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Abstract

In this thesis, I present a theoretical model for the Si core/SiGe shell core-shell
nanowire system. A model for the single carrier pocket core-shell nanowire is first
developed, along with the boundary conditions of a circular wire and sharp interfaces
between the two media. A numerical scheme is then developed for the core-shell
nanowire system, along with educated approximations for the numerical boundary
conditions. The numerical model is designed such that low energy levels have higher
accuracy than the high energy levels.

The core-shell nanowire model is applied to a Si core/SiGe alloy shell structure,
which is considered as a core-shell nanowire building block containing multiple carrier
pockets. Based on the 2D band structure of strained SiGe on a Si substrate, the
strained SiGe layer of the Si core/SiGe shell core-shell nanowire is modeled. The effect
of different parameters (the interface offset energy V, the total core-shell diameter e,
and the core diameter d) on the energy levels of the Si/SiGe core-shell nanowire system
is investigated. It is found that the core-shell nanowire system with the greatest
quantum mechanical effect is the one with a small e, a relatively small magnitude V,
and a d that results in a secondary confinement effect in the lower potential energy
region.

A ID semi-classical transport model for the core-shell nanowire structure based on
the Boltzmann transport equation is developed. Applying the 1D semi-classical model
to the Si core/SiGe shell core-shell nanowire system, the thermoelectric properties of
this particular system and the effect of doping on these properties are investigated. It
is found that the system with an optimal doping concentration (nopt or popt), a small
V, a small e, a small d, and a shell with a composition that results in a high mobility
has a very promising thermoelectric performance.

Lastly, the thermoelectric-related transport properties for a Si/SiGe core-shell
nanowire are compared with the related properties for a Si nanowire and a SiGe
nanowire. The Si/SiGe core-shell nanowire shows a better thermoelectric performance
than its Si nanowire counterpart. On the other hand, by relaxing the harsh conditions
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imposed on the carrier mobility of the Si/SiGe core-shell nanowire structure in this
thesis, the Si/SiGe core-shell nanowire structure is also expected to have a better
thermoelectric performance than its SiGe nanowire counterpart.

Thesis Supervisor: Mildred S. Dresselhaus
Title: Institute Professor of Electrical Engineering and Physics
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Chapter 1

Introduction

This thesis starts off with some background information on the topic of thermo-

electrics. It is then followed by the motivation for this thesis work and the outline of

this thesis.

1.1 Background

Thermoelectrics can be dated all the way back to 19th century. In 1821, Thomas See-

beck discovered that an electromotive force could be produced by heating a junction

between two metals. Following Seebeck's discovery, in 1834, Jean Peltier discovered

that passing an electric current through the junction between two dissimilar conduc-

tors could result in a cooling effect. More importantly, in 1855, William Thomson

(later Lord Kelvin) not only predicted a third thermoelectric effect, he also derived the

relationship between thermoelectric effects using thermodynamic arguments. Result-

ing from these discoveries, the idea of thermoelectric materials was born. However, it

was not until the invention of the transistor in 1949 that researchers started seriously

looking into thermoelectric applications [6].

Since the birth of transistor, interest in the field of thermoelectric materials sky-

rocketed. The field of thermoelectrics was especially active during the 1957-1965
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period. Much improvement in thermoelectric materials was made during this period,

especially after the proposal in 1956 by Abram Ioffe and his co-workers that doped

semiconducting materials were the best candidates for thermoelectric materials and

that alloying could reduce the lattice thermal conductivity in a major way without

much deterioration to the other thermoelectric parameters [6]. Unfortunately, follow-

ing this very active period, little improvement was achieved, and the search of good

thermoelectrics materials became rather inactive for the next thirty year period.

Since the birth of thermoelectric materials, the two major thermoelectric applica-

tions have been for refrigeration and for the generation of electricity from heat. The

advantage of thermoelectric refrigeration is the absence of moving compressor units as

is done in the conventional way of refrigeration. Thermoelectrics not only decreases

the noise level and the weight of the refrigerator, it also increases the refrigerator

life cycle. Furthermore, thermoelectric electricity generation is commonly used in

space applications. The most common application is to generate electricity using the

temperature difference between the inside and outside of the spacecraft. The thermal

energy for space applications is supplied by a radioactive source and by sunlight. This

is a very important and essential application, since only a limited amount of fuel is

available in a spacecraft and solar energy becomes too weak for use in deep space

missions, where thermoelectricity is the only viable technology presently available for

supplying energy aboard the spacecraft.

With increasing pressures for space explorations, increasing demands for using

lighter materials for space applications, and increasing demands of the US Navy to

have quiet submarines, researchers have once again turned to the topic of thermoelec-

tricity. In the 1990s, using low dimensional physics concepts, Hicks and Dresselhaus

predicted that a dramatic enhancement in thermoelectric performance was possible

through the use of quantum wells and quantum wires [7, 8]. At the same time, nano-

fabrication technology rapidly improved during the last decade. With the advance in

technology and new low dimensional ideas, improvements in thermoelectric efficiency
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(ZT = S2 .T/(ie + KL) where - is the electrical conductivity, S is the Seebeck coeffi-

cient, Ke is the electrical thermal conductivity, r1 L is the lattice thermal conductivity,

and T is the temperature) have been demonstrated. For example, room tempera-

ture (T=250 C) values of the dimensionless thermoelectric figure of merit ZT -' 2.4

have recently been achieved for a p-type Bi2Te3/Sb 2Te3 superlattice device [9]. These

promising trends have once again ignited the interest of the research community in

the area of thermoelectrics.

1.2 Motivation

Although low dimensional systems gave much hope for improving thermoelectric ma-

terials, it comes at a rather high cost. Making low dimensional systems is a very

time-consuming and expensive process. The equipments involved usually are very

expensive as well. The result is that low dimensional thermoelectrics today are not

competitive on a cost basics with other thermoelectric materials. Thus we are moti-

vated to find a way to implement the development of a cost-effective low dimensional

system.

The proposed cost-effective low dimensional system is a self-assembled composite

nanostructured materials system (see Figure 1-1). The nanostructured materials con-

sist of either nanowires or nanoparticles. Thus, the building block of the composite

system is either core-shell nanowires or core-shell nanoparticles.

In this thesis, the materials under consideration are Si, Ge, and SiGe alloys. Bulk

SiGe alloys already have been shown to have rather good thermoelectric properties

at high temperature for space applications. The goal of this work is to introduce

nanowires or nanoparticles inside the SiGe alloys host material to improve its ther-

moelectric performance. This thesis focuses on Si nanowires as the low-dimensional

building block material, while SiGe alloys are the host material. Thus, the building

block of the composite will be a Si core and a SiGe alloy shell in a core-shell nanowire
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(a)

Figure 1-1: (a) Si nanoparticles embedded in a Ge host material composite structure,
and (b) Si nanowires embedded in a Ge host material composite structure.

building block structure.

A detailed analysis is performed on this thermoelectric building block nanostruc-

ture at room temperature. With the extra interface introduced by the Si core/SiGe

shell structure, the thermal conductivity of each of the building blocks is expected to

decrease, resulting in an expected enhanced thermoelectric performance. The ther-

moelectric performance improvement of the building blocks in turn is expected to

give an overall improvement in performance for the composite structure.

1.3 Thesis Outline

In Chapter 2, the basic modeling of a core-shell nanowire is presented. Assumptions

and approximations for the boundary conditions are given. The Schrddinger equation

for the core-shell nanowire is derived. A numerical scheme based on a three point

center differencing method is used to solve the Schr~dinger equation numerically for

a single carrier pocket in the core and a single carrier pocket in the shell. The chapter
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ends with a comparison with previous nanowire numerical solutions.

Chapter 3 applies the model derived in Chapter 2 to the Si core/SiGe alloys shell in

core-shell nanowire building blocks containing multiple carrier pockets. A brief review

of the properties of Si, Ge and SiGe alloys constituents, along with consideration of

the strain effect on the SiGe alloys band structure are presented. Assumptions and

approximations are made for the Si/SiGe core-shell nanowire building blocks. The

chapter concludes with the effect of different parameters (interface offset V, total

core-shell diameter e, and core diameter d) on the energies of the core-shell nanowire

building block system.

Chapter 4 focuses on the thermoelectric-related transport properties of the Si/SiGe

building block. A ID semi-classical transport model for the core-shell nanowire based

on the Boltzmann transport equation is developed along with the assumptions and

approximations that are used to solve the Boltzmann equation. The detailed inves-

tigation of doped Si/SiGe core-shell nanowires is then presented. The chapter ends

with the effect of different parameters (doping concentration, e, and d) on ZT.

Lastly, this thesis closes with Chapter 5 on conclusions and future research direc-

tions.
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Chapter 2

Modeling of the Core-Shell

Nanowire

This chapter sets up the Schr6dinger equation for the core-shell nanowire system.

The framework of this formulation follows closely from the previous calculation of the

nanowire system [10]. The Schr6dinger equation for the core-shell nanowire system is

then solved numerically and checked against the previous nanowire numerical solution

[10].

2.1 Assumptions and Approximations of the Bound-

ary Conditions

Figure 2-1 shows a schematic of a single core-shell nanowire. There are two interfaces

in a single core-shell nanowire: the interface between the core material and the shell

material, and the interface between the shell material and the environment. In this

thesis, the interface will be modeled as a sharp potential offset. The environment

outside the core-shell nanowire will be modeled as an infinite potential. Thus, this

core-shell nanowire system is similar to a ID potential well surrounded by an infinite

barrier, with the exception that there is an additional potential offset in the middle
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Figure 2-1: A core-shell nanowire structure. d and e denote the core diameter and
the total core-shell diameter, respectively.

core region.

2.2 Schrodinger Equation for the Core-Shell Nanowire

In a period crystal, the electron wavefunction is composed of a periodic function

(Bloch function) and an envelope function. From the effective mass theorem [11],

knowing the envelope wave function is sufficient to describe many properties of the

system. Therefore, it is sufficient within the effective mass approximation to solve for

the envelope function of the system without solving for the exact wavefunction.

Consider an infinitely long core-shell circular wire with an inner material A with

core diameter of d and an outer material B with thickness of (e - d)/2, resulting in a

total core-shell diameter of e. Consider a single carrier pocket in both the core and the

shell of the core-shell nanowire system as an example. When detailed calculations are

done in Chapters 3 and 4, the appropriate carrier pockets are all included for both the

core and shell regions. In general, not only is the wire axis oriented along an arbitrary
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direction with respect to the crystallographic directions of the materials, but the two

materials themselves also will have different crystallographic directions. Thus, a total

of 3 different set of axes are needed to specify the core-shell nanowire system: the

wire, the core material, and the shell material. We define the z axis as the wire axis

and the x and y axes as the axes that lie in the cross-sectional plane of the wire. We

also define the xj axis, the yj axis, and the zj axis to be the three principal axes of

the carrier pocket of material j. The effective mass tensor of an anisotropic carrier

pocket of a cubic material j in its crystallographic coordinate system (xi, yj, zj) is

given by

Tnx,j 0 0

Mcrystalj 0 myJ 0 . (2.1)

0 0 Mz~j

With a proper coordinate transformation (Mwirej = Rcrystal->wire -Mcrystal,jR - re

where Rcrystal->wire is the transformation matrix that transforms the crystal coordi-

nates to the wire coordinates), the effective mass tensor of an anisotropic carrier

pocket of material j in the wire coordinates (x, y, z) can be obtained to be

M11j m12,j n 13,j

Mwirej = M 1 2j m22,j m23,J (2.2)

M13,j m 23,j m33,j

One should note that the mass tensor Mire,j is a symmetrical tensor. With the mass

tensor in Equation (2.2), the dispersion relation of the carriers in the carrier pocket

of material j in the wire coordinate system is then written as

h 2

Ej(k) = -- k -a - k +Vj, (2.3)
2
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where

Cellj al2,j U13,j

Alw=re,j .= 12,j C22,j C23,j (24

e13,j a23,j 0 Z33,j

is the inverse mass tensor of material j in the wire coordinate system and V is the

potential energy of the carriers of material j. In general, one of the V is set to be zero

for a single pocket for the core and a single pocket for the shell core-shell nanowire

system. From the effective mass theorem [11], the envelope wavefunction of carriers

of material j, TI (r, 0), is solved through the Schr6dinger equation,

h2
2-, .-aj - j (r, 0) + V Tj (r, 0) = Ej Tj (r, 0). (2.5)

Equation (2.5) is obtained by replacing k with (-i7) in Equation (2.3).

Using Equation (2.5) and the assumptions stated in Section 2.1, the Schrbdinger

equations for the carriers of material A and of material B in the core-shell nanowire

are found to be

h2
- V -aA VXIA(r, 0) + VA'XA(r, 0) EIA(r, 0) for the core region,

and

- V -aB - VXB(r, 0) + VBX'B(r, 0) = EIB(r, 0) for the shell region, (2.6)

where the potential offset at the interface between the two materials is given by

V = VB - VA. Together, T A(r, 0) and 'B (r, 0) form the wavefunction 'I'(r,0) for

the core-shell nanowire system where A denotes the core region and B denotes the

shell region. Following from the basic continuity requirements of wave functions and

their derivatives at the boundaries, we get JA(r = d/2, 0) = XIB(r = d/2, 0) and

.'I'A(r = d/2, 0) = ('ITB(r = d/2, 0) at the materials' interface. At the same time,

T (r, 0) is also assumed to vanish at the outer interface in this core-shell nanowire

model.
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By setting VA = 0 as the reference energy, Equation (2.6) becomes

2 V -eA T (r, 0) = ET(r,0) for the core region,

and

h2
2 V-B - V + V )I(r, 0) = E' T(r, 0) for the shell region. (2.7)

Equation (2.7) can be further simplified by applying the symmetry properties of the

core-shell nanowire. Due to the wire's cylindrical symmetry, all its physical properties

are invariant under rotation about the z axis. By applying a proper rotation about

the z axis, the off-diagonal matrix elements a12,j can be made to be equal to 0. With

a12,j = 0, Equation (2.7) can be rewritten as

02 02 02 02 92
011,A-T + a22,A -q + a33,A + 2M13,A T + 2 23,A 4

0921y 
2  

aZ
2  axlz a yaz

/2E)\

for the core region,

and

02 Q2 92 02 02
all,B Ox 2 + a22,B IT + a33,B I2 '+ 2a13,B - T±+M23,BDX y2  0Z2  Ox19z ' y9z

2(E - V)

h 2

for the shell region. (2.8)

In the core-shell nanowire, the carriers are unbounded in the wire direction, but are

bounded in the x and y directions. As a result, the envelope wavefunction of the

carriers can be written as a product of a traveling wave in the z direction and a

bound-state wavefunction in the x and y directions for each region, such as,

'(r, 0) =fu(x, y) exp(ikx,AX) exp(ik,,Ay) exp(ikz,Az) for the core region, (2.9)
v(x, y) exp(ikx,Bx) exp(iky,By) exp(ikZ,Bz) for the shell region,
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where kr,, and kyj are the wavevectors in the x and y directions in medium j, and k, 1

is the wavevector of the traveling wave in the z direction in medium j. Substituting

Equation (2.9) into Equation (2.8) results in

Cia242u &22 ,u +2 k +
0 11,A + e22,A( i011CAkx,A + a13,Akz,A)

+2i(a22,Aky,A + a23,Akz,A)9 =

+(Cf11,Ak ,A + Ce22,Ak ,A + Ce33,Akz,A + 2 0Y13,Akx,Akz,A + 2 C23,Aky,Akz,A)U

for the core region,

and

ll,B a+ O22,B + 2i(CI11,BkB + a 1 3 , RzB)-
ax + + a13,BB)!L

+2i(a22,Bky,B + a23,Bkz,B) = - 2 E-V) V

+(o'11,BkxB + O22,Bk YB + Ce33,Bkz,B + 2 &13,Bkx,Bkz,B + 2 a23,Bky,Bkz,B)V

for the shell region.
(2.10)

By selecting kx,j = -(a13,j/11',)kzj and kyj = -(a23,j/11,j)kzj, the coupling

imaginary terms are eliminated. This procedure is merely choosing a phase factor

for the function in the x and y directions so that Equation (2.10) becomes a simpler

equation to deal with. This phase selection is only for mathematical convenience

and it does not alter the physical properties considered in Equation (2.10) since

the quantity of interest is I'(r, 0) 2 instead of TI(r, 0). With the imaginary terms

eliminated, Equation (2.10) becomes a simple second-order differential equation of

the form,

h 2 192 12 h2kg 2
- ('11,A + 22,A U = E - A u for the core region,2 19X2 9Y 2 2mn33,A

and

h2 92 2 h 2 ksleB
a(,B + a22,B v E- V- ' for the shell region,2 122 (Y2 2 m33,B )

(2.11)
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where
2 2

n33,j -= (a33,j -23,j al 3 jl = 2 - Mwij - .(2.12)
a22,j e e (j

Equation (2.11) is nothing but a 2D Schr6dinger equation with effective masses

X oy= li = (9Mwire,j
m I = (y' - -1 (2.13)

in the x and y directions, respectively. Similar to the infinite square well problem, the

wavefunction T (r, 0), or equivalently u(x, y), vanishes at the boundary (outer interface

of the core-shell nanowire), resulting in the quantization of the carrier energies of the

core-shell nanowire system. However, because of the 2D confinement in the core-shell

nanowire system, two different indices, labeled as n and m, are needed. Thus, the

energies of the core-shell nanowire system become

h2k 2
En,m(kz,j) En,m + Z~ j , (2.14)

2m 33,j

where En,m is the eigenvalue of Equation (2.11) when k, 3 = 0. At a first glance, the

quantity k, 3 seems to be both material dependent and pocket dependent. However,

since all the calculations are done in the wire coordinates, kz,j is indeed the same

as the global wavevector k,. From Equation (2.14), one sees that the carrier states

split into many subbands with band edge energies en,m, and each subband behaves

like a 1D free electron in the z direction with an effective mass mz = M 33,j. Here

En,m denotes the stationary band edge energy of the system, whereas h2 k 2, /(2m 33 ,j)

denotes the kinetic energy of the carriers in the z direction. One should note that the

effective masses m,, and myj that determine the bound-state energies have different

expressions from the transport effective mass mz,j that characterizes the 1D disper-

sion relation (see Equation (2.12) and Equation(2.13)). As a reminder, the above

formalism has only considered the case for a single pocket core and a single pocket
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shell core-shell nanowire system. For a multiple pocket core-shell nanowire system,

each of the pocket-pairs is considered using the above formalism with one common

global reference energy. The effect of each of the pocket-pair is combined together in

the end using the global reference energy and a global wavevector system, and the

relationship between E(k) and k could then be obtained.

2.3 Numerical Solution to the Core-Shell Schrodinger

Equation

In Section 2.2, the 3D core-shell nanowire Schr6dinger equation was simplified to an

equivalent 2D differential equation. Due to the free electron behavior of the carriers

in the z direction, the carriers can have any positive amount of energy associated

with them. Therefore, the quantities of interest are the band edge energies of all the

subbands, Cn,m, instead of the total energy, E,,. Here en,m is obtained by solving

Equation (2.11) with the condition kz,A = kz,B = 0. By setting kz,A = kz,B = 0,

Equation (2.11) can be rewritten in a more compact form as follows,

( 2 Q
2

alA + + a 22 ,A U = -Au for the core region,19X 2  19y 2 /
and

02 02
aB 2 + a22, = (-A + V') v for the shell region, (2.15)

where
_2E 2c

A- = , (2.16)
h 2  h2'

and

2V
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In general, the a's in Equation (2.15) are different and the V' is nonzero, leading

to a non-analytic solution for Equation (2.15). In the following, a numerical scheme

is applied to solve this differential equation. With the aid of numerical simulations,

accurate solutions for Equation (2.15) could be obtained.

Recalling that for a core-shell nanowire with a core diameter d and with a to-

tal core-shell diameter e, the boundary conditions for the wavefunctions u(x, y) and

v(x, y) when km,A = kz,B = 0 are

u(x, y) = v (x, y)

ar ar
v(x, y) = 0

at r = d/2,

at r = d/2,

at r = e/2.

Since the core-shell nanowire has a cylindrical symmetry and its boundary conditions

are expressed in terms of cylindrical coordinates, it would be best to work in cylindri-

cal coordinates. Using a cylindrical symmetry transformation [10], Equation (2.15)
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becomes

/ 2
2u cos 0 sin 0 Ou cos 0 sin 0 D2 U sin 2 0 Ou sin2 9 92 U0 11,A cOS2 -- 2 + -

Or 2  r 2  00 r OrDO r Or r 2 902

2 cos 0 sin 0 ON cos 0 sin 0 O2t COS 2 0 O1 Cos 2 0 02 U
+ C122,A sin2 0r - 2C 2 + + 2 -)0++Or2  r2  r arBo r Or r 2  002

-Au

for the core region,

and

2o 2 cos 0 sin 0 0v cos 0 sin 0 12v sin2 0 Ov sin 2 92 V
i11,B COS--2

Or 2  r 2  00 r OrDO r Or r 2 902

2 0
2v cos 0 sin 0 9v cos 0 sin 0 ( 2v cos 2 0 OV cos 2 0 0 2 U+ a22,B sin2 - -+2 +

Or2  r2  D0 r OrDO r Or r2  002
(-A+V')v

for the shell region,

(2.19)

where 0 is the polar angle from the x axis and r is the distance from the origin of the

x - y plane of the core-shell nanowire in cylindrical coordinates. To transform Equa-

tion (2.19) into a difference equation, a set of points is created in the x-y plane of the

core-shell nanowire. Since the problem has been transformed into polar coordinates,

it is natural to assign the grid points according to cylindrical coordinates 0 and r.

The diameter of the core-shell nanowire e is divided into M equal segments 5r, while

the angular coordinate 0 of the wire in the x - y plane, which includes a range of

27r, is divided into N equal segments 60. This assignment is equivalent to dividing

the x - y plane of the core-shell nanowire into M concentric circles that are 6r apart

from each other, and N equivalent pieces subtending an angle of 60 (see Figure 2-2).

This assignment of the grid points results in a total of M x N grid points in the x - y
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Figure 2-2: A schematic view of the grid points in the x - y plane of the core-shell

nanowire. M = 5, N = 32, and m' = 2 for this special case.

plane of the core-shell nanowire and the polar coordinates of the grid points are

(rm, 0,,) = (mr, n6), 1 .(2.20)

n =0 1, ... , (N - 1)

where 6r = e/(2M) and JO = 27r/N are the distances between adjacent circles and the

angular segment of each piece, respectively. The grid points with index 1 < m < m'

lie in the core region, whereas those with m' < m < M lie in the shell region. It should

be noted that due to the cylindrical symmetry, grid point (r, 0_k) and (rm, oN-k)

represent the same point.

One might want to consider an adaptive grid for this core-shell nanowire system

due to the difference in the size of the or codithe size of the shell. However, the

generation of an adaptive grid is usually used when the difference between different

parts of the solution is enormous, such as on the order of 10th to 20th orders of

magnitude difference. In the present case, where different parts of the solution do not

differ much, a uniform grid will result in a much more simple problem to solve and a
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much more accurate solution [12].

Using a three point center differencing scheme, the derivatives in Equation (2.19)

can be approximated by

[u

r]m,n

[u
0r2 m,n

ar2 M'

2 m,n

OraO mn

_Um+1,n - Um-1,n (r)2 I +3
26r 3! 6r3 mn

-Um+1,n - Um-1,n (60)2 -u +
2JO 3! 603 n

Um+1,n - 2Um,n + Umln (6r)2 4U +

(Sr) 2  12 6r 4 mn

Um+1,n - 2 Um,n + Um-,n (60)2 64 u]

(60)2 12 [04]

(Um+i,n+i - Um+in-1) - (Um-in+i - Um-1,n-1)

4(60) (6r)

+0((6r)2 ) + O((6O) 2 ) +..., (2.21)

where Umn = u(rm, On) is the value of the wavefunction u(r, 0) at the grid point r = rm

and 0 = On. Note that the leading error terms for all of the derivatives are proportional

to either (Sr)2 or (60)2. Thus, as the spacing between the grid points get smaller,

the error becomes smaller quadratically. A more accurate scheme can be obtained

by using a higher order center differencing scheme for the derivatives. Substituting

Equation (2.21) into Equation (2.19), a finite difference equation is obtained and it
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has the form

Am,n,AUm+1,n + Bm,n,AUm-1,n + Cm,n,AUm,n+1 + Dm,n,AUm,n-1

+Em,n,A(Um+1,n+1 + Um-1,n-i - Um-1,n+1 - Um+,n-1) + Fm,num,n

for the core region,

Am,n,BVm+1,n + Bm,n,BVm-1,n + Cm,n,BVm,n+1 + Dm,n,BVm,n-1

+Em,n,B(Vm+1,n+1 + Vm-1,n-1 - Vm-l,n+1 - Vm+,n-1) + Gm,nVm,n

for the shell region, (2.22)

Am,nj = -iij Cos 20O
6r 6r

Bm,n,j a, - ,j cos 20n
6r 6r

a11,jsin~n
Cmn j = - 5
Dm'nj r260

aljjjsin~n
'""n~ r250

+ sn2O
2rm

sin2 On

2rm I

(cos0n +

-_COS~n

sinOn)

60

+sin~n
+

(122,j sin 2On

6r c r

a22,j

6r

sin2 0 

6r

a22,j COSOn

r2 60

) a 2 2 ,j COS0n

r 60

Em,n,j = snOnCOS (- j + 22j)2rm6 0 6 r

Fm,n =2 11,A

Gmn = 2 an1 B

(cos 2 On

(6r)2

(cos2g0

+ in 2 n

+ 2(60)2

4sin2On
r2 (60)2

(sin 20n+'2C22,A k (6r)2

sin2 0 n+ 2 a22B
' (6r) 2

cos 2 On

+ r(60)2 I

+ Cos 2 )+ v/.
r2 (60)2

There is one difference equation for each grid point (rm, On) on the core-shell nanowire,

resulting in a total of M x N equations for the M x N grid points.

Special care is needed when dealing with the grid points at the center, at the outer

interface, and near the core-shell interface. Using one of the boundary conditions,

the grid points at the outer interface are required to be zero, namely, vm,n = 0. This
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and

AVm,n =

where

+ Cos 2

2rm
cos 2 On

2rm J
-sin0n +

sinn +

CosOn

60J

COS0n

60 '

(2.23)



boundary condition decreases the number of grid points (equivalently, the number of

difference equations) from M x N to (M - 1) x N. For the case of the grid points at

the center, the u can be approximated as [10]

Uon = U0,0 - all,A(UI,0 + ui,7r) + a22,A(U1,7r /2 + ULI,3 7r / 2 )

-(6r) 2A + 2(&11,A + G22,A)

e11,A (U1,0 - u 1,7r) + a22,A ( l, 7r/2 + UI, 3 7,/ 2 )

2(oll,A + 022,A)

with the condition

(6r)2 « 2(cZ11,A - O'22,A). (2.25)
A

As for the region near the core-shell interface, the values of u and v just next to the

interface are extended to the next region and assumed to be approximately equal

to the values in the other region, namely, Um',n = Vm',n and Um'+1,n = Vm'+1,n- It

should be noted that Um'+1,n and Vmr,n do not actually exist, but they are required

as a by-product of the three point center differencing scheme. Using these boundary

conditions at the interface, Equation (2.22) for m = m' (=2 for the case in Figure

2-2) and m = m'+1 (=3 for the case in Figure 2-2) results in

AUm',n Am',n,AVm'+1,n + Bm',n,AUm'-1,n + Cm',n,AUrm',n+1 + Dm',,n,AUm,n-1

+Em',n,A(Vm'+1,n+1 + Um'-1,n-1 - Vm'+1,n-1 - UIm'-i,n+i) + Fm',nUm',n

form = m'

and

AVm'+i,n= Am'+1,n,BVm'+2,n + Bm'+1,n,BZ rm',n + Cm'+1,n,BVrn'+1,n+1 + D,'+1,nBVm'+1,n-1

+Em'+1,n,B(Vm'+2,n+1 ± Urm',n-1 - Vm'+2,n-1 - Um',n+i) + Gm'+i,nVm'+i,n

form = m' + 1.

(2.26)

Taking these special cases into considerations, the (M - 1) x N difference equation
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can be expressed in a matrix form

H(1,0)(1,O)

H(m',)(1,)

H(mI+1,0)(1,O)

H(M-1,N-2)(1,O)

H(M-1,N-1)(1,0)

U', 0

U', 1

U1,N-1

U 2 ,0

Um',0

Um',N-1

Vm'+1,o

Vm'+1,1

Vmt+1,N-1

Vm+2,0

VM-1,N-1

H(1,o)(mi,0)

H(1,1)(m',0)

H

H(M-1,N-2)(m',O)

H(M-1,N-1)(m',O)

U 1 ,0

U 1 ,1

U1,N-1

U 2 ,0

UmI,0

Um',N-1

Vm+i1,0

Vm'+1,1

Vm'+1,N-1

Vm'+2,0

VM-1,N-1

41

H(1,0)(M-1,N-1)

H(1,1O)(M-1,N-1)

H(M'+1,0)(M-1,N-1)

H(m-1,N-2)(M-1,N-1)

H(M-1,N-1)(M-1,N-1)

(2.27)



where H is obtained from Equation (2.22). As an illustration, the determination

of the coefficient H(1,o)(1,o) is presented in this section. Applying Equation (2.22) for

the grid point (ri, O) = (Jr, 0) results in

Au 1 ,o = Al,O,Au2,o + B1,O,AUOO + Cl,o,AUl,1 + Dl,o,Au,_l

+ E1,o,A(u 2,1 + uo,_1 - UO, 1 - u 2,- 1 ) + F1,Ou1,0
(2.28)

= Al,o,Au 2,o + B,o,Auo,o + C1,o,AUi,1 + D1,o,Aul,N-1

+ E1,o,A(u 2 ,1 - U2,N-1) + F1 ,0u1 ,0.

Substituting Equation (2.24) into Equation (2.28), the coefficient H(1,o)( 1,o) is found

to be

H(1,o)(1,o) = B,o 'A + F1,o.
2(al1,A + a22,A)

(2.29)

With all the H coefficients readily available, the u, v, and A in Equation (2.27)

can be solved easily with the aid of software such as Matlab or Mathematica. As

a reminder, it should be noted that the approximation made for uo,,, assumed the

condition (6r)2 < 2(a11,A + a 2 2 ,A)/A, and the use of a uniform grid assumes that the

solutions '(r, 0) do not change rapidly (low energy states). Thus, the accuracy of the

solution decreases as the eigenvalue (eigen-energy) increases.
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Table 2.1: Comparison of the lowest four eigenvalues Acore-shell wire and Asimple wire and
their degeneracies for the special case of Ua1,A = aC22,A = 0 11,B = C22,B = 1.

Acore-shell wire Asimple wire Degeneracy
5.7837 5.7837 1
14.6688 14.6688 2
26.2624 26.2624 2
30.4678 30.4678 1

2.4 Comparison with the Nanowire Numerical So-

lution

The core-shell nanowire numerical solution obtained in this thesis is compared with

the previously published simple nanowire calculation [10]. The cases and parameters

are selected accordingly to the conditions of the previously published results. When

the core and the shell material of the core-shell nanowire have the same effective mass

tensor and the same crystallographic orientation along with a zero interface offset, the

case of a core-shell nanowire reduces to the case of a simple nanowire. Table 2.1 com-

pares the lowest four eigenvalues Acore-shell wire and Asimple wire and their degeneracies for

the special case of 011,A = a22,A = all,B = O22,B = 1. Table 2.2 compares the lowest

four eigenvalues Acore-shell wire and Asimple wire for the special case of a11,a = A11,B = 1

and Ce22,A = Ce22,B = 3. All the values in these tables are computed under the condi-

tion where d = nm, e = 2nm, V = 0 eV, M = 64, and N = 40. The results show

that the core-shell nanowire numerical scheme gives exactly the same result as the

nanowire numerical scheme. This agreement provides some check on the computer

program used to calculate the results for the core-shell nanowire model.
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Table 2.2: Comparison of the lowest four eigenvalues Acore-shell wire and Asimple wire and
their degeneracies for the special case of a11,A = a11,B = 1 and a22,A = a22,B = 3.

Acore-shell wire Asimple wire Degeneracy
11.4759 11.4759 1
21.7205 21.7205 1
36.2447 36.2447 1
36.2874 36.2874 1
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Chapter 3

Modeling of the Si/SiGe

Core-Shell Nanowire

This chapter first presents the properties of Si, Ge, and SiGe, along with the effect

of strain on SiGe in Section 3.1. It then continues with the approximations and

assumptions used for modeling the Si/SiGe core-shell nanowire structure in Section

3.2. The chapter concludes with the effect of different parameters on the system in

Section 3.3.

3.1 Background

3.1.1 Properties of Si (Band Structure and Crystal Struc-

ture)

Si is a group IV semiconductor material. It has a diamond/zincblende crystal struc-

ture and it has a FCC lattice with two atoms per basis. The lattice constant for Si is

5.43 A. The lattice constant used here for the diamond structure is for the large unit

cell which contains 8 Si atoms. This unit cell is also used for Ge and SiGe alloys in

the following sections. Si has a density of 2.329 g/cm3 . It is an indirect gap material
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Figure 3-1: Band structure of Si [1].

with an indirect bandgap of 1.12eV at room temperature [13].

Figure 3-1 shows the band structure of Si. Its conduction band is characterized by

six equivalent ellipsoidal constant energy surface pockets with their minima located

along the <100>-axes of the first Brillouin zone. The minima of these valleys are

located at about 0.85ko (A), where ko is the zone edge lattice vector from F (<000>)

to X (<100>) as seen in Figure 3-1. The electron effective mass tensor of Si is given

as
Mt 0 0

0 mt 0 (3.1)

0 0 mi

where the tensor is taken to have components along the three principal axes of each

of the electronic pockets. mt and m, denote the transverse and longitudinal effective
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mass components, respectively. The longitudinal direction is along the principal axis

where the pocket minima are located, and the two transverse directions are then along

the other two principal axes. For example, an electron pocket with its energy minima

located along [100] has its longitudinal axis as [100] and its transverse axes as [010]

and [001]. At room temperature, mt is 0.19mo and m, is 0.98mo where mo is the

electron rest mass [1].

On the other hand, the valence bands of Si are characterized by three spherical

pockets (heavy hole, light hole, and split-off hole) with their maxima located at the

zone center of the first Brillouin zone. The heavy hole and the light hole valence

bands have a common energy extrema point. Due to the spin-orbit interaction, the

split-off hole valence band pocket lies 0.044eV below the other two valence bands

at room temperature (300 K) (see Figure 3-1). Since all of the valence bands have

spherical constant energy surfaces in the approximation used here, their masses are

not direction dependent. The split-off valence band has an effective mass that is

denoted by m,,. The heavy hole and light hole degenerate valence bands have an

effective mass denoted by mhh and mIh, respectively. At room temperature, mhh is

0.49mo, mih is 0.16mo, and m, is 0.24mo [1].

Due to its cubic symmetry, the mobility of bulk Si is isotropic. The mobility

tensor for electrons in Si is given by

a t 0 0

0 /1, 0 ,(3.2)

0 0 p

and the hole mobility tensor is given by

Ph 0 0

0 Ph 0 .(3.3)

0 0 ph
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Figure 3-2: Band structure of Ge [2].

At room temperature, the intrinsic Si electron mobility and hole mobility is about

1400 cm 2 /(V - s) and 450 cm2 /(V . s), respectively [1].

3.1.2 Properties of Ge (Band Structure and Crystal Struc-

ture)

Similar to Si, Ge is a group IV semiconductor material. It has a diamond/zincblende

crystal structure. It also has a FCC lattice with two atoms per basis. The lattice

constant for Ge is 5.658 A. It has a density of 5.3234g/cm3 . It is an indirect gap

material with an indirect bandgap of 0.66 eV and a direct bandgap of 0.8 eV at room

temperature (see Figure 3-2) [14].

Figure 3-2 shows the band structure of Ge. Its conduction band is characterized by

four equivalent ellipsoidal constant energy surface pockets with their minima located
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about the L point where the <111>-axes intersect with the first Brillouin zone. The

electron effective mass tensor of Ge is given as

Mt 0 0

0 Mt 0 (3.4)

0 0 m,

where the tensor is expressed along the principal axes of each of the electronic pockets.

mt and m, are the transverse and longitudinal effective mass components, respectively.

The longitudinal direction is along the principal axis where the pocket minima are

located, and the two transverse directions are then along the other two mutually

orthogonal principal axes. For example, an electron pocket with its energy minima

located along [111] has its longitudinal axis as [111] and its transverse axes as [110]

and [112]. At room temperature, mt is 0.0815mo and m, is 1.59mo where mo is the

electron rest mass [2].

On the other hand, the valence bands of Ge are characterized by three spherical

pockets (heavy hole, light hole, and split-off hole) with their maxima located at the

zone center of the first Brillouin zone. The heavy hole and the light hole valence

bands have a common energy extrema point. Due to the spin-orbit interaction, the

split-off hole valence band pocket lies 0.29eV below the other two valence bands

at room temperature (300 K) (see Figure 3-2). Since all of the valence bands have

spherical constant energy surfaces in the approximation used here, their masses are

not direction dependent. The split-off valence band has an effective mass that is

denoted by m,,. The heavy hole and light hole degenerate valence bands have effective

mass components labeled by mhh and mth, respectively. At room temperature, mhh

is 0.33mo, Mih is 0.043mo, and m, is 0.084mo [2].

Due to its cubic symmetry, the mobility of bulk Ge is isotropic. The mobility
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tensor for the electrons in Ge is given by

P 0 0

0 p1e 0 , (3.5)

0 0 p

and the hole mobility tensor is given by

ph 0 0

0 Ph 01. (3.6)

0 0 ph

At room temperature, the intrinsic Ge electron mobility and hole mobility are about

3900 cm 2 /(V -s) and 1900 cm 2 /(V. s), respectively [2].

3.1.3 Properties of SiGe alloy (Band Structure and Crystal

Structure)

SiGe forms a random alloy rather than a perfect crystal, since SiGe alloys do not have

a periodic structure. However, the SiGe alloys possess properties that are very similar

to those of Si or Ge, depending on the alloy composition [3]. To first order, the lattice

constant of Sii_2Ge. alloys (Figure 3-3) varies linearly from 5.43 A to 5.658 A with

the Ge concentration x. Similar to both Si and Ge, the SiGe alloys have an indirect

bandgap.

The band structure of the variation of the SixGej1 x alloy with Si concentration x

(Figure 3-4) shows a cross-over in its lowest conduction band edge from being located

along <111> (Ge-like) for low Si concentrations to being located along <100> (Si-

like) for larger Si concentrations. The crossover occurs at around SiO.1 5Geo.85 for bulk

samples, showing that for most of the range of Si concentration x, the band structure

is Si-like. The effective mass and electronic behavior of the Si-like and the Ge-like
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Figure 3-3: Lattice constant of Sii_.2Ge. alloys as a function of Ge content x. The
lattice constants for pure Si and pure Ge are 5.43 Aand 5.658 A, respectively [3].

SiGe alloys are approximately equivalent to those of Si and Ge, respectively.

The SiGe alloy has a lower mobility than pure Si or pure Ge for both the electrons

and the holes (see Figure 3-5 and Figure 3-6). The hole mobility is lower than the

electron mobility for Si, Ge, and SiGe alloys. The decrease in mobility in SiGe alloys

relative to that for Si and Ge is mainly due to alloy carrier scattering. For electrons,

near the cross-over composition SiO. 15Geo.85, intervalley electron scattering between

the L point and the A point also plays a major role in decreasing the electron mobility.

3.1.4 Strain Effect on the SiGe Band Structure

There exists a rather large difference in the lattice constant between Si (5.43 A) and

Ge (5.658 A), a 4.18% difference. Due to this big lattice mismatch between Si and

Ge, there is also a mismatch in the lattice constant between Si and SiGe alloys. Thus
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Figure 3-5: Electron mobility of SiGe alloys as a function of Si concentration [4].
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Figure 3-6: Hole mobility of SiGe alloys as a function of Si concentration [4].

misfit dislocations tend to be formed when a SiGe alloy is grown on a Si substrate.

However, with advances in technology, it is now possible to grow a thin dislocation-

free epitaxial layer of SiGe alloy on top of the Si substrate [15].

Because of the difference in lattice constants between Si and SiGe alloys, strain is

introduced in the epitaxial SiGe alloy layer grown on top of a Si substrate, where the

Si substrate in this case is regarded as a rigid body. This strain alters the electronic

structure of the SiGe alloy layer.

Consider the case of a SiGe alloy 2D epitaxial layer grown on a Si substrate with

a growth direction of [001] (labeled as the z axis) as an example. In this example,

the SiGe alloy layer is under biaxial stress along [100] (labeled as the x axis), [100]

(labeled as the -x axis), [010] (labeled as the y axis), and [010] (labeled as the -y axis).

This biaxial stress causes the in-plane (x and y) lattice constants of the epitaxial SiGe

alloy layer to contract as they become equal to the lattice constant of the Si. The

contraction in this case is the same in both the x and the y directions. On the other

hand, the lattice constant of the epitaxial SiGe alloy layer in the growth direction

(z) will expand to maintain a constant volume of the SiGe unit cell. Thus, strain is

introduced in all three x, y, and z directions. As a result of the increase in lattice
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constant in the growth direction (z), the binding energy of the electrons along z will

be decreased and the conduction band energy will be increased for the [001] and [001]

carrier pockets (A2 in Figure 3-7) relative to those of Si. Since the in-plane lattice

constants of the SiGe alloy are similar to Si, the conduction band for the [100], [100],

[010], and [010] carrier pockets (A 4 in Figure 3-7) will have a similar energy with

respect to those of Si. At the same time, this strain also lifts the degeneracy of the

heavy hole (V2 in Figure 3-7) and the light hole (V1 in Figure 3-7) valence bands.

The effect of this strain on the split-off valence band is much weaker. Figure 3-7

summarizes the strain effect on the electronic structure of an epitaxial layer of a SiGe

alloy grown on a Si substrate with a growth direction of [001]. The energy for each

band is referenced to the band structure of pure Si.

3.2 Assumptions and Approximations of the Si/SiGe

Core-Shell Nanowire System

There is currently no data available for the effect of strain on the electronic structure

of a SiGe alloy epitaxial layer grown on a Si wire. As a first start, the 2D result from

Figure 3-7 will be used as a guide for the construction of a model for the core-shell

nanowire consisting of a Si core and a SiGe alloy shell, with the wire direction taken

along [001].

For simplicity, let us first approximate the wire cross section as a square and let

us take the wire axis along [001] (labeled as the z axis). The growth of the SiGe

epitaxial layer in this case will always be normal to the wire axis. Therefore, the

maximum compression of the SiGe lattice constant will occur in the direction of the

wire axis. In the directions normal to [001], two cases will be considered - the face

normal to [100] (labeled as the x axis) and the face normal to [010] (labeled as the y

axis). For the face normal to the x axis, the lattice of the epitaxial SiGe layer along

the y and z axes are under compression, while the lattice along the x axis expands.
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Figure 3-7: Energy of the conduction and valence band extrema for a strained
Sip-,Ge, alloy as a function of Ge concentration x for an epitaxial Siij2Gex layer
grown on a Si substrate with a growth direction of [001]. V1, V2 , and V3 denote
the light-hole-like, heavy-hole-like, and split-off-like valence bands, respectively. A 2

denotes the conduction band with minima along [001] and [001], whereas A4 denotes
the conduction band with minima along [100], [100], [010], and [010]. The conduc-
tion band minima at the L point of the strain SiixGex layer relative to that of Si is
denoted by L [5].
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For the face normal to the y axis, the lattice of the epitaxial SiGe layer along the x

and z axes contracts, whereas the lattice along the y axis expands. To summarize,

the [001] direction is always under compression, while directions [100] and [010] will

suffer a net expansion or compression, depending on the face under consideration.

When viewed in cylindrical coordinates for a cylindrical core-shell nanowire, the

circumferential direction (which is a linear combination of the [100] and [010] direc-

tions) will experience a net contraction, but less than the contraction along the [001]

direction. At the same time, the growth direction (which is also a linear combination

of the [100] and [010] directions, but orthogonal to the circumferential direction) will

experience a net expansion, with a magnitude depending on the number of layers

that are grown. However, the expansion in this case is less than for the 2D case.

Thus, the [100] and [010] directions (and their negative counterparts) experience a

net expansion on average. As a first approximation, we consider the behavior along

the [100] and [010] directions in the core-shell wire case to be similar to the behavior

of the direction for the A 2 conduction pockets of the 2D case in Figure 3-7, while

the behavior along the [001] direction is similar to the behavior of the direction of

the A4 conduction pockets for the 2D case in Figure 3-7. The approximation used

here for modeling the cylindrical case is that the SiGe electron pockets with energy

minima along the wire axis (denoted as A2c in Figure 3-8) are assumed to have an

energy deviation from Si that is similar to that of A 4 in Figure 3-7, while the energies

for the other SiGe electron pockets with energy conduction band minima along the

other two directions are assumed to be the same (denoted as A 4c) and are taken to

have the x (Ge concentration) dependence of A 2 in Figure 3-7. The x dependence of

the three valence bands is modeled to be the same as for the 2D case. In this way, a

crude model for the band extrema for the core-shell nanowire is constructed. Figure

3-8 summarizes the band structure model assumed for the strained SiGe alloy layer

for a Si/SiGe core-shell nanowire with a wire direction of [001].

In this thesis, the model calculation assumes a sharp interface between the Si core
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Figure 3-8: Energy of the conduction and valence band extrema as a function of x for a
strained Sii_-Gex alloy epitaxial layer grown on a Si core wire with a wire direction of
[0011. VI, V 2, and V3 denote light-hole-like, heavy-hole-like, and split-off-like valence
bands, respectively. A 2c denotes the conduction band with minima along [001] and
[001], A 4c denotes the conduction band with minima along [100] (corresponding to
the nanowire axis), [iOO], [010], and [010], and L denotes the conduction band with
minima along <111>.
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and the SiGe shell. The model neglects any grading concentration in the core or in

the shell. The growth directions of both the Si core and the SiGe shell are assumed to

be the same. The interface is modeled as a potential offset between the two materials.

As a first approximation, the electron and hole effective masses of the SiGe alloy are

taken either as the mass of Si or Ge, depending on the composition of the alloy (see

Figure 3-4). This means that in the crudest approximation, we use the Si effective

mass values for the Si-like band structure and the Ge effective mass values for the

Ge-like band structure. This approximation can be improved if the mass components

are known for Si and Ge at A and L, and we apply Vegard's law to obtain the mass

components for the proper composition of the SiGe alloy. The core-shell nanowire is

assumed to be imbedded in a non-conducting medium. The non-conducting medium

is here modeled as a material with an infinite potential and thus there would only be

transport in the wire direction.

3.3 Effect of Different Parameters on the Si/SiGe

Core-Shell Nanowire System

The core-shell nanowire system depends on various parameters. The three parameters

that have the greatest effect are the alloy composition of the SiGe alloy, the total core-

shell wire diameter (e), the core wire diameter (d), and the shell thickness ((e - d)/2).

These parameters determine the energy levels and quantum confinement effect of the

system, which in turn govern the properties of the core-shell nanowire system.

From a thermoelectrics materials point of view, systems with a large quantum

confinement effect are desired. It is the goal of this section to determine which

configuration of the parameters in question will result in the best thermoelectric

system.

Applying the model developed in Chapter 2 to the Si/SiGe core-shell nanowire

system, the energy levels of this particular system are found. In the following subsec-
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tions, the effect of different parameters on energy is presented only for the two lowest

degenerate conduction bands (A 2,) and the highest valence band (V 2 ) in the strained

SiGe shell material. To understand the role for the three parameters in determining

the energy levels of the subbands, it is sufficient to consider only a few sample cases.

From the analysis, one then can access the ranges of the parameters that are of inter-

est for specific applications. The results obtained for the A2c and the V2 bands can

then be used to generalize the effect of the three different parameters on the subband

energies of the other conduction and valence bands in the strained SiGe layer (A4c

and V1) and their possible occupation with carriers.

3.3.1 Effect of the Composition of the SiGe Alloy Layer

A different SiGe shell composition results in different band offsets (Vc,,d and -V,,,a)

at the interface between the core and the shell layer. Vfld and -Vvai are each taken

to be the energy difference between the band extrema for the shell SiGe alloy with

respect to that for the core Si conduction and valence bands, respectively. Figure 3-8

shows that over the whole range of x (Ge concentration), the conduction band offset

V,,,d of the A2c band varies from -0.1 eV to 0.1 eV, whereas the valence band offset

-Vvai of the V 2 band ranges from 0 eV to 0.8 eV.

A schematic view of the electron's energy levels of the core-shell nanowire system

for the first case of VKnd >0 for A2c with -Vai >0 for V2 , and for the second case of

Vod <0 for A2c with -Vva >0 for V2 are shown in Figure 3-9 (a) and (b), respectively.

Conduction Band

Since the lowest SiGe conduction bands (A2,) result in both positive and negative

potential offsets at the interface, the distribution of the probability density of electrons

changes with the composition of the SiGe alloy layer. For example, when the strained

SiGe shell results in a positive conduction band offset at the interface (VcQsd >0),
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Figure 3-9: Schematic view of the energy levels for the core-shell nanowire system for
the case of (a)V 0nd >0 for A2, with -Vai >0 for V2 , and (b)Vofld <0 for A2 , with
-Vai, >0 for V2 . This figure is NOT drawn to scale.
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Figure 3-10: (a) Energy diagram and (b) carrier probability density distribution of
the lowest electron energy eigenstate of the general case, where the Si core acts as
the potential well for the Si/SiGe core-shell nanowire. x and y denote the real space
axes for the core-shell nanowire.

the core Si acts as an electron potential well (see Figure 3-10(a)). This leads to a

higher probability of finding electrons in the Si core than in the SiGe alloy shell. For

illustration, Figure 3-10(b) shows the probability distribution of the lowest energy

electron eigenstate, indicating that the electrons are highly localized in the Si core

region.

On the other hand, if the SiGe alloy layer results in a negative conduction band

offset at the interface (V=d <0), the Si core becomes a potential barrier (see Figure

3-11(a)). This results in a higher probability of finding the electrons in the alloy

shell. Figure 3-11(b) shows the probability distribution of the electrons in the lowest

energy eigenstate as an illustration. Thus, as the composition changes (as Veod
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Figure 3-11: (a) Energy diagram and (b) carrier probability density distribution of
the lowest electron energy eigenstate of the general case, where the Si core acts as the
potential barrier for the Si/SiGe core-shell nanowire. x and y denote the real space
axes for the core-shell nanowire.
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correspondingly changes), the electron probability density changes between being the

highest in the shell for Va0nd <0 to being the highest in the core for VQd >0.

The magnitude of the interface conduction band offset (Vond) plays a major role

in the determination of: (1) the number of energy levels being confined in the lower

potential region and (2) where the lowest subband level lies. Since the chemical

composition in the SiGe shell layer determines the magnitude of the offset at the

interface, as shown in Figure 3-8, any change in composition changes the number of

energy levels being confined in the lower potential region. The Vc"0 d effect on the

number of energy levels that are confined is now illustrated for 3 different cases.

Figure 3-12(a) shows the Vcond effects on the first 20 conduction energy levels for

the case of large e and d ~ e (thin shell). In this case, as VCond goes from negative

to positive, the number of conduction energy levels that are confined goes from 0 to

a large number. Figure 3-12(b) shows the VQnd effects on the first 20 energy levels

for the case of a large e with d << e (thick shell). In this case, as Vcond goes from

negative to positive, the number of conduction energy levels that are confined goes

from a large number to close to 0. As can be seen from Figure 3-12 (especially the

lowest energy level in Figure 3-12(b)), the choice of d also has a large effect on the

number of energy levels being confined and on the energy of the levels. The effect of

d will be discussed in detail in Section 3.3.3.

Figure 3-13 illustrates the Veond effect on the first 20 energy levels for the case of

small e and d ~ e (small core and thin shell). This case might not be realistic from

a fabrication standpoint. However, it shows that the conduction band energy levels

depend not only on Vcond, but also on the parameters d and e. In this case, as Vcosd

goes from negative to positive, the number of conduction subband energy levels that

are confined is unchanged. Comparing Figure 3-12(b) with Figure 3-13, one can see

that e also plays a role in determining the number of energy levels being confined, as

well as the energy of the levels. The effect of e will be discussed in detail in Section

3.3.2.
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Figure 3-12: Effect of the potential offset at the interface on the first 20 subband
conduction levels of the core-shell nanowire system for (a)d=45nm with e=50nm,
and (b)d=5nm with e=50nm.
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E vs V,.. (d=5nm, e=6nm)
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Figure 3-13: Effect of the potential offset Vad at the core-shell interface on the
first 20 subband conduction levels of the core-shell nanowire system for d=5nm with
e=6nm (small core and thin shell).
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Valence Band

For the valence band, changing the composition of the SiGe alloy results in only

a positive shift in electron energy at the interface (see Figure 3-8). This shift is

equivalent of a negative shift in hole energy at the interface. Thus, the Si core always

acts like a hole barrier for all ranges of Ge composition x (see Figure 3-11). As a

result, any changes in the shell composition only lead to the change of the magnitude

of the band offset between the interface, which affects the amplitude of the probability

density and number of valence energy levels being confined in the shell. The effect of

Vai on the energy levels is shown in Figure 3-14 and Figure 3-15 for the same cases

considered in the last section for the cases of the conduction band.

From Figure 3-14 and Figure 3-15, one can see a similar effect of Vvai on the

number of valence subbands being confined as for the conduction subband case (see

Figure 3-12 and Figure 3-13). The only difference in the valence band case is that Vai

is always negative and can be as negative as -0.8 eV. When Vi gets this negative,

almost all of the valence subbands will have very negative energies, resulting in a

large hole confinement in the shell region of the core-shell structure.

Summary

Looking at the variation of the band offset energies alone, one can conclude that

systems with small e and a relative small magnitude of the band offset result in a

much larger quantum effect than systems with large e. Thus, one should expect

that in order for the core-shell nanowire system to result in good thermoelectrics

performance, a small e and some small offset (~ kBT ~ 26 meV at T=300 K) are

desired.
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Figure 3-14: Effect of the potential offset Va at the core-shell interface on the first 20
subband valence levels of the core-shell nanowire system for (a)d=45nm with e=50nm
(thin shell), and (b)d=5nm with e=50nm (thick shell).
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E vs Vvai (d=5nm, e=6nm)
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Figure 3-15: Effect of the potential offset Vvai at the core-shell interface on the first
20 subband valence levels of the core-shell nanowire system for d=5nm with e=6nm.

3.3.2 Effect of the Total Core-Shell Diameter (e)

The total core-shell diameter (e) plays a major role in the determination of the sub-

band energies and the subband energy separation of the core-shell nanowire system.

The quantum confinement effect of the system only occurs when the total core-shell

diameter is small. The effects of the core diameter and of the shell thickness are sec-

ondary effects relative to the total core-shell diameter. For example, at a large total

core-shell diameter, there is very little quantum confinement effect, and the separation

between the energy levels is small compared to kBT (26 meV at T=300 K). As the

total core-shell diameter gets smaller, the separation between the subband energies

of the system becomes larger and the overall energy of each subband increases. At a

very small total core-shell diameter, the effect of the quantum confinement becomes

so large that the system acts as if the potential barrier of the interface does not exist.

Figure 3-16 and Figure 3-17 illustrate the effect of the total core-shell diameter (e)
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for different constant core diameter values and for different interface offset energies

(Vond) on the conduction subband levels, while Figure 3-18 illustrates the effect of the

total core-shell diameter for different constant core diameter values and for different

interface offset energies (Vvai) on the valence subband levels.

As seen from Figure 3-16, Figure 3-17, and Figure 3-18, the energies of all the

subband levels are identical in most cases at small e values, and the energy separations

between the subband levels are identical for all cases at small e values. Thus, e has

the most influence on the energies of the subband levels and on the energy separations

between the subbands. At the same time, d, Vofd, and Va. also have a small influence

on the energies of the subbands, resulting in a difference in the barrier cross-over point

for these figures. However, d, Von d, and V.i have no influence on the separation of

the energy levels. The effect of d will be discussed in detail in Section 3.3.3, whereas

the effect of VKond and Vvai has already been discussed in detailed in Section 3.3.1.

One can look at the total core-shell diameter as the length that determines the

quantum confinement requirement for the system, whereas the confinement effect of

the core diameter or of the shell thickness is in part contained within the effect of the

total core-shell diameter.

Summary

The results of this subsection alone suggest that the quantum confinement effects

only occur for small values of e. Once again, good thermoelectric performance points

to using a core-shell nanowire with small e values.

3.3.3 Effect of the Si Core Diameter (d) and of the SiGe Shell

Thickness ((e - d)/2)

The effect of the core diameter can be seen in two different situations: the core as

a potential well or the core as a potential barrier. The effect of varying the shell
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Figure 3-16: Effect of the total core-shell diameter on the first 20 subband conduc-
tion levels of the core-shell nanowire system for (a)d/e=0.1 with V,,d=0.045eV, and
(b)d/e=0.9 with Vd =0.045eV.
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(a)

E vs e (d/e=0.01, V .. d=-0.03eV)
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Figure 3-17: Effect of the total core-shell diameter on the first 20 subband conduction
levels of the core-shell nanowire system for (a)d/e=0.01 with Vd=-0.03eV, and
(b)d/e=0.99 with Veend=-0.03eV.
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E vs e (d/e=O. 1, V,,=-0.65eV)
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Figure 3-18: Effect of the total core-shell diameter on the first 20 subband va-
lence levels of the core-shell nanowire system for (a)d/e=O.1 with Vvai=-0.65eV, and
(b)d/e=0.9 with Va=-0.65eV.
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thickness ((e - d)/2) is simply the opposite of the effect of varying the core diameter

(d) at constant e.

The Core as a Potential Well

When the core acts as a potential well, it has a lower energy than the shell and tries

to trap carriers in the core (see Figure 3-10). At a very small core diameter, there is

a large quantum confinement effect within the core, but very little in the shell. Thus,

this effect results in an energy increase of the subbands that would have been trapped

in the core. As a result, all of the subbands will have energies above the potential

barrier introduced at the interface. As the core diameter increases, the quantum

confinement effect within the core decreases and the energy of the system starts to

decrease. As the core diameter approaches the core-shell diameter, the effect of the

quantum confinement in the core will diminish and this results in carrier trapping in

the core. Figure 3-19 summarizes the effect of core diameter for the conduction bands

of a core-shell nanowire where the core acts as a potential well for the case of a small

e and of a large e. The difference in the behavior of the two cases in Figure 3-19 is

due to the effect of e (see Section 3.3.2).

The Core as a Potential Barrier

The effect is reversed when the core acts as a potential barrier. At small core diameter

values, the shell thickness is large and the quantum confinement effect is small in the

shell, resulting in carrier trapping in the shell. As the core diameter increases, the

shell thickness decreases, resulting in a larger quantum confinement effect in the shell.

As the core approaches the core-shell diameter, the quantum confinement effect in

the shell is so large that there is little trapping occurring in the shell. Figure 3-20

and Figure 3-21 summarize the effect of the core diameter on the conduction subband

levels and the valence subband levels, respectively. Once again, the difference in the

behavior within each figure is due to the effect of e (see Section 3.3.2).

73



(a)

E vs d/e (e=5nrm, Veld =0.045eV)

3.5

3

2.5 - - --.--.- -------- - ---.-- ----. .. -

2-

1.5

0.5

0
0 Bamer 0.2 0.4 0.6 0.8

d/e

(b)

E vs d/e (e=50nm, V,,d =0.045eV)

0.08 -

0.07-

0.06

0.05

4 0.04 -

0.03 -

0.02 -

0.01 -

0

0

Barrier

*\ F\ N\.

*4.

0.2 0.4 0.6 0.8

d/e

Figure 3-19: Effect of the core diameter on the first 20 subband conduction levels
of the core-shell nanowire system for (a)e=5nm with Vgd=0.045eV, and (b)e=50nm
with Vnd=0.045eV.
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(a)

E vs d/e (e=5nm, Vednd=-0.03eV)
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Figure 3-20: Effect of the core diameter on the first 20 subband conduction levels

of the core-shell nanowire system for (a)e=5nm with Vnd=-0.03eV, and (b)e=50nm

with Vd=-0.03eV.
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(a)

E vs d/e (e=5nm, Va=-O.01eV)
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Figure 3-21: Effect of the core diameter on the first 20 subband valence levels of the
core-shell nanowire system for (a)e=5nm with Vva=-O.OleV, and (b)e=50nm with
VvaO=-.O1eV.
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Summary

From the results of this subsection, it is found that a proper choice of d is also very

important for the core-shell nanowire system to have a large quantum mechanical

effect. Thus, depending on whether the core acts like a well or a barrier for the

carriers, one should choose d so that only a small trapping or no trapping effect

results. For example, d << e is desirable for the case of Vfld >0, whereas, d ~ e is

desirable for the case of V 0nd <0 or Vai <0.

3.3.4 Conclusions

As seen from Section 3.3.1, Section 3.3.2, and Section 3.3.3, both d, e, and V have

a huge effect on the determination of the actual energies of the conduction subband

levels and of the valence subband levels. The separation between the subband levels

is mostly controlled by e. For the case where the core acts like a potential well

(Von > 0), e has the largest effect on the determination of the energy separation and

on the energy of the subband levels. Having fixed the value of e, d plays the role of

determining the number of subband levels that are inside the core potential well. As

for the core as potential barrier case (Vc0sd < 0 and Vva < 0), the role of e is similar

to that for the Vcond > 0 case. However, the effect of d is reversed for the cases of

VC,d < 0 and Vai < 0 relative to the cases of Vcod > 0. Namely, for the V 0sd < 0

and Vai < 0 cases, d plays the role of determining the number of subband levels that

are inside the shell potential well for a fixed e.

After performing the analysis in this section, we come to the conclusion that the

core-shell nanowire system with the greatest quantum mechanical effect is the one

with a small e, a relatively small magnitude of the offset V (resulting in only few or

no subband levels being confined), and a d that results in a secondary confinement

effect in the lower potential energy region (in the core for the case of VOfd > 0 and in

the shell for the case of Vcond < 0 or Vai < 0). Thus, the core-shell nanowire system

with these ranges for the 3 parameters controlling the geometric and energy config-
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urations is expected to have the greatest potential for showing good thermoelectric

performance.
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Chapter 4

Transport Properties of the Doped

Si/SiGe Core-Shell Nanowires

A semi-classical model is applied in this chapter to derive various transport properties

of the core-shell nanowire system. Section 4.1 gives a brief summary of a semi-classical

model for a nanowire. Approximations and assumptions used for the calculation of

the core-shell nanowire are discussed in Section 4.2. The transport results of the

core-shell nanowire system are summarized in Section 4.3. The chapter concludes

with consideration of the effect of different parameters on ZT in Section 4.4.

4.1 Semi-Classical Transport Model

Recalling from Chapter 1, the thermoelectric performance of a materials system

depends on its dimensionless thermoelectric figure of merit (ZT). According to

ZT = S 2 -T/(ie + KL), ZT depends on the electrical conductivity (a), the Seebeck

coefficient (S), the electrical thermal conductivity (re), the lattice thermal conduc-

tivity (KL), and the temperature (T). In Section 4.1.1, the treatment of the terms or,

S, and K, are considered, while in Section 4.1.2, the treatment of kL is considered.
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4.1.1 Electrons

The semi-classical model is used to derive various transport coefficients (o-, S, and K,)

for the core-shell nanowire system. The semi-classical model is based on the Boltz-

mann transport equation. The Boltzmann transport equation has been studied for

iD, 2D, and 3D systems [16, 7, 8, 17]. For a simple one-band model in 3 dimensions,

the carrier density (n), the electrical conductivity (o), the Seebeck coefficient (S),

and the electrical thermal conductivity (Ke) are derived as [16, 7, 8]:

no = f 2 () f (E), (4.1)

o = L(O, (4.2)

1 L1)
S = (L(0 ) (4.3)

e2T L(O

where T is the temperature in degrees Kelvin, and

L/) = 2e (2 ) T(E (k))v(k)v(k)(E (k) -Ef),(4

where the factor of 2 accounts for the electron spin, / is the dimension of the system

under consideration, a = 0, 1, 2, while d is the differential element in / dimensional

k space, E(k) denotes the carrier dispersion relation, T(E(k)) is the relaxation time

which in general depends on E(k), Ef is the Fermi energy, and f (E) is the Fermi-Dirac

distribution function,
1

1 + e(E-Ef)/(kBT) (4.6)

In order to compare the ID coefficients with the bulk coefficients, the ID coefficients

that are sensitive to dimensionality, namely no and L(, are divided by an extra
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cross sectional area term. The cross sectional area for a nanowire with radius (d,)/2

is 7r(d,) 2 /4. The 1D L(' and n1D then become

L = 4e2 J( df) T(E(k))v(k)v(k)(E(k) - Ef)a, (4.7)1D f 7rd,) 2 \dE/

nD f f (E) = g(E)f(E)dE, (4.8)

where g(E) denotes the electronic density of states and dIlD is the differential element

in ID k space. The calculation of Equation (4.5) or Equation (4.7) requires knowl-

edge of the relaxation time r(E(k)). In general, consideration of detailed relaxation

processes and their energy dependence is a rather difficult task for the computation

of T(E(k)). For simplicity, an approximation known as the constant relaxation time

approximation (RTA) has been employed for the formulation of general model calcu-

lations, leaving the consideration of specific scattering mechanisms and their energy

dependence to more accurate and systematic detailed studies of specific materials

systems [18, 19].

In the constant RTA model, T(E(k)) = T is considered to be constant in both E

and k space. The relaxation time T can then be simply related to the carrier mobility

u along the wire by

r , (4.9)

where m* and p are the transport effective mass and mobility along the wire direction,

respectively. With the constant RTA approach, the integration of Equation (4.5) and

Equation (4.7) can be carried out readily given the dispersion relation E(k).

In any systems, there are many energy bands that need to be taken into consid-

eration due to the degeneracy of the multiple carrier pockets at the conduction band

and valence band extrema. For a quantum wire system, besides the degeneracy effect,

quantum confinement also introduces band splitting, and results in a set of subbands

that comes from a single band of the bulk material. Therefore, when considering
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the transport properties of a ID system, contributions from all of the subbands with

band extrema close to the Fermi energy (within ~ 10kBT) need to be included. For

a multi-band system, the n and L(')'s in Equations (4.1)-(4.4) needs to be replaced

by the sum ntotal = j, nj and L() 1 = of contributions from each subband

j, and the quantities n, or, S, and i, become

ntotal = n (4.10)

Utot1 L

Stotal = - , (4.12)
eT L

e,total = ( L - ) (4.13)~etCa 2TZL 3 (4.13)0

4.1.2 Phonons

Besides n, -, S, and re, the lattice thermal conductivity (rIL) is another quantity

of interest for thermoelectric applications. 1IL and K. together sum to be the total

thermal conductivity r, = 'le + 'IL of the system. From kinetic theory, the thermal

conductivity of a single branch phonon is given by [20]

1
KL = -CvV,1P, (4.14)

3

where Cv is the heat capacity per unit volume, v, is the sound velocity of the phonon

in that branch, and l, is the phonon mean free path.

The bulk single branch phonon mean free path can be calculated according to

Equation (4.14), given the values of Co, v, and KL for that branch. For a system

with multiple phonon branches, kL,total becomes the sum of 'LJ, where j is the index
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for each phonon branch, namely,

KLtotal Z Lj r , s,j pj. (4.15)
3i

However, the measured values of Cv and 1IL given in the literature already account

for contributions from all of the phonon branches. For a rough approximation, an

effective v, can be estimated as a weighted sum of v,,j over all branches as follows

[21],

V,-3 = 3(v 3 + 2vT3 ), (4.16)

where VL and VT denote the velocity of sound for the longitudinal acoustic phonon

branch and the transverse acoustic phonon branches, respectively. Using the mea-

sured values of Cv and 1'L with Equation (4.16), l, can then be calculated.

For a nanowire system, the electrons are well confined within the wire, but not the

phonons. Rather, the nanowire interface acts like a scattering center for the phonons.

When the phonons reach the interface, they are scattered, resulting in a decrease in

lattice thermal conductivity. As the diameter of the nanowire decreases, the lattice

thermal conductivity decreases due to the increase in the phonon interface scattering.

This phenomenon results in a decrease in the phonon mean free path. As a first

approach, the phonon mean free path (1p) could be modeled as a weighted average of

the bulk phonon mean free path (lp,bulk) and the nanowire diameter (d,) as follows,

- = + 1 (4.17)
IP -p,bulk dw

Thus, as the nanowire diameter decreases to a length much smaller than the bulk

phonon mean free path, a dramatic decrease in the lattice thermal conductivity is ex-

pected. This decrease in thermal conductivity is one of the reasons why enhancement

in thermoelectric performance results from low dimensional systems.
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4.2 Assumptions and Approximations for the Core-

Shell Nanowire System

4.2.1 Electrons

For the core-shell nanowire model under consideration, the electrons are considered to

be well confined within the wire and there is only transport along the wire direction.

As seen from Chapter 3, the electrons can be further confined to the core region or

to the shell region, depending on the interface conduction band extrema and valence

band extrema offset. However, this type of confinement only applies to the electrons in

the lowest energy levels. Moreover, there is still some probability for these low energy

electrons to be in the non-confined region of the core-shell structure. Therefore,

for simplicity, the electrons are assumed to travel throughout the entire core-shell

nanowire with a probability determined by the results of Chapter 3. Thus, the d" in

Equation (4.7) and Equation (4.8) will be replaced by the total core-shell diameter (e).

Furthermore, the mobility of the electrons is taken to be the lowest intrinsic mobility

of the two materials. These two approximations together form a crude approximation

for treating the electrons. These approximations for the electrons represent the worst

case scenario for the values of the coefficients appearing in the transport equations.

Thus, if the results are promising, there is much confidence that the device will have

a promising thermoelectric performance.

4.2.2 Phonons

The lattice thermal conductivity (KL) is found by considering the thermal current

between two points of a material (Q), which is given by [22]

QT
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phonon path in material A phonon path in material B

e d

phonon path in material B

Figure 4-1: A schematic view of the phonon transport in a core-shell nanowire.

where A is the cross sectional area perpendicular to the thermal current direction,

T denotes the temperature, and x is the thermal current propagation axis. As a

first approximation for the lattice thermal conductivity of a core-shell nanowire, the

phonons in each of the two materials are assumed to be independent of one another.

Correspondingly, the phonons in each material are assumed to be scattered specularly

at the interface. Figure 4-1 summarizes these assumptions.

For a core-shell nanowire with material A as the core and material B as the shell,

the total Qtotai is the sum of QA and QB,

Qtota = QA + QB- (4.19)

Using Equation (4.18), each of the terms in Equation (4.19) is given by
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Qtotal= L,ef fAtotal(- ), (4.20)

QA = KL,AAA(- (421)

QB =L,BAB( - 4.22)

By substituting Equations (4.20), (4.21), and (4.22) into Equation (4.19), the

effective lattice thermal conductivity of a core-shell nanowire is found to be

KL,eff = KL,AA o t L,B B (4.23)
Atotal Atotal

4.3 Thermoelectric Investigations of the Doped Si/SiGe

Core-Shell Nanowires

Using the results from Chapter 3 and the formalism developed in Section 4.1 and

Section 4.2, modeling of the thermoelectric coefficients for doped Si/SiGe core-shell

nanowires is presented in this section. Common n-type dopants for these materials

are phosphorus (P) and arsenic (As), while common p-type dopants are boron (B).

Results of measurements of the carrier mobility, the lattice thermal conductivity, the

heat capacity, and the velocity of sound of Si, Ge, and SiGe alloys are used for the

model calculations.

As discussed in Section 3.1, the mobility tensor for Si, Ge, and SiGe alloys is

always isotropic due to the cubic symmetry of each of these materials. Using Figures

3-5 and 3-6, the intrinsic mobility values of Si, Ge, and selected compositions of SiGe

alloys at room temperature (T=300 K) are extracted and listed in Table 4.1.

Due to the cubic symmetry properties of these materials, the lattice thermal con-

ductivities of Si, Ge, and SiGe alloys are also isotropic. Figure 4-2 shows the thermal

resistivity of SiGe alloys as a function of Si concentration x [4]. The thermal con-
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Table 4.1: The intrinsic mobility values of
alloys at T=300 K. These values are given

Si, Ge, and selected compositions of SiGe
in cm 2/(V. s).

Ge concentration x Material yue(cm 2/(V- s)) Ph (cm/ (V .))
0 Si 1400 450

0.05 SiO.95 Ge. 0 ,5  1000 433
0.1 Sio.gGeo.1  800 400
0.2 SiO.8Geo. 2  500 267

0.25 SiO.75 Geo.25  333 200
0.3 SiO.7GeO. 3  267 167
0.4 SiO.6GeO. 4  200 120
0.5 SiO. 5Geo.5  167 100
0.6 SiO.4Geo.6  200 133
0.7 SiO.3GeO. 7  233 167
0.8 SiO.2Geo.8  400 433
0.9 Sio. 1Geo.9  1000 733

1 Ge 3900 1900

30,
CmnK
w

t20,

10

0 0.2 0.4 0.6 0.8 1.0
x

Figure 4-2: Thermal resistivity of SiGe alloys as a function of Si concentration x [4].
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Table 4.2: The intrinsic thermal resistivity and thermal conductivity values of Si, Ge,
and selected compositions of SiGe alloys at T=300 K.

Ge concentration x Material i§ ((cm - K)/W) IL (W/(cm- K))
0 Si 0.704 1.42

0.05 Sio.95 Geo.05  8.07 0.124
0.2 Sio.Geo.2  12.456 0.0803

0.25 SiO.7 5 Geo.25  12.81 0.0781
0.5 SiO.5 Geo.5  12.98 0.077
0.6 SiO4 GeO.6  12.28 0.0814
0.7 SiO.3 Geo.7  10.70 0.0934
0.8 Sio.2Geo.8  8.947 0.112
0.9 Sio. 1 Geo.9  6.49 0.154

1 Ge 1.724 0.58

ductivity of a cubic material is simply the reciprocal of its thermal resistivity. The

thermal resistivity and thermal conductivity of Si, Ge, and selected compositions of

SiGe alloys at room temperature (T=300 K) are extracted and listed in Table 4.2.

Similar to the carrier mobility (see Figure 3-5 and Figure 3-6), the SiGe alloys lattice

thermal conductivity shows a significant decrease from pure Si or pure Ge due to

the alloying effect. Figure 4-2 also shows the fact that dopants (impurities) decrease

the lattice thermal conductivity as well. The heavier the dopant concentration, the

more effective it is to decrease the lattice thermal conductivity [23]. But for a good

thermoelectric material, it is important that the thermal conductivity decreases much

more than the electrical conductivity so that -/it increases.

As discussed in Section 4.2, the phonon mean free path of Si, Ge, and SiGe alloys

are estimated by the heat capacity (C,), the velocity of sound for the longitudinal

acoustic branch (VL), the sound velocity for the transverse branches (VT), and the

thermal conductivity (KL) (see Equation (4.14) and Equation (4.16)). Table 4.3 lists

the values of the C., the VL and the VT for phonon propagation along [001], the heat

capacity, the mass density, and the molar mass of Si and Ge at T=300 K. These

values as a function of Ge concentration x for the Si 1 -Gex alloys at T=300 K are
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Table 4.3: Values of sound velocities, heat
T=300 K.

capacity, and density of Si and Ge at

Material CV VL along VT along density molar mass
(J/(mol - K)) [001] [001] (g/cm3 ) (g/mol)

(10 5cm/s) (10 5cm/s)
Si 19.6 8.43 5.84 2.329 28.09

Ge 22.5 4.91 3.54 5.323 72.64

approximately given by the following expressions [3],

Cv = 19.6 + 2.9x [J/(mol - K)], (4.24)

VL,[OO1] = 8.43 - 3.5162x [10 5 cm/s], (4.25)

VT,[OO1] = 5.84 - 2.2976x [10 5 cm/s], (4.26)

density = 2.329 + 3.493x - 0.499x2 [g/cm3], (4.27)

molar mass = 28.0855 + 44.5545x [g/mol]. (4.28)

From Equation (4.24)-(4.28), values of the Co, the VL and the VT for phonon propa-

gation along [001], the mass density, and the molar mass for selected SiGe alloys are

estimated. These values are listed in Table 4.4 for reference.

Using values from Table 4.2 to Table 4.4, along with Equation (4.14) and Equation

(4.16), the phonon mean free path for bulk Si, Ge, and selected SiGe alloys at T=300 K

are calculated and the results are listed in Table 4.5. Applying Equation (4.14),

Equation (4.16), Equation (4.17), and Equation (4.23) with the values obtained from

Table 4.5, I-L,eff could then be found, given constant values of d and e. Table 4.6

and Table 4.7 list the values of KLeff for selected cases of interest for the core-shell

nanowire system at T=300 K. These cases are further studied throughout this chapter.

With all the values needed for the calculation of the transport coefficients for the

core-shell nanowire system in place, it is now only a matter of computation to obtain
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Table 4.4: Values of sound velocities, heat capacity, and density of selected composi-
tions of SiGe alloys at T=300 K.

x Material CV VL along VT along density molar mass
(J/(mol - K)) [001] [001] (g/cm 3) (g/mol)

(10 5 cm/s) (10 5 cm/s)
0.05 SiO.95Geo.05  19.75 8.254 5.725 2.502 30.313
0.2 SiO.8 Geo. 2  20.18 7.727 5.380 3.008 36.996

0.25 SiO.75 Geo.2 5  20.33 7.551 5.266 3.171 39.224
0.5 Sio.5 Geo.5  21.05 6.672 4.691 3.951 50.363
0.6 SiO4 Geo.6  21.34 6.320 4.461 4.245 54.818
0.7 SiO. 3GeO.7  21.63 5.969 4.232 4.530 59.274
0.8 SiO. 2Geo.8 21.92 5.617 4.002 4.804 63.729
0.9 Sio.iGeo.9 22.21 5.265 3.772 5.069 68.185

Table 4.5: The calculated values of the phonon mean
and selected compositions of SiGe alloys at T=300 K.

free path lp,bulk of bulk Si, Ge,

Ge concentration x Material lp,abuk(rm)

0 Si 85.58
0.05 SiO.9 5 Geo.05  7.62
0.2 Sio.sGeo.2  5.22

0.25 SiO.7 5 Geo.25  5.18
0.5 SiO.5 Geo.5  5.72
0.6 SiO.4 Geo.6  6.35
0.7 SiO. 3 Geo.7  7.69
0.8 SiO. 2Geo.8  9.76
0.9 Sio.1 Geo.9  14.26
1 Ge 57.27
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Table 4.6: The calculated values
T=300 K.

of IL,eff for selected cases of core-shell nanowires at

Case Material d(nm) e(nm) KL,ef f(W/(Cm- K))
1 SiO.3Geo 7  3 10 0.0309
2 SiO.3Geo 7  8 10 0.0816
3 SiO.3Geo.7  5 50 0.0697
4 SiO.3 GeO7  45 50 0.401
5 Si0.3 Geo 7  28 30 0.306
6 Si0.3Ge0 .7  3 30 0.0594
7 Sio.1 Geo.9  3 10 0.0319
8 Sio.1 Geo.9  8 10 0.0813
9 Sio.1 Geo.9  5 50 0.0941

10 Sio.1Geo.9  45 50 0.401
11 Sio.1 Geo. 9  28 30 0.306
12 Sio.1 Geo.9  3 30 0.0746
13 SiO. 4 Geo0 6  3 10 0.0306
14 Si0.4 Ge 0.6  8 10 0.0817
15 SiO.4 Geo.6  5 50 0.0636
16 Si0.4 Ge0.6  45 50 0.401
17 SiO.4 Geo.6  28 30 0.306
18 SiO.4 Geo.6  3 30 0.0553
19 Sio.8Geo. 2  3 10 0.0336
20 SiO.8 Geo. 2  8 10 0.0823
21 SiO.8Geo. 2  5 50 0.0653
22 SiO.8GeO. 2  45 50 0.401
23 Si0.8Ge0.2  28 30 0.307
24 Si0.8Ge0.2  3 30 0.0578
25 SiO 75Geo. 25  3 10 0.0330
26 SiO 7 5 Geo. 25  8 10 0.0822
27 SiO 75Geo. 25  5 50 0.0636
28 SiO 75Geo. 25  45 50 0.401
29 Si0 75 Geo. 25  28 30 0.307
30 Si0 75 Geo. 25  3 30 0.0563
31 Sio.5Geo.5  3 10 0.0310
32 Si0.5Ge0.5  8 10 0.0818
33 Si0.5Ge0.5  5 50 0.0616
34 Si0.5Ge0.5  45 50 0.401
35 SiO.5Geo.5  28 30 0.307
36 SiO.5Geo.5 3 30 0.0541
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Table 4.7: The calculated values of KL,eff for selected cases of core-shell nanowires at
T=300 K.

Case Material d(nm) e(nm) KL,eff (W/(cm- K))
37 SiO.95 Geo.05  3 10 0.0398
38 SiO.9 5 Geo.0 5  8 10 0.0829
39 SiO.95 Geo.05  5 50 0.0923
40 SiO.95 Geo.05  45 50 0.402
41 SiO.g5 Geo.05  28 30 0.307
42 SiO.95 Geo.05  3 30 0.0788
43 SiO. 3 Geo.7  3 10 0.0309
44 Sio.3Geo. 7  8 10 0.0816
45 Sio.3Ge0 .7  5 50 0.0697
46 Si 0.3Ge0.7  45 50 0.401
47 Sio.3Geo.7  28 30 0.306
48 SiO.3Geo.7 3 30 0.0594

these transport coefficients. Different cases of the doping concentration, the interface

offset (Vsd and V.a), the total core-shell diameter (c), and the core-shell diameter

(d) for both n-type and p-type Si/SiGe core-shell nanowires have been considered.

For the n-type Si/SiGe core-shell nanowires, cases where the conduction band offset

is Vfd >0 and is Vnd <0 are both presented, while for the valence band offset,

where we only have V,,, <0, the cases of p-type Si/SiGe core-shell nanowires are

investigated. Within each of these cases, various limits of the thermal energy relative

to the offset energies are considered, such as the cases where the magnitude of the

interface offset > kBT (kBT r 26 meV at T=300 K), ~ kBT, and < kBT. Lastly, the

effect of varying the total core-shell diameter (e), and of varying the core diameter

(d) are further examined for each of the cases. Figure 4-3 to Figure 4-10 show the

calculated ZT as a function of the carrier doping concentration for the core-shell

nanowire system for each of these cases at T=300 K. A detailed analysis of the effects

of different parameters (doping concentration, VOd, Vai, e, and d) are presented in

Section 4.4.
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ZT vs n (Si/SiO 4GeO6 , Veld=O.O 1eV)
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n (cm -)

-casel (d=3nm, e=10nm) - case2 (d=8nm, e=10nm) -case3 (d=5nm, e=50nm)
- case4 (d=45nm, e=50nm) - case5 (d=28nro, e=30nm) - case6 (d=3nn, e=30nm)

Figure 4-3: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a n-type Si/SiGe core-shell nanowire with a small positive Veend at
T=300 K.

ZT vs n (Si/Sio.3Geo.7, Vcd=0.03eV)

lE 16 1E+17 1E+18 1E+19 1E+20 1E+21

0.1 -

0.01 -
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0.0001

n (cm 3)

-casel (d=3nm, e=10nm) - case2 (d=8nm, e=10nm) - case3 (d=5nm, e=50nm)
- case4 (d=45nm, e=50nm) - case5 (d=28nm, e=30nm) - case6 (d=3nm, e=30nm)

Figure 4-4: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a n-type Si/SiGe core-shell nanowire with a medium size positive

Vend at T=300 K.
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ZT vs n (Si/Si0.1Ge0., VCOfd=0.08eV)

lE-16 LE+17 1E+18 1E+19 1E+20 1E+21

0.1-

0.01 -

0.001

0.0001

n (cm~3)

-casel (d=3nm, e=10nm) -case2 (d=8nm, e=10nm) -case3 (d=5nn, e=50nm)

- case4 (d=45nm, e=50nm) - case5 (d=28nm, e=30nm) - case6 (d=3n3, e=30nm)

Figure 4-5: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a n-type Si/SiGe core-shell nanowire with a large positive Veend at
T=300 K.

ZT vs n (Si/Si0.5Ge0 5 , Vcnd=-0.008eV)

11
lE+16 1E+17 1E+18 1E+19 1E+20 1E+21
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-case31 (d=3nm, e=10nm) -case32 (d=8nm, e=10nm) - case33 (d=5nm, e=50nm)
- case34 (d=45nm, e=50nm) - case35 (d=28nm, e=30nm) + case36 (d=3nm, e=30nm)

Figure 4-6: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a n-type Si/SiGe core-shell nanowire with a small negative V 0nd at
T=300 K.
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ZT vs n (Si/Si0.8Ge0 2, Vfld=-0.03eV)

lE-16 1E+17 1E+18 1E+19 1E+20 1E+21
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-+-case19 (d=3nm, e=10nm) -case20 (d=8nm, e=10nm) -case2l (d=5nm, e=50nm)
-case22 (d=45nm, e=50nm) - case23 (d=28nm, e=30nm) - case24 (d=3nm, e=30nm)

Figure 4-7: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a n-type Si/SiGe core-shell nanowire with a medium size negative

Vc,,d at T=300 K.

ZT vs n (Si/Si0.75Ge0.25, Veend=-0.035eV)
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-case28 (d=45nm, e=50nm) - case29 (d=28nm, e=30nm) - case30 (d=3nm, e=30nm)

Figure 4-8: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a n-type Si/SiGe core-shell nanowire with a large negative Vd at
T=300 K.

95

.. ... ...... .. .......... .. ... ............ ............... . .....



ZT vs n (Si/Si0.95Ge0 o5, VO=-0.04eV)
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0.1-

0.01 -

0.001

0.0001

p (cm~
3)

-case37 (d=3nm, e=10nm) -case38 (d=8nm, e=10nm) - case39 (d=5mn, e=50nm)
-case40 (d=45nm, e=50nm) -- case41 (d=28nm, e=30nm) - case42 (d=3nm, e=30nm)

Figure 4-9: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a p-type Si/SiGe core-shell nanowire with a medium size negative
Vv,0 at T=300 K.

ZT vs n (Si/Si0.3Ge0 7, V,,,=-0.58eV)
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-case46 (d=45nm, e=50nm) - case47 (d=28nm, e=30nm) - case48 (d=3nm, e=3Onm)

Figure 4-10: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a p-type Si/SiGe core-shell nanowire with a large negative Vvai at
T=300 K.
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4.4 Effect of the different parameters on ZT at

T=300 K

As seen from Figure 4-3 to Figure 4-10, the value of ZT changes by a couple orders

of magnitude as the carrier doping concentration changes. For each of the cases

considered, there occurs an optimal value of carrier doping concentration. The value of

both the optimal carrier doping concentration and its corresponding ZT are different

from one another. Table 4.8 and Table 4.9 list the values of the optimal doping

concentration (not or popt) along with its corresponding values of a, S, r,, and ZT

for each case. The effect of carrier doping concentration on ZT is discussed in Section

4.4.1. The effect of the interface offset, the total core-shell diameter (e), and the core

diameter (d) that leads to the difference in the values of ZT and its corresponding

optimal doping concentration is reviewed in Section 4.4.2, Section 4.4.3, and Section

4.4.4, respectively.

4.4.1 Effect of the Doping Concentration

The carrier doping concentration plays a major role in the determination of the value

of ZT as seen from Figure 4-3 to Figure 4-10. The carrier doping concentration has a

one-to-one dependence on the Fermi level of the system. Consider an n-type semicon-

ductor material as an example. As an illustration, assume the thermal conductivity is

dominated by phonons, which is usually true for a semiconductor. As the Fermi level

EJ moves from the edge of the valence band to the edge of the conduction band, the

concentration of the electrons in the conduction band increases. The transport coef-

ficient S and o both depend on the concentration of the electrons. When Ef is near

the edge of the valence band, the concentration of carriers (electrons) is low, resulting

in a low a and a large S. As the Fermi level Ef increases toward the conduction

band edge, the concentration of the electrons increases, leading to a smaller S and

a larger a. Since decreasing the rate of S and increasing the rate of o are different,
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Table 4.8: The values of nopt, o, S, re and ZT for different cases at T=300 K.

Case Vond nopt 0- S Ke ZT

(eV) (10 19 cm-3) (10 4S/m) (10-4V/K) (W/(m - K))
1 0.03 4.039 4.990 -1.170 0.326 0.060
2 0.03 7.350 9.081 -1.225 0.587 0.047
3 0.03 3.863 4.773 -1.248 0.308 0.031
4 0.03 9.422 11.64 -1.271 0.737 0.014
5 0.03 9.273 11.46 -1.274 0.727 0.018
6 0.03 3.135 3.873 -1.295 0.246 0.031
7 0.08 3.131 16.61 -1.238 1.138 0.176
8 0.08 3.737 19.82 -1.629 1.239 0.168
9 0.08 2.760 14.64 -1.428 0.909 0.087

10 0.08 7.599 40.30 -1.396 2.522 0.055
11 0.08 7.218 38.28 -1.428 2.396 0.071
12 0.08 2.379 12.62 -1.470 0.779 0.099
13 0.01 4.023 4.267 -1.184 0.279 0.054
14 0.01 7.696 8.162 -1.209 0.530 0.041
15 0.01 4.128 4.378 -1.214 0.286 0.029
16 0.01 9.593 10.17 -1.267 0.645 0.012
17 0.01 9.480 10.05 -1.263 0.639 0.015
18 0.01 3.233 3.428 -1.275 0.219 0.029
19 -0.03 4.345 11.52 -1.388 0.785 0.161
20 -0.03 5.919 15.69 -1.420 0.999 0.103
21 -0.03 14.871 39.43 -0.957 2.816 0.116
22 -0.03 9.295 24.64 -1.322 1.554 0.031
23 -0.03 8.575 22.74 -1.343 1.433 0.038
24 -0.03 12.996 34.46 -0.951 2.479 0.113
25 -0.035 4.143 7.315 -1.312 0.491 0.100
26 -0.035 6.825 12.05 -1.324 0.773 0.071
27 -0.035 19.502 34.44 -0.792 2.465 0.073
28 -0.035 9.668 17.07 -1.292 1.079 0.021
29 -0.035 9.188 16.23 -1.297 1.027 0.026
30 -0.035 18.124 32.00 -0.768 2.297 0.071
31 -0.008 4.024 3.563 -1.193 0.231 0.046
32 -0.008 7.802 6.910 -1.211 0.445 0.035
33 -0.008 4.362 3.863 -1.183 0.254 0.025
34 -0.008 9.895 8.762 -1.255 0.555 0.010
35 -0.008 9.697 8.588 -1.253 0.546 0.013
36 -0.008 3.257 2.885 -1.269 0.184 0.025
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Table 4.9: The values of pt, -, S, Ke and ZT for different cases at T=300 K.

Case Vai Popt 0 S Ke ZT

(eV) (10 19 cm- 3) (10 4S/m) (10- 4 V/K) (W/(m - K))
37 -0.04 2.253 5.174 1.441 0.325 0.075
38 -0.04 2.752 6.318 1.346 0.398 0.040
39 -0.04 3.460 7.945 1.408 0.486 0.049
40 -0.04 3.625 8.323 1.380 0.504 0.012
41 -0.04 4.590 10.54 1.174 0.687 0.014
42 -0.04 3.674 8.435 1.294 0.547 0.050
43 -0.58 1.462 1.295 1.651 0.071 0.033
44 -0.58 1.895 1.678 1.682 0.085 0.017
45 -0.58 3.234 2.864 1.355 0.175 0.022
46 -0.58 0.479 0.424 1.741 0.019 0.001
47 -0.58 9.730 8.616 0.517 0.610 0.002
48 -0.58 3.900 3.454 1.170 0.228 0.023

a maximum value of ZT results at some intermediate Fermi level. Therefore, there

always exists an optimal concentration (nopt or popt) for each of the cases considered

(see Figure 4-3 to Figure 4-10).

The values of optimal concentration (nopt or popt) and its corresponding ZT for

the cases considered are listed in Table 4.8 and Table 4.9. One should note that both

nort and popt are in the order of 10 19cm- 3 . The effect that leads to the difference in

the value of the optimal ZT and the optimal concentration (nopt or popt) for these

cases will be discussed in the following subsections.

4.4.2 Effect of the Interface Offset

There are three different types of interface offsets involved in the core-shell nanowire

system: Vcond >0, Vcond <0, and Vvai <0. These cases will each be examined individ-

ually in this subsection.

For the case of Vcofd >0, the Si core region acts like a potential well. From Figure

4-3 to Figure 4-5, one sees that as Vcond increases, the ZT increases. This suggests that
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a system with some confinement is better than a system without any confinement.

However, with a more careful examination, this effect may also be due to the choice of

selection in the examples. The cases considered here also show an increase in mobility

as Vcod increases due to the change in the shell composition away from the Sio.5 GeO.5

composition (see Figure 3-5). This increase in mobility could be the dominant factor

for the increase in the value of ZT.

For the case of Vc0fld <0, as its magnitude increases, ZT first increases, then de-

creases. This result is not consistent with the result from the VOnd >0 case. However,

this finding is consistent with the previous conclusion when viewed using the changes

in alloy compositions. From Figure 4-6 to Figure 4-8, it is clear that as the compo-

sition of the shell layer gets further away from the Si 0 .5 Ge0 .5 composition, the value

of ZT increases. As mentioned before, this increase in ZT is due to the increase in

mobility of the system. Thus, these findings suggest that the effect of the conduction

band offset on ZT is not as significant as the electron mobility. One possible cause

for that is connected with the small magnitude of the conduction band offset.

Lastly, for the case of Vvai <0, as its magnitude increases, ZT decreases dramati-

cally. This large drop in the value of ZT is mainly due to the large confinement effect.

Similar to the last two cases, the results could be better interpreted in terms of mo-

bility. Once again, it is observed that the value of ZT decreases as the carrier (hole)

mobility decreases. These findings suggest that a large band offset is not good from a

thermoelectric point of view for the core-shell nanowire system in which conduction

is expected through both the core and the shell regions.

The results above suggest that for the core-shell nanowire system with which

conduction is expected through both regions, a small offset in either the conduction

band or the valence band will have very little effect on the system's thermoelectric

performance, while a large interface band offset will greatly degrade its thermoelectric

performance. On the other hand, the carrier mobility has a major effect on the

determination of the system's thermoelectric performance. These conclusions suggest
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that a good core-shell nanowire system candidate is the one with a shell composition

that results in both a high mobility in the shell and a small interface band offset for

the carriers.

4.4.3 Effect of the Total Core-Shell Diameter (e)

For all the different cases considered, a similar behavior for the value of the optimal

concentration and its corresponding ZT with respect to the total core-shell diameter

(e) is observed. As seen from Figure 4-3 to Figure 4-10, as e increases, the optimal

carrier concentration increases and its corresponding ZT decreases. The e effect is

most dominant in the case of Vva <0 and is large in magnitude. It seems that this

effect is especially dominant when the magnitude of the confinement (Vcond or Vvai)

is large (>> kBT ~ 26 meV at T=300 K). At the same time, it is observed that the

optimal concentration and its corresponding value of ZT also depend on d. The effect

of d will be considered in the next section.

The observations found in this section suggest that a good core-shell nanowire

system candidate for thermoelectric applications is one with a small e. For the cases

considered, a value of 10 nm to 20 nm for e is a desired choice.

4.4.4 Effect of the Core Diameter (d) and the Shell Thickness

((e - d)/2)

When compared with the effect of e on ZT, a similar behavior is observed for the effect

of d on the core-shell nanowire system. From Figure 4-3 to Figure 4-10, it is observed

that as d increases, the optimal carrier doping concentration increases, whereas its

corresponding ZT decreases for all the cases. A rather unusual behavior is seen in the

case of large e and Vvai <0 with a large magnitude. For this specific case, the optimal

carrier concentration actually decreases as d increases, and its corresponding value of

ZT decreases dramatically compared to the other cases. This strange behavior could
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be due to the large hole confinement effect.

4.4.5 Conclusions

From these subsections, one sees that in order for the core-shell nanowire system to

have good thermoelectric performance, it should be an n-type material, have a small

e and a small d, and have a relatively high mobility shell composition.

Similar to the previous results for bulk materials [24], the n-type core-shell nanowire

shows a better thermoelectric performance than its p-type counterpart. This finding

is mainly due to the difference in the mobility of the two materials.

As for the geometric factors of e and d, the small value of e gives enhancement in

the thermoelectric performance due to the increase in quantum mechanical confine-

ment effect, whereas the small value of d is desired for minimizing the contribution of

the large value of the Si lattice thermal conductivity. The examples that were selected

suggest that an e of 10nm and a d of 3nm result in good thermoelectric performance.

On the other hand, the effect of the conduction band offset or the valence band offset

is not as dominant as is the mobility, as mentioned before.

It is concluded that a good thermoelectric performance core-shell nanowire system

should have a shell that is relatively high in mobility (a shell composition that is close

to pure Si or pure Ge), a small total core-shell diameter, and a small core diameter.

The system should also be an n-type system. Thus, it would be ideal to have systems

similar to the systems of case 7 or case 19.

4.5 Comparison between the Core-Shell Nanowire

and the Nanowire

A similar calculation is applied to selected cases of the Si and SiO.3Geo.7 nanowire

system at T=300 K for comparison. The nanowire is further studied for both the n-

type and p-type cases using two different diameters of 10nm and 50nm. Figure 4-11
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Figure 4-11: Plot of the dimensionless thermoelectric figure of merit ZT versus doping
concentration for a n-type nanowire at T=300 K.

and Figure 4-12 show the calculated ZT for these cases as a function of the carrier

doping concentration. The values of interest in these cases are summarized in Table

4.10.

Comparing the results from Table 4.10 with Table 4.8 and Table 4.9 for the Si

nanowire cases, the core-shell nanowire system shows a very promising result. For

example, the 10nm n-type Si nanowire system has a ZT value of 0.1583 at the op-

timal electron concentration of 4.892x 1019cm3. However, the 10nm n-type Si/SiGe

core-shell nanowire system with a 3nm core diameter can have a ZT value of up to

0.1763 given a conduction band offset of 0.08 eV. This comparison reinforces previous

conclusions about the improvement in thermoelectric performance with a core-shell

nanowire system.

On the other hand, comparison between the Si/SiGe core-shell nanowire system

and the SiGe nanowire system shows that SiGe nanowire system has a better perfor-
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Table 4.10: The values of op
cases of nanowire system at

timal concentration, -, S, Ke

T=300 K.
KL,eff, and ZT for different

Optimal
Case Material e Concentration 0- S

(nm) (10 19 cm-3 ) (10 4 S/m) (10-4 V/K)
101 n-Si 10 4.892 36.32 -1.578
102 n-Si 50 8.242 61.19 -1.429
103 p-Si 10 3.028 7.226 1.258
104 p-Si 50 3.976 9.487 1.322
105 n-SiO.3Geo.7  10 6.614 8.173 -1.381
106 n-Si0 .3Ge0.7  50 8.081 9.984 -1.442
107 p-SiO.3Geo.7  10 3.028 2.682 1.258
108 p-Sio. 3Geo.7 50 3.760 3.330 1.358

Case W eK

(W/(m - K))
KL,ef f

(W/(cm -K))
ZT

101 2.271 0.149 0.158
102 3.796 0.524 0.067
103 0.462 0.149 0.022
104 0.582 0.524 0.009
105 0.519 0.053 0.081
106 0.619 0.081 0.072
107 0.172 0.053 0.023
108 0.204 0.081 0.022
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Figure 4-12: Plot of the dimensionless thermoelectric figure of merit ZT versus doping

concentration for a p-type nanowire at T=300 K.

mance. This conclusion is somewhat misleading due to the conservative assumptions

for the model used in this thesis. In this model, the value of the carrier mobility of

the SiGe-strained layer is taken to be the same as the bulk SiGe alloys carrier mobil-

ity. However, many previous calculations have shown that the carrier mobility in the

strained SiGe layer is much higher than the carrier mobility of the bulk SiGe. For

example, the hole mobility of a strained SiO. 8GeO.2 layer on a Si substrate is calculated

to be at least 900 cm 2/(V _ s) [25], whereas the hole mobility of a bulk SiO8GeO.2 alloy

is about 267 cm 2/(V _ s). Thus, with the mobility issue relaxed, we would expect that

the core-shell nanowire system would have a better thermoelectric performance than

its bulk and nanowire counterparts.
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Chapter 5

Conclusions and Future Directions

This thesis concludes with the findings and some thoughts for future research studies.

These are summarized in the following sections.

5.1 Conclusions

In this thesis, a model for the core-shell nanowire system is developed and presented.

The thermoelectric-related transport properties of the Si core SiGe shell core-shell

nanowire is extensively studied from a theoretically standpoint.

Using the band structure of the SiGe strained layer on a Si substrate as a guideline,

the band structure of the strained SiGe shell layer of a Si core SiGe shell core-shell

nanowire is developed. Due to the cylindrical structure of the core-shell nanowire,

the degeneracy of the conduction pockets for the strained SiGe shell layer is modeled

differently than its 2D SiGe strained epitaxial layer on a Si substrate.

Theoretical investigation of the thermoelectric properties of a Si/SiGe core-shell

nanowire suggests that the system with a small interface offset between the core and

the shell materials (V), a small total core-shell diameter (e), a small core diameter

(d), and a shell with a composition that results in a high mobility are very promising

in thermoelectric performance. The main reason for this finding is that a small e and
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a small interface band offset give rise to a system with better quantum mechanical

properties, while a small d minimizes the high thermal conductivity contribution from

the Si core. As for the shell composition, it is a rule of thumb that a higher carrier

mobility results in an enhancement in the thermoelectric performance. Similar to

the previous investigation on bulk materials and nanowires, this thesis' finding also

suggests that an n-type material has a much better thermoelectric performance than

its p-type counterpart. This result is mainly due to the difference in carrier mobility

for the p-type and n-type materials.

The thermoelectric-related transport properties for a Si/SiGe core-shell nanowire

are compared with the relating properties for a Si nanowire and a SiGe nanowire. The

Si/SiGe core-shell nanowire indeed shows a better thermoelectric performance than

its Si nanowire counterpart, largely due to the decreases thermal conductivity of the

core-shell structure. However, due to the harsh approximations made to the carrier

mobility for the Si/SiGe core-shell nanowire system, its thermoelectric properties

are slightly outperformed by its SiGe nanowire counterpart. But with the harsh

conditions imposed on the carrier mobility of the Si/SiGe core-shell nanowire structure

in this thesis relaxed, there is much confidence that the thermoelectric performance

of the Si/SiGe core-shell nanowire structure could be made to be better than its SiGe

nanowire counterpart.

5.2 Future Directions

Si/SiGe core-shell nanowire investigated in this thesis is an interesting low dimensional

system for research study. This Si/SiGe core-shell nanowire system shows possibilities

for a very promising enhancement in thermoelectric performance. From the cases

that have been investigated in this thesis, more ideas along the directions that were

considered have been stimulated and these ideas are worthy of further exploration.

First, it is very valuable to better understand the band structure of the Si/SiGe
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core-shell nanowire system. Experiments should be performed to pursue the basic

understanding of the band structure of the Si/SiGe nanowire. More experiments

should then be carried out to further explore the diameter effect and the strain effect

to the band structure of SiGe. With these findings in hand, the compositional grading

effect in the interface region should also be investigated and taken into account for

extending the present theoretical model.

Secondly, the high temperature regime should be investigated in some detail. Cur-

rently, the most common thermoelectric application for a SiGe alloy is energy gener-

ation in space in high temperature ranges (~-, 600 'C - 700 'C). Thus more theoretical

investigation and more experiments should be carried out in the high temperature

regime to further understand this Si/SiGc core-shell nanowire system so that better

thermoelectric materials could be made for future space applications.

Lastly, the effect of the surrounding of the core-shell nanowire should be taken

into consideration for better understanding of the properties of the proposal nanocom-

posite structure. This is a very crucial and essential step so that this self-assembled

nano-materials system could be made competitive and cost-effective. Experiments

should be carried out to further understand the thermoelectric implications of the

various self-assembly procedures and the difficulties associated with achieving the

nanocomposite materials. Finally, nanocomposite materials made from nanoparticles

should be studied both experimentally and theoretically.
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