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ABSTRACT

Glycosylation is critical to cellular function in eukaryotic systems. N-linked
modification of asparagine residues within nascent proteins is involved in numerous
folding and processing pathways. N-linked glycans are also a common feature of viral-
associated envelope glycoproteins, including gpl20 and gp41 of the human
immunodeficiency virus (HIV-1). These glycans are attractive targets for therapy and
prophylaxis due to their numerous roles in HIV infectivity and immunoevasion.

This thesis describes the solution-phase synthesis of a series high-mannose type
glycans using a linear synthetic approach. The synthetic mannans are used to study the
potent anti-HIV microbicide cyanovirin-N, a novel 11 kDa protein isolated from the
cyanobacterium (blue-green algae) Nostoc ellipsosporum. These studies established the
structural basis for carbohydrate-binding by cyanovirin-N, which is responsible for its
HIV inactivating properties.

Automated solid-phase synthesis and microfluidic reactors were employed in the
development of new technologies for synthetic carbohydrate chemistry. Utilizing a
carbohydrate synthesizer, the first automated solid-phase synthesis of the N-linked core
pentasaccharide is detailed. In addition, the design, fabrication and application of a
microreactor for optimizing the glycosylation reaction is described.

Utilizing a novel tri(ethylene glycol) linker with a reactive thiol handle, the
fabrication of carbohydrate microarrays is depicted. A panel of oligosaccharides was
selected to represent the major structural determinants of high-mannose type glycans on a
single microarray. These microarrays were used study the glycan-dependent binding
interactions of four gpl20-binding proteins: the dendritic cell lectin DC-SIGN, the
antibody 2G12, cyanovirin-N, and a recently identified anti-HIV protein, scytovirin.

Thesis Supervisor: Peter H. Seeberger
Title: Visiting Professor of Chemistry, MIT

Professor of Chemistry, ETH Zurich, CH
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In my view, all that is necessaryforfaith is the belief that
by doing our best we shall come nearer to success, and that
success in our aims (the improvement of the lot of mankind,
present and future) is worth attaining.

Rosalind Franklin (1920-1958)
Letter to her father
Summer, 1940
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1.1 Introduction

The roots of carbohydrate chemistry can be traced back over a century, to the

beginnings of modern organic chemistry and the pioneering days of Emil Fischer.

Decades after the sugars were first described, accumulated evidence suggested that

carbohydrates were implicated in far more than structural function (cell walls) and energy

storage (glucose and glycogen). Over time, the somewhat obscure field of carbohydrate

chemistry has grown into a respected discipline, pursued by industry and academia alike.

Today it is widely accepted that carbohydrates are among the most structurally diverse

biopolymers, and play a role in an innumerable variety of vital cellular processes. The

field of glycobiology is devoted entirely to unraveling the secrets of this hitherto

neglected dimension of biology. Following in the footsteps of genomics and proteomics,

'glycomics' is poised to join the informatics age of biological study.

Carbohydrates, in the form of oligosaccharides and glycoconjugates are

implicated in cell-cell interactions,l fertilization,2 development,3 the immune response,4

inflammation, 5 viral-host interactions, 6 bacterial pathogenicity, 7 and signal transduction. 8

In addition to shedding light on the mechanism of countless processes in biology,

carbohydrates are being adopted for use in vaccine design against human pathogens9 and

cancers.' 0 Just as the human milk oligosaccharides confer protection to infants against

numerous pathogens,1 carbohydrate-based pharmaceuticals and food-additives hope to

achieve similar prophylaxis.

With this growing appreciation for glycobiology came increased demand for

access to pure materials for study. This has proven challenging, due to the

microheterogeneity of naturally isolated oligosaccharide and glycoconjugates. And, to

the frustration of glycobiologists, no process exists for amplifying purified glycans.

Unlike working with protein and nucleic acid, carbohydrate research is stymied by a lack

of widely available automated synthesis, sequencing, or technologies analogous to cDNA

microarray and siRNA (small interfering RNA) gene silencing. A complementary set of

biophysical tools for studying carbohydrates has remained elusive, and this void has

hindered the emergence of this field.
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Progress in carbohydrate chemistry is generating new and exciting possibilities

for obtaining pure, chemically defined, oligosaccharides and neoglycoconjugates. Access

to these structures is provided by improved synthetic methods, including the development

of an automated solid-phase synthesizer12 and methods for enzymatic synthesis.13 Over

time, these advances are steadily closing the technological gap between glycomics and

the more advanced disciplines of genomics and proteomics.

In an effort to furnish new tools for glycobiology, this thesis will explore

chemical methods for the synthesis of high-mannose oligosaccharides related to the N-

linked glycosylation pathway and describe the development of a carbohydrate

microarray. The following sections will address (1) a brief overview of N-linked

glycosylation, (2) introduce the glycobiology of the HIV-1 virus, as it relates to N-linked

glycosylation, (3) examine some of the challenges to the chemical synthesis of

carbohydrates, and (4) detail the objectives of this dissertation.

1.2 Glycosylation in Biological Systems

A powerful feature of carbohydrates in biological systems is their ability to

modify other biomolecules to form glycoconjugates. The glycosylation of peptides has a

profound effect on the structure and function of the modified proteins. Glycosyl

modification of peptides falls into three major classes: N-linked glycan modification of

asparagines residues; O-linked glycosylation of serine or threonine residues; and

glycosylphosphatidyl inositol (GPI) coupling of the carboxy-terminus. N-linked

glycosylation is the most common saccharide-modification of protein in eukaryotic

cells,14 and is the basis for the synthetic efforts described in this thesis.

1.2.1 N-linked Glycosylation

N-linked glycosylation takes place in the endoplasmic reticulum (ER) as a co-

translational modification of growing nascent polypeptides. 15 The reaction is catalyzed by

oligosaccharyl transferase (OT), which transfers the tetradecasaccharide 1-1 from a

dolichylpyrophosphate carrier to an asparagine side chain as the nascent peptide emerges

17



from the translocon into the lumen of the ER. 16 Glycosylation is specific for the

tripeptide sequon Asn-X-Ser/Thr, 17 and it is estimated that 90% of all such sequons are

glycosylated."

14

Figure 1.1 Tetradecasaccharide involved in the initial N-linked glycosylation of nascent

peptides, transferred to asparagines side chain by oligosaccharyl transferase.

Immediately following OT glycosylation of the asparagines residue, the N-linked

glycans proceed through a complex series of modifications. First, as the glycoprotein is

moved to the Golgi complex for further modification, the terminal glucose and mannose

residues are removed by ER glucosidases and mannosidases. 19 Numerous trimming and

terminal glycosylations are possible in the Golgi, as the N-linked glycan is elaborated into

its final form. Among the possible outcomes are complex, high-mannose and hybrid-type

glycans (Figure 1.2).
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OH

~~~~~High-mannose N-linked glycan

NH/cA ~ PN

Figure 1.2 Examples of the three classes of N-linked glycans: complex, high-mannose

and hybrid-type.

Correct protein folding is among the most vital functions of N-linked glycans

during protein synthesis.20 The large glycan structures can have a significant influence

on the structure of a glycopeptide, thus directly affecting the folding process and protein

stability.21 Beyond these physical effects, N-linked glycans are involved in trafficking of

unfolded proteins between the ER and Golgi and through the calnexin-calreticulin cycle,

a crucial step in proper folding.22

N-linked glycans also play a central role in the quality control mechanism of

protein synthesis within the cell. Even during unstressed conditions, misfolded side

products are common during protein synthesis. Therefore cytosolic turnover of

glycoproteins is essential to normal function within the cell. A misfolded protein is

targeted for degradation through specific trimming of N-linked glycans, marking the

19
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protein for ER-associated degradation.23 Such ill-fated proteins are transported out of the

ER into the cytosol where they are ubiquitinated and degraded by the 26S proteosome.

1.2.2 N-linked Glyeans and the Glycobiology of HIV

Human immunodeficiency virus (HIV-1), the causative agent of acquired immune

deficiency syndrome (AIDS), is an enveloped retrovirus highly decorated in glycoprotein.

gp120, the major surface envelope glycoprotein of HIV-1, contains 24 sites of predicted

N-linked glycosylation.24 This makes the glycans a major contributor to the overall

structure of the glycoprotein. In fact, 50% of the molecular mass of gpl20 comprises

oligosaccharide. The N-linked glycans are critical to HIV infectivity, as they contribute

to both the proper folding of envelope glycoproteins, and increased cyto-pathogenicity of

the virus.25 Inhibition of N-linked glycosylation or downstream glycan processing has

been proven to interfere with viral infectivity. 26

Glycoprotein gpl20 and integral membrane protein gp41 are attractive targets for

developing therapies aimed at prophylaxis or decreasing HIV viral load in infected

persons. gpl20 and gp41 reside in the external viral membrane as a functional trimer of

three non-covalently associated heterodimers.27 This gpl20/gp41 construct plays a vital

role in HIV viral entry through interactions with CD4 molecules and members of the

chemokine receptor family present on T lymphocytes, macrophages, dendritic cells, and

brain microglia One mode of HIV internalization by the host cell begins with CD4

binding of gpl20. This exposes a chemokine receptor-binding domain on gpl20 that

subsequently reveals gp41, permitting insertion into the host cell membrane. Disrupting

this process interferes with an important pathway in viral infection.

The prevalence of gpl20 on the surface of HIV-1 makes it a major target of the

humoral immune response.2 8 As such, a great deal of effort in vaccine design has

focused on immunizing against monomeric and oligomeric forms of gpl20. This

approach has been frustrated by N-linked glycan variability and steric masking of

potential neutralization-sensitive epitopes of gpl20.29 The specific glycosylation pattern

and structural composition of N-linked glycans is highly dependent on the host cell in

which the virus was produced.30 In addition, the predominance of the N-linked
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glycosylation pathway in mammalian cells likely causes these modified proteins to be

regarded as "self" or non-immunogenic, inhibiting a rigorous antibody response. The

human monoclonal antibody 2G12 was recently described as an exception to the typical

lackluster immune response to high-mannose oligosaccharides.4 2G12 demonstrates a

nanomolar affinity for oligosaccharide clusters with an accessible Mana(1->2)Man

motif.

1.2.2.1 High-Mannose Glycans and HIV

Up to 11 high-mannose oligosaccharides are among the 24 N-linked glycans on

gpl20.31 Of these, five or six are the large octa- or nonamannose glycans (Man8 or

Man9). The presence of Man8 or Man9 on virus glycoprotein is physiologically relevant

because normal mammalian glycoproteins rarely contain large high-mannose glycans.

To the contrary, ER and Golgi processing of native glycoproteins in mammalian systems

seldom leaves high-mannose residues unmodified; non-viral glycoproteins presenting

high-mannose glycans are typically targeted for rapid degradation.

By utilizing mannose-binding proteins the presence of high-mannose

oligosaccharides on viral glycoprotein has been exploited as a means of blocking HIV

viral entry into host cells. Pursued by the Molecular Targets Development Program of

the National Cancer Institute, high-throughput screens of products derived from

Cyanobacteria have yielded a number of protein candidates, capable of inhibiting viral

entry into host cells. Among these compounds, cyanovirin-N 3 2 an 11 kDa protein, and

scytovirin,3 3 a 9.6 kDa protein, are promising leads. Both proteins derive their anti-HIV

activity by binding the high-mannose oligosaccharides present on gpl20. It is believed

that viral inhibition could be achieved by two possible mechanisms. Either by binding

gp 20 and preventing its receptor binding domains from interacting with their targets. Or,

subsequent to protein binding, gpl20 undergoes conformational changes that render its

binding domains functionally inactive. In vivo prophylaxis studies with CVN have

shown promise, and demonstrated no adverse effects upon host physiology.3 4 This is

possible because of the high degree to which endogenous proteins undergo N-linked

glycan processing by the Golgi apparatus. Therefore, host cell-surface and secreted
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proteins lack the high concentration of unprocessed N-linked glycans required for CVN

targeting.

1.3 The Chemical Synthesis of Carbohydrates

The difficulty of isolating significant quantities of pure carbohydrate and

glycoconjugate from natural sources poses a challenge to securing material for biological

study. Preparing oligosaccharides and neoglycoconjugates by enzymatic and chemical

synthesis offers a powerful solution. Both methods continue to make rapid progress

towards developing new and more powerful methods for preparing structures of

increasing complexity. Enzymatic syntheses, such as the novel 'superbug' and

'superbead' technology,13' 35 offer the superb control afforded by biology, utilize non-

hazardous and environmentally friendly starting materials, and are suited for scale-up

using batch fermentation-like methods. Chemical synthesis, on the other hand, gives the

investigator access to materials that may be non-natural, and have no precedence for

synthesis by biological systems. In addition, chemical synthesis generates homogenous

product, free from undesired glycoforms. As such, both methods have much to

contribute to the synthesis of complex saccharides.

1.3.1 The Glycosylation Reaction

Synthetic carbohydrate chemistry, the focus of this dissertation, is rooted in a

tradition that reaches back over 100 years, to the first glycosylation reactions reported by

Koenigs and Knorr.36 Glycosylation is at the heart of carbohydrate synthesis, as it is the

process of linking multiple carbohydrates to each other, or to other biomolecules. The

glycosylation reaction involves the coupling of a glycosylating agent to a nucleophile

(glycosyl acceptor). The path of a typical reaction begins with activation of the glycosyl

donor, resulting in the departure of a leaving group at the anomeric position, and

generation of an electrophilic cyclic oxocarbenium intermediate (Scheme 1.1). This

species is subsequently reacted with a nucleophilic acceptor, typically a hydroxyl,

generating a glycosidic linkage.
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Scheme 1.1 Glycosylation reaction pathway.

Following the Koenigs and Knorr use of the glycosyl halide3 6 several anomeric

leaving groups have been used as glycosyl donors. Among others,37 these have included

the trichloroacetimidate,38 glycosyl thioglycoside,3 9 glycosyl sulfoxide,40 glycosyl

phosphate,4 1 n-pentenyl glycoside42 and 1,2-anhydrosugar (Figure 1.3).43

RO '-"'" %\ NH RO RO
CCI3 Si

0
trichloroaceUtimidate thioglycoside glycosyl sulfoxide

ROI ' "" ~ Q 0 RO RO

P~oP OR R OR
glycosyl phosphate n-pentenyl glycoslde 1,2-anhydrosugar

Figure 1.3 Common glycosyl donors.

There are many challenges to a chemical approach for synthesizing

oligosaccharides. The typical pyranose sugar has five hydroxyl groups with similar

reactivities. Coupling two monosaccharides can form up to 11 positional and anomeric

isomers of the disaccharide product. To address this, synthetic chemistry must make

extensive use of temporary protecting groups. The selection of the masking groups has a

profound effect on the reactivity of both glycosyl donor and acceptor. Poorly selected

protecting groups can complicate an otherwise straightforward synthesis.

Stereochemical control of the glycosylation reaction is crucial to any synthesis.

As illustrated in Scheme 1.1, two stereochemical outcomes are possible for every

glycosylation reaction. Approach of the nucleophile from the top face of the cyclic

oxocarbenium ion results in a -linkage, while approach from the bottom leads to the a-
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linkage. Numerous factors contribute to the outcome of this reaction. These include

solvent, choice of protecting groups (participating vs. non-participating), identity of the

anomeric leaving group, the reactivity of the activator, matched vs. mismatched

donor/acceptor pairs,44 and the anomeric and exoanomeric effects.

1.3.2 P-Mannosides

Controlling the stereochemistry of glycosylation is particularly challenging when

the desired outcome is a -mannosidic linkage (Figure 1.4). The -mannoside is

ubiquitous in mammalian glycosylation, as it serves as the branching point for the core

pentasaccharide of N-linked glycans. The biological relevance of this structure creates a

strong rationale for its chemical synthesis.

p-mannosidic linkage

OROR /OR

NHAc

Figure 1.4 The f$-mannosidic linkage.

Synthesis of 13-mannosidic linkages must overcome two significant challenges

that oppose its formation, the anomeric effect and steric repulsion (Figure 1.5).

Interactions of the endocyclic oxygen lone pair with the non-bonding orbital of an axially

oriented substituent favors the a-anomer for a pyranoside.45 Lacking a substituent in the

axial configuration at the anomeric carbon, the -mannoside cannot benefit from this

stabilizing interaction. And, due to 1,2-cis orientation of the -mannoside, the axial

functionality at C2 is sterically conflicted with the equatorially oriented anomeric

substituent. Together, these contributions increase the likelihood that the fi-mannosidic

linkage will anomerize under the acidic conditions that are often used to initiate

glycosylation.
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Figure 1.5 Anomeric effect stabilization of a-anomer; steric repulsion for 1,2-cis-

mannopyranosyl.

The pressing biological significance of the [-mannoside has given rise to a

number of synthetic approaches that overcome these challenges.46 One method is based

on generating a [-glucoside precursor. Unlike the -mannoside, a 1,2-trans-pyranosyl f5-

glucoside is readily formed using a C2 participated group or the glycal assembly method

pioneered by Danishefsky et al.47 The -glucoside can be transformed to yield the 3-

mannoside by epimerization of the C2 substituent (Scheme 1.2). Chapters 2 and 4 will

utilize this method to generate a panel of high-mannose oligosaccharides possessing a [3-

mannoside core.

~~~~~OR OROR C2 epimenzaion OR OR

ROT' OR' R OR
R"

Scheme 1.2 Epimerization of P-Glucoside to form a P-mannoside.

Alternatively, direct SN2 -type displacement of an axial leaving group on the

anomeric carbon gives the f3-anomer as a product (Scheme 1.3). This method avoids

formation of the planar oxocarbonium ion, decreasing the chance of an anomeric mixture.

In situ generation of the anomeric ct-triflate, a method developed by David Crich and

colleagues,4 8 typifies this synthetic approach and is utilized in Chapter 3 to prepare the N-

linked core pentasaccharide.

OROR OR OR

R° ~H.OR SN2 ._
Scheme 1.3 SN2 displacement of axial leaving group to furnish -mannosides.

Scheme 1.3 SN2 displacement of axial leaving group to furnish 1-mannosides.
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1.3.3 Automated Solid-Phase Synthesis of Oligosaccharides

The solution-phase synthesis of biomolecules is immensely successful at

constructing large and complex structures; however these efforts remain time consuming

and require significant labor. Repetitive chromatographic purification of intermediates is

one of the most challenging steps during the synthesis of large structures. By eliminating

these purification steps, the solid-phase paradigm has revolutionized the rapid synthesis

of biopolymers. Ideally suited for automation, solid-phase synthesis was originally

exploited for the automated synthesis of peptides,4 9 and two decades later,

oligonucleotides. 5 0

Adopting the solid-phase paradigm for synthetic carbohydrate chemistry was slow

to be realized. The challenge of developing methods compatible with the solid support

and suitable linking chemistries was addressed by Danishefsky,51 Kahne,5 2 and

Schmidt,53 among others. Drawing from these successes, the Seeberger laboratory

described the first automated solid-phase oligosaccharide synthesizer.'2 Utilizing an

octenediol linker, oligosaccharides are elaborated on the solid support by sequential

glycosylation and deprotection, until the final structure is realized (Scheme 1.4). The

product is subsequently cleaved from the solid support by Grubbs' catalyst mediated

olefin metathesis in the presence of ethylene to furnish the n-pentenyl glycoside. Most

recently, the LeY-Lex tumor marker and the Lewis X and Lewis Y blood group antigens

were prepared in an automated fashion using the carbohydrate synthesizer and an ester-

based linker.5 4
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Scheme 1.4 Automated solid-phase oligosaccharide synthesis.

1.4 Dissertation Objectives

The Seeberger laboratory is devoted to advancing the burgeoning field of

glycobiology through the development of practical tools based on synthetic carbohydrate

chemistry. Progress towards this goal has been made with advances such as the

automated solid-phase oligosaccharide synthesizer, 12 '55 new protecting groups for

carbohydrate synthesis,5 6 and fully synthetic carbohydrate vaccines.9 In this tradition, the

following dissertation aims to take a solution- and solid-phase approach to study the

synthesis of N-linked high-mannose oligosaccharides and develop tools to aid ongoing

investigations into their roles in HIV glycobiology.

Chapter 2 details a 'linear' strategy for the solution-phase synthesis of

triantennary high-mannose oligosaccharides using monosaccharide building blocks.

Based on this linear approach, Chapter 3 details construction of the core-pentasaccharide

common to the three major classes of N-linked glycans. This study includes both a

solution- and automated solid-phase synthesis, while addressing the challenging -

mannosidic linkage. Chapter 4 follows the development of a high-density carbohydrate

microarray based on a new tri(ethylene glycol) linker and examines a preliminary

microarray study of a panel of gpl20-binding proteins. In this study we exploit the newly

developed microarrays to study the glycan-dependent binding interactions of four gpl20-
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binding proteins: the dendritic cell lectin DC-SIGN,"7 the antibody 2G12, yanovirin-N,

and a recently identified anti-HIV protein, scytovirin.5 S Finally, Chapter 5 introduces the

use of microfluidic devices to probe the glycosylation reaction.

This dissertation was motivated by a practical need for access to synthetically-

derived oligosaccharides to advance the study of anti-HIV microbicides discovered at the

NCI, National Institutes of Health. As an appendix to this thesis, Appendix A will briefly

summarize the biophysical studies of the anti-HIV protein Cyanovirin-N using the

synthetic mannosides prepared in Chapter 2. Appendix B summarizes the preparation of

a panel of trisaccharides for use in an ongoing effort to establish the acceptor preferences

of the enzyme 13,4-Galactosyltransferase-l 1, also in collaboration with the NCI.
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Chapter 2

A Linear Synthesis of High-Mannose Oligosaccharides
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Portions of this chapter were reprinted with permission, as they describe work found in

the following publication:

Ratner, D. M.; Plante, O. J.; Seeberger, P. H. A Linear Synthesis of Branched High-

Mannose Oligosaccharides from the HIV-1 Viral Surface Envelope Glycoprotein

gpl20. Eur. J Org. Chem. 2002,5, 826-833.

2.1 Introduction

Chapter 2 describes a linear solution-phase synthesis of a high-mannose

nonasaccharide pentyl glycoside. Envisioning the automated solid-phase assembly of

complex carbohydrates, the synthesis of the nonasaccharide and the related tri- and

hexamannoside demonstrates the facile assembly of highly branched structures in a

stepwise fashion incorporating monosaccharide building blocks. A differentially

protected core trisaccharide was prepared and further elongated in two high-yielding tri-

mannosylations to furnish the triantennary structure. The tri-, hexa- and nonamannoside

n-pentyl glycosides obtained via the described synthesis would serve as substrates for a

detailed study of the carbohydrate-protein interactions responsible for binding of the anti-

HIV protein cyanovirin-N to the glycoprotein gpl20 (Appendix A).

This synthetic route would ultimately function as the template for preparing a

series of high-mannose oligosaccharides used in the development of a number of

synthetic tools for glycobiology. Most notably, Chapter 4 will focus on the development

of a new method for preparing carbohydrate microarrays, based on analogs of the

synthetic structures described below.

2.2 Target Identification and Significance

Carbohydrates are widely understood to play a vital role in HIV retroviral

pathogenesis. The function of HIV-1 surface envelope glycoprotein gpl20 in helper T

lymphocyte (Th) infection has been understood by biologists for some time.'

Glycoprotein gpl20 is highly glycosylated, containing up to 24 N-linked high-mannose
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carbohydrates, which compose 50% of the molecular mass of the glycoprotein. gpl20

mediates viral fusion with the CD4 receptor on the surface of Th cells. HIV fusion and

subsequent lymphocyte infection occur upon binding of the glycoprotein and the CD4

receptor.
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Figure 2.1 High-mannose oligosaccharide targets.

A novel protein has been recently discovered that exhibits potent anti-HIV

activity. Isolated from the blue-green algae Nostoc elliposporum, cyanovirin-N (CVN)

was found to bind viral gpl20, thereby preventing lymphocyte infection., 3 CVN is a

monomeric 11-kDa protein. Both natural and recombinant forms of the protein have
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been shown to irreversibly inhibit a wide variety of H1V strains while exhibiting minimal

toxicity to host cells. The mode of HIV inactivation by CVN has been studied and the

protein's affinity for the gpl20 high-mannose structure Man9 2-1 was established (Figure

2.1).4 This affinity appears to be the mechanism through which CVN prevents gpl20

from interacting with the CD4 receptor of the host lymphocyte. A detailed understanding

of the specific interaction between CVN and Man9 2-1 could lead to the development of

potential HIV preventatives and possibly even therapeutics. Access to synthetically

derived mannosides as synthetic tools has therefore become particularly important in

order to probe CVN-gp 120 binding.

The total synthesis of high-mannose type viral surface glycans, that are found

throughout nature as N-linked glycoconjugates, has been explored for the past two

decades.5 A synthesis of the high-mannose core structures of Man9 , isolated from calf

thyroglobulin, was reported by Ogawa in 1981, a decade before the role of such

structures in HIV pathogenesis was discovered.5 Two successful and highly convergent

syntheses of the HIV-1 nonamannoside structure by Fraser-Reid6 and Ley7 were recently

completed. However, the convergent nature of these solution-phase syntheses does not

allow for their application to automated solid-phase synthesis.

Herein we describe a linear synthesis of the pentyl nonamannoside 2-2 and the

related hexamannoside 2-3 and trimannoside 24 structures (Figure 2.1). The synthetic

strategy was planned and executed with automated solid-phase synthesis in mind. Using

three monomer building blocks, the nonamannoside was assembled in four glycosylation

events. Two sequential tri-mannosylation reactions, using a single mannosyl donor,

allowed for access to the completed structure in a minimal number of steps. The target

structures are being utilized in biophysical studies focusing on the elucidation of

cyanovirin-N and other natural product-binding to branched high-mannose structures

(Appendix A).
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2.3 Retrosynthesis
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Scheme 2.1 Retrosynthetic analysis of nonamannoside 2-5.

The retrosynthetic analysis of the n-pentyl Man9 analog 2-2 (Scheme 2.1) was

guided by our long-term goal of developing a synthetic strategy that could be applied to

the solid support and eventually automated. We planned to obtain the fully protected
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nonamannoside 2-5 via simultaneous tri-mannosylation of a hexasaccharide triol derived

from 2-6. This hexasaccharide would in turn be prepared by the tri-mannosylation of a

trisaccharide core triol ensuing from 2-7. The differentially protected trisaccharide 2-7

would be constructed from three protected monosaccharide building blocks 2-8, 2-9 and

2-10. The stepwise nature of this strategy would facilitate access to a triply branched

nonasaccharide using just four glycosylations. A solution-phase synthesis of the I-
pentenyl glycoside analog of the natural structure was selected for our studies, based on

our strategy for solid-phase oligosaccharide synthesis that furnishes the pentenyl

glycoside upon cleavage from the solid support.8 In addition to functioning as glycosyl

donors, n-pentenyl glycosides are versatile handles that can be converted into a range of

functional groups by transformation of the terminal olefin to a carboxylic acid, aldehyde,

ester, thioether, thioester, or hydroxyl group.9 In this fashion, the n-pentenyl moiety may

allow for attachment of the products of our synthetic studies to a linker, fluorescent tag,

or biomarker.

2.4 Synthesis of the n-Pentenyl P-mannoside

Initially, reliable synthetic access to the monosaccharide building blocks had to be

established. The core 3,6-differentially protected -mannoside 2-8 was the most

synthetically challenging building block to be procured. Glycals have demonstrated their

utility as intermediates in oligosaccharide assembly,' ° therefore we utilized them for the

preparation of ,-mannoside 2-8. The synthesis of 2-8 commenced with benzylation of

known glycal 2-11" to yield differentially protected glucal 2-12 in 93% (Scheme 2.2).

Stereospecific epoxidation of glycal 2-12 by treatment with dimethyldioxirane, followed

by opening of the 1,2-anhydrosugar with 4-penten-1-ol in the presence of zinc chloride

yielded -glucoside 2-13 containing an C2 hydroxyl group (87%, two steps). Inversion

of the C2 stereocenter was achieved via an oxidation-reduction sequence. Oxidation of

the C2 hydroxyl under Pfitzner-Moffatt conditions (Ac2O-DMSO) was followed by

stereoselective reduction with sodium borohydride (74%, two steps) and benzylation to

furnish the fully protected -mannoside 2-8 in 98% yield. Selective removal of the

halobenzyl ether at C3 was accomplished by palladium-catalyzed amination with N-
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methyl aniline (92% yield) followed by treatment with dichloroacetic acid to afford

monosaccharide acceptor 2-14 in 90% yield.1

TIPSO TIPSO

~HO ~BnBr NaH Bn LO . 1.DMDO, CH2C,2

DMF PBB04 .-- PBB DMF PBB 2. HO - '

2-41 93% 2-12 ZnCI2, CH2CI2, 87%

TIPSO O TIPSO Oen -
TIPSO 1. DMSO,Ac 20, RT, 2d TIPSO OBn

PBBO OK0 2. NaBH4, CH2CI2, MOOH, 74% PBBO~ U0

2-13 3. BnBr, NaH, DMF, 98% 2-8

1. Pd2 dba3 , (o-biphanyl)P(t-Bu) 2 , 

N-methyl aniline, NaOtBu, Tol., 92% TIPS OBn

BnO A
2. 1% C12HCCO2H, CH2CI2, 90% O

2-14

Scheme 2.2 Synthesis of core ,3-mannoside 2-14.

2.5 Nonamannoside Assembly

At this stage only two other mannosyl monosaccharide building blocks were

required for the completion of the nonamannoside; one with a temporary protecting group

on C2 (2-9), and the other incorporating temporary protecting groups on C3 and C6 (2-

10). The C3 hydroxyl of the reducing end ,3-mannoside is the point of attachment of a

linear strand of a-(1-2) linked mannoses (branch DI). The C6 hydroxyl of the core n-

pentenyl--mannoside is the origin of a 3,6-differentiated a-mannose that serves as the

core for two branches (D2 and D3) of the triantennary structure (Figure 2.1).

Differentially protected mannopyranosyl trichloroacetimidate 2-912 as well as mannosyl

donor 2-1013 were prepared using known procedures. Prepared on multi gram scale, 2-9

would serve as the source of seven of the nine mannoses in the final Man9 structure.

With the three monosaccharide building blocks 2-8, 2-9, and 2-10 in hand the

assembly of larger structures began. We first focused on the preparation of core

trimannoside 2-7. The a-selective mannosylation of the C3 hydroxyl of 2-14 with donor

2-9 afforded disaccharide 2-15 in 99% yield (Scheme 2.3). Removal of the C6 silyl ether
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was accomplished in 91% yield using aqueous trifluoroacetic acid in THF to furnish

disaccharide acceptor 2-16.

OBn OAc
2-9, TBSOTf,

2-14 4 BnO OR 08 O
Et2O, 99% BnO O 

2-15 R=TIPS . 1:3:3
TFA:THF:H20

2-16 R=H 91%

OR' OBn

OBn BnO
2-10, MBOWf, kOR 2 Rl~
2 B 0 OBn

.Et20, 93% i n

2-7 R= Bz, R2- Ac NaOMe MOHCH2CI 89%
2-17 R=R2= H
24 7~-J Pd/C, H., EtOH/EIOAc 79%

Scheme 2.3 Assembly of core trimannoside 2-7.

Installation of the second mannose building block on C6 will serve as the root for

branches D2 and D3. This required the use of a mannose donor that did not utilize a C2

participating ester group but rather a permanently blocked benzyl ether. Precedence for

a-selectivity (favored by the anomeric effect) has been established previously in the case

of similar mannosyl donors containing non-participating protecting groups on C2.14 To

aid the stereoselectivity of this glycosylation, diethyl ether was used as a solvent.15

Unlike dichloromethane, diethyl ether is thought to contribute to a-selectivity by forming

an exocyclic diethyl oxonium ion (Scheme 2.4). This species assumes an -orientation

due to the exoanomeric effect (a preference to place positively charge substituents of the

C1 carbon of a pyranose in the equatorial conformation).'6 Nucleophilic attack by a

glycosyl acceptor subsequently favors an axial approach (a-oriented).
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R o go RRot; °t

-approach HOR'

Scheme 2.4 Ethereal solvent participation favors a-selectivity.

Complete a-selectivity was achieved in the TBDMSOTf catalyzed glycosylation

of disaccharide 2-16 with mannosyl donor 2-10 to yield the fully-protected core

trisaccharide 2-7 in 93% (Scheme 2.3). Treatment of trisaccharide 2-7 with sodium

methoxide accomplished the simultaneous cleavage of the C2 acetate and both benzoates

to provide trisaccharide triol 2-17 in good yield (89%).

Simultaneous extension of the D, D2 and D3 branches from the core

trisaccharide was accomplished via two sequential tri-mannosylations with building

block 2-9 (Scheme 2-5). Mannosylation of 2-17 with 2-9 (4.5 equivalents) yielded

hexasaccharide 2-6 in a single step in 94% yield. Deprotection with sodium methoxide

produced hexasaccharide triol 2-18 in quantitative yield. Trimannosylation of 2-18 using

2-9 furnished the fully protected high-mannose nonasaccharide 2-5 in 80% yield. In just

three steps the initial trisaccharide 2-7 tripled in size to nonasaccharide 2-5 in 75%

overall yield. Liberation of 2-5 from all protecting groups was accomplished in two steps

by treatment with sodium methoxide to afford triol 2-19, followed by Pd-catalyzed

hydrogenation yielded the desired high-mannose pentyl glycoside 2-2 (Man)9 in 88%.

Fully deprotected hexasaccharide 2-3 (81%) and core trisaccharide 2-4 (79%) pentyl

glycosides were prepared in similar fashion from 2-17 and 2-18, respectively (Schemes

2.3 and 2.5).
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2-9,
2-17 -

Et20 .o0)
2-6 R=Ac I NaOMe, MeOH/CH2CI2 Quant.

2-18 R=H-
2-3 - - Pd/C, H2, EtOH/EtOAc, 81%

2-9, TMSO

Et2O, 80%

2-5 R=Ac . NaOMe, MeOH/CH2CI 2 90%

2-19 R=H -

2-2 o Pd/C, H2, EtOH/EtOAc, 88%

Scheme 2.5 Assembly of nonasaccharide 2-5.
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2.6 Constituent Linear Trisaccharide - D1 Arm

D3

2-1

OHOH

HO
H

O I

HO HO

2-20 2-21

Scheme 2.6 Origin and retrosynthesis of D1 linear trimannoside.

Motivated by the interest in establishing the structural requirements for the high-

mannose affinity of cyanovirin-N, attention was turned the linear trimannoside

corresponding to the D1 arm of Man9 (Scheme 2.6). n-Pentyl mannoside 2-20 was

prepared via the deprotection of n-Pentenyl mannoside 2-21. Utilizing both solution6a

and automated solid-phase synthesis,17 2-21 was made via a literature procedure. 2-21

was treated with sodium methoxide to remove the C2 acetate protecting group (92%

yield),6b and subsequently debenzylated via Pd-catalyzed hydrogenation yielding 2-20 in

96% yield.
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2.7 Applications to Biology

The four high-mannose oligosaccharides 2-2, 2-3, 2-4 and 2-20 were subsequently

used in biophysical studies to better understand the carbohydrate protein interactions

between cyanovirin-N and gpl20 (Appendix A)."s Results of these studies elucidate the

formation of very tight carbohydrate-protein interactions that form the basis for novel

HIV preventatives and continue the effort towards developing general principles for

protein-carbohydrate interactions.

2.8 Summary and Conclusions

The successful linear synthesis of high-mannose nonasaccharide pentyl glycoside

2-2, trimannosides 2-4 and 2-20, and hexamannoside 2-3 was accomplished using just

three monomeric glycosyl building blocks. Construction of triantennary nonasaccharide

2-2 was achieved in four high-yielding glycosidation events; construction of a

differentiated core trisaccharide was followed by two sequential trimannosylations.

Overall yield for the synthesis of the nonasaccharide was comparable to previous

convergent solution-phase syntheses.6' 7 Access to these synthetic structures has permitted

further study of the anti-HIV microbicide activity exhibited by cyanovirin-N among other

novel proteins isolated from natural sources. The linear strategy described herein for a

solution-phase assembly of high-mannose oligosaccharides constitutes the basis for the

automated synthesis of branched high-mannose motifs on the solid-support. In addition,

the strategy established by this method would eventually serve as the basis of a novel

scheme for the preparation of synthetic oligosaccharide microarrays and a host of

potential tools for study in glycobiology.
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Chapter 3

Solution-Phase and Automated Solid-Phase Synthesis of

The Core Pentasaccharide of N-Linked Glycoproteins

49



Portions of this chapter describe work done in collaboration with Ms. Erika R. Swanson.'
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Automated Oligosaccharide Synthesizer, and Ms. Swanson for her assistance preparing

the experimental section for publication. Elements of the automated synthesis detailed in
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Ratner, D. M.; Swanson, E. R.; Seeberger, P. H. Automated Synthesis of the N-linked

Core Pentasaccharide. Org. Lett. 2003, 5, 4717-4720.

3.1 Introduction

Co-translational modification of proteins by glycosylation of asparagine residues

includes three classes of N-linked oligosaccharides: high-mannose, hybrid and complex-

type mannans.2 In addition to the many functions of these branched glycans in

mammalian cells, they are found on the glycoproteins of a variety of pathogens, including

the viral envelope of HIV,3 Ebola,4 and some coronaviruses.5 Rapid and reliable access

to these branched glycans by automated synthesis would facilitate further investigation

into the biological role of these glycoconjugates and their potential application as

carbohydrate-based vaccines.6 Currently, synthetic N-glycans are used to study

carbohydrate/protein interactions using isothermal calorimetry,' carbohydrate arrays,8

and the structural analysis of such complexes (Chapter 4 and Appendices A & B).9

The three major classes of N-linked glycans contain a common core

pentasaccharide that has been a target of several recent syntheses in solution's and on

solid support.1 Figure 3.1 highlights this pentasaccharide for the complex and high-

mannose type N-linked glycans. This pentasaccharide contains a number of synthetic

challenges, including branching, 0-(1 --,.4) glucosamine linkages, and most notably, the

daunting P-mannoside.12
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Figure 3.1 Complex and High-mannose type N-linked oligosaccharides, highlighting the

core N-linked pentasaccharide (Man3)(GlcNAc) 2.

Described is the first automated solid-phase synthesis of the core pentasaccharide

of high-mannose N-linked glycoproteins via stepwise assembly from mono- and

disaccharide building blocks. In order to accomplish this task, an analogous route for the

solution-phase syntheses of the core pentasaccharide had to be established. The

challenging 3-mannosidic linkage was incorporated by the inclusion of a disaccharide

trichloroacetimidate. These solution and automated syntheses provide rapid access to an

oligosaccharide common to an entire class of glycoconjugates.

3.2 Retrosynthesis

Due to their unique branching motifs, synthetic access to high-mannose and

complex-type N-linked oligosaccharides depends on the differentiation of the terminal
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mannoses of the core pentasaccharide; a retrosynthetic analysis of the core

pentasaccharide requires separate routes to establish precursors suitable for bi- and

triantennary targets (Scheme 3.1). Differential protection of the core P-mannose on the

C3 and C6 hydroxyl groups with orthogonal protecting groups (the O-acetate ester and

O-triisopropylsilyl ether) result in 3-1 (a 3,6-di-0-acetyl core [3-mannose, precursor to

biantennary complex-type glycans) and 3-2 (3-O-acetyl-6-0-triisopropyl core -

mannose, for triantennary high-mannose type glycans). Careful examination of the two

core trisaccharides revealed that access to both structures is achieved by three common

building blocks: differentially protected reducing-end acceptor GlcNAc 3-3, and two

building blocks, 3-6 and 3-7, for preparation of the -mannoside-containing

ManA(1- .4)GlcNAc disaccharide. A notable feature of this approach is that a single

synthetic strategy may be applied for both classes of N-linked structures.

11 II
AcO Oden -~ o00n

NKTA NH=

31

TCAHN4 OYC

3.4 NH

3-2

3- NB, Ho

365 NH

: on t :

I NhTC A
I 3-3 i

j . .

i 3 S 'a 3
3 -1 a

~~~~~~~~~~~~~~OR aog OR R O

Complex-type '' Hlghmannose typeNM

I-------------- - .
: 0.oG

II 3-7_.................. j
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Scheme 3.1 Retrosynthesis of complex- and high-mannose type core pentasaccharides.

With automated solid-phase synthesis as our ultimate goal, the forward synthesis

was planned with the inherent requirements of solid-phase oligosaccharide chemistry in

mind. Namely, all reactions should be high-yielding, stereospecific, and compatible with

the linking chemistry to the solid support. Based on this synthetic strategy, 3-8 and 3-9

were established as the synthetic targets to demonstrate the utility of this approach

(Figure 3.2). Both pentasaccharides could be accessed using just five distinct building

blocks, monosaccharides 3-10, 3-11,13 and 3-12,13 and disaccharides 3-4 and 3-5 (Figure

3.3). In order to avoid anomeric mixtures on the solid support, the [5-mannosidic linkage

would be incorporated during the preparation of disaccharides 3-4 and 3-5. Selective bi-

and triantennary branching would be achieved via mannosylation of the differentiated

trisaccharide cores by addition of mannosyl trichloroacetimidates 3-11 or 3-12.

3-.

Figure 3-2 Targets for N-linked core pentasaccharides, complex-type 3-8, and high-

mannose type 3-9..
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TCAcN NH TCAHN ' NH
3.4~~~~~ cocobC

Figure 3-3 Building blocks required for the synthesis of 3-8 and 3-9.

3.2.1 Protecting Group Strategy

The benzyl ether was selected as a 'permanent' protecting group due to its

stability to a wide-range of reaction conditions. As in Chapter 2, the benzyl ether is

typically removed only during the final deprotection of the synthetic structure. Protection

of the C2-amine of the GlcNAc building blocks requires an additional set of protecting

group manipulations. For the purpose of this synthesis, the trichloroacetimido group was

selected for its stability and beneficial electronic effects. As a C2-participating group, the

C2-trichloroacetimido glycosyl donors lend superior -selectivity to glycosylation

reactions.

As temporary protecting groups, the decision to utilize the acetate ester and

triisopropylsilyl (TIPS) ether as orthogonal protected groups was based on a number of

factors. A careful examination of the levulinate ester and p-methoxybenzyl (PMB) ether

for both the C3 and C6 position of the t3-mannoside ultimately concluded that they were

not ideally suited for the synthetic route. Higher deprotection yields made the acetate

more attractive than levulinate, and incompatibility of the C6 PMB ether with certain

glycosylation conditions resulted in the unintentional deprotection of the PMB ether.

Both the acetate and TIPS protecting groups were ultimately selected as temporary

protecting groups in the building blocks (34 and 3-5 and 3-10) for their excellent

stability, orthogonality, and ease of removal.
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3.3 Monosaccharide Building Blocks

Upon identification of the necessary synthetic building blocks, glycosyl

trichloroacetimidate 3-10 was prepared from known differentially protected glucosamine

3-1314 (Scheme 3.2). The 4,6-O-benzylidene group of 3-13 was opened selectively by

treatment with TES/TFA/TFAA to afford 3-7 in 85% yield. Subsequent acetylation of

the C4 hydroxyl (99% yield), was followed by desilylation. Treatment with DBU and

trichloroacetonitrile furnished glycosyl trichloroacetimidate 3-10 in 76% yield.

OBn
P no Triethlstana. TFA

Bn OTBS TFAA (85%) BnO .c.....OTBS
TCAHN TCAHN

3-13 3-7

OBn

1. Ac2 . DMAP, CH2C12 (99) 

2.TBAF, AcOH, THF TCAHN N
3.CC13CN, DBU, CH2CI2

(76%. two steps) 340 CC

Scheme 3.2 Synthesis of glycosyl trichloroacetimidate 3-10.

For the model solution-phase synthesis of both 3-8 and 3-9, the n-pentenyl

glycoside was used for the reducing-end GlcNAc. Solid-phase synthesis based on the

octenediol linker,15 developed by the Seeberger laboratory, furnishes the n-pentenyl

glycoside following cleavage by Grubbs' olefin cross-metathesis in an atmosphere of

ethylene. 16 The terminal GlcNAc for both pentasaccharides, 3-3, was prepared by

glycosylation of pent-4-en-1-ol (n-pentenyl alcohol) with glycosyl donor 3-10. The crude

n-pentenyl glycoside was subsequently reacted with a solution of sodium methoxide to

furnish the differentiated GlcNAc C4 acceptor 3-3 in 94% over the two steps.

.OBn OBn
Ac OBn 0 1. PentWen-1-ol, CH2C3 OBn

ABO-X.,A TMSOTf BOO
fTCAHN NH 2. NaOMe, CH2012 MleOH, TCAHN

(94%, two steps)
3-10 CCb 3-3

Scheme 3.3 Synthesis of n-pentenyl glycoside 3-3.
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3.4 Disaccharide Building Blocks

The -mannoside-containing disaccharide 3-16, a precursor common to both

glycosyl trichloroacetimidates 3-4 and 3-5, was prepared via direct P3-mannosylation,

using the Crich method.17 Mannosylation of 3-7 by treatment of sulfoxide 3-6" with

triflic anhydride and di-tertbutyl pyridine furnished the -linked disaccharide 3-14 in

68% yield (Scheme 3.4). This procedure efficiently installed the P-mannosidic linkage

without the need for tedious chromatographic separation of an anomeric mixture. The C3

p-methoxy benzyl ether was replaced with the base-labile acetate ester to yield 3-15 in

79% over two steps. Selective opening of the 4,6-O-benzylidene to expose the primary

C6 hydroxyl was achieved by treatment with dichlorophenylborane and triethylsilane,19

generating 3-16 in 88% yield.

h",\0N n 1. Tt20, DTBP. CH2C12 OBa~~~~~~~p'""" n 08
PMBO- 2.3-7 (88%) PMBO nO-_-.OTBS

^SPh TCAHN
34 SPh 3-14

1. DDQ, CH2CI2/H20 PhO0n 

2. A20, DMAP, CH2Ci2 BO00OTBS
(79%, two step.) TCAHN

3-15

HO'"\OBn OBn
Trethylsilane, C12BPh, .O

anO--- 'o _L 
CH2 Cl2 (88%) O "'"TBSH

TCAHN
3-6

Scheme 3.4 Preparation of P-mannoside 3-16 by Crich method.

Disaccharide 3-16 was differentially protected on the C6 position with either an

acetate ester or triisopropylsilyl ether to furnish glycosyl donors 3-4 and 3-5 respectively

(Scheme 3.5). Acetylation of 3-16 yielded the 3,6-di-O-acetyl protected disaccharide 3-

17 in 92% yield. Access to the disaccharide glycosyl trichloroacetimidate 34 was

readily achieved by desilylation followed by treatment with trichloroacetonitrile and

DBU to give 3-4 in 89% yield. Preparation of orthogonally protected 3-5 for the
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preparation of N-linked high-mannose oligosaccharides was accomplished by silylation

of the C6 hydroxyl with triisopropylsilyl chloride, yielding 3-18 in 80%. The anomeric t-

butyldimethylsilyl ether (OTBS) was selectively deprotected by treatment with

tetrabutylammonium fluoride. Following recovery of unreacted material, the anomeric

lactol (95% isolated yield) was reacted with trichloroacetonitrile and DBU to produce

trichloroacetimidate 3-5 in 90% yield.

1. ACgO, DMAP, OAC OBn. OBn1.AAc20, DMAP, 0_ _TB3-16 n"~'~'~, ,-
CH2Cl2 (92%) BnO

TCAHN
3-17

,OA OB n
t. TBAF, AcOH, THF ~ Bno&J O,

2. CCI3CN, DBU, CH2CI2
(89%, two steps) TCAHN ONH

* ~~~~~~~~~~~~~~~~~~~CCI3

1. TIPSCI, Imid. TIPSO OBn OBn
3-16 D B--r0~

CH2CI2 (80%) AcO BnO..~OTBS
3-18 TCAHN

1. TBAF, AcOH, THF TIPSO OBn . OBn
(95%, Isolated) ABn-O

2. CCbCN, DBU, CH2ci2 no
(90%)3 TCAHN -O.NH

ccb3

Scheme 3.5 -Mannoside disaccharide trichloroacetimidates 3-4 and 3-5.

3.5 Solution-Phase Synthesis

A solution-phase synthesis serves the useful purpose of establishing optimal

conditions for glycosylation and provides reference material to determine the future

success or failure of an automated synthesis. As such, the solution phase synthesis of 3-8

and 3-9 was used to confirm the two synthetic routes.
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3.5.1 Solution-Phase Synthesis of Complex-Type Core Pentasaceharide

Having prepared the necessary building blocks 3-3, 34, and 3-11, the proposed

chemistry was tested with the solution-phase synthesis of the complex-type core

pentasaccharide 3-8 (Scheme 3.6). n-Pentenyl glycoside acceptor 3-3 was glycosylated

in 65% yield with disaccharide glycosyl donor 3-4 to give trisaccharide 3-1. This single

glycosylation step established the N-linked core chitobiose (GlcNAc)2, and incorporated

the P-mannoside. Utilization of the participating trichloroacetimido functionality in the

C2 position of the glycosyl donor resulted in stereochemical control of the glycosylation

reaction, yielding only the P-anomer. Deprotection of the C3 and C6 acetate protecting

groups by treatment with methanolic sodium methoxide gave trisaccharide acceptor 3-19

in high yield (98%). Finally, using the simultaneous mannosylation method established

in Chapter 2, 3-19 was dimannosylated with mannosyl trichloroacetimidate 3-11 to give

the fully protected core pentasaccharide 3-8 in 98% yield.

3.4, TMSOTf OAc OB n OB n OBn

CH2CI2, .40°C (85%)
NHTCA NHTCA

3-1

OH
NaOMe O OBn OBn OBn

CH2CI2/MeOH (98%) Ong On o ,

NHTCA NHTCA

3-19

341, TMSOTf
39

CH2CI -20°C (98%) 

Scheme 3.6 Construction of complex-type core pentasaccharide 3-8.

The high yields for both glycosylation and deprotection steps in this synthesis

made the construction of 3-8 an ideal candidate for the initial attempt at an automated

synthesis of the core pentasaccharide. It should also be noted that glycosylation with

disaccharide 3-4 was performed as it would be during solid-phase synthesis -without the

use of molecular sieves (useful as a drying agent, to reduce decomposition of
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glycosylating agent to lactol). The use of powdered molecular sieves would not be

possible during solid-phase syntheses, therefore it is useful to model reactions in their

absence.

3.5.2 Solution-Phase Synthesis of High-Mannose Type Core Pentasaccharide

Unlike the construction of 3-8, the solution-phase synthesis of the high-mannose

type core pentasaccharide 3-9 required an additional 3,6-differentiated mannosyl donor to

serve as a second branching point for the triantennary structure. Therefore, a total of four

building blocks were involved: 3-3, the reducing-end n-pentenyl GlcNAc; 3-5, the 3,6-

differentiated disaccharide trichloroacetimidate; 3-11, the C2-O-acetyl mannosyl donor,

and 3-12, a 3,6-di-O-benzoyl mannosyl trichloroacetimidate (Scheme 3.6).

Glycosylation of n-pentenyl glycoside 3-3 using disaccharide trichloroacetimidate 3-5

furnished trisaccharide 3-2 in 73% yield (note use of 4A molecular sieves). Treatment of

3-2 with sodium methoxide provided access to the C3 hydroxyl trisaccharide acceptor 3-

20, with an isolated yield of 84%. Mannosylation of the C3 position with donor 3-11

yielded tetrasaccharide 3-21 in 77% yield. Due to the lability of the TIPS ether, TBSOTf

was employed as an activator over traditional TMSOTf. Acidic deprotection of the TIPS

ether with trifluoroacetic acid gave the C6 hydroxyl tetrasaccharide acceptor 3-22 in 82%

yield. Finally, 3-22 was mannosylated with mannosyl donor 3-12 to complete the fully

protected high-mannose core pentasaccharide 3-9 (87%).

/-

59



3-4, TMSOTf. 4A ms OBn OBn OBn3.3 --OI O \O<
CH2Cl2,-40"C (73%) O N

NHTCA NHTCA
3-2

TIPS OBn OBn OBnNoOMe9 - 3-11, TBSOTf

CH2CI1 I MeOH H CH2CI12, (77%)
(84% Isolate Ad)NHC

3-20

TFA: THF: H20

1: 3:3(82%)

3-21

3-12, TMSOTF
- 39

EtO, (87%)

3-22

Scheme 3.7 Construction of high-mannose-type core pentasaccharide 3-9.

3.6 Automated Solid-Phase Synthesis of Core Pentasaccharide

Following the successful solution-phase synthesis of both 3-8 and 3-9, the

automated solid-phase synthesis of N-linked core pentasaccharide 3-8 was attempted.

With building blocks 3-10, 34, and 3-11 in hand, we used octenediol functionalized

Merrifield resin 3-23 and an automated oligosaccharide synthesizer to construct 3-8

(Scheme 3.8).2° The automated assembly made use of five programmed modules (Table

1): A) glycosylation, consisting of the addition of 3.5 equiv. of glycosylating agent and

catalytic amounts of TMSOTf; B) methylene chloride wash; C) THF wash; D) acetate

deprotection by the addition of 10 equivalents sodium methoxide in methanol twice; and

E) pH neutralization with 0.2 M acetic acid in THF.
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Module Function Reagent Time (min)

A Glycosylation 3.5 equiv donor and TMSOTf 21

B Wash CH2C 2 9

C Wash THF 9.5

D Deprotection 2 x 10 equiv. NaOMe 33

E Wash 0.2 M AcOH / THF 12

Table 1. Conditions and reagents used in the automated synthesis of 3-8.

Glycosylation of the linker with 3-10 (repeated once) utilized C2-

trichloroacetamide participation to ensure anomeric selectivity at the reducing end.

Glycosylation with disaccharide donor 3-4, determined by solution-phase model studies

to be the most challenging step, was repeated three times to ensure complete addition to

the support-bound nucleophile. Finally, branching was introduced by glycosylation with

mannosyl trichloroacetimidate 3-11 via a simultaneous dimannosylation of the C3 and C6

hydroxyl groups.

Following the final glycosylation, the resin was thoroughly washed and dried.

Cleavage of the octenediol linker by olefin cross-metathesis was performed using Grubbs

catalyst in an atmosphere of ethylene to furnish the n-pentenyl glycoside.16 The resulting

crude product, core pentasaccharide 3-8, was purified by semi-preparative HPLC.

Relative peak area analysis by HPLC showed 27% desired product 3-8, with the

remainder of isolated side-products consisting of (n-1) and (n-3) deletion sequences and

decomposed Grubbs catalyst (HPLC traces in Experimental, Chapter 6, Section 6.3).

Total synthesis time for the automated construction of pentasaccharide 3-8 was

less than six and a half hours. Starting from the monosaccharide and disaccharide

building blocks, the desired pentasaccharide target was assembled and purified in less

than three days, requiring only a single step for purification.
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Scheme 3.8. Automated synthesis of pentasaccharide 1.

3.7 Summary and Conclusions

The successful solution-phase syntheses of core pentasaccharides 3-8 and 3-9,

followed by the automated solid-phase synthesis of 3-8, clearly demonstrated the utility

of this synthetic approach for application to the solid-phase paradigm. Stereochemical

control for all (1--,4) GlcNAc linkages was achieved by developing a method that

included a C2 participating trichloroacetimide and a -mannoside-containing

disaccharide building block. In concert with the linear synthesis developed in Chapter 2,
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these methods allowed for significant progress towards rapid synthetic access to complete

N-linked oligosaccharides.

This work and other solid-phase oligosaccharide synthesis studies show that

synthetically challenging and structurally diverse oligosaccharides can be rapidly

prepared.2 While existing methods for the construction of large oligosaccharides have

been immensely successful, access to the mono- and disaccharide glycosyl donors

remains one of the most challenging aspects of synthetic carbohydrate chemistry -

leaving room for further advancement in the field. Currently, only a portion of the total

time required for a synthesis similar to these is spent assembling the large structures.

Significant time and effort is required to prepare the differentially protected building

blocks. As the assembly of the two core pentasaccharides demonstrates, individual

building blocks often find application in multiple syntheses, and are readily prepared in

large scale. In addition, the opportunity for commercial expansion into the realm of

synthetic carbohydrate chemistry makes the likelihood of purchasing fully protected

glycosyl donors a real possibility in the near future.
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Chapter 4

Synthetic Tools for Glycobiology:

Carbohydrate Microarrays
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This chapter describes work completed in close collaboration with Mr. Eddie W. Adams.
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Oligosaccharides. ChemBioChem. 2004, 5, 379-383.
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Encoded Fiber-Optic Microsphere Arrays for Probing Protein-Carbohydrate

Interactions. Angew. Chem. Int. Ed 2003, 42, 5317-5320.

4.1 Introduction

There is growing interest in microarray-based methods to study the roles of

nucleic acids, proteins, and carbohydrates in biology. In particular, efforts in the

emerging field of glycomics stand to benefit significantly from assay miniaturization

through the construction of high-density oligosaccharide and glycoprotein microarrays.

Research with carbohydrates is stymied by the fact that no 'biological amplification'

strategy comparable to the polymerase chain reaction or cloning exists for the

procurement of usable quantities of complex oligosaccharides. Investigators must rely
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upon arduous isolation techniques to derive oligosaccharides from natural sources or

prepare these complex structures via chemical synthesis. While the chip-based format

does not circumvent these challenges, it does offer significant advantages over

conventional methods. Most notably, microarrays are able to screen several thousand

binding events in parallel while requiring a minimal amount of analyte and ligand for

study. Making the most of precious synthetic or naturally procured materials, these

miniaturized assays frequently require only picomoles of material per array, while

enabling several experiments to be carried out on a single glass slide.

The motivation behind developing a system for arraying carbohydrates is based

on the desire to have microarrays that are fully compatible with existing high-throughput

screening technologies and will enable efficient covalent immobilization of

oligosaccharides drawn from solution phase synthesis, automated solid-phase synthesis'

and natural sources. Such carbohydrate arrays will be useful tools in the identification of

carbohydrate-protein interactions and will help define the exact oligosaccharide

structures involved in binding events. In addition, carbohydrate arrays could be used to

rapidly screen for compounds that selectively inhibit protein-oligosaccharide interactions.

Here we describe an approach that begins with a high-density microarray system

to study carbohydrate-protein interactions using synthetic oligosaccharide structures

covalently immobilized to chemically modified glass slides. Using technologies available

to many researchers, these carbohydrate arrays are printed at high-density using DNA

microarray printing robotics and analyzed with conventional DNA array scanners.

4.1.1 Other Linking Schemes for Carbohydrate Microarrays

Many methods for preparing carbohydrate microarrays have been described to

date: nitrocellulose coated slides for non-covalent immobilization of microbial

polysaccharides and neoglycolipid modified oligosaccharides;2 polystyrene microtiter

plates for presenting lipid-bearing carbohydrates;3 self-assembled monolayers modified

by Diels-Alder mediated coupling of cyclopentadiene-derivatized saccharides;4 thiol-

derivatized glass slides modified with maleimide functionalized oligosaccharides;5 and,

thiol functionalized carbohydrates immobilized on maleimide-derived gold slides.6
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While each of these approaches offer advantages in their own right, they do not meet the

criteria we have set out to achieve. Specifically, we propose a microarray that

encompasses covalent immobilization of oligosaccharide, resists non-specific binding by

proteins and other biopolymers, and uses common high-throughput screening (HTS)

technology.

4.2 New Linker Chemistry

Our laboratory developed a single linking chemistry for the purposes of

streamlining the development process of new tools for glycobiology. With the input of

Mr. Eddie W. Adams, the 2-(2-(2-mercaptoethoxy)ethoxy)ethyl linker was selected for

the preparation of neoglycoconjugates.7 This linker chemistry was selected based on its

compatibility with existing synthetic methods, the ease of temporarily masking the thiol

functionality with a protecting group, and the reliability of thiol-based conjugation

chemistries - in particular, thiol-maleimide and thiol-iodoacetyl couplings. The

orthogonal reactivity of a terminal thiol to the functional groups presented by

carbohydrates allows for defined covalent immobilization of oligosaccharides to a

functionalized surface, creating a cell surface-like environment on the chip.8 In addition,

the hydrophilic nature of the tri(ethylene oxide) linker increases the solubility of the

immobilized structures on the surface, bringing them off the surface and into solution.

The linker also resists non-specific binding by proteins.

The proposed chemistry consists of incorporating 2-[2-(2-benzylsulfanyl-ethoxy)-

ethoxy]-ethanol9 at the reducing end of the synthetic glycoside (Scheme 4.1). Following

synthesis of the complete structure, all temporary protecting groups are removed,

including the thiobenzyl ether masking the thiol functionality of the linker. The newly

deprotected thiol-functionalized saccharide can subsequently be reacted with surfaces or

structures modified with thiol-reactive moieties, such as maleimide or iodoacetyl groups.
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Scheme 4.1 2-(2-(2-mercaptoethoxy)ethoxy)ethanol as a linker for preparing

neoglycoconjugates. a) Linker synthetically incorporated into the reducing-end of mono

or oligosaccharide. b) 'Global' deprotection of all protecting groups from carbohydrate

and thiol. c) Reduced thiol coupled to maleimide or iodoacetyl functionalized structure.

We adopted two surface chemistries for the preparation of our carbohydrate

microarrays. Both strategies involve maleimide functionalization of glass slides,

presenting a chemical handle to form stable bonds between the slide and thiol-containing

synthetic oligosaccharides. In one case, bovine serum albumin (BSA) derivatized

aldehyde glass slides were functionalized with succinimidyl 4-(N-maleimidomethyl)-

71

Jo1



cyclohexane-1-carboxylate (SMCC) to present a maleimide reactive surface.7

Alternatively, amine-derivatized Corning GAPS II slides were directly modified with

SMCC prior to incubation with thiol-presenting saccharides.'0

4.3 Synthesis of Oligosaccharides for Carbohydrate Microarrays

For this initial study, the structures required for microarray fabrication were

prepared synthetically. The precision afforded by organic synthesis permitted the

construction of a panel of oligosaccharides that would be immensely difficult to prepare

by enzymatic methods.

4.3.1 Oligosaccharide Targets

A panel composed of 8 carbohydrates was selected for this high-mannose

carbohydrate microarray study (Figure 4.1). The 2-[2-(2-mercapto-ethoxy)-ethoxy]-ethyl

glycosides were synthesized in a manner analogous to the n-pentyl high-mannose

oligosaccharides prepared for Chapter 2. Targets 4-1 through 4-7 were selected to

represent the major structural determinants of the N-linked high-mannose nonasaccharide

Mang. Galactose 4-8 was included as a representative non-mannosyl pyranoside.
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Figure 4.1 Oligosaccharides containing the 2-[2-(2-mercapto-ethoxy)-ethoxy]-ethyl-

linker necessary for immobilization to thiol-reactive partners. Correct reducing-end

stereochemistry indicated by "-R".

4.3.2 Retrosynthesis of Branched Mannans

Adopting methods developed during the solution-phase studies of high-mannose

oligosaccharides in Chapter 2, the branched mannans required for this study were

analyzed with the same retrosynthetic approach (Scheme 4.2). Given the success of the

linear strategy for the construction of the branched structures, nonasaccharide 4-9 would

be derived from the simultaneous trimannosylation of hexasaccharide 4-10, which in turn
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would arise from differentiated core trisaccharide 4-11. Finally, three monosaccharide

building blocks (4-12, 4-13, and 4-14) would be required for construction of the branched

structures. A notable difference from the synthesis of Chapter 2 is the introduction of the

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl moiety in place of the n-pentenyl handle.

4l0

SBn

0

DOBn 
>1°\ o 

L

4-10

SBn
I

411
SBn

TIPSO 0 n O 0

BnOJ BnO L BnO 
PMBO BnO zO

412 4-13 OYNH 44 O>YNH

CC13 CC3

Scheme 4.2 Retrosynthetic analysis of nonamannoside 4-9.

74

---- : vWIMA' -.
v



4.3.3 The 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxyl-ethanol Linker

Prior to proceeding with the proposed synthesis, it was necessary to test the utility

of the 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl linker in place of the well-established

n-pentenyl moiety. To accomplish this, 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethanol

was glycosylated with mannosyl donor 4-13, with an encouraging yield of 99% (Scheme

4.3). 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl mannoside 4-15 was subjected to a

dissolving metal reduction with sodium metal in liquid ammonia to furnish deprotected

monosaccharide 4-6 in 76% yield. This simple procedure demonstrated the ability of the

new linker to be glycosylated cleanly and stereoselectively. In addition, the thiobenzyl

ether was established as a suitable protecting group to mask the thiol until the final

deprotection.

SBn SH

4-13, TMSOf, Oft~ 0 Na/NH 3, 76% OH 0

HOO ^OJSBn '- Bn1, * H 
CH2CI2, 99% Bn HO 

4-1860 46 

Scheme 4.3 Glycosylation of 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethanol with 4-13.

4.3.4 Synthesis of P-Mannoside

Synthesis of core -mannoside 4-19 proceeded via the same glycal-based

approache detailed in Chapter 2, section 2.4. Glycal 4-16 was stereospecifically

epoxidized by treatment with dimethyldioxirane, followed by opening of the 1,2-

anhydrosugar with 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethanol in the presence of

zinc chloride (Scheme 4.4). This yielded P3-glucoside 4-17 with a C2 hydroxyl group

(53%, two steps). Oxidation of the C2 hydroxyl under Pfitzner-Moffatt conditions

(Ac20-DMSO) was followed by stereoselective reduction with sodium borohydride

(36%, two steps) to furnish -mannoside 4-18. Benzylation of the C2 hydroxyl (90%

yield) was followed by treatment of the C3 p-methoxybenzyl ether with 2,3-dichloro-5,6-
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dicyano-1,4-benzoquinone (DDQ) to yield the C3 hydroxyl-containing mannoside 4-19

in 93%.

SBn

0

TIPSO TIPSO 

BnO- 0 1.DMDO, CH2CI2 BlO-$K l1. DM 0 AcO, RT, B2 da
PMB04,,,.~2 Ho~O,,-o,-, SBn PMB

PO HOOH 2. NaBH, CH2CI6, 36%
4-16 ZnCI2, CH2C2, 53% 4-17

SBn SBn

S K

TIPSO O N0 1. BnBr, NaH, DMF, 90% ISBn0 " L, 0 BnO~OO
PMBO) °JO' 2. DDQ, 93X HO

4-18 4-19

Scheme 4.4 Assembly of core P-mannoside.

4.3.5 Synthesis of Branched Oligosaccharides

With the differentiated core -mannoside containing the new linker, it was

possible to assemble the series of branched high-mannose oligosaccharides.

Glycosylation of acceptor 4-19 with 4-13, activated by addition of TBSOTf, yielded a 1:1

mix of desired product disaccharide 4-20 and the corresponding orthoester 4-21 (Scheme

4.5). Orthoester formation was not observed by TLC, and was unexpected following the

results of similar chemistry developed in Chapter 2. However, the presence of orthoester

4-21 was firmly established by H and 13C NMR (Chapter 6, Appendix C). Unlike the n-

pentenyl mannoside acceptor of Chapter 2, the flexible thiobenzyl ether-containing linker

appears to affect the outcome of this glycosylation to favor formation of the orthoester

(for discussion of orthoester formation, see Chapter 5, section 5.5.2).
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Scheme 4.5 Unexpected formation of orthoester 4-21 upon glycosylation of 4-19 with

mannosyl donor 4-13.

Orthoester 4-21 and disaccharide 4-20 were found to co-elute by silica gel

chromatography, necessitating another means of isolating desired disaccharide 4-20. An

answer was found in the relative reactivity to acid of the orthoester vs. the glycoside.

Proper glycosidic linkages are stable to weak acid, while the orthoester is readily

hydrolyzed. Subjecting the 1:1 mix of 4-20 and 4-21 to 80% acetic acid resulted in the

recovery of monosaccharide 4-19 and disaccharide 4-20 in 61% isolated mass recovery

(Scheme 4.6). Disaccharide 4-20 was subsequently treated with TFA to remove the C6

TIPS ether to furnish disaccharide acceptor 4-22. Mannosylation of 4-22 with 4-14

yielded core trisaccharide 4-11 in 81% yield. Prior to further elongation, trisaccharide 4-

11 was subjected to treatment with sodium methoxide to remove the C2, C3 and C6

esters, yielding triol 4-23 in 85% yield.
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4-23 RR 2= H

4-26 R, R2= Ac

Scheme 4.6 Construction of trisaccharides 4-23 and 4-25.

Recovered 4-19, isolated from hydrolyzed orthoester 4-21, was treated with TFA

to furnish the C3,C6 diol 4-24 in 86% yield. Dimannosylation, by treatment of 4-24 with

4-13, gave symmetrical trisaccharide 4-25. While unsuitable for further differentiation or

elongation, 4-25 was an ideal candidate for deprotection to generate branched

trisaccharide 4-3. By using reclaimed 4-19 to construct the non-differentiated core

trisaccharide 4-25, it was possible to commit the entirety of differentiated core

trisaccharide 4-23 towards the construction of larger structures. This strategy made the

best use of material on-hand, by avoiding a repeat of the difficult glycosylation of 4-19

with glycosyl donor 4-13.
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Completion of the hexa- and nonasaccharide proceeded by the trimannosylation

of triol-acceptor 4-23 with donor 4-13 (Scheme 4.7). Hexasaccharide 4-10, isolated in

84% yield, was subjected to methanolic sodium methoxide to furnish triol 4-26 (91%).

Finally, nonasaccharide 4-9 was secured in 71% yield following the trimannosylation of

4-28 in diethyl ether.

4-13, TMSOTf,

CHC,84%
CH.C~, 84%

~~~~~~~4-23 ~4-10 R-I--Ac MOIC- 91%

4-26 R=H ]NaOMe, MOHCI

4-13, TMSOTf,

EtO, 71%

49

Scheme 4.7 Assembly of hexasaccharide 4-10 and nonasaccharide 4-9.

The syntheses of fully protected tri-, hexa- and nonasaccharide 4-25, 4-10 and 4-9

containing the tri(ethylene glycol) linker were successfully completed. Assembly of the

high-mannose structures was accomplished with similar success to the initial completion

of the n-pentenyl glycosides described in Chapter 2. While the thiobenzyl ether-

containing linker reduced the yields of some key steps in the assembly, the impact was

minor and did not affect the overall ability to prepare the complete structures.
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4.3.6 Synthesis of Linear D1 Trisaccharide

A major structural constituent of the high-mannose nonasaccharide, the linear

a(1--+2) trimannoside was assembled by three sequential mannosylations of 2-[2-(2-

benzylsulfanyl-ethoxy)-ethoxy]-ethanol with mannose donor 4-13 (Scheme 4.8). Unlike

the D1 trisaccharide prepared by automated solid-phase synthesis for use in Chapter 2,

inclusion of the new linker required a return to solution-phase synthesis for its creation.

Beginning with 4-15 (Scheme 4.2), the C2 acetate was removed with sodium methoxide,

quenched with acidic Amberlite-IR120 resin, and glycosylated with 4-13 in 70% yield (3

steps). Disaccharide 4-27 was similarly treated to furnish the C2 hydroxyl in 93% yield

and glycosylated with 4-13 to give fully protected D1 trisaccharide 4-28 (91% yield).

SBn

1. NaOMe,
~OBn ~ 2. Amberlifte-IR120

BO-n OAc 3. 4413, TMSOTf,

BIno n CH2CI2 , 70% (3 steps)

4-15 OO

OBn OAc

~~~~~~~~~~~~~~OBn Oft BnOo\
OBnOA S~n BO nO

OAc SBn 1. NaOMe n' SBn
BnO b \ 9 2. Amblite-IR120,92% BnO812 O

n orfl O~ 3. 413, TMSOTf, BnO

CH2CI2, 91% B O 
BnO BnO.~~~~ui"~~~jBn

427 0 0

Scheme 4.8 Rapid solution-phase synthesis of linear D1 trimannoside 4-28.

4.3.7 Retrosynthesis of Linear D3 Arm

As detailed in Figure 4.1, among the structures desired for study was the D3 arm

tetrasaccharide 4-5, and the truncated structure 4-7. By including both structures on a

microarray, in addition to the D1 trisaccharide, it would be possible to simultaneously

establish whether D1, D3 or both arms are required for protein-binding of high-mannose

oligosaccharides. The truncated D3 arm trisaccharide 4-7, which is missing the terminal

80

---



ca(1--2) mannose, contains only a(1--6) mannoses. Including this compound in the

array adds an element of structural specificity, necessary for identifying the specific type

of linkage required for protein-binding.

Retrosynthesis of the D3 arm trisaccharide was based on a linear assembly

method, similar to the preparation of DI trisaccharide 4-28 (Scheme 4.9). Fully protected

D3 tetrasaccharide 4-29 could be truncated to trisaccharide 4-30 by the removal of a

single a(1-2) mannoside. Cleavage of the a(1-6) mannose of 4-30 revealed the

differentiated core disaccharide 4-31. The complete assembly was based on three

monosaccharide mannosyl donors 4-13, 4-32 and 4-33. Building blocks 4-32 and 4-33

differentiate the C2 and C6 positions with temporary protecting groups, permitting

chemistries to be selectively accomplished at each position. Inclusion of either the C2

acetate or benzoate esters ensures stereospecific mannosylations to yield a-selective

glycosylations. Mannosyl donor 3-33 was envisioned due to the relative stability of the

benzoate ester. With magnesium methoxide, it is possible to selectively remove a C2 O-

acetate in the presence of benzoyl protecting groups." This chemistry permits

differential elongation of 4-30, by mannosylating on the C2 position of the non-reducing

end mannose.
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Scheme 4.9 Retrosynthesis of linear D3 tetrasaccharide 4-29.
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4.3.8 Synthesis of D3 Tetrasaccharide and Truncated Trisaccharide

Access to mannose donor 4-33 was accomplished in 5 steps, starting with

mannose donor 4-3212 (Scheme 4.10). Allyl alcohol was glycosylated with 4-32 in 66%

yield and subsequently reacted with sodium methoxide to yield allyl mannoside 4-34 in

82%. The C2 hydroxyl was reacted with benzoyl chloride in 92% yield, and fully

protected allyl glycoside converted to the lactol by reaction with palladium chloride.

Reacting the lactol with trichloroacetonitrile in the presence of DBU yielded mannosyl

trichloroacetimidate 4-33 in 80% (2 steps).

TIPSO TIPSO

B n 9gAQ 1. AJyOH, TMSOTf, OH

~~BnO -~~'"~CH 2C12, 66% BnO
4-32 yNH 2. NaOMe, 82% 4-34 0

CC6

TIPSO
1. BzCI, Pyr, 94% 1 OBz
2. PdCl2, AcONa BnO 0BnO'(
3. CClCN, DBU, nO
80% (two steps) 4- ONH

cc'sCCI,

Scheme 4.10 Retrosynthesis of linear D3 arm tetrasaccharide 4-29.

With the three donors necessary for completing the D3 tetrasaccharide available,

assembly commenced with the mannosylation of 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-

ethanol by mannosyl donor 4-32 to yield 4-35 in 99% (Scheme 4.11). Conversion of the

C2 acetate to a more stable benzyl ether was achieved via acetate removal with sodium

methoxide (98%) followed by benzylation with benzyl bromide in DMF (88%).

Mannoside 4-36 was subjected to TBAF in refluxing Et20 to furnish the C6 hydroxyl in

44% yield. Glycosylation with 4-33 gave disaccharide 4-31 in 98% yield. Avoiding the

low yielding TBAF deprotection, disaccharide 4-31 was treated with TFA to remove the

C6 silyl ether in 78% yield. The disaccharide acceptor was subsequently mannosylated

in 77% yield with mannosyl building block 4-13 to give trisaccharide 4-30.

Trisaccharide 4-30 would serve dual purposes, as the fully protected version of the

truncated D3 arm 4-7 and the precursor for preparing tetrasaccharide 4-29. A portion of
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4-30 was treated with magnesium methoxide to selectively remove the C2 acetate in the

presence of the C2 benzoate. Selective deprotection was achieved in 71% yield to give

the trisaccharide acceptor which was mannosylated with 4-13 to furnish fully protected

D3 tetrasaccharide 4-29 in 95% yield.

Bn

0
4-32, TMSOTf

E20, 99%
HO Li

SBn

TIPSO OBn
1. NaOMe, 98% B 0

-BnO
2. BnBr, NaH, 88% BnO

n4o~ 0

1. TBAF, Et20, A, 44 %

2. 4-33, TMSOTf, Et20, 98%

TIPSO SBn
Bz SBn

BnO
OBn

BnO43 O
0 0

4-31

1. TFA: THF: H20 ,78 %

2.4-13, TMSOTf, EtO, 77%

OBn OAc

BnOn

OBn O OBn

BnO Bn
hn+O61 z iBnO~

I OBz SBn 1. Mg(OMe)2, 71% , OBz SBn

B~BnO~o tj 2.4-13, TMSOTf, Et20, 95% BO 
B~~~~~~~nO.~m., ~~0-O0 OBn 0 0 OBn 0

BnO BBnO
440 6nQ ° 44 2 0

Scheme 4.11 Construction of linear D3 arm tetrasaccharide 4-29.

4.3.9 Monosaccharide Galactose Control

As a non-mannose control for non-specific carbohydrate-binding on the

microarray, galactose was selected as an ideal monosaccharide candidate. Cross

reactivity between galactose- and mannose-binding proteins is minimal, and preparation

of the required structure was easily achieved using a simple galactosyl phosphate
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(Scheme 4.12). Galactosyl donor 4-37 was reacted with of 2-[2-(2-benzylsulfanyl-

ethoxy)-ethoxy]-ethanol and stoichiometric TMSOTf, furnishing 4-38 in 73% yield.

S8n
S

BnOOBn BnOOBn o

HOO*O~~~S~b~ + OBU TMSOTf, 0 ~ 88% 
HO" ~/~''_O'_ S Bn + n~-~_ O BnC~ 0 5 HO~O~O BnO O \OBu CH2CI, 73% BnO % 15% a

BzO I/Bzo
0

437 448

Scheme 4.12 Preparation of galactoside 4-38.

4.3.10 Preparation of Fully Deprotected Oligosaccharides

Preparation of large quantities of oligosaccharide for study remains a strong

advantage of synthetic carbohydrate chemistry. However, to make this possible, it is

necessary to remove all protecting groups to furnish biologically useful material. With

the benzyl ether as the most common 'permanent' protecting group, deprotection is

typically achieved by hydrogenation with H2 and a palladium catalyst. This process also

necessitates that protecting groups not labile to hydrogenation, such as esters, be removed

with an additional step. In the case of the structures prepared for this study, inclusion of

a masked thiol requires that another deprotection chemistry be used, as a thiol would

poison the palladium catalyst.

For the purpose of global deprotection, a sodium-based dissolving metal reduction

was chosen for its versatility and simplicity.13 By adding protected saccharides to a

solution of sodium metal dissolved in liquid ammonia, the stringent conditions of the

dissolving metal reduction simultaneously cleave esters, many amides, and benzyl ethers.

Table 4.1 illustrates the isolated yields for the deprotection of the linker-containing

oligosaccharides prepared for this study (Figure 4.1, see Chapter 6, section 6.4 for

experimental detail).
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Table 4.1 Yields for dissolving sodium-metal reductions of protected oligosaccharides.

General procedure and characterization detailed in Chapter 6, section 6.4._~~~~~
4-9 4-1 60%

4-10 4-2 71%

4-11 4-3 82%

4-28 4-4 53%

4-29 4-5 91%

4-15 4-6 76%

4-30 4-7 71%

4-38 4-8 43%

4.3.11 Oxidation of Thiol-Modified Carbohydrates

Following deprotection, 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl glycosides

become 2-[2-(2-mercapto-ethoxy)-ethoxy]-ethyl glycosides, thereby presenting a primary

thiol at the end of a flexible tri(ethylene glycol) handle. Upon exposure to the

atmosphere, solutions of these thiol-modified glycosides readily oxidize to the

symmetrical disulfide (Scheme 4.13). Normal handling results in solutions that contain a

mixture of both reduced and oxidized material, which is readily observed by TLC and

mass spectrometry.

SH

OH O 
OH 0 02, Atmosphenc

H 4 ~,
TCEPoHCI

4-60 0

Scheme 4.13 Oxidation of thiol-modified glycoside to form dimeric disulfide.
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Solutions of thiol-containing oligosaccharide must be reduced prior to coupling

because the disulfide is not useful as a coupling partner to thiol-reactive species, such as

the maleimide or iodoacetyl functionalities. To achieve this, tris(2-carboxyethyl)

phosphine hydrochloride (TCEP-HCI) was used as a water-soluble phosphine for

reduction. Solutions of dimerized glycoside were reduced by incubation at room

temperature for 1 hour with 1 equivalent TCEP-HCI. TCEP has been shown to be

reactive towards the maleimide group, 14 therefore a minimal quantity of TCEP was used

in all reductions. Also, TCEP-HCI is known to decompose in phosphate buffered saline

(PBS). Therefore, the reductions were run in pH 7.2 PBS, which maintained the desired

pH for coupling, and ensured that unreacted TCEP would slowly degrade before it had an

opportunity to interfere with the desired reaction.

4.4 Microarray Design and Fabrication

The design and fabrication of our carbohydrate microarrays was based on

standard 25 x 75 mm glass-slide microarray technology. Two closely related surface

chemistries were developed for the purpose of covalently attaching the carbohydrates to

the surface of the microarray. These methods would ultimately serve as the basis for our

microarray platform, utilized in a number of biological studies.

4.4.1 Microarray Layout and Design

The layout of our carbohydrate arrays was based on 16- and 32-pin printing

methods using a standard DNA microarray printer (additional details in Chapter 6). We

settled upon a 32-pin printing pattern that typically consisted of 8 synthetic

oligosaccharides printed at 4 different concentrations (Figure 4.2). Each compound was

printed either 36 or 100 times, in 6 x 6 or 10 x 10 grids respectively. Printing the

structures in redundant grids permitted software-based statistical analysis of fluorescence

for protein binding of each carbohydrate structure. Orientation on the chip was

established by an identifying barcode on the bottom of the chip.
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Figure 4.2 Layout of typical high-mannose oligosaccharide microarray (25 mm x 75

mm). Concentrations represent those of the solutions of oligosaccharide printing on the

microarray.

4.4.2 Carbohydrate Microarrays Derived from BSA-Coated Glass Slides

Inspired by the success of protein microarrays based on BSA-derivatized glass

surfaces,15 the first microarrays were prepared by an analogous method. BSA is known

to block many non-specific protein binding events. Therefore, having a surface coated

with BSA is effective at reducing background binding, while presenting many usable

amine functionalities (in the form of lysine side-chains) for surface derivatization. These

characteristics made the BSA-based microarray attractive as a means of fabricating the

first microarrays.

4.4.2.1 BSA Microarray Fabrication

Aldehyde-presenting glass slides were incubated with a buffered solution of BSA.

Following Schiffs base formation, thereby immobilizing the BSA, the slides were rinsed,

and functionalized with SMCC to create a thiol-reactive surface. Reduced thiol-
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containing carbohydrates were subsequently printed on the maleimide-derivatized glass

slides using a DNA microarray printer (16 or 32 pin). Following incubation, the slides

were rinsed, and incubated in a solution of 3-mercaptopropionic acid. This last step

effectively quenches unreacted maleimide sites on the glass slide, rendering the surface

inert to non-specific binding by proteins. A particular concern was possible cross-

reactivity of unreacted maleimide on the array's surface with free cysteine residues of

any screened peptide.

4.4.2.2 Microarray Proof of Principle: Concanavalin A

To demonstrate the ability of the system to detect protein-carbohydrate

interactions as a proof of principle, we used a well-known mannose/glucose specific

lectin, Concanavalin A (ConA). Linker derivatized mannose 4-6 and galactose 4-8 were

printed as 120 ptm spots using a microarray printing robot. Both structures were printed

as solutions ranging from 10 to 0.05 mM in PBS. Following incubation, the remaining

maleimide groups were quenched with a 1 mM solution of 3-mercaptopropionic acid.

The carbohydrate microarrays were incubated with fluorescein isothiocyanate (FITC)-

labeled ConA, thoroughly rinsed with buffer, dried by centrifugation and scanned with a

fluorescence slide scanner. As anticipated, FITC-labeled ConA was observed on the

spots corresponding to immobilized mannose, while no fluorescence was associated with

the spots that presented galactose (Figure 4.3). This result confirms that the microarray

platform can be used for the immobilization of carbohydrates while maintaining

specificity in carbohydrate-protein interactions. By utilizing proteins conjugated to

fluorophores of non-overlapping excitation and emission spectra, we shall see that it is

also possible to extend this technology to include two or more colors, as previously

demonstrated.'5 We observed very high signal-to-noise ratios in this experiment,

presumably due to minimal non-specific protein-surface interactions. Analogous

observations have been made previously for protein microarrays that make use of

derivatized BSA for the immobilization of small molecules.'5
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Figure 4.3 Mannose and Galactose microarray, printed at varying concentration,

screened against FITC-labeled ConA

4.4.2.3 Carbohydrate-Binding by Cyanovirin-N

Having evaluated our carbohydrate microarrays with monosaccharide-lectin

interactions, we sought to extend this system to include more biologically relevant and

complex oligosaccharide structures. Here we selected a series of high-mannose type

oligosaccharides of key importance in the N-linked glycosylation pathway and also found

on the glycoproteins of a variety of infectious agents such HIV,'6 influenza virus and

trypanosomes.' 7 's To this end, the following structures were printed at varying

concentrations on the BSA-coated slides: 4-1, nonamannoside; 4-2, hexamannoside; 4-4,

linear trimannoside; 4-3, branched trimannoside; 4-6, mannose and 4-8, galactose.

We chose the protein cyanovirin-N (CVN) as a model for the study of protein-

oligosaccharide binding events.19 Isolated from the blue-green algae Nostoc

elliposporum, CVN was found to bind the high-mannose oligosaccharides of gpl20,

thereby inhibiting HIV's ability to infect target cells. 20 Natural and recombinant forms of

CVN have been shown to irreversibly inactivate a wide variety of HIV strains while

exhibiting minimal toxicity to host cells.21 The ability of CVN to bind high-mannose

oligosaccharides makes it an ideal test case for a carbohydrate array containing synthetic

oligosaccharides of different lengths and complexity.

The carbohydrate microarrays were incubated with 4,4-difluoro-5-(4-phenyl-1,3-

butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (BODIPY)-labeled CVN,
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rinsed with buffer, dried, and scanned by a microarray fluorescence scanner. As

predicted by isothermal calorimetry (Appendix A), fluorescence was detected at spots

corresponding to the immobilized D1 linear trimannoside 4-4, hexamannoside 4-2 and

nonamannoside 4-1 (Figure 4.4) while the branched trimannoside 4-3, mannose 4-6 and

galactose 4-8 showed no binding activity.

4 4 44 4 4.X S5 [..C XI m ; 
_ / / ^ o 

Figure 4.4 High-mannose oligosaccharide series (4-1, nonamannoside; 4-2,

hexamannoside; 4-4, linear trimannoside; 4-3, branched trimannoside), mannose (4-6)

and galactose (4-8), arrayed at concentrations ranging between 2 and 0.25 mM and

incubated with BODIPY-labeled CVN.

Ultimately, the specific aim of this first experiment was not to establish the

carbohydrate binding profile of CVN. The panel of oligosaccharides under review was

relatively small, comprising only a portion of the structural determinants of the high-

mannose nonasaccharide Man9. In addition, prior biophysical studies had already

established much of the binding information, including data on precise affinities of CVN

for the various oligosaccharides. Instead, the goal of this initial study was to establish the

viability of the microarray format to quickly establish carbohydrate binding profiles for

labeled proteins. Past studies of CVN binding for D1 tri-, branched tri-, hexa- and

nonamannoside, required multi-milligram quantities of material, and many months of
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experimentation. In contrast, the microarray experiment detailed above required

nanograms of material, and could be completed in two hours.

4.4.3 Carbohydrate Microarrays Derived from GAPS II Slides

Encouraged by the microarray results with BSA-derivatized slides, we were

determined to repeat these successes with the GAPS II slides. Amine coated GAPS II

slides are frequently used to prepare DNA microarrays. As such, they are readily

available, and relatively inexpensive. Unlike aldehyde slides, the GAPS II slides already

possess a reactive amine handle for surface derivatization. This makes it unnecessary to

coat the slides with BSA. However, it also creates the need for alternative surface-

chemistries to resist non-specific adsorption of proteins to the surface.

To prepare thiol-reactive surfaces, the GAPS II slides were directly reacted with a

solution of SMCC to prepare a monolayer of maleimide functionality on the surface of

the GAPS II slide. Reduced thiol-modified carbohydrates could be directly printed on

these SMCC modified slides. Following incubation with the oligosaccharides, the

unreacted maleimides of the surface were treated with 2-(2-(2-

mercaptoethoxy)ethoxy)ethanol. This quenching step served the dual purpose of reacting

free maleimide, and generating a uniform tri(ethylene oxide) monolayer on the surface of

the glass slide. Polymers of ethylene oxide are widely known to be highly resistant to
22

binding by proteins. As such, treating surfaces with tri(ethylene oxide) is an effective

means of generating a biologically inert surface.

The results obtained with the GAPS II carbohydrate microarrays were very

similar when compared to those of the BSA-derivatized slides (Figure 4.5). Due to the

availability of the GAPS II slides, their compatibility with standard DNA printers and

scanners, and the ease of functionalizing the surface, we ultimately chose these

microarrays for the remainder of our biological studies.
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Figure 4.5 FITC-ConA detection of high-mannose oligosaccharide series on a GAPS II

slide. From left to right: 4-1, nonamannoside; 4-2, hexamannoside; 4-4, linear

trimannoside; 4-3, branched trimannoside; 4-5, D3 tetramannoside; 4-7, truncated-D3

trimannoside; 4-6, mannose; 4-8, galactose. Structures were printed at 2 mM.

4.4.4 Surface Density of Immobilized Carbohydrate

Multivalency can play a critical role in binding events between protein and

carbohydrate. High-density clusters of oligosaccharide frequently result in a large

increase in affinity of a particular lectin for the carbohydrate cluster. For instance,

abnormal glycosylation in certain cancerous cells can result in antigenic clusters of

otherwise non-antigentic glycans.2 3 The density of immobilized carbohydrate on the

surface of a microarray is believed to approximate multivalent display of saccharide.2 4

Addressing the precise density of immobilized saccharide displayed on the

microarray surface remains challenging. It may be possible to measure surface

functionalization through colorimetric methods, analogous to those used to calculate

loading on solid-phase resins.25 However, such methods have not been attempted on this

new microarray system.

Without determining the exact surface densities, it was necessary to establish a

functional range of concentrations for printing oligosaccharides. If protein-carbohydrate

binding data is to be extracted from microarray experiments, we must first establish that

we can effectively saturate all possible sites on the surface of the array. To do this, both

BSA and GAPS II microarrays were prepared consisting of a dilution series of

oligosaccharide. Microarrays were printed with solutions of four oligosaccharides (4-1,

4-2, 4-3 and 4-4), ranging in concentration from 0.0078 mM to 1.0 mM. The arrays were

subsequently screened with BODIPY-labeled CVN (Figure 4.6).
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Figure 4.6 Dilution series microarray to establish the ideal concentration range for

printed oligosaccharide. The microarray illustrates CVN binding of a dilution series of

immobilized oligosaccharides 4-1, 4-2, 4-3 and 4-4.

The fluorescence of bound BODIPY-labeled CVN was measured for each

concentration of printed oligosaccharide. The intensity of fluorescence, corresponding to

the amount of bound protein, was plotted as a function of the concentration of printed

oligosaccharide (Figure 4.7). These results indicate that for the branched

oligosaccharides (nonasaccharide 4-1 and hexasaccharide 4-2) the fluorescence of bound

protein does not increase significantly above printed oligosaccharide concentrations of

0.2 to 0.3 mM. For the linear trimannoside 4-4 the fluorescence of bound CVN levels-off

slightly above 1 mM. Following these results, all carbohydrate microarrays prepared for

biological study were printed at concentrations from 0.25 to 2 mM to ensure saturation.
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Figure 4.7 Fluorescence of bound BODIPY-labeled CVN as a function of concentration

of printed oligosaccharide.

4.4.5 Carbohydrate / Glycoprotein Hybrid Microarrays

A hybrid microarray that displays carbohydrate, glycoprotein, and deglycosylated

protein on a single chip would greatly increase the versatility of the existing microarray

system. Such an array could establish the importance of the peptide-backbone context in

a particular protein-carbohydrate binding event. To accomplish this, two surface

chemistries had to be used on a single glass slide.

To prepare the hybrid microarrays, GAPS II slides were derivatized with SMCC

(for a maleimide surface) and ethylene-glycol-bis(succinimidylsuccinate) (EGS,

functionalizing the surface with an amine-reactive N-hydroxysuccinimide ester). By

dipping the two opposite halves of a single GAPS II slide into the respective reagents, it

was possible to prepare a slide with both surface chemistries. Such slides could be

printed with both thiol-modified oligosaccharides and proteins by printing onto the side

corresponding to the appropriate surface chemistry. Finally, the slides could be quenched

with 2-(2-(2-mercatoethoxy)ethoxy)ethanol to react with remaining maleimide, and BSA

to bind unreacted NHS ester.

As a proof of principle, a hybrid microarray consisting of four oligosaccharides

and four glycoproteins was prepared using the aforementioned method. High-mannose

oligosaccharides 4-1, 4-2, 4-3 and 4-4 were printed on the maleimide side of the glass
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slide and gpl20 and gp41 (natural and recombinant) were printed on the NHS-modified

side. BODIPY-labeled CVN screening of the hybrid microarray resulted in the expected

binding profile (Figure 4.8).
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Figure 4.8 Carbohydrate/glycoprotein hybrid-microarray screened against BODIPY-

labeled CVN. Note, missing fluorescence for 4-1 at 2 mM is due to failure of the

microarray printer to contact the surface of the glass slide.

4.5 Microarray Applications to Biological Studies - HIV Glycobiologyl °

The following study of HIV glycobiology was done with the invaluable assistance

Mr. Eddie W. Adams. In addition to collaboratively designing and fabricating the

carbohydrate microarrays, Ed was personally responsible for the glycoprotein microarray

experiment and he prepared the neoglycocopeptides using the synthetic mannans

described in section 4.3.

Given the nature of the mannans prepared for this study, HIV glycobiology was

the logical application for our recently developed microarrays. Defining HIV envelope

glycoprotein interactions with host factors or binding partners advances our

understanding of the infection process and provides a basis for the design of vaccines and

agents that interfere with HIV entry. For this study, carbohydrate and glycoprotein

microarrays were employed to analyze glycan-dependent gpl20-protein interactions. In
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concert with the aforementioned thiol-based linking chemistries, the carbohydrate arrays

combine the advantages of microarray technology with the flexibility and precision

afforded by organic synthesis. With these microarrays we individually and competitively

determined the binding profiles of five gp120 binding proteins, established the

carbohydrate structural requirements for these interactions, and identified a potential

strategy for HIV-vaccine development.

A glycan-based microarray study of HIV offers an exciting opportunity for

ongoing efforts in studying the virus. The density of carbohydrate present on gpl20

prevents efficient generation of potent, neutralizing antibodies. These same

oligosaccharides may be viewed as targets for a new class of anti-HIV agents. Thus, a

detailed analysis of HIV-glycans will help define the immunology of HIV as well as

guide efforts towards prophylaxis. Tools like the high-mannose microarrays easily

identify additional biologically relevant carbohydrate/protein interactions and can aid

future investigations in the field.

4.5.1 HIV-Binding Proteins

We exploited the oligosaccharide and glycoprotein microarrays to study the

glycan-dependent binding interactions of four gp120-binding proteins: the dendritic cell

lectin DC-SIGN,2 6 the antibody 2G12, cyanovirin-N, and a recently identified anti-HIV

protein, scytovirin.27 We also investigated the non-glycan dependent interactions of CD4

with gp120 in the presence of these potential inhibitors. These miniaturized assays

substantially decreased the amount of carbohydrate required for study, in addition to the

volume and quantity of analyte to be studied. Also, fluorescence-based detection allowed

multiple binding events to be analyzed simultaneously.

The five gp120-binding proteins were selected for study based on their respective

roles in HIV biology. Due to their involvement in the internalization of HIV by the host

cell, gpl20 and gp41 are valuable molecular targets for developing therapies aimed at

decreasing viral load and for prophylaxis in preventing viral transmission.

The high-spatial density of gpl20 on the virion surface makes it the primary

target of the humoral immune response to HIV.28 29 Accordingly, most vaccine design
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efforts to generate effective, neutralizing antibodies against HIV have been based on

monomeric and oligomeric forms of gpl20. However, the steric masking of potential

neutralization-sensitive epitopes of gpl20 by N-linked high-mannose oligosaccharides

frustrates both natural and vaccine-promoted humoral responses.3 '31 In addition, these

oligosaccharides are found on numerous host proteins, and are likely to be regarded as

"self' or non-immunogenic, thereby preventing a rigorous antibody response. A notable

exception to this immunological tolerance of high-mannose oligosaccharides is the

human monoclonal antibody 2G12, which is capable of binding Mana(l-2)Man

presenting-oligosaccharide clusters with nanomolar affinity.3 33

There is growing interest in small molecule inhibitors and HIV-binding proteins

as prophylactic measures to prevent HIV entry into host cells.3435 High-throughput

screens of natural products derived from Cyanobacteria have yielded a number of

promising anti-HIV agents capable of inhibiting viral entry. Two of these compounds,

cyanovirin-N (CVN) and scytovirin, 11 and 9.7 kDa proteins respectively, achieve their

anti-viral activity by binding the high-mannose oligosaccharides present on HIV

gp1203 6'3 7 This interaction is thought to prevent gpl20's receptor binding domains from

interacting with their targets; alternatively, conformational changes in the glycoprotein

subsequent to protein binding may render theses binding domains functionally inactive.

As most cell-surface and secreted glycoproteins undergo processing in the Golgi,

extensively modifying N-linked oligosaccharides, CVN and scytovirin are likely to target

virus-associated oligosaccharide but not endogenous glycoprotein. This has been

demonstrated by in vivo prophylaxis studies with CVN that have not shown any adverse

effects upon host physiology.3 S

4.5.2 Microarray Results and Discussion

Initially, we sought to determine if the glycan-binding profiles of the above

proteins are dependent on the polypeptide backbone to which the high-mannose

oligosaccharides are appended. To evaluate the role of the polypeptide backbone,

microarrays bearing natural and modified glycoproteins, as well as neoglycoproteins

were fabricated. Included among these proteins were gpl20, gp41, de-glycosylated
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gp210 (pl20), ovalbumin (OVA), nonamannoside-modified OVA (OVA4-1), and

mannosylated BSA. Each slide was incubated with one fluorophore-labeled protein,

washed and scanned to establish binding (Figure 4.9a).

atpil2 p4 p 120 OVA OVA41 m-RA
a) _

CD4

CVN

Scytoe.di

2(;G12

DCSI;N

gtplO JCp4l p120

b)
C D4/C VMAerged

CD4

CVIN

Figure 4.9 Glycoprotein binding. a) Glycoprotein microarrays incubated with

fluorescently-labeled proteins. b) Sequential incubations of glycoprotein microarray with

CD4 and CVN.
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As anticipated, gpl20 was bound by each of the proteins. Additional experiments

proved that co-incubation of each protein with (Man)9(GlcNAc)2 successfully inhibited

the respective interactions with gp 120 (E. W. Adams, data not shown) in accordance with

the known specificities of these proteins. However, CD4 interactions with gp120 were

not inhibited by co-incubation with the free glycan. All five proteins were also shown to

interact with gp41. Again, these interactions were inhibited by co-incubation with

(Man) 9(GlcNAc) 2 except in the case of CD4. While recognition of the high-mannose

oligosaccharides on gp4139 has been described for CVN40 and scytovirin, 27 this is the first

demonstration of gp41 binding by DC-SIGN and 2G12. The physiological relevance of

the observed g41 binding by DC-SIGN requires further study as it has not yet been

determined if gp41 is exposed upon DC-SIGN-gpl20 interactions. It also remains to be

determined whether interactions between 2G12 and exposed gp41 can effectively inhibit

viral entry.

Sequential incubations with fluorophore-labeled binding partners were used to

determine if CVN, among of the aforementioned glycan-dependent gpl20-binding

proteins, could inhibit CD4-gpl20 interactions. To accomplish this, soluble CD4 was

incubated with the glycoprotein microarray, followed by addition of CVN. Bound CD4

was detected with a fluorophore-labeled anti-CD4 monoclonal antibody. To control for

anti-CD4 binding of the array, independent control incubations revealed little to no non-

specific binding (E. W. Adams, data not shown). Alternatively, soluble CD4 was added

to the arrays only after pre-incubation with potential inhibitor CVN. In agreement with

previous studies, we observed that CD4 bound gpl20 pretreated with CVN, suggesting

that CVN does not block or disrupt the CD4 binding site on gpl20.41 Interestingly, we

observed that CVN completely displaced bound CD4 from gp 120 pretreated with soluble

CD4 (Figure 4.9b). However, CD4 bound to non-glycosylated gpl20 (p120) was not

disrupted by incubation with CVN, indicating the glycan-dependent nature of CVN's

mode of action.

Neoglycoproteins were employed to study the peptide context in which glycans

are presented. Ovalbumin, a glycoprotein bearing both hybrid and complex-type

oligosaccharides, is not bound by any of the proteins. In contrast, ovalbumin modified
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with high-mannose nonasaccharide 4-1 (OVA4-1) via a non-natural linkage is bound by

DC-SIGN, CVN, scytovirin and, to a lesser extent, 2G12. This observation suggests that

carbohydrate recognition by these proteins is largely insensitive to the underlying

polypeptide chain, supporting the hypothesis that the density of the displayed

carbohydrate determines binding.42

The observed binding of 2G12 to OVA4-1 prompted us to investigate whether

2G12 would bind arrays of oligosaccharides. Epitope mapping studies with 2G12 have

shown that it binds a conserved group of N-linked high-mannose oligosaccharides present

on gp120, making it an effective neutralizing antibody against a number of primary HIV

isolates.32 If 2G12 could bind high-mannose oligosaccharides in the absence of a peptide

backbone, a vaccine composed of clusters of these oligosaccharides might generate a

2G12-like response to gpl20 glycans.

2G12-carbohydrate interactions were evaluated with microarrays of the eight

aforementioned glycans (Figure 4.10). A carbohydrate binding profile was made for a

given protein by comparing the integrated fluorescence between the spots of different

immobilized oligosaccharide (Figure 4.11). Incubation of 2G12 with the microarray

revealed antibody binding at spots corresponding to oligosaccharides 4-1, 4-2, 4-4, and 4-

5, but not to the branched trimannoside 4-3 or mannose 4-6 (Figure 4.1 lb). The only

structural motif in common for oligosaccharides 4-4 and 4-5 is the Mana(1 -2)Man

linkage, suggesting that this glycosidic linkage alone is necessary for recognition by

2G12. Based on the observation that incubation of gpl20 with an a(1-.2) mannosidase

greatly diminished 2G12 binding, previous studies32 '4 3 have concluded that 2G12

recognizes the Mana(1-2)Man linkages present in Man9 . A single microarray allowed

for rapid confirmation of this structural requirement for 2G12 recognition based on the

diversity of glycosidic linkages attained by chemical synthesis. In addition, the

microarray enabled direct verification of 2G12 binding to carbohydrates in the absence of

a polypeptide backbone.
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Figure 4.10 Carbohydrate microarrays containing synthetic mannans 4-1 through 4-7 and

galactose 4-8, printed at 2 mM. False color image of incubations with fluorescently

labeled ConA, 2G12, CVN, DC-SIGN and Scytovirin.

We used our microarrays to study the carbohydrate-recognition profile of the

cyanobacterial protein, scytovirin.27 Scytovirin is a 9.7 kDa protein isolated from

aqueous extracts of the cyanobacterium Scytonema varium. The protein binds gpl20,

gp 160 and gp41 and has potent anticytopathic activity against primary isolates of HIV-1.

Initial studies demonstrated that scytovirin binds HIV gpl20 through a carbohydrate-

dependent mechanism that is blocked by soluble (Man)9(GlcNAc)2, and

(Man)s(GlcNAc)2, but not (Man)7(GlcNAc)2. However, structural determination has not

established which specific mannose residues are missing from the truncated high-mannan

(Man) 7(GlcNAc) 2 .
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Figure 4.11 Comparison of the high-mannose binding profiles of five fluorescently

labeled proteins incubated against synthetic mannans 4-1 through 4-7. a) Concanavalin

A, b) Antibody 2G12, c) Cyanovirin-N, d) DC-SIGN, and e) Scytovirin.

Analysis of scytovirin's carbohydrate binding profile with our microarrays

revealed that of all the structures present, scytovirin bound only 4-1 and 4-5 (Figure

103

I

_mqd.f U meuM

I

I

I



4.1 le). This finding suggests that the terminal a(l -2) mannose linkage is necessary for

recognition of the underlying ca(1 -6) trimannoside moiety unique to the D3 arm. If the

Mana(1 -6)Man linkages alone were sufficient for scytovirin binding, oligosaccharides

4-2 and 4-3 also should have been bound. Likewise, if Mana(l -2)Man glycosidic

linkages alone were sufficient for recognition by scytovirin, structures 4-2 and 4-4 would

have been bound. These results suggest that recognition of high-mannose

oligosaccharides by scytovirin occurs by a markedly different mechanism than that

observed for both 2G12 and CVN. Both 2G12 and CVN bind terminal Mana(l--,2)Man

independent of the underlying linkages found in the D1, D2 and D3 arms (Figures 4.1 lb

and 4.1 lc).

To confirm the role of the terminal Mana(1-2)Man glycosidic linkage in

binding of the D3 arm by scytovirin, 4-7, a truncated derivative of the D3 arm lacking the

terminal Mana(1-2)Man linkage was prepared to screen CVN, 2G12 and scytovirin.

None of the proteins bound oligosaccharide 4-7 (Figures 4.11 b,c,e ), confirming the

specificity of 2G12 and CVN for Mana(1-2)Man linked saccharides and the necessity

of this linkage for recognition of the D3 arm by scytovirin. This mechanism of high-

mannose oligosaccharide recognition by scytovirin has not been described for any other

high-mannose binding protein. On-going NMR and crystallographic studies using these

synthetic mannans should elucidate how scytovirin's tertiary structure dictates specific

interactions with the D3 arm.

As part of a continuing investigation into oligosaccharide-mediated targeting of

dendritic cell lectins (E. W. Adams, unpublished data) DC-SIGN was the last gpl20-

binding protein selected for microarray analysis. This 44kDa C-type lectin is expressed

by dermal dendritic cells (DCs) in mucosal tissue, by interstitial DCs, and on DCs in the

lymph nodes.44 DC-SIGN is known to bind gp120 in a carbohydrate-dependent manner

via the glycoprotein's high-mannose oligosaccharides.4445 This interaction promotes

internalization of virus by the DC to a non-lysosomal compartment, where HIV appears

to be protected from degradation and remains infectious for several days.4 6 Finally, DC -

CD4+ T cell interaction leads to productive infection of the recipient lymphocyte.

Incubation of the labeled-extracellular domain of DC-SIGN with synthetic mannan
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carbohydrate arrays bearing structures 4-1 through 4-8 revealed that all mannose-

containing structures were bound by DC-SIGN (Figures 4.10 and 4.1 id).

4.5.3 Conclusions of Microarray Studies

The rapid identification of proteins and small molecules that interfere with HIV-

host entry is a central pursuit in the effort to combat viral spread. The glycans associated

with HIV envelope glycoproteins continue to be of great interest for their involvement in

the infectious process, their antigenicity, and their ability to neutralize the humoral

response. Evidence supports the theory that HIV eludes the immune response, in part,

through an evolving glycan-shield.4 7 A microarray-based approach to study agents that

bind these glycans will further efforts to circumvent HIV's evasion mechanisms. For the

first application of our microarray technology, we demonstrated their use for the study of

gpl20 binding proteins and defined the carbohydrate structural requirements sufficient

for binding.

4.6 Additional Tools for Glycobiology

Introduction of a reactive handle on synthetic glycans (such as a thiol or an

amine) provides access to a host of glycoconjugate-based tools.4 8 The carbohydrate

microarrays detailed above were a logical extension of this technology. By creating a

cell surface-like environment on a highly miniaturized platform, it was possible to rapidly

probe carbohydrate binding events. The synthesis of neoglycopeptides, such as ova4-1

and mannosylated-BSA described herein, was also a useful application of the same

linking chemistry. However, oligosaccharide and neoglycoprotein microarrays are but

one technique made possible by the tri(ethylene glycol)-based linking chemistry.

A panel of synthetic tools for biophysical studies can be accessed using the

aforementioned thiol-based conjugation scheme (Figure 4.12). Conjugating chemically

defined saccharides in a precise manner to various biomarkers and reporters opens the

doors to research that may not be possible using conventional techniques. To

demonstrate the potential for these methods to aid investigations in glycobiology, we
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prepared a number of additional tools using the same synthetic structures involved in the

microarray fabrication. The tri(ethylene glycol)-modified saccharides were used to

prepare self-assembled monolayers on gold surfaces for use in surface plasmon resonance

experiments. Fluorescently-encoded microsphere microarrays were also fabricated as an

extension of the microarray format Additionally, monovalent and multivalent fluorescent

conjugates were synthesized for in vivo fluorescent microscopy to examine endocytosis

of complex mannans by the dendritic cell lectin DC-SIGN.
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Figure 4.12 Synthetic tools for glycobiology: a. modified surfaces for microarrays and

SPR; b. monovalent fluorescent conjugates; c. neoglycoproteins and carbohydrate

vaccines; d. multivalent quantum dot conjugates; e. future neoglycoconjugates; f. affinity

tag (biotin, etc.) conjugates; g. magnetic particle conjugates; h. latex microsphere and

sepharose affinity resin conjugates.

106

%I

.



4.6.1 Self-Assembled Monolayers and Surface Plasmon Resonance 7

Following carbohydrate microarray-based ligand identification, the same

carbohydrates can be immobilized to the self-assembled monolayers for a more complete

characterization of activity. Monolayers are well suited to quantitative investigation of

protein-ligand interactions, because they allow excellent control over the density of

immobilized carbohydrate and because they present the ligands in a homogenous

environment at the interface. In collaboration with Prof. Milan Mrksich of the University

of Chicago, we adopted a previously reported method to immobilize the thiol-

functionalized carbohydrates to a monolayer that presents maleimide and tri(ethylene

glycol) groups in a ratio of 1:50.49 MALDI-TOF Mass spectrometry confirmed that the

immobilization reactions proceeded in quantitative yield.50 Surface plasmon resonance

(SPR) spectroscopy was used to measure the binding of CVN to monolayers presenting

the linear trimannoside 4-4. The initial SPR experiment illustrated that the amount of

bound CVN increases with the density of immobilized trimannoside (Figure 4.13a). The

ability to control the density of immobilized carbohydrate is an important advantage with

the monolayer substrates, particularly because many proteins, including CVN, bind in

divalent modes and show a strong dependence on the density of ligand. Indeed, we found

that at higher densities of carbohydrate, a higher fraction of the protein remains tightly

bound, reflecting the divalent binding mode. In a second experiment, we demonstrated

that this platform is useful for testing the ability of carbohydrates to inhibit the interaction

between CVN and immobilized 4-4, and therefore to rapidly identify ligands for CVN.

Figure 4.13b shows that linear mannoside 4-4 and nonamannoside 4-1 inhibit the binding

of CVN, but that branched trimannoside 4-3 has no effect on binding, all in agreement

with the results described in the microarray study.
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Figure 4.13 SPR experiments showing CVN binding to self-assembled monolayers of

synthetic mannans. a) Real-time binding of CVN (0.1 M in PBS) to SAM of D1 linear

trimannoside 4-4 at surface densities ranging from 0.5 to 5.0%. b) Inhibition study of

CVN binding to 4-4 SAM (1% density) using soluble nonamannoside 4-1 (0.02 mM),

linear trimannoside 4-4 (0.2 mM), an branched trimannoside 4-3 (0.2 mM).

4.6.2 Encoded Microsphere Microarrays5 1

In contrast to the aforementioned microarrays, a system was developed that uses

optically addressable, internally encoded microspheres to define the position and

structure of a series of carbohydrates on a fiber optic microarray. This was accomplished

in collaboration with Prof. David Walt of Tufts University.[5 ]1 While solid-phase

carbohydrate libraries have been employed previously,5 2] miniaturization of the assay,

combined with fluorescently-encoded microspheres, allows for rapid screening while

requiring amounts of material comparable to or less than that required by microarrays. To

detect binding, the immobilized microsphere array is incubated with a fluorophore

labeled-carbohydrate binding protein. The binding profile is determined by measuring

the fluorescence of beads that emit at both the wavelength of an internal code, which is
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used as a marker for the carbohydrate displayed on a microsphere (an entrapped

fluorescent dye) and the labeled protein. Fluorescence colocalization indicates a binding

event. Using this system, we examined the binding profiles of Concanavalin A and

cyanovirin-N (Figure 4.14).

a) b)

Figure 4.14 Internally-encoded, randomly oriented microsphere array bearing structures

4-1 through 4-4 and 4-6 and incubated with BODIPY-labeled cyanovirin-N. Specific

binding events were observed by detecting BODIPY emission at 520 nm. a)

Fluorescence at 520 nm prior to BODIPY-CVN incubation; b) fluorescence at 520 nm

post-BODIPY-CVN incubation.

4.6.3 Monovalent Fluorescent Conjugates

The microarray format may not be the most appropriate tool for all applications.

One such application is the study of cell-surface receptors with presumed carbohydrate-

binding activity (i.e., lectins). One limitation to microarray studies is the need for

purified receptor. In addition, the density of immobilized oligosaccharide on the

microarray surface restricts observation to binding of clustered or multivalent arrays of

carbohydrate. While it may be possible to immobilize carbohydrate at densities

sufficiently low to approximate monovalent presentation of oligosaccharide, the
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microarray format is not ideal for examining monovalent protein-carbohydrate

interactions.

To establish a direct method of detecting oligosaccharide-receptor interactions,

monovalent oligosaccharide-fluorophore conjugates were prepared. These probes serve

as reporters to enable tracking of receptor-carbohydrate interactions via fluorescence

microscopy and flow cytometry. Thiol-modified oligosaccharides were covalently linked

to maleimido-FITC. These fluorescent glycoconjugates could subsequently be used to

observe cell-surface lectin affinity for the monomeric oligosaccharide in solution. To test

these conjugates, a panel of high-mannose oligosaccharide-fluorescein conjugates were

used to follow the concentration-dependent binding and endocytosis of complex mannans

by the dendritic cell lectin DC-SIGN in DC-SIGN-transfected HeLa cells and monocyte-

derived dendritic cell, which express a high level of endogenous DC-SIGN (E.

W.Adams., unpublished results; Figure 4.15).

Figure 4.15 DC-SIGN-mediated endocytosis of monovalent oligosaccharide-fluorescein

conjugates. Transiently transfected HeLa cells expressing DC-SIGN endocytose 4-

1(nonasaccharide)-fluorescein. Left panel: confocal microscopy image of 4-1-fluorescein

(green) and phalloidin staining (blue); middle panel: phycoerythrin labeled anti-DC-

SIGN antibody staining of DC-SIGN's subcellular localization; right panel: merge of first

two panels showing colocalization of internalized oligosaccharide and DC-SIGN (E. W.

Adams, unpublished data).

4.6.4 Multivalent Oligosaccharide Platforms for Cell Biology

Semiconductor nanocrystal (quantum dot)-based systems were explored as

platforms to present multiple oligosaccharide monomers (>100) on a single particle.

110

-



Such conjugates permit the direct assessments of the effect of multivalency on

oligosaccharide binding to cell-surface lectins. Early nanoparticle-based multivalent

platforms for evaluating multivalent oligosaccharide interactions were based on

carbohydrate-modified gold nanoparticles.53 The success of these nanoparticle studies led

us to believe that quantum dots could enhance the utility of the nanoparticle platform.

Given the high quantum yields in aqueous systems and unique photophysical properties

(e.g., their lack of excitation-induced photobleaching; their extremely narrow, non-

overlapping emission spectrums; and the ability to achieve multiple wavelength

emissions following excitation from a single excitation source), quantum dot-

carbohydrate conjugates could be a powerful tool in studying the cell biology of cell-

surface lectins.54

Thiol-modified oligosaccharides can be used for conjugation to modified quantum

dots. Carboxy-bearing quantum dots, functionalized with 3-[2-pyridyldithio]propionyl

hydrazide (PDPH), are reactive to the thiol-linker of the carbohydrates by way of

disulfide exchange. By using quantum dots bearing defined densities of saccharide, the

carbohydrate recognition by DC-SIGN and other mammalian lectins is being further

elucidated.

4.7 Continuing Efforts Towards Synthetic Tools for Glycobiology

Efforts are ongoing towards extending the versatility of carbohydrate microarrays

and additional synthetic tools for glycobiology. In addition to the methods described

above, improvements are being made to the linker technology, and additional synthetic

tools are being developed.

4.7.1 New Linking Chemistry for Natural Glycans

The microarrays detailed in this chapter relied upon synthetic access to the

oligosaccharides of interest. While this afforded superb control over the panel of

oligosaccharides acquired for the study, it is not without limitations. Synthetic

carbohydrate chemistry continues to grow in its sophistication, and ability to synthesize
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targets of increasing complexity. However, a unifying approach to all syntheses has not

yet been adopted. Therefore, current methods require that each carbohydrate structure be

approached as a total synthesis in its own right. This limits the ability to rapidly expand

the panel of oligosaccharides available for study on the microarray.

Ongoing efforts are making significant gains towards a new method for preparing

microarrays and other tools for glycobiology. Notably, this new approach utilizes

carbohydrates isolated from natural sources. The purified carbohydrates are converted to

the anomeric glycosylamine, and reacted with an amine-reactive linker to introduce the

tri(ethylene glycol) linker, terminated in a thiol functionality (Scheme 4.14).
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Scheme 4.14 Conjugation scheme for naturally isolated carbohydrates.

Presently, this method has been used to generate a carbohydrate microarray based

on a series of naturally procured glycans. Included among these saccharides is the human

milk oligosaccharide 2'-fucosyllactose (2'FL), which is widely reported to confer

protection to infants from a number of intestinal pathogens.55 Preliminary microarray

studies using the new linking chemistry have been fruitful in demonstrating substrate

specificity for two 2'FL-binding lectins (Figure 4.16). Efforts are ongoing to optimize

these new chemistries, and to prepare a new set of microarrays and neoglycoconjugates

based on these methods.
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Figure 4.16 Microarrays of naturally isolated glycans screened against lectins with

known specificity for 2'-fucosyllactose.

4.8 Summary and Conclusions

Inclusion of the thiol-containing tri(ethylene glycol) linker into synthetic

oligosaccharides (and most recently isolated glycans) has enabled the preparation of a

host of tools for use in biophysical studies related to glycobiology. HIV glycobiology

served as a concrete and highly relevant demonstration of the utility of such an expanded

set of synthetic tools for glycomics.

The carbohydrate microarray system described herein offers several features that

make it attractive as a tool for glycomics: it requires small quantities of material, is fully

amenable to HTS technologies, provides covalent immobilization of structures to a

hydrophilic/non-fouling surface to control non-specific interactions, utilizes a linker

system that may be introduced in the solution phase synthesis of any carbohydrate of

interest, and can be extended to the preparation of self-assembled monolayers for a more

complete characterization of activity.56 We envision similar microarrays of diverse

oligosaccharide structures will find a range of applications including epitope mapping of

carbohydrate specific antibodies, and ligand identification for cell-surface lectins

obtained from cell lysates.

Using our microarray platform we have defined the binding profile of a novel

HIV-inactivating protein, scytovirin, and identified a new mechanism of recognition of

high-mannose oligosaccharides. Our study of DC-SIGN has elaborated its carbohydrate-

113



binding profile to include unbranched oligosaccharide structures. Analyses of CVN and

2G12 have confirmed the necessity of Mana(1---2)Man linkages for carbohydrate

recognition. Furthermore, our study of 2G12 has definitively demonstrated that 2G12

can bind high-density arrays of Mana(1--2)Man-containing oligosaccharides in the

absence of a polypeptide backbone. We feel this finding and the synthetic derivatives of

4-1 employed in the analysis of 2G12 will prove particularly important in aiding the

design of carbohydrate-based vaccines aimed at eliciting a 2G12-like response.

Expanding upon the success of the carbohydrate microarray as a tool for

glycobiology, progress has begun towards the development of additional tools to aid

biophysical studies. A number of these potential tools have now been explored with

promising results. Like the carbohydrate microarrays, advances in neoglycopeptides,

surface plasmon resonance, carbohydrate microsphere minicroarrays, and mono- and

multivalent fluorescent conjugates have proven the versatility of these methods for

biological investigation.
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Chapter 5

Development of First Microchemical Device

for the Optimization of Glycosylation Reactions
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This chapter described work done in close collaboration with Mr. Edward R. Murphy, a

doctoral student in the laboratory of Prof. Klavs F. Jensen in Chemical Engineering, MIT.

Details of this study have been submitted for publication:

Ratner, D. M.; Murphy, E. R.; Jhunjhunwala, M.; Snyder, D. A.; Jensen, F. K.;

Seeberger, P. H. Glycosylation as a Challenge for Microreactor-based Reaction

Optimization in Organic Chemistry. Submitted for Review.

5.1 Introduction

While glycosylation reactions have been carried out for more than a century, the

union of glycosylating agent and nucleophile to form a glycosidic linkage remains a

challenging undertaking.' Glycoside formation depends on the conformation, sterics, and

electronics of both reaction partners. Due to the challenge of accurately predicting the

reactivity of the coupling partners, it is difficult to foresee the outcome of the reaction. In

addition, reaction variables such as concentration, stoichiometry, temperature, reaction

time, and activator play an undisputable role in the outcome of a given glycosylation.2

In addition to glycosylations, synthetic chemistry relies on an innumerable variety

of organic reactions to construct a diverse range of molecular targets. Many organic

transformations depend on multiple factors that determine the outcome of the reaction.

Serving as a model system, the glycosylation reaction encompasses many of the

challenges common to most reactions. In both academic and industrial settings, much of

the effort spent by synthetic organic chemists is consumed searching for optimal reaction

conditions to achieve a particular transformation. Method optimization frequently

requires the commitment of time and large quantities of valuable starting materials.3 The

ability to find ideal reaction conditions quickly and efficiently would have a major impact

on the practice and pace of research and development in organic chemistry.

Among their many applications, microfluidic-based devices are capable of

performing a wide range of single and multiphase organic reactions.4 In addition to

requiring small quantities of reagent, submillimeter reaction channels allow for the

precise control of reaction variables, such as reagent mixing, flow rates, reaction time,
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and heat and mass transfer. Microfluidic devices are also amenable to integrated reaction

monitoring, using UV/VIS, IR, NMR, mass spectrometry (MS), and LC/MS.5 Unlike

conventional bench-top batch reactions, microreactors are easily scalable, rendering a

device capable of both analytical and semi-preparative scales of production. Finally, the

microreactor format is ideally suited for automation of reaction optimization.

Here, we describe the design, fabrication, and use of a continuous flow

microreactor to study the glycosylation reaction as an example of a challenging organic

transformation. Optimizing glycosylation yield, reaction time and reaction temperature

was the primary goal, in addition to gaining an understanding of the formation of

different side products. While this study focuses on the glycosylation reaction as a

model, the microchemical-based approach is applicable to most organic reactions and

will allow for rapid reaction optimization using minimal amounts of starting materials.

5.2 Microdevice Reactor Design and Fabrication

The device prepared for this study was designed and fabricated by Mr. Edward R.

Murphy within the facilities of the MIT Microsystems Technology Laboratories (MTL).

At the inception of this collaborative effort, Mr. Daniel A. Snyder (Seeberger laboratory)

and Mr. Manish Jhunjhunwala (Jensen Laboratory) established a preliminary

microreactor design. The following design was conceived from the lessons learned

during their initial efforts.

5.2.1 Reactor Design

A typical glycosylation reaction consists of three components, a glycosyl donor

(halide, trichloroacetimidate, phosphate, etc...), a nucleophilic acceptor, and an activator.

In most cases, the donor and acceptor are mixed in an anhydrous non-nucleophilic

solvent, activator is added, and the reaction proceeds. Depending on the particulars of

the reaction, an additional reagent may be added at the end of the reaction to quench

unreacted activator and cease progress of the reaction. The design of a microreactor

specific for glycosylation reactions should be based on this three component system, with
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the addition of an optional method for a chemical quench.

To accomplish this goal, a five-port silicon microreactor was designed with three

primary inlets to mix and react glycosylating agent (donor), nucleophile (acceptor), and

activator. To ensure complete mixing and residence times sufficient for the reaction, the

reactor was split into a mixing and reaction zone. The primary inlet streams are combined

and enter a narrow loop mixing zone. The mixed reactant stream subsequently enters a

wider reaction zone that is terminated by a secondary inlet used to quench the reaction.

Finally, the quenched reaction stream exits the reactor for collection and analysis. (Figure

5.1).

<I6 81

\012 mm

Mixing Zone { mm

Retention / Reaction
Zone

: 0. 1 mm

4- . Quench

19.2 mm

.*-Out

0.4 mm

Figure 5.1 Microreactor layout design (Schematic by E. R Murphy).

5.2.2 Microreactor Fabrication

Microfluidic channels were etched into a single crystal silicon wafer and capped

by a Pyrex wafer via an anodic bond (Figure 5.2). This construction was chosen for its

compatibility with a wide range of chemical reagents, as well as the high thermal

conductivity of silicon - facilitating rapid thermal equilibration and temperature control.6

Moreover, the silicon can be oxidized to create a glass surface throughout the resulting

microchannels. Deep reactive ion etching techniques (DRIE)7 make it easier to realize
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deep aspect ratio structures in silicon than glass. Thus, the use of DRIE and subsequent

oxidation and anodic bonding to Pyrex provides microreactors with glass surface

properties. Additionally, the anodic bond, performed in a clean room environment,

provides an hermetic seal at all points of contact between silicon and Pyrex. This seal

prevents cross-channel contamination within the device, and excludes the introduction of

moisture from the environment surrounding the microreactor.

Figure 5.2 Microfluidic channels etched into silicon are clearly visible through the Pyrex

cap (photo credit, Felice Frankel).

The flow channels and inlet ports for the device were patterned onto 650pm thick,

double side polished (DSP), oxidized, silicon wafers using standard photolithographic

techniques. The oxide layer was etched by buffered oxide etch (BOE) to produce a hard

mask of the device pattern. The inlet ports on the back-side of the silicon wafer were then

etched to a depth of 300pm using deep reactive ion etch (DRIE). Following the back-side

etch, the flow channels were patterned and etched to a depth of 400pm as previously

described.7 The wafer was then anodically bonded to a Pyrex wafer and the copper pads

were deposited around the inlet ports using electron beam deposition. The metal pads

consisted of a 100nm thick titanium adhesion layer followed by a 500nm copper layer.

The device was subsequently cut from the wafer and fitted with steel tube plumbing
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(packaged).

Chemical compatibility was the primary concern in determining the packaging

scheme. Traditional methods for packaging microdevices include epoxy bonding or

compression seals. However, the nature of most solvents used in organic transformations

posed a challenge to epoxy packaging methods. In particular, dichloromethane slowly

dissolves most epoxies and o-rings used for compression seals. A solder-based packaging

technique allowed the best chemical compatibility, as the inlet tubes were stainless steel

with brass ferrules swaged to the exterior of these tubes. Lead-Tin solder was then

applied around the exterior of the brass ferrule to complete the seal to the copper pads on

the device (Figure 5.3). This arrangement brings the stainless steel tube in direct contact

with the device. The only other surface exposed to the reactants is the 600nm thick metal

layer.

Figure 5.3 Inlets and outlet are attached to the microdevice via lead-tin soldering (photo

credit, Felice Frankel).

5.3 Functional Microreactor Setup

The flow of material through the device is controlled by syringe pump. An

operational microreactor setup consists of four gas-tight syringes, one corresponding to

each of the four inlets (donor, acceptor, activator and quench), a syringe pump to control
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the flow, and stainless steel / Teflon plumbing (Figure 5.4). Thermal equilibrium of the

microreactor is maintained by a water or acetone-bath in an insulated Dewar flask,

monitored with a thermocouple.

a)

b)

Figure 5.4 Microreactor device setup. a) Close-up of device including steel tubing and

Teflon fittings (photo credit, Felice Frankel); b) Bench setup of functional microreactor.

Plumbing for the device consists of Hamilton syringes connected via 22 gauge
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needles with Valco stainless steel fittings to 0.010 inch (inner diameter) Teflon tubing.

The small inner diameter tubing is critical because of the high-pressures generated by the

force required to drive material through the device. Even the slight elasticity of Teflon

can cause large diameter tubing to swell, thus distorting the rate of flow through the

device.

The smallest feature within the device is a 50 .m constriction-point at the end of

the reaction zone, prior to the secondary inlet containing the quench. This constriction

prevents back-flow through the device, ensuring uniform flow through the mixing and

reaction zones. The small dimension of this constriction makes filtration of incoming

solvent streams critical for optimal performance of the device. Therefore, all streams are

separately passed through in-line steel frits (housed within the Teflon fittings) to pre-filter

the incoming solutions prior to introduction to the reactor.

5.4 Microreactor Features

The micrometer scale of features in this device results in laminar flow within the

channels; each fluid stream forms a lamina that mixes with the adjacent layers by

diffusion (Figure 5.5).8 The time required to mix laminae can be estimated by Equation

(1) where w is the width to diffuse and 0 is the diffusivity of the component of interest.

Ww (1)

The mixing zone for this device is 119 mm long, 200pam wide, and 400/pm deep.

Prior to combining reagents in the mixing zone, the glycosyl donor and acceptor streams

are each split in two. The resulting four streams are stacked with the activator stream,

such that the donor must diffuse through the lamina resulting from the acceptor inlet

before reaching the lamina of the activator (Figure 5.5). The stacking of laminae also

creates a symmetrical concentration profile across the width of the mixing channel,

reducing the diffusion width to I 00oan - half that of the channel.
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Figure 5.5 Schematic of diffusion-controlled mixing of glycosyl donor, acceptor and

activator laminae in the mixing zone.

The reaction zone is a 400pm wide channel, 430 mm long, and 400pam deep. This

feature was designed with a large volume to increase the residence time of the device.

The output of the reaction zone combines with the secondary inlet before exiting the

reactor. The volumes of the mixing and reaction zones are 9.5 L and 68.8 uL

respectively, giving a total reactor volume (pre-quench) of 78.3 ML. The residence time

for this zone can be calculated according to Equation (2) where V is the volume of the

section and Q is the total volumetric flow rate through that section.

VV = (2)
Q

Stoichiometry within the microreactor is based on the concentration of

components of the combined stream in the reactor. This, in turn, is determined by both

the concentration of each reagent inside its source syringe and the flow rate of each

stream. The flow rate of a given material stream is calculated according to Equation (3)

where Q is the volumetric flow rate, r is the syringe internal radius and h is the linear

speed of the syringe plungers.

Q=r 2 h (3)
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As the plunger speed () is the same for all of the syringes, it is possible to

calculate the concentration of reagents within the reactor. The total flow rate through the

reaction zone is given by Equation (4) and the total flow rate after the quench has been

added is given by Equation (5) where ,2 is the radius of syringe i (i.e. 2,o, is the radius

of the syringe attached to donor port, etc...).

2 _2 _2 . 4
Qu , ra2oo + , + rzva)h (4)

Qa, 4~rao, + +rtsta*,, + tEAh (5)

Thus the concentration inside the reaction zone of any component can be

calculated by Equation (6).
r2

C i - C. 2 2i' 2 (6)
2 2

rda9o0 + .p~, + r

5.5 Glycosylation in a Microchemical System

As a class of reactions, glycosylation covers a very broad range, encompassing a

myriad of glycosyl donors, acceptors, and types of linkages.2 Therefore, it was necessary

to focus on a specific glycosylation reaction to be used as a model to test the utility of

microchemical systems in optimizing organic reactions. For this purpose, two reactions

utilizing a single mannosyl donor were employed in this study (sections 5.5.2 and 5.5.3).

By examining these two simple reactions, it was possible to concentrate on overcoming

the unanticipated and inevitable challenges that arise when designing an untested

microchemical system. Additional details of the operation of the microdevice are

available in Chapter 6 (section 6.5).
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5.5.1 HPLC Internal Reference

Data generated by HPLC analysis of the microreactor glycosylations was

normalized by an UV-active compound added to the quench syringe which enters through

the secondary inlet (after the reaction zone). The HPLC standard normalizes the output

stream for HPLC analysis by compensating for solvent evaporation and variability in the

volume of collected sample. Because the glycosylation reaction was the subject of this

study, a-D-methyl 2,3,4,6-tetra-O-benzyl mannoside 5-19 was chosen as the ideal HPLC

standard (Figure 5.6). This standard was selected for high UV/Vis absorbance, and

compatibility with the reacting species.

OBn OBn

BnO-& O7
BnO't

5-1 OMe

Figure 5.6 HPLC internal reference standard 5-1.

5.5.2 Glycosylation of the Diisopropylidene Galactose Acceptor

Initially, the microchemical system was used to carry out the glycosylation by

mannosyl trichloroacetimidate 5-21° of diisopropylidene galactose 5-3 upon activation

with 0.2 equivalents TMSOTf in anhydrous dichloromethane (Scheme 5.1). The reactor

stream was quenched with a solution of triethylamine to terminate the reaction as it exited

the reaction zone of the device. As detailed in section 5.4, the concentration of the

reagents in the reactor was determined not only by the concentration inside the syringe

but also the flow rate of each stream. Therefore, all flow rates were maintained in

proportion to that of the donor inlet stream. The reaction temperature was varied from -

78 to 20 C, with glycosyl donor stream flow rates of 10, 20, 40 and 80 Il/ml, that

resulted in reactor residence times (reaction time) of 26.7, 53.4, 106.8, and 213.5

seconds. Glycosylating agent 5-2 (1.2 equivalents) and nucleophile 5-3 (1.0 equivalents)

were flowed through the microreactor with reaction zone concentrations of 0.0136 M and

0.0114 M respectively. The triethylamine quench also contained HPLC standard 5-1 (1.0

equivalent) and 25% dichloromethane to increase solubility.
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Scheme 5.1 Glycosylation of 5-3 with mannosyl donor 5-2. In addition to product 54,

formation of orthoester 5-5 is frequently observed.

HPLC analysis of the crude samples, normalized with internal standard 5-1,

illustrates a clear relationship between reaction temperature, reaction time and formation

of product 54 (Figure 5.7). For a given reaction time, the yield of product increases with

temperature until maximum conversion is achieved. Correspondingly, at temperatures

lower than the optimum, yield increases with increasing reaction time (i.e. decreasing

flow rate).
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Figure 5.7 Normalized HPLC traces from glycosylation of 5-3 with 5-2.. Legend,

reaction times: v 213.5 s, -+< 106.8 s, - A '53.4 s, .. 3 . 26.7 s.

Notably, we were able to observe the formation of orthoester 5-5 as a major side

product at lower temperatures. Formation of the orthoester is frequently encountered as

an undesired product for glycosylations involving a donor with a C2 ester (especially the

C2 acetate). 1 The orthoester is thought to occur when the C2 participating ester forms an

acyloxonium ion from the oxycarbocation formed upon activation of the glycosyl donor

(Scheme 5.2). The acyloxonium species can either react with the nucleophilic acceptor

(R'OH) to form the desired product (a 1,2-trans linked O-glycoside), or the orthoester

side-product. Orthoester formation is typically minimal for glycosylations activated with

acidic TMSOTf, as the orthoester can rearrange to the O-glycoside in the presence of a
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proton source. In the case of glycosylation of 5-3, the rapid formation of orthoester was

most pronounced around -70 °C, while at higher temperatures little or none was

observed. With longer reaction times and higher temperatures, rearrangement of the

orthoester to the desired product was evident.

OR o',O

H-OR' RO4 \

OR o <>OR oO OR'

RO-9; J , RO-a~
RO ~~ ~~RO-N is

0~~~~~~~4+~~~~~~ +RS~ H+ >
HUMOR' ~ O )OR.

OR Or-°

ROR
Scheme 5.2 Formation of orthoester is often observed for C2 acetate containing glycosyl

donors.

Unlike batch reactions, the results from the microreactor study show that

formation of the orthoester can be trapped, and profiled as a function of temperature and

time. A typical batch process is followed by TLC until no additional product formation is

observed. This process takes several minutes, and does not allow for live study of the

proceeding reaction. In contrast, the experimental design of this microreactor-based

study easily permits the examination of the progress of a reaction at set time intervals.

5.5.3 Glycosylation of a Hindered Acceptor

Following the initial efforts with the microreactor, a second model glycosylation

was attempted with the device. a-D-methyl 2,3,4-tri-O-benzyl mannoside 5-612 was

mannosylated with 5-2 to yield disaccharide 5 713 (Scheme 5.3). With the additional

steric bulk of three benzyl ethers (including the axial C2 benzyl ether), 5-6 is less reactive

as an acceptor for glycosylation than 5-3. In addition, the benzyl ethers facilitate UV

monitoring for HPLC analysis of unreacted acceptor in the reactor stream.
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Scheme 5.3 Glycosylation of 5-6 with mannosyl donor 5-2 to form disaccharide 5-7, and

orthoester side product 5-8.

In contrast to the results obtained for the coupling of 5-2 and 5-3, microreactor-

HPLC analysis of the union of 5-2 and 5-6 shows a unique reaction profile (Figure 5.8).

Optimal product yields are obtained from -60 to -40 °C, the same temperature range that

fosters formation of orthoester 5-8. The reaction outcome appears optimal at -60 °C with

a reaction time of just over 213 seconds, sufficient time for the orthoester to fully

rearrange to the desired product. As Figure 5.8 illustrates, there is some evidence that

orthoester 5-8 appears not as a side-product, but as an intermediate in the formation of the

desired O-glycoside 5-7. At low temperatures and short reaction times, it becomes clear

that 5-8 forms as stable product much more rapidly than 5-7.
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Figure 5.8 Normalized HPLC traces from glycosylation of 5-6 with 5-2.. Legend,

reaction times: - 213.5 s, -( * 106.8 s, - * 53.4 s, m) . 26.7 s.

From the perspective of optimizing the reaction for large scale production, this

analysis also demonstrates that nearly the same yield is achievable by running the

reaction at -35 C for 25.7 seconds. With very little change in overall yield, it is possible

to increase production by nearly an order of magnitude over the slower reactions run at
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lower temperatures (213 seconds at -60°C). This illustrates valuable knowledge regarding

process development for scale-up, in addition to reaction optimization. This type of

continuous-flow study offers significant advantage over a much more cumbersome and

costly batchwise optimization for developing methods for semi-preparative or preparative

scale production.

5.6 Summary and Conclusions

This study detailed the development of the first microchemical system for running

glycosylation reactions. The microreactor proved its capacity for rapidly obtaining

reaction profiles for two examples of this difficult organic transformation. The new setup

allowed 44 reactions to be completed in a single afternoon, varying temperature and

reaction time for the coupling. Each experiment required just over 2 mg of glycosylating

agent per reaction, representing a significant improvement over traditional methods for

optimizing the glycosylation reaction.

Microchemical devices are easily scaled for many applications. The continuous

flow nature of the reactor permits the microanalytical scale presented herein to be

adjusted to suit the needs of any particular study. Ultimately, the production capacity of

a reactor is limited only by the size of the reagent reservoirs. Larger syringes, or solvent

pumps, would permit a single device to easily produce 100 g of material in a day.

Following this success, one can envision a number of potential avenues for

pursuit. While the reactions performed in this study served only as models for typical

glycosylations, any number of current challenges to synthetic carbohydrate chemistry

may be examined with these microchemical systems. Such efforts might include

improving the yield of 1-mannoside formation, profiling challenging sialic acid

couplings, or improving methods for coupling with glucuronic and iduronic acid donors -

a hurdle to the synthesis of heparin oligosaccharides.

Finally, a microchemical approach to combinatorial chemistry is also within

consideration. Fabrication efforts are underway to multiplex an array of microreactors (3

by 3). Such an array of 9 reactors would easily permit the simultaneous glycosylation by
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3 glycosyl donors of 3 glycosyl acceptors to form 9 unique disaccharide products. As

fabrication methods continue to advance, possible applications for microchemical

systems will rapidly expand. The versatility of the silicon-based microchemical system

stands to fundamentally change method optimization and process development in

academia and industry.
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6.1 General Methods

All commercial materials were used without further purification, unless otherwise

noted. Dichloromethane (CH2CI2) and diethyl ether (Et2 0) were purchased from J. T.

Baker (CycletainerTM ) and passed through neutral alumina columns prior to use. Toluene

was purchased from J. T. Baker (CycletainerM ) and passed through neutral alumina and

copper (II) oxide columns prior to use. Analytical thin-layer chromatography was

performed on E. Merck silica gel 60 F2 54 plates (0.25 mm). Compounds were visualized

by dipping the plates in a cerium sulfate-ammonium molybdate solution, followed by

heating. Liquid chromatography was performed using forced flow of the indicated

solvent on Silicycle Inc. silica gel (230-400 mesh). H NMR spectra were obtained on

either a Bruker Avance 400 (400 MHz) or Varian VXR-500 (500 MHz) and are reported

in parts per million () relative to chloroform (7.26 ppm). Coupling constants (J) are

reported in Hz. 13C NMR spectra were recorded on either a Bruker Avance 400 (100

MHz) or a Varian VXR-500 (125 MHz) and are reported in 6 relative to CDCl3 (77.23

ppm) as an internal reference. IR spectra were obtained on a Perkin-Elmer 1600 series

FTIR spectrometer. ESI Mass spectrometry was performed on a Bruker Daltonics Apex

3 Tesla Fourier Transform Mass Spectrometer. Addition ESI mass spectrometry was

performed on a Waters Micromass ZMD 4000 mass spectrometer. MALDI-TOF mass

spectra were obtained on a PerSpective Biosystems Voyager Elite DE Spectrometer using

9:1 2,5-dihydroxybenzoic acid with 5-methoxysalicylic acid, 0.1 % TFA in 1:1

water:acetonitrile or a-cyano-4-hydroxycinnamic acid as the matrix.

6.2 Experimentals for Chapter 2

TIPSO

2-12

1,5-Anhydro-4-O-benzyl-3-O-(4-bromobenzyl)-2-deoxy-6-O-triisopropylsilyl-D-

arabino-hex-1-enitol 2-12. 1,5-anhydro-3-O-(4-bromobenzyl)-2-deoxy-6-O-

triisopropylsilyl-D-arabino-hex-l-enitol 2-11 (7.80 g, 16.5 mmol) was dissolved in DMF

(125 mL) and cooled on an ice-bath to 0 C. Sodium hydride (0.8 g, 60% in mineral oil,
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19.9 mmol) was carefully added to the solution, and stirred for 20 min at 0 C. Benzyl

bromide (3.39 g, 19.9 mmol) was added to the reaction mixture and slowly warmed to

room temperature for 2 h. Methanol (3 mL) was slowly added to quench the reaction,

which was further diluted in 150 mL water. The solution was extracted with diethyl ether

(3x 300 mL). After concentration in vacuo the resulting residue was purified by flash

column chromatography on silica gel (2-5% EtOAc/hexanes) to afford 8.60 g (93%) of

2-12 as a clear oil. [a]24D: -19.6° (c 1.1, CH2C 2); IR (thin film) 2942, 2865, 1647, 1240,

1101, 682 cm'; H NMR (CDCl 3) 7.46-7.44 (d, J = 8.2 Hz, 2H), 7.36-7.30 (, 5H),

7.22-7.20 (d, J= 8.2 Hz, 2H), 6.41 (dd, J= 1.5, 6.1 Hz, 1H), 4.85-4.78 (, 3H), 4.59 (d, J

= 11.9 Hz, 1H), 4.52 (d, J= 12.2 Hz, 1H), 4.20-4.18 (, 1H), 4.07-3.93 (, 4H), 1.10-

1.07 (, 21H); 13C NMR (CDCl3) 145.1, 138.6, 137.7, 129.5, 128.6, 128.1, 128.0,

121.6, 99.5, 78.3, 76.0, 74.2, 74.1, 70.0, 62.0, 18.2, 18.2, 12.2; ESI MS m/z (M + Na+)

calcd 583.1849, found 583.1838.

TIPSO

BnO IR PBBO- 0b
OH

2-13

4-Pentenyl 4-O-benzyl-3-O-(4-bromobenzyl)-6-O-triisopropylsilyl- -D-

glucopyranoside 2-13. Glucal 2-12 (1.82 g, 3.23 mmol) was dissolved in CH2Cl2 (6 mL)

and cooled to 0 C. A 0.08 M solution of dimethyldioxirane in acetone (48.5 mL, 3.88

mmol) was added and the reaction was stirred for 15 min. After the solvent was removed

the remaining residue was dried in vacuo for 1.5 h and subsequently dissolved in CH2Cl2

(10 mL). The solution was cooled to -78 C followed by the addition of 4-penten-1-ol

(1.61 mL, 16.15 mmol). A 1.0 M solution of ZnCl2 in diethyl ether (3.55 mL, 3.55

mmol) was added and the reaction was warmed slowly to room temperature and stirred

over 16 h. The reaction was diluted with EtOAc (200 mL) and washed with sat. aqueous

NaHCO 3 (2 x 100 mL), water (2 x 100 mL) and brine (2 x 100 mL) and dried (Na2SO4).

The organic phase was concentrated in vacuo and the resulting residue purified by flash

column chromatography on silica gel (15% EtOAc/hexanes) to afford 1.86 g (87%) of 2-

13 as a clear oil. [a] 2 4D: -20.8 ° (c 1.3, CH2Cl2); IR (thin film) 3456, 2941, 2865, 1115,

1069, 689 cm-; H NMR (CDCl3 ) 6 7.36 (d, J= 6.5 Hz, 2H), 7.26-7.16 (, 7H), 5.79-
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5.69 (m, 1H), 4.98-4.89 (m, 2H), 4.81 (d, J= 11.4, 1H), 4.82 (d, J= 11.6, 1H), 4.79 (d, J

= 12.5, 1H), 4.63 (d, J= 11.6, 1H), 4.15 (d, J= 7.5, 1H), 3.92-3.76 (, 3H), 3.60-3.51

(m, 4), 3.25-3.21 (m, 1H), 2.28-2.27 (m, 1H), 2.08-2.02 (m, 2H), 1.68-1.61 (m, 2H),

1.07-0.89 (m, 21H); 3C NMR (CDCl3) 6 138.5, 138.3, 138.0, 131.7, 129.8, 128.7, 128.1,

128.0, 121.7, 115.1, 102.6, 84.6, 77.4, 76.4, 75.3, 75.1, 74.4, 69.2, 62.6, 30.5, 29.0, 18.2,

12.2; ESI MS m/z (M + Na+) calcd 685.2530, found 685.2532.

TIPSO OBn

BnOl i2¥
PBBO BO ~,,,J

2-8

4-Pentenyl 2,4-di-O-benzyl-3-O-(4-bromobenzyl)-6-O-triisopropylsilyl-[-D-

mannopyranoside 2-8. Glucoside 2-13 (0.564 g, 0.85 mmol) was azeotropically dried

with toluene (3 x 3 mL) and dissolved in dimethyl sulfoxide (3.5 mL). Acetic anhydride

(1.75 mL) was added and the reaction was allowed to stir 24 h at room temperature.

After the solvent was removed in vacuo, addition of CH2CI2 (20 mL) was followed by

washing with water (2 x 20 mL) and drying of the organic phase (Na2SO4). After

concentration in vacuo the residue was dissolved in 1:1 CH2Cl2:MeOH (10 mL) and

cooled to 0 C. NaBH4 (0.161 g, 4.25 mmol) was slowly added and the reaction was

stirred 16 h at room temperature. CH2Cl2 ( 00 mL) was added and the organic phase was

washed with water (100 mL), 1% aqueous citric acid (2 x 100 mL), sat. aqueous NaHCO 3

(100 mL), brine (100 mL) and dried (Na2SO4). The organic phase was dried in vacuo to

give a clear oil and purified by flash column chromatography on silica gel (6-7%

EtOAc/hexanes) to afford 0.42 g (74%) of the desired 4-pentenyl 4-O-benzyl-3-O-(4-

bromobenzyl)-6-O-triisopropylsilyl-f3-D-mannopyranoside. [a]24D: -32.0 ° (c 1.3,

CH2C12); IR (thin film) 3439, 2940, 2864, 1638, 1105, 1069, 683 cnl; 1H NMR (CDC13)

6 7.36 (d, J= 8.4 Hz, 2H), 7.29-7.17 (, 7H), 5.78-5.68 (m, 1H), 4.97-4.87 (m, 2H), 4.80

(d, J= 10.9 Hz, 1H), 4.68- 4.53 (m, 3), 4.32 (d, J= 0.9 Hz, 1H), 3.98 (m, 1H), 3.92-

3.78 (m, 4H), 3.46-3.40 (m, 2H), 3.19-3.15 (, H), 2.26 (d, J= 2.9 Hz, H), 2.04 (m,

2H), 1.67-1.60 (m, 21H), 1.05-0.97 (m, 2); 13C NMR (CDC13) 138.8, 138.5, 137.5,

131.9, 129.9, 128.9, 128.5, 128.2, 122.0, 115.2, 99.8, 82.0, 76.8, 75.6, 74.3, 71.0, 69.1,

68.9, 63.0, 30.7, 29.1, 18.4, 12.4; ESI MS m/z (M + Na+) calcd 685.2530, found
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685.2539. 4-Pentenyl 4-O-benzyl-3-O-(4-bromobenzyl)-6-O-triisopropylsilyl-3-D-

mannopyranoside (1.00g, 1.5 mrmol) was azeotropically dried with toluene (3 x 3 mL)

and dissolved in DMF (15 mL). The solution was cooled to 0 °C and sodium hydride (90

mg, 60% in mineral oil, 1.81 mmol) was carefully added and the mixture was warmed to

room temperature. Benzyl bromide (214 L, 1.81 mmol) was added to the solution, and

stirred for 2 h. The reaction was diluted with diethyl ether (100 mL), washed with water

(100 mL), followed by extraction of the combined aqueous phase with diethyl ether (50

mL). The combined organic phase was washed with sat. aqueous NaHCO3 (100 mL),

water (100 mL), brine (100 mL), dried (Na2 SO4) and concentrated to give a thick oil in

vacuo. The residue was purified by flash column chromatography on silica gel (5 -

20% EtOAc/hexanes) to afford 1.17 g (98%) of 2-8. [a]2 4D: -54.0° (c 1.2, CH2Cl2); IR

(thin film) 2940, 2865, 1454, 1361, 1107, 1070, 696 cm"; H NMR (CDC13) 6 7.49-7.28

(min, 12H), 7.17 (d, J= 8.4 Hz, 2H), 5.92-5.82 (, H), 5.08-4.85 (, 5H), 4.68 (d, J=

11.0 Hz, 1H), 4.05-3.89 (, 5H), 3.51-3.43 (m, 2H), 3.32-3.28 (m, 1H), 2.18 (m, 2 H),

1.79-1.72 (, 1H), 1.16-1.04 (m, 21H); 13C NMR (CDC1 3 ) 139.1, 138.7, 138.5, 137.6,

131.6, 129.4, 128.6, 128.4, 128.2, 127.9, 127.5, 121.7, 115.1, 102.0, 82.6, 77.4, 75.4,

75.0, 74.0, 73.7, 70.7, 69.1, 63.3, 30.6, 29.2, 18.2, 12.2; ESI MS in/i (M + Na+) calcd

775.3000, found 775.3020.

TIPSO OBn\\

BnO~2
2-14

4-Pentenyl 2,4-di-O-benzyl-6-O-triisopropylsilyl-,-D-mannopyranoside 2-14.

Glucoside 2-8 (0.507 g, 0.671 mmol) was azeotropically dried with toluene (3 x 3 mL)

then for 1 h in vacuo. The residue was dissolved in toluene (2 mL) followed by the

addition of N-methyl aniline (86 mg, 0.805 mnmol). An oven-dried Schlenk flask was

evacuated and backfilled with argon (5 x). The flask was charged with Pd2(dba)3 (12.3

mg, 2 mol %), (o-biphenyl)P(t-Bu) 2 (4 mol %), and NaOtBu (0.090 g, 0.939 mmol),

evacuated and backfilled with argon (5 x). A rubber septum was installed and the aryl

bromide/amine solution was added via cannula. The flask was sealed using a teflon

screwcap and the reaction mixture was heated to 80 C with stirring. After 18 h, the
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reaction was cooled to room temperature, diluted with diethyl ether (20 mL), filtered

through a pad of celite, and concentrated in vacuo. The crude product was purified by

flash column chromatography on silica gel (2 - 5% EtOAc/hexanes) to yield 0.483 g

(92%) of 4-pentenyl 4-O-benzyl-3-O-(4-(N-methyl-N-phenylamino)benzyl)-6-O-

triisopropylsilyl-I-D-mannopyranoside. [a]24 D: -52.6° (c 1.5, CH2C 2); IR (thin film)

2940, 2865, 1595, 1497, 1105, 1067, 696 cm'l; H NMR (CDCI3) 8 7.51 (d, J= 6.9 Hz,

2H), 7.37-7.23 (, 13H), 7.08-6.97 (, 4H), 5.93-5.82 (, 1H), 5.09-4.89 (, 5H), 4.67

(d, J= 10.9 Hz, 1H), 4.54 (d, J= 11.5 Hz, 1H), 4.47 (d, J= 11.5 Hz, 1H), 4.40 (s, 1H),

4.06-3.90 (m, 5H), 3.55 (dd, J= 3.0, 9.4 Hz, 1H), 3.49-3.43 (, 1H), 3.35-3.29 (, 4H1),

2.21-2.15 (, 2H), 1.79-1.71 (, 2H), 1.16-1.10 (, 21H); 13C NMR (CDC13) 6 149.3,

148.9, 139.3, 138.9, 138.5, 131.0, 129.4, 129.2, 128.5, 128.4, 128.3, 128.2, 127.8, 127.4,

121.6, 120.9, 120.6, 115.1, 102.0, 82.6, 75.4, 75.0, 74.1, 73.7, 71.5, 69.0, 63.4, 40.5, 30.6,

29.2, 18.2, 12.2; ESI MS m/z (M + Na+) calcd 802.4479, found 802.4473. The aminated

product (68 mg, 0.0876 mmol) was dissolved in CH2CI2 (3 mL) followed by the addition

of dichloroacetic acid (72 iL, 0.876 mmol), resulting in a transparent blue color. The

reaction was stirred for 30 min at room temperature then diluted with CH2C12 (20 mL).

Washing with sat. aqueous NaHCO3 (2 x 30 mL), brine (30 mL), was followed by drying

(Na2SO4) and concentration in vacuo. The crude product was purified by flash column

chromatography on silica gel (2 - 5% EtOAc/ toluene) to afford 46.3 mg (90%) of 2-14.

[a] 24D: -31.4 ° (c 1.3, CH2CI2); IR (thin film) 3446, 2940, 2865, 1734, 1455, 1249, 1085,

695 c'; H NMR (CDC13) 6 7.32-7.17 (, 10H), 5.80-5.69 (, 1H), 5.00-4.87 (, 3H),

4.80 (d, J= 11.1 Hz, 1H), 4.56-4.53 (m, 2H), 4.39 (d, J= 0.4 Hz, 1H), 3.96-3.83 (, 3H),

3.73 (d, J= 3.1 Hz, 1H), 3.64-3.53 (, 2H), 3.41-3.35 (, IH), 3.20-3.17 (, 1H), 2.48

(d, J= 9.7 Hz, 1H), 2.08-2.03 (m, 2H), 1.67-1.62 (, 2H), 1.07-0.94 (, 21H); 13 C NMR

(CDC13 ) 138.8, 138.7, 138.4, 128.5, 128.2, 127.9, 115.0, 101.7, 77.9, 76.9, 76.7, 75.0,

74.6, 74.1, 69.1, 63.2, 30.6, 29.2, 18.2, 12.5; ESI MS nm/z (M + Na+ ) calcd 607.3425,

found 607.3440.
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OBn OAc

Bn 0L OTIPS \

BnO .0~

2-15

4-Pentenyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 - 3)-2,4-di-O-

benzyl-6-O-triisopropylsilyl-,-D-mannopyranoside 2-15. Mannosyl

trichloroacetimidate 2-9 (65 mg, 0.10 mmol) and glycosyl acceptor 2-14 (30 mg, 0.0513

mmol) were azeotropically dried with toluene (3 x 3 mL) and dissolved in CH2C12 (1

mL). The solution was cooled to -20 C for 15 min, followed by the addition

TBDMSOTf (2.4 .L, 0.010 mmol), and stirred for 30 min at -20 C. The reaction was

quenched by addition of Et3N (50 p.L), and dried in vacuo. The crude product was

purified by flash column chromatography on silica gel (2 - 5% EtOAc/toluene) to afford

54 mg (99%) disaccharide 2-15. [] 24 D: -15.6° (c 1.4, CH2C12); IR (thin film) 2940, 2865,

1745, 1235, 1078, 697 cm'; 'H NMR (CDC13) 8 7.32-7.04 (, 25H), 5.79-5.69 (m, 1H),

5.44-5.43 (, 1H), 5.12 (d, J = 1.2 Hz, 1H), 4.95-4.87 (m, 3H), 4.79 (d, J = 11.1 Hz, 1H),

4.70-4.35 (, 8H), 4.29 (s, liH), 3.93-3.54 (m, 9H), 3.52-3.51 (m, 2H) 3.33-3.27 (, 1H),

3.17-3.13 (m, H), 2.06-1.99 (m, 5H), 1.64-1.57 (, 2H), 1.04-0.93 (m, 21H); 13C NMR

(CDC13) 170.5, 139.2, 138.8, 138.4, 138.4, 138.3, 138.1, 128.6, 128.5, 128.4, 128.4,

128.3, 128.2, 127.9, 127.9, 127.8, 127.7, 127.6, 127.2, 114.9, 101.7, 99.9, 80.6, 78.3,

77.7, 77.2, 75.3, 75.0, 74.5, 73.9, 73.8, 73.6, 72.2, 72.1, 69.2, 69.1, 69.0, 63.0, 30.6, 29.2,

21.2, 18.2, 12.5; ESI MS m/z(M + Na+) calcd 1081.5468, found 1081.5428.

OBn OAc

OHBnO OH OBn~~~Bno-S I

05
2-16

4-Pentenyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1l*3)-2,4-di-O-

benzyl-P-D-mannopyranoside 2-16. To a solution of disaccharide 2-15 (0.108g, 0.103

mmol) in THF (2 mL), water (2 mL) and trifluoroacetic acid (0.8 mL) were added. The

turbid white solution was stirred for 2 h at room temperature. The reaction was diluted

with diethyl ether (30 mL) and washed with sat. aqueous NaHCO3 (2 x 20 mL), brine (20

mL), dried (Na2SO4) and concentrated. The residue was purified by flash column
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chromatography on silica gel (10 - 30% EtOAc/hexanes) to afford 84.0 mg (91%) of

disaccharide 2-16. [a]2 4 D: -24.0° (c 0.5, CH2CI2); IR (thin film) 3443, 2089, 1639, 1234,

698 cm'l; H NMR (CDC13) 8 7.42-7.17 (m, 25H), 5.90-5.80 (m, 1H), 5.55-5.54 (m, 1H),

5.26 (d, J= 1.5 Hz, 1H), 5.09-4.97 (m, 3H), 4.91 (d, J= 11.0 Hz, 1H), 4.84-4.78 (m, 2H),

4.73-4.43 (m, 8H), 4.43-3.75 (m, 9H), 3.69-3.63 (m, 2H), 3.44-3.41 (m, 1H), 3.39-3.31

(m, 1IH), 2.22-2.12 (m, 6H), 1.78-1.70 (m, 2H); 3C NMR (CDCI3) 170.5, 138.7, 138.6,

138.3, 138.2, 137.9, 137.9, 128.6, 128.6, 128.5, 128.4, 128.3, 128.1, 128.0, 128.0, 127.8,

127.8, 127.8, 127.7, 127.6, 115.4, 101.8, 99.8, 80.0, 78.1, 77.5, 76.0, 75.4, 75.0, 74.4,

74.4, 72.3, 72.1, 69.7, 69.2, 68.9, 62.3, 30.4, 29.0, 21.2; ESI MS m/z (M + Na+ ) calcd

925.4133, found 925.4141.

OBz OBn

OAC BzO
BnO ' ~ 0 %

2-7

4-Pentenyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 -- 3)- [2,4-di-O-

benzyl-3,6-di-O-benzoyl-a-D-mannopyranosyl-(1-- 6)]-2,4-di-O-benzyl-13 -D-

mannopyranoside 2-7. Mannosyl trichloroacetimidate 2-10 (94 mg, 0.150 mmnol) and

disaccharide 2-15 (80 mg, 0.088 mmol) were combined, azeotropically dried with toluene

(3 x 3 mL) and dissolved in diethyl ether (2 mL). The solution was cooled to -20 °C for

15 min, followed by the addition of TBDMSOTf (4 ~xl, 0.018 mmol), and stirred for 30

min at -20 °C. The reaction was quenched by the addition of Et3N (50 jAL), and dried in

vacuo. The crude product was purified by flash column chromatography on silica gel (5

- 10% EtOAc/toluene) to afford 120 mg (93%) oftrisaccharide 2-7. [a]24D: +9.1° (c 1.0,

CH2 C12 ); IR (thin film) 2917, 1721, 1452, 1270, 1097, 1070, 698 cm'; 1H NMR (CDC13)

6 7.98-7.92 (m, 4H), 7.49-7.31 (m, 4H), 7.25-6.95 (m, 36H), 6.86-6.83 (m, 1H), 5.64-

5.55 (m, 2H), 5.42-5.40 (m, 1H), 5.11 (s, 1H), 4.85-4.73 (m, 5H), 4.62-4.40 (m, 10H),

4.35-4.16 (m, 5H), 4.03-3.65 (m, 12H), 3.53-3.46 (m, 2H), 3.27-3.21 (m, 2H), 1.97 (s,

3H), 1.94-1.88 (m, 2H), 1.51-1.42 (m, 2H); 13C NMR (CDC13) o 170.4, 166.8, 166.0,

139.0, 139.0, 138.8, 138.6, 138.3, 138.3, 137.9, 133.5, 133.3, 130.5, 130.5, 130.2, 128.9,
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128.9, 128.8, 128.8, 128.7, 128.7, 128.6, 128.5, 128.4, 128.2, 128.2, 128.1, 128.0, 127.8,

127.7, 127.6, 115.2, 101.9, 100.1, 98.6, 80.7, 78.4, 77.8, 77.1, 76.1, 75.7, 75.5, 75.4, 75.2,

74.8, 74.6, 74.4, 73.8, 73.6, 72.5, 72.5, 72.5, 70.4, 69.6, 69.4, 69.3, 66.5, 64.0, 30.6, 29.3,

21.5; ESI MS n/z (M + Na+) calcd 1475.6130, found 1475.6141.

OH
OBn

OBn BnO"fk
I OH HO

BnO 0) Oun
O__Bo- ~ 0

2-17

4-Pentenyl 3,4,6-tri-O-benzyl-c-D-mannopyranosyl-(1- 3)-[2,4-di-O-benzyl-a-D-

mannopyranosyl-(1-) 6)]-2,4-di-O-benzyl- -D-mannopyranoside 2-17. Trisaccharide

2-7 (100 mg, 0.0687 mmol) was dissolved in CH2Cl2:MeOH (4 mL, 1:1). A solution of

sodium methoxide in MeOH (450 FL, 25% w/v, 2 mmol) was added and the reaction was

heated on an oil-bath to 45 °C for 1.5 h. The reaction was quenched with DOWEX-50W-

hydrogen strongly acidic ion-exchange resin, filtered, and dried in vacuo. The resulting

crude product was purified by flash column chromatography on silica gel (10 - 40%

EtOAC/toluene) to afford 73.2 mg (89%) of trisaccharide 2-17. [a] 24 D: 11.0° (c 1.3,

CH2Cl2); IR (thin film) 3470, 2922, 1453, 1364, 1072, 697 cm'; H NMR (CDCl3 ) 

7.30-7.05 (, 35H), 5.72-5.61 (, 1H), 5.18 (d, J= 1.2 Hz, 1H), 5.11 (d, J = 0.97 Hz,

1H), 4.91-4.83 (, 4H), 4.76-4.64 (, 3H), 4.58-4.25 (, 10H) 3.92-3.86 (, 3H), 3.83-

3.55 (, 13H), 3.54-3.49 (, 2H), 3.29-3.20 (, 2H), 2.23 (bs, 2H), 2.00-1.94 (m, 2H),

1.84 (bs, 1H), 1.56-1.50 (, 2H); 3C NMR (CDCl 3) 139.0, 138.9, 138.9, 138.6, 138.4,

138.4, 138.4, 138.2, 138.2, 129.0, 129.0, 128.9, 128.8, 128.7, 128.7, 128.6, 128.4, 128.3,

128.3, 128.1, 128.1, 128.1, 128.1, 128.0, 127.9, 127.9, 127.8, 115.3, 102.1, 101.7, 98.0,

80.6, 80.3, 79.1, 77.9, 77.6, 76.9, 76.1, 75.7, 75.4, 75.2, 73.7, 73.0, 72.6, 72.2, 72.2, 71.7,

69.7, 69.4, 69.1, 66.5, 62.7, 30.6, 29.3; ESI MS m/z (M + Na+) calcd 1225.5500, found

1225.5497.
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2-6

4-Pentenyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 2)-3,4,6-tri-O-

benzyl-a-D-mannopyranosyl-(14 3)-[2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1 3)-[2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-

(1- 6)1-2,4-di-O-benzyl-a-D-mannopyranosyl-(1- 6)]-2,4-di-O-benzyl-fl -D-

mannopyranoside 2-6. Trisaccharide acceptor 2-17 (25 mg, 0.0207 mmol) and

mannosyl trichloroacetimidate 2-9 (60 mg, 0.093 mmol, 4.5 eq) were combined,

azeotropically dried with toluene (3 x 3 mL) and dissolved in CH2C12 (2 mL). The

solution was cooled to -20 C for 15 min, followed by the addition of TMSOTf (2.2 IL,

0.0123 mmol). The reaction mixture was stirred and warmed to room temperature over

40 min. The reaction was quenched by the addition of Et3N (100 pL), and dried in

vacuo. The crude product was purified by flash column chromatography on silica gel (2

-. 20% EtOAc/toluene) to afford 51.3 mg (94%) of hexasaccharide 2-6. [] 24D: +34.9 (c

1.3, CH2C12); IR (thin film) 3029, 2916, 1744, 1235, 1076, 736, 697 c7 ; H NMR

(CDCI3) a 7.40-7.10 (, 80H), 5.77-5.70 (, 1H), 5.53-5.52 (, 3H), 5.24-5.20 (, 2H),

5.03-4.98 (, 3H), 4.94-4.90 (, 3H), 4.89-4.81 (, 5H), 4.76 (d, J= 2.3 Hz, 1H), 4.73

(app. s, 1H), 4.68-4.61 (, 6H), 4.59-4.53 (, 6H), 4.50-4.39 (, 10H1), 4.37-4.34 (nm,

1H), 4.28-4.23 (, 2H), 4.13-4.09 (, 1H), 4.07-4.00 (, 2H), 3.99-3.89 (, 10H11), 3.87-

3.78 (, 6H), 3.72-3.67 (, 6H), 3.62-3.54 (, 7H), 3.36-3.30 (, 2H), 3.22-3.19 (nm,

1H), 2.16 (s, 3H), 2.13 (s, 3), 2.09 (s, 3H), 2.04-2.01 (, 21), 1.60-1.56 (, 2H); 13C

NMR (CDC13) 170.4, 170.3, 170.3, 139.0, 138.9, 138.8, 138.7, 138.5, 138.5, 138.5,

138.4, 138.4, 138.3, 138.2, 138.0, 138.0, 129.2, 128.7, 128.7, 128.6, 128.6, 128.5, 128.5,

128.5, 128.4, 128.4, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.9,

127.9, 127.8, 127.8, 127.7, 127.7, 127.7, 127.7, 127.6, 127.6, 127.6, 127.6, 127.5, 127.5,

127.4, 127.4, 114.9, 101.7, 101.2, 100.0, 99.6, 98.4, 97.0, 81.7, 79.8, 78.4, 78.2, 77.8,
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77.6, 77.5, 75.4, 75.3, 75.2, 75.2, 75.0, 74.9, 74.7, 74.2, 74.1, 73.6, 73.5, 73.4, 73.4, 72.6,

72.4, 72.3, 72.1, 72.0, 72.0, 72.0, 71.7, 71.4, 71.0, 69.5, 69.4, 69.0, 68.8, 68.7, 68.4, 66.3,

66.1, 31.0, 29.6, 21.9, 21.8; HSQC anomeric cross-peaks (CDCl3 ) o (5.22 x 101.1), (5.21

x 99.9), (5.06 x 99.5), (5.02 x 98.4), (4.93 x 97.0), (4.23 x 101.8); ESI MS m/z (M +

Na+) calcd 2648.1622, found 2648.1530.

OBnOH

OIBn OH Bno .L?
OBnOH BnO BnO )

BnO.i BnO- 0 OBn-

BnO-a""_'OO_n 0B~ BnO0 ~B

Bn 0 0 OBn \0B BnO L

2-18

4-Pentenyl 3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 2)-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1-3)-[3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 3)-[3,4,6-tri-

O-benzyl-a-D-mannopyranosyl-(1- 6)]-2,4-di-O-benzyl-a-D-mannopyranosyl-

(1 6)]-2,4-di-O-benzyl- -D-mannopyranoside 2-18. Hexasaccharide 2-6 (46 mg,

0.0175 mmol) was azeotropically dried with toluene (3 x 3 mL) and dissolved in CH2Cl2

(1.5 mL). MeOH (5 mL) was added followed by a solution of sodium methoxide in

MeOH (120 pL, 25% w/v, 0.525 mmol). The reaction was stirred for 1 h, quenched with

DOWEX-SOW-hydrogen strongly acidic ion-exchange resin, filtered, and dried in vacuo.

The resulting residue was purified by flash column chromatography on silica gel (5 

20% EtOAc/toluene) to afford 45.7 mg (quant.) of hexasaccharide triol 2-18. [a]24D:

+34.3 ° (c 1.0, CH2C12); IR (thin film) 3448, 3029, 2916, 1453, 1053, 697 cm'l; H NMR

(CDC13) o 7.48-6.81 (m, 80H), 5.67-5.57 (m, 11), 5.16 (app. s, 1H), 5.11 (app. s, 1H),

5.02 (app. s, 1H), 4.97-4.86 (m, 2H), 4.83-4.78 (m, 3H), 4.75-4.69 (m, 5H), 4.65-4.53 (m,

4H11), 4.51-4.45 (m, 12H11), 4.40-4.35 (m, 81), 4.30-4.22 (m, 3H), 4.13 (app. s, 1H), 4.02-

3.99 (, 4H), 3.92-3.82 (m, 3H), 3.81-3.64 (m, 14H11), 3.62-3.43 (m, 13H11), 3.36-3.33 (m,

1H), 3.24-3.19 (m, 1), 3.13-3.10 (m, 1H), 2.28-2.07 (bs, 3H), 1.95-1.89 (m, 2H), 1.53-

1.43 (m, 2H); 13C NMR (CDCl3) 6 139.5, 139.4, 139.3, 139.1, 139.0, 139.0, 138.9, 138.8,

138.8, 138.7, 138.7, 138.6, 129.3, 139.2, 129.1, 129.1, 129.1, 129.0, 129.0, 129.0, 128.9,
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128.9, 128.8, 128.6, 128.6, 128.5, 128.5, 128.4, 128.4, 128.4, 128.3, 128.3.128.2, 128.1,

128.1, 128.0, 127.9, 115.4, 102.1, 102.1, 101.8, 101.8, 100.5, 97.5, 82.5, 80.8, 80.5, 80.3,

78.5, 78.4, 77.9, 76.2, 75.9, 75.8, 75.7, 75.5, 75.4, 75.2, 74.9, 74.9, 74.6, 74.2, 74.1, 74.0,

73.9, 73.2, 73.0, 72.8, 72.7, 72.6, 72.5, 72.3, 72.0, 72.0, 71.9, 70.1, 69.9, 69.7, 69.5, 69.4,

22.2, 21.8, 14.9; ESI MS m/z (M + Na+) calcd 2522.1305, found 2522.1307.

2-5

4-Pentenyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 2)-3,4,6-tri-O-

benzyl-a-D-mannopyranosyl-(14 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 3)-

[2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 - 2)-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1-- 3)-[2--acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1-) 2)-

3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1-' 6)]-2,4-di-O-benzyl-a-D-

mannopyranosyl-(1- 6)]-2,4-di-O-benzyl-l -D-mannopyranoside 2-5. Hexasaccharide

2-18 (19 mg, 0.0075 mmol) and mannosyl trichloroacetimidate 2-9 (36 mg, 0.0561

mmol, 7.5 eq) were azeotropically dried with toluene (3 x 3 mL), dried an additional 1.5

h in vacuo and dissolved in diethyl ether (2mL). The solution was cooled to -20 C for

15 min, followed by the addition of TMSOTf(1 RL, 0.005 mmol), and stirred for 30 min.

The reaction was quenched by the addition of Et3N (50 L), and dried in vacuo. The

crude product was purified by flash column chromatography on silica gel (2 - 18%

EtOAc/toluene) affording 24 mg (80%) of nonasaccharide 2-5. [a] 24 D: +24.7° (c 0.9,

CH2CI2); IR (thin film) 3029, 2864, 1744, 1453, 1137, 1056, 736, 697 cm-'; H NMR

(CDC13) 7.34-7.07 (m, 124H), 7.02-7.00 (m, 1H), 5.69-5.60 (m, 1H), 5.55-5.52 (m,

4H), 5.24-5.23 (m, 1H), 5.17 (m, 1H), 5.14 (m, 1H), 5.11-5.08 (m, 3H), 5.00-4.95 (m,

2H), 4.89-4.80 (m, 7H), 4.77-4.74 (m, 2H), 4.73-4.71 (m, 1H), 4.68-4.63 (m, 4H), 4.61-
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4.60 (m, 2H), 4.58-4.56 (m, 4H), 4.55-4.54 (m, 6H), 4.51-4.45 (m, 9H), 4.43-4.30 (m,

12H), 4.22-4.16 (m, 3H), 4.13-4.08 (m, 4H), 4.06-3.97 (m, H), 3.94-3.82 (m, 21H),

3.78-3.73 (m, 4H), 3.67-3.55 (m, 10H), 3.52-3.50 (m, 3H), 3.46-3.35 (m, 5H), 3.30-3.26

(m, 1H), 3.18-3.13 (m, 2H), 2.13 (s, 3H), 2.12 (s, 3H), 2.08 (s, 3H), 1.98-1.94 (m, 2H),

1.55-1.48 (m, 2H); 13C NMR (CDCI3) 6 171.1, 171.0, 171.0, 132.5, 131.3, 130.3, 129.8,

129.3, 128.7, 128.3, 128.0, 128.0, 127.3, 126.6, 126.7, 126.2, 125.7, 115.0, 101.4, 101.4,

101.1, 100.7, 99.7, 99.5, 99.5, 99.3, 97.0, 82.2, 80.1, 79.9, 79.5, 79.2, 79.1, 78.4, 78.3,

77.4, 75.5, 75.4, 75.4, 75.2, 75.2, 75.2, 74.9, 74.9, 74.2, 73.5, 73.5, 73.4, 73.3, 73.3, 72.7,

72.8, 72.3, 72.2, 72.1, 72.0, 72.0, 71.9, 71.4, 71.4, 70.9, 70.8, 70.5, 69.4, 69.2, 69.2, 69.2,

69.0, 68.9, 68.8, 68.8, 68.8, 68.2, 68.2, 66.7, 66.6, 66.6, 66.6, 30.3, 29.1, 22.0, 21.3, 21.0,

20.5; HSQC anomeric cross-peaks (CDC13) (5.21 x 101.3), (5.18 x 101.2), (5.12 x

100.7), three (5.10 x 99.6), (5.00 x 99.6), (4.86 x 97.0), (4.16 x 102.0); ESI MS m/z (M +

Na+) calcd 3944.7437, found 3944.7440.

2-19

4-Pentenyl 3,4,6-tri-O-benzyl-ac-D-mannopyranosyl-(1- 2)-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1-- 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 3)-[3,4,6-tri-

O-benzyl-a -D-mannopyranosyl-(1 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-

(1 -3)-[3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 2)-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1 - 6)]-2,4-di-O-benzyl-a-D-mannopyranosyl-(1 '-6)] -2,4-di-O-

benzyl-P-D-mannopyranoside 2-19. Nonasaccharide 2-5 (14 mg, 0.0035 mmol) was

dissolved in a mixture of CH2C12:MeOH (3 mnL, 1:2) and cooled to 0 °C. A solution of

sodium methoxide in MeOH (35 ptL, 25% w/v) was added and the reaction was slowly

warmed to room temperature over 1 h, quenched with DOWEX-50W-hydrogen strongly
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acidic ion-exchange resin, filtered, and dried in vacuo. The resulting residue was purified

by flash column chromatography on silica gel (5 -> 30% EtOAc/toluene) affording 12

mg (90%) of nonasaccharide triol 2-19. 1H NMR (CDC13) 7.44-6.92 (m, 125H), 5.6-

5.51 (m, H), 5.13 (, 2H), 5.09-5.08 (m, 3H), 5.02 (app. s, 1iH), 4.94 (app. s, 1H), 4.79

(d, J= 10.5 Hz, 1iH), 4.77-4.70 (m, 9H), 4.66-4.28 (, 41H), 4.27-3.30 (m, 56H), 3.27-

3.07 (m, 3), 2.29 (bs, 2H), 2.23 (bs, iH), 1.88-1.85 (m, 2H), 1.43-1.37 (m, 2H).

OH

OH HOL

.o'kxL o , , _ H O"~'"'J,0

2-4

n-Pentyl a-D-mannopyranosyl-(1 3)-[a-D-mannopyranosyl-(1l 6)I-fl-D-

mannopyranoside 2-4. Activated palladium on carbon (100 mg, 10%) was suspended in

ethanol (10 mL) and exposed to an atmosphere of hydrogen gas (balloon). After 30 min,

trisaccharide triol 2-17 (70 mg, 0.0581 mmol) in EtOAc (5 mL) was added by cannula

and stirred for 48 h under an atmosphere of hydrogen. The product was filtered through

celite, dried in vacuo, to afford 6 mg (79%) trisaccharide 2-4. [a] 24 D: +35.0° (c 0.4,

H20:EtOH 1:1); H NMR (D20) 4.94 (app. s, 1iH), 4.75 (app. s, 1iH), 4.52 (app. s, 1H),

3.98 (d, J= 1.6 Hz, 1H), 3.91-3.90 (, 1iH), 3.83-3.47 (, 19H), 3.40-3.37 (n, 1iH), 1.46-

1.43 (, 2H), 1.17-1.15 (, 4H), 0.73-0.70 (, 3); 13C NMR (D2 0) 102.7, 100.0,

99.7, 81.1, 74.4, 73.6, 72.9, 70.7, 70.6, 70.4, 70.3, 70.2, 67.1, 67.0, 66.1, 65.8, 61.2, 28.7,

27.7, 22.1, 13.6; MALDI-TOF m/z (M + Na+ ) calcd 595.22, found 596.77.

OH

OHHX R--H

o o HO .
OHO

HO .o- --.- 3 OH

oHO OH 0 H0 HOHO~~~~~O~ ~ o .

2.-3

n-Pentyl a-D-mannopyranosyl-(1 -2)-a-D-mannopyranosyl-(1 -3)-[a-D-

mannopyranosyl-(1--3)-Ia-D-mannopyranosyl-(1- 6)]-a-D-mannopyranosyl-
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(1-6)1-$5-D-mannopyranoside 2-3. Activated palladium on carbon (50 mg, 10%) was

suspended in ethanol (5 mL) and exposed to an atmosphere of hydrogen gas (balloon).

After 30 min, hexasaccharide triol 2-18 (35 mg, 0.0139 mmol) in EtOAc (2 mL) was

added by cannula and stirred for 48 h under an atmosphere of hydrogen. The product

was filtered through celite, dried in vacuo, to afford 12 mg (81%) hexasaccharide 2-3.

[a] 24D: +54.5 ° (c 0.5, H2 0:EtOH 1:1); H NMR (D2 0) 5.19 (app. s, 1H), 4.98 (app. S,

1H), 4.89 (app. s, 1H), 4.75 (app. s, H), 4.72 (app. s, H), 4.51 (app. s, 1H), 4.00 (app. s,

1H), 3.97-3.96 (m, 2H), 3.92-3.89 (m, 2H), 3.89-3.46 (, 33H), 3.43-3.38 (m, 1H), 1.46-

1.43 (m, 2H), 1.17-1.15 (, 4H), 0.74-0.70 (, 3H); MALDI-TOF m/z (M + Na+ ) calcd

1081.38, found 1082.54.

nw

OH

° OH \
HO-@\~ _ r

2-2

n-Pentyl a -D-mannopyranosyl-(1 -2)-a-D-mannopyranosyl-(1 - 2)-a-D-

mannopyranosyl-(1- 3)-la-D-mannopyranosyl-(l -2)-a-D-mannopyranosyl-(1-*3)-

[a-D-mannopyranosyl-(1 -2)-a-D-mannopyranosyl-(1 - 6)J-a-D-mannopyranosyl-

(1-6)-P1-D-mannopyranoside 2-2. Activated palladium on carbon (50 mg, 10%) was

suspended in ethanol (5 mL) and exposed to an atmosphere of hydrogen gas (balloon).

After 30 min, nonasaccharide triol 2-19 (12 mg, 0.0031 mmol) in EtOAc (2 mL) was

added by cannula and stirred for 48 h under an atmosphere of hydrogen. The product

was separated by filtration through celite and dried in vacuo to yield 4.2 mg (88%) of

fully deprotected nonasaccharide 2-2. [a]24 D: +38.0 ° (c 0.05, H2 0:EtOH 1:1); 1H NMR

(D2 0) o 5.26 (app. s, 1H), 5.19 (app. s, 1H), 5.16 (app. s, 1H), 5.00 (app. s, 1H), 4.89

(app. s, 3H), 4.72 (app. s, 1H), 4.51 (app. s, 1H), 4.00 (app. s, 1H), 3.99-3.91 (m, 7H),

3.87-3.84 (m, 4H), 3.82-3.79 (m, 3H), 3.76-3.73 (m, 6H), 3.72-3.68 (, 6H), 3.66-3.58
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(m, 12H), 3.57-3.52 (m, 51H), 3.52-3.46 (m, 5H), 3.40-3.38 (m, IH), 1.46-1.44 (m, 2H),

1.18-1.16 (m, 5H), 0.74-0.71 (m, 3H); 13C NMR (D2 0) 102.4, 102.4, 102.4, 100.9,

100.8, 100.8, 99.9, 99.7, 98.2, 79.1, 78.8, 78.8, 78.6, 74.2, 73.3, 73.3, 72.8, 71.2, 70.5,

70.3, 70.3, 70.3, 70.3, 70.3, 70.1, 69.7, 67.1, 66.9, 65.9, 65.7, 65.7, 65.7, 65.6, 65.6, 61.2,

61.2, 61.1, 61.1, 28.4, 27.5, 23.3, 21.9, 13.4; HSQC anomeric cross-peaks (D2 0) 8 (5.26

x 100.9), (5.19 x 100.8), (5.16 x 100.8), (5.00 x 98.1), three (4.89 x 102.4), (4.72 x 99.8),

(4.51 x 99.9); MALDI-TOF nm/z (M +Na+) calcd 1567.54, found 1569.09.

OH

2-20

n-Pentyl C-D-mannopyranosyl-(1-~2)--D-mannopyranosyl-' 2)<---

mannopyranoside 2-20. Trisaccharide 2-21 (90 mg, 0.0631 mmol) was dissolved in a

mixture of CH2C12:MeOH (3 mL, 1:2) and cooled to 0 °C. A solution of sodium

methoxide in MeOH (35 [xL, 25% w/v) was added and the reaction was slowly warmed

to room temperature over 1 h, quenched with DOWEX-50W-hydrogen strongly acidic

ion-exchange resin, filtered, and dried in vacuo. The resulting residue was purified by

flash column chromatography on silica gel (5 --- 15% EtOAc/toluene) affording 80 mg

(92%) of trisaccharide 4-Pentenyl 3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1-)2)-3,4,6-

tri-O-benzyl-a-D-mannopyranosyl-(1 -2)-3,4,6-tri-O-benzyl-a-D-mannopyranoside. (See

Chapter 2, re£. 6b for characterization) Activated palladium on carbon (50 mg, 10%) was

suspended in ethanol (5 mL) and exposed to an atmosphere of hydrogen gas (balloon).

After 30 rin, the deacetylated trisaccharide (55 rg, 0.0397 reol) in EtOAc (2 mL) was

added by cannula and stirred for 48 h under an atmosphere of hydrogen. The product

was filtered through celite, dried in vacuo, to afford 22.8 mg (96%) trisaccharide 2-20.

[a]24D: +19.0 ° (C 0.09, H20:EtOH 1 :1) IH NMR (D20) 8 5.28 (app. s, 1H), 5.06 (app. s,

1H), 4.98 (app. s, 1H), 4.04-4.02 (m, 1H), 3.98-3.96 (m, 1H), 3.89-3.79 (m, 6H), 3.76-HO

HO
OH IH

1 0
HO

2.20

n-Pentyl a-D-mannopyranosyl-(14-2)-a-D-mannopyranosyl-(1 -*2)-a-D-

mannopyranoside 2-20. Trisaccharide 2-21 (90 mg, 0.0631 mimol) was dissolved in a

mixture of C112C12:MeOH (3 miL, 1:2) and cooled to 0 C. A solution of sodium

methoxide in MeOH (35 iiL, 25% wlv) was added and the reaction was slowly warmed

to room temperature over h, quenched with DOWEX-5 0W-hydrogen strongly acidic

ion-exchange resin, filtered, and dried in vacuo. The resulting residue was purified by

flash column chromatography on silica gel (5 - 15% EtOAc/toluene) affording 80 mng

(92%) of trisaccharide 4-Pentenyl 3,4,6-tri-O-benzyl-a-D-inannopyranosyl-(1 -)2)-3,4,6-

tri-O-benzyl-at-D-mannopyranosyl-(1 -)2)-3,4,6-tri-O-benzyl-a-D-mannopyranoside. (See

Chapter 2, ref. 6b for characterization) Activated palladium on carbon (5 0 ing, 1 0%) was

suspended in ethanol (5 mL) and exposed to an atmosphere of hydrogen gas (balloon).

After 30 mini, the deacetylated trisaccharide (55 ing, 0.0397 iniol) in EtOAc (2 mnL) was

added by cannula and stirred for 48 h under an atmosphere of hydrogen. The product

was filtered through celite, dried in vacuo, to afford 22.8 mng (96%) trisaccharide 2-20.

[at]24 D: +19.00 (c 0.09, H20:EtOH 1:1) '1 NMR (D 2 0) 5.28 (app. s, 11), 5.06 (app. s,

111), 4.98 (app. s, H), 4.04-4.02 (in, 111), 3.98-3.96 (, 111), 3.89-3.79 (, 611), 3.76-
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3.62 (m, 5H), 3.61-3.47 (m, 5H), 3.46-3.39 (m, 1H), 3.32-3.30 (m, 1H), 1.90 (app. s, 1H),

1.62-1.56 (m, 2H), 1.38-1.33 (m, 4H), 0.94-0.89 (m, 2H); 13C NMR (CDCI3) 104.3,

102.7, 100.0, 81.1, 80.5, 75.1, 74.7, 72.6, 72.3, 72.0, 69.4, 69.2, 68.9, 68.8, 63.4, 63.3,

63.2, 30.5, 29.8, 23.7, 14.6; MALDI-TOF m/z (M + Na+) calcd 597.25, found 596.99.

6.3 Experimentals for Chapter 3

BnO
BnOoOTB

NHTCA

3-7

tert-Butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-I3-D-

glucopyranoside 3-7. Differentially protected glucosamine 3-13 (5.5 g, 8.9 mmol) was

dissolved in CH2CI2 (60 mL) and cooled to 0°C. Triethylsilane (8.5 mL, 53.5 mmol)

was added and the resulting mixture was stirred for 10 min. Trifluoromethanesulfonic

acid (3.4 mL, 44.5 mmol) and trifluoromethanesulfonic acid anhydride (1.3 mL, 8.9

mmol) were added simultaneously to the cooled solution and the mixture was stirred at

0°C for 30 min. The solution was warmed slowly to room temperature over a period of 1

h. The reaction mixture was poured into a saturated aqueous solution of Na2CO3. The

aqueous layer was extracted with CH2C12 (2 x 20 mL) and the organic layer was dried

over NaSO4, filtered, and solvents removed in vacuo. Purification by flash silica column

chromatography (10%- 25% EtOAc/hexanes) afforded 3-7 as an oil (3.47 g, 63% yield).

[a]24 D: -13.4° (c 1.8, CH2CI2); IR (thin film) 2929, 2858, 1692, 1529, 1070, 838 cm-'; 1H

NMR (400 MHz, CDCl 3) 7.40-7.27 (m, 10H), 6.99 (d, J= 8.1 Hz, 1H), 5.05 (d, J= 7.8

Hz, H), 4.83-4.76 (m, 2H), 4.64-4.57 (m, 2H), 3.95 (dd, J= 8.6, 10.5 Hz, 1H), 3.76-3.71

(m, 3H), 3.62-3.55 (m, 2H), 2.92 (s, 1H), 0.92 (s, 9H), 0.16 (s, 3H), 0.13 (s, 3H); 13C

NMR (400 MHz, CDCl 3) 161.9, 138.2, 137.8, 128.7, 128.6, 128.2, 128.0, 128.0, 127.8,

94.9, 92.7, 79.8, 74.4, 74.0, 73.8, 73.3, 70.7, 60.1, 25.8, 18.0, -4.0, -5.0; ESI MS m/z (M +

+ Na+) calcd 640.1426, found 640.1400.
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OBn

BAO
TCAHN 0 NH

3-10 
CCl3

4-O-Acetyl-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-a-D-glucopyranosyl

trichloroacetimidate 3-10. A solution of 3-7 (1.06 g, 1.71 mmol) in CH2C 2 (20 mL)

was cooled to 0°C. Acetic anhydride (0.24 mL, 2.57 mmol) was added and the resulting

solution was stirred for 5 min. Dimethylaminopyridine (314 mg, 2.57 mmol) was added

and the reaction was allowed to warm slowly to room temperature while stirring

overnight. The mixture was diluted with CH2Cl2 (30 mL) and the organic layer was

washed with 5% HC1 (2 x 30 mL). The organic layer was dried over Na2SO4, filtered,

and solvents removed in vacuo to afford tert-butyldimethylsilyl 3,6-di-O-benzyl-2-

deoxy-4-O-acetyl-2-trichloroacetimido-f3-D-glucopyranoside (1.13 g, 99%). [a]24 D: +9.0 °

(c 1.7, CH2CI2); IR (thin film) 3354, 1715, 1527, 1249, 1067 cml'; H NMR (400 MHz,

CDC13) 7.35-7.25 (m, 10H), 7.12 (d, J= 7.7 Hz, 1H), 5.20 (d, J= 7.8 Hz, 1H),- 5.09

(It, J = 9.4 Hz, 1H), 4.69 (d, J= 11.1 Hz, 1H), 4.59 (d, J= 11.1 Hz, 1H), 4.54 (s, 2H),

4.29 (t, J= 10.3 Hz, 3), 3.71-3.69 (m, 1H), 3.58-3.52 (m, 1H), 1.89 (s, 3H), 0.92 (s,

9H), 0.18 (s, 3H), 0.15 (s, 3H); 13C NMR (100 MHz, CDCI3) 8 169.9, 161.9, 138.0,

137.8, 128.6, 128.4, 128.0, 127.8, 127.8, 94.3, 92.7, 77.4, 74.1, 73.6, 73.4, 71.8, 69.8,

60.8, 25.8, 21.0, 18.0, -4.0, -5.1; ESI MS nm/z (M + Na+ ) calcd 682.1532, found

682.1543. A solution tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-4-O-acetyl-2-

trichloroacetimido-j3-D-glucopyranoside (1.13 g, 1.71 mmol) in THF (18 mL) was cooled

to 0°C. Acetic acid (0.15 mL, 2.68 mmol) and then tetrabutylammonium fluoride (1.0 M

in THF, 2.68 mL, 2.68 mmol) were added to the cooled solution. The reaction mixture

was allowed to warm slowly to room temperature while stirring overnight. The reaction

mixture was diluted with EtOAc and washed with NaHCO3 (2 x 30 mL) and H20 (1 x 30

mL). The organic layer was dried over Na2SO4 , filtered, and solvents removed in vacuo.

The crude material (887 mg, 1.62 mmol) was dissolved in CH2CI2 (16 mL) and

trichloroacetonitrile (4 mL). After stirring for 5 min, DBU (49 L, 0.32 mmol) was

added and the reaction mixture was allowed to stir for 1.5 h. The reaction mixture was

passed through a silica plug, washed with EtOAc and solvents removed in vacuo.

Purification by flash silica column chromatography (25% EtOAc/hexanes) afforded 3-10
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(942 mg, 76% two steps, 95:5 a:j3). IR (thin film) 1747, 1722, 1678, 1514,1226, 1036

cm'l; H NMR (400 MHz, CDCl3) 8.79 (s, 1H), 7.37-7.27 (m, 10H), 6.60 (d, J = 8.5

Hz, 1H), 6.49 (d, J= 3.5 Hz, 1H), 5.41 (t, J= 9.7 Hz, 1H), 4.70-4.64 (m, 2H), 4.57-4.45

(m, 3H), 4.10-4.02 (m, 2H), 3.63-3.55 (m, 2H), 1.97 (s, 3H); 3C NMR (100 MHz,

CDC13) 169.3, 161.8, 159.9, 137.6, 137.0, 128.8, 128.4, 128.4, 128.3, 128.1, 127.8,

94.3, 92.1, 90.7, 76.0, 73.6, 73.0, 72.1, 69.9, 68.4, 53.5, 20.9; ESI MS m/z (M + + Na*)

calcd 710.9763, found 710.9762.

OBn 

NHTCA

3-3

4-Pentenyl 3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-p-D-glucopyranoside 3-3.

3-10 (691 mg, 1.0 mmol) was coevaporated with toluene (3 x 5 mL) and dried under

vacuum for 1 h. Donor 3-10 was dissolved in CH2C12 (10 mL) and cooled to -40°C. 4-

penten-1-ol (0.15 mL, 1.5 mmol) was added and the resulting solution was stirred for 5

min. TMSOTf (18 ptL, 0.1 mmol) was added and the mixture was stirred at -40°C for 15

min. The reaction was quenched by the addition of triethylamnine (0.1 mL) and solvents

removed in vacuo. Purification by flash silica column chromatography (20%

EtOAc/hexanes) afforded an oil. The oil (633 mg, 1.0 mmol) was dissolved in MeOH

(10 mL) and NaOMe (25% v/w, 23 1 L, 0.1 mmol) was added. The mixture was stirred

for 1.5 h at room temperature. Amberlite IR-120(plus) resin was added until pH 7 was

reached. The reaction mixture was filtered, solvents removed in vacuo and purification

by flash silica column chromatography (20% EtOAc/hexanes) afforded 3-3 (539 mg,

94%). [aC]24 D: -14.1° (c 1.2, CH2Cl2); IR (thin film) 3325, 1690, 1641, 1532, 1124, 1067

cm-l; 'H NMR (400 MHz, CDC13) 8 7.39-7.28 (, 10H), 6.94 (2, J= 7.5 Hz, 1H), 5.83-

5.73 (m, 1), 5.03-4.94 (m, 2H), 4.90 (d, J= 8.2 Hz, 1H), 4.81 (d, J= 11.2 Hz, 1H), 4.76

(d, J= 11.2 Hz, 1H), 4.64 (d, J= 12.0 Hz, 2H), 4.58 (d, J= 12.0 Hz, 1H), 4.05 (dd, J=

8.5, 10.4 Hz, 1H), 3.91-3.85 (, 1H), 3.81-3.70 (m, 3H), 3.57-3.41 (m, 3H), 2.80 (s, 1H),

2.13-2.06 (, 2H), 1.70-1.62 (m, 2H); 13C NMR (100 MHz, CDC13) 162.0, 138.2,

138.1, 137.7, 128.8, 128.7, 128.3, 128.2, 128.1, 128.0, 115.2, 99.4, 92.7, 79.6, 75.0, 74.0,
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73.9, 73.7, 70.7, 69.5, 58.7, 30.2, 28.9; ESI MS m/z (M + + Na+) calcd 594.1187, found

594.1175.

Ph'-o--O\Bn OBnoo
BnOP

TCAHN
3-14

tert-butyldimethylsilyl 2-O-benzyl4,6-O-benzylidene-3-O-p-methoxybenzy--D-

mannopyranosyl-(1--- 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-tP-D-

glucopyranoside 3-14. Phenyl sulfoxide 3-6 (1.50 g, 2.56 mmol) and 3-7 (2.53 g, 4.09

mmol) were coevaporated separately (important!) with toluene (3 x 10 mL) and dried

under vacuum overnight. Sulfoxide 3-6 was dissolved in CH2C12 (26 mL) and cooled to -

78°C. Di-t-butyl pyridine (1.15 mL, 5.12 mmol) was added to the cooled solution and

stirred for 10 min. Triflic anhydride (474 RL, 2.82 mmol) was added and the mixture

was stirred for 5 min, during which time the colorless mixture turned orange. A solution

of 3-7 in CH2Cl2 (10 mL) was slowly added to the reaction mixture via cannula and the

reaction was stirred at -78°C for 1 h. The reaction was quenched with saturated NaHCO3

(20 mL) and diluted with CH2C12 (30 mL). The organic layer was were washed with

NaHCO 3 (2 x 30 mL), dried over Na2 SO4, filtered, and solvents removed in vacuo.

Purification by flash silica column chromatography (100% toluene - 25%

EtOAc/toluene) afforded 3-14 (1.77 g, 68%). [a]2 4D: -25.7 ° (c 3.1, CH2C12); IR (thin

film) 3322, 2861, 1691, 1531, 1089 cm-'; H NMR (400 MHz, CDCl3) 7.51-7.18 (nm,

22H), 6.97 (d, J= 7.5 Hz, 1H), 6.87-6.85 (, 2H), 5.54 (s, 1H), 5.19 (d, J= 7.7 Hz, 1H),

5.09 (d, J= 10.4 Hz, 1H), 4.85 (d, J = 2.6 Hz, 2H), 4.68-4.45 (m, 6H), 4.14-4.06 (, 3H),

3.99 (t, J= 8.7 Hz, 1H), 3.80 (s, 3H) 3.79-3.77 (m, 1H), 3.68-3.39 (m, 6H), 3.16-3.15 (nm,

1H), 2.37 (s, 1H), 0.90 (s, 9H), 0.15 (s, 3H), 0.12 (s, 3H); 13C NMR (100 MHz, CDC13) 8

161.8, 159.3, 138.7, 138.6, 138.0, 137.8, 130.7, 129.3, 129.2, 129.1, 128.7, 128.6, 128.4,

128.4, 128.4, 128.3, 128.1, 127.9, 127.8, 126.3, 125.5, 113.9, 101.9, 101.5, 94.4, 92.7,

78.8, 78.3, 78.0, 77.4, 77.3, 75.2, 75.1, 74.8, 73.8, 72.5, 68.9, 68.7, 67.6, 60.7, 55.5, 25.9,

18.1, -4.0, -4.9; ESI MS mn/z (M+ +Na +) calcd 1100.3312, found 1100.3278.
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ph'~O"OB nOS

BnO OTBS
TCAHN

3-15

tert-Butyldimethylsilyl 3 -O-acetyl-2-O-benzyl-4,6-O-benzylidene-p-D-

mannopyranosyl-(1--* 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-3-D-

glucopyranoside 3-15. To a stirring solution of 3-14 (1.0 g, 0.93 mmol) in CH2Cl2 (4.5

mL) and H2 0 (0.5 mL) was added 2,3-dichloro-5,6-dicyanobenzoquinone (252 mg, 1.11

mmol). After stirring for 45 min, the reaction mixture was diluted with CH2C12 (45 mL).

The organic layer was washed with NaHCO3 (2 x 25 mL), H20 (1 x 25 mL), dried over

Na2SO3, filtered and solvents removed in vacuo. Purification by flash silica column

chromatography (20% EtOAc/hexanes) gave a white solid. 'H NMR (400 MHz, CDCl3)

6 7.36-733 (m, 2H), 7.29-7-12 (, 18H), 6.86 (d, J= 7.5 Hz, 1H), 5.33 (s, 1H), 5.08 (d,

J= 7.7 Hz, 1H), 4.97 (d, J= 10.4 Hz, 1H), 4.87 (d, J= 11.5 Hz, 1H), 4.60-4.52 (, 3H),

4.42-4.37 (, 2H), 4.05-3.91 (m, 3H), 3.62-3.58 (m, 4H), 3.50-3.36 (, 3H), 3.30-3.24

(min, 1H), 3.05-2.99 (, 1H), 2.27 (d, J= 8.7 Hz, 1H), 0.79 (s, 9H), 0.00 (s, 3H), -0.02 (s,

3H); 13C NMR (100 MHz, CDCl3) 162.1, 138.9, 138.4, 138.0, 137.6, 129.6, 129.5,

129.0, 129.0, 128.8, 128.7, 128.6, 128.5, 128.5, 128.4, 128.4, 128.4, 128.0, 126.7, 102.4,

102.2, 94.6, 92.9, 79.6, 79.3, 78.7, 77.7, 76.3, 75.2, 75.1, 74.2, 71.3, 69.0, 68.9, 67.4,

61.1, 26.1, 18.4, -3.8, -4.7. The solid (743 mg, 0.77 mmol) was dissolved in CH 2C12 (8

mL) and cooled to 0°C. Acetic anhydride (147 L, 1.55 mmol) was added and stirred for

5 min. Dimethylaminopyridine (114 mg, 0.93 mmol) was added and the stirring mixture

was warmed slowly to room temperature over 2 h. The reaction was diluted with CH2C12

(15 mL) and washed with 5% HC (2 x 15 mL), H20 (1 x 15 mL), NaHCO 3 (2 x 15 mL).

The organic layer was dried over Na2SO4, filtered, and solvents removed in vacuo.

Purification by flash silica column chromatography (33% EtOAc/hexanes) afforded 3-15

(771 mg, 79% for two steps). []24D: -45.0 ° (c = 0.7, CH2C12); IR (thin film) 3339, 2858,

1738, 1691, 1092, 1068 cml; H NMR (400 MHz, CDCl3) 6 7.47-7.28 (m, 20H), 6.99 (d,

J= 7.5 Hz, 1H), 5.48 (s, 1H), 5.22 (d, J= 7.7 Hz, 1H), 5.11 (d, J=10.4 Hz, 1H), 4.87-

4.82 (, 2H), 4.74-4.50 (, 5H), 4.18-4.02 (, 5H), 3.71 (dq, J= 2.3, 5.6 Hz, 2H), 3.57-

3.52 (, 2H), 3.41-3.38 (, 1H), 3.23-3.22 (, 1H), 1.99 (s, 3H), 0.92 (s, 9H), 0.16 (s,

3H), 0.13 (s, 3H); 13C NMR (100 MHz, CDC13) 170.6, 161.8, 138.7, 138.2, 137.9,
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137.4, 129.3, 128.8, 128.5, 128.4, 128.4, 128.4, 128.2, 128.2, 128.0, 128.0, 127.8, 126.4,

101.9, 101.3, 94.4, 92.7, 78.1, 77.3, 76.5, 75.9, 75.7, 75.1, 74.8, 73.8, 72.6, 68.8, 68.6,

67.5, 60.8, 25.8, 21.22, 18.1, -4.0, -4.9; ESI MS m/z (M+ + Na+ ) calcd 1022.2843, found

1022.2807.

HO OB9n OBn
BnO"C .- I 0 , 

Ac;;OoOT~BSAcO BnO.-Ž&.OBTCAHN
3-16

tert-Butyldimethylsilyl 3-O-acetyl-2,4-di-O-benzyl-,-D-mannopyranosyl-(1-- 4)-3,6-

di-O-benzyl-2-deoxy-2-trichloroacetimido-I-D-glucopyranoside 3-16. To a solution

of 3-15 (265 mg, 0.265 mmol) in CH2C 2 (2.7 mL) were added freshly dried 4A

molecular sieves (800 mg). After stirring for lh, the mixture was cooled to -78°C.

Triethylsilane (127 tL, 0.79 mmol) was added and the resulting solution was stirred for 5

min. Dichlorophenylborane (117 [LL, 0.90 mmol) was added and the mixture was stirred

for 30 min at -78°C. The reaction was quenched with the addition of triethylamine (0.5

mL) and methanol (0.5 mL) and diluted with CH2C12 (20 mL). The organic layer was

washed with NaHCO3 (2 x 20 mL), H2 0 (1 x 20 mL), dried over Na2SO4, filtered, and

solvents removed in vacuo. Purification by flash silica column chromatography (0 

10% EtOAc/Tol) afforded 3-16 (234 mg, 88%) as a white solid. 1H NMR (500 MHz,

CDCl3) o 7.24-7.08 (, 20H), 6.87 (d, J= 7.5 Hz, 1H), 5.05 (d, J=7.8 Hz, 1), 4.97 (d, J=

10.7, 1H), 4.68 (d, J=1 1.9, 1H), 4.62 (dd, J= 3.2, 9.9, 1H), 4.54-4.36 (, 7H), 4.00 (t, J=

8.8, 1H), 3.88 (t, J= 9.3, H), 3.78 (d, J=3.2, IH), 3.73 (t, J=9.8, 1H), 3.62-3.44 (, 3H),

3.41-3.36 (, 1H), 3.29-3.20 (, 2H), 3.05-2.98 (, 1H), 1.78 (s, 3H), 1.58 (bs, 1H),

0.75 (s, 9H), 0.00 (s, 3H), -0.02 (s, 3H).

OAc OBn OBn

-0~~o
BnOTBS

TCAHN
3-17

tert-Butyldimethylsilyl 3,6-di-O-acetyl-2,4-di-O-benzyl-3-D-mannopyranosyl-(1--' 4)-

3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-O -D-glucopyranoside 3-17. 3-16 (170

mg, 0.17 mmol) was dissolved in CH2Cl2 (2 mL) and cooled to 0°C. Acetic anhydride
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(32 l, 0.34 mmol) was added and stirred for 5 min. Dimethylaminopyridine (25 mg,

0.20 mmol) was added and the stirring mixture was warmed slowly to room temperature

over 2.5 h. The reaction mixture was then diluted with CH2C12 (15 mL) and washed with

5% HCl (2 x 15 mL), H2 0 (1 x 15 mL), and NaHCO 3 (2 x 15 mL). The organic layer

was dried over Na2SO4, filtered, and the solvents removed in vacuo. Purification by flash

silica column chromatography (25% EtOAc/hexanes) afforded 3-17 (163 mg, 92%).

[a] 24 D: -23.5 ° (c 1.0, CH2Cl2); IR (thin film) 3342, 2858, 1742, 1691, 1234, 1073 cml;

'H NMR (400 MHz, CDCI3) 7.39-7.22 (m, 20H), 6.93 (d, J= 7.5 Hz, 1H), 5.15-5.11

(m, 2H), 4.86-4.49 (m, 9H), 4.25-4.08 (, 4H), 3.94 (d, J= 3.0 Hz, 1H), 3.85 (t, J= 9.7

Hz, 1H), 3.74 (dd, J= 2.7, 11.1 Hz, 1H), 3.66 (dd, J = 3.4, 11.1 Hz, 1H), 3.54-3.37 (m,

3H), 1.93 (s, 3H), 1.89 (s, 3H), 0.89 (s, 9H), 0.14 (s, 3H), 0.10 (s, 3H); 3C NMR (100

MHz, CDC13) 6 171.0, 170.4, 161.8, 139.0, 138.5, 138.0, 128.7, 128.7, 128.5, 128.4,

128.1, 128.1, 127.9, 127.9, 127.6, 100.8, 94.5, 92.7, 77.9, 77.7, 77.4, 76.2, 75.9, 75.1,

74.9, 74.3, 73.8, 73.6, 73.3, 68.9, 63.6, 60.4, 25.8, 21.2, 20.9, 18.1, -4.0 -4.9; ESI MS m/z

(M+ + Na+ ) calcd 1066.3105, found 1066.3124.

OAc OBn OBn
I ', O~n

B~n

34 TCAHN O., NH

CCI3

3,6-Di-O-acetyl-2,4-di-O-benzyl-3 -D-mannopyranosyl-(l-- 4)-3,6-di-O-benzyl-2-

deoxy-2-trichloroacetimido-a-D-glucopyranosyl trichloroacetimidate 3-4. A

solution of 3-17 (330 g, 0.31 mmol) in THF (3 mL) was cooled to 0°C. Acetic acid (27

[tL, 0.47 mmol) and then tetrabutylammonium fluoride (1.0 M in THF, 470 [LL, 0.47

mmol) were added to the cooled solution. The reaction mixture was allowed to warm

slowly to room temperature while stirring for 3 h. The reaction mixture was diluted with

EtOAc and washed with NaHCO3 (2 x 10 mL) and H20 (1 x 10 mL). The organic layer

was then dried over Na2SO4 , filtered, and solvents removed in vacuo. The crude material

(294 mg, 0.31 mmol) was dissolved in CH2C12 (3 mL) and trichloroacetonitrile (0.3 mL)

and cooled to 0°C. After stirring for 5 min, DBU (9.3 [tL, 0.062 mmol) was added and

the reaction mixture was allowed to stir for 1.5 h. The reaction mixture was passed

through a silica plug, washed with EtOAc and the solvents removed in vacuo.
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Purification by flash silica column chromatography (25% EtOAc/hexanes) afforded 3-4

(298 mg, 89%, 95:5 a:O). IR (thin film) 1739, 1513, 1234, 1076, 1028 cm-l; H NMR

(400 MHz, CDC1 3) 8 8.71 (s, 1H), 7.43-7.26 (m, 20H), 6.52 (d, J= 3.3 Hz, 1H), 6.46 (d,

J= 7.6 Hz, 1H), 5.02 (d,J = 11.9 Hz, 1H), 4.87 (d,J = 12.1 Hz, 1H), 4.77-4.66 (m, 6H),

4.59-4.50 (m, 2H), 4.30-4.22 (m, 4H), 3.95-3.86 (, 4H), 3.70 (s, 2H), 3.38-3.35 (m,

IH), 1.97 (s, 3H), 1.91 (s, 3H); 13C NMR (100 MHz, CDC13) 170.9, 170.3, 162.0,

160.1, 138.4, 138.4, 137.9, 137.5, 128.8, 128.7, 128.7, 128.6, 128.6, 128.4, 128.4, 128.4,

128.3, 128.3, 128.2, 128.1, 128.1, 128.0, 127.9, 127.9, 127.9, 127.8, 100.6, 94.5, 92.1,

91.0, 76.7, 76.2, 75.8, 75.7, 75.0, 74.8, 73.9, 73.8, 73.7, 73.4, 73.1, 67.9, 63.1, 54.1, 21.1,

20.8; ESI MS m/z (M + +Na) calcd 1095.1336, found 1095.1343.

TIPSO OBn OBn

BnO OTBS
3.18 TCAHN3-18

tert-Butyldimethylsilyl 3-O-acetyil-2,4-di-O-benzyl-6-O-triisopropylsilyl-15-D-

mannopyranosyl-(l--* 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-P-D-

glucopyranoside 3-18. 3-16 (600 mg, 0.598 mmol) was dissolved in NN-

dimethylformamide (5.9 mL) to which triisopropylsilylchloride (231 mg, 1.19 mmol) and

imidazole (122 mg, 1.79 mmol) was added. The mixture was stirred at RT for 36 h,

diluted in diethylether (50 mL), washed with H20 (3 x 40 mL), NaHCO3 (2 x 40 mL) and

brine (1 x 40 mL). The organic layer was then dried over Na2SO4, filtered, and solvents

removed in vacuo. Purification by flash silica column chromatography (0 - 10%

EtOAc/toluene) afforded 3-18 (551 mg, 80%). [a] 2 4 D: -27.3° (c 1.1, CH2C12); IR (thin

film) 2940, 2871, 1761, 1689, 1213, 1077 cm-'l; H NMR (500 MHz, CDC13) 8 7.38-7.21

(min, 20H), 6.95 (d, J= 7.9 Hz, 1H), 5.06 (d, J= 7.1 Hz, 1H), 5.02 (d, J= 11.8 Hz, 1H), 4.86

(d, J= 12.0 Hz, 1H), 4.82 (dd, J= 3.1, 9.8 Hz, 1H), 4.74 (app. s, 1H), 4.70-4.56 (m, 6H),

4.15 (t, J= 8.1 Hz, 1H), 4.06 (t, J= 9.0 Hz, 1H), 3.97-3.83 (m, 3), 3.83-3.74 (m, 2H),

3.72-3.58 (m, 3H), 3.30-3.24 (, 1H), 1.91 (s, 3H), 1.00 (s, 21H), 0.90 (s, 9H), 0.15 (s,

3H), 0.12 (s, 3H); 13C NMR (125 MHz, CDC13) 171.1, 162.3, 139.5, 139.2, 139.0,

138.7, 129.2, 129.1, 128.9, 128.8, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 127.9, 101.1,
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95.3, 78.1, 78.0, 77.4, 76.8, 75.7, 75.5, 75.4, 74.2, 74.0, 73.8, 69.8, 63.7, 59.7, 26.4, 21.7,

18.8, 18.7, 18.6, 12.6, -3.5, -4.4; ESI MS m/z (M+ + NH4
+ ) calcd 1175.48, found 1174.22.

TIPSO OBn - OBn

BnO O
3- STCAHN O, NH

CCl3

3-O-acetyl-2,4-di-O-benzyl-6-O-triisopropylsilyl- -D-mannopyranosyl-(1-- 4)-3,6-di-

O-benzyl-2-deoxy-2-trichloroacetimido-a-D-glucopyranosyl trichloroacetimidate 3-

5. A solution of 3-18 (515 g, 0.444 mmol) in THF (3 mL) was cooled to 0°C. Acetic acid

(37 !xL, 0.622 mmol) and then tetrabutylammonium fluoride (1.0 M in THF, 577 tL,

0.577 mmol) were added to the cooled solution. The reaction mixture was allowed to

warm slowly to room temperature while stirring for 4 h. The reaction mixture was

diluted with EtOAc (50 mL) and washed with H20 (3 x 40 mL) and NaHCO3 (2 x 40

mL). The organic layer was then dried over Na2SO4, filtered, and solvents removed in

vacuo. The crude material was filtered through a plug of silica gel to recover unreacted

starting material to isolate pure lactol (407 mg, 95% isolated yield). The lactol (407 mg,

0.389 mmol) was dissolved in CH2C12 (5 mL) and trichloroacetonitrile (0.310 mL, 3.11

mmol) and cooled to 0° C. After stirring for 5 min, DBU (17.8 L, 0.117 mmol) was

added and the reaction mixture was allowed to stir for 2 h and slowly warmed to RT.

The reaction mixture was passed through a silica plug, washed with EtOAc and the

solvents removed in vacuo. Purification by flash silica column chromatography (0 -

20% EtOAc/toluene + 0.5% Et3N) afforded 3-5 (410 mg, 90%). IR (thin film) 1721,

1536, 1212, 1066, 1033 cm-'; H NMR (400 MHz, CDC13) 6 8.58 (s, 1H), 7.32-7.06 (m,

20H), 6.43 (d, J= 3.4 Hz, 1H), 6.33 (d, J= 7.4 Hz, 1H), 4.91 (d, J= 12.5, 1H), 4.77-4.60

(min, 4H), 4.58-4.55 (, 5H), 4.42 (d, J= 12.0, 1H), 4.23 (t, J= 9.6, 1H), 4.17-4.12 (, 1H),

3.93 (t, J= 9.7, 1H), 3.86-3.74 (, 5H), 3.62 (app. s, 2H), 3.15-3.11 (, 1H), 1.84 (s, 3H),

1.52 (s, 3H), 0.93 (s, 18H); 13C NMR (100 MHz, CDCl 3) 6170.8, 162.2, 160.5, 138.9,

137.8, 129.0, 128.8, 128.7, 128.6, 128.4, 128.4, 128.1, 128.1, 127.9, 127.9, 127.8, 100.6,

94.7, 77.7, 76.8, 76.6, 76.3, 75.6, 75.1, 7.51, 74.1, 73.9, 73.5, 68.2, 63.2, 54.4, 21.4, 18.5,

18.4, 12.4; ESI MS m/z (M+ +Na +) calcd 1209.27, found 1208.95.
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AcO OBn OBn O.n

BnOI ` &•Acn 9
NHTCA NHTCA

3-1

4-Pentenyl 3,6-di-O-acetyl-2,4-di-O-benzyl- -D-mannopyranosyl-(1- 4)-3,6-di-O-

benzyl-2-deoxy-2-trichloroacetimido-3-D-glucopyranosyl-(1-- 4)-3,6-di-O-benzyl-2-

deoxy-2-trichloroacetimido-43-D-glucopyranoside 3-1. A mixture of 3-4 (150 mg, 0.14

mmol) and 3-3 (120 mg, 0.21 mmol) were coevaporated with toluene (3 x 1 mL) and

dried under vacuum overnight. The mixture was dissolved in CH2Cl2 (1.5 mL) and the

resulting solution was cooled to -40°C. Following the addition of TMSOTf (2.5 FLL,

0.014 mmol), the solution was warmed slowly to room temperature over a period of 2 h

and triethylamine (0.1 mL) was added. The mixture was concentrated and filtered

through a silica plug (50% EtOAc/hexanes) to remove baseline contaminants. The

resulting oil was subjected to size exclusion chromatography (100% toluene) to remove

the monosaccharide acceptor and the crude product was purified by flash silica column

chromatography (40% EtOAc/hexanes) to afford 3-1 (136 mg, 65%). [a]24D: -35.0 (c

1.0, CH2C 2); IR (thin film) 1742, 1694, 1529, 1235, 1075 cm-'; H NMR (400 MHz,

CDC13) 7.38-7.21 (, 30H), 6.97 (d, J = 7.8 Hz, 1iH), 6.60 (d, J = 8.0 Hz, 1iH), 5.82-

5.75 (, 1iH), 5.12 (d, J= 11.3 Hz, 1H), 5.03-4.87 (, 4H), 4.81-4.62 (m, 8H), 4.56-4.49

(min, 4H), 4.42-4.39 (, 1), 4.25-4.14 (m, 3H), 4.08-3.98 (, 2H), 3.93 (d, J = 3.1 Hz,

1iH), 3.90-3.84 (, 2H), 3.78-3.73 (, 3iH), 3.69-3.59 (, 3H), 3.55-3.44 (, 3H), 3.34-

3.30 (, 1H), 3.26-3.24 (, 1iH) 2.14-2.07 (m, 2H), 1.93 (s, 3H), 1.87 (s, 3H), 1.71-1.64

(m, 2H); 3C NMR (100 MHz, CDC13) 6 170.9, 170.4, 161.9, 161.9, 138.8, 138.5, 138.5,

138.2, 138.2, 137.9, 137.8, 128.8, 128.7, 128.7, 128.5, 128.5, 128.5, 128.3, 128.2, 128.1,

128.1, 128.0, 127.9, 127.9, 127.9, 127.8, 127.7, 127.7, 115.1, 100.8, 99.7, 98.9, 78.5 78.1,

77.9, 76.1, 76.1, 75.3, 75.2, 75.0, 75.0, 74.9, 74.4, 74.3, 73.6, 73.5, 73.4, 73.1, 69.4, 68.7,

68.6, 63.4, 58.2, 57.4, 30.2, 28.9, 21.1, 20.9; ESI MS m/z (M + + Na+ ) calcd 1505.3430,

found 1505.3423.
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HO OBn OBn OBn 

BnO1 Sd2\ 0'>HO 
NHTCA NHTCA

3-19

4-Pentenyl 2,4-di-O-benzyl-13-D-mannopyranosyl-(l-- 4)-3,6-di-O-benzyl-2-deoxy-2-

trichloroacetimido--D-glucopyranosyl-(1- 4)-3,6-di-O-benzyl-2-deoxy-2-

trichloroacetimido-f3-D-glucopyranoside 3-19. 3-11 (134 mg, 0.09 mmol) was

dissolved in MeOH (1 mL) and NaOMe (25% v/w, 2.1 FtL, 0.009 mmol) was added. The

mixture was stirred overnight at room temperature. The reaction mixture was diluted with

wet MeOH (5 mL), solvents removed in vacuo and purified by flash silica column

chromatography (25% EtOAc/hexanes) afforded 3-19 (92 mg, 73%). []2 4D: -32.2 (c

1.3, CH2CI2); IR (thin film) 3332, 2872, 1694, 1529, 1073 cm-'; H NMR (400 MHz,

CDC13) 7.42-7.22 (m, 30H), 6.93 (d, J = 7.8 Hz, H), 6.59 (d, J = 7.9 Hz, 1H), 5.83-

5.76 (m, H), 5.11-4.96 (m, 5H), 4.85-4.75 (m, 4H), 4.68-4.47 (m, 7H), 4.33 (d, J = 12.1

Hz, H), 4.18 (t, J = 8.3 Hz, 1H), 4.05-3.86 (m, 3H), 3.76-3.45 (m, 14H), 3.34 (dd, J =

5.4, 11.9 Hz, 1H), 3.26-3.23 (m, 1H), 3.08-3.04 (m, 1H), 2.33-2.31 (m, 1H), 2.14-2.08

(m, 2H), 1.72-1.64 (, 2H); 13C NMR (100 MHz, CDC13) 161.9, 161.9, 138.5,138.4,

138.3, 138.2, 138.1, 137.6, 128.8, 128.8, 128.7, 128.7, 128.6, 128.5, 128.5, 128.2, 128.2,

128.1, 128.0, 127.9, 127.7, 127.2, 115.1, 101.2, 99.7, 98.6, 92.6, 92.6, 78.5, 78.4, 78.2,

78.1,76.6, 75.7, 75.4,75.4, 74.8,74.8,74.6, 74.2,73.7, 73.5, 69.4, 68.5, 68.4, 62.3, 58.6,

57.7,30.2, 28.8; ESI MS m/z (M+ + Na+ ) calcd 1421.3218, found 1421.3211.

OBnOAc

BnOO O n BnO
OBn OAc

BnOj1"~0\ Bn OanOBn
BnO 0. 'O

NHTCA NHTCA

3-8

4-Pentenyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1-- 3)-[2-O-acetyl-

3,4,6-tri-O-benzyl-ac-D-mannopyranosyl-(1-- 6)]1-2,4-di-O-benzyl-f3-D-

mannopyranosyl-(1--b 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-13-D-

glucopyranosyl-(1-- 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-13-D-
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glucopyranoside 3-8. 3-19 (76 mg, 0.0544 mmol) and 3-11 (104 mg, 0.163mml) were

coevaporated together with toluene (3 x 2 ml), and dried overnight in vacuo. The mixture

was dissolved in 500 pgI dichloromethane and cooled to -20°C. 2 pl TMSOTf (0.0109

mmol) was added, and the reaction stirred for 20 minutes and warmed to RT. The

reaction was quenched with 100 p1 Et3N, dried to an oil, and purified by flash silica

column chromatography (5 20% EtOAc/toluene) to afford 3-8 (120 mg, 98%). IR

(thin film) 2867, 1746, 1711, 1693, 1235, 1077 cm'; lH NMR (400 MHz, CDC13) 8 7.41-

7.08 (m, 60H), 6.91 (d, J= 7.8 Hz, H), 6.40 (d, J = 7.9 Hz, H), 5.80-5.72 (m, 1H),

5.48-5.46 (m, 1H), 5.37-5.35 (m, 1H), 5.14-4.27 (m, 31H), 4.42-3.14 (m, 30H), 2.14-2.06

(m, 5H), 1.98 (s, 3H), 1.68-1.63 (m, 2H); 13C NMR (100 MHz, CDC13) 8 170.3, 170.3,

161.9, 161.8, 138.9, 138.8, 138.7, 138.7, 138.6, 138.5, 138.5, 138.2, 138.2, 138.2, 138.0,

137.9, 128.8, 128.8, 128.7, 128.6, 128.6, 128.5, 128.5, 128.5, 128.5 128.4, 128.4, 128.3,

128.2, 128.1, 128.1, 128.0, 127.9, 127.9, 127.8, 127.8, 127.7, 127.7, 127.6, 127.5, 127.3,

115.1, 101.5, 99.8, 99.7, 99.0, 97.8, 92.7, 81.2, 78.5, 78.2, 78.1, 77.5, 77.2, 77.0, 75.5,

75.3, 75.2, 75.0, 75.0, 74.9, 74.5, 74.5, 74.4, 74.3, 74.2, 73.6, 73.5, 73.5, 72.5, 72.0, 71.7,

71.6, 71.5, 69.4, 69.2, 68.8, 68.6, 68.5, 66.7, 58.2, 57.4, 30.2, 29.9, 28.9, 28.9, 21.3, 21.2,

21.2; ESI MS m/z (M+ + Na+ ) calcd 2369.7303, found 2369.7401.

TIPSO OBn OBn OBn

BnO 

NHTCA NHTCA

3-2

4-Pentenyl 3-0-acetyl-2,4-di-O-benzyl-6-O-triisopropylsilyl-p-D-mannopyranosyl-

(1- 4)3,6-di-Obenzy-2-deoy-2-trichloroacetimido-)-D-gluopyranosyl-(1-- 4)-

3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-.-D-glucopyranoside 3-2. A mixture

of 3-3 (385 mg, 0.672 mmol) and 3-5 (400 mg, 0.336 mmol) were coevaporated with

toluene (3 x 5 mL) and dried under vacuum overnight. The mixture was dissolved in

CH2C 2 (3 mL) and 500 mg 4A MS and the resulting solution was cooled to -40°C.

Following the addition of TMSOTf (12.1 pxL, 0.0672 mmol), the solution was warmed

slowly to room temperature over a period of 30 min and triethylamnine (200 L) was

added. The mixture was filtered and concentrated to an oil, and purified by flash silica
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column chromatography (0 - 15% EtOAc/toluene) to afford 3-2 (391 mg, 73%). [a] 2 4 D:

-33.1 ° (c 1.1, CH2C12); IR (thin film) 2949, 2887, 1777, 1643, 1541, 1211, 1079 cm'; 1H

NMR (500 MHz, CDC 3 ) 8 7.40-7.24 (m, 20H), 7.24-7.12 (m, 10H), 7.00 (d, J= 7.9 Hz,;

1H), 6.55 (d, J= 8.2 Hz, H), 5.83-5.73 (m, 1H), 5.04-4.81 (m, 5H), 4.79-4.72

(m, 2H), 4.70-4.55 (m, 9H), 4.50-4.38 (m, 3H), 4.13-4.03 (m, 2H), 3.98-3.82 (m, 5H),

3.80-3.56 (m, 7H), 3.55-3.49 (m, 2H), 3.48-3.42 (m, H), 3.33-3.28 (m, 1H), 3.24-3.19

(m, 1H), 2.14-2.20 (m, 2H), 1.89 (s, 3H), 1.72-1.60 (m, 2H), 0.97 (app. s, 21H); 13C

NMR (125 MHz, CDC13). 8 171.1, 162.3, 162.4, 139.5, 139.2, 139.1,139.0, 138.8, 138.7,

138.4, 129.3, 129.2, 129.1, 129.0, 129.0, 128.9, 128.8, 128.7, 128.7, 128.5, 128.5, 128.4,

128.3, 128.3, 128.2, 127.9, 115.6, 101.2, 100.4, 100.0, 93.2, 93.3, 79.2, 78.7, 77.8, 77.0,

76.8, 76.1, 75.8, 75.7, 75.5, 75.4, 74.7, 74.3, 74.2, 74.1, 73.9, 69.9, 69.4, 69.1, 63.7, 58.0,

57.7, 30.7, 29.4, 18.8, 18.7, 12.7; ESI MS m/z (M + Et3NH+ ) calcd 1698.60, found

1699.11.

TIPSOOB OBn O~n
I Bn O Bnh O

NHTCA NHTCA

3-20

4-Pentenyl 2,4-di-O-benzyl-6-O-triisopropylsilyl--D-mannopyranosyl-(1-- 4)-3,6-di-

O-benzyI-2-deoxy-2-trichloroacetimido-l-D-glucopyranosyl-(1-- 4)-3,6-di-O-benzyl-

2-deoxy-2-trichloroacetimido-(5-D-glucopyranoside 3-20. 4 [AL Sodium methoxide

(25% v/w, 0.0219mmol) was added to a solution of 3-2 in 3 ml (2:1 CH2C 2:MeOH) and

stirred 3 h at RT. Amberlite IR-120(plus) resin was added until pH 7 was reached. The

reaction mixture was filtered, solvents removed in vacuo and purification by flash silica

column chromatography (5-25% EtOAc/toluene) afforded 3-20 (230 mg, 84% isolated).

[a]24 D: -37.1 ° (c 0.8, CH2C12); IR (thin film) 2913, 2878, 1615, 1532, 1209, 1072 cmr'; 'H

NMR (500 MHz, CDCI3) 8 7.38-7.27 (m, 18H), 7.27-7.23 (m, 4H), 7.23-7.16 (m, 8H),

6.96 (d, J= 8.0 Hz, 1H), 6.53 (d, J= 7.6 Hz, 1H), 5.81-5.73 (m, 1H), 5.08-4.86 (m, 6H),

4.82-4.73 (m, 1H), 4.70-4.54 (m, 7H), 4.45 (d, J= 12.4 Hz, 2H), 4.36 (d, J= 12.1 Hz, 1H),

4.11 (t, J= 7.8 Hz, 1H), 4.05 (t, J= 8.2 Hz, 1H), 3.99-3.90 (m, 2H), 3.90-3.82 (m, 1H),

3.80-3.61 (m, 8H), 3.60-3.41 (m, 8H), 3.33-3.27 (m, 1H), 3.20-3.16 (m, 1H), 2.14-2.04

(m, 2H), 1.70-1.60 (m, 3H), 0.96 (app. s, 21H); 13C NMR (125 MHz, CDCI3) 6 162.4,
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162.3, 139.4, 139.2, 139.1, 139.0, 138.7, 138.3, 129.3, 129.3, 129.2, 129.2, 129.2, 129.1,

129.0, 128.9, 128.9, 128.8, 128.7, 128.7, 128.6, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2,

128.0, 115.7, 101.9, 100.3, 99.8, 79.2, 79.2, 78.7, 78.0, 77.8, 77.3, 75.9, 75.8, 75.7, 75.7,

75.5, 75.2,75.0,74.8,74.5,74.3,74.0, 69.9, 69.4,69.1,63.9, 59.3, 58.1, 57.8,30.7, 29.4,

29.4, 18.8, 18.7, 12.7; ESI MS m/z (M+ + H+) calcd 1555.47, found 1554.66.

3-21

4-Pentenyl 3,4,6-tri-O-benzyl-!-D-mannopyranosyl-(1-2)-2,4-di-O-benzyl-6-O-

triisopropylsilyl-f5-D-mannopyranosyl-(1--.4)-3,6-di-O-benzyl-2-deoxy-2-

trichloroacetimido-p-D-glucopyranosyl-(--4)-3,6-di-O-benzyl-2-deoxy-2-

trichloroacetimido-15-D-glucopyranoside 3-21. Trisaccharide 3-20 (228 mg, 0.147

mmol) and mannosyl trichloroacetimidate 3-11 (140 mg, 0.220 mmol) were

azeotropically dried with toluene (3 x 3 mL), dried an additional 4 h in vacuo and

dissolved in dichloromethane (1 mL). The solution was cooled to -20 C for 15 min,

followed by the addition of TBSOTf (7 gL, 0.0293 mmol), and stirred for 30 min and

warmed slowly to RT. The reaction was quenched by the addition of Et3N (150 pL), and

dried in vacuo. The crude product was purified by flash column chromatography on

silica gel (2 - 15% EtOAc/toluene) affording of tetrasaccharide 3-21 (231 mg, 77%).

[a]24D: -21.4 ° (c 2.0, CH2C12); IR (thin film) 2931, 2887, 1799, 1722, 1682, 1254, 1099

cm'; 'H NMR (500 MHz, CDCl3) 8 7.42-7.10 (m, 45H), 6.97 (d, J=.- 8.1 Hz, 1H), 6.49 (d,

J= 8.3, 1H), 5.83-5.75 (m, 1H), 5.48 (app. s, 1H), 5.17 (app. s, 1H), 5.04-4.82 (m, 7H),

4.80-4.50 (m, 14H), 4.49-4.29 (m, 7H), 4.10 (t, J= 7.5 Hz, 1H), 4.04 (t, J= 8.2 Hz, 1H),

3.97-3.81 (m, 10H), 3.77-3.44 (m, 16H), 3.29-3.24 (m, 1H), 3.16-3.11 (m, 1H), 2.12 (s,

3H), 2.12-2.02 (m, 3H), 1.73-1.61 (m, 2H), 0.96 (app. s, 21H); 13C NMR (125 MHz,

CDC13) 170.8, 162.4, 162.4, 139.6, 139.5, 139.2, 139.1, 138.8, 138.8, 138.7, 138.5,

138.4, 129.3, 129.2, 129.1, 129.1, 129.1, 129.0, 129.0, 128.8, 128.8, 128.8, 128.7, 128.6,

128.6, 128.5, 128.5, 128.4, 128.4, 128.4, 128.3, 128.3, 128.2, 128.2, 128.2, 128.0, 128.0,

127.9, 127.8, 127.6, 115.6, 101.6, 100.4, 100.2, 100.0, 81.4, 79.1, 79.0, 78.7, 78.1, 76.0,
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75.9, 75.8, 75.7, 75.6, 75.6, 75.2, 74.8, 74.7, 74.2, 74.2, 74.1, 73.0, 72.5, 69.9, 69.6, 69.4,

69.3, 69.3, 63.7, 57.9, 57.6, 30.8, 29.4, 26.6, 21.8, 18.8, 18.7, 12.7,; ESI MS m/z (M2 + +

2H+) calcd 1015.33, found 1014.77.

3-22

4-Pentenyl 3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1-- 2)-2,4-di-O-benzyl-15-D-

mannopyranosyl-(1- 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-15-D-

glucopyranosyl-(1-- 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido- -D-

glucopyranoside 3-22. Tetrasaceharide 3-21 (210 mg, 0.103 mmol) was dissolved in

THF (3 mL). Water (3 mL) was slowly added with vigorous stirring followed by TFA (1

ml). The reaction was stirred for 3 hr at RT and diluted with diethyl ether (50 mL) and

washed with sat. aqueous NaHCO 3 (2 x 30 mL), brine (30 mL), dried (Na2SO4) and

concentrated. The residue was purified by flash column chromatography on silica gel (10

- 40% EtOAc/hexanes) to afford disaccharide 2-16 (159 mg, 82%). [a]24D: -16.6 (c

0.3, CH2C12); IR (thin film) 3432, 1746, 1717, 1688, 1490, 1220, 1096, 1078, 698 cm';

1H NMR (500 MHz, CDC13) a 7.44-7.39 (m, 4H), 7.37-7.15 (m, 41H), 6.92 (d, J=7.8 Hz,

1H), 6.54 (d, J= 7.5 Hz, 1H), 5.18 (s, 1H), 5.07 (d, J=- 10.9 Hz, H), 5.04-4.96 (m, 4H),

4.89-4.73 (m, 7H), 4.66-4.60 (m, 3H), 4.57-4.52 (m, 2H), 4.50-4.40 (m, 7H), 4.26 (d, J=

12.0 Hz, 1H), 4.16 (t, J= 8.4 Hz, 1H), 4.02-3.94 (m, 3H), 3.92-3.86 (m, 3H), 3.84-3.79

(m, 4H), 3.78-3.72 (m, 2H), 3.72-3.54 (m, 9H), 3.54-3.40 (m, 4H), 3.30 (dd, J= 5.0, 12.0

Hz, IH), 3.23-3.19 (m, 1H), 3.00-2.95 (m, 1H), 2.13 (s, 3H), 2.13-2.05 (m, 2H), 1.73-

1.51 (m, 2H) ;13C NMR (125 MHz, CDCI3) 170.8, 162.5, 162.4, 139.3, 139.2, 139.1,

139.0, 138.8, 138.7, 138.6, 138.5, 138.4, 129.3, 129.3, 129.2, 129.2, 129.1, 129.1, 129.0,

129.0, 128.9, 128.8, 128.7, 128.7, 128.5, 128.5, 128.5, 128.4, 128.4, 128.4,128.3, 128.3,

128.1, 127.7, 101.4, 100.3, 100.2, 99.4, 81.1, 79.0, 78.8, 77.9, 76.3, 76.2, 75.7, 75.6, 75.6,

75.5, 75.4, 75.4, 75.2, 74.9, 74.2, 74.1, 73.1, 72.5, 70.0, 69.8, 69.4, 68.9, 62.6, 59.1, 58.2,

30.7, 29.4, 21.8; ESI MS m/z (M+ + Et3NHi) calcd 1973.66, found 1974.61.
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3-9

4-Pentenyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 l3)-[2,4-di-O-

benzyl-3,6-di-O-benzoyl-a-D-mannopyranosyl-(1= 6)-2,4-di-O-benzyl-0 -D-

mannopyranosyl-(1-. 4)-3,6-di-O-benzyl-2-deoxy-2-trichloroacetimido-13-D-

glucopyranosy-(1-- 4)-3,6-di-O-benzy-2-deoxy-2-trichloroacetimnido- -D-

glucopyranoside 3-9. Tetrasaccharide 3-22 (131 mg, 0.0698 mmol) and mannosyl

trichloroacetimidate 3-12 (43 mg, 0.0907 mmol) were azeotropically dried with toluene

(3 x 3 mL), dried over night in vacuo and dissolved in diethylether (1 mL). The solution

was cooled to -20 C for 15 min, followed by the addition of TMSOTf (2.5 FL, 0.0140

mmol), and stirred for 45 min and warmed slowly to RT. The reaction was quenched by

the addition of Et3N (150 L), and dried in vacuo. The crude product was purified by

flash column chromatography on silica gel (0 40% EtOAc/toluene) affording of

pentasaccharide 3-9 (147 mg, 87%). [a] 24 D: -11.7° (c 0.09, EtOAc); IR (thin film) 2917,

2867, 1746, 1711, 1693, 1452, 1235, 1097, 1077, 698 cm-; H NMR (400 MHz, CDCl3)

6 7.88-7.98 (m, 4H), 7.45-7.20 (m, 4H), 7.20-6.90 (m, 55H), 6.89-6.78 (m, 2H), 5.65-

5.55 (m, 1H), 5.51-5.45 (dd, J= 3.0, 9.6 Hz, 1H), 5.35-5.33 (m, 1H), 5.02 (app. s, 1H),

4.94-4.75 (m, 5H), 4.72-4.55 (m, 6H), 4.52-4.33 (m, 9H), 4.32-4.22 (m, 6H), 4.20-4.08

(m, 4H), 4.06-3.91 (m, 4H), 3.84-3.52 (m, 14H), 3.51-3.20 (m, 12H), 3.05-2.95 (m, 2H),

1.95 (app. s, 3H), 1.94-1.9 (m, 2H), 1.54-1.45 (m, 2H); 13C NMR (100 MHz, CDC13) 6

172.0, 168.2, 167.8, 163.7, 163.6, 140.7, 140.5, 140.3, 140.3, 140.1, 140.0, 139.8, 139.7,

139.5, 135.3, 134.9, 132.0, 131.8, 131.7, 131.7, 130.5, 130.4, 130.4, 130.3, 130.3, 130.2,

130.2, 130.1, 130.0, 130.0, 129.8, 129.7, 129.7, 129.6, 129.6, 129.5, 129.5, 129.3, 129.3,

129.1, 129.0, 116.9, 103.0, 101.6, 101.3, 100.5, 100.0, 94.4, 82.7, 80.2, 79.9, 79.8, 79.7,

79.6, 79.2, 77.1, 77.0, 76.9, 76.8, 76.6, 76.3, 76.1, 75.9, 75.4, 75.3, 75.2, 75.1, 74.7, 74.3,

73.9, 72.0, 71.1, 71.0, 70.7, 70.4, 70.3, 68.4, 65.3, 60.4, 59.0, 32.0, 30.6, 23.0,; ESI MS

m/z (M+ + NH4
+) calcd 2440.77, found 2441.11.
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Automated Synthesis of Core Pentasaccharide 3-8. Glycosylated resin from

automated synthesis was dried in vacuo for 18 h over phosphorous pentoxide and

transferred into a solid-phase round bottom flask with glass frit. The resin was swelled

with 5 ml CH2Cl2, purged with an atmosphere of ethylene followed by the addition of 10

mol % Grubbs' catalyst (bis(tricyclohexylphosphine)benzylidene ruthenium (IV)

dichloride. The reaction mixture was stirred for 24 h under an atmosphere of ethylene, an

additional 10 mol% Grubbs' catalyst was added, and the reaction was allowed to stir an

additional 24 h under an atmosphere of ethylene. Triethylamine (100 equiv.) and tris

hydroxymethylphosphine (50 equiv.) were added, and the mixture stirred 2 h at room

temperature. The reaction was diluted in CH2Cl2 and washed 3 times with water. The

aqueous fractions were washed with additional CH2C12. The organic fractions were

combined, dried over MgSO4, filtered, and dried to yield adark oil.

The crude product was analyzed by HPLC (Figure 6.1-6.4, Waters Nova-pak

silica column (3.9 x 150 mm) with EtOAc/hexanes as the mobile phase), monitoring at

260 nm. A portion of the crude product was purified by semi-preparative HPLC using a

Waters prep Nova-pakO silica column (7.8 x 300 mm) with a gradient of EtOAc/hexanes.

Semi-preparative HPLC yielded 3 mg of 3-8 that corresponded to 3-8 made by solution

phase synthesis.
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Figure 6.1 Analytical HPLC trace of crude 3-8 (arrow) cleavage product
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Figure 6.2 Analytical HIPLC trace of cleavage product with added 3-8 (from solution

phase synthesis).
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Figure 6.3 Analytical HPLC trace of semi-preparative HPLC purified 3-8.

min

Figure 6.4 Analytical HPLC trace of purified 3-8 with added 3-8 (from solution-phase

synthesis).

6.4 Experimentals for Chapter 4

4-15

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyi 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranoside 4-15. 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethanol (157 mg, 0.612

mmol) and mannosyl trichloroacetimidate 4-13 (300 mg, 0.471 rmmol) were

azeotropically dried with toluene (3 x 3 mL), dried an additional 1.5 h in vacuo and

dissolved in dichloromethane (4.7mL). The solution was cooled to -20 °C for 15 min,

followed by the addition of TMSOTf (17 [tL, 0.0942 mmol), and stirred for 30 min while
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warmed to RT. The reaction was quenched by the addition of Et3N (100 [tL), and dried

in vacuo. The crude product was purified by flash column chromatography on silica gel

(5 -> 35% EtOAc/toluene) affording 340 mg (99%) of 4-15. H NMR (400 MHz, CDC13)

a 7.24-7.10 (m, 18H), 7.09-7.02 (m, 2H), 5.29 (m, 1H), 4.76 (d, J= 1.7 Hz, 1H), 4.73 (d,

J= 10.7 Hz, 1H), 4.58 (d, J= 4.6, 1H), 4.55 (d, J= 5.6 Hz, H), 4.41-4.44 (m, 3H), 3.87

(dd, J= 3.4, 9.1 Hz, 1H), 3.77 (t, J= 9.6 Hz, 1H), 3.72-3.51 (m, 6H), 3.50-3.42 (, 9H),

2.47 (t, J= 6.8 Hz, 2H), 2.02 (s, 3H); 13C NMR (100 MHz, CDC13) 8 170.9, 138.8, 138.8,

138.6, 138.4, 129.4, 128.9, 128.8, 128.7, 128.5,128.3, 128.3, 128.1, 128.1, 128.0, 127.4,

98.3, 78.6, 75.6, 74.7, 73.9, 72.2, 71.8, 71.3, 70.7, 70.5, 69.2, 69.1, 67.3, 37.0, 31.0, 21.6;

ESI MS m/z (M+ + H) calcd 731.32, found 731.25.

SH

OH OH 

HO

2-[2-(2-mercapto-ethoxy)-ethoxy]-ethyl a-D-mannopyranoside 4-6. Linker containing

mannoside 4-15 (93 mg, 0.127 mmol) was dissolved in 5 ml freshly distilled THF. The

solution was added to a stirring flask at -78 C containing 30 ml NH3 (liquid) with 100

mg sodium metal and methanol (15 RL, 0.508 mminol). The solution was stirred at -78 °C

for 45 minutes, maintaining deep blue color with addition of -20 mg sodium. The

reaction was quenched with the addition of methanol (5 mL). The mixture was slowly

warmed to RT with stream of N2 (g) to remove evaporating NH3 . When no trace of

ammonia remains, the remaining mixture is neutralized with AcOH, and dried in vacuo.

The resulting crude product is desalted on a sephadex G-25 column (1:1 EtOH:H2 0

mobile phase) and dialyzed against 10 L H20 (Spectra/Port CE, MWCO 100) to afford

32 mg 4-6 (76%).1H NMR (501 MHz, CD3OD) 4.81 (s, 1H), 3.87-3.84 (m, 3H), 3.83-

3.54 (m, 13H), 2.66 (t, J= 6.5 Hz, 1H), 1.91 (s, 1H); 13C NMR (125 MHz, CD3OD) ;

101.8, 74.7, 72.6, 72.2, 71.7, 71.5, 68.7, 67.9, 63.0, 50.0, 24.8; ESI MS m/z (M+ + H+)

calcd 329.12, found 329.19, + disulfide, calcd 655.22, found 655.31.
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4-17

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 4-O-benzyl-3-O-(4-methoxybenzyl)-6-

O-triisopropylsilyl-fl-D-glucopyranoside 4-17. Glucal 4-16 (2.66 g, 5.19 mmol) was

dissolved in CH2C12 (6 mL) and cooled to 0 C. A 0.08 M solution of dimethyldioxirane

in acetone (77.8 mL, 6.23 mmol) was added and the reaction was stirred for 15 min.

After the solvent was removed the remaining residue was dried in vacuo for 1.5 h and

subsequently dissolved in CH2C12 (15 mL). The solution was cooled to -78 C followed

by the addition of 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethanol (2.66 g, 10.4 mmol).

A 1.0 M solution of ZnCl2 in diethyl ether (5.7 mL, 5.71 mmol) was added and the

reaction was warmed slowly to room temperature and stirred over 16 h. The reaction was

diluted with EtOAc (200 mL) and washed with sat. aqueous NaHCO3 (2 x 100 mL),

water (2 x 100 mL) and brine (2 x 100 mL) and dried (Na2SO4). The organic phase was

concentrated in vacuo and the resulting residue was filtered through a 5 cm plug of silica

gel (30% EtOAc/toluene) to afford 2.10 g (53%) of 4-17 as a crude oil. H NMR (501

MHz, CDC13) 6 7.37-7.22 (, 12H), 6.87-6.83 (, 2H), 4.92-4.82 (, 2H), 4.80-4.60 (nm,

2H), 4.02-3.86 (, 3H), 3.80 (s, 3H), 3.79-3.72 (, 2H), 3.70-3.52 (, 12H), 2.65 (t, J=--

6.6 Hz, 2H), 1.09-1.06 (m, 21H) ESI MS m/z (M+ + NH4
+) calcd 802.44, found 801.98.

SBn

TIPSO OH 

Bno' oj

4-18

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 4-O-benzyl-3-O-(4-methoxybenzyl)-6-

O-triisopropylsilyl-[3-D-mannopyranoside 4-18. Glucoside 4-17 (2.1 g, 2.67 mmol) was

azeotropically dried with toluene (3 x 10 mL) and dissolved in dimethyl sulfoxide (10

mL). Acetic anhydride (5 mL) was added and the reaction was allowed to stir 48 h at

room temperature. Solvent was removed in vacuo, the crude material was dissolved in 50
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ml CH2CI2 and washed with water (3 x 40 mL) and dried with Na2SO4. After

concentration in vacuo the residue was dissolved in 1:1 CH2Cl2:MeOH (30 mnL) and

cooled to 0 C. NaBH4 (0.506 g, 13.4 mmol) was slowly added and the reaction was

stirred 16 h at room temperature. CH2C12 (100 mL) was added and the organic phase was

washed with water (100 mL), 1% aqueous citric acid (2 x 100 mL), sat. aqueous NaHCO 3

(100 mL), brine (100 mL) and dried (Na2SO4). The organic phase was dried in vacuo to

give a clear oil and purified by flash column chromatography on silica gel (5-40%

EtOAc/toluene) to afford 0.767 g (36%) of the desired -mannoside 4-18. H NMR (501

MHz, CDCI3) 8 7.36-17 (n, 12H), 6.87-6.85 (, 2H), 4.91 (d, J= 10.8 Hz, 1H), 4.71-4.59

(m, 3H), 4.45 (s, 1H), 4.07 (d, J= 2.9 Hz, 1H), 4.00-3.85 (m, 4H), 3.80 (s, 3H), 3.76-3.64

(m, 5H), 3.63-3.56 (, 6H), 3.52 (dd, J= 3.1, 9.1 Hz, 1H), 3.27-3.23 (m, H), 2.62 (t, J=

6.8 Hz, 2H), 2.32 (bs, 1H), 1.07 (app. s, 21H); 13C NMR (125 MHz, CDC13) 159.8,

139.6, 130.7, 130.3, 129.6, 129.2, 129.2, 128.9, 128.5, 127.7, 114.4, 100.3, 81.8, 77.2,

74.6, 71.9, 71.7, 71.3, 71.1, 71.0, 69.1, 69.0, 68.9, 63.4, 56.1, 56.0, 37.2, 31.3, 18.2, 12.3;

ESI MS m/z (M+ + NHI4+) calcd 802.44, found 802.11.

SBn

K

TIPSO
OBn 0

BnO I'\

4-19

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2,4-di-O-benzyl-6-O-triisopropylsilyl-j3-

D-mannopyranoside 4-19. 4-18 (0.767g, 0.978 mmol) was azeotropically dried with

toluene (3 x 3 mL) and dissolved in DMF (10 mL). The solution was cooled to 0 C and

sodium hydride (47 mg, 60% in mineral oil, 1.17 mmol) was carefully added and the

mixture was warmed to room temperature. Benzyl bromide (139 RL, 1.17 mmol) was

added to the solution, and stirred for 2 h. The reaction was quenched with the careful

addtion of methanol (2 mL). The reaction was diluted with diethyl ether (100 mL),

washed with water (100 mL), followed by extraction of the combined aqueous phase with

diethyl ether (50 mL). The combined organic phase was washed with sat. aqueous

NaHCO 3 (100 mL), water (100 mniL), brine (100 mL), dried (Na2SO4) and concentrated to
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give an oil in vacuo. The residue was purified by flash column chromatography on silica

gel (0 10% EtOAc/toluene) to afford 769 mg (90%) of 2-[2-(2-benzylsulfanyl-

ethoxy)-ethoxy]-ethyl 2,4-di-O-benzyl-3-O-(4-methoxybenzyl)-6-O-triisopropylsilyl-f3-

D-mannopyranoside. The aforementioned product (737 mg, 0.842 mmol) was dissolved

in CH2Cl2 (4 mL) and H2 0 (0.40 mL). To this mixture, DDQ (230 mg, 1.01 mmol) was

added, and stirred for 1 hr at RT. The reaction was diluted in EtOAc:Et2 0 (1:1, 150 mL),

washed with water (2 x 50 mL), bicarb (2 x 50 mL) andbrine ( x 60 mL), dried over

MgSO4 and concentrated to give an oil in vacuo. The resulting oil was purified by silica

gel chromatography (0 a 20% EtOAc/toluene) to give 594 mg (93%) of P-mannoside

acceptor 4-19. H NMR (400 MHz, CDC13) 6 7.31-7.13 (, 15H), 4.97 (d, J= 11.8 Hz,

1H), 4.79 (d, J= 11.1 Hz, 1H), 4.56 (d, J= 1.6 Hz, 1H), 4.53 (d, J= 2.4 Hz, 1H), 4.45 (s,

1H), 3.95-3.83 (m, 3H), 3.76 (d, J= 3.2 Hz, H), 3.66-3.45 (m, 13H), 3.20-3.15 (m, 1H),

2.45 (app. bs, 2H), 2.42 (bs, 1H), 1.00 (app. s, 21H); 13C NMR (100 MHz, CDC13) 

139.1, 139.0, 138.8, 129.3, 128.9, 128.8, 128.7, 128.4, 128.4, 128.1, 128.0, 127.4, 101.9,

78.1, 77.8, 77.0, 75.2, 74.9, 74.4, 71.3, 71.0, 70.7, 68.8, 63.4, 37.0, 31.0, 18.4, 18.4, 12.7,

12.4, 12.1; ESI MS m/z (M+ + NH4+) calcd 772.43, found 772.37.

$B3nSBn SBn
SSeeeeeeeeeeen e e e e e e e eeeeeK 1eeeeeeeeee

__ S O
OBn OAc 0

BnO ~~OTIPS
BnO-' I 0 

4-20

LK
10o-)

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxyl-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-ca-D-

mannopyranosyl-(1- 3)-2,4-di-O-benzyl-6-O-triisopropylsilyl-P -D-mannopyranoside

4-20 with orthoester contaminant. 4-19 (519 mg, 0.688 minmol) and mannosyl

trichloroacetimidate 4-13 (657 mg, 1.03 mmol) were azeotropically dried with toluene (3

x 10 mL), dried an additional 12 h in vacuo and dissolved in diethyl ether (7.0 mL). The

solution was cooled to -20 °C for 15 min, followed by the addition of TBSOTf (32 AL,

0.138 mmol), and stirred for 30 min at -20 C. The reaction was quenched by the

addition of Et3N (100 FL), and dried in vacuo. The crude product appeared as a single
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spot by TLC, and was purified by flash column chromatography on silica gel (5 - 35%

EtOAc/toluene) affording 812 mg (96%) of the disaccharides 4-20 mixed (:1) with

orthoester 4-21 (confirmed by 13C NMR of orthoester carbon at 8 124.4). H NMR (400

MHz, CDC13) 8 7.40-28 (, 4H), 7.26-7.04 (m, 56H), 7.42-7.40 (m, 1H), 5.11 (d, J= 1.5

Hz, 1H), 5.06 (d, J= 2.6 Hz, 1H), 4.89-4.64 (, 6H), 4.61-4.47 (, 11H), 4.41-4.33 (m

7H), 3.93-3.81 (m, 9H), 3.81-3.73 (m, 7H), 3.67-41 (, 301), 3.33-3.29 (m, 1H), 3.21-

3.12 (, 2H), 2.53-2.48 (, 2H), 2.00 (s, 3H), 1.66 (s, 3H), 0.98 (app. s, 42H); 1
3C NMR

(100 MHz, CDC13 ) 8 170.5, 139.8, 139.5, 139.1, 138.9, 138.8, 138.6, 138.6, 138.3, 138.2,

129.3, 128.9, 128.8, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.3, 128.2, 128.1,

128.0, 128.0, 127.9, 127.5, 127.4, 124.4, 101.9, 101.7, 100.1, 98.0, 80.7, 79.0, 78.5, 78.5,

76.6, 76.4, 75.6, 75.5, 75.2, 74.7, 74.3, 74.0, 73.8, 73.8, 72.5, 72.4, 72.3, 71.2, 70.9, 70.7,

69.5, 69.4, 69.3, 68.8, 63.5, 63.1, 37.0, 31.0, 25.7, 21.4, 18.4, 18.4, 12.4; ESI MS m/z

(M + + H+ ) calcd 1251.5875, found 1251.5861.

4-22

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1--3)-2,4-di--benzy-[$-D-mannopyranoside 4-22. The mixture

containing disaccharide 4-20 and orthoester 4-21 (812 mg) was dissolved in AcOH (50

mL, 80%), and stirred vigorously for 3 h at RT. The mixture was diluted in CH2C 2 (100

mL) and washed with water (3 x 100 mL), sat. aqueous NaHCO3 (2 x 50 mL), brine (50

mL) and dried (Na2SO4). The organic phase was dried in vacuo, and passed through a 10

cm plug of silica gel (10 % EtOAc/hexanes) to separate disaccharide 4-20 (248 mg) from

C3 hydroxyl manoside 4-19 (132 mg). The crude isolate of 4-20 (248 mg, 0.202 mmol)

was dissolved in THF (3 mL). Water (3 mL) was slowly added with vigorous stirring

followed by TFA (1 mL). The reaction was stirred for 1 hr at RT, followed by additional

TFA (1 mL). The mixture was stirred for an additional 1 h and diluted with diethyl ether

(50 mL) and washed with water (3 x 50 ml), sat. aqueous NaHCO 3 (2 x 30 mL), brine (30
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mL), dried (MgSO4) and concentrated. The residue was purified by flash column

chromatography on silica gel (5 - 30% EtOAc/toluene) to afford 197 mg (91%) of the

C6 acceptor disaccharide 4-22. H NMR (400 MHz, CDCl3) 6 7.27-7.06 (m, 30H), 5.45-

5.43 (m, 1H), 5.19 (d, J= 1.3 Hz, 1H), 4.73-4.71 (m, 1H), 4.66-4.55 (m, 1H), 4.24-22

(m, 1H), 4.00 (d, J=1 1.1 Hz, 1H), 3.86 (d, J= 10.8 Hz, 1H), 3.84-3.60 (m, 6H), 3.54-3.50

(m, 10H), 3.26-2.19 (m, 2H), 2.63 (t, J=7.2 Hz, 2H), 2.44 (bs, 1H), 2.01 (s, 3H); 3C

NMR (100 MHz, CDCI3) 171.0, 138.3, 137.5, 137.3, 137.2, 128.9, 128.9, 128.8, 128.5,

128.4, 128.4, 128.4, 128.3, 128.2, 127.9, 127.7, 127.6, 127.5, 127.5, 127.4, 126.9, 101.3,

97.8, 76.0, 74.2, 74.1, 74.1, 73.6, 73.4, 72.3, 71.3, 70.8, 70.3, 69.5, 69.2, 68.4, 66.7, 66.6,

65.4, 62.8, 62.3, 38.6, 33.4, 28.4, 17.6; ESI MS m/z (M+ + NH4
+) calcd 1090.50, found

1090.31.

OBn OA

BnOŽ[-I(BnOBn

4-11

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-ac-D-

mannopyranosyl-(1- 3)-[2,4-di-O-benzyl-3,6-di-O-benzoyl-a-D-mannopyranosyl-

(14-6)]-2,4-di-O-benzyl-II-D-mannopyranoside 4-11. Disaccharide acceptor 4-22 (197

mg, 0.184 mmol) and mannosyl trichloroacetimidate 4-14 (172 mg, 0.275 mmol) were

combined, azeotropically dried with toluene (3 x 5 mL) and dissolved in Et2 0 (2 mL).

The solution was cooled to -20 C for 15 min, followed by the addition of TBSOTf (8.4

[tL, 0.0367 mmol). The reaction mixture was stirred and warmed to room temperature

over 40 min. The reaction was quenched by the addition of Et3N (50 RL), and dried in

vacuo. The crude product was purified by flash column chromatography on silica gel (2

- 30% EtOAc/toluene) to afford 241 mg (81%) of differentiated trisaccharide 4-11. H

NMR (400 MHz, CDCI3) 6 8.01-7.95 (m, 4H), 7.52-7.48 (m, 4H), 7.47-6.86 (, 42H),

5.59 (dd, J= 3.2, 9.5 Hz, 1H), 5.44-5.43 (, 1H), 5.13 (d, J= 9.4 Hz, 2H), 4.85-4.76 (m,

3H), 4.66-4.53 (m, 5H), 4.53-4.40 (m, 6H), 4.39-4.27 (m, 4H), 4.21 (t, J= 9.7 Hz, 1H),

4.06-3.99 (m 2H), 3.97-3.88 (m, 2H), 3.85-3.79 (m, 3H), 3.78-3.51 (m, 10H), 3.49-3.36

(m, 8H), 3.30-3.27 (m, 1H), 2.48 (app. bs, 2H), 1.99 (s, 3H); 13C NMR (100 MHz,
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CDC13) 170.4, 166.8, 166.0, 139.1, 139.1, 138.9, 138.6, 138.6, 138.3, 138.3, 138.0,

133.6, 133.4, 130.5, 130.2, 130.2, 129.4, 128.9, 128.9, 128.8, 128.8, 128.8, 128.7, 128.6,

128.6, 128.6, 128.5, 128.4, 128.2, 128.2, 128.1, 128.0, 128.0, 127.7, 127.4,101.9, 100.1,

98.6, 80.5, 78.4, 77.1, 76.1, 75.7, 75.6, 75.5, 75.2, 74.8, 74.6, 74.6, 73.8, 73.7, 73.2, 72.6,

72.5, 71.2, 70.9, 70.6,70.5, 69.3, 69.0, 66.4, 64.0, 37.0, 31.0, 21.9, 21.5, 14.7; ESI MS

m/z (M + Na+) calcd 1645.65, found 1645.57.

SBn

4-23

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxyl-ethyl 3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1- 3)-[2,4-di-O-benzyl-a-D-mannopyranosyl-(1- 6)]-2,4-di-O-

benzyl-P3-D-mannopyranoside 4-23. Trisaccharide 4-11 (224 mg, 0.0687 mmol) was

dissolved in CH2CI2:MeOH (8 mL, 1:1). A solution of sodium methoxide in MeOH (450

[tL, 25% w/v, 2 mmol) was added and the reaction was heated on an oil-bath to 45 °C for

1.5 h. The reaction was quenched with DOWEX-50W-hydrogen strongly acidic ion-

exchange resin, filtered, and dried in vacuo. The resulting crude product was purified by

flash column chromatography on silica gel (10 - 40% EtOAC/toluene) to afford 161 mg

(85%) of trisaccharide triol 4-23. 'H NMR (400 MHz, CDCl3) 6 7.28-7.02 (mi, 40H), 5.16

(d, J=1.1 Hz, 1H), 5.07 (d, J= 1.0 Hz, 1H), 4.85-4.80 (m, 2H), 4.73-4.61 (m, 3H), 4.55-

4.52 (m, 4H), 4.49-4.28 (m, 6H), 3.94-3.88 (m, 3H), 3.86-3.58 (m, 14H11), 3.51-3.41 (m,

9H), 3.37-3.35 (m, 2H), 3.22-3.19 (m, 1), 2.47 (t, J= 6.8 Hz, 2H), 2.00 (app. bs, 311);

13C NMR (100 MHz, CDCl3) 6 137.6, 137.5, 137.5, 137.4, 137.1, 137.0, 136.8, 136.7,

128.0, 127.9, 127.5, 127.5, 127.4, 127.4, 127.4, 127.3, 127.2, 127.2, 127.2, 126.9, 126.9,

126.9, 126.8, 126.8, 126.7, 126.7, 126.6, 126.6, 126.5, 126.3, 126.0, 124.2, 100.6, 100.3,

96.5, 79.1, 78.8, 77.6, 77.2, 75.5, 74.5, 74.2, 74.0, 73.9, 73.7, 73.1, 73.1, 72.3, 71.6, 71.1,

70.8, 70.7, 70.4, 69.7, 69.5, 69.4, 69.1, 67.9, 67.6, 65.0, 61.2, 35.5, 29.5, 20.4; ESI MS

m/z (M + + Na+) calcd 1395.59, found 1395.66.
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4-24

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2,4-di-O-benzyl--D-mannopyranoside

4-24. 4-19 (90 mg, 0.120 mmol) was dissolved in THF (1 mL). Water (300 ItL) was

slowly added with vigorous stirring followed by TFA (300 FL). The reaction was stirred

for 3 hr at RT, diluted with diethyl ether (30 mL) and washed with water (3 x 20 ml), sat.

aqueous NaHCO3 (2 x 30 mL), brine (30 mL), dried (MgSO4 ) and concentrated. The

residue was purified by flash column chromatography on silica gel (10 - 30%

EtOAc/toluene) to afford 62 mg (86%) of the C3,6 diol 4-24. H NMR (400 MHz,

CDC13) 7.19-7.06 (m, 15H), 5.04 (d, J= 1.8 Hz, 1H), 4.64-4.62 (m, 4H), 3.99-3.95 (m,

2H), 3.74-3.66 (m, 6H), 3.60-3.54 (m, 8H), 3.35 (m, 1H), 3.02 (m, 1H), 2.66 (t, J= 6.9

Hz, 2H) 2.45 (app. bs, 2H); 13C NMR (100 MHz, CDC13) 8 138.8, 137.3, 137.1, 128.9,

128.9, 128.8, 128.8, 128.7, 128.5, 128.4, 127.7, 127.7, 127.6, 127.6, 127.6, 127.4, 126.7,

100.1, 77.3, 74.1, 74.1, 72.9, 72.6, 72.4, 71.3, 70.9, 70.2, 65.7, 65.3, 59.8, 38.8, 33.3; ESI

MS m/z (M+ + NH4) calcd 616.29, found 616.88.

SBn

OBn OAc

OBn Oc 0--'
BnO BoBnO.,.

4-25

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1-3)-[2-O-acetyl-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-

(1-6)]-2,4-di-O-benzyl-1-D-mannopyranoside 4-25. Mannosyl trichloroacetimidate 4-

13 (172 mg, 0.269 mmol, 2.6 eq.) and monosaccharide diol 4-24 (62 mg, 0.104 mmol)

were combined, azeotropically dried with toluene (3 x 3 mL) and dissolved in diethyl

ether (1 mL). The solution was cooled to -20 C for 15 min, followed by the addition of

TMSOTf (4 d, 0.021 mmol), and stirred for 30 min while warming slowly to RT. The
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reaction was quenched by the addition of Et3N (50 RL), and dried in vacuo. The crude

product was purified by flash column chromatography on silica gel (5 - 25%

EtOAc/toluene) to afford 131 mg (82%) of non-differentiated trisaccharide 4-25. 1H

NMR (400 MHz, CDCl 3) 7.31-7.00 (m, 45H), 5.47-5.45 (m, 1H), 5.39-5.36 (, 1H),

5.10 (d, J=1.8 Hz, 1H), 4.92-4.73 (m, 4H), 4.68-4.62 (m, 2H), 4.60-4.50 (m, 4H), 4.43-

4.30 (m, 8H), 3.88-3.40 (m, 26H), 3.30-3.22 (m, 1H), 2.0 (t, J=--6.8 Hz, 2H), 2.05 (s, 3H),

1.98 (s, 31); 13C NMR (100 MHz, CDCl3) 8 170.7, 170.5, 139.2, 139.1, 139.0, 138.8,

138.7, 138.6, 138.3, 138.3, 138.1, 129.3, 128.9, 128.8, 128.8, 128.7, 128.6, 128.6, 128.5,

128.3, 128.3, 128.2, 128.1, 128.0, 128.0, 128.0, 127.9, 127.9, 127.7, 127.4, 102.0, 100.1,

98.3, 80.7, 78.5, 78.1, 77.6, 75.8, 75.5, 75.4, 75.3, 75.1, 74.6, 74.5, 74.5, 73.8, 73.7, 72.5,

72.4, 71.8, 71.8, 71.2, 70.9, 70.9, 70.7, 69.3, 69.2, 69.1, 68.8, 66.9, 37.0, 31.0, 21.6, 21.4;

ESI MS m/z (M+ + NH4+ ) calcd 1564.70, found 1565.01.

SBn

OBn0 1

4-10

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1 - 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1) 3)- [2-O-acetyl-

3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 3)-[2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1- 6)]-2,4-di-O-benzyl-a-D-mannopyranosyl-(14 6)]-2,4-di-O-

benzyl-P-D-mannopyranoside 4-10. Trisaccharide triol 4-25 (161 mg, 0.117 mmol) and

mannosyl trichloroacetimidate 4-13 (336 mg, 0.527 mmol, 4.5 eq) were azeotropically

dried with toluene (3 x 5 mL), dried an additional 10 h in vacuo and dissolved in CH2C12

(2mL). The solution was cooled to -20 °C for 15 min, followed by the addition of

TMSOTf (13 [tL, 0.070 mmol), and stirred for 30 min while warming to RT. The

reaction was quenched by the addition of Et3N (100 tL), and dried in vacuo. The crude

product was purified by flash column chromatography on silica gel (5 - 40%
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EtOAc/toluene) affording 276 mg (84%) of hexasaccharide 4-10. H NMR (400 MHz,

CDC13) 7.30-6.92 (m, 80H), 5.43-5.40 (, 3H), 5.10 (d, J= 2.8 Hz, 2H), 4.95-4.82 (m,

4H), 4.79-4.59 (m, 6H), 4.68-4.58 (m, 3H), 4.52-4.18 (m, 28H), 3.99-3.62 (, 21H),

3.60-3.50 (, 10H), 3.48-3.30 (m, 18H), 3.24 (d, J= 10.8 Hz, 1H), 3.10-3.02 (, 1H),

2.44 (t, J= 10.8 Hz, 2H), 2.03 (s, 3H), 2.00 (s, 3), 1.97 (s, 3H); 13C NMR (100 MHz,

CDCI3) 170.7, 170.6, 170.6, 139.4, 139.2. 139.2, 139.1, 139.1, 138.9, 138.9, 138.9,

138.8, 138.8, 138.8, 138.7, 138.7, 138.7, 138.5, 138.4, 138.3, 129.5, 129.5, 129.0, 128.9,

128.9, 128.8, 128.8, 128.7, 128.7, 128.3, 128.3, 128.3, 128.0, 128.0, 127.9, 127.9, 102.1,

101.5, 100.3, 99.9, 98.8, 97.4, 81.9, 80.2, 78.7, 78.6, 78.1, 77.90, 75.7, 75.7, 75.6, 75.4,

75.3, 75.0, 74.7, 74.6, 74.5, 73.9, 73.9, 73.8, 73.7, 73.0, 72.7, 72.5, 72.3, 72.1, 71.7, 71.4,

71.3, 71.0, 69.4, 69.3, 69.1, 68.8, 66.7, 66.3, 37.1, 31.1, 22.0, 21.7, 21.5; MALDI-TOF

m/z (M+ + Nat) calcd 2818.20, found 2817.55.

4-26

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy] -ethyl 3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1- 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 - 2)-3,4,6-tri-O-

benzyl-a-D-mannopyranosyl-(1-- 3)-13,4,6-tri-O-benzyl-a-D-mannopyranosyl-

(1 - 2)-3,4,6-tri-O-benzyl-act-D-mannopyranosyl-(1- 3)-[3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1 - 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 6)1-2,4-di-O-

benzyl-a-D-mannopyranosyl-(1- 6)]-2,4-di-O-benzyI-P -D-mannopyranoside 4-26.

Hexasaccharide 4-10 (117 mg, 0.0419 mmol) was azeotropically dried with toluene (3 x

3 mL) and dissolved in CH2C 2 (2 mL). MeOH (4 mnL) was added followed by a solution

of sodium methoxide in MeOH (50 L, 25% w/v, 0.22 mmol). The reaction was stirred

for 1 h at 45 C, quenched with DOWEX-50W-hydrogen strongly acidic ion-exchange

resin, filtered, and dried in vacuo. The resulting residue was purified by flash column

chromatography on silica gel (10 -> 40% EtOAc/toluene) to afford 102 mg (91%) of
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hexasaccharide triol 4-26. H NMR (500 MHz, CDC13) 8 7.48-7.10 (m, 80H), 5.27 (d, J=

22 Hz, 2H), 5.13 (d, J= 16.3 Hz, 2H), 5.03 (d, J= 12.5 Hz, 1H), 4.93-4.82 (m, 6H), 4.78-

4.49(m, 27H), 4.48-4.34 (m, 3H), 4.15-3.81 (m, 23H), 3.79-3.46 (m, 28H), 3.26-3.22 (m,

1H), 2.60 (t, J= 6.8 Hz, 2H), 2.00 (app. s, 3H, -OH); 13C NMR (125 MHz, CDC13)

8139.6, 139.5. 139.5, 139.5, 139.4, 139.3, 139.2, 139.2, 139.1, 139.0, 139.0, 138.9, 138.9,

138.9, 138.6, 138.5, 138.6, 129.8, 129.3, 129.0, 128.9, 128.9, 128.8, 128.7, 128.6, 128.5,

128.4, 128.3, 128.3, 128.1, 128.1, 127.6, 127.5, 102.2, 101.2, 100.0, 99.9, 98.7, 97.7,

80.2, 78.7, 78.5, 78.1, 77.90, 75.5, 75.5, 75.5, 75.4, 75.3, 75.1, 74.7, 74.6, 74.3, 73.9,

73.9, 73.8, 73.6, 73.1, 72.7, 72.5, 72.3, 72.1, 71.7, 71.4, 71.3, 71.0, 69.4, 69.3, 69.1, 68.8,

66.7, 66.3, 37.1, 31.1, 22.0; MALDI-TOF m/z (M+ + Na+) calcd 2692.17, found 2692.33.

OBnOA

OBn ·
OBOA bOAc BnO

BnO BnO I
BnO~ B nO '3~'~OBn BnOO" (~Bn Bo 0. SBn

o. _ BnO"'" 0 Bn oBnO0 .Z BnONl O /BnO
OBn 0 u-,

BnO 0 B
BnO. O 0 n

4-9

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1- 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 2)-3,4,6-tri-O-

benzyl-a-D-mannopyranosyl-(1 -) 3)-1[2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1- 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1 .3)-[2-O-acetyl-

3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1-) 2)-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1-) 6)]-2,4-di-O-benzyl-a-D-mannopyranosyl-(1- 6)1-2,4-di-O-

benzyl-13-D-mannopyranoside 4-9. Hexasaccharide 4-26 (102 mg, 0.0382 mmol) and

mannosyl trichloroacetimidate 4-13 (182 mg, 0.286 mmol, 7.5 eq) were azeotropically

dried with toluene (3 x 5 mL), dried an additional 12 h in vacuo and dissolved in diethyl

ether (2mL). The solution was cooled to -20 °C for 15 min, followed by the addition of

TMSOTf (4 1tL, 0.0229 mmol), and stirred for 30 min while warming to RT. The

reaction was quenched by the addition of Et3N (50 tL), and dried in vacuo. The crude
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product was purified by flash column chromatography on silica gel (2 - 35 %

EtOAc/toluene) affording 111 mg (71%) of nonasaccharide 4-9. H NMR (500 MHz,

CDCl3 ) 6 4.46-1.06 (m, 130H), 5.70 (app. s, 1H), 5.65-5.59 (m, 3H), 5.36-5.13 (m, 7H),

5.06-5.00 (m, 2H11), 4.96-4.88 (m, 8H), 4.84-4.36 (m, 42H), 4.32-3.46 (m, 60H), 3.26-3.20

(m, 2H), 2.58 (t, J= 6.7Hz, 2H), 2.22 (s, 3H), 2.20 (s, 31), 2.18 (s, 3H);. 3 C NMR (125

MHz, CDC13) Anomeric carbons: 102.1, 102.1, 100.2, 100.0, 100.0, 99.9, 93.8, 93.6,

92.8. MALDI-TOF m/z (M+ + Na+) calcd 4091.79, found 4091.82.

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-c-D-

mannopyranosyl-(1- 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1' 2)-3,4,6-tri-O-

benzyl-a-D-mannopyranoside 4-28. Beginning with mannoside 4-15 (400 mg, 0.549

mmol), the C2 acetate was removed by treatment with NaOMe (100 p.L, 0.44 mmol) in

10 ml (1:1 CH2C12:MeOH), followed by neutralization with acidic Amberlite-IR-120

resin, furnishing 325 mg of crude monosaccharide C2 acceptor (86% crude). The crude

acceptor was coevaporated (3 x 5 mL toluene) with mannosyl donor 4-13 (390mg, 0.0612

mol), dissolved in dichloromethane (5 mL), and cooled to 0 C. Following treatment

with TMSOTF (17 [tL, 0.0942 mmol) the mixture was warmed to RT, quenched with

Et3N (50 !.L) and dried in vacuo. Following silica gel chromatography (5 -> 30 %

EtOAc/toluene) 443 mg disccharide 4-27 (81%) was isolated. Disaccharide 4-27 (322

mg, 0.276 mmol) was deprotected analogously to 4-15 by treatment with NaOMe and

quenched with Amberlite-IR-120 resin, furnishing the disaccharide C2 acceptor (285 mg,

0.254 mmol) in 92% yield. This disaccharide was coevaporated in toluene (3 x 5 ml)

with 4-13 (210 mg, 0.330 mmol), dissolved in dichloromethane (3 ml), and cooled to 0

°C. TMSOTF (11.3 L, 0.0508 mmol) was added, and the mixture warmed to room

temperature. The reaction was quenched with Et3N (100 [tL) and dried in vacuo. The
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resulting trisaccharide was purified by flash column chromatography on silica gel (10 -

40 % EtOAc/toluene) affording 369 mg (91%) of trimannoside 4-28. H NMR (500

MHz, CDCI3 ) 6 7.36-7.14 (, 50H), 5.56 (app. s, 1H), 5.21 (s, 1H), 5.07 (s, II), 4.95 (s,

1H), 4.87-4.82 (m, 3), 4.70-4.42 (, 15H), 4.31 (d, J= 12.0 Hz, 1H), 4.12 (s, 1H), 4.04

(s, 1H), 4.02-3.95 (m, 1H), 3.94-3.83 (, 5H), 3.82-3.66 (m, 11H), 3.57-3.44 (m, 10H),

2.59 (d, J= 6.9 Hz, 2H), 2.15 (s, 3H); 13C NMR (125 MHz, CDC13) 6 170.1, 139.3, 139.2,

139.2, 139.1, 139.1, 138.9, 138.7, 129.7, 129.2, 129.1, 129.1, 129.0, 129.0, 129.0, 129.0,

128.9, 129.8, 128.7, 128.5, 128.5, 128.4, 128.3, 128.2, 128.2, 128.1,127.7, 101.4, 100.2,

99.5, 80.2, 78.9, 76.9, 76.9, 76.8, 76.7, 76.5, 76.4, 74.9, 74.1, 74.0, 73.9, 72.0, 71.4, 71.1,

69.5, 67.2, 37.2, 31.2, 21.7; ESI MS mn/z (M+ + NH4+ ) calcd 1612.74, found 1613.01.

TIPSOO

B

4-34 0

2-Propenyl 3,4-di-O-benzyl-6-O-triisopropylsilyl-a-D-mannopyranoside 4-34.

Mannosyl trichloroacetimidate 4-32 (0.477 g, 0.796 mmol) was azeotropically dried with

toluene (3 x 10 mL) and dissolved in CH2CI2 (8 mnL). The solution was cooled to -30 °C

for 15 min, allyl alcohol (230 [tL, 3.38 mmol), followed by TMSOTf (31 [LL, 0.169

mmol) were added to the solution, and stirred for 30 min at -30 C while warming to RT.

The reaction was quenched by addition of Et3N (500 [tL), and dried in vacuo. The crude

product was purified by flash column chromatography on silica gel (2 10%

EtOAc/hexanes) to afford 477 mg (66%) of 2-Propenyl 2-O-acetyl-3,4-di-O-benzyl-6-O-

triisopropylsilyl-a-D-mannopyranoside. H NMR (500 MHz, CDC13) 7.37-7.25 (m,

10H), 5.94-5.81 (m, 1H), 5.37-5.35 (m, 1H), 5.30-5.16 (, 2H), 4.91 (d, J= 10.8 Hz, 1H),

4.83 (d, J= 1.7 Hz, 1H), 4.70-4.55 (m, 3H), 4.19-3.89 (m, 8H), 3.70-3.65 (, 1H), 2.12

(s, 3H), 1.10 (app. s, 21H). 2-Propenyl 2-O-acetyl-3,4-di-O-benzyl-6-O-triisopropylsilyl-

ca-D-mannopyranoside (316 mg, 0.528 mmol) was dissolved in methanol (3ml), into

which sodium methoxide (12 tL, 25% wt, 0.0528 mmol) was added and stirred at RT for

16 h. The reaction was quenched with Amberlite-IR-120 resin, dried in vacuo, and

purified by silica gel chromatography (5 - 20% EtOAc/hexanes) to furnish 240 mg
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(82%) of 4-34 as an oil. H NMR (500 MHz, CDCl3) 8 7.42-7.26 (, 10H), 5.96-5.88 (nm,

1H), 5.29 (app. d, J= 18 Hz, 1H), 5.21 (d, J= 9.1 Hz, 1H), 4.93-4.91 (, 2H), 4.77-4.67

(min, 3H), 4.25-4.21 (, 1H), 4.09 (app. s, 1H), 4.03-3.91 (m 4H), 3.82 (t, J= 9.6 Hz, 1H),

3.80-3.71 (, 1H), 2.47 (s, 1H), 1.12 (app. s, 21H); 13C NMR (125 MHz, CDC13) 

139.2, 138.7, 134.8, 134.3, 129.3, 129.3, 129.2, 129.2, 129.1, 129.1, 128.9, 128.7, 128.6,

128.6, 128.5, 128.5, 128.4, 118.2, 98.8, 81.4, 75.9, 75.2, 73.6, 72.8, 72.8, 69.4, 68.9, 63.7,

18.8, 12.7; ESI MS m/z (M+ + H+ ) calcd 557.33, found 557.19.

OTIPS
I OBZ

BnO '

4.33 ONH

CCI3

2-O-benzoyl-3,4-di-O-benzyl-6-O-triisopropylsilyl-a-D-mannopyranosyl

trichloroacetimidate 4-33. Allyl mannoside 4-34 (236 mg, 0.424 mmol) was azeotroped

with toluene (3 x 5 ml), dissolved in CH2C12 (2 mL) and cooled to 0 C. To this solution

benzoyl chloride (74 tL, 0.636 mmol) and pyridine (1 mL) were added. The mixture

was stirred for 1.5 h, and warmed slowly to RT. The resulting mixture was diluted with

CH2 Cl2 (50 mL), washed with water (50 mL), sat. aqueous NaHCO3 (50 mL), brine (50

mL) and dried (Na2 SO4 ). The resulting crude product was purified by flash column

chromatography on silica gel (4 - 10% EtOAC/toluene) to afford 264 mg (94%) 2-

propenyl 2-O-benzoyl-3,4-di-O-benzyl-6-O-triisopropylsilyl-a-D-mannopyranoside. H

NMR (400 MHz, CDC13) 8.04-7.98 (, 2H), 7.53-7.07 (, 13H), 5.81-5.72 (, 1H),

5.54-5.52 (m, 1H), 5.15 (dd, J= 1.5, 17.2 Hz, 1H), 5.06 (dd, J= 1.4, 11.3 Hz, 1H), 4.84 (d,

J= 1.7 Hz, 1H), 4.79 (d, J= 10.7 Hz, 1H), 4.67 (d, J= 9.3 Hz, 1H), 4.56 (d, 9.3 Hz,

1H), 4.46 (d, J= 11.3 Hz, 1H), 4.09-3.84 (, 6H), 3.64-3.61 (m, 1H), 0.99 (app. s, 21H).

The benzoylated product (260 mg, 0.393 mmol) was dissolved in AcOH (3 mL) with

water (100 ItL). NaOAc (74 mg, 0.905 mmol) followed by PdCl2 (80 mg, 0.452 mmol)

were added the mixture. The slurry was vigorously stirred for 2 h at 50 C. Additional

NaOAc (74 mg, 0.905 mmol) and PdCl2 (80 mg, 0.452 mmol) were added, and the

reaction stirred another 2 h. The crude mixture was filtered through a 1 cm celite plug,

diluted with EtOAc (100 ml) and washed with water (60 mL), sat. aqueous NaHCO3 (60
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mL), brine (60 mL) and dried (Na2SO4). The crude lactol was dried in vacuo to a yellow

oil which was dissolved in CH2Cl2 (2 mL) and cooled to 0 C. Trichloroacetonitrile (339

[xL, 3.38 mmol) and DBU (17.6 pL, 0.118 mmol) were added, the reaction was stirred at

0 C for 30 min and warmed to RT for 1 h. The crude product was subjected to silica gel

column chromatography (0 - 10% EtOAC/hexanes), furnishing 174 mg desired

trichloroacetimidate 3-33 and 62 mg recovered lactol (isolated yield 80%). H NMR (500

MHz, CDC13) 8.68 (s, 1H), 8.17-8.14 (m, 2H), 7.63-7.26 (m, 13H), 6.42 (d, J= 1.8 Hz,

1H), 5.77-5.75 (m, 1H), 4.95 (d, J= 10.5 Hz, 1H), 4.83 (d, J= 11.4 Hz, 1H), 4.75 (d, J=

10.5 Hz, 1H), 4.65 (d, J= 11.5 Hz, 1H), 4.30 (t, J= 9.8 Hz, 1H), 4.18-4.14 (m, 2H), 4.03-

3.94 (m, 2H), 1.13 (app. s, 21H); 13C NMR (125 MHz, CDC13) 166.2, 160.7, 139.1,

138.4, 134.0, 130.8, 130.3, 129.1, 129.1, 129.0, 129.0, 128.9, 128.5, 96.5, 78.2, 76.3,

76.2, 74.2, 72.7, 68.5, 62.9, 18.8, 18.7, 12.8; ESI MS m/z (M+ +Na + ) calcd 786.22, found

786.21.

SBn

TIPSO OAc °

BnO - 0 0
4-35 \

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxyl-ethyl 2-O-acetyl-3,4-tri-O-benzyl-6-O-

triisopropylsilyl-a-D-mannopyranoside 4-35. 2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-

ethanol (338 mg, 1.32 mmol) and mannosyl trichloroacetimidate 4-32 (618 mg, 0.879

mmol) were azeotropically dried with toluene (3 x 5 mL), dried an additional 2 h in

vacuo and dissolved in Et2 0 (9.0 mL). The solution was cooled to -20 C for 15 min,

followed by the addition of TMSOTf (32 L, 0.176 mmol), and stirred for 15 min. The

reaction was quenched by the addition of Et3N (500 [tL), and dried in vacuo. The crude

product was purified by flash column chromatography on silica gel (5 - 10%

EtOAc/toluene) affording 755 mg (99%) of 4-35. H NMR (400 MHz, CDC13) 7.23-

7.10 (m, 15H), 5.25-5.24 (m, 1H), 4.77 (d, J= 10.7 Hz, 1H), 4.68 (d, J= 7.8 Hz, 1H),

4.59-4.51 (m, 2H), 4.41 (d, J= 11.1 Hz, 1H), 3.89-3.77 (m, 4H), 3.66-3.62 (m, 3H), 3.60-

3.43 (m, 11H), 2.49 (t, J= 6.7 Hz, 2H), 1.98 (s, 3H), 0.096 (app. s, 21H); 13C NMR (100

MHz, CDC13) 170.9, 139.0, 138.8, 138.5, 129.3, 128.9, 128.8, 128.5, 128.4, 128.1,
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127.4, 97.9, 78.6, 75.7, 74.5, 73.3, 73.0, 72.2, 71.2, 71.0, 71.0, 70.7, 70.5, 69.3, 66.9,

63.0, 62.3, 37.0, 30.9, 21.4, 18.4, 18.4, 12.4; ESI MS m/z (M + + NH4+) calcd 814.44,

found 814.59.

SBn

TIPSO OB 

BnO SBn

4-36 .

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2 ,3,4-tri-O-benzyl-6-O-triisopropylsilyl-

a-D-mannopyranoside 4-36. To a solution of mannoside 4-35 (750 mg, 0.873 mmol) in

methanol (8 mL), and CH2Cl2 (2 mL) was added sodium methoxide (20 ILL, 25% wt,

0.0873 mmol). The solution was stirred 16 h at RT, additional sodium methoxide (8 1AL,

0.0349 mmol) was added, and the reaction stirred an additional 2 h. The reaction was

quenched with DOWEX-50W-hydrogen strongly acidic ion-exchange resin, filtered, and

dried in vacuo. The residue was purified by flash column chromatography on silica gel

(5 - 25% EtOAc/hexanes) to afford 582 mg (98%) of the C2 hydroxyl intermediate.

This product (570 mg, 0.755 mmol) was azeotroped with toluene (3 x 5 ml), dissolved in

DMF (7.5 mL), and cooled to 0 C. Sodium hydride (60 mg, 60% in mineral oil, 1.51

mmol) was carefully added to the solution, and stirred for 20 min at 0 C. Benzyl

bromide (135 RL, 1.13 mmol) and TBAI (-10 mg) was added to the reaction mixture and

slowly warmed to room temperature for 2 h. Methanol (3 mL) was slowly added to

quench the reaction, which was further diluted in 150 mL water. The solution was

extracted with diethyl ether (3x 50 mL). After concentration the combined organic phase

in vacuo, the resulting residue was purified by flash column chromatography on silica gel

(2 -> 25% EtOAc/hexanes) to afford 560 mg (88%) of 4-36 as a clear oil. H NMR (400

MHz, CDCl3 ) 6 7.30-7.15 (, 20H), 4.85 (d, J= 10.9 Hz, 1H), 4.78 (d, J= 1.7 Hz, 1H),

4.68-4.54 (m, 5H), 3.86-3.83 (m, 4H), 3.76-7.75 (m, 1H), 3.74-3.65 (m, 3H), 3.54-3.47

(m, 10H), 2.53 (t, J= 6.8 Hz, 2H), 0.99 (app. s, 21H); 13C NMR (100 MHz, CDCI3) 

139.1, 139.1, 138.9, 138.8, 129.3, 128.9, 128.8, 128.7, 128.6, 128.5, 128.0, 128.0, 127.9,
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127.4, 98.0, 80.7, 75.6, 75.4, 75.3, 73.9, 72.9, 72.5, 71.2, 71.0, 70.7, 70.6, 66.5, 63.5,

37.0, 30.9, 18.4, 18.4, 12.4; ESI MS m/z (M+ + NH4+) calcd 862.47, found 862.71.

TIPSO OB SBnIOBzSn
BnO --

BnO $
0 OBn

BnO 

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-benzoyl-3,4-di-O-benzyl-6-O-

triisopropylsilyl-a-D-mannopyranosyl-(1 6)-2,3,4-tri-O-benzyl-a-D-

mannopyranoside 4-31. To a solution of mannoside 4-36 (540 mg, 0.639 mmol)

dissolved in Et2 0 ( 7 mL) and CH2Cl2 (5 mL) was added TBAF (3.39 niL, 1.0 M in Et 20,

3.39 mmol). The reaction was refluxed at 55 °C for 4 h, diluted with EtOAc (100 mnL)

and washed with sat. aqueous NaHCO3 (60 mnL), water (60ml), brine (60 mL) and dried

(Na2 SO4). The crude product was filtered through a plug of silica gel (10%

EtOAc/toluene), to furnish 128 mg (44%) of the C6 hydroxyl acceptor. This product

(128 mg, 0.186 mmol) and mannosyl donor 4-33 (180 g, 0.242 rnmol) were

coevaporated with toluene (3 x 5 ml), and dissolved in Et20 (2 mL). The solution was

cooled to -20 C, and TMSOTF (6.7 ttL, 0.037 mmol) was added. The reaction was

stirred at -20 C for 30 min, quenched with Et3N (200 RL), and dried in vacuo to an oil.

The crude disaccharide was purified by silica gel column chromatography (2 -> 30%

EtOAc/hexans) to yield 236 mg (98%) of disaccharide 4-31. 1H NMR (500 MHz, CDCl3)

6 8.16-8.14 (m, 2H), 7.61-7.18 (m, 33H1), 5.76-7.75 (m, 11), 5.04 (d, J= 1.4 Hz, 1),

4.97-4.92 (m, 3H), 4.80-4.75 (m, 3H), 4.70-4.52 (m, 6H), 4.17-4.09 (m, 3H), 4.00-3.87

(m, 7H), 3.79-3.71 (m, 6), 3.61-3.55 (m, 8H), 2.61 (t, J= 6.8 Hz, 2H), 1.12 (app. s,

21H); 13C NMR (125 MHz, CDCl 3) 166.3, 139.6, 139.2, 139.2, 139.1, 139.1, 138.8,

130.8, 130.8, 130.8, 129.7, 129.7, 129.2, 129.2, 129.1, 129.1, 129.0, 129.0, 129.0, 128.9,

128.6, 128.4, 128.4, 128.3, 128.2, 127.7, 98.8, 98.4, 78.7, 78.1, 77.8, 75.9, 75.4, 73.4,

72.7, 72.0, 71.3, 71.0, 37.3, 31.3, 18.8, 18.8, 12.8; ESI MS m/z (M+ + Na+ ) calcd

1313.60, found 1314.00.
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4-30 o

2-1[2-(2-benzylsulfanyl-ethoxy)-ethoxyl-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1 - 6)-2-O-benzoyl-3,4-di-O-benzyl-a-D-mannopyranosyl-(1 - 6)-

2,3,4-tri-O-benzyl-a-D-mannopyranoside 4-30. Disaccharide 4-31 (240 mg, 0.186

mmol) was dissolved in THF (3 mL). Water (3 mL) was slowly added with vigorous

stirring followed by TFA (1 mL). The reaction was stirred for 1 hr at RT, followed by

the addition of additional TFA (2 mL). The mixture was stirred for an additional 1 h and

diluted with diethyl ether (100 mL) and washed with water (3 x 50 ml), sat. aqueous

NaHCO3 (2 x 30 mL), brine (30 mL), dried (MgSO4) and concentrated. The residue was

purified by flash column chromatography on silica gel (10 - 50% EtOAc/hexanes) to

afford 165 mg (78%) of the C6 acceptor disaccharide intermediate. 'H NMR (500 MHz,

CDCl 3) 8 8.13-8.11 (m, 2H), 7.63-7.20 (m, 33H), 5.77-5.76 (m, 1H), 5.11 (d, J= 1.8Hz,

1H), 4.98-4.94 (, 3H), 4.78 (s, 2H), 4.75 (d, J= 11.6 Hz, 1H), 4.68-4.64 (m, 3H), 4.53

(d, J= 11.7 Hz, 2H), 4.14-4.11 (m, H), 4.02-3.90 (m, 5H), 3.81-3.74 (m, 8H), 3.62-3.55

(m, 9H), 2.61 (t, J- 6.85 Hz, 2H), 2.07 (m, 1H, -OH); 13C NMR (125 MHz, CDCl 3) 

166.2, 139.2, 139.2, 139.1, 139.1, 138.6, 133.9, 130.7, 130.6, 129.7, 129.2, 129.1, 129.1,

129.1, 128.9, 128.8, 128.6, 128.5, 128.4, 128.4, 128.4, 128.3, 128.3, 127.7, 98.7, 98.5,

80.9, 78.2, 75.9, 75.3, 74.6, 73.4, 72.7, 72.7, 71.8, 71.7, 71.6, 71.3, 71.0, 70.9, 69.5, 67.4,

67.2, 62.7, 37.3, 31.3. The resulting disaccharide acceptor (161 mg, 0.142 mmol) and

mannosyl trichloroacetimidate 4-13 (135 mg, 0.213 mmol) were azeotropically dried with

toluene (3 x 3 mL), dried an additional 2 h in vacuo and dissolved in diethyl ether (2mL).

The solution was cooled to -20 C for 15 min, followed by the addition of TMSOTf (5

gtL, 0.0284 mmol), and warmed to RT. The reaction was quenched by the addition of

Et3N (500 L), and dried in vacuo. The crude product was purified by flash column

chromatography on silica gel (10 - 50% EtOAc/toluene) affording 176 mg (77%) of

trisaccharide 4-30. H NMR (500 MHz, CDC13) 8 8.18-8.16 (m, 2H), 7.52-7.13 (m, 48H),
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5.83-5.82 (, IH), 5.61-5.60 (, 1H), 5.10 (d, J=-- 1.5 Hz, 1H), 5.05 (d, J- 1.5 Hz, IH),

5.00-4.87 (min, 5H), 4.82-4.79 (, 4H), 4.72-4.64 (, 5H), 4.56-4.42 (m, 7HI), 4.10 (dd, J=

3.0 Hz, 9.3 Hz, 1H), 4.01-3.88 (, 10H), 3.84-3.72 (m, 7H), 3.71-3.55 (, 15H), 2.62 (t,

J= 6.9 Hz, 2H1), 2.20 (s, 31); 13C NMR (125 MHz, CDC 3) o 171.0, 166.2, 139.3, 139.3,

139.2, 139.2, 139.2, 139.1,138.9, 138.5, 138.4, 133.9, 130.8, 130.6, 129.7, 129.3, 129.3,

129.2, 129.1, 129.1, 129.0, 128.9, 128.9, 128.9, 128.6, 128.6, 128.5, 128.5, 128.4, 128.4,

128.3, 128.2, 128.1, 128.1, 127.7, 98.9, 98.8, 98.5, 81.0, 78.7, 78.6, 75.8, 75.7, 75.3, 75.3,

74.8, 74.7, 74.1, 73.4, 72.7, 72.3, 72.2, 71.9, 71.9, 71.6, 71.4, 71.3, 71.0, 70.9, 69.3, 69.3,

69.0, 67.3, 67.2, 66.6, 37.3, 31.3, 21.9; ESI MS m/z (M+ + Na+) calcd 1631.67, found

1632.03.

OBn OAc

BnO 
OBn 

BnO+BnO 
0 SBn

OBz 
BnO -

OBn
0 

BnO 
4-29 0

2-12-(2-benzylsulfanyl-ethoxy)-ethoxyl-ethyl 2-O-acetyl-3,4,6-tri-O-benzyl-a-D-

mannopyranosyl-(1- 2)-3,4,6-tri-O-benzyl-a-D-mannopyranosyl-(1- 6)-2-O-

benzoyl-3,4-di-O-benzyl-a-D-mannopyranosyl-(1 6)-2,3,4-tri-O-benzyl-a-D-

mannopyranoside 4-29. Trisaccharide 4-30 (170 mg, 0.106 mmol) was coevaporated

with toluene (3 x 3 ml) and dissolved in a mixture of MeOH:Et2 0:THF (2 mL, 0.5 mL,

and 0.5 mL, respectively). Stirring at RT, magnesium methoxide was added in 0.5 equiv

aliquots over 4 h, until a total of 5 equiv (45 mg, 0.528 mmol). The reaction was

quenched by the addition of AcOH ( mL), and dried in vacuo to a white solid.

Purification by flash silica column chromatography (5-50% EtOAc/toluene) afforded the

trisaccharide C2 hydroxyl acceptor (117 mg, 71%). 1H NMR (500 MHz, CDCI3) 8.16-

8.14 (m, 2H), 7.55-7.19 (in, 48H), 5.82-5.81 (in, 1H), 5.21 (d, J= 1.4 Hz, 1H), 5.11 (d, J=

1.7 Hz, 1H), 5.00-4.94 (, 3H), 4.88-4.78 (m, 4H), 4.70-4.63 (, 5H), 4.56-4.49 (, 5H),

4.21-4.20 (, 1H), 4.13 (dd, J= 2.0, 9.1 Hz, 1H), 4.01-3.86 (, 10H), 3.81-3.71 (in, 9H),
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3.64-3.57 (m, 11 H), 2.63 (t, J= 6.9 Hz, 2H), 2.40 (s, H, -OH); 13C NMR (125 MHz,

CDC13 ) 166.2, 139.3, 139.2, 139.2, 139.2, 139.2, 139.1, 139.0, 138.6, 133.9, 130.9,

130.6, 129.8, 129.7, 129.2, 129.2, 129.1, 129.1, 129.1, 129.0, 129.0, 128.7, 128.6, 128.6,

128.5, 128.5, 128.4, 128.4, 128.4, 128.4, 128.3, 128.3, 128.2, 127.8, 100.1, 98.7, 98.5,

81.0, 80.7, 78.5, 75.8, 75.8, 75.3, 75.3, 75.0, 74.8, 74.2, 73.4, 72.7, 72.5, 72.0, 71.9, 71.9,

71.8, 71.6, 71.3, 71.0, 70.9, 69.4, 69.4, 69.0, 67.3, 67.2, 66.2, 37.3, 31.3. The resulting

trisaccharide acceptor (117 mg, 0.0746 mmol) and mannosyl trichloroacetimidate 4-13

(71 mg, 0.112 mmol) were azeotropically dried with toluene (3 x 3 mL), and dissolved in

diethyl ether (1 mL). The solution was cooled to -20 C for 15 min, followed by the

addition of TMSOTf (2.7 !IL, 0.0149 mmol), and warmed to RT. The reaction was

quenched by the addition of Et3N (50 p.L), and dried in vacuo. The crude product was

purified by flash column chromatography on silica gel (5 - 30% EtOAc/toluene)

affording 145 mg (95%) of tetrasaccharide 4-29. H NMR (500 MHz, CDC13) 6 8.17-8.16

(m, 2H), 7.47-7.17 (m, 63H), 5.82-5.81 (m, 1H), 5.62-5.61 (m, H), 5.17 (app. s, 1H),

5.12 (app. s, 1H), 5.08 (app. s, 1H), 4.99-4.89 (m, 6H), 4.82-4.79 (m, 4H), 4.72-4.43 (m,

20H), 4.23 (app. s, 1H), 4.13-4.07 (m, 1H), 4.06-3.94 (m, 12H), 3.89-3.71 (m, 12H),

3.67-3.55 (m, 14H), 2.64 (t, J= 6.7 Hz, 2H), 2.18 (s, 3H); 13C NMR (125 MHz, CDCl3) o

170.9, 166.2, 139.4, 139.3, 139.3, 139.3, 139.3, 139.2, 139.2, 139.1, 139.0, 138.9, 138.8,

138.5, 133.9, 130.9, 130.6, 129.8, 129.7, 129.3, 129.2, 129.2, 129.2, 129.1, 129.1, 129.1,

129.0, 129.0, 128.9, 128.9, 128.9, 128.9, 128.9, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6,

128.6, 128.5, 128.5, 128.5, 128.4, 128.3, 128.3, 128.2, 128.2, 128.2, 128.1, 128.1, 128.1,

128.0, 127.8, 100.3, 99.8, 99.0, 98.5, 81.0, 80.3, 78.9, 78.6, 78.1, 77.9, 77.6, 75.8, 75.6,

75.5, 75.4, 75.3, 75.2, 75.0, 74.7, 74.1, 74.0, 73.4, 72.8, 72.7, 72.7, 72.7, 72.5, 72.0, 71.8,

71.6, 71.3, 71.0, 70.9, 69.7, 69.6, 69.5, 69.4, 67.5, 67.2, 66.9, 37.4, 31.4, 30.5, 21.9; ESI

MS m/z (M2+ + 2H+) calcd 1021.44, found 1021.51.
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4-38

2-[2-(2-benzylsulfanyl-ethoxy)-ethoxy]-ethyl 2-O-benzoyl-3,4,6-tri-O-benzyl-ca/ -D-

galactopyranoside 4-38. Galactosyl phosphate 4-37 (345 mg, 0.462 mmol) and 2-[2-(2-

benzylsulfanyl-ethoxy)-ethoxy]-ethanol were coevaporated with toluene (3 x 10 ml) and

dissolved in CH2C12 (5 mL). The solution was cooled to -40 C and TMSOTF (84 [iL,

0.462 mmol) was added. The reaction was warmed to -20 C quenched with Et3N (500

[tL) and dried in vacuo. The crude product was purified by silica gel column

chromatography (5 --- 20% EtOAc/toluene) to afford 267 mg (73%) galactoside 4-38. 1H

NMR (500 MHz, CDC13) 8.10-8.08 (, 2), 7.60-7.44 (m, 3H), 7.39-7.25 (, 20H),

5.57 (dd, J= 3.8, 10.5 Hz, 1H), 5.32 (d, J= 3.8 Hz, 1H), 5.00 (d, J= 11.6 Hz, 1H), 4.73 (d,

J= 2.6 Hz, 2H), 4.65-4.45 (m, 3H), 4.16 (dd, J= 2.8, 9.1 Hz, 1H), 4.11-4.08 (, 2H),

3.82-3.75 (m, 3H), 3.68-3.58 (m, 7H), 3.58-3.49 (, 4H), 3.37-3.34 (, 2H), 2.58 (t, J=

6.9 Hz, 2H); 3C NMR (125 MHz, CDC13) 166.7, 139.2, 139.2, 139.0, 138.7, 133.8,

130.9, 130.5, 129.7, 129.2, 1291.2, 129.1, 129.1,129.0, 129.0, 129.0, 128.9, 128.7, 128.6,

128.5, 128.4, 128.3, 128.3, 128.3, 127.7, 97.4, 78.1, 75.5, 75.2, 74.3, 73.3, 72.4, 71.5,

71.2, 70.9, 70.8, 70.1, 69.6, 68.2, 37.3, 31.3; ESI MS m/z (M + + NH4+ ) calcd 810.37,

found 810.12.

General Procedure for the Dissolving Metal Reduction of Protected

Oligosaccharides. Protected oligosaccharide was dissolved in anyhydrous THF and 1

equivalent methanol for every benzyl ether in the structure. The saccharide was added to

a stirring solution of sodium metal dissolved in liquid ammonia. Following 45 minutes at

-78 C, the solution is quenched by addition of excess methanol, and the liquid ammonia

is allowed to evaporate. The resulting product was neutralized by addition of acetic acid,

dried in vacuo, purified by size-exclusion chromatography on Sephadex G-25 with 1:1
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H2 0:EtOH mobile phase and dialyzed against 10 L H20 (SpectralPore CE, MWCO 100,

and MWCO 500 for 4-1 and 4-2).

A Note on Disulfide Contamination. There were multiple opportunities for the

following sulfhydryl-modified saccharides to partially oxidize to symmetric disfulides.

Normal handling exposed the structures to atmospheric oxygen, and the formation of

disulfide could be observed by TLC and in the following H NMR spectra. This is most

evident is the splitting of the methylene hydrogens adjacent to the thiol and in the ESI

and MALDI-TOF MS.

ID

o,
4-1

2-[2-(2-mercapto-ethoxy)-ethoxyl-ethyl a-D-mannopyranosyl-(1"2)-a-D-

mannopyranosyl-(1- 2)-a-D-mannopyranosyl-(1- 3)-[a-D-mannopyranosyl-(1- 2)-

a-D-mannopyranosyl-(1 3)-[a-D-mannopyranosyl-(1 l-2)-a-D-mannopyranosyl-

(1" 6)]-a-D-mannopyranosyl-(1-'6)1-,-D-mannopyranoside 4-1. Nonamannoside 4-9

(138 mg, 0.0338 mmol) was subjected to a dissolving metal reduction, and purified as

described above to furnish 33 mg (60%) of 4-1. H NMR (500 MHz, D20/CD 3OD) 

5.41 (s, 1H), 5.37 (s, 1H), 5.30 (s, 1H), 5.13 (s, 1H), 5.12 (s, 1H), 5.01 (app. s, 3H), 4.63

(s, 1H), 4.13-3.51 (m, 76H), 3.46-3.44 (m, 1H), 2.93 (t, J= 6.4 Hz, 2H, disulfide

methylene), 2.68 (t, J= 6.1 Hz, 2H, sulfhydryl methylene); MATLDI-TOF MS m/z (M + +

Na+) calcd 1647.5, found 1647.5
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4-2

2-[2-(2-mercapto-ethoxy)-ethoxy]l-ethyl a-D-mannopyranosyl-(1 2)-a-D-

mannopyranosyl-(14 3)-[a-D-mannopyranosyl-(14 3)-[a-D-mannopyranosyl-

(1-) 6)1-a-D-mannopyranosyl-(1- 6)1-1-D-mannopyranoside 4-2. Hexasaccharide 4-

10 (76 mg, 0.027 mmol) was subjected to a dissolving metal reduction, and purified as

described above to furnish 22 mg (71%) of 4-2. 1H NMR (500 MHz, D20/CD 3OD) 6 5.37

(s, 1H), 5.10 (s, (1H), 5.00 (d, J= 1.6 Hz, 1H), 4.86 (app. s, 1H), 4.82 (app. s, 1H), 4.60

(d, J= 2.5 Hz, 1H), 4.13-4.11 (, 3H), 4.06-4.05 (, 1H), 4.01-3.59 (, 68H), 3.46-3.40

(min, 1H), 2.93 (t, J=-- 6.4 Hz, 2H, disulfide methylene), 2.68 (t, J= 6.1 Hz, 2H, sulfhydryl

methylene); MATLDI-TOF MS m/z (MF + Na) calcd 1161.37, found 1159.30.

SH

OH

OH HO

HO *OO 0

HO OH~ ~ ~~~~~~~~H 1o°J
43

2-[2-(2-mercapto-ethoxy)-ethoxyl-ethyl a-D-mannopyranosyl-(13)-[a-D-

mannopyranosyl-(146)]-3-D-mannopyranoside 4-3. Branched trisaccharide 4-25 (78

mg, 0.050 mmol) was subjected to a dissolving metal reduction, and purified as described

above to furnish 27 mg (82%) of 4-3. H NMR (500 MHz, D20/CD 3OD) 6 5.08 (s, 1H),

4.83 (s, 1H), 4.59 (s, 1H), 4.12 (d, J= 3.7 Hz, 1H), 3.99-3.94 (mn, 2H), 3.94-3.91 (, 1H),

3.87-3.58 (min, 25H), 3.40-3.38 (min, 1H), 2.93 (t, J= 6.4 Hz, 2H, disulfide methylene), 2.67

(t, J= 6.1 Hz, 2H, sulfhydryl methylene); 13C NMR (125 MHz, D20/CD 3OD) 6 103.3,

100.9, 100.6, 82.0, 76.1, 74.3, 73.7, 73.4, 71.9, 71.7, 71.3, 71.3, 71.2, 70.8, 70.7, 70.6,

70.4, 69.7, 68.7, 68.1, 67.8, 66.7, 66.5, 62.3, 62.1, 38.7, 23.9, 23.3; MATLDI-TOF MS

m/z (M + + Na+) calcd 675.21, found 676.0.
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4-4

2-12-(2-mercapto-ethoxy)-ethoxyl-ethyl a-D-mannopyranosyl-(1- 2)-a-D-

mannopyranosyl-(1-2)-a-D-mannopyranoside 4-4. Linear trisaccharide 4-28 (180

mg, 0.113 mmol) was subjected to a dissolving metal reduction, and purified as described

above to furnish 39 mg (53%) of 4-4. H NMR (500 MHz, D20/CD3OD) 6 5.27 (s, H),

5.10 (d, J= 1.2 Hz, 1H), 4.98 (d, J= 1.3 Hz, 1H), 4.03 (app. s, 1H), 3.97 (d, J= 1.5 Hz,

1H), 3.86-3.81 (, 8H), 3.76-3.52 (, 21H), 2.91 (t, J= 6.2 Hz, 2H, disulfide methylene),

2.66 (t, J= 6.4 Hz, 2H, sulfhydryl methylene); 13C NMR (125 MHz, D20/CD3OD) 

103.4, 101.8, 99.3, 80.1, 79.6, 74.3, 73.9, 73.4, 71.7, 71.3, 71.2, 71.2, 70.8, 70.6, 70.5,

68.5, 68.3, 68.0, 67.2, 62.6, 62.4, 62.3, 48.8, 48.7, 48.0, 47.8, 24.0; ESI MS m/z (M+ +

H) calcd 653.23, found 653.20.

OH OH

OH

HO $

OH SH

HOSHO1~
0 0°OH°

2-[2-(2-mercapto-ethoxy)-ethoxyl-ethyl a-D-mannopyranosyl-(1 -2)-a-D-

mannopyranosyl-(1 - 6)-a-D-mannopyranosyl-(1" 6)-a-D-mannopyranoside 4-5.

Tetrasaccharide 4-29 (88 mg, 0.0431 mmol) was dissolved in CH2CI2 (1 mL) and MeOH

(5 mL) and reacted with NaOMe (25% v/w, 25 RL, 0.1 mmol) at RT for 2 hr. The

mixture was neutralized with with DOWEX-50W-hydrogen strongly acidic ion-exchange

resin, filtered, and dried in vacuo. Prior to dissolving metal reduction, the crude material
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was filtered through a 2 cm plug of silica gel (20% EtOAc/toluene), and dried. The

material was subjected to a dissolving metal reduction, and purified as described above to

furnish 32 mg (91%) of tetrasaccharide 4-5. 1H NMR (500 MHz, D2 0) 4.97 (d, J= 1.2

Hz, H), 4.86 (d, J=1.5 Hz, H), 4.71 (d, J= 1.2 Hz, H), 4.70 (d, J= 1.2 Hz, 1H), 3.90-

3.89 (m, 1I), 3.84-3.78 (, 6H), 3.74-3.60 (m, 12H), 3.59-3.50 (m, 17H), 3.44 (t, J= 9.7

Hz, 1H), 2.79 (t, J= 6.1 Hz, 2H, disulfide methylene). NOTE: Fully oxidized by sitting

for prolonged period in solution under normal atmosphere. ESI MS m/z (M+ + H+) calcd

815.28, found 815.33.

OH

HOH;
OH SH

HO $

0 OH 0

HO -
000°

4-7

2-[2-(2-mercapto-ethoxy)-ethoxyl-ethyl a-D-mannopyranosyl-(146)-a-D-

mannopyranosyl-(-1 6)-a-D-mannopyranoside 4-7. Trisaccharide 4-30 (351 mg,

0.218 mmol) was dissolved in CH2C 2 (1 mL) and MeOH (5 mL) and reacted with

NaOMe (25% v/w, 25 jL, 0.1 mmol) at RT for 2 hr. The mixture was neutralized with

with DOWEX-50W-hydrogen strongly acidic ion-exchange resin, filtered, and dried in

vacuo. Prior to dissolving metal reduction, the crude material was filtered through a 2 cm

plug of silica gel (10% EtOAc/toluene), and dried. The material was subjected to a

dissolving metal reduction, and purified as described above to furnish 101 mg (71%) of

trisaccharide 4-7. H NMR (500 MHz, D2 0) 4.74 (s, H, C-H), 4.71 (app. s, 2H, 2 x

Cl-H), 3.82-3.73 (, 5H), 3.71-3.61 (9H), 3.60-3.45 (m, 14H), 2.79 (t, J= 6.1 Hz, 2H,

disulfide methylene), 2.57 (t, J= 6.1 Hz, 2H, sulfhydryl methylene); 13C NMR (125 MHz,

D2 0) 100.8, 100.1, 99.8, 73.3, 72.8, 71.4, 71.4, 71.3, 71.1, 70.6, 70.2, 70.1, 70.0, 69.8,

67.3, 67.2, 67.1, 66.1, 61.5, 37.8, 23.7; ESI MS m/z (M + H) calcd 653.23, found

653.11.
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2-[2-(2-mercapto-ethoxy)-ethoxyl-ethyl a/-D-galactopyranoside 4-8. Galactoside 4-

38 (207.8 mg, 0.262 mmol) was subjected to a dissolving metal reduction, and purified as

described above to furnish 37 mg (43%) of 4-8. H NMR (500 MHz, D20/CD 3OD) 

4.85 (s, 1H, C-H), 3.90-3.84 (, 4H), 3.76-3.59 (, 16H), 2.91 (t, J= 6.1 Hz, 2H,

disulfide methylene), 2.66 (t, J= 6.1 Hz, 2H, sulfhydryl methylene); 13C NMR (125 MHz,

D20/CD 3OD) 103.8, 77.3, 75.7, 74.8, 74.7, 74.6, 74.5, 74.4, 73.7, 73.6, 71.4, 66.0,

42.6, 27.9. MATLDI-TOF MS m/z (M+ + Na+) calcd 351.11, found 352.0.

General Procedure for Functionalization of Adehyde Slides with BSA and

Maleimide. SuperAldehyde slides (TeleChem International) were immersed in 50 mL

phosphate buffered saline (PBS) containing 1% bovine serum albumin (BSA; w/v) and

incubated overnight at room temperature. The slides were rinsed twice with distilled H20

(100 mL), twice with 95% ethanol (50 mL) and dried under a stream of nitrogen.

Subsequently, the slides were immersed in 45 mL of anhydrous DMF (Aldrich)

containing 65 mg succinimidyl-4-(N-maleimidomethyl)cyclohexane- 1 -carboxylate

(Pierce Chemical) and 100 mM N,N-Diisopropylethylamine (Aldrich). The slides were

incubated in this solution for 24 h at room temperature, washed 4 times with 95% ethanol

(50 mL) and stored in a vacuum dessicator until use.

General Procedure for Funtionalization of Corning GAPS II Slides with

Maleimide. Sulfhydryl-reactive slides were prepared in batches of two GAPS slides

(Coming) incubated overnight at room temperature in 45 mL anhydrous N,N-

dimethylformamide (DMF, Aldrich), 10 mg succinimidyl-4-(N-

maleimidomethyl)cyclohexane-l-carboxylate (SMCC, Pierce Endogen) and 880 [tL N,N-

diisopropylethylamine (Aldrich). Slides were wash with 3 volumes methyl alcohol, dried

under a stream of nitrogen, and stored in a dessicator prior to printing.
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General Procedure for Microarray Printing. Thiol-containing oligosaccharides

1-7 were incubated at room temperature with 1 equivalent tris-(carboxyethyl)phosphine

hydrochloride (TCEP, Pierce Endogen) in X PBS for 1 h. The structures were printed at

concentrations ranging from 0.1 mM to 2 mM on maleimide-derivatized slides using a

MicroGrid TAS array printer (30 % humidity, 120 [tm spots with 300 m spacing).

Printed slides were incubated 12 h in a humidity chamber, washed 2 times with distilled

H2 0, and then incubated for 1 h in 1 mM 2-(2-(2-mercaptoethoxy)ethoxy)ethanol in PBS

(50 mL) to quench reactive maleimide groups. Alternatively, BSA derivatized slides

were quenched for 1 h in 1 mM 3-mercaptopropionic acid in PBS (50 mL) to quench all

remaining maleimide groups. Slides were rinsed with distilled H20 (3 x 50 mL), 95%

ethanol (3 x 50 mL) and stored in a dessicator prior to use.

General Procedure for Glycoprotein Microarray Fabrication and

Neoglycopeptide Conjugates. See Adams, E. W.; Ratner, D. M.; Bokesch, H. R.;

McMahon, J. B.; O'Keefe, B. R.; Seeberger, P.H. Chem. Biol. 2004, 11, 875-881.

6.5 Experimentals for Chapter 5

General Procedure for Running Microreactor Glycosylations. Prior to the

introduction of reagents, the microchemical device was rinsed with 20 to 50 reactor

volumes of anhydrous dichloromethane. Immediately before priming the device with

reagent, 5 to 10 reactor volumes of 0.025 M TMSOTf in CH2Cl2 were flushed through

the activator port and through the mixing and reaction zones of the device. This

procedure ensures that the activator line is fully primed and free from air bubbles, and

deactivates the surface of the reactor by silylation. Following the installation of the

reagent containing syringes, the device was flushed with 10 to 20 reactor volumes to

displace gas bubbles, and prime the remaining reagent lines.

Glycosyl donor and acceptor separately azeotroped with toluene, and dried

overnight on vacuum. Samples were diluted with freshly distilled dichloromethane to the

desired concentrations: 0.03 M for mannosyl donor, 0.025 M for the nucleophile
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(acceptor), 0.025 M TMSOTf activator, and 0.05 M standard (5-1) in Et3N with 25% by

volume dichloromethane. The following gas-tight syringes were employed: 5.0 ml

syringes for both glycosyl donor and nucleophile, a 2.5 ml syringe for the

quench/standard, and a 1.0 ml syringe for the activator.

Sample collection was accomplished following equilibration of the temperature of

the device (immersed in either a water or acetone bath, depending on temperature). 2.8

reactor volumes (220 ld) were delivered at the desired rate to flush the device, and

equilibrate the reaction zone. Following the flush, 44 1 of material was collected for

analysis, diluted with 20 ld hexanes, and the run was stopped. While maintaining the

temperature, the device could be rerun at a different speed, or equilibrated to a different

temperature.

HPLC Analysis. Collected samples were analyzed using a Waters Nova-pakO

silica column (3.9 x 150 mm) with EtOAc/hexanes as the mobile phase, monitoring at

257.9 nm. The data was normalized by dividing the area of a given peak by the area

corresponding to the standard. Figure 6.5 gives representative traces of the two

glycosylation reactions.
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Figure 6.5 HPLC traces of glycosylation reactions monitored at 257.9 nm. a)

Mannosylation of acceptor 5-3 with donor 5-2 (Scheme 5.1). b) Mannosylation of

acceptor 5-6 with donor 5-2 (Scheme 5.2).
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Appendix A

Biophysical Studies of Cyanovirin-N:

Structural Elucidation of Carbohydrate-Binding
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This appendix details the biophysical studies of Cyanovirin-N, done in collaboration with

colleagues at the National Cancer Institute, NCI-Frederick, National Institutes of Health.

The substrates prepared for these studies are described in Chapter 2 of this thesis. A full

description of this work may be found in the following publications, parts of which are

reprinted here with permission:

Shenoy, S. R.; Barrientos, L. G.; Ratner, D. M.; OKeefe, B. R.; Seeberger, P. H.;

Gronenborn, A. M.; Boyd, M. R. Multisite and Multivalent Binding Between

Cyanovirin-N and Branched Oligomannosides: Calorimetric and NMR

Characterization. Chem. Biol. 2002, 9, 1109-1118.

Botos, I.; OKeefe, B. R.; Shenoy S. R.; Cartner, L. K.; Ratner, D. M.; Seeberger, P. H.;

Boyd, M. R.; Wlodawer, A. Structures of the Complexes of a Potent Anti-HIV

Protein Cyanovirin-N and High-Mannose Oligosaccharides. J. Biol. Chem. 2002, 277,

34336-34342.

Barrientos, L. G.; Louis, J. M.; Ratner, D. M.; Seeberger, P. H.; Gronenborn, A. M.

Solution Structure of a Circular-permuted Variant of the Potent HIV-inactivating

Protein Cyanovirin-N: Structural Basis for Protein Stability and Oligosaccharide

Interaction. J Mol. Biol. 2003, 325, 211-223.

A.1 Introduction

As of December 2003, an estimated 40 million people are infected by the human

immunodeficiency virus (HIV)', with heterosexual contact accounting for greater than

three-quarters of all cases.2 Five million individuals contracted the virus in the past 12

months, and three million HIV/AIDS deaths were reported. Regional statistics show a

disproportionate burden in developing nations, with a staggering 9% of the adult

population of Sub-Saharan Africa infected with HIV/AIDS. Beyond the incalculable

human toll, the explosion of HIV infection in regions like Southern Africa has become a

destabilizing geopolitical force.
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Efforts to develop an effective vaccine against HIV have been stymied by the

high mutation rate of the virus,3 and epitope masking of gpl20 by N-linked glycans.4 In

the absence of a vaccine, the barrier method remains the most effect means of preventing

viral spread during sexual contact. However, this method relies on the consent of the

insertive partner. Recent advances, like the female condom, have made some headway

towards empowering the non-insertive partner, however their high cost remains

prohibitive for widespread adoption.

With unabated global proliferation of HIV and the absence of a vaccine, there is

growing demand to develop anti-HIV microbicides to stem the spread of this disease.

Towards this goal, high-throughput screens of products derived from the cyanobacterium

(blue-green algae) Nostoc ellipsosporum have identified cyanovirin-N (CVN), an 11 kDa

protein with potent virucidal properties.5 Through carbohydrate-dependent binding of

viral glycoprotein, CVN has been shown to greatly diminish the infectivity of HIV6 and

the Ebola virus.7 Acting as a topical HIV preventive, CVN could become a powerful tool

to control the spread of the virus through sexual contact.

Although CVN was known to act against HIV in a carbohydrate-dependent

manner, no structural information was known for the complexes between CVN and high-

mannose oligosaccharides. Studies using naturally derived high-mannose

oligosaccharides (Man)8(GlcNAc)2 and (Man)9(GlcNAc)2 were plagued with problems of

aggregation and precipitation.s Employing synthetic variants of Man9 enabled the

detailed biophysical study of CVN-oligomannose complexes. In addition to avoiding

aggregation and precipitation, the synthetic mannans permitted the investigation of CVN-

binding of smaller branched and linear structures that comprise the triantennary high-

mannose oligosaccharides.

Utilizing the synthetic structures detailed in Chapter 2 of this thesis, the precise

mode of carbohydrate-binding was examined in detail for CVN. The following studies

employed isothermal calorimetry, NMR titration, X-ray crystallography, and circular-

permuted variants to probe CVN-carbohydrate complexes. Included below is a brief

summary of the results from each of these studies. For full details, please refer to the

original article.
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A.2 Calorimetric and NMR Characterization of Multisite and Multivalent Binding

of High-Mannose Oligosaccharides by Cyanovirin-N

This initial investigation used NMR and isothermal titration calorimetry to

examine the multivalent interactions of branched high-mannose oligosaccharides to

Cyanovirin-N.9 It was demonstrated that CVN recognizes the Mana(l-2)Man-

terminated arms of the triantennary nonamannoside, but there is no affinity for the

internally-branched core trimannoside or the reducing-end (GlcNAc)2. CVN was found

to bind both the linear DI trimannoside and synthetic nonamannoside in a similar fashion

at two binding sites on the protein (Figure A. 1).

Unmr Trlmnoie Hmmneie

1:1 2:1 1:1 O" " at
19:.1

Nammammslkl
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inui~~~babmt Maibs~ew 0- U"g
Figure A.1 Schematic of CVN binding of the synthetic structures D1 linear trimannoside,

hexamannoside, and nonamannoside. The two binding sites of CVN are marked in blue

and red. Reprinted with permission?
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The large size of the CVN-nonamannoside complexes suggested that two

molecules of CVN were binding every nonamannoside, by interacting with the opposing

D1 and D3 arms. The binding affinity of CVN was determined to be 3.48 ~IM for the

linear trimannoside, 2.61 pAM for the hexamannoside, and 270 nM for the synthetic

nonamannoside. This binding information, coupled with the knowledge that CVN binds

two nonamannosides, is believed to be responsible for the remarkably tight association of

CVN for the branched nonamannose structures.

Isothermal titration calorimetry established that CVN binding of the mannosides

was driven by enthalpic contributions, with the larger sugars exhibiting greater

exothermic heats of binding. The negative All of the CVN-carbohydrate association

suggested that favorable polar/electrostatic, van der Waals, and hydrogen bonds were

mediating the binding event. While the association was entropically disfavored, the

enthalpies of binding were highly favorable and offset the entropic losses.

By characterizing the multisite and multivalent interactions of CVN and high-

mannose oligosaccharides, it was possible to illuminate the biological activity of CVN.

CVN has a nearly irreversible association with high-mannose oligosaccharides. By

probing the mechanism of these remarkable interactions, it should be possible to develop

new tools that, like CVN, can block viral-cell fusion by irreversibly binding and linking

oligosaccharides on gpl20.

A.3 X-Ray Crystal Structures of CVN-Oligomannose Complexes

Using X-ray crystallography, structures were determined for the complexes of

wild-type CVN with (Man)9(GlcNAc)2 and the synthetic hexamannoside, reported at 2.5-

and 2.4 A respectively.'° Understanding the structural basis for CVN binding of high-

mannose oligosaccharides is important for developing the protein as a potential anti-HIV

agent.

The 101-amino acid protein exists in solution as both a compact monomer and a

dimer. In the crystal structure, CVN exists exclusively as a three-dimensional domain-

swapped dimer with two primary sites near the hinge region and two secondary sites on
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the opposite ends of the dimer. Crystal packing appears to thermodynamically favor the

domain-swapped dimer, selectively trapping it as the crystal grows.

The crystal structures of the protein-carbohydrate complex revealed that at the

binding interface of CVN with the nonamannoside, there are three stacked

Mana(l-2)Man mannoses, with the remainder of the saccharide pointing into the

solution. Similarly, the synthetic hexamannoside / CVN interface has two

Mana(1l-2)Man stacked mannoses, and the other sugars pointing into solution. These

structures conclusively show the binding geometry of high-mannose sugars to CVN

(Figure A.2).
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Figure A.2 Unbiased Fo - F difference electron density maps of the binding interfaces

contoured at 2.0-a level and the atomic models of bound oligosaccharides. A) The
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density for the complex with synthetic hexamannoside, visible for two stacked mannose

rings: C (residue 505) and 4 (residue 504). B) the density for the complex with Man-9,

visible for three stacked mannose rings: D1 (residue 506), C (residue 505), and 4 (residue

504). The final atomic coordinates of the oligosaccharides and the protein atoms in

contact with them are shown for hexamannoside (C) and for Man-9 (D). C and D were

generated with the program GRASP. l Reprinted with permission.10°

The D1 and D3 arms of the nonamannoside were modeled into the electron

density and refined. Only the D 1 arm, with the repeated a(I -2)-linked mannoses could

fit the density map. Additionally, the crystal structures of the protein-carbohydrate

complexes revealed that the stacked Mana(l--2)Man rings were bound much more

tightly than originally suggested by NMR studies. A total of ten hydrogen bonds were

formed between the binding site and the stacked mannoses of the nonamannoside, and

nine hydrogen bonds were observed for the hexamannoside.

A.4 Solution Structure of a Circular-permuted Variant of CVN

A detailed study of the structural determinants required for CVN's carbohydrate-

binding activity is critical to understand CVN's mode of action and anti-HIV properties.

This information also provides a rational basis for redesign and functional analysis.

Towards this end, a circular permuted version of CVN (cpCVN) was studied to gain

information on structure-function relationships that could not be achieved by single-site

or deletion mutagenesis.12

Past studies had revealed that cpCVN adopted the wild-type CVN (wtCVN) fold,

but had an anti-HIV activity that was 1000-fold lower in potency.'3 The difference in

activity between cpCVN and wtCVN was reconciled in this study using NMR mapping

experiments with the synthetic nonamannoside, hexamannoside and linear trimannoside

prepared in Chapter 2. It is believed that ongoing efforts with cpCVN, and its

comparison to wtCVN, will establish a rational approach to optimize and redesign this

more potent variants of this anti-HIV microbicide.
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A.5 Summary and Conclusions

Access to non-natural high-mannose oligosaccharides proved valuable in

elaborating the precise mechanisms of CVN's high-mannose affinity. The synthetic

mannans were useful in overcoming problems associated with aggregation and

precipitation during formation of CVN-(Man)g(GlcNAc)2 complexes. In addition, the

hexamannose and branched trimannose deletion sequences, in concert with the D1 arm

linear trisaccharide, provided a means of ascertaining the structural determinants for

high-mannose binding.

Efforts to develop and improve anti-HIV microbicides are ongoing. Now, with the

combined advantage of carbohydrate microarrays, it is possible to quickly establish the

structural determinants for protein-carbohydrate binding. This enables rapid screening of

protein-carbohydrate binding events, which can in turn be examined in further detail

using the biophysical techniques mentioned herein. For instance, based on the

microarray results described in Chapter 4, the novel 9.6 kDa anti-HIV protein scytovirin'4

is currently undergoing structural analysis using the synthetic mannans it was found to

bind in that study. This exemplifies the ability of synthetic carbohydrate-based tools to

facilitate and expedite biophysical studies.
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Appendix B

Synthetic Trisaccharide Acceptor Preferences

of i 1,4-Galactosyltransferase-1
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The following describes an ongoing investigation into the acceptor preferences of the

enzyme 3-1,4-galactosyltransferase. This study was made possible by the synthesis of

four trisaccharide structures for use in binding studies and X-ray crystal structure

determination. Included below is a brief description of this project, focusing on the

synthetic preparation of the four oligosaccharides. This collaboration is ongoing with

colleagues at the NCI-Frederick, National Institutes of Health. The following manuscript

is in preparation for submission:

Ramasamy, V.; Ramakrislhnan, B.; Boeggeman, E.; Ratner, D. M.; Seeberger, P. H.;

Qasba, P. K. Oligosaccharide Acceptor Preferences of Pl,4-Galactosyltransferase-l:

Crystal Structure of Met344His Mutant of Human (31,4-Galactosyltransferase-1 with

the Trisaccharides of N-Glycan Moiety. In Preparation.

B.1 Introduction

The galactosyltransferase (GalTran) family of enzymes mediates the transfer of

galactose (Gal) from UDP-Gal to a nascent oligosaccharide. The subfamilies of this

enzyme include 131,4-, 181,3-, al,3-, al,4- and al,6- variants, which differ by the position

onto which they glycosylate the acceptor sugar, and the anomericity of the glycosidic

linkage.1 The galactosylation of oligosaccharides has a number of relevant physiological

effects. For instance, the presence of Gala(l -3)Gal on the surface of animal tissue (pig

cells) is a critical factor in the rejection of transplanted organs from non-human donors.

Removing the al,3-galactosyltransferase gene from pigs has been proposed as a potential

solution to problems associated with xenotransplantation.2

The (31,4-galactosyltransferase subfamily has seven members, identified as T to

T7. 31,4-galactosyltransferase-T (,4-Gal-TI) was the first to be identified,

characterized and successfully cloned. [51,4-Gal-Tlis a Golgi resident type II membrane

enzyme, although it has also been found located in the cell surface acting as a lectin.3 The

catalytic domain of P[1,4-Gal-Tl transfers Gal to a N-acetylglucosamine (GlcNAc) reside

that is free or part of an oligosaccharide. The resulting disaccharide unit,

Gal((1l-4)GlcNAc (N-acetyllactosamine), is a common motif in biological systems and

216



is known to be present in many active carbohydrate determinants. In addition, 1,4-Gal-

T1 and a-lactalbumin form a lactose synthase complex, which produces lactose

(Galo(1--4)Glc) in the mammary gland during lactation.4

The mechanism for the catalytic activity of l1,4-Gal-T1 has been determined in

detail,5 and proceeds in a sequential order with the addition of Mn2 , followed by UDP-a-

Gal and the GIcNAc acceptor. The synthetic trisaccharides detailed below were used to

examine the structural preference for the GlcNAc acceptor of ( 1,4-Gal-T 1.

B.2 Synthetic Targets

Four trisaccharide targets were prepared for this study, each possessing a

dimannose core and a non-reducing end GlcNAc moiety (Figure B. 1). The targets were

selected to represent a broad spectrum on N-linked glycan type acceptors with the

GlcNAc acceptor presented in a variety of unique steric and conformational

environments.

OHOH

AcNH/ OH
OH o

Ho 0 ~OH OH
H+o"~" o -o. \HOH Q

0-10
°~- .-~i6 '

OHOH

AM~~O

OH

HoO "°10
OH 

HO MEY
HO

OH OH

H H~ OH OH \O'~~o .~o,,,
B-2

OHOH

ACNHZOH

HO
O OHOH °° OH \
HOW D'

B3 B-4

Figure B.1 GlcNAc-containing targets used as acceptors for (31,4-Gal-T .
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B.3 Retrosynthesis of Trisaccharides

Retrosynthetic analysis of the targets revealed four protected trisaccharides that

would provide access to the desired products (Scheme B.1). With the exception of B-3,

synthesis of the trisaccharide targets was based on the strategy developed in Chapter 2 to

differentiate the core A-mannose on the C3 and C6 positions.

Bn On \

-;5, 1

6 K

OAc OBn

A0 0 Bn 0O \acu~ ~ ~~ "~O-It -'~"Bn 
//CAHN -

B- B-2

34 3-3 4

:/

B-7

Scheme B.1 Retrosynthesis of trisaccharide targets.

0 OBn 

BnO - -ZPBBOI~~

B48

Rapid access to the synthetic trisaccharides was the primary goal for this

synthesis. Previously established building blocks were employed to expedite construction

of the targets, as the significance of the trisaccharides was not in the challenge of their

construction but in their application to elucidate the acceptor preferences of 31,4-Gal-T 1.

Synthesis of these structures relied on intermediates used during the synthesis of

the high-mannose oligosaccharides described in Chapters 2, 3 and 4 and a differentiated

mannose used by the Seeberger laboratory in the construction of the Leishmania cap
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tetrasaccharide.6 Two additional glycosyl donors were employed for the incorporation of

the GlcNAc resides. Trichloroacetimidate donors B-97 and B-108 were used in this study.

Both donors used the acetate ester to protect their hydroxyl groups, however B-9 used the

trichloroacetimido protecting group on the C2 amine, and B-10 included the

trichloroethoxycarbamate (TROC).

OAc OAc
I NH NH

AcO oO& CCI 3 Al)C~
NHTCA NHTroc

B-9 B-10

Figure B.2 Trichloroacetimidate donors B-9 and B-10, for the installation of GlcNAc

residues into the trisaccharide targets.

B.4 Synthesis of Protected Trisaccharides

Synthesis of the first trisaccharide, B-5, utilized a differentiated core 3-

mannoside. This differentiated monosaccharide B-11 is analogous to 2-8 utilized in

Chapter 2, and was prepared by established methods. 9 A benzyl ether was substituted

onto the C6 hydroxyl by quantitative removal of the C6 silyl ether of B-11 with TFA,

followed by treatment with benzyl bromide to furnish B-12 (96%). The PMB group was

removed in 75% yield by treatment with DDQ to provide monosaccharide acceptor B-13.

Glycosylation proceeded using the familiar mannosyl trichloroacetimidate 2-10 (99%

yield) followed by deprotection of the C2 acetate using sodium methoxide to give

disaccharide acceptor B-14 in 78% yield. Trisaccharide B-5 was accessed by

glycosylation of B-14 with GlcNAc donor B-9 (77%).
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OTIPS
| OBn'\

BnO -0 0
PMB O'

B-11

1. TFA:THF:H2 0, Quant.

2. BnBr, NaH, 96%

OBn

PMBc~~'O2n 

B-12

OBn
DDO, 75% n\

BnolL\.Ol
B-13

OBn

0n OBn\
0BnO:~

OBn
I OAc

BnO~--.'"%\ N
BnO NH

2-10 C C

1. TMSOTf 99%
2. NaOMe, 78%

B*S, TMSOTf. 77%

B-14

Scheme B.2 Construction of trisaccharide B-5.

Trisaccharide B-6 was constructed using the core -mannoside B-13.

Glycosylation with the differentially protected mannosyl donor B-156 (99%) was

followed by levulinoyl ester removal with hydrazine acetate to provide B-16 in 60%.

The disaccharide acceptor was glycosylated with B-9 in 99% yield to furnish

trisaccharide target B-6.

OBn-eft
BnO~ NH

15 °- 0CC6
B-13 -

1. TMSOTf, 99%
2. NH2NH2-HOAc, 60%

OBn

HO-OBn0 \n B.9 , TMSOTf99%B n O U s r n . O N 3 4

3-16

Scheme B.3 Construction of trisaccharide B-6.

The synthesis of B-7 made use of a disaccharide intermediate involved in the

construction of the D1 arm of the high-mannose nonasaccharide. Beginning with B-17,9

the dimannoside acceptor was glycosylated with B-9 in 86% yield trisaccharide B-7.
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OBn

BnO -\

BnO
OBn 0

BBnO 0
B-9. TMSOTf, 88% B-7

0, B-7

B-17

Scheme B.4 Synthesis of B-7 utilized disaccharide acceptor B-X to expedite the

synthesis.

Synthesis of the final trisaccharide B-8 began with differentiated core 

mannoside 2-9. Quantitative removal of the C6 triisopropylsilyl ether furnished the [-

mannoside acceptor B-18. Glycosylation with mannosyl donor 2-10 (99% yield)

followed by sodium methoxide removal of the C2 acetate yielded the disaccharide

acceptor B-19 in 95% yield. Trisaccharide B-8 was secured by glycosylation of B-19

with GlcNAc donor B-10 in 37% yield.

OH
TFA: THF: H2 0 I OBn \

_ . BnO 12\.o 1
1:3:3, Quant. PBM 8

B-18

1.2-10, TMSOTf, 99%

2. NaOMe, 95%

OBn

BnO ° OBn QpB~~~nBO~~~oJ*

B-10, TMSOTf, 37%
-- ,l, B-4

B-I9

Scheme B.5 Construction of trisaccharide B-8.

B.5 Deprotection Strategy to Furnish Trisaccharide Targets

Deprotection of trisaccharide B-5, B-6, B-7 was accomplished in a three step

procedure: (1) removal of all protecting groups by a dissolving metal reduction, (2) per-

O-acetylation of the deprotected structure using acetic anhydride and pyridine, and (3)
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selective cleavage of the 0-acetate esters by treatment with 0.05 M methanolic sodium

methoxide (Table B. 1).

Table B.1 Three-step deprotections to furnish trisaccharides B-1, B-2, and B-3.

B-5 B-I 16%

B-6 B-2 23%

B-7 B-3 22%

The TROC carbamate on B-8 was substituted with an N-acetate in 65% yield by

treatment with elemental zinc in acetic acid, followed by standard acetylation to furnish

B-20. The remaining benzyl ethers were removed by palladium-catalyzed hydrogenation,

and the O-acetate esters were removed by treatment with 0.03 M sodium methoxide.

Trisaccharide B-4 was isolated in 91% following these two steps.

1. Zn°, AcOH

B-8
2. Ac2O, Pyr.
(two steps, 65%)

OAc
NOAO

BnO "_.BnO O

OBn k

PtB nBOWBBO J

1. Pd/C, AcOH
. B-4

2. NaOMe (0.03M)
(two steps, 91%)

B-20

Scheme B.6 Deprotection of trisaccharide B-8 to yield B-4.

All four trisaccharides were purified by Sephadex G-25 gel filtration. Trace

organic contaminants were removed by repeated precipitation in cold diethyl ether from a

minimum volume of DMSO.

B.6 Summary and Conclusions

The synthesis of these four trisaccharides illustrates the versatility of the

monosaccharide building blocks used in synthetic carbohydrate chemistry. These
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structures were constructed entirely from monosaccharide donors originally designed for

other syntheses. It was therefore possible to construct this panel of oligosaccharides

without requiring additional materials specific to this effort. The successful completion

of these trisaccharides has provided valuable substrates for an ongoing biophysical study

of 11,4-Gal-T 1.

The work detailed in this thesis is predicated on the notion that providing access

to defined oligosaccharides for biological study is one of the most valuable functions for

synthetic carbohydrate chemistry. As with Chapters 2, 4 and Appendix A, this Appendix

highlights this role of synthetic chemistry in an ongoing investigation. These four

trisaccharides demonstrate the significant contribution that can be made when synthesis is

applied to a specific biological need. While developments like the automated solid-phase

oligosaccharide synthesizer are likely to greatly expand access to these types of

structures, until synthetic means are more widely available to the non-expert, progress in

the field is dependent on cross-discipline collaboration between glycobiologists and

chemists with the synthetic capacity to generate structures of interest.
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Selected Spectra
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Appendix C.2

Selected Spectra - Chapter 2

227



F &o

L

l N

I o

C,

- I .4
I0

o;

- to1'

IDan

~~~~~~~~~228~~~~~~~

228

r

-- A�-

2:,o w
-!a

is.;



- G
C.
a.

CD

- Ca

- N2

1-6

'-4

229

A.,n

''I

:i

i

7

rr

N

A

U)
0.



9aD.
a.

-N

N

3-- 

O

_ X

}0

I..

2-}~ e

- 2r } .I
:-n I 1

230

o

-rN

-CO

-4

} 
4

} e0 t

i_

. 1 3

I

,Oo
M

0 OV)
N

a. 0
P: r-ca

ma.



u MM uto I a .. ,,~ I

aill ias- a qw1a a Q a- 

TS=- =V"Bo LISh R-

OR, * Zi
GSE'e;

06E'G

LB9'OE

96L Z9
GGE 69
929' VI
9Ge'9t
;GV' GL
GZ9'9L
OT'LL

LZL
E6'LL

PL' LL

L9L'* P
L6L' aOl

806' 
61Z Bat

6L8'BZ
t86'621

LrsT'BEI598E
EPG'BEI
Bsg'Bel

wdd___*

-o

An.cu

N

I

0

-C20

-N

-U

-In.

0-0

CL
"5C

231

---



I

t-~ ~ ~ ~~2 .,.0 a 36 t r * -tB ; F P4 S lMat;i :
i I- '

,U a I, m L I U C PI

CL , uuW *,. -. 'a, a -
1103 Wm~. a -3 

0 ~~ ~~~~~~~~~~~~~0 L 
C. 

K1-

I |
ia

232

OS 2

sog'E

o .I '

9_f 10 *.

I SE,;'

--Z~ z2I 0';

92T' 

~'66' 0

99P' Z
Te-6?0'-

PB luE

-CU

-M

-rin

-La

-I

0.
0.

---

I



: :

¢ u uu uu; 3 , u . p a~~~~~~~~~~~A u I 
L ~~ ~~ 2 ~~ a X 2 n 2 " > B i : g E E E i . i ~~~~~~~~~~~ u1 1- -1 o;! .U U~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I 

t

CL t c N m a o _ o. . z O zo cm MQW LIa-t U u a .m 2U BC ua, a a s aa a- w 0 Cl* SB BB t *1 a In S B si. .S 5 0~~~BBB N ~ 0 xc. Unro! a!

a 0*W~ 3 0m M .0 0 02 Si ~ 'a -~ 0* 0 .02u
ulX@ No~~~~~2ffits* -z87 Bs - Boo " fi0Ilfl.^2~i.x u>2§

66E' 2
9LEA93; D

060'6 -- _
1q9 OE -

;O' E9 
5-06, 9 a\

0 I 69
666 OL
91E ,L i_V9G' SL -
0O7 '9L _ _ _ _ _ _ _

LS' LL 

§LP'LL
E6L LL 
EEO'2 __

g8 66 -

HOL 221
LLI Z;\ 

988 62 T
k6 ;E'[ -J

9LL'gE T 

EaIL IDii

o°
MM

233

-o

L"]_In

cu

0
-C

to 
-Lo

-n

to
-Cu

C
-In

In

r

K;
CL



* 

i i i E ii 3 if t cuO i S N N t--~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~-la,~~~~~~~~~~~~a
U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I cm
a £~~~~~~~~ W toU U

mn

0
ma.

Io06'Z

,i--VW

Og0 -

LSE' 

SE~~OI 

- ES-Z

-- "' 69pa' 

o o0 o r

= gfflE:l

91E^1

234

--m

-(0

-co

* 0.



of I C
I

a• 
·

U U U M~~~ ~~ I - urnv

i =

dill C3 ie us Von U, P. is. 'I

.0

AIn

.s'

I.-

0

.0

.I',

-o

cu

.
a. 

235

I
I
I
I
I
I

I

wow



U U 
U

I uurn w rn

0 00 U 
00 ~~~100 e

C.. ~~~~~~~Z0 ~ ~ ~ ~ ~~ ~~~ ,eC
0 - e a I mm- AV

LO co- IS

0. 
0 ~~~~ 0 CO.. 

0 
0~~~ C

-~ ~~~~~~~~~~~~~~~~~~~~~ 0L

C3 C-~~~~~~~~~~~~~~

0~~~~~~~~~~~~~~~f 
xL

EV9'1

-N
oo~ .e

cn

: 960' 2

0.
teigalul 0.

236

I

v

i



ii

BIP~~~~~~~~~~~~~
* I~~~~~~~~~ 

U ° UPlC f10 *m -~~~~~~~~~~C 0 -l CS, ON

0. ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - a C O- 
' I I l"

M. a M I..L- k t r- &

O£L'2;
OEL Z
gov'g;
6 *'B;t

PEIP'62
98' OE

069'o
EMS
9 69
989 L

LGFLZSE PL992'GL
6BG;'GL

L£; *LL
S90'LL
LEL*L
ELLIL

Ef O ZO

299L92lLTT'GTT
LEE' 0Z
Z60 12l

Z09'LT
ZkO'8Z1
EOI *Sal

T9'G~T2

S9L*SEI

OE9'6ZI

TEE'9I1X-EEO

GBO'6E
LO '6E

P16'GP1
StE'6P

.Adr

.0

In

.0ID

f-

0-0~

-CU

a.S

237



I~~~~~~~in " ' I-a

I2 IRm-EC ~C IV g Ze!.X a a 0 XU * E g a i; L | -,N 4 b -fi i Ule Q .

-. .U

t lgi§5§§ S Rk* - CI _ a u ma- k~~~~~~~~~~~~~c2 t a~~~~~~~~~~~~~~~~~~~~Ih~~~~I ~~~~~ -~10 

GGL' U

z_-:--'"cT-.090 ' 
B9E

I oso T
I I
Z1J8praN-E t 

=f-E90, I 

. sRo. 

£T6'0;

I filur

238

-0

-(r1

--V

-In

- g

a. 



0!9 mm a S~~a a 0 cu m in-~~~~~~~~a cc a~~~~~~~~~~~~~~~~~~~ a 1

C 0 0 K tn~ . . u . a a. . a a .. EL 
L Z ~ ~ ~ ~ ~ ~ 22 0 Z L - a. KI- -m . - o a w w m-L a a

*1 a-O~~~~~~~g e . , na

BEI' :Z

BL'2Zi 
080'8 B . ~
LBE'8[

L6E'6Z _-
9B OE

I62'69
SLE 'L

Z98' L
O8~'gz08-L , 
Z. 981 G

F60'LL
9EI'LL

VP LL -/
ILLLL
00' 8L

06 0-

6LO8-A
Lgk'8Z.-~I ,LWBF;
89L'8ZI

V66'8EI
t66@8EI-f

.~__n
50 6EA

03o'

wdd

-o

_C

-It
_N

O-

o

-0

LO
0-L)

If ,

LO-C--

0-o

cv

OJ
a

239

.

- - - - -

I

t
r

r



* U U

cu u ~~~~~~~~~~~~~ 
.. , LOm ' a U,1~ C

mini U- L C. Ig~ n;E -'I. In Si 

ma -~a - CL L 
- us -C I 

u l I C)
us - ~ ~ ~~~~~~~~~~~~~I s

'o I u.

a C *LLU. im s-030. -jU n 0 0 4..-,-
a w . n - *t i i.

;rL

38

f

el

0

a-

F Al

o -
C

m

Coo~ °"C °

m~

.a,

Ii'Zi E cu, T~~_,
nO' tZ'Z

o' ; I;6;'6
Tj T

6 E un

F-u

L6E' Z

.L-~~~~r

laiaul C

240

---- ,V-06

--- 6-1 T

.--... _=.._



l i

* I~~~~~~~~~~C 

C; I IuIu I v I ...

i~~~~~~c C Ci; C
C. toM IM~ RXU MI

C'!, `1 oI C 
a. ui C-1 UR. Is M is 19,ig As i la, s& 

DL'P21
GVP Z;

LOPTS

9L I a
9E* 62
S;H *OE
Z6;'* 9
LOE 69
98E' EL

Mr,'EL
BIW-EL
961'L

065 *'L
99' Li
lT'LL
PG LL
Og' LL

tOE LOZ6 * L
tar A

"Idd

--0-to

_ID

_o-in

?I

0

1

In
1

lo-o-C

0-N
.

-ea

241

i

---



U UI slis I i U RV SC21 M" Cl 'vcm 4) Imin U 'n uu I U A. U
t4 0 W U U t W . U K U'

CN UO *oW<mj . j r - ° U' Um toU C6 PN m N C ,
C) cu~~we C L t

~~~~~c'J~~~~~~~~c
CL 

m An~~~~~~~~~ 0

In ft In -.n c

~~~~J0. L o RPB qR a C a.-ki] C Z CC N 6 a u4 L n - . L

m°
0 -

C
en

0 0

LaC4

242

Z69. a

L901

9E0E

-v §§§' 6

001t' 

l?30' L

-rgg'gB

T9JB ;u

-CU

-C,.

-(0)

-r-

-_a
CL



, !

mg ILI i l U L0 C.M Kg i

L -- - -u -t_

a~~~~~~~ada=I Ir swaGu deDs mh s - U

f ' . '-.: .. ~ . .- ~I'-

t£k'[E

9rg OE6
0T9'0£
VGG' a9
Z0T 69
EOE'2L
69LEL
9~g'kL
gg9'gt
629' L599 VL

6E9' GL
OL9 gL
9E 9L

LLP LL
6E' LL

6L, Li

17kG'L2T
E06 LZT
g66'* 21

La, 821LLO * HIZLO'*8Z

60E, * S16r'g~T
E05 9ZI
989' ea 
62g981

699B1
LO * E1
89B'B~E

' OL1

umdd

-c

-.53

C3

-e

-Cu~

C
-Un

C, 

.Cu

243

---



-Q4
-3

0
CN

u-i

0

U-,

u- I

LO

U-)

U-)

0

U-

Pr



5' Z anCD a C a 0 5 tS a mm a 0 O

CDg 00 P 5: 00O 0 w ID ooww

a ~~~~~o .a to Cui-
0 08 . . . 0 03 O~~~~40 

CL c~~~~~~~ 

rua.-z 0 M 0 a--'n IE Ii'-. Sc OUN) I-cazwo. u~b-- at-rn U- I 0 =03 ' N w w3o 

6;E'6a
6~9'6Z
6V9 OE
600'V9
ES2'69

250 EL

PLL EL

2£I'~L

9el'g£

891'LL

POSt'LL
?08 LL
06E'8L
PE; 001
99; 'T

P69'LET
8L6LZ
680'82T
L6T '8
P6E 8Z 6

L69'8zT
V69'8gal
VOL 8;
62L'B2[-
98L'B2[

95882T
V06'82;

£6; *OEI
892'BET I

6PO *EI6O*99-
2BL'9
9P'OLI

wdd

-0o

_.,
Cu

-~0In

-Lr)-O-0c-o

U1-C

0
-U.,

U1,.-

0
Cu

0.C-oi
Ea

245



0r

LOE'O

OOT
001 '1

9L9'?

891'Z

-. I9* 1' 

£Z:~'C

- -

_Z9 , zlZZZ~_
BSO'" '

000-1

-T'6
O~I'*6E

_/

246

N

sr

m

0D

.

N
_IV

%3

ko

I

mL.
C

C'

Ltr

0

to

LO

eq
to
C)

LO
N
U)

tn

to
LO

0
.'(

0

LO

t



.1I

t= S Sa o2Sraa a flls -

U S a~~~

R 2 Ig 2 a IN 1-0 is0IL a~~~~~..
-. cu a ~ a 5i

-- IaIh' " " m- *l153 a

~990 -""--- i91OL19gVOZ' 9 -

00T'69 

L91 EL -

25rgL -
I IP'GL -
TP;'~L -

i'L8 - J ;

I.-n

P-

wdd

Jn

-U,Is

0-eU

-w

in

-0C3

a.

247

z

t

6

I

I

I

o.

I

L

i



E

. rC

.IN'

0-

248

O

*..-I

I re)

In

r-.

2,

L
L.



ITZ9 'E -

Z80 Z

T89' LZ _
ZL9 8Z 

SZ 7 L9

008 9
P1 ' 99

00 L9

£80' L9
6LI 'OL
07£ OL
LZ' OL

LZ9 ' 0L
L£8'OL
176 'ZL

L6S'EL
£9E 'L

T7 n TO
v i..v ,~

8L9 '66 
0170-001 
OO'989 0I
989 'ZOT

I0

249

04
-

o04

o

oCN

-o

-O

0

--

-o0)CO

-o

0
-,-4

o4

0

o~-N

0
CY)H0
'-4

0'H

00_ ",

-I

O0

-I=

r

L

[
rF

Fi

-

k-

-4

L

k

Z.

I

r,
t.

LI ,

r

I

-4
I

i

I

4

7 . T 



II

4~~

?
ol4

a
a.

-CL

} N

N

4.Nto-I-

*a .

to.
1

C

NTo

l0
CA

R

C4

250



.6

II

I! ~ ~ ~ ~ ~ .

.. mmwm dmm ... I

F% .
II. 

NC, W. ,

ill. � to to

I I U o n 1. .W 07 V) 1 c

Ill ~a.

ele
* .

S. ap

aI 

a,
I~~~~0

· , . ... I .
go in 40 .. 0In

U Y
o go N g

UIN ma we~~~~~~~~~e
Cd ~~~~~~~~.r.4 CD

VI 3 3b U 0 .

.. a ' s * =on. t a0 0 0
C 4 g- W. 02411) 0 V=W 

, - m o e I"OM- _ n

MC In m I & C 5.N
* *. 113%. ...4U1~r Cd LO, - d24 ~ I* * 4J@V k1~a W 0. CUU OBi

* *4,qd.4 @ W 4J4~~~C U.~ 0 

251

*6

0

,'L0.O

'4
U.

to

toes

go

to
to

to0)
'-4'0a'

cmJ

-'-

ocm

r4
h4

1 I

rv I

g I

I

- I

aI



Lo

o0,0)W,c,

Co

e-(

Uo' C~lCo

.n q_ ,

co

_Cs.1

-4

U,
0)
cm

-4

0)

-4
0)
-4

CD.

0)

W N 

CI M r e 0 0
IU . 0 

e e N04 rs _ - -

o 4 _ m -W U O4 . * eEn La.4U 0~0 O O

-t C Nr. ,4 -00 ~ 
* *. f4) - .. 4 W C.°

* _ -> ,. 0^- .,c.e4 Wfl x zO U
x C n 1: tCO>I<O4tDC * 04. _NW

C* w oe ua .., q4I_ c~~4 0@000w, 
| S o | W0 44..- C C-*

0 * C4a44.I0 NJ - 44W uJU. *- O9 _
x r a it X lc-_ t D 1 0 U'AMIN
I. C. 0 0 t -J O m

* * I O C CI SAN
*. 0 . * ujo 2 WhD 1 .

I (0 ~SA1. to ~!s L. X fLJ0 u0c

0 p-~ JI 'CC 4.4.0 0OW.0
2. ) 2. 00

252

I,



u I u a e
w ~ ~ ~~ N u ~~~00 " 0m co wR CL c xnt

0 s im aL
m, 0 LaCuu Rig ! COO La mwOoac o 00 0 gaw .~~

0 N u ru . 0 . ..01 M SIQ 0 1 CU 4A

z~ ~ ~~ C to in f- to aoco W3 m 93 0 to i U ma 0 ri08 O °2co IC CD U S -I 0 Z.r C C 2 1u ID -0 0 u C . 0 W C , l | 01, z x = . ,^. =, g e U ° 0 .0 U a 0 00N
CT 8 I I ii

m cm C.

L. 0.0.
3.4 cc F 0 u - S C. 2

nC 0 ( , Z ).50
O OZ I ~~~~~~ LU. ccS ~C

LU (L b M L-' o ci 1t . - ,t ZE

253

_E9IZ

III JL -EZ[ 

J/.
S860i9JuLTVT
0001

L1E

-tJal996'0-I_ £

4WiE6u

-cu

-c.,

-U)

-el

-0.

. .



u~
- o

906 Z

IZ6'£

_Ln a, L6'10
-1

' _..0980
o
C,

L)

0
Cn

£01' I
'L 018'8Z

£I96 ' I

o 
4 696T

8L6 0
-

sr /19Z'TI

Cl =Z~. 6

U)co

0
to

r-~

. )to0

~ .

LA3

I

254

i

I

i



_0

?4

'N~

C

U o

g

'_.

i ntI Immc;

':oc

- { u , . 4
* g t

md

z oq

255

2.

.4

.4

C 1

-t

W:J'*cli

'T
.., Iw

9 F.

I co



i

U1

'a a
I. I

Sa I

I- I 

II
0



'9

.0

D N co l&|4-fi-||,,,,,,,t; ............ 
. ... . . .ts Q t e t ¢ tt U7~i in in7 in

u Iq.-U

U '''- -VO( 

' L-i

.LI

.e0:t

a
0..0.-410 ,_U.

4

CSl

-4

LNJ

to
qr-

a

J

a~~~~~~~~~~~~~eU~~~~~~~~~
I J Nw U WI~~~~~~~~~~~~~t

-4 = 3 

U . sl eU Ni _ ·
t & 0 Mw tor z _ "aJ C Nl m > - O . ._ d C I 3 L N irr r . .

S7 -m ~ Wn' .. ·f .1 .... qF4*00 01r* a L S NN~ U *5 55~_ _ 

-- u I~ N >.eseo--U _ W. fil"l 0 5 5

oI~~~~" VI Z= Oman~o7=!7s1r~7X' m MC t. n- a V C-. O a - ta N n ' C -*- .
C . *@ . - S L co 3U S 3 , .~ h3'm S 4JlS 5 5 EI ~ U e~ OU U UN g'Oi ,.C- - UJC .,-Ip m G. J'-

I L I XeV 14 1, I-- 1- WN*I Q* Z 5 4i e7 O r t C s d_* _ w g s a > *|a m . - w ut - | neL OCJ U ~~ IwW 4257 ,-300 .0 I *

'0

A



h 1:

LO

Ln

0
C.~

LA)

0

n
for
t.

L.J

e

L

InLO

LA

0

LA

%D

K0

258

N

O
Cr

Ltv

LO

LA

LAtD.~
J

I

I

I

Ei
04

04



K EL

-I C

- 0,

- 'c,

- tO

259

('4



0-

.w.C4

-0 ,dle
O " 4 lo 

°

N o.

= ns
e s

E.

L 

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ) 'U >b° °O 000 000 ww0 @ O N uQrnzuoo o 0oo N

Ulrq Io 2 x' ,· 
rD 10 _ ) C

0 N ooo oo o NWCer r. I o o cJ -..I

Z- t c e * cMc 1 , a .I.- -4.-J = ' -c, M - I- C-
O 0 U C-, Q t L OD I Ca O C_L . lY ." W.. 0 L 03 L 

WV ON O VO
C, 0 - - q'4 Cu. I= -o C..a l Oot> a E--C < b #a.o 4 o * _ E. .

at C'Cta CO ON WW .4N~ o11 l ON l.> eIL)4 0 ° °
N s u . o rIO . 0 4 t 0 0 . - * 4 m n * s n . 4 e O t f l h f o
0 £ P Leo w O N O t Z C ' > 14.. a U C U N .4 C

% -_ 2 N 0 .4 -04 4e OL4 . 0 N * 
0O2CL) ° L - I -l C-lu aKtD 1 ) U7 _

D I-I t 0 t '14 O 1 C1 Lu I I , -m I- r I
CFS=t -,, .,,,t , _ 

-4

'jl
-C
m

4-Il

.Ln

C

La

-4U-

CO
t l

C*

'l
-4

-4
-4

o S C ' ' ' 2 t 1 '
I I. 0 .. o '-

C- a. 4 'E N .l 0% -%-3 ' % -3 X .-
t 1lC 40 4e 3z X 14C. 0..444 3-C C % 0f C £O BE~ a I! -' : 
. e 0 00 0 +o . C U .. Cgla .o m la l O- '. , 1C1'I=eC.

260

41

a1

4

2

f/

E

C

0 

U U
.c I

N

0

°e w



I.- U
14 

Ott
v -L -. 4N

to. 

~ aoMMo Co "w oow wq B
- O -If0 B sqr 4q4 -

0 N ee @ 0 * 0 61.~~~~~~1.eN .U e0"e. 3 .4e Sl N C) Lq|~~~~ OS OQ Ogll

z a . 5 *a. 3.4d~~~~~~~~~~~~,4 IL non1[e
as

' a *__ v 1z_" - - -0..4 t ~ U. .
0- . l f - f~ .4 .4
N t- , l ID ..- 36.4

N e. * "* - at .,4 0 q *[, J , doC ,4.m a rol IO g[, m l ,q-mI l.
fl~~~~~~~~e. 4 l 3 W m @ U C 04 e 1.4 48 3 o l:n .. 0 l 

g O ~ mF eGO ,,e t-u t s I~~~~~ T

· a X 3O ),i 4tt )i C C
M 'l .,e ae J

t@ U al *S 44 3_).ol \

261

U-
a.
6.P

s-



-)

0~

0:

i I
0 zI

O0

(n

0
oZi

0
L0

CN

10

262

I

I

0

10

0

6k§'0Qa0-C O

L ZO Z

_ t O zI'I

-/9ZO 0
7! 6t,0 ' 0

o) --\~6o0 0

t0

C']

04 =
CO .~g T

In

10 \IZ
Z66 '6

_t°. 7 L

~c£ I ' 0
o L060T

10

' 0~8[zL ' [z_D .

Ln

DI£0'

L

I



LSS VT

8ZL' * £Z

~§SL ' 6 Z

8 £ * '£

r T - Of I
17 Lk~ - 8
9 ZL 8 
66 8[z
TST 6k
t9 £ *6 
LLSg6D7
TCI * UVLU U V

69T ' £9 
L££ £9 \

L08 89 
LE6 89
6LI 69--ea
LSE 69 -Ino * - 1 -dtU 6L
9Z£ * L
199*Z
SOL' >L
C7T * C/1
ZZS 08
LZTI * T8

186 66

'S9 'OZT

)9Z'* t01

_u-)
ON

cQ-C)

L )

CD

U)0

. LnLn0

i. 

-L)

LO
w

- )-

LO
C-

0CC')- n0

- )
0)

0

-0
'-i

U-)

-

0
,-I

0

E



Current Spectrum - 112 shots

1566.89

100

9

2-2

1404.8370

1242.80

60

570.93

1595.37
).81 1954.99

10 

A Ann 

.6E+4

4.1 

U)i
C
0)
a-

C1

50

40

30

2199.27

j-0(0.0 
Mass il-,



Appendix C.3

Selected Spectra - Chapter 3
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Appendix C.5

Selected Spectra - Chapter 5
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Appendix C.6

Selected Spectra - Appendix B
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