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ABSTRACT

This thesis considers electronic countermeasures as well thought-out signals sent by the
"attacker" to a recipient, the "defender" in order to create uncertainty, and argues that
tactics that incorporate the judicious use of bluffing further such uncertainty. I discuss
two forms of bluffing, bluffing to create uncertainty as to the location of an attack
(bluffing in space), and bluffing to create uncertainty as to the time of attack (bluffing in
time). Two electronic warfare tactics used by the Allied air forces during World War II,
representing an example of each, are modeled as dynamic zero-sum games with
incomplete information. I show that in most instances, Perfect Bayesian Nash Equilibria
dictate that the defender delay cuing his interceptors longer than he would so otherwise,
and that in those situations where he should cue his interceptors, he must do so at
random. Furthermore, except where the cost to bluff is prohibitive, the attacker always
benefits from the use of tactics that incorporate bluffing, though bluffing in space is
generally more effective than bluffing in time for a given set of detection probabilities.
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1. INTRODUCTION

The use of radio emissions to aid in warfighting, known as electronic warfare (or

EW), has a long and storied history dating back to the years preceding World War II,

when British scientists invented radar. Since that time radar has become the most

ubiquitous means of detecting an adversary beyond visual range on or above the Earth's

surface, and in particular, has become the mainstay of most nations' air defenses.

Historians and military analysts have discussed at length the tactics used in past

wars to prevent or delay an adversary from using electronic means to engage friendly

aircraft. They have drawn many lessons, one of which deserves particular mention - the

transience of tactics. "Electronic warfare is a dynamic field of endeavor and no method

or tactic will remain effective indefinitely," states Alfred Price in his treatise The History

of U.S. Electronic Warfare. ' Yet it is also evident that some of the most successful EW

operations - the Allied strategic bombing campaign over Germany after 1944, Linebacker

II in Vietnam, Israel's 1982 "Operation Peace for Galilee," and the opening night of

Operation Desert Storm - featured tactics that incorporated judicious use of bluffing

(defined in the subsequent section, The Role of Subterfuge in Electronic Warfare). In this

paper, I aim to demonstrate why bluffing can be so useful in an EW campaign and why it

has been incorporated into so many EW tactics.

'Alfred Price, The History of U.S. Electronic Warfare, Vol. 3, (2000) p. 555
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A clear understanding of the character of EW as it relates to the give and take of

information forms the basis of any effort to explain why a particular electronic warfare

tactic is effective. I begin by characterizing electronic countermeasures as well thought-

out signals sent by the "attacker" to a recipient, the "defender" in order to create

uncertainty. Then without attempting to advocate specific tactics for actual use in war, I

proceed to model two EW tactics that were used during the World War II era. I show

formally that in such situations of uncertainty:

(1) the optimal use of and response to each tactic in many cases requires the

defender to delay acting at least until after he has attempted detection, and it

is never optimal for him to "cue" his response predictively based upon the

presence of the countermeasure;

(2) the situations in which it is optimal for him to cue his response randomly

based upon the presence of the countermeasure result from a low penalty for

error in conjunction with a low reward for properly but belatedly intercepting

the attack;

(3) the expected payoff to the attacker in equilibrium is, in all but a few

instances, greater using jamming tactics that incorporate bluffing than it is

using jamming tactics that do not.

8



Finally I compare the theoretical effectiveness of the two tactics and determine the

circumstances in which one or the other is favorable. In concluding, I identify

implications for other uses of bluffing, both in and beyond electronic warfare, in order to

understand other situations that feature bluffing as a major element.

The Role of Subterfuge in Electronic Warfare

Electronic warfare as a whole does not concern itself with directly defeating the

adversary. Rather, it is concerned with identifying or denying the adversary information

that is necessary to prosecute war. Although EW has aspects that are offensive as well as

defensive, in a conventional physical engagement both an 'attacker' and a 'defender'

might engage in either one of these activities. Specifically, a belligerent may engage in

an effort to increase its situational awareness as well as a corresponding effort to deny the

other side situational awareness. During World War II, by detecting incoming aircraft

hundreds of miles offshore, radar enabled countries to concentrate interceptors from

distant bases in order to attrite attacks before they could reach their targets. Through the

disruption of radar, countermeasures developed prior to and during the war served to

deny the enemy information as to the time and location of an attack. The trouble with the

unmoderated use of countermeasures was that such use did itself communicate

information to the defender that could be used to cue interceptors or to otherwise allow
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the defender to take precautions. In other words, countermeasures served little purpose

when implemented in a manner that allowed the defender to observe them and to

positively identify them as countermeasures.

Edward Waltz writes the following of operational deception in his book

Information Warfare, Principles and Operations

Two categories of misconception are recognized: (1) ambiguity deception

aims to create uncertainty about the truth, and (2) misdirection deception

aims to create certainty about a falsehood. Deception uses methods of

distortion, concealment, falsification of indicators, and development of

misinformation to mislead the target to achieve surprise or stealth. Feint,

ruse, and diversion activities are common military deceptive actions.2

To expand on Waltz's characterization, operational deception of either category

involves sending a signal that conveys information to the adversary. This signal might

look like the background, as in the case of camouflage, or it might look like the object the

adversary seeks to detect except that it is intentionally delivered either at the wrong place

or at the wrong time. This latter sort of signal is what Waltz refers to as a "feint," "ruse"

or "diversion" and what I term a bluff. Whether given at the wrong place or the wrong

time, a bluff will be mixed among, or substitute for, true signals.

2 Edward Waltz, Information Warfare, Principles and Operations, (1998) p. 211
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One of the EW tactics that I have selected for analysis consists of a signal

intentionally given at the wrong time, and the other a signal given in the wrong place.

Bluffing of either sort (wrong place or wrong time) can constitute "ambiguity deception"

or "misdirection." In both cases it will have the effect of denying the adversary the

information that is of interest because over time he becomes conditioned to the inherent

uncertainty of the signal. In this sense the difference between "ambiguity deception" and

"misdirection deception" is the extent to which the adversary misallocates his resources

as a result. But whether a signal given at the wrong time is more or less effective at

generating uncertainty than one given at the wrong place is not immediately obvious.

Defenders during World War II needed radar to provide the early warning

necessary to intercept bombing raids while they were still relatively distant. By using

countermeasures accompanied by bluffing tactics, the attacker not only denied the

defender precise information as to the time and/or location of a true attack, but also

presented him with a dilemma. Even if the defender knew for certain that the signal he

was picking up was that of countermeasure, he could not be sure whether or not this

countermeasure masked a bombing raid. If it did mask an actual raid, the defender

logically would want to deploy his interceptors accordingly. But if it did not,

misallocating interceptors might be disastrous should a raid later materialize.

Alternatively, the defender could wait to deploy interceptors until either his radar was

able to resolve an actual raid (if one were in fact underway) or until other sensors
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detected the raid closer in, possibly through visual or auditory means. Thus, just the fear

of a bluff was, and is still, sufficient to cause a rational adversary to delay committing to

an action based upon a single source of information.

Yet, as is evident from the above example, bluffing tactics might never be

completely effective in causing a rational and knowledgeable adversary to ignore a signal

and wait for independent corroboration. So long as a true signal is mixed in with a host

of bluff signals, it may be in the adversary's interest to take action some of the time,

albeit infrequently if either the cost for misallocation is high or if the bluffs are frequent

relative to the true signals. In the World War II example, as bluffing was used to

"provide a cover" for genuine use of countermeasures to mask attacks, the defender

would sometimes decide that early allocation of interceptors made sense. Bluffing,

moreover, does not come without a monetary cost. This cost will affect both the

attacker's calculations as to how often to bluff, and by extension, the defender's

reasoning as to how often he should act based upon the signal received.

The dilemma described above, which confronts both the attacker and the

defender, may be thought of as a dynamic zero-sum game with incomplete information.

The precise structure of the game will vary with the tactics employed by the attacker, the

options available to the defender in allocating his defensive resources, and the technical

characteristics of the countermeasures, the radars, and the weapons involved.

Irrespective of the precise structure of the game, however, Perfect Bayesian Nash
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Equilibria (PBNE) exist which will dictate how often the attacker should bluff and how

often the defender should allocate his resources based upon the initial signal. Once the

relevant PBNE has been obtained, it is a simple matter to determine the expected payoff

of the tactic being analyzed. Doing so should give operations research analysts, political

scientists, and national decision makers the ability to compare tactics and (in the case of

other non-EW applications) strategies that involve bluffing.

13



2. METHOD

Past Approaches

To the extent that electronic warfare tactics are openly discussed in academic

literature, formal analysis has largely taken a non-game theoretic approach. I found

literature published by the Military Operations Research Society and the Department of

Operations Research at the Naval Postgraduate School to be particularly helpful in

understanding the military's approach to EW tactics. The analytic methods discussed in

the research papers and theses make heavy use of integer programming techniques to

compute optimal times and places for the employment of countermeasures or interdiction

of radar nodes. The models used are specific to the tactics being analyzed, and I have

every reason to believe that actual operational decisions regarding the use of various EW

tactics are made using methods similar to those discussed. 3 Unfortunately these methods

are limited in that they do not postulate a rational adversary that reacts dynamically to the

tactics based upon whatever information is available.

3 Examples include Philip Whiteman, "A Target Selection Tool for Network
Interdiction," 6 4th MORS Symposium Working Group 1, Military Operations Research
Society, (Sept. 11, 1996); Eitan Israeli, System Interdiction and Defense, Department of
Operations Research, Naval Postgraduate School (1999); T. P. Krupenevich, Network
Representation for Combat Models, Department of Operations Research, Naval
Postgraduate School (1984).
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In analyzing electronic warfare, academics have thus far utilized game theory

only to a very limited degree, applying it to the general problem of network interdiction.

Richard Wollmer, working at the time for RAND Corporation, pioneered the approach in

a 1970 paper entitled "Algorithms for Targeting Strikes in a Lines-Of-Communication

Network." 4 His method involved defining a space filled with nodes, in which any two

nodes are connected by way of a finite number of pathways, along each of which

commodities or signals may flow at a varying cost. By using matrices to keep track of

the cost to a transmitor to transmit signals or commodities along each pathway, Wollmer

could compute the total cost to transmit the signal or commodity from the initial node to

the final node by any number of pathways. Meanwhile he supposed that an interdictor

who interdicts a pathway along which signals or commodities following at any given

moment receives a zero-sum payoff. This allowed him to identify optimal mixed

strategies for the transmitor's transmission of signals and commodities along various

pathways, together with the interdictor's simultaneous interdiction of pathways. These

strategies constitute Nash equilibria.

Others have adopted Wollmer's framework as the basis for analyses of specific

interdiction operations, involving for instance the Caribbean drug trade, but the

framework is not easily applied to electronic warfare for two reasons.5 First, Wollmer

4 Richard Wollmer, "Algorithms for Targeting Strikes in a Lines -Of-Communication
Network," Operations Research, Vol. 8, No. 3 (May-June, 1970), pp. 497-515
5 See for instance A. Washburn and K. Wood, "Two Person Zero-Sum Games for
Network Interdiction," Operations Research, Vol. 43, No. 2 (March - April, 1995), pp.
243-251
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assumes that the interdictor is limited in his capacity to interdict, which is typically not

the case in EW given the integrated nature of radar networks. To fit an analysis of EW

tactics into Wollmer's framework, one would define the "transmittor" to be the attacker

(who "transmits" bombing raids along various flight paths) and the "interdictor" to be the

defender (who seeks to "interdict" the raids by detecting them). However prior to the

development of anti-radiation missiles, the typical radar network was in constant

operation in all possible locations. As such, the equilibrium strategies for the transmitter

and interdictor are trivial. Where Suppression of Enemy Air Defense (SEAD) operations

force the interdictor to limit his search efforts, Wollmer's method may be useful,

provided, however, that both sides have complete information, which is its second

limitation. This limitation is significant because, as I argue, electronic warfare tactics are

designed to maximize the uncertainty they cause the adversary.

Lacking is an analytic method for EW tactics that combines the specificity of the

military's integer programming models with the assumption that both sides are rational,

as postulated by Wollmer et al. I attempt to fill this hole with my analysis. It is possible

that with enough adjustments, the traditional framework for the game theoretic analysis

of network interdiction could be made to fit the specific circumstances of EW tactics.

The generic framework is indeed very powerful, particularly with respect to cost

optimization. In a sense it is overkill. Rather than be bogged down manipulating cost

matrices that would themselves require lots of computing power as well as detailed (and

likely unavailable) data, I have elected to start fresh with models that are specially
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tailored to be as simple as possible while providing a reasonably realistic representation

of specific EW tactics.

"Window" and "Mandrel Screen"

This analysis treats all bluffing behavior as rational and calculative, a result of the

careful optimization of a number of intricate factors, including prediction of the

defender's optimal response given detection probabilities. It is not necessarily the case,

however, that during World War II all bluffing strategies were a result of such

optimization. Though World War II saw the employment of thousands of operations

research analysts to shape the war effort, with particular emphasis on the fields of search

and detection, military commanders often experimented with unconventional tactics.6

Occasionally this was even done at the suggestion of operations research analysts, who

were trying to forecast the behavior of cutting edge technology, and thus welcomed the

opportunity to test predictions. Nevertheless over the course of the Allied strategic

bombing campaign, as in any situation where games are repeated, both sides came to

recognize the effects of their tactics and began to make predictions regarding the other

6 See B.O. Koopman, A Theoretical Basis for Methods of Search And Screening, U.S.
Office of Scientific Research and Development, National Defense Research Committee,
vol. 2B, (1946); also, for more general information on World War II military operations
research, see Morse and Kimball, Methods of Operations Research, Office of the Chief of
Naval Operations, Operations Evaluation Group, (1946)
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side's response. Thus, for situations like this one in which opposing sides have time to

observe one another's strategies - either because they are played repeatedly or else

because they are implemented gradually - it makes sense to treat bluffing as calculative,

rational, and tending toward predicted equilibria.7

"Window" tactics are an example of such unconventional tactics evolving out of

the experimentation. "Window" was the nickname for canisters of aluminum foil

dropped out of aircraft, which were found to cause huge quantities of noise on radar

scopes. (The foil later became known as chaff.) Initially such canisters were dropped

haphazardly by hand out of hatches, but, as the tactic caught on, special ports were

eventually installed on most bombers to aid in dispersing the foil. Officers in charge of

planning were unsure of the exact effects of chaff on radar. They therefore directed

crews to drop chaff from the bombers that were part of the raid on one day, on another

day to drop it from aircraft flying parallel to the flight path of the raid, on another day to

drop it from aircraft flying perpendicular to the raid, and so forth. 8 By varying the

location from which the chaff was dispersed relative to the bombing raids, this

experimentation somewhat coincidentally allowed the Allied air forces to reap the

benefits of bluffing. German radar operators were never sure whether chaff in a given

area masked a raid or was merely a noisy distraction from a raid elsewhere. One

captured German radar operator exclaimed during interrogation, "Oh, your jamming was

7 For an analysis of the tendency for systems to evolve toward equilibrium, see Peyton
Young, Individual Strategy and Social Structure: An Evolutionary Theory of Institutions,
(1998)
8 Price, Vol. 1, pp. 168-168, 176
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fantastic! It obliterated everything on our Wurzburg screens!" He went on to say that the

Luftwaffe was so confused when the Americans were dropping chaff that they simply

turned the radars off and resorted to firing indiscriminate flak. 9

In contrast to "Window," the tactic known as "Mandrel Screen" was a carefully

crafted attempt to use operations research methods to improve the odds of a raid avoiding

detection by the Freya, Wurzburg, and Wasserman radars positioned along the coast.

B-24 Liberators specially equipped with electronic jamming equipment flew in holding

patterns off the coast of Continental Europe and jammed the early warning radars along

the flight paths of raids - whether or not bombers were en route.'° From the mouth of the

Meuse northward along the coast all the way to Jutland, Germany maintained a series of

complexes known as Himmelbett Stations." Each station was composed of one Freya

and three Wurzburg radars, although Wassermans later supplemented the Freyas. Ranges

for these radars were up to 300 km (Wasserman), with the basic model Freya capable of

detecting bombers out to a more reasonable 130 km.12 The stations were spaced

approximately 50 km apart (some were closer), and in places were arrayed inland as well,

forming a formidable defense-in-depth with overlapping radar coverage.'3 As an attempt

to desensitize the Luftwaffe to the jamming by blinding the corridors more than was

9 Ibid. pp. 169-170
'0 Ibid. p. 176
" James Crabtree, On Air Defense, (1994) p. 76
12 H. Kummritz, "German Radar Development up to 1945," ed. Russell Burns, Radar
Development to 1945, (1988) pp. 212-217
13 Crabtree, p. 77
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necessary, "Mandrel Screen" is an example of a tactic in which signals were intentionally

sent at the wrong time.

It is not known the extent to which "Window" and "Mandrel Screen" tactics were

optimized in order to keep attempted intercepts to a minimum. Analyzing records and

conducting interviews with combatants, the U.S. War Department concluded that from

the winter months of 1944 onward, the Luftwaffe steadily decreased its counter-air

operations, making little attempt, for instance, to oppose the June 1944 Normandy

invasion. 14 But attributing this data to any one factor is impossible. Was it due to

"Window" and "Mandrel Screen," to a shortage of fuel and spare parts, to increased

presence of Allied escort fighters, or to some other factor or combination of factors? The

Allied strategic bombing campaign of Germany was so all-inclusive that we cannot be

sure.

That said, it is known that Luftwaffe took particular action in response to Allied

tactics that included adding Freya and Wurzburg radars to its ground controlled intercept

scheme, known as the Kammhuber Line (traversing Germany, the line already included

Himmelbett Stations spaced as closely as 30 km apart). And specifically in response to

subterfuge, it fed the radar data to a series of divisional control centers to monitor and

deconflict contacts and vector interceptors to bombing raids.'5 Given that attempted

14 United States Strategic Bombing Survey, Summary Report (European War), (Sept 30,
1945) pp. 7-8
'5s Crabtree, pp. 76-78
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intercepts grew less frequent as the war progressed, while at the same time radars and

control centers were added to the Kammhuber Line, it is fair to conclude that "Window"

tactics contributed to the German decision to rely increasingly on flak, and that over time

they were tailored for the task at hand. As an indicator of the effectiveness of "Mandrel

Screen," Bomber Command requested assistance from the 8th Air Force in order to

further perform the tactic at night. 6 In spite of German electronic counter-

countermeasures, this effort is widely credited as having reduced the maximum detection

range of the typical German radar by about 70%.17

Parameters Determining Effectiveness

The success or failure of "Window" and "Mandrel Screen" depended on many

factors, some inherent in the tactics and others functions of the technical properties of the

countermeasures. In this analysis I determine the theoretical value of the tactics

themselves in terms of factors such as the technical effectiveness of each countermeasure

and the beneficial or detrimental effects of interception and misallocation. To do so I

identify seven parameters, and phrase the equilibria as well as the effectiveness of each

tactic in terms of these parameters. Analogies to these parameters should be easy to

16 Price, Vol. I, p. 177
1 7 A. E Hoffman-Heyden, "German World War II Anti-jamming Techniques," ed. Russell
Bums, Radar Development to 1945, (1988) p. 382
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identify for other applications of bluffing. Of particular note, the relative locations of the

defender's radars, as well as their susceptibility to the actual countermeasure, will

determine the various probabilities of detection. I therefore consider the difference in

overall effectiveness of the tactics, plotted against the appropriate probabilities of

detection, as well as the value to the defender of any pause in the bombing campaign.

Thus I determine the conditions in which one or the other tactic will be more effective.

This relationship is summarized by the generic function

U1W - U1M = f(Pcd, Pc I pci,,Vo,V', P, C)

where

U1W = the attacker's expected payoff for employing "Window" tactics,

U1IM = the attacker's expected payoff for employing "Mandrel Screen"

Pci = the minimally degraded probability of contact at a range r (a technical

parameter) when "Window" tactics are employed

Pcd = the maximally degraded probability of contact at a range r(T) when

"Window" tactics are employed

Pc = the probability of contact at range r(T) when "Mandrel Screen" is employed

Vo = the value to the defender of intercepting a raid early, while it is still distant

V' = the value to the defender of intercepting a raid late at a time T

L = the penalty to the defender for misallocating interceptors to a wrong location

C = the penalty to the attacker for allowing a pause in the bombing campaign

22



Probabilities of Contact

These parameters will depend in some manner upon the range of the raid to the

various detectors, as well as upon the number of detectors in the defender's networked air

defense system if one exists. They will likely change on a raid-by-raid basis, or in the

case of continuous detection, will change over the course of a raid as the aircraft move.

As such, I use these probabilities as the primary independent variables in my analysis of

the relative effectiveness of the tactics. Though the other parameters are also

independent, they will probably be the subject of much intelligence reporting in a given

conflict, and are much more likely to remain fixed through the course of a bombing

campaign. I have not included any explicit dependence on range in order to keep my

models as simple as possible, and also to free the reader to make use of whatever model

of search and detection is most appropriate for a given application.

The most common model for search and detection of aircraft used by World War

II operations research analysts is known as the inverse cube law. It states that the

instantaneous probability of detection of an object is proportional in the inverse cube of

the range to that object, or

kh
(r) -77
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where k is the constant of proportionality and h is the difference in height of the detector

and the object. It has been shown that for any given instantaneous probability of detection

g(r), if multiple objects are present, the cumulative probability of detecting one object is

pc= 1 -e - F

Fc= C ln[1 -g(rt)]
(detectors) t = 

where T is the time at which the cumulative probability is measured. Thus the cumulative

detection probabilities may be found for any number of networked radars searching for

the same track, using the inverse square law or any other model for the instantaneous

detection probability of an object. 18 19

The parameters p , p,, and p, represent cumulative probabilities of detection

under conditions where countermeasures are present. In the case of "Window," po may

be thought of as the resulting probability of detection at a given range when jamming is

concentrated ahead of the bombers, along their flight path. Thus if the bombers were to

fly directly over a radar, the jamming would maximally reduce the probability that this

18 For a derivation of the inverse cube law as well as formulae for computing cumulative
probabilities of detection in use during World War II, see Koopman, pp. 18-21
'9 Any given radar within the defender's radar network may be affected minimally or
maximally by an instance of jamming depending on the geometry of the jamming. A
single expression for the cumulative probability of detection after an elapsed
time T is obtained, however, by summing over each individual detection
attempt by each individual detector according to Koopman's equation.
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radar detects them. The probability p , on the other hand, should be thought of as the

probability of detection at a given range when jamming is concentrated off the flight path

of the bombers. This jamming maximally reduces the probability that some other radar

off the axis of the flight path detects the bombers, but leaves the nearest radar relatively

unaffected. It is assumed that the nearer radar has a greater instantaneous probability of

detection than does the more distant off-axis radar, and therefore that

Pci Pcd 20

Meanwhile, the "Mandrel Screen" tactic does not involve the attacker varying the

position of jamming with respect to the bombers and the radar network. Therefore the

cumulative probability of contact associated with any given geometric arrangement of

radars, bombing raids, and jamming aircraft may be represented by one expression, p,

rather than by multiple expressions to account for all possible locations where an attacker

may release countermeasures.

Effect of Interception

If it is the case that the attacker has calculated elsewhere the expected payoff for

engaging in a bombing raid and has elected to go ahead with the strategy, that payoff may

be taken as the baseline, and all subsequent payoffs calculated as deviations from it.

20 The validity of this assumption depends on the ability (or lack thereof) of the
various radars to reject interference from the "sidelobes". It is possible that
more advanced radars may be unaffected by jamming that does not enter through
the "mainlobe," in which case Pci and P, may not have a simple correlation.
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Parameters Vo and V' indicate deviations resulting from the interception of bombing

raids carried out as part of the attacker's overall strategy. There are two rationales for

why Vo, the value to the defender of intercepting that raid while it is still at a distance

from its probable target, should be greater than V', the value of intercepting it when it is

close. First, the target of the raid will generally not be known with certainty, in which

case if the raid is intercepted at a distance, it is less likely to have already dropped its

bombs than if interception is delayed. Second, the defender may be able to make use of

extra time to send additional interceptors to the air battle.

There will be different methods of computing Vo and V' depending on the

defender's uncertainty as to the target and also the defender's ability to make use of extra

time to flow interceptors into a battle. As parameters Vo, V', C, and L are all defined

without units, their magnitude is only significant relative to one another. I therefore

normalize Vo to unity and compute equilibria and payoffs using parameters given relative

to Vo. If uncertainty as to the target of the raid is the dominant factor, it may make sense

to imagine a probability distribution of the target. V' can then be computed as

V' = - f targprob(t)v(t)dt
0

where v(t) is the airspeed of the raid and T is the time at which V' occurs. On the other

hand, if the dominant factor is the likelihood the potential for additional interceptors to

arrive after interception has occurred, then V' is smaller than Vo due to the defender's
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reduced ability to attrite the attacker. Use of Lanchester's equations for combat, which

characterizes the population of two opposing forces over time as coupled differential

equations, might prove to be a better way to compute V'. 21

Effect of Misallocation

Parameter L should also be thought of as a deviation in the baseline expected

payoff of a successful bombing raid, but in the direction opposite Vo and V'. If an

electronic warfare tactic results in the defender's misallocating his interceptors, not only

does he fail to intercept any raid in progress, but also interceptors might not be available

to intercept a subsequent raid. Therefore L is of a larger magnitude when the frequency of

raids is high or when the speed of the interceptors is low relative to the space they must

patrol. On the other hand, L is smaller when raids are infrequent or the interceptors can

be repositioned quickly. The exact magnitude of L may be difficult to compute as it must

be normalized to Vo, but presumably this can be done using operations research

techniques. Specifically an estimation of L must take into account the impact of a

successful bombing raid on the progress of the war, as compared to the loss of a portion

of the bomber fleet's anticipated contribution to the war if the raid had been intercepted.

21 Lanchester's theory for attrition in combat, in particular the "Lanchester Square Law,"
has received extensive discussion in the military operations research literature. For a
simple overview see N.K. Jaiswal, Military Operations Research: Quantitative Decision
Making, (1997) pp. 233-238. For a thoughtful critique of the theory, see J. W. R.
Leppingwell, "The Laws of Combat? Lanchester Re-examined," International Security,
Vol. 12, No. 1, (1987) pp. 89-139.
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Effect of a Pause

A pause in the bombing, which may occur when the attacker employs a bluff

while performing "Mandrel Screen," takes the form of a cost to the attacker for using the

tactic. As the attacker has computed a baseline expected payoff for the bombing

campaign using a given engagement rate, the actual engagement rate will reflect the

pause and thus yield a negative deviation. Additionally, whatever the attackers goals are

for the bombing campaign, it is nearly certain that the defender may make use of time to

repair the effects of bombing. If the campaign seeks to interdict supplies to front line

troops, time permitting, the defender will repair his roads and bridges. If it seeks to derail

the defenders wartime economy, a pause will permit workers to go about their work

unhindered by air raid sirens. Any repairs that the defender is able to make represent

negative deviations from the baseline expected payoff in their own right.

Even worse, resumption of supply distribution or of war production may have

cascading effects on other aspects of the war effort. For instance if a pause in bombing

permits supplies to move to front line troops engaged in battle, those troops may now be

able to inflict casualties on the attacker's ground forces that they would not otherwise be

able to inflict. Or if the attacker uses the pause to upgrade his air defenses, when the

campaign resumes the attacker is likely to suffer greater casualties than he would have

otherwise. A pause therefore benefits the defender or hurts the attacker. Of course its

exact value again must be normalized to Vo, and may be even more difficult to compute
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than was determining L, but again this calculation should be feasible using operations

research techniques.

29



3. MODEL I

Definition: "Window" Tactics

There are two strategic players, player 1 (the attacker) and player 2 (the defender),

along with Nature, a third player who makes choices randomly according to various

probability distributions. In the notation that follows, index i is assumed to never equal j,

while k is unrestricted and may equal i or j .

° In Period 1, Nature decides whether the attacker is of type 1 (t,), type 2

(t2 ), or type 3 (t3), signifying different plausible flight paths along which

to send a bombing raid to attack, according to a [1/3, 1/3, 1/3] distribution. Along each

path the defender has a detector. 22

o In period 2, the attacker observes Nature's move (t) and decides along which flight path

to employ countermeasures, path 1 (ml), path 2 (m2), or path 3 (m3). Choice (mi I t) will

correspond to jamming radars on-axis, and choices (mj I t) will correspond to jamming

radars off-axis. To consider mixed strategies, the attacker's strategy space is denoted as

pk(t) where k represents the message sent by type t.

22 Presumably there are other flight paths available to the attacker as well as other
detectors available to the defender, but they do not appear in the model. For an
explanation, see assumption Al Geometry
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° The defender does not observe Nature's move t but does observe the attacker's choice

of mi. Therefore mi constitutes a signal to the defender, enabling him to form a belief (p3)

in accordance with Baye's rule as to the attacker's type. 23 Consistent with that belief, in

period 3 the defender then chooses whether he wishes to reallocate interceptors to cover

the blind corridor (al) or wait (w,). If a, is chosen the game ends; otherwise it proceeds.

Mixed strategies are denoted [r , 1-r].

° Time T is allowed to pass. In period 4 Nature randomly chooses whether the bombing

raid has been detected (d) or not detected (nd) based upon the following probability

distributions:

if player 1 type t played mi; then prob(d) = p,, prob(nd) = 1- p,

if player 1 type t played mj; then prob(d) = Pc, prob(nd) = -pc

If d is chosen the game ends; otherwise it proceeds

° The defender observes Nature's choice, and if Nature chooses nd, he updates his belief

(p5) as to player l's type again in accordance with Baye's rule. Consistent with that

belief, in period 5 the defender decides again whether to reallocate the interceptors (a2) to

23 Baye's rule is: prob(AIB) = prob(BIA) * prob(A) / prob(B)
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the jammed corridor or wait (w2). In either case the game ends. Mixed strategies are

denoted [r 2 , 1 -r2 ]

° Players 1 and 2 are given zero-sum payoffs U2 = -U1. Player 2 receives the following

payoffs:

U2(ti , mi, a,) = VO

U2(ti , mi , w , d) = V'

U2(ti , mi, wl, nd, a2) = V'

U2(ti , mi, , nd, w,2) = 0

U2(ti , mj, a,) = L

U2(ti, mj, w , d) = V'

U2(ti , mj, w,, nd , a2) = L

U2(ti , mj, w , nd , w2) = 0
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Assumptions

Al Geometry

Though this model considers only three possible flight paths and three detectors,

it is consistent with a somewhat richer (but still symmetric) geometry. I assume that the

defender has many detectors arranged in an arc, each along flight paths that extend

radially outward from the raid's point of origin. Traditional radar has a detection range

limited to its line-of-sight, so that at no time will all detectors be simultaneously capable

of detecting the raid, though in the case of the German air defense network there was a

certain degree of overlapping radar coverage. I limit the overlapping radar coverage to

the detector along the raid's actual flight path as well as to each of the adjacent detectors

on either side of the flight path. Therefore for any given raid, the attacker degrades the

radar network only if he jams along a flight path that is either the actual flight path or one

of the two adjacent flight paths. This is consistent with "Window" tactics, which in all

cases sought to degrade the German radar network to provide a degree of cover to the

bombers, though their jamming was not confined to the bombers' actual flight paths.

Knowing this, after observing an instance of jamming (mi), the defender may logically

limit the plausible attacker types to three, the type that jams on-axis (t) and the two types

that jam off-axis along adjacent flight paths (t).
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A2 Symmetry

I further assume that the adjacent flight paths, and therefore the detectors, are

spaced evenly. This permits detection probability pi, to be used for both off-axis

strategies. Though this might not represent reality in the strictest sense, maps of the

Kammhuber Line show a general uniformity in the spacing of Himmelbett Stations. More

importantly, however, this simplification allows one to treat the mixed strategy of

attacker type t as [pi(ti), -pi(t)], permitting an analytic solution to the model.

A3 Defender's Strategy Space

The defender's options, upon receipt of a signal at the start of periods 3 and 5, are

limited to reallocating interceptors to the jammed corridor and to waiting. I do not permit

him to reallocate interceptors to other corridors. Were this an option to the defender,

additional mixed strategy equilibria might result, but these equilibria would be strange,

and from a purely military point of view, illogical. It is true that the underlying structure

of the model resembles the classic "Matching Pennies" game, which would imply that

occasionally reallocating forces to any plausible corridor is rational. 24 However the

dilemma that usually confronts a general when faced with an adversary conducting

24 "Matching Pennies" is a game in which one player chooses heads or tails without
telling the other player, and the other player calls heads or tails in attempt to match it.
Equilibrium strategies are [1/2, 1/2] for both players.
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electronic warfare is not, "Which corridor is the attack coming from?" but instead, "Do I

have sufficient information to act now, or must I delay my response in the hope of

acquiring better information?" The exception is in situations where there is jamming

along multiple corridors or along every plausible corridor. In these cases the emphasis

generally switches to the "Matching Pennies" dilemma because one assumes that extra

time is unlikely to yield better information. That said, I am interested in the extent to

which bluffing tactics cause a defender to delay his reaction when he otherwise would

not, so I limit the defender's strategy space accordingly.

A4 Single Opportunity for Detection

Because detection probabilities p, and p. may be thought of as cumulative

probabilities of detection, it is not completely accurate to say that in this model the

defender has a single opportunity to detect the raid. Nonetheless, he is only given one

opportunity to reallocate after attempting to detect the attacker, so the model is limited to

a certain degree with regard to opportunities for detection. The model could be made

richer by allowing for a repetition of periods 4 and 5 until either detection occurs or the

defender decides to reallocate, the only limitation being the flight time of the raid to its

target. However in doing so, uncertainty as to the raid's target must be explicitly treated

as additional information chosen by Nature and observed only by the attacker. In this

case the defender will need to formulate additional beliefs with extremely complex

Bayesian updating processes, and solving the model will likely require the use of

35



computer-based numerical methods. Furthermore, equilibria will likely exist at every

opportunity given to the defender to reallocate his forces. Allowing the defender a single

opportunity to reallocate his forces after attempting detection greatly simplifies the

calculation of expected payoffs while preserving a diversity of equilibria and illustrating

the characteristics of the dilemmas posed by bluffing.

Lesser Assumptions

There are two lesser assumptions inherent in this model that deserve mention.

First, in awarding a payoff of V' to the defender after successful detection of the raid, I

assume there is a perfect reallocation of interceptors. This might not be the case, but any

failure to intercept the raid after detection has occurred is a result of an exogenous force

that should be modeled separately. Bluffing is aimed at furthering the aims of electronic

warfare, namely denying accurate information to the defender by supplanting it with false

signals. Once the defender has obtained accurate information, the tactic is over, and

hence I terminate the model. Second, I assume that an attack is always in progress -

Nature is not given the opportunity to choose an attacker type that does not attack. This is

necessary so as to isolate the non-repeatable effect of a surprise tactic being used in battle

and producing lopsided results. The defender must be assumed to have foreknowledge of

a tactic if the source of the tactic's effectiveness is to be identified.

36



Potential Equilibria and Expected Payoffs

The solution to Model I begins with a formulation of the defender's beliefs in

period 3 and period 5 (P3 and p5). 25

PROPOSITION 1:

p3 = pi(ti)

PROOF:

The defender's belief in period 3 is defined as the probability that the observed signal mi

was sent by attacker type t, or equivalently, the probability that the attacker has jammed

on-axis. This may be written as

p3 = prob(ti I mi)

= prob(mi I t)prob(t) / prob (mi)

= prob(mi I t)prob(ti) / [prob(m, , ti) + prob(mi , tj) + prob(mi, tg)]

where g is neither i nor j, and k remains unrestricted

= prob(mi I tQ)prob(ti) / [prob(m I ti)prob(ti) +

+ prob(m I tj)prob(tj) + prob(m I tg)prob(tg)]

25 For an explanation of the Bayesian updating of beliefs in games involving detection,
see Pate-Cornell and Fischbeck, "A Two-Step Procedure for the Bayesian Updating of
the Probability of Nuclear Attack on the United States," ed. Stanley Erickson Jr., MAS
Proceedings 1991, Military Modeling and Management, Operations Research Society of
America, (Nov. 12-14, 1991) pp. 36-52
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Now, prob(mi I tk) = pi(tk), which is defined as the probability that an attacker of any type

tk jams along a given flight path mi. Meanwhile prob(tk) is defined to be 1/3 for all types.

Therefore,

P3 = Pi(ti) / k Pi(tk)

By symmetry,

pi(ti) = pj(tj) , and pj(ti) = pg(tj)

The probabilities that a particular attacker type sends any given message must sum to 1

1 = pi(t) + pj(ti) + pg(t)

= pi(ti) + 2pj(ti)

= pj(tj) + 2 pj(t4)

Therefore,

pi(tj) = [1 - pi(t)] / 2

and so

P3 = p(ti) / 1

= p(ti)

PROPOSITION 2:

P5 = (1-Pcd)Pi(ti) / [(-Pcd)Pi(ti) + (-Pci)(pi(tj) + pi(tg))]
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PROOF:

Just as in period 3, the defender's belief in period 5 is the probability that the observed

signal mi was sent by attacker type ti. However the defender has also observed signal nd.

Therefore the belief is the probability that the attacker has jammed on-axis given a failure

to detect, or

P5 = prob(t I mi , nd)

= prob(mi , nd I tQ)prob(t) / prob(mi, nd)

= prob(mi, nd I ti)prob(t4) / Sk prob(mi, nd I tk)prob(tk)

prob(mi, nd I tk) = prob(mi, nd, tk) / prob(tk)

= prob(nd I mi , tk)prob(m, tk) / prob(tk)

= prob(nd I mi, tk)prob(m I tk)prob(tk) / prob(tk)

Substituting in,

P5 = prob(nd I mi , t)prob(mi I t;) / 'k prob(nd I m , tk)prob(mi I tk)

= prob(nd I mi , t)prob(m I t) / prob(nd I mi , ti)prob(mi I t) +

+ 2 prob(nd I mi , tj)prob(m I t)

The quantity -pcd is defined to be the probability that no detection occurs when the

attacker is jamming on axis, and 1-pc, is the probability of no detection when the attacker

is jamming off axis. Therefore

l-p = prob(nd I mi, t)
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i-pci = prob(nd I mi , tj)

And given the previous definition of pk(t),

P5 = (1-Pc)Pi(ti) / [(1-Pcd)Pi(t) + (1-pci)(pi(tj) + Pi(tg))]

PROPOSITION 3:

P3 < P

PROOF:

Let k = p5 / p3. Then,

k = [( -p)pi(ti) [(l-pd)p(ti) + (-poi)(pi(t) + pi(tg))]l / pi(ti)

= (-pd) / [(1-p)pi(ti) + (1-pci)(pi(tj) + pi(tg))

= 1 / [pi(t) + [(l-pd) / (-poa)l(pi(tj) + p(tg))]

o < Pd < Pci < 1

1-pci < -pcd

(1 -p) / (I1-po) < 1

pi(t) + (p(tj) + pi(tg) = 1

k> 1

P3 < PS
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The implication is that as time passes and the defender still has not detected an

attack, if he is aware that there is an attack somewhere, the probability grows that it is

coming through the jammed corridor. With these observations about the defender's

beliefs, it is now possible to deduce equilibria. In any equilibrium, symmetry requires that

each attacker type employ identical strategies (recall pi(ti) = pj(tj)). Four types of

equilibria are considered. In all cases, the zero-sum nature of the game forces the attacker

to play a mixed strategy. If he were to play a pure strategy the defender would optimize

his response and reallocate accordingly - the essence of bluffing is its unpredictable

nature. In response to this mixed strategy, the defender might conceivably play: (1) a pure

strategy of never reallocating (were he to always reallocate, the attacker would always

bluff); (2) a period 3 mixed strategy and period 5 pure strategy of not reallocating; (3) a

period 3 pure strategy of not reallocating and a period 5 mixed strategy; or (4) mixed

strategies in both periods.

Where mixing exists for either player, it is only possible because the player's

expected payoffs to pursue one or the other strategy are equal. The player is indifferent,

enabling him to mix strategies without regard to the payoff. For the defender to mix

strategies his belief for the period in question must correspond to this indifference. Thus

I shall refer to the defender's expectation of equal payoffs regardless of the strategy he

chooses as the indifference condition.
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PROPOSITION 4:

For equilibria involving mixed strategies in period 3, the period 3 indifference condition

yields belief

*P3 - -L + pV' + (1 - pi)r2L
Vo - L + (pci - pcd)V' - (1 - p)r2V' + (1 - pi) r2L

PROOF:

Setting the defender's expected payoffs for playing strategies al and w, equal to one

another,

p3*Vo + (1- p3*)L =

= P3* IpcdV' + (1-pd)r2V'] + (1- p*)[pV' + (1-pc)r2L]

Solving for p3* results in

3 *=
-L + pciV' + (1 -pci)r2L

V - L + (pci - pd) V' - (1 - pd) r2V' + (1 - p) r2L

PROPOSITION 5:

For equilibria involving mixed strategies in period 5, the period 5 indifference condition

yields belief

*= -L
p5 *m - L
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PROOF:

Setting the defender's expected payoffs for playing strategies a2 and w2 equal to one

another,

p5*V' + (1- p5 *)L = O

Solving for p5* results in

p5 *= -L

Where the defender employs a pure strategy during one or both periods, the two

indifference conditions also must correspond to his actions in that they act as the

boundaries past which the pure strategies are impossible. Serving as restrictions, these

beliefs enable the calculation of PBNE.

PROPOSITION 6:

Potential solutions for each of the four types of equilibria considered exist according to

the following respective systems of equations and restrictions.

(1)

peV' -L
pi (ti) < Vo - L + V' (pci - pcd)

rl =0

r2= 0

with the attacker's expected payoff
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U,(pi(ti) ,rl, r2) = V'(pc-pd)pi(ti) - V'pri

Solutions of this type do not meet the definition of Nash Equilibrium (see the subsequent

section, Equilibrium Solutions and Sensitivity to Parameters, for an explanation).

(2)

L(1 - pci)
pi()= L(1 - pci)-V' ( - p) - V' (1 - p)

r,= 0

_ -Lpcd(1 - pci)- V'pci (1 - pcd)
r2 - 2L(1 - pi)(1 - p)

U1(p(ti) , r , 2) =-pi(t)[pdV' + (1-pcd)V'r2] - (-pi(ti))[pciV' + (-pcd)Lr2]

V [Lpd( - pci)- V'pci (1 - pd)]
L (1 - pci) - V'(1 - p)

with the following restriction

-L > V' 2pci (l - pd)
Vo(1 - pci) - V' (1 - pcipcd)

(3)

V'pi - L
pi(t)= V- L + V'(pci - pd)

V ( pci - pcd)
r V- L + V'(pci - pd)

r2= 0
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U, (pi (ti), r, r2) =- pi (ti) [rVo + (1 - r) pdV'] -

- (1 - pi (ti)) [riL +(1 - rl)pciV']

__ V' (Vopci - Lpd)
Vo- L + V' (pi- pd)

with the following restriction

V' 2pci ( - pcd)
-L V(1 - pi)- V'(1 - cipd)

(4)

No solutions of this type exist.

PROOF:

See Appendix

Equilibrium Solutions and Sensitivity to Parameters

The restrictions associated with Equilibrium Types 2 and 3 imply that PBNE

corresponding to individual sets parameters will be of one type or the other, though there

might be multiple equilibria where the restrictions overlap. Strategies pi(t;), r, r2, and

payoff U. were computed for each potential equilibrium type using a range of values for
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each of the four parameters, V', L, Pci , and Pcd (VO was set to 1) in order to identify

trends. 26 The parameters were constrained to the following ranges:

0 5 V'S Vo=l

0 Pcd Pci 1

0>L

The results were vetted using the equilibrium restrictions as well as the requirement that

pi(t) , r, , and r2 be between 0 and 1. Sample sets of valid parameters, along with their

resulting solutions and payoffs, are given in Table 1.

Parameters Solution Type 1 Solution Type 2 Solution Te 3

L Pi p. v V max p r r 2 maxU, p(t) r, 2 U1 pA(t-) r r2 UI

-3.6 0.2 0.5 0.9 1 0.8335 0 0 -0.2291 0.7291 0 0.2528 -0.2826

-2.0 0.4 0.5 0.7 1 0.7655 0 0 -0.2964 0.7042 0 0.5083 -0.3681

-1.4 0.3 0.7 0.9 1 0.7287 0 0 -0.3565 0.4406 0 0.8286 -0.4269

-0.6 0.2 0.5 0.6 1 0.5056 0 0 -0.209 0.3846 0 0.625 -0.1538

-1.5 0.4 0.7 0.3 1 0.6602 0 0 -0.1506 0.6602 0.0347 0 -0.1506

-0.2 0.2 0.3 0.7 1 0.3228 0 0 -0.1874 0.2 0 0.875 -0.054

-1 0.2 0.4 0.5 1 0.5714 0 0 -0.1429 0.5714 0.0476 0 -0.1429

-0.7 0.3 0.6 0.3 1 0.4916 0 0 -0.1358 0.4916 0.0503 0 -0.1358

-0.4 0.1 0.2 0.9 1 0.3893 0 0 -0.145 0.2832 0 0.3368 -0.0408

-0.2 0.3 0.6 0.2 1 0.254 0 0 -0.1048 0.254 0.0476 0 -0.1048

-1.5 0 0.4 0.4 1 0.6241 0 0 -0.0602 0.6241 0.0602 0 -0.0602

-4 0.6 0.6 0.5 1 0.86 0 0 -0.3 0.86 0 0 -0.3

26

Trends cited in this section were proven analytically where possible and are listed in the
Appendix. Where this was not possible or practical, inductive methods were used. To
find solutions satisfying one or more equilibria, Visual Basic scripts in MS Excel were
written to generate 10,000 random datasets along with corresponding strategies and
payoffs for each equilibrium, where each parameter was randomly selected over its valid
range. Valid equilibria were extracted from these sets. To corroborate hypothesized
trends (e.g. one value is always greater in one particular equilibrium than in another),
100,000 random datasets were generated in the same manner and the strategy and payoff
outputs scanned for contradictory results. No trend is cited for which there were any
contradictory findings.
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-2 0.8 0.9 0.2 1 0.7219 0 0 -0.1656 0.7219 0.0066 0 -0.1656

-1 0.2 0.4 0.3 1 0.5437 0 0 -0.0874 0.5437 0.0291 0 -0.0874

-1.5 0.6 0.9 0.1 1 0.6285 0 0 -0.0711 0.6285 0.0119 0 -0.0711

-0.5 0.2 0.6 0.2 1 0.3924 010 -0.0886 0.3924 0.0506 0 -0.0886

Table 1: Sample of Valid Parameter Sets

with Solutions and Payoffs Across All Equilibria

Equilibrium Type I

Solutions of this type involve the defender never reallocating his interceptors

except after he detects a bombing raid using his degraded detectors. A Nash Equilibrium

is defined as a set of strategies for which each is the optimal response to the other(s).

These solutions do not meet Nash's definition for equilibrium because, where the

defender never reallocates his interceptors absent a detection, the strategy pi(t) = 1

minimizes the probability of detection and so is the optimal response. The attacker has

no incentive to play any pi(t;) < 1. I therefore do not consider Type 1 solutions any

further.

The Equilibrium Boundary

Neither Equilibrium Type 2 nor Type 3 is valid over the entire four-dimensional

parameter space. Even given the proper domain of each parameter, there will be sets of

parameters yielding values for pi(t), r, or r2 that are less than 0 or greater than 1.

Fortunately within the region of valid parameter space that is bounded by Type 2's
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restriction, Type 2 solutions are valid everywhere, and the same is true for Type 3. The

sole exception is narrow region of parameter space where the restrictions overlap,

V' 2 P:i(l - pcd)
Vo (1 - pi) - V (1 - pcipcd)

which I refer to s the "boundary value." Where this condition holds, so long as the

parameters themselves are valid, Type 3 was found to be valid everywhere while Type 2

was found to be valid for some parameter sets and not others. Furthermore, where Type 2

is valid given this condition, the solutions were found to yield a U that is less than the

corresponding Type 3 U1 , as well as a pi(t) less than the corresponding Type 3 pj(t). The

implication is that for any given set of valid parameters, one and only one PBNE exists.

For

V'2 pci(l - pcd)
Vo ( - pci) - V (1 - cipcd)

Type 2 solutions are PBNE.

For

V12 pci ( - pcd)
-L (1 - pci) - V' (1 - pcipcd)

Type 3 solutions are PBNE.

Generally speaking, Type 3 PBNE will exist where the cost of misallocation (-L)

is low along with the value of a late interception (V'), while Type 2 PBNE will exist
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where this is not true. The dependency of the boundary value of L on the three

parameters V', Pci, and Pcd is illustrated using comparative statics in Figure 1. Because of

the requirement that L always be negative (or that - L always be positive), regions of

space where the - L boundary value dips below 0 imply that a valid value of -L would

necessarily be greater than the boundary value. In these regions of space, the Type 2

restriction always holds, and therefore Type 2 solutions are PBNE.

3.5

3

2.5

2

1.5

1

0.5

-L 0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

V'

Figure 1: Dependency of the boundary value of -L on V'
Ped = 0.2 Pci = 0.8

The equation governing the boundary value is hyperbolic, with a vertical

asymptote at

V' = V(1- Pci)/(1- i Pd)
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For all valid values of V, p., and Pci, this vertical asymptote clearly lies between 0 and 1.

And because all values of -L to the right of the asymptote are negative, only those values

of V' to the left of the asymptote will produce a positive (i.e. valid) -L boundary.

Examination of the boundary value equation reveals that

-L(V'=0)=0 and V' I== O

Therefore as V' increases from 0, the -L boundary value grows hyperbolically,

approaching its asymptote. For all V' between the asymptote and 1, the boundary value is

negative. Type 3 equilbiria exist along and below the boundary value, but only where the

boundary value is positive. Above the boundary value, and in all places to the right of the

vertical asymptote, where the boundary value is negative, Type 2 equilibria exist.

The intuition associated with the sensitivity of -L on V' resembles a situation

where the defender seeks to outsmart the attacker up until a point, doing the opposite of

what the attacker expects him to do. Beyond that point, however, he reasons that the risk

associated with trying to fool the defender is not worth the added reward. It is logical that

Type 2 equilibria, which represent the defender's decision to delay reallocation until after

having first attempted to detect the attacker, would exist where the cost of misallocation

is higher than some boundary, while Type 3 equilibria exist below the boundary. The

existence of a threshold (the vertical asymptote), above which Type 3 equilibria are

entirely unsustainable, corresponds to some critical value of late reallocation (V') relative

to early reallocation (Vo). When V' is above this critical value, the defender cannot ever
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justify the gamble associated with sending interceptors early, no matter how small the

cost of misallocation. At the same time, however, under the logic of the Type 3

equilibrium, for greater values of V' the attacker bluffs less often because he knows the

defender has a greater interest in attempting to detect him, and he wishes to minimize the

probability of detection (see the section Equilibrium Type 3). The defender knows this,

and beneath the critical value of V', he reasons that the bluffs are sufficiently infrequent,

and the difference between VO and V' sufficiently great, as to warrant reallocating early,

even given increasing penalties for misallocation.

Varying Pci and p, changes the slope of the other asymptote of the hyperbola,

which for all valid probability values is negative. For small values of po and large values

of pa, the slope is steep. As pd is increased, or as pc is decreased, the slope becomes less

steep. The position of the vertical asymptote along the V' axis adjusts accordingly, as the

point (V'=O , - L=-O) must remain a local minimum. Larger values of p, shift the

asymptote to the right, while larger values of p, shift the asymptote to the left. Under the

logic of the Type 2 equilibrium, where p, is larger, the defender is in a better position to

reason that, "Having failed to detect the attack, the jamming is more likely to be on-axis."

(See Proposition 3.) Therefore the critical value above which the defender can never

justify early allocation decreases, broadening the conditions under which the defender

seeks a Type 2 equilibrium. Larger values of pw weaken the above line of reasoning, thus

decreasing the inventive of late allocation and broadening the conditions under which the

defender seeks a Type 3 equilibrium.
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Equilibrium Type 2

Comparative statics are also used to illustrate the sensitivity of the Type 2 pi(t,) to

parameters L, V', p,, and p . The results appear in Figures 2 through 4. These figures

are intended to aid in developing intuitions about how the Type 2 pi(ti) depends on the

four parameters, and thus do not consider the boundary values of L except where

explicitly noted. Also, valid Type 2 solutions will only exist where L < 0, po < 1 and p0 <

1. Failure to meet any of these three conditions yields an indefinite value for r2. In the

following sensitivity analysis I assume that these conditions are met.

I.'

I

0.8

P i(ti) 0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1

V

Figure 2: Dependency of pi(ti) on V'

L = -0.6 Pod = 0.2 pd= 0.8
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pi(ti) = 1 where V' = O, irrespective of the other parameters. pi(ti) approaches 0

asymptotically as V' increases. Intuitively, increasing the value to the defender of late

reallocation would tend to increase the defender's willingness to reallocate late. The

attacker counters this willingness through a lower pi(ti), which means more frequent

bluffing.

pi(ti)

-4

N
-3 -2 -1

-1

-0.8

- 0.6

- 0.4

- 0.2

th

0

L

Figure 3: Dependency of pi(t1) on L

V' = 0.3 p = 0.6 Pci = 0.8

Looked at in isolation, pi(ti) begins at 0 and approaches 1 asymptotically as the

penalty for misallocation increases. Intuitively, when the penalty for misallocation is

large, the defender is more reluctant to reallocate his interceptors in the absence of

detection, enabling the attacker to bluff less frequently. The degenerate case exists where
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V' = 0, in which case the attacker never bluffs. This occurs because the defender has no

incentive ever to reallocate late, so the attacker's optimal strategy is simply to minimize

the probability of detection, which he does by playing pi(t) = 1.

However valid solutions are constrained by r2, which may have a minimum of 0

and a maximum of 1, corresponding to the boundary with the Type 3 Equilibrium.

0.35 -

0.3 -

0.25 -

pi(ti) 0.2 -

0.15 -

0.1-

0.05 -

0 -
0 0.1

pcd = 0.6 
pcd= 0.5

---- pcd = 0.25

'-. ..- .

0.2 0.3 0.4 0.5 0.6

pci
0.7

Figure 4: Dependency of pi(t1) on Pci for different values of Pcd

V' = 0.67 L = -0.6

pi(t) also varies hyperbolically on the probabilities of detection, pc and Pcd. Values

of pj and p,d producing valid solutions are bounded on one end by the restriction that pd <

p,, and on the other end by r2 < 1. The maximum value for pi(ti) occurs where Pcd = Pd, in

which case pi(t) = L / (L-V'), unless ILI > 2V'. Here p1(t) reaches its valid maximum at 1.
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As pci increases towards 1, pi(ti) tends toward 0, while as p. increases toward 1, pi(ti)

tends toward 1. In the figure below, increasing P. appears to shift pj(t) to the right,

resulting in larger values of pj(t;) for the same pa.

The intuition behind these dependencies is based on the fact that whenever the

defender chooses not to reallocate his interceptors early, a failure to detect the attack

indicates an increased likelihood that the attack is on axis. Therefore given a larger Pci,

the defender places increasing weight on the assumption that if jamming were off-axis, he

would have detected the attack, and so has a greater incentive to reallocate late. The

attacker counters this incentive by bluffing more often. Larger values of Pod weaken the

above line of reasoning, thus lessening the need for the attacker to bluff in order to

counter the defender's incentive to reallocate late.

Equilibrium Type 3

Along and below the boundary value of -L, solutions of Type 3 are PBNE. I

again test the sensitivity of the Type 3 pi(ti) to the four parameters using comparative

statics. The results appear in Figures 5 though 8.
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Figure 5: Dependency of p,(t) on L

pd 
= 0.2 p, = 0.5 V' = 0.6

pi(t) has a minimum value of V'p / [Vo+V'(p6-pd)] for L equal to 0 and

asymptotically approaches 1 as L approaches -oo. Where either V' or Pci is equal to 0,

pi(t) = 0. As the cost of misallocation increases the defender is less prone to reallocate

absent detection, allowing the attacker to bluff less frequently.

0.6

0.5

0.4

pi(ti) 0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8

Figure 6: Dependency of p,(~t) on V'

pd = 0.05 pe, = 0.95 L = -0.05
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pi(ti) has a minimum value of -L / (Vo-L) for V' equal to 0 and a maximum value

of (p.-L ) / (Vo-L+ Pci-Pd) for V' equal to 1. Under the logic of the Type 3 equilibrium,

the defender never reallocates interceptors after attempting detection if the attempt fails.

Therefore a high value for late reallocation serves to restrain the defender in reallocating

prior to the attempt, which he may now rely on to a greater degree. This restraint permits

the attacker to bluff less frequently, though he must bluff some of the time in order to

sustain the equilibrium. If the maximum pi(ti) were 1, the defender would simply cue his

response to the jamming and always reallocate early. In the figure above, extreme values

of parameters were used to emphasize the hyperbolic dependency of p1(ti) on V'. Given

less extreme values, the dependency is appears nearly linear.

etta
u.o -

0.5 

0.4 -

pi(U) 0.3 -

0.2 -

0.1-

0
0 0.2 0.4 0.6 0.8 1

pci

Figure 7: Dependency of p,(t1 ) on pC

pd=0.2 L=O.1 V' = 0.9

p(t;) has a minimum value of -L / (Vo-L) for pc equal to pd and a maximum value

of (V'-L) / [Vo-L+V'(1-p,)] for Pc equal to 1. As pc increases, the defender's detection

attempt becomes more useful. He therefore has less of an incentive to reallocate, in turn

57



permitting the attacker to bluff less often. Extreme values of parameters were again

chosen to emphasize the hyperbolic dependency of pi(t) on pc.

1-
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Figure 8: Dependency of pt(t,) on pi1

P, = 0.9 5 L = 0.1 V' = 0.9

pi(t) has a minimum value of (V'pc-L) / (V-L+V' Pc) for Pc equal to 0 and a

maximum value of (V'pc1-L) / (Vo-L) for pd equal to Pci. Similar to pi, as Pd increases

the defender has less of an incentive to reallocate early, permitting the attacker to bluff

less often. Extreme values of parameters were again chosen to emphasize the hyperbolic

dependency of pi(t) on Pcd.

No Bluffing

To compare the effectiveness of the PBNE to alternative jamming tactics that are

straightforward and involve no bluffing, the defender's optimal response to pi(t) = 1 is

postulated. In this case the defender could achieve his maximum U2 = VO by playing r1 =

1 , r2 = 0. The defender cues his response to the jamming, reallocating the moment he
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detects countermeasures because he knows that they are a perfect indicator of the flight

path that the raid will follow.

This is reasonable logic when the attacker never bluffs, but if the defender tries to

use this strategy in the face of bluffing, he is likely to face disaster. The 1967 American

raid codenamed "Operation Bolo" in Vietnam, and the Suppression of Enemy Air

Defense (SEAD) campaign in support of the 1982 Israeli "Operation Peace for Galilee,"

both illustrate what can happen when a defender equates the location of jamming with the

flight path of an impending raid (see Implications for Modem SEAD Tactics). Through

the use of bluffing the attacker can keep a rational defender to a payoff as low as

U2 (Type 2 PBNE) V'[Lp (1 - pci) - V' (1 - pd)

V' (Vopci - Lpcd)
U2 (Type 3 PBNE) = Vo - L + V' (pci - pcd)

For all valid values of parameters these payoffs are less than Vo, and by extension the

attacker' s payoff in equilibrium is greater than -V.
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4. MODEL II

Definition: "Mandrel Screen"

There are two strategic players, player 1 (the attacker) and player 2 (the defender),

along with Nature, a third player who makes choices randomly according to various

probability distributions. Player 1 is said to be jamming at all times, resulting in a

probability of detection Pc while a raid is in progress and 0 while no raid is in progress.

An opportunity cost C is imposed on player 1 while no raid is in progress.

° In period 1, the attacker decides whether to attack (A) or not to attack (NA). If he

chooses A, the raid will fly along a flight path coinciding with the jammed corridor.

Mixed strategies are denoted [q, -q] . Because payoffs will again be given as deviations

from the expected payoff of a bombing campaign decided upon exogenously, one must

consider choice NA as a pause in the campaign, which includes a total of N attacks.

° The defender does not observe the attacker's move, therefore holds a prior belief q that

the attacker chose A. Consistent with the prior, in period 2 the defender chooses whether

he wishes to reallocate interceptors to cover the jammed corridor (a,) or wait (w,). If a is

chosen the game ends; otherwise it proceeds. Mixed strategies are denoted [r,, 1-r,].
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° Time T is allowed to pass. In period 3 Nature randomly chooses whether the bombing

raid has been detected (d) or not detected (nd) based upon the following probability

distributions:

if player 1 played A; then prob(d) = Pc, prob(nd) = 1- Pc

if player 1 played NA; then prob(d) = 0 , prob(nd) = 1

If d is chosen the game ends; otherwise it proceeds.

o The defender observes Nature's choice, and if Nature chooses nd, he updates his belief

(p4) as to player I's period 1 choice in accordance with Baye's rule. Consistent with that

belief, in period 4 the defender decides again whether to reallocate the interceptors (a2) to

the jammed corridor or wait (w2). In either case the game ends. Mixed strategies are

denoted [r2 , -r2l

o Players 1 and 2 are given zero-sum payoffs U2 = -U1. Player 2 receives the following

payoffs:

U2(A, a,) = VO

U2(A, w, , d) = V'

U2(A, w, nd, a2) = V'

U2(A, w, ,nd,w 2) =0
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U2(NA, al)

U2(NA, w, , d)

U2 (NA, w , nd

U2(NA, wl, nd

,a 2 )

W2 )

=L-C

= [cannot happen]

=L-C

= -C

Assumptions

Al Geometry and Symmetry

The "Window" assumptions as to geometry and symmetry are relaxed because

when player 1 attacks, his flight path always coincides with the jammed corridor.

Whether there are two detectors or ten, their arrangement does not matter as long as their

cumulative probability of detecting the raid by time T is Pc.

A2 Single Opportunity for Detection

This assumption remains from Model I. See Part 3 Assumptions. A4 Single

Opportunity for Detection.
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A3 Zero Payoff

Previously, denoting payoffs as deviations from those expected for a successful

bombing raid was logical because the bombing raid always took place. In Model II the

bombing raid does not necessarily take place. Therefore one may argue that a zero payoff

means two different things: in one sense it means that a raid bombed its target

successfully and there are no deviations in payoff, and in another sense it means that no

raid occurred and there are no deviations in payoff. This apparent contradiction may be

unsettling. But in the context of a larger bombing campaign whose expected payoff,

divided by the total number of expected attacks, is the baseline payoff, awarding a payoff

of zero in the case of a delay (less the opportunity cost for pausing) is consistent. The

length of the campaign must now be extended to include the attack that was called off,

while the baseline payoff remains unchanged.

Lesser Assumptions

As was the case in Model I, in awarding payoff V' to the defender upon detecting

the raid, I assume that reallocation of interceptors is perfect. The possibility for failure of

command and control (C2) that causes the defender to miss the opportunity to intercept

should be modeled separately. And again, as with Model I, the attacker's strategy spaced

does not include multiple locations for attack. Including such strategies would make it
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impossible to isolate the effects of tactical ingenuity from the actual effectiveness of the

tactic.

Potential Equilibria and Expected Payoffs

Similar to Model I, the solution to Model II begins with a formulation of the

defender's posterior belief in period 4 (p4).

PROPOSITION 7:

P4 = (q-qpc) (1-qpc)

PROOF:

The defender's posterior belief in period 4 is defined as the probability that the attacker

chose to attack given that the degraded detector network failed to detect the attack. This

may be written as

p4 = prob(A I nd)

= prob(nd IA)prob(A) / prob(nd)

1 - p4 = prob(NA I nd)

= prob(nd I NA)prob(NA) / prob(nd)
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Substituting in,

p4 = prob(nd IA)prob(A) (1 - p4) / [prob(nd I NA)prob(NA)]

The probability that no detection occurs when there is an attack present is defined to be 1-

Pc, while the probability that no detection occurs when there is no attack present is

defined to be 1. The probabilities of that attacker chooses to attack or not attack are q and

1-q respectively. Therefore

P4 = (l-Pc)(l- p4)q / (l-q)

Solving for p4yields

P4 = (q-qpc) / (l-qpc)

Again the zero-sum nature of the game forces the attacker to play a mixed

strategy. Given the defender's strategy space, the same four types of equilibria are

considered as in Model I: (1) a pure strategy of never reallocating (were he to always

reallocate, the attacker would always bluff); (2) a period 2 mixed strategy and period 4

pure strategy; (3) a period 2 pure strategy of not reallocating and a period 4 mixed

strategy; or (4) mixed strategies in both periods. Where mixing exists for either player, it

is again only possible because the player's expected payoffs to pursue one or the other

strategy are equal. For period 4 mixing this corresponds to the indifference condition.
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PROPOSITION 8:

For equilibria involving mixed strategies in period 4, the period 4 indifference condition

yields belief

p4 * = -L / (V'-L)

PROOF:

Setting the defender's expected payoffs for playing strategies a2 and w2 equal to one

another,

p4*V' + (1- p4*)(L-C) = (1- p4 *)(-C)

Solving for p4* results in

p4 * = -L/(V'-L)

PROPOSITION 9:

For equilibria that require the defender to be indifferent as to his strategy in period 4, the

attacker must play strategy

q * -L
q V'(l -pc)- L

PROOF:

Using the results of propositions 7 and 8, set p4 = P4 * to obtain

(q*-q*pc) / (1-q*pc) = -L / (V'-L)
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Solving for q* yields

*q -L
V'(1 -pc)- L

PROPOSITION 10:

Potential solutions for each of the four types of equilibria considered exist according to

the following systems of equations. There are no additional restrictions.

(1)

-Lq< vO-pcv -L

r, =0

r2 =O

with attacker's expected payoff

U (q,rl,r2) = (- C - pcV')q + C

< L(C+pCV')
V - pV' - L + C

(2)

-L
V'(1 -pc)- L

r, =0

-C -pV'
r2 V'(1 -pc) - L

U1 (q,.r ,r2) =- q[V'r2 + (1 - r2)V'pc] - (1 - q)(Lr2 - C)
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L(CL - p 2 V'2 - CV') L (C + pV')
(1 - p)(V' - L)[V' (1 - p) - L] V'(1 -p'L)

(3)

-L
q -pcv - L

-C -pcV'
r = Vo- pcV'- L

r2=0

U, (q,rl,r2) =- q[Vor + pcV' (1 - r)] - (1 - q)(Lr - C)

L (C + pcV')
-C + Vo - PcV' - L

(4)

No solutions of this type exist.

PROOF:

See Appendix

Equilibrium Solutions and Sensitivity to Parameters

As with Model I, the potential equilibria solutions for Model II were tested using

various sets of parameters, and the resulting values for q, r, and r2 vetted to determine
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which solutions could be PBNE and for which parameter values. Parameters were

restricted to the following ranges:

Os V' V=1

o pcs 1

0 L0>L

0>C

Sample sets of valid parameters, along with their resulting solutions and payoffs, are

given in Table 2. Comparative statics are used to illustrate the sensitivity of q to

parameters L, V', and Pc. C is also considered insofar as it affects payoff U.. The results

appear in Figures 9, 10, and 15. Figures 11 - 14 depict the boundary of the parameter

space in which Type 2 solutions constitute PBNE.

Parameters Equilibria Type 1 and 3 Equilibrium Type 2

P Pc V' Vo C q Type 1 r Type 3 r r2 U. q r, r2 U1

-2 1 1 1 -1 1 0 0 0 -1 1 0 0 -1

-1 0.3 0.7 1 -2 0.559 0 1 0 -1 0.671 0 1.201 -0.799

-1 0.25 0.75 1 -1.5 0.552 0 0.724 0 -0.776 0.64 0 0.84 -0.66

-2 0.75 0.5 1 -1.5 0.762 0 0.429 0 -0.643 0.941 0 0.529 -0.441

-1 0.5 0.5 1 -1 0.571 0 0.429 0 -0.571 0.8 0 0.6 -0.4

-2 0.75 0.5 1 -0.5 0.762 0 0.048 0 -0.405 0.941 0 0.059 -0.382

-4 0.5 0.5 1 -2 0.842 0 0.368 0 -0.526 0.941 0 0.412 -0.353

-0.5 0.5 0.5 1 -0.5 0.4 0 0.2 0 -0.4 0.667 0 0.333 -0.333

-2 0.25 0.5 1 -1 0.696 0 0.304 0 -0.391 0.842 0 0.368 -0.263

-0.5 0.75 0.25 1 -0.3 0.381 0 0.086 0 -0.257 0.889 0 0.2 -0.2

Table 2: Sample of Valid Parameter Sets

with Solutions and Payoffs Across All Equilibria
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Equilibrium Type I

Model I Type 1 solutions did not constitute Nash Equilibria because they did not

permit the attacker to optimize his strategy to the defender's response. There the defender

chose never to reallocate unless he detected an attack, motivating the attacker to

minimize the probability of detection by never bluffing. Model II differs from Model I in

that there is only a single probability of detection, Pc. The attacker might conceivably

"minimize" the probability of detection by choosing never to attack - that is, always

bluffing. However such a strategy violates assumption A3 Zero Payoff. If the attacker is

to employ "Mandrel Screen" to enhance a bombing campaign, the attacker is required to

attack some of the time. Given an a priori decision to carry out a set number of attacks,

the overall probability of detection when the attacker uses "Mandrel Screen" will remain

constant regardless of q. Therefore I will proceed to analyze the sensitivity of Type 1

solutions, as a strategy q that is less than 1 is indeed consistent with the defender's

response r, = 0, r2 = 0.

Type 1 solutions for Model II exist throughout the valid portion of the parameter

space. Furthermore the Type 1 solutions provide the maximum payoff to the attacker

when he plays the maximum allowable value q (except when C > pcV'), and this q value

and the resulting U. are identical to the corresponding Type 3 q and U values (see

Appendix for proof). Barring C > pcV' (which is discussed at the end of this section),
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once again the defender never has an incentive to reallocate before attempting detection,

and anywhere in the parameter space that a Type 2 solution does not exist will produce a

PBNE of Type 1. However Type 1 equilibria payoffs never exceeds those of the

corresponding Type 2 equilibria. Nor is the maximum q value that any given Type 1

solution produces ever larger than the corresponding Equilibrium Type 2 q value (see

Table 2). In fact the opposite is true. For any given set of parameters that yields a valid

Type 2 solution, the solution's q value will be less than the maximum allowable q value

for the corresponding Type 1 solution (see Appendix). Therefore the Type 2 solutions,

where they exist will be PBNE, and in those cases the Type 1 solutions will not be

PBNE.

The maximum value of q (hereafter simply q, as the maximum value provides the

attacker with the maximum payoff), depends on parameters L, V' and p, as follows.

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
-4 -3 -2 -1 0

L

Figure 9: Dependency of q on L

p=O0.5 V'= 0.5 C=-1
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q has a hyperbolic dependency on L, asymptotically approaching 1 in the limit as

L approaches -oo. In the degenerate case where pcV' = 1, then q = 1. As pcV' approaches

1, the hyperbola is "pulled up" toward the asymptote. There is no simple intuition for the

dependency of q on L under the logic of the Type 1 equilibrium, as misallocation can

never occur. The dependency occurs because "q" really represents the maximum

allowable q to sustain the equilibrium. For any given value of q, if the penalty for

misallocation is not sufficiently high, the defender will not be motivated to wait until

detection to reallocate. The less frequently the attacker bluffs, the higher the penalty for

misallocation must be in order to restrain the defender from reallocating interceptors

without first detecting the attack.
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Figure 10: Dependency of q on pV'

L=-1 C=-1

All of the dependencies on Pc or V' occur in the form pV'. Therefore I consider

pcV' as a single quantity for purposes of analyzing the sensitivity of q. This dependency
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is also asymptotic, with the minimum q = -L / (V - L) occurring where pcV' = 0. In the

degenerate case where L is 0, then q = 0. Again, all values of q less that the maximum

allowable are valid, and pcV' must be sufficiently high to sustain any given value of q.

Within this equilibrium type, the defender only receives payoff V' when he detects the

attacker, so pV' may be thought of as the expected value of detection. The lower the

defender's expected value of detection, the more often the attacker must bluff in order to

sustain the equilibrium by denying the defender motivation to reallocate in the absence of

detection.

Earlier in this section I referred to C < pcV' as an exception to the validity of

Equilibrium Type 1. For all values of C the attacker's payoff U1 varies linearly with his

strategy q from maximum q = 0 to maximum q = 1. Where q is 0, U is the opportunity

cost of not attacking, C. The slope of U1 for positive values of q may either be positive, 0,

or negative, depending on the value of C + pcV'. Situations of interest correspond to C +

pcV' a 0 because where C + pcV' > 0, the slope of U1 is negative, a result of assumption

A3 Zero Payoff. For such situations the opportunity cost of not bombing is so small that

the attacker never has a motivation to bomb. This amounts to a logical flaw in the model.

A simple analogy may clarify this point. Consider a person whose employer advances

him his weekly income of $320. His job pays an hourly wage of $8 and offers flex hours,

though the person is required to work a total of 40 hours per week. With $320 already in

hand, on any given morning the person lacks an immediate incentive to go to work (his

flex hours enable him to sleep in, and he already has the money to meet his needs for the
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week), but if he never goes to work he will default on his employer, and his future

income in unsustainable. Similarly, when C + pcV' s 0 the attacker lacks an incentive to

launch any given individual bombing raid. However his baseline payoff assumption is

unsustainable if he does not motivate himself to launch a total of N raids. That said, if

this analysis is to have any value at all, we must accept this small logical flaw and move

on.

Equilibrium Type 2

As stated above, Type 2 solutions are PBNE within the parameter space for which

they are valid. This is not the entire parameter space, however. The boundary of

parameter space governed by Equilibrium Type 2 is restricted by the value of r2, which

must be between 0 and 1. Sensitivity of r2 to parameters P, V', L or C is illustrated in

Figures 8-11. Where Type 2 solutions produce invalid values for r2, Type 1 solutions

constitute PBNE.
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Figure 11: Dependency of r2 on C showing valid values of r 2 only

P = -1 V' = 0.5 pc = 0.5

r2 has a straightforward linear dependency on C, which results from the fact that

the defender profits by the amount of C regardless of his strategy whenever the attacker

bluffs. Therefore the larger the cost to the attacker for employing "Mandrel Screen", the

more the defender can feel at liberty to gamble by reallocating when he fails to detect an

attack. If the attack is actually occurring, the gamble results in an interception. If the

defender guesses wrong and there is no attack, he suffers a loss of the amount L but it is

made up for by the amount C.

The slope of r2 is always between 0 and -1. r2 crosses 0 at C = -pcV', and crosses

1 at C = L-V'. Therefore r2 is invalid for all values of C not between these two points.

The lower boundary (-pcV'), which was discussed in the previous section, results from

the logical flaw in Model II created as a result of Assumption A3. The upper boundary

exists because, where the cost to bluff is too large, the defender cannot possibly reallocate
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his interceptors often enough after failing to detect an attack. That said, the reversion to

Equilibrium Type 1 is somewhat puzzling. However, the Type 3 solutions produce the

same payoffs as Type 1 solutions (see Equilibrium Type 3 and appendix), and it is

intuitive that where the defender seeks to capitalize on the high cost to bluff by

reallocating, at some point he might begin to reallocate early. In any case, the

dependency of r2 on other parameters will be more complex than for C, but these two

boundary points will always remain, affecting the Type 2 boundary with respect to the

other parameters due to algebraic equivalence.

r2 1

-4 -3 -2 -1 0

L

Figure 12: Dependency of r2 on L showing invalid values of r2 above 1

pc=0.5 V'=0.5 C=-1

r2 increases hyperbolically as L approaches 0. This is logical, as the defender's

willingness to reallocate his interceptors absent detection should increase as the penalty

for misallocation falls off. r2 reaches its valid maximum of 1 where L = V'+ C, which is
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equivalent to the cost parameter's upper boundary. In the limit as L approaches -oo, r2

approaches 0.

i -V= 1 C=-1

I ---- \r = 0.7 C = -0.3

0.5

0

r2
-0.5

-1

-1 5

pc

Figure 13: Dependency of r2 on p,

showing invalid values of r2 below 0

L = -0.3

r2 depends hyperbolically on pc with a horizontal asymptote at r2 = 1. Whether r2

approaches 1 from the right, as is shown in Figure 10, or whether it approaches from the

left depends on if C is greater or less than L-V' (in both the above cases C is greater). C =

L-V' produces the degenerate case, r2 = 1. Where C is less than L-V', there are no valid

values of r2, corresponding to the upper boundary discussed earlier. Considering then the

dependency illustrated if Figure 13, where the probability of detecting an attack is high,

an absence of detection indicates an increased likelihood that the attacker is bluffing. The

defender should therefore be less inclined to reallocate late and risk the penalty for

misallocation.
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When p, is 0 then r2 = C /(L - V'), which may or may not be less than 1. r2

crosses 0 (from either the top or the bottom, depending on L) at pc = -C/V'. This r2

intercept may be less than or greater than Pc = 1, and is equivalent to the cost parameter's

lower boundary.

4

3.5
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2.5

r2 2

1.5

1

0.5

0

0

c--- I I
l___ 

c= 1 
- pc = O.

%. .

0.2 0.4 0.6
V'
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Figure 14: Dependency of r2 on V'

showing invalid values of r2 above 1

L=-0.3 C=-1

Because V' occurs in the numerator and the denominator, r2 asymptotically

approaches 0 as V' approaches 1. This occurs because a larger reward to the defender for

intercepting the attacker motivates the attacker to bluff more often, and thus the defender

responds by reallocating less frequently so not to be penalized for misallocation. When

Pc = 1 the V' terms in the denominator cancel completely, and we get the degenerate case,
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a line. r2 crosses 0 at V'= -C/pc, which may be greater or less than V' = 1. r2 crosses 1 at

V'= L-C, which may be any number greater than L. Because of this condition it is

possible that for certain combinations of L and C there will be no valid values of r2,

regardless of V' or Pc. These boundaries are again equivalent to those of cost parameter.

Having described the region in which Type 2 solutions are PBNE, I am now free

to analyze the sensitivity of q to the parameters V', P, L, and C. The analysis is

straightforward, as the Type 2 q is nearly identical to the Type 1 q except for a single

term in the denominator. The Type 1 denominator is slightly larger than the Type 2

denominator (the former contains the term Vo where the latter contains V'), indicating

that for Type 2 the attacker bluffs less often with respect to every parameter. This occurs

because where otherwise the attacker would never profit from a misallocation on the part

of the defender (who for Type 1 only reallocates after detecting an attack), now the

defender receives additional payoff whenever the attacker makes a mistake. This frees

him to bluff slightly less often and save on some of the cost of bluffing.

The behavior the Type 2 q with respect to parameters C, L, and Pc is identical to

that of the Type 1 q for those same parameters, except that q is shifted up slightly. For

V', the behavior will be different, and is shown in Figure 15.

79



1.-

0.8

q 0.6

0.4 -

0.2 -

0 

0 0.2 0.4 0.6 0.8 1

Vr

Figure 15: Dependency of q on V'

showing invalid values of r2 above 1

L = -0.7 pc = 03

q now decreases asymptotically toward 0 as V' increases rather than increasing

toward 1. Its maximum value is 1 at V' = 0, and its minimum value is L / (L + Pc -1)

where V' = 0. As was implied in the discussion of the dependence of r2 on V', q is

decreasing in nature because a larger reward to the defender for intercepting the attacker

motivates the attacker to bluff more often.

Equilibrium Type 3

Where solutions of Type 3 do exist, both the q value and the payoff are identical

to that corresponding to Equilibrium Type 1 (for proof see Appendix). Therefore there

are no conditions for which a Type 3 solution is a unique PBNE, although intuitively it
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should occur for C < L-V' as discussed in the previous section. I do not discuss the

sensitivity of Type 3 solutions, as it would not add any new insight.

No Bluffing

To compare the effectiveness of the PBNE to alternative jamming tactics that are

straightforward and involve no bluffing, the defender's optimal response to q = 1 is

postulated. As in Model I, the defender could achieve his maximum U2 = Vo by playing

the strategies r = 1, r2 = 0. Again the defender reallocates the moment he detects

jamming because he knows that the jamming indicates perfectly whether or not a raid is

in progress. On the other hand, depending on which PBNE the parameters produce,

through the use of bluffing the attacker can keep a rational and knowledgeable defender

to a payoff as low as

U2 (Type 1 PBNE) =- C - L (C + pV')

or

U(T2 PBNE =L (C + V') L (CL - p 2V' 2- CV')
U2 (Type 2 PBNE)= V'(1 - pL) - (1 - pr) (V' -L) [V' (1 - pc) - L]

In the limit as C approaches -oo, both of these payoffs may be greater than V.

Therefore it is not always the case that employing the "Mandrel Screen" is profitable.

However for any reasonable value of C such that 0>C > -1, U2 will be significantly less

than Vo, so use of the tactic will be advantageous for the attacker.
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5. RESULTS

Having characterized the PBNE for both Model I and Model II, representing

"Window" and "Mandrel Screen" tactics, I may now compare the effectiveness of each

tactic, denoted as U,(Window) and U,(MS). Given any valid values for parameters

discussed in the Part 2 (Method), both tactics will prevent a rational adversary from cuing

his interceptors predictively based upon the jamming. Depending on the exact values of

these parameters, "Mandrel Screen" may result in an additional delay ad infinitum if the

defender fails in his detection attempt, or the defender may find it in his interest to

reallocate randomly following a failure to detect the raid. When "Window" is employed,

the defender will occasionally find it in his interest to reallocate forces randomly prior to

detection where both the cost of misallocation and the value of a belated interception are

small, but will generally delay reallocation until after attempting to detect an attack.

Comparison with "Mandrel Screen" Equilibrium Type I

Where C is less than L-V' or greater than -V'pc, "Mandrel Screen" will have a

PBNE for Type 1. Recall, however, that values of C greater than pcV' create a logical

flaw in Model II as a result of Assumption A3. Therefore I only consider situations where

C is less than L-V'. In these situations, for all valid values of V', L, P, Pd, and Pd, I

found that "Window" equilibria generate greater values of U. than does "Mandrel

Screen" Equilibrium Type 1. This trend is likely due to the high cost to the attacker to

employ "Mandrel Screen."
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Comparison with "Mandrel Screen" Equilibrium Type 2

"Mandrel Screen" Type 2 solutions are PBNE where C is between the values of

L-V' and -V'pc. Within these values of C, when faced with "Mandrel Screen," the

defender will delay responding to jamming until after having attempted detection, but

assuming he fails to detect the raid, he will find it profitable to cue his interceptors to the

jamming. Because C is unconstrained below zero and influences only the effectiveness of

"Mandrel Screen," it is the primary determinant of relative effectiveness. "Window" will

always be more effective for large values of C because "Mandrel Screen" is unaffordable.

For most of this region of the parameter space, U,(Window) will exceed U1(MS), though

certain values of P, P, and pc can cause this trend to reverse. When p. and pci are near

1, low values of C result in superior equilibrium payoffs for "Mandrel Screen" as shown

in Figure 12. Note that the "Window" Type 2 and Type 3 equilibria exist within distinct

regions of the parameter space, so the Figure 16 is contrived in that only a single

"Window" equilibrium should be compared to "Mandrel Screen" for any parameter set.

However the figure serves to illustrate the point that for most parameter space in which

"Mandrel Screen" Type 2 equilibria exist, U,(Window) exceeds U,(MS).
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Figure 16: Expected payoffs for values of C within the bounds of

"Mandrel Screen" Type 2 PBNE

Pc = 0. 5 Pead = 0.6 pe = 0.9 V' = 0.3 L = -1.5

Historically, "Window" and "Mandrel Screen" tactics were associated with

different countermeasures, hence the reason P, and Pcd are treated as independent

parameters. To determine how the technical effectiveness of various countermeasures

influences the relative effectiveness of the tactics, U,(Window) - U,(MS) is considered as

a function of Pc and Pa. Because Models I and II each produce two equilibria depending

on the parameter set, the analysis of U,(Window) - U](MS) is repeated for both

"Window" Type 2 and Type 3 solutions. However, the analysis omits further discussion
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of the equilibrium boundaries. In the figures that follow, positive values along the vertical

axis favor "Window," and negative values favor "Mandrel Screen".

For all values of C producing a Type 2 PBNE for "Mandrel Screen," a

comparison with the two "Window" equilibria yield a planar relationship, owing to the

linear dependence of U,(MS) on C. (see Figure 17).

1
0

pc

0.25

0.20 UI(Window)
).15 (both eqs) -
.10 UI(MS)
.05
00
.05

o o pcd

Figure 17: Dependency of the difference in U,

for each tactic on p, and p,

P = -1.5 C = -0.5 p, = 0.6 V' = 0.3

Where Pc and pc are comparable or nearly comparable, the results strongly favor

"Window" over a broad range of C. A similar dependency exists when Pc is held constant

and one looks at the difference as a function as pa and pc as shown in Figures 18 and 19.

The catastrophe on the left side of the figures is the result of Pod exceeding Pd
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Figure 19: Dependency of the difference between
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These results support the intuition that smaller probabilities of detection associated with

either tactic increases the profitability of employing that tactic.
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Lastly, it should be noted that neither V' nor L have noteworthy impact on the

relative effectiveness of the two tactics within the range of C being considered, though

within a narrow band of C, Pc, P, and p, values, where L takes on a large magnitude

U,(MS) will exceed U,(Window) for both equilibria types (shown in Figure 20). There is

no simple intuition for this result, except to say that the defender seemingly has a greater

tendency to misallocate his interceptors when he is uncertain as to the time of an attack

rather than the place of an attack. Such a tendency would cause greater penalties for

misallocation to increase the profitability of "Mandrel Screen" more than they do the

profitability of "Window."

n nreU.UU -

-0.05 -

-0.10 -

-0.15 -

U1 -0.20 -

-0.25 -

-0.30 -

-0.35 -

-0.40 -

I - UI(MS) (Eq. 2) l
.. U1 (Wndow) (Eq. 2)

----U1(WIndow) (Eq. 3)

'"' "'...

-10.00 -8.00 -6.00 -4.00 -2.00

Figure 20: Expected payoffs as functions of L

Pc = 0.5, Ped = 0.6, Pei = 0.9, V' = 0.4, C = -1.5
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6. DISCUSSION

Implications for Modem SEAD Tactics

Though the methods and, by association, the tactics of electronic warfare have

evolved over the years, there is no reason that modern technology should make obsolete

the general principle of bluffing. By assuming that the defender has prior knowledge of

the tactic employed by the attacker, the models isolate the effect of tactical ingenuity and

focus instead on the principles by which the tactics operate. This implies that similar

measures to create uncertainty as to the location or time of an attack ought to have effects

similar to those observed for "Window" and "Mandrel Screen" when incorporated into

more modern tactics. Indeed, a number of modem EW operations have incorporated

such measures and have met with great success. This is especially interesting in the case

of two operations from the Vietnam War, "Bolo" and "Linebacker II". The protracted

nature of that conflict permits comparison with operations that did not feature tactical

bluffing.

To apply the foregoing analysis, it is assumed that these modem EW operations

may be modeled with values Vo, V', P, C, Pc, Pci, and Pcd that do not test the extreme

limits of their respective valid ranges. It follows that the success rate of attacks will be

higher for operations incorporating measures to create uncertainty as to either the place of
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an attack or the time of an attack. However, signals that create uncertainty about the

place of attack are predicted to be more effective in this respect.

Elements of Bluffing in Vietnam Era Tactics

During "Rolling Thunder," the bombing campaign directed against North

Vietnam from 1965 to 1968, the North Vietnamese Air Force acquired a reputation for

relatively skillful use of their MiG fighter aircraft to intercept American air raids.

Kenneth Werrel writes in his book Archie, Flak, AAA, and SAM, "This Air Force proved

as elusive as the Vietcong, using guerrilla tactics of hit and run, and fighting only when

circumstances were favorable." 27 In particular, MiGs were used to intercept F-105 "Wild

Weasel" aircraft (the code name given to aircraft carrying anti-radiation missiles)

performing SEAD missions. The F-105s were effective in forcing air defense radars to

cut their emissions but were vulnerable in air-to-air combat. "Operation Bolo" was

launched in January 1967 in order to ferret out the elusive MiGs, and represents the

United States' greatest air-to-air combat success of the war. For a week, groups of US F-

4 Phantom air-to-air fighters flew flight profiles identical to those of the "Wild Weasels"

(same formations, altitudes, speeds, and routes), while jamming aircraft provided support

similar to that given to the F-105s. Over the course of the week, nine MiG-21s were

destroyed without loss as they attempted to intercept what they thought were F-105s,

27 Kenneth Werrel, Archie, Flak, AAA, and SAM, (1988) pp. 101, 102
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following which the NVAF stood down for a number of weeks to regroup.2

"Operation Bolo" amounted to bluffing in time, analogous to "Mandrel Screen".

Each incursion, whether F-4 or F-105, constituted a signal, while only the F-105 raids

were true signals - the F-4 raids were bluffs masquerading as true signals. The operation

resulted in air-to-air victories because the NVAF did not see the bluff coming. Once the

NVAF incorporated the bluffing tactics used in "Bolo" into its planning process, to the

extent that it stood down, its rate of attempted interception dropped dramatically as

predicted. It eventually rebounded somewhat, though presumably the ground-control

intercept radar operators were more wary of their contacts.

The USAF also reintroduced the chaff corridor during the 1972 operation

"Linebacker I". 29 In contrast to World War II, however, the corridors were laid strictly

along the intended paths of the bombers, partly because new "short pulse" radars

improved the defender's ability to detect aircraft not wholly within the corridors

(equivalent to increasing Pci in Model I). Although the corridors were somewhat

successful in spoofing surface-to-air missiles (SAMs) shot at aircraft flying within them,

MiG-21s and MiG-19s quickly located American aircraft. in spite of the corridors On

May 10, the opening day of "Linebacker I," the MiGs laid an ambush that resulted in

28 Carl Berger, The United States Air Fore in Southeast Asia, 1961- 1973, Office of Air
Force History, (1984) pp. 82-83
29 Werrel, p. 117
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large dogfights and the downing of several Phantoms.30 This action was typical of

"Linebacker I," though the Americans learned to expect the MiGs. Later that year,

however, during "Linebacker II," the USAF switched to laying multiple chaff corridors

and eventually entire "chaff blankets" to cover the multiple approaches taken by B-52

Stratofortresses to Hanoi. 31

The MiG threat never materialized during the course of "Linebacker II," though

this was probably due to a combination of factors such as the nightly raids on their

airfields, the bad weather, the presence of fighter escorts, as well as the chaff. 32

Nonetheless, the complete absence of MiGs during the opening days of "Linebacker II" is

somewhat surprising, considering their heavy presence during "Linebacker I." American

F-I 11 night-capable fighters had been in present during "Linebacker I," 33 and the USAF

had fielded large numbers of fighter escorts, 34 so the revised tactics used to employ

electronic countermeasures deserve much of the credit. The chaff tactics used in

"Linebacker II" amount to bluffing in space, and were nearly identical to "Window"

tactics used in World War II (the chaff blanket was a contemporary innovation). The

marked contrast in the MiG presence over North Vietnam for the two bombing

campaigns attests to the effectiveness of bluffing in space.

30 Price, Vol. 3, pp. 1 87 - 18 9

31 Werrel pp. 123-125
3 2 Price, Vol. 3 208 - 212
33 Berger, p. 70
34 Werrel, pp. 118, 119
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Bekaa Valley, and the Birth of Modern SEAD

In 1982, in response to the use of Lebanon by terrorists as a base from which to

stage raids, Israel launched "Operation Peace for Galilee," the invasion of Lebanon. At

that time, Syria maintained a sophisticated Soviet designed integrated air defense system

in Lebanon, which included a number of advanced SA-6 and SA-8 surface-to-air missile

sites backed by MiG interceptors. Having lost a sizable portion of its air force to Syrian

and Egyptian SAMs nine years earlier in the 1979 Yom Kippur War, Israel devised an

operation featuring extensive use of deception to completely neutralize the SAMs.

Samson decoy drones with radar signatures mimicking those of aircraft were used in the

initial phase of the assault to entice the Syrian SAM radars to emit. The emissions were

triangulated and used as aim points for bombs, artillery and missiles. 35 Also, jamming

along corridors off the axis of actual flight paths induced Syrian radar operators into

vectoring MiGs to intercept phantom attacks. Israeli fighters lying in wait ambushed the

MiGs, resulting in as many as 90 Syrian aircraft lost for no Israeli losses. 36 Syria

withdrew its remaining air defense forces.

Both sorts of bluffing contributed to the Israeli victory - the drones represent

bluffing in time while the off-axis jamming represents bluffing in space. However, the

item of note is not the lopsided Israeli victory in downing so many Syrian aircraft, but

35 James Brungess, Setting the Context, (1994) pp. 19-21
36 Charles Mayo, "Lebanon: An Air Defense Analysis," Air Defense Artillery, (Winter
1983) p. 24
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Syria's decision to withdraw forces. Israel achieved its immediate military goals by

employing sophisticated tactics that Syria did not anticipate. In the face of those tactics,

the optimal Syrian response would have been to withhold the MiGs and to cease all SAM

radar emissions, at least until after attempting to fix the location of Israeli air raids. In

withdrawing their forces, Syria expressed some rudimentary understanding of what had

happened and what it should expect if it continued to fly its aircraft and operate its air

defenses in Lebanon. The predicted equilibrium was reached by trial and error.

Soviet Anti-Carrier Tactics

In 1976 the Soviet Union transferred half of its fleet of supersonic Tu-22 Backfire

bombers to its Naval Aviation service. It began testing a variety of tactics involving the

use of air launched cruise missiles to saturate the air defenses of U.S. carrier battle

groups. The U.S. Navy witnessed the introduction of EW aircraft and fighter escorts into

the mix of Backfires in a series of Soviet fleet exercises held in 1985.37 According to

analysts, the purpose of the EW aircraft was to jam a battle group's early warning radar

along multiple corridors, while down one corridor the Backfires would fly, shooting their

massive package of cruise missiles.3 8 The tactic did have two notable limitations - it

required that the Soviets know the battle group's location and that the battle group be

within range of the land-based Backfires. Nonetheless, as late as 1990, the U.S. Navy still

37 Richard Gross, "Soviet Forces Simulate US Aircraft Carrier Attack," Jane's Defense
Weekly, 27 April 1985, p. 701
38 Milan Vego, Soviet Naval Tactics, pp. 210-219
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had not devised a means to effectively counter the tactic except to operate farther off the

Soviet coast. 39

Thankfully, the United States never went to war with the Soviet Union, and no

country today other than Russia maintains the capability to carry out such a saturation

tactic incorporating EW bluffing. This situation highlights the increased effectiveness of

creating uncertainty as to the location of an attack rather than the time of an attack. The

U.S. Navy's acute difficulty in developing a response resulted from the limited number of

fighters - 24 F-14 Tomcats - aboard a carrier available to intercept the massive bomber

fleet. A generous estimate is that half may have been airborne on Combat Air Patrol in

the most heightened state of alert. This force of twelve aircraft would have been hard

pressed to intercept a massed raid of 20 or more Backfire bombers even if its flight path

were known. Split up to cover three or four axes simultaneously, the interceptors faced a

near-impossible task. Had the U.S. experienced such a tactic in real war, the battle group

would likely have delayed allocating its limited number of Tomcats until the location of

the bombers was fixed, possibly resulting in disaster. Creating uncertainty as to the time

of an attack might have stretched U.S. resources thin, but would not have similarly

required an interceptor to be in two or three places at once.

39 Donald Chipman, "The Transformation of Soviet Maritime Air Operations,
Implications for US Maritime Strategy," Airpower Journal (Summer 1990) p. 5
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Operation Desert Storm, Opening Night

The SEAD campaign that took place during the opening night of "Operation

Desert Storm" appears to have been lifted straight from the history books on the Bekaa

Valley operation. Most of the details are still classified, but Central Command and US

Air Force planners appear to have made use of decoy drones as well as selective jamming

of Iraqi radar systems in order to stimulate Iraqi radars to emit, thereby creating targets

for anti-radiation missiles. 40 Air Force BGEN Buster Glosson, in charge of developing

the air campaign, expressed concern over the possibility that operators of Iraq's

formidable integrated air defense system might cue their weapons based upon American

jamming. 41 The need to incorporate elements of bluffing into coalition SEAD tactics

was therefore taken quite seriously, and will probably continue to be taken seriously in

any future electronic warfare campaign.

Broader Implications

Elements of bluffing may be embedded within elaborate tactics, such as the

Soviet anti-carrier tactic discussed above, but they can also take very simple forms.

Whenever a rational actor must base an action upon a certain signal, bluffing may be used

40 Michael Gordon and Bernard Trainor, The General's War, (1995) pp. 112, 118
41 ibid. p. 117
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to inject uncertainty into the signal. A planner can then identify parameters determining

the probability that the signal is genuine or fake along with the values associated in both

cases with acting or not acting, and thereafter perform a game theoretic analysis similar

to the analysis in this paper to determine equilibrium strategies.

Beyond the world of electronic warfare, there are a variety of simple examples of

bluffing where uncertainty created in both location and time of attack might provide good

case material to test the predictions of the "Window" and "Mandrel Screen" models.

Examples of the former include maneuvers in ground combat that involve feinting,

"shoot and scoot" artillery displacement tactics, and "wolfpack" tactics in submarine

warfare. 42 The latter will include dress rehearsals for attacks that are observed by the

defender prior to an actual occurrence (such as the Egyptian 1973 attack across the Suez

Canal), as well as methods of cryptography where a message is embedded within noise

with the key acting as the filter.

Perhaps the most common use of bluffing in the modern era of warfare is the use

of decoys on the battlefield. Decoy tanks and radio traffic were used during World War

II to deceive the Germans as to the location of the 1944 cross-channel attack; the German

Army incorrectly suspected Calais. More recently, Serbia made extensive use of decoys

to mask the location of their military hardware during NATO's "Operation Allied Force".

But the grimmest use of decoys to create uncertainty, and that most worthy of study, is

42 In the latter, bluffing might occur when a single submarine attacks a convoy and forces
the escorts decide how to respond given the potential threat of a nearby "wolfpack".
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without a doubt the inclusion of decoy warheads on intercontinental ballistic missiles.

With the weight of a decoy being a fraction of that of a genuine warhead, an attacker can

place a large number of decoys onboard a missile for a relatively small penalty in

performance. This is analogous to a very small C in Model II. Recall that in such

situations, the defender's equilibrium strategy was to do nothing absent a confirmed

detection, indicating that missile defense is likely to be futile. Of course the value of

intercepting a genuine warhead is incredibly high. As all parameter values are

normalized to this value, it is possible (in a model analogous to Model II) that this will

offset the small C. Nonetheless, the analogy appears to be both timely and apt. Further

analysis should help in determining if missile defense has a place in America's national

military strategy.

In whatever context, electronic warfare or otherwise, judiciously used bluffing

permits an actor to augment his other efforts to degrade his adversary's situational

awareness by creating uncertainty. If an equilibrium is allowed to form (most likely by

trial and error), the result will likely be a delay in the adversary's response and a higher

success rate for the attack. However, the reality is that all to often, military planners are

enthralled by the effects of tactical ingenuity and continue to implement newer and more

elaborate tactics rather than wait for the defender to adjust and establish an equilibrium. I

do not mean to imply that this is a bad thing. If the goal of a mission is to destroy enemy

interceptors en masse, the tactics that are used to draw the interceptors out will probably

work only once. But returning to Alfred Price's lessons of electronic warfare, it is
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cautioned that "there is no bottomless bucket of electronic warfare tactics," and thus

repetition in protracted conflict is inevitable. 43 This should not be a cause for fear. So

long as tactics contain within themselves elements that cause the adversary some inherent

uncertainty, planners may continue to use them even after the adversary has adjusted,

enjoying the benefits of equilibrium in addition to the initial effect of surprise.
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APPENDIX

Proposition 6 Proof

Equilibrium Type I

For this equilibrium to exist the defender must always decide to wait in period 3 and

period 5 (i.e., r = 0, r2 = 0). Therefore

P3 5 P3*

P5 P*

Proposition 3 states that in all cases p3<p5, SO the latter condition is redundant.

Proposition 2 states

P* C- -L + piV' + (1 - pci) r2L
Vo - L + (pci - p)V' -(1 - p) r2V' + (1 - pi) r2L

Proposition 1 states p3 = p(t). Combining these conditions and setting r2 = 0 yields

Pi (ti)piV' - L
pi (ti) < Vo - L + V' (pi - pd)

Expected payoff U will be defined as
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, (strategy) (payoff of strategy)
strategy space

Therefore

U,(pi(ti), r, , r2) = -pi(ti)(pdV') - (1-pi(ti))(p.V')

= V'(p-p)Pi(ti) - V'pd

However solutions of this type are not Nash Equilibria, as explained in the section

Potential Equilibria and Expected Payoffs.

Equilibrium Type 2

Where this equilibrium to exists, the defender always waits in period 3 but mixes in

period 5 (i.e. r = 0 , r2 is mixed). Therefore

P3 P3*

P5= P5*

Substituting terms into the latter condition yields

(1-p)pi(ti) / [(1-p )pi(ti) + (-p,)(pi(tj) + pi(tg))] = Ps*

Isolating the denominator of the left half of the above equation,

(l-pc)pi(ti) / 5s* = [(1-Pd)P(t) + (l-p.)(pg(tj) + Pi(tg))]

= (-p.)(p(tj) + pi(tg)) / (1- P*)

100



which by symmetry

= (-p)(-p(t)) / (1- p5*)

Substituting in for p5*

pi(t) = - (1-pi(ti))(L / V')[ (-pj) / (1-pw)]

Solving for p2(ti),

L(1 - pci)
pi(t) = L(1 - pi) - V' ( 1 - pd)

The period 5 indifference condition requires that the defender's expected payoffs in that

period be equal. Therefore

pj(t)[pcdV' + (-pcd)V'r 2] = (-pi(ti))[pcV' + (-pcd)Lr 2]

Isolating pi(t) obtains

V'pci + L (1 - pci) r2
P(t) = V'pci + L(1 - pi) r2+ V'pd + V'(1 - pd) r2

Substituting in for pi(t) and solving for r2,

-Lpcd (1 - pci)- V'pci (1 - pcd)
2L (1 - pci) ( - pcd)

Using the definition of expected payoff

U,(pj(tj) ,r , r2) = -pi(ti)[pcdV' + (1-pd)V'r 2] - (1-pi(ti))[pcV' + (1-pd)Lr 2]

101



V' [Lpd (1 - pci) - V'pci (1 - p)]
L(1 -pci)- V'(1 - pcd)

Returning to p3 < p3* and substituting in terms yields the additional restriction

-L + piV' + (1 - pi) r2L
Pi(ti)• V - L + (pci- pcd)V' - (1 - p) r2V' + (1 - pi) r2L

Substituting in for r2 and pi(t) and solving for L produces the restriction

V' pi(1 - pcd)

-L < Vo( - i) - V (1 - pcipcd)

Equilibrium Type 3

Where equilibrium to exists, the defender always mixes in period 3 but waits in period 5

(i.e. r, is mixed, r2 = 0). Therefore

P3 =P3*

p5 s p5*

Just as with equilibrium Type 2, substituting into the former condition yields

pi(t) =
-L + piV' +(1 - p) r2L

V -L + (pci - pcd)V' - (1 -pd) r2V' +(1 - pi) r2L

After setting r2 = 0 this simplifies to^. f+ -V'pci - L
i k LiJ - V - L + V' (p - p)
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Furthermore, as a necessary condition to his willingness to play mixed strategy pi(t), the

attacker must receive an equal payoff regardless of the strategy he plays.

When an attacker of type i jams on-axis (that is, sends message i), he expects payoff

-Vor - pdV'(1-rl)

When an attacker of type i jams off-axis (that is, sends message j), he expects payoff

-Lrl - p~V'(1-r,)

Setting these two equations equal and solving for rl yields

V' (pCi - pd)
r V,- L + V' (pci - pcd)

Using the definition of expected payoff

U1 (pi (ti) ri, r2) =- pi (ti) [rnVo + (1 - r) pcdV'] -

- (1 - pi(ti)) [rlL +(1 - rl) pciV']

V' (Vopi - Lpd)
Vo- L + V' (pci- pcd)

Returning to P5 : p5* and substituting in yields the additional restriction

(V'p - L) (1 - pcd) < -L
(Vo - V'pc) (1 - pi) + (V'pci -L) (1 - p) - (V' - L)
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Solving for L produces the restriction

V'2 pci ( - pd)
Vo (1 - pi) - V (1 -pcipcda)

Equilibrium Type 4

For this equilibrium to exist, the defender must always decide to mix in periods 3 and 5

(i.e. r, is mixed, r2 is mixed). Therefore

P3 =P3*

P5 = P5*

By the same logic as Equilibrium Type 2, the former condition implies

-L + pciV' + (1 - p) r2L
P(t) -- V - L + (pci - p) V' - (1 - pcd) r2V' + (1 - pci) rL

while the latter condition implies

L(1 - pci)
P,( )= L(1 - pi)-V (1 - pd)

Just as with Equilibrium Type 3, as a necessary condition to his willingness to play mixed

strategy pi(ti), the attacker must receive an equal payoff regardless the strategy he plays.

Imposing this condition would yield a third expression for pi(ti), this time in terms of both

r, and r2. However it is not necessary to formulate this third expression, as the first two
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are sufficient to show that r2 is undefined in all cases, and therefore there are no solutions

of this type.

Isolating r2 in the first pi(ti) expression produces

[Vo - L + (pci - pcd)V]pi(ti) + L - pciV'
r2 = (1 - p0d)pi(ti)V' + (1 - pi(ti))( - pci)L

The second expression for pi(t) may now be substituted into the above expression for r2,

and both the numerator and the denominator multiplied by

L(1 - pci)- V'(1 - pcd)

for the purpose of simplification.

The denominator of the resulting fraction is

LV' (1 - p) (1 - pcd) - LV' (1 - p) ( -pcd)
This is just 0. The expression for r2 is therefore undefined, and therefore no solution of

Equilibrium Type 4 can exist.
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Proposition 10 Proof

Equilibrium Type I

Where this equilibrium exists, the defender always decides to wait in periods 2 and 4 (i.e.

rl = 0, r2 = 0). This necessitates the posterior belief

p4 5 p4*, which requires

qsq*

Thus,

-L
V'(1 -pc)-L

Because the defender decides to wait in period 2 also, his prior belief must likewise be

that it is profitable to wait in the first round. Momentarily assume, however, that his prior

belief supported indifference. As a necessary condition to his willingness to play mixed

strategy r, the defender would have to receive an equal payoff regardless of the strategy

he plays.

When the defender reallocates in period 2, he expects payoff

VOq + (1-q)L
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When he waits in period 2, he expects payoff

[pcV' + (-pc)r 2V']q + (l-q)[pcV' + (1-pc)r2L]

Setting r2 to 0 and equating these two expressions yields the strategy q necessary for

period 2 indifference, q'

-L
Vo- pcV'- L

However, because the defender is not indifferent, q < q', and therefore

-L
Vq 0 pV' - L

Because by definition V' s Vo, it must be true that q' < q*, so the first restriction on q is

redundant. Using the definition of expected payoff

Ul(q,r,r2) = qpc(- V') + (1 - q)C

= (- C - pV')q + C
< L(C+pIV')

Vo-pV' -L +C

Note that U1 varies linearly with q and has a positive slope where C < pcV'. Therefore for

all values of C < pcV', which are the only values considered, the attacker maximizes U

by playing the maximum allowable q.
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Equilibrium Type 2

Where this equilibrium exists, the defender always decides to wait in period 2 and to mix

in period 4 (i.e. r, = 0, r2 is mixed). Therefore

p4 = p4*, and so

-L
q V'(1 -p)- L

(Note that Equilibrium Type 2 q is equal to or greater than the maximum value of

Equilibrium Type 1 q because the denominator of the former contains V' rather than Vo,

and V'< V.)

As a necessary condition to his willingness to play mixed strategy q*, the attacker must

receive an equal payoff regardless of the strategy he plays.

Knowing the defender will play r = 0, when the attacker chooses to attack, he expects

payoff

-V'r 2 - pcV'(1-r 2 )

When he chooses not to attack, he expects payoff

(C-L)r 2 + C( -r2)

Setting these two expressions equal yields
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-C -pV'
r2 = V'( -pc)- L

Using the definition of expected payoff,

U, (q,r, ,r2) =- q[V'r2 + (1 - r2)V'pc] - (1 - q)(Lr2 - C)

L (CL - p2 V2 - CV') L (C + pV')
(1 - pc)(V' - L) [V' (1 - pc) - L] V'(1 - pcL)

Equilibrium Type 3

For this equilibrium to exist, the defender must always decide to mix in period 2 and to

wait in period 4 (i.e. r is mixed, r2 = 0). Therefore

P4 P4*

By the same logic as in Equilibrium Type 1, q = q'. Thus

q - -L
q Vo,-pcV'- L

As q' s q*, this fulfills the condition p4 s p4*.

Again, however, as a necessary condition to his willingness to play mixed strategy q', the

attacker must receive an equal payoff regardless of the strategy he plays.

Knowing the defender will play r2 = 0, when the attacker chooses to attack, he expects

payoff
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-Vor - pV'(1-rl)

When he chooses not to attack, he expects payoff,

(C-L)rl + C(1-rl)

Setting these two equations equal yields

-C -pcV'
rn= V,,- pcV' - L

The expected payoff is just

Ul (q,n, r2) =- q[Vor, + pcV' (1 - r)]- (1 - q) (Lr - C)

L (C + pcV')
V - PV' - L

Note that Equilibrium Type 3 q and U. are equivalent to Equilibrium Type 1 maximum q

and U. for C < pcV'.

Equilibrium Type 4

For this equilibrium to exist, the defender must decide to mix in both periods 2 and 4 (i.e.

r, is mixed, r2 is mixed). Therefore

P4 = P4*

and also the defender's prior belief must support indifference.
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The former condition necessitates that

-L
q= V- pcV'-L

To impose the latter condition, the same logic is used as in Equilibrium Type 1 to obtain

Voq +(1-q)L = [pcV' + (1-p,)r2V']q + (l-q)[pcV' +(1-p¢)r2L]

Substituting in q, all terms containing r2 cancel, leaving behind

V' =V

This restriction is not acceptable, as it does not allow the model sufficient utility.

Indifference as to the time it takes to intercept a raid implies total certainty as to the target

of a raid. Such certainty is not impossible, but it generally results in a "goal tending"

strategy, in which the defender forgets about early warning entirely and dedicates all

available resources to protecting a particular target. Modeling the uncertainty surrounding

detection then becomes irrelevant.
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