado is

triggered by substrate binding in the AdoCbl dependent enzymes MCM'7 , GM' 8 '19, and

diol dehydratase2 0, while effector binding triggers the C-Co bond homolysis in the

AdoCbl-dependent ribonucleotide reductase21 (see chapter 1). How substrates or

effectors afford a 1012 -fold rate acceleration of Co-C bond cleavage in AdoCbl-dependent

enzymes is a question that has intrigued scientists for decades. The crystal structure of

5,6-LAM suggests a novel role for PLP in locking the enzyme into its resting-state

conformation, keeping AdoCbl out of the active site in the absence of substrate and

preventing radical-based protein damage. This will be discussed in detail below.
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4.2. Materials and methods

4.2.1. Protein preparation

Selenomethionine (SeMet)-incorporated 5,6-LAM from Clostridium sticklandii was

purified and reconstituted with PLP in the Frey laboratory. A plasmid KamDE

containing the genes encoding both [3 and a subunits of 5,6-LAM was used to transform

E. coli B834 (DE3) cells. Ten mL of an overnight culture was used to inoculate 1 L of

SeMet media, prepared according Budisa and coworkers22 with the omission of L-

cysteine and addition of 5 M pyridoxal hydrochloride. The culture was grown for 16

hours at 37 C. The yield was 25 g wet cells from 10 L minimal media. The SeMet

recombinant protein was purified by the procedure of Chang and Frey23 without the gel

filtration chromatography step.

4.2.2. Storage, handling, and crystallization of protein samples, and crystal

cryoprotection

Protein was stored at -80 C and handled on ice during crystallization. All solutions

containing AdoCbl (including protein solutions) were formulated and handled in a dark

room under dim red light.

Crystals were grown using hanging drop vapor diffusion techniques at room temperature

in a dark room, under dim red light. Crystals were manipulated in the dark room until

after cryo-cooling. Five crystal forms were obtained, as detailed in Fig. 4.4. Of these

crystals, only one crystal form (form 1, Fig. 4.4a) produces data adequate to solve the

structure. Protein and precipitant solutions (Fig. 4.4) were mixed in a 1:1 ratio, with drop
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sizes of 2 gL total, and equilibrated over 0.5 mL of precipitant solution. Form 1 crystals

(those used to solve the structure) were cryoprotected, within 48 hours after their initial

appearance, by quickly soaking in precipitant solution with 20% glycerol added and

plunging into liquid nitrogen.

4.2.3. Crystal properties, phasing, model building, and refinement

Crystals belong to space group P3121, with one ad heterodimer per asymmetric unit, for

a total of 6 aou heterodimers in the unit cell (Z=6), and a = b = 99.7 A, c = 168.8 A. The

unit cell volume V = 1,453,093 A3 . Data were collected at the Argonne National

Laboratory beamline NE-CAT 8-BM, equipped with a charge-coupled device detector

(Area Detector Systems Corp.). Data were processed and scaled with DENZO and

SCALEPACK2 4 .

A single set of data, collected at the Se absorption peak wavelength (0.97918 A), was

used to solve the structure by anomalous dispersion methods2 5' 2 6 (Table 4.1). Twenty-

nine Se atoms and the Co atom of AdoCbl were located and refined with SOLVE2 7, with

a mean figure of merit of 0.40 to 3.0 A resolution. The experimental electron density

map was subjected to solvent-flattening with RESOLVE2 7, resulting in a good-quality

map that allowed us to begin model building (Fig. 4.5). The space group, P3 121, was

distinguished from P3221 by inspection of a helices, which are right-handed.

Iterative rounds of model building in XFIT2 8 and refinement in CNS2 9 resulted in the

final model at 2.8 A resolution. The refined structure contains all 516 residues of the a

- 132 -



subunit (chain A), residues 24-84 and 102-261 of the P subunit (chain B), one AdoCbl

molecule, and one PLP molecule (as the imine adduct to K144p). A simulated annealing

composite omit map was used to validate the final structure. There is no electron density

for the histidine tag, residues 1-231, 85-101p, or 262P. The final model has all residues

residing in the allowed regions of the Ramachandran plot (87.7% in the most favored

regions, 11% in additionally allowed regions, and 1.3% in generously allowed regions),

as calculated by PROCHECK 30 (Fig. 4.6).
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4.3. Results

4.3.1. Overall structure

5,6-LAM is an a2 P2 tetramer3l that can be thought of as a dimer of a3 units (Fig. 4.7). In

the crystal, the asymmetric unit contains one a3 dimer, and crystallographic symmetry

produces a likely physiological tetramer that buries 5736 A2 (19%) of the ap heterodimer

surface area (Fig. 4.9). The large a subunit (538 residues) is composed of the PLP-

binding TIM barrel domain and several additional a helices and P strands at the N and C

termini (Fig. 4.8). These helices and strands form an intertwined "accessory clamp"

structure that wraps around the sides of the TIM barrel, and extends up toward the Ado

ligand of the Cbl cofactor. This accessory clamp provides most of the interactions

between the protein and the Ado ligand of the Cbl (discussed below), suggesting that its

role is mainly in stabilizing AdoCbl in the pre-catalytic resting state. The small [5 subunit

(262 residues) comprises two domains: the N-terminal dimerization domain, which has

the same fold as copper binding domain of the Alzheimer's disease amyloid precursor

protein32 (PDB code 1 OWT), and the AdoCbl-binding Rossmann-like domain, which

also provides the imine bond to PLP. The Rossmann-like domain interacts with the C-

terminal end of the TIM barrel, placing PLP into the top of the barrel, while projecting

AdoCbl to the edge of the barrel, far from the PLP binding site. The dimerization domain

of p forms a continuous n-sheet with the dimerization domain of the second a[ unit and

buries an extensive surface of hydrophobic residues. The dimerization domain

also makes many hydrogen-bonding and hydrophobic contacts with the TIM barrel

domain of the a subunit. No contacts are observed between the dimerization domain and

the Rossmann domain, though these domains are linked by a disordered loop (85Bf-101f)
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that we could not model. The average B-factor of the dimerization domain is

approximately twice those of either the Rossmann-like domain or the TIM barrel and

accessory clamp, suggesting a degree of mobility for the dimerization domain (Table

4.1). The a 2P2 tetramer is arranged such that there is no direct interaction between the

active sites of either ap pair.

The presence of a TIM barrel and a Rossmann-like domain in 5,6-LAM is consistent with

the domain usage in other Cbl-dependent base-off enzymes, such as GM, MCM, and

methionine synthase (MS), but the orientation of the Rossmann domain relative to the

TIM barrel is markedly different, and is likely to be mechanistically relevant (discussed

below). It is also interesting that both subunits play a role in binding both cofactors;

AdoCbl is bound at the C-terminal end of the Rossmann domain of C and by the

accessory clamp at the edge of the a subunit, whereas PLP is bound at the C-terminal end

of the TIM domain of a and by a lysine residue at the edge of the P subunit.

4.3.2. PLP-protein interactions

PLP-dependent enzymes of known structure can be sorted into families based on their

respective folds. Enzymes of fold type I, II, III, IV, and V are represented by aspartate

aminotransferase, tryptophan synthase, alanine racemase, D-amino acid

aminotransferase, and glycogen phosphorylase, respectively3 3 (Fig. 4.10). 5,6-LAM

cannot be placed into any of these five PLP enzyme families, although it does share

features with fold types II, III, and IV. As with fold type III, PLP is bound at the top of

the TIM barrel pore, but the imine linkage is formed to the Rossmann domain rather than
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to a lysine of the TIM barrel, and a least-squares superposition of 5,6-LAM and alanine

racemase reveals that PLP does not occupy analogous positions at the C-terminal ends of

the TIM barrels (Fig. 4.11). In addition, the second domain of fold type III is composed

mainly of P strands rather than having a Rossmann-like fold. The similarity to fold type

II proteins is more limited and focuses on the use of a serine residue (S238a in 5,6-

LAM), rather than the more typical aspartic acid, to hydrogen bond with the pyridine

nitrogen. The presence of a Ser residue in this position suggests that the pyridine

nitrogen is not protonated in 5,6-LAM. In agreement with fold types III and IV, the si

face of PLP is solvent exposed33.

The experimental electron density map indicates that K144j3 forms a linkage to PLP (Fig.

4.5). Biochemical, mutagenesis and mass-spectrometry studies on 5,6-LAM from P.

gingivalis3 4, combined with sequence alignment against the C. sticklandii enzyme (-67%

identity), support the assignment of K144P as the Lys residue that forms an imine bond

with PLP. K1441 resides at the N-terminus of a short glycine-rich loop (1441-

KGYAGHYG-15113) that is highly conserved across all 5,6-LAM sequences. This short

loop interrupts the second helix of the Rossmann domain (Figs. 4.8, 4.12b). The helix is

reformed for one last turn before the peptide resumes the remainder of the Rossmann

fold. As was previously recognized3 4 , this represents a novel PLP-binding motif. The

terminal amino group of K14413 does not appear to be coplanar with the pyridine ring of

PLP, leading us to believe that the internal aldimine was photoreduced in the X-ray beam,

as has been observed in other structures (e.g. PDB codes 1GOP3 5, 1B5436, 1T3137).

Significantly, all contacts to the PLP cofactor, except for the imine linkage, are made
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from residues of the TIM barrel (Fig. 4.12a and Table 4.2), and are similar to PLP-protein

interactions observed in other PLP-dependent enzymes. These interactions include n7-

stacking, electrostatic interactions with the phosphate, and hydrogen bonding. Y263a

forms n-electron stacking interactions with the pyridine ring and also hydrogen bonds to

the phosphate moiety. The phenolic oxygen of PLP, proposed to be important for

intermediate stabilization in PLP- and AdoCbl-dependent 1,2-aminomutases 1 4 , is

observed to hydrogen bond to the side-chain of N299a. The phosphate group interacts

with two Arg sidechains (R184a, R268a), the sidechain of S189a, and a number of

main-chain amides (G187a, Q188a, S189a). Like in all PLP enzymes of known

structure, the phosphate moiety of PLP is bound near the N-terminus of an a helix (in this

case, a short helical turn, composed of 188a-QSL-190a).

4.3.3. Cbl-protein interactions

AdoCbl binds to 5,6-LAM with KM= 6.6 CiM and stabilizes the enzyme against thermal

lability23. AdoCbl was added to 5,6-LAM immediately prior to crystallization, and we

observe electron density that is consistent with the cofactor (Fig. 4.13a,b). 5,6-LAM

contains a "base-off' AdoCbl binding sequence (131P5-DxHxxG...Sxl...GG-222[3) and

binds AdoCbl in the base-off conformation, with H133P replacing the intrinsic

dimethylbenzimidazole (DMB) substituent of the cofactor as the lower axial ligand to the

cobalt23 (the Co-N distance is 2.3 A). Binding of AdoCbl by the Rossmann domain of

5,6-LAM is similar to Cbl binding in MS38 , MCM3 , and GM2 (see chapter 1), and is

characterized by a hydrogen-bonding network designed to bind the Cbl cofactor (Fig

4.13a, b, and Table 4.3). The binding determinants for Cbl include several residues that
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hydrogen bond to the propionamide side chains of the corrin ring (T130p, A132p, T134P,

V135[, T1911, Q192P), and, as in the case of MS, MCM, and GM, a serine residue

(S1871) which hydrogen-bonds to the DMB N atom. One potential hydrogen bond

between the ribose moiety of the DMB tail and the protein is observed: the main-chain

carbonyl O of R243P is 2.8 A away from the 2'-OH. The DMB moiety is bound in a

largely hydrophobic cavity, and is in van der Waal contact with I137/5, I140/5, V248p,

L1853, and F23913, as well as G221[ and G2221, two residues of the base-off Cbl

binding sequence motif. The phosphate moiety of the DMB tail, which is not observed to

contact the protein directly, is bound near the surface of the Rossmann-like domain.

Based on the structures of GM and MCM, we assume that the phosphate interacts with

solvent, but due to the moderate resolution of our structure, we did not model water

molecules.

All solutions and crystals containing AdoCbl were handled under red light until after

cryo-cooling. Despite our stringent efforts to prevent the cleavage of the photolabile C-

Co bond, the simulated annealing composite omit map suggest that this bond is mostly

cleaved (Fig. 4.13b), and we have modeled the Ado moiety as AdoH. We believe that the

cleavage of AdoCbl is nonenzymatic and is due to photoreduction of the C-Co bond in

the X-ray beam. This phenomenon has previously been reported39 . In the structure of

5,6-LAM, AdoH adopts a syn conformation about the glycosidic bond, in contrast to

GM40 and MCM41 , where the adenine ring of Ado is anti to the ribose ring. Interestingly,

AdoH is forced to adopt the syn conformation because of a steric clash between the

adenine ring and Y193a that would arise if AdoH were in the anti conformation. AdoH
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interacts mostly with residues of the accessory clamp: the 2' and 3' -OH groups of the

ribose moiety of AdoH hydrogen bond to the main-chain carbonyls of E55a and D54a,

respectively, and the exocyclic amino group of the adenine ring hydrogen bonds to D64ac

Y193a and V56a are positioned for hydrophobic interaction with the adenine moiety of

AdoH. Interestingly, the AdoH binding loop, composed of residues 51a-57a, form a

distorted P-hairpin structure that allows for two adjacent main-chain carbonyls to

hydrogen bond with the 2'- and 3'-OH groups of AdoH (Fig. 4.13b, Table 4.3).

4.3.4. The CxxCxxxC motif of 5,6-LAM

Interestingly, 5,6-LAM contains a CxxCxxxC motif and is reported to adventitiously bind

metals23. Analysis of the 5,6-LAM structure suggests that the three-Cys sequence, which

is reminiscent of the conserved CxxxCxxC motif of the AdoMet radical enzymes, plays

no role in catalysis. The three Cys residues are not positioned for disulfide formation or

metal binding (Fig. 4.14), and there is no additional electron density to suggest the

presence of a metal in the area. Moreover, these Cys residues are not absolutely

conserved across the sequenced 5,6-LAMs.
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4.4 Discussion

4.4.1. A hypothetical conformational change to bring AdoCbl into the active site

As mentioned above, the relative orientation of the Rossmann-like domain to the TIM

barrel in 5,6-LAM is markedly different from that observed in either GM or MCM.

Whereas in 5,6-LAM the Rossmann domain is bound off-center on top of the TIM barrel

(Fig. 4.15a), resulting in the -25A separation of the AdoCbl cofactor from the active-site

PLP, in the enzyme-substrate complex of both MCM and GM, the Rossmann domain is

docked directly over the center of the TIM barrel, thereby placing the Cbl cofactor in the

active site and sequestering the active site from bulk solvent2'3 . MCM buries -15% and

-60% of the TIM-barrel and Rossmann domain surface areas, respectively, at the TIM

barrel-Rossmann interface. Likewise, GM buries -17.5% of the TIM barrel surface area

and -47% of the Rossmann domain surface area. In contrast, 5,6-LAM buries only

-6.6% of the TIM barrel domain and 17% of the Rossmann domain at the TIM barrel-

Rossmann interface. Therefore, we describe this structure of 5,6-LAM, in which the

active site is solvent-accessible and the AdoCbl cofactor is not positioned for catalysis, as

having the resting state "edge-on" conformation, in contrast to the hypothetical catalytic

"top-on" conformation (Fig. 4.15b) that is analogous to the domain arrangement in the

substrate-bound forms of MCM and GM (Fig. 4.15d).

A key feature that is unique to PLP binding in the resting-state structure of 5,6-LAM is

the intersubunit nature of the imine linkage (Fig. 4.12). In this mode of PLP binding, the

cofactor acts as an anchor, tethering the separate polypeptide chain of the Rossmann-like

domain to the TIM barrel domain through PLP. We propose that the anchoring role of
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PLP, which forces the unusual orientation of the Rossmann domain with respect to the

TIM barrel, is important for positioning AdoCbl outside of the putative active site and for

regulating the formation of the highly oxidizing Ados in the absence of substrate. In the

resting state, a large cleft separates the dimerization domain from the Rossmann-like

domain (Fig. 4.16). This cleft, which leads to the top of the TIM barrel and the PLP

cofactor, is presumably the path that the substrate must follow in order to arrive at the

active site. Introduction of the substrate and transaldimination would then release K144P

and effectively break the PLP-mediated anchoring interactions between the Rossmann-

like and TIM barrel domains. With the Rossmann-like domain freed from its constrained

position, a large-scale conformational change could occur. We suggest that such a

conformational change must occur, and must result in the docking of the Rossmann-like

domain directly atop the center of the TIM barrel domain, filling the cleft between the

Rossmann domain and the dimerization domain (Fig. 4.15b). This catalytic "top-on"

conformation would effectively sequester the active site and position Ado near the

substrate-PLP complex, allowing for substrate radical generation and catalysis. Such a

conformational change could provide the energy that is required for the large rate-

acceleration of AdoCbl C-Co bond homolysis that characterizes this enzyme family. 5,6-

LAM is not exceptionally fast (kcat = 750 +44 min-1 for D-lysine4 2 ), and would not require

a very fast conformational change for catalysis. The hypothetical conformational change

that accompanies formation of the catalytic state of 5,6-LAM could not be rate-limiting,

since a primary deuterium kinetic isotope effect is observed in the reaction of 5,6-LAM

with deuterium labeled substrates.
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There is precedent in the Cbl enzyme literature for a large-scale conformational change

upon substrate binding41,43'44. For methylcobalamin-dependent methionine synthase, the

enzyme exists as an ensemble of conformational states that interconvert upon substrate or

product binding4 4. X-ray analysis reveals that the two active sites that alternatively

methylate and demethylate the Cbl cofactor are -50 A apart43 , requiring large

conformational rearrangements of the enzyme during each catalytic cycle. For AdoCbl-

bound MCM, the presence of substrate has a dramatic effect on the structure of the TIM

barrel41 . In the X-ray structure of the substrate-free form of MCM, the TIM barrel is

splayed open, leaving a large gap in the center of the barrel41 (Fig. 4.15c). Substrate

binds in this gap, threading through the N-terminal end of the TIM barrel to the Cbl

cofactor, which is located at the C-terminal end of the barrel3. Binding of substrate

appears to trigger the barrel closure (Fig. 4.15d), which in turn, causes Y89 to swing

toward the top of the AdoCbl corrin ring, presumably facilitating the homolytic cleavage

of the Ado moiety to give Ado.41 '45. Thus, while MCM and 5,6-LAM have similar

structures, the way in which conformational changes are linked to substrate binding is

different, and takes advantage of the unique properties of the substrates. The -23 A-long

methylmalonyl-CoA can bind along the entire length of the TIM barrel, causing the barrel

to tighten, whereas lysine, a much smaller substrate, can release the enzyme's imine

linkage from the PLP, freeing the Rossmann domain to rotate.
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4.4.2. Questions arisingfrom the structure of 5,6-LAM

Several open questions remain concerning the hypothetical conformational change that

we propose is necessary for catalysis in 5,6-LAM. What role, if any, does the

dimerization domain play in the conformational change? Could the accessory clamp

swing up and down to facilitate the edge to top rotation of the Rossmann domain? What

drives the reformation of the imine linkage with K144P that would result in reversion to

the edge-on conformation and product release? What is the structural rationale for the

observed suicide inactivation of 5,6-LAM46? Although many interesting details remain to

be discovered, our structural analysis suggests a novel mechanism for substrate-mediated

control of radical generation. The structure of 5,6-LAM shows that AdoCbl-dependent

enzymes can control radical generation by using a covalent bond that must be broken

when substrates binds, effectively locking AdoCbl into a non-catalytic position in the

absence of substrate.
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4.5. Tables

Table 4.1. 5,6-LAM data collection and refinements statistics

Data Set
Wavelength (A)
Resolution range (A)
Unique Reflections 1

Redundancy
Completeness (%)

I/(I)
Rsym
Non-hydrogen atoms in asymmetric unit
Number of reflections (working set / test set)
Rcryst3 (%)/Rfree (%)
Overall B (A2)

a (TIM barrel + accessory clamp)
main chain

side chain
3 (dimerization domain)

main chain
side chain

p (Rossmann-like domain)
main chain

side chain
Cofactors

Cbl
AdoH

PLP
RMS deviations of

protein bonds (A)
protein angles ()

Number of heavy atom sites
Se
Co

Se Peak
0.97918
50.0-2.8
45,836
6.8
99.8 (99.8)
18.6 (6.6)
9.3 (28.4)
5864
24098 / 2378
21.9 / 26.9

31.3
36.1

62.9
67.7

31.6
38.1

34.8
70.1
24.9

0.009
1.4

in the asymmetric unit
29
1

Values in parentheses are for the highest-resolution shell. 1For the purpose of phasing,
Friedel pairs were not merged, and this is accounted for in the number of unique
reflections. 2Rsy = [SkIs {Ii(hkl) - <I(hkl)>l] /kl .I(hkl) for hkl independent
reflections and i observations of a given reflection. <I(hkl)> is the mean intensity of the
miller index (hkl). 3Rryst = IF(hkl) - IFc(hkl)Il/ hkl IFo(hkl)I. Rfree = Rcryst for a test
set of reflections (9.9% of all reflections) not included in refinement. No a cutoff was
used in the refinement.
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Table 4.2. Potential PLP-5,6-LAM hydrogen bonding and electrostatic
interactions

Atom Contacting residue Contacting atom distance (A)

Pyridoxal
N1 Ser 238a OG 2.7
03 Asn 299cy ND2 2.5
03 Asn 299a OD1 3.2

Phosphate
O1P Arg 268a NE 2.6
O1P Ser 189a OG 2.5
O1P Tyr 263ca OH 3.0
02P Gln 188a N 3.3
02P Ser 189a N 3.0
02P Arg 184a NH1 2.5
02P Ser 189a OG 3.1
03P Arg 268a NH1 2.7
03P Gly 187a N 2.5
04P Tyr 263a OH 2.9



Table 4.3. Potential AdoCbl-5,6-LAM hydrogen bonding interactions

Contacting residue

Asp 54a
Glu 55ac

Asp 64a

Thr 191f3
Thr 1913
Gln 192/3
Ala 132f3
Thr 13003

Val 135/B
Thr 134/3
Thr 134f/

R243f/

S187/3

Contacting atom

0
0
OD1

OG
N
N
N
O
N
N
OG1

distance (A)

3.1
2.9
3.8

3.0
2.9
3.1
2.7
3.1

3.1
2.6
3.5

O

OG

2.8

2.6
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Atom

AdoH
03'
02'
N6

Corrin ring
N33
034
034
044
N45
051
051
N52

Ribose
08R

DMB
N3B



4.6. Figures

NH3+

H3N 2 .-
Lysine

3-LAM 5,6-LAM
12 AdoCbI
AdoMet PLPPLP

H3N CO2

NH3

P-L-Lysine

NH3

02
NH3+

2,5-Diaminohexanoate
(2,5-DAH)

+-~'"'-~ ' col+~ + 02+
H3N NH3

3,5-Diaminohexanoate
(3,5-DAH)

Figure 4.1. Aminomutases in the bacterial lysine fermentation pathway. 5,6-LAM and
2,3-LAM catalyze similar reactions and act on similar substrates. Both enzymes require
PLP, but 5,6-LAM is AdoCbl dependent, whereas 2,3-LAM is an AdoMet-dependent
iron-sulfur enzyme. The natural substrates of 5,6-LAM include DL-Lysine and -L-
Lysine. 2,3-LAM acts on L-Lysine and does not accept D-Lysine as a substrate.
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0 3PO
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Figure 4.2. Proposed mechanism of 5,6-LAM. (a) Proposed mechanism of 5,6-LAM,
modified from reference4 2 . The boxed step represents the state of the enzyme observed in
our crystal structure. The unboxed steps are proposed to occur while 5,6-LAM is in the
hypothetical "top-on" conformation (see text). (b) Mechanism of a general-base
catalyzed transaldimination with PLP47-53.
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aBr CO2Et
-CH Bu3SnHIAIBN6 - -H 2 C

Nt CH Z CH

6
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(b)

t-BuOo [. .
N- ;INC NCH 2 I H2C1 2

<1300 C >1300 C N-C
N CH2

Figure. 4.3. (a) 1,2-imino shift under radical-generating conditions, as observed by Han
and Frey'5 (b) Rearrangement of the aziridylcarbinyl radical, as observed by Danen and
West6 .
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Figure 4.4. Various crystal forms of 5,6-LAM. All crystals were produced using the
conventional hanging-drop vapor diffusion method (by mixing 1 L of protein solution
with 1 L of precipitant solution), and drops were equilibrated over a 0.5 mL well of
precipitant solution. (a) The form used to solve the structure (form 1). Only this crystal
form diffracts to give data of reasonable quality. Protein solution supplemented with
AdoCbl (12 mg/mL 5,6-LAM, 0.5 mM 3-mercaptoethanol, 10 mM triethanolamine pH
7.2, 4.5 mM AdoCbl; the molar ratio of AdoCbl to protein is 30) was mixed in a 1:1 ratio
with precipitant solution (0.1 M Tris hydrochloride pH 8.0, 0.2 M sodium acetate, 24%
w/v PEG 2000 monomethyl ether). Crystals appeared within 24 hours. (b) Protein
solution supplemented with AdoCbl (same as part a) was mixed in a 1:1 ratio with
precipitant solution (0.1 M sodium Cacodylate pH 6.5, 0.2 M sodium acetate, 24% w/v
PEG 2000 monomethyl ether). Crystals appeared within 24 hours. (c) Protein solution
supplemented with AdoCbl (same as part a) was mixed in a 1:1 ratio with precipitant
solution (0.1 M Tris hydrochloride pH 8.0, 0.2 M sodium acetate, 19% w/v PEG 2000
monomethyl ether, 5 mM NiCl2). Crystals appeared within 48 hours. (d) A solution of
protein, adeninylpentylcobalamin, and substrate (12 mg/mL 5,6-LAM, 0.5 mM P-
mercaptoethanol, 10 mM triethanolamine pH 7.2, 2 mM adeninylpentylcobalamin, 5 mM
D-lysine or L-lysine was mixed in a 1:1 ratio with precipitant solution (0.1 M Bis-tris pH
7.0, 2 M ammonium sulfate). The molar ratio of adeninylpentylcobalamin to protein is
13. Crystals appeared within 7 days. (e) A solution of protein, CNCbl, and substrate (12
mg/mL 5,6-LAM, 0.5 mM -mercaptoethanol, 10 mM triethanolamine pH 7.2, 4.5 mM
CNCbl, 5 mM D-lysine or L-lysine was mixed in a 1:1 ratio with precipitant solution (0.1
M Bis-tris pH 6.5, 2 M ammonium sulfate). The molar ratio of CNCbl to protein is 30.
These crystals are small and only faintly pink, and appeared within 10 days. In this
picture, several are identified with arrows. Dark red crystals are probably CNCbl.
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Figure 4.5. Solvent-flattened 3.0 A resolution experimental electron density of 5,6-
LAM. The map is contoured at 1.0 a. Residues K144f and N299, along with PLP, are
shown.

- 152-



a _

-I

a E-

aIt
4

II a
a AMU

.

l

I

aa ti

! a -0
135 -9)

Phi (degrees

Figure 4.6. Ramachandran plot of 5,6-LAM. The plot is colored as follows: red, most
favoured regions; yellow, additional allowed regions; light yellow, generously allowed
regions; white, disallowed regions. Glycine residues are shown as triangles. Figure
made using PROCHECK3 0 .

- 153-

1
18) i

135

9E~() 

45 -

bi

a(I:

a
i.Co

)

I

-45 p'
I

I I I1 t a t AN I

I35 -h i I

b

UI
II

tP

45

-b

.A5s I

I I

I
I

i

I 

r-J4

I

S.>

r



Rossmann-like domain (1)

)

Figure 4.7. Overall structure of 5,6-LAM and location of cofactors. Ribbon diagram of
the a2 P2 5,6-LAM tetramer with the "accessory clamp" of a in brown, the TIM barrel of
a in green, the Rossmann-like domain and the dimerization domain of , in blue. The
dashed line represents the disordered loop connecting the two domains of . The
second ap unit is represented in darker colors of blue, green, and brown. AdoH is shown
in red sticks; Cbl in pink sticks and sphere; PLP in black sticks. With the exception of
Figs. 4.1, 4.2, and 4.3b, all figures were prepared using PyMOL 54 .
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Dimerization domain ()

Figure 4.8. Topology diagram of the 5,6-LAM ca4 heterodimer. The strands of the
TIM barrel and Rossmann-like domains are numbered in large black numerals. Red
numerals next to secondary structure elements indicate the N-terminal residue of that
element. The locations of H133P, which is the lower axial ligand to the cobalt of Cbl,
and K1443, which forms the imine bond to PLP, are emphasized with arrows. The Ado
binding loop, which forms most of the interactions between the protein and AdoH, is also
emphasized.
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Figure 4.9. Lattice packing interactions of 5,6-LAM. The proposed physiologically
relevant 5,6-LAM tetramers in the crystal are shown in different colors. Each o unit
interacts with three other oe/ units of neighboring tetramers. PLP, Cbl, and AdoH are
shown in orange, pink, and red spheres, respectively.
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Figure 4.10. The five established PLP-binding enzyme families, plus 5,6-LAM. The
structures shown are those of (a) aspartate aminotransferase (PDB code 1AOG); (b)
tryptophan synthase (PDB code 1BKS); (c) alanine racemase (PDB code 1SFT); (d) D-
amino acid aminotransferase (PDB code 1DAA); (e) glycogen phosphorylase (PDB code
1FU4); (f) 5,6-LAM. The PLP binding subunits are colored in blue. PLP (black spheres)
and its associated Lys residue (black sticks) are shown. The PLP binding subunit of 5,6-
LAM (, the Rossmann-like domain) has a structure unlike that of any known PLP
binding protein.
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Figure 4.11. Superposition of the TIM barrels of alanine racemase and 5,6-LAM.
alanine racemase (pink) and 5,6-LAM (light green) are shown in cartoon representations.
The structures superimpose with an RMSD of 2.0 A 2 for 66 ac carbons, as determined by
LSQMAN55. The view is from the top of the TIM barrel. The PLP cofactor of alanine
racemase (red spheres) does not superimpose with the PLP of 5,6-LAM (dark green
spheres).
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Figure 4.12. PLP in the putative active site of 5,6-LAM (a) Stereo view of the putative
active site of 5,6-LAM. K1441 forms an imine bond to PLP; all other protein-PLP
interactions are made by residues of the TIM barrel. A simulated annealing composite
21Fol-IFcI omit electron density map (orange mesh), contoured at 1.5 , is shown around
the PLP. Unless otherwise noted, the coloring scheme for all stick or ball-and-stick
representations is as follows: grey, C; red, O, blue, N; green, P; pink, Co. (b) Relative
positions of PLP and AdoCbl. PLP is inserted into the C-terminal end of the TIM barrel
by K144f3, which anchors the Rossmann-like domain in an off-center conformation on
the top comer of the TIM barrel. H133P, K1441, PLP, Cbl, and AdoH are all depicted in
black sticks. The secondary structural elements of the Rossmann-like domain that
contain H133P and K1443 are shown in a ribbon representation. Opaque domain
surfaces are shown, colored as in Fig. 4.7.
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(a)

(b)

Y1

Figure 4.13. The AdoCbl binding site of 5,6-LAM. (a) Stereo view of Cbl within a 1.8
A-radius simulated annealing composite 2IFol-lFcI omit electron density map, contoured at
1.0 c. Hydrogen bonds between a propionamide side chain of the corrin ring and residues
T191 and Q192 are omitted for clarity. (b) Stereo view of AdoH. AdoCbl appears to
have cleaved in the X-ray beam, and we modeled the Ado moiety as AdoH. AdoH is
shown in a 1.8 A-radius simulated annealing 2Fol-IFcI omit electron density map
contoured at 1.0 a. Y193a is part of the TIM barrel domain; otherwise, all protein-AdoH
contacts are made by residues of the accessory clamp.

Figure 4.14. A stereo view of the local structure of the CxxCxxxC sequence. The three
Cys residues are not positioned for disulfide formation or metal ligation.
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Figure 4.15. Hypothetical conformational change of 5,6-LAM and observed
conformational change of MCM. (a) Structure of the substrate-free form of 5,6-LAM, as
determined in this study. Protein domains and cofactors are colored as in Fig. 4.4a.
Arrows represent the axes of the TIM barrel and Rossmann-like domains. (b)
Hypothetical structure of the substrate-bound 5,6-LAM. The Rossmann-like domain is
modeled to cap the C-terminal end of the TIM barrel in a manner resembling the structure
of MCM. (c) Structure of the substrate-free form of MCM (PDB code 3REQ). The
Rossmann-like domain sits directly atop the center of the TIM barrel, which is pried open
in preparation for substrate binding. The Ado moiety of intact AdoCbl is shown in red,
and the Cbl portion is shown in pink. (d) Structure of substrate-bound MCM (PDB code
1REQ). The substrate fragment, desulfo-CoA (dark blue), threads through the TIM
barrel domain, effecting the closure of the TIM barrel to a much more compact structure.
The Ado moiety of AdoCbl was not observed.
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smann-
lomain (13)

barrel
(a)

Figure 4.16. A cleft leading to the putative active site of 5,6-LAM. Protein and cofactor
surfaces are shown, colored as in Fig. 4.4a, except that PLP is shown in orange. PLP is
entrenched in the active site. The cleft leading to the active site is formed by the
Rossmann-like domain and the dimerization domain.
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Abbreviations:

2,3-LAM Lysine 2,3-aminomutase
5,6-LAM Lysine 5,6-aminomutase
Ado 5'-deoxyadenosyl group
Ado* 5'-deoxyadenosyl radical
AdoCbl Adenosylcobalamin, Coenzyme B12
AdoH 5'-deoxyadenosine
AdoMet S-adenosylmethionine
BioB Biotin synthase
Cbl Cobalamin
CNCbl Cyanocobalamin, Vitamin B12
DDH Diol dehydratase
DTB Dethiobiotin
HemN Coproporphyrinogen III oxidase
RNR Ribonucleotide reductase
SAM S-adenosylmethionine
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The crystal structures of biotin synthase (BioB) and lysine 5,6-aminomutase (5,6-LAM)

allow for a comparison of the adenosylcobalamin (AdoCbl) and the adenosylmethionine

(AdoMet) -dependent radical enzymes. In particular, we learn that at least one AdoMet

radical enzyme has a TIM barrel fold', like most of the Cbl-dependent enzymes2 '6 . In a

break from the TIM barrel trend, the structure of HemN, the only other AdoMet radical

enzyme structure that is published, has an a/fl fold (referred to as a "3/4 barrel") that is

reminiscent of the TIM barrel7.

The elucidation of the structure of 2,3-LAM is currently under way (P. A. Frey, personal

communication). It is not known if its structure resembles the 3/4 barrel of HemN, the

TIM barrel of BioB and 5,6-LAM, or some other structure.

5.1 Structural comparison of BioB with HemN

Superposition of BioB with HemN reveals that the two enzymes share a core set of -

strands and a helices (Fig. 5.1a). The common set of strands and helices superimpose

with a root mean square deviation of 1.9 2 for 99 alpha carbons (Fig. 5.lb).

Additionally, the 4Fe-4S cluster, its coordinating AdoMet, and several important residues

are structurally equivalent (Fig. 5.1c). In BioB, these residues are: Y59 and 1192, which

interact with the adenine ring of AdoMet; D155, which hydrogen bonds to the 2' and 3' -

OH groups of the ribose moiety; and R173, which forms a salt bridge with the carboxyl

group of AdoMet. Interestingly, a second AdoMet molecule, proposed to give rise to the

second Adoe in the hypothetical HemN mechanism 7, was modeled into the structure of
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HemN. The second AdoMet molecule is located near the DTB site of BioB, possibly

suggesting that this AdoMet might be occupying the binding site of the heme substrate.

5.2 Structural comparison of BioB with diol dehydratase

One tentative indication of an evolutionary link between the AdoMet and the AdoCbl

radical enzymes is evident upon structural comparison of BioB and diol dehydratase

(DDH). Superposition of the alpha carbons of both crystal structures (DDH PDB code

1DI0 5) reveals several remarkable similarities (Fig. 5.2). The Co atom of

cyanocobalamin (CNCbl) occupies the same space as the 4Fe-4S cluster of BioB, a

catalytic K+ ion in DDH coincides with the 2Fe-2S cluster of BioB, the substrates of both

enzymes superimpose, and both substrates are covered by similar loops.

Clearly, BioB, as well as the AdoCbl-dependent enzymes (with the exception of the class

II RNR), are able to properly arrange their catalytic elements using the TIM barrel fold.

It is possible that the TIM barrel is especially adept at catalyzing Ado. chemistry because

the radical intermediates can be effectively sequestered inside the barrel.

The structure of BioB is more like the structure of DDH than that of HemN. Both BioB

and DDH have relatively small substrates, compared to the HemN substrate, a

tetrapyrrole macrocycle. Accordingly, the 3/4 barrel fold of HemN envelopes more

volume than does a TIM barrel, allowing for a larger active site. It is tempting to

speculate that substrate size dictates the use of a 3/4 barrel fold over a TIM barrel; a 3/4

barrel would be required for large substrates which could not fit inside an eight-stranded
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fl-barrel structure. With the current limitations on the number of AdoMet radical enzyme

structures, there is no convincing support for this theory. To this end, the structure of

2,3-LAM is of special interest, since its substrate is identical to one of the 5,6-LAM

substrates. If substrate size does determine the fold of an Ado. enzyme, then we expect

2,3-LAM to have a TIM barrel fold, like 5,6-LAM.

5.3. A novel role for PLP in an Adoe enzyme

We propose that in 5,6-LAM, PLP has a novel role in keeping AdoCbl out of the active

site in the absence of substrate. Transimination of the covalent PLP-K144/g imine linkage

with the substrate releases the Rossmann domain from its constrained position, allowing

it to rotate and place AdoCbl into the active site of the TIM barrel domain. To our

knowledge, this is the first reported instance of PLP being used to lock an enzyme in a

certain conformation.

5.4. Ado. enzymes: barrel structures with reaction-specific accommodations

Ado* enzymes commonly utilize barrel-like structures, which are adapted to the

particular enzymatic reaction. BioB appears to be very similar in structure to AdoCbl

enzymes, but the AdoCbl-binding domain is replaced by a loop at the top of the barrel

that binds the essential 4Fe-4S cluster. The structure of 5,6-LAM is generally similar to

those of other AdoCbl enzymes, in that it contains a TIM barrel and a Rossmann-like

domain. However, these domains are modified to create a mechanism by which a small

substrate, lysine, can trigger a large conformational change upon binding and

transimination. A broken helix of the Rossmann-like domain creates a novel PLP
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binding motif. This motif allows for PLP-mediated interactions to control the

conformation of the enzyme, keeping AdoCbl out of the active site in the absence of

substrate. Thus, we expect to see more variation on the general theme of aS/ barrel

structures as more AdoMet and AdoCbl radical enzymes are structurally characterized.
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5.5. Figures

(a)

I %

I^%

Figure 5.1. (a) Superposition of BioB (blue) and HemN (grey). The view is from the
bottom of the BioB TIM barrel. Cofactors and substrates are omitted for clarity. (b)
Stereo view alpha carbon trace of the structurally homologous regions of BioB and
HemN. The color scheme for parts b and c are the same as for part a. (c) Analogous
residues in the active sites of BioB and HemN (see text). Residues are labeled according
to the coloring scheme of part a. The 4Fe-4S clusters and associated AdoMet of both
proteins are labeled in black typeface. The second AdoMet of HemN is labeled
"AdoMet2" in grey. The 2Fe-2S cluster of BioB is labeled "2Fe" in blue. Figures 5.1
and 5.2 were made using PyMOL 8.
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Appendices

Appendix 1. Summary of 5,6-LAM crystallization experiments. Commercially
available screens (Hampton Research Corp.) were used (denoted by "yes") or not used
(denoted by "no") in crystallization experiments with 5,6-LAM, AdoCbl,
cyanocobalamin (CNCbl), Adeninylpentylcobalamin (APCbl), substrate (D or L-lysine),
or inhibitors (L-ornithine [L-orn] or thialysine [Thialys]), in various combinations. For
details of crystallization experiments, see chapter 4.

Crystal
screen 2

Protein
sample

Crystal
screen
lite

Index Index Memb- AS PEG/Ion
I II Fac grid grid

PEG
6000
grid
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5,6-LAM Yes
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