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Abstract

Multiscale modeling of physical systems often requires the use of multiple types of simulations
to bridge the various length scales that. need to be considered: for example, a density-functional
theory at the electronic scale will be combined with a molecular-dynamics simulation at the
atomistic level, and with a finite-element method at the macroscopic level. An improvement
to this scheme would be a method which is capable of consistently simulating a system at
multiple levels of resolution without passing from one simulation type to another, so that
different simulations can be studied at a common length scale by appropriate coarse-graining
or refinement of a given model.

We introduce the wavelet transform as the basis for a new coarse-graining framework. A
family of orthonormal basis, the wavelet transform separates data sets, such as spatial co-
ordinates or signal strengths, into subsets representing local averages and local differences.
The wavelet transform has several desirable properties for coarse-graining: it is hierarchical,
compact, and has natural applications to approximating physical data sets. As a hierarchical
method, it can be used to rescale a Hamiltonian to a desired length scale, and at the same time
also rescales the particles of the system by creating "blocked" particles in the spirit of renor-
malization group (RG) calculations. The wavelet-accelerated Monte Carlo (WAMC) framework
performs a Monte Carlo simulations on a small system which will be transformed into a block
particle to obtain the probability distribution of the blocked particle; a Monte Carlo simulation
is then performed on the resulting system of blocked particles. This method, which can be
repeated as needed, can achieve significant speed-ups in computational time, while obtaining
useful information about the thermodynamic behavior of the system.

We show how statistical mechanics can be formulated using the wavelet transform as a
coarse-graining technique. For small systems in which exact enumerations of all states is pos-
sible, we illustrate how the method recovers reasonably good estimates for physical properties
(errors no more than 10%) with several orders of magnitude fewer operations than are required
for an exact enumeration. In addition, we illustrate that errors introduced by the wavelet
transform vanish in the neighborhood of fixed points of systems as determined by RG theory.

Using scaling results from simulations at different length scales, we estimate the thermo-
dynamic behavior of the original system without performing simulations on the full original
system. In addition, we make the method adaptive by using fluctuation properties of the sys-
tem to set criteria under which further coarse graining or refinement of the system is required.
We demonstrate our method for the Ising universality class of problems.
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We also examine the applicability of the WAMC framework to polymer chains. Polymers
are quintessential examples of the need for simulations at multiple scales: at one end, we can
study short chains using quantum chemistry methods; yet polymers can have relaxation times
on the order of seconds or longer, and molecular weights of 106 or more. Even with modern
computational resources, simulating behavior at long times or for long chains is still prohibitively
expensive. While many approaches have been developed for studying such systems, many of
these are specific to particular polymer chemistries, or fundamentally change the basic model of
the system on an ad hoc basis. We also demonstrate how the WAMC framework can be adapted
to study coarse-grained polymer chains represented as interacting lattice and off-lattice random
walks.

These walks can incorporate many of the same interactions as traditional "off-lattice" poly-
mer models: excluded volume, stiffness, and non-bonded pair interactions. Coarse-graining
the chain using the wavelet transform leads to each segment of the chain being replaced by a
bead located at the center of mass of the segment. Interactions along the contour-such as
stiffness potentials-are directly handled as well and incorporated as an internal configuration
energy. Non-bonded interactions, such as excluded volume and non-bonded pair interactions,
must be handled differently; we discuss possible approaches for handling these terms hierar-
chically within the WAMC framework. We present the details of the implementation of this
algorithm, its performance for basic thermodynamic properties, as well as its connections to
other effective coarse-grained models such as freely-jointed and Gaussian chains.

In the development of our coarse-grained models, we have also discovered that the coarse-
grained degrees of freedom-bond lengths, bond angles, and torsion angles-have distributions
which are much more complicated than are typically employed in coarse-grained simulation
techniques. This coupling of behavior is observed even when the model studied is as simple as
a freely-jointed chain. In addition, Monte Carlo simulations have allowed us to establish the
existence of numerical scaling laws for the overlap probabilities which we invert to determine
the intra- and intermolecular potentials as a function of the number of repeat units as well
as the ratio of repeat unit (or bead) size to the bond length. These results are compared to
the results obtained from analytical derivations based on the freely-jointed chain which show
qualitative agreement between the two approaches. Consequently, we can use take the potentials
determined by a simulation performed at one resolution of coarse-graining and derive from the
scaling laws new potentials which describe the behavior at another resolution. This allows us
to "tune" the WAMC algorithm to obtain results more efficiently than would be possible with
algorithms that operate at fixed levels of coarse-grained resolution.

Thesis Supervisor: Gregory C. Rutledge
Title: Professor of Chemical Engineering

Thesis Supervisor: George Stephanopoulos
Title: Arthur D. Little Professor of Chemical Engineering
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Chapter 1

Introduction

1.1 Motivations

The rapid advances in available computational forces in recent years has improved our ability

to study physical phenomena using numerical simulations. However, it is just as clear that the

set of problems that we can currently address is a small subset of the problems of scientific and

engineering interest. This mismatch between available resources and scientific needs becomes

apparent when we note that atomistic techniques like molecular dynamics are currently capa-

ble of accessing time scales only on the order of nanoseconds and microseconds, while many

chemical and physical processes-such as reactions and diffusion-occur on the scale of mil-

liseconds and seconds. Similarly, unless one is working on a modern supercomputer, molecular

dynamics simulations are usually limited to thousands of atoms, a substantial limitation when

one considers that individual polymer chains can have degrees of polymerization on the order

of hundreds of thousands, and that many processes of interest require dense melts containing

hundreds of chains.

Numerous schemes, collectively known as coarse-graining methods, have been proposed and

developed for dealing with the problem of "scale-bridging." These techniques, however, generally

have significant shortcomings that limit their application to specific fields or sometimes even to

specific molecular chemistries. Consequently, in spite of the ability of these methods to address

the systems for which they have been developed, a method which is capable of handling a variety

of different molecular systems would be of great practical utility. With a unified method in hand,
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we could address numerous kinds of systems with a clear, coherent methodology. In addition,

the greater the amount of structure inherent in the method, the less it will be necessary to rely

on ad hoc assumptions to construct our coarse-grained models.

In addition, we would like to understand better the coarse-graining process. As mentioned

before, many different approaches have been developed, but many of the fundamentals underly-

ing coarse-graining have remained largely unexplored. That is, researchers have shown how to

coarse-grain physical systems, but they have not demonstrated what effects the coarse-graining

method they have chosen has had on the physics of their new model. For example, questions

such as the following have been left largely unanswered in the coarse-graining literature:

* What is the "optimal" amount of coarse graining to perform?

* How closely connected are the variables which survive the coarse-graining procedure?

* How do we determine when our coarse-graining has gone too far-or when we can coarse-

grain further?

* Why favor one coarse-graining methodology over another?

Ideally, these questions could be addressed in sufficient detail that we would then have a "cook-

book": given the specifics of a particular problem, we would look up the specific coarse-graining

technique and follow the appropriate "recipe." However, the difficulty inherent in adequately

answering these and other such basic questions makes the likelihood of codifying coarse-graining

to such an extent unlikely.

The research described in this thesis develops a new, systematic and hierarchical coarse-

graining methodology. To demonstrate the breadth of its applicability, we have applied it to

two fundamental models of materials science: the Ising ferromagnet, and the polymer random

walk. These models have been selected because of their general applicability to materials

science, and for the richness of their physical behavior, as we shall see in greater detail below.

In addition to comparing our simulation results to the well-established results for both of these

models, we offer answers to the questions outlined above as they have arisen in the context of

our research.
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1.2 Coarse-graining

As mentioned above, the term coarse-graining has been applied to a wide variety of techniques,

all of which address the problem of "bridging" time and length scales in molecular simulations.

The general principle underlying these techniques is that we can replace expensive atomistic

simulations with simpler simulations which, either singly or in series, will yield the same results

as the more complicated atomistic model, but at much lower computational cost. We can divide

the set of coarse-graining approaches broadly into three main subsets: substitution methods;

handshaking methods, also known as multiscale modeling; and multiresolution coarse-graining.

1.2.1 Substitution methods

The substitution method is perhaps the most straightforward of the three approaches. As

its name implies, the detailed atomistic model is replaced with a single, simpler model whose

effective behavior is the same as the original model. The amount of coarse-graining can differ,

as can the final model that is being computed. For example, within the realm of polymer

physics, the range of possible substitutions runs from individual repeat groups all the way up

to entire chains. We briefly outline some particularly notable approaches.

Kremer and co-workers [1,75,156,157] have created an approach for polycarbonates which

replaces a repeat unit with a united atom and have outlined a method for reverse-mapping this

process, so that the original carbonate groups can be restored following a simulation of the

coarse-grained representation. While similar to other substitution-based approaches [50], they

have also developed a reverse-mapping procedure which allows them to convert their coarse-

grained representation back to an atomic one. To date, however, the reverse mapping procedure

has only been studied for the special case of bisphenol carbonates and their derivatives [10,157].

Several other methods of interest for studying polymers map chains onto a lattice: two of

these are the bond fluctuation method and the "high-coordination lattice" approach. In the

former, a chain is replaced by a series of bonds which connect the center of plaquettes on a sim-

ple square or cubic lattice [26,116,117,125,132,162]. Only certain bond lengths are permitted,

thereby constraining the allowed geometries within a given chain. New configurations are cre-

ated by adjusting which plaquettes are used to define the chain, according to the geometric bond
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length constraints. Similarly, the "high-coordination lattice," or "diamond lattice," approach

defines a chain as a series of second nearest neighbors on a tetrahedral lattice [43,44,76,129].

Since the tetrahedral lattice has twelve nearest neighbors instead of the six found in a simple

cubic lattice, many more possible configurations are available; these configurations are accessed

by adjusting the position of bonds on the lattice or using a reptation-like approach. The re-

sulting simulations have been used in conjunction with rotational isomeric state (RIS) theory

in the study of melts.

The aforementioned schemes generally map one repeat unit onto one coarse-grained particle.

However, it is also possible to map an entire chain onto a single coarse-grained particle, as is

done in so-called ellipsoid models. These models replace a polymer chain with a single ellipsoid

whose position is given by the center of mass of the original chain and whose size is determined

by the eigenvalues of the chain's radius of gyration tensor. Interpenetration of the ellipsoids

representing different chains is permitted, so the hard-sphere potential describing non-bonded

interactions is replaced by soft potentials. Different implementations of the ellipsoid method

have been developed, including those of Kremer and co-workers [75,119], Hansen and Louis

[21,23,89,98,99], and Eurich and Maass [48]. While ellipsoid models lower the computational

cost of simulations by reducing the number of degrees of freedom, they do so at the expense of

having complicated three- (or six-) dimensional distributions which must be searched in order

to generate a trial configuration. In addition, the coarse-grained potentials employed in these

studies are surprisingly long-ranged: some of the proposed potentials do not decay to zero

even at distances equal to three times the mean radius of gyration of a chain. The principal

axes defining the soft ellipsoids are usually equal to or less than one mean radius of gyration,

making it unlikely that two polymers whose centers of mass are separated by three mean radii

will actually overlap.

Dissipative particle dynamics, which adds a random field to the dynamics of a system of

interacting soft ellipsoids, may be viewed as a more general version of the ellipsoid model.

The field of dissipative particle dynamics began with the work of Espafiol [45-47] and Schli-

jper [135], and the later developments of Marsh, Flekk0y, and Coveney [32, 57, 58, 108-111].

Further extensions of the method include the introduction of electrostatic interactions [39],

entanglements [123], and alternative methods for integrating the equations of motion, such as
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operator splitting [138]. However, some serious fundamental issues make dissipative particle

dynamics significantly more complicated than the soft ellipsoid methods described above. The

most critical of these is that there need not exist a one-to-one correspondence between atomistic

chains and dissipative particles. Several chains can be mapped to a single dissipative particle

and, counterintuitively, a single chain can be mapped to several non-bonded dissipative parti-

cles. These non-bonded particles are then free to move about the system, effectively violating

connectivity constraints. This makes it almost impossible to construct a reverse mapping to

restore the atomistic chains, particularly when mass is redistributed between particles during

the course of the simulation.

The last method we will discuss here is the dynamic mean field or complex Langevin ap-

proach, recently developed by Fredrickson and co-workers [4, 62, 63, 67, 68]. Based on the self-

consistent field theory approach of Fleer et al. [56], the dynamic mean field approach replaces

the simulation of atomistic chains with the self-consistent solution of partial differential equa-

tions for the density distribution of a polymer within a given domain. The method has been

particularly useful in determining the morphology of block copolymers and similar problems

in polymer physics. The relative efficiency of the method compared to a similar dense melt

calculation, however, has not yet been discussed in the literature. On the other hand, since

the mathematical problem is well-understood, any of the many approaches to solving PDE's

can be reliably used here, with little effect on the results. The main connection of the dynamic

mean field (and SCFT) methods with the method outlined in this thesis is that the detailed

atomistic description of the chain is replaced with a density-based description. To an extent,

this mimics the method of dealing with polymer chains in the WAMC approach, which replaces

an atomistic chain with a coarser chain whose beads are located at the centers of mass (or

effectively, the maxima of density) of segments of the chain.

1.2.2 Multiscale methods

The term "multiscale" has been used in the past few years to describe methods which employ

multiple simulations that pass data back and forth between different length or time scales.

For example, a multiscale approach might use molecular dynamics (an atomistic-scale method)

to compute a diffusion coefficient which will be employed in a finite-element computation (a
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macroscale method). Recent applications of these methods include Sheng et al., who use mole-

cular dynamics to compute silica lamina stiffness, which is in turn used in micromechanical

simulations to determine the effects of particle aspect ratio and particle volume friction on the

mechanical properties of a polymer-clay mixture [139]. Other applications, such as chemical

vapor deposition, use finite element methods on the scale of an entire nanochip, but molecular-

level transport and reaction theory at the level of an individual feature [131]. Similar methods

have been used for applications as diverse as crack propagation [25,133], biopolymers [70], and

turbulent flows around airfoils [149].

There are several advantages to multiscale modeling approaches: there already exist many

well-designed codes at each different scale of interest, and the cost of "passing" parameters

between models is relatively low. However, the price paid for the relative ease of linking multiple

simulations together is that a gap remains in our understanding of the physics. This gap occurs

whenever there exists a set of length or time scales which remains unexplored by any of the

simulation methods being used. Consequently, we may have a detailed understanding of the

physics at an atomistic level and at a macroscopic level, but we cannot tell if there are interesting

behaviors at so-called mesoscales between the two levels.

1.2.3 Multiresolution methods

The last class of coarse-graining methods that we shall discuss here is the set of multiresolution

methods, which bridge length scales within a single simulation by treating the amount of coarse-

graining performed as an adjustable parameter. As a result, it is not known a priori, for

example, how many repeat units will be combined into a bead, or how many lattice spins will

be averaged into a single block spin, or how much discretization or how many basis functions

will be applied to a quantum-mechanical description of a molecule. In principle, this level of

flexibility makes coarse-graining both hierarchical and heterogeneous: the same coarse-graining

method can be used several times in succession to yield progressively coarser representations of

a given original structure, and different levels of resolution can be used in different parts of a

single simulation.

Truly multiresolution methods have not been often employed to date. Most of the existing

multiresolution methods have been based on the wavelet transform, which we introduce in
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Chapter 2. As a basis set, wavelets have been applied to electronic structure calculations [7]

and to the physics of elementary particles using quantum field theory [121,127,128]. They have

also been applied to modeling of control systems [147] and to image processing [29,81, 101].

The most similar use of wavelets completed prior to the work outlined in this thesis is

found in the work of Best and Schaifer [14-16], who use wavelets to expand the field variable in

Landau-Ginzburg theory of spin models. Since that time, the work of Katsoulakis et al. [86,87]

appear to be the closest analogues to the present work. Their considerations, however, are

principally studying the dynamics of coarse-grained processes. Like our work, they began by

considering adsorption and desorption on an Ising lattice; however, they present their results

only for the simplest, one-dimensional lattice.

1.3 Thesis objectives and overview

As mentioned above, the aim of this thesis has been to develop a systematic framework for

multiresolution modelling. The design goals of this framework include adaptability, both to a

variety of applications and in its use for a single application. We would like a framework that

can handle hundreds of particles just as readily as hundreds of thousands of particles, and can

address different parameter states by adjusting the amount of coarse-graining that is applied

to our system.

We would also like our framework to be robust: its performance should be markedly superior

to the corresponding detailed atomistic simulations on which they are based. This will allow

the method to be a first choice as an analysis tool which can quickly predict the properties and

behavior of a system under a wide range of conditions. Of course, this will be true only if the

results of the coarse-grained simulation can accurately predict the behavior, or if the results

can be easily correlated with results obtained from either atomistic simulations or experimental

measurements. Thus, in addition to flexibility, we will attempt to demonstrate both the relative

efficiency and accuracy of our method, and suggest how the performance of the method can be

"tuned" to optimize efficiency and accuracy.

Chapter 2 introduces the fundamental models and tools needed to understand the work

presented in the remainder of the thesis. Chapters 3 and 4 address this problem as applied to
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Ising lattices, while Chapters 5 and 6 will present its application to polymer modelling. Two

further chapters address interesting results that arose in the context of building the polymer

model: scaling results for overlap probabilities in polymer chains in Chapter 7, and the increased

coupling of variables inherent in most coarse-graining processes in Chapter 8. Finally, the

principal contributions of this work, as well as avenues of future exploration, are discussed in

Chapter 9.
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Chapter 2

Fundamental models and tools

Before presenting the main work of this thesis, we briefly review the important models and

theories which will be required to understand the later chapters. We begin by introducing the

basic lattice and polymer models, the wavelet transform, and renormalization group theories

and discuss their relevance to this work.

2.1 Lattice theory

The standard model for studying the thermodynamic behavior of lattice systems is the spin-i

Ising model [122], which contains both nearest-neighbor pairwise interactions as well as inter-

actions between lattice sites and an external field. The Hamiltonian for this system is normally

written in the form

-7t = h ai + JEaeiaj, (2.1)
i (ii)

where h is the strength of the external field in the direction of the spins ai, and J is the

strength of the interaction between pairs of nearest-neighbor spins on the lattice; these pairs

are indicated by the subscript (ij) in the second summation in (2.1). The inverse temperature

,/ = (kBT)-l; for convenience we let kB = 1, so that temperature, external field, and nearest-

neighbor interactions are all dimensionless quantities. The model can be further extended by

the inclusion of a position-dependent external field hi and nearest-neighbor interactions Jij, or

by the inclusion of pairwise interactions beyond nearest neighbors. The most general form of
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(2.1) is given by

-- = Z hia + Jijiaj, (2.2)
i i j

where in (2.2) hi is the strength of the external field at lattice site i, and Jij is the strength of

the interaction between sites i and j.

The primary goal of most lattice theory models is the development of the relevant phase

diagram. For Ising lattices, the relevant variables for constructing phase diagrams are usually

the temperature T and the external field strength h. The most important quantity to determine

is the ferromagnetic critical point (T,, hc), above which it is impossible to observe spontaneous

magnetization of the lattice. It is trivial to show that the one-dimensional Ising magnet has no

spontaneous magnetization for finite temperatures [71]. The two-dimensional case can also be

solved analytically; however, the calculations are significantly more challenging [73, 122, 124].

In both the one- and two-dimensional cases, the critical point is located at h = 0; application of

an external field "breaks" the symmetry of the system, making the existence of a critical point

effectively impossible [71]. For the three-dimensional Ising model, it has been necessary to rely

on series solutions and numerical simulation techniques to estimate the critical temperature

[93,104,126,154]. Some recent results even suggest that an analytic solutions does not exist for

the three-dimensional model, as it may belong to the class of "NP-complete" problems [31,82].

In addition to the phase diagram, several other quantities are of interest for Ising lattices.

For example, the average magnetization of the lattice is determined by

, i ) (2.3)

where the normalization is taken to ensure that the magnetization remains finite even in the

limit N -* oo. A lattice in which all spins are aligned in the same direction has either m = 1

or m = -1; an antiferromagnet, in which the preferred alignment is every spin opposite its

neighbor, would have m = 0. We also expect to see m = 0 in the high-temperature limit,

since the thermal background energy is so high that spins can flip regardless of their preferred

alignment.
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The other important quantity frequently computed is the heat capacity,

C = (E 2 - (E)2 (2.4)
kBT 2

where E is the total energy of the system. The heat capacity, which gives the amount of energy

which must be added to or removed from the system to change its temperature, is an example

of a fluctuation property: a nonnegative quantity that is finite except in the vicinity of a critical

point, where it diverges according to a power law based on the "distance" IT - TeI away from

the critical point.

2.2 Physical models of polymer chains

Current state-of-the-art simulations often simulate dense systems containing up to 104 polymer

repeat units, but only for time scales on the order of nanoseconds. This is unfortunately

several orders of magnitudes below what is needed to address problems of engineering interest:

individual polymer chains can exist on length scales of 106 repeat units, and have relaxation

times on the orders of milliseconds to seconds [10]. Thus, even with today's computational

power, we are still not capable, for example, of studying the relaxation of a melt of long

polymer chains without massive simplification of the problem. Ideally, we would like to create

an algorithm which can achieve large increases in computational efficiency with only small

trade-offs in computational accuracy. However, most methods of "coarse-graining" the system

to reduce the amount of information that must be computed during the course of a molecular

simulation automatically introduces severe approximations into the structure of the system,

leading to often significant errors in physical calculations of thermodynamic properties. We

outline in Chapters 5 and 6 our work in the development of a hierarchical coarse-grained model

for polymer chains that is based on the fine-grained representation of a lattice random walk yet

can still reproduce the features found in off-lattice and continuum models of polymers.

2.2.1 Discrete and continuum "limiting" descriptions

There is a vast array of polymer chain models, including everything from discrete lattice mod-

els to continuous three-dimensional "thread" models. In addition, there are a host of other
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models to describe polymer systems, including the so-called Flory-Huggins theory [591 and self-

consistent field theory models [61,63,136], neither class of which explicitly represents chains in

space.

The simplest example of a polymer walk is of course the Bernoulli random walk studied on a

hypercubic lattice. Given a bead at lattice point xi-1, the next lattice point xi is selected with

probability (2d) - 1 from any of the 2d neighboring lattice points, where d is the dimensionality

of the lattice. In the Bernoulli walk, there are no constraints other than connectivity, so that

lattice sites can be visited multiple times by one or more chains.

When the restriction of sitting on a hypercubic lattice is removed, the Bernoulli random

walk becomes the freely-jointed chain [59], where there is no preferred orientation of bonds.

Consequently, given a bead at point xi-l, the next point xi can be chosen according to the

distribution
1

p(xi) = 4a2(Ix- xi-I - a),

where a is the step size of the walk. Again, there is no self-avoidance requirement to prevent

the chain from overlapping itself. A further extension of the freely-jointed chain, the Gaussian

chain [161], permits individual bond lengths to vary according to the distribution

3 3/2 exp 3x2 ) (2.5)

where a is now the average bond length of the walk. We shall describe in Chapter 5 an algorithm

that treats a coarse-grained chain like an on-lattice Gaussian chain model, as bond lengths are

chosen according to a distribution whose limit approaches (2.5), but are then adjusted to fit on

a finely-spaced hypercubic lattice.

We can make yet one more relaxation of the Gaussian chain by specifying a curve in space to

represent the polymer. The resulting chain, sometimes called a "Gaussian thread," is specified

by r (-), where typically T runs from 0 to 1 [42]. The thread description is particularly useful

for self-consistent field theories and renormalization approaches [63, 64].
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2.2.2 Interacting chain

So far, we have not specified any physical interactions which can affect the structure of the

random walk. Consequently, while the walks we have described are analytically quite tractable,

they do not accurately reflect the behavior of real polymer molecules.

For a single chain, we can categorize the various interactions as either between a particle

and an external field, between two bonded particles, or between two or more non-bonded

particles. For a given walk {rl,...rN) on a (hypercubic) lattice, we can define the energy of

the corresponding polymer chain as a sum of the different interactions:

N N N

U (rl,... rN)- =Eul (ri;{r}) + u2(ri, rj) +. (2.6)
i=l i=l j=i+2

where the one-body potential ul (ri; {r)) describes the internal energy corresponding to a bead

at ri, while the two-body potential u2 (ri, rj) incorporates both the self-avoidance condition

as well as non-bonded interactions. Most two-body interactions are treated as functions only

of the interparticle separation rij = Iri- rj , and therefore we write u2 (ri, rj) = u2 (rij), and

define the potential as

o00o, rij < a

U2 (rij) = -en b (ij),a ca, , (2.7)

O, ca < rij

where a represents the hard-core radius between particles, and c is a constant representing the

"cutoff' of the potential (the distance beyond which two particles are assumed not to interact).

In addition, it is generally assumed in (2.7) that particles i and j are non-bonded. The potential

-Enb (rij) must be specified; for our purposes, we shall assume that it is a piecewise continuous

function with Enb > 0 on a < rij < ca. If we define a to be the lattice spacing, then letting

1 < c < ,v defines interactions between nearest-neighbor lattice sites, and c < 2 defines

interactions between next-nearest-neighbors.
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The internal energy ul (r'; {r}) for our model is defined as

es, r - ri2... # ri 1 - rl(2.8)
u1 (ri; ri 1, ri+) = (2.8)

0, ri -ri- ri+ 1 -ri

Equation (2.8) defines a stiffness potential-that is, an energy "penalty" paid for changing

directions between ri - ri-1 and ri+l - ri; this is functionally similar to defining a persistent

random walk, although its effects are observed in the acceptance or rejection of states, rather

than in their selection.

In addition to the one- and two-body interactions already mentioned, we can also incorporate

bond-angle and torsion-angle interactions between three and four consecutive bonded particles

along a chain. Although the atomistic models we will consider do not explicitly incorporate

these potentials, we shall see that there exists a bias in the distribution of the coarse-grained

internal coordinates.

2.3 Wavelet transform fundamentals

2.3.1 The conceptual picture

The wavelet transform is a hierarchical method for decomposing a data set into averages and

differences. Like the Fourier transform, it can be used to provide a decomposition in both

real space and reciprocal space (k-space), or time space and frequency space. Unlike the

Fourier transform, however, it is capable of providing simultaneously localized transformations

in both real and reciprocal space. A function localized in position space, such as a finite

impulse function, cannot be represented by only a few terms of its Fourier series; many terms

are required before good convergence is achieved. By contrast, in wavelet space, this same

function can be almost completely described by just a handful of wavelet coefficients. Although

the first wavelet was discovered almost a century ago by Haar [74], they have become an

important computational technique only in the last decade, following the work of Mallat [106,

107], Daubechies [34], and others [30,150,151].

The wavelet transform, like any other transform, takes a mathematical object and transforms
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it into another: we can represent its action by writing

= W [u]; (2.9)

the specific form of W depends both on the type of wavelet we have selected, and the object

u which we wish to transform. All versions of the wavelet transform W, however, are derived

from the same source: a set of coefficients which define the transform. If u is a discrete data set,

such as a signal sampled at regular intervals, then W is usually represented as a matrix; while

if u represents a continuous data set, such as the same signal measured at all times, then W

acts as an integral operator. While the matrix form of W is often called a "filter bank" and the

integral form a "wavelet transform," we will not distinguish between them in what follows, as

the theory developed here for discrete lattices and filter banks should carry over to continuous

systems and wavelet transforms essentially unchanged.

Similar to the Fourier transform, the wavelet transform decomposes the object x into two

separate components, as two different functions, a scaling function 0 and a wavelet function ',

both operate on x. However, the two functions separate its components not into cosines and

sines, but into averages and differences, with a "wavelength" equal to the "window" over which

the scaling and wavelet functions are nonzero. In another important distinction, the wavelet

transform is recursive, so that it can be applied in succession to any set of averages which is

produced using that wavelet transform, to produce another level of averages and another level

of details.

To make the above concepts more mathematically precise, let us define u to be a discrete

set of samples u = (u (1), u (2), ... ,u (n)). Then applying the scaling and wavelet functions q

and 4, to u create a set of averages s (i) and a set of differences 6 (i):

r-1
s (i) = 0 $(k) u (i + k), (2.10)

k=O
r-1

6 (i) -= sa (k) u (i + k), (2.11)
k=O

where r is a finite integer which defines the length scale, often referred to as the "size of the

support," over which and / are nonzero. The index i runs from 1 to n; generally the data
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set is padded with zeros to ensure that all sums in (2.10) and (2.11) are well-defined, although

periodicity is sometimes used instead [148]. The coefficients 0 (k) and /b (k) in (2.10) and (2.11)

are related [34,148], and are central in controlling the features of the wavelet transform. Note

the wavelet transform is inherently redundant: for every sample u (i) in the original set u,

we now have two values, a local average s (i) and a local difference 5 (i). Since the new data

are simply linear combinations of the original values, it is superfluous to retain both sets; at

the same time, it is obvious that we cannot simply discard one set of data and recover all

the original information using only the other data set. Instead, we choose to keep only the

odd-numbered s (i)'s and 5 (i)'s, eliminating the even-numbered samples; this process is called

downsampling [148]. Downsampling removes half of the s (i) and half of the 6 (i), regardless

of the length r of the wavelet. Now we are left with n data: s (1) ,s (3), .. ., s (n - 1) and

5 (1), 6 (3), .... , 5 (n - 1). These n data points can be stored as the level-one wavelet transform

i of u, by assigning s (1), s (3), ... , s (n - 1) to j5(l) (1), i(1) (2),.. ., i( 1) (n/2), and the cor-

responding 6 (i)'s as 5j(l) (n/2 + 1), .. ., i() (n). [The superscript (1) denotes that the wavelet

transform has been applied once to this data set.] We can either stop at this level of description,

or continue by further decomposing the averages: then the new object u(1) to be transformed

is u(1) (1) = ii (1), . ..,u(') (n/2) = ii (n/2), and so on. Note that although ii(1) contains the

averages s (i)'s and the differences (i)'s obtained in the previous step, successive transforms

only apply to averages obtained in the previous step. This process can be repeated until we

have reduced our set of averages to a single point; no further averaging is possible. We assume

henceforth that the data set u(k) has been sufficiently downsampled to retain only the minimum

data set required.

2.3.2 Properties and examples of wavelet and scaling functions

Until this point, we have not introduced any specific wavelet or scaling functions. Before we

do so, we note that the choice of a wavelet transform to apply to a given system usually hinges

on the desired properties which one wishes to include in the transformed data. Three principal

properties are almost universally required for filter banks and wavelet families [34,148]:

1. Perfect reconstruction: No data is distorted by performing analysis followed by synthesis,

so that the only permissible change is a delay in recovery of the original sample.
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2. Orthogonality: Wavelets computed at different length scales or at different spatial loca-

tions are mutually orthogonal; thus fluctuations in the system are localized at the scales

where they are most relevant.

3. Compact support: Properly designed wavelets are identically zero except for a finite in-

terval, which means that exact results can be obtained using only a finite number of

terms.

Other properties, such as orthonormality, symmetry in the functional form of the wavelet

or a certain number of vanishing moments, can be taken into account when constructing the

wavelet transform [152].

The two most commonly encountered selections are the Haar and Daubechies wavelets,

named after their respective discoverers. The Haar pair is the oldest and simplest set of

wavelets [74]: the coefficients of the scaling function are b = ( (0), (1)) = ~ (1, 1), while

the coefficients of the wavelet function are 4' = (4' (0), 4 (1)) = (-1, 1). No other wavelet

can be described with two points, and therefore no other wavelet has a support as compact

as the Haar wavelet. The scaling function < simply averages the values stored at neighboring

points, while 4' finds the difference between those values; the extra factor of vX is incorporated

to ensure orthonormality between overlapping 0 (k) and 4 (k). A simple example of the action

of the Haar wavelet is shown in Fig. 2-1.

The Daubechies wavelets are a family of orthonormal functions explicitly designed to have

orthogonality as well as vanishing higher-order moments [33]. Daubechies was able to show

that the Haar wavelet is in fact the "first" member of the Daubechies family; that is, the Haar

wavelet is the Daubechies wavelet with the shortest support. The second such member has

four terms in its definition: the scaling function is defined by 0 = ( (0), 0 (1), q (2), O (3)) =

1 (1 + v/3, 3 + v, 3 - , 1 - v) . The wavelet function reverses the order of the coefficients

and inverts the sign of every other component, which allows the orthonormality properties to

be satisfied:

= (4 (0), , (1), (2), b (3)) = (- (3), (2), -0 (1), 0 (0)).
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We can see that the Haar wavelet obeys the same pattern as the Daubechies wavelet: H =

(-O (1), (0)). This pattern can be extended, using different coefficients but the same general

sign rules, for wavelets with 6, 8, 10, ... coefficients. The resulting wavelet and scaling functions

become increasingly smooth, and therefore are better suited for data sets in which there is only

a gradual change in the data set with position-in thermodynamic systems, this would be more

useful for, say, a spin-N Ising model than a spin-2 Ising model (presuming that N > 2).

2.3.3 Matrix formulation of the wavelet transform

For discrete systems, a conceptually simple method of implementing the wavelet transform is

to set up the transform as a matrix equation. The input u is converted into a column vector u,

so that the coefficients s (i) and 6 (i) are given by the dot product of u with vectors h (i) and

I (i), where the vectors are padded so that the first nonzero element is located at position i:

h (i) (O,..., O, (O), (1), .. .,(r- 1), 0,. .. , 0),

I (i) = (O,..., O, (O), (1) ... , (r- 1), O..., 0).

The vectors s and 6, which contain the wavelet-transformed coefficients of the decomposition,

can be obtained by forming the matrices H and L and right-multiplying by the vector u:

s = Hu and 6 = Lu,

where the rows of the matrices H and L are the vectors (h (1), .. ., h (n)) and (1(1), . .. ,1 (n)),

respectively. As mentioned in the previous section, we do not need to keep all of the s (i)'s and

a (i)'s in order to obtain perfect reconstruction of our signal; thus, we can obtain all the necessary

coefficients in a single matrix multiplication by combining the relevant rows of H and L into a

single matrix W(), whose rows are (h (1 ), h (3),..., h (n- 1) ,1 (1),1 (3),..., (n- 1)). Thus,
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the wavelet transformation (2.9) can be written as

s (1)

s(n - 1)

6 (1)

a (n - 1)

h (1)

h (n- 1)

1(1)

I (n-1) 

u (1)

u (2)

u (n)

(2.12)

We will denote the product on the left-hand side of (2.12) as iu.

As stated above, the wavelet process can be applied recursively: the set of averages

(s(1),s(3),...,s(n-1))

can be treated as a new data sample u( 1) = (u() (1),..., u(1) (n/2)), and operated on by an

N X N reduction of W(1), which we denote W (2) , to produce a new set of n/4 averages

(s(2) (1), s(2) (3) '...,S(2) (n/2 - 1))

and corresponding new set of n/4 differences

(a(2) (1), ((2) (3),.. ,6(2) (n/2- 1)) .

To reconstruct the original data set, we combine these n/2 values along with the n/2 differences

(6(1) (1), (l) (3),..., (1) (n - 1)) obtained from applying W(1). This process can be repeated

as many times as desired, dividing the m non-downsampled averages s(k) into m/2 averages

s(k+l) and m/2 differences 6(k +l ) . However, since at each iteration the matrix W(k) only

operates on selected elements of the vector ui(k) = W(k-l)u(k-1), computations for multiple

levels can be performed at the same time. Thus, if we wish to apply the wavelet transform K
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times, we can write this operation as an extended matrix product [69]:

K
U(K) = WU = JH Q(k)U (2.13)

k=l

where the Q(k) are a family of matrices of the form

Q ] (2.14)
0 I

In (2.14), Q(k) is always an N x N matrix, while the matrix W(k) has size (N/2 k -1 ) x (N/2k- 1 ).

To recover the original data sample u following a wavelet transform W, we can multiply ii

by the inverse of W. The matrix W is unitary: that is, its inverse W-l is equal to its transpose

WT. Consequently, if W is known, all that is necessary to reverse the transformation is to left-

multiply i(k) by the transpose WT. Moreover, the computation (2.12) of the wavelet transform

can usually be carried out "in place" by manipulating local coordinates; in this manner, the

computation is carried out even more rapidly than a standard multiplication, and without the

increased storage costs associated with matrix multiplications [72,155].

2.3.4 Multidimensional wavelet transforms

Since virtually all problems in lattice thermodynamics are in multiple dimensions, it is necessary

to take the wavelet transform of a multivariate function or data set. Several methods have been

developed to carry out such transformations; among them are Cohen and Daubechies's separable

wavelets, which form the multidimensional scaling and wavelet functions (x,y), Cbx (x,y),

lbxy (x, y), and ?Pyy (x, y) from products of the one-dimensional scaling and wavelet functions

b (x) and 7b (x) [30]. A more general algorithm, the lifting algorithm, has been developed by

Sweldens [35,153]. It divides the wavelet transform into two steps: the first computes the wavelet

coefficients a (i); the second step uses the wavelet coefficients to speed up the calculation of the

scaling coefficients. "Initialization" of the lifting algorithm requires the use of an appropriately

selected basis function.

A convenient basis function for the multidimensional lifting transform is the generalized

orthogonal Haar wavelets outlined by Sweldens [153]. An extension of the one-dimensional
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Figure 2-2: The two-dimensional orthogonal Haar wavelets. The coefficient in all cases is 1/2,
times the sign indicated in each quadrant. Note that the scaling function is built from the
one-dimensional Haar scaling function, while the wavelet functions are built from the one-
dimensional wavelet function.

wavelet transform, they can be created in any number of dimensions, and have the same basic

orthonormality properties as the one-dimensional Haar functions, although the orthonormality

constant becomes 2-d/2, where d is the dimensionality of the system. [The two-dimensional

version is shown in Figure 2-2.] Moreover, the use of the Haar wavelets as a starting point for

further iterations of the lifting algorithm allow the development of additional, "better" lifted

wavelets with more desirable properties, such as smoothness.

It can further be seen that the "oversampling" problem which exists in one dimension will

be magnified in multiple dimensions: since the number of wavelet functions which are produced

from each data point increases by a factor of two with each additional dimension added, we

must reduce the number of points maintained for each wavelet function by that same factor.

Thus, in two dimensions, we keep only every fourth point; in three dimensions, every eighth

point, and so on. The wavelet transform for multidimensional systems can thus still be written

in the form of (2.13) and (2.14), after we have written the multidimensional data set in terms

of a column vector. This can be accomplished by wrapping around the edges of the matrix in

creating u: for example, after inserting element (1, N) of a two-dimensional data set into u, we

next store element (2, 1), and so forth. The other significant difference in the structure of these

equations is that the size of the submatrix W(k) in (2.14) is now N/2(k-1)dx N/2(k -1)d instead

of N/2 k-1 x N/2k -1
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2.4 Renormalization group principles

Renormalization group (RG) theory, first developed by Wilson [160], has been applied primar-

ily to systems in the thermodynamic limit near a critical point [6, 38, 55, 71], including glass

transitions [137] and turbulent systems [49]. The general technique, however, is not restricted

exclusively to systems in the vicinity of a critical point in the space of coupling parameters.

Although originally intended for use in quantum field theory, the range of applications of the

renormalization group has been extended to include fields as diverse as polymer theory, hydro-

dynamics, and asymptotic analysis [6, 27, 38, 40, 55]. Other groups have applied renormalization

group theory to nonlinear oscillators [27] and finite systems of ferromagnets [140-144]. RG the-

ory can also be used in the study of systems approaching equilibrium, such as time-dependent

diffusion and other self-similar phenomena from transport theory and fluid mechanics [9, 71].

The origins of RG theory lie in the effective field theories of Landau and Ginzburg, who

introduced the notion of an order parameter which represents the mesoscopic scale of physical

phenomena [55, 71]. At a fundamental level, the goal of renormalization methods is to identify

the critical behaviors of a system as a function of the existing strengths of interaction, and to

determine the conditions under which the system, when viewed at increasingly coarser scales,

will evolve towards those critical points.

Perhaps the most significant feature although some view it as a weakness-of the renor-

malization group transformations is that it is not a group, but in fact, only a semi-group [38,55].

Consequently, the RG transformation does not possess a unique inverse transformation, and

thus one generally cannot determine the unique initial state which resulted in a new renor-

malized state. This should not be surprising: virtually every type of coarse-graining method,

including renormalization group theory, sacrifices detailed information about a thermodynamic

system in order to carry out the analysis more efficiently.

One additional element of the renormalization group should also be noted here. While

perturbation expansions may be required to carry out some steps in an RG analysis, the analysis

itself is inherently non-perturbative: we do not require that there exists a small parameter be

small to carry out the procedure.
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2.4.1 Renormalization group analysis of lattice systems

The basic "recipe" for renormalization groups is a function mainly of the choice of approach:

real-space versus momentum-space. As their names imply, real-space approaches work on the

actual positions and particles in a given system, while momentum approaches are applied in

Fourier space

For lattice systems, a typical real-space RG program entails several steps, which can be

divided roughly as follows.

1. Identify the variables to be "blocked." Block variables represent a set of variables in the

original system, grouped together to function as a single unit at a higher scale. For

example, in a two-dimensional rectangular Ising model, a block variable would be an

m x n rectangle of spins. In RG theory, the block variables should have the same allowed

values as the original variables. In the Ising model, this means that the block variables

are allowed to take only the values -1 or +1.

2. Create the projection operator: the projection operator P ({si}) is a probability assign-

ment rule from original variables {si} to block variables {s'}. Therefore, we require

(a) P ({si}) > 0

(b) P ({si)) preserves the symmetries and interactions of the original Hamiltonian

(c) (8si} P ({si}) = 1 preserves the value of the original Hamiltonian

3. Re-organize the Hamiltonian: the Hamiltonian of the system is written so that it is

a function only of the new variables of the system. This normally entails rewriting the

coupling constants in a more compact form, although the relationship between the original

and renormalized coupling constants may be highly nonlinear [124]. As an example,

consider the Hamiltonian of the one-dimensional Ising model,

7 = {K k 1 sis + si+o ( i + ) (2.15)

where K is a constant which is initially set to zero. Upon renormalization, we obtain the
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Hamiltonian
N 1

= {K ±+- kisi+ 1 + 2k (i + si+j1)},

where the new parameters K', k, and k' are related to K, k, and kl by the relations

i 1
K' = ln2 + 2K + ln (cosh (2kl + ko)cosh (2kl - ko)) + lncosh ko, (2.16)

4 2

k = in cosh (2kl + ko) cosh (2kl - ko) ) (2.17)
1 4 cosh 2ko

cosh (2kl - ko)

4. Identify the fixed points of the Hamiltonian. The fixed points represent the limit points

in the space of coupling constants of multiple iterations of the RG transformation.

5. Construct the phase diagram or scaling laws for the system.

2.4.2 Renormalization group flows

To an extent, the principal goal of renormalization group analyses is to determine the flows

through parameter space. For a given set of starting parameters K, a renormalization trans-

formation will map K to a new point K* in parameter space. The only exception to this

rule occurs at fixed points, which are unchanged by the renormalization transformation. For

example, in the transformation specified by Equations (2.15) through (2.18), the fixed points

correspond to those sets of parameters for which K -- K', ko -- ko, and kl - k.

The three types of fixed points are attractive, mixed, and repulsive. For any given starting

point in parameter space, an infinite number of iterations of the renormalization transformation

must ultimately reach a fixed point. If the starting parameters K is within the "well of attrac-

tion" of an attractive fixed point, it will eventually reach it. Similarly, for a mixed fixed point,

some points will be ultimately mapped to it, while other points will move to an attractive fixed

point. Finally, repulsive points are never mapped to by any other point in parameter space:

it is possible to reach a repulsive fixed point only by starting at that point. Thermodynamic

critical points are always repulsive fixed points.

An example of renormalization group flows is shown as Figure 2-3. The points designated S
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Figure 2-3: Example of renormalization group flows, as applied to the two-dimensional Ising
model.

and F correspond to attractive fixed points: any point starting in their wells of attraction will

yield a state of complete alignment, although for point F, corresponding to the low-temperature

limit, the specific orientation obtained cannot be determined a priori. Point P corresponds to

the high-temperature limit, in which all states are equally probable. The only point which is

not mapped to by another point in parameter space is the ferromagnetic critical point, labelled

C. Any other point in parameter space will tend to S, F, or P, although P can only be obtained

along the line ko = 0-that is, in the absence of an external magnetic field.

2.4.3 Connections to our coarse-graining methodology

The utility of the renormalization group method is that it can be used in conjunction with

other numerical techniques. For example, the Monte Carlo renormalization group (MCRG)

method, which has been successfully applied to both two-dimensional and three-dimensional
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simple cubic lattice models [126, 154], uses iterations of Monte Carlo simulations to observe

flows through parameter space; while density-matrix renormalization group (DMRG) has been

developed for quantum chemical calculations [158,159].

Our aim is to preserve the spirit of RG methods in our research, although we will not

explicitly follow any particular RG method. For example, selecting the block variables and the

projection operator are replaced by choosing an appropriate wavelet basis. Reorganization of

the Hamiltonian using wavelets will proceed in a manner similar to the RG method, except we

shall be more interested in the partition function than in the Hamiltonian itself. Finally, we are

concerned with general calculations on lattices, rather than just the identification of fixed points

and renormalization flows which are the hallmark of most RG and RG-like analyses [13, 71].
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Chapter 3

Multiresolution analysis in statistical

mechanics. I. Using wavelets to

calculate thermodynamic properties

3.1 Introduction

Spin models are popular tools for theoretical calculations and for numerical simulations, as

their universality classes allow a huge range of different systems-as varied as binary metal

alloys, surface adsorption, and neural networks-to be modeled simultaneously. For example,

even the "trivial" one-dimensional Ising model can be used to model the helix-coil transition

in biopolymers; the deep connection between magnetic models and polymer chains allow us

to predict scaling behavior and other properties across an even wider range of materials [64].

Lattice models are still widely used in modeling the thermodynamics of complex systems,

because their regular structure simplifies the type and nature of interactions among components

of the system. Moreover, the difficulty in obtaining analytical solutions of lattice systems, and

the relative ease of computational simulations thereof, make them ideal test cases for new

simulation algorithms.

Although simulations of lattice models are relatively straightforward to implement, they

share the same drawbacks as off-lattice models. The chief drawback is that as the number of

50



particles grows large, the time required to sample the system accurately increases rapidly. A

popular approach for addressing this problem is to coarse-grain the system: that is, we "rescale"

the problem by increasing the basic size of a simulation element. For example, we might coarse-

grain an atomic representation of a polymer chain into a "united atom" model, where a chain

molecule is treated as if it consisted only of the backbone. More creative approaches redefine

the problem to be addressed: for example, Mattice and coworkers have produced a method

which maps a polymer chain atomistically onto a high-coordination lattice; this lattice is then

used as the basis for a Monte Carlo simulation; the resulting configuration is then used to map

back to continuous space to provide "evolution in time" [28,43,44,129].

This chapter illustrates the use of the wavelet transform as a mathematical basis for per-

forming thermodynamic computations of lattice models. The wavelet transform is an important

tool in multiresolution analysis, which analyzes a system simultaneously at several length or

frequency scales selected to reflect the actual physical processes underlying the observed behav-

ior as closely as possible. The wavelet transform possesses a number of convenient properties,

including orthogonality, compactness, and reconstruction; we will make these concepts more

precise in Section 2.3.2 below. The orthogonal nature of most wavelet constructions makes

them a logical choice for use in ab initio density-matrix quantum chemistry computations, in

which the selection of an accurate basis set is crucial to the convergence and efficiency of the

calculations [7,17,83]. Wavelet decompositions have been applied principally in electrical engi-

neering, particularly in the field of signal processing. In this context, white noise and Markov

processes have been studied using multiscale methods [100, 101]. To date, however, wavelet

analysis does not seem to have been extensively applied to models in statistical mechanics.

Huang uses wavelet analysis to observe the statistical distribution of multiplicity fluctuations

in a lattice gas [79], while Gamero et al. employ wavelets to introduce their notion of multires-

olution entropy, although their primary goal is dynamic signal analysis rather than statistical

mechanics simulations [66], while O'Carroll attempts to establish a theoretical foundation con-

necting wavelets to the block renormalization group [120,121]. A more in-depth review of the

connection between wavelets and renormalization theory is provided in a recent monograph by

Battle [12].
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3.2 Wavelet analysis of lattice thermodynamics

3.2.1 Applying the wavelet transform to lattice Hamiltonians

While (2.1) and (2.2) are compact representations of the Hamiltonian of the system, the ex-

pansion of the lattice variables si and sj as a sum of wavelet coefficients makes these equa-

tions impractical for applying the wavelet transformation. Since the system is described dis-

cretely, we want to use discrete wavelets, and therefore a matrix formulation of the Hamiltonian

would be convenient. Using graph theory 31], this is readily accomplished: let the vectors

U = (@1,o 2, ... , UN) and h = (hl,..., hN) denote the values of each of the N lattice variables

in the system and the set of external-field interaction strengths, respectively, constructed in

the row-wise manner described in the previous section. Furthermore, define the matrix J such

that element Jij is the strength of the interaction between site i and site j. If these sites do

not interact, then Jij = 0. Then, the Hamiltonian (2.2) can be written in the form of a matrix

equation:

-- 7- = hTu + uTJu, (3.1)

where the superscript T denotes the transpose of the vector (or matrix) which precedes it.

The matrix W which defines the wavelet transform satisfies by construction WTW = I,

where I is the identity matrix. Therefore, to apply the wavelet transform, we simply insert

WTW between each pair of terms in (3.1), thereby obtaining

-17 = (hTWT) (Wu) + (uTWT) (WJWT) (Wu). (3.2)

Using the general matrix property that BTAT = (AB)T, (3.2) can be rewritten in terms of

the wavelet-transformed vectors (K)= Wh, ii(K)= Wu, and the wavelet-transformed matrix

j(K)= WJWT:
= (K)T (K) + (K))T j(K)(K) (3.3)

It is important to note that in writing equation (3.3), we have not made any explicit assumptions

about the form of the matrix W, other than to require it to be a matrix describing a wavelet

transform. As a result, we can perform several levels of multiresolution simultaneously through

appropriate preparation of the matrix W in the manner outlined above. Using the inverse
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wavelet transform W-l = WT to recover an original configuration u is a one-to-one mapping

only if we are provided with n distinct data points, as contained in ii(K).

Examining (3.3), we see that the result of applying the wavelet transform to a set of spins

u is to create a new representation Ui(K), which contains the same information about the spins

as does the original state vector u. However, the vector ui(K) contains n/2 dK averages, where

d is the dimensionality of the lattice; these averages can be viewed as "block spins" in a sense

similar to that of Kadanoff [71]. The remaining elements of ii(K) contain the local differences

in the spins; that is, they can be used to describe the specific set of spins which give rise to a

particular block spin SK)

3.2.2 Computing thermodynamic functions

The canonical partition function

Z= E exp (-,77- (u)), (3.4)
uES

where S is the configuration space of the system, can be used to derive all the thermodynamic

properties of a lattice system. Applying the wavelet transform W to the state vector u results

in a new state vector U(K) belonging to the configuration space $(K). Provided that W satisfies

the perfect reconstruction property, if the summation over u E S in (3.4) is replaced with the

summation over i(K) E 5(K), the results will be identical. This result follows naturally, since

perfect reconstruction necessarily implies that there is a unique state vector (K) E (K) for

each state vector u GE , and by construction of the wavelet-transformed Hamiltonian (3.3),

_] = _ (K)
Ensemble averages involving wavelet-transformed variables are in general no more compli-

cated than computations involving the original variables. In general, the transformation of

a function (or functional) of the original variables f (u) or f [u] will generally have the same

characteristics after applying the wavelet transform to obtain f(K) (ii(K)) or (K) [i(K)]. More-

over, the standard properties of ensemble averaging, such as linearity, also apply, which makes

calculations of moments of the distribution particularly simple.

The above formulation can be applied to any system whose Hamiltonian can be written in
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the form of equation (2.2), or as the sum of contributions, each of which is of that form. While

the wavelet transform can be applied to any lattice system whose Hamiltonian is a function

of the components of the state vector u-or, indeed, to any Hamiltonian which is a functional

of u (r) for continuous systems-in most of these cases, it is necessary to rely on the more

cumbersome series expansions, or integral transforms in the case of continuous systems.

In addition, for Ising spin variables, the use of the wavelet transform poses an additional

challenge. While it is entirely straightforward to describe the possible values an individual lattice

site can take--for a spin-q Ising model, the allowed values of an individual spin a are -q, -q +

1, ... , q - 1, q-the rules which determine whether an arbitrarily selected "transformed" state

vector Uf(K) represents a real state vector u are cumbersome to manipulate and to implement,

and have proven a formidable challenge in prior research as well [15].

3.3 Analysis

In this section, we use two variants of the two-dimensional Ising model as a basis for our

calculations: we look at 4 x 4 and 32 x 32 Ising lattices; the former is used for calculations

when it is desired to perform calculations over all states explicitly, while the latter is illustrative

of larger systems, for which exact calculations are intractable. The emphasis in this chapter

will be on the use of wavelets to yield approximate answers in significantly faster time than

is possible with a Monte Carlo simulation incorporating all degrees of freedom explicitly. The

methodology by which the wavelet transform can be extended to Monte Carlo simulations of

lattice systems is the focus of Chapter 4.

Before proceeding to the results of the calculations, we make note of the time required to

execute the simulations. Each of Figures 3-1 through 3-4 plots the observed variables in the

temperature range T = 0.50 to T = 5.00, with a step size of AT = 0.01. The computations

for the original problem, with 216 = 65536 states to consider explicitly, required more than 6.8

seconds per point to execute the required calculations on a 733 MHz Pentium III; the same

calculations using one and two applications of the wavelet transform required just 0.061 and

0.026 seconds per point to consider 54 = 625 and 17 states, respectively.
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3.3.1 Weighting functions for wavelet-transformed statistics

Until now, we have worked with wavelet transforms which preserve the number of degrees of

freedom between the original and transformed problems. This approach yields results for the

wavelet-transformed system in exact agreement with those for the original system. However,

as mentioned above, in such cases the transformed equations are usually harder to model than

the original ones. Hence it is desirable to use the wavelet transform not only as a means of

describing a lattice system, but also to derive an approximation scheme whereby estimates

of thermodynamic properties can be made efficiently, while still offering error estimates that

bound the true results.

The approach we adopt in this chapter is to ignore all local differences: that is, we assume

that (k) = 0 for all values of i and k. As a secondary assumption, we assume that corre-

lation functions which include wavelet coefficients are also equal to zero: that is, we assume

(jk)A ()) = 0 for any choice of property A (-). These extreme assumptions represent a "worst-

case scenario" for the use of the wavelet transform method; any more accurate representation

of the behavior of the wavelet coefficients will lead to similarly more accurate results in the cal-

culations we present below. Note that under certain circumstances, these approximations are

accurate: for Hamiltonians of the form (2.2) which do not exhibit interactions with an external

field, there exist configurations with equal energies but opposite signs for Jk); consequently,

when we take the average over all configurations, the ensemble average of 6 (k) will vanish.

Let us assume that we have applied the wavelet transform to our original Hamiltonian,

7- (s), and have obtained a new function (K) ((K)). If we then make our approximation that

all the wavelet coefficients are negligible, then we can reduce h(K) (u(K)) to a new function

i(K) (S(K)), where (K) represents the set of all averages (s(K), , (K) ) that were preserved by

the wavelet transform. We know that the partition function of the system before we performed

the wavelet transform is given by (3.4); after using the wavelet transform, we hypothesize that

the partition function of the new system is given by

Z= E w (-(K)) exp (_ ,3 (K) ((K))) (3.5)
,(K) C(K)

where the w ((K)) is the weight of configuration s(K) in the configuration space $(K); since
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multiple configurations u E S can correspond to the same s(K), we cannot set w ((K)) = 1

as we did in the untransformed Ising model. Clearly, the new partition function (3.5) will be

identical to the original partition function (3.4) if we define

w()= exp (- ( (u) -(K) (K)))) (3.6)
u:u---,(K)

where u: u - (K) denotes that the sum is performed over all configurations u which have

the same set of wavelet-transformed averages §(K). However, evaluating (3.6) to obtain the

weighting functions is no more tractable than computing the original partition function. Thus,

any computational efficiency to be gained is by finding an economical approximation for (3.6).

One approach is to take w (s(K)) to be equal to the number of states s whose wavelet transform

yields (K), so that (3.5) is the standard form of the canonical partition function for a system

with energy degeneracies. Let us call the number of such states s with equivalent averages s(K)

the degeneracy of state s(K), and denote this degeneracy as g (s(K)). The restriction of ui(K) to

the averages §(K) prevents a unique reconstruction of u, unless g (s(K)) = 1.

3.3.2 Order parameter

A natural variable to compute is the order parameter, generically denoted t7, which for lattice

spin systems is the average magnetization,

m=N (r r); (3.7)

for other members of the Ising universality class, the order parameter can represent the overall

density p or the difference between the densities of two phases [146]. While the computation

of the order parameter is straightforward in simulations, its calculation can be made difficult

in the case of zero external field because of symmetries in the configuration space: for every

configuration with magnetization mi, there exists another configuration with the same energy

and magnetization -mi. As a result, when all the states are combined using (3.7), we do not

observe spontaneous magnetization, but instead find m = 0 at all temperatures. Thus, we

consider the absolute value of the magnetization, Iml in place of the magnetization m. The
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results of this calculation for the 4 x 4 Ising model with the wavelet transform, setting all 6 (i)'s

to zero, and without the wavelet transform are shown in Figure 3-1. We note that the error is

essentially negligible for temperatures below T = 1, and decreases again for large values of T,

where differences in energy levels become negligible and the average magnetization of a state is

the only contributing factor to Iml.

3.3.3 Free-energy considerations

The Helmholtz free energy is just the logarithm of the partition function: A = -kBTlnZ; if

we estimate the partition function using an expression such as (3.5), we naturally expect the

approximated value A to differ from its true value. When we examine the behavior of the 4 x 4

Ising model under the wavelet transform, we find as expected that the two free energy surfaces

are similar, although they are clearly not identical. In particular, the exact numerical values

obtained from the two equations are not the same. However, since the assignment A = 0 is

arbitrary in any system, we can choose to define A = 0 as either the maximum or the minimum

free energy obtained in each system. Under these conditions, the energy scales for the exact

calculation and the wavelet transform calculation are essentially identical, particularly at the so-

called "fixed points" of the system-that is, for points which are not affected by renormalization

transformations [104]. For the two-dimensional Ising model, these points are at T = 0, and at

infinite (positive or negative) values of the external field interaction h.

This agreement at the fixed points should not be surprising: the fixed points correspond to

unique configurations of the system, such that for the configurations (K) which result from the

wavelet transform of the fixed points u*, the degeneracy of the states is unity. Consequently,

the approximation w ((K)) = g ((K)) is correct for the dominant configuration in the system,

and therefore the behavior of the approximate partition function Z' is almost identical to that

of the true partition function Z in the vicinity of the fixed points.

As can be seen in Figure 3-2, the free energy converges to the same values in the low-

temperature limit, where only a few states which are essentially unaffected by the wavelet

transform contribute to the partition function of the system. At high temperatures, the agree-

ment is less exact, because of the approximations made in evaluating the Boltzmann factors of

the block spin configurations.
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Figure 3-1: (a) Average absolute magnetization Iml = Ei oMil of the 4 x 4 Ising model at
zero external field as a function of temperature, as computed by an exact enumeration using
no wavelet transform (solid line), and using one and two iterations of the two-dimensional
Haar wavelet (dot-dashed and dotted lines, respectively). (b) Error in the average absolute
magnetization of the 4 x 4 Ising model for one and two iterations of the two-dimensional Haar
wavelet versus an exact enumeration.
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Figure 3-2: Free energy A of the 4 x 4 Ising model at zero external field as a function of
temperature, as computed by an exact enumeration using no wavelet transform (solid line),
and using one and two iterations of the two-dimensional Haar wavelet (dashed and dot-dashed
lines, respectively).
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3.3.4 Entropy of a wavelet-transformed lattice system

It is relatively straightforward to show that coarse-graining a system with a countable phase

space-that is, a phase space whose states can be completely enumerated-requires a correction

factor to ensure satisfactory agreement with results from the fine-scale system. As an example,

consider the entropy of a wavelet-transformed spin-' Ising model. The original lattice has 2 Nt

total configurations, and therefore in the high-temperature limit, the entropy approaches

Sma, = kBNtln2. (3.8)

If we ignore the weighting factor of the wavelet-transformed system by setting w (s(K)) = 1 for

all states s(K), the resulting system will have (1 + v1K-1 N(i)) , and the maximum possible

entropy for this system is

s(K) = kBN(K) ln (vi N(k) + 1) (3.9)

Comparing (3.9) to the original limit of Sma, = kBNt ln 2, we must have Sma, > S(K), since the

configuration space is smaller, which indicates that our coarse-graining has effectively reduced

the available entropy of the system. We can conclude from this that unless the volume of

phase space is conserved by the coarse-graining procedure, some entropy will be lost at high

temperatures, regardless of the accuracy of the coarse-graining. Our choice of the degeneracy

g (s(K)) for the weighting function w (s(K)) preserves the volume of phase space in the limit of

T -- oo for the systems under study here.

Looking at the specific case of the 4 x 4 Ising model, we compute the entropy as a function

of temperature for zero external field for the exact problem, and for the wavelet-transformed

problem using one and two iterations of the two-dimensional Haar wavelet. The results are

shown in Figure 3-3. As before, errors vanish in the low-temperature limit, where only the

lowest-energy states make a contribution to the partition function; since there are two such

states, namely those with all spins up or all spins down, we find the T -+ 0 limit of the entropy:

1 1
(T - O)- - In -= In 2.
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Figure 3-3: Entropy of the 4 x 4 Ising model at zero external field as a function of temperature,
as computed by an exact enumeration using no wavelet transform (solid line), and using one and
two iterations of the two-dimensional Haar wavelet (dashed and dot-dashed lines, respectively).
The bottom of the y-axis corresponds to the zero-temperature limit of S = In 2.

In the high-temperature limit, the entropies agree since, by construction, we have Ey w () =

216,and therefore, since the Boltzmann factor goes to unity for all states as T -- oo, Z 

CEsp w (s), and the entropy tends toward the value Sm,, given by (3.8). Disagreement in the

intermediate temperature regime is largely the result of grouping together states with different

energies into a single transformed state with a single energy. In particular, the grouping of

higher-energy states together at a lower energy increases the probability of those states, and

therefore increases the total entropy of the system. This explains the seemingly anomalous result

of coarse-graining increasing the entropy at intermediate temperatures observed in Figure 3-3.

For more general systems, we can consider the formal definition of the entropy for a contin-

uous distribution,

S =- -kB dup(u)lnp (u), (3.10)
uES
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where p (u) is the probability of observing the configuration u. For the original Ising model,

each configuration u is unique, and therefore the probability p (u) is just the Boltzmann weight

Z -1 exp (-i7- (u)), and thus the entropy is given by

S = kB In Z + j duPTH (u) exp (-1i (u)). (3.11)

After performing the wavelet transform, and discarding finer-scale details, we must account for

the weighting factor w () in our expression for the entropy. Consequently, the entropy for such

a system is given by

S(K ) = -kB ds- w()P ()lnp(S)

= kB In + ± | w () (K) S(K) e-n(K)(s(K)) (3.12)

where the coarse-grained partition function Z is given by (3.5).

3.3.5 Fluctuation properties

For a given thermodynamic system, the constant-volume heat capacity C is defined as the

fluctuation in the internal energy of the system:

= = 2-2 (3.13)kBT 2

It is well-known that in the vicinity of a continuous phase transition, the heat capacity C di-

verges. At the same time, it is also known that no system of finite size can have C -- oo,

since the energy, and hence the variance (E 2 ) - (E)2 in the energy of the system will also

remain finite. However, we can still observe evidence of power-law divergence near the critical

temperature. [19] For small finite systems, we do not observe evidence of a divergence in the

heat capacity; instead, the heat capacity is a smooth function of temperature T. The wavelet

transform largely preserves the behavior of the original model: we observe the same general

functional form in both the original and the transformed systems, as seen in Figure 3-4. How-

ever, for large finite systems, we can still detect the characteristic power-law divergence in the

vicinity of the critical point; such a divergence is shown for a 32 x 32 Ising model as Figure 3-5.
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Figure 3-4: Heat capacity of the 4 x 4 Ising model at zero external field as a function of
temperature, as computed by an exact enumeration using no wavelet transform (solid line),
and using one and two iterations of the two-dimensional Haar wavelet (dashed and dot-dashed
lines, respectively).
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Figure 3-5: Heat capacity of a 32 x 32 Ising model, illustrating the power-law divergence in the
vicinity of the critical point.
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Applying the wavelet transform to a given thermodynamic system, we still expect to find

evidence of a critical point; however, because of the mean-field like behavior of the wavelet

transform, the critical point is found at a higher temperature in the wavelet-transformed system

than in the original system. Computing the heat capacity for large lattices cannot be done by

exhaustive enumeration; therefore, we save discussion of our numerical results for Chapter 4,

and present a brief heuristic argument. As the size of a block spin increases, corresponding to a

larger number of iterations of the wavelet transform, we expect that suppression of fluctuations

in the system will lead to an increase in the phase transition temperature, while the actual

numerical value of the heat capacity itself decreases. The decrease in the number of degrees

of freedom in the system is accompanied by an increasing trend towards homogeneity of the

system--the remaining configurations begin to look more and more similar to one another. As

a result, the variance measured by (E 2) - (E)2 decreases with increasing amounts of coarse-

graining. This trend is much less pronounced for small systems, as shown in Figure 3-4. When

the number of degrees of freedom is small, the ability to perform an exact enumeration ensures

that the only errors observed are those introduced by the wavelet approximation itself. Thus,

since the free energy and entropy of small systems are accurately reproduced by the transform,

only minor deviations in the phase transition temperature for small systems are expected.

3.4 Similarities to Renormalization Group theories

It should already be apparent that close affinities exist between the method described here and

position-space renormalization methods. The construction of wavelet-based averages naturally

corresponds to Kadanoff's concept of a "block spin" transformation [71]: both the present

method and Kadanoff's approach rely on combining a region of contiguous spins into a single

new "block spin." However, with the approach outlined above, we do not seek to impose the

requirement that the block spins must be restricted to have the same spin values as the original

spins. For example, in a wavelet-transformed spin-' Ising model, the block spins can take

on values other than +1 and -1. In addition, we do not impose "majority rules" or other

"tiebreakers" in the case where there are equal numbers of "up" and "down" spins contained

in a single block.
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A less apparent connection can also be established with Migdal's "bond-moving" approx-

imation [114, 115], or similarly with Wilson's recursion method [160]. In particular, Migdal's

method can be compared to applying a separable wavelet transformation, in that the recursion is

performed in only one spatial direction at a time. However, using the methods of either Migdal

or Wilson, after performing the bond-moving or decimation transformation, the new interaction

strengths Jj are determined by manipulating the resulting Hamiltonian and recasting it in the

form of the original, leading at times to very complicated, nonlinear formulas for the Jj as a

function of Jij. By contrast, using wavelets, the values for the transformed coupling coefficients

Jij are obtained directly by transforming the interaction matrix J, since J = WJWT. The

trade-off that must be made for the algorithmic transparency of obtaining the new coupling

constants via a matrix multiplication is that we cannot solve for the fixed points of the recursion

relation, which makes the production of a renormalization "flow diagram" using the wavelet

method a difficult problem.

The behavior of the wavelet transform and of the renormalization group differs in another,

important manner. By the nature of its construction, the group of renormalization transfor-

mations is only a semi-group, inasmuch as reversing the mapping to move from a coarsened

description to a more detailed description is impossible [38, 55]. Using the wavelet transform,

a reverse mapping is theoretically possible: reversibility fails because of the approximations

invoked to reduce the number of wavelet coefficients which are kept, rather than as an inherent

limitation of the wavelet transform itself.

3.5 Conclusions

Using the wavelet transform as a basis for calculations of lattice systems yields an impressive

reduction in the computational time required to obtain estimates of thermodynamic properties,

at the price of modest errors in accuracy, given the relatively small size of the systems considered

here, and the approximations introduced to simplify our calculations. The wavelet transform

provides a systematic approach to coarse-grain systems to any level of resolution. The method

produces correct results in the vicinity of fixed attractors, with decreasing accuracy as one

approaches the critical point in parameter space.
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In addition, the use of the wavelet transform on such systems is simple to implement: after

selecting a particular set of wavelets, all of the operations can be reduced to matrix multipli-

cations, as shown in Section 3.2.1. The computational requirements needed to implement the

transformation are small: if the transformation cannot be accomplished in the explicit form of

a matrix multiplication, it is possible to organize the calculation to be performed in-place [153].

Moreover, the amount of coarse-graining that can be achieved using the wavelet transform can

be adjusted dynamically. These properties of the wavelet transform lead naturally to an exten-

sion of the method to systems for which simulations are required; the resulting algorithm is the

focus of the following chapter.
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Chapter 4

Multiresolution analysis in

statistical mechanics. II. The

wavelet transform as a basis for

Monte Carlo simulations on lattices

4.1 Introduction

In the preceding chapter, we discussed wavelet-accelerated Monte Carlo (WAMC), a new

method for multiscale simulations, and showed how to apply it as a topological tool to polymer

simulations, the simplest case being the freely-jointed chain. The real power of the algorithm,

however, lies in its ability to handle non-bonded interactions between particles, as is found in

self-avoiding chains. Thus, in this chapter, we extend our development of the algorithm. We

show that applying the wavelet transform to the hard-sphere potential justifies the use of soft

potentials, and that, using the freely-jointed chain model, we can develop phenomenological

scaling laws which can be used to estimate new coarse-grained interatomic potentials using

previously computed data. We also demonstrate that our method reproduces expected scaling

results for self-avoiding chains.
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4.2 The Wavelet-Accelerated Monte Carlo (WAMC) algorithm

The principal difficulty of performing a wavelet transformation on a lattice system is in work-

ing with the discrete set of values that each spin is permitted to take, such as in a spin-q Ising

model. Because the transformed variables are linear combinations of the original variables, the

constraint that the spins of the individual sites on the original lattice must be drawn from

the set {-q, -q + 1, . .. , q - 1, q quickly becomes a more complicated constraint on the trans-

formed variables si and Si. As the system size becomes large, the difficulty of rewriting the spin

constraints proves so great that previous investigations of the use of wavelets in statistical field

theory ignored Ising models altogether [15]. Consequently, we would like, if at all possible, to

avoid computations involving original states after we have carried out the wavelet transforma-

tion. At this point, we take note of the application of wavelets to image compression, where

the goal is to reduce the amount of information needed to reconstruct an image. We would like

to apply this technique to lattice systems, and reduce the number of degrees of freedom which

must be accounted for in our calculations.

We consider our system to be a d-dimensional regular lattice £ with side length 1, so that

the size of the lattice is N = IL1 = -d, and we let a site ai on the lattice L be characterized by

a "spin" chosen from a finite set J of values and by its physical location on the lattice. For

the spin- 1 Ising model, for example, the set 3 is just {+21, -1 } (although for computational

convenience this is usually treated as +1, -1, a convention which we follow below); similarly,

for a lattice gas based on a spin-1 Ising model, J = {0, 1, 2} represents the allowed occupation

numbers of each lattice site. We then assume that the only physical interactions that occur

are either interactions with an external field hi which can vary at each lattice site, or pairwise

interactions with the bilinear form U (ai, oj) = Jijaioj, where Jij is usually a function only of

the spacing between sites i and j. Consequently, the Hamiltonian of the system can be written

in the form

-/ i= E hiTi + ± Jijaiaj. (4.1)
i i j

For the purposes of our simulations, however, we will find it more convenient to treat the set

of spins (yl,..., N) and the external field (hi,.. ., hN) as vectors u and h, and the pairwise

interaction strengths Jij as a matrix J. Then the Hamiltonian (4.1) can be written in matrix
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form as

-X = hTu + uTJu. (4.2)

This formulation of the problem is similar in spirit to that of graph theory, where the pairwise

potential Jij is used to generate an adjacency list which specifies which edges interact [31].

Using (4.2) as the basis for a Monte Carlo simulation requires the calculation of the change of

energy AEnm from microstate um to microstate un:

AEnm = hT (Un - Um) + (Un - U,)T J (Un - Um). (4.3)

If moves are restricted to changes of single spins, then only a single entry of un - um is nonzero,

and the calculation (4.3) reduces to a dot product, instead of a matrix multiplication.

As described in I, the action of the wavelet transform is to insert between each product in

(4.2) or (4.3) the identity matrix in the form I = WTW, where W is the wavelet transform

which maps data from one scale to the next coarser scale, containing half as many data points.

The resulting expressions rewrite the Hamiltonian in terms of wavelet-transformed averages

and differences, with downsampling needed to reduce the number of variables from 2N to N.

As before, the wavelet transform can be iterated by applying it to successive sets of averages,

leading after K iterations to Hamiltonians of the form:

((K)) (K) + ((K)T(K)(K) (44)

where in (4.4) the (K) represent "block spins" whose values are determined by wavelet aver-

aging over some well-defined region of the original system. The Hamiltonians (4.2) and (4.4)

have the same formal structure, so that Monte Carlo simulations of the two systems are essen-

tially identical. The only modifications needed to simulate a coarse-grained Hamiltonian are

the ability to select new microstates ui(K) which are generated through wavelet transformations

of the original microstates ui, and the elimination of unwanted degrees of freedom from (4.4).

It should be noted that in (4.4), the elements of ui(K) are not restricted to the same values as

in the original system, but are free to take on any value which is consistent with the wavelet

transform applied to the system.

70



From above, we saw that for even Hamiltonians H (i), we should have that (6)i = 0 for

any wavelet difference 6, where (-)H denotes the ensemble average weighted by the Hamiltonian

H. As a "worst-case scenario" for our method, we shall assume not only that ()f = 0, but also

that any terms in the Hamiltonian (4.4) containing fluctuation terms can be neglected as well.

This assumption allows us to reduce the size of (K) from N x N 2- -KdN, where

d is the lattice dimensionality. Consequently, instead of performing calculations involving all

of the original variables x which describe the state of our system, we consider functions only

of local averages of our original variables. However, we anticipate that this simplification of

the interactions present in the system will have a significant impact on the thermodynamic

behavior of the resulting system; we illustrate these effects below.

To generate the new microstates UiK), we need an estimate for the probability distribution

p (5K)) which describes the individual sites in the coarse-grained lattice. Determining the

correct distribution for a given j(K) would require a detailed simulation of the original system.

An alternative, ignoring the effect of neighboring block spins, would be to perform an exact

enumeration of the spins within a block, which is possible only for the smallest of block spins.

Since we would like to apply this method to systems of arbitrary size, we want to avoid both of

these options. Therefore, we simulate a sublattice with the same dimensions as f(K), ignoring

physical interactions with the rest of the system by using either free or periodic boundary

conditions. Using the standard Metropolis acceptance criterion, we compute distributions for

the properties of the small lattice, such as the magnetization. Then, according to the matrix

formulation described in the previous chapter, since the wavelet transform defines a single block

spin uK ) as a linear function of the individual spins at level K - 1 which it replaces, we can use

the linearity properties of probability distributions to convert the distribution of the properties

directly into a distribution for the block spin 5AK) [18]. Finally, using the distribution for the

block spin (K) as a starting point, we perform a Monte Carlo simulation on the system of

block spins defined by the Hamiltonian (4.4).

Although (4.2) and (4.4) are structurally the same, we cannot impose a one-to-one correspon-

dence between the states in the configuration space of (4.3) and the states in the configuration

space of (4.4). Consequently, the thermodynamic information obtained from the two will not

necessarily be identical; as we have shown in Chapter 3, there is under fairly broad conditions
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a loss of entropy associated with the application of coarse-graining to a system. We can ensure

that the detailed balance condition for the simulation based on (4.4) is satisfied for the new

simulation by requiring

(- (Kn) - (K))_ (U(K))

a (ii () , .K) P (PK)

where a (m -+ n) is the probability of accepting a move from microstate m to microstate n,

and p (m) is the probability of selecting microstate m as determined from simulations on finer-

grained lattices at lower scales.

4.3 Theoretical performance of WAMC versus traditional MC

The wavelet transform is a hierarchical method which can be applied iteratively to a system to

obtain successively coarser descriptions of a system. To describe the operation of the wavelet

transform on a lattice model, we need to introduce some notation based on the various length

scales in the problem. In the original problem, the applicable length scales are the lattice

spacing 1, the correlation length ~, and the total lattice size L. Applying the wavelet transform

method once increases the lattice spacing by some factor a, so that the ratios of correlation

length to lattice spacing and of system length to lattice spacing each decrease by a. If we apply

the wavelet transform m times in succession, the corresponding factor becomes am.

We perform the simulation in a series of K stages, where the length scales at each stage are

functions of the length scales at the previous stages. The initial simulation is performed on a

sublattice of the original problem, with lattice size L(1) < L, where the superscript denotes the

first stage of the simulation. The lattice spacing of the first stage is the same as in the original

problem, so we define 1(1) = 1. At each subsequent stage of the simulation, the lattice spacing

of the kth stage is defined by the recursive relation l(k) = L(k-1)l(k - l ). Since 1(1) is fixed to be

the lattice spacing of the original lattice, the adjustable parameter in this relation is the lattice

size L(k) of each stage. If we assume that the lattice is the same length in all dimensions at

every stage, a single variable in stage k is a block variable representing the (L(k-1))d variables

simulated in stage k - 1.
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Assuming that the lattice is the same length in all directions both in the original problem

and at every stage in the wavelet-transformed problems, there are Nt = Ld lattice variables

in the original problem, and N(k) = (L(k))d lattice variables in the kth stage of the wavelet-

transformed problem. However, each variable in stage k is a block variable representing the

average behavior of the (L(k-1))d variables in a block at stage k - 1, so the number of total

degrees of freedom represented at stage k is N(k) = jk N(i), where N(K) = Nt. The number

of simulated degrees of freedom is Ns = Nt for traditional Metropolis Monte Carlo (MMC), but

Ns = K 1 N( i) for WAMC. Because the running time of Monte Carlo simulations is usually

linear in the number of degrees of freedom being simulated, the advantage of coarse-graining the

system using a wavelet transform becomes evident. For example, consider an "original problem"

of simulating a cubic lattice with 256 Ising variables on a side. If we divide the original problem

into two stages consisting of cubes of 16 Ising variables on a side, we reduce the original problem

of analyzing 2563 = 16,777, 216 variables to the simpler problem of analyzing 2 (163) = 8192

variables. Although it is more difficult to produce a trial configuration in a simulation of the

wavelet-transformed problem than in a simulation of the original Ising lattice problem, this is

more than offset by the reduction in the number of degrees of freedom being simulated.

4.4 Results

For the purposes of comparison, our "experimental" systems are two-dimensional Ising models

of size 32 x 32, where we have run both MMC simulations on the full lattice, and WAMC

simulations at a variety of resolutions; we shall denote these resolutions using the notation

(x, y), where x indicates the length of the block size simulated in the first stage to estimate the

probability distribution p (u(K)) to be used in the second stage, and y denotes the number of

blocks on a side of the lattice in the second stage of the simulation.

4.4.1 Order parameter

Usually, the property of greatest interest in a simulation of a lattice system is the order parame-

ter r. For spin systems, 7 is generally taken to be the magnitude of the average magnetization,

so that 7r = (m). [For XY and Heisenberg models, and other models where spins are oriented,
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we generally consider only the magnitude of the average vector 77 = (m) = (Iml).] Generally,

this is a very simple property to compute, since the value of the order parameter is constantly

updated during the course of the simulation, and is thus always available.

For the 32 x 32 Ising model, the results of a MMC simulation, as well as (4, 8)- and (8, 4)-

WAMC simulations are shown as Figure 4-1. The primary difference in the curves for the three

cases is that as the coarse-graining process decreases the number of degrees of freedom in the

final stage of the simulation, the location of the Curie temperature, indicating onset of spon-

taneous magnetization, increases and the steepness of the curve below the Curie temperature

decreases. This result is consistent with our findings for average absolute magnetization (Iml)

from analytical models, discussed in Chapter 3. In the present case, we note further that we

achieve agreement between the different models not only in the low-temperature region, but

also in the high-temperature regime T > T,. The differences in the intermediate regime can

be attributed largely to the difference in behavior that results from the use of the wavelet

transform to move from the original Hamiltonian (4.2) to a coarse-grained Hamiltonian (4.4).

Additionally, the increased noise in the WAMC results at intermediate and high temperatures

arises because of the approximations used for the probability distributions p (u(K)) at the sec-

ond stage of the simulation. The relative lack of noise in the MMC results stem in part from the

fact that the Metropolis technique leads to non-ergodic sampling of phase space as temperature

increases, as the simulation tends to cycle through a limited number of states [91].

4.4.2 Internal energy

Plotting the internal energy (U) as a function of the temperature, we obtain curves that follow

the same general pattern outlined in Chapter 3. As illustrated in Figure 4-2, at low temper-

atures, the internal energy, as computed for the 32 x 32 model using standard MC as well as

(4, 8)- and (8, 4)-WAMC simulations, is in exact agreement for all methods. This occurs because

only a few microstates of the system, corresponding to states that have all spins aligned, are

actually observed by the system, and the wavelet transform preserves the energy of these states

exactly. All three eventually reach an average internal energy of zero, but exact agreement is

only expected in the infinite-temperature limit, when the difference in energy levels between

microstates becomes unimportant. For intermediate temperatures, as before, the disagreement
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Figure 4-1: Absolute average magnetization as a function of the dimensionless temperature
kBT/J for the 32 x 32 Ising model computed using standard MC (left curve), a (4,8)-WAMC
simulation (center), and a (8,4)-WAMC simulation (right).

is a result of the change in form of the Hamiltonian that results from neglecting local corre-

lations. Also, we note that for WAMC the "noise" in the internal energy increases both with

increasing proximity to the "observed" critical point of the system as well as with increasing

coarse graining. The additional coarse graining yields a Hamiltonian with reduced numbers

of energy levels, since the energy of a block spin is defined here to be a function only of its

overall magnetization, and not of its internal magnetization fluctuations; the reduced number

of discrete energy levels yields noisier data.

4.4.3 Fluctuation properties

Fluctuation properties are useful for locating critical points since in the vicinity of a critical

point, the magnitude of fluctuation properties is known to diverge as t- a , where t IT - TI l/Tc

[124]. Thus, a rapid increase in the value of a fluctuation property such as the heat capacity at

constant external field, CH = ((E2) - (E)2) // kBT2, with respect to temperature can be used

to estimate the critical temperature of a system. However, use of the wavelet transform leads

to a decrease in the magnitude of the heat capacity, since the coarse-graining leads to smaller

variances in the distribution of the energy (U). Consequently, the maximum value of the heat
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Figure 4-2: Internal energy as a function of the dimensionless temperature kBT/J for the 32 x 32
Ising model computed using standard MC (left curve), a (4, 8)-WAMC simulation (center), and
a (8, 4)-WAMC simulation (right).

capacity Cmax decreases as a function of the number of degrees maintained in the problem.

In Figure 7-1, the heat capacity is shown as a function of dimensionless temperature kBT/J

for the same systems as for the order parameter and internal energy measured above. We see

that the location of the maximum of the heat capacity does increase, as expected. Although the

relative maximum of the heat capacity obtained from the (4, 8)- and (8, 4)-WAMC simulations

appears to be identical, they differ by about 3 percent. Moreover, the actual value of the

maximum is not as important as its existence and its location as a function of kBT/J and of

the resolution of the model.

4.4.4 Coarse-grained entropy

In the previous chapter, we emphasized that in the low- and high-temperature limits, the

entropy of the system should be preserved under the wavelet-transform method. However,

looking at Figure 4-4, which plots the entropy of a 32 x 32 Ising model calculated via direct

simulation and using an (8, 4)-WAMC simulation, we do not observe this behavior. Instead, we

see that for a given temperature, the entropy predicted by the coarse-grained model is always

lower than that determined by direct simulation.
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Figure 4-3: Heat capacity as a function of the dimensionless temperature kBT/J for the 32 x 32
Ising model computed using standard MC (left curve), a (4, 8)-WAMC simulation (center), and
a (8, 4)-WAMC simulation (right).

Why does this not contradict our previous claim? We know that the problem does not

occur at low temperatures, since the system is effectively trapped in those configurations with

the lowest energies-the ones that have almost all spins up or all spins down. Similarly, the

problem does not occur at high temperatures, as demonstrated by Figure 4-5, which plots the

expected distribution of states in an 8 x 8 block as a function of its average magnetization.

For very high temperatures, the agreement between the distribution of states yielded from a

direct simulation of an 8 x 8 block versus the expected distribution is quite good. This is to

be expected since for high temperatures, we can ignore the relative energies of the different

configurations as the Boltzmann weight of each state goes to unity, and thus we are left with

merely a count of the various energy states in the system. Thus, using Eq. (3.12), we can

determine the entropy exactly at both low and high temperatures.

Therefore, we know that the problem is a result of the disagreement at intermediate tem-

peratures. But why does inaccuracy at intermediate temperatures affect the entropy of the

limits? The answer is that for systems too large to be enumerated explicitly, we cannot perform

the calculation required to use Eq. (3.12). Except for very small systems, such as the 4 x 4
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Ising model we considered in Section 3.3.4, there are simply too many states for an explicit

categorization to be performed. Thus, we are forced to rely on thermodynamic integration to

determine the entropy, calculating it using the heat capacity:

T C(4.5)S(T) = S(T= o) + dT' (). (45)

It is in fact (4.5) and not (3.12) that is used to derive the plots shown in Figure 4-4. As we ex-

plained in the previous section, the WAMC produces lower estimates for fluctuation properties

than what is actually observed, Consequently, relying on results obtained at intermediate tem-

peratures will throw off the answers predicted by thermodynamic integration, although other

properties calculated by thermodynamic integration which do not require fluctuation properties

in their definition, such as the free energy, do not suffer as much from this problem.

We could in principle also start at infinity and use the formula

S (T) = S (T = oo) - j dT ); (4.6)

however, this would create problems as T -+ 0, since the coarse-grained results would not

agree with the theoretical predictions of S/NkB = ln2. Alternatively, we could use both the

high- and low-temperature limits, but this would mean that our predictions at intermediate

temperatures would be invalid, especially at the jump discontinuity at the temperature where

we would attempt to bridge the results produced by (4.5) and (4.6).

4.4.5 Scaling results

One application of the wavelet-accelerated MC method is to provide an upper bound for locat-

ing phase transitions. Running multiple simulations, at different levels of resolution, one can

determine for each level of resolution the approximate phase transition temperature Tp (Ns),

where Ns is the number of degrees of freedom (here, block spins) in the given system. From

these data, one can extrapolate a scaling relationship of the form

(Tp -Tp) N, (4.7)
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Figure 4-4: Entropy of the 32 x 32 Ising model as a function of temperature, as computed by
direct simulation (top) and using an (8, 4)-WAMC simulation (bottom).
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where y is the corresponding "scaling" exponent, and Tp is the phase transition temperature

for the untransformed model. The estimate obtained for the scaling exponent y depends upon

the technique used to calculate the transition temperature for a given system-for example,

estimating divergence of the heat capacity versus the onset of spontaneous magnetization. Our

simulations suggest that y is typically between 0.20 and 0.25, with lower values obtained from

divergence of heat capacity than from the onset of spontaneous magnetization.

As explained in I, using a relationship like (4.7) to estimate the phase transition temperature

will usually lead to an overestimate of the phase transition temperature. This is a consequence

of the underestimation of entropy that occurs through the reduction of the size of configuration

space as a result of the wavelet transform. Estimates of kBTp/J, as determined by (4.7) for

the two-dimensional Ising model considered here typically varied between about 2.7 and 2.9,

which is an error of approximately 25 percent from the theoretical value of 2.27 provided by

the Onsager solution, but only about 20 percent from the results determined by the traditional

MC simulations, which gave kBTp/J 2.35. Although these errors are somewhat sizable, it

is useful to note that the total computation time required to obtain the estimate using scaling

laws is at least an order of magnitude smaller than the computation time required to perform

a direct simulation on the original system. Thus, if computational time is at a premium, an

effective approach may be to use the wavelet transform method to provide an upper bound for

Tp, and then perform a direct simulation for the parameter space with temperatures below Tp.

4.4.6 Decorrelation time

Another important measure to study is the time required for decorrelated samples. It is well

known that in the vicinity of the critical point, traditional Monte Carlo algorithms experience

so-called "critical slowing-down" [19]. The Monte Carlo aspect of the WAMC algorithm does

not vary from traditional Metropolis Monte Carlo, so we expect that the performance of the

two algorithms should be similar, when measured near their respective critical temperatures.

To compare the two methods, we generated 224 = 16777216 new configurations for the

32 x 32 Ising model at the critical point using traditional Metropolis Monte Carlo, as well as for

the (4,8)-, (8,4)-, and (16,2)-WAMC models. To determine the correlation time, we used the

blocking technique of Flyvbjerg and Petersen [60]. The results are shown as Figures 4-6 and
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Figure 4-6: Graph showing variance in the estimate of energy as calculated using the method
of Flyvbjerg and Petersen [60] for a 32 x 32 Ising model measured at its critical temperature.

4-7 for the MMC and (16,2)-WAMC models, respectively. The salient feature in the graph is

the onset of a plateau in the value of the variance of the energy a2; according to the method of

Flyvbjerg and Petersen, this indicates that configurations separated by a distance of 2x steps

are statistically independent, where x is the number of blocking transformations that have been

performed. For the MMC model, we find that x 13 or x 14 provides a decent estimate; for

the (16,2)-WAMC model, x = 16 is a good estimate for the index. [For the (4,8)- and (8,4)-

models (not shown), x = 15 is a reliable estimate.] In each case, this indicates that between

214 = 16384 and 216 = 65 536 steps are required between independent configurations. Thus,

we conclude that there is no degradation of performance near the critical point of a WAMC

simulation, relative to traditional MMC simulations.
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Figure 4-7: Graph showing variance in the estimate of energy as calculated using the method
of Flyvbjerg and Petersen [60] for a 32 x 32 Ising model in a (16, 2)-WAMC measured at the
critical temperature determined from the simulation.
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Table 4.1: Performance comparison for MMC versus WAMC
Simulation size Time for 5 x 105 passes (s)
32 x 32 MMC 1824.22
(4,8)-WAMC 64.5781
(8, 4)-WAMC 55.1094
(16, 2)-WAMC 144.516

4.5 Analysis

4.5.1 Measured performance comparison

In comparing the performance of the standard Monte Carlo algorithm to the wavelet-accelerated

Monte Carlo algorithm, we performed 5 x 105 lattice passes on a 32 x 32-lattice on a 733 MHz

Pentium II: for the standard Monte Carlo algorithm, this meant that, on average, 5 x 105

attempts were made to flip each spin. For the WAMC algorithm, 5 x 105 attempts were made

to flip a spin on a given level. The results are summarized in Table 4.1. We see that the

(4,8)- and (8,4)-simulations, which have the smallest total number of lattice sites (80), perform

the fastest; however, even the (16,2)-simulation, which has one-fourth as many variables (260)

as the 32 x 32 standard Monte Carlo simulation (1024), finishes in less than 8 per cent of

the time required for the latter simulation. As the system size increases, the computational

efficiency achieved by breaking down the system into multiple stages, all of relatively equal size,

becomes even greater: for a 128 x 128-lattice, the performance gain increases from a factor of

approximately 25 to a factor of approximately 50, when we compare the (32,4)- and (16,8)-

WAMC simulations to the standard MC model. However, for the (8, 16)-WAMC model, the

complexity of assigning one of 65 possible values to each of 256 variables according to the

correct probability distribution becomes comparable to that of the original problem, so that in

fact standard MC runs in roughly a factor of 3 faster than the (8,16)-model.

Similar results are also observed for calculating the phase diagram of a 64 x 64-Ising lattice,

which is shown in Figure 4-8 as a plot of average magnetization as a function of temperature

and external field strength using an (8,8)-model, for temperatures between T = 0.5 and T =

5.0, and for field strengths between h = -1 and h = 1. The phase diagram reproduces the

essential features of the original two-dimensional ferromagnetic Ising lattice, such as the phase

separation at h = 0, although the exact shape differs from the results obtained via a standard
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Figure 4-8: Phase diagram plotting average magnetization versus temperature and external field
strength for a 64 x 64 ferromagnetic Ising lattice, computed using an (8, 8)-model via WAMC.
The general features correspond to those that would be produced with standard MMC, but
require less than 3 per cent of the computational time.

Metropolis Monte Carlo simulations. However, the plot based on WAMC calculations is created

approximately 40 times faster than would a comparable plot using standard MMC.

4.5.2 Comparison with renormalization group methods

Our observations also indicate that the accuracy of the wavelet-accelerated Monte Carlo simu-

lations depends on the relative proximity to an "attractive fixed point" of the physical model

in parameter space. Borrowed from renormalization group theory, these attractive fixed points

represent the limiting behavior of the system under various conditions, such as the zero- and

infinite-temperature limits and the limits of zero and infinite external field. As we approach

these limiting cases, the approximations made in obtaining our wavelet-transformed Hamil-

tonian become increasingly less significant.

Combining these observations allows us to design an on-line fine-tuning algorithm for the

coarse graining of our system: the further away from the critical point of the parameter space,

the smaller the number of degrees of freedom N(K) necessary to simulate the system must be.

Thus, if we keep track of changes in fluctuation properties such as the heat capacity or the

magnetic susceptibility as we change the system parameters (h, T), we can get an estimate of
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our relative distance to the critical point. If we are sufficiently far away from the critical point,

we can choose either to increase the number of stages K that we simulate, or we can look at

more degrees of freedom at lower stages by increasing N ( 1), N( 2),... , N (K - .1) As we approach

the critical point, we can either decrease the number of stages K or include more degrees of

freedom at higher stages by reducing N(1),..., N(K-1).

4.5.3 Sources of error

In general, the source of our errors can be traced to the assumption that local fluctuation terms

could be reasonably ignored in our coarse-grained Hamiltonian (4.4). This naive but otherwise

useful assumption yields correct thermodynamic behavior when the overall physics of the sys-

tem is particularly simple: in the low- and high-temperature regimes, for instance, when the

number of observed microstates is small or when the differences between observed microstates

is inconsequential. For more complicated behaviors, as found at intermediate temperatures

and above all in the vicinity of a critical point, the use of this assumption has a drastic effect

on both the phase space of the system, which in turn affects all thermodynamic properties

of the system, including the internal energy and entropy of the system, as well as fluctuation

properties of the system.

More complicated methods for dealing with fluctuation terms have significant drawbacks

associated with them. Treating the fluctuation terms just like the block averages maintained in

ii(K) means that the wavelet-transformed Hamiltonian is no simpler than the original Hamil-

tonian, which affords few advantages in computational time. Likewise, other approaches, such

as parametrizing the probability distribution for the elements of u(K) using a property like the

energy E, introduce new functional dependencies which cannot be taken into account using the

wavelet transform. Thus, we sacrifice one of the major advantages of the method-moving from

one level to another is achieved exclusively through use of the wavelet transform. Thus, the

most promising avenue for dealing with fluctuation terms is to develop a probability distribution

for the fluctuation terms via the same approach used to determine probability distributions for

the local averages. Then, using the probability distribution for the fluctuation terms, we can

treat the discarded terms of the Hamiltonian as a noise term which can be used to restore some

of the entropy that was lost as a result of the coarse-graining [see Chapter 3 for more details].
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However, we have presented our results here to show what can be achieved under "worst-case"

conditions, without the use of inverse coarse-graining methods.

Many coarse-graining techniques control errors by fitting the parameters of a new Hamil-

tonian to ensure agreement with some known structural information about the system, such as

the radial distribution function [3, 10]. For lattice systems, this iterative approach is reflected

in renormalization group theory, and notably the Wilson recursion method [160], which finds

the fixed points of the system. As formulated, WAMC creates a coarse-grained Hamiltonian

by truncating the Hamiltonian obtained after application of the wavelet transform. As an im-

provement to this, it should be possible to use the wavelet transform to determine which terms

will appear in the Hamiltonian, and then determine the appropriate parameters to ensure the

best fit for some desired property of the system using an iterative approach [102,103,134].

4.5.4 Constructing an adaptive algorithm for MC using the wavelet trans-

form

As pointed out above, the wavelet transform method tends to produce overestimates for the

critical point of the system; therefore, if we start with the high-temperature limit of our al-

gorithm and slowly reduce the temperature in our simulation, we can observe the movement

toward the critical point by watching various fluctuation parameters, such as the heat capac-

ity CH = ((E2) -(E)2) /kBT 2. Near the critical point, we expect to see a rapid increase in

the value of CH, consistent with the expected logarithmic divergence observed in the limit of

finite-size systems [65,124]. If we use the onset of this logarithmic divergence as an indicator,

we can then "step down" and use a finer lattice including more degrees of freedom. This sys-

tem will naturally better reflect the physics of our system, particularly in the vicinity of the

critical point. We expect that very near the critical point, we will have to simulate the system

at the original scale, since this will be effectively the only level which accurately represents

the underlying behavior of the system. However, the region of parameter space where this

is necessary is relatively small compared to the complete parameter space. This is especially

true when we consider that as we proceed below the critical temperature of the system, the

logarithmic divergence of CH will also vanish. As a result, as we move increasingly far away

from the critical point, we begin to approach the other fixed-point behaviors associated with
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the low-temperature limits of the system. Since these are reasonably well-preserved using the

wavelet transformation, we can safely return to increasingly coarse-grained descriptions of our

system as the simulation proceeds past the critical point.

As an example, we compute the spontaneous magnetization curve for a 64 x 64 Ising lattice

in the temperature range 0.5 < T < 10.0, with AT = -0.05, and choosing as our refinement cri-

terion ACH/AT < -0.5, until we reach the finest scale, corresponding to the original problem.

We begin by coarse-graining the system to an (8, 8)-model, where we find that the criterion is

triggered only at T = 5.1; we then continue with a (4,16)-model, down to T = 4.0, at which

point the refinement criterion is exceeded. Refining once more, we proceed with a (2, 32)-model

until T = 3.4, at which point the threshold is again crossed. Since the next refinement is the

original problem, we proceed at this level of resolution until we have passed the critical point, so

that ACH/AT is positive. As a coarsening criterion, we select for simplicity the opposite of the

refinement criterion, ACH/AT < 0.5. Using this criterion, we find that we coarsen the model

to the (2, 32)-, (4,16)- and (8, 8)-models at temperatures of T = 1.75, T = 1.65, and T = 1.55,

respectively. The rapid coarsening of the model results from the higher estimates of the critical

point in the coarsened models. Since we are well past the critical point, we expect changes in

the heat capacity as a function of temperature to be relatively small, and thus it is possible to

obtain accurate results from a relatively coarse model. Computationally, the time required to

create this diagram was only 28 per cent that required to perform a standard Metropolis Monte

Carlo simulation with the same number of steps. Moreover, in the regions that were not simu-

lated using MMC, the computation time required was just 8 per cent of the time required for

MMC. The resulting plot of magnetization versus temperature, shown as Figure 4-9, compares

favorably to the analytical solution of Onsager, which is also shown [122].

4.6 Conclusions

The WAMC algorithm can dramatically reduce the time required to calculate the thermody-

namic behavior of a lattice system; the trade-off for these savings in time is in the accuracy

of the results obtained, a general feature of coarse-graining techniques. The error that results

is a function of position in parameter space: the results obtained are generally accurate in the
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Figure 4-9: Phase diagram plotting average magnetization versus temperature for a 64 x 64
ferromagnetic Ising lattice, created using an adaptive WAMC algorithm, with refinement and
coarsening criterion established using the change in heat capacity with respect to temperature
ACH/AT. The squares represent the simulation results, while the line reproduces Onsager's
analytical result for the two-dimensional Ising model with zero external field. The simulation
used in a given temperature region is shown on the plot.
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vicinity of fixed attractors of the system, and decrease as one approaches critical points of the

parameter space. Near critical points, deviations from results performed on the original lattice

system are the result of coarse-graining the Hamiltonian by eliminating local fluctuation terms.

Consequently, this suggests that a hierarchical simulation which uses fluctuation properties

such as the heat capacity CH to gauge proximity to critical points in "real time" would yield

dramatic savings in the computation time of the behavior of a lattice system over a wide region

of phase space, as regions of space close to fixed attractors would be simulated at a very coarse

scale, with full-detailed simulations reserved only for regions of parameter space close to critical

points.
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Chapter 5

Topological coarse-graining of

polymer chains. I. Freely-jointed

chains

One method for simulating large polymer chains is to use a coarse-graining scheme which

systematically reduces the number of degrees of freedom to improve the computational efficiency

of a simulation. A number of coarse-graining schemes have been discussed in recent review

articles by Baschnagel et al. [10] and by Miller-Plathe [118]. Several other theoretical methods

based on renormalization group theory have also been developed to analyze polymer chains

[38, 64]. More recently, polymer chains have also been treated as melts of interacting ellipsoids

with soft potentials [75, 119] or as soft colloids [23, 97, 99]. To date, these coarse-graining

approaches have always connected two specified length scales. In many cases, though, it is

not clear in advance what level of coarse-graining is either appropriate or acceptable: different

molecules may permit different amounts of coarse-graining. A scheme which can be adjusted

according to the needs of a particular molecule during the course of a simulation would therefore

be of enormous benefit, as it would have greater generality and flexibility than current coarse-

graining approaches.

We employ the hierarchical methodology we developed in Chapters 3 and 4 for lattice spin

systems, taking advantage of the self-similar structure of the polymer: at each stage of the
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simulation, we sample some portion of the chain we want to study, and use data derived from

a previous stage of the simulation to describe the behavior of the new, coarse-grained particles

which represent an aggregation of particles in the finer-scale simulation. Unlike the lattice spin

model we considered previously, our coarse-graining technique will be topological, as opposed

to spatial: the "blocking" method now proceeds along the backbone of a polymer chain, rather

than in a fixed region of space.

This chapter outlines the application of the wavelet transform to simulation of linear polymer

chains, and presents results applicable to freely-jointed chains. The following chapter addresses

the problem of excluded-volume interactions and presents results for self-avoiding chains.

5.1 The freely-jointed chain model

The freely-jointed chain model consists of a set of N beads joined together by a series of rigid

bonds of length I whose orientation is drawn uniformly from the unit sphere:

p(r) = 6(r-l), r > (5.1)

P ( =) sin, O < < r (5.2)
1

P (0) = -0 0<<27r. (5.3)

There are no interactions present between beads, so the excluded volume of the chain is zero. In

the mathematical literature, the freely-jointed chain is referred to as a Gaussian random walk;

we do not use that nomenclature here, to avoid confusion with the Gaussian polymer model,

in which the rigid bonds are replaced with harmonic springs.

Simulating a freely-jointed chain is relatively simple, because there is no need to determine

interaction energies for a particular configuration. Freely-jointed chain configurations can be

generated via explicit construction, or using methods like the translate-jiggle algorithm [41]

or the pivot algorithm [901 which have been developed for self-avoiding chains. Our atomistic

simulations are performed via explicit construction; as discussed below, our coarse-grained

simulation is based on a variant of the translate-jiggle algorithm.
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5.2 Coarse-graining of polymer chains

5.2.1 Using wavelets to construct a coarse-grained model

A freely-jointed or self-avoiding polymer chain is an inherently topological structure: the order

of beads {rl,..., rN} in the chain determines not only the position of the individual beads,

but also their connectivity: bead 1 connects to bead 2, and so on. As a result, we can exploit

this structure when constructing our coarse-grained representation. The resulting approach is

closely related in spirit to renormalization group procedures, and in particular to the blocking

technique of Kadanoff [71, 85].

We take as our input data the set of positions {rl, . .. rN} of the beads in the polymer chain,

and select the unnormalized Haar wavelet pair,

(k) _ I (k-l) (k-l)]
rn 2 [r 2n- + r2n] (5.4)

(k)_ 1 (k-l) (k-l)]
Wn) = [r2n - r2n (55)

as our basis set. We have chosen to use the unnormalized form of the Haar wavelet to ensure that

the physical dimensions of the system are not altered through the coarse-graining procedure.

Applying Eqs. (5.4) and (5.5) to ({rl, . rN yields a set of averages {r1)} and a set of
S i= l

differences ({w1)} , where (1) denotes that Eqs. (5.4) and (5.5) have been applied once to

our original data set. The effect of the averaging operator in (5.4) is to create a new coarse-

grained bead rn) at the center of mass of the beads at r2n-1 and r2n; the differencing operator

(5.5) returns the distance between the original particles' positions and their center of mass.

We can then take the set of averages {r(1) }/ and iterate the wavelet transform once more,

producing a set of averages {r2) }N/4 and a set of differences {w(2) which represent the

behavior of the chain over twice the length scale as did the previous iteration. This process can

be repeated as many times as desired, until we have a set of averages {r K)}2K and K sets

of differences, { {wk) }I/ }N

Applying the wavelet transform to our original data set re-expresses it in terms of a different

set of variables, but does not reduce the total number of variables produced. In almost all cases,

however, probability distributions for sums of random variables are more complicated than
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the original variables. Therefore, to simplify our work further, our coarse-graining procedure

eliminates the differencing variables (K)} after each iteration of the wavelet transform.

Elimination of the differencing variables is the fundamental step in which information about

the underlying configuration is lost after coarse-graining.

5.2.2 "Equivalence" of on-lattice and off-lattice coarse-grained computations

There are some unusual features of our coarse-graining procedure, particularly for simulations

performed on a lattice. Applying the wavelet transform to a topological structure increases

the discretization of the lattice; this result has not previously been commented upon in the

coarse-graining literature, including our work on lattice spin systems in Chapters 3 and 4.

To see how this increased discretization arises, define a to be the lattice spacing. In general,

a is chosen to be equal to at least twice the radius of the bead to prevent beads sitting on

neighboring lattice sites from overlapping. Our simulation starts on the lattice C(0) of integer

points, so that a = 1. The first set of averages created using (5.4) is found on the lattice C(1)

defined by the set of points r E (O), plus the set of midpoints of all pairs of points which

can legally be bonded to one another. For the first set of averages, this corresponds to all

neighboring pairs of points on L( o). Consequently, the "effective" lattice spacing on £(1) is 1/2.

This process can be repeated, so that the lattice spacing for the lattice (k) obtained by

k applications of (5.4) is 2
- k . As k increases, the lattice moves towards a continuum, as the

lattice spacing decreases to zero. An example of this behavior in two dimensions is illustrated

in Figure 5-1. A walk of sixteen segments is converted into a walk of eight segments, with the

endpoint of each bead resting on a half-integer grid point. The next iteration would include

quarter-integer grid points, and so on. For a given chain, this process can be repeated until a

chain has been converted into a single point on a grid with spacing given by 2
- K , where K is

the total number of iterations. At this point, no further coarse-graining of the walk is possible.

In addition to the lattice discretization increasing, the effect of the wavelet transform is to

produce descriptions of the chain which are more "thread-like." An example of this behavior

is shown in Figure 5-2, which illustrates the action of the wavelet transform on a self-avoiding

walk on the cubic lattice. The first iteration of the wavelet transform, illustrated in Figure 5-2

(b), essentially reproduces the atomistic structure of the walk in Figure 5-2 (a). The second and
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Figure 5-1: Coarse-graining of a 16-site random walk in two dimensions using "center-of-mass
aggregation" of adjacent points along the chain, as suggested by the wavelet transform method.
The four sites which would be created after another iteration of this method are indicated on
the graph; note that each is at a quarter-integer lattice point.

third iterations largely preserve the major features of the original chain topology. However, the

finer-scale details are lost as the amount of coarse-graining continues, so that after a number

of coarse-graining iterations, the model will more closely resemble an off-lattice model, such as

a Gaussian polymer model, than the original lattice walk.

5.3 Wavelet-accelerated Monte Carlo (WAMC) simulation of

polymer chains

5.3.1 Hierarchical simulation approach

The basic principle of the WAMC algorithm is to "divide and conquer" a simulation. Instead

of performing a single, fully atomistic simulation, one performs a series of simulations on chains

whose degree of coarse-graining becomes progressively larger, as the probability distributions

and other results obtained from one stage is passed on to the next, coarser stage of simulation.

Let us suppose that the goal is to model a chain of length N. A fully atomistic method

would simulate all N beads in a single step. The WAMC method begins by performing a

fully atomistic simulation on a chain containing Nb,l < N beads. At the atomistic scale, no

coarse-graining has yet been performed, so each bead has an "effective size" Ne, = 1. [The
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Figure 5-2: Coarse-graining of a three dimensional walk on a cubic lattice using the wavelet

transform. (a) A 512-step self-avoiding random walk. (b)-(d) The same walk, after one, two,

and three iterations of the Haar transform defined by (7.6) and (7.7).
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numbers in the subscripts indicate the simulation stage.] For the simulations performed here,

we used the pivot algorithm at the atomistic scale. After every O (Nb,l) steps, we apply the

wavelet transform (5.4) K1 times to determine the positions r(KI) of each new coarse-grained

bead. These coarse-grained beads now have an effective size of Ne,2 = 2 K1 atomistic beads each.

Using these results, we compute the distributions for the coarse-grained internal coordinates,

as well as a coarse-grained inter-bead potential, if necessary. [See Chapter 7 for a further

discussion of coarse-grained potentials.] An upper bound on the value of Ne,2 is placed by

requiring at least four coarse-grained beads to determine a torsion angle, so that we must have

Ne,2 < Nb,1/4.

The second stage of the simulation consists of a chain of length Nb,2 beads. Since each coarse-

grained bead has effective size Ne,2, the total effective chain length is therefore Nb,2 x Ne,2. If

the total effective chain length is equal to the actual length N of the chain to be simulated, the

simulation is terminated. Otherwise, one proceeds to a third stage of simulation by applying

the wavelet transform (5.4) K 2 more times, to produce coarse-grained beads of effective size

Ne,3 = 2K2 Ne,2. We then compute the new potential and distributions for the coarse-grained

internal coordinates, and then simulate a chain of total size Nb,3 x Ne,3, and so on until the

target chain size N is reached

5.3.2 Coarse-grained simulation algorithm

In applying the WAMC algorithm to a polymer chain, it is useful if every coarse-grained simu-

lation stage uses the same basic method for sampling configuration space. Thus, we would like

to develop a method capable of handling distributions in bond length, bond angle, and torsion

angle, plus non-bonded potentials. We would also like our method to operate independently of

the source of the distributions, so that its input data may be provided by calculation from ex-

perimental data, from an atomistic simulation, or from a previous iteration of the coarse-grained

algorithm.

The coarse-grained Monte Carlo sampling algorithm employed here generates trial configu-

rations using a variant of the "translate-jiggle" algorithm, developed by Dickman and Hall [41].

The "translate-jiggle" algorithm selects a bead along the chain, and perturbs it by a random

displacement. The resulting bond, between beads k and kc + 1, is then either stretched or com-
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pressed to ensure that the previous bond length is conserved. The new displacement vector

corresponding to the displacement is computed; then, to ensure connectivity constraints are

satisfied, the remaining beads k + 2, k + 3,..., in the chain are then translated by the new

displacement vector. The resulting chain is tested for self-avoidance and energy differences to

determine if the proposed configuration should be accepted.

Our modifications are principally a relaxation of some of the constraints. Since we would

like the bond lengths to be variable as well as the bond and torsion angles, bond lengths are

not adjusted after selection. Instead, a bond length is selected at random from the provided

distribution, and a new set of bond orientation information (i, Oi) is selected from the internal-

coordinate distributions discussed above.

If the simulation is performed on-lattice, the bond is adjusted only so that both of its

endpoints are mapped to the nearest lattice points consistent with the wavelet transform. Ef-

fectively, this means that for a coarse-grained simulation in which a bead represents 2 m beads

on the atomistic lattice, the lattice spacing constant becomes 2-m. Although similar to the ap-

proach used in the bond fluctuation method, [26] the number of allowed bonds is much greater,

which makes the list-based approach of the bond-fluctuation approach impractical.

Since the allowed points on (k) consist of the midpoints of allowed bonds on /(k-l), techni-

cally not all points will be valid lattice points, unless we take the limit k --, oo. However, even

if a discrete lattice has been used, the distribution of distances between nearest-neighbor bond

segments rapidly approaches a continuous (Gaussian-like) distribution. Therefore, we relax this

criterion in our simulations, and let the lattice 1 (k) be the set of all lattice points with spacing

2- k . This simplifies the problem of locating the nearest lattice point, and drastically increases

the performance of the algorithm, with negligible effects on the accuracy of the simulation.

5.4 Probability distributions for coarse-grained internal coor-

dinates

Our coarse-graining method replaces the description of an atomistic freely-jointed chain with

a smaller number of coarse-grained beads whose positions are determined from center-of-mass

averaging. In order for the results obtained from the coarse-grained model to be equivalent to the
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Figure 5-3: Comparison of the probability distributions for the coarse-grained bond length
(distance between adjacent center-of-mass beads) for freely-jointed chains for different chain
lengths, with 32 atomistic beads per coarse-grained bead.

original, the behavior of the coarse-grained degrees of freedom are generally more complicated

than the uniform distribution given by Eqs. (5.1) through (5.3). The distributions of the coarse-

grained internal coordinates necessary to achieve adequate agreement between the theoretical

results and the coarse-grained model are discussed below.

5.4.1 Bond-length distribution

The coarse-grained bond length is given by the distance between two successive coarse-grained

beads. On the atomistic scale, the coarse-grained bond length is the distance between the

centers-of-mass of two consecutive segments of the chain. For a freely-jointed chain, the bond-

length distribution at the coarse-grained scale should resemble the standard end-to-end dis-

tribution for a freely-jointed chain, although the scale of the bond-length distribution will be

smaller than the end-to-end distribution. In Figure 5-3, we show the bond-length distributions

for freely-jointed chains whose coarse-grained beads each represent 32 atomistic beads, simu-

lated via the pivot algorithm for chain lengths ranging from N = 64 to N = 512. As shown

in Table 5.1, the mean value of the bond-length distribution is essentially constant for freely-

jointed chains: the distance between two segments should not depend on the number of beads

in the chain, since there are no interactions between beads.
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Table 5.1: Mean coarse-grained bond-lengths between beads representing 32-mers

N (r)GRw
64 4.2534

128 4.2477
256 4.2452
512 4.2502

5.4.2 Bond-angle distribution

The coarse-grained bond angle is the angle formed between two adjacent coarse-grained bonds.

From Eq. (5.2), we know that in the atomistic freely-jointed chain, the cumulative distribution

function (CDF) of the bond angle distribution is given by

1 cos4b
F (O)= 2 (5.6)

2 2

The distribution for the atomistic freely-jointed chain is symmetric. While a single step has a

symmetric bond-angle distribution, results for the coarse-grained chain exhibit a pronounced

bias towards larger bond angles, as observed by Laso et al. [92] We plot the coarse-grained

CDF against the ideal CDF (5.6) in Figure 5-4. The distribution was determined using the

pivot algorithm on a chain of length cNe beads, combining Ne atomistic beads into a single

coarse-grained bead, and then computing the c - 2 bond angles formed.

Even the distribution shown in Figure 5-4 is insufficient to yield adequate agreement between

our coarse-grained simulations and the expected results for the Gaussian random walk. As

suggested by Laso et al., we parametrized the coarse-grained bond angle distribution by the

lengths of the bonds forming the angle. Rather than use the product of the bond lengths

as a parameter, we found sufficient agreement was obtained by using the longer of the two

bond lengths r1 as a parameter. Binning the results into three separate regimes, representing

rl < 1/2 , N1 2 < r < Nel/2, and rl > Ne /2, respectively, appears to be sufficient to model

freely-jointed chains. The resulting CDF's are plotted in Figure 6-5, which clearly reveal the

bias towards larger bond angles, particularly as the value of rl increases. In fact, the average

bond angle for the latter case is almost 27r/3, or roughly one-third more than the ideal result

of r/2.

To simplify the handling of the bond-angle distribution, we noted that the CDF's shown in
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Figure 5-4: Ideal and observed coarse-grained cumulative distribution
grained Gaussian random walk divided into segments of 32 beads each.

functions for a coarse-

101

1

0.9

0.8

0.7

0.6

0.5

LL

c-OO

.Q.-0

U)

E

Coarse-grained bond angle distribution (CG)
- - Ideal Gaussian distribution (ID) /

/
. //

ID 7,
' CG

7.,/'

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5

Bond angle, 



.2C

0trLL

.2

C

0
(U.5M4a'a

E0
cr

0 0.5 1 1.5 2 2.5 3
Bond angle
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Figure 5-6: CDF's for the coarse-grained bond angle computed by simulation (solid) and using
a "stretched Gaussian" approximation (dotted). The two curves are largely indistinguishable.

Figure 5-5 resemble "stretched" Gaussian exponential functions, so we fitted p (q) to the form

exp ( -(r)2/a)- exp (-r2/a)
P(OA = - - exp (-7r2/a) (5.7)

where a is a fitted parameter. For the freely-jointed chain, excellent agreement between the

unparametrized simulation results and the curve fit of Eq. (5.7) is obtained using a = 2.5, as

shown in Figure 5-6. The parametrized distributions shown in Figure 5-5, divided into regions

rl < , rl < V,32 and rl > 3v2, are fitted to the values a = 3.3, 2.4, and 1.5, respectively.

5.4.3 Torsion-angle distribution

Finally, we considered the torsion-angle distribution, which was not reported by Laso et al. [921

The coarse-grained torsion angle is defined as the analogue of the torsion angle in an atomistic

chain. We determined the distribution for the coarse-grained torsion angle by simulating chains

of length 4 Ne beads, transformed Ne beads to a single coarse-grained bead, and determined the

torsion angle of the resulting four-bead chain.

Like the bond-angle distribution, the torsion-angle distribution is asymmetric: trans-like

configurations are favored over cis-like configurations. A sample probability distribution func-

tion for the torsion angle, plotted in terms of the cosine of the torsion angle, is shown in Figure
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of a freely-jointed chain of

5-7. Computing the mean value of the distributions reveal that the bias is actually quite small:

(0) = 1.6177,

(cos 0) = -0.0398.

(5.8)

(5.9)

However, as we shall see below, combining the biased torsion angle distribution specified by

Figure 5-7, along with the coarse-grained bond length and bond-angle distributions outlined

above, achieves excellent agreement with theoretical predictions for the freely-jointed chain.

5.5 Results

The well-known scaling regime for the radius of gyration for freely jointed chains, (R 2) N,

can be reproduced with excellent agreement via numerical simulation even for relatively small
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Table 5.2: Mean square radius of gyration using bond angle and torsion angle distributions
(R2) (R )

N (atomistic) (WAMC)
512 = (16 x 32) 84.75 82.74
1024 = (32 x 32) 171.60 169.80
2048 = (64 x 32) 342.70 342.10
4096 = (128 x 32) 679.95 685.69
8192 = (256 x 32) 1360.22 1375.09

values of N. For simulations performed with N between 16 and 32768, plotting (R 2) as a

function of N, and fitting to a power law (Rg2) N2 v yields (R2) N 1' 000, from which we

obtain the Flory exponent

v = 0.500 + 0.002, (5.10)

which agrees with the expected scaling for a freely-jointed chain.

We can repeat this calculation for our coarse-grained model using wavelet-accelerated Monte

Carlo. Mapping 32 atomistic beads to each coarse-grained bead, and using the internal coor-

dinate probability distributions given in Figures 5-3, 5-5, and 5-7, we simulated chains up to

lengths equivalent to 32,768 atomistic beads and computed the mean square radius of gyration

(R2). Results for short chains are given in Table 5.2, while additional results at larger values

of N are shown in Figure 5-8. The scaling-law fit of the data,

(R2 ) N1.0080.003

is also shown in Figure 5-8; it is essentially indistinguishable from the atomistic scaling result

(R 2) - N, except for very large values of N.

5.6 Conclusions

We have demonstrated that the WAMC algorithm can be readily adapted to study molecular

systems in which the coarse-graining should be topological. The method recovers the expected

scaling law (R 2) - N 2v with correct estimates for for freely-jointed chains for a variety of

chain lengths. Significantly, we find that intramolecular distributions of internal coordinates

for polymer chains generally become both asymmetric and interdependent, in accord with
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Figure 5-8: The mean square radius of gyration (R2) as fnction of bead size N for both
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the earlier results of Laso et al. [92] However, the real purpose of the WAMC method is to

study chains with potential interactions. To that end, we discuss self-avoiding chains in the

following chapter, and show how the presence of non-bonded interactions-namely, the hard-

sphere potential-is handled by the WAMC algorithm, and how a phenomenological picture of

interactions between particles can be used to develop scaling laws for coarse-grained potentials

to reduce the computational cost.
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Chapter 6

Topological coarse-graining of

polymer chains. II. Self-avoiding

chains

In the preceding chapter, we discussed wavelet-accelerated Monte Carlo (WAMC), a new

method for multiscale simulations, and showed how to apply it as a topological tool to polymer

simulations, the simplest case being the freely-jointed chain. The real power of the algorithm,

however, lies in its ability to handle non-bonded interactions between particles, as is found in

self-avoiding chains. Thus, in this chapter, we extend our development of the algorithm. We

show that applying the wavelet transform to the hard-sphere potential justifies the use of soft

potentials, and that, using the freely-jointed chain model, we can develop phenomenological

scaling laws which can be used to estimate new coarse-grained interatomic potentials using

previously computed data. We also demonstrate that our method reproduces expected scaling

results for self-avoiding chains.
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6.1 Self-avoiding chains

6.1.1 Definition

The self-avoiding chain is equivalent to a freely-jointed chain except for the inclusion of a

"hard-sphere" potential that prohibits beads from overlapping:

U2 (ri, rj) = HS (rij) ={ 00, rij < rHS (6.1)
0, rHS < rij

where rij = Iri - rjl, and rHS is the cut-off for the hard-sphere potential. For chains defined

on a lattice, rHS is generally chosen to be equal to the lattice spacing a, thereby defining the

maximum size of a particle on the chain and preventing multiple beads from occupying the same

lattice site. We can incorporate other pairwise potentials, such as a Lennard-Jones potential,

without difficulty.

Although the form of Eq. (6.1) is extremely simple, the consequences of introducing this

potential are drastic. A freely-jointed chain can be analyzed analytically [80, 161]; including

the hard-sphere potential Eq. (6.1) makes most of these analytical approaches intractable.

Moreover, the difficulties carry over to numerical simulations. Generating a freely-jointed

chain is trivial; generating a self-avoiding random walk is not, because one must ensure that

uHS (rij) = 0 for all pairs of beads i and j. Attempting to generate a large number of self-

avoiding walks by explicit construction is impractical since the computational time required to

verify that a walk of length N is self-avoiding can be as large as O (N 2), and because we may

need to generate many walks in order to find one that is self-avoiding.

6.1.2 Simulating self-avoiding chains

A well-known algorithm that circumvents the obstacles mentioned above is the pivot algorithm

proposed by Lal [90]. The pivot algorithm generates a trial configuration from an existing

configuration by selecting a pivot consisting of a rotation matrix rF, () specifying a rotation

of angle 0 in the a/r-plane and a random bead n in a chain of length N. The pivot Fr, (0) is

then applied to all points either to the left or to the right of bead n, so that the new position
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ri of bead i is

r = rn + Fap (O) (r -rn), (6.2)

for all 1 < i < n or n > i > N. All possible rotations in each plane must be allowed although

rotations can be constructed as the result of several other rotations, as is permitted in other

Monte Carlo techniques. This allows the use a smaller set of rotation matrices which, when

combined in series, yield all possible rotations.

For square and cubic lattices, all possible moves can be achieved by reflecting the chain across

various planes. As a result, the complete set of symmetry operations is extremely compact:

we need to specify just three rotation matrices in two dimensions and five rotation matrices in

three dimensions. Consequently, all of the rotation matrices can easily be stored in memory,

significantly speeding up the computations. In three dimensions, the five required matrices

correspond to rotations of 90, 180, and 270 degrees in the xy-plane, and rotations of 90 and

270 degrees in the xz-plane:

0 1 0 -1 0 0 0 -1 0

FXY(2 ) 1 ,F (ir) O -1 0 rY 0 ( )= 0 

0 0 1 0 0 1I 0 0 1

0 0 1 O O -1

XZz (2) = 0 1 0 Land rz i 0 . (6.3)

-1 0 0 10 0

For off-lattice simulations, we allow rotations in any of the xy-, xz-, or yz-planes, but restrict

0 to small values; the cutoff is typically chosen to be ±15 degrees.

While the pivot algorithm is straightforward and easy to implement, especially for lattice

calculations, it languished in relative obscurity until a seminal study by Madras and Sokal in

1988 [105]. The principal criticism of the algorithm was its low rate of acceptance-typically

orders of magnitude below the 50 per cent acceptance rate usually expected in stochastic mole-

cular simulations [65,91]. Madras and Sokal have shown that while the acceptance rate is small,

it decays only very slowly, approximately as O (N - 1/5 ) for large N. What had been neglected

in previous analyses was that the acceptance of a pivot move generally results in a radical
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change in the overall configuration, since on average one-fourth of the atoms in the chain will

be rotated. Therefore, accepting even a handful of proposed moves can result in an indepen-

dent configuration. Madras and Sokal were able to show that the pivot algorithm requires only

O (1) pivots-and O (N) attempts-to achieve an independent configuration, as opposed to the

reptation algorithm [38], which can require as many as O (N3 ) attempted moves to create an

independent configuration. Moreover, given a self-avoiding walk as a starting configuration, the

pivot algorithm is guaranteed to return a self-avoiding configuration, and in principle cannot be

"trapped" in a particular configuration, a significant obstacle in the reptation algorithm [105].

The other obstacle for the pivot algorithm-its expected O (N2 ) running time per attempt-

has also been addressed, at least for lattice systems. The O (N 2) running time is obtained if

we exhaustively test that xi =- xj for all pairs of i and j between 1 and N. While this test is

trivial to implement, we can devise a much faster test for self-avoidance by observing that, if

the distance on the lattice which must be traversed to get from xi to xj is equal to ra, then for

a lattice spacing a, xi cannot overlap any xk for j - r + 1 < k < j + r - 1. Consequently, we

can skip testing these points for self-avoidance for a given value of i. Looping this procedure

over all values of i, from 1 to N, leads to a much more efficient algorithm, with a running time

on the order of O (N6/ 5). [In fact, Kennedy has shown that in limited cases, the algorithm can

have a sub-linear running time [88].

6.1.3 Demonstration of O (N) decorrelation time between independent con-

figurations

Unlike explicit generation of freely-jointed random walks, where we create a new configuration

on each iteration, the pivot algorithm does not produce independent configurations on successive

moves, so we cannot include the results from every step in determining averages such as the

root-mean-square end-to-end distance. Instead, we need to wait until essentially uncorrelated

samples have been produced. For the pivot algorithm, it can be shown that this happens in

O (N) attempted-not accepted-pivots [105]. As a sample, we show two configurations of 1024-

step walks separated by 1024 attempted pivot moves in Figure 6-1. The relative independence

of the two configurations is made even clearer when one notes that the two sets of axes shown

have different scales. A more rigorous demonstration of the decorrelation of the states is shown
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Figure 6-1: Configurations of a 1024-step chain taken 1024 attempted pivots apart, showing
the decorrelation between samples after O (N) attempted pivots.

in Figure 6-2, an autocorrelation plot of the root-mean-square end-to-end distance. As shown

(R (t) R (t + 7)) decays to zero for T > 50 moves, from which we can reasonably conclude that

the decorrelation time is indeed O (N).

6.2 Wavelet-accelerated Monte Carlo (WAMC) simulation of

polymer chains

6.2.1 Coarse-grained simulation algorithm

We outlined the algorithm used for WAMC simulations in Section 5.3. Here, we briefly sum-

marize the changes in the algorithm required to accommodate the hard-sphere potential Eq.

(6.1). Since conformations can now have non-zero energies, after each trial conformation has

been generated, it is necessary to determine whether or not the new configuration should be ac-

cepted. Just as in atomistic simulations, we use the Metropolis criterion to determine whether

or not to accept the proposed conformation. However, unlike the atomistic self-avoiding walk,

111

14n 17 



1

0.8

0.6

A

-:
0.4

0.2

0

0 20 40 60 80 100 120 140 160 180 200
Decorrelation "time" r
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N = 1024.
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where the energy of a given configuration is either zero or infinity, the coarse-grained walk has a

nontrivial energy function. The form of this potential must be determined before the beginning

of each scale of the simulation; we discuss our method for computing coarse-grained potentials

in Section 7.5 below.

In computing the non-bonded interactions, we do not recompute r() - r°) for every i and
j. In accordance with the distance-checking improvements of Kennedy [88], if r - r) - r(°) >

r,ct, where rut is the cutoff of our coarse-grained potential, we skip over consecutive beads until

the total contour length of the skipped portion of the chain exceeds r - rot.

6.2.2 Probability distributions for coarse-grained internal coordinates

Bond-length distribution

As discussed in Section 5.4, instead of the simple distributions which describe bond orien-

tations in the atomistic freely-jointed chain, we now require detailed information regarding

the distribution of bond lengths, bond angles, and torsion angles. The methods for deriving

these distributions are discussed in Chapter 5; we now present the necessary distributions for

self-avoiding chains, and summarize the differences between these distributions and the corre-

sponding distributions for freely-jointed chains.

In Figure 6-3, we show the bond-length distributions for self-avoiding chains whose coarse-

grained beads each represent 32 atomistic beads, simulated using the pivot algorithm for chain

lengths ranging from N = 64 to N = 512. As shown in Figure 6-4, the mean value of the

bond-length distribution increases as a function of the chain length N, but converges to a

limiting value as N - oo. Therefore, if we want to map Ne atomistic beads to a single coarse-

grained bead, we only need to sample a walk of length O (Ne) in order to obtain an appropriate

bond-length distribution.

This behavior can be explained by noting that for a self-avoiding random walk, the presence

of more beads in the chain leads to a greater excluded volume for the entire chain. This in turn

requires that individual segments should be slightly more separated in a longer chain than in a

shorter chain. However, we expect that for very long chains, this local stretching is no longer

affected by increasing the size of the chain, since any new segments added will likely be far

away from any given segment in the chain.
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Bond-angle and torsion-angle distributions

Our method also requires probability distributions for the coarse-grained bond and torsion

angles. The bond-angle distribution is shown in Figure 6-5. As discussed in Section 5.4.2,

there is a bias toward larger bond angles, as parametrized by the coarse-grained bond lengths

forming the bond angle. The degree of bias observed is in fact greater than that for freely-

jointed chains. In addition, there is a slight bias toward trans-like conformations over cis-like

conformations in the torsion angles. Also,we fitted the cumulative distribution functions using

stretched exponentials of the form

exp ((- w1)2/a) - exp (-r2/ca)
(6.4)1- exp (-ir 2 /a) (6.4)

where a is a fitted parameter. The parametrized distributions shown in Figure 6-5, divided

into regions r < 3-2, r < 32, and r > 3/32) are fitted to the values a = 1.6, 1.1,

and 0.8, respectively. These values are significantly smaller than the corresponding values for

the freely-jointed chain, corresponding to the greater bias towards even larger bond angles for

self-avoiding chains.

The torsion-angle distribution is shown in Figure 6-6. Again, as in the case of freely-

jointed chains, the self-avoiding chain shows bias towards trans-like conformations over cis-

conformations, with (0) = 1.6043, and (cos ) =-0.0335.

6.3 Results

6.3.1 Atomistic simulations

For pivot algorithm simulations performed with N between 16 and 8192, plotting the resulting

data of (R2 ) 1/ 2 versus N yields (R2 N) N l' 94, from which we obtain the estimate

v = 0.597 0.006. (6.5)

Thus, we obtain a reasonable estimate for , although the variance is significantly worse than

that obtained from simulations of longer chains.
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Figure 6-6: Probability distribution function for the torsion angle of a chain of length N = 128
considered as four beads of effective size Ne = 32.

6.3.2 WAl/IC simulations

A comparison of the results obtained for a detailed atomistic simulation and for two-scale coarse-

grained simulations of self-avoiding random walks up to length 215 = 32768 beads are shown

in Figure 6-8. Two different coarse-grained simulations are plotted, showing Ne,2 = 32 and 64,

respectively; the mean end-to-end distances of the three simulations show excellent agreement

with one another. indicating that for relatively large values of Ne,2, there is little effect on the

end-to-end distance. Additionally, the Flory exponent for the scaling of the root-mean-square

end-to-end distance, (R2)l/ 2 - N', is shown to be vcg 0.578 4- 0.006 for Ne,2 = 32 and

v = 0.581 4- 0.006 for Ne,2 = 64, both of which are within one percent of the best available

estimate v 0.577 [80]; the corresponding data for values of N between 256 and 8192 are

shown in Table 6.1.
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Figure 6-7: Mean end-to-end distance (R) of the pivot algorithm (circles) and of coarse-grained
simulations based on bead sizes of 32 and 64 (triangles and squares, respectively).

Table 6.1: Mean end-to-end distance for atomistic versus WAMC algorithms
N (R) (atomistic) (R) (Ne = 32) (R) (Ne = 64)

256 25.841 25.885 24.618
512 38.927 39.339 42.775

1024 58.482 61.357 62.207
2048 88.018 90.225 87.268
4096 133.973 135.228 127.651
8192 209.625 193.669 181.878
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Results for a four-stage hierarchical simulation

To show the effectiveness of the hierarchical scheme, we performed a series of four-level sim-

ulations. The simulation started with Nb,l = 512 and Ne,1 1; the second stage simulations

had Ne,2 = 128, but varying values for Nb,2. For the final two stages, we used Ne,3 2048

and Ne,4 = 65536. Results for the mean end-to-end distance for lengths up to N = 222 =

4194304 are shown for the four-scale simulations as Figure 6-9. We find that the scaling of the

end-to-end distance is v = 0.568 for the four-scale simulation, which still agrees with current

estimates of v. The numerical discrepancy increases with the number of scales in the simulation,

by about a factor of 4.5. The increase in the numerical disagreement was further indication that

mass-averaged bond-length distributions by themselves were insufficient to correctly model a

coarse-grained polymer. We have not yet revisited the four-scale simulation after carrying out

the analysis described in Chapter 8; performing these simulations at the present time should

lead to significantly more accurate results from the simulation.

End effects

When gauging the accuracy of the coarse-grained algorithm it is important to recognize that

the coarse-graining process will naturally affect the definition of what constitutes a "correct"

answer for a given simulation. For example, there is a pronounced end effect in the size of a

polymer as a function of the number of beads retained in the coarse-grained simulation. For

a chain of length N, the observed radius of gyration squared, (Rg)cg, for a coarse-grained

simulation will be smaller than the value obtained from a simulation without coarse-graining,

(Rg2)ezact. The shortfall results because we have effectively omitted the "tails" of the chain,

representing the distances between the beginning of the fine-grained chain and the first coarse-

grained bead, and between the last coarse-grained bead and the end of the fine-grained chain,

from our calculation of the radius of gyration.

A plot of this end effect is shown in Figure 6-10 for fine-grained chains of lengths N = 512

and N = 1024. The ratio between the coarse-grained and non-coarse-grained radii of gyration,

(R ) / (Rg)eact, is plotted versus the number of coarse-grained beads Nb. The solid curve( cg
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Figure 6-8: Mean end-to-end distance (R) of the pivot algorithm (diamonds) and of coarse-
grained simulations based on bead sizes of 32 and 64 (squares and circles, respectively).

shows that the relative error is inversely proportional to Nb:

( R)cg 1 Ne= 1 (6.6)

We would exacthough there may exist a scaling

We would expect comparable results for self-avoiding chain, although there may exist a scaling

exponent related to the Flory exponent v that is not observed in Eq. (6.6). Consequently, we

again are faced with the challenge of balancing the needs for accuracy and performance: the

bigger the chain, the smaller the resultant finite-size effects will be, but the slower the execution

of the algorithm as well.
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Figure 6-9: Mean end-to-end distance (R) of the pivot algorithm (top line) and of a four-scale
coarse-grained simulations with bead sizes of 1, 128, 2048, and 65536 per stage. The observed
Flory exponent is v = 0.568. Note that the end-to-end distance for the pivot algorithm is
extrapolated from the behavior for N < 16384 using the correct scaling exponent v 0.577.
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Figure 6-10: Demonstration of the end effect on the structural properties of an ideal Gaussian
chain. The ratio (R )cg / R2)e ac t was computed for different numbers of coarse-grained beads
and for chains of length N = 512 and N = 1024. The comparison shows that the magnitude of
the error is proportional to 1/Nb, where Nb is the number of coarse-grained beads used.

6.3.3 Effects of additional interactions

Thus far, we have discussed only freely-jointed chains and self-avoiding chains. However, we

want to consider the effects of additional interactions, such as stiffness potentials and non-

bonded interactions, on the properties of the chain and of the individual bonds. Using the

pivot algorithm, we simulated three different chains on-lattice, generating 50,000 independent

configurations of length N = 1024: a self-avoiding walk with no other interactions, a self-

avoiding walk with a stiffness potential of the form (2.8), with es - 1.0, and a self-avoiding walk

with stiffness interaction (2.8) with es = 1.0 and non-bonded interaction (2.7) with strength

Enb = 1.0. The distribution of bond lengths connecting coarse-grained segments of 16 beads each

obtained from the different simulations is plotted in Figure 6-11. Note that there is essentially
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Table 6.2: Radial statistics for self-avoiding walks with different potentials

SAW e = 1.0 es = Enb = 1.0

(r) (16-mers) 4.8126 4.8129 4.8132
(R 2)SAW 4116.98 4111.78 4108.07

no difference in the statistics for the distribution of a single bond; the mean bond distances and

mean square end-to-end distances are essentially identical, as shown in Table 6.2. This suggests

that the non-bonded interaction is of negligible effect for small values of 6 nb relative to kBT.

Table 6.2 reveals that for small values of es and Enb-that is, for values less than or equal to

thermal energy kBT already present-the effect of these additional potentials on the behavior

of the system is small. However, it is obvious that if the stiffness potential es is large enough,

the chain will prefer to exist in a rod-like conformation, for which the end-to-end distance and

the distance between coarse-grained beads should grow essentially linearly with the number of

beads N. As shown for a chain of length N = 256 in Figure 6-12, the mean square end-to-end

distance (R2 ) is essentially constant for es/kBT < 5, at which point it rapidly increases, and

begins levelling off around es/kBT = 20. A plateau is reached near this value because the chain

is at maximal extension and cannot expand further. Consequently, we can suggest that a model

without stiffness potential can be used to model systems for which es < kBT.

6.3.4 Error tolerance and the N - o critical point

It is well known that the limit of N -+ oo acts as a critical point in the study of polymer

solutions [38, 64], much like the limit T -+ TC for critical behavior in the Ising model. As

discussed in Chapters 3 and 4, the WAMC algorithm acts much like a mean-field theory, in the

sense that it tends to move the system away from the critical point as coarse-graining increases.

Consequently, in the limit of very large polymer sizes, we would expect to see that the algorithm

begins to break down as the number of stages of coarse-graining increases. However, we see

little evidence of this in Figure 6-8 or in Table 6.1.

Perhaps the most likely explanation for why we were able to observe this phenomenon for

the Ising model but not for the polymer model is the nature of the two critical points. The

Ising critical point occurs at a finite temperature, which in principle we can reach with arbitrary
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precision by selecting our simulation temperature. For the polymer chain, in contrast, we have

a singular limit: we cannot practically reach the polymer limit N - oo. This indicates that we

may not have extended our results to chain sizes where we would observe increased error, or

that the discrepancy occurs for chain sizes beyond the scope of interest.

Figure 6-8 does not show large errors in the predictions for the mean end-to-end distance

(R) as a function of the level of coarse-graining. However, we do observe that while the scaling

laws return nearly identical estimates for the Flory exponent for Ne = 32 and Ne = 64, there

is a greater fluctuation around the scaling estimate for the coarse-grained simulations than for

the corresponding atomistic simulation of the chain. This is somewhat unexpected, since in our

Ising model simulations, we found that coarse-graining had a tendency to dampen fluctuations,

not increase them. On the other hand, it may be that the nature of the coarse-graining for

polymer chains is an increased "range" in the results: the overall predictions are correct, but a

given result may be off by several percent or more. This is particularly true as the chain size

increases; the largest deviations were observed at the largest chain lengths.

6.4 Performance

The paramount reason for employing coarse-graining is to increase the computational efficiency

of a simulation. Therefore, let us consider the relative cost of our algorithm, as determined

through clock measurements of performance. Generating 1.024 x 107 trial moves for an atomistic

random walk of length N = 1024 required nearly 40 hours of computational time spread out

over 20 1.4-GHz Pentium IV processors of a Beowulf cluster. By comparison, generating the

equivalent number of trial moves using the WAMC algorithm for Nb = 32 coarse-grained beads,

each representing Ne = 32 beads on the original chain, runs in approximately 25 minutes-

a speed-up of two orders of magnitude, and comparable to other results based on wavelet

transform averaging [148].

We compare the performance of the various algorithms over a variety of chain sizes in

Figure 6-13. The topmost line in the graph corresponds to a detailed atomistic simulation

using a WAMC-like algorithm; the running time of this algorithm is approximately O (N7/ 4).

If we optimize the atomistic algorithm by using the pivot algorithm, along with some of the
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Figure 6-13: Running time comparison for atomistic simulation (squares), optimized atomistic
simulation (diamonds), and WAMC algorithm with Ne = 32 (crosses) and Ne = 64 (asterisks).

additional improvements suggested by Kennedy [88], we obtain the "optimized atomistic" plot

shown. The running time has been reduced to roughly O (N6/ 5 ). Still further optimizations can

reduce the running time to O (N) or below; however, the resulting algorithm cannot be used

in models with interparticle potentials that are continuous functions of the distance between

particles.

The lower two lines plotted in Figure 6-13 represent the running time of the WAMC al-

gorithm with Ne = 32 and Ne = 64 (crosses and asterisks, respectively). We note that both

algorithms have a running time of O (N7/5), which is in between the results for the atomistic

and optimized atomistic algorithms. Because we have by definition Nb << N, we expect that the

WAMC algorithm will be faster on a per-move basis than either atomistic algorithm, unless the

associated prefactor is much larger for the WAMC algorithm than for the atomistic algorithms.

However, since all of the methods are variations on the same basic algorithm, it is unlikely that

the prefactor for WAMC will be larger than for the atomistic model. Therefore, we conclude
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that the WAMC will generally be much faster than either atomistic technique.

One more interesting feature of the WAMC algorithm can be noted in Figure 6-13: the

curves for Ne = 32 and Ne = 64 are essentially parallel to one another. This implies that the

running time of the algorithm is independent of the effective bead size Ne. As we showed in

Section 6.3 above, the accuracy of the simulation is essentially unaffected by the choice of Ne.

Taken together, this means that in general, we can generally improve the performance of our

algorithm by choosing Ne to be larger. However, as Ne increases, the running time of the

previous stage of the simulation increases. We therefore conclude that optimizing the running

time of the entire simulation requires us to balance the number of degrees of freedom in each

level of the simulation as evenly as possible.

An example of the resulting improvement is shown in Figure 6-14, which shows the theo-

retical running time of the atomistic simulation as N - oo, compared to the observed running

times for the four-scale simulation described above. At the largest chain size considered, the

speed-up is more than six orders of magnitude: one minute of CPU time for the four-scale

simulation with 64 beads of size 65536 corresponds to one year of simulation for an atomistic

simulation of a chain of length 222 beads.

6.4.1 Decorrelation of samples

Another important consideration in the algorithm is the number of simulation steps required to

obtain independent configurations, as this governs the required length of the simulation. The

decorrelation time for the coarse-grained simulation is linear, but with respect to Nb instead

of N. A demonstration of this is shown as Figure 6-15, which illustrates the configuration of a

coarse-grained polymer chain with Nb = 256 beads and effective size Ne = 64 taken 256 steps

apart, which shows that our algorithm has an effectively linear decorrelation time.

To obtain z independent samples, the atomistic simulation based on the pivot algorithm

requires, on average, O (zN) steps [105]. The decorrelation of states can be confirmed after the

simulation using the blocking technique of Flyvbjerg and Petersen [60], or during the simulation

using the "on-the-fly" implementation of that method developed by Feldmann et al. [51,52].

The decorrelation time for the coarse-grained simulation is linear, but with respect to Nb

rather than N. A demonstration of this is shown as Figure 6-16, which plots the autocorrelation
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Figure 6-14: Running time per move of the pivot algorithm (upper curve) and of a four-scale
coarse-grained algorithm with bead sizes of N = (1, 128, 2048, 65536) per stage (lower curve).
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Figure 6-15: The configuration of a coarse-grained polymer chain with Nb = 256 taken 256
steps apart.

function of the end-to-end distance R for a coarse-grained polymer chain with Nb = 256 beads

and effective size Ne = 64, which shows that our algorithm has a linear decorrelation time. As

a consequence of this, we conclude that for a two-scale simulation, the total time required for z

independent samples is 0 (z (Nb,1 + Nb,2)), and since Nb,l + Nb,2 < N, the number of simulation

moves required also decreases through use of the hierarchical procedure. The overall efficiency

increases with the number of stages in the simulation, as the total time required should scale

as O ( Z 1 Nb,i).

6.5 Geometric reverse-mapping of a polymer random walk

6.5.1 Description of the constraints

We want to reverse-map a chain of length N to a chain of length 2N. Since we would like to

replace a bead on the coarse-grained chain with two beads on the corresponding fine-grained

chain, we will need a total of six constraints for each pair of beads created. The definition of
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Figure 6-16: Autocorrelation function for a the end-to-end distance of a self-avoiding walk
studied using WAMC with Nb = 256 and Ne = 64.

the wavelet transform, as applied to the polymer chain,

r(k-1) (k-1) = (k) (6.7)2i-1 r 2i (,7

provides three pieces of information. [The superscript k denotes the coarse-grained chain and

k - 1 the fine-grained chain throughout.] An additional constraint must obviously be the

displacement of the two points relative to the center of mass-in other words, the bond length

between the two new points to be constructed:

(k-I-) r(k-1) (k--l) r(k-1)) 12 (6.8)
r(i - '2i-1 ' 2i _ 2i1 ) =

where is the new bond length at the fine scale. The new bond length I can either be specified

as a independent parameter, or determined as a geometric constraint. For the purposes of this

presentation, we choose the latter approach, and require the distance to be a multiple A of the
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distance spanned by the two bonds adjacent to the coarse-grained bead we wish to reverse-map:

I = A rk) - rk) . (6.9)

This is a purely matter of convenience; we could have chosen any other constraint similar to

(6.9) for use here.

In addition to the bond-length constraint, we can create two other purely geometric con-

straints in selecting our reverse-mapping criterion. One of the two remaining criteria will be

that the new vector must lie in the same plane as the two coarse-grained bonds on either side

of the bead being replaced. That is, we want the new coordinates to satisfy

(2i r 2i- ) ((ri ri- 1) x ))) =0(6.10)

The other constraint that we want is for the new bond to be tangent to the two coarse-grained

so that the angle between the new bond and either of the coarse-grained bonds are equal.

Mathematically, we require

r(k-1 ) (k-1)) (r ) - r) r (k--l) (k-)) . (r k) rk)2i 2i- - r 2iI ('--1

(k) (k) z +i r(6.11)z r) - r_)[ z r _k) -rk) 

6.5.2 Implementation of the algorithm

We would like to convert constraints (6.8), (6.10) and (6.11) into a form which can be pro-

grammed into an algorithm. Let us assume that we want to reverse-map point rIk) on the

coarse-grained scale into r-1) and 2i ). We shall denote the components of the two beads

at the fine scale as

r(k-1) = (XI, Y, Z)

r2i )= (x2 , Y2, Z2),
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and the components of the coarse-grained bead rk) and its nearest neighbors at the coarse scale

as follows

r(k)
i-1
(k)

(k)
ri+I

= (al, bi, c)

= (a2 ,b2, 2)

= (a 3, b3 , 3)

and the new bond length as 1. Then, we have from (6.7) above

X + X2 = 2a 2,

Y + Y2 = 2b 2 ,

Zl + Z2 = 2c2,

for the midpoint constraint. The coplanarity constraint is

Al ( 2 -xi) + A2(Y2- y) + A3 ( 2- ) = 0,

where

A1 = b2c3 - b2cl - blC3 - c2b3 + c2bl + Clb3,

A2 = c2a3 - c2al - cla3 - a2c3 + a2cl + alc3 ,

A3 = a2b3 - a2bl - alb3 - b2a3 + b2al + bla3,

The equiangularity constraint is

(R2 (al - a2 ) + R1 (a3 - a2)) (Xl - X2)

+ (R2 (bl - b2) + R1 (b3 - b 2)) (Y1 - Y2)

+ (R2 (c1 - C2) + R1 (C3 - c2)) (Z1 - 2) = 0,

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

(6.19)
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where

R1 = v/(a2 - al, b2 - b, c2 - cl) (a2 - al, b2 - bl, c2 - cl), (6.20)

R2 = (a 3 -a 2, b 3 - b2 , 3 - 2 ) (a3 - a 2, b 3 - b2, 3 - 2) (6.21)

Finally, the bond length constraint is given by

(xI - X2)2 + (Yi - Y2)2 + (Z1 - Z2)2 = 12. (6.22)

If the quadratic constraint in equation (6.22) were linear, we could solve the problem easily

using Gaussian elimination using existing methods. However, since the constraint is non-linear,

we will need to find an alternative approach. What we shall do is solve (6.12) through (6.19)

in terms of one of the six unknowns, and then substitute the expressions for the other five

variables into (6.22) to determine the sixth. We can then backsubstitute to determine the other

variables. The first three equations, (6.12) through (6.14), are easily converted into

X2 = 2a2- xl, (6.23)

Y2 = 2b2-Yl, (6.24)

Z2 = 2c2-Zl, (6.25)

inserting (6.23) through (6.25) into (6.15), (6.19), and (6.22) give

Al (a2 - x) + A2 (b2 - Y1) + A3 (c2 - 1) = 0, (6.26)

(R 2 (al - a2) + R1 (a3 - a2 )) (xl - a2)

+ (R 2 (bl - b2) + R (b3 - b2 )) (yI - b2)

+ (R2 (cl - c2) + R1 (c3 - c2)) ( - C2) = 0, (6.27)
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andl
12

(xi - a2) + ( - b2)2 + (z1 - C2) 

Eliminating zl from (6.26) gives

A1 A(
1 = c2 + A (a2 - xl) + A (b2 - yl);

inserting this into (6.27) and (6.28) yields

(R2 (al - a)

+ (R 2 (b

-- R1 (a3 - a2)

-- b) + R1 (b3

-Al (C (C-C2) + R1 (C3-
A3

- b2 ) (RA2 (cl -c 2 ) + R1

C2))) (xi - a2)

(C3- 2))) (Y1

and

(x1 - a2)2 + (Yi-b2)2 + (A33 (a2- )+ A2 (b2 - Y)) 

We now need to eliminate one of the two remaining variables from (6.30) and (6.31). For

convenience, we choose to rewrite these equations in the form

A2 +A ]

A3 ](x
- a2) [A2 + A 3]3

F (xl - a2) + F2 (yl - b2)

(Y - b2)2 + A2 (x - a ) (Y - b2)
3

= 0, (6.32)

12
4 ,(6.33)
4'

~F1=-R )+)A (R (cc2) + R (cc))F1 = R (al -a 2)+R(a 3-a 2) -A(R 2 (c - c2) +R1 (c3 - )),A3

- c2) + R1 (c3 - c)),

Then, Yl is given by

Yl -= (a2 - Xl) + b2,

which makes (.33)

G (xi - a2) IOG ( -aas~s=

(6.28)

(6.29)

- b2 ) = 0, (6.30)

12

4
(6.31)

where

F2 =:: R2(bl-b2) + R (b3-b)-A3

(6.34)
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where

= A2 + ( A2 (F1) 2 2A1A 2 (l) (6.36)A2A2 F kF2J

Solving (6.35) for x1 yields two solutions:

1
=2 + IG- 1/ 2. (6.37)

After we have obtained either solution from (6.37), we can backsolve for the remaining solutions

first using (6.34), then (6.29), and then finally determining the other point using (6.23) through

(6.25).

One interesting feature should be noted: it does not matter which solution of (6.37) we use

to determine the remaining variables; whichever root of (6.37) we do not assign to x1 will in

fact be x2. We can then use connectivity constraints on the coarse-grained chain to differentiate

the two points.

6.5.3 Pathological cases

The above method only works if the points are not colinear in the plane x = xo, where xo is

some constant. In that case, we cannot use x as our variable of choice, and we must reformulate

the problem in terms of y or z. This is because for points which are coplanar in x, A 2 = A 3 = 0,

and thus we cannot calculate G in (6.36). Equations (6.23) through (6.28) remain the same,

but now we need to eliminate x1 from (6.26), instead of z1. Eliminating x1 gives

A 2 A3x1 = a2 + A(b 2 - Y1) (c2 - Z1); (6.38)

however, since A 2 = A 3 = 0, (6.38) reduces to

xl = a2. (6.39)

Inserting (6.39) into (6.38) and (6.22) gives

F3 (Y1 - b2 ) + F4 (Zl - c2 ) = 0, (6.40)
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and

(Y - b 2 )2 + (Z - C2 )2 4'

where in (6.40)

F3 = R2 (bi-b 2 ) + R (b3 -b 2 ),

F4 = R2 (Cl-C2) + R (3- 2).

Eliminating Y1 from (6.40) gives

F4Y1 = b2 - (Z1 - 2);

combining (6.41) and (6.42) yields the quadratic equation

12
H (zl - c2)2 = -4'

where

H1+ ( Fq4) 2

Solving (6.43) for zl leads to the solutions

zl = c2 - H1/2

We can now backsubstitute as before.

Alternatively, if the points are coplanar in y, we will need to use

Y = b2 ,

from which we find

F5 ( - a2) + F6 (Z1 - C2) = 0,
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where

F5 = R2(al-a2) +Rl(a3 -a 2)

F6 = R2 (Cl -c 2) + R(c3-c 2)

which leads to the quadratic equation

H2 (Zl - c2)2 (6.45)
4

from which we obtain the solution

Z1 = C2 ± iH1/2
2 2 '

where now we have

H2 1 (F5) 2

6.5.4 Handling the endpoints

The other "pathological" case are the end points of the chain, for which we do not have two

different bonds to work with. Consequently, we cannot use the dot product and normality

constraints as formulated above. We must find two alternate constraints with which to replace

these points. To accomplish this, we will require that the segment connecting the second and

third points from each end of the chain be parallel to the first and last coarse-grained bonds.

This, coupled with the bond length and symmetry requirements should be sufficient information

to locate the other beads.

Given (k) -
) (k) (k-) (k- 1)Given r 2-r, , and r - rkn-l, we can determine r2 and r 2n--1 as

(k-) (k _ 1 r(k) _ () (6.46)

2 = r2 ) -r() (k-1) = (k-1) ±! r (k) - r(c)1) (6.47)
r2n-I 2r~n-2 3 n n-
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Then r( k- l) and r(k-l) will be

r(k-l) 2r(k) r(k-) (6.48)

r(k-) 2r(k) rk-) (6.49)
2n - r2n-1

Taken together, (6.46) through (6.49) are sufficient to specify uniquely the remaining four

positions on the fine-grained chain. Thus, we can specify a representative reverse-mapped

chain for a given coarse-grained chain using purely geometric constraints.

6.5.5 Illustrative examples

We illustrate two examples of this reverse-mapping process in Figures 6-17 and 6-18. In each

case, a walk of 64 beads is converted into a walk with 128 beads, using a factor of A = 0.45

in (6.9). We note in each case that the fine-grained walk adheres closely to the contours of

the coarse-grained walk. This is because in selecting our constraints, we have kept in mind the

convexity property of the wavelet transform: for a given curve, the coarse-grained walk created

by averaging pairs of nearest-neighbor points will always be "convex"; that is, the coarse-grained

curve will lie "inside" the fine-grained curve.

How to selecting the parameter A in (6.9) is an open question. If we choose to make our

criterion the shortest overall contour length of the fine-grained chain, then, as we can see from

Figure 6-19, there is no general range of A for which all chains are at their minimum. Instead,

the values of A for which the contour length is a minimum varies throughout the range, which

suggests that we will have to average the results of many chains to determine an optimal value

for the parameter A. As a preliminary guess, however, one suspects that the optimal value for

A will lie in the range 0.4 < A < 0.6.

6.5.6 Using the fine-grained representation

It is also useful to ask what is the purpose of this reverse-mapping algorithm. If our goal is

to produce a configuration of minimal energy, then our algorithm is unlikely to meet that aim,

since we do not take energetic considerations into account. In addition, because of the large

number of degrees of freedom, the probability that any configuration will be "the" configuration
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Figure 6-17: Reverse-mapping of a coarse-grained 64-mer to a fine-grained 128-mer. The coarse-
grained chain is indicated by circles connected with dashed lines; the fine-grained chain is the
solid curve.

of minimal energy is small. Using this geometric reverse-mapping as a starting point for an

optimization process will likely produce a configuration which is a local minimum, but not the

global minimum.

On the other hand, if we use this method to produce a configuration which is a starting

point for further simulation, we will probably be on much safer footing, since we will have a

configuration which is not too dissimilar from the coarse-grained configuration. This will be

especially useful when we start having interactions between multiple chains in the semi-dilute

or dense regimes.

6.6 Conclusions

We have demonstrated that the WAMC algorithm can be readily adapted to study molecular

systems in which the coarse-graining should be topological. The method recovers the expected

scaling law (R 2) , N 2 with correct estimates for v for both ideal and self-avoiding random
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Figure 6-18: Reverse-mapping of a coarse-grained 64-mer to a fine-grained 128-mer. The coarse-
grained chain is indicated by circles connected with dashed lines; the fine-grained chain is the
solid curve.

walks, under different levels of coarse-graining and for a variety of chain lengths. In addition, we

have illustrated that this algorithm achieves vast performance gains over "atomistic" simulations

of polymers across chain lengths varying by several orders of magnitude. The ability to access

conveniently large length scales within a single computational framework provides a flexible

starting point from which we can develop simulations to study the behavior of semidilute and

concentrated polymer solutions and polymer melts.

We have also shown that our method allows for the construction of coarse-grained prob-

ability distributions as well as potentials describing the interaction between coarse-grained

particles. For freely-jointed chains, we have shown that very simple physical arguments can

be used to approximate the two-body potentials observed for the overlap of chains. Similar

phenomenological results can be derived for self-avoiding walks as well. Although the resulting

analytical distributions tend to overestimate the potential, they show the correct qualitative

behavior, suggesting that single-chain simulations may be sufficient to compute coarse-grained

potentials.
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Figure 6-19: Contour length of the fine-grained 128-mer as a function of the parameter A defined
in (6.9) for various starting coarse-grained configurations.
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Chapter 7

Coarse-grained potentials for

polymer chains

7.1 Introduction

The work described in this chapter was undertaken as part of the investigation to achieve

numerical agreement between our coarse-grained simulations and the results obtained from

atomistic numerical simulations. Because the scaling results were essentially in agreement, it

was suspected that some other parameter-such as the interparticle potential-was insufficient

to describe the system.

For the coarse-grained simulations, our initial coarse-grained trials included as the inter-

particle potential the same hard-core repulsion that was assumed for the initial, atomistic

simulations. However, the resulting values for the radius of gyration and end-to-end distance

were significantly lower than the atomistic results. Following the work of Bolhuis et al. [20, 22],

we choose to compute the probability FN (x, r) that a chain segment, containing N beads of

radius r, will have a bead at a given distance x = xl away from the center of mass. From the

distribution FN (x, r) we can compute a dimensionless potential u (r) by taking the logarithm

of FN (x, r):

u (r) = -In FN (x, r). (7.1)

The mean force potential that we obtain is structurally similar to those obtained by Bolhuis
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et al., but the agreement is by no means exact. However, without additional details describing

the algorithm they used, it is difficult to determine the source of the discrepancy.

Performing the simulations which would lead to an estimate of (7.1) led to another obser-

vation: there was a strong similarity among the various curves representing different numbers

of beads, different bead sizes, and other parameters. This led us to look for scaling laws which

would describe the probability distribution FN (x, r). The results are presented below.

7.2 Definition of the problems to be examined

7.2.1 Transition to "soft" potentials

As stated above, the self-avoiding walk has a "hard-core" repulsive potential defined by (2.7).

Thus, it is impossible for particles on the fine-grained chain to come closer to one another than

the hard-core diameter a. However, when we consider the behavior of coarse-grained beads, we

find that the hard-core potential begins to disappear, in the sense that coarse-grained beads

can approach more closely together than the cutoff a. To do this, we construct the two-point

correlation function g(2) (rij), which tells us the probability of finding a particle a distance rij

away from another, and, for a single chain molecule, satisfies the normalization criterionl

j drg(r) = Np-1, (7.2)

where p is the particle density of the system and Np is the total number of particles. A sample

plot of g (r) for a chain of 512 beads is shown in Figure 7-1, we note that virtually all of the

particles are found within a radius of 50 bond lengths from any other point on the chain, which

is consistent with the N 3/5 scaling law (5123/5 ; 42.2).

Although we know that a hard-core repulsion is inadequate, there is no general consensus on

what model does correctly describe the physical interaction between the coarse-grained particles.

Murat and Kremer [119], in their "soft ellipsoid algorithm" (further extended by Eurich and

Maass [48]), generate the potential by determining the probability distribution p (S) for the

inertial matrix S of the system, and then defining the force of the system as F = -kTlnp (S),

'For a discrete distribution function, this means that the value of g (r) for a given r will depend on the
discretization Ar.
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Figure 7-1: (Top) Semi-log plot of the two-body correlation function g (rij) as a function of the
interparticle separation distance rij. (Bottom) Semilog plot for small values of rij showing the
sharp cutoff in g (rij) for rij < 1.
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and then generating the potential by integrating the force with respect to position. In the

"soft colloid model" of Louis et al. [99], the potential is determined by solving the system of

non-linear equations

g (r) = exp (-v (r) + g (r) - c (r) -1),

c(r) = g(r) - 1-p dxc(x) (g(x)- 1),

a method referred to as the "hypernetted chain approximation closure relation" [77]. However,

each of these methods relies on mapping an entire chain into a single particle; to develop a

hierarchical simulation method, we would like to determine a method capable of determining

the potential at different levels of resolution of the chain.

7.2.2 Overlap Probabilities

We are interested in computing the probability of overlap, both between segments of a single

chain and between segments on different chains. The methods used to determine the statistics of

these types of overlap are different as a result of the different types of models we are considering.

One-chain overlap probability

The parameters of interest in this problem are the number of segments in the chain Nb, the

number of fine-grain beads per segment Ne, and the test radius rtest, which gives the relative

size of each bead. For a single chain, computing the overlap involves determining if the distance

between bead i on segment a and bead j on segment b is less than rtest: that is, we check if

Iri - rj < rtest, (7.3)

for all i [(a - 1) Ne + 1, aNe and j E [(b - 1) Ne + 1,bNe] and 1 < a, b < Nb. If (7.3) is false,

then we proceed to the next configuration; if it is true for a given pair of a and b, then we assign

weight 1 to the histogram w (rab), where

rab = Ira - rbl,
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such that ra and rb are the centers of mass of each segment. The probability of overlap is then

defined as

p(r)= w (r) (7.4)
n (r)'

where w (r) is the number of overlaps observed when the centers of mass are separated by

distance r, and n (r) is the total number of times the centers of mass were separated by distance

r.

Two-chain overlap probability

We consider a slightly different problem here. Given two chains of length N, we perform a series

of simulations on each chain; for instance, for two lattice walks, we perform a pivot simulation

on each chain. After N moves, we compute the probability of overlap when their centers of

mass are separated by a distance r. To determine the distance between the two chains, we move

one chain along the vector joining their centers of mass such that the distance of the vector is

r. We then test if any bead on the first chain intersects with any bead on the second chain:

rab = Iri,a - rj ,bl < test, (7.5)

where the subscripts a and b in (7.12) now denote the first and second chains, respectively. If

(7.12) is satisfied for any i and j, then we increase w (rab) by one; otherwise we proceed to the

next configuration to be tested. Again, the desired probability is (7.4).

7.3 Examples of scaling behavior

Before discussing the theory of overlap statistics, we first provide several illustrative examples

of the scaling results obtained.

* To show that scaling behavior appears to be valid for a wide variety of models, we consid-

ered a lattice model with excluded-volume interactions, corresponding to a test volume

of rtest = 1, plus stiffness and nearest-neighbor interactions given by £nb = 1 and es = 1

in Eqs. (2.7) and (2.8), respectively. We show the scaled results for the probability of

overlap in Figure 7-2 for chains of length N = 2048. It should be noted that although
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the length scale has been scaled by Ni-, the probabilities have been scaled by N', where

v 0.58 is the Flory exponent in three dimensions. This strongly suggests that there

exists a close connection between the scaling parameters and the Flory exponent v.

-310

Distribution for excluded vlume, stiffness, and nearest-neighbor interactions
. .. .... , ..................

10 1i0 10D
Scaled distance between centers-of-mass R/Ne

101

Figure 7-2: Scaled probability of overlap for self-avoiding lattice chains of
with incorporated excluded-volume and stiffness interactions.

length N = 2048

* For freely-jointed chains of varying lengths, but with a constant number Nb of coarse-

grained segments, we computed the probability distribution. The results, plotted in Figure

7-3, scales the distance by Ne-058 and the probability distribution by Ne06. The results

are comparable for other nearby choices of the exponent, which again suggests that the

"best" choice exponents are close to, if not exactly equal to, the Flory exponent v of the

particular model selected.

* For freely-jointed chains of length N = 512, we investigated the effect of bead size (or test

volume radius rtest) on the overlap probability. The unscaled results are shown in Figure

7-4. The additional noise for the smallest bead sizes are principally the result of large bin
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Figure 7-3: Scaled probability distribution for freely-jointed chains of varying lengths with
equivalent numbers Ns of coarse-grained segments.
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sizes for the distance in the probability distribution relative to the bead size. [The bins

were chosen with Ar = 0.02.]

Overlap probability as a function of bead size rsep
-0
lU

10-1

1.B 102

0.

1'n

10

i0-5

10-2 1 10 10 102

Unscaled distance R

Figure 7-4: Overlap probability as a function of the test radius rtest for freely-jointed chains of
length N = 512.

For a single freely jointed chain, we determined analytically the probability FN (x, rtest)

that there is a bead within a test sphere of radius rtest centered at x, given the center

of mass of the chain at the origin. The parameters here are the number of beads N in

the chain, the distance x, the number of particles N, and the test radius rtest, which

directly corresponds to the excluded volume and the "test volume." The unscaled results,

illustrating the general form of the scaling behavior, is shown as Figure 7-5. The corre-

sponding scaled results are shown in Figure 7-6, which rescales the x-axis by N - 1/ 2 , and

the FN-axis by N3/ 2 r -3 . The excellent agreement in the scaled results suggests that these

parameters are important in the "universal function" underlying the scaling results; we

show this more concretely below.
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Figure 7-5: Unscaled probability distribution FN (, r) for finding a particle within a test volume
of radius r a distance x away from the center of mass of a chain of length N.
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7.4 Wavelet transform of the hard-sphere potential

In addition to probability distributions for the coarse-grained internal variables, we need po-

tential functions describing their interaction. When we first developed the WAMC framework

for magnetic systems on lattices, we were able to write the Hamiltonian of the system in matrix

form. Because the lattice sites were fixed at the beginning of the simulation, the interactions

were effectively position-independent. For a self-avoiding random walk, the positions of the

individual atoms changes throughout the simulation, which prevents us from creating a matrix

structure for the Hamiltonian.

Nonetheless, we can apply the wavelet transform to the hard-sphere potential Eq. (6.1).

Because the hard-sphere potential is restricted to be either zero or infinity, we evaluate the

arguments of the potential. Expanding r) and r 0°) in terms of the scaling coefficients r(k)'s

and the wavelet coefficients w()'s, j = 1,..., k using the recursion formulas

r'k) = 2 [r(I1) + r(k-)] (7.6)
-- 1 2n-1 -r2n

w) =- [r2n-1 -r2n ] (7.7)

leads to a coarse-grained potential which can be written in the form

r? r) ) r<a+f(w)) 7)
u (rM, (°,)) = I (k)Qc) fw ) ' (7.8)

0, Jr.) -r _a -- f (w (j ) )

where

( ) = (Xm(,k)W(,k) - Xm(j,k)Wm(j,k)) (7.9)
k=l

is a linear function of the wavelet coefficients corresponding to both sites r) and r °) . The

index function m (a, k) and the sign Xm(a,k) are given by

m(a,k) = a/2kJ, (7.10)

Xm(a,k) = 2mod(m(a,k) + 1,2)- 1. (7.11)
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Rigorous use of (7.8) requires knowing all of the differencing terms w(J) for the entire chain,

and evaluating the arguments for all pairs of beads at the original scale. This limits its utility

as a practical criterion for simulations. However, (7.8) highlights two competing trends that

arise during coarse-graining. Because the magnitude of f (w(j )) can be larger than the lattice

spacing a for a given configuration, it is possible that a - f (w(j ) ) < 0, which means that the

zero-energy region can extend leftward to r = 0. However, according to (7.8), the hard-sphere

exclusion region can extend past the lattice spacing a. Our potential must allow for both

possibilities to be true. This suggests that the correct form of our potential will be a potential

which remains finite-valued even as r -* 0. With such a potential, we pay an energy penalty for

allowing particles to move too close together, without preventing such a possibility altogether.

Thus, while unsuitable as a potential, (7.8) justifies the use of "soft" potentials, such as those

used by Eurich and Maass [481 and Louis et al. [21,23,89,98,99].

7.5 Constructing coarse-grained potentials

To determine the correct coarse-grained potential, we use a variant of the method described

by Bolhuis et al. [23]. We simulate two isolated chains, each of identical length N, using the

pivot algorithm. After every N attempted pivots, we check for overlaps between the two chains.

The respective centers-of-mass of each chain are separated by a random vector whose length

increases from r = 0 to r = 2N in increments of Ar, and whose orientation for each value

of r is uniformly drawn from the unit sphere. At each r, we check to see if there are any

excluded-volume interactions between the two chains: that is, we check if

rab = Iri,a - rj,bl < rtest, (7.12)

where the subscripts a and b in (7.12) now denote the first and second chains, respectively,

and rtest is the radius of the excluded-volume sphere. If (7.12) is satisfied for any i and j,

then we increase the histogram w (r) by one. The probability of overlap is then defined as

p (r) = w (r) /n (r), where w (r) is the number of overlaps observed when the centers of mass

are separated by distance r, and n (r) is the total number of times the centers of mass were

separated by distance r.
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Repeating this process gives a probability distribution p (r) for the overlap between any

two component beads as a function of the distance r between coarse-grained beads. We then

estimate the coarse-grained potential u (r) by inversion of the Boltzmann factor:

u (r) = -kBT In (1 -p (r)), (7.13)

where the factor of kBT is included so that the relative effect of the potential is independent

of the temperature. A sample potential produced by this method is shown in Figure 8-2, for

coarse-grained beads representing 32 atomistic beads. We note that the potential is quite short-

ranged: its magnitude approaches zero for distances larger than roughly one mean radius of

gyration (Rg ..~ 7.1 for the 32-mer), and remains finite-valued even as the distance between the

centers-of-mass of the two segments goes to zero.

The basic form of the potential shown in Figure 8-2 was observed to remain unchanged

regardless of whether freely-jointed or self-avoiding chain conformations were used to test for

overlap, or for different number of particles in the chain. This suggests that we can derive

scaling laws which would allow us to re-use potentials between different simulations without

necessitating recalculations.

7.6 Analytical solution: Freely-jointed chains

In addition to a numerical procedure for obtaining coarse-grained potentials, we consider here

analytical expressions for the coarse-grained potential which guide us identifying any scaling

behavior which might be present. For freely-jointed chains, we can approximate the probability

of overlap by considering the problem of a freely-jointed chain overlapping with a given "test

volume" at a given radial distance away from the chain. This probability then leads to the

distribution for overlap of an arbitrary chain with a specific polymer configuration. Using

(7.13) would then allow us to determine the appropriate coarse-grained potential.

We now attempt to derive a rigorous result for the probability of overlap by considering

the problem of a freely-jointed chain overlapping a given "test volume" at a specific location in

space. We can then use this probability to compute the distribution for overlap of an arbitrary

chain with a specific polymer configuration. For a Gaussian chain, Yamakawa [161] derived the
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Figure 7-7: Estimate for the true interatomic potential u (r) used to improve the WAMC self-
avoiding walk model. The potential is shown for coarse-grained beads representing 32 atomistic
beads of diameter 1. Rg 7.1 for the 32-mer.

probability distribution fN (0, x) that any bead of a chain is at point x, given that the center

of mass is located at the origin:

fN (0O X) = ) exp (- ) (7.14)

where raj is defined as

j = (s2) = 3aN (N 2-3j (N- j)). (7.15)

In (7.15), j is a free index, and a is the step size of the chain.

We would like to determine the probability that there is a particle within radius r of x, given

that the center of mass is at the origin. However, we can recast the problem as determining the
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probability that there is a particle within radius r of the origin, given that the center of mass

is located at x. The quantity we need to determine is thus

FN (x, r) = dl sin 0 do s2 ds exp -(
~0 TM j~0x j~0r i k NE(2-7raj 3

(j=l

3 (x -s) (x-s)
2aj )

The first integral in (7.16) is trivial; expanding the dot product inside the integrand and re-

ordering the operations gives

= (2 3 /2 s2 ds
j:=l

J sin dOexp (
0

3 (x 2 + S2 - 2xs cos 0)
2oj

Taking the integral over 0 in (7.17) first is simpler. Letting u = cos 0, so that du = - sin 0 dO,

(7.17) becomes

(3 3/2 r

2raj J ds exp
FN (x, r) = - k

j=1

3 (x2 +s2) 1
2oaj I J

duexp( 3u .\aj 

The inner integration is now straightforward, and gives

I1

-1
duexp (3su)

aiyJ
- ( 3xs
3xs exp I3xs

- exp (-3xs \ as/

2a s= - sinh
3xs

inserting (7.19) into (7.18) yields

3
EN (X, r) = N

T N
1

_--r 3/2
= 3

r
s2 ds exp

0

( (X2 + S2) (2j sinh 3xs \ 2 0j, sinh0s
which can be rearranged as

1
FN (x,r) = 

Nx:
N

j=l

3x
2

e 2aj r

e/2 0 ds exp 2aj sinh Us
a/
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(7.18)

3xs
-;J (7.19)
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Evaluating the integral over s in (7.20) is easier piecewise. The required integrals are

BjS2
2

eBjxc - Bj c2)s ds exp (Bjxs

+ sX2B e 2
2B3

(+ erf (c x) 2) + erf 2

which makes the combined integral

Ir
•0s ds exp (

3s2

- (sj)

) sinh (US )

= e 2
2 2Bj

(erf((c + ) 2) + erf (cx) 2 )
1 _- 

1 Bjc 2

-- e Bj sinh (Bjxc)
B

Combining (7.20) and (7.21) gives

FN (x, r) = +x) A + erf ((r -x) ))

1 N

- B e I Bi B(x2+ 2) sinhBjxr,
j=l

(7.22)

where
3Bj= - =
a~

9N
(7.23)

a2 (N2 - 3j (N -j))'

7.6.1 Invalidity of "maximum-term" approach

We previously performed the above analysis using a "maximum-term" approach to handle the

Ks2) term in (7.14) more efficiently. That is, we assumed that we could neglect differences in

the value of (s2), so that (7.15) could be approximated by its mean value
us~ ruru~ ( \ ) vull I~v vl ~urrvlsuuu u u lcr v~u

1 N
(2) = _E (Si)

j=1

1 N=-vN -1j=1

K2 Na 2

3- (N2 - 3j (N - j)) 63N ~~6 
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Based on the approximation (7.24), we obtained the solution

FN (x, r)= erf( ( + r) -erf) 3(x-r)

a N 9(r2±+X 2) (18xr\
- 3 -exp a2N sinh a2N) (7.25)

Unfortunately, the approximation (7.24) yields extremely inaccurate results, as the parameter

(s?) appears in the denominator of the exponential function in (7.14), which suggests that the

"maximum-term"-like approximation will be difficult to justify. To see this, consider Figure

7-8, which shows the difference between the two results (7.22) and (7.25). The consequence

of the discrepancy is that there is a greater probability of particles being discovered close to

the center of the molecule than would be expected from the maximum term approximation. In

addition, this means that the probability of a collision between two different chain segments,

which we can estimate as

P (u, rtest) - (1 - FN (u, rtest))N, (7.26)

will be much higher than the approximation would suggest. For example, when u = 0.01,

the more accurate equation (7.22) gives F4 (0.01) = 0.0495 while the approximation (7.25)

yields F 4 (0.01) = 0.0365. For these values of F64, we use (7.26) to estimate the respective

probabilities to be

pt (0.01, 1.0) 1 - (1 - 0.0539) 64 = 0.961

pa (0.01,1.0) 1 - (1 - 0.0365)64 = 0.907

The discrepancies noted in the values of pt and pa near the origin apply throughout the domain,

as can be seen from Figure 7-9. Moreover, the fact that Pt > pa at all values of r indicates

that using pa to determine an interaction potential will yield a much softer potential than the

more accurate formula pt.
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[upper curve] and the approximation (7.25) [lower curve].
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7.6.2 Asymptotic behavior of Equation (7.22)

To assist in the determination of scaling laws for the overlap between segments, we determine

the limiting behavior of Eq. (7.22) as a function of x and the parameters r and N. For small

values of x, expanding Eq. (7.22) as a power series in x gives to fourth order in x the formula

1 ( 1Br22) Br + (4)] . (7.27)

Equation (7.27) indicates that the probability distribution decays very slowly for test volumes

located close to the center of mass of the segment. This result is easily observed in both the

theoretical calculations and the simulation results. When x is large,

FN (X -- 00, r) =-e- (7.28)
j-1 ' 7.8

which suggests that we have Gaussian-like decay for x - oo. Similarly, if r is a small parameter,

then the corresponding asymptotic expansion is

FN (x,r O) 3 B 3 /2exp - i2 + (r5). (7.29)
j=

Equation (7.29) estimates the probability distribution in the limit of vanishing test volumes,

which corresponds to small bead sizes. Again, we observe from Figure 7-11 that there does

exist an r3 scaling in the overlap distribution, indicating (7.29) may be useful in determining

the chain overlap probability.

The remaining case is the polymer scaling limit, N -- oo. In this limit, the parameter Bj

defined by Eq. (7.23) tends to zero as N- 1 : thus, expanding Eq. (7.22) as a function of N

leads to

23 N 3/2 P N 2 X2 ~/ + 0 /2
FN, (x, r) B 32 r (3r2+ 5X2) B/2 +O (Bj/2) (7.30)

,=1 j=1

To leading order, FN therefore scales as N 1/2. Comparing (7.29) to (7.30), we see that there

are similar scaling results for both N --4 oo and r -+ 0, with identical results obtained when
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Figure 7-10: Unsealed probability distribution FN (x, r) for finding a particle within a test
volume of radius r a distance x away from the center of mass of a chain of length N. From top
to bottom, rt,,est = 1, 0.5, 0.25, and 0.125.

r 0. Two features are common to both scaling laws: the distance scales as xN- 1/ 2, and the

probability scales as r3 N1/2 , since Bj r N.-

Taking advantage of these insights provided by (7.22), we can collapse the data for different

values of the parameters r and N if we rescale the x-axis by N-' / 2 and the y-axis by r 3 N3/ 2.

The unscaled data are shown in Figure 7-10, while the scaled plot is shown as Figure 7-11.

7.7 The probability of overlap for two segments of a freely-

jointed chain

As mentioned above, given two independent freely-jointed chains, the probability that they will

have an overlap, defined as any two component beads on different chains being separated by a
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distance less than or equal to rtest, is one minus the probability that they do not overlap. The

exact probability should be given by

N

PN (u, rtest) I - 1 (1 - FN (u + Ari, rtest)), (7.31)
i=1

where Ari is the displacement of bead i in the test chain from the center of mass of the test

chain. However, using Eq. (7.31) would require knowledge of the detailed atomistic chain,

which is unavailable in the coarse-grained simulation. A rough estimate of the probability for a

test volume of radius rtest which uses only information available at the coarse-grained scale is

PN (u, rtest) - (1 - FN (U, rtest))N. (7.32)

This is the probability we used above to determine the two-chain overlap probability. We note

that this relatively simple formula for the overlap probability yields a reasonable estimate.

Figure 7-12 shows the overlap probability for two chains of 32 beads each as a function of the

separation of their centers of mass, x. The curves are qualitatively the same shape and the

agreement between the simulation and the approximation (7.32) improves as rtest -- 0 and

x --+ oo. Thus, although it is clear that (7.32) is not an exact formula for PN (u, rtest), we can

approximate the behavior of PN (u, rtest) by calculating FN (u, rtest) for a number of different

chains of varying size sufficient to develop the corresponding scaling behavior, and then use

(7.32) to determine the probability for chains of the desired length N. We can then "invert"

PN (u, rtest) via (7.13) to obtain the potential function.

We can also compare the results obtained holding rtest constant and varying N; the results

for N = 128 with rtest = 1.0 are shown in Figure 7-13. We note in these figures that the

approximation (7.32) breaks down for large N, although we continue to observe the correct

qualitative behavior for the overlap probability. This suggests that rather than trying to use

an analytical law like (7.27), we are better off computing the underlying potential FN (u, rtest)

for a given chain configuration, and then using (7.32) to estimate the potential.
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(7.22) [dashed curves].

166

__



1

0.9

0.8

0.7

a 0.6

0.5

X 0.4

0.3

0.2

0.1

n
0 5 10 15

Unscaled distance between centers-of-mass, x

Figure 7-13: Dependence of overlap probability on rtest: overlap between 128-mers with test-
volume size rtest = 1.0 and rtest = 0.5 as a function of the separation of centers of mass, as
obtained via direct simulation and approximation (7.32).

167

. -o .test 0

\ - - Approximation

Simulation results

0. '
rtest= 0.5 \- .

_ I ....-" . . . . " ----:'-- ,--.:: Y.. :~ -:._-:- ...... .... 1.-..................................................................



6

5

4

-oc 3-,

O

ID

n
0 1 2 3 4 5 6 7 8

Unscaled distance between centers of mass of 32-mers

Figure 7-14: Scaled potential showing the r3 t dependence of the potential for two freely-jointed
chains of 32-mers in the limit rtest -- 0 using approximation (7.32).

7.8 Potentials derived from P (u, rtest)

Using the probability distributions estimated by (7.32), we can construct approximate potentials

for the polymer. For a freely-jointed chain, we obtain via the method described in Section 7.5

the potentials shown in Figure 7-14 for various values of rtest. The r3et dependence postulated

in (7.29) has been used to scale the results. We observe that the results converge in the limit of

rtest - 0 (Figure 7-15). Scaling the potentials for different chain lengths produced using (7.32)

converge in the limit N --, oo when scaled by the factor N 1/ 2 (Figure 7-16). Convergence to

a limiting curve as N -- oo appears to be much slower in the potentials computed from direct

simulation than using the approximation (7.32). We do not get good agreement with the results

from direct simulation, as seen in Figure 7-17. Consequently, (7.32) yields qualitatively useful

but not quantitatively accurate results.
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7.9 Self-avoiding walk

We have considered freely-jointed chains thus far for illustrative purposes and because they

are analytically tractable. The practical value of coarse-grained intermolecular potentials arises

when studying self-avoiding chains. It is possible to develop similar scaling laws for self-avoiding

walks, as can be seen in Figures 7-18 through 7-20. These figures illustrate the dependence of

the coarse-grained overlap potential on test volume size rtest and on the coarse-grained segment

size N. Figure 7-18 shows the two-chain overlap potential for various test-volume sizes r. As

the test-volume radius decreases, the scaled potential rtU (x) converges to a limiting curve

which reproduces the result obtained for freely-jointed chains above. This confirms that the

radius of the test-volume (or, equivalently, the bead size) of the coarse-grained particle is an

important parameter in our coarse-graining simulations.

Determining the scaling function for the chain segment length N, as shown in Figure 7-19,

yields a much more complicated behavior than exhibited in the freely-jointed chain. For the

self-avoiding walk, the range of the potential scales as N0 4, whereas for the freely-jointed chain,

the range scales as N0° 5.

There does not appear to be a universally applicable scaling for the magnitude of the

potential for the freely-jointed chain. Instead, the scaling depends on the ratio of the test-

volume radius rtest to the bond length of the chain. As shown in Figure 7-19, for rtest = 0.5,

the magnitude is unchanged by adjusting the length of the chain; similar results persist for values

up to rtest = 1. However, for smaller values of rtest, the magnitude of the potential collapses

when scaled by N-0 5 , as shown in Figure 7-20 for rtest = 0.125. Thus, for small values of

rtest, the self-avoiding and freely-jointed chains exhibit similar dependence in the magnitude

of the coarse-grained potential. Such behavior is reasonable: when the test-volume size is

large, the excluded volume of each chain will be too large for two chains to approach without

some overlap. As the test-volume radius decreases relative to the bond length, the separation

between the centers-of-mass of two chains can become small without beads on different chains

overlapping. Thus we conclude that the ratio of test-volume size to bond length is an important

parameter in constructing coarse-grained potentials.

From the results presented above, we can now outline a general approach for determining

coarse-grained potentials. Since we have established scaling laws for the range and for the
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Figure 7-18: The coarse-grained overlap potential for two self-avoiding chain segments of length
32, parametrized as a function of the test-volume size rtest, demonstrating the r3et-dependence
of U (r) as rtest - 0.

magnitude of the potential, so we can compute potentials for various small system sizes and

various values of rtest, and then use the phenomenological scaling laws outlined above to estimate

what the correct potentials for the desired stage of coarse-graining are.

7.10 Alternative approaches for computing new coarse-grained

potentials

The problem of determining a coarse-grained potential which accurately reproduces a given set

of statistics is an example of "inverse Monte Carlo" methods. Simple methods such as inverting

the radial distribution function g (r) to obtain the potential of mean force

w(r) = -In g (r)
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Figure 7-19: Collapse of coarse-grained overlap potentials for two self-avoiding chains with
N = 32, 64, or 128, and test-volume size rtest = 0.5, showing an N0 4 , N 1- v dependence.
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are well-known [113], but are often inadequate for systems such as chain molecules with connec-

tivity constraints [118]. Instead, the usual approach for such problems is an iterative algorithm

which biases potentials according to the difference between the computed distribution function

and the "target" function. Such methods date back at least to the work of Reatto et al. [130],

and a number of different implementations exist, developed by Soper [145], Lyubartsev and

Laaksonen [102], and Rutledge [134], among others. While these methods are in theory gen-

eral, most have been applied only to systems with relatively few degrees of freedom, and fewer

still have been used to develop coarse-grained potentials. The closest work in this respect to

the one proposed here is that of Akkermans and Briels [2, 3]. Unfortunately, there are some

difficulties associated with this work, as several researchers have reported that thermodynamic

inconsistencies can result from improper use of such coarse-grained potentials [2,96].

The general outline of this method is as follows. Given a target radial distribution function,

g* (r), we would like to determine a potential u (r) which reproduces the desired target. For

an ansatz U(k) (r), we generate as output a corresponding radial distribution function g(k) (r) .

The method states that the updated Hamiltonian can be found by solving the system

A (47rr2g) = AAu,

where the vectors g and u are appropriately discretized versions of g (r) and u (r), respectively,

and the coefficients of the matrix A are given by

Aij= = - (gigj= - (gi) (gj).
Auj

The process is then repeated with the updated u(k+l) (r) until an appropriate error threshold is

reached, at which point the algorithm terminates, and a long-time simulation can be run with

the resulting coarse-grained potential u*. The starting ansatz is often a square-well potential,

such as (2.7), where Enb (rij) is a constant nb. In subsequent iterations of the procedure,

each discrete region of the potential u (r) may be modified; however, in virtually all cases, the

algorithm is able to converge in ten iterations or less [11,118,134].

Thus, we can envision implementing SGMC as a means of improving the performance of

our simulation. Since the coarse-grained simulations tend to be faster than the numerical
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simulations required to obtain the correct statistics, it makes more sense to spend more time

at the coarse-grained scale than at the fine scale. Thus, we could run a short simulation on

a small chain to obtain the distributions for FN (x, rtest), then use scaling laws and (7.32) to

obtain a coarse-grained potential. This potential would then be used as the starting point in

an SGMC simulation, and the results of successive iterations at the coarse-grained scale should

then correct the potential to its "correct" shape.

7.11 Conclusions

For freely-jointed chains, we have shown that very simple physical arguments can be used to

approximate the two-body potentials observed for the overlap of chains. Although the resulting

analytical distributions tend to overestimate the potential, they show the correct qualitative

behavior, suggesting that single-chain simulations may be sufficient to compute coarse-grained

potentials. In addition, we have seen strong evidence for the existence of scaling laws for the

probability distribution which generates the potential, for both freely-jointed and self-avoiding

chains.
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Chapter 8

Coupling of variables as a

consequence of coarse-graining

8.1 Discovering the coupling phenomenon

Like the previous chapter, the results presented in this chapter were obtained in an attempt to

explain the results obtained in Figure 8-1. The graph shows the results for the mean end-to-

end distance (RN) for a self-avoiding walk treated atomistically using the pivot algorithm, and

as coarse-grained via WAMC, with effective bead sizes of Ne = 32, Ne = 64, and Ne = 128.

As we have mentioned previously, there is excellent agreement between the different coarse-

grained simulations, yet there was a substantial discrepancy between the set of coarse-grained

simulations and the atomistic simulation. As a result, we believed that we did not have all the

information necessary to describe the coarse-grained polymer model. The results in Figure 8-1

were generated from the distribution of bond lengths, and the assumption that the hard-sphere

potential of radius rhs = 1 used at the atomistic level was still valid at the coarse-grained scale.

The first attempt at restoring detail into the model was to use the method described in the

previous chapter to produce an estimate for the true potential u (r). Using the potential shown

in 8-2 caused an observable but ultimately insufficient adjustment in the results for (RN); the

three to four percent adjustment did not offset a factor of two difference.

At this point, it becomes clear that we are still missing some important data to resolve

the problem. However, no such information is forthcoming from our original model. Further
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Figure 8-1: Mean end-to-end distance (R) of the pivot algorithm (top line) and of coarse-grained
simulations based on bead sizes of 32, 64, and 128 (lower curves). Note the excellent agreement
of the different coarse-grained curves with each other.
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Figure 8-2: Estimate for the true interatomic potential u (r) used to improve the WAMC self-
avoiding walk model.
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complicating the problem was data such as that shown in Figure 8-3. Figure 8-3 shows a scatter

plot, in which each point indicates a pair of bond lengths, such that the length of bond i is

the ordinate and the length of bond i + 1 is the abscissa. The solid curves underneath the

plot represent contour lines of equal probability, under the assumption that the bond length

probability distributions are independent of one another. The concentration of points at the

center of the graph, and the relative "thinning out" observed as one moves away from the

center implied that the bond length distributions were in fact independent of one another.

Repeating the same plot for the bond length and bond angle distributions, as shown in Figure

8-4, shows that the assumption that bond lengths and bond angles are described by independent

distributions appears to be reasonable.
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Figure 8-3: A correlation plot of adjacent coarse-grained bond lengths in a 256-mer, showing
decorrelation between adjacent bonds connecting beads of effective size 64.
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Figure 8-4: A correlation plot of coarse-grained bond lengths and adjacent bond angles in a
256-mer, allegedly showing decorrelation between bonds connecting beads of effective size 64
and their neighboring bond angles.
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This led to an impasse: something appeared to be missing, but no leads to explain the

situation remained. Consequently, a an investigation of the freely jointed chain was undertaken,

since it is conceptually simpler than the self-avoiding walk. However, initial results for the

coarse-grained freely jointed chain model appeared no better than the self-avoiding walk, as

significant errors remained.

Comparison of the coarse-grained freely-jointed chain model with that described in the work

of Laso et al. [92] suggested that the assumption of independent bond lengths and bond angles

was invalid for most coarse-grained systems, as the bond lengths are in fact interdependent:

they claim that the covariance of adjacent bond vectors Ri and R+ is

1- N 2 2
1,ii,+l - 18N (12) E, (8.1)

where in 8.1 Ri,itlis the vector connecting beads i and i + 1, (12) is the mean length of a bond

at the atomistic scale, and E is the three-dimensional unit tensor. Our derivation of this result,

not supplied in the original paper, suggests that this result should actually be

(Ril,iR,i+l) = N- 18N (12) E, (8.2)
3 18 18

which confirms that the correlation between neighboring bonds does not vanish. [See Appendix

A for details on this derivation.] Moreover, they assert that the bond angles are dependent on

the bond lengths, from which we conclude that our assumptions, based on Figures 8-3 and 8-4

were based on "false positives," and not on the actual data.

To construct our coarse-grained model, it therefore became necessary to determine what

additional information needed to be specified. For example, although (8.1) and (8.2) suggest

that a conditional bond-length distribution is required, the results of Laso et al. [92] suggests

that the actual effect of the correlation is negligible except for large bond lengths which comprise

a negligible portion of the overall distribution-on the order of thousandths of one per cent of

all bonds observed. Thus, we omitted the conditional bond distribution from our calculations.

On the other hand, we also realized that the bond-angle distribution of the coarse-grained

walk was not, in fact, uniform. Instead, there is a pronounced bias in the distribution, favoring

large bond angles over smaller ones, as shown in Figure 8-5. To simplify the work of using this
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Table 8.1: Mean square radius of gyration using a single bond angle distribution
N (R2) (atomistic) R (WAMC, single bond angle dist.)

[0.5ex] 512 = (16 x 32) 84.75 70.41
1024 = (32 x 32) 171.60 141.23

Table 8.2: Mean square radius of gyration using multiple bond angle distributions
N R2 (atomistic) (R (WAMC, multiple bond angle dists.)

512= (16 x 32) 84.75 74.15
1024= (32 x 32) 171.60 150.10

angle distribution, we noted that the cumulative distribution function corresponding to p (4)

resembles a "stretched" Gaussian exponential, so we attempted to fit p () to the form

exp (- ( - r)2 /a)- exp (-r2/a)
1 - exp (-7r2 /) (8.3)

where a is an adjustable parameter. For the freely-jointed chain, excellent agreement between

the simulation results and the curve fit of (8.3) is obtained by selecting a = 2.5, as shown in

the lower graph in Figure 8-5.

Using the coarse-grained bond-length distribution and the approximation (8.3), both devel-

oped for effective bead sizes of 32, we then attempted to model a coarse-grained freely-jointed

chain, computing its mean square radius of gyration, (R2). The results unfortunately still did

not provide good quantitative agreement with the results of atomistic simulations, as is seen in

Table 8.1.

The reasons for the discrepancy were at first unclear. At first, we considered the possibility

that the bond angle depended more strongly upon the coarse-grained bond lengths than Figure

8-5 suggests. This is in fact true, as is shown in Figure 8-6, which parametrizes the bond angle

according to the length r "preceding" the bond angle. For the cases rl < vf/, r < 3V3,

and rl > 3, we obtain a parameters of 3.3, 2.4, and 1.5, respectively. These parameters

were then added to the simulation, which yielded improved values, but still not fully accurate

values, as shown in Table 8.2.

Finally, we examined something not included in the work of Laso et al. [92]: the torsion-

angle distribution. The asymmetry in the distribution is most clearly observed by plotting the
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Bond angle distribution as a function of bond length for Gaussian chains
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Table 8.3: Mean square radius of gyration using bond angle and torsion angle distributions

N (R) (atomistic) (R ) (WAMC, bond and torsion angle dists.)
512 = (16 x 32) 84.75 82.74

1024= (32 x 32) 171.60 169.80
2048 = (64 x 32) 342.70 342.10

4096 = (128 x 32) 679.95 685.69
8192 = (256 x 32) 1360.22 1375.09

probability as a function of the cosine of the torsion angle 0, which is shown in Figure 8-7. This

shows that there is a bias towards trans configurations instead of cis configurations, leading to

a slight extension of the chain. Although the differences appear to be large, the bias turns out

to be relatively small:

(0) = 1.6043,

(cos ) = -0.0335.

On the other hand, the effect of this change, coupled with the others, was significant enough

to yield near-perfect agreement with the atomistic model, as is summarized in Table 8.3; more

data is shown graphically in Figure 8-8, showing chains of lengths up to N = 32768. The

scaling-law fit of the data,

(R 2 ) N1.014+0.003

is shown in Figure 8-8 as well; it is essentially indistinguishable from the atomistic result

(R2) N1.0000.003

except at the largest values of N.

8.2 Should these results surprise us?

In the previous section, we began with a freely-jointed chain model with no interactions, a

monodisperse bond-length distribution and uniform bond-angle and torsion-angle distributions.

The act of coarse-g~raining via the wavelet transform method produced a model which still had
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no interactions, but in which bond angles were dependent upon bond lengths, and in which all

the distributions were non-uniform. Is this result in fact surprising? Is there anything in the

literature which would lead us to expect this behavior as a result of coarse-graining?

The most logical place to turn is the theory of critical phenomena and in particular the

renormalization group method [19, 85,104,146]. As explained in Section 2.4, that the one of the

principal goals of using renormalization group principles to coarse-grain physical systems is to

determine the flow diagrams in parameter space. That is, given a set of starting parameters K,

what new set of parameters K* correspond to K after the coarse-graining procedure has been

performed? The choice of parameters is arbitrary; however, we hope that the set we choose

have well-defined (if not necessarily finite) values both before and after the coarse-graining

procedure.

As previously noted, in the case of the Ising model, the wavelet transform coarse-graining

method produces a self-interaction term that is not observed in the traditional Ising model.

Similarly, renormalization-group analyses of the two-dimensional Ising model on the square

lattice yields a more complicated model. Unlike the one-dimensional case, which only adds

a constant term, the two-dimensional case adds both a constant term and a term describing

interactions between four neighboring spins-those that meet at a common corner [124]. This

introduces an increased level of correlation between the coarse-grained variables, not observed

at the fine scale.

In the case of coarse-graining the freely-jointed chain, if we consider our parameter to be

the lack of an interaction term, then we find that the wavelet transform method leaves the

parameter unchanged-a result predicted by renormalization group theory. On the other hand,

if we were to define a new parameter

(ad) - (a) ()
(a) ()

which represents the coupling of parameters, we find that the coarse-graining operation has

a very significant impact: for example, we cannot reasonably expect (r, to be zero. In fact,

we find that neighboring bond lengths ri and ri+l are correlated, as is the bond length ri

and the corresponding bond angle Hi. Neighboring bond angles i and i+1 show a much
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Table 8.4: Correlation parameter for different pairs of coarse-grained variables

a /3 (a
ri ri+l 0.00996
ri Oi 0.02356
bi bi+ 1 0.00407

smaller correlation, as can be seen in Table 8.4. These results confirm our previous hypotheses:

neighboring bond angles can be chosen independently, and under some circumstances so can

neighboring bond lengths.

However, we should expect that bond angles and bond lengths to be linked. The weak

correlation between coarse-grained variables is actually the most difficult case to handle. If

the correlation between the bond length and the bond angle was near-unity, we could easily

devise a mapping which would convert a given bond length into a corresponding bond angle.

If the correlation had been zero, we could simply choose the variables to be independent of

one another. With the value non-negligible- it is significantly larger than the correlation either

between adjacent bond angles or between adjacent bond lengths-we know that there is some

structure in the data, but not a direct relationship between bond lengths and bond angles, thus

leading us to expect a much more complicated behavior between the two.

8.3 Information gain in coarse-grained systems

8.3.1 Polymer models

Another notable feature of coarse-graining is the tendency of the coarse-grained variables to

have greater information content [78] than any individual corresponding fine-grained variables

which created it, but less than the total entropy of the entire set of corresponding fine-grained

variables. The information inherent in a probability distribution is defined as

I =- (lp). (8.4)n2 '

that is, the information is the same as the entropy of the distribution times the constant

-1/ (kB ln2). The greater the value of I, the more we know about the system.
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As an example, consider choosing a bond angle. If we were to assume a Gaussian bond

angle, then the choice is arbitrary in the range 0 < qb < i. The information is then given by

I = dx r -1.651
In 2 In2

In contrast, we have shown that (8.3) can be used to define the cumulative distribution function

for the coarse-grained bond angle for a Gaussian chain. Using the derivative of (8.3),

d exp (-()- r)2 / ) - exp (-7r2/a) (_ - e)2
P ()-= do exp(-x (-i2/a)) a1-(1e- )

with the parameter choice a = 2.5 gives for the information content

fo dp(q) np(5) -0.9777
=ln2 °n2 =-1. 410,

which tells us that the coarse-grained bond angle distribution contains more information than

the Gaussian bond angle distribution. Moreover, although I increases as a -- 0, as expected-as

the bond length increases, a smaller range of angles are available-even as a -+ oo, correspond-

ing to the smallest bond lengths, I (a) > I', so we will always have more information content in

the coarse-grained bond angle than in the atomistic bond angles, even if we use multiple values

of a to characterize the bond-angle distribution.

Similarly, the Gaussian torsion angle distribution, which is uniform over 0 < 0 < 2r, has

information content equal to

I = dx In - _ In 27rI- 21 = -2.651.
In 2 In2

If we use Figure 8-7 to estimate the information content of the torsion distribution, we obtain

ln2 1 ( (i)lnp (ij)) AO -1.324,

so we again find that the information content of the coarse-grained torsion angle is greater than

that of the original torsion angle.
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The only "exception" to this rule that we observe in the Gaussian case is the bond length

distribution: the coarse-grained model will have I < 0, while the atomistic chain will have

I = 0. While true, this is somewhat misleading, since there is no uncertainty in the bond

length of the original model, and therefore we must obtain I = 0. However, we can compare

the results for our bond-length distribution for distance between the centers-of-mass of 32-mers,

for which we compute, using the data shown in Figure 6-3,

I = 12 E (p (0i) lnp (i)) Ar -3.168
i

with the results for the Gaussian end-to-end distance of 32-mers,

I fdrp (r) In p (r)
In 2

4r 3 2exp(- 3 r2 (3 n 3 r 2 dr
fO 4Orr2 (I2·r(32) exp-· (-2(32) 2 i r(32) 2(32)

In 2

= -11. 264,

which indicates that much more information is contained in knowing the distribution of centers

of mass of a chain than the end-to-end distance of coarse-grained segments.

A comparison of the three results is also instructive: the bond lengths and torsion angles

have significantly large increases in information gain as a function of coarse-graining than does

the bond angle. The differences are significant-a factor of 2 to 4 reduction for the bond

lengths and torsion angles, but only about 15 to 20 per cent for the bond angle. Thus, we

suspect that a small increase in information of a coarse-grained distribution is an indication

that the distribution of the given variable is in fact dependent on one or more of the other

degrees of freedom which are effectively independent of one another.

8.3.2 Ising lattices

We can obtain similar results for the Ising model. Let us consider the mapping of a square of

size 8 x 8 to a single Ising spin. If we assumed that all block spins, were equally likely, the
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information content of the block spin would be

641 1
I = n n2 E64 In 6-4 -6.094;

j=0

by contrast, since we actually know the distribution of spins making up a block spin, we can

repeat this calculation with the actual data, shown in Figure 4-5, to obtain

64 (6442J ((64-42J\
I = 2 P 64 lnp 64 )) -4.047

in the high-temperature limit,

I 1 In 1 +1 l1In22 n 4-~ln 2 -

in the zero-temperature limit in the absence of magnetic field, and

I = 0,

as T - 0 and h -* 00oo. Consequently, knowing the magnetization of the block spin provides

much more information regarding the configuration of the block spin than the equal a priori

assumption. This is particularly true in the vicinity of the attractive fixed points of the Ising

model (shown in Figure 2-3).

8.4 When should we expect interdependence?

One of the reasons that using the wavelet transform as a coarse-graining mechanism leads to

increased interdependence of the coarse-grained degrees of freedom is that it is an averaging

process. Lattice spins are replaced with spins equal to the average spin of the block; beads

are replaced with coarse-grained beads at their center of mass. Consequently, the interactions

already inherent at the atomistic scale are carried over to the fine scale. In the case of lattice

spins, we have interactions between the spins, which makes the distribution of expected states

more difficult to predict; we use the behavior of a sublattice at a previous scale as a means of
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approximating this behavior. Similarly, the coarse-grained bond length in the polymer model

is a function of the positions corresponding to both coarse-grained beads in the chain.

We can therefore suggest the following principle as a rule for when interdependence increases.

Conjecture 1 The complexity of the distributions of a variable in a coarse-grained system will

increase beyond that of the distributions of the corresponding atomistic degrees of freedom which

created it when:

1. the quantity being investigated depends on interactions between two or more coarse-grained

degrees of freedom, and

2. the quantity has a small increase in information content after coarse-graining, or is weakly

correlated with another degree of freedom.

The first part of this principle should be intuitively obvious: The distribution of a variable

changes when it is affected by another variable in the same system; this is merely rehashing the

notion of conditional expectations. Thus, the only way to prevent more complicated distribution

functions from appearing is to define coarse-grained variables that are non-interacting. However,

our ability to define such coarse-grained variables is limited to a very small number of simple

systems, or to coarse-grained length scales so large as to be meaningless. [For example, coarse-

graining a semidilute polymer chain to a collection of particles, each of which is much smaller

than the radius of gyration, would yield coarse-grained variables that are more or less non-

interacting, but also non-informative.]

An example where coarse-graining does not lead to increased interdependence can be found

in another model of the polymer random walk. If we choose to coarse-grain a freely-jointed

chain by replacing a sequence of adjacent bonds by their end-to-end distance, we can create a

model with independent coarse-grained bonds if we choose the segments to be longer than the

persistence length of the original chain. However, in this case, the "atomistic" bond vectors

which determine the coarse-grained bond length belong to only one coarse-grained bead, and

therefore do not violate the principle set forth above. In the case of a lattice system, this

would be akin to selecting a coarse-grained block size sufficiently large such that the spins are

effectively decoupled. For such systems, the interactions between block spins are negligible in
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comparison to the intra-block interactions, and thus knowing the distribution of spins suffices

to determine the behavior of the overall system.

The second notion, that a small increase in information content or a weak correlation with

another degree of freedom is related to the complexity of the coarse-grained probability distrib-

ution, is less obvious. However, upon reflection, it makes sense that these two factors would be

correlated with increased complexity of behavior. If the information gain is small, it can mean

that even though the distribution may be significantly altered from the previous fine-grained

distribution, only a small amount of additional precise knowledge about its behavior has been

gained-which may indicate that we have introduced a parametrized set of coarse-grained dis-

tributions, instead of a distribution valid under all conditions. Similarly, the presence of weak

correlations can be a sign of increased dependence, since there is a clear sign of a link between

variables, but not a strong enough correlation to infer a direct relationship between the given

variables.
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Chapter 9

Future research directions and

conclusions

9.1 Future research directions

We have outlined in this thesis a framework, based on the principle of hierarchical organization,

which is capable of simulating numerous different types of physical models. We can extend this

work both within the context of the models we have studied, as well as branch out into studies

of different systems. Some possible new extensions and applications of the WAMC framework

are outlined below.

* Problems with defined length scales

- The effects of confinement on the behavior of polymer systems has important rami-

fications for studies of separation and analysis of polymer, protein, and DNA mole-

cules. It is well-known that a wall can be viewed as a colloidal particle of infinite

radius, whose effects on the interaction of polymer molecules must be determined [22].

In the context of WAMC analysis, the presence of the confining walls or tube in-

troduces a length scale into the problem which ultimately provides a bound on the

amount of coarse-graining in a chain: it seems ill-advised to choose a coarse-graining

scale in which the mean bond length is greater than the tube radius or the distance

between walls, unless the behavior of the polymer is sufficiently rodlike to justify such
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an approximation. Moreover, this would appear to be a better approach to model-

ing confined polymers than the soft colloid approach [20, 99], which creates a single

particle with only nine degrees of freedom (a center of mass, and the orientation and

principal axes of the ellipsoid defining the complete chain).

- Entangled melts are difficult to simulate, because of the complicated interactions

where segments on different polymers intersect. However, we can determine the

distance between cross-links of chains, and therefore derive an effective length scale

for coarse-graining. The distance between cross-links should be greater than the

coarse-grained effective bead size, to ensure that polymer chains between links are

represented by multiple beads. This approach would be useful for simulating gels

and other "networked" polymers.

· Heterogeneous coarse-graining would allow us to make our algorithm, which is multiresolu-

tion between stages of coarse-graining, a multiresolution algorithm within a single stage of

the coarse-graining process. That is, we would have multiple resolutions of coarse-graining

within the simulation system, or even within a single chain. For example, a block copoly-

mer could have different blocks be assigned different effective bead sizes. Additionally, a

semidilute homopolymer might be represented by a high level of coarse-graining when no

polymer is nearby, but be represented by a finer-scaled description for those parts of the

chain which are within the interaction range of another chain.

The main challenge in creating a heterogeneous simulation would be obtaining the

statistics required to create the interaction potentials needed for the coarse-grained sim-

ulation. Different effective bead sizes-or different molecular structures-would require

the sampling of all different pairs of possible effective bead sizes, which would effectively

slow down the time required to perform the atomistic-level simulations. However, the in-

creased information would allow us to focus computational time where it would be most

useful in determining structural and thermodynamic properties.

· Another fruitful approach in molecular simulation has been hybrid Monte Carlo-molecular

dynamics simulations, particularly for systems with surface reactions, where the reactive

kinetics can be handled using Monte Carlo, while diffusion to and from the surface occurs
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via molecular dynamics [24,84]. Other approaches integrate the two techniques by letting

short molecular dynamics simulations generate new Monte Carlo configurations [5,65].

We can couple the WAMC framework to Molecular Dynamics simulations using sev-

eral different approaches. One such method would be to create effective potentials for

interactions between coarse-grained particles and between atomistic and coarse-grained

particles. Then, instead of computing long-range potentials between an atom and a

cluster of particles, we could cast the problem as an interaction between an atom and

a coarse-grained particle, which would cut down on the time required to compute the

intermolecular forces which is a central feature of MD simulations.

* Extensions to more complicated models

As mentioned above, the first obvious extension of the polymer modeling is to the

semidilute and concentrated regimes, where interactions between polymers are im-

portant, allowing for the study of heterogeneous coarse-graining approaches.

- Block copolymers could be described as the interaction of different types of atomistic

beads-such as beads with different radii, or different interaction strengths [8,36, 37,

63,94,112].

- Charged polymers should in principle also respond well to the WAMC approach.

Coarse-graining techniques which only examine end-to-end distance to determine

the location of coarse-grained beads will face serious obstacles in describing the

effects of electrostatic interactions, which are strongly dependent on the location

of the individual beads in the chain. Knowing the center of mass of a polymer

segment provides much more information about the charge distribution than the end-

to-end distance of the segment. However, the challenge introduced by electrostatic

interactions is how to handle the additional intra-coarse-grained-bead interactions,

as well as the interactions between the coarse-grained beads. In effect, we will need

to determine either a new screening length for the coarse-grained particles, or a

new effective charge that better reflects the electrostatic interactions between the

coarse-grained beads.
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- The extensions and further applications of the WAMC framework are not limited to

polymer models. We can also consider the (restricted) primitive model [53, 54, 95],

which is another approach for studying electrostatic interactions between ions. In

this model, ions sit on discrete lattice sites, but have their standard Coulombic

interactions. The model shows much the same behavior as more complicated models,

but are good models for studying aggregation of charged particles, particularly when

there is a size or charge discrepancy between the positive and negative charges.

9.2 Conclusions: Fundamental insights on coarse-graining

The principal products of this thesis have been algorithms for coarse-grained simulations of

lattice models and polymer models based on the principle of wavelet transformations. We have

demonstrated that the coarse-graining scheme is effective and efficient, compared to atomistic

simulation techniques. In addition, the simulation algorithms can return accurate results and

reproduces important cases, such as behavior near attractive fixed-points, essentially exactly.

However, equally valuable to the basic algorithms which we have produced is the insight

gained about coarse-graining strategies. During the development of the WAMC algorithm and

its model applications, we have uncovered a number of fundamental principles which have

not yet garnered much attention in the literature on coarse-graining, despite their general

applicability to most approaches.

* We have shown that coarse-graining is an adaptable process: there is no single "correct"

way to coarse-grain a given system. Even after a particular coarse-graining mechanism has

been selected, it is often necessary to make additional choices about the coarse-graining

procedure. For example, if we choose to use the WAMC framework, how many levels

of hierarchical simulation should we perform? What is the appropriate coarse-grained

resolution to use? What data do we need to pass from one level to the next?

* In addition, the use of a hierarchical approach can be quite fruitful: the ability to break

down complex simulations into the study of interactions of smaller, more easily manage-

able units has lead to a framework which can handle simulations of several different types

(off-lattice or on-lattice, solid-state or condensed, positional or topological). Moreover,
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the difficulty of the simulations can be reduced from running on a Beowulf cluster or su-

percomputer to running on a personal workstation, effectively removing improvements in

and costs of hardware as an important factor in obtaining results from complex physical

simulations.

· Coarse-graining intrinsically involves a trade-off between performance and the accuracy of

the simulation both at the current scale and at later scales of a hierarchical coarse-graining

scheme. Were we to use the N -1 /2 scaling law for the coarse-grained intramolecular

potential and approximations for the coarse-grained variables we discussed in Chapters

7 and 8, we could save substantial time in performing the atomistic-level simulations.

However, we have also shown that the behavior of this scaling law, while qualitatively

correct, is quantitatively inaccurate, so the increased computational efficiency comes at

the cost of greater error in our system.

* Moreover, we have a better understanding of how coarse-graining mechanisms achieve

accurate results: like many other coarse-graining approaches, our WAMC framework

is "brittle" at fine scales, and "resilient" at coarser scales. Quantitative accuracy of

WAMC simulations depends largely on computing the behavior of the finest-scaled stage

as accurately as possible; the more approximations introduced, the worse the overall

performance of the simulation at coarser scales. However, further levels of coarse-graining

do little to degrade performance of the algorithm: a crude four-scale simulation of a

polymer using WAMC returns the same basic scaling behavior as a more accurate and

detailed two-stage simulation, but with much faster execution times.

* As coarse-graining proceeds, there is an increase in the complexity of the remaining degrees

of freedom in the simulation. Coarse-graining is widely perceived to produce a faster,

simpler model than the original; thus such a claim appears counterintuitive. In reality,

most coarse-graining techniques rely on "lumping" particles together. Since one particle

now must act like a composite of many finer-scaled particles, this tends to yield models

with degrees of freedom which can take many more allowed values than the original

fine-grained models from which they were derived. For example, for the Ising lattice we

showed that WAMC produces states which have a multiplicity of possible spins, instead
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of the up-down dichotomy which must be maintained by renormalization approaches. In

the same vein, for the polymer model, the descriptions of bond and torsion angles in

even freely-jointed chains are much more complicated than the equal a priori probability

distributions which are used for the atomistic chain.

* Finally, we have shown the utility of hierarchical and multiresolution methods, In prin-

ciple, most "handshaking" coarse-graining techniques have been developed because it

was difficult, if not impossible, to bridge the length scales inherent in different simula-

tion methods, such as quantum chemistry and molecular-dynamics methods. However,

a multiresolution method allows us to achieve coarse-graining scaleups of sufficient size

that it may be feasible in the near future to create molecular-level simulations at length

scales comparable with more mesoscale approaches such as self-consistent field theory and

dissipative particle dynamics and macroscale approaches such as finite elements.

202



Appendix A

Center-of-mass bond statistics for a

Gaussian chain

We would like to determine the correlation ((-Ri_,i) R/,i+l) between adjacent bonds for an

isotropic system in which self-avoidance constraints are ignored, the probability distribution for

a single step of the chain is

3 /2 3X2)
p(x) = 2-irx) exp -2x

so that the chain obeys Gaussian statistics. It is readily shown that the end-to-end distance R

of a segment of N steps is given by [42]

3 3/2 3R2
PN(R)= 27rrx2 exp - 2Nx2

Let us define the distance between the first and last beads in a segment as ri, and the distance

between the first bead and the center of mass as si. Then the distance Ri,i+i between the

centers of mass of the ith and (i + 1)th beads can be written as

Ri,i+l = ri- si + si+. (A.1)
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Since the walk is isotropic, we know that only the diagonal terms in (riri) will be nonzero, as

all other terms vanish due to the periodicity of the trigonometric functions. Of the remaining

terms, we know that all three will have the same value, given by a calculation involving any of

the three. Thus, calculating (rixriX), we find that

(r = (2 ) / d sin dO j0 t2dt ri exp (-2 (A.2)

.defining rix = t cos sin 0, we have from (A.2)

(rixri) = (27N) 3/2 docos2 q/ sin d (1-cos 2 ) t2dt t2 exp (-2N2)

( 3 ))3/2 (4) jAoc x ( 3t2 (A.3)27r\xo 3 2Nx

To evaluate the Gaussian integral in (A.3), we can use the well-known formula

dxxm exp (-axn) =r I m + (A.4)
na(m+l)/n n

Inserting m = 4, n = 2, and a = 3/2Nro in (A.4), we obtain from (A.3),

(rixri)= ( ) 3 2 (r) 2 (2) 7 Nx2 (A.5)
2(7r~xo 3 /) 1 3

which is the result we expected.' Consequently, the full correlation matrix is defined as

1 2
(riri)= Nx2E,

where E is the unit tensor in 1 3.

Calculation of the correlation function (ssi) of the center-of-mass function is slightly more

complicated. However, the isotropic nature of the system does allow us to conclude that (si)

is again a diagonal matrix. Noting that the distance s between the first bead and the center of

1Obviously, if we had any other result for (??), this would imply that the system is either nonisotropic, or
that (r 2 ) Nr 2. [We also could have simply proceeded backwards from the latter assumption and used the
isotropic nature of the system to intuit (??).]
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mass can be defined as
N-1

s= ( -1) n,
n=O

where xn is the nth step in the segment, we have

N-1 N-1 

(ss>)= E E N
j=O k=O

N-1 N-k

j=O k=O

- 1) (xjxj), (A.6)

where (A.6) occurs because the steps are assumed independent. Since (xjxj) = a2 E, (A.6)

becomes N-1 .(
(ss) = a2E - (

j=o
- 1)

(N-1) (2N-1) 2E
18N 0

Similarly, the cross-correlation (rs) is

(rs) =K 
j=o

N-1
xjE 1-

k=O
-) Xk == (1 (xkxk) = N XOE.6

Therefore, from (A. 1), we have

(Ri,i+lRi,i+l) = ((ri - si + Si+l) (ri - si + Si+l))

= (riri - 2risi + sisi + Si+li+l)

= NxE - 2 . OE+2(( )(N xoE)
3 6 18N

_ 1 2N2 - 6N +
9 N

since the correlations between the different coarse-grained particles vanish. Similarly, for the
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correlation (Ri_-,iR/,i+I), we have

(- (R.i-li) Rii+i) = ((-ri-i + si-1 - si) (ri - si + si+l))

= (sisi - risi)

18 I ) E
= (--18 N+18N) x2E,

which demonstrates that adjacent center-of-mass bonds do not have an independent distribu-

tion, and therefore require some sort of bias, either in the sampling of states or in the form of

a potential, to uncouple the bond lengths.
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Appendix B

Converting internal coordinates

Given a chain described by the displacement vectors {xl, x2, ... , Xn, bond length r, bond angle

0, and torsion angle 0, we would like to determine the displacement vector xn+l corresponding

to (r, b, 0). The radial component of xn+l should be in the direction of xn; thus, we choose as

the first unit vector el = xn/ xn I. The remaining two unit vectors should be orthogonal to el.

One such vector can be found by taking the cross product of Xn-_ and xn, so that

Xn-1 X Xn

- IXn-1 X Xn'

The third vector needs to be orthogonal to both el and e2, so we choose

e2 el
e3 = le2 xelI

Given (r, 0, 9), we can determine their relative contributions in the el, e2, and e3 directions as

ul = rcos (r- ),

u2 = rsin(7r-)cos(r-0),

U3 = rsin (r-) sin (r- 0).
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Thus, in standard Cartesian components, we can write x,+l as

xn+l= eT u, (B.1)

where in (B.1), eT is the transpose of vector e T, and u is the vector u = (ulu2, u).
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