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Abstract:

Transit agencies in U.S. are on the brink of a major change in the way they make many

critical planning decisions. Until recently transit agencies have lacked the data and the

analysis techniques needed to make informed decisions in both long-term planning and

day-to-day operations. Now these agencies are entering an era in which a large volume of

raw data will be available due to the implementation of ITS technology including

Automated Data Collection systems (ADC), such as Automated Fare Collection systems

(AFC), Automated Vehicle Location systems (AVL), and Automatic Passenger Counting

systems (APC).

Automated Data Collection systems have distinct advantages over the traditional data

collection methods: large temporal and spatial coverage, continuous data flow and

currency, low marginal cost, accuracy, automatic collection and central storage, etc.

Thanks to these unique features, there exists a great potential for ADC systems to be used

to support decision-making in transit agencies. However, effectively utilizing ADC

systems data is not straightforward. Several examples are given to illustrate that there is a

critical gap between what ADC systems directly offer and what is needed practically in

public transit agencies' decision-making practice. Meanwhile, the framework of data

processing and analysis is not readily available, and transit agencies generally lack

needed qualified staff. As a consequence, these data sources have not yet been effectively

utilized in practice.

A strong foundation of ADC data manipulation, analysis methodologies and techniques

with support of advanced technologies such DBMS and GIS is required before the full

value of the new data source can be exploited. This research is an initial attempt to lay



out such a framework by presenting two case studies both in the context of the Chicago

Transit Authority.

One study proposes an enhanced method of inferring the rail trip OD matrix from an

origin-only AFC system to replace the routine passenger survey. The proposed algorithm

takes advantage of the pattern of a person's consecutive transit trip segments. In

particular the study examines the rail-to-bus case (which is ignored by prior studies) by

integrating AFC and AVL data and utilizing GIS and DBMS technologies. A software

tool is developed to facilitate the implementation of the algorithm.

The other study is of rail path choice, which employs the Logit and Mixed Logit models

to examine revealed public transit riders' travel behavior based on the inferred OD matrix

and the transit network attributes. This study is based on two data sources: the rail trip

OD matrix inferred in the first case study and the attributes of alternative paths calculated

from a network representation in Trans CAD. This study demonstrates that a rigorous

traveler behavior analysis can be performed based on the data source from ADC systems.

Both cases illustrate the potential as well as the difficulty of utilizing these systems and

more importantly demonstrate that at relatively low marginal cost, ADC systems can

provide transit agencies with a rich information source to support decision making. The

impact of a new data collection strategy, and effective data analyses and utilization may

affect transit agency decision making practice and push them into another stage wherein

decisions are supported by an information-rich system based on more comprehensive

data sources and more effective data analysis.
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Chapter One: Introduction

Transit agencies in U.S. are on the brink of a major change in the way they make many

critical planning decisions. Until recently transit agencies have lacked the data and the

analysis techniques needed to make informed decisions in both long-term planning and

day-to-day operations. Now these agencies are entering an era in which a large volume of

raw data will be available due to the implementation of ITS technology including

Automated Data Collection systems (ADC), such as the Automated Fare Collection

system (AFC), the Automated Vehicle Location system (AVL), and the Automatic

Passenger Counting system (APC).

This research examines characteristics of these ADC systems, illustrates the potential as

well as the difficulty of utilizing these systems, argues that a framework of ADC data

manipulation and analysis methodologies and techniques is required before the full value

of ADC systems can be realized, and demonstrates that at relatively low marginal cost,

ADC systems can provide transits agencies with very rich information to support their

critical decision making processes.

1.1 ADC systems: Potentials and Reality

Automated Data Collection systems have distinct advantages over the traditional data

collection methods: large temporal and spatial coverage, continuous data flow and

currency, low marginal cost, accuracy, automatic collection and central storage, etc.



Thanks to these unique features, there exists a great potential for ADC systems to be used

to support decision-making in transit agencies. However, effectively utilizing ADC

systems data is not straightforward. This study offers examples to illustrate that there is a

critical gap between what ADC systems directly offer and what is needed practically in

public transit agencies' decision-making practice.

Furthermore, inherent disadvantages of the ADC system data make the gap even harder

to bridge. Firstly, many of the ADC systems are not primarily designed for data

collection; data collection is just an auxiliary function and so some critical information

may be lacking. The data collected is often intermittent, fragmented, and not in an easy-

to-use format, which makes the raw data unintelligible and meaningless without intensive

processing and careful interpretation. Secondly, different systems are often implemented

separately by different vendors. The data structures and formats are incompatible; the

data are stored and managed in different database management systems; the ADC

systems are implemented at different locations and in different time periods; all of this

makes the integration across systems very difficult and seriously limits the utilization of

the ADC system data.

Meanwhile, a framework for data processing and analysis methodologies and techniques

for ADC data is not readily available, and transit agencies generally lack needed qualified

staff. As a consequence, these data sources are seldom, if ever, effectively utilized in

practice. A huge amount of data is being produced day after day but most of it is not

being organized into information of interest to transit agencies.



1.2 Research Objectives

The primary objective of the study is to examine how to effectively utilize ADC systems

to support public transit agencies' decision making by setting up a framework including

methodologies and techniques for ADC data manipulation and analysis with the support

of advanced technologies such as DBMS and GIS.

This primary objective can be divided into three subordinate objectives: the first is to

examine the common characteristics of ADC systems in general and two specific systems

currently operational in the Chicago Transit Authority (CTA), with the objective of

illustrating the potential and the difficulty of using ADC data, and demonstrating the gap

between the data available from ADC systems and the information useful to transit

agencies.

The second is to develop an improved methodology for rail origin-destination matrix

inference by integrating the AFC and AVL systems, develop a software tool to automate

this methodology, and practically implement it in the context of the CTA rail system.

The third is to develop a discrete choice model to characterize public transit riders' rail

path choice behavior, to estimate the path choice model using data on the inferred CTA

rail OD matrix and path attributes calculated from a TransCAD network representation,

and to apply the model to assess the impact on the rail path's market share of a proposed

network change.



1.3 ADC Data Manipulation and Analysis Framework

The possibility and value of setting up a framework of ADC data manipulation and

analysis are illustrated through a series of examples and case studies involving processing

and interpretation of the ADC systems data.

Three short examples are presented here to show the techniques to process the raw ADC

records to make basic sense of the data: these are, processing AFC data to obtain the bus

ID, processing AVL data to get the bus stop ID, and integrating AFC and AVL data to

relate passenger trips to vehicle trips in order to obtain the passenger boarding bus stop

ID. Although the bus ID and the boarding bus stop ID are essential information needed to

interpret the data, neither of them are readily provided by the ADC systems. Difficult

and cumbersome data processing is involved to transform "data" into "information". This

process requires familiarity with the structure of the ADC systems, knowledge of data

manipulation and analysis technologies, as well as an understanding of transportation

planning.

Therefore a framework covering methodologies and techniques for the ADC data

manipulation and analysis, with the support of advanced technologies such as DBMS and

GIS, is indispensable in order to exploit the full potential of the new ADC system data

and bridge the gap between what's becoming available from ADC systems and what's

needed by transit agencies.



This research is an initial attempt to lay out such a framework by presenting two case

studies, both in the context of the Chicago Transit Authority (CTA). One study involves

integrating the AFC and AVL data to infer the rail origin-destination (OD) matrix from

the origin-only rail trip data. The other study is of rail path choice, which employs

discrete choice models to examine revealed public transit riders' travel behavior based on

the inferred OD matrix and transit network attributes.

Each case entails its own set of methodologies. In particular, the examination and

characterization of passengers' trip segment chains, the integration of the AFC and AVL

systems, DBMS, GIS and programming techniques are involved in the rail OD inference

application. Discrete choice analysis methods particularly the Logit and Mixed Logit

models, network representation and analysis in TransCAD are used in the path choice

modeling application.

The three ADC data processing examples and two in-depth case studies involve different

scales and complexity, use different specific techniques, and solve different problems.

However, they all utilize data from ADC systems, they all aim to support certain aspects

of transit agencies' decision making, and they are designed within the framework of data

manipulation and analysis methodologies and techniques that facilitates the effective

utilization of ADC systems.



1.4 Three Stages of Transit Agency Decision Making Practice in

Terms of Data Support

The relationship between transit agency decision-making and data analysis support can

be categorized into three stages. Traditionally, transit agencies have been painfully short

of data to support their decision-making processes. Traditional data collection strategies

are expensive and as a result are carried out only infrequently, which cannot support

rigorous research and analyses that require timely and comprehensive data. This stage of

development of transit agency decision-making is termed "Stage I" as in Figure 1-1.

Applying new technology to automated data collection has been an important trend in

data collection. ADC systems are changing transit agencies from being data poor to data

rich. Although huge amounts of data are now being continuously produced, however,

they have not typically been transformed into information useful to transit agencies. This

stage of development is referred to as Stage II in Figure 1-1.

Figure 1-1 Three Stages of Transit Agency Decision Making Practice in Terms of Data
Support

Stage Rich Data Sources Effective Data Utilization to
Support Decision Making

I No No

II Yes No

III Yes Yes

Source: the author. All following figures and tables are created by the author unless
noticed otherwise.

This research illustrates the potential as well as the difficulty of utilizing these systems,

offers an initial attempt to lay out a framework for ADC data manipulation and analysis



and demonstrates that at relatively low marginal cost, ADC systems can provide transit

agencies with a rich information source to support decision making. The impact of a new

data collection strategy, and effective data analyses and utilization may affect transit

agency decision making practice and push them into another stage wherein decisions are

supported by an information-rich system based on more comprehensive data sources and

more effective data analysis. This is referred to as Stage III in Figure 1-1.

1.5 Thesis Organization

This thesis is organized into five chapters as shown in Figure 1-2. Chapter Two examines

the common characteristics of ADC systems and introduces two specific systems

currently operational in CTA. Three examples of preliminary ADC data processing are

presented to illustrate the potential and obstacles associated with better ADC data

utilization.

Chapters Three and Four present two in-depth case studies of effective utilization of

ADC data. Chapter Three proposes an improved method of inferring the rail trip OD

matrix from an origin-only system by taking advantage of data integration across multiple

ADC systems. The proposed method could partially replace the routine passenger survey

with respect to estimating rail OD matrices. A software tool is developed to automate the

destination inference process so as to make this method practical. The software is then

applied to the CTA rail system to generate a one-week OD matrix, and the estimated trip

segment chain patterns are analyzed.



Chapter Four examines public transit riders' path choice behavior in the rail system. The

path choice decision is modeled using Multinomial Logit (MNL) and Mixed Logit model

forms, utilizing data from the OD matrix estimated in chapter three and the path attributes

determined from the CTA rail network represented in TransCAD. The specification and

interpretation of a series of models are presented and the final model is applied to assess

the impact on rail path market shares of potential network changes. This is the second

case to demonstrate how a rigorous travel behavior study can be carried out based on data

from ADC systems.

Figure 1-2 Thesis Structure

Chapter One

Chapter Two

Chapter Three

Chapter Four

Chapter Five

L Introduction

Automated Data Collection
(AFC AVL)

Processimg and Integration

Rail OD
Inference

Rail Path Choice Model

Conclusion

Chapter Five summarizes the research findings including the characteristics of the ADC

systems, rail trip OD matrix inference methods, and passenger path choice modeling;

points out the limitations and difficulties in the current study; and proposes several future

research directions.



Chapter Two: Automated Data Collection

Systems: Potential and Reality

This chapter first describes the common characteristics of ADC systems including their

advantage and disadvantages, and the reasons for these disadvantages. These

characteristics are then illustrated by examining in detail two ADC systems recently

implemented in the Chicago Transit Authority (CTA)-the Automated Fare Collection

system (AFC) and the Automated Vehicle Location system (AVL). Thanks to their

unique features, there is great potential for ADC systems to be used to support decision-

making in transit agencies. However, it is often not straightforward to effectively utilize

ADC system data. Several examples are given to demonstrate that there is a critical gap

between what ADC data directly offers and what is needed in transportation planning and

operations analysis. As a consequence, ADC data sources have never been utilized

effectively in practice. A foundation including data processing and analysis with the

support of advanced technologies such DBMS and GIS is required to bridge this gap so

that the full value of these new data sources can be achieved.

2.1 General Characteristics of ADC Systems

Applying new technology to automated data collection has been an important trend in

data collection in public transit agencies. ADC systems provide new data sources with

distinct advantages over traditional data collection methods in many respects:



First, ADC systems offer a large, often full, spatial coverage of a public transportation

system, in contrast to traditional methods, which usually focus only on key locations due

to budget and staff limitations. ADC systems also have a large, often full, temporal span.

They collect data 24 hours a day and 7 days a week, providing continuous data flow, in

contrast to traditional methods, in which a "typical" day is chosen, normally a weekday

with good weather and no special events, and often only its peak hours are considered. In

today's complex society, special events, unusual weather, or other anomalous conditions

occur every day in some part of the city. It becomes more and more difficult to find a

"typical" day to represent the general reality. Thanks to their full spatial and temporal

coverage, ADC systems offer the opportunity to study these atypical conditions, special

events and weathers, both on weekdays and weekends.

Second, traditional methods are expensive in terms of both monetary budget and

manpower. Therefore they can only be carried out at a very low frequency-once a year,

or even once five years, for instance. In contrast, ADC systems incur a small marginal

data collection cost once the systems are installed and so data is being updated constantly.

Third, ADC data are (by definition) automatically collected and digitally stored. With the

support of an effective data processing and analysis framework, ADC data can be

processed very fast. In traditional methods, by contrast, even after the field surveys are

done, the survey forms are in paper form and it often takes months for the surveyors to

input data and compile statistics before a clean data report can be produced.



Lastly, the accuracy of ADC data can be determined, avoiding all sorts of hard-to-detect

survey errors that can appear in traditional methods.

ADC data also has inherent disadvantages derived from three main sources:

First, although some ADC systems were initially designed for data collection, many are

not. For these, data collection is just an auxiliary function. For example, the Automatic

Passenger Counter (APC) system is in the former category, directly aimed at collecting

passenger count data on buses. In the latter category, however, the AVL system in CTA

is part of an Automated Voice Annunciation System (AVAS), designed for announcing

stop information on buses; and the AFC system is focused on monitoring fare collection

and revenue counts. When these systems are looked at as data collection devices, if this

was not their original design purpose, not surprisingly, many limitations arise. Some lack

critical information. Some collect data for only a limited purpose such as revenue

accounting, even though they could have been simultaneously collecting data for

planning/operational usage at small incremental cost. The data collected are often

intermittent, fragmented, and not in an easy-to-use format, which can make the raw data

unintelligible and meaningless without intensive processing.

Second, different systems are implemented separately by different vendors. The resulting

data structures and formats are often incompatible; the data are stored and managed in

different database management systems; and ADC systems are implemented at different



locations and in different time periods. All of this makes integration across systems very

difficult and seriously limit the usage of ADC data.

Third, after ADC systems are installed and the vendor's technicians have left the agencies,

the after-sale support can be a problem. Transit agencies generally lack professional staff

that specialize in processing and analyzing data from ADC systems. Staff are required to

be familiar with ADC systems, with technologies like database management, GIS,

programming, etc., as well as with transportation analysis needs themselves. Because a

framework for ADC system data manipulation incorporating analysis methodologies and

techniques is not available, the utilization of ADC systems generally does not go beyond

what was initially designed by the vendor.

2.2 The CTA ADC Systems

The Chicago Transit Authority (CTA), the nation's second largest transit system, delivers

1.5 million rides on an average weekday in Chicago and 38 suburbs. CTA's nearly 1,900

buses serve 1 million passenger trips daily serving nearly 12,200 bus stops. More than

1,100 CTA's rapid transit cars serve about a half-million passenger trips each day serving

143 stations. (See Figure 2-1)



Figure 2-1 CTA System Map, Source: Chicago Transit Authority
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There are three ADC systems currently operating in the Chicago Transit Authority : the

Automated Fare Collection system (AFC), the Automated Vehicle Location system

(AVL) and the Automated Passenger Counting system (APC). This section does not

intend to cover all the details of these systems; rather, it focuses on the AFC and AVL

systems and only introduces the aspects that help illustrate the characteristics introduced

in section 2.1 as well as those that are related to the processing and interpretation of ADC

data.

2.2.1 The Automated Fare Collection system (AFC)

Entry Only

CTA's AFC system is an entry-only system, meaning passengers only use their farecards

when entering a rail station or boarding a bus, and do not use the farecards when exiting

the rail system or bus. Therefore, no information about a trip's destination is provided.

Because the CTA pricing scheme is flat fare, irrespective of the travel distance, travelers

are charged only when entering. Since the AFC system is designed only for fare

collection and revenue accounting, it is not concerned with exiting from the system, and

thus does not record destination information, even though this would be critically

important for transit planning and operation.

Record Fields Description

A transaction record is generated each time a farecard is swiped on the AFC equipment.



The record includes the time, the location, the event and the unique serial number of that

farecard. The time is stamped to the nearest second for each use. The location

information is discussed later. The event field is reported to distinguish transaction types:

these can be trip transactions such as entering stations or boarding buses, or non-trip

transactions such as card purchases, or adding value. The transaction type is further

refined to distinguish between initial use of a farecard and its subsequent use for a

transfer. A unique serial number is assigned to each farecard, which allows tracking an

individual rider's multiple trips over the lifetime of the farecard, which could be one trip,

one day, one week or even one month.

Location Information

The location is recorded differently for train trips than for bus trips in the AFC system.

For train trips, the location is recorded as the station entrance code. For bus trips, the

location is coarsely represented by the bus route number (instead of the bus stop ID).

Therefore, while the AFC records the exact boarding location for train trips, it doesn't

record the exact boarding location for bus trips. For example, if a rider boards a bus on

route 55 at Garfield/South Harper, the AFC system records the bus route number (55),

but doesn't record the Garfield/South Harper bus stop. The coarseness of the location

reporting for the bus trips causes difficulties in the utilization of the AFC data for some

applications. One example is presented in section 2.3 to demonstrate the solution to the

problem of how to determine the boarding location for bus trips more precisely.



AFC Coverage

Spatial and Temporal Coverage: The AFC system is installed on the entirety of both

the CTA rail system and buses during all operating hours.

Usage Coverage: because the AFC farecard is not the only way passengers can pay for

their trips, the AFC system does not provide farecard-type data for all passenger trips.

The other payment methods include cash and paper transfer, both of which are

categorized as non-serial encoded fare media since they don't have a serial number

associate with the fare media. The farecard usage rates are different for rail trips and for

bus trips. For rail trips, while cash payment by inserting coins is still possible in some

turnstiles has become very rare, paper transfer from the previous bus trip segment still

accounts for a sizable portion of rail trips. Both non-serial encoded fare media account

for approximately 9%1 of all rail trips, with farecard media covering the remaining 91%.

Of course this coverage rate varies by the time of day and by station. The coverage rate

on buses is lower with approximately 60% of bus trips paid by the farecard media in

2000.2

Pace Bus: In Chicago, there is another bus transit provider-Pace, which serves mainly

suburban travelers. Pace serves 130,000 riders daily with 240 routes, 450 vanpools and

many Dial-a-Ride programs. An AFC system is also installed on Pace buses, but was not

fully integrated into the CTA data system. 3 However, travelers can use the same farecard

to board CTA and Pace buses. In CTA's AFC data records, the field "Last Route" stores

1 From CTA RFP: statistical validation of the farecard passenger flow model for federal NTD reporting
2 Calculated as the average of 65% for commuter trips and 48% for non-commuter trips from CTA 2001'
Travel Behavior and Attitude Survey, Pages 70, 83, 95.
3 From spring, 2004 the data from PACE have been shared with CTA. The algorithm presented later in this
thesis can be simplified due to this change.



the previous trip's information. If the previous trip is on a Pace bus, this field indicates

the Pace bus route number.

2.2.2 The Automated Vehicle Location system (AVL)

The AVL system in CTA is part of the Automated Voice Annunciation System (AVAS),

which is required by the Americans with Disabilities Act (ADA) to provide route and

stop information to bus riders. The AVAS system provides bus location information

along with the bus identification information, and the bus status information, and was

implemented by Clever Devices, Inc, starting in October 2002.

The system records a number of events related to vehicle progress along a route. Each

event has a time-stamp to the closest second, and the location information derived from

the dead-reckoning enhanced GPS, as well as identification information such as bus route

number and bus number, and status information such as whether the door is open or

closed.

The location information is recorded as longitude and latitude coordinates and the route

number, run pattern ID and the stop sequence number. Although the bus stop ID is the

most meaningful location information for transit agencies, the AVL system does not

report it directly. Later in section 2.3, I will present techniques needed to transform the

route number, pattern ID and stop sequence number to the bus stop ID.



Coverage rate

About 1600 vehicles, or approximately 80% of the present fleet, have had AVAS

hardware installed as of July 2004, and the system is expected to be fully operational by

the end of 2004. All new vehicles purchased will have AVAS installed, in order to bring

the percentage of equipped vehicles in the fleet to 100% as vehicles are retired and

replaced. When the AVL data was collected for this study in January 2004, about 70% of

the total bus fleet was equipped with AVL devices. However, not all devices were

functioning throughout the time the bus was operating. Therefore the effective coverage

rate (the ratio of the bus-hours covered by the AVL data over the total bus-hours operated)

is much lower, roughly 40% as estimated in this study.

2.3 Potential and Obstacles for ADC Data Utilization

In introducing the AFC and AVL systems at the CTA, several problems were noted with

regard to the use of data: the bus stop ID is not directly recorded by the AVL; while the

bus route number is reported in AFC, the bus number and the specific boarding bus stop

are not recorded. Examples are given below to show techniques that can be used to solve

these problems and, more importantly, illustrate that while there is great potential for

these new ADC data sources, there is a critical gap between what ADC data directly

offers and what is desired by transportation planners and analysts. The complexity of the

data manipulation tasks in the examples to be presented increases sequentially-from the

processing of data from an individual ADC system, to the integration across multiple

ADC systems, and to full scale AFC and AVL data processing.



2.3.1 Processing of data from an individual ADC system

AVL Data Processing-Identifying Bus Stop ID

The bus stop ID would be the most useful means of recording the bus location, but the

AVL system does not record it directly in the raw data; instead, it reports bus route

number, bus running pattern ID and stop sequence. Figure 2-2 is the entity-relationship

diagram that illustrates the AVL data table and auxiliary tables involved (Pattern, Pattern

Detail, and Stop) and their inter-relationships. The AVL table is updated everyday and

the auxiliary tables are static in the long term. Relational database technology is a pre-

requisite to the process of translating the route, pattern and stop sequence into a bus stop

ID. The difficulty is not to understand the relationship once it is identified, but to figure

out the relationship from the dozens of tables and their hundreds of possible inter-

relationships.

Figure 2-2: AVL Data Processing-Identifying Bus Stop ID



AFC Data Processing-Identifying the Bus ID

When the AFC system is used on buses, it records the bus route number but not the bus

ID, which would be of greater use for fleet management. Figure 2-3 shows the technique

that solves this problem by taking advantage of the relationship between the AFC fare

box equipment ID and the bus ID. Most fare boxes are fixed on a specific bus, but some

of them are floating among different buses at different times. In the relational database

management system, two table joining operations are performed--one for the fixed fare

boxes, for which a simple one-to-one relationship is sufficient; the other for the floating

fare boxes, for which the time stamp is needed in addition to the equipment ID to

complete the join.

Figure 2-3: AFC Data Processing-Identifying the Bus ID



2.3.2 Integration across ADC systems to obtain the boarding bus stop

As argued in section 2.2 about the AFC system, the location information about the bus

trip is very coarsely recorded. More specific boarding location-boarding bus stop-is

important information to carry out many analyses about passenger bus trips such as bus

trip OD analysis; however, the AFC system records the bus route number but not the bus

stop ID. The combination of the AFC system and the AVL system offers a solution here.

The AFC data records traveler trips while the AVL data records vehicle trips. In Section

2.3.1 I presented a method to obtain the exact bus stop ID for a vehicle trip from the AVL

data. If the AVL vehicle location information can be matched against the AFC passenger

trip information, this allows us to infer the boarding bus stop ID for specific trips.

The combination of AFC and AVL is realized by two linkages: first, the time when a

passenger swipes the fare card (data from AFC) matches the time when a bus arrives at a

bus stop (data from AVL). The time stamp from the AFC should be shortly after the time

stamp from the AVL. Secondly the bus ID from the AFC matches the bus ID from the

AVL. If the two linkages can be established simultaneously, the bus stop that the vehicle

is arriving at is then the bus stop where the passenger boards, as shown in Figure 2-4.



Figure 2-4: Combining AFC with AVL to get the boarding bus stop ID

For example, in the left table in Figure 2-5, the AFC records two trips of a person with

the fare card 1140031645. The person boarded bus 4521 at 2:20:05pm. In the right AVL

table, the three records for bus 4521 indicate that this bus passed stop A at 2:08:00pm,

stop B at 2:20:00pm and stop C at 2:35:00pm. After matching the AFC table with the

AVL table, it is safe to infer it is stop B where the person boarded at about 2:20pm. The

two times 2:20:05pm from AFC and 2:20:00pm from AVL are not exactly the same. The

story is that the AVL system reports the time 2:20:00pm when the bus arrived at stop B,

and the passenger boarded the bus and then swiped the AFC card at 2:20:05pm. Bus stop

B is then the boarding stop for this bus trip.



Figure 2-5: Example of AFC and AVL combination

Person 1140031645's Two Consecutive Trips Time and Location of Bus 4521
Reported by AFC Reported by AVL

Card SN Time Type Origin Location BUSID TIME Bus Stop

1140031645 _120,00-M[ Subway Station ID 1 .2 4521 2:08:00 PM A
1140031645 (2:20:05 PM ) Bus Bus 16_4521 451-2:20: 00 PM B

4521 2:35:00 PM C

2.3.3 Full scale AFC and AVL data processing

With the above processing of the individual AFC and AVL data, and the combination of

the AFC and AVL system data, we are now ready to perform the full scale AFC and AVL

data manipulation, which transforms the AFC data from the raw format (indicated by the

leftmost table in Figure 2-6) to data that public transit planners can make use of

(indicated by the rightmost table in the same figure). The AFC and AVL tables are from

the centralized AFC and AVL databases that are daily updated. The AVL table is

processed to include a SystemStopID as shown in section 2.3.1. The StopStation

relational table is derived from the GIS analysis of proximity between bus stops and rail

stations. Other tables are reworked relational tables developed from ADC systems

documents and specific data requests to the data department of CTA. The full scale AFC

data processing combines the above examples of processing individual AFC data to get

the bus ID, processing individual AVL data to get the stop ID, integrating AFC and AVL

data to link the passenger trip information to the vehicle trip information to get passenger

boarding bus stop ID, GIS analysis of the proximity, and other auxiliary steps such as

table joining and data recoding.



There is a striking gap between what ADC systems offer and what transit agencies need.

The dazzling joins, flows, tables, structures, relationships, etc. evidently says that it is not

easy to bridge this gap. Meanwhile, a framework for ADC data manipulation and analysis

methodologies and techniques is not readily available, and transit agencies generally lack

staff familiar with the technologies such as DBMS, GIS, and programming, with ADC

systems, and at the same time with transportation planning requirements. As a

consequence, these data sources are not yet effectively utilized in practice.

It is conceptually a good idea to utilize ADC data but in order to make it practical in

reality, a strong foundation of data processing and analysis with the support of advanced

technologies such as DBMS and GIS is needed before the full value of the ADC data

source can be exploited.





Chapter Three: CTA Rail OD Matrix Inference

and Analysis

The rail passenger origin-destination (OD) matrix is of fundamental importance both for

long-term rail infrastructure investment planning and for daily operations planning. Trip

OD data are typically collected by specially designed passenger surveys. However, these

surveys are usually expensive, subject to unknown bias and not easy to update frequently.

The implementation of ADC systems provides a chance to automatically collect trip OD

information at low marginal costs. The utilization of ADC data to obtain the trip OD

entails different complexity for different ADC system configurations. In transit systems

which operate with both entry-control and exit-control AFC systems (such as Bay Area

Rapid Transit and Washington Metropolitan Area Transit Authority), the origin-

destination matrix can be directly observed, however in systems such as Chicago Transit

Authority and New York City Transit Authority, which have entry-only AFC systems, it

is not as easy. This chapter examines the problem of how to infer the destination for a

given origin for a passenger traveling in the rail network. This is the fundamental step in

estimating a rail origin-destination matrix.

Section 3.1 proposes the idea of an improved destination inference algorithm that takes

advantage of the pattern of individual transit rider's consecutive trip segments, and the

integration of AFC and AVL systems. Section 3.2 describes the implementation of the



algorithm and the development of a software tool to automate the process. Section 3.3

applies the algorithm to the CTA rail system for a one-week period to infer the rail trip

OD matrix and analyzes the CTA rail trip patterns from the estimated OD matrix.

3.1 Destination Inference

This study only deals with destination inference of rail trips (or trip segments4). Bus trip

segments are utilized to help infer the rail trip segment destinations but the destinations of

bus trip segments are not addressed.

The destination inference method takes advantage of the pattern of a person's consecutive

transit trip segments. The method uses information on the next trip segment to infer the

destination of a given trip segment. There are two different cases that are of interest in

this study, rail-to-rail and rail-to-bus trip sequences. The rail-to-rail case has been

discussed in Barry et al. (2001) and Rahbee (2002). This study distinguishes itself from

the previous ones by examining the rail-to-bus case. Three strategies are developed to

utilize the bus trip segment information for rail-to-bus sequences to different extents

depending on whether AVL data are available and whether GIS technology is employed.

In the CTA context, the inclusion of the rail-to-bus case by utilizing GIS technology and

integrating the AVL data into the inference process increases successful rail trip

destination inference by 10 percent.

4 A trip is composed of one trip segment if there is no transfer in the trip or more than one trip segments if
there are transfers in the trip.



Another feature of the method is to explicitly examine the symmetry in passengers' trip

segment chains. For trip chains whose symmetric pattern can be verified, the inference

can be expanded from using only consecutive trip segments to using non-consecutive trip

segments. This expansion enhances the success rate of the inference algorithm by a

further 2.4 percent.

3.1.1 Inference Assumptions

The basic idea of the destination inference is that the destination of a trip segment is also

likely to be the origin of the next trip segment. More loosely, a high percentage of riders

stay at, or return to, the destination station of their previous trip segment to begin their

next trip segment (Barry et al 2001).

Figure 3-1 A Person's Three Consecutive Trip Segments

D

C

A

For example, Figure 3-1 illustrates a person's three consecutive trip segments. Trip

segment 1 goes from station A to station B, trip segment 2 from B to C, and trip segment

3 from C to D. The origins of these three trip segments are observed. The second trip

segment's origin is station B. It is reasonable to infer that station B is also the destination



of the first trip segment. Similarly the origin of the third trip segment, station C, may be

reasonably inferred also to be the destination of the second trip segment.

This premise is subject to the following assumptions 5:

1. There is no private transportation mode trip segment (car, motorcycle, bicycle, etc)

mixed in with the public transportation trip segments;

2. Passengers will not walk a long distance to board at a different rail station from

the one where they previously alighted. The condition is equivalent to the

distances between rail stations being longer than a typically acceptable walking

distance, which in this research is set to be 1320 feet, five minutes' walk distance

at a speed of three miles per hour,

3. Passengers end their last trip of the day at the station where they began their first

trip of the day.

For example, Table 3-1 lists the four trip segments by the person with card 1109344130.

Given first two assumptions, the destinations of the person's first three trip segments are

inferred as Sedgwick, Armitage and LaSalle respectively. The last trip segment's

destination is set to be the origin of the first trip segment of the day-Central Park, given

the third assumption.

Table 3-1 Consecutive Train Trip Segments of Card 1109344130

Transaction ID Card SN Time Origin Inferred Destination
377599 1109344130 34871 Central Park Sedgwick
377600 1109344130 50486 Sedgwick Armitage
377601 1109344130 77692 Armitage LaSalle
377602 1109344130 78610 LaSalle Central Park

5 The validation of these three assumptions will be discussed later in Chapter five.



3.1.2 Two Consecutive Trip Segments

Since the algorithm uses the following trip segment's origin to infer the prior trip

segment's destination, it is necessary to examine sequences of two consecutive trip

segments. If "T" denotes a train trip segment, and "B" denotes a bus trip segment, two

consecutive trip segments can be one of the four cases: TT, TB, BB, and BT. Because

the study focuses on the rail trips, the BB and BT cases are not relevant. Therefore only

train-to-train and train-to-bus cases are examined, as shown in Figure 3-2, and there are

three situations in the TB case, determined by whether GIS technologies are employed

and whether AVL data are available.

Figure 3-2: Cases of Two Consecutive Trip Segments

Sequences of Two Consecutive Trip Segments

T T B

GIS not Available GIS Available GIS Available
AVL not Available AVL not Available AVL Available

Train Trip Infonation Bus Trip Information Bus Tip Infonation Bus Trip Infonnation
Utilized Ignored Partially Utihzed Fully Utilized

Rail-to-Rail Sequences

In the TT case, the second train segment's information can be directly utilized to infer the

destination of the first segment. There are two situations as shown in Figure 3-3: first, if

the origin of the second segment is different from the origin of the first segment, then the

second segment's origin is assigned to be the first segment's destination; second, if the

origins of the two segments are the same, then there are two scenarios.



Figure 3-3: Rail-to-Rail Sequences Scenarios

Scenario One: when the time stamps of both segments are within a short time window,

the two segments are regarded as one travel group. This situation is labeled as "Multiple

Swipe" indicating that a group of people are traveling together using a single farecard to

pay for their trips. Three minutes is the time threshold used in the study. In this case all

travelers in the group are assigned the same destination as the last traveler's destination

given that this destination can be inferred. Scenario Two: when the time gap between

both segments is beyond three minutes, the first segment's destination cannot be

determined.

Rail-to-Bus Sequence

For rail-to-bus sequences, three strategies are developed for different system availabilities

depending on whether AVL data are available and whether GIS technologies are

employed. 1) When neither AVL data nor GIS technology are available, the bus trip

segment information cannot be utilized. In this situation, the bus trips information is

simply ignored as in Barry et al. (2001) and Rahbee (2002). 2) When GIS technology is



employed but no AVL data is available, the bus trip segment information can be partially

utilized. 3) When both GIS technology and AVL data are available, the bus trip segment

information can be fully utilized to enhance the destination inference algorithm.

No AVL Data but with GIS Technology

When GIS technology is employed but AVL data is not available, the bus trip

information can be partially utilized. The utilization of the bus trip information requires

that the spatial relationship between rail and bus network be analyzed. GIS provides tools

for this type of spatial analysis. Buffers around rail stations are created as circles with rail

stations as centers and 1320 feet as the radius. Intersecting the buffers with the bus routes

can determine how many rail stations each bus route serves. There are three possibilities

for how a bus route connects with the rail network, as shown in Figure 3-4.

In the first case when the bus route has no connection with the rail network, the

destination of the train trip cannot be inferred. In the second case when the bus route has

only one connection with the rail network, the connection station is the destination of the

train trip segment. For example, bus route #17 goes from Westchester to Forest Park. It

connects with the rail network only at Forest Park station on the Blue Line. A person with

farecard 1095163393 boarded at Washington/Dearborn Station (Station ID=370) at

4:12PM and then boarded bus route #17 at 5:06PM as shown in Table 3-2. It can be

inferred that the destination of the rail trip segment is Forest Park Station, the only

connection between bus route 17 and the rail network.



Figure 3-4 Scenarios in the Train-to-Bus Sequence without AVL Data

TB

'IS not vailable

AVL, not Available

I Bus Trip Information

Ignored

GIS Available
AVL not Available

Bus Trip Information
Partially Utilized

GIS Available
AVL Available

Bus Trip Information
Fully Utilized

No Practical Rail Unique Rail Multiple Rail
To Bus Route Transfer 'To Bus Route Transfer To Bus Route Transfer

Destination Cannot
Be Inferred

Destination Uniquely Destination Limited
Identified To Multiple Candidates

Table 3-2 Consecutive AFC Records for a Unique Rail to Bus Transfer Example

Consecutive AFC Records for Farecard
1095163393 on Jan. 14th, 2004

Card SN Time Type Origin Location

1095163393 4:12:50 PM Rail Station ID 370
1095163393 5:06:51 PM Bus Bus Route 17

In the third case when the bus route intersects the rail network at more than one location,

as shown in Figure 3-5, the destination can be limited to one of these candidate stations

but cannot be uniquely identified. For example, a person with farecard 1028969715

boarded at Harlem/Lake Station (ID=20) at 4:54PM and then boarded bus route #55 at

5:54PM as shown in Table 3-3. This person could transfer from the rail network to bus

route #55 at any of three connection points-Garfield Station on the Green Line, Garfield



Station on the Red Line or Midway Station on the Orange line. It cannot be determined at

which station the person actually transferred.

Table 3-3 Consecutive AFC Records for Multiple Rail to Bus Transfer Options Example

Consecutive AFC Records for Farecard
1028969715 on Jan. 13th, 2004

Card SN Time Type Origin Location

10289697151 4:54:41 PM Rail Station ID 20
10289697151 5:54:27 PM Bus Bus Route 55

Figure 3-5: Multiple Rail to Bus Transfer Possibilities

Rail Network

Origin of
the 1s trip T

Bus Route 55
%A

B

Potential Transfer Points

With Both AVL Data and GIS Technology

When both GIS technology and the AVL data are available, the boarding bus stop of the

bus trip segment can be identified through the integration of AFC and AVL data as

described in Chapter Two; and the alighting station of the rail trip segment can be found

using GIS to analyze the proximity between rail stations and bus stops in order to

determine the station close to a bus stop, as illustrated in Figure 3-6. For bus stops with a



rail station within walking distance, the rail station is assigned as the train segment's

destination. For bus stops where there is no rail station close by, the destination of the

train segment cannot be inferred. Both cases are shown in Figure 3-7.

Figure 3-6: Destination Inference for TB Case with AVL data available
AFC
Card SN
Boarding Time
Bus ID

Bus Stop ID Rail Station ID

AVL
Bus ID
Time
Bus Stop ID

Figure 3-7 Scenarios in the TB Transfer Case with AVL Data

T B

Bus rip nforation01

Ig e . d

.I............
i1S GIS Available

VL AVL Available

.... . ......... ......,

[11, 161 wfi;" Bus Trip Information
PartiFully Utilized

Unique Rail Station No Rail Station
Close to the Bus Stop Close to the Bus Stop

Destination Uniquely Destination Cannot
Identified Be Inferred



Continue the same example used in previous section. The person boarded bus route #55

at 5:54PM. By combining the AFC and AVL data, the exact boarding bus stop can be

determined as bus stop 10358. And rail station 930 (Midway on the Orange Line) is the

only rail station close to this bus stop. Therefore station 930 is assigned as the destination

of the train segment, as shown in Figure 3-8.

Figure 3-8: Proximity between Bus Stop 10358 and Rail Station 390

Rail Network
Origin of

the 1 trip T

Rail Station 930

B s Route 55

Bus Stop 10358

Rail Station
Alighting Station

Potential Transfer Points o arding Bus Stop

3.1.3 Symmetrical Trip Chain Pattern Utilization
In this study the daily trip segment chains are utilized to improve the destination

inference algorithm. Many trip segment chains exhibit symmetry in the whole, or in part

of, the chain. For example, in the chain "TBBT" or any chains that include "TBBT" as a

portion, the algorithm can check whether the bus route numbers of both bus trip segments

are the same to verify the symmetry. When the symmetry is confirmed, the later T



segment can be used to infer the destination of the first T segment so that the inference

possibility is expanded from using only consecutive trip segments to non-consecutive trip

segments with symmetrical patterns. In the CTA context, this expansion allows 2.4%

more rail trip destinations to be inferred.

3.2 Algorithm Implementation

3.2.1 Implementation Difficulties and the Development of "Rail OD

Inference Tool" Software

The implementation of the algorithm is difficult and cumbersome, which requires the

implementer be familiar with ADC systems and technologies such as DBMS, GIS and

programming, as well as transportation planning. The processing of the AFC and AVL

data and the application of the destination inference used to take the author about one

month to complete a one-day rail OD matrix inference before the algorithm was

developed. The complexity and time for the inference process may be acceptable for a

scholar carrying out scientific research, but it is not realistic for transit agencies to

implement in practice.

The "Rail OD Inference Tool" software is developed to facilitate this process. This tool

allows a layperson without knowledge of the details of the ADC systems or in-depth

understanding of database and GIS to be able to complete the destination inference

process in a reasonably short time. This software tool takes the raw AFC and AVL data

and several accessory tables as input, estimates the rail OD matrix automatically and



outputs it. Users only need to specify the input files and several parameters. As a

performance measure, the software completes the inference of a one-week trip OD matrix

for the CTA rail network in about one hour. The efficiency improvement results from two

factors: 1) the automation of sequences of manual steps in the database processing such

as table joining and queries; 2) and the speeding up of the algorithm by using customized,

lower-level programming. The software is developed in the C/C++ programming

language. The fundamental structure of the algorithm is described below.

3.2.2 Inference Algorithm Structure

The algorithm is composed of three nested loops, a sub-procedure for one trip segment's

destination inference, and separate procedures for train-to-train, train-to-bus, last-trip-of-

the-day and previous-Pace-bus trip sequences.

Nested Loop Structure

The algorithm starts by sorting the whole AFC data table using the serial number (SN) of

the farecard as the primary key and the transaction date and time as the secondary key so

that the trip segments of the same farecard are grouped together in chronological order.

As indicated in Figure 3-9, there are three nested loops in the algorithm. The outer loop

cycles through each of the farecards, the middle loop through each of the days and the

inner loop through each of the trip segments of the farecard identified in the outer loop on

the day pointed at in the middle loop. For each rail trip segment, a sub-procedure is

carried out to estimate the destination of the trip segment.



Figure 3-9: Nested Loop Structure of the Algorithm

Sub-Procedure for One Trip Segment's Destination Inference

Figure 3-10 shows the overall sub-procedure structure. Suppose the rail trip segment

currently under examination is trip segment j by person p on day d, and its immediate

following trip segment is k. The algorithm determines whether trip segment k is on rail or

on bus and moves onto "TT transfer procedure" or "TB transfer procedure" accordingly



except for two special situations: 1) when trip segment j is the last trip segment on day d,

because there is no next trip segment for the last trip segment, a special "Last Trip

Segment of the Day Procedure" is called; 2) when a Pace bus trip segment intervenes

before trip segment k, the algorithm diverts to the "Previous Pace Procedure" to handle

this special situation. Each of these four procedures is described as below.

Figure 3-10: Sub-Procedure for One Trip Segment's Destination Inference

TT Procedure

The inference concept for the train-to-train case was introduced in section 3.1.3, and is

implemented as two levels of bifurcations in the TT procedure, as shown in Figure 3-11.

The only complexity lies in how to deal with the Multiple Swipe case. A "stack" is used

to model the Multiple Swipe case-when consecutive segments are identified to be of the



same travel group, they are pushed into the stack one by one without knowing their

destinations until it comes to the last transaction of the travel group-if the last

transaction's destination can be inferred, then all trip segments in the stack are popped

and assigned the same destination; if it cannot be inferred, then neither can any of the

other trip segments in the stack.

Figure 3-11 TT Transfer Procedure

TB Procedure

In the TB procedure, the algorithm first checks whether the bus trip segment is made on

an AVL-equipped bus and proceeds accordingly with different inference strategies. For

the AVL-equipped bus trips, the boarding bus stop is obtained and the closest rail station

to the bus stop is identified. If the bus stop and rail station are within walking distance,

this station is assigned as the destination of the train trip segment. If the bus stop and rail

station separation is beyond walking distance, then the destination of the train trip



segment cannot be inferred. Since the current CTA AVL system does not cover all buses,

the algorithm turns to the secondary method for non-AVL-equipped bus trips. The rail to

bus route transfer possibility is examined. If there is only one transfer station from the rail

network to the bus route, this station is then assigned to be the destination of the train trip

segment; otherwise, no destination can be inferred for the train trip segment. (See Figure

3-12)

Figure 3-12 TB Procedure
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Last Trip of the Day and Pace Bus

When trip segment j is the last trip segment on day d, the third assumption that

'"passengers end their last trip of the day at the station where they began their first trip of

the day" is utilized. The "Last Trip Segment of the Day Procedure" checks the first trip

segment on day d. If the origin of the last trip segment is different from the origin of the

first trip segment, the first trip segment's origin is assigned to be the last trip segment's



destination. The trip count by hour-of-day indicates that there are the fewest trips

occurring between 2 and 3am so the day boundary is defined at 3:00am instead of

midnight to better reflect actual behavior.

When there is a Pace bus trip segment before trip segment k, the "Previous Pace

Procedure" is carried out. Pace buses are treated similarly to CTA buses with no AVL

system installed. The transfer possibilities from the rail network to Pace bus routes are

examined. When there is one and only one transfer station from the rail network to a

certain Pace bus route, the transfer station is inferred to be the destination of the rail trip

segment.

3.3 Algorithm Application for CTA Rail Trip OD Analysis

The algorithm is applied to the CTA rail system for a one-week period from Jan.1 1-17,

2004. The CTA AFC and the AVL data were input to the "Rail OD Inference Tool" and

the corresponding rail trip OD matrix produced. The rail trip OD pattern and the trip

segment chain pattern are analyzed based on the OD matrix produced by the algorithm.

3.3.1 Basic Statistics

There are a total 5,948,454 transactions recorded by the AFC system in the one week

period analyzed including 4,974,422 trip transactions (83.6%) and 974,032 non-trip

transactions (16.4%). The trip transaction mode split is 52.3% by rail (2,602,819 trip

segments) and 47.7% by bus (2,371,603 trip segments), as shown in Figure 3-13. The



5,948,454 transactions are generated by 1,076,867 distinct farecards giving an average

usage rate of 5.5 transactions per card in this week.

Figure 3-13: Trips vs. Non-Trip Transactions and Public Transit Mode Split
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Out of the 2,602,819 rail trip segments, the algorithm successfully infers the destinations

of 1,705,954, or 65.5%. The 35% loss is explained in the following examination of daily

trip chain patterns. The following analyses are based on the trips that have a destination

inferred by the algorithm. Table 3-4 summarizes the contribution of different inference

methods. The inclusion of the train-to-bus cases accounts for 11% of the destination

inference; the utilization of the symmetric trip chain pattern accounts for 2.4%; and the

multiple swipe cases account for 1.4%. A total of about 15% of the destinations are

provided by the improvement to the inference algorithm.



Table 3-4: Inference Methods Contribution

Method Percentage

Train-to-Train Case Next Train Trip 51.0%
Last Train of the Day 33.3%

Train-to-Bus Case Unique Rail to Bus Route 5.1%
AVL Selection of Bus Stop 5.9%
Trip Chain Symmetry 2.4%

Special Cases Multiple Swipe 1.4%
Unique Rail to Pace Bus 0.9%
Total 100.0%

3.3.2 Regional Trip Flow Pattern

In order to understand the regional trip flow pattern at a macro level, stations are grouped

into four regions-the Loop, the North, the South, and the West. The Loop group

includes 16 stations physically inside the elevated line circle plus LaSalle Station on the

Blue Line that is very close to the Loop. The North group includes 45 stations on the

Yellow, Purple, Brown lines, and the north portion of Red Line. The South group

includes 22 stations on the Green Line south portion and the Red Line south portion. The

West group includes 59 stations on the Blue and Orange Lines and the Green Line west

portion, including O'Hare and Midway.

Table 3-5 shows the percentages of trips internal to each of the four regions. The North

region has the highest number of intra-region trips with 20.7% of total trips. This is

reasonable since the North region actually includes a large portion of the Chicago CBD.

The Loop region has the lowest number of intra-regions trips, since the region is so small

and dense that walking becomes the most convenient mode for these trips.



Table 3-5: OD Flow by Region

Orig Dest Trips Percentage
North North 352443 20.7%
West West 173196 10.2%
South South 62056 3.6%
Loop Loop 19263 1.1%

Figure 3-14 also illustrates the trip flows between regions. The trip flows between the

three peripheral regions are small, 5.1% between the North and West, 5.4% between the

North and South, and 2.8% between the West and South. The largest numbers of inter-

regional trips are between the West and the Loop, and between the North and the Loop.

Figure 3-14: OD Flow Inside or Between Loop, North, South and West Regions
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3.3.3 Transit Trip Segment Chain Pattern

A transit trip segment chain on each farecard is the sequence of transit trip segments

made by the farecard during a time period such as a day or a week. The typical daily trip

segment chains look like "TT", "TBT", and "BTTB", while "0.T.T.T.T.T.0",

"0.0.TB.0.0.0.0", "B.0.B.0.0.0.0" are examples of weekly trip chains6 in which, a

denotes the boundary between days and a "0" indicates that there are no trips on that day.

Examination of trip chains helps us understand travelers' behavior of chaining trip

segments in the day travel plan and the changes of travel pattern from day to day. One

byproduct of the "rail trip OD inference tool" software is to generate daily and weekly

trip segment chains. The following analysis is based on the trip chains observed in the

one week period from Jan. 11-17, 2004 in the CTA system. Note that in this section the

chain is simply defined at the modal level and does not have a spatial aspect.

Daily Trip Chain Pattern

On Monday, January 12, 2004, there were 359833 trip chains covering 1915 patterns, or

on average of 188 chains per pattern. The top five most frequent patterns are "TT", "T",

"B", "BB" and "TB", consisting of 69.3% trip chains as shown in Table 3-6.

Table 3-6: The Top Five Most Frequent Daily Trip Patterns

Trip Chain Pattern Percentage Cumulative Percentage
TT 22.8% 22.8%
T 19.4% 42.2%
B 13.7% 55.9%
BB 7.9% 63.8%
TB 5.5% 69.3%

6 Sunday is the first day in the weekly trip chain.



The top 18 most frequent patterns cover 90% of the chains as shown in Figure 3-15. The

remaining 10% of chains are scattered among 1897 different patterns. Thus passenger

travel patterns are highly diversified.

Figure 3-15: The Top 18 Most Common Daily Trip Patterns
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The examination of the daily trip chain pattern helps us understand the performance of

the destination inference algorithm: "T", a single rail trip in a day, for which no

destination can be inferred, consists of 19.4% of all trip chains. This accounts for the

biggest portion of the trip destination inference loss. "TB" or "BTB" are examples in

which the enhanced algorithm outperforms the prior studies by examining the rail-to-bus

cases. "TBBT" is an example of the improvement of the algorithm by utilizing the

symmetrical trip chain patterns.

If the daily trip segment chains are compared between weekdays and weekends,

weekdays are very stable, but, as expected, weekends are quite different. Table 3-7

compares the number of chains and number of patterns between weekdays and weekends,



and indicates that the trip chain patterns are less concentrated on weekends than on

weekdays.

Table 3-7: Trip Chain Concentration by Day-of-Week

Mon Tue Wed Thu Fri Sat Sun

no. of chains 359833 365509 364470 363695 358351 167350 118035
no. of patterns 1915 1900 1867 1991 2100 1356 1115
pattern oncentration
(chains/pattern) 187.9 192.4 195.2 182.7 170.6 123.4 105.9

The most common daily trip chain pattern also changes from TT on weekdays to T on

weekends as shown in Table 3-8.

Table 3-8 Most Common Daily Chain Patterns by Day-of-Week

Mon Tue Wed Thu Fri Sat Sun
TT 22.8% TT 23.2% TT 23.1% TT 22.4% TT 20.8% T 21.9% T 23.2%

T 19.4% T 17.9% T 17.7% T 18.1% T 19.8% TT 15.9% TT 14.9%
B 13.7% B 14.1% B 14.3% B 14.5% B 14.8% B 12.0% B 12.1%

BB 7.9% BB 8.1% BB 8.2% BB 7.9% BB 7.7% BB 9.2% BB 9.8%
TB 5.5% TB 5.1% TB 5.0% TB 4.9% TB 5.1% TB 5.9% TB 6.5%

Weekly Trip Chain Pattern

There were 1,076,867 distinct farecards used in the week analyzed with 176,546 different

weekly trip chain patterns. So each pattern has, on average, 6.1 instances. The top five

patterns are "0.0.0.0.0.0.0" (the card was only used for non-trip transactions),

"0.0.0.0.0.T.0", "0.T.0.0.0.0.0", "0.0.0.0.0.B.0" and "0.0.0.0.B.0.0", consisting of 21.9%

of weekly chains. The top 24 patterns cover only half of total weekly trip chains (see

Table 3-9) with the remaining trip chains very sparsely distributed among 176,522

patterns. Thus weekly trip patterns are highly diverse. In particular, the degree of

repetition of the daily chain in the weekly chain is far less than expected, i.e., many



passengers change their daily trip chain pattern during the week. In Table 3-9, only one

pattern with the traditional repetition of the daily trip chain in the weekly trip chain is

"O.TT.TT.TT.TT.TT.O", where a traveler makes two train trips every day on the

weekdays.

Table 3-9: Most Common Weekly Trip Chain Patterns

Week Trip Chain Pattern Counts Percentage Cumulative Percentage
0. 0. 0. 0. 0. 0. 0 109539 10.2% 10.2%
0. 0. 0. 0. 0. T. 0 32775 3.0% 13.2%
0. T. 0. 0. 0. 0. 0 32236 3.0% 16.2%
0. 0. 0. 0. 0. B. 0 31264 2.9% 19.1%
0. 0. 0. 0. B. 0. 0 30282 2.8% 21.9%
0. 0. 0. B. 0. 0. 0 29414 2.7% 24.7%
0. 0. B. 0. 0. 0. 0 28788 2.7% 27.3%
0. B. 0. 0. 0. 0. 0 27652 2.6% 29.9%
0. 0. T. 0. 0. 0. 0 26984 2.5% 32.4%
0. 0. 0. 0. T. 0. 0 26396 2.5% 34.9%
0. 0. 0. T. 0. 0. 0 25581 2.4% 37.2%
0. 0. 0. 0. 0. 0. T 19303 1.8% 39.0%
T. 0. 0. 0. 0. 0. 0 14135 1.3% 40.3%
0. 0. 0. 0. 0. TT. 0 12716 1.2% 41.5%
0. TT. 0. 0. 0. 0. 0 12369 1.1% 42.7%
0. TT. TT. TT. TT. TT. 0 11152 1.0% 43.7%
0. 0. TT. 0. 0. 0. 0 10197 0.9% 44.6%
0. 0. 0. 0. TT. 0. 0 9969 0.9% 45.6%
0. 0. 0. TT. 0. 0. 0 9699 0.9% 46.5%
0. TB. 0. 0. 0. 0. 0 9096 0.8% 47.3%
0. 0. 0. 0. 0. TB. 0 9051 0.8% 48.2%
0. 0. 0. 0. 0. 0. TT 8938 0.8% 49.0%
0. 0. TB. 0. 0. 0. 0 8274 0.8% 49.8%
0. 0. 0. TB. 0. 0. 0 8050 0.7% 50.5%

The CTA AFC system enables us to associate multiple trip segments with one person if

they are paid by the same farecard. However, in CTA one person may use more than one

farecard during a day or a week, so there could be a mismatch between the trip segment

chain of a farecard and the chain of a person: a farecard's chain is either equal to or more

fragmented than a person's chain. The extent of the mismatch depends on the length of

the trip chain analysis period relative to the lifetime of the farecard. The longer the



analysis period, the more likely travelers have used multiple farecards, and the more

fragmented the farecard's chain than the person's chain. The lifetime of the farecard

could be one trip, one day, one week or even one month, but it averages 32.5 hours with

7the standard deviation of 46 hours'.

7 This is calculated based on one week AFC data from Jan. 1- 17th 2004. The mean is slightly
underestimated because when a farecard exists beyond the one-week time, it is counted as one week long.



Chapter Four: Rail Path Choice Decision

Modeling

This chapter presents the second case study of the utilization of ADC systems: modeling

the rail path choice behavior of public transit riders. Individuals' rail path choices

cumulatively determine the spatial distribution of the demand in a rail network. If the

behavioral decision rules can be quantified in a systematic way, they can be used to

forecast the spatial distribution of the traffic demand in the future after major network

configuration changes, which are the basis to many transportation planning decisions.

This study takes advantage of the discrete choice analysis method to characterize rail

riders' path choice behavior. The estimation and interpretation of the path choice models

are based on the CTA rail system and the data come from two sources: the rail trip OD

matrix inferred as described in Chapter Three and the attributes of alternative paths

calculated from a network representation in TransCAD. This case study demonstrates that

a rigorous travel behavior analysis can be performed based on data from ADC systems.

Section 4.1 describes the theoretical background of the discrete choice analysis method

and introduces the topic of path choice in the CTA rail network. Section 4.2 describes the

data preparation and the variable generation. Section 4.3 presents the specification and

interpretation of a series of models with increasing sophistication and explanatory power,



and an application of the model to assess the impact of a hypothetical network change on

the market shares of alternative paths is shown at the end of the chapter.

4.1 Rail Path Choice
Modeling travel behavior is a key aspect of transportation demand analysis wherein

aggregate demand is understood to be the accumulation of individual decisions. An

individual's travel decision can be generalized as a two-stage process, the long-term

decisions such as residential location, work location, and car ownership; and the short-

term decisions such as choice of traveling or not, choice of travel mode, choice of

departure time and choice of path. An individual's short-term decisions are conditional

on his long-term decisions. This case study focuses on the last stage in the decision

sequence-travelers' path choice decisions in a public transit context, i.e., how public

transit users make behavioral decisions over potential path choices on the rail network.

4.1.1 Discrete Choice Modeling Methods

The path choice problem involves finding the chosen path given a transportation network

and a specific origin and destination. This study uses both Multinomial Logit (MNL)

models and Mixed Logit models to examine the path choice problem.

The MNL model is based on random utility theory. Specifically, the utility that an

individual n associates with alternative i in the choice set C, is given by U,, =Vin + ein

where V, is the deterministic (or systematic) part of the utility, and ei is the random

term, capturing the error. The alternative with the highest utility is chosen. Therefore, the

probability that alternative i is chosen by decision-maker n from choice set C, is,

P(iICn)=P[U,, UnVje C]=P(Uin=maxUn) (4-1)
je C,



The MNL model is derived from the assumption that the error terms of the utility

function are independent and identically Gumbel distributed resulting in the following

probability that an individual n chooses alternative i within the choice set Cn (Ben-Akiva

and Lerman 1985):

P(iIC)= , (4-2)
Xe'

jE CI

Mixed Logit is a highly flexible model. It obviates the limitation of standard MNL model

by allowing for random taste variation, and unrestricted substitution patterns. Mixed

Logit probabilities are the integrals of standard logit probabilities over a distribution of

parameters, expressed in the form,

P(i C,) = JP(i I Cn,f$)f($)dfi, (4-3)

where P(i I C , $) is the standard MNL probability evaluated at parameter ,

P(i I C., = e

jeC,

and f($6) is a density function. V, ($6) is the observed portion of the utility, which

depends on the parameters ,. (Train 2003)

This study utilizes a binary Logit model to represent travelers' path choice behavior and

uses the Mixed Logit model to test the taste variation among travelers with respect to the

level of service variables such as in-vehicle travel time, the number of transfers and the

transfer walk time.



4.1.2 Path Choices in CTA Rail System

CTA Rail Network and the "Loop"

This study is based on the Chicago Transit Authority rail network (see Figure 4-1), which

consists of: seven rail transit lines and 143 rail stations. 1,190 rapid transit cars operate

over 222 miles of track. CTA trains provide about 500,000 customer trips each day.

Figure 4-2 shows the elevated lines in the Chicago downtown area known as the Loop.

Four rail lines operate on shared tracks on the Loop: the Green Line passes through the

Loop linking its west and south segments; the Brown Line, Orange Line and Purple Line

use the Loop to reverse direction and provide downtown passenger distribution.

On the loop, the Brown Line and Green Line North Bound travel clockwise, while the

Orange Line, Purple Line and Green Line South Bound travel counter-clockwise. While

the Blue Line and Red Line also pass through this area they do not use the Loop tracks.

The Loop is the area where most service lines meet and where most passengers transfer

between routes. The overlapping and inter-connection of rail lines in the Loop area result

in multiple path choices for many OD pairs.



Figure 4-1 CTA Rail System Map, Source: Chicago Transit Authority
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Figure 4-2 The "Loop", Source: Chicago Transit Authority
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Path Choice Examples

Because of the overlapping and the interconnection of rail lines, travelers have choices of

alternative paths traveling between certain origins and destinations. For example,

travelers from Quincy to Belmont have two choices: boarding at Quincy Northbound on

the Purple Line or boarding at Quincy Southbound on the Brown Line. Table 4-1 shows a



sample of the trip counts going north bound (NB) vs. south bound (SB) starting from

Quincy in the PM peak between Jan. 1 1- 17th, 2004.

Table 4-1 NB and SB TriD Counts from Ouincv Station

ORIG IDEST
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A more careful examination of alternative travel paths reveals that the choices that

passengers have vary depending on the time of day for some Origin-Destination pairs.

The OD pairs are classified into two groups.

OD Pair Group One: travelers on these OD pairs have two alternatives in their path

choice set and the choice set is constant throughout the day. For example, for people who

go from LaSalle to all Orange line stations outside the Loop, the choice set is constant as

follows,

1: board westbound on the Orange line

2: board eastbound on the Brown line; transfer at Adams to the Orange line



OD Pair Group Two: for travelers on these OD pairs, the choice set changes by time

period depending on whether a particular line is running or not. For example, for trips

from Quincy to Fullerton, the choice set depends on whether the Purple Line is running.

When the Purple Line is running, there are three alternatives,

1: board northbound on the Purple line

2: board northbound on the Orange line; transfer at Clark to the Brown line

3: board southbound on the Brown line

When the Purple line is not running, only alternatives two and three are available.

The variation of the path choice set complicates path choice modeling and to avoid this,

this study only considers the PM peak period, when all services lines are running and the

path choice sets are fixed.

Stations with Exclusive Entrances for Each Direction

To estimate path choice models, it is necessary to determine which path an individual

actually takes. In general the CTA path choice from origins in the Loop is not

automatically observable since passengers can enter through any entrance turnstile and

travel in either direction. Fortunately, four stations in the Loop (Quincy, LaSalle,

Randolph, and State/Lake) have mutually exclusive entrances for each direction. Thus a

rider's choice of entrance (recorded by the AFC system) at these four stations indicates

the direction the rider chooses. The simplicity of the CTA rail network allows us to infer

the exact path travelers choose from the alternatives by using this direction information.

The four stations of interest are shown in Figure 4-2.



4.2 Data Preparation

Two data sets are used in this study: the rail origin-destination matrix described in

chapter three, and the attributes of alternative paths. The CTA rail system is modeled in

TransCAD and the attributes of each alternative path are determined from the network

representation.

4.2.1 Rail OD Matrix

In Chapter Three, a one-week rail trip OD matrix was estimated by applying the rail

destination inference method. The path choice model utilizes a subset of the rail OD

matrix defined as follows:

1) origins at any of the three stations: Quincy, LaSalle, and Randolph 8

2) destinations outside the loop

3) ODs that have practical alternative paths.

4) between 4 and 7pm on weekdays

There are 29137 recorded rail trips originating at Quincy, LaSalle, and Randolph to

destinations outside the Loop in the PM peak hours from Jan. 12 -16 th 2004. They

comprise 502 OD pairs, of which 402 have practical path alternatives which can be used

in this path choice modeling application. Because all trips on the same OD pair have the

same attributes for each alternative, they are aggregated into 402 distinct observations

with the number of trips between the OD pair as the weight of each observation.

8 Trips from State/Lake are not used because these trips have a more complex choice set.



4.2.2 Rail Network Representation and Path Attributes Calculation

The CTA rail network is modeled in TransCAD using the "Route System" and "Transit

Network" tools and attributes of alternative paths are calculated using the "Transit

Skimming" function.

The three major data types required for the TransCAD network model are, train run time

on each track segment, the service frequency on each route, and the transfer walk time

between connecting routes.

The transfer walk time came from direct observation by the author in Chicago. The

transfers are categorized into four groups: cross-platform transfer, overpass or underpass

transfer, walkway (Jackson street and Washington street between the Red Line and Blue

Line), and Loop-subway transfer, and the transfer walk time for each are shown in Table

4-2. There are three cases for the Loop-subway transfer depending on the transfer

location.

Table 4-2 Rail to Rail Transfer Categories

Transfer Type Direction Tne a

Same Platform both 0.1
Overpass/Underpass both 0.9
Walkway (Jackson, Washington) both 2.7
Loop-Subway

At Clark/Lake Loop to Subway 3.5
Subway to Loop 3.1

At State/Lake Loop to Subway 3.3
Subway to Loop 3.3

At Roosevelt Loop to Subway 3
Subway to Loop 3



The train service frequency is derived from the train schedules between 4 and 7pm along

each line and branch in each direction. For some routes such as the Green Line (see

Figure 4-3), the headways are quite stable during the PM rush hours. For other routes

such as the Red Line NB (see Figure 4-4), the headways fluctuate. In both cases however,

the mean headway between 4 and 7pm is used to characterize frequencies. The running

time on each track segment is also derived from the train schedules.

Figure 4-3 Green Line SB Weekday Headway 4 to 7pm

12-

11 .

10

9
e

8.

-o
a6

5-

3
4:08 4:24 4:40 4:56 5:12 5:28 5:44 6:00 6:16 6:32 6:47 7:04

PM PM PM PM PM PM PM PM PM PM PM PM

Time

Figure 4-4 Red Line NB Weekday Headway 4 to 7pm
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Within the TransCAD model of the CTA rail network, attributes of the alternative paths

are calculated using the "Transit Skim" function. The OD pairs of interest in this study

are those between Quincy, LaSalle, and Randolph and stations outside the loop. The path

direction from the origin station is enforced so that for OD pairs with alternative paths,

the attributes of the paths going clockwise and counter-clockwise can be distinguished.

The output of the TransCAD model is a series of matrices, each of which corresponds to

one trip attribute for the OD pairs of interest.

4.2.3 Variable Generation

The rail trip OD data are joined with path attribute data to generate the eight independent

variables 9 listed in Table 4-3.

Table 4-3 Independent Variables
Variable Name Description Units
IVT In-Vehicle Travel Time Minutes
WAITA Initial Waiting Time Minutes
WAITB Transfer Wait Time* Minutes
WALKING Transfer Walk Time* Minutes
TFR Number of Transfers Units
LENGTH Total Track Length Miles
STOPS Number of Stops Units
TOTAL Total Travel Time Minutes
* The wait time is defined as half the mean headway.

These variables are categorized into three groups, the base variables, the transfer related

attributes, and other trip attributes as shown in Figure 4-5.

9 Two additional variables are available but not included as independent variables. First the number of trips
on each OD pair enters the model as a weight. Second, the total dwell time is not included because the
dwell time at each station is assumed to be constant so that the total dwell time is perfectly correlated with
the number of stops.



Figure 4-5 Independent Variable Categories
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Discrete choice model estimation requires not only the attributes of the selected choice

but also the attributes of the non-selected choices and so the attributes of the non-selected

path are also calculated. For this binary choice model, there are two sets of attributes for

each observation.

For the OD pairs with three alternative paths, the two alternatives going in the same

direction are combined to form one composite alternative-the attributes of the combined

path are used in the model. Specifically, the initial wait time of the combined path is

calculated as:

1
W 

+1 1

W1 W2

where w is the initial wait time for the composite alternative, and w, and w2 are the initial

wait times of the two original alternatives.



4.3 Model Estimation and Interpretation

This section presents a series of models of the rail path choice decision. The models are

developed with increasing sophistication and explanatory power. As shown in Figure 4-6,

the series starts with the simplest model (Model A) which includes only the base

variables, in-vehicle travel time (IVT), number of transfers (TFR) and initial wait time

(WAITA). The simplest model checks the significance of the three explanatory variables

and evaluates the tradeoffs among them. Model B introduces transfer wait time and

transfer walk time into the model to characterize the transfer attributes. Part of the

transfer effect can be captured by the two transfer attribute variables. Both Models C and

D include other trip attributes such as total trip length, total travel time, and number of

stops in the model, but in different ways. Model C introduces the new variables in

parallel with the existing variables in Model B, whereas Model D uses interactions

between the new variables and the existing variables. As will be shown Model D works

much better than Model C so Model D is chosen to be the base model for Model E, in

which random coefficients are introduced to test travelers' taste variation over different

level of service (LOS) attributes.

Figure 4-6 The Model Specification Development

Model C
B +

Trip Attributes
Model B

Model A A + Transfer
Base Variables Attributes

Model D Model E
B Interacts D +

Trip Attributes Taste Variation



4.3.1 Simplest Model (Model A)

Ir he simplest model specification, the utility function only includes in-vehicle travel

time (IVT), initial wait time (WAITA), and number of transfers (TFR). This model

checks the significance of the three base variables and the tradeoffs among them.

Table 4-4 Model A Estimation Result

Model A

Independent Estimated Standard T-Test
Variable Coefficient Error

In-Vehicle Travel Time -0.280 0.068 -4.089
Number of Transfers -2.526 0.306 -8.266
Initial Waiting Time 0.032 0.090 0.349

Auxillary Statistics
Number of estimated parameters 3
Null log-likelihood: -172 . 926
Final log-likelihood: -109 . 252
Likelihood ratio test: 127.348
Rho-square: 0 .368
Adjusted Rho-Square 0.351

The estimation results of Model A (Table 4-4) show that IVT and TFR are highly

significant and both have the expected signs. The negative signs mean that, all else being

equal, travelers tend to choose the path with shorter in-vehicle travel time and fewer

transfers.

The estimated utility function is Ui = -0.280 * IVT - 2.526 * TFR + e. Only the relative

magnitudes between variable coefficients have an interpretable meaning. Specifically the

ratio between the coefficients of IVT and TFR is the marginal rate of substitution

between the two variables that measures the tradeoff between the number of transfers and

the in-vehicle travel time. In Model A, one transfer is perceived by a typical traveler as



being equivalent to 9.04 minutes of in-vehicle travel time, calculated by the following

equation.

aUaTFR -2.526
MRS = = =9.04

aU aIVT -0.280

The t-test for initial wait time (WAITA) is low indicating that in the situation being

studied the initial wait time is not important in the typical traveler's path choice decision.

This may be because there is little variation in the initial wait time difference between

alternative paths in the CTA rail network in the PM peak period: the standard deviation

of the waiting time difference is 2.4 minutes.

p2 is an informal goodness of fit index for discrete choice models that measures the

fraction of the initial log-likelihood value explained by the model: it is analogous to R 2 in

linear regression models. The adjusted p 2 is similar to p 2 , but corrected for the number

of parameters estimated (Ben-Akiva 1985). Usually a value between 0.3 and 0.4 for the

adjusted p 2 is a good result for a model specification, which is equivalent to an adjusted

R2 of 0.7 to 0.85 for linear regression models (Chu 2002). Model A yields an adjusted

p2 of 0.35 1, indicating reasonably good explanatory power for the model. When more

sophisticated models are formulated, adjusted p 2 is expected to increase.



The results of Model A are compared to the previous transfer penalty study by Guo (2003)

based on the Massachusetts Bay Transportation Authority (MBTA) rail system (see Table

4-5).

Table 4-5 Comparison between Previous Transfer Penalty Study and Model A10

Model Model B-1 in Guo 2003 Model A

Transfers Transfers

Variables in Utility In-vehicle Travel Time In-vehicle Travel Tim .

Function Access Walking Time Zero Difference

Zero Difference Initial Waiting Time

Systems and Models MBTA Subway Path Choice CTA Rail Path Choice

Transfer Penalty
Measured in In-
Vehicle Travel Time 10.6 minutes/transfer 9.04 minutes/transfer

Both models have number of transfers (TFR) and in-vehicle travel time (IVT) as

independent variables. In model A, "Access Walking Time" is always zero and in Guo's

model, "initial wait time" of transfer path and non-transfer path are identical, also

resulting in a zero difference. Given the differences between the MBTA and CTA rail

systems the results of 10.6 minutes/transfer and 9.04 minutes/transfer are strikingly close.

4.3.2 Models with Transfer Attributes (Model B)

In Model B, the transfer wait time and the transfer walk time are included to better

represent transfer attributes. The estimation results for Model B 1 are shown in Table 4-6.

1 In Guo's study, the transfer penalty is measured in terms of access walking time. The author recalculated
the transfer penalty as measured by in-vehicle travel time (10.6 minutes/transfer) based on Guo's model
estimation results.



Table 4-6 Model B 1 Estimation Result

Model B1
Independent Estimated Standard T-Test
Variable Coefficient Error
In-Vehicle Travel Time -0.313 0.091 -3.444
Number of Transfers -2.157 1.236 -1.746
Initial Waiting Time -0.048 0.145 -0.330
Transfer Waiting Time 0.018 0.412 0.043
Transfer Walking Time -1.065 0.582 -1.832

Auxillary Statistics
Number of estimated parameters 5
Null log-likelihood: -172 . 926
Final log-likelihood: -107 .447
Likelihood ratio test: 130 . 959
Rho-square: 0 .379
Adjusted Rho-Square 0.350

While the p 2 increases from 0.368 to 0.379 in Model B1, the adjusted p2 is virtually

identical, indicating no better data fit than in Model A.

Neither the initial wait time nor the transfer wait time are significant for the reason

discussed in Model A.

The transfer walk time is significant and its negative sign suggests travelers prefer paths

with shorter transfer walk time, all else being equal. The absolute value of its coefficient

(1.065) is much greater than that of the in-vehicle travel time (0.313). This means that

travelers dislike transfer walk time much more than in-vehicle travel time. The tradeoff

between the transfer walk time and the in-vehicle travel time is measured by their

marginal rate of substitution, 3.4 as calculated below, which means that 3.4 minutes of in-

vehicle travel time is perceived as the same as one minute of transfer walk time.



=U / aWALK -1.065
MRS = = =-3.4

aU / aIVT -0.313

The ratio between the coefficients of in-vehicle travel time and number of transfers

decreases to 6.88, compared with 9.04 in Model A. This is because part of the transfer

penalty is now explained by transfer attribute variables, specifically the transfer walk

time variable.

This result is compared to Model B-2 in Guo (2003) in Table 4-7.

Table 4-7 Comparison between Model B2 in Guo 2003 and Model B 1 in this Research

Model Model B-2 in Guo 2003 Model B1
Transfers Transfers
In-vehicle Travel Time In-vehicle Travel Time

Variables in Transfer walk time Transfer walk time
Utility Function Transfer wait time Transfer wait time

Access Walk Time Zero Difference
Zero Difference Initial Wait Time

Systems MBTA CTA
aU/aTFR

a U / IVT 5.27 minutes/transfer 6.88 minutes/transfer
a U /aWALK
au / iVT 5.8 minutes/minute 3.4 minutes/minute

Both models have similar independent variables: number of transfers (TFR), in-vehicle

travel time (IVT), transfer walk time (WALK), and transfer wait time (WAITB). The

ratios between TFR and IVT from both models are similar (5.27 versus 6.88

minutes/transfer), while the ratios between WALK and IVT for both models are not as

close. The difference between 5.8 in Boston versus 3.4 in Chicago may be because the

transfer facilities (corridor, overpass or underpass) are better designed in Chicago than in



Boston so that travelers' dislike of transfer walk time relative to in-vehicle travel time in

Chicago is less than in Boston.

Since the transfer wait time and the initial wait time are far from significant, these two

variables are dropped from Model B 1 to get a variation, Model B2. The estimation result

of Model B2 is given in Table 4-8. The adjusted p 2 goes up from 0.350 to 0.361, which

indicates that dropping the transfer wait time and the initial wait time simplifies the

model without significantly degrading the explanatory power of the model. Subsequent

model developments are based on Model B2.

Table 4-8 Model B2 Estimation Result
Model B2
Independent Estimated Standard T-Test
Variable Coefficient Error
In-Vehicle Travel Time -0.290 0.057 -5.078
Number of Transfers -2.108 0.377 -5.591
Transfer Walking Time -0.936 0.510 -1.835

Auxillary Statistics
Number of estimated parameters 3
Null log-likelihood: -172 . 926
Final log-likelihood: -107 . 567
Likelihood ratio test: 130 . 719
Rho-square: 0 . 378
Adjusted Rho-Square 0.361

4.3.3 Models with other Trip Attributes (Models C and D)

Travelers' perceptions of IVT, TFR, WAIT, WALK etc. may be affected by other trip

attributes such as total trip length, total travel time, and number of stops. Based on Model

B2, these variables are included in the specifications of Models C and D in two different

ways. Model C introduces the trip attributes in parallel with the base variables while



Model D includes interaction terms combining these variables with some of the base

variables.

Table 4-9 reports the estimation results of Model C. The adjusted p 2 drops from 0.361 to

0.341, which indicates that the parallel addition is not effective. The track length and the

number of stops do not show up as significant in Model C. This is reasonable because

both the track length and the number of stops are highly positively correlated with the in-

vehicle travel time. Adding these two variables does not improve the explanatory power

of the model.

Table 4-9 Model C Estimation Result
Model C
Independent Etiniated Standard T
Variable Coefficient Error
In-Vehicle Travel Tine -0. 688 0.460 -1.494

TrackLength 0.325 0.767 0.423

Number of Stops 0.272 0 . 289 0.940

NumberofTransfers -2.1501 1.240 -1.734

Initial Waiting Time 0. 124 0.211 0 . 587

Transfer Waiting Time 0.007 0.412 0. 017

Transfer Walking Time -1. 148 0.592 -1.937

Auxillary Statistics

Number of es timated parameters 7

Null log-likelihood: -172.926

Final log-likelihood: -107.002

Likelihood ratio test: 131. 848

Rho-square: 0.381
Adjusted Rho-Square 0 . 341

In Model D the new variables are introduced as four interaction terms generated by

multiplying IVT and TFR with trip length (LENGTH) and number of stops (STOPS).

The specification and estimation results of Model D1 are given in Table 4-10.



The effects of the four interaction terms are not identical. The two IVT interaction terms

(IVT*LENGTH and IVT*STOPS) are significant at the 10% level, suggesting that the

marginal utility of in-vehicle travel time varies with trip length and number of stops.

However, the interaction terms for TFR (TFR*LENGTH, TFR*STOPS) are not

significant, which indicates that the marginal utility of TFR is not related to trip length or

number of stops. Consequently, the two interaction terms for TFR are dropped from

Model D1 to obtain Model D2. As shown in Table 4-11, Model D2 is improved from

Model B2 with an increase of adjusted p 2 from 0.361 to 0.371.

Table 4-10 Model D1 Estimation Results
Model D1
Independent Estimated Standard T-Test
Variable Coefficient Error
IVT -0.757 0.185 -4.094

IVT*LENGTH 0.019 0.011 1.714

IVT*STOPS 0.007 0.004 1.808

TFR -1.578 1.092 -1.445
TFR*LEN 0.065 0.098 0.662
TFR*STOPS -0.032 0.075 -0.428

WALK -1.727 0.713 -2.421

Auxillary Statistics
Number of estimated parameters 7 . 000
Null log-likelihood: -172 . 926
Final log-likelihood: -103 . 524
Likelihood ratio test: 138.804
Rho-square: 0.401
Adjusted Rho-Square 0 . 361



Table 4-11 Model D2 Estimation Results
Model D2
Independent Estimated Standard T-Test
Variable Coefficient Error
IVT -0.735 0.178 -4.122
IVT*LENGTH 0.017 0.011 1.613
IVT*STOPS 0.007 0.004 1.789

TFR -1.569 0.424 -3.700

WALK -1.497 0.574 -2.610

Auxillary Statistics
Number of estimated parameters 5 . 000
Null log-likelihood: -172 . 926
Final log-likelihood: -103 . 744

Likelihood ratio test: 138 . 365
Rho-square: 0 . 400

Adjusted Rho-Square 0.371

A model with interaction term TFR*TFR was also tested to see if travelers have a non-

linear perception of transfers, but this did not turn out to be significant.

Because of the interaction terms, interpretation of the coefficients is more complicated.

First, the marginal utility of IVT is no longer a constant but a function of LENGTH and

STOPS:

aU / aIVT = -0.735 + 0.017 * LENGTH + 0.007 * STOPS.

Therefore depending on the trip length and the number of stops, the marginal utility of

IVT will vary. Table 4-12 shows the number of stops and trip length for the shortest trip,

the average trip and the longest trip, and the corresponding marginal utilities of IVT. The

average trip length is 7.8 miles with 13 stops and a corresponding marginal utility is -0.51.

The longer the trip, the less travelers care about one additional minute of IVT.



Table 4-12 Stops and Trip Length for the Shortest, the Average and the Longest Trips
Shortest Trip Average Trip Longest Trip

Length (Miles) 0.70 7.80 18.00

Stops 2.00 13.00 26.00

dU/dIVT -0.71 -0.51 -0.25

Because of the dependence of marginal utility of in-vehicle travel time on trip length and

number of stops, the marginal rate of substitution (MRS) between number of transfers

and in-vehicle travel time is also a function of these variables:

MRS = WU/aTFR -1.569

aU/laIVT -0.735+0.017 *LENGTH +0.007*STOPS

Similarly the marginal rate of substitution between transfer walk time and in-vehicle

travel time is a function of trip length and the number of stops

MRS = U / WALK - -1.497

WU / aIVT -0.735 +0.017 * LENGTH +0.007 * STOPS

The values for the two marginal rates of substitution are calculated for the three cases, the

shortest, the average and the longest trips, as shown in Table 4-13. For the average case,

the tradeoff between TFR and IVT is 3.07 minutes/transfer and one minute of transfer

walk time is equivalent to 2.93 minutes of in-vehicle travel time.

Table 4-13 MRS between TFR and IVT, WALK and IVT for Different Trip Lengths
Shortest Trip Average Trip Longest Trip

(dU/dTFR)
/(dU/dIVT) 2.21 3.07 6.36

(dU/dWALK)
/(dU/dIVT) 2.11 2.93 6.07

Table 4-14 summarizes adjusted p 2 , marginal rates of substitution between TFR and IVT,

and between WALK and IVT for Models A through D.



Table 4-14 A Summary of Models A through D

Variables in Adjusted aU/laTFR aU/laWALK
Utility Function P2  au / aIVT au / aivT
In-Vehicle Travel Time

A Number of Transfer 0.351 9.04minutes/tfr N/A
Initial Wait Time
In-Vehicle Travel Time

B2 Number of Transfer 0.361 7.26 minutes/tfr 3.23
Transfer walk time

In-Vehicle Travel Time
Number of Transfer

D2 Transfer walk time 0.371 3.07* minutes/tfr 2.93*
IVT*LENGTH
IVT*STOPS

* These values are calculated for the case with average trip length, and average number of stops.

The values

per minute

of aUlaWALKare relatively stable across models at about 3 minutes of IVT

aU /aTFR
of transfer walk time. The values of range from 3.07

aU / aIVT

minutes/transfer to 9.04 minutes/transfer, depending on the model specification.

Therefore caution is needed when applying these values. Based on the model application

context, specifically the data availability for the independent variables, the appropriate

model should be selected and the corresponding coefficients used.

Model D2 is the best MNL model specification and is used as the base for the Mixed

Logit model estimation in the following section.



4.3.4 Models with Taste Variation (Model E)

Model E introduces random coefficients to test the travelers' taste variation. For three

variables-in-vehicle travel time, number of transfers and transfer walk time, the

coefficients are relaxed from a constant to a distribution. The model estimates both the

mean values and the standard deviations of the coefficients given the assumed normal

distribution.

Mixed logit models are generally estimated by simulation (Train 2003). In this study,

simulations were performed in BIOGEME 0.7 using 100, 500, 1000, 2000, 3000, 4000,

and 5000 Halton draws. The simulation estimation results are given in Table 4-15. The

p 2, the initial log-likelihood, final log-likelihood, log-likelihood ratio test, and the

variables coefficients are stable after 4000 Halton draws. The estimation results of the

model with 5000 Halton draws are presented in Table 4-16.

Table 4-15 Simulation Estimation Results of Model E with 100, 500, 1000, 2000, 3000,
4000, and 5000 Halton Draws
Halson Draw 100 500 1000 2000 3000 4000 5000
Null Log-
Likelihood -172.926 -172.926 -172.926 -172.926 -172.926 -172.926 -172.926

Final Log-
Likelihood -103.121 -103.093 -103.076 -103.077 -103.080 -103.079 -103.074

Log Likelihood
Ratio Test 139.610 139.666 139.701 139.698 139.692 139.695 139.705

Rho-Square 0.4037 0.4038 0.4039 0.4039 0.4039 0.4039 0.4039

IVT -0.847 -0.853 -0.861 -0.859 -0.859 -0.862 -0.863

IVTLEN 0.017 0.017 0.017 0.017 0.017 0.017 0.017

IVTSTOPS 0.007 0.007 0.008 0.008 0.008 0.008 0.008

IVT S 0.239 0.253 0.271 0.267 0.267 0.272 0.274

TFR -1.721 -1.751 -1.761 -1.756 -1.757 -1.758 -1.760

TFR S 0.126 0.025 0.031 0.039 0.038 0.048 0.044

WALK -2.359 -2.392 -2.407 -2.406 -2.404 -2.410 -2.412

WALK S 1.832 1.875 1.883 1.885 1.883 1.888 1.889



Table 4-16 Model E Estimation Results
Model E

Independent Variable Parameter

In-Vehicle Travel Time Mean Coefficient
Std. dev. of Coeffici

Number of Transfers Mean Coefficient
Std. dev. of Coeffici

Transfer Walking Time Mean Coefficient
Std. dev. of Coeffici

IVT*LENGTH Mean Coefficient
IVT*STOPS Mean Coefficient

ent

ent

ent

Auxillary Statistics
Number of Halson Draw
Number of estimated parameters

Null log-likelihood:
Final log-likelihood:
Likelihood ratio test:
Rho-square:

Adjusted Rho-Square

Estimated
Value

-0 . 863

0 .274

-1 .760
0 . 044

-2 .412
1.889

0 . 017

0.008

Robust
Standard

Error
0.225
0 .344

0.733
0.078
1.032
0 .978

0.010
0 . 003

Robust T-
test

-3.826
0.795

-2.400
0.572

-2.338
1.932
1.679
2.299

5000
8

-172.926
-103 . 074

139.705
0 .404

0.358

The mean values of the coefficients of in-vehicle travel time, number of transfers and

transfer walk time are all significant and have the expected negative signs. The

interaction terms between IVT and LENGTH, between IVT and STOPS are also

significant or marginally significant.

The major difference between the Mixed Logit model and the MNL model is in the

standard deviation terms of the coefficients. The standard deviation of the coefficient of

transfer walk time is significant at the 10% level, which indicates that this coefficient

does vary in the population. Travelers have significant differences in their perceptions of

transfer walk time. The difference in travelers' perception is represented by a normal



distribution with a mean of -2.412 and standard deviation of 1.889 as shown in Figure 4-7.

Most travelers dislike longer transfer walk time but they dislike it to different extents.

Figure 4-7 Normal Distribution of the Coefficient of Transfer walk time.
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This is to be expected since the same walk time can mean very different things for

different groups of people. Seniors and passengers with large packages will strongly

dislike the transfer walk, especially if there are level changes associated with it such as

going between the Loop and underground stations. This is particularly true in this model

specification where there are no socio-economic variables to describe the travelers'

attributes such as age and trip purpose.

The standard deviation of the coefficient of the number of transfers is not significant

which indicates that travelers' perceptions of the number of transfers are similar,

concentrating around the mean value (-1.76), which is interpreted in the same way as in

the MNL model: one additional transfer decreases travelers' utility by 1.76 units.



The non-significance of the standard deviation of the coefficient of in-vehicle travel time

needs to be distinguished from the non-significance of the standard deviation of the

coefficient of number of transfers. This is because of the two interaction terms

IVT*LENGTH and IVT*STOPS. The non-significance of the standard deviation of in-

vehicle travel time means that at the same trip length and number of stops, travelers'

preferences for in-vehicle travel time are similar. In other words, the travelers' taste

variations over in-vehicle travel time are mostly explained by the trip length and number

of stops. We explicitly model this taste variation through the interaction terms

IVT*LENGTH and IVT*STOPS.

The utility function from the Model E estimation result is:

U = -0.863* IV -1.760*TFR, - 2.412*WALK +0.017 * IVT * LENGTH +0.008* IVT * STOPS +e,

The p 2 slightly increases from 0.400 in Model D2 to 0.404 while the adjusted p 2 drops,

indicating that the general explanatory power of the model does not improve significantly.

But Model E offers clear evidence that travelers have taste variation with respect to

transfer walk time, but no taste variation with respect to the number of transfers, or in-

vehicle travel time given that trip length and number of stops are controlled for.

The marginal utility of in-vehicle travel time, the marginal rates of substitution between

number of transfers and in-vehicle travel time, and between transfer walk time and in-

vehicle travel time are recalculated for the three trip length cases as shown in Table 4-17.



Table 4-17 Marginal Utility and MRS for the Different Trip Lengths
Shortest Trip Average Trip Longest Trip

Length(Mile) 0.70 7.80 18.00
Stops 2 13 26
dU/dlVT -0.84 -0.63 -0.35
(dU/dTFR)
/(dU/dIVT) 2.11 2.80 4.97
(dU/dWALK)/
(dU/dIVT) 2.89 3.83 6.80

For the average case (a trip length of 7.8 miles with 13 stops) the marginal utility of in-

vehicle travel time is -0.63. The tradeoff between TFR and IVT is 2.80 minutes/transfer

and one minute of transfer walk time is equivalent to 3.83 minutes" of in-vehicle travel

time.

Table 4-18 Comparison between the Mixed Logit Model and the MNL Model
Model

Rho-square:
Adjusted Rho-Square

dU/dIVT

(dU/dTFR) /(dU/dIVT)

(dU/dWALK) /(dU/dIVT)

Shortest Trip
Average Trip
Longest Trip
Shortest Trip
Average Trip
Longest Trip
Shortest Trip
Average Trip
Longest Trip

Table 4-18 compares the results of the mixed logit model (Model E) with the MNL

model (Model D2). The ratio between the coefficients of the number of transfers and the

in-vehicle travel time is slightly smaller in the Mixed Logit model (2.80 for the average

trip) than in the MNL model (3.07 for the average trip) while the ratio between transfer

"In Model E the transfer walk time is estimated as a normal distribution. The quotient of a normal
distribution over a constant is also a normal distribution. Therefore the marginal rate of substitution
between transfer walk time and in-vehicle travel time is a normal distribution. The value 3.83 in Table 4-18
is the mean value of the distribution.

D2
0.400
0.371
-0.71
-0.51
-0.25
2.21
3.07
6.36
2.11
2.93
6.07

E
0.404
0.358
-0.84
-0.63
-0.35
2.11
2.80
4.97
2.89
3.83
6.80



walk time and in-vehicle travel time is greater in the Mixed Logit model (3.83 for the

average trip) than in the MNL model (2.93 for the average case).

4.3.5 Model Application

The model estimated above can be used to forecast the probability that an individual

chooses a certain rail path for a particular journey. Individuals' choices collectively

determine the market shares of the alternative paths for any journey. The spatial

distribution of the total demand on the rail network can be determined by aggregating the

market shares of alternative paths between all OD pairs. Then the demand for each

service route can be estimated accordingly. This section demonstrates how the model can

be used to assess the impact of a hypothetical network change on the market shares of the

alternative paths for a given journey type.

The utility function estimation above measures the tradeoffs among the factors that

travelers consider in choosing their rail path. Given a choice set C, with attributes of each

of the alternatives being available, the probability that an individual n chooses alternative

i is given by equation 4-2.

However, prediction for a specific individual's choice is usually of little use in a transit

agency's planning or operational decision-making. Instead, decisions are made based on

the forecast of aggregate demand in particular time periods, such as the number of total

passenger trips along a service line in the weekday PM rush hour. Therefore a linkage



between the disaggregate level models estimated above and the aggregate forecasts of

interest to transit agencies is needed if the models are to be of value.

Trips from Quincy Station to Paulina Station are taken as an example to illustrate the

model application process. During the weekday PM rush hours from Jan. 12-16th, 2004,

there were 492 rail trips recorded from Quincy to Paulina. There are two alternative paths

for this OD pair.

1: board the Brown line southbound;

2: board the Purple line northbound; transfer at Belmont to the Brown Line.

The trip attributes of the two alternatives are given in Table 4-19.

Table 4-19 Attributes of Alternative Paths from Quincy to Paulina

Orig DEST Path DIR Weight IVT WALK TFR LENGTH STOPS
Quincy Paulina 1 SB 311 22.96 0 0 7. 1 17
Quincy Paulina 2 NB 181 18. 82 0. 1 6.07 11

The AFC system indicates a total of 181trips took the northbound path and 311 trips took

the southbound path. How will this split change if some LOS attributes change because

of a new service or a new operational plan? For example, the in-vehicle travel time of

alternative 2 is currently 18.82. Suppose, a new type of train will decrease the in-vehicle

travel time by 10%, what is the impact on the share of trips on both paths? In another

example, suppose that Belmont Station is under reconstruction requiring a detour of the

transfer path between Purple Line to Brown Line. As a result the walk time for this

transfer increases from 0.1 to 0.9 minute. What is the impact of this change on the market

shares for the Purple and Brown lines?



The Model E specification is used in this example. The estimated utility function 12 is

U, =-0.863*IVT -1.760*TFR, -2.412*WALK+0.017*IVT* LENGTH +0.008*IVT* STOPS+ +,

The utility of each path can be calculated by plugging the path attribute values into the

utility function. The probability that a person n will take path i is a function of both the

utility of the chosen alternative and the utility of the non-chosen alternative (see equation

4-2).

The individuals' choices are then aggregated to calculate the market share of each

alternative path. The aggregate market share is the decision variable that is actually useful

to transit agencies. Suppose the population size T is known then the total expected

number of individuals choosing alternative i, denoted by NT (i), would simply be,

T

NT(i) = ZP(i I X,) (4-4)
n=1

in which X, are the attributes used in the utility function (Ben-Akiva 1985).

In this example, the population size is 492 trips from Quincy to Paulina. Because there

are only trip-specific attributes and no traveler-specific attributes in the model

specification, the probabilities of choosing alternative i are the same across individuals.

The equation can be simplified to NT (i) = P(i J X) x T. In another word, the probability

of a person choosing each alternative is numerically equal to the market share of that

alternative in this particular model specification.

" Model E is a mixed logit model. A simulation is needed to accurately apply the model. Here I apply the
model in its simplified form.



The predicted market shares for both paths for journeys between Quincy and Paulina are

compared with the observed ones in Table 4-20. There is a 4.3% over prediction for SB

path and 7.4% under prediction for NB path.

Table 4-20 Predicted versus Observed Market Shares of NB and SB Paths from Quincy
to Paulina

Orig DEST Path DIR Observed Trips Predicted Trips Error Percentage

Quincy Paulina 1 SB 311 324 4.3%
Quincy Paulina 2 NB 181 168 -7.4%

The in-vehicle travel time and number of transfers are chosen as policy variables to be

adjusted in the proposed network change. The predicted market shares are calculated

based on the adjusted values of in-vehicle travel time and number of transfers. Figure 4-8

illustrates the impact of the in-vehicle travel time changes in the north bound path on the

market share of each alternative. The right vertical line indicates the current level of IVT

(18.8 minutes) and the white circles point to the corresponding predicted market shares:

34% on the NB path and 66% on the SB path. Suppose that the IVT on the north bound is

decreased by 1 minute, other LOS attributes being constant, the black circles indicate the

predicted market shares: 49% on the NB path and 51% on the SB path. The market shares

are very sensitive to the changes in in-vehicle travel time.



Figure 4-8 Impact of NB Path In-vehicle Travel Time on the Market Shares of the NB

and SB Paths

Impact of the In-Vehicle Travel Time of the NB Path on Market Share of each Path

15 16 17 18 19
In-Vehicle Travel Time of the North Bound Path

Figure 4-9 illustrates the impact of the number of transfers on the north bound path on the

market share of each alternative. The x-axis shows the number of transfers on the north

bound path. All other attributes of the north bound path and all the attributes of the south

bound path are unchanged. While the number of transfers should obviously be a discrete

value, the figure shows it as a continuous variable to clarify the presentation. The current

market shares are indicated by the white circles. Suppose that in a new service plan, there

is no transfer needed on the NB path, other LOS attributes being constant, the predicted

market shares will change dramatically as indicated by the black circles: 75% on the NB

path and 25% on the SB path.



Figure 4-9 Market Shares of NB and SB Paths with Changes in NB Path Number of
Transfers
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This example demonstrates that the model can be used to predict the market share

changes among alternative paths resulting from changes of one (or more) LOS attributes.

This case shows the process for only a single OD pair but this process can be repeated for

all OD pairs in the network and the market shares of alternative paths of all OD pairs can

be aggregated to obtain the demand on each service line. The CTA's circle line plan

together with the rerouting of the existing service lines will change the path attributes for

many OD pairs dramatically. Figure 4-10 illustrates the conceptual train routing plan of

the CTA Circle Line project. This model can be applied to assess the impact of these

changes upon the market shares of alternative paths, and then through aggregation, the

demand for each service line.



Figure 4-10 Conceptual Train Routing Plan for CTA Circle Line Project

Proposal for a
CTA "Cirle ine"

DRAFT,* 27 February 2002

Conceptual Train Routing Plan
Upon Project Completion
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Chapter Five: Conclusion

Many ADC systems in public transit agencies have been designed and implemented with

a single-minded goal: to announce bus stop information, to collect fares, to report

emergencies, etc. This thesis proposes another perspective-if each of these systems is

looked at as an individual data collection technology, a brand new method of data

collection arises. Once the ADC systems are installed, they continuously generate huge

volumes of raw data. This thesis examines the benefits as well as the difficulties of

utilizing data from these ADC systems, and demonstrates that at very low marginal cost,

the ADC systems can produce a very rich information base to support decision-making in

public transit agencies. The three ADC data processing examples and two in-depth case

studies in this thesis are preliminary efforts to set up a robust framework including data

manipulation and analysis methodologies and techniques for the effective utilization of

ADC systems. The utilization of ADC systems opens far more research avenues than are

covered in this thesis, which is just the tip of the iceberg of possibilities.

Section 5.1 summarizes the research findings; Section 5.2 points out the limitations and

difficulties in the current studies; and Section 5.3 proposes future research directions.
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5.1 Overview of research findings

5.1.1 Enhanced Rail OD Matrix Inference Method

Traveler OD matrices are fundamental information required in public transit planning and

operations analysis. This research proposed an enhanced method of inferring the rail trip

OD matrix from an origin-only AFC system as an alternative to traditional passenger

surveys. In the CTA rail system application, the enhanced method successfully inferred

the destinations for 65% of all rail trip segments, 85% of which were inferred by the

"TT" procedure employed by the prior studies and 15% were inferred by the "TB"

procedure and trip chain symmetry utilization proposed in this research.

The proposed algorithm takes advantage of the pattern of a person's consecutive transit

trip segments and uses the next trip segment boarding location information to infer the

destination of the prior trip segment. There are two different cases in the usage of the

next trip segment information: rail-to-rail and rail-to-bus. Prior studies only examined the

rail-to-rail case and ignored the rail-to-bus case. This research proposed three strategies

to examine the rail-to-bus case given different system availabilities. 1) When neither

AVL data nor GIS technology are available to the transit system, the bus trip segment

information cannot be utilized. 2) When GIS technology is employed but not AVL, the

bus trip segment information can be partially utilized by examining the spatial

connectivity between bus routes and the rail network. 3) When both GIS technology and

the AVL data are available, the AFC data and the AVL data can be integrated to fully

utilize the bus trip segment information in destination inference. In the CTA application,
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the introduction of the GIS technology and the integration of AFC and AVL data account

for 11% of the inferred destinations.

The daily and weekly trip chain patterns are observed and examined. The symmetry in

some trip chains is utilized to improve the destination inference algorithm. The algorithm

explicitly checks whether the bus routes of the two B trips are the same to verify the

symmetry. When symmetry is found, the later T origin is used to infer the earlier T

destination so that the possibility of the inference is expanded from only consecutive trip

segments to some non-consecutive but symmetrical trip segments. This expansion helps

to infer destinations of 2.4 percent more trips.

The implementation of the algorithm was initially cumbersome: the processing of one

day's AFC and AVL data and the destination inference took about a month to finish

when the algorithm was first proposed. A software tool was developed to speed up this

process. This tool takes the raw AFC and AVL data and several accessory tables as input

and calculates the rail OD matrix automatically. This tool does not require the users to

have a detailed knowledge of the ADC systems or a deep understanding of database and

GIS technologies. The software tool was applied to the CTA rail system for a one-week

period from Jan.11 -h17, 2004. The AFC and the AVL data from CTA were input and

the one week rail trip OD matrix was produced in about one hour. This software enables

the inference algorithm to be practical in public transit agencies.
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5.1.2 Rail Path Choice Modeling

Many rail travelers have alternative paths available for some journeys and they make

choices over these alternatives. Discrete choice modeling is utilized to characterize how

travelers make such decisions. This study is based on the CTA rail system and takes

advantage of two data sources: the inferred rail trip OD matrix and the attributes of

alternative paths calculated from a network representation in Trans CAD. This case study

demonstrates that a rigorous travel behavior analysis can be performed based on data

from the ADC systems.

In-vehicle travel time, number of transfers and transfer walking time are found to be the

most important factors people consider in their path choice process. The waiting times

(both the initial waiting time and the transfer waiting time) are not significant in the CTA

rail system where there is little variation in the waiting times for alternative paths. This is

consistent with the findings in Guo's (2003) study of MBTA.

To most of the travelers, walking in a transfer station is perceived more negatively than

traveling in a train. On average one minute of transfer walking time is perceived by a

typical traveler as equivalent to more than three minutes of in-vehicle travel time.

There is a trade off between making a transfer and in-vehicle travel time savings. When

only in-vehicle travel time and number of transfers are included in the model (Model A),

one transfer is perceived as equivalent to 9 minutes of in-vehicle travel time. This can be

interpreted as the total transfer penalty measured in in-vehicle travel time. This value is
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very close to the 10 minutes/transfer, found in Guo's MBTA study in 2003. With more

factors entering the model, this ratio decreases because the transfer penalty is partially

accounted for by the new factors. In the model with transfer attributes included (Model

B 1), the transfer penalty is found to be 6.9 minutes of in-vehicle travel time.

In-vehicle travel time is perceived differently for trips of different lengths: the longer the

trip, the less travelers care about the travel time difference between the alternatives.

However, travelers' preference for fewer transfers is found to be independent of the trip

length. Consequently, the transfer penalties calculated as the ratio of the coefficients

between number of transfers and in-vehicle travel time differ by trip length. The longer

the trip, the higher the transfer penalty is measured in equivalent in-vehicle travel time. In

the full model (Model E), for the average length trip the transfer penalty is 2.8 minutes of

in-vehicle travel time, while for the longest trip the transfer penalty becomes 5 minutes of

in-vehicle travel time.

The mixed logit model with random coefficients was tested to examine travelers' taste

variation over different LOS variables. The results suggest that:

1) there is significant taste variation among travelers with respect to the transfer

walking time. If assumed normal, the distribution of travelers' different

perceptions can be characterized as a normal distribution with a mean of -2.4

and standard deviation of 1.9;

2) there is no significant variation in travelers' taste over the number of transfers.

Together with the finding that travelers' preference for fewer transfers is
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independent of the trip length, it is concluded that the transfers are perceived

very similarly by different travelers regardless of trip length; and

3) controlling for the trip length and the number of stops, travelers' preferences

for in-vehicle travel time are similar. In other words, travelers' taste

variations with respect to in-vehicle travel time can be explicitly captured by

the trip length and the number of stops.

Due to limitations of the data set, there is no traveler-specific information in the model:

all variables are trip-specific. Nonetheless, the model still has good explanatory power,

indicated by an adjusted p 2 of 0.37.

The application of the model in the CTA context with a proposed change in network

attributes demonstrates that the market shares of alternative paths are quite sensitive to

changes in the network attributes. In one example for journeys between Quincy and

Paulina, a six-minute change in the in-vehicle travel time in the northbound path, all else

being equal, could completely change the distribution of travel flows along the alternative

paths-from the northbound path carrying 90% of these trips to it carrying only 20% of

these trips. This model is shown to be useful in predicting the market shares of alternative

paths under proposed network configuration changes. The market shares of alternative

paths between all the OD pairs can be aggregated to obtain the spatial distribution of the

total demand on the rail network. The service frequency and capacity for each service

line can be planned accordingly.
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5.2 Limitations and Challenges

5.2.1 Rail OD Inference Algorithm Validation
There are four issues that affect the coverage and the accuracy of the rail OD matrix

inference algorithm:

1) the AFC system does not record all the rail trips since the AFC card is not the

only way that passengers can pay for their trips. Cash and paper transfer can also

be used and while cash payment has become very rare, paper transfers from the

previous bus trip segment still account for a sizable portion of rail trips. The

percentage of customers using AFC cards varies by the time of day and by station,

averaging 91%. Whether or not the 91% coverage accurately represents the travel

behavior of the entire population requires further validation;

2) the three assumptions of the destination inference algorithm are yet to be fully

verified although CTA has recently contracted a consulting firm to test the

statistical validity of the destination inference algorithm.

3) the rail OD inference algorithm can infer the destinations for 65% of the recorded

rail trips but this may not represent a random sample of all rail trips. There may

be bias in the coverage rate of certain OD pairs; and

4) the January 2004 effective coverage of the CTA AVL system is quite low.

Although about 70% of the buses had AVL equipment installed, not all these

devices are running at all times. The effective coverage of CTA AVL (the ratio of

the AVL running bus-hour over the total bus-hour) at the time of this analysis

appears to be only 40%.
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5.2.2 Limitations of path choice models

The ADC systems do not collect demographic data on travelers and there is currently no

way to link the ADC data with other passenger surveys . So in the path choice models,

only trip-specific variables are included in the utility function specifications. Although

the model results indicate a good data fit and high explanatory power, it would be better

to include some travelers' socio-economic information in the utility function. The mixed

logit model is utilized partially to reflect travelers' unobserved taste variations, however,

with socio-economic data, much of this taste variation might be modeled explicitly.

5.3 Future Research Directions

There are three major extensions of the current research: 1) to expand the study from the

rail system to the entire public transit system; 2) to apply the path choice model to the

CTA's proposed Circle Line service plan; and 3) to study transit agencies with different

challenges in ADC utilization.

5.3.1 Extension from rail to the full public transit system and the

linkage with land use and demographic characteristics

The current study is focused on the rail system-only the path alternatives on the rail

network are considered. However, with AVL data now becoming widely available, there

is the potential to observe the whole public transit trip chain including both rail and bus

13 This situation is gradually changing with the implementation of smart cards in CTA, which records the
travelers' identification in the card. However there will certainly be restrictions on the use of this data.
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by combining the AFC data and the AVL data with GIS and relational database

technology.

The expansion from rail to the entire public transit system opens tremendous research

possibilities. The path choice decision becomes much more complicated involving both

mode choices and path choices simultaneously. When the origin and the destination of

the trip can be pinpointed to the bus stop level, travel patterns can be connected to land

use patterns around the trip origin and destination. Furthermore the average demographic

information of the trip origin and destination areas from census statistics based on census

tracts or even census blocks can be combined with the land use attributes and the trip-

specific LOS attributes to more carefully examine travelers mode and path choice in the

public transit system.

5.3.2 Application in the CTA Circle Line Plan Evaluation

The path choice model characterizes travelers' path choices in the rail system. The model

can be used to forecast the probability that an individual chooses a certain rail path for an

OD pair. Individuals' choices collectively determine the market shares of the alternative

paths for the OD Pair. The spatial distribution of the total demand on the rail network can

be determined by aggregating the market shares of alternative paths between all OD pairs.

One important application is to the Chicago Transit Authority (CTA) rail system, where a

new circle line and service line rerouting in the loop area have been proposed with the

first stage slated for implementation in spring, 2005. This application of the model would

facilitate the evaluation of the options of the circle line plan by examining how its

implementation would change the spatial distribution of flow in the network.
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5.3.3 Case studies of transit agencies with different ADC utilization

challenges

This thesis takes CTA as an example to examine the characteristics of the ADC systems

and demonstrates the potential benefits. There are many different types of the ADC

systems implemented in public transit authorities in the U.S. and around the world. It

would be enlightening to study other cases with different technological characteristics

and different institutional challenges.

Take the automated fare collection system (E-Z link) used in Singapore's public transit

systems, for example. Technically Singapore's E-Z link has many advantages over the

CTA's AFC: 1) EZ link covers both rail and bus. Most people use E-Z Link card to pay

for their trips; 2) EZ link has both entry and exit control for both rail and bus trips

because the fare is distance related; 3) When EZ link is used on buses, the boarding and

alighting locations are recorded; and 4) The EZ link card has a much longer life with

many travelers using the same card for months. However there is a big institutional

obstacle to access and utilize the E-Z link data. The E-Z link data are not supposed to be

public. The Land Transportation Authority in Singapore supervises the public transit

system but does not directly run any rail or bus services. All the rail and bus services are

operated by private companies such as SMRT Inc. and SBS Inc., which have a major

concern about releasing any data to actual or potential competitors. So how to utilize the

data collected by E-Z link without infringing on the business prospects of the competing

bus/rail operators poses quite a different challenge than the ones facing the CTA.
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5.3.4 Institutional responses and system design initiative

There are many opportunities to improve planning and forecasting in public transit

agencies using technologies developed in this thesis, especially true for large metro areas

with well developed systems with multiple path choices-where analysis is too complex

and computationally difficult for traditional methods. As ITS unfolds, it will be

increasingly important to take advantage of the new algorithm and path choice models.

However, many questions need to be answered before the findings of this research can be

applied in transit agencies: what should be the institutional responses from the transit

agencies? How should ADC systems data be coordinated with traditional data surveys?

For transit agencies which are about to implement ADC systems, what are the lessons

and experiences they should learn? What are the criteria for selecting the right vendor of

ADC systems? How can we encourage different vendors to coordinate with each other so

that the data from multiple systems can be seamlessly integrated?
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Appendix One: C/C++ Code for Pre-Destination
Inference Data Processing

/* The C/C++ source code is stored as afcPRE.c. It is complied on Athena with GNU
GCC complier. */

/* Contants Definition */
#define sizeAFC 5948454 /* 5948454 total AFC record between Jan11 to Jan17 */
#define sizeAFCIndex 1076867 /* 1076867 distinct sn in afc table */
#define sizeAFCBT 2657680 /* 2657680 total number of trip with BusID infered ????*/
#define sizeAFCBTIndex 1724 /* 1724 distinct busid recorded in AFC table ????*/
#define sizeAVL 1618009 /* 1618009 total AVL record between Jan11 to Jan17 */
#define sizeAVLlndex 1219 /*1219 distinct busid in avl table */
#define sizeR2P 54 /* unique rail to pace transfer table size */
#define sizeE2BU 1898 /* unique equip to bus */
#define sizeE2BM 445 /* multiple equip to bus */
#define sizeS2S 12458 /* stop to station distance all 12458 records, one for each bus stop
*/
#define sizeS2S5 2170 /* 5 min stop to station transfer, 2170 stops are inside the distance
<=1320 feet */
#define sizeE2E 962 /* equip to entrance */
#define sizeA2S 153 /* AFC LOC ID to station */
#define sizeE2S 201 /* entrance to station */
#define MAXTIMESECOND 604800 /* 3600*24*7days */
#define MINTIMESECOND 0
/* Type Definitions Omitted */
/* Comparison Function Definition Omitted */
int main(void) {
/* Variable Definition Omitted*/
/* Memory allocation Omitted */
/* Data Input 10 operation Omitted */
/* Sort AFC table by SN then by datetime */

qsort(afc, sizeAFC, sizeof(TypeAFC), compareAFC);
/* Create index on AVL busid Omitted */
/* Create index on AFC sn Omitted */
/* Update AFC 1st round*/

for (i = 0; i < sizeAFC; i++)
if (afc[i].event == 3611 afc[i].event == 37 || afc[i].event == 38 afc[i].event

S39 | afc[i].event == 43 || afc[i].event == 45 || afc[i].event == 46 || afc[i].event == 47 ||

afc[i].event == 48 1| afc[i].event == 49 1| afc[i].event == 97 1| afc[i].event == 98 ||
afc[i].event == 99) afc[i].ra = 1; else afc[i].ra = 0; /*to obtain RA */

if (afc[i].curroute > 1024) afc[i].tb = 1; else afc[i].tb = 0; /* to obtain TB
*/

/* to obtain LPA CE LPA CE ID */
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if (afc[i].preroute > 2048) { afc[i].lpace = 1; afc[i].lpaceid =
afc[i].preroute - 2048; 1 else afc[i].lpace = 0;

if (afc[i].lpace == 1) { /* to obtain LPACETFR */
short tmplpaceid = afc[i].lpaceid;
for (j = 0; j < sizeR2P; j++) if (tmplpaceid == r2p[j].lpaceid)

{afc[i].lpacetfr = r2pU].stationid; break;} }
if (afc[i].tb == 0) { /* bus trip */

afc[i].busrouteid=afc[i].curroute; /* BUS Route ID */
/* to obtain BUS ID*/
pointerE2BU=(TypeE2BU *) bsearch(&afc[i].equipid, e2bu,

sizeE2BU, sizeof(TypeE2BU), compareE2BU);
if (pointerE2BU!=NULL) afc[i].busid = (*pointerE2BU).busid;
else {

for (j = 0; j < sizeE2BM; j++) {
if (strcmp(afc[i].equipid, e2bm[j].equipid) == 0 &&

afc[i].datetime >= e2bm[j].min
&& afc[i].datetime <= e2bmU].max) { afc[i].busid =

e2bm[j].busid; break; }
}

}
} else /*tb=l, train trip*/ {

afc[i].afclocid = afc[i].curroute - 1024; /* to obtain AFCLOCID
*/

pointerA2S=(TypeA2S *) bsearch(&afc[i].afclocid, a2s, sizeA2S,
sizeof(TypeA2S), compareA2S);

if (pointerA2S!=NULL) afc[i].station1 = (*pointerA2S).stationid;
/* to obtain stationl*/

for (j = 0; j < sizeE2E; j++) /* to obtain entranceid */
if (strcmp(afc[i].equipid, e2ej].equipid) == 0)

{afc[i].entranceid = e2e[j].entranceid; break; }
if (afc[i].entranceid != 0) { /* to obtain station2 */

pointerE2S= (TypeE2S*) bsearch (&afc[i].entranceid, e2s,
sizeE2S, sizeof(TypeE2S), compareE2S);

if (pointerE2S!=NULL) afc[i].station2 =
(*pointerE2S).stationid;

I
/* to obtain Stationid from Station1 or 2 */
if (afc [i].station 1 ==afc [i].station2) afc[i].stationid=afc [i].station 1;
else if (afc[i].station 1==9999) afc[i].stationid=afc[i].station2;
else if (afc[i].station2==0) afc[i].stationid=afc [i].station 1;

}

/* Update AFC 2nd round: combining AVL and AFC to get systemstopid*/
for (i = 0; i < sizeAFC; i++) {

if (afc[i].busid != 0) {
pointer = -1;
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tmptime = MINTIMESECOND;
for (j = 0; j < sizeAVLlndex; j++) if (afc[i].busid ==

avlindex[j].busid) {pointer = j; break; }
if (pointer == -1) continue;
for (j = avlindex[pointer].position; j < avlindex[pointer].position +

avlindex [pointer].length; j++)
if (afc[i].datetime > avl[j].datetime && afc[i].datetime <

avlU].datetime + 300)
if (tmptime < avl[j].datetime) {tmptime =

avl[j].datetime;
afc[i].systemstopid = avl[j].systemstopid; I

I
I

/* Update AFC 3rd round: calculate TFR5min*/
for (i = 0; i < sizeAFC; i++) {

if (afc[i].systemstopid != 0) {
pointerS2S=(TypeS2S *) bsearch(&afc[i].systemstopid, s2s5,

sizeS2S5, sizeof(TypeS2S), compareS2S);
if (pointerS2S!=NULL) afc[i].tfr5min = (*pointerS2S).stationid;

I
I

/* Result File Export Omitted */
/* Other Cleanup Omitted */
I
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Appendix Two: C/C++ Code for Destination Inference
Algorithm

/* The C/C++ source code is stored as afcDI.c. It is complied on Athena with GNU GCC
complier. */
/* Contants Definition */
#define sizeAFC 5948454 /* 5948454*/
#define sizeAFCIndex 1076867 /* 1076867 distinct sn in afc table */
#define sizeBR2SU 39 /* 39 busroutes have Unique BusRoute2Station tfr */
#define MAXTIME_SECOND 604800 /* 3600*24*7days */
#define MINTIMESECOND 0
#define numDay 7 * number of days in the time period, 7 for Jan11 to Jan 17*!
#define MSTimeGap 180 /* 3minutes */
/* Inference Methods Definition */
#define UniqueLPace 1
#define DirectBus 2
#define UniqueBus 3
#define NextTrain 4
#define LastTrain 5
#define Special 6
#define SpecialB 7
#define MSUniqueLPace 11
#define MSDirectBus 12
#define MSUniqueBus 13
#define MSNextTrain 14
#define MSLastTrain 15
#define NoSolution 9999 /* used both in "method" and in "dest" */
#define MSNoSolution 19999
/* Omitted: Type Definition*/
/* Omitted: Compare Function Definition*/
int main(void) {
/* Omitted: Variables Definition*/
/* Omitted: Memory allocation steps*/
/* Omitted: Data Input */
/* Create index on sn of AFC Step 1*/

k = 0;
afcindex[k].sn = afc[0].sn; afcindex [k].position[0] = 0; afcindex[k].wlength = 1;
for(i=0;i<numDay;i++) afcindex[k].length[i]=0;
if (afc[k].datetime<10800) day=0; else day= (afc[k].datetime-10800)/86400; /*

day boundary at 3am */
afcindex [k].length[day]++;
for (i = 0; i < sizeAFC - 1; i++) {

if (afc[1+1].datetime<10800) day=0;
else day= (afc[i+1].datetime-10800)/86400;
if (afc[i].sn != afc[i + 1].sn) {
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k++; afcindex[k].sn = afc[i + 1].sn; afcindex[k].wlength = 1;
afcindex[k].position[O] = i + 1;

for(j=O;j<numDay;j++) afeindex [k].lengthj]=0;
afcindex[k].length[day] = 1;

} else { afcindex[k].wlength++; afcindex [k].length [day]++; }
}
printf("\n AFC Indexing Step 1 Complete\n Total %d index records \n", k + 1);

/* Create index on sn of AFC Step2: set position for each day */
for (i=O;i<sizeAFClndex;i++)

for(day=O;day<numDay-1;day++)
afcindex [i].position [day+ 1]=afcindex[i].position [day]+afcindex[i].length[day];
printf("AFC Indexing Step 2 Complete \n");

/* Set chain, chain2, train */
for (i=O;i<sizeAFClndex;i++) {

for(day=O;day<numDay;day++) {
/* allocate memory for char * chain and char * chain2 */
afcindex [i].chain [day]= (char *)

calloc(afcindex[i].length[day]>O?afcindex[i].length [day]:1, sizeof(char));
if (afcindex [i].chain[day] == NULL) { printf("\nRun out of memory! \n");

exit(1); I
afcindex[i].chain2 [day]= (char *)

calloc(afcindex [i].length[day]>O?afcindex [i].length[day]:1, sizeof(char));
if (afcindex [i].chain [day] == NULL) { printf("\nRun out of

exit(1); I
memory! \n");

afcindex [i].train [day]=0; afcindex[i].bus[day]=O;
for(j=afcindex[i].position[day] ;j<afcindex [i].position[day]+afcindex[i].length[day

]j ++)
if (afc[j].ra==1) {

if (afcj].tb==1) {
afcindex [i].chain[day]=strcat(afcindex[i].chain [day],"T");
afcindex[i].chain2 [day]=strcat(afcindex[i].chain2 [day],"T");
afcindex[i].train [day]++;

} else {
afcindex[i].chain[day]=strcat(afcindex [i].chain[day],"B");

afcindex [i].chain2 [day]=strcat(afcindex[i].chain2 [day] ,"B");
afcindex[i].bus[day]++;

}
} else afcindex[i].chain2[day]=strcat(afcindex [i].chain2[day],"A");
if (strcmp(afcindex[i].chain2 [day],"") == 0 ) afcindex [i].chain2[day]="0";
if (strcmp(afcindex [i].chain[day],"") == 0 ) afcindex[i].chain[day]="0";

}
}

printf("AFC Indexing Step 3 Complete \n");
/* Export trip chain pattern*/

ftripchain= fopen("/mit/duspbucket/nTripChain l.txt", "w");
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if (ftripchain == NULL) { printf("The file /mit/duspbucket/nTripChain 1.txt can
not be opened!\n"); exit(O); }

else printf("\n File /mit/duspbucket/nTripChain1.txt Export Start!\n");
for (i=O;i<sizeofAFClndex;i++)
{ fprintf(ftripchain, "%d,%d",afcindex[i].sn,afcindex[i].wlength);

for (j=0;j<numDay;j++) fprintf(ftripchain, ",%s", afcindex [i].chain[j]);
for (j=0;j<numDay;j++) fprintf(ftripchain, ",%s", afcindex[i].chain2U]);
fprintf(ftripchain, "\n"); }

fclose(ftripchain);

/*Destination inference core algorithm */
for (i=O;i<sizeAFClndex;i++)
for (day=O;day<numDay;day++) {
MSCount=O;
for(j=afcindex[i].position [day] ;j<afcindex [i].position [day]+afcindex [i].length[day] ;j++) {
if (afcj].ra==1 && afcj].tb==1 && afc[j].stationid!=0) { /* only consider
actual train trips*/

MSwipe[MSCount]=j;
MSCount++;
if (j!=afcindex[i].position[day]+afcindex[i].length [day]- 1) {

k=j+1;
if(afc[k].lpaceid!=0) { /* if previous trip is pace bus*/

if (afc[k].lpacetfr!=0 && afc[k].lpacetfr!=afcj].stationid) {
/* if previous trip is pace bus and the tfr station is reasonable*/

for(n=O;n<MSCount;n++) {
afc [MSwipe[n]].dest=afc [k].lpacetfr;
afc[MSwipe[n]].method=(n==MSCount-

1?UniqueLPace:MSUniqueLPace);
I
MSCount=O;

I else{ /* if previous trip is pace bus and the tfr station is
NOT reasonable, no solution for trip j*/

for(n=0;n<MSCount;n++) {
afc [MSwipe[n]] .dest=NoSolution;
afc [MSwipe [n]] .method=(n==MS Count-

1?NoSolution:MSNoSolution);
}
MSCount=O;

}
} else if (afc[k].tb==1) { /* next is train */

if (afcU].stationid!=afc[k].stationid && afc[k].stationid!=0){
/* orig <> dest AND k.orig has a stationid, reasonable trip */

for(n=O;n<MSCount;n++) {
afc[MSwipe[n]].dest=afc[k].stationid;;
afc [MSwipe [n]] .method=(n==MSCount-

1?NextTrain:MSNextTrain);
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}
MSCount=O;

} else if((afc[k].datetime-afc[j].datetime>MSTimeGap)
afc[k].ra!=1| afc[k].tb!=1| afc[k].stationid==O) {

/* orig==dest but Not multiple swipe */
for(n=O;n<MSCount;n++) {

afc[MSwipe[n]].dest=NoSolution;
afc[MSwipe[n]].method=(n==MSCount-

1?NoSolution:MSNoSolution);
}
MSCount=O;

}
} else if (afc[k].tb==O && afc[k].ra==1) { /* next is bus*/

if (afc[k].tfr5min!=0 && afc[k].tfr5min!=afc[j].stationid) {/* if
direct train to bus tfr reasonable */

for(n=0;n<MSCount;n++) {
afc[MSwipe[n]].dest=afc[k].tfr5min;
afc [MSwipe [n]].method=(n==MS Count-

1?DirectBus:MSDirectBus);
}
MSCount=0;

} else { /* if no direct train to bus tfr then check if
there is bus route to train unique transfer*/

pointerBR2SU=(TypeBR2SU *)
bsearch(&afc[k].busrouteid, br2su, sizeBR2SU, sizeof(TypeBR2SU), compareBR2SU);

if (pointerBR2SU!=NULL) {
for(n=O;n<MSCount;n++) {

afc[MSwipe[n]].dest=(*pointerBR2SU).stationid;
afc[MSwipe[n]].method=(n==MSCount-

1?UniqueBus:MSUniqueBus);
}
MSCount=0;

} else {
for(n=O;n<MSCount;n++) {

afc [MSwipe [n]] .dest=NoSolution;
afc [MSwipe [n]] .method=(n==MS Count-

1?NoSolution:MSNoSolution);
}
MSCount=0;

}
}

} else {
for(n=0;n<MSCount;n++)

afc[MSwipe[n]].dest=NoSolution;
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afc [MSwipe [n]].method=(n==MSCount-
1?NoSolution:MSNoSolution);

I
MSCount=O;

}
} else {

if(afc U].stationid!=afc [afcindex[i].position[day]].stationid &&
afc [afcindex [i].position[day]] .stationid!=0) {

for(n=O;n<MSCount;n++) { /* assign j.dest =
firstTrain.orig */

afc [MSwipe[n]].dest=afc [afcindex[i].position[day]].stationid;
afc[MSwipe[n]].method=(n==MSCount-

1?LastTrain:MSLastTrain);
}
MSCount=O;

} else {
for(n=O;n<MSCount;n++) {

afc[MSwipe[n]].dest=NoSolution;
afc[MSwipe[n]].method=(n==MSCount-

1?NoSolution:MSNoSolution);
I
MSCount=O;

}
}

printf("\nDestination inferenece algorithm finished!\n");
printf("\nDestination inferenece Special Cases Start!\n");

/* Special Trip Chain Consideration*/
for (i=O;i<sizeAFClndex;i++)

for (day=O;day<numDay;day++) {

/*TBBT*//*TBBTB*//*TBBTT*//*TBBTTB*//*TBBTBB*//*TBBTTT*/
if (strcmp(afcindex[i].chain [day], "TBBT")==O |

strcmp(afcindex [i].chain[day],"TBBTB ")==O
Istrcmp(afcindex [i].chain [day],"TBBTT")==O
strcmp(afcindex [i].chain [day],"TBBTTB ")==O
Istrcmp(afcindex[i].chain [day], "TBBTBB ")==O
strcmp(afcindex [i] .chain [day],"TBBTTT")==O)

{ j=afcindex[i].position [day];
if (afc[j].dest==NoSolution &&

afc[j+1].busrouteid==afc[j+2].busrouteid
&& afc[j+3].lpaceid==O && afc[j+3].stationid!=O &&

afc[j+3].stationid!=afc[j].stationid) {
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afc[j] .dest=afc [j+3].stationid;
afc [j].method=Special; I

I
/*BTBBT*//*TTBBT*//*BTBBTBB*//*TTBBTT*//*BTBBTTB*/

else if (strcmp(afcindex [i].chain [day],"BTBBT")==O
strcmp(afcindex [i].chain [day],"TTBBT")==O ||
strcmp(afcindex[i].chain[day],"BTBBTBB")==O
Istrcmp(afcindex[i].chain [day], "TTBBTT")==O
Istrcmp(afcindex[i] .chain[day],"BTBBTTB ")==O)

{ j=afcindex[i].position[day]+1;
if (afcU].dest==NoSolution &&

afc[j+1].busrouteid==afc[j+2].busrouteid
&& afc[j+3].lpaceid==0 && afc[j+3].stationid!=0 &&

afc[j+3].stationid!=afcU].stationid) {
afc[j].dest=afc[j+3].stationid;

afcU].method=Special; }
I
else if (strcmp(afcindex[i].chain [day],"TBBBBT")==O) { /*TBBBBT*/

j=afcindex[i].position [day];
if (afcj].dest==NoSolution &&

afc[j+1].busrouteid==afc[j+4].busrouteid && afc[j+2].busrouteid==afcU+3].busrouteid
&& afc[j+4].lpaceid==0 && afc[j+4].stationid!=0 && afc[j+4].stationid!=afc U].stationid)

{ afc[j].dest=afcU+4].stationid; afc[j].method=Special; I
}

/*BTTBBTB*//*BBTBBTB*//*BTTBBT*/
else if (strcmp(afcindex[i].chain [day],"BTTBBTB ")==O

strcmp(afcindex[i].chain [day],"BBTBBTB")==O ||
strcmp(afcindex[i].chain [day],"BTTBBT")==O)

{ j=afcindex[i].position[day]+2;
if (afc[j].dest==NoSolution &&

afc[j+1].busrouteid==afc U+2].busrouteid && afc[j+3].lpaceid==O &&
afc[j+3].stationid!=0 && afc U+3].stationid!=afc[j].stationid)

{ afc[j].dest=afc U+3].stationid; afc[j].method=Special; I
I

/*B??????B*//*BTTB,BTBBTBBTBTBBTTTBBTTTTBBBTTBBBTBBBTBBTBT
TB,BTTBTB,BTBBTTB,BTTBBTB,BTTBBTTB*/

j=afcindex[i].position [day];
k=afcindex [i].position[day]+afcindex[i].length [day]- 1;
if (k>j && afcU].tb==0 && afc[k].tb==0 && afcj+1].tb==1 &&

afc[k-1].tb==1 && afcU].busrouteid ==afc[k].busrouteid && afc[k-1].dest==NoSolution
&& afcU+1].stationid!=0 && afcU+1].stationid!=afc[k-1].stationid)

{ afc[k-1].dest=afc U+1].stationid; afc[k-1].method=SpecialB; }

}
/*Omitted: Export Dest Result */
I
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Appendix Three: Biogeme Model File for Mixed Logit
Model E

// Mixed Logit Model E
// Mon Jun 28 05:52:47 2004
// Run by Jinhua Zhao
II BIOGEME Version 0.7 [Mon Dec 15 17:45:55 2003]
II Developed by Michel Bierlaire, EPFL (c) 2001-2003

[DataFile]
// Specify the number of columns that must be read in
/ It is used to check if the data file is read correctly.
$COLUMNS = 20

[Choice]
CHOICE

[Weight]
WEIGHT * 0.00974759

the data file

[Beta]
// Name Value
(0=variable, 1=fixed)
BIVT -8.6169494e-01
BIVTLEN +1.7349917e-02
BIVTSTOPS +7.5149087e-03
BIVTS
BTFR
BTFRS
BWALK
BWALKS
[Mu]

LowerBound

-1.0000000e+04
-1.0000000e+04

UpperBound

+1.0000000e+04
+1.0000000e+04

-1.0000000e+04 +1.0000000e+04 0
+2.7184440e-01 +0.0000000e+00 +1.0000000e+04 0
-1.7581292e+00 -1.0000000e+04 +1.0000000e+04 0
+4.8017796e-02
-2.4100657e+00

+1.8876829e+00

+0.0000000e+00

-1.0000000e+04
+0.0000000e+00

+1.0000000e+04
+1.0000000e+04
+1.0000000e+04

/ In general, the value of mu must be fixed to 1. For testing purposes, you
// may change its value or let it be estimated.
// Value LowerBound UpperBound Status
+1.0000000e+00 +0.0000000e+00 +1.0000000e+00

[SampleEnum]
// Number of simulated choices to include in the sample enumeration file
+0

[Utilities]
// Id Name Avail linear-in-parameter expression (betal*xl + beta2*x2 +...)
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1 Altl AVAL1 BIVT [BIVT_S] * IVT1 + BWALK [BWALKS] *

WALKI + BTFR [ BTFRS] * TFR1 + BIVTSTOPS * IVTSTOPS1 + BIVTLEN *

IVTLEN1
2 Alt2 AVAL2 BIVT [ BIVT_S] * IVT2 + BWALK [ BWALK_S] *
WALK2 + BTFR [ BTFRS] * TFR2 + BIVTSTOPS * IVTSTOPS2 + BIVTLEN *

IVTLEN2

[GeneralizedUtilities]
$NONE

[ParameterCovariances]
// Pari Parj Value LowerBound UpperBound status (0=variable, 1=fixed)
$NONE
[Expressions]
// Define here arithmetic expressions for name that are not directly
// available from the data
one = 1
IVTSTOPS1 = IVT1 * STOPS1
IVTSTOPS2 = IVT2 * STOPS2
IVTLEN1 = IVT1 * LENGTH1
IVTLEN2 = IVT2 * LENGTH2
[Draws]
5000

[Group]
1

[Exclude]
0

[Model]
// Currently, the following models are available
// Uncomment exactly one of them
$MNL // Multinomial Logit Model
//$NL // Nested Logit Model
II$CNL // Cross-Nested Logit Model
//$NGEV // Network GEV Model

[Scale]
// The sample can be divided in several groups of individuals. The
/utility of an individual in a group will be multiplied by the scale factor
/associated with the group.

// Groupnumber scale LowerBound UpperBound status

1 +1.0000000e+00 +1.0000000e+00 +1.0000000e+00 1
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[NLNests]
// Name paramvalue LowerBound UpperBound status list of alt
$NONE
[CNLNests]
// Name paramvalue LowerBound UpperBound status
$NONE

[CNLAlpha]
// Alt Nest value LowerBound UpperBound status
$NONE

[Ratios]
// List of ratios of estimated coefficients that must be produced in
/ the output. The most typical is the value-of-time.
// Numerator Denominator Name
$NONE

[LinearConstraints]
$NONE

[NonLinearEqualityConstraints]
$NONE

[NonLinearlnequalityConstraints]
// At this point, BIOGEME is not able to handle nonlinear inequality
// constraints yet. It should be available in a future version.
$NONE

[NetworkGEVNodes]
// All nodes of the Network GEV model, except the root,
// must be listed here, with their associated parameter.
/ If the nodes corresponding to alternatives are not listed,
// the associated parameter is constrained to 1.0 by default
// Name mupararmvalue LowerBound UpperBound status
$NONE

[NetworkGEVLinks]
// There is a line for each link of the network.
// The root node is denoted by _ROOT
// All other nodes must be either an alternative or a node listed in
/ the section [NetworkGEVNodes]
// Note that an alternative cannot be the a-node of any link,
// and the root node cannot be the b-node of any link.
// a-node b-node alphaparamvalue LowerBound UpperBound status
$NONE
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