
On the Capacity of Relay Networks
with Finite Memory Relays

by

Natanael Peranginangin

B.S., Electrical Engineering
Institut Teknologi Bandung, 1995

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2000

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Science in Electrical Engineering

at the
Massachusetts Institute of Technology

August 2004 ' .: 0v ':-c.,

© 2004 Massachusetts Institute of Technology
All Rights Reserved

A

Signature of Author
Department of Electrical Engineering and Computer Science, MIT

Certified by , 
Muriel Medard

Thesis Supervisor
Esther and-Harold E. EdgertonAssociate Professor

Department of Electical Enineeing ConCqmpu r Science, MIT

Accepted by - - -
Arthur C. Smith

Chairman, Department Committee on Graduate Studies
Professor

Department of Electrical Engineering and Computer Science, MIT

'½si a'r as

MAAcHUSETTS INSTITUTEI
OF TECHNOLOGY

7 OCT28 2004
I I

I BRARIES





On the Capacity of Relay Networks
with Finite Memory Relays

by

Natanael Peranginangin

Submitted to the Department of Electrical Engineering and Computer Science
on August 24, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Science in Electrical Engineering

Abstract
In this thesis, we examine the effect of relay memory on the capacity of two types
of relay channels.

In the first part of the thesis, we present a parallel relay channel model. Un-
der this particular model, intermediate processing at the relays is distributed and
cooperative. We derive the capacity by making use of the direct relation between
capacity and estimation theory. We show that the capacity of the channel under
distributed relay processing by a Kalman filter and that of the channel under op-
timal relay processing are equal. Using a one dimensional (1D) Kalman filter, pro-
cessing at individual relays requires infinite memory, assuming that the channel is
subject to inter-symbol interference (ISI). For a channel with ISI, we show that a
two dimensional (2D) Kalman filter allows the memory for processing at individ-
ual relays to be finite.

In the second part of the thesis, we present a serial relay channel model. Un-
der this particular model, one section of the channel is coupled with the next by a
memoryless relay. Assuming the channel is subject to energy constraints and finite
end-to-end noise power, we show that the capacity tends to infinity asymptotically
in the number of relay stages. Given a finite number of relay stages, finding max-
imum mutual information subject to energy constraints alone is difficult. Thus, in
addition to energy constraints, we propose entropy constraints. We give an ex-
plicit upper bound to capacity, assuming the channel is subject to the proposed set
of constraints on the channel input as well as the relay outputs. We illustrate the
use of our upper bound numerically and contrast it versus several lower bounds.
Next, we relax the memoryless restriction, thus allow coding and decoding at the
relays. We show two trade-offs concerning the length of relay memory and the
number of relay stages.

Thesis Supervisor: Muriel M6dard

Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Purpose of the thesis

The problem of point-to-point communication over relay networks has spawned

much research and debate in the information theory community. The body of lit-

erature pursuing information theoretic study of relay networks is vast.

An information theoretic study would naturally point to the question of ca-

pacity. Finding capacity for point-to-point communication over a set of relays is

usually either trivial or hard. For the model involving a series of AWGN chan-

nels shown in Figure 1.1, with a relay coupling one AWGN channel with the next,

the question of capacity is trivial. Reference [6] showed that capacity of the over-

all AWGN channel is that of the individual channel with the highest noise power.

As demonstrated in [14, Ch. 14.7] and [47], for models involving the traditional

AWGN relay channel shown in Figure 1.2 and the parallel AWGN relay channel

shown in Figure 1.3, respectively, establishing capacity results is difficult.

There are more recent capacity approaches considering more tractable models

than [14] and [47] but not as trivial as that of [6]. Reference [46] considers point-

to-point communication where sender and receiver communicate over a network

9



10 CHAPTER 1. INTRODUCTION

N, N,

Figure 1.1: A serial AWGN relay channel

of fixed relay terminals. Reference [48] considers essentially the same communi-

cation model but allows relay nodes to be mobile. Reference [2] considers a high

SNR model of point-to-point communication in which sender and receiver com-

municate over several layers of relay terminals. Finally, reference [5] considers a

model where sender and receiver communicate over a single layer of relays but

employ spatial multiplexing by means of multi-antennas at sender, receiver, and

relay nodes.

Lately, there has been growing interest in using a joint source/channel ap-

proach for communication models involving relays with finite memory [9, 13, 15].

In this thesis we study a theme which has not received much attention in the

context of capacity. The theme is best described by the following questions. Can we

consider, from a capacity point of view, the effect of finite relay memory over the

different types of relay channels? In particular, when faced with limited memory at

X Y

Figure 1.2: The traditional AWGN relay channel

CHAPTER 1. INTRODUCTION10
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Relay N3

Figure 1.3: The parallel AWGN relay channel

relays, what is the maximum rate at which information can be reliably transmitted

over the relays? Why we are concerned with such an issue, of all other issues

surrounding point-to-point communication over relay networks, will be addressed

in the following section.

1.2 Motivation for the thesis

As seen from information theory, a relay network is an idealized mathematical

abstraction. Although such an abstraction may help-by bringing the essential

mathematical structure with which issues are dealt with, it is not meant to enclose

all the issues and complexity pertinent to the design of relay networks.

Many factors may be taken into account when defining the performance of a

relay network such as implementation cost, communication protocol complexity,

end-to-end delay, power efficiency. There are complicated trade-offs involved, and,

speaking generally, it is difficult to arrive at concrete results if the problem is not

greatly simplified.

A principle that works well is to isolate the issues which we would like to un-

derstand, using mathematical models representing the essential structure of the

problem- of communication over a relay network-while eliminating unneces-

sary complexity. We will follow this principle, particularly by the following three

key steps: making observations about two basic and fairly general relay commu-

Sec. 1.2. Motivation for the thesis 11



12 CHPE 1.ITOUTO

nication models, sensing the issues we would like to understand from these obser-

vations, and investigating such issues through some simple mathematical models.

In this section, we describe two relay models for point-to-point communica-

tions, namely parallel and serial relay models. The two models are basic. Many

relay networks are comprised of parallel and serial combination of relays. The

central issue which will arise from our observations, as well as information theo-

retic models proposed in the next chapters, given our observations, is that of finite

relay memory and its effect upon capacity.

1.2.1 A Parallel Relay Model

Figure 1.4 points to a model in which relays are deployed for communication be-

tween sender and far-receiver. We could view each relay as a sensor with some

processing capability. Of many problems addressed in the sensor network litera-

ture, the problem of transporting data to a far-receiver via the n sensors has partic-

ularly received a lot of attention [10]. The following references provide some of the

ideas concerning the problem of transporting data from sensors to a far receiver.

Reference [24] considers partitioning a sensor network into disjoint and equal-

sized cells. The purpose is to eliminate redundant transmission by ensuring that

only one sensor in each cell transmits. The environment in which sensors commu-

nicate between themselves is assumed as a fading environment.

Reference [22] considers flooding a sensor network with information from a

source. One or a few sensors transmit data to a far distant receiver and the rest

operate as repeaters. Sensors, chosen as repeaters, form several levels of relays ex-

tending through the entire network. Such an approach is intended to allow reliable

transmission to far destinations that individual sensors cannot reach without rapid

consumption of their own power resources. The sensor network is assumed to be

impaired by fading.

12 CHAPTER 1. INTRODUCTION
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Transmitt(

f

Network

Figure 1.4: A parallel relay model

Reference [23] considers a model where individual sensors in the network pick

up some correlated signals, encode these signals, and individually send the en-

coded signals over a multiple access channel to a far-receiver. The multiple access

channel between sensors and the far-receiver is assumed to be a fading multiple

access channel.

Observe that the communication approach shown in Figure 1.4 causes redun-

dant streams to be sent to the far-receiver. The n intermediate receivers

-interchangeably used to denote relay-individually transmit their output streams

to the far-receiver, and thus the far-receiver receives n corrupted versions of the

original stream from the sender. Next the far-receiver centrally processes the streams

that it receives and reconstructs the original sender's information at its best. Here-

after, we denote such processing approach as the centralized processing approach.

Our view of reach-back communication considers the parallel relay approach

shown in Figure 1.5. Assuming the n intermediate receivers have been indexed

as intermediate receiver 1 to intermediate receiver n, the point-to-point commu-

nication approach shown in Figure 1.5 works as follows. Intermediate receiver 1

Sec. 1.2. Motivation for the thesis 13
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Transmitt
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Network

Figure 1.5: Processing which is distributed in space

processes the stream it receives from the sender and transmits an output stream to

intermediate receiver 2. Intermediate receiver 2 receives streams from both sender

and intermediate receiver 1, processes them, then forwards an output stream to

intermediate receiver 3. Similarly, the processing progresses from one to the next

intermediate receiver, until, in the final step, intermediate receiver n directs its out-

put stream to the far-receiver.

By processing, as opposed to simply relaying, each intermediate receiver per-

forms some operation on its received signals. Observe that the approach shown

in Figure 1.5 points to processing which is distributed in space. Comparing Fig-

ure 1.4 with Figure 1.5, processing which is distributed in space ensures only one

intermediate receiver-intermediate receiver n- communicates information to the

far-receiver. We hereafter denote such a processing approach as the distributed

processing approach.

The distributed processing approach brings about a number of benefits over the

�

14 CHAPTER 1. INTRODUCTION
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centralized processing approach. First, the approach allows processing to be local-

ized and distributed in the network of intermediate receivers, rather than central-

ized in the far-receiver. Second, the approach yields reduction in the redundancy

of data being sent to the far-receiver, preserving communication resources such as

bandwidth and power. Third, the processing approach can be tailored to work in

a frequently changing topology of sensor networks, given that the far-receiver and

the intermediate receivers form a spanning tree with the far-receiver being one of

the end nodes.

In Chapter 2, we direct our attention to comparing the distributed processing

approach to the centralized processing approach. Assuming a discrete-time chan-

nel model, we consider transmission capacity, rather than distortion, as the metric

to contrast capacity under distributed versus centralized processing. We will inves-

tigate whether or not models for point-to-point communications with distributed

processing lead to lower capacity than that when processing is centralized.

Why should we be concerned with the relation between the memory of relays

and capacity of the communication over these relays? At this point, the aspect of

memory and its utility for processing information at the relays is not apparent. In

Chapter 2, we will adopt information theoretic models to represent the structure

of point-to-point communication shown in Figure 1.4. For these models, the chan-

nels between individual intermediate receivers and the far-receiver are not sub-

ject to communication constraints; these channels are noiseless. The implication is

two-fold. On one hand, such models imply that communication with centralized

processing is optimal, since it allows the highest degree of freedom for processing

information at the far-receiver. On the other hand, by elaborating on such models,

we will find that communication with distributed processing between sender and

far-receiver entails processing with memory at intermediate receivers.

Sec. 1.2. Motivation for the thesis 15
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N N2 N .l Nn

000

Figure 1.6: A cascade of n AWGN channels

1.2.2 A Serial Relay Channel

Consider the discrete-time channel shown in Figure 1.6. The channel is comprised

of several sections, each with AWGN. Each section is coupled with the next by a

memoryless relay. A relay is a function mapping the output of one section to the

input of the next section. The mapping is assumed to be memoryless in the sense

that the output at time n only depends on the input at time n.

The discrete time AWGN channel in Figure 1.6 arises in optical communica-

tion over a serial distribution network. In such a distribution network, a central

problem is noise accumulation. The two major components of noise are receiver

and amplifier noise. At sufficiently high signal-to-noise ratio (SNR), receiver noise,

such as that from the dark current generated by an avalanche photodiode (APD),

can be well modelled as AWGN, without the need to consider Poisson models that

are more relevant in the low-photon regime count. Amplifier noise, such as ampli-

fied spontaneous emission (ASE) from Erbium-Doped Fiber Amplifiers (EDFAs)

[7], is also well modelled as AWGN.

In order to counter noise, regeneration is performed at each relay stage. As used

in the optical communication literature, the term regeneration denotes memoryless

processing at individual relays, assuming that information is transmitted by means

of on-off keying (OOK) or antipodal signalling; these two types of binary signalling

are the most commonly used for optical transmissions. Such processing is aimed

-

CHAPTER 1. INTRODUCTION16
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X, =-

or
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L1 2

Figure 1.7: A cascade of two AWGN channels

at countering noise, and in effect lowering bit error rate (BER).

Concerning regeneration for optical communications, we observe the follow-

ing. First, arbitrary processing, such as coding/recoding at source/destination

and relays, would yield a better performance than that if processing at source/

destination and relays is memoryless (symbol-wise). Second, if certain elements

have already been placed in the fiber plant, what does this mean for its future per-

formance? More sophisticated coding, decoding, and modulation than currently

used will appear at the edge of fiber well before it appears in the middle. The two

observations motivate us to consider a more general regeneration than currently

addressed the optical communication literature. In other words, what if we allow

arbitrary processing-more sophisticated coding, decoding, and modulation-at

the edges of fiber, beyond that associated with OOK or antipodal signaling? The

pursuit of higher rates for optical communication purposes will probably lead to

the implementation of coding and recoding at the relays. On the road to realizing

coding and recoding at the relays, implementing coding/decoding at the edges of

fiber, while maintaining the relays to be memoryless, is in effect a natural mile-

stone.

Before coming back to our discussion of regeneration with arbitrary processing

at the source/destination, but memoryless at the relays, we present the following

background on the problem of regeneration in optical communications. The prob-

lem of regeneration has been explored for years. It was originally investigated for

Sec. 1.2. Motivation for the thesis 17



18 CHAPTER 1. INTRODUCTION

JYl,)

a o b yb

-1

Figure 1.8: A hard-limiting function

coaxial systems [39], and is particularly relevant in optical transmission systems.

Consider the channel model shown in Figure 1.7. For this model, given that the

input is either OOK or antipodal and a hard-decision is placed at the output end

of the channel, common relay functions studied in the optical communication lit-

erature are as follows:

· Linear amplifier

X2 = fl(Yl) = Y1,

where a is some real valued constant,

* Hard-decision (the function in Figure 1.8, with a = b),

* A combination of hard-decision and linear amplifier (see Figure 1.8)

-1 forY1 < a

X2 = f(Y ) 2= 2y,-a+b for a < Y < b

1 for Y1 > b

where a < b and a, b E R,

* An arbitrary nonlinear function.

There is no single nomenclature for regeneration, but a fairly common usage is that

of R1 for linear amplification, R2 for linear amplification and hard-limiting, and R3

�
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for linear amplification, hard-limiting, and retiming [49, 39, 50]. R2 systems are

the common means of regeneration in optical systems [49, 32, 51, 52]. Many R3

systems have been demonstrated and proposed [53, 54, 55, 56]. Unlike R3, R1 and

R2 systems assume that timing and jitter are perfect [57], and thus do not consider

such issues.

The problem of transmitting signals through a channel subject to hard-limiter's

noise [29, 38], of recovering original signals from noise contaminated signals [58,

30, 31, 59, 60, 44], and of transmitting various sinusoids [61] are classic problems

in communication theory. More general non-linearities have been considered for

noise [62], binary processes [42], phase modulated signals [36], noise contaminated

signals [63] and Markov processes in general [64, 65, 66]. To our knowledge, none

of these works establish the optimum memoryless relay function for regeneration

of binary signals for the channel shown in Figure 1.7. Attempts at comparing the

performances of different functions in regeneration have been limited [41]. The

term optimal relay function denotes the optimum memoryless (symbol-wise) relay

function that minimizes bit error rate (BER) for the channel shown in Figure 1.7

(assuming an antipodal or OOK input and a hard-decision at the output end of the

channel).

There is a conjecture on the problem of regeneration under OOK signalling,

popularly known as a 'folk theorem' in the optical communication community.

Consider the discrete time channel shown in Figure 1.7 and assume an antipodal

or OOK input and a hard-decision at the output end of the channel. Moreover, let

SNR be defined as the ratio between input and noise powers at each section of the

channel. For such a channel, the 'folk theorem' states that a hard-decision function

is the best memoryless relay at low SNR and a linear amplification is the best at

high SNR. In Chapter 3, we will present a serial relay model and use it to argue

that such is not always the case.

More recently, [1] derived the optimum memoryless relay function fi (Y1 ) for

Sec. 1.2. Motivation for the thesis 19
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the channel in Figure 1.7, assuming an antipodal or OOK input and a hard-decision

at the output end of the channel, subject to energy constraints. Depending on the

noise at the first and second section of the channel, the optimum function gradually

varies from being a linear on one extreme, to being a hard-decision function on the

other extreme. As such, the result has some likeness to that of the 'folk theorem'. It

is different, however, for the gradual change of the shape of the optimum function

is not dictated by SNR, but by the amount of noise power at each section of the

channel. In Chapter 3, we will describe the optimum function derived in [1] and

relate it to the main theorem of the chapter.

The issue of performing regeneration linearly or nonlinearly and that of whether

to regenerate optically or electronically have spawned much research and debate.

There are tradeoffs involved, most notably that between cost and BER. In this the-

sis, we isolate such issues and their inherent complexity. Rather, from a capac-

ity point of view, we ask the following question: given memoryless processing at

the relays but arbitrary processing at source/destination, what is the fundamental

limit of communication? In effect, we are generalizing the current problem of re-

generation with R1, R2, and R3 to that of regeneration with memoryless processing

at the relays but arbitrary processing at both ends of the channel. This is the main

thrust of Chapter 3. Our motivation stems from our view that the more general

regeneration allows for:

* the increase in the latency of optical communications by coding/decoding at

the source/destination;

* economic feasibility at the current stage of development in optical communi-

cations, namely optical regeneration (without OEO) with memoryless relays

is economically more feasible than

- optical regeneration (without OEO) by coding/recoding at the relays;

CHAPTER 1. INTRODUCTION20



Sec. 1.3. Thesis Outline 21

- electronic regeneration (with OEO) using memoryless relays;

- electronic regeneration (with OEO) by coding/recoding at the relays.

1.3 Thesis Outline

In Chapter 2, we will study the problem of point-to-point and distributed commu-

nication over parallel relays. The channel model chosen to represent the structure

of such a problem is the Single Input Multi Output (SIMO) with Additive White

Gaussian Noise (AWGN).

In Section 2.2, we will propose a one dimensional (1D) Kalman filter as means

of successively estimating the input sequence of the channel. One dimensional

recursive estimation from one relay to the next by a 1D Kalman filter yields the

same final estimate as the estimation in which the complete set of observed output

is fused and processed in a centralized fashion. We will find the expression for the

capacity of the centrally processed channel and show that it is the same as that of

the channel processed by the 1D Kalman filter.

In Section 2.3, we will extend the model of Section 2.2 to a SIMO with AWGN

and inter-symbol interference (ISI). ISI entails infinite memory for processing at

each receiver if distributed processing is done by a 1D Kalman filter. In order

to mitigate the problem of infinite processing memory, distributed processing is

performed by a two dimensional (2D) Kalman filter. With a 2D Kalman filter, es-

timation proceeds from the first relay to the next and successively to the last one

at each time step. Within the same time step, however, the last relay feeds back its

estimate to the first, allowing the estimate of the next time step to be based on the

present. The final estimate attained by the 2D Kalman filter with finite processing

memory is the same as the estimate computed by 1D Kalman filter with infinite

processing memory at the relays. Finally, we will find the expression for the ca-

Sec. 1.3. Thesis Outline 21
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pacity of the centrally processed channel and show that it is the same as that of the

channel processed by a 2D Kalman filter.

In Chapter 3, we will study the problem of point-to-point communication over

serial relays. We will adopt a model whereby the sender and far-receiver commu-

nicate over a series of AWGN channels resulting from the coupling of one AWGN

channel with the next by a relay.

In Section 3.2, we will assume the relay functions to be memoryless. Under

this assumption, and given that end-to-end noise power is finite and the serial

relay channel is subject to energy constraints, we will show that capacity tends to

infinity with the number of relay stages in the series. The particular model and

assumptions considered in this section is aimed at demonstrating the following.

A 'folk theorem' states that a hard-decision function is the best memoryless relay

at low SNR and linear amplification function is the best at high SNR. Using the

particular model and its assumptions, we will argue that such is not always the

case.

In section 3.3, in addition to assuming the relay function to be memoryless,

we will restrict the number of stages to be finite. We will derive an explicit upper

bound to mutual information assuming that each section of the serial relay channel

is subject to energy and entropy constraints. The energy and entropy constraints,

together, are proposed to characterize a set of operating conditions for the serial

relay channel. We will illustrate the use of our upper bound numerically. To il-

lustrate the use of our upper bound, we will contrast such an upper bound versus

several lower bounds.

In section 3.4, we will relax the memoryless restriction on the serial relay model

of Section 3.3, hence allowing relays to perform operations with memory. We will

show two tradeoffs. First, given that information is sent at a fixed rate R and given

the requirement that end-to-end error probability is bounded above by some arbi-

trary quantity, we will show that the requisite length of memory N for decoding

CHAPTER 1. INTRODUCTION22
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purpose at each stage is monotonically decreasing in the number of relay stages

n. Second, given that information is sent at an achievable rate R, we will show

the rate at which mutual information per unit memory tends to R is higher as the

number of relay stages n grows.
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Chapter 2

On the Capacity of a Parallel Relay

Channel

In this chapter, we consider discrete-time models motivated by the discussion in

Section 1.2.1, and address the problems brought about by such models.

To compute the capacity of point-to-point communication with distributed and

intermediate processing at the relays, we will make use of the direct relation be-

tween transmission capacity and estimation theory. As we make use of such a rela-

tion, it will be apparent that achieving reliable transmission between sender and

far-receiver relates to memory at intermediate nodes.

We will also propose a particular algorithm for distributed processing at the

relays. The simplicity of such an algorithm is another merit which will be more ap-

parent as the chapter progresses. Under the models we adopt, we will investigate

whether point-to-point communication involving such an algorithm is optimal,

namely whether the resulting capacity is equal to that of point-to-point communi-

cation under centralized processing.

In general, the distributed processing problem falls in the class of problems

involving the observation of events in space-time and making estimates or pre-

25



26 CHAPTER 2. ON THE CAPACITY OF A PARALLEL RELAY CHANNEL

y =X+E,

Y2 =X + V

Y = X + V

Figure 2.1: The CEO problem

dictions based on the phenomena observed. Often the receiver-estimator system

is distributed in the sense that data are collected at several spatially separated

sites and transmitted to a central estimator/decision maker over a communication

channel with limited capacity.

A related model, in the context of source coding, is the CEO model shown in

Figure 2.1. The CEO problem is a multi-terminal source coding problem. Its set-up

is as follows: n agents receiving independently corrupted versions of an input pro-

cess forward their corrupted observations to a central receiver-the CEO. There are

however communication constraints associated with the communication between

individual agents and the CEO: first, the total data rate at which the agents may

communicate to the CEO is constrained by some finite quantity; second, the agents

are not allowed to convene and collapse their corrupted observations. Under the

communication constraints above, the CEO source coding problem is a hard prob-

lem. For the particular models used in this chapter, in contrast with the CEO model

above, we assume that the links between relay nodes and far-receiver are noiseless,

namely the links are not rate constrained.

CHAPTER 2. ON THE CAPACITY OF A PARALLEL RELAY CHANNEL26
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Y1 =X| Y2 +v2 Y L YCEO +CEO

Figure 2.2: Successive encoding for the CEO problem

Reference [13] introduced and studied the CEO problem for discrete mem-

oryless sources, contrasting distortion in the case when estimators convene for

smoothing corrupted observations with that in the case when estimators do not

convene. References [27] and [20] extends [13] to the special case of continuous

Gaussian source and observation. More recently, [15] developed successive en-

coding strategies for the CEO problem, based on a generalization of Wyner-Ziv

encoding. The successive encoding model for the CEO problem is shown in Figure

2.2. By successive encoding, estimators (or 'agents') are ordered and communicate-

-one to the next-over rate-constrained links, the final agent in the chain being

termed as the CEO.

2.1 Channel Model: SIMO, AWGN

To address the issue of whether distributed processing yields the capacity equal

to, or perhaps less than, that of centralized processing, we begin with the simplest

model we can think of. As will become more obvious in the next section, the in-

sights gained in this section will be of importance to the analysis of more involved

models adopted in the next section

For the point-to-point communications shown in Figure 1.4, notably communi-

cation with centralized processing, and Figure 1.5, notably communication with

Sec. 2.1. Channel Model: SIMO, AWGN 27
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x Far Receiver

Figure 2.3: Channel under centralized processing

distributed processing, let us consider the information theoretic models shown

in Figure 2.3 and Figure 2.4, respectively. Both channel models are discrete time

AWGN channels with Single Input Multi Output (SIMO).

Such models, shown in Figure 2.3 and Figure 2.4, rely on the following two

assumptions. First, the links between sender and the intermediate receivers are

bandlimited and subject to AWGN. Second, the link between one intermediate re-

ceivers and the next, as well as the link between individual intermediate receiver

and far-receiver, are noiseless.

The first assumption allows the channel models shown in Figure 2.3 and Figure

2.4 to be viewed as discrete time and continuous alphabet channels. The second

assumption, in effect, allows the capacity problems associated with the communi-

cation models shown in Figure 2.3 and Figure 2.4 to be not as trivial as that of the

serial AWGN relay channel shown in Figure 1.1 [6], but more tractable than that of

the parallel AWGN relay channel shown in Figure 1.3 [47].

28
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The sender transmits a symbol X with average energy constraint E[X2] < E.

There are n intermediate receivers, and the bandlimited channel between sender

and intermediate receiver i, denoted as channel i, is corrupted by bandlimited

AWGN Ni with average energy o2. Under the sampled model of the bandlimited

channel, the relation between input symbol X and the output symbol at interme-

diate receiver i, Yi, is given by

Yi = X + Ni x = ,...,n (2.1)

where

X a random variable with zero mean and variance E;

Yi a random variable with zero mean and variance (E + o2);

Ni /V(O0, 2 ) for i = 1,...,n and Ni is independent of X and Nj, for j E

{1,2,...,n} \i.

We consider two approaches for processing the Yi's.

Option 1: Centralized Processing

As Figure 2.3 shows, at each time step, intermediate receiver i, i = 1,..., n, si-

multaneously relays its received signal, Yi, i = 1,... , n, to the far-receiver. Note

the optimality of this approach, in account of the unlimited freedom that the far-

receiver has, in processing the complete set of corrupted signals it receives.

Option 2: Distributed Processing

As Figure 2.4 shows, this approach allows estimation to be done stage by stage

at each intermediate receiver. In particular, intermediate receiver 1 receives Y1,

then produces C1, i.e., an estimate of X from Y1, and transmits this estimate to

intermediate receiver 2. Intermediate receiver 2 then produces U2, i.e., an estimate

Sec. 2.1. Channel Model: SIMO, AWGN 29
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x

Figure 2.4: Channel under distributed processing.

of X from C1 and Y2, and transmits the corresponding estimate to the subsequent

intermediate receiver, i.e., intermediate receiver 3. In the same fashion processing

carries on until the far-receiver receives an estimate, CLn, i.e., an estimate of X from

Un-1 and Yn-1, from intermediate receiver n.

2.1.1 Distributed Processing by One Dimensional (1D) Kalman

Filter

Since, at any time unit, it is possible to have a record of the measurements {Yi}i=l,

distributed processing can be rephrased as the on-line estimation of the state vari-

able of intermediate receiver n, i.e., Un = X, from the measurements {Yi}=l.

One such algorithm that yields an on-line unbiased linear least square error

(LLSE) estimate of the state Un is the 1D-Kalman filter [11], [28]. The estimate is
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unbiased in the sense that

E[Un-Un] = 0

where E[e] denotes expectation, and Un = is the estimate of Un = X from

{ Yi}i=l, i.e., available measurements. The minimum error variance characteristic

simply means that the quantity

E[(Un - an)2 ]

can be minimized from the requirement that the estimate be the result of a linear

operation on the available measurements [11], [28].

A particularly convenient form for the 1D-Kalman estimation algorithm can be

developed in a recursive manner [11] [28], with a state-space model defined by

state and output equations

Ui+l = Ui (2.2)

Yi+ = Ui+ +Ni+l (2.3)

Note that the output equation (2.3) follows from (2.1) and (2.2).

Let us define

/[ilk ] an LLSE estimate of Ui, based on observations from intermediate receiver 1

to intermediate receiver k(k < i);

Ki receiver-varying Kalman gain (a scalar);

Ae[ilk] = E [(Ui - [ilk])2 ], i.e., the error covariance, based on observations from

intermediate receiver 1 to intermediate receiver k(k < i);

ai2 measurement noise variance at intermediate receiver i, i.e., E[(Ni)2 ];

31Sec. 2.1. Channel Model: SIMO, AWGN
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The on-line 1D Kalman filtering algorithm is as follows.

1. Initialize the prediction and its associated error variance according to

l[llo] = 0 (2.4)

Ae[110] = E (2.5)

and let i = 1.

2. If i < n go to the next step, if i > n then transmit in, to the far-receiver and

end process.

3. Port i computes the Kalman gain matrix

Ki = Ae[ili - [i1] 1 + 1 2) (2.6)

and generate the filtered estimate and its associated error covariance from the

corresponding prediction quantities according to

a[ili] = I[ili- 1] + Ki (Yi - a[ili- 1]) (2.7)

Ae[iji] = Ae[ili-1]- KiAe[ii-1] (2.8)

4. Port i generates the next prediction and its associated error covariance from

the corresponding filtered quantities according to

a[i+ lli] = a[ili] (2.9)

Ae[i+lli] = Ae[ili] (2.10)

5. Transmit U[i + 1 i] and Ae [i + 1 i] to intermediate receiver i + 1.

6. Increment i and go to step 2.

Moreover, let us define a new channel which is a twist from the centralized chan-

nel. Instead of having a channel with input X, and output , i.e., the input-output

-
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Figure 2.5: Reduced Channel

relation for the centralized channel, we reduce the channel to one which has input,

X, and output, , where X is the Linear Least Square Error (LLSE) estimate of X,

that is,

)k = aV, (2.11)

where a is a vector with the appropriate dimension such that E [(X - )T(X-)]

is minimized. Let us name the channel with input and output relation in (2.11) as

the reduced channel (see Figure 2.5).

The following theorem follows immediately.

Theorem 1 Let f be the output of the the reduced channel and lIn be an estimate attained

by intermediate receiver n under distributed processing by D Kalman filter. Then

= n . (2.12)

Theorem 1 asserts equality on the capacities of the following two channels: the

reduced channel (see Figure 2.5) and the channel under distributed processing (see
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Figure 2.4). However, the equality we desire is equality between the capacity of the

channel under distributed processing and that of the channel under centralized

processing (see Figure 2.3). What, therefore, remains to be shown is the equality

that bridges the gap between Theorem 1 and the desired equality, i.e., the equality

between the capacity of the channel under centralized processing and that of the

reduced channel. We treat this problem in the following section.

2.1.2 Capacity of Channel under Distributed Vs. Centralized Pro-

cessing

Consider the channel under centralized processing, i.e, a channel whose input X,

noise N = {Ni}inl, and output = Yi}l are related by (2.1), with symbol

energy constraint E[X2] < E. Moreover, let XG be a random variable such that

XG, J/(0, E).LetB= [ 1 - 1 1T,N= [N1 N2 N3 ] and

YG = BXG + N, (2.13)

hence YG J(O0, AG), where AG, a covariance matrix, is such that

1 + 12 1 ... 1

1 +c2 ... 1

AGI = E 1 (2.14)
1 1

1 1 ... 1+ 2

Note that

det(cov(?)) = det(E[YYT ])

1 I 1
1 +c 1 ... 1

E[X2 ] 1 1 + 2... 1

1 '.. 1

1 1 l c... 2• IA~~~~ (2.15) +0-
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Finally let XG be an LLSE estimate of XG based on YG and Ae = E[(XG - XG) 2 ],

i.e., the estimation error variance.

Lemma 2
1

Ae 1 n 1

Proof From [11] ank=d [28]

Proof. From [11] and [28]

Ae
[ + BTE NT]'1 B

and with a few simple substitutions, the lemma follows. O

Using (2.13), (2.14), (2.15), and Lemma (2), we now find the maximum mutual

information between the input X and output Y of the channel under centralized

processing.

Lemma 3

sup I(Y; X) = (log + l
X:E[X 2 ]<E 2 k1 k

E-lI nkE1,2...,n)\i,72k

and the supremum is achieved byfixing X = XG V A/(O, E).

Proof.

a

b
< h(YG) - h(t)

d

e

sup [h(?)-h(YIX)]
9:E[X2]<E

h(XG) - h(XG - GIYG)

log (27reE) - log (27re 

2 n( E = k

sup I(Y; X)
X:E[X 2]<E
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(a) follows from the definition;

(b) combining (2.13), (2.14), and (2.15), the entropy of ?, given the constraint on

the average energy of input symbol, is maximized by the entropy of YG;

(c) follows from the definition and recall that (2.14) and (2.15) implies XG is the

random variable that satisfies (2.15) with equality;

(d) follows from Lemma 2;

(e) follows from simplifying the right hand side of (d).

From (2.13), the input that achieves the supremum on mutual information is XG

A(0, E). O

Having found the maximum mutual information, the capacity of the channel un-

der centralized processing is as follows.

Lemma 4 Let Cc be the capacity of the channel under centralized processing, then

1
Cc = -log2

,2,...,n}\ik

Proof. Taking in account that the output of SIMO AWGN (centralized channel) is

a vector instead of a scalar, and making the appropriate substitution, the proof is

similar to the standard proof for Single Input Single Output (SISO) AWGN chan-

nel, [14, p.2 44 -2 4 5 ]. 0

We now establish an equality between the maximum mutual information of

the channel under centralized processing, i.e., X and ?, and that of the reduced

channel, i.e., X and .

Lemma 5

sup I(x;) = sup I(X;2)
X:E[X2]<E X:E[X 2 ]<E
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Proof.

sup I(X;?) a - I(XG; YG)
X:E[X 2] <E

= h(XG) - h(GcIYG)

- h(XG) - h(XG - G IYG)

d h(XG)- h(XG - G)

= h(XG) - h(XG - GIXG)

= I(XG; XG)

g= sup I(X; X)
X:E[X 2]<E

(a) follows from Lemma 3;

(b) follows from definition;

(c) follow since translation does not change differential entropy;

(d) follows from the fact that the error of an LLSE estimate is independent of the

observed vector when the observation and the random variable to be esti-

mated are jointly Gaussian;

(e) follows since translation does not change differential entropy;

(f) follows from definition;

(g) follows from data processing inequality, i.e., the fact that VX: E [X2] < E

I(X;: ) < I(X; ?)

< sup I(X; ).
X:E[X 2]<E

[O

In the following Lemma, we show an equality that is desirable, i.e., equality be-
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tween the capacity of the channel under centralized processing and that of the

reduced channel.

Lemma 6 Let Cr be the capacity of the reduced channel and Cc be the capacity of the

channel under centralized processing, then

Cr = Cc = log +
2

Proof. (=) Recall Lemma 3 and Lemma 5. Taking in account that the output of the

reduced channel is X, i.e., an LLSE estimate of {Yi}n1 l, and making the apropriate

changes, it is straight forward that the forward proof is similar to the forward proof

of Lemma 4.

(~=) For the converse part, we modify the notations in (2.1) to account for the time

sequence {j}T=l and henceforth follow the lines and notations of standard proof

given in [14, pp. 246-247].

Yi = Xj + NiJ i = 1,...,n j = l,...,m

where

Yij the output symbol of intermediate receiver i at time j;

Xj the input symbol at time j;

Ni the additive noise on channel i at time j;

n the number of receiving intermediate receivers in the SIMO channel.

Let Ym = i}im = {yii= 1, Xm = Xj} 1=. Moreover let Nm =

((Ni}in l}jm=l, 1Rj = (Nij}n=l and m be the LLSE estimate of Xm = (j}m=

-
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when ym is observed. Now, consider any (2mR, m) code that satisfies the power

constraint, i.e.,
m

- EXi 2(w) <E
im j= 1

for the message index w = 1,2,..., 2mR. Given that we can decode the index w

from the LLSE vector estimate Xm with low probability of error, we can apply

Fano's inequality [14, p.38-40] to obtain

H(wlX m ) < 1 + mRPe(m) = mem, (2.16)

where em - 0 as P(m) 0 O. Hence

mR a H(w) I(w; Xm) + H(w Xm)

I(xm; m) + mcm < I(Xm; K m) + mem)

- h(?m) - h(YmlXm) + mem L h(Y m ) - h(IRm) + mem

y< h(Yj) -N )+Im h(Yi) -(h( j)) +mem

I(Xj; Yj) + mem (2.17)

(a) follows since w is a discrete random variable with uniform probability mass

function;

(b) follows from definition;

(c) follows from data processing inequality and (2.16);

(d) follows from data processing inequality, i.e., I(X; Xm) < I(X; Ym);

(e) follows from definition;

(f) follows since translation does not change differential entropy;
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(g) follows from the chain rule for entropy and the fact that conditioning reduces

entropy;

(h) follows from the chain rule for entropy;

(i) follows from definition;

Here Xi = Xi(w), where w is drawn according to the uniform distribution on the

set of message indices, {1,2,..., 2 mR}. Now, let Ej be the average power of ith

column of the codebook, i.e.,

E 1 EXi2

Continuing with the inequalities of the converse, we obtainContinuing with the inequalities of the converse, we obtain

m
mR -

j=1
[h(j) - h(Ij)] + mem

b= [-log (+ n ) +mem
E?=1 nkE{1,2...,}\io'i 

(a) follows from (2.17);

(b) follows from Lemma 3;

Since each of the codewords satisfies the power constraint, so does their average,

and hence

1 

m j=1
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Since f (x) = In (1 + x) is a concave function of x, we can apply Jensen's inequality

to obtain

L =1 rIk{1,2...,n}\i J . =1 rk{1,2,...,n}\ik

<1 log + 1+

Ej=l nlkE1,2,...,n}\i 7

Thus, R < log 1 + E m + mec em 0, and we have the required

L i= nkE1,2,...,n}\i k
converse for the channel under distributed processing. O

Theorem 7 Let Cd be the capacity of the channel under distributed processing, then

Cd = 1 log ( + E2 nr,k
Ei r"ke{1,2,...,n}\ik

Proof. By Theorem 1 and Lemma 6, Theorem 7 follows immediately. O

2.2 Channel Model: AWGN, SIMO, ISI

Let us refer to Figure 1.4 and Figure 1.5. What if the channels between sender and

the intermediate receivers are subject to many changes which cannot be controlled

or predicted? Such is the case when obstacles appear and disappear in the environ-

ment between sender and intermediate receivers; the phenomenon leads to echoes

(multipath).

The channel models which account for multipath effect in the point-to-point

communication, shown in Figure 1.4 and Figure 1.5, are the Single Input Multi

Output (SIMO) discrete time channels subject to AWGN and inter-symbol interfer-

ence (ISI). Such models, shown in Figure 2.6 and 2.7, rely on the same assumptions
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Figure 2.6: Channel under Centralized Processing

as those corresponding to the models in Section 2.1. One additional assumption,

however, is that the channels are subject to ISI. ISI is perhaps inadequate for charac-

terizing multipath since it only captures one ensuing aspect of multipath, namely

non-ideal frequency responses of the links between sender and intermediate re-

ceivers. Representing multipath effect with ISI, nevertheless, allows for tractability

and poses a structure that will yield insights into distributed processing of infor-

mation at the intermediate receivers.

Let us look at the Single Input Multi Output (SIMO) channel under centralized

processing, as shown in Figure 2.6, and distributed processing, as shown in Figure

2.7. A sender transmits a sequence of symbols, X = {Xj}jl. The output process at

each intermediate receiver is the input process which is corrupted by a bandlimited

AWGN process. Under the sampled model of the bandlimited channel, the relation

42
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between the input and output process at each intermediate receiver is

Mi

Yi E hikXj-k + N i i= 1,...,n j= 1,...,co (2.18)
k=O

where

Yij be the output at intermediate receiver i and time j;

Xj be the zero mean input at time j satisfying the average symbol energy con-

straint;

E[Xj2] < E, i = 1,...,oo; (2.19)

{hik}lo be the finite impulse response (FIR) (with memory Mi) of the ISI correspond-

ing to intermediate receiver i;

Nij be an additive white Gaussian noise with mean zero and average energy

E[Nij2] = o-2 for all i, j.

Note that the same average noise energy for all i,j, i.e., E[Nij2] = 2 , is not a lim-

iting assumption. In the case where E[Nij2 ] varies with i and j, it can always be

normalized to o2 by some appropriate scaling of the FIR filter {hiji}Mo for all i,j.

In the same spirit as that of the previous section, we seek to find whether dis-

tributed processing shown in Figure 2.6 leads to the same capacity as that of cen-

tralized processing shown in Figure 2.7.

2.2.1 Distributed Processing by Two Dimensional (2D) Kalman

Filter

As Figure 2.7 shows, a problem with the channel under distributed processing by

1D Kalman filter, when channel is subject to ISI, is as follows. For each intermedi-

ate receiver to compute distributed and bottom-up linear least square error (LLSE)

estimates of the input process {Xj}7=, the intermediate receiver i (i = 1,... , n) is
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forced to store an infinite sequence of the observed output process Yij}i°=l. With

an infinite sequence of observed output process being stored at each intermediate

receiver, one dimensional receiver-by-receiver Kalman filtering is then performed

from the bottom intermediate receiver to the top one, thus attaining the final esti-

mate, i.e., ({jij}_. The implications are twofold. First, infinite memory for hold-

ing an infinite sequence of the observed output process is required at individual

intermediate receivers. Second, there is an infinite delay before {X j° l, i.e., the

estimate of {Xj)}° =l, can finally be sent to the far-receiver.

To allow for finite processing memory and delay, we consider the case when

the channel under distributed processing performs two dimensional (2D) Kalman

filtering (see Figure 2.8) in order to compute the LLSE estimate of the input process.

By a 2D Kalman filter, the channel under distributed processing performs two

dimensional filtering operation in time and space. With some finite processing

memory, equal to max Mi, i.e., the maximum memory among all the FIR filters

representing ISI, estimation is performed receiver-by-receiver from the bottom in-

termediate receiver to the top one, i.e., intermediate receiver 1 to intermediate re-

ceiver n, respectively. However, at each time step, intermediate receiver n feeds

back its estimate to the first intermediate receiver, allowing the estimate of the next

time step to be based on the estimate of the present time step. Note that the fi-

nite processing memory requirement for 2D Kalman filtering entails a time spread

(processing delay), of the same amount as the processing memory, in the final step

of estimating the input process at the far-receiver side.

We will show that 2D Kalman filter yields the same LLSE estimate of the in-

put process as that which is resulted from the 1D Kalman filter when an infinite

sequence of observed output process is in store at each intermediate receiver.

Let us return to the model shown in Figure 2.8. Such a model of distributed pro-

cessing under 2D Kalman filter corresponds to the point-to-point and distributed

communication shown in Figure 2.9. Processing at the intermediate nodes is not
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Figure 2.9: Distributed Processing in Time and Space

only distributed in time, but also in space.

Similar to distributed processing in space alone, distributed processing in time

and space is localized within the intermediate nodes; the far-receiver is excluded

from taking part in the intermediate processing. However, there is a difference.

Under distributed processing in time and space, intermediate receiver n feeds back

its output stream to intermediate receiver 1, at each unit of time, besides sending

the same stream to the far-receiver. We will show that this feedback allows pro-

cessing with finite memory at the intermediate receivers.

2.2.2 A Base Model for Estimation

As (2.18), i.e., the sampled model of a bandlimited channel, suggests, the base

model chosen to represent the relation between input and observed output of the
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channel corresponding to intermediate receiver i ( i = 1, ... , n) is
M

Yij = E hikXj-k + Nij (2.20)
k=O

where

Yij be the output at intermediate receiver i and time j;

Xj be the input at time j such that Xj}j°°l forms a white wide sense stationary

(WSS) input process with zero mean and unit variance;

{hik}k=io be the finite impulse response (with memory Mi) of the ISI corresponding to

intermediate receiver i;

M be max Mi, i.e., the maximum memory among all FIR filters representing ISI,

or may well be interpreted as the ensuing time spread (processing delay) in

the estimation of input process;

Nij be a bandlimited AWGN such that Nij})_l a white Gaussian noise process

with mean zero and average energy E[Nij2] = 2 for all i,j.

Moreover, we assume that X-M = ... = Xo = 0.

Denote Ulij to be the vector of states at time j for the channel associated to inter-

mediate receiver i. Then (2.20) suggests that the dynamics of the input process can

be represented by the state equation

Ui(j+l) = FUij + GXj+l (2.21)

U(i+l)j = Uij (2.22)

where

Ui(jl) = [x,+ x, ... xi ]

Ui = [I xj _ *... XjM ]

U(i+l) = [ x Xj 1 ... XjM ]
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and

F =

1 0 ... ... 0

0 1 0 .. 0

0 ... 0 1 0

O0

0

(2.23)

Relating (2.20) to (2.21) and (2.22), the channel output at time j can be described

in terms of the state vector at time j

Yij = Ci Uij + Nij (2.24)

whereCiisan1 x (M+1) matrix, i.e., Ci= [ hio hi, . hiM ].

We now state the estimation problem: given the foregoing channel model and

the statistics of the input signal and the measurement noise, we desire to obtain

an on-line estimation procedure that yields an LLSE estimate of the symbol Xj at

some delayed time (j + M).

2D-Kalman Filtering Algorithm

Since, at any time j, it is possible to have a record of the measurements {Y1}i=l,

{Yi2}=1·· , {Yij }=l, the preceding estimation problem can be rephrased to be the

on-line estimation of the (M + 1) components of the state vector of intermediate

receiver n at time j, i.e., Un = [ X 1 ... X XjM from the measurements

M1illB M2}iL, -@ { -, jYiiji=j

One such algorithm that yields an on-line unbiased LLSE estimate, i.e.,

n= [ .. M , of the complete state vector lj from the avail-

able measurements at time j, i.e., {Yi1}=l1, {Yi2}=_ 1 is the 2D-Kalman filter [11],

[28].

,G=
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A particularly convenient form for the 2D-Kalman estimation algorithm can

be developed in a recursive manner [11], [28]. More precisely, for the estimation

model defined by (2.21), (2.22), and (2.24), let us define

Uilt [jk] an LLSE estimate of Uij, based on observations from intermediate receiver 1

to intermediate receiver t(t < i) which spans from time 1 to time k(k < j),

i.e., {{Yp q} p= q=1

Kij time and receiver-varying Kalman gain (an (M + 1) x 1 vector);

Aeilt [jk] error covariance matrix, based on observations from intermediate receiver 1

to intermediate receiver t(t < i) which spans from time 1 to time k(k < j),

{{Yp qp=l}1=l ie.,

E [(Uij-itk])(ij - U [ik])T];

o2 measurement noise covariance = E[(Nij)2] for all i,j;

I, 0 the (M + 1) x (M + 1) identity matrix and the column vector with all its

(M + 1) components being 0, respectively.

The algorithm is as follows.

1. Initialize the prediction and its associated error variance according to

U111[110] = 0 (2.25)

Aeli[ 1 10] = I (2.26)

and let j = 1.

2. Let i = 1

3. Port 1 computes the Kalman gain matrix

Klj = Aell[j - l]CT (CiAeli [lj- 1]ClT + c2) (2.27)
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and generate the filtered estimate and its associated error covariance from the

corresponding prediction quantities according to

Ulll J] = C/lll' iJ- 1] + Kl (Ylj- CUlll [i j- 1]) (2.28)

Ael1 [ilj] = Ae1 l j j- 1]- KljCiAeljl [ij-1] (2.29)

4. While i < n perform as follows. If i > n go to step 5.

(a) Port i generates the next prediction and its associated error covariance

from the corresponding filtered quantities according to

Ui+ll j lj] = Uilijilj] (2.30)

Aei+,[i [Jlj] = Aeili [/l (2.31)

(b) Transmit i+lli[jlj] and Aei+1 li il] to intermediate receiver i + 1.

(c) Increment i.

(d) Port i computes the Kalman gain matrix

Kij = Aei [ilj]CiT (CiAeiil [i]j]ci +2) (2.32)

and generate the filtered estimate and its associated error covariance

from the corresponding prediction quantities according to

Uli[j] = Uil j] + kij (Yij-ciuili-l lj]) (2.33)

Aeiji [jj] = Aeiil [ij - 1] -KijCiAejili_ [lj- 1] (2.34)

(e) Go to step 4.

5. Port n generates the next prediction and its associated error covariance from

the corresponding filtered quantities according to

U1lll[JL + 1 j] = FUnln[[lj] (2.35)

Ae 1l [ j l ij] = FAeililj]FT + GGT (2.36)
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Figure 2.10: Reduced Channel

6. Transmit U1 ll [j + 1 j] and Ae,,l [j + 1 j] to intermediate receiver 1.

7. Increment j and go to step 2.

We shall refer to the channel whose input-output relationship is described by

(2.18) as the channel under centralized processing. Now, let

Y be the column vector of output process {{Yij}- 1} 1 , i.e., infinite sequence

of output symbols at intermediate receiver i;

X be the column vector of the zero mean input process Xj }jl.

Moreover, let us define a new channel which is a twist from the channel under

centralized processing. Instead of having a channel with input, X, and output Y,

i.e., the input-output relationship for the channel under centralized processing, we

reduce the channel to one which has input, X, and output, X, where X is the LLSE

estimate of X, that is,

X= AY, (2.37)
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where A is a matrix with the appropriate dimension such that E [(X - X)T(X - )]

is minimized. Let us name the channel with input and output relation in (2.37) as

the reduced channel (see Figure 2.10).

The following theorem follows immediately.

Theorem 8 Let X be the output of the reduced channel and UM+l' is the (M + 1)-th

component of the state vector estimate attained by intermediate receiver n at time j, i.e.,

Unj, under distributed processing by 2D Kalmanfilter. Then

X = {U'nj+ }j=M+1 (2.38)

Theorem 8 asserts equality on the capacities of the following two channels: the

reduced channel (see Figure 2.10) and the channel under distributed processing

(see Figure 2.8). However, the equality we desire is equality between the capacity

of the channel under distributed processing and that of the channel under cen-

tralized processing (see Figure 2.6). What, therefore, remains to be shown is the

equality that bridges the gap between Theorem 8 and the desired equality, i.e., the

equality between the capacity of the channel under centralized processing and that

of the reduced channel. We treat this problem in the following section.

2.2.3 Capacity of Channel under Distributed Vs. Centralized Pro-

cessing

Before showing the desired equality, i.e., the equality between the capacity of the

channel under centralized processing and that of the reduced channel, we must

first find an expression for the capacity of the channel under centralized process-

ing.

Theorem 9 Let Cc be the capacity of the channel under centralized processing. Then

Cc = (2 7r) log (2 )- 1 l IiE H i2 (A) dA (2.39)
Ek=l iE{1,2,...,n}\i IHi( ) |
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where Hi(A) is the channel transferfunction given by

Mi

Hi(A) = EHijexp -1jA , I -= - (2.40)
j=o

(periodic in A with period 27) and where the parameter 0 is the solution of

max (i- 1= H(A)o dA =- (2.41)
(Hi(A) O Vi,j) = =l ni{1,2...,n}\i Hi(A) -2 r2

Moreover, the capacity-achieving qN, the inputs {Xj} j=o, are correlated Gaussian random

variables with mean zero and covariances rn, -oo < n < oo, given by

rn = E [Xk+nXk] = () - Sx(A) cos(nA)dA (2.42)

where the input power spectral density satisfies

Sx(A) = { o2 ( - K(A)- 2 ), K(A)2 > 1 A < 7r (2.43)

0, otherwise

with

K(A)- I-2l IHi(A)I-2

E=I niI{1,2,..,n}\i Hi(A)[-2

In particular, capacity is achieved when all inputs Xj, -oo < j < oo, have the same

average energy E[X?] = ro = E.

Proof. The proof is an extension on the proof for the capacity of the single input

and single output (SISO) discrete-time Gaussian channel with intersymbol inter-

ference. An approach that can be taken in proving the theorem is the eigenvalue

decomposition approach [17, 26]. However, we take on an approach that utilizes

decomposition technique on the dicrete Fourier transform (DFT) domain [18]. We

will only show the necessary modification and the rest follows immediately from

[18].

Consider the N-circular Gaussian Channel (NCGC) defined by [18]. Then dis-

crete Fourier transform (DFT) on the NCGC channel which is derived from (2.18),
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followed by an appropriate orthogonal decomposition (described in [18]) on the

transform domain, yields

Yj = Xj + N i= 1,...,n j=O,...,(K-1) (2.44)

with block-energy constraint becomes, in the transform domain,

K-1
E[X] < K2E (2.45)

j=o

and the Nj in (2.44) are statistically independent Gaussian random variables with

mean zero and variance

o-2 = Ko2 Ih j -2, i= 1,...,n j= 0,...,(K-1) (2.46)

From (2.44), there are n SIMO channels for every index j, for which the input and

output relation is described by

Y= Xj + N i= 1,...,n (2.47)

Recalling Lemma 3 and Lemma 4, for every j, we have an equivalent channel, i.e.,

Y=Xj+Nj j=l,...,K (2.48)

where the N' in (2.48) are statistically independent Gaussian random variables

with mean zero and variance

q. = K 2 I'-=h1- (2.49)
Ek=l 'IiE{1,2,...,n}\i Ihij(- 2

Thus it follows from (2.48) that the equivalent transform domain channel model

for the NCGC is a set of K parallel discrete memoryless additive Gaussian noise

channels where the channel inputs X, j = 0,..., (K - 1), satisfy (3.23). This equiv-

alence implies

sup K1\ sup( I ( {{j}i (2.50)qK __ QK jX.
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where QK is the class of probability densities for {Xj}iK 1 satisfying block-energy

constraint (3.23). To write (2.50), we have made use of the fact that the average

mutual information between two sequences is invariant to any succession of re-

versible transformations of one or both of the sequences [16, p.30]. Application of

a theorem [16, Theorem 7.5.1] to this transform-domain channel provides the solu-

tion for Co, i.e., the capacity of SIMO NCGC channel, in the form of the parametric

expression

IK(E) = (2K)- 1 A, log max 2 (2.51)
j=O Ek=I rIiE{1,2,...,n}\i Ij |2

where the parameter 0 is the solution of

K-= H{, 2 . i h-2 = KE 25

j= Emax (- n 0IiE)=1,...,n}\i hil- 2 (2.52)

With (2.52), the modification, through which the capacity result in [18] extends

directly to the centralized SIMO channel, is complete. Ol

We now establish an equality between the maximum mutual information of

the channel under centralized processing, i.e., X and Y, and that of the reduced

channel, i.e., X and X.

Let XG = XjG }j?=l be the input sequence that achieves the resulted capacity in

Theorem 9, YG = {{Yi}°= l}=l is the output sequence which satisfies

M

YiG = E hikX9-k + Nij,
k=O

and XG = {j G}=l be the estimate of XG based on the observation YG

Lemma 10

sup I(X;Y) = sup I(X; X)
X:E[Xi2] <E,Vi X:E[Xi2 ]<E,Vi
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Proof.

sup I(X;?) - I(XG;?G)
X:E[Xi 2 ]<E,V i

= h(XG)-h(XG IYG)

h(XG) - h(XG - GIG)

= h(XG) - h(XG - G)

h(XG)- h(CG - GIG)

I (XG; XG)

_ SUP I(X; X)
X:E[Xi2]<E ,Vh

(a) follows from Lemma 9;

(b) follows from definition;

(c) follow since translation does not change differential entropy;

(d) follows from the fact that the error of an LLSE estimate is independent of the

observed vector when the observation and the random vector to be estimated

are jointly Gaussian;

(e) follows since translation does not change differential entropy;

(f) follows from definition;

(g) follows from data processing inequality, i.e., the fact that VX: E [Xi2] < E, V i,

i(X; X) < I(X; Y)

< sup I(X; ). O
X:E[Xi 2 ]<E,V i

Having found an equality between the maximum mutual information of the

channel under centralized processing with that of the reduced channel, the follow-

ing lemma follows.
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Lemma 11 Capacity of reduced channel, Cr, is equal to capacity of the channel under

centralized processing, Cc.

Proof. Recall Theorem 9 and Lemma 10. The fact that LLSE estimation in the time

domain maps to LLSE estimation in the discrete Fourier transform (DFT) domain

allows the coding theorem in Theorem 9 and Theorem 6 to apply, hence Lemma 11

follows immediately. l

Theorem 12 Capacity of distributed channel, Cd, is equal to capacity of channel under

centralized processing, Cc.

Proof. By Theorem 8 and Lemma 11, Theorem 12 follows immediately. []

Note that, from (2.43), the capacity-achieving input process is a colored Gaus-

sian process. On the other hand, distributed processing by 2D Kalman filter (Sec-

tion 3.2.1) stipulates the input process to be white, i.e, a sequence of independent

random variables. Thus, estimating the capacity-achieving input process by means

of 2D Kalman filter requires a causal shaping filter. With a shaping filter, a unit

energy white Gaussian process is shaped into a zero mean and colored Gaussian

process with power spectral density as given in (2.43). In what follows, we assert

the existence of such a filter.

Lemma 13 For any colored wide sense stationary process (WSS) {Vj})° , there exists a

causalfilter with memory H and impulse response {gi}H=0 Moreover,

H
V = E gkXj-k

k=O

and Xj}°°=l is a white WSS process with E [(Xj)2 ] = 1, j = 1,.. ., o.

Proof. From [28] or [11], spectral factorization, e.q. Gram-Schmidt orthogonaliza-

tion, will yield a causal filter which satisfies the statement of the theorem. 
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Recall (2.20). The input sequence is the white WSS process, {Xj} 1. By Lemma

13, we can perform 2D Kalman filtering on the colored WSS process {Vj}° l by

replacing {{ hiq}i=l}=o with {{hii}i=lioH where

min{M,H}

hij = E gkhi(j-k), j = O,..., (M + H)
k=O

and replace M with (M + H). In the case where H = oo, a truncation strategy

would be required to find the most sensibly finite amount of processing memory,

/4, to assign in the state vector of the state-space estimation model. The strategy is

aimed at narrowing the error covariance gap between the two estimates, i.e., X and

{UC+H+1'}-Mo+ l (the sequence of the (M + + 1)-th component of the state

vector estimate). One approach to truncating H and finding a causal filter with fi-

nite memory 4, {gi}=o, is a decomposition approach using the prolate spheroidal

wave functions [12]. This problem is not elaborated in this chapter and is subject

to further study.

In closing our discussion, we make the following remarks.

1. Distributed processing by 2D Kalman filter requires the rate of the feedback

link to be n times the line rate, with n being the number of intermediate re-

ceivers.

2. For a rate below capacity, distributed processing by Kalman filter also works.

Instead of consisting of Gaussian symbols attaining maximum mutual infor-

mation, code book consists of Gaussian symbols with mutual information

less than the maximum.

3 If the channel between an intermediate receiver and the far- receiver is subject

to noise, the capacity result and the equality between capacity of the channels

under centralized and distributed processing by Kalman filter do not hold.

The capacity of such a relay model in difficult to find [47].
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2.3 Conclusions

We have studied the problem of distributed processing for point-to-point commu-

nication over parallel relays. Such processing for relay communication purposes

is relevant to a problem in the sensor networks literature, notably the problem of

transporting data to a far-receiver via intermediate sensors. The model we chose

to represent the structure of the problem is the single-input multi-output AWGN

channel with and without inter-symbol interference (ISI). Our results point to the

implementation of distributed processing via one dimensional (1D) and two di-

mensional (2D) Kalman filters. With the 1D Kalman filter, processing proceeds in

space, namely from one to the next intermediate receiver. With the 2D Kalman fil-

ter, in addition to progressing in space, processing proceeds in time, namely from

one to the next time step. We find the capacity of the distributively and optimally-

-that is, centrally-processed channels to be the same. In computing the capacity,

we make use of the direct relation between capacity and estimation theory. Un-

der 1D and 2D Kalman filters, processing is linear. However, the 2D Kalman fil-

ter mitigates a problem-of infinite memory for processing at each intermediate

receiver-imposed by the 1D Kalman filter. Under the 2D Kalman filter, interme-

diate processing is done with finite memory.

When the capacity achieving input process (a wide sense stationary stochastic

process) has infinite memory, a truncation strategy is needed. The truncation strat-

egy will allocate some sensible finite amount of processing memory in the state

vector of the state-space estimation model. By sensible, we mean the strategy will

reasonably narrow the error covariance gap between the two estimates, i.e., the

estimate when the state vector has infinite memory and that when the memory of

the state vector is limited to some finite amount. One approach to truncating mem-

ory is a decomposition approach using the prolate spheroidal wave functions [12].

This problem is not elaborated in this chapter and is subject to further study.
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An interesting extension to study is that of distributed processing on a chan-

nel that is not perfectly known at the intermediate receivers, namely a channel

whereby the intermediate receivers perform channel estimation with some error.

A cumulative error would build up in the case of such a channel. The results based

on [19] may be extended to this case.

�



Chapter 3

On the Capacity of a Serial Relay

Channel

3.1 Introduction

Consider the discrete-time channel shown in Figure 3.1. In this chapter, we ad-

dress the problem of regeneration for such a channel, motivated by the discussion

in Section 1.2.2. Note that the regeneration we are concerned with is that which

involves arbitrary processing at source/ destination but memoryless processing at

the relays. The natural approach with which we study the problem is the capacity

approach.

3.2 Infinite Series of AWGN Channels with Memory-

less Relay Functions

Assume that n relays are placed uniformly between identical AWGN channel sec-

tions, and assume that the AWGN noise power at each section is . With the

assumption above, we obtain the serial relay channel shown in Figure 3.2.
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N ^ N~2 l

0 0

Figure 3.1: Regeneration with coding/decoding at the sender/receiver and mem-

oryless processing at the relays.

A caveat for the channel model considered in this section is as follows. The

model-and therefore the result obtained, given such a model-depends on the

idealization that the end-to-end sum of noise power is constant and evenly di-

vided by the number of relay stages n. Such an idealization is not compatible at all

with the serial distribution network for optical communication purposes. In such a

network, inserting an additional relay on the channel adds noise to the overall sys-

tem. Adding more and more relays across the channel will cause the noise power

to increase unboundedly.

Although the channel model is based on an idealization that is not compati-

ble with the serial channel model for optical communication purposes, the ensu-

ing capacity result, nevertheless, carries an insight. The insight is summarized as

follows. Given that the serial relay channel is subject to memoryless relay func-

tions, capacity tends to infinity in the number of relay stages. The capacity result

depends on the choice of input distribution and relay functions used, and more-

over achieved without coding/decoding at the source/destination. We will argue

that such a capacity result does not support the view taken by the 'folk theorem'-

-discussed in Section 1.3.2.

Let us characterize the discrete-time memoryless channel shown in Figure 1.6.

Let X1 be a random variable with some density function. For all i = 1, 2,..., n, let

Ni be independent zero mean Gaussian random variable with variance n-, Ni 

N(O, 2). Moreover, for i = 1,2,..., n - 1, let the relay function fi : R -- R be a
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N1 N2 N. N

0 e 

Figure 3.2: A series of n AWGN channels subject to energy constraints

memoryless mapping. By memoryless, the mapping at time n only depends on the

relay's input at time n. Then,

Yi = Xi +Ni Vi=1,2,...,n (3.1)

X = fj-l(Yj-1) Vj=2,...,n +1 (3.2)

To preclude signals of infinite energy traversing across the serial relay channel,

we constrain the energy at the input of the channel as well as at the outputs of

individual relays to be of some finite quantities. Namely, the channel is subject to

energy constraints

E[X2] < 1 Vi=1,2,...,n+1 (3.3)

For simplicity, we assume the mapping fi-1 : R --+ R preserves Xj, V j = 2,..., n,

to be zero-mean. This assumption is not a limiting assumption since we can always

force Xj to be zero-mean by adding the appropriate constant.

Let C be the capacity of such a channel and the following theorem follows.

Theorem 14 Asymptotically in the number of stages in the cascade,

C , oo. (3.4)
n---oo

Moreover, when the number of stages, n, is infinite, the capacity in (3.4) is achieved without

coding/decoding at the source/destination.
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Proof. To see that (3.4) holds, consider the following scheme. Consider an M-ary

signalling scheme, that is, X1 is an M-ary (where M is assumed as an even and

strictly positive integer) random variable. The probability density function (PDF)

of X1 is

P(x) M/2 M-1
The average energy of X1 M-is

The average energy of Xi is

E [X2 1 M2 -1
L = 3(M- 1)2 < 1

Define the relay function fi(Yi), V i = 1, 2,.. ., n, by

_m if - < Yi <M
.1_ < ,<

fi (Yi) =
-1

1

(3.5)

(3.6)

-M+4 M-2and j= 2 ' 2

if Yi < M+2

ifYi > M-2_ --

Note that

E [f(Yi)2] < 1,

hence, from (3.6) and (3.8), constraint (3.3), V i = 1, 2,.. ., n, is satisfied. Now,

Pr(error) = Pr(Xn+l # X1)

= 1 - Pr(Xn+ = X1)
(a)
< 1- [In=lPr(Xi+l = Xi)]

= 1- [Pr(X2 = X1)]n

= 1- [1- Pr(X2 y# Xl)]n

(b) [_ 2(M - 1) ( ) n

(3.7)

(3.8)

(3.9)

(3.10)

where

(a) follows since Pr(Xn+l = X1) > In=Pr(Xi+l = Xi),

-1
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(b) follows since Pr(errorlouter) = Q ( (MVa) for the two outer sample sig-

nals of X1, and Pr(errorlinner) = 2Q ( (MV)) for the M -2 inner sample

signals,

where the Q function is defined by

Q(x) = 2 I e- 2/2d.

Asymptotically (in the number of channels in the cascade),

Pr(error) - 0, (3.11)
n--oo

since, on the right hand side of (3.10), Q ( )n) n-, 0.

Equation (3.11) suggests that the cascade of channel becomes noiseless as the

number of relay functions tends to infinity. Information can be sent reliably across

the cascade, without coding, at the rate of log M (in bits/channel use). Since such

a rate holds for any M, i.e., the number of sample signals in the PDF of X1, the

asymptotic (in the number of channels in the cascade) capacity in (3.4) follows. O

Theorem 14 implies the following. As demonstrated in the proof, such an

asymptotic capacity result depends on the choice of relay functions used, and is

achieved without coding/decoding at the source/destination. For the asymptotic

model considered, note that the SNR per section tends to infinity with the number

of relay stages n. From the discussion in Section 1.3.2, recall that the 'folk theorem'

points to the use of linear relay functions when SNR is high. Yet, fixing the relays to

be unit amplification functions and X1 JAf(0, 1), thus satisfying the set of energy

constraints, only yields a finite capacity, i.e., In (1 + [nats/channel use].
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N, - N(O,a2) N, - N(O, o2r)

x 1 4
Xi,

~if 1 (Y 1 )
F

)o Yl>[

Figure 3.3: A series of 2 AWGN channels

3.3 Finite series of AWGN Channels with Memoryless

Relay Functions

In a serial distribution network for optical communication purposes, the two major

components of noise are the receiver and relay noise. This means that inserting an

additional relay on the serial network adds noise to the overall system. In this sec-

tion, we consider a discrete-time channel model which is more compatible-than

the model in the previous section-for such a serial network. The model is shown

in Figure 3.1. For this model, we assume that the number of relay stages n is fi-

nite, processing at the source/destination is arbitrary but processing at the relays

is memoryless.

If we consider the types of memoryless relay functions that include the op-

timum function which was derived in [1] (see (3.25)) and, moreover, the hard-

decision and linear amplification functions, what does this say about the perfor-

mance limits? The question motivates us to consider the maximum mutual infor-

mation of the channel shown in Figure 3.1, assuming an arbitrary power-limited

input distribution and a family of relay functions that includes those described

previously.

Finding the maximum mutual information of the channel in Figure 3.1, subject

to energy constraints alone, is problematic. We illustrate the point with the follow-

ing example. Consider the serial relay channel shown in Figure 3.3. Such a channel
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is obtained from the channel shown in Figure 3.2 by setting n = 2. To preclude sig-

nals of infinite energy traversing the channel, let us constrain the energy of X1 as

well as the energy of X2 such that E[X2] < 1 and E[X2] < 1. These are the same

constraints imposed on the serial channel of the previous section. Given such a

channel, what is its maximum mutual information?

A natural approach for finding the maximum mutual information begins with

fixing the non-linear and memoryless relay function fi to be some initially chosen

function. Given that fl is fixed, one would use one of the following algorithms

[14, Ch. 8.3]: constrained maximization using calculus and the Kuhn-Tucker con-

ditions; the Frank-Wolfe gradient search algorithm; or an iterative algorithm de-

veloped by Arimoto and Blahut, to search for the input distribution Pxt that max-

imizes mutual information. If the search converges to the maximizing Pxl, then

another search begins, namely we fix the input distribution to be Pxi and, by using

some search algorithm, search for the non-linear and memoryless relay function fi

that maximizes mutual information. If the search converges to the maximizing fHi

then fix it as the relay function and search for Pxt again. So the search continues

until it converges, assuming that it does converge, and produce the pair of Px; and

fHi which maximizes mutual information simultaneously, that is, given fi*, there is

no other distribution that attains higher mutual information than that of Pxl, and

vice versa.

The problem with the approach above is as follows. For the channel in Fig-

ure 3.1, the problem of finding an input distribution Pxt which maximizes mutual

information, given that the relay function fi is fixed and the channel is subject

to the energy constraints at the input as well as the relay, is a convex optimiza-

tion problem. A number of algorithms have been developed for solving such a

problem, making use of either the saddle point or the alternate maximization ap-

proach. A globally optimal solution exists since mutual information is a concave

function of the input distribution, given that the relay function-thus the channel
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transition probability PY21x1-is fixed. It is not the case, however, for the following

search. Given that the input distribution Px1 is fixed and the channel is subject

to some energy constraints at the input as well as the relay, the problem of find-

ing a relay function f{ which maximizes mutual information may not be a con-

vex optimization problem. Fixing the input distribution Pxl and subject to some

energy constraints at the input as well as the relay, mutual information is a con-

vex function of the transition probability PY2lX1. This, however, is not enough to

guarantee that a globally optimal solution exists. This is due to the fact that the

mathematical relation between the relay function fi and the transition probability

PY2lx1 is not a straight-forward one. As a consequence, we do not know whether

the overall search-for the pair of Px; and fj which maximizes mutual informa-

tion simultaneously-converges to a globally optimal solution. Even if the overall

search-namely the search, which alternate from finding the maximizing input dis-

tribution given that the relay is fixed, and moreover finding the maximizing relay

given that the input distribution is fixed-is convergent, this search leads only to a

local maximum, instead of a global maximum.

The fact that we do not know whether the standard approach for finding max-

imum mutual information converges to a globally optimal solution, given that the

channel in Figure 3.1 is only constrained in energy, motivates us to consider a dif-

ferent set of operating conditions: a set of operating conditions which accounts for

the interplay amongst noise and input energy of individual sections of the chan-

nel, as well as a certain characteristic of the individual relay functions. To such an

extent, we propose a set of constraints involving energy and differential entropy.

We will show that the set of constraints allows us to derive an upper bound to

mutual information in terms of the noise at each section of the channel, the energy

at the first and the last section of the channel, and finally the relation between the

differential entropy of the output and input of the individual relay functions.

We characterize the discrete memoryless channel shown in Figure 3.1 as fol-
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lows. Let X1 be a random variable with some density function. For i = 1, 2,..., n,

let Ni be an independent zero mean Gaussian random variable with variance oA,

Ni - (O, ). Moreover, for i = 1, 2,.. n - 1, let fi : R -+ R be a memoryless

mapping. By memoryless, the mapping at time n only depends on the relay's input

at time n. Then,

Yi = Xi+Ni Vi=1,2,...,n (3.12)

Xj = fj-l(Yj-) Vj=2,...,n (3.13)

To preclude signals of infinite energy traversing across the first and the last section

of the serial channel, the channel is subject to energy constraints. Given the con-

stants r E R+, and E R +, the cascade of AWGN channels is subject to energy

constraints, namely

E[X2] < ~ (3.14)

E[X 2] < (3.15)

The set of energy constraints above, i.e., (3.14) and (3.15), allows for the case where

noise-added signals with arbitrarily large energy traverse across the 2 nd up to the

(n - )th section of the channel. As such, a theorem which we will derive, i.e.,

Theorem 17, yet demonstrates that the mutual information is bounded from above.

As discussed in the beginning of this section, to mitigate the problem of finding

the upper bound to mutual information, we propose a set of constraints that does

not only constrain the energy, but also the differential entropy of the output of each

relay function in terms of that of its input. Namely, given the constants /3i E R+,

Vi = 1,2,...,n-1,

h(Xi+l) > h(AiYi)

= In i + h(Yi) (3.16)

In what follows, we proceed with the steps for the derivation of an upper bound
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to the mutual information of the series of channel shown in Figure 3.1, subject to

constraints (3.14), (3.15), and (3.16). Let us begin with the following theorem.

Theorem 15 (Conditional Entropy-Power Inequality) Let X and Y be two random

variables which are conditionally independent given a random variable W. Then

(3.17)

Proof. The proof is given in Appendix A. O

We shall now apply Theorem 15 to the cascaded channel, that is, a channel

whose model is specified by (3.12) and (3.13), constraints (3.14), (3.15), and (3.16).

Before proceeding with Lemma (16), we introduce a quantity which we call the

conditional entropy-power. Suppose W and Z are two random variables, we define

WIZ as the conditional entropy-power of W given Z, that is,

e2h(WIZ)
WIZ 2re (3.18)

Lemma 16 Given the the serial channel in Figure 3.1,

h(YnIX1) > 1 In (27re (n + tL (Ikn- ) (3.19)

Proof. We make use of induction. By induction, the base step, i.e., i = 2, is as

follows.

h(Y 2 JX1 )

(b)

(c)

1 In 2e Y2 IX1
2
1
21 n27e(X 2 1X1 + N 2 IX1)

1 In27re(p2o + r2)
2

(a) follows from the definition of conditional entropy-power in (3.18),

where
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(b) holds by applying Theorem 15 for the random variables X2, N2, and Y2 =

X2 + N2 conditional on X1,

(c) follows for the following two reasons. The first is the fact that h(N2 IX1) =

h(N2 ) = ln2rer2 2, hence, by (3.18), N2 1X1 = . The second is from data

processing inequality, i.e., I(Xi; Y1) > I(X 1; X2 ). Data processing inequality

and the entropy constraint (3.16) imply

h(YllX 1) - h(X2 IXi) < h(Y) - h(X2 )

< -n /

hence

= h(Ni) + In Bl

- ln27re(p2o12).
2

By definition of entropy power in (3.18), X2IXi >_ 2l2

Now, the induction step for i = n is as follows.

h(YnX1) () 2 n27re Yn X1

(b) 1X1 + Nn
> -n27re(X IXi + NnIXi)

(c) 1 n2e (nE
2 =l

d ( n-z ) + k=1 

(a) follows from the definition of conditional entropy-power in (3.18),

(b) holds by applying Theorem 15 for the random variables Xn, Nn, and Yn =

Xn + Nn conditional on X1,

where
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(c) follows for the following two reasons. The first is the fact that h(NnlX1) =

h(N2 ) = In 2reon2, hence, by (3.18), Nn IXI = cr 2. The second is from data pro-

cessing inequality, i.e., I(Xi; Yn_1) > I(Xi; Xn), entropy constraint (3.16), and

our induction hypothesis, i.e., h(Yn-1IX1) > ln (27re (1 + in_2r - 2(k-l3k))).

Data processing inequality, the entropy constraint (3.16), and the induction

hypothesis imply

h(Yn-IXX) - h(XnXX1) < h(Yn-1) - h(Xn)

<- - n n-1

hence

ln 27re (-n + O f (Ijk=k))) + n in-1._ _ n-2 2
1 n 27re ( n-1i (In- ),
2 k=i))

By definition of entropy power in (3.18), XXl > sn-i , i=1 I k=10k,

completing the proof. O

Now, let C be a set of all pairs (Xl,fi : IR - IR Vi = 1,...,n - 1) which obey

(3.14), (3.15) and (3.16), namely C = {(X, f : R - R Vi = 1,..., n - 1): (3.14),

(3.15) and (3.16) are satisfied}.

Theorem 17 (i) Forr < (In- 1 2) + EiL1 o2 (FIkni/3 k) and i= (k=-i p)

sup I(X1;Yn) 1 ( E + 
(X1, f:R--R)E C Ei=-1 k=i n 
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and the supremum is attained byfixing X1 (0.

Pj-1, j = 2,.. ., n.

] -7-1 2{i-in-I2-,i=l i k=i k)
Ijn-1 2
k=l k

andfj-l(Yji_) =

In particularfor i, = (nrI-lp) + . 1 (k=in-l 2)

sup I(Xi; Yn)
(X1 , f:R--+R)E C

= ln (1+
2 i-

12 + Ei-2 A(=a)

and the supremum is attained by fixing X1 N (0, 5) and f-_1 (Yj- 1) = Pj-1,

V j = 2,...,n.

(ii) For i> (lk=,Pk) n-+ E1 (ri In-1g2)_t ''i1 7' (Ik=i k),

sup I(X1 ;Yn)
(X,, f:R--R)E C

1 

2

Proof. From the definition of mutual information

I(X1; Yn) = h(Yn) - h(Yn IX1)

By constraint (3.15)

h(Yn) < n 2e2 (qL/L: \

Combining (3.20), (3.21), and (3.19) of Lemma 16,

I(Xi Y) -< I 
_ =1 0 ' k=i k +0n

Consider the following two cases.

(i) Case 1: E l (Inn-1 ) < ii < (i-1k) ¢ + 1 o2 ( ikn-z1 -2)q<(k=1/k =1 i0k=i Pk) 
Before proceeding with the proof of the first case, we note that from 3.22, the

- ' (lz-
Lk)

+2+- 0-

(3.20)

(3.21)

(3.22)
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lower bound on ~I, that is, -l1 -2 (Tiknz1 kp) < , is needed to guarantee that
the constraints (3.14), (3.15) and (3.16) are mutually compatible. Otherwise,

i.e., when En-i (1k n- pk) > , the constraints (3.14), (3.15) and (3.16) be-
come mutually incompatible, leading to I(Xi; Yn) being bounded from above

by a negative quantity.

Now, from (3.22),

I(Xi;Yn) < In 

21-, i=l i ( k=i kJ "2 E En-1 q(ri+-i +The upper bound is satisfied by fixing X1 -, J (0, I (Z k andfj-l(Y-1) = /3j-1, j = 2,...,n.

In particular, when C a= ( lk=I k)+ i=1 2 n-2k)
then from (3.22),

I(Xi;Yn) < i n n-12

2 n-1n-121 In ( + ( =l k) C )

The upper bound is satisfied by fixing X J/ (0, ) and fj- (Yi-1) = Pj-1,

V j = 2,..., n.

(ii) Case 2: > (rk-1 k 1 kln - k )

74 CHAPTER 3. ON THE CAPACITY OF A SERIAL RELAY CHANNEL



Sec. 3.3. Finite series of AWGN Channels with Memoryless Relay Functions

From (3.22),

I(X1; Yn) < E n -

\ Ei= l < k=i k + 'In

n-1 n- 2

2 nn-1 2 n-l2_ l_ 1+ ~-i=1 k=i 1 2 )

completing the proof. O

For case (i) of Theorem 17, we have shown a tight upper bound on mutual

information for the channel shown in Figure 3.1, given that the pair (Xl,fi Vi =

1,... , n - 1) satisfies constraints (3.14), (3.15), and (3.16). For case (ii) of Theorem

17, we are however unable to show that the upper bound is tight.

3.3.1 Numerical Results

As opposed to case (i) of Theorem 17, case (ii) of of Theorem 17 applies to a re-

gion where the upper bound is not exactly the the maximum mutual information,

subject to constraints (3.14), (3.15), and (3.16). In this region, we will use the upper

bound- given by case (ii) of of Theorem 17- to investigate how several reasonable

choices of pairs of input distribution and relay function perform. For this purpose,

we will numerically compute the mutual information, subject to constraints (3.14),

(3.15), and (3.16), attained by the following pairs of input distribution and relay

function:

* an antipodal input and an optimum relay function derived in [1];

* an antipodal input and a relay function performing linear amplification;

* an antipodal input and a relay function performing minimum mean-square

error (MMSE) estimator;

* a Gaussian input and a relay function performing linear amplification
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Note that-by construction-these mutual information are lower bounds to maxi-

mum mutual information subject to constraints (3.14), (3.15), and (3.16). We will

numerically contrast these lower bounds versus the upper bound given by case (ii)

of Theorem 17.

The channel we consider is the channel with two sections-each with AWGN-

-shown in Figure 3.3 and subject to constraints (3.14), (3.15), and (3.16). As will

be discussed later, the main result of this section is as follows. We will numerically

demonstrate that lower bound attained by the pair of Gaussian input and linear re-

lay function approaches the upper bound more closely than that attained by other

choices of pair of input and relay function which we consider. The lower bound

attained by a pair of Gaussian input and linear relay function is closer to the upper

bound as the noise power of the first section decays and that of the second section

grows. In the context of a two-stage serial distribution network for optical com-

munications, the noise power of the second section is likely to outgrow that of the

first section. This is due to the fact that the major noise components are the noise

from the relay and that from the receiver. For optical communication purposes,

this means that the choice of a code book consisting of alphabets, each with a dis-

tribution approaching that of Gaussian, at the source and a linear function at the

relay outperforms other reasonable choices of code book and relay functions.

In the following, we describe in more details the numerical steps with which

we demonstrate the result above.

Numerical Procedure

1. Consider the two-stage serial channel shown in Figure 3.3. Assign the AWGN

noise power o2 and 22 to take on one of these values: 100, 200,300, 400. Next,
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assign the energy constraints (3.14) and (3.15) by fixing

E[X 2] < 1 (3.23)

E[X2 ] = 1+ f (3.24)

2. Let X1 be an antipodal random variable, that is, X1 takes on one of the equiprob-

able sample values +1 and -1. Moreover, let

f (Y) = -g(-Y1) forY1 < 0 (3.25)
g(Y 1 ) for Y O1 0

where

g(Yi) = o 22LambertW

and A is chosen such that

E[f1(Y)2] =l+ . (3.26)

Note that the function LambertW(x) is Lambert's W functionl that is analytic

at 0 and defined in terms of its inverse, that is, for y = LambertW(x),

x = y exp (y).

A plot of fi (Y1 ) versus several values of the pair {r12, o22 } is depicted in Figure

3.5. Later in this section, we will describe what motivates us to choose the

pair {Xl , fl(Y 1)} given above. Also note that the pair {X l ,fi (Y1)} satisfies

energy constraints (3.23) and (3.24) with equality.

3. Given the pair {X l ,fi (Y 1)} above, compute h(X2 ) and h(Y1 ). Next, compute

31, that is, B1 = exp (h (X2) - h(Y1)). Now assign the resulted 01 to the

entropy constraint (3.16) for the channel shown in Figure 3.3 by fixing

h(X2) > h(j 1Y1 ) (3.27)
1 Discovered by J.H. Lambert, a French-born German mathematician (1728-1777) who did the 1st

rigorous proof on the fact that r is an irrational number.
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N, - N(O, a,2) N2 N(0, 2 )

X,= ±1 w.p
f Y <

if Y <0

Figure 3.4: A series of 2 AWGN channels given antipodal input and a hard-decision

function at the output end

Y1

Figure 3.5: fl (Y1) given by (3.25) as a function of the pair (12, )

4. Let IUB (Xi; Y2) be the upper bound to mutual information of the channel

shown in Figure 3.3 subject to constraints (3.23), (3.24), and (3.27). As shown

in Appendix B, the computed values of B1 yield the case where 1 + o12 = >

1(1 + A2). Given such a case, we make use of case (ii) of Theorem 17 to

CHAPTER 3. ON THE CAPACITY OF A SERIAL RELAY CHANNEL78



Sec. 3.3. Finite series of AWGN Channels with Memoryless Relay Functions

compute IUB(X1;Y 2).

5. Compute four explicit lower bounds to maximum mutual information of the

channel in Figure 3.3. These lower bounds are:

(a) ILambert(X1; X 3 ), that is, the mutual information between X1 and X3 for

the channel shown in Figure 3.4, given that the relay function fi (Y1) is

defined by (3.25) and X1 takes on one of the equiprobable sample values

+1 and -1. Later in this section, we will describe what motivates us to

choose the pair {X 1, f (Y1 ) } given above.

(b) ILinear(X1; X3), that is, the mutual information between X1 and X3 for the

channel shown in Figure 3.4, given that the relay function is fi (Y1 ) = Y1

and X1 takes on one of the equiprobable sample values +1 and -1.

(c) IMMSE(X1; X3), that is, the mutual information between X1 and X3 for

the channel shown in Figure 3.4, given that Xi takes on one of the equiprob-

able sample values +1 and -1 and the relay function fi(Y 1) is a mini-

mum mean-square error (MMSE) estimator, that is,

fi(Y)=otanh ( , (3.28)

where or is chosen such that

E[f1 (Y1 )2 ] = 1 + 12. (3.29)

Later in this section, we will describe what motivates us to choose the

pair {X 1, f (Y1 ) } given above.

(d) IGaussian (X 1; Y2 ), that is, the mutual information between X1 and Y2 for

the channel shown in Figure 3.3, given that the relay function is fi (Y1 ) =

Y1 and X1 is a Gaussian random variable J/(O, 1)
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Figure 3.6: IUB (X1; Y2) as a function of the pair (2, 22)

Note that the systems considered for computing the four lower bounds above

are also subject to constraints (3.23), (3.24), and (3.27)-refer to Appendix B

for the numerical results supporting the fact that the constraints are satisfied.

In particular, energy constraints (3.23) and (3.24) are satisfied with equality.

6. Find the maximum of the four lower bounds above. Next, we contrast the

upper bound IUB (X1; Y2) versus the maximum of the four lower bounds.

Upper bound to Mutual Information

In the following, we will compute IUB (X 1; Y2), that is, the upper bound to mutual

information of the channel shown in Figure 3.3 subject to constraints (3.23), (3.24),

and (3.27).
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Figure 3.7: Lambert (Xi; X 3 ) as a function of the pair (of, cr)

To derive px2, given that X1 X1 takes on one of the equiprobable sample values

+1 and -1, and fi (Y1) is given by (3.25), we make use of the following lemma.

Lemma 18 Suppose that g is monotonic and that for some function h and all x in the

range I of X we have

y = g(x) if and only if x = h(y).

Assume that h has first derivative _. Then the PDF of Y in the region where py(y) > 0

is given by

py(y) = px(h(y)) Idh(y)

Proof. A proof for the lemma is given in [25]. 0]

First, for each value of or2, we numerically compute A using (3.26). Next we

apply Lemma 18 to derive px2 in terms of the function expressed in (3.25) and py,

100
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with py being a Gaussian PDF with mean zero and variance 1 + of.

Having derived px2, we can now compute h(X2) and h(Yl) numerically. At this

point, computing 1 is straight forward, that is, 1 = exp (h (X2 ) - h(Y1 )). Let us

assign Al onto the entropy constraint (3.16), that is, h(X2 ) > h(PlY 1 ). As shown

in Appendix B, the computed values of B1 yield the case where 1 + af = >

B1 (1 + of). Given such a case, we make use of case (ii) of Theorem 17 to compute

IUB (X1; Y2 ) for the channel shown in Figure 3.3, subject to constraints (3.23), (3.24),

and (3.27).

Figure 3.6 shows a 3D plot of IUB (X1; Y2) as a function of the pair (of2, of). We

observe that IUB (X1; Y2) grows with of, given that of is fixed, and decays with o2,

given that o2 is fixed. Appendix B presents the numerical figures leading to the

plot in Figure 3.6.

Lower Bound to Maximum Mutual Information under Antipodal Input and the

Function given by (3.25)

Consider the channel shown in Figure 3.4. Let X1 be an antipodal random variable,

that is, X1 takes on one of the equiprobable sample values +1 and -1. Moreover,

let f1(Y1) be the function given by (3.25). Note that the pair {X,fl(Y 1)} satisfies

constraints (3.23), (3.24), and (3.27), all with equality.

What motivates us to consider the pair {X, fi (Y1 )} above is as follows. For

the channel shown in Figure 3.4 (given an antipodal input and a hard-decision

function at the output end), subject to energy constraints (3.23) and (3.24) and a

functional constraint that fi(Y1) is sign-preserving and symmetric, reference [1]

derived the function fi (Y1) given by (3.25) and demonstrated that such a function

minimizes error probability, that is, Pr(X1 :A X3 ).

Since relay function fi (Y1) is sign-preserving and symmetric, moreover X1 and
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Figure 3.8: ILinear(X1; X 3 ) as a function of the pair (2, i 2)

X3 are discrete random variables, it is not difficult to show that

Pr(error) Pr(X1 4 X3 )

= Pr(Xi X31X1 = 1) = Pr(X1 ~ X3lX1 = -1)

Similarity in the conditional error probabilities, i.e., conditional on X1 = 1 and

X1 = -1, implies that the channel in Figure 3.4 is a binary symmetric channel

(BSC) and

ILambert(X1; X3 ) = ln(2) (1- H(Pr(error))) [Nats/Channel Use], (3.30)

where H(Pr(error) denotes discrete entropy of the error probability and ILambert(X1; X 3 )

is the mutual information between X1 and X3 when relay function is the function

given by (3.25). From (3.30) and the fact that the function fi (Y1) given by (3.25)

100
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Figure 3.9: IMMSE(X1; X3 ) as a function of the pair (f2, or2)

minimizes error probability [1], it follows that ILambert(X1; X3 ) maximizes mutual

information of the channel shown in Figure 3.4, subject to energy constraints (3.23)

and (3.24) and a functional constraint that fi (Y1) is sign-preserving and symmetric.

We compute the mutual information ILambert(X1; X 3 ) of the channel shown in

Figure 3.4 as follows.

The expression for Pr(error) is derived in [1], that is,

Pr(error) = dx (x; 1, ) (3.31)

where A x; m,)) n (yx) is the function given by (y;3.25).

where (x; m, y)the exp (rror) andi (x) is the function given by (3.25).

We numerically compute the error probability by making use of (3.31). Having
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Figure 3.10: IGaussian(X1; Y2) as a function of the pair (2, o2 )

computed the error probability, we can readily compute ILambrt (Xi; X3) by making

use of (3.30).

Figure 3.7 shows a 3D plot of ILambert(X; X3 ) as a function of the pair (, o2).

We observe that ILambert (Xi; X3 ) decays with o and o2. In particular, ILambert (X; X3)

decays with A, given that ~o is fixed, at a faster rate than that of o2, given that 12

is fixed. Appendix B presents the numerical figures leading to the plot in Figure

3.7.
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Figure 3.11: Lmbe(XX- I,(,,XaX3) as a function of the pair (o2,cr)
I.,,ambt(X;X3) -

Lower Bound to Maximum Mutual Information under Antipodal Input and Lin-

ear Amplifier

Consider the channel shown in Figure 3.4. Let X1 be antipodal, i.e., X1 takes on

equiprobable sample values of +1 and -1, and fi(Y 1) = Y1. Note that the pair

{Xi, fi (Y 1) } satisfies energy constraints (3.23), (3.24), and (3.27).

Since relay function fi (Y1) is sign-preserving and symmetric, moreover X1 and

X3 are discrete random variables, the computation of ILinear(X; X3), that is the

mutual information of the channel shown in Figure 3.4, given antipodal input and

the linear amplifier, follows the same lines as given the pair of antipodal input and

the function given by (3.25).

Figure 3.8 shows a 3D plot of ILinear(X1; X3) as a function of the pair (2, r2).

1 00
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Figure 3.12: ILambert(X1;X3) -IMMSE(X;X3) as a function of the pair (2,- 2)
ILambert(X1;X3)

We observe that ILinear(X; X3) decays with c and c. Appendix B presents the

numerical figures leading to the plot in Figure 3.8.

Lower Bound to Maximu Mutual Information under Antipodal Input and MMSE

Estimator

Consider the channel shown in Figure 3.4. Let X1 be antipodal, i.e., X1 takes on

equiprobable sample values of +1 and -1, and and f 1(Y1) be a minimum mean

square error (MMSE) estimator, that is,

fi(Y1) = a tanh () (3.32)
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Figure 3.13: IGaussian(X1;Y2)- IXambet(Xl;X3 ) as a function of the pair (, o2)
Gaussian (X1;Y2

where is a constant chosen such that

E[fl(Y1)2]= 1 + (3.33)

Note that the pair {X 1,fl(Y 1)} satisfies energy constraints (3.23), (3.24), and (3.27).

What motivates us to consider fi (Y1 ) given by (3.32) is as follows. When con-

cerned with the relay function fi (Y1) that minimizes mean square error distortion,

i.e., E [(X3 - X1)2], for the channel shown in Figure 3.4 (given antipodal input and

a hard-decision at the output end), subject to energy constraints (3.23) and (3.24),

reference [1] shows that the optimum relay function is the function given by (3.32).

Since relay function fi (Y1) is sign-preserving and symmetric, moreover X1 and

X3 are discrete random variables, the computation of IMMSE(X1; X3), that is the
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Figure 3.14: IGaussian (X;Y 2) -ILambert(X1;X3) as a function of the pair (o, r22)
Figure 3.14: - Gaussiran (X1 ;Y 2)

mutual information of the channel shown in Figure 3.4, given antipodal input and

MMSE estimator, follows the same lines as given the pair of antipodal input and

the function given by 3.25.

Figure 3.9 shows a 3D plot of IMMSE (X1; X3) as a function of the pair (or, 2).

We observe that IMMSE (X; X3) decays with r2 and oa. Appendix B presents the

numerical figures leading to the plot in Figure 3.9.

Lower Bound to Maximum Mutual Information under Gaussian Input and Lin-

ear Amplifier

Consider the channel shown in Figure 3.3. Let X1 be a Gaussian random variable

Nr(O,1) and fi(Y 1 ) = Y1. Let Icaussian(Xi; Y2 ) denote the mutual information at-
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tained under such a pair. For such a channel,

1= n
I(X; Y 2) In2 ( + d)

+ 02

Note that the pair {X l, fi (Y1 ) } satisfies energy constraints (3.23), (3.24), and (3.27).

Figure 3.10 shows a 3D plot of IGaussian (X1; X3 ) as a function of the pair (o2, c2).

We observe that ILinear(X1; X3) decays with o2 and 2.

Discussion

Let us turn to Figure 3.11. Figure 3.11 shows a 3D plot of Iambert (X1;X3)-ILiner(X1;X3)
ILambert(X1;X3)

as a function of the pair (,o2).
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Figure 3.16: IUB(X1;Y2)- GauXsin(XY2) as a function of the pair (12, 2)

As discussed earlier in this section, ILambert (X1; X3 ) maximizes mutual informa-

tion of the channel shown in Figure 3.4 (given antipodal input and a hard-decision

at the output end), subject to energy constraints (3.23) and (3.24) and a functional

constraint that fi (Y1) is sign-preserving and symmetric. This is illustrated by Fig-

ure 3.11. The quantity (ILambert(X1; X3) - ILinear(X1; X3 )) is always nonnegative.

When concerned with the relay function fi (Y1) that minimizes mean square

error distortion, i.e., E [(X3 - X1)2] for the channel shown in Figure 3.4 (given an-

tipodal input and a hard-decision at the output end), subject to energy constraints

(3.23) and (3.24), reference [1] shows that the optimum relay function is the MMSE

estimator given by (3.32). Figure 3.12 shows a 3D plot of ILbrt(X;X3) -IMMSE(X1;X3)
ILambert(X1;X3)

as a function of the pair (o12,o2). The plot demonstrates that IMMsE(X1; X3 ) is
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below-although closely approximates- ILambert (Xi; X3 ). For the channel shown

in Figure 3.4, subject to energy constraints (3.23) and (3.24), this implies that mini-

mizing minimum mean square error does not imply maximizing capacity.

Figure 3.13 shows 3D plots of Gaussian(Xi;Y2) Lambert(X1;X3) as a function of the pair
IGaussian (XI;X 3)

(c2, 22). The plot demonstrates that IGaussian (XI; Y2 ), a lower bound to

sup I(X1; Yn)
(X 1 , fi (Y1): (3.23),(3.24),(3.27))

for the channel shown in Figure 3.3, is greater than ILambert(X;X 3 ) for the pairs

of (12,r22) considered. It follows that IGaussian(XI; Y2) is the maximum of the four

lower bounds that we consider. We shall therefore compare IUB (XI; Y2) with

IGaussian (X1; Y2 ).

Figure 3.15 shows a 3D plot of IUB(Xl;Y2)-IGaussia"(x;y2) with of = 10,20,30,40

and 2 = 100,200,300, 400. Figure 3.16 shows a 3D plot of UB (X1;Y2-IGaussian(X1;Y2)

with oa = 100,200,300,400 and ,22 = 100,200,300,400.

Figure 3.15 and 3.16 demonstrate that IUB(Xi; Y2) - IGaussian(Xi; X3 ) tends to

zero as 22 grows. Particularly, such a difference decays, thus the upper bound is

tighter, with 22, given that ,12 is fixed, and grows, thus the upper bound is looser,

with a02, given that o2 is fixed.

The insight above brings about the main result of this section. In the context

of a two-stage serial distribution network for optical communications, it is reason-

able to assume that such a distribution network operates under a noise region in

which the noise power of the second section outgrows that of the first section. This

is due to the fact that the dominant noise components, such as amplified sponta-

neous emission (ASE) from Erbium-Doped Fiber Amplifiers (EDFA) and the dark

current from avalanche photodiode (APD), are generated at the relay and the re-

ceiver [7]. For optical communication purposes, this means that the choice of a

code book, consisting of alphabets whose distributions are close to being Gaus-

sian, at the source and a linear function at the relay outperforms other reasonable

92 CHAPTER 3. ON THE CAPACITY OF A SERIAL RELAY CHANNEL
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choices of code book and relay function.

3.4 Cascade of AWGN Channels by Relay Functions

with Memory

Let us recall the result in Section 3.2. Asymptotically in the number of relay stages,

capacity grows to infinity, while, on the other hand, the memory length of each re-

lay function decays to one-the relay is memoryless. The result implies that infinite

memory requirement for decoding purpose at the destination can be distributed

amongst the relay functions.

In this section, we revisit the result of Section 3.2, from a view that relay func-

tion is with memory, instead of memoryless as assumed in Section 3.2. For the

model considered in this section, however, we further assume that the number of

relay stages is finite. The assumptions above imply that coding/decoding are per-

formed at the source/destination as well as the relay. The problem we would like

to investigate is described by the following question: what is the the relation of the

number of relay stages to the length of memory for decoding purpose at the relays.

Later in this section, we will derive a theorem concerning such a relation. We will

demonstrate that, asymptotically in the number of relay stages, the theorem agrees

with that of Section 3.2.

Let us turn to the cascade in Figure 3.17. Such is a cascade obtained by placing

a decoding function fn and an encoding function gl at the input and output ends,

and by placing decoding function fj, Vj = 1... n, and encoding function gi, Vi =

1... n - 1, at each stage of the cascade in Figure 1.6.

Referring to Figure 3.17, let N be the length of relay memory and R be the

transmission rate. For some N E N and R E R+, Wi, Vi = 1,..., n + 1, is a random

variable taking on one of the discrete sample values in the set W = {wl ,. ., W2 NR }.
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Figure 3.17: A cascade with encoding and decoding functions at each stage of the

cascade in Figure 1.6.

Function gi : Wi - ]RN, Vi = 1,. .,n, maps each sample value wj E Wi to one

of the random codewords (Xi 'l ... , XN) E RN, Vj = 1,.., 2NR. Furthermore,

we assume {X }, Vi = 1,...,n,Vj = 1,...,2NR, and Vk = 1,...,N, is a collec-

tion of independent and identically distributed zero-mean Gaussian random vari-

ables withE [(ik) 2] < . Fori = 1,...,n, the functionf : RN W maps
(Yl,..., yN) E RN to one of the discrete sample values in W according to the

maximum likelihood decision rule, namely choose wj E W if

Pr(Yil,...,YNIwj) > Pr(Yil,...,YiNlWk) Vk j, 1 < k < 2NR

Lastly, for i = 1, 2,..., n, let Ni be independent zero mean Gaussian random vari-

able with equal variances, Ni - M(0, 2).

The capacity of such a cascade is known [6], that is,

C= min I(Xi; Yi)=In 1 + (3.34)
... n 2 Y =

Now, let n be the number of stages, N be the memory length of the decoding

function fi, Vi = 1,..., , Pe be the end-to-end error probability, PeUB be the upper

bound on end-to-end error probability, and R be the transmission rate. Then, by

the following theorem, we claim a tradeoff between the number of stages in the

cascade and the memory length of the decoding function at each stage.

94 CHAPTER 3. ON THE CAPACITY OF A SERIAL RELAY CHANNEL

IN j r, j
... -.



Sec. 3.4 Cacd fAG hnesb elyFntoswt eoy9

Theorem 19 Assumingfinite end-to-end noise power 0o2 and given any rate R E R +for

which pUB E [0, ½] is arbitrarily small,

3 a pair (no, No) s.t. Pe PUBfor Vn > no and VN > No,

Moreover, N decreases monotonically as n grows.

Proof. An upper bound for error probability of the AWGN channel was derived

in [16], assuming the receiver performs maximum likelihood decoding. We will

extend such a result to the cascade shown in Figure 3.17.

Let the end-to-end error probability Pe P(W1 Wn+l). It follows

(a) n

Pe < EP(Wj Wj+l)
j=1

_ pUB [n] (3.35)

with

PeB[n] = nC[n]exp(-NE[n]) (3.36)

E[n] = (1-[n]) + In ([in]+ R -R)

C[n] = 7rNe2(1 -/[n]) 2

[n] = 1 nSNR 1+ 1 +n2SNR2

SNR = 0.2'

where

(a) follows from applying the union bound on error probability,

(b) follows from a direct application of Gallager's upper bound

[16, Eq.(129),(138),(139)] on the probability of error for each stage of the cas-

cade, i.e., the channel between Wj and Wj+1, Vj = 1... n.

Sec. 3.4. Cascade of AWGN Channels by Relay Functions with Memory 95
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From (3.34), there exists no such that no = inf{n : C < R} for any given R E R+ .

Next, fixing n > no, (3.36) implies that 3No such that PeUB monotonically decreases

for some N > No, hence 3N1 > No such that, for N > N1, pUB is less than or equal

to the target upper bound on error probability, completing the first statement of

the theorem.

From (3.36), it can be seen that 3 a pair (n2, N2 ) such that, for n > n2 and N >

N2 , pUB monotonically decreases with n and N. Hence, choosing n > max{no, n2}

and N > max{ N1, N2}, the target upper bound on error probability is satisfied

and, moreover, pUB monotonically decreases with n and N. As such, (3.36) implies

that the target upper bound on error probability pUB remains satisfied, if n is fur-

ther increased while N is decreased by some integer value for which the inequality

Pe < peUB holds still, completing the proof. [

Let us now look at what happens when the number of stages in the cascade

shown in Figure 3.17 tends to infinity. Theorem 19 tell us that we can achieve

rate R, with 0 < R < oo, at an arbitrarily small error probability, with individual

decoding functions whose memory N tends to 1. This asymptotic view agrees

with that of Section 3.2, that is, we can achieve infinite capacity without coding as

n -- oo.

In what follows we would like to gain more insight by applying Fano's in-

equality to the cascade show in Figure 3.17. Let us assume that each sample value

wi E W, i = 1,...,2 NR, is equiprobable. The following lemma follows.

Lemma 20 For the channel shown in Figure 3.17,

logM - Pelog(M- 1) - H(Pe) < I(W1, W,+l) [bit]

where Pe is the end-to-end error probability, i.e., the probability that W1 V Wn+, and M

is the size of the signal setfor W1, that is, IWI.

�
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Proof. By applying Fano's inequality, we will show a lower bound on the mutual

information between W1 and Wn+1. An interesting fact to note is that the lower

bound is expressed only in terms of the size of the signal set for W1, i.e., M, and

the probability of error, i.e., the probability that W1 Wn+l.

For the lower bound, let us define an error indicator variable E, that is, E = 1 if

W1 :A Wn+1 and E = 0 else. Let the probability of error Pe - P(E = 1). Now,

I(Wl;Wn+l) = H(W) +H(W Wn+,)
(b)

> log IWI - Pelog(WI - 1) - H(Pe)

() log M -Pe log(M - 1) - H(Pe) (3.37)

where

(a) follows from the definition of mutual information,

(b) follows since H(W 1 ) = log IWI and, by Fano's inequality,

H(WlIWn+l) < Pe log(}WI - 1) + H(Pe), with

H(Pe) = Pelog (p) + (1-Pe) log (1 -P e) 

(c) from the fact that WI = M, completing the proof. 

Let us turn to the cascade shown in Figure 3.17 again and consider two such

cascades with different number of stages. Assuming nA > nB and nA, nB E N,

cascade A is a cascade with nA stages and cascade B is a cascade with nB stages.

Next, suppose that we are sending information at the same achievable rate R, i.e.,

R < [ n (1 + n2 )], on both cascade A and B. Finally, let Pe be the end-to-end

error probability, i.e., the probability that W1 Wn+1. The following theorem

follows.
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Theorem 21 Lower and upper bounds on I(Wl;WnA+ ) and (Wl;WnB+l) for cascade A and

B, respectively, are:

1 < I(Wl;WnA+l) R;
R(1 -PUB[nA]) < N <R;N N

1 I(W;W,+¶) < R.
R(1 - PeUB[nB]) < R.N N

(3.38)

(3.39)

with N being the memory length of each decodingfunction fi, i = 1,..., n, and pUB being

specified by (3.35) and (3.36).

Both lower bounds expressed in (3.38) and (3.39) approach the upper bound R with N. In

particular, the lower boundfor cascade A approaches Rfaster, with N, than thatfor cascade

B.

Proof. From Lemma 20,

(a)
I(w; Wn+1) >

(b)

log(IWl) - Pelog(lWI) - H(Pe)

NR(1- Pe) - 1

where

(a) follows from Lemma 20,

(b) follows since log(IWJ) = NR and H(Pe) < 1.

Moreover,

I(w; Wn+~ ) - H (
(b)
< H(~
(c)
< NR

V1) - H(WIlWn+l)

V 1)

(3.41)

(3.40)

where

�

CHAPTER 3. ON THE CAPACITY OF A SERIAL RELAY CHANNEL98



Sec. 3.4. Cascade of AWGN Channels by Relay Functions with Memory

(a) follows from the definition of mutual information,

(b) follows since discrete entropy H(W IWn+l) > 0,

(c) follows since H(W1) = log(IW) = NR.

From (3.40) and (3.41), it follows

NR(1- Pe) - 1 < I(W; Wn+l) < NR. (3.42)

Dividing both sides of (3.42) with N,

1 <I(W;Wn+) <R( - Pe) - - < NR, (3.43)

Note that, as N - oo, thus Pe -- 0, the lower bound meets the upper bound and

lim IW; Wn+ ) R.
N--oo N

Applying (3.43) to cascade A, we get

R(1- PeUB[nA]) -- < W R. (3.44)N- NR<R. (3.44)

since from (3.35), Pe • PeUB[nA], with PeUB[nA] = nAC[nA] exp [-NE[R, nA]]. Simi-

larly, applying (3.43) to cascade B, we get

-B1 I(W1; WnB+) 
R(1- peUB[nB]) _1 <I N <R. (3.45)

since from (3.35), Pe < pUB, with pUB = nBC[nB] exp [-NE[R, nB]]

Now, let us contrast how the lower bounds approache R in the limit as the

memory length of individual decoding functions fi, i = 1,..., n, N -, o on both

cascades. Taking derivatives of the lower bounds in (3.44) and (3.45) with respect

to N,

d(R(Pe[nA]) nARKA(NE[nA] -1) exp [-NE[nA]] + N2

= O(exp [-NE[nA]]), (3.46)
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d(R(1 PeUB[nB])- ) = RKB(NE[nB]- 1)exp [-NE[nB]] + N2

= O(exp [-NE[nB]]), (3.47)

for some constants KA for cascade A and KB for cascade B. From (3.36) and the

assumption that nA > nB, it follows that the lower bound of (3.44) approaches R

faster with N than that of (3.45). Such is true since

d(R(1 - PUB[nA]) - ) d(R(1 PUB[nB]) - )

dN dN

and the second derivatives for the lower bounds are negative VN, completing the

proof. O

Although hardly a strong argument, in fact, almost an abuse of interpretation,

the fact that the lower bound of (3.38) approaches R faster than that of (3.39), with

respect the to memory length N of individual decoders fi, i = 1,..., n, gives us a
I(WWa +i)

'feel' the rate at which I(1; -- R on cascade A is faster than the rate at which

R on cascade B.

3.5 Conclusions

We have considered point-to-point communication over a series of AWGN chan-

nels. In such a series, one section of the channel is coupled with the next by a relay

function. This communication set-up is particularly relevant in optical communi-

cations.

We have studied the maximum rate at which information can be reliably trans-

mitted over a series of AWGN channels with memoryless relays. We have shown

the following two results. First, assuming end-to-end noise power is finite and the

serial relay channel is subject to energy constraints, we have shown that the ca-

pacity tends to infinity with the number of relay stages in the series. This result,

though based on a set of assumptions that is not compatible at all with the serial
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channel model for optical communication purposes, points to the following in-

sight. A 'folk theorem' stated that a hard-decision function is the best memoryless

relay at low SNR and linear amplification function is the best at high SNR. Using

the particular model used, we have argued that such is not always the case. Sec-

ond, given a finite number of relay stages, finding maximum mutual information

subject to energy constraints alone is difficult. In addition to energy constraints,

we have proposed entropy constraints at the output of individual relays. We have

derived an explicit upper bound to mutual information, subject to these energy

and entropy constraints. For a particular series of two AWGN channels, we have

numerically demonstrated that lower bound attained by the pair of Gaussian in-

put and linear relay function approaches the upper bound more closely than that

attained by other choices of pair of input and relay function that we consider. In

the context of a two-stage serial distribution network for optical communications,

the noise power of the second section is likely to outgrow that of the first section.

This is due to the fact that the major noise components are the noise from the relay-

-such as amplified stimulated emission (ASE) from erbium-doped fiber amplifier

(EFDA)-and that from the receiver-such as the noise from the dark current gen-

erated by avalanche photodiode (APD). For optical communication purposes, this

means that the choice of a code book, consisting of alphabets whose distributions

are close to being Gaussian, at the source and a linear function at the relay outper-

forms other reasonable choices of code book and relay function.

Next, we have revisited the result from the model for infinite series of AWGN

channels with memoryless relays, from a view that relay function is with memory,

rather than memoryless-thus allowing coding/decoding at individual relays. We

have shown two tradeoffs. First, given that information is sent at a fixed rate R

and given the requirement that end-to-end error probability is bounded above by

some arbitrary quantity, we have shown that the requisite length of memory N for

decoding purpose at each stage is monotonically decreasing in the number of relay
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stages n. Second, given that information is sent at an achievable rate R, we have

shown the rate at which mutual information per unit memory tends to R is higher

as the number of relay stages n grows.



Chapter 4

Conclusions and Direction on Further

Research

Of all the issues surrounding point-to-point communication over relay networks,

we have studied a theme which has not received much attention in the context of

capacity. The theme is best described by the following questions. Can we consider,

from a capacity point of view, the effect of finite relay memory over the different

types of relay channels? In particular, when faced with limited memory at relays,

what is the maximum rate at which information can be reliably transmitted over

the relays?

In this thesis, we have proposed two capacity approaches on point-to-point

communication over a set of relay nodes with finite processing memory. The es-

sential difference between the first and the second approach is that point-to-point

communication in the first utilizes of a set of parallel processing nodes, while in

the second a set of serial processing nodes. In what follows, we state conclusions

and direction for further study.
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4.1 On the Capacity of a Parallel Relay Channel

We have studied the problem of distributed processing for point-to-point commu-

nication over parallel relays. Such a processing for relay communication purpose

is relevant to a problem in the sensor networks literature, notably the problem of

transporting data to a far-receiver via the intermediate sensors. The model we have

chosen to represent the structure of such a problem is the single-input multi-output

AWGN channel with and without inter-symbol interference (ISI). Our results point

to the implementation of distributed processing via one dimensional (1D) and two

dimensional (2D) Kalman filter. With 1D Kalman filter, processing proceeds in

space, namely from one to the next intermediate receiver. With 2D Kalman filter, in

addition to progressing in space, processing proceeds in time, namely from one to

the next time step. We have found the capacity of the distributed and optimally-

-that is, centrally-processed channels to be the same. In computing the capacity,

we have made use of the direct relation between capacity and estimation theory.

Under 1D and 2D Kalman filter, processing is linear. However, 2D Kalman fil-

ter mitigates a problem-of infinite memory for processing at each intermediate

receiver-imposed by 1D Kalman filter. Under 2D Kalman filter, intermediate pro-

cessing is done with finite memory.

Our treatment of distributed processing for point-to-point communication over

parallel relays considers transmission capacity as the metric to contrast distributed

against optimal (centralized) processing of observations. In order to derive ca-

pacity for communication under distributed processing, we have made use of the

direct relation between transmission capacity and estimation theory.

When the capacity achieving input process (a wide sense stationary stochastic

process) has infinite memory, a truncation strategy is needed. The truncation strat-

egy will allocate some sensible finite amount of processing memory in the state

vector of the state-space estimation model. By sensible, the strategy will reason-
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ably narrow the error covariance gap between the two estimates, i.e., the estimate

when the state vector has infinite memory and that when the respective memory in

the state vector is truncated. One approach to truncating memory, when infinite, is

a decomposition approach using the prolate spheroidal wave functions [12]. This

problem is not elaborated in this chapter and is subject to further study.

An interesting extension to study is that of distributed processing on a chan-

nel that is not perfectly known at the intermediate receivers, namely a channel

whereby the intermediate receivers perform channel estimation with some error.

A cumulative error would build up in the case of such a channel. The results based

on [19] may be extended to this case.

4.2 On the Capacity of a Serial Relay Channel

We have considered point-to-point communication over a series of AWGN chan-

nels. In such a series, one section of the channel is coupled with the next by a relay

function. This communication set-up is particularly relevant in optical communi-

cations.

We have studied the maximum rate at which information can be reliably trans-

mitted over a series of AWGN channels with memoryless relays. We have shown

the following two results. First, assuming end-to-end noise power is finite and the

serial relay channel is subject to energy constraints, we have shown that the ca-

pacity tends to infinity with the number of relay stages in the series. This result,

though based on a set of assumptions that is not compatible at all with the serial

channel model for optical communication purposes, points to the following in-

sight. A 'folk theorem' stated that a hard-decision function is the best memoryless

relay at low SNR and linear amplification function is the best at high SNR. Using

the particular model used, we have argued that such is not always the case. Sec-

ond, given a finite number of relay stages, finding maximum mutual information
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subject to energy constraints alone is difficult. In addition to energy constraints,

we have proposed entropy constraints at the output of individual relays. We have

derived an explicit upper bound to mutual information, subject to these energy

and entropy constraints. For a particular series of two AWGN channels, we have

numerically demonstrated that lower bound attained by the pair of Gaussian in-

put and linear relay function approaches the upper bound more closely than that

attained by other choices of pair of input and relay function that we consider. In

the context of a two-stage serial distribution network for optical communications,

the noise power of the second section is likely to outgrow that of the first section.

This is due to the fact that the major noise components are the noise from the relay-

-such as amplified stimulated emission (ASE) from erbium-doped fiber amplifier

(EFDA)-and that from the receiver-such as the noise from the dark current gen-

erated by avalanche photodiode (APD). For optical communication purposes, this

means that the choice of a code book, consisting of alphabets whose distributions

are close to being Gaussian, at the source and a linear function at the relay outper-

forms other reasonable choices of code book and relay function.

Next, we have revisited the result from the model for infinite series of AWGN

channels with memoryless relays, from a view that relay function is with memory,

rather than memoryless-thus allowing coding/decoding at individual relays. We

have shown two tradeoffs. First, given that information is sent at a fixed rate R

and given the requirement that end-to-end error probability is bounded above by

some arbitrary quantity, we have shown that the requisite length of memory N for

decoding purpose at each stage is monotonically decreasing in the number of relay

stages n. Second, given that information is sent at an achievable rate R, we have

shown the rate at which mutual information per unit memory tends to R is higher

as the number of relay stages n grows.
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Appendix A

Proof of the Conditional

Entropy-Power Inequality

Note that the steps of the proof are based on a proof of Shannon's entropy-power

inequality [3]. The extension which is required to prove the desired conditional

entropy-power inequality is almost trivial.

A.1 The Derivative of h(Xf W)

We first define the conditional random variable Xf given W to be the sum of a

conditional random variable X given W with probability density pxlw(x) plus an

independent (with respect to X and W) zero-mean normal random variable with

variance f. We show that the derivative of its conditional entropy h(Xf IW = w)

with respect to f is

1I( f ( 1 (aPxflw(xf,f))2 Px f) (A.1)

where
P1x (Xf- X) dx

pxflw(xf,f) - pxiw(x)exp- ( x (A.2)
V27Jr i-0 2f

107



APPENDIX A. PROOF OF THE CONDITIONAL ENTROPY-POWER INEQUALITY

is the probability density of Xf given W.

Differentiating (A.2) inside the integral, we get the diffusion equation

aPxflw(xff) 
af

1 a2pxfw(x, f)
2 aXf

(A.3)

From (A.2) we see that Pxflw < 1/2-7f, hence h(XflW = w) either converges

absolutely or is +oo. For f2 > fi,

(a) (b) 1
h(XflW = w) h(Xf2 W = w) < h(XfiW = w) + 2 lg(f 2 /fi)

where

(a) follows since, for f2 > fi and Xf 2 being Xfi plus some independent zero-

mean normal random variable with variance f2 - fi, the mutual information

I(Xf 2 - Xf; Xf2 IW = w) > 0;

(b) follows since, for f2 > f, the mutual information I(X; Xfi I W = w) > I(X; Xf2JW =

w).

Hence, h(XflW = w) < oo for all f > O or h(XfJW = w) = +oo for all f > O0. We

will show later that h(XfIW = w) < o. Let us assume for now that h(Xf W =
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w) < oo. Differentiating h(Xf {W = w) inside the integral, we get

dh(XflW = w)
df

= 0 aPXfIW(Xff) dxf -

p00 xflw(xf,f)

J -oo af logpxfl w ( x f, f ) d x f

(a) 1 a2 pxflw(xf,f)

-2 -o ax2 log Pxflw(xf f)dx f

(b) 1 a)PXflW(xf, f)
2 aXf log Pxflw

Xf =-O

1 00 (aPxflw(xff)

2 _0 \ axf

(apxfIw(xff))
a(

- + 2

(a) 1= -w(xf) ,

PxfW (Xf,f)
2

Pxflw(xf, f)

(A.6)

(a) follows from (A.3). The first term on the right hand side of (A.4) is 0 since

-aPX f 'xfoof fdxff p00xf Xff) dxf

- apxfIw(xff) 00
axf

Xf~ ~00

: F_ 1VLr7f' | Pxlw(X)(f-x)exp-(f -x dx]
= 0;

(b) follows after performing integration by parts;

(c) follows from Lemma 1;

(A.4)

(A.5)

where

00

Xf=-0O
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(d) follows from (A.1). Since the integrand of (A.1) is never negative, (Xf) either

converges or is +oo. Dividing (A.8) by pxfl w and integrating over all xf, we

see that Jw(Xf) < 1/f. Hence, Jw(Xf) is finite for all f > 0, converging

uniformly for 0 < < f and thus justifying (A.6).

Lemma 1 For f > 0,

1 aPXIW(Xf,'f)
-2 axf logpxflw(xff) =° (A-7)

Xf= -00

Proof.

Consider the following string of inequalities.

(pxf 1w(Xff) 2 [0 PXfIw(xf'f) exp -(x4)2

v/Pxflw(xf)(xf - x) exp- (4f
dx

(a) Pxfw(xf, f)

| pX(X)(xf _x) 2 exp 2f dx (A.8)

(b) 2 PxfIw(xf, f) (a9)
- 'rf 3 e (A.9)

where

(a) follows by applying Schwarz's inequality to

f(xff) - x) exp - (Xf - X)2
Xf | Pxlw(x)(Xf- x) exp-f d;

(b) follows by finding the maximum of (xf - x)2 exp -(xf - x) 2 /2f, i.e., a con-

cave function. After taking the first derivative with respect to xf - x and set-

ting it to zero, we find the argument (xf - x)* which sets (xf - x)2 exp - (xf -

�I

110



A.2. The Convolution Inequality For I 111

X)2 /2f to zero. We then take its second derivative and verify the second

derivative is negative given that (xf - x) = (xf - x)*. It follows that max (xf -
xf-x

x)2exp -(Xf -x)2/2f = 2f/e, hence pxw(x)(f-x ) ex p- dx <
2f/e.

From (A.9) we

Pxflw(xf,f) -4

see that apxfW(ff is, at most, of the order ofaXf

apx w(xf,f)
0, and so oX log pxflw(xf, f) -- 0 as Xf -+ ± oo. O1

A.2 The Convolution Inequality For J

Given a random variable W, let X, Y, and Z = X + Y be some random variables

with Y being independent of X and W. The conditional probability densities of X,

Y, and Z are Pxlw=w(X), py(y), and

Pzlw=w(z) = J PXlw=w(x)py(z- x)dx, (A.10)

respectively. If these density functions are differentiable, then dpz lw= (z) /dz is

PIw=w(z) = J Px lw=(x)py(z - x)dx. (A.11)

Thus, if pxlw=w(x), py(y), and PZIw=w(Z) never vanish,

PI1w=w(Z)

Pzlw=w (z)PZlW-w (z)

= Pxlw=(x)PY(z - x) Pxlw=w(x) 
-oo Pzlw=w(Z) Pxlw=w(x) 

Pxlw=w(x)
= ExIzw PXIW=w(X) Z =z,W =

that is, the conditional expectation of ptlw=w(x)/Pxlw=w(x) for given values of Z

and W. Likewise,

Pzlw=w (z)

Pzlw=w(Z)
= Ezw PY(Y)= Eyz w ZZ z]

/PXfjw(Xflf) as
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Therefore, for any constants a and b,

pIlw=~(x)
Ex,Ylz,w Pxlw=w(x)

Hence,

-p, IW=W(Z)-2

LPzlw=w(Z)

+ b PY(y)

py(y)
Z = z, W= w]

[ a
Pxlw=(w (x)

[

PIlw=w(x)
Pxlw=w(X)

=( + b)Pzlw=w()

Pzlw=w(Z) '

+ bPy(y )

py(y)

py(y)
Z = Z,W = W
Z=ZW=W(A.)

(A.12)

since the second moment of any random variable is never less than the square of

its mean, with equality only if

PIlw=w(x)

Pxlw=w(x)
+ bPy(y )

py(y)
Pzlw=w (Z)

= (a + b) Pzw=w(z)
Pzlw= (z)

(A.13)

with probability one.

Averaging both sides of (A.12) over the conditional distribution of Z given W =

w gives us

2

W=w < E,w { [

= a2Exw { 

PXlw=w(x)

aPxlw=w(x)

Pxlw=w(X)

Pxlw=w (x) J

+b W=w+ bpy(y) W=W

W=w}

+b2Ey{ [P (Y)]}

or

(a + b)2 jW(Z) < a2 Jw(X) + b2 Jw(Y)

Averaging both sides of (A.15) over the distribution of W gives us

(a + b)2Ew[Jw(Z)] < a2Ew[Jw(X)] + b2Ew[Jw(Y)] .

(a + b)2Ezlw

{

PW=w (z)
Pzlw=w(z)

(A.14)

(A.15)
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Setting a = 1/Ew[Jw(X)] and b = a = 1/Ew[Jw(Y)], we obtain

1 1 1

Ew[Jw(Z)] Ew[Jw(X)] Ew[Jw(Y)]' (A.17)

with equality if (A.13) holds. Let us suppose (A.13) holds. By substituting x = z - y

into (A.13) and integrating with respect to y, we get

-a log Pxlw=w(z-y) + b log PYIW=w(y) = (a + b) Zw + (z)
pzlw (z) '

Setting y = 0 shows that the "constant" of integration c(z) is differentiable, and it

follows that Pzw=w(Z),y, too, is differentiable. Thus, differentiating with respect to z

and setting z = 0, we have

PI lw=(-) = PZlW=w(0) Plw=w() - 12-a = (a + b) Z Y- w=w()y + c(O), (A.18)
Pxlw=w(-Y) Plw=w(0)

from which we see that (A.18) is satisfied if pxlw=w(x) is a normal density func-

tion. Similarly, the condition (A.13) for equality in (A.17) implies that equality is

satisfied if py(y) is a normal density function. Thus, (A.17) holds with equality

when Pxlw=w(x) and py(y) are normal density functions.

A.3 One-Dimensional Conditional Entropy-Power In-

equality

Given W = w, we now define Xf(t), Yg(t), and Zj(t) to be X, Y, and Z plus inde-

pendent zero-mean normal random variables with variance f(t), g(t), and j(t) =

f(t) + g(t), respectively. We suppose that f(0) = g(0) = j(0) = 0, and we restrict

t to non-negative values. When f(t) and g(t) are positive, the conditional prob-

ability density functions of Xf(t), Yg(t), and Zj(t), given W = w are everywhere

differentiable and positive. Thus, differentiating

s(t) exp 2h(Xf(t) I W) + exp 2h(Yg(t) IW) (A.19)
exp2h(Zj(t)IW)
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with respect to t with the help of (A.6), we have

e2h (j(t) I)s (t) = e2 h(Xf(t)l)f (t) Ew [Jw(X f ( t))] + e2 h(Yg(t)lW)g (t) E W [JW (Yg(t))]

- [e2h(Xf(t)) + e2h(Yg(t)W)] f'(t) - g'(t)]Ew[Jw(Zj(t))] (A.20)

Substituting the upper bound on EW[Jw(Zj(t))] given by (A.17), we find that

e2h(Zj(t)IW)s(t) >

(e 2h(Xf(t)lW ) Ew[J(Xf(t))]+e 2h(Yg(t)IW ) EW[Jw(Yg(t ) )])

Ew[Jw(Xf(t))]+Ew[JW(Yg(t))]

(f' (t)Ew[Jw(Xf(t))] + g' (t)Ew[Jw(Yg(t))]) . (A.21)

Hence, by choosing

f'(t) = exp2h(Xf(t)lW) and g'(t) = exp2h(Yg(t)lW), (A.22)

we ensure that s'(t) > 0, with equality if equality holds in (A.17). Thus, under

(A.21), s'(t) = 0 if, conditional on W = w, Xf(t) and Yg(t) are normal. This fur-

ther implies s(t) is a constant if, conditional on W = w, X and Y are normally

distributed.

If the entropy integrals h(Xf(t)lW), h(Yg(t) IW), and h(Zj(t)lW) converge uni-

formly near t = 0, then s(t) is continuous at t = 0 and

(0) = exp 2h(XIW) + exp 2h(YIW)
exp 2h(ZIW)

To evaluate s(+oo) we note that (A.22) implies f(+oo) = g(+oo) = j(+oo) =

+oo, and we define XF(t) to be Xf(t) / f. Then (A.2) gives us for its probability

density

PXF(tIW(XF) -= _ jf(t)pxlw(Vf(t)u)exp- 2 du.

Given W = w, h(XF(t)IW = w) = h(Xf(t)lW = w) - logf(t). As f(t) grows

infinite, VPlfixlw=w(Vf (t)u) becomes a Dirac delta function, and PxF(t)lW=w
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approaches exp (xF- )2 / v . Thus, if h(XF(t)IW = w) converges uniformly

as f(t) grows infinite, it becomes 1 log 27re in the limit, and h(Xf(t) W = w)-

log27ref(t) - 0 as t -- +oo. Similarly, h(Yg(t)lW = w) - 1og27reg(t) 0

and h(Zj(t)lW = w) - log2re(f(t) + g(t)) --+ 0. From (A.19), then, we have

s(+oo) = 1, completing the proof for the one-dimensional conditional entropy-

power inequality, i.e.,

e2h(ZIW) > e2h (X IW ) + e2h(YIW) (A.23)
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Appendix B

Numerical Figures to Support Section

3.3.1

0[ 1 A I A1 ILambert(X;X3)

10 _ 0.00322574 0.9545 0.0030

20 l0.001519135 0.9411 0.0027

30 0.000937113 10.9176 0.0026

40 J_0.000650135 0.8918 0.0024

100 0.0001700164 0.7444 0.0018

200 0.00004609095 0.5668 0.0012

300 0.00001754179 0.4504 9.3739e-4

400 0.00000769528 0.3703 7.4728e-4

Table B.1: IBM for computing IUB(Xi; Y2 ) and ILambert(X; X3 ) given that oa = 100
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12T A 1 i ILambert(X1; X3)

10_1 0.00241402 0.9720 0.0016

20] 0.00119004 0.9719 0.0015

30 _0.000763584 0.9628 0.0014

40 _0.000549017 0.9512 0.0014

100 _0.0001720957 0.8711 0.0011

200 0.00006045746 0.7476 8.9097e-4

300 0.00002935973 0.6480 7.3505e-4

400 0.000016360003 0.5684 6.2225e-4

Table B.2: P1 for computing IUB(X 1; Y2 ) and Lambert(X 1 ; X3 ) given that 22 = 200

j2 A IP1 ILambert (X1; X3)

10 1 0.00201106 0.9777 0.0011

20 0.001008853 0.9813 0.0010

30 0.0006573 0.9768 9.871e-4

40 0.0004792175 0.9702 9.5934e-4

100 0.0001610391 0.9186 8.3546e-4

200 0.00006225747 0.8288 6.9568e-4

300 0.00003297228 0.7487 5.9350e-4

400 0.00001995973 0.6795 5.2148e-4

Table B.3: P1 for computing IUB (X 1; Y2) and ILambert (X 1; X3 ) given that c2 = 300

----
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-12 J A p1 ILambert(X1; X3)

10 0.00175972 0.9804 8.7077e-4

20 0.000891083 0.9858 7.6547e-4

30 0.000585433 0.9834 7.4977e-4

40 0.0004300915 0.9792 7.3458e-4

100 0.0001501585 0.9427 6.6003e-4

1200 0.00006114028 0.8738 5.6842e-4

300 0.00003390846 0.8084 5.0072e-4

400 0.000021426755 0.7492 4.4708e-4

Table B.4: f1 for computing IUB(Xi; Y2) and ILambert(X1; X 3 ) given that c2 = 400

1 a exp (h(X2) - h(Y)) IMMSE(X; X 3 ) II
100 1100.9968 0.9999 0.0016 .

1200 200.9584 0.0011 U
|| 300009989 1 7.9334e-4 |

|| 400 B400.9992 -1 | 6.3742e-4

Table B.5: IMMSE(X1; X3) given that 1 = 100
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12 et exp (h(X 2) - h(Y1)) IMMSE (X1; X3)

100 100.9968 0.9999 0.0011

200 200.9584 ~1 8.0445e-4

300 300.9989 |1 6.5076e-4

400 400.9992 1 5.3143e-4

Table B.6: IMMSE (X 1; X3) given that o2 = 200

C I 2 I exp(h(X 2)-h(Y 1 )) IMMSE(X1;X3) 

100 100.9968 0.9999 0.00080566

|200I 200.9584 |1 6.4821e-4

300 300.9989 1 5.4458e-4

400 400.9992 1 4.8156e-4

Table B.7: IMMSE(X1; X 3 ) given that cr2 = 300

||_ of a exp(h(X2)-h(Yl)) IMMSE(X;X3)

1 100 100.9968 0.9999 6.5253e-4

200 200.9584 1 5.5189e-4

300 300.9989 - 1 4.8298e-4

400 400.9992 |1 4.3974e-4

Table B.8: IMMSE(X1; X3 ) given that 1 = 400

-�--
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