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Abstract

In this thesis we study a variety of combinatorial problems with inherent randomness.
In the first part of the thesis, we study the possibility of covering the solutions of an
optimization problem on random subgraphs. The motivation for this approach is a
situation where an optimization problem needs to be solved repeatedly for random
instances. Then we seek a pre-processing stage which would speed-up subsequent
queries by finding a fixed sparse subgraph covering the solution for a random subgraph
with high probability. The first problem that we investigate is the minimum spanning
tree. Our essential result regarding this problem is that for every graph with edge
weights, there is a set of O(nlogn) edges which contains the minimum spanning tree
of a random subgraph with high probability. More generally, we extend this result
to matroids. Further, we consider optimization problems based on the shortest path
metric and we find covering sets of size O(n*?/¢log? n) that approximate the shortest
path metric of a random vertex-induced subgraph within a constant factor of ¢ with
high probability.

In the second part, we turn to a model of stochastic optimization, where a solu-
tion is built sequentially by selecting a collection of “items”. We distinguish between
adaptive and non-adaptive strategies, where adaptivity means being able to perceive
the precise characteristics of chosen items and use this knowledge in subsequent de-
cisions. The benefit of adaptivity is our central concept which we investigate for a
variety of specific problems. For the Stochastic Knapsack problem, we prove constant
upper and lower bounds on the “adaptivity gap” between optimal adaptive and non-
adaptive policies. For more general Stochastic Packing/Covering problems, we prove
upper and lower bounds on the adaptivity gap depending on the dimension. We also
design polynomial-time algorithms achieving near-optimal approximation guarantees
with respect to the adaptive optimum. Finally, we prove complexity-theoretic results
regarding optimal adaptive policies. These results are based on a connection between
adaptive policies and Arthur-Merlin games which yields PSPACE-hardness results for
numerous questions regarding adaptive policies.

Thesis Supervisor: Michel X. Goemans
Title: Professor of Applied Mathematics
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Chapter 1

Introduction

In this thesis we study a variety of combinatorial problems. The common feature of
these problems is their stochastic aspect, i.e. inherent randomness affecting the input.
We investigate two essentially different scenarios.

In the first setting, we study the possibility of covering the solutions of an op-
timization problem on random subgraphs. The motivation for this approach is a
situation where an optimization problem needs to be solved repeatedly for random
instances. Imagine a company that needs to solve an optimization problem, such as
the Vehicle Routing Problem, every day. The requests vary randomly but the under-
lying structure of the problem remains the same. In this kind of situation, we seek
a pre-processing stage which would speed-up subsequent queries by finding a fixed
sparse subgraph covering the solution for a random subgraph with high probability.

In the second setting, we study stochastic optimization problems with uncertainty
on the input, where a solution is built sequentially by selecting a collection of “items”.
An example of such an optimization problem is machine scheduling where jobs should
be assigned to machines but it is not a priori known how long each job takes to
complete. However, once a job is completed, we know exactly its running time. We
distinguish between adaptive and non-adaptive strategies, where adaptivity means
being able to perceive the precise properties of chosen items (in this case, the running
time of completed jobs), and use this knowledge in subsequent decisions. The benefit
of adaptivity is our central concept which we investigate for a variety of specific
problems. We also study the question of algorithmic approximation of the adaptive
optimum and related complexity-theoretic issues.

In the following, we summarize the most important results of this thesis.

1.1 Optimization problems on random subgraphs

The first half of this thesis concerns solutions of combinatorial problems on random
subgraphs. With the goal of solving a given problem repeatedly for random sub-
graphs, we would like to find a sparse subgraph which contains the solution with
high probability. The first problem we consider is a prototypical graph optimization
problem, the Minimum Spanning Tree.



Covering minimum spanning trees of random subgraphs. A conjecture pro-
posed by Michel Goemans in 1990 states that in any weighted complete graph, there
is a subset @ of O(nlogn) edges such that the minimum spanning tree of a ran-
dom vertex-induced subgraph is contained in @) with high probability. We prove this
conjecture and additional related results. The bound of O(nlogn) is asymptotically
optimal, even if we want to cover the minimum spanning tree only with a constant
probability.

Note that for a general graph G, a vertex-induced subgraph need not be connected.
However, this does not change anything in our analysis. In case an induced subgraph
G[W] is not connected, we consider the minimum spanning forest, i.e. the minimum
spanning tree on each component. We prove the following.

Theorem 1. Let G be a weighted graph on n vertices, 0 < p < 1, b = 1/(1 — p)
and ¢ > 0. Let V(p) denote a random subset of V where each vertex is present
independently with probability p. Let MST (W) denote the minimum spanning forest
of the subgraph G[W] induced by W. Then there exists a set Q C E of size

|Q| < e(c+ 1)nlog,n+ O(n)
such that for a random W =V (p), Pr[MST(W) C Q] >1— L.

This can be also viewed as a network reliability result: in any network, there are
O(nlogn) edges which suffice to ensure that the network remains connected with high
probability, when some vertices fail randomly. Moreover, the connection is achieved
by the minimum spanning tree in the remaining subgraph.

Minimum-weight bases in matroids. We prove a similar statement in the case
of random edge-induced subgraphs. This result generalizes to any weighted matroid.
In the following, X (p) denotes a random subset of X where every element is sampled
independently with probability p.

Theorem 2. For any matroid of rank n on ground set X, with weighted elements,
there exists a set @ C X of size O(nlog,n), where b = 1/(1 — p), such that the
minimum-weight basis of X (p) is contained in Q with high probability.

Note that the size of the covering set depends only on the rank of the matroid,
and not on the size of the ground set.

Adversarial vertex removal. In contrast to random subgraphs, we can consider
the model of a malicious adversary who chooses a subgraph knowing our covering
set ). Using our probabilistic methods, we can actually find a set ) which contains
MST(W) for all subsets W containing at least n — k vertices.

Theorem 3. For any graph G on n vertices and a fized k > 0, there is a set of
edges Q of size |Q| < e(k + 1)n such that for any W C V, |W| > n — k, we have
MST(W) C Q.
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There are examples of weighted graphs where such a set () must contain at least
n+(n—1)+...4+ (n— k) vertices. We conjecture this to be the best upper bound
but the probabilistic method does not seem able to yield such a tight bound. It
is an interesting open question whether this or a similar statement has a purely
combinatorial proof.

A priori optimization. The covering sets in all cases can be found efficiently by
a randomized algorithm. Therefore, such covering sets can be used to speed up an
algorithm solving the MST problem, in case the instances are drawn randomly from
a large fixed graph. A single preprocessing step would yield a sparse subgraph of
significantly reduced size which would allow more efficient responses to subsequent
queries.

Metric approximation. Another result along the lines of a priori optimization
concerns combinatorial problems based on the shortest path metric in a graph. Ex-
amples of such problems are the s-t Shortest Path, Steiner tree, Facility Location or
Traveling Salesman. With the goal of solving these problems repeatedly for random
subgraphs, we would like to have a sparse set of edges which preserves the shortest-
path metric for a random subgraph with high probability. This question was posed
by Santosh Vempala.

Here it is impossible to preserve the metric ezactly with a significantly reduced
number of edges. But we can preserve the metric approzimately. This is related to the
notion of a spanner - a graph approximately preserving the metric of a given graph.
However, our conditions are stronger: we would like to have a set of edges which
approximates all distances within a constant factor ¢ with high probability, when
vertices or edges fail at random. We call such a set of edges c-metric-approrimating.
We establish the following:

Theorem 4. For any graph G with edge lengths, there is a c-metric-approzimating
set Q C E (for random subgraphs induced by W = V(p)) such that

Q| =0 (p—2°n1+2/ °log’n) .

Theorem 5. For any graph G with edge lengths, there is a c-metric-approzimating
set @ C E (for random subgraphs induced by F = E(p)) such that

Q| = O (p~°n* ™ 1log n).

The proofs are constructive and the covering sets can be found efficiently. Similarly
to lower bounds on the size of spanners, there is a lower bound of Q(n'*1/¢) on the
size of ), based on extremal graphs of girth ¢ + 2. There is a gap between this
lower bound and the estimate on |@| but this is largely due to the lack of knowledge
concerning extremal graphs of given girth. If, for example, the extremal number of
edges for girth c+2 were to be improved to O(n1*'/¢), our bound in Theorem 4 would
improve accordingly to |Q| = O(n'*Y/¢log®n) (for constant p). Essentially, we pay
the price of a logarithmic factor for metric approximation on random subgraphs.
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Summary. Let’s review the results for covering solutions of minimum spanning tree
and metric-based problems for random subgraphs. The table shows the asymptotic
bounds for random subgraphs induced by a random subset of vertices V(p) or edges
E(p); here, we assume a constant sampling probability p € (0,1). The details for MST
covering can be found in Chapter 3. Metric approximation for random subgraphs is
discussed in Chapter 4.

PROBLEM | lower bound | upper bound | lower bound | upper bound

VARIANT | vertex-case vertex-case edge-case edge-case
metric Q (n?) O (n?) Q (n?) O (n?)
ce1,3)
metric Q (n%?) O (n®?%logn) Q (n*?) O (n®?logn)
c€[3,5)
metric Q (n!*¥e) | O (n**¥¢log’n) | Q(n!*Y¢) | O (n!*¥¢logn)
c>95
MST Q(nlogn) O(nlogn) Q(nlogn) O(nlogn)

1.2 Stochastic optimization and adaptivity

Stochastic optimization deals with problems involving uncertainty on the input. In
the second half of this thesis, we consider a setting with multiple stages of building a
feasible solution. Initially, only some information about the probability distribution
of the input is available. At each stage, an “item” is chosen to be included in the
solution and the precise properties of the item are revealed (or “instantiated”) after
we commit to selecting the item irrevocably. The goal is to optimize the expected
value/cost of the solution. We set up our stochastic model] formally in Section 5.2.

Adaptive and non-adaptive policies. A central paradigm in this setting is the
notion of adaptivity. Knowing the instantiated properties of items selected so far, we
can make further decisions based on this information. We call such an approach an
adaptive policy. Alternatively, we can consider the model where this information is
not available and we must make all decisions beforehand. Such an approach is a non-
adaptive policy. A fundamental question is, what is the benefit of being adaptive?
We measure this benefit quantitatively as the ratio of expected values achieved by an
optimal adaptive vs. non-adaptive policy (the adaptivity gap). A further question is
whether a good adaptive or non-adaptive policy can be found efficiently.

12



Stochastic Knapsack. The first problem analyzed in this fashion was the Stochas-
tic Knapsack, introduced by Brian Dean. The motivation for this problem is in the
area of stochastic scheduling where a sequence of jobs should be scheduled on a ma-
chine within a limited amount of time. The goal is to maximize the expected profit
received for jobs completed before a given deadline. The jobs are processed one by
one; after a job has been completed, its precise running time is revealed - but then
it is too late to remove the job from the schedule. Hence the property of irrevocable
decisions, which is essential in the definition of our stochastic model. In joint work
with Brian Dean and Michel Goemans, we showed the following results [15].

e Adaptivity can provide a certain benefit which is, however, bounded by a con-
stant factor. A non-adaptive solution which achieves expected value at least
1/7 of the adaptive optimum is achieved by a greedy algorithm which runs in
polynomial time.

e For any € > 0, there is a polynomial-time adaptive policy achieving at least
1/5 — € of the adaptive optimum.

e It is PSPACE-hard to answer certain questions concerning adaptive policies, for
example:
“Is it possible to fill the knapsack exactly to its capacity with probability at
least p?”

In Chapter 6, we improve the adaptivity gap for Stochastic Knapsack from 7 to 4,
by exhibiting a stronger bound on the adaptive optimum and a more efficient greedy
algorithm. We also describe the PSPACE-hardness results in Chapter 9. For more
details on Stochastic Knapsack, we refer to Brian Dean’s Ph.D. thesis [14].

Stochastic Packing and Covering. Stochastic Packing and Covering problems
generalize the deterministic notion of packing and covering integer programs. These
are linear programs of two types, Az < b or Az > b, where z € {0,1}"™ is sought to
maximize/minimize a linear objective function. These problems can also be viewed
as multidimensional knapsack (or knapsack covering) problems, where items have
vector sizes with multiple components. Many combinatorial problems fall within this
class: e.g. Set Packing, Set Cover, b-matching and general Packing/Covering Integer
Programs (PIP/CIP, see [39]). In the stochastic variants of these problems we consider
items with random vector sizes which are instantiated upon inclusion of an item in the
solution. We consider variants of both packing and covering problems: Set Packing,
b-matching, Restricted Packing, Set Cover, Set Cover with item multiplicity, etc. We
give the definitions in Section 5.2. Packing problems are then discussed in Chapter 7
and covering problems in Chapter 8.

The analysis of different problem variants reveals a curious pattern of results. Let
us present it on the example of Stochastic Set Packing. Here, each item is defined
by a value and a probability distribution over subsets A C X where X is a ground
set of cardinality |X| = d. A feasible solution is a collection of disjoint sets. It is

13



known that for deterministic Set Packing, the greedy algorithm provides an O(v/d)-
approximation, and there is a closely matching inapproximability result which states
that for any fixed € > 0, a polynomial-time d'/?~¢-approximation algorithm would
imply NP = ZPP [10]. For Stochastic Set Packing, it turns out that:

e The adaptivity gap can be Q(v/d) (by an example inspired by the birthday
paradox).

e The adaptivity gap is bounded by O(v/d) (by analyzing an LP bound on the
adaptive optimum).

e The proof using an LP leads to a polynomial-time algorithm to find a fized
set of items (i.e., a non-adaptive policy) approximating the adaptive optimum
within a factor of O(V/d).

e This approximation factor is optimal even if we want to approximate the non-
adaptive optimum (due to the d*/?~¢-inapproximability result).

This phenomenon appears repeatedly: for Set Packing, b-matching, Set Cover
and others. For example, the best approximation factor for Set Cover with item
multiplicity is O(logd), the adaptivity gap for Set Cover can be 2(logd) and yet we
can approximate the adaptive optimum by an efficient non-adaptive policy within a
factor of O(logd). In general, we design approximation algorithms for most stochastic
variants which are near-optimal even in the deterministic cases.

These results hint at a deeper underlying connection between the quantities we are
investigating: deterministic approximability, adaptivity gap and stochastic approx-
imability. Note that there is no reference to computational efficiency in the notion
of adaptivity gap, so a direct connection with the approximability factor would be
quite surprising. Another related quantity is the integrality gap of the associated
linear program: in the cases in question, the integrality gap has the same asymptotic
behavior as well. In Section 5.3, we establish a connection between the integrality
gap and the randomness gap for the respective stochastic problem: this is the possible
gap between two instances which differ in the probability distributions of item sizes,
but not in the expectations of item sizes. The randomness gap is another bound
on stochastic approximability (even by means of an adaptive policy) assuming that
expectation is the only information available on the item sizes.

Hardness of approximation. We improve some of the previous results on the
approximability of PIP. For general Packing Integer Programs, it was known that
a polynomial-time d'/2-¢-approximation algorithm for any fixed ¢ > 0 would imply
NP = ZPP [10]. We improve this negative result to d*~¢. It was also known that
a dY/(B+D—<_approximation for PIP with A € [0,1)%*" and b = (B, B, ..., B) (“Re-
stricted Packing”) would imply NP = ZPP [10]. We improve this inapproximability
factor to d'/B—.

14



Summary. Let’s summarize the results for Stochastic Packing and Covering. The
packing results are presented in Chapter 7 and the covering results in Chapter 8. The
hardness results were known except for the general case and Restricted Packing. The
integrality gaps were known except for b-matching and Restricted Packing.

PROBLEM | Hardness | Integrality | Randomness | Adaptivity | Stochastic
VARIANT | of approx. gap gap gap approx.
Packing d'—e 0(d) 0(d) Q(Vd),0(d) | 0(d)

(general case)
Set Packing dl/?-< e(Vd) O(Vd) O(V4d) O(Vd)
Restricted | di~ | ©(a#) | eo(at) | a(aw) | o(db)
Packing
B-matching | dFT—¢ | © (df‘ﬁ) o (d%) o (dﬁ) 0 (dﬁl)
Covering Ind 00 00 Q(d) N/A
(general case)
Set Cover Ind O(logd) Q(d) Q(d), 0(d?) 0o(d)
Covering Ind O(logd) O(logd) O(logd) O(log d)
+multiplicity
Set Cover Ind ©(logd) O(log d) ©(log d) O(logd)
+multiplicity

Complexity of stochastic optimization with adaptivity. Finally, we show that
our class of stochastic optimization problems is closely related to PSPACE. Many
natural questions regarding adaptive policies turn out to be PSPACE-hard. The
reductions are based on the similarity between adaptive policies and Arthur-Merlin
games. For instance, we prove the following results. For details, see Chapter 9.

Theorem 6. For a knapsack instance with n items, let p be the mazimum probability
that an adaptive policy fills the knapsack exactly to its capacity. Then it is PSPACE-

1-¢

hard to distinguish whether p=1 orp <1/2" .

Theorem 7. For a 2-dimensional Stochastic Knapsack instance, it is PSPACE-hard
to mazimize the expected value achieved by an adaptive policy.

15
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Chapter 2

Optimization problems on random
subgraphs

In a variety of optimization settings, one has to repeatedly solve instances of the same
problem in which only part of the input is changing. It is beneficial in such cases to
perform a precomputation that involves only the static part of the input and possibly
assumptions on the dynamic part. Our goal is to speed up the subsequent solution of
instances arriving at random. The precomputation could possibly be computationally
intensive.

In telecommunication networks for example, the topology may be considered fixed
but the demands of a given customer (in a network provisioning problem) may vary
over time. The goal is to exploit the topology without knowing the demands. The
same situation happens in performing multicast in telecommunication networks; we
need to solve a minimum spanning tree or Steiner tree problem to connect a group of
users, but the topology or graph does not change when connecting different groups of
users. In flight reservation systems, departure and arrival locations and times change
for each request but schedules do not (availability and prices do change as well but
on a less frequent basis). Yet another example is for delivery companies; they have to
solve daily vehicle routing problems in which the road network does not change but
the locations of customers to serve do.

Examples of such repetitive optimization problems with both static and dynamic
inputs are countless and in many cases it is unclear if one could take any advantage of
the advance knowledge of the static part of the input. One situation which has been
much studied (especially from a practical point-of-view) is for s- shortest path queries
in large-scale navigation systems or Geographic Information Systems. In that setting,
it is too slow to compute from scratch the shortest path whenever a query comes in.
Various preprocessing steps have been proposed, often creating a hierarchical view of
the network, see for example [26].

We study several combinatorial problems for which such precomputation might
be useful. First, we consider the minimum spanning tree (MST) problem, which is
one of the basic optimization problems and it also serves as a building block in more
sophisticated algorithms and heuristics. We would like to find a sparse subgraph @ of
a given graph G such that the minimum spanning tree of a random subgraph of G is

17



contained in ) almost always. This would speed up subsequent random MST queries,
by restricting our attention to the edges in Q). Our answer would be guaranteed to
be correct with high probability.

In the following chapter, we turn to another problem along these lines where we
would like to approximate the shortest-path metric for random subgraphs, by selecting
a priori a subgraph ) whose metric approximates that of a random subgraph. This
would then allow us to speed up the solution of any combinatorial problem, based
on the shortest-path metric, such as Steiner Tree, Facility Location or Traveling
Salesman. Again, we assume that instances are generated as random subgraphs.

2.1 The MST-covering problem

The MST-covering problem. Assume we are given an edge-weighted graph G =
(V,E) with n vertices and m edges and we would like to (repeatedly) find the
minimum-weight spanning tree of either a vertex-induced subgraph H = G[W], W C
V (the vertez case) or a subgraph H = (V, F), F C E (the edge case). In general,
we need to consider the minimum spanning forest, i.e. the minimum spanning tree
on each component, since the subgraph might not be connected. We denote this by
MST(W) or MST(F).

Our primary focus is a random setting where each vertex appears in W indepen-
dently with probability p (in the vertex case; we denote W = V(p)); secondly, a
setting where each edge appears in F' independently with probability p (in the edge
case; we denote F = E(p)). The question we ask is whether there exists a sparse set
of edges ) which contains the minimum spanning forest of the random subgraph with
high probability.

We also address a deterministic setting where we assume that W is obtained from
V by removing a fixed number of vertices, or F' is obtained from E by removing a
fixed number of edges (by a malicious adversary). Then we seek a sparse set of edges
Q containing the minimum spanning forests of all such subgraphs.

More precisely, if the minimum spanning tree is not unique, we ask that ¢ contains
some minimum spanning tree. Alternatively, we can break ties by an arbitrary fixed
ordering of edges, and require that () contains the unique minimum spanning tree.
This is a stronger requirement and in the following, we will indeed assume that the
edge weights are distinct and the minimum spanning trees is unique.

Example. Consider a complete graph G on vertices V = {1,2,...,n} where the
weight of edge (3, 4),% < j is w(i, j) = 2°. Assume that W C V is sampled uniformly,
each vertex with probability 1/2. It is easy to see that M ST (W) is a star of edges
centered at the smallest ¢ in W and connecting ¢ to the remaining vertices in W.
The probability that (i,5) € MST(W) (for i < j) is 1/2**! since {i,5} must be
in W and no vertex smaller than 7 can be in W. Note that when we order the
edges (i,7) lexicographically, their probabilities of appearance in MST(W) decrease
exponentially, by a factor of 2 after each block of roughly n edges. If this were always
the case, we could take O(nlogn) edges with the largest probability of appearance in
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Figure 2-1: A complete graph Kg with lexicographically ordered edges. The edge
weights are marked by thickness.

MST(W) and the probabilities for the remaining edges would be polynomially small
which would solve our problem. An example of an MST-covering set here is

Q={(J) € E:i<3logyn};

then, any edge in E \ Q appears in MST(W) with probability at most 1/n3.

Also, our example demonstrates that we need to include Q(nlogn) edges in Q if
Pr[MST(W) \ Q # 0] should be polynomially small. More generally, this is true for
any weighted graph - just consider the event that a vertex is isolated in Q[W]. Unless
Q) contains at least log, n edges incident with every vertex, some vertex gets isolated
in Q[W] with probability at least 1/n. Then @ cannot be a good MST-covering set.
We will make a more precise argument in Section 3.8 but these examples indicate
that |@Q| = O(nlogn) is the correct bound to shoot for.

2.2 The metric approximation problem

Metric-approximating edge sets. Given a graph G = (V, E) with edge lengths, we
would like to repeatedly solve a metric-based optimization problem such as Shortest
Path, Steiner Tree, Facility Location or Traveling Salesman. The common feature of
these problems is that the cost of a solution depends only on distances between pairs
of vertices in G (and possibly on some cost function associated with vertices). We
would like to speed up the solution of such problems, in case each instance is drawn
as a random subgraph, either a vertex-induced subgraph H = G[W], W C V (the
vertez case) or a subgraph H = (V| F), F C E (the edge case). For that purpose, we
would like to find a sparse set of edges ) C E such that the shortest-path metric of
QN E(H) approximates the shortest-path metric of E(H) within a constant factor c,
with high probability. We call such a set c-metric-approzimating.
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Example. In the example of Section 2.1, the MST covering set @ would also be a
1-metric-approximating set, i.e. preserving the metric ezactly with high probability.
This is because the minimum spanning tree of any induced subgraph G[W] is a star
which defines the shortest-path metric exactly. However, this phenomenon will turn
out to be quite rare and not attainable in general.

2.3 Literature review

2.3.1 MST covering

The absence of complete knowledge of the input data is the defining characteristic
of stochastic optimization. Very often, part of the input is random and one has to
make a decision in the first stage without knowing the realization of the stochastic
components; these are then revealed and one has to make further decisions. Although
the minimum spanning tree problem (as a prototypical combinatorial optimization
problem) has been considered in a wide variety of settings with incomplete or changing
data, it has not been under the particular viewpoint considered here.

In dynamic graph algorithms, one assumes that the graph is dynamically changing
and one needs to update the solution of the problem after each input update. For a
minimum spanning tree problem in which edges can be inserted or deleted, the best
known dynamic algorithm has amortized cost O(log*n) per operation [24]. This is
not efficient here though, since our instances are changing too drastically.

In the NP-hard Probabilistic MST problem [4], each vertex becomes a “terminal”
independently with a given probability. However, the goal here is to find a spanning
tree such that the Steiner tree obtained by removing the edges not needed to connect
the terminals has minimum expected cost. Our different model has the advantage
of giving a minimum spanning tree (instead of a suboptimal spanning tree) at the
expense of a logarithmic increase in the number of edges.

In practice, graph optimization problems are often solved on a sparse subgraph,
and edges which are not included are then priced to see if they could potentially
improve the solution found, see for example [1] for the matching problem. Our results
can therefore be viewed as a theoretical basis for this practice in the case of the MST,
and give precise bounds on the sparsity required.

2.3.2 Metric approximation

Sparse subgraphs approximating the shortest-path metric have been considered in
ample scope, under various restrictions - for geometric graphs, general graphs, with
constrained degrees, restricted structure, etc. Metric-approximating subgraphs are
known as spanners. We say that S C G is a c-spanner if for any path in G of length
[ there is a corresponding path in S of length at most ¢l. See for example [13] for a
survey of results about general spanners.

The existence of spanners with a low number of edges is related to the existence
of graphs without short cycles. We say the graph G has girth g, if the length of the
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shortest cycle is g. A c-spanner for a graph of girth g > ¢+ 2 (with unit edge lengths)
must be the graph itself, since no edge can be replaced by another path of length at
most c¢. Therefore the number of edges required in general for a c-spanner is at least
the extremal number of edges for a graph of girth g = ¢+ 2. It is known that there
are graphs of girth g with n'*/(9=1) edges (in classical work by Paul Erdés [35]; the
proof uses the probabilistic method).

On the other hand, a spanner can be constructed by a construction avoiding cycles
shorter than ¢ + 1, which yields c-spanner of girth at least ¢ + 2 (see [13]). Thus the
extremal number of edges for graphs of given girth provides an upper bound on the
size of spanners as well. The best known upper bound on the number of edges for a
graph of girth g is O(n'*%@=2) for g > 4 even [3]. So there always exists a c-spanner
with O(n!*%¢) edges.

However, our requirements are stronger than those for a spanner: we ask that
our subgraph @ approximates the metric of G[W] even when @ is restricted to the
subgraph induced by W. In other words, we are not allowed to use paths in () leaving
the subset W.
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Chapter 3

Covering the minimum spanning
tree of random subgraphs

3.1 The first attempt

Let’s start with the variant of the MST covering problem where vertices are removed
at random. For now, assume that each vertex is removed independently with proba-
bility 1/2 and denote the set of surviving vertices by W. In this section, we are not
going to achieve the optimal upper bound, but we develop a simple algorithm which
demonstrates that at least some non-trivial upper bound exists. Naturally, taking
all O(n?) edges of the graph for @ is a valid solution, but we would like to improve
significantly on this.

The intuitive idea behind this algorithm is that of “path covering”. This is similar
to the usual procedure to construct a spanner. Note that in building a minimum
spanning tree (consider for example Prim’s algorithm), an edge (u,v) is not used if
there is a u — v path containing only edges of smaller weight. In such a case, we say
that a path covers (u,v). This does not mean that (u,v) cannot appear in the MST
of a subgraph of G, but it is an indication that (u,v) might not be necessary for our
covering set (). Let’s describe our first algorithm now.

Algorithm 1. (given parameters ¢,r € Z )

1. Let E; := E(G). Repeat the following for k =1,2,...,7.

2. Let Q) := 0.

3. Process the edges of Ej in the order of increasing edge weights.

4. For each edge (u,v) € Ej, unless it is covered by a path of length at most ¢ in
Qk, include (u,v) in Q.

5. If k <r,set Exy1:= E; \ Qk and go back to 2.
6. Finally, let Q) := U}_;Qk.
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Figure 3-1: An example of path covering. The bold edges are already included in
. The dashed edges are considered for inclusion; edge e; is covered by a path of
length 3, while the edge ez is covered only by a path of length 4.

Note that in each stage k, this algorithm maintains two useful properties. Any
edge which is not in (), is covered by a path of length at most ¢; this path uses edges
of smaller weight, which serves to decrease the probability that (u,v) € MST(W).
Secondly, the algorithm avoids all cycles shorter than ¢ + 2 to be created in Q; this
serves to bound the size of Q.

Lemma 1. For ¢ = 3 and r = [12Inn], Algorithm 1 finds in polynomial time a
set Q of size |Q| < O(n®?Inn) such that for W C V sampled uniformly at random,
Pr[MST(W)C Q] >1-1/n.

Proof. For each k= 1,2,...,7, Q is a set of edges avoiding a C4. By a well-known
result in extremal graph theory [3], |Qx| = O(n®?). Therefore |Q| = O(rn*?) =
O(n*?logn).

Now consider an edge (u,v) € FE that we have not chosen in any stage, i.e.
(u,v) ¢ U,_,;Qk. For each k, there is a covering u — v path of length 2 or 3. By
construction, these paths are edge-disjoint. For a path of length 2, there is probability
1/2 that it survives in G[W]. For a path of length 3, the probability is 1/4.

Note that if two of these paths share a vertex w, then they must be both of length
3 and w is a common neighbor of 4 and v. In that case, we remove the two paths and
replace them by a path of length 2, u—w—wv. For two vertex-disjoint paths of length 3,
the probability that neither of them survives in G[W] is (1—1/4)? which is more than
the probability of destruction for a single path of length 2. Therefore we may assume
that we have r vertex-disjoint u — v-covering paths of length 3; (u,v) € MST(W)
can occur only if u,v € W while none of these paths survive in W:

1 1NN 1,1
Pr[(u,v)EMST(W)]SZ(l—Z> <Z€ /Sﬁ’

Pr[3(u,v) € E\ @; (u,v) € MST(W)] < %
0

One might try to strengthen the argument by checking for paths longer than 3
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but in the case of vertex-sampling, ¢ > 3 creates difficulties because of the positive
correlation among overlapping paths. Still, this idea works in the edge-sampling case.
Then we choose ¢ optimally to cover edges by paths of length at most vInn which
yields a near-linear bound on Q.

Lemma 2. For ¢ = |VInn| and r = |2°*21Inn|, Algorithm 1 finds in polynomial
time a set @ of size O (n 63‘/&7‘) such that for F C E sampled uniformly at random,
Pr{[MST(F)C Q] > 1—1/n?

Proof. To estimate the size of ), note that each Q) is a set of edges avoiding cycles
of length smaller than c + 2, which has size O(n!*%°) (see [3]). Thus

|Q| — O(rn1+2/c) _ 0(2cn1+2/c log n) _ O(n 63\/H)‘

To prove that @ is a good covering set, note that any (u,v) € E'\ @ is covered
by r edge-disjoint paths of length at most c. Each of them has probability at least
1/2¢ of survival and (u,v) € MST(F) is possible only if none of the r paths survive.
Here, the events are independent because of edge-disjointness.

1 1\" 1 1
<YLY clpe o L
Pr[(u,v) € MST(F)] < 5 (1 26) <ge <
By the union bound over all edges, MST(F) C Q with probability at least 1 —
1/n?. m|

Thus we have bounds O(n3/2logn) for the vertex case and O(n e3V™") for the
edge case, respectively. These are actually the best bounds we are able to achieve
by efficient deterministic algorithms. Also, note that the covering paths here are
guaranteed to have short length. In fact, @ is also a 3-metric-approximating set.
We explore this idea further in Chapter 4. In the following, we turn to probabilistic
methods which lead to the asymptotically optimal bound of O(nlogn) for the MST
covering problem.

3.2 The boosting lemma

We start by analyzing the event that a fixed edge appears in the minimum spanning
tree of a random induced subgraph. We would like to show that the probability of
this event cannot be too high for too many edges.

The property of belonging to the minimum spanning tree of an induced subgraph
has a very simple property, and that is down-monotonicity: intuitively, removing more
vertices makes an edge only more likely to appear in the MST.

Lemma 3. For an edge (u,v) € E, let X =V \ {u,v} and let F denote the family of
vertex sets A C X for which (u,v) is in the minimum spanning forest of the induced
subgraph G[A U {u,v}]. Then F is a down-monotone family:

Ae F, BC A= BeF.
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Proof. Tt is easy to see (for example, from Prim’s algorithm) that (u,v) € MST(A U
{u,v}) if and only if there is no u —v path in G{AU{u, v}] using only edges of smaller
weight than (u, v). If there is no such path in G[AU{u, v}] then there is no such path
in G[B U {u, v}] either. 0O

For a random A C X, we say that “A € F” is a down-monotone event. Knowing
that the appearance of an edge in the MST of a random subgraph is a down-monotone
event will be useful in the following sense: if an edge appears in MST (W) with
probability €, the probability that it appears in M ST(S), where S C V is a random
set substantially smaller than W, will be much higher than e. This will allow us
to bound the number of such edges, because not too many edges can appear in a
minimum spanning tree with a large probability.

We prove a general inequality for down-monotone events. We call this inequality
the boosting lemma, since it states how the probability of a down-monotone event is
boosted, when we decrease the sampling probability.

Lemma 4 (The Boosting Lemma). Let X be a finite set and F C 2% a down-
monotone family of subsets of X. Let p € [0,1]" and sample a random subset X (p)
by choosing element i independently with probability p;. Define

o, = Pr[X(p) € .

Let v € (0,1) and similarly define 0, = Pr[X(q) € F| where element i is sampled
with probability ¢; =1 — (1 — p;)?. Then

Proof. We proceed by induction on |X|. For X = @ the statement is trivial (o, =
o,=00r1). Let a € X, Y = X \ {a} and define

O]:OZ{.AQYZAEF}
e Fi={ACY:AU{a} € F}

By down-monotonicity, we have F; C Fy. Next, we express o, by the law of condi-
tional probabilities:

o, =Pr[X(q) € F] = ¢, Pr[Y(q) € F1] + (1 — q.) Pr[Y(q) € Fo)

where Y () denotes a subset of Y sampled with the respective probabilities ¢;; Y (¢) =
X(q)\ {a}. We denote w, = Pr[Y(p) € F1] and 7, = Pr[Y(p) € Fo]. By induction,
we can apply the boosting lemma to the down-monotone events Fo, F; C 2Y: Wq >
wy,Tq 2 7). We get

0g = qaq + (1 = )7 2 (1 = (1 — pa)")wy + (1 — pa)'7,).
Note that w, < 7, because F; C Fy. It remains to prove the following:
(I-=Q=p)Mw”"+ (1 =p)7" > (pw+ (1 -p)7)" (3.1)
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for any p € [0,1],7y € (0,1),0 < w < 7. Then we would conclude that
0q 2 (Pawp + (1 — pa)7p)" = Ug

using the law of conditional probabilities for o, = Pr[X(p) € F].

We verify Equation 3.1 by analyzing the difference of the two sides: ¢(7) =
1-(1-=p))w”+ (1 —p)'77 — (pw + (1 — p)7)?. We show that ¢(t) > 0 for ¢t > w.
For t = w, we have ¢(t) = 0. By differentiation,

gt) = Y1 -p) ™t —4(1-p)(pw + (1 — p)t)!
= (1 -p) (1 —~ (p%) 7) > 0.

Therefore ¢(t) > 0 for any ¢ > w which completes the proof. O

Note. The boosting lemma is tight for 7 = 24/ A C X in which case 0, =
(1—p)!X\Al, This form of the lemma is the most general we have found; more restricted
versions are easier to prove. For probabilities p;, ¢; satisfying (1—p;) = (1—q;)¥, k € Z,
there is a simple probabilistic proof using repeated sampling;:

Sample independently subsets Y; = X(§),5 = 1,2,...,k, andset Y =Y, UY, U
...UY;. Element i has probability (1 — ¢;)* = (1 — p;) that it does not appear in
any Yj;, therefore Y is effectively sampled with probabilities p;. Then we get, from
the monotonicity of F:

o, = Pr[Y € F] < Pr[Vj;Y; € Fl = o,

Another special case is when the sampling probability p is the same for all elements
and o, = (1— p)* for some k € Z. Then we can argue by the Kruskal-Katona theorem
that F contains at least (";k) subsets of size a for any a < n — k, which implies that
og > (1 — q)* for any ¢ < p. It is not clear if this applies to 0, = (1 — p)* for
non-integer k.

In [6], Bollobas and Thomason prove a lemma about down-monotone events which
applies to random subsets of fixed size: If P, is the probability that a random subset
of size r is in F, then for any s < r,

P> P

Considering that the two random models are roughly equivalent (instead of sampling
with probability p, take a random subset of size pn), this lemma has a very similar
flavor to ours. However, putting the two random models side by side like this, the
Bollobés-Thomason lemma is weaker; for example, compare p = 1 — 1/n,q = 1/2
and 7 = n — 1,5 = n/2. Our boosting lemma implies o, > (0,)}/°6™. The Bollobas-
Thomason lemma says only P, > /P..
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3.3 Covering the MSTs of random vertex-induced
subgraphs
Now we prove the bound on the size of covering sets for the case of randomly sampled

vertices. As noted before, for any edge (u,v) € E, the event that (u,v) € MST(W),
conditioned on u,v € W, is down-monotone. Let’s denote

op(u,v) = Prw[(u,v) € MST(W) | u,v € W]

where W = V/(p) contains each vertex independently with probability p.
Lemma 5. For a weighted graph G on n vertices, 0 <p <1, and k > 1/p, let

D = {(we) € B oyun) > (1-p) )

Then
1QP)| < ekn.

Proof. Sample a random subset S = V(q), with probability ¢ = 1/k < p. For every

edge (u,v) € Q(p ) we have op(u,v) > (1—p)*1, and therefore by the boosting lemma

with v = iﬁg:ﬁg, we get g(u,v) > (1—¢q)F L. Consequently, Q¥ c Q9 and

Pr{(u,v) € MST(S)] = ¢%,(u,v) > le (-9 >,
BIMSTS)] > Y Pri(uv) € MST(S)] > 'Q '.
(u, ,v)eQ(P)

On the other hand, the size of the minimum spanning forest on S is at most the size
of S, and so

n
B[MST(S)]] < E{S]] = 7.
Combining these two inequalities, we get |Q,(f )| < ekn. O
Theorem 8. Let G be a weighted graph on n vertices, 0 < p < 1, and ¢ > 0. Let
b=1/(1—p). Then there exists a set Q@ C E of size
Q| < e(c+ 1)nlog,n + O(n)

such that for a random W = V (p),

Pry[MST(W)C Q] > 1- ni

Proof. Order the edges by the decreasing values of o,(u,v). Partition the sequence
into blocks By, By, ... C E of size [en]. Lemma 5 implies that for any (u,v) € By,
k>1/p,

Pr{(u,v) € MST(W)] = p* 0,(u,v) < p*(1 — p)*L.
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Define Q as the union of the first A = [(c + 1)log, n] + 2 blocks, @ = [Jj_, Bx.
We have h > 1/p (for p > 1/2 it’s obvious that A > 2 > 1/p, and for p < 1/2,
h > log,n > 1’2‘—; > 1/p for n > €2). So we can apply the above bound to blocks
starting from h + 1:

PriMSTW)\Q# @ < > Pr{(u,v) € MST(W)]
(u,v)€E\Q

< 3 fenlpt - = fenp(t—ppt < [PULZD) (L

3.4 Improving the constant factor

In the results of Lemma 5 and Theorem 8, we get a factor of e which however seems
to be an artifact of the probabilistic proof. In fact it is possible that the best upper
bound has a constant factor of 1. The example in Section 3.8 shows that this would
be tight. In this section, we show that e is indeed just a product of the proof and we
prove a somewhat improved constant factor.

Lemma 6. For the set Q,(cp) from Lemma 5 and any k > 1/p,

1QP)| < (1+¢/2)kn.

Proof. Consider more carefully the argument bounding IQ,(CP)|:

pn > EIMST(VE) = Y107\ Q| p?(1 - p) = Y 10P] p*(1 - p) Y,
=1 =1

ie.

n>Y QP p*(1-p).
=1

Our previous argument basically replaces all the terms for [ < k by zero, which leads
to the factor of e (for p = 1/k). However, we can get a better upper bound, if we
can lower bound these terms as well. And that is certainly possible - let’s assume
that G is a complete graph (without loss of generality for the upper bound). Then

Ql(p ) must be [-vertex-connected, otherwise there is an edge (u,v) € E'\ Ql(p ) which is
not covered by [ vertex-disjoint paths in Ql(p) which would imply o,(u,v) > (1 — p)-.
Therefore |QP| > in/2.

More generally, assume that

o Vi< k; |Q§p)| > ~ln, for some constant vy > 0.
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Then we get, replacing |Q,(p )| by «in for [ < k and by IQ,(CP)| for [ > k,

k-1

n > Y Alnp*(1-p)t+ Y 1QP P21 - p) !
=k

=1

1 k-1
= anZzﬁl Py +1Q] p(1 - p)F?

= YRl (- )+ QD) a1 — g
=1

= (1= (1 -p) L+ p(k = 1) +1QF p(1 — p)*

This implies a bound on |Q¥|, namely

09 < (g + a0+ ol - 1)) 2 52)

Using the [-connectivity argument, we can use vy = 1/2, and for ¢ = 1/k we get

915 (1) 5 (1)

For p > ¢, we apply the boosting lemma which as in the proof of Lemma 5 implies
that Qk) - Qk Therefore the bound holds for any p > 1/k as well. O

As a direct consequence, we get an improved version of Theorem 8.
Theorem 9. Let G be a weighted graph on n vertices, 0 < p < 1, and ¢ > 0. Let
b=1/(1—p). Then there exists a set Q C E of size
@ < (1+e/2)(c+ 1)nlogyn+ O(n)
such that for a random W =V (p),

Priy[MST(W) C Q] > 1 — nl

3.5 Covering the MSTs of subgraphs of fixed size

Directly from Lemma 6, we also get the following interesting implication for the
“deterministic version” of the problem, where at most k — 1 vertices can be removed
arbitrarily.

Corollary 1. For any weighted graph G on n vertices, and k € Z,., there exists a set
Qx C E of size
|Qk| < (1 +¢€/2)kn

which contains MST(W) for any |W|>n —k.
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Proof. Let Qkx = Uw(snis MST(W). For k = 1 the lemma is trivial (Q; is the

minimum spanning tree of G). For k > 2, choose p = 1/2 and consider Qip) as
defined in Lemma 5. Lemma 6 which states that |Q§cp)| < (1+ e/2)kn. For any
edge (u,v) which appears in MST(W) for |W| > n — k, o,(u,v) > (1 — p)*~!, since
the vertices in V' \ W are removed with probability at least (1 — p)*~1; therefore

c Q@ O
Qr C Q) -

Observe that the set @)k can be found in polynomial time. For every edge (u, v),
its membership in Q); can be tested by computing the vertex connectivity between
vertices u,v in the subgraph of edges lighter than (u,v). By Menger’s theorem,
(u,v) € Qy if and only if there are no k vertex-disjoint u — v paths using edges of
smaller weight than (u,v). This, however, does not seem to imply a bound on the size
of Qy easily. The only way we can prove our bound is through probabilistic reasoning.

It is not difficult to see that |@;| < n—1 and |@3] < 2n — 3. It is also possible to
define edge weights so that Qx must contain (n—1)+(n—2)+---+(n—k) = kn— (k;d)
edges (see Section 3.8 for an example). We conjecture this to be the actual tight upper
bound. Similarly, we conjecture that kn — (kgl) is the best possible bound on |Q,(cp )I
in Lemma 5 (and this would be also achieved for the graph described in Section 3.8).

The same question in the edge case is easier to answer. The number of edges in
all MSTs obtained upon removing at most k¥ — 1 edges can be bounded by k(n — 1),
by finding the minimum spanning tree and removing it from the graph, repeatedly
k times. (Which also works for multigraphs, and more generally for matroids.) For
simple graphs, we can prove a bound of kn — (kgl) which is tight (see the examples
constructed in Section 3.8).

Lemma 7. For any (simple) weighted graph on n vertices and 1 < k < n, there ezists
a set Qr C E of size

|Qk|52(n—i)=kn_ (’“'2“)

which contains the minimum spanning forest MST(F) for any |F| > m — k.
Proof. Let Qi = U|F|>m_,c MST(F). We proceed by induction on n. For n =k, it is
trivial that |Qx| < (3). So assume n > k.

Consider the heaviest edge e* € Q. Since e* € MST(F') for some |F| > m — k,
there is a cut 6(V1) = {(u,v) € E : u € V3,v ¢ V1 } such that e* is the lightest edge in
0(Vi) N F. Consequently Qx Nd(V;) C (E \ F) U {e*}, which means that at most k
edges of Q) are in the cut §(V;). Let Vo = V' \ V; and apply the inductive hypothesis
on G| = G[Vi] and G2 = G[V4), and their respective MST-covering sets Qx 1, Qk,2. We
use the following characterization of Qx: (u,v) € Qi < there are no k edge-disjoint
u — v paths in the subgraph of edges lighter than (u,v) (again by Menger’s theorem,
for edge connectivity). Since the edge connectivity in G is at least as strong as the
edge connectivity in Gy or Gy, it follows that Qx[Vi] C Qk1, Qk[V2] C Q2 and we
get

1Qk| < 1Qk| + |Qr2] + k.
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Let ny = |V1|,ne = |Va|; n = n1 + ng > k. We distinguish two cases:

e If one of ny,ny is at least k, assume it is n;. By the inductive hypothesis,
|Qk.1| < ZLI (n1 —1), and |Qk2| < k(n2 — 1) (which holds for any ny, smaller
or larger than k), so

k k
|Qk|SZ("l*i)+k(n2—1)+k=2(n—z’).

e If both n1,ny < k, then we estimate simply |Qx,1| < (3), |Qk2| < (). We get

k
Qx| < (7;1) + (T?) +k< k(nlz_ D, k(n"’; D k= %T—L <y (-
i=1

O

3.6 Algorithmic construction of covering sets

It is natural to ask whether the covering sets can be found efficiently. In the de-
terministic case, we have shown that this is quite straightforward (Section 3.5). For
the probabilistic case, we have shown deterministic algorithms in Section 3.1, but the
covering sets obtained there are larger than optimal. Here, we would like to find cov-
ering sets of size that is implied by the boosting lemma. However, we have to keep in
mind that it is not possible to test whether (u,v) € chp) directly. This would amount
to calculating the u-v-reliability in the graph of edges lighter than (u,v), which is a
#P-complete problem [33].

Still, we can find a covering set () with an efficient randomized algorithm, which
takes advantage of the boosting lemma as well. It is a Monte Carlo algorithm, in the
sense that it finds a correct solution with high probability, but the correctness of the
solution cannot be verified easily.

Algorithm 2. Given G= (V,E),w: E—>R,0<p<1,¢>0.

o Let b=1/(1 —p) and k = [(c+ 2) log,n] + 1.

e Repeat the following for i = 1,...,r = [32ek?Inn]:
~ Sample S; C V, each vertex independently with probability ¢ = 1/k.
— Find T; = MST(S)).

e For each edge, include it in @ if it appears in at least 16 Inn different T;’s.

The running time of Algorithm 2 is determined by the number of calls to an MST
procedure, which is O(log,nlnn). Since a minimum spanning forest can be found
in time O(ma(m,n)) deterministically [9] or O(m) randomized [28], for constant
b=1/(1 — p) we get a running time near-linear in m.
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Theorem 10. Algorithm 2 finds with high probability a set Q C E such that
Q| < 2e(c+ 2)nlog,n+ O(n)

and for a random W = V (p),

Prw[MST(W)C Q] >1— —~.

nc

Proof. Let k = [(c+2)logyn]+1, r = [32ek2Inn] and Q% = {(u,v) € E : op(u,v) >
(1—p)*¥~1}. We will argue that (1) Q¥ C @ with high probability, (2) Q¥ is a good
covering set, and (3) |@| < 2ekn + O(n).

Let S; = V(q), ¢ = 1/k, and T; = MST(S;). As in the proof of Theorem 8,
k > 1/p (for n large enough), therefore ¢ < p and by the boosting lemma, for any
(u,v) € QP
2 k—1
Pri(wo) €T) > (1 - ) > k.
Denoting by t(u,v) the number of T;’s containing edge (u,v), we get E[t(u,v)] >
r/(ek?) > 32Inn. By Chernoff bound (see [34, Theorem 4.2]; Pr[X < (1 —é)u] <
e™"*1?) with u > 32Inn, § = 1/2: Pr[t(u,v) < 161nn] < e4"" = 1/n*, and thus
Pr[3(u,v) € Qip);t(u,v) < 161nn] < 1/n%. Therefore with high probability, all edges
in Qk(p) are included in @. On the other hand, Qg’) contains MST(W) with high
probability (with respect to a random W = V' (p)):

PriMST(W)\ Q¥ + ¢] < Z Pr{(u,v) € MST(W)] < n?p*(1 —p)*! < ni
(uv)eE\QP

Now we estimate the size of Q. For k > n/(4e), the condition [@| < 2ekn + O(n)
is satisifed trivially. So assume k < n/(4e). Since we are sampling S; = V(q), we
have E[|S;|] = gn, and E[Y_;_, |Ti|]] < E[Y_._; |Sil]] < rgqn. We can use the Chernoff
bound again ([34, Theorem 4.1]; Pr[X > (14 6)u] < e™#*/3), with y < rqn and
d =101lnn/(rq):

- 1
P S| > 101 —100n In? n/(3rq) —nlnnjek .
r ;| | > (r¢g+10lnn)n| <e <e <
In @, we include only edges which appear in at least 16 Inn different T’s, and |T;| <
|S;|, so the number of such edges is, with high probability,

0] < > 1S < (r¢g+10lnn)n

— 16lnn — 16Inn = 2ekn + O(n).
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3.7 Covering minimum-weight bases in matroids

Next, we consider the variant of the problem where the subgraph is generated by
taking a random subset of edges E(p). We approach this problem more generally,
in the context of matroids. The matroid in this case would be the graphic matroid
defined by all forests on the ground set E. In general, consider a weighted matroid
(E, M,w), where w : E — R. Let m denote the size of the ground set E and n the
rank of M, i.e. the size of a largest independent set. If the weights are distinct, then
any subset /' C E has a unique minimum-weight basis M B(F'), which in the case
of graphs corresponds to the minimum-weight spanning forest. These bases satisfy
exactly the monotonicity property that we used previously.

Lemma 8. For an element e € E, let X = E \ {e} and let F denote the family of
subsets A C X for which e is in the minimum-weight basis of the matroid induced by
AU {e}. Then F is a down-monotone family:

Ae F, BC A= BeF.

Proof. If e € MB(AU {e}), it means that there is no circuit in A U {e} in which e is
the largest-weight element. However, then there is no such circuit in B U {e} either,
and therefore e € MB(B U {e}). O

Thus, we can apply the same machinery to matroids. Define
oy(e) = Prple € MB(F) | e € F]

where F' = E(p) is a random subset of elements, sampled with probability p. We get
statements analogous to the vertex case. It is interesting to notice that the bounds
given in these lemmas depend only on the rank of the matroid, irrespective of the
size of the ground set.

Lemma 9. For a weighted matroid (E, M,w), of rankn, 0 <p<1 and k > 1/p, let
Y ={e€B:o(e)>(1-p)*}.
Then

1QP)| < ekn.

Proof. Sample a random subset S = E(q), each element with probability ¢ = 1/k < p.

For any e € Q,(cp ), op(€) > (1 — p)*, therefore the boosting lemma implies that

Priee MB(S)| > qoui) > L (1-1) 5L
=49\ =} k ek’

Summing over all e € chp), we get

E(|[MB(S)|> > Prlee MB(S)] > Igﬂ

k
k
CEQip)
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On the other hand, any independent set in M has size at most n, therefore E[|M B(S)|] <
n which implies |Q®| < ekn. a

Theorem 11. For any weighted matroid (E, M,w) of rankn, 0 <p <1, ¢ >0, and
b=1/(1—p), there erists a set Q C E of size

Q| < e(c+ 1)nlogyn + O(n/p)

such that for a random F = E(p),

1
Prp[MB(F)CQ]>1- —~
Proof. Order the elements of E by decreasing values of o,(e). Partition the sequence
into blocks By, By,... C E of size [en]. Lemma 9 implies that for any e € By,
k>1/p:
Prle € MB(F)] = p o,(e) < p(1 —p)* .

Take the first h = [(c+1) log, n+2/p]|+1 blocks: Q = UZ=1 Bg. Then, since h > 1/p:

PriMB(F)\Q#0] < > Prlee MB(F)]< Y [en]p(1—p)*2

c€E\Q k=h+1

= fenl(1—pyt < U L

O

The forests in a graph on n + 1 vertices form a matroid of rank 7, and minimum-
weight bases correspond to minimum spanning forests. Therefore this solves the edge
version of the problem as well:

Corollary 2. For any weighted graph G on n + 1 vertices, 0 < p <1, ¢ > 0 and
b=1/(1—p), there ezists a set Q@ C E(G) of size

Q| < e(c+ 1)nlog,n + O(n/p)
such that for a random F = E(p),
1
Prp[MST(F)C Q] >1- —

Also, we get a randomized algorithm finding the covering set for any weighted
matroid (E, M, w); the algorithm makes O(log, nlnm) calls to a minimum-weight
basis procedure.

Algorithm 3.

e Let b=1/(1—p) and k = [(c+ 2)log,n| + 1.
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o Repeat the following for i = 1,...,r = [16eklnm]:

— Sample S; C E, each element independently with probability ¢ = 1/k.
— Find T; = M B(S;).

e For each edge, include it in @ if it appears in at least 8 Inm different 7}’s.
Theorem 12. Algorithm 3 finds with high probability a set Q C E such that
|Q| < 2e(c + 2)nlog,n + O(n)
and for a random F = E(p),

Pre[MB(F) C Q] > 1— ni

Proof. Let k = [(c + 2)logyn] + 1, 7 = [16ekIlnm] and Q,(Cp) ={e € E: gy(e) >
(1 — p)*~1}. We claim that (1) chp) C @ with high probability, (2) ;cp) is a good
covering set and (3) @ is not too large. As in the proof of Theorem 8, ¢ = 1/k < p for
n large enough, therefore for any e € Q,(cp), S; = E(q) and T; = M B(S;), the boosting

lemma implies
1

Prle € T;] = q g,4(e) > e
Letting t. denote the number of T}’s containing element e, we obtain E[t.] > r/(ek) >
161Inm. By the Chernoff bound, Pr[t, < 8lnm] < e72®™ = 1/m?, implying that
Pr[3e € Q¥;t, < 8Inm] < 1/m. Therefore with high probability, all edges in Q¥
are included in Q).

On the other hand, Q,(cp) contains M B(F) with high probability: Consider the
elements in E \ Q. We order them in a sequence of decreasing values of o,(e), and
again divide them into blocks By, By, ... as before. Since we have included all edges
with o,(e) > (1 — p)¥~!, in the first k blocks the values of o,(e) cannot be larger

than as (1 — p)*~. However, then the I-th block can have values of o,(e) at most
op(e) < (1 —p)"-? (by Lemma 9). Thus

Pr[MB(F)\Q # 0] <p (k(l -+ )@ —p)"2) [en]

l=k+1

< (kp+1)[en]  O(lnn) < 1
- net2 netl ne

for large n. Finally, we estimate the size of . We have Y ;_, |Ti| < rn. Every element
e € () appears in 81nm different T;’s, therefore

Q| < 51'11;:;' < 2ekn + O(n).
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3.8 Lower bounds

For both variants of the problem, we have a closely matching lower bound on the size
of @, even if we want to achieve a constant probability of covering the MST. We get a
lower bound of (nlog,(n/Inn)) for p > Inn/n in the edge case and Q(nlog,(pn/5))
for p > 5/n in the vertex case. Both bounds reduce to Q(nlog, n), for a wide range
of p, namely the lower bound of 2(nlog, n) holds for p > 1/n7,vy < 1.

The constructions for the vertex and edge variants are different; first let’s describe
the edge variant which is simpler.

Lemma 10. For anyn > 662, lnT" < p < 1, there is a weighted graph G on n vertices,
such that if

Pr{MST(E(p)) € Q] >

@ | =

then |Q| > In — (l‘gl) where | = |logy(n/Inn)].

Proof. Consider the complete graph K, with edge weights ordered lexicographically.
For i < j, let
Wi =ni+J

(see Figure 2-1). Let F' = E(p) be a random subset of edges. For each edge (j, k),
J < k, consider an event Ajx, which occurs when

(7,k) € F & Vi <j;(i,k) ¢ F.

Due to the ordering of edge weights, A, implies that (j, k) € MST(F), since it is the
lightest edge in F, incident with vertex k. Also, for given k, A,x can occur only for
one value of j. For a set () of given size, we estimate the probability that A;; occurs

for some (j,k) € E\ Q:
Let Jy ={j:j <k (j,k) € E\Q}. Since the events A for different elements of

Jy are disjoint,
Pr{J Aul = > p1—py~

Jj€Jk j€Jk

The events | e Ajyi, for different k’s are mutually independent, since the set of edges
involved for different Ji’s are disjoint. Therefore:

PrIMST(F)C Q< Pr[ () A= HPr[ﬂ Al

(4,k)EENQ JE€Jk

‘H(l_zpl— yh<ep |- Y p(l-py

JEJIC (],k‘)GE\Q

For a given size of @), the last expression is maximized when ) contains edges
(4, k) with minimum possible values of j. Assume that Q contains all the edges (7, k)
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Figure 3-2: The lower bound example for random sampling of vertices. Edge
weights are marked by thickness.

forj:l,z,...l. Then IQIZZl (n_j)=ln_(H2-1) and

=1

> p(l-pyt= 2_: (n— §)p(1 — p)y~L.

(j.k)EE\Q j=i+1

Let’s denote this sum by S(l). As can be verified by backward induction on I,
s() = (n—l— 1) (1—p) +=(1-p)"
p p '

We have that for any @ of size at most In — (l‘;l), Pr[MST(F) C Q] < e=50,
Let’s choose I = |logy(n/Inn)|. Then, for p > h‘T”,

() > (n—-logb(l) __1_) ln_nZ (n_lnn——lnlnn+1) Inn > lnlnn— 1.

Inn p) n P n

Therefore, for any set Q of size at most In — (‘}'), PriMST(W) C Q] < e~5® < 1/e

for n > €.
O

Lemma 11. For any n > 5, and p > 5/n, there exists a weighted graph G on n
vertices, such that if

PIMST(V(p) € Q)2 -

then |Q| > In — ("t1) where I = |log,(np/5)].

Proof. Let G be the complete graph K,. Consider the vertices placed on a line
uniformly and define edge weights by distances between pairs of vertices, breaking
ties arbitrarily, for example:

Let W = V(p) be a random subset of vertices. For each edge (4,k), j < k, consider
an event A, as a boolean function of W:

AW)<=jeW, keW&Vij<i<k=>ig¢W.
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This event is equivalent to (j, k) € MST (W), since (4, k) must be in G[W] and no
path connecting j, k via a vertex in between can be in G[W]. However, we have to
be more careful here, because these events are not necessarily independent, which
might ruin our bound on the probability of their union. Therefore, we have to impose
an additional condition which we deal with later. Assume that C is a set of edges
satisfying

(*) There is no pair of edges (i,7), (j, k) € C such thati < j < k.

Then we claim that the events A_Jk for (4, k) € C are never positively correlated.
More specifically, if (ug, vo), (u1,v1),. .. (uk, vk) € C,u; < v;, then

Pr(Ane NAne 0. . Auw | Aurwd] € PrlAuo N Ay N Auw]. (3.3)

We prove this in the following way: For any W C V, define W’/ = W U {uo, v} \ {i :
up <1 < vp}. Then Ay, (W') is true by definition. In fact, if W = V(p) is a random
subset, W’ is a random subset sampled in the same way as W, but conditioned on
Auguo-

Now consider the other edges, (u1,v1),... (uk, vk). Let’s call an edge (u;,v;) “in-
terfering” with (uo,vo), if its interval [u;,v;] intersects [ug,vo]. Property (x) implies
that the intervals [ug, vo), [u;, vi] cannot share exactly one point, so either one of u;, v;
is an internal point of [uo, vp), or one of ug,vo is an internal point of [u;,v;]. Either
way, Ay, (W’) cannot be true, because then u; and v; ought to be in W’ and all ver-
tices inside [u;, v;] ought not to be in W’ which is impossible. Therefore, A,,,,(W’) is
always false for (u;,v;) interfering with (uo,vo). On the other hand, if an edge (u;, v;)
is not interfering with (uo,vp), then Ay, (W’) if and only if A, (W), because W’
does not differ from W on the vertices outside of [uo, vo).

Thus we have demonstrated that in any case, Ay, (W) = Ay (W'), and W’
corresponds to random sampling conditioned on A,,,, which implies

PriAy,v, N Augw, N .o Augoy | Augue] = PrAugey N Auge, N Ay, ]-

This is equivalent to Eq. 3.3. As a consequence, we get

Pr{( 4 < [] PrAd.

eeC eeC

For a set C satisfying (%), we can now estimate the probability that none of these
edges appear in MST(W):

PriCNMST(W)=0=Pr[ (| Aul< [] PriAzul
(4,k)eC (G.k)eC

= H 1-p1-pF Y <exp | - Z p2(1 — p)lk-il-

(4,k)eC (4,k)eC
Suppose that Q has size at most Zi.:l (n—j) = In— ("}'). The optimal way to
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minimize Z(j,k) cE\Q p*(1 — p)*71=1 is to choose @ to contain all the edges of length

at most [. Then we have

n—1
Yo PP -pF T =N (n—g)pP(1—p) T =p S()
GREE\Q j=i

where S(l) is defined in the previous proof, S(I) = (n—1— %)(1 —-p)+ %(1 —p)". We
choose [ = |log,(np/5)] and then:

P52 ((n=1-1)(1-p) 2 (pn-logs(rp/5) -1 25 (1- ZLDLEL) 5

Thus we have 3, 1o P*(1 — p)¥=71=1 > 4 for any Q of size at most In— ("5'). Now
we apply the probabilistic method to choose a suitable subset of £\ Q). We sample a

uniformly random subset of vertices S. Let C = {(j,k) € E\Q :j < k,j € S,k ¢ S}.
For each edge in E \ @, there is probability 1/4 that it appears in C. Therefore

Bl S p1-p)t > 3 pra-pi >

(4,k)eC (4,k)EENQ

|

and there exists a set C' which achieves at least this expectation. Due to the con-
struction of C| it satisfies condition (*), and we can conclude that

PriMST(W) C Q] < PrlCNMST(W) = 0] < e

This is a contradiction, and so ) must be larger than In — (l‘;l). O
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Chapter 4

Metric approximation for random
subgraphs

4.1 Covering shortest paths

We continue in the spirit of Chapter 3 where the goal was to find a sparse set of
edges covering with high probability the solution of an optimization problem (MST,
in particular) for a random subgraph. Consider another fundamental optimization
problem on graphs: the Shortest Path.

Assume that we have a graph G and two designated vertices s,t € V. Recall that
we denote by V(p) a random subset of V' where each vertex is sampled independently
with probability p. We would like to find a set of edges @ such that for a random
induced subgraph G[W],W = V(p)U{s,t}, Q contains a shortest s —t path in G[W]
with high probability. It turns out that in contrast to the MST problem, Shortest
Path is not amenable to good covering sets.

Example. Consider a graph G = (V, E) where
o V= Uf:l A; U Uf:1 B;

s E= U:C:I E(A;) U Uf:1 E(B;)UH.

A; = {s,ai1,a0,...,0}

o F(A;)isapath s —a; —ap—...—ay

o B, ={t,bi1,bio,..., by}

o E(B;)isapatht— by —byp—...—by

e H is a complete bipartite graph {(ai, b;;) : 1 <14,j < k}.

The edges in E(A;) and E(B;) have zero length, while the edges in H have unit
length.
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Figure 4-1: A counterexample to s — t-shortest path covering, for k = 8 and [ = 3.

We set k = 2! n = |V| = 121 + 2. Sample W C V, each vertex with probability
1/2 except s,t which are always in W. Consider the event that A; is the unique path
among Ay, Ay, ..., A which survives in G[W]: this happens with probability 27}(1 —
271)¥=1 > 1/ek. Independently, B; is the unique surviving path among By, By, . . ., By,
with probability 1/ek. Thus with probability 1/(ek)?, there is a unique shortest s — ¢
path (of length 1), using the surviving paths A;, B; and the edge (aq, b;;) € H. This
holds for every edge in H with the same probability and the corresponding events are
disjoint. If h = |H \ Q|, there is probability at least h/(ek)? that @ doesn’t contain
the shortest path. Therefore @ must contain Q(k?) edges in H, for instance k?/2,
otherwise the probability of missing the shortest path is at least 1/2¢2. We conclude:

Lemma 12. There are graphs on n vertices such that if Q) covers with probability at
least 1/2€? the shortest s —t path in GIW], W = V(1/2) U {s, t}, then

n?
Q=2 (logzn) '

Moreover, note that if @) does not contain the shortest path, the next shortest
connection between s and ¢ has length at least 3. So in fact, we need Q(n?/log?n)
edges even if we want () to contain some approzimately-shortest s — t path, for any
stretch factor ¢ < 3.

It is natural to ask whether it is possible to find a sparse set of edges @ which
contains at least an approximately-shortest s —t path with high probability, for some
stretch factor ¢ > 3. In the rest of this chapter, we address this problem in more
generality.
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4.2 Approximating the shortest-path metric

Consider the shortest-path problem more generally: Is it possible to find a sparse set
of edges @ such that for a random subgraph G[W], the shortest-path metric induced
by @ in G[W] approximates the shortest-path metric of G[W] itself? This would
preserve approximate solutions of not only the shortest s — ¢-path problem, but also
any graph optimization problem based on the shortest-path metric (such as Steiner
Tree or Traveling Salesman).

Definition 1. A set of edges Q is c-metric-approzimating for a certain distribution
of random subgraphs H C G, if with high probability, for any u — v path in H there is
au—v path in H, using only edges of Q, of length expanded at most by a factor of c.

Note that this resembles the definition of a c-spanner - a subgraph approximating
the metric of the original graph to within a constant factor ¢. However, our require-
ments are stronger - @ should be a c-spanner even after some vertices (or edges) have
been randomly destroyed, with high probability.

The known lower bounds on spanners apply to our case as well.

Lemma 13. There are graphs G for any n = |V(G)| and ¢ > 1 such that any

c-metric-approzimating set Q for H = G[W], W = V(p), p > 0 constant, has size
e |Q| = Q(n?) forc< 3.
e |Q| = Q(n*?) for c < 5.
o |Q| = Q(n!+Y6=2) forc< g—1, g > 8 even.

Proof. Consider a graph G without cycles of length < ¢+ 1 (i.e., the girth of G, the
length of its shortest cycle, is g(G) > c¢+2). It is known [3] that for g(G) = 4, G can
have Q(n?) edges (the complete bipartite graph), for g(G) = 6, G can have Q(n3/2)
edges (the incidence graph of a finite projective plane), and for g(G) > 8 even, G can
have Q(n!t1/(9-2)) edges [35]. Then @ must contain all edges of G. Otherwise, there
is an edge (u,v) € E \ Q, which appears in G[W] with constant probability, and the
shortest possible u — v connection in () has length g — 1. O

4.3 Construction of metric-approximating sets for
random vertex-induced subgraphs

Now let’s turn to the construction of a good metric-approximating set. The question
is related to MST covering in the sense that we must ensure that any edge in F \ Q
is covered by another path in ), with high probability. But here the requirement is
stronger - rather than covering by any path consisting of edges of smaller weight, we
care about the total length of the covering path.

There is one construction we mentioned already that gives a non-trivial result.
Recall Algorithm 1 described in Section 3.1. As Lemma 1 claims, this algorithm
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finds an edge set @ of size O(n%?logn) which covers the MST of a random vertex-
induced subgraph with high probability. Moreover, the proof implies that with high
probability, every edge (u,v) € E(G[W]) \ Q is covered by a path in E(G[W]) N
Q) containing at most 3 edges. Since these edges also have length at most that of
(u,v), this path also provides a 3-approximation in the metric sense. Thus we obtain
immediately:

Lemma 14. For any graph G with edge lengths, a 3-metric-approrimating set Q C E
(for uniformly random vertez-induced subgraphs) of size O(n®/?logn) can be found in
polynomial time.

This result for ¢ = 3 is best possible up to a logarithmic factor, considering
Lemma 13. The remaining question is whether we can find sparser c-metric approxi-
mating sets for larger values of c. Also, consider random subgraphs G[W], W = V(p)
for an arbitrary (although constant) sampling probability p.

The essential obstacle to applying Algorithm 1 with longer covering paths is that
these paths need not be vertex-disjoint. For instance, there can be arbitrarily many
u — v paths of length 4 with a vertex-cut of size 1. This would destroy our objective
to guarantee a high probability of survival for at least one path.

The solution is to run the same algorithm repeatedly on random induced sub-
graphs. This will force the covering paths to be vertex-disjoint with a certain prob-
ability and a careful tuning of the sampling parameters will yield a good bound on
the size of a c-metric approximating set. ‘

Algorithm 4. (given parameters t,c € Z,,q € (0,1))

Repeat the following steps in stages i = 1,2,...,t.

Set @Q; = 0 and sample a random subset of vertices S; = V(q).

Process the edges of G[S;] in the order of increasing edge lengths.

Include each edge in Q;, unless it is covered by a path of at most ¢ edges in @Q;.
o Set Q = Ui, @i

Our goal here is to cover each edge in £\ Q by Q(p~°logn) vertex-disjoint paths
of length stretched by at most ¢. For 1 < j < ¢, consider an edge {u,v} € E\ U, @
and suppose that in Uf=1 Q; it has been covered by k < 8p~¢logn vertex-disjoint
paths with at most ¢ edges. Define a set of vertices R;(u,v) which contains the
internal vertices of these k paths, does not contain u and v, and contains some
additional vertices (for example, the lexicographically smallest) so that the cardinality
of R;(u,v) is always r = |8cp~®logn|. If {u, v} has been already covered by 8p~°logn
vertex-disjoint paths, define R;(u,v) of size r arbitrarily.

Call S;41 “good for {u,v}”, if u,v € S;41 and R;(u,v) NS4 = 0.

Pr[S;,1 is good for {u,v}] = ¢*(1 — q)".
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We choose ¢ = 1/r, assuming r > 2, which implies

. 1
Pr[S;+1 is good for {u,v}] > e

Observe that if S;4; is good for {u,v} then either we include {u,v} in Q, or we
cover it by a new vertex-disjoint path, unless it is covered by 8p~¢logn paths already.
We have a total of t stages. We estimate the number of good stages for {u, v}:

t
p = E[#good stages for {u,v}] > ot

We choose ¢ = [64r2 p—©logn] so that u > 16p~—logn. The events of “a stage being
good for {u,v}” are independent for different stages. By the Chernoff inequality,

Pr[#stages good for {u,v} < /2] < e M8 < %

Pr[3{u,v} € E; #good stages for {u,v} < p/2] < n* %" << 1.

So there are at least /2 > 8p~°log n good stages for every edge, with high probability
with respect to our sampling of Si,...,S;. Assuming that this happens, since every
good stage either includes {u,v} € @ or finds a new vertex-disjoint path covering
{u, v}, in the end every edge in E \ @ has at least 8p™°logn vertex-disjoint covering
paths each consisting of at most ¢ edges. Each path survives in G[W], where W =
V(p), with probability at least p°. This implies

Prw[Q N E(G[W]) is a c-spanner for G[W]]
>1- ) (1-p)¥ s 1- Y i8>1—i.

6
ecE\Q e€E\Q n n

Again, the size of @) is constrained by the absence of short cycles. Each Q); is a
set of edges of girth g(Q;) > ¢+ 2. Moreover, it is a subgraph on the vertices of S;
where n

E[|Si||=gn= -

and by the Chernoff inequality
Pr[|Si| > 2n/r] < e ™/,

Pr(3i < ;|8 > 2n/r] < t e/

which will be very small for our choice of parameters (r,t = polylog(n)). Thus with
high probability, we also have |S;| < 2n/r. The size of a set of edges on S; of girth
9(Q;) > ¢+ 2 can be at most

2
Q] < ISi[(1+ |S:[%°) < Tn(l + n?/°)
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(see [3]). Thus the total number of edges selected by the algorithm is:

2nt
Q| < i(1 +n2/c) < (2°40(1)) ¢ p2¢ plt2/e 10g2n
”

with high probability. We conclude:

Theorem 13. For any graph G with edge lengths, Algorithm 4 with integer ¢ > 3 and
t = [2'2c2 p~*log® n| finds with high probability a c-metric-approzimating set Q C E
(for random subgraphs induced by W = V(p)) such that

Q| = O (p_2°n1+2/c log’n) .

It should be noted that for p constant, the gap between our upper and lower bounds
is O(n'/¢log®n). However, the factor of n'/¢ arises from the lack of tight bounds on
graphs of given girth rather than poor performance of our algorithm. Alternatively,
we could formulate our bounds in terms of the maximal number of edges for graphs
of girth g (which is not known precisely). Denoting this number by m(n, g), we would
obtain that our c-metric-approximating set has size O(m(n, ¢ + 2)log®n), while the
lower bound is exactly m(n, c+2). This is also the standard lower bound for spanners.
Thus the price we pay for having a “robust spanner”, resistant to random failures of
vertices, is O(log? n).

4.4 Construction of metric-approximating sets for
random edge-induced subgraphs

The solution is more straightforward for random edge-induced subgraphs. We invoke
Algorithm 4 once again.

Theorem 14. For any graph G with edge lengths, Algorithm 4 with r = [4p~¢Inn)|
and integer ¢ > 3 finds with high probability a c-metric-approzimating set Q C E (for
random subgraphs induced by F = E(p)) such that

Q| = O (p~n***<logn).

Proof. Recall the proof of Lemma 2. The bound on |Q| follows again from the girth of
Qi in each stage which is at least c+2. Similarly, every edge e € E'\ Q) is covered by r
edge-disjoint paths whose length approximates that of e by a factor of at most ¢. Each
of them has probability of survival at least p°. Here, these events are independent
because of edge-disjointness. Consequently, the probability that none of these paths
survive in F is at most (1 —p°)" < 1/n*. By the union bound, all edges in F'\ @ have
a c-approximate metric covering in @ N F with probability at least 1 — 1/n?. O

46



Chapter 5

Stochastic Optimization and
Adaptivity

Let us introduce a class of optimization problems with randomness on the input. Our
basic setting is that the input consists of a collection Z of atomic ¢tems which are
characterized by certain (possibly random) properties. We call an item instantiated if
its properties have been specified by drawing a sample from the respective probability
distribution. The random properties for different items are assumed to be mutually
independent. A collections of items with instantiated properties can be feasible or
infeasible - this depends on the properties of included items, for example their total
size. We seck a strategy (or policy) that selects a feasible set of items of optimum
cost.

The stochastic aspect of our optimization problems arises from the randomness of
item properties. For a given set A C 7, it is not a priori clear whether it is feasible
or infeasible. Our basic assumption is that a policy has some information on the
probability distribution of item properties, but their exact instantiation is not known
beforehand. However, once an item is included in the solution, its properties are
instantiated and made known to the policy. A policy can then use this knowledge to
adapt its decisions in the future. Hence, we distinguish two kinds of policies: adaptive
and non-adaptive. An adaptive policy makes its decisions based on the properties of
items selected so far, while a non-adaptive policy must specify a fixed sequence of
items in advances, regardless of their instantiated sizes.

Note. There is no reference to computational efficiency in our notion of a policy.
An adaptive policy may be viewed as an oracle specifying which item should be
inserted for a given configuration. The existence of a policy does not necessarily mean
that it can be realized algorithmically. Algorithmic efficiency of finding an optimal or
approximately optimal policy (in the usual sense of polynomial-time computability)
is another aspect of a stochastic optimization problem and it will be addressed here
as well.
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5.1 Stochastic Knapsack

Let’s turn to a more specific problem. The starting point of our investigation is the
Stochastic Knapsack problem, introduced by Brian Dean. The classical knapsack
problem involves n items with values v, ...v, € R, and sizes s; ...s, € Ry, and asks
for a maximum-value set of items that fits within given capacity (each item can be
used at most once). In our stochastic generalization, we consider deterministic values
and independently random sizes.

Definition 2 (Stochastic Knapsack). An instance of Stochastic Knapsack is given
by a collection of items with deterministic values vy, vq,vs, ... € Ry and random sizes
81, 89, 83, . . . which are independent random variables with values in Ry. The actual
size of an item is unknown until we instantiate it by attempting to place it in the
knapsack. The knapsack capacity is assumed to be normalized to 1.

A non-adaptive policy is an ordering of items to insert. An adaptive policy is
a function P : 2" x Ry — [n]. The interpretation of P is that given a configura-
tion (J,c) where J represents the items still available and c the remaining capacity,
P(T,c) determines which item should be chosen next among the items in J.

A policy inserts items until the knapsack capacity is exceeded. For each item in-
serted within the capacity, the policy receives a profit equal to the value of the inserted
item. Qur objective function is the expected value collected by a policy.

This problem is motivated by the application of scheduling a maximum-value sub-
set of n tasks with uncertain durations within a fixed amount of time. The conditions
of our stochastic setting arise from the following assumptions: (1) jobs have random
running times, (2) once a job has been scheduled, we cannot remove it, (3) once a
job has been completed, its running time is known exactly. A scheduling policy can
have the flexibility of choosing the next job based on the time remaining before the
deadline, and the objective here is to maximize the profit received for jobs processed
before a given deadline.

To be more precise, let’s specify what information a policy has on the probability
distribution of job/item sizes; in this thesis, we restrict ourselves to the following
assumption:

For each item, a policy knows beforehand the probability that the item alone fits
within the capacity, and the expectation of the item’s size truncated to the capacity,

i = E[min{s;, 1}].

The reason for this assumption will be apparent later. Intuitively, knowing the actual
expected size E[s;] is not very useful since beyond the knapsack capacity, the size of
an item does not make any difference.

Let’s define a notation for Bernoulli random variables.

Definition 3. Be(p) denotes a random variable which attains value 1 with probability
p and value 0 with probability 1 — p.
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Example. Two items of size 20 Be(0.1) and 1+10 Be(0.1) have the same expected
size (2) and even the same probability of fitting (each alone fits with probability 0.9).
Yet their behavior is very different: assuming that their values are equal, the first
item is certainly more profitable for our purposes. Note that the mean truncated size
is p; = 0.1 for the first item and py = 1 for the second item.

Given such a Stochastic Knapsack instance, what are the questions we are inter-
ested in?

1. What is the optimum adaptive policy? (L.e., the adaptive policy maximizing the
expected value achieved for items successfully inserted.) Can we characterize
the optimum adaptive policy?

2. What is a good non-adaptive policy? (l.e., a good ordering of items to be
inserted sequentially.)

3. What is the largest possible ratio of expected values achieved by optimal adap-
tive / non-adaptive policies? We call this factor the adaptivity gap. (Note that
this is independent of any computational assumptions; it refers merely to the
existence of policies, which may not be computable efficiently.)

4. What is the best adaptive or non-adaptive policy that can be found in polyno-
mial time? Both positive (approximation) and negative (hardness) results are
interesting.

In [15], we obtained the following results:

e There are instances where an adaptive policy can perform better than any non-
adaptive policy, by a constant factor. There are examples where the adaptivity
gap is equal to 5/4.

e There is an efficient greedy algorithm that computes a non-adaptive policy with
expected value is at least 1/7 that of an optimal adaptive policy, thereby giving
an upper bound of 7 on the adaptivity gap for Stochastic Knapsack.

e There is a polynomial-time adaptive policy (i.e., a policy that takes polynomial
time to decide about the next item to insert in the knapsack given the sizes
of items inserted so far) whose expected value is at least (1/5 — €) times that
of an optimal adaptive policy, for any constant ¢ > 0. However, this policy
requires additional information on the probability distribution of item sizes. In
principle, having more information may improve approximation factors, but we
shall not investigate this issue here.

e Regarding the computational complexity of Stochastic Knapsack, it turns out
that many natural questions are PSPACE-hard. Namely, it is PSPACE-hard
to decide whether there is an optimal adaptive policy which fills the knapsack
always exactly to its capacity.
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In this thesis, we address the Stochastic Knapsack in Chapter 6, before we move on
to more general classes of stochastic optimization problems. We show an improved
analysis of the adaptivity gap which yields a constant factor of 4. In Chapter 9,
we present the relation of stochastic optimization to PSPACE, and the complexity
of Stochastic Knapsack is also discussed there. For more information on Stochastic
Knapsack, the reader can also consult Brian Dean’s PhD thesis [14].

5.2 Stochastic Packing and Covering problems

Now we define a more general class of problems we are interested in. They can
be categorized as Stochastic Packing and Stochastic Covering. In both cases, the
input comes in the form of a collection of items. Item 7 has a scalar value v; and
a vector size S(i). Unless otherwise noted, we assume that S(i) is a random vector
with nonnegative components, while v; is a deterministic nonnegative number. The
random size vectors of different items are assumed independent. Occasionally, we will
consider random values as well, possibly correlated with the respective item size, but
the pairs (v;, $(i)) as random vectors are always mutually independent.

We start with the deterministic form of a general packing problem, which is known
under the name of a Packing Integer Program (see [40], [10]).

Definition 4 (PIP). Given a matric A € R¥™ and vectors b e R, 7€ R, a
Packing Integer Program (PIP) is the problem of maximizing U - T subject to AT < b
and T € {0,1}".

This is a combinatorial problem in a very general form, encapsulating many com-
binatorial problems such as Hypergraph Matching (a.k.a. Set Packing), b-matching,
disjoint paths in graphs, Maximum Clique and Maximum Independent Set. In com-
binatorial optimization, it is often useful to consider a linear relazation of a combi-
natorial problem, where we allow fractional parts of items to be used in a solution.
This means simply relaxing the condition Z € {0,1}" to & € [0, 1]*. The optimum of
the relaxed problem can be greater than that of the original problem. The ratio of
the two optima is called the integrality gap.

Definition 5. For an instance of PIP, define

-

e OPT = max {17- Z: AZ<b, £ €0, 1}"} , the optimum of the packing integer
program.

e LP = max {17 Z: AT < E, Z € [0, 1]”}, the optimum value of the respective
linear relazation.

o Then the integrality gap is w = LP/OPT.

For a class of PIP instances, define w* as the supremum of possible integrality gaps.
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In analogy to Stochastic Knapsack, we consider a stochastic generalization of PIP
where items have random vector sizes. The special variants would correspond to Set
Packing with random sets, b-matching on a random hypergraph, etc.

Definition 6 (Stochastic Packing). Stochastic Packing (SP) is a stochastic variant
of a PIP where A is a random matriz whose columns are independent random vectors,
denoted S(1),...5(n). The capacity vector b is considered deterministic. We view
the columns as items to be selected for a feasible solution. A feasible solution is a
set of items F' such that ), p 5(i) < b. The value of S(i) is instantiated and fized
once we include item i in F. Once this decision is made, the item cannot be removed.
Whenever the condition ), S(3) < b is violated, no further items can be inserted,
and no value is received for the overflowing item.

We consider 4 classes of Stochastic Packing problems: (1) General Stochastic
Packing whev:e no restrictions are placed on item sizes or capacity; by scaling, we can
assume that b = (1,1,...,1). (2) Restricted Stochastic Packing where the S(i) have
values in [0,1)¢ and b € R, b; > 1. (8) Stochastic Set Packing where the S(i) have
values in {0,1}¢ and b= (1,1,...,1). (4) Stochastic b-matching where the S(i) have
values in {0,1}¢ and b € Z%,b; > 1.

As a dual to Stochastic Packing, we define Stochastic Covering as a generalization
of Set Cover and Covering Integer Programs.

Definition 7 (CIP). Given a collection of subsets F = {S1,Ss,...,5s},C P(S),
Set Cover is the problem of selecting as few as possible so that their union is equal to
S.

More generally, given a matriz A € R:‘J‘d and vectors b € Ri, v € R%, a Covering

Integer Program (CIP) is the problem of minimizing U - T subject to AT > b and
z € {0,1}<.
Definition 8. For an instance of CIP, define

e OPT = min {17- T AE>b, T € {0, 1}”} , the optimum of the packing integer
program.

e LP = min {17 Z: AT >b, T €0, 1]"}, the optimum value of the respective
linear relazation.

e Then the integrality gap is: w = OPT/LP.
For a class of CIP instances, define w* as the supremum of possible integrality gaps.

Definition 9 (Stochastic Covering). Stochastic Covering (SP) is a stochastic vari-
ant of a CIP where A is a random matriz whose columns are independent random
vectors, denoted 5(1), . §(n) The capacity vector b is considered deterministic. A
feasible solution is a set of items F' such that ), S() > b. The value of S(i) is
instantiated and fized once we include item i in F'. Once this decision is made, the
item cannot be removed.
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We consider 4 classes of Stochastic Covering problems: (1) General Stochastic
Covering where no restrictions are placed on item sizes or capacity;, by scaling, we
can assume thatb = (1,1,...,1). (2) Stochastic Set Cover where the S(i) have values
in {0,1}¢ and b= (1,1,...,1). (8) Stochastic Covering with multiplicity where items
can be selected repeatedly (i.e., each item is available with an unlimited number of
copies). (4) Stochastic Set Cover with multiplicity where the S(i) have values in
{0,1}¢, b= (1,1,...,1) and in addition items can be selected repeatedly.

We require a technical condition that the set of all items is feasible with probability
1. For Stochastic Covering with multiplicity, it is sufficient to require that the set of
all items 1s feasible with positive probability.

When we refer to a stochastic optimization problem “with multiplicity”, it means
that each item on the input comes with an unlimited number of identical copies. This
makes sense for deterministic PIP/CIP as well, where we could allow arbitrary integer
vectors £ € Z7. In the linear relaxation, we would then allow arbitrary non-negative
vectors £ > 0. For example, the linear relaxation of a PIP with multiplicity would be

LP=max{17-:E‘: AZ < b, :z‘em}.

For all variants of stochastic optimization problems, we consider adaptive and
non-adaptive policies.

Definition 10 (Adaptive and non-adaptive policies.). A non-adaptive policy is
a fized ordering of items to be inserted.

An adaptive policy for a Stochastic Packing/Covering problem is a function P :
2iMl x R — [n]. The interpretation of P is that given a configuration (Z, l-;) where T
represents the items still available and b the remaining capacity, P(Z, 5) determines
which item should be chosen next among the items in Z.

The value of the feasible solution found by a non-adaptive or adaptive policy is a
random variable. Qur objective function is the expectation of this variable, which we
try to maximize in the case of packing problems, and minimize in the case of covering
problems. ‘

Regarding the information available a priori to a policy, whether adaptive or non-
adaptive, we adopt the assumptions for Stochastic Knapsack stated in Section 5.1.
That is, before inserting an item 4, a policy has access only to the probability that
the item alone fits, Pr[S(i) < b], and it has access to the mean truncated size of item
1, defined below.

Definition 11. For an instance with capacity 5, we define the mean truncated size of
an item with random size S as a vector i such that

Hi = E[min{Sj, b]}]

92



5.3 Questions and gaps

Let’s summarize the questions regarding stochastic optimization problems that we are
interested in. In the following, “optimum” means “minimum” for covering problems
and “maximum” for packing problems.

Adaptive policies represent strategies which could be implemented (computational
efficiency aside) under the assumption that we can indeed detect the size of each item
after its inclusion in the solution. Non-adaptive policies represent strategies which
could be implemented even without this assumption. A question that we mentioned
already is, what can be the benefit of being adaptive compared to being non-adaptive?

Another question that lends itself at this point is, how well could we perform if
we knew the precise sizes of all items beforehand? This would be, in some sense,
analogous to the analysis of on-line algorithms where we compare against an omni-
scient algorithm which has complete information about the input beforehand. In our
setting, however, such an omniscient policy would be far too powerful.

Example. Consider an instance of Stochastic Knapsack: n items of unit value
and size 2 Be(1/2). Le., any item overflows with probability 1/2 and adaptivity has
no benefit. Any adaptive or non-adaptive policy inserts only 1 item on the average.

However, out of the total of n items, n/2 items on the average will attain size 0.
An omniscient policy, knowing these items beforehand, can insert all of them, for an
expected value of n/2.

This example demonstrates that even for Stochastic Knapsack, omniscient policies
can be arbitrarily strong, compared to adaptive policies. In the following, we reject
omniscient policies as unrealistically powerful and we do not consider them anymore.
Our main focus is on the difference between adaptive and non-adaptive policies.

Definition 12. For an instance of a stochastic packing/covering problem, define
e ADAPT = optimum expected value achieved by an adaptive policy.
e NONADAPT = optimum ezpected value achieved by a non-adaptive policy.

e The adaptivity gap is « = ADAPT/NONADAPT for packing problems, and
a = NONADAPT/ADAPT for covering problems.

For a class of stochastic packing/covering problems, we define o as the supremum of
possible adaptivity gaps.

The adaptivity gap is our central concept. Note that it is defined in such a way
that a* > 1 for both packing and covering problems. The greater the value of the
adaptivity gap, the more advantage we can gain by making adaptive decisions. We
investigate the question of how much benefit adaptivity can bring for each prob-
lem variant under consideration. As a motivating example, consider the Stochastic
Knapsack problem.
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Example.

e Item 1 has value v; = 1 and size s; = Be(1/2).

e Item 2 has value vy = 1 and size sy = 1.

e Item 3 has value v3 = 1/p and size s3 = 2 Be(p), for some small p > 0.

The optimal adaptive policy is: Insert item 1 first. If it has size 0, insert item 2,
otherwise skip it. Finally insert item 3. The expected value achieved by this policy
is 1+ 1/2+ 1 =5/2. On the other hand, the optimal fixed ordering of items can be
seen to be (1, 3,2) which yields expected value 1+ p(1/p+1/2) = 2+ p/2. Thus the
adaptivity gap can be arbitrarily close to 5/4.

Surprisingly, this simple example is the best one we could find, and 5/4 could
possibly be the worst adaptivity gap for Stochastic Knapsack. However, proving
upper bounds seems more challenging. An adaptive policy is basically a decision tree
which can have potentially exponential size [14] so it is not very obvious how much
power an adaptive policy can have. We defer this issue to Chapter 6.

Another notion that we introduce is the randomness gap which is motivated by
the following:

Example. Consider two instances of Stochastic Knapsack. Let p = 1/2+¢ where
€ > 0. The first instance contains a large supply of items of random size s; = Be(p).
The second one has a large supply of items of deterministic size s, = p. All item values
are 1. Note that the expected item sizes are p in both cases, however the expected
values achieved by optimal adaptive policies are different. In the first instance, we
can insert a sequence of items until two of them attain size 1; the expected number
of trials until that happens is 2/p, and ADAPT; = 2/p — 1 = 3 — O(¢). Whereas,
only one item fits in the second instance: ADAPT; = 1. For small € > 0, the gap
can be arbitrarily close to 3.

This example demonstrates that knowing only expected item sizes cannot deter-
mine the optimum to within a factor smaller than 3. Imagine that we prove an upper
bound on ADAPT in terms of expected item sizes. For our example, this upper
bound would be at least 3; but it must be the same upper bound when applied to the
second instance where the actual optimum is 1.

More generally, assume that two instances have the same mean sizes of items
and in addition, truncated sizes are equal to non-truncated sizes; i.e. the truncated
mean size fi(¢) is all the information the policy has about item ¢. Any bound on the
performance of a policy that we prove in terms of mean item sizes must apply to both
instances. Therefore the approximation factor we prove cannot be better than the
ratio of actual optima for the two instances. The approximation factor we prove in
such a way for a given class of problems cannot be better than the randomness gap
for this class, defined below.
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Definition 13. For a pair of Stochastic Packing/Covering instances where every
item fits within the capacity with probability 1 and the two instances become equal
upon replacing item sizes S(z) by ji(i), define

o Adaptive randomness gap: p, = ADAPT,/ADAPT:.

e Non-adaptive randomness gap: p, = NONADAPT,/NONADAPT;.

For a class of stochastic optimization problems, we define p} and p}, as the suprema
of p. and p, over all such pairs of instances.

5.4 Literature review

5.4.1 Stochastic Optimization

Stochastic optimization problems have been investigated thoroughly in the opera-
tions research community. In particular, scheduling and packing problems have been
treated in many different variants, under various constraints and also with random
item sizes. This research dates back as far as 1966 [42]. In much of the previous lit-
erature, scheduling is studied with the objective to assign all given jobs to machines
in order to minimize the completion time of the last job (or makespan). Sometimes,
the weighted average of completion times is considered. Adaptivity is also a known
concept in the stochastic programming literature. The distinction between adaptive
and non-adaptive solutions is an important aspect of stochastic programming [5]. For
a survey of stochastic scheduling problems, see [48].

Recently, stochastic optimization has come to the attention of the computer sci-
ence community as well. An optimization model which has been mainly under scrutiny
is the two-stage stochastic optimization with recourse [25, 21, 43]. In contrast to our
model, this model involves only two stages of decision-making. In the first stage, only
some information about the probability distribution of possible inputs is available. In
the second stage, the precise input is known and the solution must be completed at
any cost. The goal is to minimize the expected cost of the final solution. Another dif-
ference is that the randomness in this model is not in the properties of items forming
a solution but rather in the demands to be satisfied by a solution. Let’s illustrate this
on the example of Set Cover: Shmoys and Swamy consider in [43] a Stochastic Set
Cover problem where the sets to be chosen are deterministic and there is a random
target set to be covered. In contrast, we consider a Stochastic Set Cover problem
where the target set is fixed but the covering sets are random. This yields a setting
of a very different flavor.

The knapsack problem has appeared in the literature in many forms and also with
inherent randomness. Yet, perhaps surprisingly, the Stochastic Knapsack as we define
it is a new problem and has not been studied in this form before.
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5.4.2 Stochastic Knapsack

An aspect of Stochastic Knapsack which makes it different from traditional scheduling
problems is the fixed deadline beyond which no profit is ever received. This issue has
been addressed before: Derman, Lieberman and Ross [16] considered the adaptive
stochastic knapsack problem where multiple copies of items are permitted, as well
as the related knapsack covering problem in the same setting. An application of
the knapsack covering problem is keeping a machine running for a certain duration,
where the machine depends on a critical part (e.g. a light bulb) that periodically
fails and must be replaced. The different items correspond to potential replacements,
each having a deterministic cost and an uncertain lifetime. Derman et al. provide
dynamic programming formulations for these problems, and also prove that if item
sizes are exponentially distributed, both problems are solved by greedily scheduling
jobs according to value or cost divided by expected size.

A different variant of Stochastic Knapsack, with deterministic sizes and random
values has been studied by several authors [8, 23, 44, 47], all of whom consider the
objective of computing a fixed set of items fitting in the knapsack that has maximum
probability of achieving some target value (in this setting, maximizing expected value
is equivalent to deterministic knapsack). Several heuristics have been proposed for
this variant (e.g. branch-and-bound, preference-order dynamic programming), and
results are given for specific probability distributions. Adaptivity is not considered
by any of the authors. Another somewhat related variant, known as the stochastic
and dynamic knapsack problem [30, 37], involves items that arrive on-line according
to some stochastic process — we do not know the properties of an item until it
arrives, at which point in time we must irrevocably decide to either accept the item
and process it, or discard the item.

Two recent papers due to Kleinberg, Rabani and Tardos [29] and Goel and Indyk
[20] consider yet another variant of the Stochastic Knapsack problem. Similarly to
our model, they consider items with deterministic values and random sizes. How-
ever, their objective is quite different: given a specified overflow probability p, find a
maximum-value set of items whose probability of overflowing the knapsack is at most
p. Adaptivity is not considered. Kleinberg et al. consider only the case where item
sizes have a Bernoulli-type distribution and for this case they provide a polynomial-
time O(log1/p)-approximation algorithm as well as several pseudo-approximation
results. For job sizes that have Poisson or exponential distributions, Goel and In-
dyk provide a PTAS, and for Bernoulli-distributed items they give an approximation
scheme whose running time depends polynomially on n and log1/p. Kleinberg et
al. show that the problem of computing the overflow probability of a set of items,
even with Bernoulli distributions, is #P-hard. Consequently, it is also #P-hard to
solve the problem variant mentioned above with deterministic sizes and random val-
ues, whose goal is maximizing the probability of achieving some specified target value.

In contrast to this work, our primary interest is the benefit of adaptivity and
approximation of the adaptive optimum. Also, we do not assume any particular
probability distributions. Our algorithms work for arbitrary random sizes.
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5.4.3 Stochastic Packing

Stochastic Packing problems in this form have not been considered before. We build
on the previous work on Packing Integer Programs (PIP) which was initiated by
Raghavan and Thompson [40]. They proposed an LP approach combined with ran-
domized rounding, which yields an O(d)-approximation for the general case [40]. For
the case of set packing (4 € {0,1}%*" b= (1,1,...1)), their methods yield an O(v/d)-
approximation. For general b parametrized by B = minb;, they get an O(dY?)-
approximation for A € [0, 1]%*" and an O(d"/(B+Y)-approximation for A € {0, 1}¢*".
One can also achieve a v/d-approximation for the weighted set packing problem by a
greedy algorithm [22].

This is complemented by the hardness results of Chekuri and Khanna [10], where it
is shown that a d¥/(B+D=<_approximation for the b-matching problem (A € {0, 1}%*™, b=
(B,B,...B)) would imply NP = ZPP (using Hastad’s result on the inapproxima-
bility of Max Clique [46]). The analysis of the randomized rounding technique has
been refined by Srinivasan [45] who presents stronger bounds; however, the approxi-
mation factors are not improved in general (and in the case of A € {0,1}%*", this is
essentially impossible due to [10]). A remaining question was the gap between d/2~¢
and O(d) in the general case, as well as the gap between d'/(B+)=¢ and O(d"/?) in
case A € [0,1]" b= (B, B,...,B).

5.4.4 Stochastic Covering

Stochastic Covering problems can be seen as generalizations of Covering Integer Pro-
grams (CIP, see [45]). The forefather of Covering Integer Programs is the well-known
Set Cover problem. For Set Cover, it was proved by Johnson [27] that the greedy
algorithm gives an approximation factor of Ind. This result was extended by Chvatal
to the weighted case [11]. The same approximation guarantee can be obtained by a
linear programming approach, as shown by Lovdsz [32]. Finally, it was proved by Uriel
Feige [17] that these results are optimal, in the sense that a polynomial-time (1—¢)Ind
approximation algorithm for Set Cover would imply NP C TIM E(nC(cglogn),

Note. Usually the cardinality of the ground set is denoted by n, but to be
consistent with Stochastic Packing problems, we view this parameter as “dimension”
and denote it by d.

For general Covering Integer Problems, the optimal approximation has been found
only recently - see [7], [31]. The approximation factor turns out to be again O(logd)
but the approximation algorithm is more sophisticated since the natural LP can have
an arbitrarily large integrality gap (see also Section 8.2).
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Chapter 6

Stochastic Knapsack

In this chapter, we address the Stochastic Knapsack problem. Recall that there is an
example for Stochastic Knapsack where the adaptivity gap is arbitrarily close to 5/4
(Section 5.3). Surprisingly, this simple example is the best one we could find, and
5/4 could possibly be the worst adaptivity gap for Stochastic Knapsack. However,
proving upper bounds is much more challenging. Our efforts have led to a sequence
of improvements on the adaptivity gap factor, starting from 50 and culminating (so
far) in the bound of 4 presented in this thesis. We show two approaches in this thesis:
the first one leading to a bound of 32/7 and the second one proving the bound of 4.

6.1 Bounding adaptive policies

A fundamental problem is, how much value can an adaptive policy achieve? In this
section, we provide a non-trivial upper bound on the performance of any adaptive
policy for Stochastic Knapsack. In [15], this bound was proved using a martingale
argument. Here, we give an alternative elementary proof.

Let’s recall that the random sizes of items are denoted by sy, s9, ..., s, and their
mean truncated sizes by p; = E[min{s;,1}]. For now, we ignore item values and
analyze the mean truncated size i(A) = ), 4 s of all the items that an adaptive
policy attempts to insert. (For a set of items A, we refer to the quantity u(.A) as
“the mass of A”.) lLe., we count the mass of all items inserted including the first
overflowing item.

Lemma 15. For a Stochastic Knapsack instance with capacity 1 and any adaptive
policy, let A denote the (random) set of items which the policy attempts to insert.
Then

E[u(A)] < 2.

Proof. Denote by M(c) the maximum possible E[u(.A)] for a random set A that an
adaptive policy can attempt to insert within remaining space ¢ < 1. We prove, by
induction on the number of available items, that M(c) < 1+ c.

Suppose that an optimal adaptive policy, given remaining space c, inserts item i.
Denote by fit(i, ¢) the characteristic function of the event that item i fits (s; < ¢) and
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by §; its truncated size §; = min{s;, 1}. Having inserted item i, the policy continues
only if item ¢ fits and then the remaining space is ¢ — §; > 0:

M(c) = wi + E[fit(i, )M(c — &)] = E[5 + fit(s, c)M(c — 3)].

Applying the induction hypothesis to M(c — §;),

M(c) < E[&+ fit(s,c)(1 +c— &)
= E[fit(i,c)(1+c) + (1 — fit(i,c)) &]
< E[fit(s,c)(1+c) + (1 — fit(s, c))]
< l+ec

O

An adaptive policy can take decisions based on the perceived sizes of items;
nonetheless, the total probability that an item ¢ is inserted by the policy is deter-
mined beforehand - as an average over all the branches of the decision tree where
item ¢ is inserted, weighted by the probabilities of executing those branches (which
are determined by the policy and distributions of item sizes). We do not actually
need to write out this probability explicitly in terms of the policy. Just denote by
z; the total probability that the policy attempts to insert item i. Also, define by
w; = v; Prs; < 1] the effective item value of item ¢ which is an upper bound on the
expected profit a policy can gain if it attempts to insert item i. Then we get the
following bound.

Theorem 15. For Stochastic Knapsack,
ADAPT < 9(2)
where
®(t) = max {Z Wiy inui <t, z; €0, 1]}
and w; =v; Pr[s; < 1], g; = E[min{s;, 1}].

Proof. Consider an adaptive policy which attempts to insert item i with total proba-
bility ;. Conditioned on inserting item i, the expected profit received for it can be at
most w;. So the expected value achieved by the policy is bounded by >, w;z;. The
expected mass that the policy attempts to insert is E{u(A)] = Y_, zip;. We know
that this is bounded by E[u(A)] < 2, therefore Z is a feasible vector for ®(2) and the
expected value obtained is at most ), w;z; < ®(2). O

Note that ®(t) is a fractional solution of the knapsack problem with capacity ¢ and
mean truncated item sizes. This fact will be useful when we design a non-adaptive
policy to approximate the adaptive optimum.
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6.2 A 32/7-approximation for Stochastic Knapsack

Consider the function ®(¢) which can be seen as the fractional solution of a knapsack
problem with capacity ¢. This function is easy to describe. Its value is achieved by
packing items of maximum possible “value density” and taking a suitable fraction of
the overflowing item. Assume that the items are already indexed by decreasing value
density:

w1 > w2 > Ws > ...

K1 M2 U3
We call this the greedy ordering. Also, let M} = ZLI pi. Then fort = My_1+& €

[My—1, My], we have
k—1

o(t) = w; + — Wy

i=1

Assume WLOG that ®(1) = 1. This can be arranged by scaling the values by a

constant factor which doesn’t change the adaptivity gap. We also assume that there

are sufficiently many items so that .. , g > 1 which can be arranged by adding
dummy items of value 0. Now we are ready to describe our algorithm.

The randomized greedy algorithm.

Let r be the minimum index such that Y ;_, u; > 1. Denote u. =1 — Z:;ll i
i.e. the part of p, that fits within capacity 1. Set p’ = u!./u, and w, = p'w,. For
i=12,...,7—1, set wj = w; and p, = p,. We assume (1) = >, w; = 1.

e Choose index k with probability w;.

o If k < r, insert item k. If k = r, flip another independent coin Be(p') and insert
item r only in case of success (otherwise discard it).

e Then insert 1,2,...,k—1,k+1,...,7 in the greedy order.

Theorem 16. The randomized greedy algorithm achieves expected value

GREEDY > 575 ADAPT.

Proof. First, assume for simplicity that > ;_, p; = 1. Also, ®(1) = 37 w; = 1.
Then ADAPT < ®(2) < 2 but also, more strongly:

ADAPT < ®(2)<1+w

where w = w,/p,. This follows from the concavity of ®(z). Note that

T
w=Yr g Zam Wi
IJ'T Z'L:l”l

With >°_, p; = 1, the algorithm has a simpler form:
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e Choose k € {1,2,...,7} with probability wy and insert item k first.
e Then, insert 1,2,...,k—1,k+1,...,7 in the greedy order.

We estimate the expected value achieved by this algorithm. Note that we analyze
the expectation with respect to the random sizes of items and also our own random-
ization. Item k is inserted with probability wy first, with probability Zf;ll w; after
{1,2,...,k — 1} and with probability w; after {1,2,...,k— 1,5} fork < j <r). If
it’s the first item, the expected profit for it is simply wr = v - Pr[sp < 1]. Otherwise
we use Markov’s inequality:

k k
i=1 i=1

The case when item k is preceded by {1,2,...,k —1,j} is similar. Let V) denote our
lower bound on the expected profit obtained for item k:

k-1 k T k
Vi = wy ("Wc"‘zwj (1—Zﬂi) + Z w; (1—Zui—ﬂj))
=1 i=1 i=1

j=k+1
r k k r
= W (ij (1 — Zﬂi) +wkzﬂi - Z wjﬂj) :
j=1 i=1 i=1 j=k+1

Let V =37} _, V& and simplify V using } % w;=1and } %, p; = L:

r k k T
V = Z’wk (1 — Zm +wk2m - Z wiﬂi)
k=1 i=1 i=1

i=k+1
= 14 D (—wep+wipm) — Y wiwips

i<k<r k<ilr

= 1+ Z (—wrp; + w}%ﬂi + wpwi ;) — Z W W; A

i<k<r ik=1
T
= 1+ > wem(wi+we—1) = Y wips.
i<k<r i=1

To symmetrize this polynomial, we apply the condition of greedy ordering. For any
i < k, we have w; + wx — 1 < 0, and the ordering implies wyu; < w;u, which allows
us to replace wiu; by %(wkui + w;pg) for all pairs 7 < k:

1 T T
V > 1+ 3 Z (wrpti + wipk)(w; + w — 1) + Zwiu,-(2wi -1) - lei,ui

i<k<r i=1

1 T 1 T T
= 1+ 51-;1 wiepts(wi +w — 1) + 3 ;wiui@wi -1) - ;wi,u,-
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and using again Y7, w; =Y ) p; = 1,

vV 2 1+%iﬂ'i(wi— 1)+Z'U)]%+Zwi2/—lli - gzwmi
i=1 k=1

i=1 i=1
= % + %Zw% + ZUI?IM' - Zwiui-
k=1 i1 i1

We want to compare this expression to 1 + w where w = min;<, w;/u;. We use the
value of w to estimate Y, _, w? > w > ;_, weux and we get

vV > % %Zwkuk+zwfui—zwim

We compare this to the adaptive optimum which is bounded by 1 + w:
174 1 w?

l+w =4 16(1+w)

which is at least 7/32 for any w € [0, 1].

It remains to remove the assumption that };_; pu; = 1. We claim that if >_;_, u; >
1, the randomized greedy algorithm performs just like the same algorithm on a modi-
fied instance with values w; and mean sizes y; (see the description of the algorithm).
Indeed, (1) = 1 and w = w,/u, = w../y.. in both cases, so the bound on ADAPT is
the same. For an item k < 7, our estimate of the expected profit in both instances is

k—1 k r k
Vi = w (wﬂc+Zw; (1—2;4) + Z w; (I—Zu;—u;)).
=1 i=1 i=1

j=k+1

For the original instance, this is because the expected contribution of item r to the
total size, conditioned on being selected first, is p'y, = pl; if not selected first, its
contribution is not counted at all. The expected profit for item 7 is V, = wip'w, =
(w})? in both instances. This reduces the analysis to the case we dealt with already.

Finally, the expected value obtained by our randomized policy is a convex com-
bination of expected values obtained by deterministic non-adaptive policies: Insert a
selected item first, and then follow the greedy ordering. We can estimate the expected

value for each such ordering in polynomial time and then choose the best one, which
must achieve at least 7/32 ADAPT. O

63



Example 1. The analysis is tight in the following sense: Consider an instance of
8 equal items with y; = 1/4 and w; = v; = 1. Our bound on the adaptive optimum
would be ®(2) = 8, while our analysis of any non-adaptive algorithm would imply
the following. We get the first item always (because w; = v; = 1), the second one
with probability at least 1 — 2/4 = 1/2 and the third one with probability at least
1—3/4 = 1/4. Thus our estimate of the expected value obtained is 7/4. We cannot
prove a better bound than 32/7 with the tools we are using: the LP from Theorem 19,
and Markov bounds based on mean item sizes. Of course, the actual adaptivity gap
for this instance is 1, and our algorithm performs optimally.

Example 2. Our randomized greedy algorithm can be as bad as ADAPT/4.
Consider for example items of size s; = (1 + €)/2 and value v; = 1/2 + ¢, while the
other type of item is s, = Be(p),vs = p. Our algorithm will choose a sequence of
items of the first type, of which only one can fit. The optimum is a sequence of items
of the second type which yields expected value 2 — p. For small p,e > 0, the gap can
be arbitrarily close to 4. We have no example where the greedy algorithm performs
worse than this. The approximation factor we can prove is 32/7 = 4.57 but it seems
that the gap between 4 and 4.57 is only due to the weakness of Markov bounds.

Example 3. Even with a different non-adaptive algorithm, we cannot prove a
bound better than 4 using this LP. The limitation is that the actual gap between
®(2) and ADAPT can be arbitrarily close to 4: Consider items of deterministic size
(1+€)/2 for a small € > 0. Fractionally, we can pack almost 4 items within capacity
2, so that ®(2) = 4/(1 + ¢), while only 1 item can actually fit. This means that no
approximation bound based on the LP from Theorem 19, adaptive or non-adaptive,
can break the barrier of 4.

6.3 A stronger bound on adaptive policies

We aim to improve the upper bound on the adaptivity gap to 4. The randomized
greedy algorithm from Section 6.2 might actually achieve this approximation ratio,
but we cannot prove it comparing to the bound of ®(2) developed in Section 6.1. Here
we strengthen this upper bound on adaptive policies. Then even a simpler greedy
algorithm will suffice to prove the approximation factor of 4.

Denote by A the set of items that an adaptive policy attempts to insert. In
general, we know that E[u(A)] < 2. Here, we examine more closely how this mass
can be distributed among items. Assume that 7 is a subset of items and BC J is a
(random) subset of these items that a policy attempts to insert. How much mass can
B possibly have? The bound on E[u(B)] approaches 2 asymptotically as u(J) — oo
but we get a stronger bound for small u(J).

Lemma 16. Let B be the subset of J that an adaptive policy tries to insert. Then

E[u(B)] < 2 (1 -[Ja- uj)) :

jeJ
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Proof. Denote by M(J,c) the maximum possible expected mass E[u(B)] that an
adaptive policy can attempt to insert within capacity ¢, using only items B C J. We
prove by induction on | 7| that

M(J,c) < (1+c¢) (1 -JJa- uj)) .
JjeET

Consider that in a given configuration (7, c¢), a policy optimal with respect to our
objective inserts item i. The policy will collect mass p; and then continue provided
that s; < c¢. We denote the characteristic function of this event as “fit(z, c)”, and the
set of remaining items as J' = J \ {i}.

M(J,c) = u; + E[fit(i,c)M (T, c — si)].
We apply the induction hypothesis to M(J’,c — s;):

Fit(i, o) (1 + ¢ —s;) (1 -TJa- u;—))] .

JjET’

M(jac)_<_/~l'1,+E

We denote the truncated size of item ¢ by §; = min{s;, 1}. Conditioned on fit(3, c),
we can replace s; by 3;:

FitGi, e)(1 + ¢ — &) (1 -Tle- ,m)] .

JjeJ’

and then we note that 1+ ¢ — §; > 0 holds always, not only when item i fits. So we
can replace fit(i,c) by 1 and evaluate the expectation:

(14+c¢—5) (1— H(1—uj)>]

JjeT!

= (14— Q+c—m) [JQ-n).

JEJ’

M(j,C) S H1+E

Finally, using (1 + ¢ — ;) > (1 + ¢)(1 — p;), we conclude:

M(F.e) £ (1+0) = (1+01—m) [J(-p) = (1+0) (1—H(1—uj))-

JjeJ’ JjeJ

How does this restrict the expected value achieved by the optimal adaptive policy?
Denoting by z; the total probability that an adaptive policy attempts to insert item
i, we can write an LP similar to Theorem 15.
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_ VT CL Yieg maimi SHL = [Tier (1 — 1s))
v(t) ‘ma‘x{zw”’ VieT; o € [0, 1] Je :

Then ADAPT < ¥(2) because the probabilities z; corresponding to any adaptive
policy form a feasible solution for ¥(2). This is a strengthening of Theorem 15 in the
sense that any solution feasible for ¥(2) is feasible for ®(2). Therefore ¥(2) < ®(2).

However, for now we disregard the condition that z; < 1. This yields a simplified

upper bound which is easier to handle and sufficient to prove the bound of 4. Denote
by w; = v; Pr[s; < 1] the effective item values and order items as before:

w w w w
L>2>2> >

M1~ po T M3 Hn
Theorem 17. -
ADAPT <2 wi [J(1— ).
k=1 i=1

Proof. Consider any optimal policy. Let z; denote the probability that it attempts
to insert item i. Then ADAPT < Y, w;z;. We set formally wpy1/pn+1 = 0 and
rewrite this sum as

n n k
ADAPT < Z %u,ﬂ:i = Z (% - wkH) Zuixi

i=1 p—1 \Hk  Bktr/ ST

where all the summands are non-negative. Denote by By the subset of the first &
items that the policy attempts to insert before overflowing. By Lemma 16, we know

that . k
Z“i‘”i = E[u(B:)] < 2 (1 - H(1 _ Mi))

i=1 i=1

and so

n k
ADAPT < 2 (% - “”““) (1 -TJa- Mi))
k=1

Mk Hik+1 paie

n k—1 k
- 2322 ([[o-w-T[0- w)

i=1 i=1
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6.4 A 4-approximation for Stochastic Knapsack

We assume that items are ordered so that

w1 > w2 > w3 > > Wn
B P2 T s fin
Based on this ordering, we define a simple greedy algorithm.

The vanilla greedy algorithm.

o Let V= Y5 we [155H(1 - ).

e If there is an item such that w; > V/2, insert only this item.
e Otherwise, insert all items in the greedy order.

We claim that this algorithm achieves expected value at least V/2. First, we prove
a general lemma on sums of random variables. The lemma estimates the expected
mass that our algorithm attempts to insert.

Lemma 17. Let X1, Xs,..., Xk be independent, nonnegative random variables and
pi = E[min{X;, 1}]. Let So =0 and S;11 = S;+ X;41. Let A; be the event that S; < 1

and p; = Pr[A;]. Then
k

k
> picans > 1= (1 - uy).
=1

j=1

Note. We need not assume anything about the total expectation. This works even

for % i > 1.
For the special case of k random variables of equal expectation p; = 1/k, we get

iPr[Sj_l <1 >k (1 — (1 - %)k) >k (1 - é) . (6.1)

j=1

This seems related to a question raised by Uriel Feige [18]: What is the probability
that Sx_1 < 1 for a sum of independent random variables Sx_; = X;+Xo+...+Xk_1
with expectations p; = 1/k?7 Feige proves that the probability is at least 1/13 but
conjectures that it is in fact at least 1/e. A more general conjecture would be that
for any j < k,

p; =Pr[8; <1] > (1 - %)J (6.2)

Note that Markov’s inequality would give only p; > 1 — j/k. Summing up (6.2) from
J = 0up to k — 1, we would get (6.1). However, (6.2) remains a conjecture and we
can only prove (6.1) as a special case of Lemma 17.
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Proof. Define o; = E[S;|A;] where A; is the event that S; < 1. First, assume o; +
wiv1 < 1forall i, 0 <i < k. By conditional expectations,

o, + Uiy = E[Sl + min{XHl, 1}|A,] =

E[Sit1]|Aiy1] PrlAiia|Ad] + E[S; + min{X; 1, 1} Ai1] Pr[Ai1] A
PI'[AH_l] PI'[AH_l]

> g, el . o ttnld

2 Tmipry T Ay

_ 0i+1pi+1 + <1 _ pi+1)

Il

i pi
- 1-(1- O_i+1)pi+l‘

%

This implies that
Pir1 o 1 —0i — pinr
pi — l—oiyq1
For i = 0, we get p1 > (1 — p1)/(1 — 01), since pp = 1 and 09 = 0. Multiplying (6.3)
fromi=0up toj— 1, we get

(6.3)

l—p T—oy—py 1—051—py

Pi -0, 1-0, 1—o;
12 s 1
= (1- 1-— - )
( ul)( 1—01) ( l—aj_1> 1—o0;
Let’s define
o 223
vy
1—0,1

Due to our assumptions, u; < v; < 1; as a special case, v, = uy. Le.,

j
Z H 1 - Vz (6 4)
and
k -1 k
Zpa 14§ 2 ZVJ (1-w)=1- H(l - vi). (6.5)
7=1 =1 =1

Since v; > p;, we get
Zpy 1y > 1— H(l — ). (6.6)
i=1

We have proved the statement of the lemma, provided that o; + p;1 < 1 for all i < k.
Finally, we handle the case when for some j < k, o; + p;41 > 1; consider the first
such j. Then o; + ;41 < 1 for all ¢ < j and we can apply the previous arguments to
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variables X, ..., X;. From (6.5),

sz i > 1— H (1 — ). (6.7)

=1

In addition, we estimate the contribution of the (j + 1)-th item, which has mass
fi+1 > 1 —oj, and from (6.4) we get

j
Piti+1 = pi(1 — 0;) H (1 —wv). (6.8)

Therefore in this case we get from (6.7) + (6.8):

k

J
sz‘—llh‘ > Zpi—l,ui +pjpjs1 > 1.
=1 i1

Theorem 18. The expected value obtained by the vanilla greedy algorithm is

Grpmpy- > ¥ 5 ADAPT

Proof. Let X; = s; be the random size of item ¢. Lemma 17 says that the expected
mass that our greedy algorithm attempts to insert, restricted to the first k£ items, is
at least 1 — [J_,(1 — ). As in Lemma 17, we denote by py the probability that the
first k items fit. Now we estimate the “virtual value” obtained, which is the following:
for each item 7 that the algorithm attempts to insert, we count a contribution of w;.
Since item 14 is inserted with probability p;_;, this would be

sz 1w; = Z;:pi—l,ui Z (#k wkH) ZM 1M

i—1 Hk+1

Using Lemma 17,

S s £ ()

Hik41 1

X

n

k—1 k
- 22 (M- flo )
n k-1
= % (H(l—ﬂi)> (1= (1- )

Il
S

Jl0-m=v
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Note that this is exactly 1/2 of the upper bound on the “virtual value” obtained by
the optimal adaptive policy (Theorem 17). If there is an item such that w; > V/2
then inserting this item alone yields expected value at least ADAPT /4. So we can
assume that for every ¢, w; < V/2. Then the difference between the virtual and actual
value obtained by the greedy algorithm is

Z (Pi1 — pi)w; < %Z(mq —p;) < —‘2{

i=1 i=1

We conclude that

GREEDY™ > ipiwi > Xn:pi—lwi -

i=1 1=1

Example 1. The analysis of the vanilla greedy algorithm is tight. Recall Example
2 from Section 6.2. The vanilla greedy algorithm will perform just like the randomized
greedy algorithm, which obtains close to 1/4 of the adaptive optimum.

Example 2. Using Theorem 17 to bound the adaptive optimum, we cannot prove
a better approximation factor than 4. For an instance with an unlimited supply of
items of value v; = 1 and deterministic size s; = (1 +€)/2, we get V =2/(1 +¢€) and
therefore an upper bound of 4/(1 + €¢) on ADAPT, while only 1 item can fit.

The same holds even for the stronger bound of ¥(2) (Section 6.3). Since z; =
min{1,2°7*}/(1+¢) is a feasible solution whose value converges to > >, z; = 4/(1+¢),
we get U(2) > 4/(1+¢).

Example 3. As we mentioned in Section 5.3 already, there are two instances
with items of the same mean size (either s; = Be(1/2+¢€) or s; = 1/2 + €) such that
the ratio of the respective adaptive optima is close to 3. Another way to look at this
example is that in an instance where both item types are available, the optimum is
close to 3 (inserting a sequence of Be(1/2 + €) items), but an algorithm which has
only access to expected item sizes has no way to distinguish the two types of items. It
may as well choose a sequence of items of size 1/2+ € and then only 1 item fits. This
means that with the knowledge of only mean truncated item sizes, no approximation
algorithm, adaptive or non-adaptive, can surpass the barrier of 3.
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Chapter 7

Stochastic Packing

In this chapter, we focus on Stochastic Packing problems. We shall consider this class
of problems in its full generality, as well as some restricted classes of problems. For
each class of problems, we develop bounds on the adaptive optimum, the adaptivity
gap, and we develop polynomial-time algorithms approximating the adaptive opti-
mum. In addition, we estimate the respective integrality gaps, randomness gaps and
we address the issue of polynomial-time inapproximability.

7.1 Bounding adaptive policies

We provide a general bound on the expected value achieved by any adaptive policy.
First, we ignore item values and we analyze the mean truncated size (defined in
Section 5.2) of all the items that an adaptive policy attempts to insert. Le., we count
all the items inserted including the first overflowing item. This is a generalization of
the bounds for Stochastic Knapsack developed in Section 6.1.

Lemma 18. For a Stochastic Packing problem and any adaptive policy, let A de-
note the (random) set of items which the policy attempts to insert. Then for each

component j,
Elp;(A)] < b +m;

where m; is the mazximum possible truncated size min{S;(),b;} for any item.

Proof. Consider component j. Denote by M;(c) the maximum possible E[u;(A)] for
a random set A that an adaptive policy can attempt to insert within capacity ¢ in
the j-th component. For now, all other components can be ignored. We prove, by
induction on the number of available items, that M;(c) < ¢+ m;.

Suppose that an optimal adaptive policy, given remaining space c, inserts item 4.
Denote by fit(, c) the characteristic function of the event that item 4 fits (S5;(¢) < ¢)
and by 3(¢) its truncated size §(i) = min{S;(%), b;}. Having inserted item 4, the policy
continues only if item 7 fits and then the remaining space is ¢ — 3(¢) > 0:

M;(c) = p; (i) + E[fit(i, c) M;(c — §(i))] = E[5(2) + fit(i, c) Mj(c — 5(i))].

71



Applying the induction hypothesis to M;(c — 3(2)),

IA

M;(c) E[53(i) + fit(i, c)(c — 3(3) + m;)]
E[fit(3, c)(c +my) + (1 — fit(i, c)) 3(3)]
E[fit(i,c)(c +m;) + (1 — fit(i,c)) my)

¢+ m;.

INIA

O

We will write a linear program bounding the expected value obtained by any
adaptive policy. Again, we consider the total probability z; that the adaptive policy
attempts to insert item i. In case of a problem with item multiplicity, let z; denote
the expected number of inserted items of type i. Also, for each item define an effective
value which is an upper bound on the expected profit a policy can gain if it attempts
to insert the item.

Definition 14. For an item i and capacity g, the effective value is

w; = v Pr[S() <.

e

Theorem 19. For an instance of Stochastic Packing, ADAPT < ®(b+ m) where
- . 2 Tifil) £ ¢
®(¢) = max {Z Tt Gt e 0.1 (°
For an instance of Stochastic Packing with multiplicity, ADAPT < <I’+(5 + m)
where
JTifi(i) < ¢
t©E) = ma,x{Zx,w,. iz >0 }

Proof. The expected value achieved by a policy is at most ), z;w;, where z; is the
probability that the policy attempts to insert item ¢ (or the expected number of copies
inserted). The expected mean size vector is E[f(A)] = Y_, z;i(i). We know that this
is bounded by E[i(A)] < b + 1 where b is the capacity and m; is the maximum

possible truncated size of any item in component j. Thus Z is a feasible vector for
the LP and ), z;w; is bounded by the LP optimum. O

Note the similarity between these LPs and the usual linear relaxations of packing
problems. We just replace random sizes S(i) by mean sizes fi(i), item values v; by
effective values w; and we modify the right-hand side. These LPs will be used in the
following sections to design and analyze non-adaptive policies.
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7.2 Stochastic Packing and hardness of PIP

Consider the most general variant of Stochastic Packing where item sizes are un-
restricted vectors in Ri. We shall see that a straightforward generalization of the
greedy randomized algorithm from Section 6.2 gives an O(d)-approximation.

Since we are dealing with general item sizes, we can assume by scaling that b=
(1,1,...,1). It will be convenient to use the I; norm of the mean size vector as a
measure of multidimensional size:

d
1N = 3 (A

The reason to use the /; norm here is that it bounds the probability that a set of items
is a feasible solution. Also, the /; norm is easy to work with, because it’s additive for
collections of items.

Lemma 19. .
Pr(|[S(A)lleo < 1] 2 1 = [|E(A)]1-

Proof. For each component, Pr[S;(A) > 1] < E[min{S;(A), 1}] < p;(A), and by the
union bound Pr[||S(A)lee > 1] < 35, 45(A) = [|E(A) 1. m

We design an algorithm for Stochastic Packing analogous to the randomized greedy
algorithm for Stochastic Knapsack. Let the items be ordered by value density, now
with respect to the /; norm of mean size:

AN = TE@I = TAG)

As a further relaxation of the LP from Theorem 19, we can write

o(t) =maX{Zw,-x,-: Ei:ztgﬁ(]’i)lh <t }

Theorem 19 implies that ADAPT < &(2) where 2 = (2,2,...,2), and therefore
ADAPT < ¢(2d). We can apply the randomized greedy algorithm for Stochastic
Knapsack, using the l; norm for mean item sizes.

> ...
Il =

The randomized greedy algorithm. Let r be the minimum such that M, =
S 1E@)|1 > 1. Let p’ = (1 — M,)/||E(r)|l1 and w!. = p'w,. Let w; =wj for j <r
and assume ¢(1) =>_1_ w. = 1.

e Choose k € {1,2,...,r} with probability w;.

o If k < r, insert item k first. If kK = r, flip another independent coin Be(p’) and
insert item r in case of success.

e Insert items 1,2,...,k—1,k+1,... in the greedy order.
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We refer to the analysis in Section 6.2. Thanks to Lemma 19, all estimates on
the performance of our algorithm are valid upon replacing u by ||Z||;- The adaptive
optimum is bounded by ¢(2d) < d¢(2) which yields an additional factor of d.

Theorem 20. For any Stochastic Packing problem in dimension d,

ADAPT < :-3727-9 NONADAPT

and the corresponding non-adaptive policy can be found in polynomial time.

In particular, our randomized greedy algorithm also provides a (32d/7)-approximation
algorithm for PIP. Of course, an O(d) -approximation for PIP is known [39] and quite
easy to achieve. An approximation factor of O(d) may seem rather weak but in fact
it cannot be improved significantly. It is unlikely that a d'~¢-approximation can be
achieved in polynomial time. We prove this result by tweaking a known reduction
which shows d'/?2~-inapproximability for set packing [10].

Theorem 21. There is no polynomial-time d'~¢-approzimation algorithm for PIP for
any € > 0, unless NP = ZPP.

Proof. We use Hastad’s result on the inapproximability of Max Clique [46], or more
conveniently maximum independent set. For a graph G, we define the following PIP
instance.

Let A € R¥™ be a matrix where d = n = |V(G)|, A(,i) = 1 for every i,
A(i,5) = 1/n for (,5) € E(G) and A(i, 7) = 0 otherwise. Let b= ¢ = (1,1,...1). It
is easy to see that AT < bforz € {0,1}™ if and only if Z is the characteristic vector of
a stable set. Therefore approximating the optimum of this PIP to within d'~¢ for any
€ > 0 would imply a nl~*-approximation algorithm for maximum stable set, which
would imply NP = ZPP. O

7.3 The benefit of adaptivity

The greedy algorithm implies that the adaptivity gap for Stochastic Packing is always
O(d). We do not know whether this is tight. The best lower bound that we have is
Q(v/d). The example is a simple instance of Set Packing.

Lemma 20. There are instances of Stochastic Set Packing such that

ADAPT > @ NONADAPT.

Proof. Define items of type ¢ = 1,2,...,d, where items of type i have size vector
S(i) = Be(p) €, i.e. a random Bernoulli variable in the i-th component, and 0
in the remaining components (p > 0 to be chosen later). We have an unlimited

supply of items of each type. All items have unit value and we assume unit capacity
b=(1,1,...1)).
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An adaptive policy can insert items of each type until a size of 1 is attained in
the respective component; the expected number of items of each type inserted is 1/p.
Therefore ADAPT > d/p.

On the other hand, consider a set of items F. We estimate the probability that
F is a feasible solution. For every component %, let k; denote the number of items of
type i in F. We have:

Pr[Si(F) < 1] = (1 - p)% + kip(1 - p)"~* =

(1+p(ki — 1)1 —p)5 ' < A +p)5 (1 —p)sT,
and

d
Prl||S(F) ]l < 1] < ] (1 = )5 < P ED) — 00710,
=1

Thus the probability that a set of items fits decreases exponentially with the num-
ber of items. For any non-adaptive policy, the probability that the first k£ items in
the sequence are inserted successfully is at most e“"z(k_d), and we can estimate the
expected value achieved :

NONADAPT = Prfk items fit] <d + Y eP* D=4+ — 1_ - <d+ l2
k=1 k=d+1 p
We choose p = 1/v/d which yields ADAPT > d*? and NONADAPT < 2d. 0O

We generalize this example to an arbitrary integer capacity vector b.

Lemma 21. There are instances of Stochastic Packing with A € {0,1}%*" and b=
(b1, ba, ... ba) € Z2, such that

ADAPT > 31\- NONADAPT
where A > 1 is the solution of Y&, 1/A\bt1 =1,

Proof. Let p < 1 satisfy Zf=1 p%*1 = 1. Consider the same set of items that we used

in the previous proof, only the values are modified as v; = p%*!/(b; + 1). The same

adaptive strategy will now insert items of each type, until it accumulates size b; in

the i-th component. The expected number of items of type ¢ inserted will be b;/p,
and therefore

|

ADAPT > Zv,-—" = - >

p p i+l T 2p

=1 i

Consider a set of items J. We divide the items of each type into blocks of size
b;+1 (for type i). Suppose that the number of blocks of type i is k;. We estimate the
probability that J is a feasible solution; we use the fact that each block alone has a
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probability of overflow p%*!, and these events are independent:

b +1
?

Pr[Si(F) < b;] < (1 — phtl)ki < ghip

Pr[S(F) < b < e~ Zh#*

Now we express this probability as a function of the value of 7. We defined the blocks
in such a way that a block of type i gets value p%*!, and 3 k;p%*! is the value of
all the blocks. There might be items of value less than p%*! of type 4, which are not
assigned to any block. All these together can have value at most 1 (by the definition
of p). Therefore for any set of value v(F) =1+ w,

Pr[S(F) < B < e

Thus we can estimate the expected value achieved by any non-adaptive policy:

NONADAPT <1 +/ Pr(set of value > 1+ w fitsldw < 1 +/ e Ydw = 2.
0 0

It follows that the adaptivity gap is at least 1/4p = \/4, where X satisfies 37 | 1/A\bt1 =
1. O

As a special case, for b = (B, B, ..., B), the lemma holds with A = d/(B+)_ Note
how the adaptivity gaps for Stochastic Set Packing and b-matching follow closely the
known approximability factors for Set Packing and b-matching (see Section 5.4). In
Section 7.4, we prove that for Stochastic Set Packing and b-matching, these bounds
on the adaptivity gap are not only tight, but they can be actually achieved by a
polynomial-time non-adaptive policy.

7.4 Stochastic Set Packing and b-matching

Consider the special case of Set Packing: we assume that the random size vectors
have values in {0, 1}¢ and the capacity vector is b= (1,1,...1). In other words, each
item is given by a probability distribution over subsets of [d] and we want to pack
disjoint sets of maximum value. In this case, the adaptivity gap can be Q(v/d) (see
Section 7.3) while our greedy algorithm provides only an O(d)-approximation. Here,
we improve this to O(v/d) and thus close the gap up to a constant factor.

Our solution is a fixed collection of items - that is, we insert all these items, and
we collect nonzero profit only if all the respective sets turn out to be disjoint. The
first step is to replace the /; norm by a stronger measure of size, which allows one
to estimate better the probability that a collection of items is a feasible solution.
Fortunately, the restriction to {0, 1}¢ vectors makes this possible.

Definition 15. For a set of items A, define

MA) = > ) - A).
fiiYe(d)
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Lemma 22. For a set of items A with size vectors in {0,1}¢,

Pr[||S(A)]|oo < 1] 21— 4(A).

Proof. A set of items can overflow in coordinate [, only if at least two items attain
size 1 in that coordinate. For a pair of items {3, j}, the probability of this happening
is pu(?)(j). By the union bound:

PriS(A) > 1< Y m(@m(),
{ig}e(3)

Pr{|S(A)le > 1< ) i) - f(5) = A A).
{i3}e(3)

Theorem 22. For Stochastic Set Packing,

ADAPT < 5.6v/d NONADAPT

and the corresponding non-adaptive policy can be found in polynomial time.

Proof. We use the LP formulation introduced in Section 7.1. Since we can solve
the LP in polynomial time, we can assume that we have a solution z such that
13" z:fi(7)||oo <2 and V = ) z;v; bounds the expected value of any adaptive policy
(Theorem 19; in this case, w; = v;). We can also assume that the value of any item
is at most %V for some fixed 8 > 0, otherwise the most valuable item alone is a

vd
B

-approximation of the optimum.

We sample a random set of items F, item ¢ with probability ¢; = %xi. Constants
a, B will be chosen later. We estimate the expected value that we get for the set
obtained in this way. Note that there are “two levels of expectation” here: one
related to our sampling, and another to the resulting set being used as a solution of a
stochastic problem. The expectation denoted by EJ...] in the following computation
is the one related to our sampling. Using Lemma 22, we can lower bound the expected

value achieved by inserting set F.
Ep(F)A-FN =B D vi—=> v > [Q)- k)
ieF ieF {3, k}e(f )
and by multiplying out and separating the terms where i = j, i = k and 1 ¢ {J, k},
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we get

BIo(F) (1~ AF))] = K01 — 5y 05810) - BR) — 5 5 065060501) - K
2 _\7_71 22 Tivi — _TV Z k z;zki(5) - B(k) — 2d33/2 > Tiv; Zj,k zTef(g) - (k)
> 8V — SEVII T, 2G)| 2 - s3m VI X, 2G|

> 2(1 - 40 — 20%)V

where we have used v; < %V.
We choose o and (3 to satisfy a(1—4a8—2a?) = 8 and then maximize this value,

which yields o? = (=5 + v/33)/8 and 42 = (11v/33 — 59)/128. Then vd/3 < 5.6v/d
is our approximation factor. This closes the gap for the Stochastic Set Packing
problem up to a constant factor because we know from Section 7.3 that the adaptivity
gap can be as large as %\/3 Finally, using the method of conditional expectations
(on E[v(F)(1 — 2(F))] which can be computed exactly), we can find a good set F
deterministically. a

Next we show how this algorithm generalizes to b-matching, with an arbitrary
integer vector b. A natural generalization of ji(A) and Lemma 22 is the following.

Definition 16. For a set of items A,
d
=1 g B

Lemma 23. For a set of items A with size vectors in {0, 1},
PrS(A) < 8] > 1— jiz(A).

Proof. Similarly to Lemma 22, a set of items can overflow in coordinate [, only if
b + 1 items attain size 1 in their j-th component. This happens with probability
[L;cp t:(é) and we apply the union bound. O

Theorem 23. For Stochastic b-matching,
ADAPT <20.3\ NONADAPT

where X > 1 is the solution of 31/ AN+l = 1. The corresponding non-adaptive policy
can be found in polynomial time for any fixed capacity b.

Proof. We solve

0<m,§1 Vi

V= max{va : 2 zip(i) S b +1 Vl}
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which is an upper bound on the adaptive optimum. We assume that the value of each
item is at most §V and we sample F, each item ¢ with probability ¢; = §z;, where
> ;1 /A%*1 = 1; @, 8 > 0 to be chosen later. We estimate the expected value of F in
a way similar to the Set Packing case.

Efu(F)(1 - pz(F))]

S E[Yu-Y Y Sullu-Y LY wl[uo)

ieF =1 Be( 7 yieB  jeB I=1 Be(,7,)i€F\B  j€B
1+
d
ﬁ
> Y aw—3V sz+1 > Tl am J)_quzvz > Tl amG)
i |B|=b+1 j€B i |B|=b;+1j€B

5—( o+ >"’“—%v>"’:<b,i1>! (Cmen)™

We use Stirling’s formula, (b + 1)! > (b‘:l)blﬂ, and 4! > (g‘ﬁll)' > (Q’il)b'+1
Also, we assume 2ea < 1.

Bfu(F)(1 - #5(F))
d e S I
> %"‘%’2(2—?) “XVE_;(—S‘)H

o %af. o~ 1 LA | a
> ')\—V— b\ Vlz:xbl—ﬁ——)\——v;)\blﬂ=—XV(1—2eﬂ—ea).
=1 =

Ol

)\

d bi+1 d b+1
a ,8 a 1 )
ﬁ
3 E

We choose optimally 2ea = —1 4 1/3 and 2e8 = 2 — ﬁ which gives an approxima-
tion factor of 2eA/(2 — v/3) < 20.3)\. For constant b, we can compute conditional
expectations in polynomial time and thereby derandomize the algorithm. O

This result is tight up to a constant factor with respect to the adaptivity gap for b-
matching. In the deterministic case, for b= (B, B,...B), there is no polynomial-time
d'/(B+1)—<_approximation unless ZPP = NP [10]. Thus our approximation algorithm
is essentially optimal even in the deterministic case.

7.5 Restricted Stochastic Packing

As the last variant of Stochastic Packing, we consider instances where the item sizes
are general vectors restricted to S(i) € [0, 1]¢ and the capacity vector is a given vector
be R‘i. Similarly to b-matching, we prove an approximation factor as a function of
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the parameter 5, and we find that our approach is particularly successful in case of
capacity b very large compared to item sizes.

Theorem 24. For Stochastic Packing with item sizes 5(i) € [0,1]* and capacity b,
ADAPT < 120N NONADAPT

where A > 1 is the solution of Zle 1/A\% = 1. The corresponding non-adaptive policy
can be found in polynomial time.

Proof. Consider the LP bounding the performance of any adaptive policy:

V=max{2miv,~ : Zmiﬁ(i) <b+1, z; €0, 1]}

Assume that v; < gV for each item i, for some constant 3 > 0 to be chosen later,
otherwise one item alone is a good approximation solution. We find an optimal
solution z and define

o > 0 again to be chosen later.

Our randomized non-adaptive policy inserts item ¢ with probability ¢;. Let’s
estimate the probability that this random set of items F fits, with respect to both
(independent) levels of randomization - our randomized policy and the random item
sizes. For each coordinate 7,

E[S;(F)] = X aims(6) < %(bj +1).

Since this is a sum of [0,1] independent random variables, we apply the Chernoff
bound to estimate the probability of overflow (use pu < a(b; +1)/A, 140 = b;/u):

AN e N roNB rogp\ b
. . - - < | — < | —
PrlS;(F) > b;] < ((1+6)1+5) < (1+6) = (bj) = ( X ) |

Using the union bound,
41
Pr[37;S;(F) > bj] < 26042 U 2eq.
j=1

Now we estimate the probability that the value of F is too low. We assume that
v; < -gV, therefore by scaling we obtain values w; = ﬁivv,- € [0,1]. We sample each
of them with probability g; which yields a random sum W with expectation E[W] =
>, ¢iw; = o/ B. Again by Chernoff bound,

Pr [W < %E[W]] < e EWI/8 _ o—a/88
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We choose o = 1/10 and 8 = 1/100 which yields Pr[3j; S;(F) > b;] < 2ea < 0.544
and Pr[v(F) < 55V] < e7*/8 < 0.287, which means that with probability at least
0.169, we get a feasible solution of value ﬁV. In any case, the expected value
achieved by our randomized policy is at least ﬁlo—AV.

Finally, note that any randomized non-adaptive policy can be seen as a convex
linear combination of deterministic non-adaptive policies. Therefore there is also
a deterministic non-adaptive policy achieving at least the expectation. A fixed set
achieving expected value at least ADAPT/120\ can be found using the method of
pessimistic estimators applied to the Chernoff bounds. This is analogous to the

derandomization for Packing Integer Programs developed by Raghavan [39]. O

As we mentioned, the best approximation in the deterministic case is known to
be O(d'/B) where B = min; b; (see [39]; in this case, our algorithm is very similar
to Raghavan’s). The hardness result from [10] says that for integer B, it is hard to
approximate restricted PIP to within d/(B+)—¢  We strengthen this result to d'/B-¢,
to show that that the randomized rounding approach is essentially optimal.

Theorem 25. There is no polynomial-time d'/B=<_approzimation algorithm for PIP
with A € [0,1]*" and b= (B,B,...,B), B€Z,B > 2, unless NP = ZPP.

Proof. For a given graph G = (V, E), denote by d the number of B-cliques (d < n?).
Define a d X n matrix A (i.e., indexed by the B-cliques and vertices of G), where
Ag = 1 if vertex v belongs to clique Q, Ag, = 1/n if vertex v is connected by an
edge to clique @, and Ag, = 0 otherwise. Let the value vector be ¥ = (1,1,...,1)
and denote the optimum of this PIP by V. Let € > 0 be arbitrarily small, and assume
that we can approximate V to within a factor of d¥/B—,

Suppose that Z is the characteristic vector of an independent set S, |S| = a(G).
Then AX < b because in any clique, there is at most one member of S and the
remaining vertices contribute at most 1/n each. Thus the optimum of the PIP is
V>3, =aG).

If AZ < b for some % € {0,1}™, then the subgraph induced by S = {v: =, = 1}
cannot have a clique larger than B: suppose R C S is a clique of size B + 1, and
Q@ C R a sub-clique of size B. Then (AZ)q = )., AgwZs > B, since it collects 1
from each vertex in @ plus at least 1/n from the remaining vertex in R\ Q. Finally,
we invoke a lemma from [10] which claims that a subgraph on |S| = )", z, vertices
without cliques larger than B must have an independent set of size a(G) > |S|'/5,
ie. V< (a(G))B.

We assume that we can find W such that V/ dV/B—¢« < W <V and we prove that
this would imply an n!~¢-approximation to a(G): We report a = WUVEB a5 our answer
to approximate a(G). On the one hand, we know that a < VB < o(G). On the

other hand,
1/B 1/B
o> ()" s G2, 20
— \ d1/B—¢ nl/B~e — pl-e
where we have used V > o(G), d < n®, and finally o(G) < n. This proves that a is
an n!'~¢-approximation to a(G), which would imply NP = ZPP. a
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7.6 Integrality and randomness gaps

As we have seen, the adaptivity gaps in general dimension d grow as functions of d,
depending on the specific class of problems, and they seem to have some underlying
connection with the approximation factors that can be achieved algorithmically. An-
other quantity that’s often related to deterministic approximability is the integrality
gap, and another one that we defined in Section 5.3 is the randomness gap. All these
factors exhibit very similar behavior as functions of d. It appears that more structure
is hidden under the surface than we could unravel in this thesis.

One connection, which is partially clarified here, is between the randomness and
integrality gaps (defined in Sections 5.2 and 5.3) for packing and covering problems
with multiplicity. We prove that the randomness gap is related to the integrality gap
of a linear program associated with the stochastic optimization problem, as stated in
the following theorem.

Theorem 26. If a PIP instance, with item multiplicity, each item size in a domain
D,{0,1}¢ C D C [0,1)¢, unit item values, and capacity b = (B,B,...,B),B €
Z, has integrality gap w, then there is a pair of Stochastic Packing znstances with
multiplicity, one item type with random size in D, and capacity b such that the
randommness gap for the two instances is p, = pp, > w.

Proof. Consider such a PIP instance and its corresponding linear relaxation

LP = max {Zx, : Zx,-d’(i) <b z> 0} (7.1)

with integrality gap w. In other words, at most LP/w items can fit integrally.

Let z; be an optimal solution, i.e. 3 z; = LP and 3. z;d(i) < b. We define two
Stochastic Packing instances, each with only one item type. In the first one, with
probability p; = x;/LP, let an item have size S = d(i). The expected size is

T - -
= ZLP a(i) < 7 5b (7.2)

However, whatever the instantiated sizes @(7) in a sequence of items, we know that
at most LP/w items can fit.

In the second instance, we define an item type of random size T with values in
{0,1}¢ C D: we generate a uniformly random number £ € [0, 1]; for each j, if £ < p;,
we set T; = 1, otherwise T; = 0. Thus E[T] = /i = E[S]. However, the components of
T are positively correlated in such a way that if T; = 0 for the component maximizing
w; then all the remaining components are zero as well. Due to (7.2), max u; < B/LP;
i.e., each item has non-zero size with probability at most B/LP. We can insert a
sequence of these items until one of them attains non-zero size, which will take an
expected number of at least LP/B trials. Since the size vectors are contained in
D C [0,1]¢, we can iterate this B times, for a total expected value at least LP.
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The same result applies to the non-adaptive randomness gaps since in our in-
stances, there is only one item type and therefore no distinction between adaptive
and non-adaptive policies. O

Integrality gaps are known for many combinatorial problems, including PIP and
Set Packing [38]. We summarize these results, with extensions to b-matching and
Restricted Packing. Finally, from Theorem 26, we get the respective randomness
gaps as well.

Lemma 24. The worst case integrality gaps for PIP are:
e O(d) for general PIP.
e O(Vd) for Set Packing.
o O(dY(B+D) for A € {0,1}4*" b= (B,...,B)
e O(dVB) for A€ [0,1]"",b=(B,...,B)
For stochastic variants of these problems, we get the same randomness gaps.

Proof. Let us demonstrate lower bounds on the integrality gap. Since we shall use
only unit item values, then we refer to Theorem 26 which implies the same randomness
gaps for the respective Stochastic Packing problems. The upper bounds follow from
our approximation algorithms described in the preceding sections.

For general PIP, consider items of size

(1) =23
@ =@G1,...4

S ol

QU

@ =(5...1)

Fractionally, we can pack 1/2 of each item which yields a feasible solution of value
d/2, while integrally only one item fits. So the integrality gap in the general case is
at least d/2.

For Set Packing, consider a finite projective plane of order g > 2. (Constructions
exist for any prime power g, see [41], Chapter 13, Section 2.) It contains d = ¢2+g+1
points which form our ground set. It also contains d lines which form our available
sets. Through each point, there are ¢ + 1 lines. Fractionally we can pack each
line with a coefficient of 1/(q + 1) to get a feasible LP solution of value at least
(¢ +q+1)/(g+ 1) > q. Whereas integrally, we can choose only one line since any
two lines intersect. The integrality gap for Set Packing is at least ¢ > v/d — 1.

More generally, consider a finite projective space of order ¢ > 2 and dimension B+
1. It contains d = (¢%+%2—1)/(g—1) points and also d hyperplanes whose characteristic
vectors are the item sizes. Since any B + 1 hyperplanes intersect at a common point,
the best solution to the B-matching problem is any choice of B hyperplanes. However,
through any point there are only (¢! — 1)/(¢ — 1) hyperplanes, so fractionally we
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can pack each hyperplane with a coefficient of B(qg—1)/(q®*!—1), for an LP optimum
of at least B(¢%*? —1)/(¢®*! — 1) > Bq. Thus the integrality gap for B-matching is
at least g = Q(d¥/(B+D),

Similarly, define a PIP with A € [0,1]**,b = (B,...,B) corresponding to a
finite projective space of order ¢ > 2 and dimension B > 2. We have d = (¢Z*! —
1)/(¢—1) points and d hyperplanes which correspond to items. The size vector G(H)
corresponding to hyperplane H contains 1 in each component : € H and 1/d in each
component ¢ ¢ H. Since any B hyperplanes have a common point of intersection,
which yields a size of B in the respective coordinate, and any additional hyperplane
would contribute a nonzero amount to this coordinate, we cannot pack more than B
items integrally. On the other hand, there are (¢” — 1)/(¢ — 1) hyperplanes through
every point and the contribution of all other hyperplanes is at most 1 so we can
pack (B — 1)(g — 1)/(¢® — 1) of each hyperplane fractionally, for an LP value of
(B—1)(¢%* =1)/(¢® = 1) > (B — 1)g. The integrality gap is at least (1—1/B)q =
Q(dV/B). O

Note. These gaps, as well as our adaptivity gaps, apply also to the problem vari-
ants with item multiplicity, while our algorithmic approximation results hold with or
without multiplicity. In short, item multiplicity does not make a significant difference
for Stochastic Packing.

In summary, we have shown that our approximation results are tight up to a
constant factor, with respect to integrality and randomness gaps. This implies two
facts:

e We cannot obtain better approximation factors for the deterministic packing
problems by comparing against the LP optimum.

e We cannot obtain better bounds for stochastic approximation, adaptive or non-
adaptive, using only mean item sizes.
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Chapter 8

Stochastic Covering

In this chapter, we focus on Stochastic Covering problems, introduced in Chapter 5.
The deterministic forefather of these problems is the well known Set Cover problem.
In contrast to Stochastic Packing, allowing or not allowing item multiplicity makes a
big difference here, and we will distinguish carefully between these two variants.

8.1 Bounding adaptive policies

First we develop linear programs (in analogy to Section 7.1) bounding the performance
of adaptive policies. We estimate the mass of items that an adaptive policy needs to
insert to achieve a feasible covering, i.e. their mean truncated size (see Section 5.2).
This bound does not depend on item multiplicity.

Lemma 25. For a Stochastic Covering problem and any adaptive policy, let A denote
the (random) set of items which the policy uses to achieve a feasible covering. Then

for each component j,
E[p;(A)] = b;.

Proof. Consider component j. Denote by M;(c) the minimum expected u;(A) for
a set A that an adaptive policy inserts to cover capacity ¢ in the j-th component.
We prove, by induction on the number of available items, that M;(c) > c¢. Suppose
that an optimal adaptive policy, given remaining space c, inserts item i. Denote by
cover(i, c¢) the characteristic function of the event that item i covers the remaining
space (i.e., S;(i) > ¢, and in that case the policy terminates). We denote by 3(i) the
truncated size 3(¢) = min{S;(s), b;}:

M;(c) = p;(i) +E[(1—cover(i, ¢)) M;(c—35(2))] = E[3(¢) + (1 — cover(s, ¢)) M;(c—5(3))]
and using the induction hypothesis,

M;(c) > E[3(i) + (1 — cover(i, c))(c — §(2))] = ¢ — E[cover(i, c)(c — 3(3))] > .
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Again, we can write an LP with variables z; interpreted as the total probability
that an adaptive policy inserts item i. We get the following lower bounds on the
expected cost of an adaptive solution.

vy

Theorem 27. For an instance of Stochastic Covering, ADAPT > U(b) where
N — i Elxlﬁ(l)zg
¥(b) = min {Z T;v; € [0,1] :
For an instance of Stochastic Covering with multiplicity, ADAPT > \Il+(_‘) where

U+(b) = min {Z Tv; > mifili) > b } :

1,'120

These bounds hold for Stochastic Covering instances with or without multiplicity.
However, there are instances without multiplicity where the LP bound is arbitrarily
weak.

Example. Consider an instance of Stochastic Set Cover for d =1 and n = 3:
o Item 1 has value v; = 1 and size S(1) = Be(1/2).

e Item 2 has value v, = 1 and size S(2) = Be(1/2).

e Item 3 has value v3 = 1000 and size S(3) = 1.

Note that z;1 = 29 = 1,23 = 0 is a feasible solution of the LP and therefore
U(1) < 2. However, any policy will need item 3 with probability at least 1/4 and so
ADAPT > 250.

Thus the LP bound is not very useful for Stochastic Covering without multiplicity.
We will use it only in the case of item multiplicity.

8.2 General Stochastic Covering

Consider the stochastic problem where items of random size S(i) and deterministic
value v; are given, and the goal is to achieve a feasible solution such that ), S (7) >
b. We consider the variant where every item can be used at most once and multiplicity
is not allowed. Thus we must assume that there exists a set of items which is feasible
with probability 1. We observe quickly that in this setting, there is little we can do.

Lemma 26. For general Stochastic Covering, the integrality and randomness gaps
can be arbitrarily large, even in dimension d = 1.

Proof. Let € > 0 be arbitrarily small. For the integrality gap, consider items of size
S(1) =1 — € and value v; = 0, and size S(2) = 1 and value v, = 1. For an integral

86



solution, we need an item of type 2 for a value of 1, while the optimal fractional
solution is S(1) + € S(2) =1 for a value of e.

For the randomness gap, consider 1 item of size S(1) = 1 —¢ and value v; = 0 and
an unlimited supply of items of size S(2) = Be(e) and value v = 1. Compare this
instance and another one where we replace sizes by their expectations u(1) =1 —¢
and u(2) = e. With deterministic sizes, (1) + u(2) = 1 is a feasible solution of cost
ADAPT, = 1. On the other hand, any policy in the stochastic case has to wait for
an item of type 2 and size 1, which takes an expected number of 1/¢ trials. Therefore
ADAPT; > 1/e. O

This indicates that using only mean size vectors, we cannot obtain any approx-
imation algorithm for this problem whatsoever! We do not have a corresponding
negative result on the adaptivity gap - conceivably, the adaptivity gap in dimension 1
could be constant. For a lower bound of 7/6, see Section 8.4. However, to prove any
kind of upper bound, we would have to resort to a more detailed analysis of item size
distributions, with more information available than just the expectation. We leave
this question outside the scope of this thesis.

8.3 Stochastic Set Cover

Perhaps the circumstances are more benign in the case of Set Cover, i.e. 0/1 size
vectors. There, we know at least that the integrality gap is O(logd) [32]. However,
the worst case randomness gap turns out to be (2(d), and we get the same bound for
the adaptivity gap as well.

Lemma 27. For Stochastic Set Cover, the adaptivity gap can be d/2 and the ran-
domness gap can be d.

Proof. For the adaptivity gap, consider §(0) = 1— &, where k € {1,2,...,d} is
uniformly random, vy = 0, and S(i) = & deterministic, v; =1, for i = 1,2,...,d. An
adaptive policy inserts item 0 first; assume its size is §(0) = 1 — &,. Then we insert
item k£ which completes the covering for a cost equal to 1. An optimal non-adaptive
policy still inserts item O first, but then, for any ordering of the remaining items
that it chooses, the expected cost incurred before it hits the one which is needed to
complete the covering is d/2.

For the randomness gap, consider two instances. In the first one, we have an
item of size S"(O) = 1 — &, k uniformly random, value vy = 1, and one item of
size S (1) = T and value v; = d. In the second instance, we have one item of size
T'(0) = Be(1 — 1/d)T, value vy = 1, and one item of size T(1) = I and value v, = d.
Both instances share the same mean item sizes. In the first instance, item 1 is always
needed, so the cost of any feasible solution is at least d. In the second instance,
however, the optimal policy inserts item 0, and then item 1 with probability 1/d, for
an expected cost of 2. O
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Thus using mean item sizes, we cannot prove an approximation factor better than
d. We show that this approximation factor can be achieved easily, using a greedy
adaptive policy.

First, let’s consider the problem in dimension 1, where the size of each item is just
a Bernoulli random variable. Thus the instance is completely characterized by the
mean size values. In this case, a greedy algorithm yields the optimal solution.

Lemma 28. For Stochastic Set Cover of one element, assume the items are ordered,

so that
v v Vs (V)

2 n
< <...
u(1) 7 u(2) T 3 p(n)
(call such an ordering “greedy”). Then inserting items in a greedy ordering yields a
covering of minimum expected cost. The adaptivity gap in this case is equal to 1.

1
<
1) —

Proof. First, note that in this setting, adaptivity cannot bring any advantage. Until a
feasible solution is obtained, we know that all items must have had size 0. An adaptive
policy has no additional information and there is only one possible configuration for
every subset of available items. Thus there is an optimal item to choose for each
subset of available items and an optimal adaptive policy is in fact a fixed ordering of
items.

Consider an ordering (1,2,3,...), not necessarily greedy; the expected cost of a
feasible solution found by inserting in this order is

n

k-1
C= ka H(l —u(7))-

Let’s analyze how switching two adjacent items affects C. Note that switching 7 and
7 + 1 affects only the contributions of these two items - the terms corresponding to
k < iand k > i+ 1 remain unchanged. The difference in expected cost will be

AC = v (]:I(l—u(j))) (I=p@E+1) + vin (ﬁ(l—u(J)))

- (1:[ (1- u(y))) — Vit1 (H (1- N(])))
- (“(i)"(H 1)1:1(1 _“(j))) (u(zijrll) - ;()Z)) '

Therefore, we can switch any pair of elements such that #—‘E‘J > % and obtain an
ordering whose expected cost has not increased.

Assume that O is an arbitrary greedy ordering and O* is a (possibly different)
optimal ordering. If O # O*, there must be a pair of adjacent items in O* which are
swapped in @. By switching these two items, we obtain another optimal ordering O'.
We repeat this procedure, until we obtain O which must be also optimal. O
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The adaptive greedy algorithm. For Stochastic Set Cover in dimension d, we
generalize the greedy algorithm in the following way: For each component i € [d],
we find an optimal ordering restricted only to component i; we denote this by O;.
Then our greedy adaptive algorithm chooses at any point a component j which has
not been covered yet, and inserts the next available item from O;.

Corollary 3. For Stochastic Set Cover in dimension d, the greedy adaptive policy
achieves expected cost
GREEDY <d-ADAPT.

Proof. When the policy chooses an item from O;, we charge its cost to a random
variable X;. Note that items from O; can be also charged to other variables but an
item which is charged to X; can be inserted only after all items preceding it in O; have
been inserted already. Thus the value of X is at most the cost of covering component
J, using the corresponding greedy ordering, and E[X;] < ADAPT. Consequently,
GREEDY =% E[X,]<d-ADAPT. 0

This algorithm is optimal with respect to the randomness gap, i.e. we cannot
improve the lower and upper bounds using only mean item sizes. Possibly, there
is a better approximation algorithm but its analysis would have to involve more
information on the probability distributions.

Also, this approximation algorithm is adaptive so it doesn’t settle the adaptivity
gap for Stochastic Set Packing. The final answer is unknown. The best upper bound
we can prove is the following.

Theorem 28. For Stochastic Set Cover,

NONADAPT < d*- ADAPT
and the corresponding non-adaptive policy can be found in polynomial time.

Proof. Consider the greedy ordering O; for each component j. We interleave O;, Oq,
..., 04 in the following way: We construct a single sequence O* = (i(1),4(2),(3),...)
where i(t) is chosen as the next available item from O;); 7(t) to be defined. We set
Xi(O) = 0 for each 1 S_ ] < d, Xj(t)(t) = Xj(t)(t - 1) + Vi(t) and Xk(t) = Xk(t — 1)
for k # j(t). In other words, we charge the cost of i(t) to X)) which denotes the
“cumulative cost” of component j(t). At each time ¢, we choose the index j(t) in
order to minimize X (t) among all possible choices of j(t).

Consider a fixed component k and the time 7 when component k is covered. This
is not necessarily by an item chosen from O, i.e. j(7) doesn’t have to be k. If
J(7) = k, denote by g the item from O covering component k: ¢ = i(7). If j() # k,
denote by g the next item to be chosen from Oy if component & had not been covered
yet. We denote by Q) the prefix of sequence O up to (and including) item q. We
claim that for any j, X;(7) is at most the cost of Qy: If there is some X;(7) > v(Qk),
the last item that we charged to X; should not have been chosen; we should have
chosen an item from O which would have kept X} still bounded by v(Qx) and thus
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smaller than X;(7). Therefore X;(7) < v(Qy). For the total cost Zj, spent up to time
7 when component k is covered, we get

Ze=>) X;(r) < dv(Qy).

=1

Now consider the set of items Qj which is a prefix of Or. The probability that
Qi has length at least [ is at most the probability that an (optimal) policy covering
component k using the ordering Oy needs to insert at least [ items from O; this is the
probability that the first [ — 1 items in O attain size 0 in component k. If ADAPT,
denotes the minimum expected cost of an adaptive policy covering component k, we
get E[v(Qk)] < ADAPT, < ADAPT and E[Z;) < d- ADAPT.

Finally, the total cost spent by our policy is Z = maxy Z, since we have to wait
for the last component to be covered. Therefore,

d
E(Z] = E[max Z] < > E[Z] < d* ADAPT.
- k=1

8.4 Stochastic Covering with multiplicity

We get better results for Stochastic Covering where each item can be repeated arbi-

trarily many times. In the following, we do not impose any restrictions on the item

sizes. Therefore, we can assume by scaling that we have a unit capacity b = 1.
First, we prove that the adaptivity gap for d =1 is between 7/6 and 2.

Lemma 29. The adaptivity gap for Stochastic Covering with multiplicity in dimen-
sion d =1 can be arbitrarily close to 7/6.

Proof. Consider two types of items, for some small p,e > 0:

e Item 1 has size S(1) = 0 with probability 1 — 2p, S(1) = € with probability p
and S(1) =1 with probability p; value v; = 2p.

e Item 2 has size S(2) = 1 — € deterministically and value vy = 1.

The optimal adaptive policy is: Insert items of type 1 repeatedly until one of
them gets nonzero size. If the size is ¢, complete the solution by adding item 2. The
expected cost of this solution is 3/2: 1 for a sequence of expected length 1/2p of items
of type 1, and then an item of type 2 with probability 1/2.

On the other hand, any non-adaptive policy has expected cost at least 7/4. We
assume that e is so small that the probability we accumulate size 1 from 1/e copies of
item 1 is negligible, compared to the probability that we get size 1 directly. Inserting
an infinite sequence of items of type 1 incurs expected cost 2p- 1/p = 2 since it takes
1/p trials on the average to get an item of size 1.
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Inserting two copies of type 2 would cost 2 as well. However, these are not optimal
non-adaptive policies.

Consider a non-adaptive policy which inserts a sequence of k copies of type 1,
then an item of type 2, and then an infinite sequence of type 1. The probability that
we need the j-th item is (1 — p)?~! for j < k, and (1 — 2p)?~2 for j > k. Thus the
expected cost will be

k-1 oo
E[cost] = Z 2p(1—p) 1+ (1—p)* 1+ Z 2p(1 — 2p)’~*
j=1 j=k+1

= 2—-(1-p* '+ (1-2p)"

For very small p, the optimum choice is k¥ = In2/p and the expected cost tends to
7/4.

Another possibility is to replace an infinite tail of items of type 1 by an item of
type 2. However, in case an item of type 2 has been previously inserted and the
policy is still running, this means that the remaining capacity is exactly e. In this
case, inserting an item of type 2 has the same effect as inserting an infinite sequence
of type 1.

Therefore, the optimal non-adaptive policy has expected cost close to 7/4 and the
adaptivity gap tends to 7/6. O

Theorem 29. For Stochastic Covering with multiplicity in dimension d = 1, there is
a trivial non-adaptive policy (inserting one item type repeatedly) with expected value
NONADAPT <2 ADAPT.

Proof. Consider the function ll+(g) defined in Section 8.1, for d = 1. Then it becomes

U+ (b) = min {Z Ti; Zaz,u(z) >b, ;> 0} )

By Theorem 19, ADAPT > W+*(1). Also, in this case ¥*(b) has a trivial form:
Ut (b) = Ab, where A = min;(v;/p(z)). Thus ADAPT > )\

Now we define our non-adaptive policy: Choose the item type i* achieving A =
v« /p(7*) and keep inserting it until capacity 1 is covered. It remains to estimate the
expected number of copies needed to do that.

Observe that this policy can also be seen as a Stochastic Knapsack policy which
terminates when the capacity of 1 has been exceeded. The only difference is that we
count the value of the first overflowing item as well; but Lemma 15 bounds the mass
of the set of inserted items A including the overflowing item:

E[u(A)] < 2.

Therefore the expected number of items that we insert is at most 2/(:*) and the
expected cost of our non-adaptive policy is at most 2. O
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In general dimension d, a straightforward approach leads to an O(logd) approxi-
mation.

Theorem 30. For Stochastic Covering with multiplicity in dimension d > 2,
ADAPT < 12Ind NONADAPT

and the corresponding non-adaptive policy can be found in polynomial time.

Proof. Consider the LP formulation of Stochastic Covering with multiplicity:

\II+(5) = min {Z TV : szﬁ'(z) > 5, T; > O} .

We know from Theorem 19 that ADAPT > U+(1). We assume by scaling that

b= (1,1,...,1). Let z; be an optimal solution. We inflate the solution by a factor
of cInd (hence the need to be able to repeat items) and we build a random multiset
F where item i has an expected number of copies y; = z; clnd. This can be done for
example by including |y;| copies of item ¢ deterministically and another copy with
probability y; — |y:|. Then the total size of set F in component j can be seen as a
sum of independent random [0, 1] variables and the expected total size is

E[S;(F)] = ijiE[S,-(z')] > Zyiu,-u) > clnd.

By Chernoff bound, with ¢ > cIlndand § =1 —1/u:

Pr[S;(F) < 1] = Pr[S;(F) < (1 — 6)u] < e™#*/2 < e#/2+1 < d‘i‘é .

We choose ¢ = 9 and then by the union bound

e

Pr{3; S;(F) < 1] < =3

For d > 2, F is a feasible solution with a constant nonzero probability at least
1 —e/2%5. Its expected cost is

E[p(F)] =Y ywi =9Ind ¥+ (1) <9Ind ADAPT.
If F is not a feasible solution, we repeat; the expected number of iterations is 1/(1 —
e/2%°) = 1.32. Therefore
NONADAPT <12Ind ADAPT.

This randomized rounding algorithm can be derandomized using pessimistic estima-
tors in the usual way. O
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Finally, we show that our O(logd)-approximation for Stochastic Covering with
multiplicity is optimal in several ways. We already mentioned the inapproximability
result for Set Cover [17] which says that O(logd) is the best approximation factor
we can achieve in polynomial time. In addition to that, it is known that the inte-
grality gap for Set Cover can be Q(logd) [32]. We prove that this implies the same
randomness gap for a pair of Stochastic Set Cover instances with multiplicity.

Theorem 31. If a CIP instance, with item multiplicity, each item size in a domain
D,{0,1}¢ C D C [0, 1)¢, unit item values, and capacity 1 = (1,1,...,1), has integral-
ity gap w, then there is a pair of Stochastic Covering instances with multiplicity, one
item type with random size in D, and capacity 1, such that the randomness gap for
the two instances is pg = pp > W.

Proof. Consider such a CIP instance and its corresponding linear relaxation

LP = min {Zx, : in(i(i) >1, z;> 0} (8.1)

with integrality gap w. In other words, at least w - LP items are required for an
integral feasible solution.

Let z; be an optimal solution, i.e. 3 z; = LP and ¥ ;@(i) > 1. We define two
Stochastic Covering instances, each with only one item type. In the first one, with
probability p; = z;/LP, let an item have size § = @(i). The expected size is

i =E[S] = (i) > —1. (8.2)

However, whatever the instantiated sizes @(7) in a sequence of items, we know that
at least w - LP items are needed to achieve a covering.

In the second instance, we define an item type with random size T with values
in {0,1}¢ C D: we generate a uniformly random number ¢ € [0,1]; for each j, if
¢ < w;, we set T; = 1, otherwise Tj = 0. Thus E[T] = 7 = E[S]. Also, if Tj =1 for
the component minimizing u; then all the remaining components are equal to 1 as
well. We have min p; > 1/LP; i.e., each item has size (1,1,...,1) with probability
at least 1/LP. We can insert a sequence of these items until one of them attains size
(1,1,...,1) which will take an expected number of at most LP trials.

The same result applies to the non-adaptive randomness gaps since in our in-
stances, there is only one item type and therefore no distinction between adaptive
and non-adaptive policies. O

The integrality gap for Set Cover can be achieved with unit item values, for
example: Consider a complete k-uniform hypergraph H on 2k vertices. le. H =
(Z), |V | = 2k. The hypergraph vertex cover problem is to find a set of vertices W C V
intersecting every edge in H. (This is just a reformulation of a Set Cover problem, in
a “dual setting”.) Obviously, we need k + 1 vertices to intersect every edge in H. On
the other hand, fractionally we can take every vertex with a coefficient of 1/k and
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this contributes exactly 1 to every edge. The cost of the fractional solution is 2 and
the integrality gap for this instance is (k + 1)/2 = Q(log d).

By Theorem 31, this means that the randomness gap for Stochastic Set Cover can
also be Q(logd). Finally, we show that the adaptivity gap can be Q(logd) as well.

Lemma 30. There are instances of Stochastic Set Cover with multiplicity where the
adaptivity gap is at least 0.451nd.

Proof. Consider item types fori = 1,2, ..., d where 5(i) = Be(1/2) & and v; = 1. An
adaptive policy inserts an expected number of 2 items of each type until the respective
component is covered; ADAPT < 2d.

Assume that a nonadaptive policy at some point has inserted k; items of type 3,
for each i. Denote the total size at that point by S. We estimate the probability that
this is a feasible solution:

d d
PriS> 1) =]]PrlsSi 2 1] = f[ (1-27%) <exp (- 22—’“) :

Assume that k = Z;.i:l k; = dlog,d. By convexity, the probability of covering is
maximized for a given d when k; = k/d = log, d, and then still Pr[§ > T] < 1/e. Thus
whatever the non-adaptive policy does, there is probability 1 —1/e that it needs more
than dlog, d items, which means NONADAPT > (1 —1/e)dlogy,d > 0.9dInd. [
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Chapter 9

Stochastic Optimization and
PSPACE

In this chapter, we state several complexity-theoretic results concerning stochastic
optimization problems. Specifically, we are interested in Stochastic Knapsack, and its
multidimensional generalization Stochastic Packing. Since the deterministic variants
of these problems are NP-complete, the stochastic problems must be at least NP-hard.
However, it is interesting to ask whether they entail a deeper level of complexity than
that of NP. It turns out that many natural questions concerning these problems are
actually PSPACE-hard.

9.1 Stochastic Knapsack

Let’s begin with Stochastic Knapsack, where items have random sizes and deter-
ministic values, and we consider adaptive policies which make decisions based on the
instantiated sizes of the items already placed in the knapsack. We exploit the similar-
ity between adaptive policies and Arthur-Merlin games [2], or games against nature
[36], which are both equivalent to PSPACE. Executing an adaptive policy can be seen
as a game where Merlin chooses the item to insert, while Arthur responds by selecting
a random size for that item. Merlin is trying to prove that a certain kind of solution
exists. Once this solution is found, Merlin wins. (And we say that the policy succeeds
in this case.) If the knapsack overflows, Arthur wins. The probability of Merlin’s vic-
tory is exactly the probability of success of the optimal adaptive policy. This shows
that Stochastic Knapsack can be cast as an Arthur-Merlin game, and therefore it is
in PSPACE. However, we prove that various versions of the Stochastic Knapsack and
Packing problems are in fact powerful enough to simulate any Arthur-Merlin game,
thereby proving that answering certain questions about optimal adaptive policies is
equivalent to solving anything in PSPACE.

To prove our results, we show reductions from the following PSPACE-complete
problem, as described in [12], Fact 4.1:
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Problem: MAX-PROB SSAT
Input: Boolean 3-cnf formula ® with variables z1,¥1, ..., Tk, Yk

Regard ®(z1, 1, - - Tk, yx) as a function from {0, 1}?* to {0,1} and define:
P(‘I’) = M:cl.AylngAyg .. .Mack.Ayk@(:cl, Y1, Tk, yk)
where Mz f(z) = max{f(0), f(1)} and Ay g(y) = (9(0) + g(1))/2.

Output:
e YES, if P(®)=1.
e NO, if P(®) <1/2.

This is a “promise problem”, in the sense that any instance is guaranteed to have
either P(®) = 1 or P(®) < 1/2. The formula can be seen as encoding a certain
Arthur-Merlin game. Specifically, P(®) is the probability that Merlin can satisfy
the formula using his optimal strategy in choosing the z;’s, while the y;’s are chosen
randomly by Arthur.

We define a Stochastic Knapsack instance which models this Arthur-Merlin game.
The reduction is inspired by the standard reduction from 3-SAT to Knapsack.

Theorem 32. For a Stochastic Knapsack instance and a fized ordering of the n items
O, let po denote the mazimum over all adaptive policies, allowed to insert items only
in the order O (possibly skipping some of them), of the probability that the knapsack
is filled exactly up to its capacity. Then it is PSPACE-hard to distinguish whether
Po =1 or po < 1/2%7°, for any fized € > 0.

Proof. We show a polynomial-time reduction from MAX-PROB SSAT to Stochastic
Knapsack such that po = P(®). Suppose that ® has m clauses, each with at most 3
literals. We define a sequence of items corresponding to the pairs of variables (z1,y1),
(z2, y2), etc. Selecting a particular item will correspond to a choice of value for z;, and
generating a random size will correspond to a choice of value for y;. Item sizes will
be random variables, whose values we write as numbers in representation of base b.
We choose b as a constant large enough so that the digits can never overflow (b = 100
suffices for all the reductions in this section). The size representation consists of two
“blocks”:
[VARS | CLAUSES]

where VARS has k digits and CLAUSES has m digits. For each ¢ € {1,2,...k},
we define two items, I;(0) and I;(1). Each has two possible sizes, occurring with
probability 1/2, size(I;(x;),0) or size(l;(x;),1) :

size(I;(z;),y;) = [VARS(i) | CLAUSES (i, z;, ;)]
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where VARS(7) has a 1 in the i-th digit and zeros otherwise, and CLAUSES (i, a, b)
has 1’s marking the clauses satisfied by setting z; = a, y; = b. We also define two
“fill-in” items F;(0), F;j(1) for each clause j, with

size(F;(z)) = [0 | CLAUSE(j)],

where CLAUSE(j) has a 1 in the j-th digit and zeros otherwise. The fixed ordering
Ois
(I1(0), I(1), I(0), Ix(1), . . ., F1(0), F1(1),...)

and we set the knapsack capacity to
C =[1111111111 | 33333333333333333333].

For any instance, we can define an adaptive policy that succeeds with probabil-
ity P(®). Let P(®) = Mz Ay fi(z1,y1); there is a value z} such that P(®) =
(fi(z3,0) + fi(z3},1))/2. Our adaptive policy chooses I;(z}) as its first item. Its
size is chosen randomly from one of two possibilities, which correspond to y; = 0 or
y1 = 1. The ensuing policy will depend on which of these two alternatives occurs, and
we want the final probability of success to be the average of fi(z},0) and fi(z},1).
Therefore, we would like to ensure that the probability of success, conditioned on a
fixed value of y;, will be fi(z},y1). So fix this value to be y; = yf. Now we have
size(I1(z}),y7) in the knapsack, which corresponds to marking the clauses satisfied
by z7 and yi. We want to continue the policy so that we succeed with probability
fi(z3,y7). By further expansion of fi(z},y}) = MzoAyafa(z,y2), there exists z}
such that (f2(z3,0) + fao(23,1))/2 = fi(z},yf). Item Iy(z3) will be the next one to
be chosen, etc. It can be seen that if the sequence of variables is chosen in such a
way that ®(z7],v5,...25,yi) = 1, then the selection of items produces a digit 1 in
each position of VARS and a digit between 1 and 3 in each position of CLAUSES.
Then we can insert some of Fj if necessary, to ensure that every digit of CLAUSES
is equal to 3 and the policy succeeds. By unfolding the formula, it is clear that the
total probability of success is P(®). Therefore po > P(®).

Conversely, there can be no adaptive policy which succeeds with probability more
than P(®). Consider an optimal adaptive policy, which inserts items Iy (z;), Ir(zs), . . .
in this order, one of each index (otherwise the total size in the VARS block cannot
attain precisely 1111111111). The choices of items I;(z;) in response to the perceived
sizes correspond to a strategy of setting the z; variables in response to the values of
¥;- The adaptive policy can succeed only if each digit of CLAUSES is at least 1 after
inserting I;(z;), Ia(x2), . . ., Ix(zx); otherwise it cannot achieve the full capacity even
with the fill-in items. This means that with probability po, all clauses are satisfied
by the respective assignment of (z;, y;),, i.e. P(®) > po.

Thus, in case of a YES instance, po = 1, and in case of a NO instance po < 1/2.
Finally, we show how to boost this gap to an exponentially large one. We choose
a polynomial n? and we concatenate n? copies of our instance, using parallel blocks
of digits with sufficient margins of zero digits, to prevent overflow between blocks.
The items corresponding to each copy will affect only the respective block of digits.
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The target capacity will be C* = [C|C|...|C]. An adaptive policy can achieve this
capacity exactly if and only if it achieves capacity C in each copy independently. This
happens with probability (po)™ which is still 1 in case of a YES instance, and at most
1/2™ in case of a NO instance. The number of new items is n’ = n?"!, which means
that n? = (n')1=/(¢+1) and this holds for an arbitrarily large constant g. It follows
that the probability of success is either 1 or at most < 1/ PAS O
Theorem 33. For a knapsack instance with n items, let p be the mazimum probability
that an adaptive policy fills the knapsack exactly to its capacity. Then it is PSPACE-

1—¢

hard to distinguish whether p=1 orp <1/2% .

Proof. We already know that the problem is PSPACE-hard if a fixed ordering is
imposed on the items. We show how to remove this restriction here. Consider the
knapsack instance generated in the previous proof, where the optimal policy has
probability of success either po = 1 or po < 1/2. We extend the item sizes by a
new block called FLAGS with k digits which will enforce that the optimal policy
must consider the items Iy, Iy, Is, ... in this order. The fill-in items F; receive a zero
FLAGS block - the adaptive policy cannot gain anything by inserting them earlier
anyway. FLAGS will have a digit for each index 7 and each item I;(z) will be modified
in this way: we define two new items for each item, parametrized by f; = 0,1, and
two new random sizes for each previously possible size, parametrized by r; = 0, 1.
The new item sizes will be size(L;(z;, fi), ¥, 7i)) =

[VARS(i) | FLAGS(i, fi,r;) | CLAUSES(i, i, y:)]
where VARS and CLAUSES are defined as before, and
FLAGS(, f;,r;) = [0000000r; £;000000]

where f; is the i-th least significant digit and r; is the (7 + 1)-th least significant digit.
(The items for 2 = k don’t have any r; digit.) Every I;(z;, f;) item can therefore take
4 different values. Finally, we extend the knapsack capacity to

C = (1111111111 | 1111111111 | 333333333333333].

Consider a YES instance, in which case po = 1. Then an optmal policy which
inserts items in the standard order Iy, I, I3, . . ., can always choose a suitable value of
fix1 to ensure 7; + fiy1 = 1, which achieves the target value for FLAGS. Therefore
an optimal policy succeeds with probability p = po = 1.

Now consider a NO instance, where fo < 1/2. A policy may ignore the standard
ordering and try to insert an item I;(z;, f;) after I;+1(Ziy1, fi+1). Let’s say that the
policy “cheats” in this case (which may happen in certain branches of the decision
tree). Since the digit r; is generated randomly, and the only other non-zero entry in
this position is f;;1, which has been chosen already, the final entry in this position
will be 1 only with probability 1/2. Therefore the branches where a policy cheats
can succeed with conditional probability at most 1/2. Suppose that the policy cheats
with total probability pc, and the optimal ordered policy succeeds with probability
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Po < 1/2. Then the cheating policy can achieve maximum probability of success
when pc = 1 — po and that is p < po + (1 — po)/2 < 3/4. Using the method from
the previous proof, we can then reduce the probability of success to 1/ 2" for any
fixed € > 0. O

Now we would like to extend the hardness results to the optimization variant of
the problem, where we look for an adaptive policy maximizing the expected value
obtained before the knapsack overflows. This is possible to accomplish quite easily, if
we allow random item values correlated with the random sizes (see below). Unfortu-
nately, the following note indicates that PSPACE-hardness cannot be obtained with
deterministic values.

Note: The following problem is in NP: Given a Stochastic Knapsack instance
with random (discrete) sizes and deterministic values, decide whether it is possible to
achieve value at least V' with probability 1 or not.

Indeed, we can replace each random size by its maximum that can occur with
nonzero probability, and solve the corresponding knapsack problem. It is possible
to achieve value V with probability 1 if and only it is possible in the worst possible
scenario where every item gets its maximum size.

Now we turn to the more general setting with random values.

Theorem 34. For a Stochastic Knapsack instance, where item values are random and
possibly correlated with the respective item sizes, let p(V') be the mazimum probability
that an adaptive policy inserts successfully a set of items of total value at least V.
Similarly, define po(V) for ordered policies with a given ordering of items O. Then
it is PSPAICE-hard to distinguish whether (V') (or po(V'), resp.) is equal to 1 or at
most 1/2™ ",

Proof. In the setting with random values, we can define each to be equal to the size of
the respective item. Then the maximum value any policy can achieve is equal to the
capacity, and the maximum probability that this value is attained is p(C) = p (from
Theorem 33), or po(C) = po (from Theorem 32). Consequently, deciding between
p=1and p < 1/2"1_5 is PSPACE-hard, as well as deciding between po = 1 and
Po < 1/27° for any fixed ordering of items. O

Theorem 35. For a Stochastic Knapsack instance with random values, possibly cor-
related with item sizes, it is PSPACE-hard to mazimize the expected value achieved
by any adaptive policy, or by any adaptive policy with a fixed ordering of items.

Proof. We use the reduction from the proof of Theorem 34. In case of a YES instance,
the expected value achieved by the optimal adaptive policy is C, because C is achieved
with probability 1, and it is the maximum possible value for any policy. In case of
a NO instance, the probability of achieving C is less than 1/2; with probability at
least 1/2, the policy achieves at most value C — 1. Thus the expected value in this
case cannot be larger than C — 1/2. The same holds, if we restrict ourselves to
policies using the standard ordering of items. If we could optimize the expected value
achievable in either case, we could solve MAX-PROB SSAT in polynomial time. O
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9.2 Stochastic Packing

In the following, we turn to the complexity of multidimensional Stochastic Knapsack,
i.e. general stochastic packing. In this setting, sizes are random vectors in R¢,
and values are deterministic scalars. In contrast to the inapproximability results
of Chapter 7, here we do not regard d as part of the input. Let us note that for
deterministic packing problems, it is NP-hard to find the optimum but there is a
PTAS for any fixed d > 1 [19].

Theorem 36. For Stochastic Packing in fized dimension d > 2, let p(V) be the
mazimum probability that an adaptive policy inserts successfully a set of items of
total value at least V. Then for any fixred € > 0, it is PSPACE-hard to distinguish
whether p(V) = 1 or p(V) < 1/27'™°. For any fived € € (0, 1], it is also PSPACE-hard
to mazimize V subject to the condition that p(V) > €.

Proof. We can assume that d = 2. We define items of the same types as we used
in the preceding proofs, for a 3-cnf formula with variables zi,yi,..., 2k, yxr and m
clauses. The 2-dimensional sizes will have the same format in each component,
[FLAGS | CLAUSES], where FLAGS have k digits and CLAUSES have m dig-
its. It will be convenient to consider the actual digits as “2-dimensional”’, with
a pair of components. In addition, we define item values with a similar format
[VARS | CLAUSES] where VARS have k digits and CLAUSES have m digits.
The variable items are defined as follows:

g(],‘(llii, f,;), Yi, ’I‘i) = [FLAGS(Z, f,;, ’l“i) I CLAUSES(Z, Z;, y,)]

where FLAGS(3, f;, ;) have two nonzero digits: the i-th most significant digit has
a 1 in the f;-component and the (i + 1)-th most significant digit has a 1 in the
r;-component, except for ¢ = 1 where I;(zy, fi) puts 1 in both components of the
first digit, and for i« = k where I(zk, fr) doesn’t have any random digit 7. In
CLAUSES(i,z;,v;), =; adds 1 to one of the two components of each digit corre-
sponding to a clause in which z; appears, and it will be component 1 if the clause is
satisfied by the value of z;, or component 2 if the clause is not satisfied. Similarly, y;
adds 1 to the digits corresponding to its appearance in clauses. If a clause is satisfied
or unsatisfied by both variables simultaneously, the respective component will receive
a contribution of 2. The values are defined as

val(Ii(z;, fi)) = [VARS(i) | 0]

where VARS(%) contains a 1 in the i-th digit and zeros otherwise.

Then, we define fill-in items F};, which put a 1 in the i-component of the j-th
clause. For each j, we have 2 items of type Fj; and 3 items of type Fjp. Their values
are

val(Fy:) = [0 | CLAUSE())]
i.e., a 1 marking the j-th clause. The capacity of the knapsack is

C = [11111111 | 33333333333333]
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in each dimension and the target value is also
V =[11111111 | 33333333333333].

Assume that P(®) = 1. This implies an adaptive policy which inserts one item
I; for each 7 in order, choosing f;4; = 1 — r; for each 7 < k. Based on the satisfying
strategy for formula @, the policy satisfies each clause and then adds fill-in items to
achieve value 1 in each digit of VARS and value 3 in each digit of CLAUSES.

On the other hand, assume P(®) < 1/2. First, note that assuming that at most
1 item I; for each i is inserted, a policy must insert at least 1 item I; for each i.
Otherwise it cannot achieve the target value in the VARS block which is the most
significant block. Next, any adaptive policy inserting exactly 1 item I; for each 4
and abiding by the standard ordering of items can achieve the target value only if all
clauses are properly satisfied (because otherwise it would need 3 items of type Fj; for
some clause), and that happens with probability at most 1/2.

However, we have to be careful about “cheating policies” just like before. Here,
“cheating” means either inserting I; after I;;; or not inserting exactly 1 copy of each
I;. Consider a cheating policy and the first ¢ for which this happens. In case I; is
not inserted at all, the policy cannot achieve the target value for VARS. In case
more than 1 copy of I; is inserted or I; is inserted after I;,;, there is 1/2 probability
of overflow in the FLAGS block of capacity. Either way, this leads to a failure
with probability at least 1/2, conditioned on the event of cheating. Therefore the
probability of success of a cheating policy is at most 3/4. Finally, we can reduce this
probability to 1/ 2" by the method of parallel concatenation (see Theorem 32).

We also get PSPACE-hardness for the question of maximizing V' subject to p(V) >
€. This is because for large enough n we could distinguish between $(V) = 1 and
pV) < 1/27". O

Theorem 37. For a 2-dimensinal Stochastic Knapsack instance, it is PSPACE-hard
to mazimize the expected value achieved by an adaptive policy.

Proof. We use the reduction from the previous proof. The maximum value that any
policy can achieve is V' = [11111111 | 33333333333333]. In case of a YES instance, an
optimal policy achieves V' with probability 1, whereas in case of a NO instance, it can
succeed only with probability less than 1/2. Therefore the expected value obtained
in this case is at most V' —1/2. O

9.3 Stochastic Covering

We get the same results for Stochastic Covering, without multiplicity. For Theo-
rems 32 and 33, it is clear that we are not using the packing condition - the question
is only whether an adaptive policy can fill the knapsack ezactly to its capacity. As
a consequence, we get statements analogous to Theorems 34 and 35 for Stochastic
Covering.
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Theorem 38. For a Stochastic Covering instance in 1 dimension, where item values
are random and possibly correlated with the respective item sizes, let p(V) be the
mazimum probability that an adaptive policy finds a feasible covering of total value at
most V. Similarly, define po(V') for ordered policies with a given ordering of items
O. Then it is PSPACE-hard to distinguish whether p(V') (or po(V), resp.) is equal

€

to 1 or at most 1/2% ",

Theorem 39. For a Stochastic Covering instance in 1 dimension with random values,
possibly correlated with item sizes, it is PSPACE-hard to minimize the expected value
of a covering achievable by an adaptive policy, or by an adaptive policy with a fized
ordering of items.

For Stochastic Covering in 2 dimensions, we get results similar to Theorems 36 and 37.

Theorem 40. For Stochastic Covering in fized dimension d > 2, let p(V) be the
mazimum probability that an adaptive policy finds a feasible covering of total value at
most V. Then for any fized € > 0, it is PSPACE-hard to distinguish whether p(V) =1
or (V) < 1/2%7°. For any fized £ € (0,1], it is also PSPACE-hard to mazimize V
subject to the condition that p(V) > €.

Theorem 41. For a 2-dimensional Stochastic Covering instance, it is PSPACE-hard
to mazimize the expected value achieved by an adaptive policy.

Note that our reductions do not work if we allow item multiplicity. We do not
know whether these questions are PSPACE-hard with item multiplicity as well.
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