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Abstract
One of the major challenges facing biologists is to understand the mechanisms gov-
erning the regulation of gene expression. Completely sequenced genomes, together
with the emerging DNA microarray technologies have enabled the measurement of
gene expression levels in cell cultures and opened new possibilities for studying gene
regulation. A fundamental sub-problem in unraveling regulatory interactions in both
prokaryotes and eukaryotes is to identify common binding sites or promoters in the
regulatory regions of genes. For a gene's mRNA to be expressed, a class of proteins
called transcription factors must bind to the cis-regulatory elements on the DNA se-
quence upstream of the gene, to enhance RNA polymerase binding and hence initiate
transcription. These binding sites are believed to be located within several hundred
base pairs upstream of the respective ORFs.

Biological methods for discovering regulatory binding sites are slow and time con-
suming. To address this problem, several heuristic-based computational methods
have been developed in the past with either of two approaches - sequence-driven or
pattern-driven. In this dissertation, we propose a novel approach for finding shared
motifs in DNA sequences based on an exhaustive pattern enumeration algorithm, that
combines the benefits of the pattern-driven and sequence-driven approaches. We de-
veloped TABS, a method that identifies local regions of high similarity by clustering
statistically significant patterns to obtain putative binding sites. The method assumes
minimal apriori information about the sites and can detect signals in a subset of the
input sequences, making it amenable for motif-discovery in gene clusters obtained
from microarray experiments.

The performance of the algorithm was validated on synthetic as well as real data-
sets. When tested on a set of 30 well-studied regulons in Escherichia Coli, with

3



known instances of regulatory motifs collected from biological literature, the algorithm
showed, in 14 cases, a high sensitivity and specificity of 70% and 80%, respectively.
TABS was shown to perform better than two other popular state-of-the-art motif-
finding algorithms. In addition, its applicability on synthetic microarray-like data
was demonstrated. Several significant novel motifs detected by the algorithm that
form good targets for investigation of regulatory function by biological experiments
were reported.

Thesis Supervisor: Gregory Stephanopoulos
Title: Professor
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Chapter 1

Introduction

The elucidation and understanding of cellular functions has been long sought by

mankind. The potential applications that this understanding bequeaths, especially in

the area of medicine and drug discovery, are immense. The past few years have seen a

tremendous explosion in data that can be used to describe cell physiology. With the

advent of new and high-throughput genomics-based technologies that enable rapid

genome-sequencing as well as probing of intracellular space, the vision of systems

biology is increasingly becoming realizable.

The cell comprises various biological entities such as enzymes, metabolites, RNA,

transducers, receptors, that are in a continuous state of interaction with one another

and external stimuli to perform various biological functions, of which we understand

only a very small fraction. The basic programming of a cell is essentially established

by the genome. Although seemingly static, the cell applies this programming in an

inherently dynamic manner that is dependent on the cell's interaction with its envi-

ronment. Different genes get activated or inactivated to varied extents depending on

dynamic environmental conditions, so at any one time, only a fraction of the cell's

genetic programming is active. DNA microarray technologies enable us to measure
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the relative abundance of the entire transcriptome (mRNA) which allows identifica-

tion of groups of genes that are co-expressed in the cell and provides insight about

interactions between various genes. By studying gene regulatory networks the regula-

tory impact of genes on other genes may be uncovered. These interactions can occur

directly or through intermediate molecules.

Specific regulatory signatures in DNA sequences called promoter sequences encode

a wealth of knowledge about regulation. These sequences recruit special proteins that

bind to them and affect transcription of proximate protein-coding regions. Location of

these signatures in the chromosome and knowledge about the proteins that recognize

them, can provide valuable information of how and when specific genes are turned

"on" or "off' in the cell, leading to the understanding of cellular control mechanisms.

This thesis addresses the problem of discovering regulatory signatures in genomic

sequences, de novo, using only sequence information.

1.1 Gene Regulation and Transcription Initiation

DNA is the carrier of genetic information in cells. It is made of deoxyribonucleotides

arranged in a linear fashion as a double-helical structure (see Figure 1-1). Segments

of DNA, called genes, that code for various biological activities, are expressed inside

different cells and tissues in varying amounts at different stages of the cell cycle,

through the process of transcription. The transcribed genes or mRNAs, as they are

called, are further translated into biologically active proteins such as enzymes which

take part in the various metabolic and cellular processes continuously occurring in the

cell. Together, the process of transcription and translation (along with some post-

translational modifications) determine the concentration levels of various biologically-

active species in a cell at any point of time, and hence govern or regulate cellular

functions. Transcription, being the first step, provides a primary control for gene

20
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Figure 1-1: The double helix structure of DNA (figure excerpted from [5]).

regulation in this process.

1.1.1 Transcription Initiation

Transcription occurs when an enzyme called RNA polymerase reversibly binds to

a certain portion on the chromosome, close the transcription start site (TSS) for a

particular gene. The RNA polymerase unfolds the double-helical DNA structure and

transcribes the downstream gene into an mRNA (see Figure 1-2). In certain cases,

a regulatory protein comes and attaches to a site on the chromosome very close to
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Activation
domain

DNA-binding
domain

I / Promoter Region Coding Region

TF Binding Site Transcription
Start Site

Figure 1-2: Role of DNA-Protein binding in gene-regulation during transcription

initiation

the RNA polymerase, either enhancing or inhibiting the DNA-binding affinity of the

polymerase. Such proteins form a distinct class called transcription factors (TFs).

Transcriptions factors have at least two functional domains, a DNA-binding domain

which recognizes specific DNA structure/sequence near a gene, and an activation

domain which allows them to interact with the RNA polymerase. If the interaction

inhibits the transcription process, the TF involved is called a inhibitor or repressor;

if it enhances its called an enhancer. Region near the gene where DNA-binding takes

place is called promoter and the specific sites where TFs bind are called operators or

cis-acting sites or simply binding sites.

TFs, thus, act as "switches" that can turn a gene "on or off" without directly

affecting the expression of other genes. The regulated gene itself may code for a tran-

scription factor which in turn regulates another gene, forming a cascade of regulatory

effects also called gene regulatory networks (Figure 1-3). The different arrangements

of such regulatory motifs within various promoters, together with the cell-type specific

22
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Gene A

Gene C Gename B

Figure 1-3: Cascade of regulatory processes forming a gene regulatory network: Gene

A which is induced/suppressed by a particular transcription factor codes for a protein

that induces the transcription of Gene B. In turn, Gene C is repressed by the protein

coded by Gene B.

expression pattern of transcription factors interacting with them, leads to the regu-

lation of numerous biological phenomena in eukaryotic and prokaryotic cells through

complex regulatory networks.

A study of transcription regulation is crucial for understanding the cell. Whether

it is the routine functions that a cell performs to grow and replicate, or the infor-

mation processing and response mechanisms that are deployed by the cell to deal

with external stimulus, transcriptional regulation is heavily utilized as the building

block of elaborate cellular mechanisms. A detailed study of this topic is presented by

Weinzierl [44].

1.1.2 Tryptophan(trp) Operon

To illustrate how regulation takes place inside cells, we present an example of trypto-

phan biosynthesis. Tryptophan is an amino acid required in the synthesis of peptides

in cells. Among the several enzymes involved in the production of tryptophan from

23



Tryptophan Operon

trpE tpD trpC trpB trpA

Chorismic acid _ m 1 Tryptophan

(a)

RNA Polymeraemere
can bind to the cannot bind to the

~~~~~_promoter
I Tryptophan Operon Tryptophan Operon

TrTryptophan Trypt$phanTrypophan * :repressor
repressor 3

(b) (c)

Figure 1-4: (a) The tryptophan operon consisting of 5 key enzymes involved in the

synthesis of tryptophan. (b) NO TRYPTOPHAN: Tryptophan repressor cannot at-

tach to the operator. (c) TRYPTOPHAN PRESENT: Repressor-tryptophan complex

attaches to the operator

chorismic acid, five of them are encoded by genes trpA-trpE in the tryptophan operon

(see Figure 1-4(a)). In the promoter region of this operon there exists a cis-regulatory

site for a repressor called "tryptophan repressor", that when bound, prevents the tran-

scription of genes in the tryptophan operon. However, the repressor binds to the site

only in the presence of tryptophan, enabling the cell to control the production of

tryptophan by "turning on" the tryptophan biosynthesis pathway only when there is

no tryptophan present (see Figure 1-4(b),(c)).
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1.1.3 Binding Site Motifs

Locating the positions of DNA-binding sites in a genome

Often the first thing that is discovered about a DNA-binding protein is not the iden-

tity of the protein itself, but the features of the DNA sequence that the protein

recognizes. Various methodologies have been developed to identify the sites on the

DNA where DNA-protein occurs. For instance, gel-retardation techniques make use

of the substantial difference between the electrophoretic properties of a 'naked' DNA

fragment that carries a bound protein, to indicate the location of a protein binding

site in a DNA sequence. In this technique, a nuclear extract is mixed with a DNA

restriction digest containing DNA fragments spanning the region that is suspected to

contain a protein binding site, and run through a gel. The banding patterns reveal

the fragments some of which get retarded in the gel. The retarded fragments contain

a bound protein which leads to an increase in weight. Gel-retardation assays give

a general indication of the location of protein binding site in a DNA sequence, but

do not pinpoint the site with great accuracy. Often the retarded fragment is several

hundred base pairs in length, compared with the expected length of a binding site of a

few tens of base pairs. Retardation assays are therefore a starting point; other assays,

such as DNA footprinting and deletion mutagenesis, take over where gel-retardation

assays leaves off.

The basis of DNA footprinting is that if a DNA molecule carries a bound protein

then part of the nucleotide sequence will be protected from "modification". The

modification could be created, for instance, by treatment of DNA with a nuclease

which cleaves all phosphodiester bonds except those protected by the bound protein.

Figure 1-5 schematically depicts this procedure. End-labeled restriction fragments,

mixed with nuclear extract, are treated with a nuclease under limiting conditions

such as low temperature, so that on an average each copy of the DNA fragment is
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cleaved only once. In the entire population of fragments, all bonds are cleaved except

those protected by the bound protein. The protein is now removed, the mixture

electrophoresed, and the labeled fragments visualized. The result is a ladder broken

by a blank area which corresponds to the footprint od the binding site of the protein.

Deletion mutagenesis, another assay for localizing binding site position on the

DNA, works by systematic deletion of upstream promoter regions in steps of a single

base pair, and noting the subsequent changes in gene expression levels. A no change

in gene expression implies that the region does not participate in regulation, an in-

crease in the gene expression suggests the presence of an enhancer-inducing site, and

similarly a decrease suggests a repressor-binding site. This methodology, thus, also

provides information about the nature of the regulatory interaction.

Once identified, a binding site can be used to purify the DNA-binding protein

(by methods such as affinity chromatography), as a prelude to more detailed struc-

ture studies involving X-ray crystallography techniques. Using these methodologies,

literally hundreds and thousands of prokaryotic and eukaryotic promoters have been

isolated and the corresponding transcription factors biochemically characterized.

These studies reveal interesting characteristics of transcription factors, DNA-

protein complexes and binding sites, none of which are completely understood yet.

Many TFs have at least one distinct DNA-binding domain (such as the helix-turn-

helix domain shown in Figure 1-6), which is used to recruit the transcription factors

to the promoter regions of distinct sets of genes within the genome. The sites, which

they bind to, can be as short as a few base pairs or as long as 60bps. The specificity of

these DNA-binding domains can vary greatly too. TFs that bind with a low degree of

sequence-specificity could be used to regulate the activity of a wide range of genes, but

may not be sufficiently accurate for controlling the expression of very specific subsets

of genes involved in highly specialized cellular events. Further, sequence-specificity is

governed by the formation of DNA-protein complexes. TFs interact with the DNA
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Figure 1-5: DNA footprinting: Restriction fragments (obtained from gel-retardation

assay and containing promoter regions) used at the start procedure are labeled at one

end. One sample of the labeled fragments is treated with a nuclear extract, while

another is not. DNase I is used to cleave every phosphodiester bond, leaving only

the DNA segments protected by the binding protein. The treatment is carried out

special conditions so that on an average each copy of the DNA fragment is cut just

once. The protein is then removed, the mixture electrophoresed. Upon visualization,

one finds a ladder of bands corresponding to fragments that differ in length by one

nucleotide, except in a blank area called 'footprint', corresponding to the binding site

(excerpted from [5]).
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Figure 1-6: One type of DNA-binding domain: helix-turn-helix loop (excerpted from

[5]).

either through the major groove or the minor groove. If the interaction is through

the minor groove distinction can only be made between (A/T) base pairs and (C/G)

base pairs, whereas, full recognition of the nucleotide sequence is possible for proteins

that contact bases through the major groove [44].

Properties of Binding Sites

Transcription factors rarely have an absolute requirement for a precise sequence motif

in their target DNA. These proteins usually bind to a host of similar and interrelated

sequences. Nevertheless, alignment-based comparison of individual members of such

a family bound by a particular TF allows the identification of some form of consensus

sequence that presents an idealized binding site. The consensus sequence is a DNA

motif that the TF would predictably bind with a high affinity. For instance, the GAL4

28

:' C

il



protein in yeast recognizes all sites represented by the 17bp consensus CGGNllCCG,

where the 11 spacer positions in the middle could be occupied by any nucleotide base

pair.

Two common ways to represent a motif are weight matrices and consensus strings.

A weight matrix is a matrix W such that Wi,j is the probability of occurrence of

the ith nucleotide (among A,G,C,T) at position j in the motif. A consensus string

is a string over the alphabet A,C,G,T,W,S,R,Y,K,M,B,D,H,V} that captures the

composition of most occurrences of the motif (where W,S,R,Y,K,M,B,D,H and V

denote combinations of pairs of nucleotides - see appendix A.2). While weight

matrices are more informative in their description of binding site motifs, consensus

strings provide a convenient and short method of representation, that has numerous

advantages in performing fast motif-based-searches in huge genomic sequences.

Often, it is found that motifs have a dyadic structure of the kind WlN 2, where

w1 and w2 are short words made from the alphabet mentioned above, and N, is a

sequence of x (fixed) spacers (wildcards). When w1 and w2 are reverse complements1

of each other, as in the GAL4 case, the motif is called a palindrome. Palindromes are

common among binding sites motifs. It is now understood that many DNA-binding

proteins are dimers that have a pair of DNA-binding domains which enable them to

bind to two disjoint pieces of DNA separately.

The location of these binding sites with respect to the transcription start site

(TSS) is also of significance. While most cis-acting sites occur upstream of the gene,

often as a cluster close to the TSS, other sites have been found downstream of the

TSS inside the coding regions, introns or even downstream of 3' end of the gene.

This is, however, more common in eukaryotes than prokaryotes. The proximity of the

various TFs interacting with the RNA polymerase, in such cases, is ensured through

la reverse complement of a nucleotide sequence is the complement of the sequence written in
reverse order. Complement of A is T and G is C.
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Figure 1-7: Representation of motifs using Schneider's sequence logos. Height of

a nucleotide at each position is proportional to its frequency of occurrence at that

position.

loop-like secondary and tertiary structures in DNA sequences.

Motifs are also known to function in a combinatorial manner. One or more genes

may share the same set of motifs, cooperatively bound by different transcription

factors. Such a group of motifs is referred to as a composite element or a composite

motif. Composite elements are admittedly more common in promoter regions of

eukaryotes than prokaryotes. For a detailed review of occurrence of composite motifs

in promoter regions of genes, see Sinha [40].

Binding site motifs are often represented visually using Schneider's sequence lo-

gos which are based on the concept of Shannon's information theory [381. In [36]

and [37], Schneider explains how weight-matrices that describe the distribution of the

four nucleotides A,T,G and C, at each individual position in a binding site motif, can

be used to construct physically meaningful graphic logos in which each nucleotide is

represented using a corresponding graphic letter with a height proportional to the in-

formation content of that nucleotide. The physical meaningfulness has to do with the

fact that information content is analogous to the concept of entropy which is related

to the Gibb's free energy of binding as 6G = -TSS (where T is temperature and S

30

A.
r7ff

Al- ~ irrrii

i .



is entropy). The concept of information content will be dealt with explicitly in sec-

tion 2.1.2 later. The example of a binding site motif representation using Schneider's

sequence logos is shown in Figure 1-7

Variation in length of binding sites
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Figure 1-8: Histogram showing length of 12,000 sites reported in TRANSFAC
database.

Databases

Several databases have sprouted in the recent past that maintain and continually

update a catalogue of footprinted DNA sequences proven to demonstrate regula-

tory properties through painstaking experiments in wet-laboratories. TRANSFAC

[45] is a database of transcription factors and their binding sites in all eukaryotes.

RegulonDB [34] and DPInteract [32] are databases for Escherichia coli while SCPD

(Saccharomyces Cerevisiae Promoter Database) [47] is a repository of regulatory in-

formation for yeast. Among these, TRANSFAC is the largest, containing records for

12,514 sites and 4,921 factors (release 6.3). A histogram showing the distribution of

length of binding sites listed in TRANSFAC 6.3 is shown in Figure 1-8. RegulonDB

3.2 contains 461 E.coli sites and 86 factors.
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1.2 Scope and Outline of this Thesis

The aim of this thesis is to develop methodologies for identifying binding sites in DNA

sequences using syntactic pattern discovery. In Chapter 2, we begin by providing a

landscape of existing computational techniques and the typical approaches that are

followed to address the problem of motif-finding. In the latter part of this chapter, we

describe Teiresias, an unsupervised pattern discovery algorithm developed by Rigout-

sos et al. in 1998 [28], its salient features and how it can be used to develop a new

motif-finding methodology that addresses the shortcomings of the existing compu-

tational methods. We then develop and describe TABS, a Teiresias-BAsed Binding

Site identification algorithm that involves: (a) using Teiresias effectively to enumer-

ate the pattern space, (b) deploying rigorous statistical tools and clustering methods

to select significant pattern that target binding sites. The is done in Chapter 3. In

Chapter 4 we evaluate the performance of TABS on a well-studied prokaryote, Es-

cherichia coli, by basing the analysis on experimentally-proven binding sites reported

in the literature for this species. We compare the results from TABS against two

other state-of-the-art algorithms, AlignACE and Consensus. Finally, we conclude in

Chapter 5 by pinpointing out the main contributions of this thesis, and identifying

important research directions for the future.
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Chapter 2

Pattern Discovery Algorithms

This chapter is divided in two parts. In the first part we begin with a description

of the general approach employed for finding regulatory sites in DNA sequences and

the associated challenges. This is followed by specific descriptions of current algo-

rithmic approaches, their key characteristics and drawbacks. In the second part of

this chapter, we describe a pattern discovery algorithm called Teiresias, developed

by Rigoutsos, I and Floratos A, 1998 [28], where we begin by formally introducing

a generic pattern discovery problem, followed by the specifics of the pattern discov-

ery problem addressed by Teiresias, its salient features, implementation and previous

applications. In particular, we address how maximality and completeness, two key

characteristics of Teiresias, make it suitable for the problem of motif-finding. We con-

clude the chapter by motivating the development of a new motif-finding algorithm

based on Teiresias that addresses issues with the existing algorithms.
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2.1 Previous Algorithmic Approaches for Finding

Regulatory Motifs

Typically, two modes of study are employed while finding regulatory motifs: (a)

pattern-searching approach, (b) pattern-discovery approach.

Pattern-searching approach: If we know the sequences of the binding sites of a

transcription factor, we can construct a template motif and use that to look for

occurrences of this motif in promoter regions of other genes. Presence of the motifs is

circumstantial evidence that the gene may be regulated by the transcription factor.

Through wet-laboratory experiments of the kind described in section 1.1.3 the findings

can be confirmed. This approach can be used to identify target sites at a genomic

scale fairly easily, but is limited by the number of experimentally proven binding sites.

Pattern-discovery approach: In another type of approach, we can start with the

hypothesis that a set of genes is regulated by the same transcription factor. (Such

genes are said to form a "regulon"). We can then look for motifs that are shared by

the promoter regions of these genes. If any such motif is found, we can experimentally

verify if there exists a transcription factor that has high specificity for the motif, and

if so, that transcription factor is a potential regulator of the set of genes that we

started with. This kind of study is the most relevant application scenario for the

algorithm presented in this work.

The pattern-discovery approach, used in conjunction with microarray data, forms

the most commonly adopted method for discovering regulatory motifs. Microarrays

provide a means for high-throughput gene expression analysis of thousands of genes

simultaneously [35]. Clusters of genes found to be co-expressed can be searched for

conserved words in their upstream regions. Such findings could provide key insights

into the regulatory mechanisms governing the transcription of the coregulated genes
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and can significantly enhance the wealth of information that can be extracted from

DNA microarray experiments. There are, however, several complexities as noted in

section 1.1.3, that make this problem difficult. These can be summarized as under:

1. Binding sites are typically small but highly variable in length, ranging from as

low as 4bp all the way up to 60bp in some cases.

2. The degree of conservation varies significantly from position-to-position and

from one motif to another.

3. Their location with respect to the transcription start site (TSS) is highly vari-

able.

4. Depending on the pattern model that is assumed for binding sites, the space of

patterns to be searched is usually very large.

5. There can be multiple binding sites present in the promoter region of the same

regulon.

A number of pattern discovery methods have been proposed previously for solving

the motif-finding problem. See, for example, Church et al.[33], Bailey et al.[1], Stormo

et al.[14], Tompa et al.[41], Lawrence et al.[24], Collado-Vides et al.[2], etc. In all

these algorithms the basic idea is the same - to find significantly conserved words

or motifs that have a low probability of random occurrence in the genome in a set of

upstream nucleotide sequences. Such a problem has no well-defined solution; different

methods employ different heuristics for solving it.

These motif-finding algorithms can be broadly categorized as either sequence-

driven, or pattern-driven. Algorithms in the first group model motifs as weight-

matrices that assign a certain probability distribution to each residue at each position

in the motif. They work by selecting sub-strings from the sequences and using them
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to form alignments. The sub-strings are selected in a manner so as to maximize

the "significance" of the alignment obtained. The definition of "significance" varies

from algorithm to algorithm, but essentially refers to the probability of observing

the alignment given a probabilistic model of the background genome. Examples

of sequence-driven algorithms are Gibbs sampling algorithm [19], Consensus [14],

MEME[1]. Characteristic features of these algorithms include: (a) assuming the

length of the motif based on heuristics, (b) assuming the number of occurrences of

the motif, (c) employing an iterative procedure to move from one alignment to a more

significant alignment, often converging on a local optimum. A description of these

algorithms has been included in the sections below.

Pattern-driven algorithms work by enumerating a predefined class of patterns 1 .

The patterns are used as motif-models, and unlike sequence-driven methods, pattern-

driven methods do not model probability distributions at each position in the motif,

but incorporate degeneracy by employing boolean symbols. For example, W is used

to represent positions in the motif that can have an A or a T. Such a discrete, but less

informative description, allows them to search the sequence-space exhaustively, unlike

the sequence-driven approaches. Example of such method are YMF [41], SPEXS [3],

dyad-analysis [13], discussed in greater detail in section 2.1.4.

2.1.1 Gibbs Sampling Algorithm, Lawrence et al. [19]

Gibbs sampling is an iterative procedure, involving building motifs by repeated sam-

pling of sub-strings from a set of input sequences, in a stochastic manner, so as to

maximize the difference between the motif model and the background model (see

Lawrence, et al. [19]). The method has been mathematically formulated and ex-

plained below:

1By patterns, we refer to strings over the alphabet A,C,G,T,W,S,R,Y,K,M,B,D,H,V,N} (see
section A.2).
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Input: A set of sequence S = S(1), ... , S(n) and an integer w.

Question: For each string S(i), find a sub-string of length at most w, so that the

similarity between the n sub-strings is maximized.

Let a(1),..., a(n) be the starting indices of the chosen sub-strings in S(1),..., S(),

respectively. We introduce the following notations:

* Let cij be the number of occurrences of the symbol j E among the ith

positions of the n sub-strings: s(+i- (n)i-Oa(1)+il .. ~ °a(n)+i-l'

* Let qij denote the probability of the symbol j to occur at the ith position of

the pattern.

* Let pj denote the frequency of the symbol j in all sequences of S.

Maximize the logarithmic likelihood score:

Score = cj logqi
i=1 jEE PJ

To accomplish this task, the following iterative procedure is performed:

1. Initialization: Randomly choose a(1),... , a(n).

2. Randomly choose 1 < z < n and calculate the cij, qij and pj values for the

strings in S \S(z).

3. Find the best substring of S(z) according to the model, and determine the new

value of a(z). This is done by applying the algorithm for local alignment for S(z)

against the profile of the current pattern.

4. Repeat steps 2 and 3 until the improvement of the score is less then e.
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In [33], Roth et al. applied AlignACE, an implementation of the Gibbs sam-

pling algorithm, to three extensively studied regulatory systems in yeast: galactose

response, heat shock and mating type, and found known binding sites of Ga14 tran-

scription factor, and the cell-cycle activation motif, apart from making novel predic-

tions.

Drawbacks:

1. Phase shift - The algorithm may converge on an offset of the best pattern.

2. The value of w is usually unknown. Choosing different values for w may signif-

icantly change the results.

3. The strings may contain more than a single common pattern.

4. The process may converge to a local maximum.

2.1.2 Consensus, Stormo et al. [14]

Consensus is based on the idea of finding alignments having maximum information

content in a set of input sequences. Information content, which is analogous to the

concept of entropy, was first used for representing alignments of binding-site motifs

by Schneider [36] as eluded to before in section 1.1.3. A position specific frequency-

weight matrix is constructed from a set of aligned sites and the information content

I is given by:

= E: b,1(nb,l + pb)/(N + 1)
I In (2.1)

b,lN P 

where b E {A, T, G, C}, 1 refers to the position in the alignment, nb,l is the frequency

of base b at position 1 across the various sites in the alignment, N is the number

of sequences in the alignment, and p(b) is the probability of base b, based on the
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composition of the genome. The term Pb appearing in the numerator of the natural

logarithm term is a sample-size correction factor. Figure 2-1 illustrates the procedure

for calculating I using an example.

Information content is related to differences in binding energies for different se-

quences, and provides a framework for computing the relative affinities of different

binding sites for the same protein [42]. Conceptually speaking, information content

is not very different from the log-likelihood metric used in Gibbs sampling algorithm.

Significant alignments have high information content and are rarely expected by

chance. Consensus computes the significance score or p-value of a certain value of

information content using a technique based on large-deviation statistics, and then

minimizes the p-value using a greedy algorithm [14]. The algorithm starts by generat-

ing all possible l-mers from the input sequences and computes information content of

all pairwise alignments of -mers in the first cycle. The most significant two-sequence

alignments are saved for the next cycle in which they are aligned with all 1-mers not

included in that alignment and the process is repeated until the alignment contains

exactly one l-mer from each input sequence. This entire process is repeated for dif-

ferent values of 1. The top p (user-specified) alignments with the best p-values are

selected from the final cycle.

Drawbacks:

1. P value calculations based on large deviation statistics are known to be accurate

only in certain regimes and are not valid for any type of motif. In particular

this method is accurate only for finding P values of motifs with large number

of sequences [26].

2. Motifs are constrained to have a fixed width by the algorithm. This is partly

offset by scanning for several different widths and finding the optimal motif.

3. Each motif is expected to have exactly one instance in every sequence.
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Alignment Matrix

A A T T G A
A G G T C C
A G G A T G
A G G C G T

1 2 3 4 5 6
A 4 1 0 1 0 1
C 0 0 1 1 1
G 0 3 3 0 2 1
T 0 0 1 2 1 1

A G G T G N

Weight Matrix

Eqn 2.1
1 2 3 4 5 6

A 1.2 0.0 -1.6 0.0 -1.6 0.0
C -1.6 -1.6 -1.6 0.0 0.0 0.0
G -1.6 0.96 0.96 -1.6 0.59 0.0
T -1.6 -1.6 0.0 0.59 0.0 0.0

1.2 0.96 0.96 0.29 0.29 0.0 3.711

Figure 2-1: Example to illustrate the calculation of information content given a set

of aligned sequences. First, an alignment matrix is created showing the frequency

of occurrence of each nucleotide at every position. The alignment matrix is then

converted to a weight matrix using the logarithmic term in equation 2.1. The total

information content for each position is listed in the row under the weight matrix

and the overall information content which is obtained by summing the individual

contribution from each position is shown boxed.

4. The algorithm could converge to a local minima.

5. In terms of computation time, the algorithm becomes slow for large input sizes.

Benitz-Bell6n et al. [2] evaluated the performance of Consensus on 25 well studied

E. coli regulons by measuring the ability of the algorithm to find experimentally proven

binding sites. Their results showed an overall success rate of 40%.

2.1.3 MEME - Maximization Expectation, Bailey et al. [1]

MEME is based on a maximization expectation method that models the input se-

quences using a two-component finite mixture model - a motif model and a back-

ground model. It works by searching for maximum likelihood estimates of the pa-

rameters of the two models given a dataset of sequences [1]. The key advantage of
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this algorithm over Gibbs sampling is that the motif found may have zero, one or

more occurrences in an input sequence.

Drawbacks:

1. The algorithm may converge to a local minimum

2. Motifs are constrained to have a fixed width by the algorithm. This is partly

overcome by scanning for several different widths in each run.

3. Being a two-component model, the algorithm assumes one motif per dataset,

which need not be the case, since there can be multiple motifs in the same

dataset.

2.1.4 Pattern-driven Approaches

Popular pattern-driven motif-finding algorithms include YMF by Sinha et al. [41],

SPEXS by Vilo et al. [3], and Dyad-spacing by Helden et al. [13]. Each algorithm

employs a different pattern model for finding motifs. Sinha et al. define their pattern

model to be all strings over the alphabet A,C,G,T,R,Y,S,W,N} with 0-11 N's in

the center and a certain fixed number of residues. Helden et al. [13] and Li et al.

[21], define all dyads of the type wlNxw 2 (where w is a short word (3-5bps) over the

alphabet A,T,G,C}, and x could be anywhere from 0-30) as their pattern model.

Vilo et al. [3] use a more unrestrictive approach to find patterns that have flexible

length, and flexible wildcards. In all these cases, the enumerated set of patterns

is searched in the input sequences, their frequency of occurrence is tabulated, and

compared with the expected number of occurrences estimated by random sampling

from the genome. Those patterns that are significantly over-represented in the input

sequences above the background genome are considered strong candidates for being

binding motifs.
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Drawbacks:

1. Space of patterns considered is narrow due to computational time and space

restrictions. Not all binding motifs fit the description of the pattern class used

in the model.

2. Degeneracy in sites is not modeled accurately because of the discrete nature of

IUPAC symbols used to construct consensus strings.

3. Enumerated patterns are not maximal. That is, by extending the patterns on

either side one can get more specific patterns without compromising on the

sensitivity.

In this thesis, we propose to develop a methodology using Teiresias, a pattern-

driven search algorithm that finds all maximal patterns with variable length in a

time- and memory- efficient manner. The algorithm was developed by Rigoutsos I

and Floratos A [28] and is discussed in the next section.

2.2 TEIRESIAS, an Unsupervised Pattern Discov-

ery Algorithm

In this section we begin by the description of a general pattern discovery problem, and

the various types of pattern languages used to solve such problems. We then move into

the specifics of Teiresias, its patterns class, problem description and implementation.

The salient features of the algorithm are highlighted along with its applications in

the past.
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2.2.1 General Pattern Discovery Problem

The exact definition of a pattern varies from algorithm to algorithm. We define E

2 as the residue alphabet over which the language is formed. The set of all possible

regular expressions over E forms a universal set of patterns, U. The pattern language

or pattern class of a specific pattern discovery algorithm is a well-defined subset of

U, say C. Every pattern P E C is a regular expression that defines a language L(P):

a string belongs to L(P) if it is recognized by the automaton of P. For example

£('GC.A') is the set ('GCAA','GCTA','GCGA','GCCA').

A string is said to "match" a pattern if that string contains a substring that

belongs to L(P). The substring itself is called an instance of P in the original string.

For example, consider S ={'AGCTA','TGCTA','AGCAA'}. The pattern 'GC.A' is

present in all the three strings in S while the pattern 'GCT' is present only in strings

1 and 2. We define support of a pattern as the number of instances of that pattern in

a given set of sequences. Therefore, support for 'GC.A' is 3, while that for 'GCT' is

2 in S. The character '.' is called a don't care character or a wildcard and indicates

a position that can be occupied by an arbitrary character in E.

A pattern P' is said to be more specific than a pattern P if P' can be obtained

from P by changing one or more don't care characters to residues or by appending

an arbitrary string of residues and don't cares to the left of/and right of P. Thus

'AG.TA','A.CTA' are more specific than 'A..TA'.

The pattern discovery problem can be defined as follows:

Input: A set S = {sl, s2, ..sn} of sequences from E* and an integer k <= n.

Output: All the patterns in C with support at least k in S.

The computational complexity of the problem depends on how general the definition

2In the case of DNA sequences E is the set of all nucleotides

43



of the pattern language C is. The simplest case is when C = E* in which each pattern

is a string over the residue alphabet. This problem is solvable in linear time using

suffix trees [16]. Examples of other classes are C = (EU{'.'})* that allow for wildcards,

or ( U R)*, where R = {R1, R2, ..R} is a collection of sets Ri C , that specify

patterns such as 'A{TA}G', and finally other categories that permit flexible gaps.

The general pattern discovery problem stated above (along with the definitions of C)

is a hard problem as the number of patterns in the class can be exponential in the

size of the input [11].

Different pattern discovery algorithms use different approaches for solving the

problem. Some of them avoid a complete exploration by using heuristics and approx-

imation techniques which work "fast", but do not necessarily find all patterns for a

given input. Other approaches (the so called "exact" or "combinatorial" algorithms)

just accept the hardness of the problem and proceed by enumerating the entire search

space, which makes them inefficient in certain cases.

2.2.2 Teiresias Terminology and Problem Definition

The pattern class handled by Teiresias is CTeir = E(E U {'./})*, that is all patterns

that begin with a residue and end with a residue, but can contain any number of

wildcards and residues in the middle. For example 'G..CC.A' is a pattern that belongs

to this class.

Problem Definition:

Input: A set S = {sl, s, .., Sn of sequences from E*, and integers 1, w, k where

1 < w and 2 < k < n.

Output: All maximal < , w > patterns in CTeir with support at least k in the

set S, where a pattern P is a < , w > pattern iff every subpattern of P

with length w or more, contains at least 1 residues.
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Associated with every pattern P is an offset list Ls(P) defined as:

Ls(P) = {(i,j)lsequence si E S, matches P at offset j}

A pattern is said to be maximal with respect to S if there exists no pattern P' which

is more specific than P and such that ILs(P)I = ILs(P')I. Conversely if P is not

maximal then there exists a maximal pattern P' such that ILs(P)I = ILs(P').

2.2.3 Salient Features of Teiresias

Teiresias has the following salient features:

1. It is based on a combinatorial approach that finds the solution space without

having to enumerate the entire search space. This makes the algorithm efficient.

2. Unlike existing methods, the patterns generated are maximal. That is, it is

not possible to make them more specific without reducing their support. This

ensures that the patterns found are highly specific and there is no redundancy

in them.

3. Experimental results suggest that the algorithm is output sensitive, i.e., its

running time is quasi-linear to the size of produced output [28].

4. Unlike most existing methods it can efficiently handle patterns of arbitrary

length.

2.2.4 Implementation

Teiresias works in two phases - scanning phase and convolution phase. During the

scanning phase it enumerates all elementary patterns that have exactly I residues
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and meet the < 1, w > requirement. The algorithm works by constructing < 1, w >

template, which is defined to be an arbitrary string of O's and 's that has a length

between 1 and w, contains exactly 1 's, and starts and ends with a 1. By sliding

this template along the input sequences, one can construct elementary patterns by

maintaining all residues that are aligned with a '1' and converting those that align

with a 'O' into wildcards. The time complexity of this phase of the algorithm is

O(mwl), where m is the number of characters in the input sequences. For further

details about the working of the algorithm and formal proofs, see [11].

In the convolution phase of the algorithm, these elementary patterns are pieced

together (in a time and space efficient manner) to make them maximal. For example,

consider two elementary patterns 'AGC.T' and 'C.TGG'. It is possible to convolve

these patterns into one single pattern 'AGC.TGG' based on the similarity of their

suffix and prefix. In doing so, if the offset list of the new pattern (which can be

constructed from the offset list of the two elementary patterns) has a size >= k,

convolved pattern is accepted else it is rejected. Instead of resorting to an-against-all

approach that would mean examining all pairs of patterns to establish if they are

convolvable or not, Teiresias uses a special algorithm to quickly identify and discard

patterns that not maximal in a time and space efficient manner and still generate

all the patterns. The procedure involves two partial orderings on the list of patterns

while convolving patterns. See [28] for more details. The overall time complexity of

the algorithm has been experimentally found to be quasi-linear with respect to the

output size (number of patterns produced).

2.2.5 Applications

In [28], Rigoutsos et al., demonstrate the strength of their algorithm by finding highly

specific patterns corresponding to two protein families - histones (H3 and H4 families),
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and laeghermoglobins. Some of the discovered patterns were found to match domains

in the PRODOM, a curated database of protein domains [23].

Teiresias has been used for building a Bio-Dictionary which is based on the idea

that all biological sequences contain small domains of functionally active seqlets [29].

The concept of bio-dictionary has been used successfully for prokaryotic gene-finding

and for protein annotation. A web-server [17] hosted by IBM provides a wide variety

of computational biology tools built using Teiresias - association discovery, protein

annotation, gene finding, discovery of tandem repeats, multiple sequence alignment,

genome annotation, gene expression analysis, etc. A detailed discussion of these

applications is beyond the scope of this dissertation and the interested reader is

referred to [31], [39], [30] and [17].

To reiterate, the promise that Teiresias holds against all conventional methods is

(a) maximality (b) completeness. In the next section we discuss the motivation for

using Teiresias for the problem of identification of regulatory motifs in DNA sequences

discussed in chapter 1.

2.3 Motivation for using Teiresias for Motif-finding

In this section we propose how Teiresias could be used effectively for developing a

new approach that offsets the shortcomings of the previous approaches. As discussed

in section 2.1 current motif-finding algorithms belong to either of two categories -

sequence-driven, or pattern-driven. Sequence-driven algorithms use weight matrices

to represent motifs that provide an accurate description of degeneracy at each po-

sition in the motif. Due to the number of possible combinatorial alignments that

can be generated from a given set of sequences, these algorithms employ heuristics

to approximate the solution and typically don't end up scanning the entire solution

space defined by the sequences. Pattern-driven approaches, on the other hand, use a
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consensus-string based model that, although more restrictive in its description of bind-

ing sites, allows exhaustive scanning of the solution space defined by the sequences.

However, computational time and space complexities involved in enumeration and

search of patterns forces the models to be constrained in terms of length and the

number of wildcards.

We propose an alternate approach using Teiresias that can address these issues.

This approach promises the following:

1. Ability to scan "entire" pattern space defined by the sequences (shortcoming of

sequence-driven approach).

2. Ability to find all maximal patterns of arbitrary length in a time- and space-

efficient manner. (shortcoming of pattern-driven and sequence-driven approach)

3. Ability to account for degeneracy in motifs which can otherwise not be mod-

eled effectively by pattern-driven approach. (shortcoming of pattern-driven ap-

proach)

While points (1) and (2) are a direct fallout of using Teiresias, we illustrate (3)

using an example shown in Figure 2-2. The figure shows 14 binding sites correspond-

ing to the TyrR transcription factor that have been previously reported in literature.

The sequence logo obtained by performing a multiple alignment of the 14 sequences

is also shown in the figure. We do a simple pattern discovery test to find what kind

of patterns best describe this set. For I > 3 no pattern with a full support (k = 14)

is found, i.e. there is no pattern with at least 3 residues that is matched by all the

sequences. By fixing I = 6, w = 20 we systematically drop k to allow patterns with a

smaller support. Until k = 11 no patterns are found. At k = 10 we find 2 patterns,

which describe 10 of the 14 sequences. At k = 8 we have a total of 18 patterns

that describe all the sequences, among which 3 patterns are sufficient to cover all the
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sequences. These 3 patterns include the two patterns with k = 10 and one pattern

with k = 8. The figure shows what these patterns look like and maps the location

of the instances of these patterns on the sequences. If we had a way to group these

patterns into one motif, we could obtain the original set of sequences. This idea forms

the motivation for the development of a methodology which is presented in chapter

3.
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Seq No 1-------10 11-------21 22-------32 33------42
Seq 01 caaacttctt TGATGTAAACA AATTTACAA caaacggaat
Seq 02 ttaatacaac AkACGGMATTG CAAACTTACAC acgcatcact
Seq 03 agaaccatcg CGTGTTCAAA AAGTTGACGCC tacgctggcg
Seq 04 tttacaccat ATGTAACGTCG GTITGACGAAG cagccgttat
Seq 05 tgctttttat TGTACATTTAT A7TACACCAT atgtaacgtc
Seq 06 agcgaacaca ATCTGTAAkAT AATATATACAG ccccgatttt
Seq 07 tccgtctttg TGTCAATGATT GTTGACAGAA ccttcctgct
Seq 08 tttcaaaggg AGTGThAATT7 ATCTATACAGA ggtaagggtt
Seq 09 ctaaattgcc TGTGTAAATAA AAATGTACGAA atatggattg
Seq 10 aatgtacgaa ATATGGATTGA AAACTTTACTT tatgtgttat
Seq 11 tccgttcata GTGTAAAACCC CGTTTACACAT tctgacggaa
Seq 12 gtggctaaat GTAATTATFA TTATACACTTCA ttcttgaata
Seq 13 aaggggtgta TTGAGATTTC ACTTTAAGTGG aattttttct
Seq 14 tcactttaag TGGAATITIT CTTACAATCG aaattgtact

# Pattern Discovery

1 42
Seq 1

Legend:
Seq 2

Seq 3 .A G.AA.......TAC
1=6, w=20, k=8

Seq 4

Seq s TG.A ...... .T. AC
1=6, w=20, k=10Seq 

1=6, w=20, k=10
Seq 8 

Seq1-, k=
Seq 8 =

Seq 10

Seq 11 

Seq 12 1

Seq 13

CQ. IA 0--

Figure 2-2: Degeneracy in TyrR binding sites: Shown on top are sequences of 14
TyrR binding sites taken from the RegulonDB database. Each site is reported as
42bps long (22bp core + 10bp flanking regions on either side). Teiresias was applied
to find patterns shared between these sites. No pattern with a full support (k=14)
was found for 1 > 3. For 1 = 6, w = 20, all the sequences were described using three
patterns shown above, two with k = 10, and one with k = 8. The locations of the
instances of these three patterns on the 14 sequences are shown above using a legend.
This simple test shows the limitations of pattern-driven motif-finding approaches and
presents the need to represent motifs using more than one patterns. Shown along
with is a sequence logo (obtained independently) emphasizing the level of degeneracy
in the alignment.
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Chapter 3

TABS - An Algorithm for

Discovering Binding Sites

In section 2.3 we motivated the development of TABS, a Teiresias-bAsed algorithm

for finding Binding Sites in DNA sequences. In this chapter we present a detailed

description of this algorithm. To begin with, we outline an overview of the algorithm

in section 3.1. Given a set of input sequences the algorithm begins by generating an

exhaustive set of patterns shared between these sequences. The appropriate choice

of parameters for this step is discussed in section 3.3. Among the patterns found,

statistically significant patterns that are most overrepresented in the input sequences

with respect to the background genome, are selected. This is discussed in section 3.2.

Finally, creation of motifs from these patterns using a novel mapping and clustering

technique is described in section 3.4.
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3.1 Algorithm Overview

Given a set of n input sequences TABS works in three phases as outlined in Figure

3-1.

Step 1: Basic Pattern Enumeration Step: Teiresias is used to enumerate all 1 =

6, w = 20, k = k(n) patterns. This generates an exhaustive set of maximal

patterns that have at least 6 residues or bases and a minimum density (= l/w)

of 6/20. The relationship between k and n and the choice of 1, w is discussed

later in section 3.3.

Step 2: Selection of patterns based on statistical significance: A z-score statistical

metric is used to estimate the degree of overrepresentation of a pattern based

on its frequency of occurrence in the input sequences and the expected number

of occurrences computed using a third order Markov model.

Step 3: Convolution phase: Patterns obtained from step 2 are convolved together

into motifs by first mapping them on the input sequences, and then clustering

them.

3.2 Evaluating Statistical Significance of Patterns

The problem of identifying significantly overrepresented words in biological sequences,

or, for that matter, any general text, is both a well-studied and a computationally-

intensive statistical problem. See [10] for a review of some commonly used statistical

methods such as the z-score statistic used in DNA sequences by Sinha [41], binomial

statistic used by Helden et al. [12] for identifying overrepresented oligonucleotides,

and large-deviation methods for estimating p-value of alignments by Stormo [14].
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Step 1: Basic Pattern Set
Enumeration

I /w k(N)

Upstream regions, -450-800bp

Step 3: Convolution
Phase

AA.TGA.G 10

A.TGG C 15

T.GCGT.T 6

TG A.T AC

AT .GT ..A

GC..G ..A

CGCT.A

CT.AGC

....

. <

Merge Overlapping Patterns into
sites and cluster similar sites

Figure 3-1: Algorithm Overview

All these methods involve computing the expected number and variance of the

number of occurrences of a word, which is complicated by the problem of autocorre-

lation (phenomenon of overlapping occurrences of words) [18]. While this problem of

autocorrelation has been explicitly dealt with by Sinha et al. [41], in other cases it

has been ignored [12], [13]. Autocorrelation does not affect the expected number of

occurrences but increases the variance in certain cases [18]. The effect is significant

in words that are short and have a periodic nature, such as AAAAA, ATATA, etc.

In our case, the median length of patterns found is around 17 and the probability
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of occurrence of the patterns is typically very low, less than 10- 4 , implying that a

pattern is observed once every 10,000 base pairs. Overlapping is not expected for

such long and rare patterns. Hence we neglect autocorrelation effects which simplifies

the calculation of variance tremendously. However, in our experiments we do check

if any significant patterns found have a periodic nature and manually filter them

out. Frequently, such patterns get filtered out due to their high expected number of

occurrences, anyway. We employ the z-score statistic with this assumption.

Let us say there is a universal set U of N sequences representing the non-coding /

upstream regions in the entire genome and let the set of n input query sequences be

S C U. We define ISI as the sum total of the length of all the sequences in S in base

pairs. Let P be the set of patterns whose statistical significance we wish to estimate

and let p E P. The length of pattern p is represented by II and let the number of

non-overlapping occurrences of p in S be 0. Let R be any set of n random sequences

such that R C U and ISI = IRI. Finally, let XR be the number of non-overlapping

occurrences of p in R. Then the z-score associated with observing 0 occurrences of

p in S is:

o - E(XR)z -E(X ) (3.1)
(XR)

where E(XR) is the expected number of occurrences of p in the random set R and

u(XR) is the associated standard deviation. The measure z is the number of standard

deviations by which the observed value O exceeds its expectation, and is sometimes

called the "normal deviate" or "deviation in standard units". For a detailed discussion

about this statistic see Leung et al. [20]. We present the calculations for computing

E(XR) and J(XR) below.

p can occur in T = IS - n * (IpI - 1) positions in R. Let Xi denote the occurrence
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of p at position i, i E 1, 2... T:

1 if p occurs at position i, (3.2)
xi= 0 otherwise. (3.2)

Thus we can write:

XR = X1 +X 2 +... +XT (3.3)

E(XR) = E(X1 + X2 + + XT) E(X) + E(X2) +... + E(XT)

= T x q (3.4)

U(XR) = 0(X1 + X2 + ... + XT) (X) + (X2) +... + (XT)

= T x q(1 -q) (3.5)

where q is the probability of observing p at any position in a random sequence and

the approximation in equation 3.5, is that we assume Xi's are independent (which

follows from ignoring auto-correlation effects). q is estimated by treating the set of

sequences in U as a markov chain and building a Markov model from these sequences

as explained in next section. Thus z-score can be rewritten as:

O-Txq= C)T x q (3.6)
v/Tq(1l- q)

where T = ISI - n * (Ipl - 1).

3.2.1 Markov Model

Markov chains are frequently used to model biological sequences. Briefly, a Markov

chain of order n is a sequence of X 1, X2, X3 ... of random variables that can take

discrete values from a set A = {al, a2 ... ap}. The sequence Xi satisfies the following
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Markovian property:

P(XlXi,_, X,_2 ... X1) = P(XXi_,X(i-2) Xi- 2)... ) i, (3.7)

i.e. the conditional probability of observing Xi at any state depends on the previous

n states only. A Markov Model (MM) is defined by a set of prior probabilities, i.e.

the probability of observing a state given no prior information about the preceding

states, and a set of transition probabilities that determine the probability of the next

state given the previous n states. The basic theory of MMs is described in [15] and

can be found in many other texts.

Given any sequence S1, S2 ,... Sm one can find the probability that the sequence

was generated from a given MM by using the Bayes formula:

P(S1, S2, ... Sm) = P(S 1, S2 ... Sn) X P(Sn+ 1 Sl1 ... Sn) x

P(Sn+ 21S2 ... Sn+l) X ... X P(SmSm-n ... Sm-l ) (3.8)

The first term in the RHS of equation 3.8 is the prior while the remaining conditional

probability terms are the transition probabilities.

In the case of DNA sequences, Xi can take on values from a set of 15 possible

characters obtained, A={A,T,G,C,W,S,R,Y,K,M,B,D,H,V,N} (IUPAC nomenclature

for various combinations of nucleotides, see appendix A.2). In the past, Markov

Models and Hidden Markov Models ([15]) have been used several times for finding

structures in genomic sequences, for instance predicting genes [22, 6], exon-intron

splicing sites [46], binding sites [41], etc.

We used a third order Markov model to build a background model by training

it on all the upstream sequences in U. We chose n=3 in order for the background

model to account for the TATA, AAAA and TTTT sequences that are ubiquitous
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throughout the genome's promoter regions [41]. The prior probabilities and transition

probabilities can be computed by tabulating the number of occurrences of all triplets

and 4-tuples as shown in equations 3.9 and 3.10 respectively:

pprior(ala2a3) - O(a1aa 3) (3.9)
lul

ptrans(alaa22a3a) a3) (3.10)
P(aia2a 3) O(azaa3)

where ai E A, UI is the sum total of the size of all upstream sequences in bps, and

Bayes rule was used in equation 3.10. In writing these equations it was assumed that

prior probabilities are independent of the position in the sequence, which has been

discussed and justified by Kleffe and Borodovsky [18]. Using equation 3.8, together

with equations 3.9 and 3.10, one can estimate the probability of a pattern p E P. For

instance, for p=AATGWC (W = A or T):

P(AATGWC) = ppri(AAT) x ptrans(GIAAT) X (ptrans(WlATG) +

ptrans(CTGW)) (3.11)

Likewise one could find the probability P(p) for any arbitrary pattern p. We can now

substitute q = P(p) from the above equation into equation 3.6 to get the z-score of p.

3.3 Choice of Teiresias Parameters

As discussed in section 2.2, three parameters 1, w, k specify the pattern language that

determines the set of output patterns from Teiresias. specifies the minimum number

of residues (A,T,G or C) in the pattern, 1/w specifies the minimum density (number-

of-residues-to-width ratio) and k specifies the minimum support (number of unique

occurrences in input sequences).
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TGAATTAATATGCA

TGAGTGAATATTCT

TGAATAATCATCCA

TGAATTTTAATTCA

TGCATAAAAATTCA

TGTTGTATCAACCA

TGAATTTTAATTCA

TGCAGTATTTATGA

TGAATAAAAATACA

TGTATTTTTATTCA

TGCATGAATATTGA

TGAATAATTACACA

TGNNNNNNNNNNNN

Figure 3-2: Alignment of 12 ArgR binding sites along with their consensus pattern

Choice of these parameters is both a tricky and key issue as it determines the

basic set of patterns in the algorithm. If the parameters are too stringent one can

miss key patterns, while if they are too loose, unnecessary patterns can be generated,

reducing the specificity of the method. The problem becomes more complicated

because binding sites have degenerate base pairs at most positions in the alignment

making it difficult to represent them effectively in the Teiresias pattern language.

Consider the alignment shown in Figure 3-2 of 12 binding sites from ArgR regulon in

E. coli. The pattern that describes this alignment in the Teiresias pattern language is

shown in the last row (N's represent wildcards - positions where there is more than

one type of base pair present). Certainly this pattern is highly degenerate and not

very interesting. However, figure 3-3 reveals the correct picture. The figure shows the

position-specific-weight-alignment-matrix (PSWM) and the sequence logo for the 12

sites. There are at least five more positions in the alignment that show a high degree

of conservation. If a 100% value of k is specified, Teiresias would identify just the

pattern shown in Figure 3-2 which being information-poor would match numerous

false positives. To approach this problem the value of k is set much lower than n

(= the number of sequences in the input set) to avoid the chance of missing sites
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of the nature described above. This leads to generation of several similar patterns,

each covering a subset of the sites, but when taken together they describe the entire

set of sites (see section 2.3 for an example). The optimal value of k is case-specific

depending not only on the number of input sequences but also on their structure.

However, since all k = kl patterns are a subset of k = k2 patterns when k > k2,

k can be set on the lower side and the infrequent patterns can be removed in the

downstream filtering step. A list of recommended k values for n from 3 to 100 is

tabulated in section A.1.1. For instance for n=3, k is also set to 3, while for n=25,

k is set at 9. It must be mentioned that these k values are based on trial runs on

random sequences and while they have been designed to work in most cases, they

may need to be changed slightly in special cases (depending on the composition of

input sequences). Nevertheless, the values listed do a reasonable job in most cases as

is demonstrated later in the results section.

3.3.1 Selection of 1, w

Based on the length and width distributions of experimentally identified binding

sites there are several feasible values of and w, however we are interested in the

optimal values that are most sensitive to binding sites. There are several factors

that can aid us in deciding the best choice for I and w. The choice of w depends

on I since together they dictate the density of a pattern. While settings such as

I = 3, w = 20 return too many patterns with a lot of degeneracy which makes them

non-interesting, = 6, w = 6 finds too few patterns that are not sensitive enough.

Based on such preliminary criteria and several trial runs on various different sets

of sequences, eight sets of 1, w were considered as possible candidates - 3/6, 4/8,

4/10, 5/15, 5/17, 6/17, 6/20 and 7/20. In order to find the best pair of I and w,

a sensitivity test was performed to determine which combination produced patterns
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2 3 4 5
0 7 10 0
0 2 1 10

12 0 1 2
0 3 0 0

PSWM for

6 7
4 9
6 3
2 0
0 0
ArgR

8 9 10 1
5 4 11 '
7 6 10 0 00 2 0

Binding Sites

1 12 13 14
2 0 11
7 0 1
1 2 0

1 2 10 0

Sequence Logo

Figure 3-3: Example to illustrate degeneracy in binding sites and motivate the choice
of k. While only 2 positions in the logo show 100% conservation there are at least 5
more positions where one of the nucleotides is significantly conserved.
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that were most sensitive known binding sites in E. coli.

Let S be the set of n input sequences, K be the set of known sites or true sites,

and Q represent the set of patterns generated by Teiresias sorted on the basis of their

degree of over-representation or z-scores. Further let P represent the set of top p

patterns from the set Q. Finally, let P n S denote the set of positions in S that are

touched by at least one pattern in P. If we map the known sites onto S, the fraction

of the positions corresponding to the known sites that are touched by P is given by

IP n K I. We define two quantities:

Coverage= P sl (3.12)

P n KSensitivity 313)Sensitivity = (3.13)
IKI

The difference between coverage and sensitivity reflects the selectivity of P towards

known sites. If sensitivity is more than the coverage, the pattern selection criteria

is sensitive towards binding sites. Figure 3-4 shows a typical plot of coverage and

sensitivity as a function of PI, the number of patterns in P. When P is sufficiently

large, there are enough patterns to cover the all the positions in the sequences, hence

both coverage and sensitivity are close to 1. As the number of patterns chosen reduces

the coverage falls, ultimately becoming zero when there are no patterns in P.

By fixing the coverage at 20%, we compared the sensitivity of patterns generated

using different 1, w pairs (listed in Table 3.1 towards known sites. The dataset used for

this analysis is a set of 30 known regulons described in 4.1. Of the eight combinations,

1/w = 6/20 yielded the highest sensitivity of 43%.

A coverage of 20% was considered an optimal cut-off for deciding the number

of top patterns to be retained. At this coverage the islands produced were of a

reasonable size between 15-40bps (resembling the size range of known binding sites).
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Figure 3-4: Sensitivity as a function of number of statistically significant patterns

Typically, a coverage of 20% amounts to selection of 5-20 patterns depending on the

relative values of k and n. The actual calculation, showing the relationship between

the number of patterns selected and the coverage, is included in the appendix section

A.1.2.

3.4 Convolution Phase

The convolution phase is sub-divided into three parts: (a) building a feature map by

superimposition of significant patterns on the input sequences, (b) clustering groups

of similar regions in the feature map into motifs, and (c) creating alignments of the
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I w Sensitivity(%)

3 6 35

4 8 28

4 10 38

5 15 37

5 17 34

6 17 35

6 20 43

7 20 31

Table 3.1: Mean sensitivity over 30 E.coli regulons for different pairs of I and w

motifs and ranking the motifs on the basis of the significance of their alignment. Su-

perimposition of overlapping patterns creates a feature map which delineates islands

of significantly overrepresented regions in the sequence space, as described in section

3.4.1. The islands are grouped into clusters as explained in section 3.4.2 to obtain

the final set of motifs.

3.4.1 Mapping

In order to build a feature map, "sufficiently overlapping" instances of patterns are

merged together. Figure 3-5 shows a portion of sequence with overlapping occurrences

of several different patterns. A mapping signal proportional to the number of patterns

that occur at each position in the sequence is constructed as shown. Contiguous

regions on the sequences having mapping signal greater than zero are grouped together

as islands. A 40% overlap between two successive instances of patterns is considered

"sufficient". Figure 3-6 shows an example of a feature map. Henceforth, the terms

"islands" and "sites" will be interchangeably used.
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Figure 3-5: Merging of overlapping instances of patterns. The height of mapping

signal at any position is proportional to the number of overlapping patterns at that

position.

Upstream Sequences
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Sequence 1
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Figure 3-6: Feature map obtained by mapping significant patterns on the input se-

quences
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3.4.2 Clustering of Sites using Graph Theory

There are several techniques available for clustering sequences, such as hierarchical

clustering, k-means, etc. However, these are more suitable when the expected number

of clusters is known beforehand. For the current problem, one does not know the

number of motifs in a given set of sequences beforehand, hence it is difficult to estimate

the number of clusters. So instead we use a graph-theory based approach which,

although computationally more expensive, is more appropriate for the size of the

problem at hand.

We begin by constructing a graph in which each node corresponds to an island in

the feature map (Figure 3-7). All pairwise similarity scores between two nodes are

found using Smith-Waterman global sequence alignment algorithm of the correspond-

ing sites. A standard scoring matrix with a +1 score for match, 0 for mismatch and

-oo for gaps (i.e.,no gaps allowed) is employed. The top c x n(n - 1)/2 pairs of nodes

based on their similarity scores, are connected by an edge (n is the number of input

sequences). c is an empirical proportionality constant which has a value of 2 or 4 (see

section A.1.3 for details). Within the graph so obtained one can search for clusters of

very similar islands using standard graph theory-based algorithms. Fully connected

sub-graphs, also called cliques, are used to find tight clusters of similar sites. In a

clique, each and every pair of nodes is connected by an edge (see figure 3-7). Finding

maximal cliques in a graph is an NP-complete problem [8]. However several approx-

imate algorithms exist. We used an implementation of the Bron-Kerbosch algorithm

[4] for finding cliques. Among the motifs found, those having instances in a pre-

specified minimum percentage of sequences are kept, while the rest are rejected. By

default this cut-off is set at 70% of the input sequences but can be modified by the

user.
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Upstream Sequences

Sequence 1

Sequence 2

Sequence 3

Figure 3-7: Clustering of similar sites in convolution phase: Shown is the feature map
for three input sequences. A graph is constructed by representing each island/site
with a 'node'. Edges are drawn between sites having high sequence similarity. Cliques
in the graph represent clusters of highly similar sites, or motifs.

3.4.3 Ranking Motifs based on Significance

The final set of motifs found after clustering are aligned using the publicly available

Consensus program developed by Stormo et al. [14]. The alignment is performed

in two modes: (a) by including reverse strand sequences and (b) only with single

strands sequences. By including the reverse strand sequences bias is given to motifs

that are palindromic. Since this is a frequently occurring feature in binding sites (but

not necessary) it is made optional. For a discussion about creation of alignments of

binding sites see Appendix section A.5.

Consensus estimates a significance score of the alignment based on a large-deviation
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method. The significance score or p-value is a measure of the likelihood of finding

another alignment of the same "width" and "size" as the original alignment, in the

set of input sequences with same or higher information content. Here, "width" of the

alignment is the number of base pairs spanned by the alignment in width, and "size"

is the number of sequences that constitute the alignment. When multiplied with the

total number of possible alignments of that size and width that can be generated

from the input set of sequences, one can obtain an overall p-value which can be used

to compare the significance of two alignments having different widths and sizes (see

equation 3.14). For a detailed discussion see [14].

Overall p-value = (T-m(l)-m)!x p-value (3.14)

where T is the total number of base pairs in all input sequences, is the width of

the alignment in base pairs, m is the size of alignment and p-value is the significance

score based on large deviation methods. Thus T - m(l - 1) is the number of starting

positions for a random member of the alignment and the combinatorial term is the

number of possible alignments of size m. In the rest of this dissertation, the overall

p-value is referred to as the "P value". The motifs found are ranked on the basis of

their P values and reported as the final output of the algorithm.
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Chapter 4

Experimental Results

The performance of TABS was tested on known regulons from the well-understood

Escherichia coli biological system. A set of 30 E.coli regulons, with known binding

sites reported in literature, were used for this validation test. The idea of the tests

was to assess the ability of the algorithm to find true binding sites. For reference,

we compared the performance against two other popular algorithms, AlignACE and

Consensus. In this chapter, we first provide an in-depth analysis of results obtained

at various stages of the algorithm across the 30 test cases along with insights in cases

where the algorithm shows high sensitivity to known sites, and others in which it does

not. We demonstrate the ability of the algorithm to find motifs in cases, when unlike

known regulons, all the input sequences do not share the same motif but instead the

motif is present in a subset of the input sequences. We also demonstrate the ability

of the algorithm to find "distinct motifs" in the same set of input sequences. Finally,

we make novel predictions on the basis of the results from the 30 regulons.
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4.1 Dataset of known E.coli Regulons

In order to test the performance of our algorithm it was desirable to select a biologi-

cal system with reasonably well-understood regulatory mechanisms. E. coli being the

most well-studied simple prokaryotic system, was the obvious choice. Several DNA-

footprinting assays have been performed over the previous few decades on this system

to identify DNA-protein binding sites. The results from these individual experiments

are catalogued and continually updated in a publicly available database called Reg-

ulonDB [34]. Version 3.2 (2001) of this database lists regulatory information for 86

different transcription factors from E.coli including the information about the genes

that they regulate, the transcription units involved in the regulation, the exact bind-

ing sites where the protein binds on the DNA. Besides the list of genes for which

there is evidence of DNA-protein binding in literature, the dataset also includes a set

of genes that conform to indirect regulation by the transcription factor, for which no

binding site has been reported previously in the literature. Regulatory interactions

in such cases are inferred from experimentally observed transcriptional changes [27].

For a detailed discussion about the experimental evidence on which the sites reported

in RegulonDB are based, please see Appendix section A.4.

For the purpose of this study we chose 30 regulons from RegulonDB, where each

regulon comprises a set of genes regulated by the same transcription factor. These

regulons were chosen on the basis of two criteria: (a) there are at least three operons

forming the regulon, and (b) there is at least one reported binding site in each reg-

ulon. A minimum size of three genes was chosen for each regulon in order to have a

sufficiently large sample size for motif-discovery. Table 4.1 lists all the regulons used

in this study. Also listed along-side is the number of operons in each regulon, the

number of known binding sites in each operon, the number of genes with no reported

binding site, the width of the reported binding site and the width of their consensus.

70



Regulon Size No. of Sites No. of Genes Size of Reported Width of
with Indirect Binding Alignment (bp)
Regulation Site (bp)a

Ada 3 2 1 48 4

AraC
ArgR
CRP
CysB
CytR
DeoR
FadR
FIS

FNR
FruR
Fur

GlpR
IHF

LexA

Lrp
LysR
MalT
MetJ
MetR
NagC
NarL
NR-I

OmpR
OxyR
PhoB
PurR
SoxS
TrpR
TyrR

5

7
73

5

7
3

4
25
21

7
10

4
22

9
14

3

4
3

3

4
12

3

6

4
5

17
5

5

8

12

12

103
4
13

7
6

32
19

4

9
17
20

9
23
1

9
5

3

6

15

10
14

4
11

15

6

5
15

0

1

15

1

1

1

0

0

6

4

6

0

9
1

4
2

0

1

1

0

4
0

2

0

1

3

2

0

0

37
36
39
62
60
36
37
36
42
34

39
40

33
40
32

33
30
28

44
46
39
35
30
65
37
36
38
47
42

26

26
24

16
46
26
14

27
14
16
25
18
16

20
16

12

19
18

16

29

16
23

8

15
25

16
19

28
20

aReported size includes 10bp flanking regions on either side

Table 4.1: Dataset of 30 known E.coli regulons from RegulonDB [34]
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4.1.1 Building Sequence Logos

Binding sites recognized by the same protein as reported in RegulonDB, were aligned

using the Consensus program. In certain cases, redundant sites were reported. These

were manually removed. Complementary strand sequences were included in making

the alignment except Ada and MetR regulons (see Appendix section A.5 for more

details). The logos obtained are attached in Appendix section A-3.

4.1.2 Extraction of Upstream Regions

The complete genome sequence for the E.coli K-12 MG1655 strain was obtained from

Genbank public database to perform the analysis. The chromosomal positions of the

start codons for 4,405 E.coli genes, catalogued in RegulonDB, were used to extract

upstream regions. As shown in Figure 4-1, a 400bp region upstream, plus 50 bp

downstream from the reported start-codon, making a total of 450bp, were extracted

for every operon. Of the total 419 sites bound by any one of the 30 transcription

factors, 380 were found to be located within this 450bp region while the rest 39

(a 10%) of them were found to be located farther upstream or even downstream of

the transcription unit, typically > 1000 base pairs away. Such sites were excluded

from this study (except for the purposes of constructing sequence logos). The 50bp

region downstream of the start codon is included to take care of any error due to

reporting of start-codons'.

4.2 Performance validation on 30 E.coli Regulons

Three metrics were used to evaluate the significance of results: (a) sensitivity, defined

as the fraction of known sites correctly predicted, (b) specificity, defined as the fraction

1This is similar to the approach taken by Benitez-Bell6n [2].
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of predicted sites that hit known sites, and (c) a visual comparison of the sequence

logos for the known motif and the predicted motif. The criteria for evaluating whether

a known site is correctly predicted or not, is based on "touch". A known site is said

to be "touched" by a predicted site if there is any degree of overlap between the

two, when mapped on the sequences. Although, such a metric can overestimate the

accuracy of prediction, when used together with the visual sequence logo comparison

it works well. Another criteria used, calculates the overlap in terms of the actual

number of base pairs "covered" (metric analogous to the metric used in section 3.3.1).

This avoids the problem of overestimating, but since not all base pairs in a reported

site form a part of the consensus, this metric can underestimate the accuracy of

prediction. While the former metric is called "sensitivity by touch", the latter is

termed "sensitivity by bps". In performance evaluation, we use both metrics in

conjunction, although we use the former metric more often. Unless otherwise specified

"sensitivity" refers to "sensitivity by touch" and likewise for specificity.

As seen in column 4 in table 4.1, several regulons have genes with no reported

binding sites. This means that we have no way of deciding whether the predictions

made on these genes are correct or not. This can lead to underestimation of specificity.

To avoid this, we correct the specificity by basing it on the number of predictions

for those genes that have at least one reported site. We call this the "corrected

specificity". An explicit reference will be made when this metric of specificity is used;

otherwise specificity simply refers to the usual definition which is based on all the

predictions.

4.2.1 Summary of Results

The cumulative sensitivity of the algorithm across all the 30 regulons was found to

be 40% and the cumulative specificity was 44.5%. The "corrected specificity" was
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Category No. of cases Sensitivity % Specificity(Corrected) %

Good Cases 14 68 83

Weak Cases 16 16 27

Table 4.2: Overall performance on the 30 regulons

53%. Figure 4-2 shows a histogram of the distribution of individual sensitivity and

"corrected specificity". The distributions have a bi-modal nature.

In 14 regulons, the top predicted motif matched the consensus of known sites with

a sensitivity and specificity (corrected) of 68% and 83% respectively. The consensus

logos showed a high degree of agreement with the corresponding logos of binding

sites. In the remaining 16 cases, either the algorithm found more interesting motifs

(in terms of significance) than the binding motifs, or nothing significant was found.

In the following sections we present the results at each stage of the algorithm.

4.2.2 Generation of Basic Pattern Set

All 1 = 6, w = 20, k = k(n) (k is listed for different values of n in appendix section

A.1.1) patterns were found using Teiresias. Table A.6 in appendix lists the number

of patterns (- 103 - 105) found in each case along with the exact k values used. The

number of top patterns selected on the basis of z-score, the "coverage" of these pat-

terns on the input sequences, and the z-score of the least significant pattern selected,

are listed in the same table.

As an example, consider the TyrR regulon containing 8 genes. The number of

1 = 6, w = 20, k = 6 patterns found by Teiresias when it was run with the 450bp

upstream regions of these genes was - 4, 500. The top 7 patterns are shown in table

4.3, aligned (for the sake of presentation), along with their z-scores. As can be judged

from the alignment, the patterns appear to belong to a common motif.
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Pattern 1 TGTMMWW...Y.TWKACA z-score = 358.0

Pattern 2 C.WW.TGTMA .......TWKWC z-score = 314.0

Pattern 3 TGTAMW ....Y.WWTACA z-score = 275.7

Pattern 4 TGKMMWW...Y.TWKACA z-score = 253.9

Pattern 5 TGTMMW..WWT.WWKACA z-score = 248.5

Pattern 6 AM ....W.TG.AA..T....YW..C z-score = 215.7

Pattern 7 TGKAMW ....Y.WWTACA z-score = 209.2

Table 4.3: Alignment of top 7 statistically significant patterns found in the TyrR

regulon along with their z-scores

4.2.3 Feature Maps

Feature maps were plotted for each regulon. The islands identified were compared

with the location of known binding sites and an "intermediate" sensitivity was com-

puted. Figure 4-3 shows the feature map of the TyrR regulon obtained by mapping

the 7 most significant patterns. Each line in the map represents the 450bp upstream

region for each of the 8 operons in this regulon. The labels next to the lines indicate

the name of the first gene in the corresponding operon. The leftmost co-ordinate

of the line corresponds to -400bp (400bp upstream of the start codon), while the

rightmost co-ordinate corresponds to 50 bp into the operon from the start codon and

tics are placed at 100bp interval. At each position with a non-zero signal, one or

more instances of the 6 patterns occur. The greater the number of instances that

occur, higher the signal at that position. The bars shown below the line represent the

locations of known TyrR binding sites. Some reported binding sites partially overlap

with each other. There are a total of 10 islands, of which 8 overlap with known sites.

The sensitivity is 73% and specificity is 90% "by touch", and 44% and 90% "by bps".
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Category No. of cases Sensitivity (by touch)% Sensitivity (by bps) %

Strong cases 13 83 62

Moderate cases 11 67 43

Weak cases 6 34 8

Table 4.4: Categorization of regulons on the basis of sensitivity at the end of filter 1
stage

The sensitivity and specificity for all the 30 regulons were computed up to this

stage (Filter 1) of the algorithm (Table A.6).

On the basis of these results we could classify our results into three categories -

(a) those with significant overlap between islands and known sites, (b) those with

partial overlap and (c) finally those with minimal overlap (Table 4.4) . Figures 4-4,

4-5 and 4-6 shows the feature maps for these three categories respectively.

4.2.4 Results from Convolution

The final step of the algorithm, convolution, clusters similar islands into motifs. Table

A.6 in the appendix shows the complete results for all the 30 cases, including the

number of motifs found by clustering, the P value of the best predicted motif, the

width of the motif found, and the sensitivity and specificity of the motif.

The cases categorized as ones with "minimal overlaps" based on results from

statistical filtering, are not expected to give any fruitful results in the convolution

phase of the algorithm. Among the cases with partial overlaps, 3 were found to

give good results, and among the "strong cases" 11 were found to give good results.

Together, these 13 cases formed the "good cases". The sensitivity and specificity for

these cases along with the P value of the best motif are reported in table 4.5. The

average values for sensitivity are "corrected specificity" across these 14 cases is 68%,
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p-value Sensitivity

-209.55 83

-391.68 49

-104.79 50

-67.11 50

-45.11 75

-338.37 67

-87.94 40

-120.77 78

-62.15 100

-36.54 56

-177 71

-218.01 85

-55.67 80

-173.22 73

(%) Specificity

71

45

40

50

60

25

100

88

67

100

83

52

100

91

Specificity
(%) %(corrected)

99

54

50

67

100

60

100

101

101

100

83

57

100

91

Mean: 68

a2nd best motif

Table 4.5: Sensitivity and specificity for the 14 "good cases".

and 83%, respectively. The sequence logos of predicted motifs showed an excellent

match with the sequence logos of known motif (Figure 4-7). The remaining cases

showed much lower sensitivity and "corrected specificity" of 16% and 27% respectively

and the predicted motif (if any) did not match the consensus of known sites. These

cases are discussed and analyzed in detail in section 4.2.5.
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Regulon

ArgR

CRP

CysB

DeoR

FruRa

Fur

GlpR

Le xA

MetJ

NR-I

PhoB

PurR

TrpRa

TyrR

69 83
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4.2.5 Analysis of Weak Cases

In this section, we present the results and analysis for the cases in which the algorithm

failed to identify the real binding sites. The discussion is treated by dividing the cases

into three categories:

(a) More significant patterns found: In these cases the known motifs were too

degenerate. As a result, Teiresias either found more significant patterns than those

corresponding to the known motifs filtered out, or did not find any pattern corre-

sponding to known motifs.

Consider the Ada regulon. This regulon consists of three promoter regions cor-

responding to the genes alkA, ada and aidB. RegulonDB reports two binding sites

for this transcription factor, one each in the promoter region of alkA and aidB. The

alignment of these two sites is shown in Figure 4-8. When Teiresias was run with

1 = 6, w = 20, k = 3 on this regulon, it returned 27,601 patterns. One of the patterns,

A. MRRAAT.W.W.MGCAA, having a z-score of 149.4, contained the binding-site consen-

sus pattern A .... AAT ...... GCAA. However, the top 5 patterns selected, had a much

higher z-score of 1256405.6 and above. (Figure 4-8). Thus the discovered patterns (a)

were much more significant than the binding site, and (b) had nothing to do with the

binding sites. Such a behaviour was found in 8 other cases listed in table 4.6. Column

2 lists the best pattern discovered that contained the known binding site, column 3

lists the corresponding z-score and column 4 lists the z-scores of the selected patterns.

The findings reflect two possibilities. One possibility is that the regulon size is too

small to identify the correct signal. In other words, one would need sequences with

more instances of occurrence of the known motif for effective motif-finding. In fact,

from a z-score study on random sequences of same size as the individual regulons, we

estimated the significance values of the reported z-scores. It turns out that for OxyR,

OmpR and CytR these significance values are < 0.05 (data not reported), implying
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z-score of
Pattern contain-

Support of patterns
Regulon Size ing consensus of z-score

the pattern selected
known sites

(>=)
Ada 3 A.MRRAAT.W.W.MGCAA 3 149.4 1256405.6

CytR 7 Not found - 6 320.7

FadR 4 A.. WG.TC.G.. Y.....T 4 57 3657

MalT 4 C.S.RGGWKGAG.W ....... MT 4 315.0 3700.8

MetR 3 Not Found 3 - 7253791.7

NagC 4 Not Found 4 - 20991.8

OxyR 4 A.Y.R..R.YATR .... ATC.Y..Y.AT 4 1128.5 7057.2

OmpR 6 Not found 5 - 824.1

SoxS 4 Not found 4 - 2606.6

Table 4.6: Z-scores of patterns corresponding to known sites are much lower than

those of the z-scores of top patterns selected. In some cases, no such patterns were

found due to degeneracy of binding sites

that the motifs found may have some biological significance. For the remaining cases,

it is likely that the motifs are an artifact of the data.

(b) No clear signal found: These are cases in which top patterns mostly consist

of poly A 's and poly T's. These patterns were checked for any possible overlapping

occurrences in the genome which could lead falsely lead to over-estimation of their

z-scores. We did not find any overlaps for these patterns.

Consider the example of NarL. The best pattern found by Teiresias in this regulon

of size 12 is A .... YTMW..MAA..A..A.... A with a z-score of 104.6. The sequence
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Regulon Best pattern found z-score

NarL A ....YTMW..MAA..A. ..... A 104.6

Lrp T.. W ..TTT.K.T .... MT .... 86.8

IHF A ..... W..TT.A..TT ... ...... TT 82.7

FNR T ........T ....ATTWA ......KWT 71.5

Table 4.7: Cases with weak signal - mostly poly A's and poly T's found

logo for this pattern is shown in Figure 4-9. Clearly this contains "poly A" which

is ubiquitous all over the genome. The alignment corresponding to known sites is

shown adjacently in the Figure. This is also very weak. A simple search shows that

the consensus T ...... TA......A occurs - 7,400 times in all the upstream regions

of E.coli. It could be surmised that in these cases no clear "sequence signal" exists

and that perhaps there are features beyond primary sequence, such as the secondary

structure of the DNA, that determine how the protein recognizes such a site. Table

4.7 provides a list of the 4 cases fitting in this category along with the most significant

pattern found.

(c) Special Cases: In two other cases, namely AraC and FIS, we observed that

even though the consensus of known sites was reasonably good, our algorithm could

not find them. This was due to complex degeneracy in binding sites.

Consider the example of FIS. This regulon has a size of 25 with 32 reported binding

sites. The consensus for these sites is shown in Figure 4-10. When Teiresias is run

on this set of sites with = 6, w = 20 and k = 9, one pattern is found containing

the consensus TG...A ..... T... CA (z-score=8.8) in 9 sequences, and 39 patterns are

found containing TG ............. CA (3.7 <z-scores< 24.8) each with a support of
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10. Although individually none of these patterns targets all the binding sites, together

they touch all 32 of them. Since none of these patterns have high enough z-scores

to make it to the top they all get filtered out. The patterns that get selected have

z-score > 939.6 and have no similarity with binding sites. Notably, these patterns

have a support of only 9. Hence they occur in only a small proportion of the input

sequences.

This is an example of a case where signal enhancement takes place by mutual

reinforcement from a collection of weak patterns.

4.3 Comparison with other Algorithms

The performance of TABS was compared against two other popular algorithms -

AlignACE and Consensus. Performance was evaluated on the same dataset described

earlier in this chapter in section 4.1. Academic licenses for AlignACE and Consensus

were obtained from their respective authors and the software programs were down-

loaded and run locally.

AlignACE was run with following settings:

number of columns to align (10) -numcols = default (10)

number of sites expected -expect = number of sequence in the input set
in model (10)

background fractional GC -gcback = 0.24
content of input sequences

The remaining parameters were kept to default settings. AlignACE searches on

both forward and double strand and returns a list of motifs sorted by their MAP

(maximum apriori likelihood) score. AlignACE returned more than 50 motifs for

each of the 30 regulons. Only the first motif (having the highest MAP score) was used

for analysis. The sensitivity and specificity (by touch) of the results were computed.

The detailed results for each regulon are provided in appendix table A.8.

Consensus was run with following settings:
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Number of standard deviations for identifying information peaks -s = 1

Ascii alphabet information on the command line -A a:t 0.26 c:g 0.24

Number of final matrices to print -pf 1

Ignore the complementary strand (default) -c ,0 or

Include both strands as separate sequences -c 1

Consensus was run in two modes, once with the -cO option (complementary strand

ignored), and other with -cl (complementary strand included) option. We denote the

first mode by "Consensus-single" and the second mode by "Consensus-double". The

sensitivity and specificity were computed using the motif returned from the final cycle.

Results are listed in table A.7 (for Consensus-single) and table A.6 (for Consensus-

double).

A comparison in performance has been drawn out in between the three algorithms

in table 4.8. algorithm.

AlignACE has a very low specificity of 10% which means it returns too many false

positives. This can also be judged from column 4 which lists the mean number of

sites per gene as 8, unreasonably big. The sensitivity of 49% becomes meaningless

in light of the low specificity. Consensus-double finds extremely long motifs in four

regulons: AraC (137bps), GlpR (91bps), IHF (89bps), LysR (172bps) and NagC

(174bps). These falsely create high sensitivity and specificity figures (see table A.6)

and were hence assigned zero sensitivity and specificity in all the calculations shown.

While the motif corresponding to CRP regulon is also long (75bps), it captures the

correct consensus (data not shown) and hence is retained as is. TABS outperforms

all the algorithms. Column 4 highlights the fact that Consensus assumes one site per

gene in its algorithm, while TABS does not have this restriction.

When performance is compared individually, we find that Consensus also shows

a bimodal distribution of sensitivity and specificity. In fact, in 15 of the 16 cases in

which TABS does not perform well, Consensus does not perform well either (the 16 th

case is CytR). On the other hand, there are 4 cases (PhoB, GlpR,DeoR and CysB)
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Mean Specificity No. of Sites per
Algorithm Mean Sensitivity

(corrected) Gene

TABS 40 53 1.2

Consensus-single 31 38 1

Consensus-double 33 32 1

AlignACE 49 10 7.9

Table 4.8: Comparison of performance of TABS with Consensus and AlignACE on

the 30 E.coli Regulons

in which Consensus fails but TABS manages to find the correct motif.

Similar comparison is drawn between the algorithms, this time using only the 14

"good cases" plus CytR case (on which Consensus performs well), This is done to

obviate the effect of any noise due to the remaining cases on which none of the above

algorithms perform well and are just "weak cases". TABS still emerges with the best

performance (table 4.9).

Algorithm Sensitivity Specificity (Corrected)

TABS 64 78

Consensus-single 53 69

Consensus-double 60 76

AlignACE 56 13

Table 4.9: Comparison of performance in those cases on which at least on algorithm

performs well (14 "good cases" and CytR)
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4.4 Performance on Synthetic Microarray Data

Since the ultimate application of this algorithm is to find conserved sequences in set

of genes that result from clustering of microarray data, several tests were conducted

to demonstrate the performance on such kind of data. Clusters of co-expressed genes

obtained from microarray experiments are noisy which it makes it harder to find a

conserved motifs in the corresponding upstream sequences. For instance, from a set

of 15 coexpressed genes only 10 or fewer of them might share the same regulatory

element. Our algorithm has several features that make it suitable for use on such kind

of data. Firstly, the value of k chosen is much smaller than the number of sequences

in the input set. This makes it possible to capture patterns conserved in a only a

small fraction of input sequences. Also if there are multiple "regulons" that exist

within the cluster, our graph-theory based clustering algorithm would enable us to

capture each one of these as distinct motifs.

In order to test the performance, "microarray-like" data was created. Gene clus-

ters were "synthesized" by grouping genes in a particular regulon with random up-

stream regions from the genome. The regulons chosen were the ones in which a clear

signal had been identified in the experiments decided earlier in this chapter. Two reg-

ulons were chosen for this study: LexA (9 genes) and PurR (17 genes). Each regulon

was mixed with random sequences in varying proportions and inputted into TABS.

The effect on sensitivity and specificity was examined. The experiments and results

are summarized in Table 4.10. Also shown alongside, are results from Consensus on

the same datasets.

The sensitivity and specificity are stable even after introduction of spurious se-

quences (there is in fact an increase in LexA sensitivity possibly due to increase in

size that makes it easier to identify discriminatory patterns). It must be mentioned

here, that the best cut-off for number of top edges to be selected in the clustering
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stage were obtained after a trial and error procedure. The performance is robust for

sensitivities of up to 30%. The performance of Consensus was found to be similar to

TABS in these cases.

Total Fraction of TABS Consensus
Original Original Orig Spurious

No. of spurious se-
Regulon Size Sensi- Speci- Genes Sens Spec Sens Spec

tivity ficity Genes quences

PurR 17 92 55 3 20 0.15 85 59 91 60

17 4 21 0.19 82 51 91 57

17 5 22 0.23 91 57 90 54

17 6 23 0.26 91 57 92 52

17 7 24 0.29 91 54 91 50

LexA 9 78 88 3 12 0.25 89 55 89 58

9 4 13 0.31 89 80 89 54

Table 4.10: Table showing performance on synthetic microarray data

Besides the situation emphasized above, where only the genes in a subset of the

gene cluster share a common motif, it is also possible that two distinct motifs are

shared among two subsets of the original gene cluster. This kind of a situation occurs

frequently in microarray expression data. Consider, for instance, a situation in which

transcription factor A induces a set of genes a,b,c and d. Gene a encodes for another

transcription factor (say, B) that in-turn induces a set of genes e,f,g and h. Thus

genes a-d share a common regulatory element in their upstream regions, while genes

g-h share another motif. It is entirely possible that all these genes (a-h) have similar

profiles in a time-series experiment or under different sets of experimental conditions,

and hence get clustered together. Unlike most conventional algorithms, TABS is

designed to account for this possibility as shown in the experiment done below.

To illustrate the above scenario, an experiment was performed in which genes from

two different regulons were "mixed" to form a heterogeneous cluster. TABS was run

on this heterogeneous cluster to see if it could find the two motifs corresponding to

the two regulons, separately. The results were compared with those from Consensus.
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LexA (9 genes) and TyrR (8 genes) regulons were mixed and the total of 17

genes were inputted into TABS. TABS reported a total of 9 motifs. The first motif

corresponded to the LexA binding site motif, while the 9th corresponded to TyrR

(see table 4.11 and Figure 4-11). Top 10 motifs from the final cycle of Consensus

were tested for matches to the LexA or TyrR motifs. None of them was found to be

specific to either LexA or TyrR.

Sensitivity Specificity Sensitivity Specificity
Algorithm

wrt LexA wrt LexA wrt TrlrR wrt TvrR

TABS- Motif 1 89 80 0 0

TABS - Motif 9 22 22 47 78

Consensus 89 47 22 20

Table 4.11: Ability to pick two distinct motifs from a set of genes: LexA and TyrR

regulons were mixed to form a cluster of size 17. Among the 9 motifs found, motif 1

was found to resemble LexA site, and motif 9 was specific to TyrR sites. Consensus

could not detect a motif specific to either of the two sites.

4.5 Novel Predictions

The 14 cases in which the algorithm managed to find correct motifs were used to

make novel predictions. The predictions were made at two levels. The first set of

predictions was made on those genes in the regulon that had no reported binding

site. Second set of predictions were made at the genomic scale, i.e. in the upstream

regions of all the genes in the genome.

Before making these predictions, a post-processing step was performed on the

predicted motifs to "clean-up" possible false positives or false negatives that could
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be artifacts of various thresholds used in the algorithm. Essentially, this involved

constructing a PSWM of the predicted motif, and sliding the PSWM along a set of

sequences to find possible high-scoring matches. For this purpose the Matind and

Matinspector package [25] was used. Given a motif or a set of aligned sites, Matind

constructs a PSWM which is used by Matinspector to find matches in a given set of

sequences on the basis of a specified "matrix-similarity" threshold.

Using these tools, the "clean-up" step was done in two steps. As a first step,

the threshold of matrix similarity was determined by scoring each site that was used

to construct the PSWM itself. If a site was found to have a score much lower than

the remaining sites, it was excluded from the list. A suitable threshold deduced

from the scores of the remaining sites was determined and used while scanning an

arbitrary set of sequences to find possible matches using Matinspector. Columns 4

in table 4.12 lists the matrix-similarity thresholds obtained for the 14 regulons using

this procedure.

For the first set of predictions, the PSWM was scanned against the upstream

sequences of all the genes in the regulon. By doing this we found some new sites in

certain cases that were missed earlier. Also some spurious sites were removed. This

usually led to improvement in either sensitivity or specificity or both (table 4.12). The

number of novel sites found in each regulon, and the threshold of matrix similarity

are also listed in the table. (Note: 2 cases CRP and Fur were not considered in this

analysis since their matrices were found to be fairly non-specific.) Figure 4-12 shows

a map with the predictions in the PurR regulon as an example.

The first 8 regulons listed in the table having very high sensitivity and speci-

ficity, were used to make genome-scale predictions (using the same matrix-similarity

thresholds). See table 4.13. The exact locations of these sites is documented in the

appendix.
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Regulon Sensitivity Specificity Matrix Similarity Number of
Threshold Predictions

ArgR 0.83 0.83 0.85 1

FruR 1.00 0.57 0.88 3

LexA 0.89 0.89 0.85 1

NR-I 0.67 1.00 0.85 0

PhoB 0.71 0.83 0.85 0

PurR 0.92 0.93 0.85 6

TrpR 0.8 1.00 0.9 0

TyrR 0.8 0.92 0.81 1

CysB 0.5 0.5 0.85 3

DeoR 0.5 0.67 0.94 1

GlpR 0.4 1.00 0.9 0

MetJ 1.00 0.67 0.95 1

Total Predictions 17

Table 4.12: List of first set of predictions in genes included in the regulon.

Regulon

ArgR

FruR

LexA

NR-I

PhoB

PurR
TrpR

TyrR
Total Predictions

Number of Predictions

7

112

103

9

0

320

2

361

19141

Table 4.13: Predictions at the genomic scale.
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Figure 4-1: Extraction of 450bp upstream regions
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Figure 4-2: Histogram of sensitivity and specificity across 30 E. coli regulons: both
plots reflect a bi-modal nature
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Figure 4-7: Comparison of predicted motifs with known motifs for 14 cases. For each
regulon the motifs are aligned vertically with the predicted motif on top and binding
site motif directly below it. In 2 cases MetJ and ArgR the predicted motifs look
different from the corresponding logos of known sites, even though the sensitivity and
specificity are high. This is because of the overlapping occurrences of binding sites
adjacent to each other in all the upstream regions in these regulons (see feature maps
for MetJ and ArgR in Figure 4-4). Our algorithm tends to find maximal patterns
and hence reports one motif corresponding to alignment of the entire stretch of sites.
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Pattern corresponding A....AAT ......GCAA z-score = 149.4
to known consensus

Least significant of AWSS.RKYG.CC.W.SKAAYRS.R.CTGS.WTYSRTSR.SG z-score = 1256405.6
the 5 patterns selected

Figure 4-8: Ada case to exemplify situations where more significant patterns than

the consensus of known sites are found

J, 

'i .. . r ;".

Alignment of best pattern found(z-score=104.6) Motif from alignment of known sites

Figure 4-9: NarL case to exemplify situations where there is no clear signal found in

the upstream regions

Figure 4-10: FIS binding-site motif: FIS case to exemplify special situations where

the algorithm fails to identify the motif
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Figure 4-11: Logos for motifs found in the "mixed" regulon
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Figure 4-12: Novel predictions in the PurR regulon: Boxed sites represent novel

predictions. Previously reported binding sites are shown by the solid bars.
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Chapter 5

Discussion

5.1 Summary

Promoter sequences encode a wealth of knowledge about gene regulation. Unlocking

this information is key to developing an understanding of how the cell operates in

response to various external stimuli and environmental factors. Identifying promoter

sequences at a genomic scale using sequence information is still largely an unsolved

problem. There is much to be understood about how DNA-protein interactions oc-

cur and how binding sites recruit transcription factors for turning genes on and off.

Several attempts have been made in the past to discover binding sites by exploiting

sequence characteristics of these motifs. Most of these approaches can be categorized

as either sequence-driven or pattern-driven, each having its own strengths and limita-

tions. Sequence-driven methods provide better mathematical descriptions of motifs

using weight matrices, but cannot guarantee optimal solutions. Pattern-driven ap-

proaches only search for special types of motifs that are usually not sufficient to model

the entire spectrum of binding sites found in nature. In this thesis, we propose a novel

method, called TABS, that integrates the advantages of both these approaches. We
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make use of Teiresias, a pattern discovery algorithm that finds all exhaustive and

maximal patterns from a given set of sequences. Teiresias has the ability to find

patterns of variable length using its unique algorithm that ensures maximality. It

is a fast and efficient algorithm that generates results in a time-scale linear with re-

spect to the output size. Since the search is exhaustive, theoretically speaking no

possible solution can be missed (unlike sequence-driven approaches), and the type

of patterns discovered belong to a much wider pattern class than those found by

most pattern-discovery algorithms. We use this algorithm to enumerate a basis set

of patterns that describe conserved regions in the input sequences. Since motifs can

be vary highly and be degenerate, choosing the right parameters for pattern discov-

ery is important, and the best choice can vary from case-to-case. The parameters

I = 6, w = 20 were found to give most sensitive results when tested on known E. coli

regulons. k, the minimum support of each pattern, is usually set much smaller than

the number of input sequences. Use of rigorous statistical criteria enable selection

of significant patterns that are most likely to constitute a motif. These patterns are

used to delineate "interesting" regions in the input sequences. Thus, using pattern

enumeration the problem is reduced from finding motifs in large chunks of nucleotide

sequences, to one of finding motifs in a much smaller and shorter set of sequences.

Sequence-driven-type approaches are then employed to find shared motifs in these

regions by using simple pairwise similarity criterion to group sequences on the basis

of their information content.

We tested the performance of TABS on 30 E.coli regulons by evaluating its ability

to find experimentally proven binding sites. In 14 of the 30 cases a high sensitivity of

- 70%, and specificity greater than 80%, was obtained. The corresponding sequence

logos showed high degree of visual similarity. In the remaining cases, either more

interesting patterns, than the ones reported, were found, or low complexity regions

such as poly A's and poly T's were found. TABS was found to perform better than
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two other state-of-the-art algorithms - AlignACE and Consensus. Using synthetic

experiments, the ability of the algorithm to find sites existing only in a small subset

of sequences in the input set was demonstrated. This is especially relevant for analysis

of coexpressed gene-clusters obtained from DNA microarray experiments.

5.2 Future Work

1. Improved pattern discovery model: Teiresias is limited in its search to find pat-

terns with rigidly conserved positions Thus, it fails to detect motifs having

excessive degeneracy such as those represented by the binding sites of FIS and

AraC. This is a common problem with most pattern-driven motif-finding al-

gorithms. By enumerating patterns with a low level of support, this problem

was partly offset in the algorithm developed. However, in order to address this

issue completely, there is a need to develop pattern-discovery approaches that

allow degeneracy in matched instances. Along these lines, there is an ongoing

effort in the Bioinformatics and Metabolic Engineering group at MIT to develop

an improvised pattern discovery tool that constructs patterns using alignments

scored on the basis of "scoring matrices", rather than exact matches.

2. Application and testing on microarray data: A limited set of synthetic experi-

ments were performed in this study to evaluate the performance of the algorithm

on microarray-like-data. It would be useful to extend this work by demonstrat-

ing the performance of the algorithm on real microarray datasets and compare

the findings with other algorithms. Such experiments can also provide an ex-

tensive list of targets for biological validation in laboratories.

3. Detection of Composite motifs: Gene regulation is observed to occur via com-

binatorial arrangement of regulatory motifs in the promoter regions. This is

101



especially true for higher eukaryotes. From a statistical perspective it is often

easier to locate a group of regulatory motifs together (since the probability of

occurrence of that event is much lower), as compared to discovering individual

motifs. This can be facilitated by constructing pattern classes that specifically

model for composite motifs using flexible gaps and spacers. Such models can

be very complicated and diverse. An excellent review of composite-motif-based

methods for finding binding sites has been documented by Sinha [40]. While

Teiresias does not handle flexible gaps currently, there is an ongoing effort to

add this functionality [28].

4. Genome-scale motif detection: Another attractive approach for motif-finding is

to search the entire sequences of upstream regions in the genome, altogether in a

single stretch, looking for conserved elements in small subsets of these sequences.

While sequence-driven approaches are computationally too expensive for such

kind of a search, there have been various pattern-driven approaches used in

the past for genome-scale discovery [21], [7]. The pattern class used in such

cases tends to be very restrictive because of space complexities involved, but

certainly not impossible. Indeed, use of Teiresias for full-genome pattern finding

is complicated for similar reasons of computational time and space complexity.

An additional challenge that needs to be addressed is choosing the right set

of parameters, given that there is little known about the structure and size of

"regulons" at a genomic scale.

5. Cross-species comparison: Another approach, increasingly gaining importance,

is based on searching motifs in upstream regions of orthologous genes across

several different, but related species. The underlying hypothesis is that, through

the process of evolution, vast chunks of biologically insignificant portions of non-

coding genomic regions would have mutated considerably, while the functionally
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active regions would be conserved. Such a phylogenetic comparison has shown

promise in the recent past [24].

5.3 Contributions

1. The main contribution of this thesis is the development of a novel hybrid-

approach that combines the pros of sequence- and pattern-driven approaches

making it superior to most existing algorithms conceptually. To this end, the

algorithm leverages Teiresias, by using it in a manner that makes it suitable for

discovering binding motifs. This includes determining the appropriate values

of and w, and making a proper choice for k, which when integrated with the

"mapping" concept, facilitate assembly of degenerate motifs.

2. Statistically significant patterns, obtained from stage 2 of the algorithm, were

shown to demonstrate high sensitivity towards binding sites.

3. A new alignment procedure for constructing motifs of binding sites involving

inclusion of reverse strands was developed. The method showed the ability to

detect signals that were otherwise not apparent using conventional alignment

techniques.

4. A method for clustering sequences by finding cliques in a graph constructed

using an all-against-all alignment approach, was developed. Unlike conventional

techniques, this method can find multiple clusters without the need to specify

the number of clusters in advance.

5. Detailed studies on 30 E. coli regulons provided insight into the varying types

of binding motifs found in nature, which further provide leads for development

of better motif-finding tools in the future.
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6. The algorithm was shown to perform better than two other popular algorithms,

Consensus and AlignACE.

7. A set of novel predicted sites was documented for 12 transcription factors in

E. coli based on the results found. These sites show high degree of similarity

with the motif recognized by the protein and this compelling evidence makes

them excellent candidates to be tested in laboratories.

5.4 Conclusion

This thesis has addressed the problem of finding transcription factor binding sites

with considerable success, and at the same time has provided some insights into

the problem which have opened new avenues for further research. In particular, a

novel method has been developed, that addresses some the shortcomings of existing

promoter-finding algorithms. The addressed problem is of tremendous significance in

our understanding of interaction between genetic information and cellular function.
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Appendix A

Appendix

A.1 Algorithm Parameters and Thresholds

A.1.1 Support (k) vs. n

Table A.1: n is the number of sequences

105

i <=n <= j
i j k
3 3 3

4 5 4

6 6 5

7 9 6

10 12 7

13 20 8

21 30 9

31 40 10

41 50 11

51 60 15

61 100 20



A.1.2 Statistical Filtering Threshold

We wish to estimate the number of patterns that can provide a mean coverage of

20% when mapped on the input sequences. Let the number of input sequences be

n. We assume the average length of a pattern is 20bps, and the length of each input

sequence is 450bps. Also we consider the support for an average pattern to be k (in

reality there will be some patterns some support more than k. But for the purposes

of this calculation we ignore them). If k = n, each pattern one instance on each

sequence, so the coverage for five patterns is - 100/450 - 20%. For arbitrary k < n

the number of patterns can be estimated as 5 x n/k.

A.1.3 Clustering Threshold

We wish to decide a cut-off for the number of pairs of nodes to be connected by

an edge based on their sequence similarity scores. If we assume that the number of

motifs is 1, we would need about n(n - 1)/2 edges. However, in general there could

be more number of motifs per sequence, and the edges forming the motif need not be

the topmost edges. A factor 'c' is thus introduced to account for this affect. Typically

c is set at 2. However, depending on the number of nodes in the graph, this constant

can be increased to 4 to allow for possibility of existence of more motifs. Let z be

the number of nodes in the graph. In our algorithm we set c = 2 for z/n < 2 and

c = 4 for z/n > 2, arbitrarily. In most cases discussed in the results section, such an

approach works.
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A.2 IUPAC Nomenclature for Nucleotides

Origin of designation

G

A

T

C

G or A

T or C

A or C

G or T

G or C

A or T

A or C or T

G or T or C

G or C or A

G or A or T

G or A or T or C

Guanine

Adenine

Thymine

Cytosine

puRine

pYrimidine

aMino

Keto

Strong interaction (3 H bonds)

Weak interaction (2 H bonds)

not-G, H follows G in the alphabet

not-A, B follows A

not-T (not-U), V follows U

not-C, D follows C

aNy

Table A.2: Summary of single-letter code recommendations [9]

Symbol A B C D G H K M S T V W N

Complement T V G H C D M K S A B W N

Table A.3: Definition of complementary symbols [9]
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G

A

T

C

R

Y

M

K

S

W

H

B

V

D

N



A.3 Code-check Experiment

A code-check test was performed on a set of random, unrelated sequences containing

an artificially implanted motif. The idea of the experiment was to demonstrate that

all parts of the code work as intended.

Experiment: 10 random sequences from a collection of 4405 upstream regions from

E.coli were taken. Various instances of the motif GATCGNNNNCGATC of length 14 bps

were planted into the 10 regions where the middle spacers were generated as random

stretch of nucleotides. The sequences were trimmed to 450bp each, and inputted into

TABS program. The parameters used, and the output produced at each stage are

listed below.

Conclusion: The implanted motif was found by the algorithm successfully with

a 100% sensitivity. Some other sites highly resembling the motif that existed in

the random sequences were also found. The experiment demonstrated that the code

works intended and that there are no coding errors.

1. Stage 1: Teiresias.All I = 6, w = 20, k = 7 were found. This generated 720

patterns.

2. Stage 2: Statistical Filtering: Top 12 patterns were selected on the basis of

z-score. These patterns were:
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Pattern No. z-score Pattern

Pattern 1 173.30 GATCG ....CGATC

Pattern 2 79.37 GWTCG ... .MGRTC

Pattern 3 73.97 GATCG ... .CGAT

Pattern 4 68.91 GMTYG ... .CKATC

Pattern 5 68.50 ABBTAGSVHYD.TDDG

Pattern 6 67.83 GRTMG ... .YGATC

Pattern 7 67.03 AB.VHGRTCS.DWVYBAT

Pattern 8 66.32 GATYS ... .CGRTC

Pattern 9 66.12 GATYG ....CGWYC

Pattern 10 65.95 GWTCR ... .CGMTC

Pattern 11 65.54 GMWYSB.B.CGRTCG

Pattern 12 63.47 GMWCS ... .CGATC

10 of these patterns match the description of the motif, and the first one matches

it exactly with the highest z-score. The feature map is shown in figure A-1.

3. Stage 3: Convolution Phase: 5 motifs were found. The first one had a P value

of le - 186 and had a 100% sensitivity and 71% specificity. The logo is shown

in figure A-2. All 10 implanted sites were found, and additionally 4 others that

looked similar were found:

GGTAGAACCTGATC

GATTCTAGCCGGTC

GCTTGGAAACTATC

GATTGTAGGCGTCC

GATCG....CGATC
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Figure A-1: Feature map showing the position of predicted patterns compared with

the position of implanted motif (shown as a shaded bar)

*3

Figure A-2: Sequence Logo corresponding to the best obtained motif, showing high

degree of similarity with the implanted motif GATCG .... CGATC.
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A.4 Reported sites in RegulonDB

DNA-protein regulatory interaction reported in RegulonDB are based on validations

using one or more of the following 6 methods:

1. O0. Computational Prediction

2. 1. Mutational analysis

3. 2. DNA footprinting

4. 3. Specific binding with crude extracts

5. 4. Consensus-based

6. 5. Changes in gene expression

0 and 4 are based on computational predictions (using sequence similarity), while 1,2

and 3 involve some kind of wet-laboratory experiments. 5 is based on changes in gene

expression and hence does not necessary imply direct regulation. Except 5, there is

a reported binding site corresponding to each regulatory interaction.

We can rank the reliability of the reported interactions in RegulonDB on the basis

of the degree of confidence in the method used. 1,2 and 3 can be ranked first since

they are identified by real experiments. 0 and 4 are both based on computational pre-

dictions. Method 0 involves the use of Patser (a weight-matrix-based search program

that finds new candidate sites match the description of a weight-matrix constructed

from an alignment of known sites [27]). 4 is based on sequence alignment between

the "identified consensus" of a set of experimentally proven binding sites, and a new

candidate site. If they share a high level of sequence similarity (no quantitative de-

scription of the level of similarity was found on RegulonDB website), the similarity

is drawn. 0 and 4 are both ranked lower than 1,2 and 3 because they involve no
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biological experiments. 5 is ranked the lowest, since the change in expression could

just be due to indirect regulation.

For the 402 sites corresponding to the 30 transcription factors considered in this

study, most sites were reported based on validation through at least 2 of the 6 meth-

ods. Moreover, no site was based on method 0. No sites were based on 5 alone. There

were 96 sites that were reported based on 4 only (85), or both 4 and 5. considered H

A.5 Aligning Binding Sites

Creating alignments of binding sites, and building motifs can be a tricky issue because

of various factors such as the sample size, the metric used for creating alignments,

etc.

While any of several available multiple sequence alignment tools (e.g. ClustalW

[43]) could be used for this purpose, Consensus is the most appropriate tool because

of two reasons. First, Consensus works by maximizing the information content to

find the best alignment which is the most popular metric for representing sites [37].

Second, Consensus scans several different possible lengths of the alignment and se-

lects the best one, unlike ClustalW which only does global alignment and could miss

conserved substrings.

The other issue is the directionality of the sequences used in building the align-

ments. While sites are reported in the literature from the 5'-3' end, there is no reason

to believe that is the best orientation for aligning them. Protein molecules recognize

sites in double-helical DNA structure which means there is no sense of directionality

involved in the DNA-protein binding process.
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Ada AraC ArgR CRP

CysB CytR DeoR FadR

FIS FNR FruR Fur

GlpR IHF LexA Lrp

LysR MalT MetJ MetR

NagC NarL NR-I OmpR

OxyR PhoB PurR SoxS

TrpR TyrR

Figure A-3: Motifs corresponding to alignment of known sites for each regulon. The

alignments were made from known sitelr.eported in RegulonDB using Consensus

program. Complementary strands were included in making the alignment, except for

Ada and MetR.



From the database of known sites for the 30 E.coli regulons listed in section 4.1, we

aligned sites bound by the same transcription factor using Consensus in two modes:

(a) by including reverse strand sequences and (b) only with 5'-3' single strands se-

quences as reported. We found that mode (a) was able to identify far more interesting

logos than (b). The reason was that by including the reverse strand sequences, signal

is enhanced in sequences with palindromic motifs and a substantial number of binding

motifs in E.coli happen to be palindromic (see figure A-3).

The alignments constructed were sent as input to Schneider's makelogo program

for making graphic sequence logos. Unless otherwise mentioned, all alignments and

motifs found are constructed by including reverse strand sequences.
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A.6 Results Tables

Tables A.6 show the results from TABS up to filter 1 stage of the algorithm. The tables

provide values for parameters used in each case, and also the intermediary figures,

such as the number of patterns generated by Teiresias, the number of patterns selected

after statistical filtering (column), minimum z-scores corresponding to the patterns

selected, and the coverage (see section 3.3 for definition) of these patterns. In all

these runs, and w were kept at 6 and 20, respectively. The k values are reported.

Sensitivity and specificity are reported based on two metrics - by touch, and by

fraction of overlapping bps. Also reported is the mean width of islands generated by

mapping the selected patterns on the feature map.

Table A.6 shows the detailed results for the full algorithm. It includes figures from

the convolution phase. The total number of motifs found at the end of convolution,

the size of the best motif, the number of input sequences in which the motif has an

occurrence, the width of the motif, its P value and the sensitivity and specificity of

the best motif. In the final row of the table, the mean values for every column are

calculated.

Tables A.6, A.7 and A.8 show the results from the other algorithms, namely

Consensus and AlignACE.
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Regulon

Ada

AraCb

ArgR

CRP

CysB

CytR

DeoR

FadR

FIS

FNR

FruR

Fur

GlpRb

IHFb

LexA

Lrp

LysRb

MalT

MetJ

MetR

NagCb

NarL

NR-I

OmpR

OxyR

PhoB

PurR

SoxS

TrpR

TyrR

Size

3

5

7

73

5

7

3

4

25

21

7

10

4

22

9

14

3

4

3

3

4

12

3

6

4

5

17

5

5

8

Sites

3

5

7

73

5

8

3

4

25

21

7

10

4

22

9

14

3

4

3

3

5

12

3

6

4

5

17

5

5

8

Genes

3

5

7

73

5

8

3

4

25

21

7

10

4

22

9

14

3

4

3

3

5

12

3

6

4

5

17

5

5

8

Width, bps

14

137

39

75

16

22

25

8

52

23

16

43

91

89

20

6

172

8

22

11

174

14

15

10

13

16

16

9

20

18

aCalculated by excluding predicted
bWidth of predicted motif too long

ln(P value)

-32.88

-302.29

-326.17

-646.35

-74.39

-180.76

-73.13

-16.41

-505.25

-107.95

-108.58

-354.18

-331.19

-271.1

-192.21

-32.11

-556.33

-16.41

-62.15

-21.91

-350.01

-160.63

-36.54

-43.42

-41.96

-74.39

-279.53

-28.48

-100.63

-147.49

Sensitivity

0

0.75

0.83

0.47

0

0.78

0.25

0.17

0

0

1

0.67

0.67

0.71

0.89

0.07

1

0.56

0.6

0

0.71

0.17

0.44

0

0

0

0.92

0

1

0.47

Specificity

0

1

0.71

0.51

0

0.88

0.33

0.25

0

0

0.57

0.3

1

0.41

0.78

0.07

0.33

0.75

0.67

0

0.6

0.17

1

0

0

0

0.71

0

1

0.88

Corrected
Speci- a
ficity

0

1

0.83

0.7

0

0.88

0.5

0.25

0

0

1

0.75

1

0.82

0.88

0.12

0.99

0.75

1.01

0

0.6

0.29

1

0

0

0

0.93

0

1

0.88

sites on genes for which there is no reported site

Table A.6: Consensus-double Results
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NagC

NarL

NR-I
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PhoB

PurR

SoxS

TrpR

TyrR

Size

3

5

7

73

5

7

3

4

25

21

7

10

4

22

9

14

3

4

3

3

4

12

3

6

4

5

17

5

5

8

Sites

3

5

7

73

5

8

3

4

25

21

7

10

4

22

9

14

3

4

3

3

5

12

3

6

4

5

17

5

5

8

Genes

3

5

7

73

5

8

3

4

25

21

7

10

4

22

9

14

3

4

3

3

5

12

3

6

4

5

17

5

5

8

aCalculated by excluding

Width, bps

14

7

37

34

20

6

9

6

49

21

21

28

24

15

20

10

23

21

20

16

11

14

16

31

12

7

17

13

22

19

ln(P value)

-32.88

-15.35

-307.25

-71.79

-100.62

-16.57

-14.59

-6.2

-579.7

-315.42

-155.88

-325.61

-98.16

-207.56

-192.21

-110.57

-65.8

-82.84

-54.83

-40.2

-41.59

-160.63

-40.2

-187.32

-36.86

-15.35

-303.5

-54.71

-113.74

-158.4

Sensitivity

0

0

0.83

0.59

0

0

0.25

0

0.04

0.44

0.5

0.78

0.33

0

0.89

0

0

0.22

1

0

0

0.08

0.44

0

0

0

0.92

0

1

0.47

Specificity

0

0

0.71

0.57

0

0

0.33

0

0.04

0.38

0.29

0.4

1

0

0.78

0

0

0.5

0.67

0

0

0.08

1

0

0

0

0.71

0

1

0.88

Corrected
Speci- a
ficity

0

0

0.83

0.79

0

0

0.5

0

0.04

0.53

0.51

1

1

0

0.88

0

0

0.5

1.01

0

0

0.14

1

0

0

0

0.93

0

1

0.88

predicted sites on genes for which there is no reported site

Table A.7: Consensus-single Results
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Regulon

Ada

AraC

ArgR

CRP

CysB

CytR

DeoR

FadR

FIS

FNR

FruR

Fur

GlpR

IHF

LexA

Lrp

LysR

MalT

MetJ

MetR

NagC

NarL

NR-I

OmpR

OxyR

PhoB

PurR

SoxS

TrpR

TyrR

Size

3

5

7

73

5

7

3

4

25

21

7

10

4

22

9

14

3

4

3

3

4

12

3

6

4

5

17

5

5

8

Sites

26

40

54

578

37

61

32

30

287

145

48

110

34

157

81

109

17

25

21

39

92

13

30

21

59

194

49

51

69

Genes

3

5

7

72

5

8

3

4

25

21

7

10

4

22

9

14

3

3

3

5

12

3

6

4

5

17

5

5

8

Width, bps

23

18

15

10

15

15

14

23

10

18

18

16

20

19

19

16

27

14

23

20

17

18

13

25

16

16

16

22

20

aCalculated by excluding predicted

In(P value)

-206.7

-240.85

-255.31

nan

-147.14

-213.19

-167.62

-162.34

nan

nan

-194.62

-326.26

-211.11

nan

-269.57

-224.94

-172.5

-190.73

-141.89

-208.56

-214.35

-226.19

-162.37

-122.48

-213.14

nan

-203.76

-159.82

-224.47

Sensitivity

1

0.75

0.25

0.32

1

0

1

0.54

0.44

0.5

0.22

0.47

0.18

0.78

0.21

0

0.2

0.33

0.29

0.33

0.89

0

0.75

0.6

0.92

0.5

0.6

0.6

Specificity

0.08

0.28

0.06

0.05

0.14

0

0.16

0.17

0.05

0.06

0.04

0.02

0.18

0.02

0.09

0.03

0

0.04

0.05

0.05

0.02

0.54

0

0.14

0.07

0.09

0.04

0.06

0.13

Corrected
Speci- a
ficity

0.12

0.28

0.07

0.07

0.18

0

0.24

0.17

0.05

0.08

0.07

0.05

0.18

0.04

0.1

0.05

0

0.06

0.08

0.05

0.03

0.54

0

0.14

0.12

0.12

0.07

0.06

0.13

sites on genes for which there is no reported site

Table A.8: AlignACE Results
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1 Overview

This report addresses the business and market issues related to commercialization of

bioinformatics tools. It covers an introduction to the bioinformatics industry, market

segments, business models, the current market trends, the competitive landscape, as well as a

future outlook. In the final section the report addresses the question of how one would go

about commercializing the "Regulatory Sequence Analysis Package" produced as a result of

the work in this thesis.

2 Introduction to the Bioinformatics Industry
Over the past two decades, the pharmaceutical industry has experienced a

fundamental shift in drug discovery processes. Although the industry was once

highly dependent on "shotgun-based" chemistry techniques, this

serendipitous approach has slowly given way to the emerging field of genomics.

On a fundamental basis, genomics reveals the basis for human disease at the

molecular level. By understanding how life's processes are carried out in normal

situations, scientists can identify how mutations at the genetic level can lead to

illnesses. Furthermore, by linking specific genes with specific diseases, researchers

can design targeted compounds to address cellular malfunctions.

Initially, one of the major obstacles to the genomic revolution was the general lack

of biological information. To truly understand this emerging discipline requires

massive amounts of gene sequence, gene expression, and proteomic data.

Throughout the early 1990s, labor-intensive methods to secure this information fell

short of expectations.

In response to an outcry for a more efficient and accurate data collection

infrastructure, a new life sciences industry emerged in applying industrial-scale

techniques to laboratory processes. These new tools (e.g., gene

sequencers, microarrays, and mass spectrometers) and high-throughput techniques

have unleashed a flood of new biological data - information that continues to

double in size every 12 months.
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The aforementioned events have shifted the bottleneck in

drug discovery from data collection to data analysis, interpretation, and integration.

This has spawned an exciting new discipline (informatics) that employs information

technology to drive life science discoveries. Informatics is defined as software tools

that permit a scientist to capture, visualize, and analyze life science related data. Specifically,

informatics deals with database management, database integration, and

complex mining algorithms that allow a researcher to harness relevant information

from a multitude of assays or experiments.

2.1 Factors Driving Demand

Informatics tools allow for more rapid screening of genetic data. Informatics has become

crucial for documenting, storing and analysing today's information-rich environment. Use of

visualization tools and sophisticated algorithms allow scientists to identify complex

relationships in large data sets. This leads to better productivity and, given today's drug

discovery environment, informatics lends a distinct advantage.

In the big picture of things, this technology has the ability to reduce failures in clinical trials.

For example, the average pharmaceutical company ties up 50% of its research and

development dollars on clinical trials, and 90% of compounds that enter clinical

trials never reach the market. By creating more effective drug compounds (through

molecular modeling) and filtering out unpromising leads, pharmaceutical

manufacturers could save millions of dollars by foregoing the development of drugs

that are ultimately doomed for failure. As shown in Figure 1, the key is to "fail early

and often" - maximizing the focus in drug discovery and minimizing the expense

of clinical trials. In the remainder of this section we discuss the factors that are driving the

demand for bioinformatics.
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Figure 1: Enhancing Clinical Trials

2.1.1 Competitive Pressures in Big Pharmaceuticals

Over the past two decades, investors have witnessed tremendous growth in new

pharmaceutical and biotechnology ventures, both in the United States and abroad.

As a result, many large cap pharmaceutical companies have found themselves

immersed in an intense competitive landscape. Although these global

conglomerates once "sat on their laurels" with successful new drugs, today's

environment requires full drug pipelines to sustain continued growth.

Although the rules have changed, the pharmaceutical industry has struggled to

answer the call. As shown in Table 1, the pipeline of new drug application (NDA)

approvals has declined 45% since 1996, and generic approvals have increased 41%

since 1999. This is due to the fact that discovering new drugs has become extremely difficult

due to technology limitations (much of the "low-hanging fruits" already in the market). Also,

the fact that many drug patents are set to expire in the foreseeable future, the will likely result

in a flood of new generic drugs, which will erode the market share of established

pharmaceutical companies. 90% of drugs that enter clinical trials ultimately fail to reach the

market for a number of reasons (e.g. toxicity, adverse side effects, lack of efficacy, and so

forth). New drug companies must increase productivity to maintain growth rates and reduce

costs. Today's drug discovery process takes 12-15 years to bring a new drug to the market,

with an average cost of $800bn.
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Year NDA Approvals Generic Drug
1995 82 207
1996 131 212
1997 121 273
1998 90 225
1999 83 186
2000 98 244
2001 66 234
2002 78 321
2003 72 263

Source: CDER Report to the Nation 2003

Table 1: Number of NDA and Generic Drug Approvals by Year

2.1.2 In-House Solutions are Falling Short

With information technology presented as a potential enabler to an inefficient drug

discovery process, many pharmaceutical companies have turned to informatics to

accelerate drug discovery and make clinical trials more efficient. Initially, however,

specialized third-party applications were largely unavailable and limited in

functionality.

To overcome this hurdle, many organizations invested substantial resources to

develop in-house productivity solutions. Unfortunately, given the dependence on

off-the-shelf applications (e.g., Microsoft Excel) these solutions defied the concepts

of user friendliness and required complex algorithmic programming. In addition,

the scalability of these applications was eventually strained by a flood of genomic

data wrought forth by industrial-scale equipment and techniques.

Most important, to maintain these complex solutions, organizations require trained

"informaticians," individuals who possess familiarity with computer science as well

as genomics. As one might expect, finding employees with these qualifications was

(and still is) a formidable task. The market for these individuals has also been

strained by the evolution of new informatics ventures - start-ups that offer

attractive pay packages and upside from options.

2.1.3 Data Analysis is the New Bottleneck

A third factor influencing the demand for informatics is attributable to

the advent of industrial scale biology - with new data collection technologies (e.g.,

DNA synthesizers and microarrays) providing an onslaught of gene sequence, gene
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expression, and proteomic data. Although the industry once suffered from a lack of

qualified targets and candidate drugs, lead scientists must now decide where to start

amidst the overload of biological data. This phenomenon has shifted

the bottleneck in drug discovery from data collection to data analysis,

interpretation, and integration.
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Figure 2: Drug Discovery Today

2.2 The Overload of Biological Data

The dramatic improvement in data collection methodologies has been viewed as a

godsend by many, with more information fueling exponential advances in

productivity. Using today's technology, scientists can run large-scale experiments

in a matter of hours rather than weeks, and access to data is now considered a non-

issue rather than a hurdle. These advances have opened the door to

several new areas of science - such as combinatorial chemistry, high-throughput

screening (HTS), and genomics (with a draft of the human genome now complete). See

Figure 3. According to UBS Warburg, genomic data is expected to at least double every 12

months.
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Figure 3: Technologies Contributing to the Flood of Information

3 Areas of Application
As mentioned previously, competition in the informatics market is typically

bifurcated by scientific discipline. We have therefore segmented our discussion into

the various fields of: (1) gene sequencing; (2) comparative genomics; (3) functional

genomics; (4) pharmacogenomics; (5) structural

genomics; (6) other life science informatics categories. Hereafter, we describe the

opportunity for informatics within the framework of these fields.

3.1 Gene Sequence Analysis

DNA represents the information warehouse present in every cell of every organism

on the planet. The code for carrying out and maintaining life lies within a helical

bundle of an intricately ordered array of four distinct chemical bases: A, C, T, and

G. A and T can form base pairs, as can C and G, and the ordered sequence of these

bases represents the blueprint for creating proteins that carry out all of life's

processes. As shown in Figure 4, this double helix folds into a tight chromosome

structure in the nucleus of a cell.
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The entire DNA code for an organism is termed its genome, and it is generally

housed in multiple chromosomes (in humans there are a total of 23 pairs of

chromosomes). As one might expect, the length of each genome varies from species

to species. For example, the genome of E. coli is 4.6 million base pairs, whereas the

genome of humans is on the order of 3.0 billion base pairs. If put on paper, the

genome of humans would fill about 200 1,000-page telephone books.
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Figure 4: Structure of DNA
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Throughout the genome of humans, it is believed that approximately 30,000 genes

exist - with only around 10,000 discovered to date. A gene is simply defined as a

region of the genome that can vary in size and complexity and codes for a specific

protein. As shown in Chart 19, in order for the gene to perform its function, its

sequence of bases must be read and copied by cellular machines into a single-

stranded message called RNA. The purpose of the RNA molecule is to deliver DNA

"instructions" to the protein synthesizing machinery of the cell. As such, for each

gene to be expressed, or "turned on," it must first be made into a message before it is

encoded into a protein. This pattern of events is ongoing and occurs each time that the

cell makes a protein. The cycle of genes that is turned on and off in a cell represents

the entire regulatory network for that cell at a given point in time.
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Figure 5: The Central Dogma of Molecular Biology
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The ultimate goal in understanding the human genome is to identify how key

regulatory networks lead to the synthesis of proteins that sustain life processes.

Understanding how these processes contribute to life provides a foundation for

understanding how things can go wrong and cause disease. Additionally, by

investigating how certain networks behave under stress or stimulus, a scientist can

learn much about how the human body combats disease. In most cases, disease

states are characterized by a malfunction in the genome. In cancer, for example,

certain networks have gone awry and cause the cells to multiply uncontrollably.

Understanding the building blocks and pathways of each network begins with a

more complete grasp of how and when life's blueprint (DNA) is regulated.

3.1.1 DNA Sequence Data

The advent of DNA sequencing tools has allowed scientists to precisely determine

the entire genome complement of many organisms. However, knowledge of the

code represents just the start of understanding biological processes. Of the three

billion base pairs that comprise the human genome, only 3%-5% of the sequence

represents genes, with the remainder considered "junk DNA." Additionally, each

gene is divided into multiple regions: (1) exons (responsible for coding proteins)

and (2) introns (or non-coding regions). By deploying bioinformatics tools,

scientists can more readily separate genes from junk DNA and exons from introns.

Although machines have automated much of the process, it remains laborious, and

just 33% of the human genes out there have been located.

3.1.2 Gene Identification

To properly identify a gene's sequence scientists must (1) recognize the start site,

(2) identify non-coding regions, and (3) characterize the end point. All three of

these descriptive components are nearly impossible without the appropriate data

analysis tools to sift through reams of four-letter data (e.g.,

ATCGCGATCGCGATAT). Additionally, regions of DNA that exist before and

after genes can play a role in the execution of regulation. These elements must be

identified and annotated, as well. In other words, computer programs, like the cell,
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must find the beginning and end of the gene, recognize the exons, cut out the

introns, and paste together all the exons that encode for a given protein. Adding

complexity to the process is the factor of differential splicing, where certain intron-

exon boundaries within the message are skipped altogether. In doing so, the same

gene has the potential to create a multitude of proteins that carry out different

functions. For example, differential splicing events can produce three separate

protein products, which are all encoded by one gene whose message is mixed and

matched, as the cell requires.

I GeneClerre~~~~~~~

pemessage

dA-ierential
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message 1 message 2

praoein A protein B
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Figure 6: Gene Splicing

3.1.3 Gene Identification and Annotation Tools

There are a variety of gene sequence analysis tools that are available to public and

private research communities. For example, gene identification programs like

GRAIL and Genefinder are freely available online and provide researchers with

minimal elements of gene analysis. Using these programs, a researcher can submit a
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DNA sequence of interest, and in a short period of time, a description of the gene is

returned (assuming it has been previously "annotated" by another researcher).

Although it is difficult to criticize tools that are free, we should note that these

online applications often lack the robust functionality and security of commercial

software. Furthermore, because annotated genes are stored in disparate locations,

researchers are often forced to submit their findings to a multitude of Web sites (not

the most efficient process).

In summary, the sequencing efforts of today will be fueled by a

combination of both public and private efforts. Unfortunately, the biological data

generated from this effort remains not only vast, but is stored in a multitude of

locations. Clearly, sifting through this mountain of data requires information

technology.

Going forward, aggressive sequencing efforts will create a "snowball

effect," with larger data sets, more exact annotations, and a better understanding of

regulatory networks. Most important, this information should provide the scientific

community with more targets to screen advanced chemical compounds. Today,

there are roughly 10,000 human genes for which a function has been determined.

Of these, approximately 500 are currently targets for synthetic drugs designed to

combat the diseases that are associated with them. The number of

available targets could increase fivefold with the deployment of bioinformatics

platforms designed to accelerate comparative genomics, functional genomics,

structural genomics, pharmacogenomics, and proteomics.

Database Sequence Searching

The following steps outline the typical process of performing a database sequence

search.

(1) Choose a novel or known sequence to be analyzed. The researcher may be

looking for information regarding gene family relatives, functional annotation

associated with the sequence, or validation of a hypothesis.

(2) Determine which server to use for the query. The researcher may conduct

the sequence similarity search against many public or proprietary servers.

PhlDCEP Cpbtuolc Rpui-t
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(3) Select a program available on the server that is relevant to the search.

Some programs look specifically for text, others search through all available

data. In addition, most programs are specific to the type of sequence being

queried (i.e., amino or nucleic acid).

(4) Select a filter to limit the number of false positive hits. Statistical

parameters can be set to increase or decrease the relative similarity between

the query and the database to return matches with varying degrees.

(5) Analyze the outputfile

3.1.4 Public Search Tools

When data is gathered from a number of sources, data mining tools can identify

important information, trends, or examples from the data set. These publicly

available tools might include statistical models, rules-based procedures, interactive

visual manipulations, or combinations of these or other techniques. Users must also

be able to look at and manipulate data sets, identify trends and outliers, and test

statistical models or rules. A number of data search tools have been developed for

public use to help researchers sift through the enormous amounts of genomic

information. Some of these include BLAST, Entrez, and FASTA.

BLAST. BLAST (basic local alignment search tool) was introduced in 1990 as

part of a suite of DNA- and protein-sequence search tools. This software,

available through The National Center for Biotechnology (NCBI), allows

researchers to customize their searches to compare an amino acid or nucleotide

sequence to databases of sequences. BLAST uses an approximation method that

is expected to find matches quickly and with a statistical measure of significance

(that infers a biological connection). However, this rapid process sometimes

leads to misleading matches. The BLAST server is most easily accessed via the

Internet, through NCBI's Web site.

Entrez. Developed by NCBI in 1991, Entrez provides access to sequences of

nucleotides that are linked to proteins. This search tool, now accessible through

the NCBI home page on the Internet, enables researchers to sift through

information stored in its databases, including text, 3-D molecular structure,
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genome maps, and phylogenetic taxonomy. Once a search is submitted, a

summary of each hit is returned, which can be viewed in several different

formats.

FASTA. FASTA, maintained by the EBI in the United Kingdom, was the first

widely used algorithm designed for similarity searches within databases. This

engine scans sequences for tiny matches that will identify an optimal local

alignment (an alignment of a portion of two nucleic acid or protein sequences

with the highest possible score).

3.2 Comparative Genomics

Comparative genomics is the practice of comparing a gene or protein sequence with

the sequence of another gene or protein. Depending on the degree of similarity that

exists, scientists can use this information to extrapolate functional and evolutionary

relationships. In theory, the more two sequences resemble each other, the greater

the probability that they perform similar functions and are evolved from a similar

ancestor.

In practice, predicting the function of "unknown" genes requires a similarity search

against genes with "known" functions. To do this, a newly sequenced region of

DNA is used as bait to "fish out" genes that resemble its primary sequence. If this

screen is successful in "hooking" previously annotated genes (with known

functions), then the scientist is provided a clear direction for future experiments.

Although these predictive methods have been around for some time, the

exponential growth in genomic databases (and known genes) will fuel explosive

growth in this science. After all, with nearly 10,000 human genes and numerous

genes from other organisms discovered to date, the likelihood of finding a sequence

similarity continues to increase. Moreover, by understanding the functions of

related genes, scientists can narrow the focus of their research more quickly and

efficiently.

Although the industry has made substantial progress in recent years, there remains a

gap between sequence data and functional understanding. (See Figure 7.) More aggressive

efforts to screen and compare known and unknlown genes

should facilitate a more complete understanding of sequence inter-relationships.
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Using the science of comparative genomics, researchers can often locate the mouse

counterpart to the human gene known to be involved in a disease. Moreover, knock-

out and knock-in mouse technology (the process of altering the genome of the

mouse prior to birth to physically remove any gene or add an extra copy of a gene)

provides the ability to simulate human disease in a mouse. Once altered, these

model organisms can be studied and analyzed for their responses to various drug

treatments. Cancer is one example of a disease that has been replicated in a model

organism for the purposes of studying the biology and testing potential therapeutics.

Beyond testing efficacy, model organisms are also beneficial in understanding

toxicity. As mentioned previously, drug discovery ventures prefer to understand

"negative reactions" earlier rather than later, as this can save many lives and

millions of dollars. Producing animal models of human diseases allows drug

candidates to be tested in a living organism. This approach will allow

drug companies to "fail early and often" and focus research and development

budgets on only the best drug candidates.
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Figure 7: Raw Sequence Data Versus Functional Annotation

As mentioned previously, informatics plays a key role in accelerating comparative

analyses and assessing end results. Examples of third-party software used for comparative

genomics analysis are LION Bioscience's GenomeSCOUT (Figure 8) and GeneData's GD

Phylosopher.

Beyond third-party applications, researchers also have the option of performing

comparative analyses online. For example, NCBI provides Intcmet links to basic
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Figure 9: The Multiple Control Points of Gene Expression

Although our initial discussion emphasized the importance of sequence data in

providing a "road map" to the human genome, many believe that the process of

transcription holds the key to understanding "how and why" genes are activated.

More important, the expression of one gene often catalyzes positive and negative

transcription activity in multiple genes. By following this chain reaction,

researchers can begin to comprehend the intricate complexities of regulatory

networks and diseases in humans and animals. This approach could also provide

scientists with multiple targets to inhibit diseases with drug compounds. For

example, if Type II diabetes is caused by a chain reaction of genes A-Z, then

researchers have 26 possible targets for halting the "domino effect" and treating this

condition.

To analyze the transcription process in greater detail, the genomics community has

developed a variety of methods to assess which genes are expressed or "turned on"

under controlled and specified conditions. Today, the most common technique for

measuring RNA quantity is through the use of microarray technology. A DNA

microarray consists of large numbers of DNA molecules spotted in a systematic

order on a solid support (glass slide, nylon membrane, or silicon chip). The DNA

sequence at each spot represents a single-stranded fragment of a gene in the

genome. The short length (around 25-75 bases) and the single-stranded nature of

these DNA molecules allow them to pair with their complementary partners if they

were to come in contact with them.
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comparative analysis software. Most of these programs, like BLASTX and

ClustalW, require the researcher to electronically submit their raw sequence data to

an unsecured outside server where the analysis takes place. As with most online

tools, data outputs are crude and typically not formatted for presentation purposes

or integration with other data sets. Additionally, these resources only search

GenBank, the largest public genomic database.

Although online resources are sufficient for academic institutions, most for-profit

organizations have embraced more robust on-site tools. This not only enhances data

search capabilities but also provides for further integration with enterprise-wide

bioinformatics platforms.
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Figure 8: LION Bioscience's GenomeSCOUT

3.3 Functional Genomics

For a human gene to perform its prescribed function, its DNA sequence must be

expressed (copied) into an RNA message through a process called "transcription."

Once this process takes place, the RNA message moves outside the cell nucleus and

is translated into a protein. From a functional genomics perspective, DNA

represents the "instructions for life"; RNA acts as the "messenger"; and proteins

carry out various body "functions" necessary to sustain life (e.g., metabolism,

growth, and fighting off diseases or infections).
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Utilizing the aforementioned technology, scientists can quickly assess differential

expression levels for multiple samples. For instance, by finding which genes are

improperly turned on in a diseased tissue, researchers can quickly narrow their list

of potential targets for therapeutics. Although new microarray technology

has addressed the challenge of data collection, it has also created a new bottleneck

- data analysis. In many cases, researchers still upload experimental data into

Excel-based spreadsheets and sort through results using low-end tools. With this

archaic approach, the knowledge extracted from gene expression data is clearly

dependent on the scientist's ability to formulate "home-grown" algorithms for

analysis. Once all data points are collected, as shown in Figure 10, this information is

translated into a "gene expression matrix," with each column representing a gene

and each row representing a unique sample (e.g., different treatments or different

growth stages). Expression analysis software allows the researcher to evaluate

entire microarrays, or narrow their search to just a subset of genes.
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Figure 10: Digitizing Microarray Images

Examples of higher-end, multi-functional gene-expression packages include Rosetta

Resolver, Silicon Genetic's GeneSpring and SpotFire's Decision Site®.

3.3.1 Expression Analysis In Discovery

The power of gene expression analysis can be applied to the entire drug discovery

process, from the initial step of target identification to the latter phases of clinical

trial optimization. Today, most gene expression experiments are designed to

identify which genes get turned "on" and "off' under a given condition, which is

beneficial in the identification of potential drug targets. Although this represents an

effective application of this science, it has broader utility across the

entire spectrum of drug discovery - from metabolic pathway determination to

diagnostics (See Figure 11).
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Figure 11: Applications for Gene Expression in Drug Discovery

The following describes these applications in further detail:

Determination of cellular regulatory pathways. Since proteins originate from an

RNA message, researchers believe that a complete and thorough understanding of

cellular circuitry (i.e., when and why each message is made) can be developed through gene

expression profiling experiments. By aggregating this data, we

believe the scientific community can gain a better understanding of how a cell's

regulatory pathways function to sustain life.
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Target identification. One of the main barriers in developing therapeutics has been

the identification of rational targets against which to design drugs. This

barrier is more easily traversed with a gene expression profiling approach that

integrates the proper bioinformatics tools. For example, once we understand how

regulatory networks function under normal circumstances, scientists can begin to

infer how regulatory malfunctions can lead to disease. Employing gene expression

experiments to uncover differences in healthy and diseased tissues can clearly

identify cellular circuitry that has gone awry. By studying these situations, scientists

can begin to narrow the list of potential drug targets for a given disease.

Target validation. Most drugs are designed to combat specific protein targets

whose presence is somehow involved in causing disease. With target identification,

the researcher can reveal which aspects of the regulatory pathways are

malfunctioning. With target validation, the researcher adds a candidate drug to a

diseased cell and assesses its effect with gene expression profiling. For example, by

administering the potential drug, the researcher can determine whether the

malfunctioning networks have been repaired and if any side effects occurred. By

validating efficacy, researchers have a quantitative means of choosing which

potential compounds proceed to the next stage of drug discovery.

Toxicogenomics. This is an emerging discipline that identifies the adverse effects

of chemicals or physical agents on biological systems. Using gene expression

profiling to measure response rates on a molecular level, researchers can identify

known and suspected toxicants (adverse effects). Physiologically, the way a body

responds to potential hazardous chemicals (e.g., turning on gene A and turning off

gene B) is of great interest to drug discovery ventures. For example, many cancers

have been linked to exposure to harsh chemicals or carcinogens. By understanding

toxicological effects before drugs move on to the next step, pharmaceutical

companies should be able to dramatically improve success rates of clinical trials

and lower drug development costs.

Clinical trials validation. Clinical trials provide a "real life test" of potential drug

candidates. After a period of time, researchers can assess the impact of the tested

products in terms of efficacy and adverse side effects. To accelerate this process,
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gene expression analysis could be conducted on clinical trial patients to

evaluate efficacy at the molecular level, before outcome studies are produced. In

addition, dosage and administration of the candidate drug could be optimized, and

patients with differential response rates could be classified by their genetic makeup

(i.e., single nucleotide polymorphisms, or SNPs).

Diagnostics. Diseases are often caused by malfunctions in molecular pathways. For

example, cancerous tissues have lost their ability to turn off the "pathway" leading

to cellular division and therefore multiply uncontrollably. Today, regulatory

malfunctions can often be detected with gene expression profiling. As more

regulatory networks are identified, physicians will be able to compare a

patient's gene expression profile with a database of typical disease profiles and make a

comparative inference. This methodology has already been proved effective

in diagnosing two forms of leukemia. This facet of gene expression

profiling will be instrumental in providing doctors with a more accurate medical

diagnosis and allow for the administration of the correct therapeutics.

3.4 Pharmacogenomics

Pharmacogenomics is the study of how distinct groups of individuals respond to

therapeutics as a result of differences in their genome. It was recently discovered

that small inherited differences in DNA sequences of individuals may confer an

increased susceptibility to disease and may even dictate whether some chemicals

will work to combat disease while others may be toxic.

Although more than 99% of human DNA is the same across the world population,

slight sequence variations can have a major impact on how each human responds to

bacteria, viruses, toxins, chemicals, drugs, and other therapies. These differences

are termed single nucleotide polymorphisms, or SNPs. Since drugs mainly act to

block the function of some protein involved in disease, small variations in the

genome can influence whether the drug will act positively, negatively, or not at all.

Differential responses to chemotherapy, for example, can now be pinpointed to

specific "markers" of the patient. A marker is simply defined as a minor change in

the genome (SNP) that correlates to a physiological response. These DNA
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variances are translated into small structural differences in the protein, which may

influence its ability to interact with small molecules. By identifying these markers

in all diseases (and in all populations), the life sciences community has the

opportunity to tailor medications to the individual to ensure that the most effective,

targeted treatment is administered.

To identify SNPs associated with specific diseases, a handful of companies are

tackling the challenge of population genomics. Unlike most bottom-up approaches

to life sciences, population genomics starts with a group of patients diagnosed with

a specific disease, and thereafter, tries to find the unique characteristics that the

disease group shares in common. According to theory, SNP variations are

responsible for many common diseases, providing researchers with a handful of

targets to inhibit protein function.

One of the early leaders in this field is deCODE Genetics, which is cooperating

with the government of Iceland to screen medical records and extract genomic

information from the country's entire population. Given the isolated nature of this

country and the inheritability of SNPs, deCODE will gain valuable

insight from studying this controlled environment.

Today, SNP research is largely focused on two areas - discovery and scoring. In

terms of discovery, the SNP Consortium, composed of both academic and

commercial partners, recently announced a goal of identifying 300,000 markers in

the coming year. Once these markers are properly classified, researchers will begin

the process of identifying or "scoring" patients with specific SNPs. This "scoring"

system promises to assess the likelihood that an individual will develop a given

disease or respond to a specific drug.

The technology for scoring SNPs is also emerging quite rapidly. High-throughput

techniques that can identify small variances in DNA can warn doctors and patients

of increased susceptibilities to fatal diseases. In addition, data collection is made

easy with today's microchip, mass spectrometry, and electrophoresis-based tests,

with laboratories requiring just a single drop of blood to perform a full diagnostic

screen.
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Some players in this field are Silicon Genetics (the company's Allele Sorter is capable of

sorting and analysing large quantities of SNP data), Incyte Genomics (the company's

Snooper mined proprietary database for single nucleotide changes) and decode Genetics (the

company has developed an advanced solution for population genomics).

3.5 Structural Genomics

Structural genomics is the study of a protein's three-dimensional shape and how

this ultimately correlates to function. A malfunction or disruption of one or a

combination of a protein's functions in a regulatory network can lead to disease.

Knowing how these networks proceed in healthy tissues provides a foundation for

understanding how disruptions in these networks can lead to disease. A full understanding of

a protein's three-dimensional structure and how it

interacts with other molecules can give researchers a "visual target" for designing

drugs to inhibit protein function (and stop the spread of disease).

The potential for therapeutics, derived from

structural data, is immense. For example, a thorough structural analysis of targeted

proteins can minimize unanticipated (adverse) side effects that "pop up" in clinical

trials. Structural assessments can also facilitate rational drug design, specifically

tailored to the patient. As such, this emerging science will serve as a

critical component of any successful drug discovery venture. Moreover, as

structural genomics gains momentum in the "mind share" of researchers, we

anticipate a corresponding boost in demand for visualization software (a

requirement for tracking and manipulating three-dimensional protein structures).

To determine the structure of a protein, it must be replicated in large quantities to

ensure an adequate sample size. To do this, specifically engineered bacteria are

injected with a DNA sequence that corresponds with a specific protein. These

bacteria are then stimulated to produce large quantities of the corresponding

protein. Thereafter, proteins are purified through biochemical methods and

structurally analyzed by one of three methods (X-ray crystallography, cryo-electron

microscopy, and NMR). Alternatively, efforts to bypass these wet lab approaches
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and convert DNA sequence data into a three-dimensional protein molecule at the

desktop have also begun in a field called theoretical modeling. We shall discuss

each of these four disciplines in greater detail in the paragraphs that follow.

Although this science focuses on the structural aspects of proteomics, it remains

highly dependent on the continued growth and annotation of genomic data.

On the software side of the equation, a number of informatics vendors have developed

programs to: (1) expedite the mathematical calculations needed to translate images (or

sequences) into structure; and (2) visualize protein structures as a means of determining

functions. Some of the prominent vendors in this sector are: Molecular Structure Corporation

(the company's d*TREK software automates the process of finding X-ray diffraction spots

and predicting relative distances between the nuclei of atoms), Molecular Simulation (a

subsidiary of Pharmacopeia) and Structural Bioinformatics (the company's proprietary

software employs theoretical modeling techniques to generate three-dimensional structures

from sequence data).

3.5.1 Comparative Analysis

It is common for researchers to

perform comparative analyses between two proteins. The reason is that most

proteins belong to distinct families whose structures are highly similar, with slight

variations separating one protein function from another.

Interestingly, some proteins have different sequences but still fold into remarkably

similar structures. Although most protein families can initially be identified at the protein

sequence level and are confirmed at the structural level, proteins that fold

into similar structures but have no sequence conservation can only be identified at

the structural level. Understanding how different structural modules contribute to function

allows researchers to extrapolate an unknown protein's function by comparing it with

previously identified proteins. Moreover, using statistical parameters and

mathematical probabilities, algorithms can search through structural databases for

similarities not visible to the naked eye. Obviously, bioinformatics represents an

integral part of these complex structural analyses.
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It should be noted that many drugs on the market have varying effects on

different patients. For example, one patient might respond positively to Claritin,

while another may continue to suffer from allergies. The basis for this variability is

a drug's inability to interact with its protein target due to a slight structural change

that arises from an SNP in the patient. Through structural genomics, scientists can

now understand how these slight variations in the DNA code translate into

structural protein changes that influence how and why a drug does not interact with

its protein target. Assessing protein structure with sophisticated

bioinformatics platforms could allow researchers to design more efficacious,

patient-specific drugs while limiting adverse side effects.

3.6 Other Life Science Informatics Categories

Among the other life science informatics categories are Image Informatics, Cheminformatics,

ADME/Tox and Clinical Trial Informatics. Image informatics deals with reading images

generated from cells and tissues and acquiring data from them in a digital format, storing it

for future reference, and seamlessly accessing it to correlate past and present experiments.

Cheminformatics is based on an optimization technique to combine computational chemistry

with three-dimensional structure analysis, enabling fast and easy synthesis of compounds in

silico according to the researcher's needs. Examples of some leading companies that provide

cheminformatics solutions are Tripos, MolSoft. Beyond drug discovery, informatics can be

used in pharmacokinetics to model the release and body-uptake of drug molecules in the

body and in clinical trials to design experiments on patient population and analyze results.

4 Market Landscape
As detailed in the previous section, there are boundless opportunities for the application of

information technology in the drug discovery process, and that it represents the next quantum

leap in drug discovery. According to UBS Warburg Investors report, the Bioinformatic

market was approximately $700M in 2001 and is anticipated to reach $1.7B by 2006 growing

at 20% annually.
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4.1 Market Segments by Product Area

The market for bioinformatics can be segmented into three categories on the basis of product

area - Analysis software, Content and database providers and the IT Infrastructure segment.

The analysis segment is expected to grow the fastest at 26% followed by the IT Infrastructure

segment (19%) and then the Content segment (15%) (Table 2). Table 3 shows a list of the

market players in these segments and their key financial statistics.

Players in the Analysis segment provide data analysis and statistical packages for

applications such as gene expression analysis, sequence analysis, image data processing,

sequencing software, etc. The product can be either stand-alone (as in the case of

DNASTAR, Inc.) or a web-based application-service (as in the case of BioDiscovery, Inc.).

Other examples include Compugen, Celera Genomics, Rossetta, etc.

Content source providers host biological databases (such as Genbank, SNP Consortium,

Protein Data Bank, etc.). They can be public, in-house or commercial. While companies will

continue to allocate significant dollars toward purchasing commercial content, increasing

availability of public data will affect reliance upon commercial data in the future. The large

volume and relatively comparable quality (arguably so) of data in the public domain will

rival the cost of purchasing data from the commercial sector. Internal data generation and

integration will result in increased reliance upon in-house content. Examples of content

providers are Gene Logic, Compugen and Celera Genomics.

A third category of lifesciences software providers are the enterprise software companies that

provide system-wide management tools for laboratories, research units, etc. These tools

enable research organizations to store, manage, integrate, and analyze large amounts of

genomic and proteomic data from disparate sources. By providing a common interface for all

data, multiple users can share results, and research and development managers can coordinate

projects effectively. With these solutions, organizations can also leverage prior investments

in informatics applications while allowing for the purchase and integration of advanced third-

party tools. Examples of players in this field are Tripos, Pharmacopeia.
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Mkt Segmentation by Product Area Mkt Segmentation by Application Area
IT

Market Analysis Content Infrastruc- Proteo- Pharmaco- Cheminfo
Year Size Software Source ture Genomics mics genomics rmatics

2001 697 202 225 270 383 90 70 153

2002 836 254 258 325 383 126 97 231
2003 1004 319 296 389 383 175 134 312

2004 1204 401 339 464 383 243 184 394
2005 1445 504 388 553 383 337 254 470
2006 1734 634 445 655 383 469 351 531

Table 2: The Market for Bioinformatics in Drug Discovery and Development

4.2 Market Segments by Area of Application

The bioinformatics market can also be categorized on the basis of application areas, namely

genomics, proteomics, pharmacogenomics and cheminformatics (each of these categories

were explained in detail in Section 2). While genomics has the majority market share,

proteomics and pharmacogenomics markets are expected to grow the fastest at 39% and 38%

respectively (Table 2). Many bioinformatics companies operate across all four or at least 3 of

the above markets. Some exclusive players in cheminformatics and pharmacogenomics also

exist.

Analysis Software Content Enterprise
ASP-Based Stand-Alone

Accelrys X X
BioDiscovery X X

Celera X X

Cornpugen X X
Curagen X X
DNASTAR X
DoubleTwist X X

ene Codes Corporation X
ene Logic X X X
eneData X

Partek X

MDL

Incyte X

Rosetta
Lion Biosciences X X

Table 3: Leading Suppliers by Product Area
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4.3 Competitive Landscape

Given the recent emergence of third-party informatics competitors, it is somewhat

challenging to characterize the competitive landscape. Low capital requirements

(and barriers to entry) have created a highly fragmented environment. To add to the

confusion, pure-play vendors face competition from a variety of angles, including

nonprofit organizations, in-house solutions, and traditional technology companies.

The following discussion will attempt to provide a framework for the current

environment.

Today, the bioinformatics universe consists of six major public participants

(Compugen, CuraGen, Genomica, InforMax, LION Bioscience, and Rosetta) and

more than 100 privately funded start-ups. Because bioinformatics technologies are

not one size fits all, each competitor attacks the market in a slightly different

manner, with competition generally divided up by scientific discipline (e.g.,

pharmacogenomics, proteomics, and so forth). For example, Rosetta Inpharmatics

specifically addresses computational needs of functional genomics (gene expression

profiling), while ProteoMetrics offers solutions for the field of proteomics (mass

spectrometry data acquisition and mining). Figure 12 shows the competitive landscape in

greater detail.

Although most companies have developed best-of-breed applications for specific

disciplines, a handful of vendors have created enterprise-wide solutions to manage

projects (and data) throughout the entire life cycle of drug development. An

example of this strategy is LION Bioscience, which provides an integrated, "one-

stop-shop" offering for data management, genomics, functional genomics,

proteomics, and chemistry. Most pharmaceutical companies are

evolving toward this multi-disciplinary approach, a trend that should favor the early

leaders in this space (e.g., LION Bioscience and InforMax).
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4.3.1 Indirect Competitors

As mentioned previously, pure play bioinformatics vendors face indirect

competition from a variety of angles, including nonprofit organizations, in-house

solutions, and traditional technology companies. The following describes these

market participants in greater detail:

Nonprofit organizations. Over the past decade, a number of publicly available

databases have developed "low-brow" bioinformatics solutions. Examples

would include the sequence search engines, such as BLAST (available through

GenBank) and FASTA (available through SwissProt). Although we expect these

ASP-based products to compete on the lower end of the market, they do not

represent a serious competitive threat to the more robust bioinformatics

solutions.

Home-grown bioinformatics solutions. Since most third-party bioinformatics

vendors arrived late to the game, many large pharmaceuticals were forced to

build in-house bioinformatics departments to manage discovery projects and

analyze data. Companies in this category would include GlaxoSmithKline and

Wyeth-Ayerst. Although these home-grown solutions represent a near-term

competitive threat, pharmaceutical companies will ultimately realize

the benefits of outsourcing these initiatives to third-party vendors.

Large IT companies. A third competitive pressure exists from large information

technology companies that have recognized the demand for powerful applications

in life sciences. Since many of these organizations already maintain established

relationships with the pharmaceutical industry, capitalizing on the genomics

revolution with new products and services is a natural fit. The following details

the strategies of three recent entrants to the life sciences market.

IBM. IBM has a suite of offerings for the life sciences community.

Discoverylink, its database integration tool, is a middleware application that

links external life science databases with disparate formats. The company

also offers Internet hosting capabilities and IT consulting services. To date,

the company has formed strategic alliances in data integration (NetGenics),
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genomics (Incyte), proteomics (MDS Proteomics), and structural genomics (Structural

Bioinformatics, Inc).

Compaq. Compaq assists drug discovery ventures (via supercomputers) in

processing statistical calculations relating to gene similarities and gene

expression profiles. To date, the company has formed a handful of strategic partnerships with

genomic database providers and informatics solution

vendors. For example, the company's hardware was instrumental in

providing Celera with the necessary computing power to complete the

human genome project.

Silicon Graphics. SGI provides life science computational support through a

variety of scalable solutions (from the personal workstation up to the

supercomputer). This equipment accelerates the speed at which genomic data

is converted to useful knowledge. For example, Protherics is taking

advantage of SGI's powerful computing platforms through a

DOCKCRUNCH program that virtually screened one million compounds in

six days. As the industry evolves toward larger, more complex data sets, we

believe SGI will play an instrumental role in data processing support.

4.4 Market Trends

4.4.1 Consolidation on the horizon

Looking ahead, as information technology plays a more critical role in drug

discovery, we expect significant consolidation in this cottage industry. In our

opinion, multi-disciplinary drug discovery programs (which encompass all

scientific disciplines) will become the rule and not the exception. In this

environment, organizations will require full compatibility between tool

manufacturers, software vendors, and proprietary in-house solutions. The following

suggests some possible events that could spark another wave of M&A activity.

Intra-industry consolidation. Pure play software vendors may look to integrate

and offer combined solutions through acquisitions and alliances.

Pharmacopeia's acquisition of Oxford Molecular Group is one example where a

cheminformatics solution provider acquired a genomics analysis module to
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increase the breadth of their solution.

to merge biology with chemistry, are on the horizon.

Forward integration by tool and content companies. Tool companies and

content providers may seek to enhance the value of their current products by

integrating innovative, value-added technology. For example, Affymetrix's

acquisition of Neomorphic allowed the leading distributor of microarrays to

integrate computational genomics and sophisticated bioinformatics into their

product pipeline.

Screening companies enter the foray. High-throughput screening companies

that perform contracted services to pharmaceutical companies may look to

increase the breadth of their offering by adding an informatics component. One

example is Discovery Partners' acquisition of Structural Proteomics, which

added a powerful in silico protein analysis program to its existing chemical

screening capabilities.

Large information technology companies stepping up to the plate. A fourth

- and less likely - scenario would be the acquisition of pure-play

informatics vendors by large information technology companies. This would

allow these conglomerates to further penetrate this vertical market (with

potentially explosive growth opportunities).

4.4.2 In-house vs. third-party software development

One of the biggest questions facing users of bioinformatics is whether to purchase content or

technologies from commercial vendors, or to develop tools in-house to meet the company's

specific needs. Front Line Strategic Consulting estimates that pharmaceutical and

biotechnology companies will continue to allocate 60% of their total bioinformatics spending

to commercial vendors, totaling $1.1 billion in 2006. According to UBS Warburg LLC,

majority of technology investments in 2001 were performed in-house rather than outsourced

to third-party vendors (e.g., LION Bioscience and InforMax). Going forward, however, the

pharmaceutical

industry is expected to realize the benefits of informatics partnerships and fundamentally

shift resources toward more robust third-party technology.
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5 Business Models
Bioninformatics vendors generally employ one of three business models as detailed below.

Although the opportunity for informatics appears relatively straightforward, we should

emphasize that each competitor attacks the market in a slightly different manner, with

competition and products typically bifurcated by specific scientific disciplines (e.g.,

genomics, functional genomics, proteomics, and so forth). In addition, the delivery of these

products and services varies from vendor to vendor, with each employing a slightly different

delivery mechanism and business model. The following sections describe the three most

popular business models in this nascent market as well as the advantages (and disadvantages)

of each approach.

5.1 Application Service Providers

Initially, a number of vendors entered the informatics market as application service

providers, or ASPs. At first, many thought this data delivery approach was ideal for

pharmaceutical companies looking to minimize capital allocations, cut overhead costs, and

lower the risk of technological obsolescence. In addition, the ASP model provided

predictable technology costs for clients (with bundled services billed monthly), while

enhancing recurring revenues (top-line predictability) for informatics investors. This

emerging class of .portal. companies included a handful of well-known start-ups such as

DoubleTwist, Viaken, and Entigen.
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Figure 13: The ASP Solution

Although this approach made sense in theory, many start-up companies failed to realize the

privacy concerns of large pharmaceutical companies. As mentioned previously, because the

ASP model depends on the Internet for data delivery, large biopharmaceutical organizations

were naturally concerned about security. After all, with the average multi-national

pharmaceutical company spending hundreds of millions of dollars on drug discovery, it

simply doesn't make sense to float these trade secrets into the public domain. Although this
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might be a gross exaggeration (given today's advanced encryption technology), it has

become a real concern for pharmaceutical organizations. Beyond the issue of security, there

is also the issue of functionality. In most instances, processing performance is hampered by

programs and algorithms run over the Internet. Although these concerns can be addressed

with necessary investments in telecommunications, it also provides a good excuse for

pharmaceutical companies to simply purchase informatics software outright, and then run

these programs on-site with mainframe processors. In summary, the ASP model offers a

number of advantages for research organizations throughout the world. However, real (and

perceived) privacy and performance concerns have prevented these vendors from making

substantial inroads into the large pharmaceutical market. By contrast, this approach appears

quite popular with academia and small biotechnology companies and organizations that

naturally benefit from this business model's predictable, low-cost pricing structure.

5.2 Software Licenses (and Maintenance Fees)

To overcome the issues of security and performance, many informatics vendors

have sold their software under perpetual license agreements. This common model

allows for informatics applications to be installed on-site, facilitating data

processing behind the four walls of the pharmaceutical company. Furthermore, to

enhance the performance of these more advanced programs, many clients choose to

invest in high-end mainframes to accelerate data output.

The obvious downside to the one-time license model is its unpredictability, with the

majority of license revenues recognized up front. To minimize this effect, a number

of vendors have charged clients an annually renewable maintenance fee, which

typically ranges from 15% to 25% of the license revenue. In addition, consulting

and data integration services (billed as services are provided) can also enhance the

predictability of revenues.
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Figure 14: Perceived Value Versus Cost

5.3 Research Collaborations

In an effort to move beyond the role of just a software vendor, a number of

informatics companies have combined their technology with wet lab services. We

believe this bundled approach will prove popular with capacity-strained

pharmaceutical companies looking to outsource a component of the drug discovery

process. Furthermore, this business model not only moves informatics

companies up the food chain in terms of perceived value (see Figure 14), but it also

provides for closer relationships with pharmaceutical and biotechnology clients.

Given the recent rollout of bioinformatics collaborations, it is difficult to describe

the typical business model. But generally speaking, most contracts include a

combination of fixed and incentive (milestone) payments. For example, LION

Bioscience is working with Bayer to identify potential drug targets and genetic

markers for disease susceptibility. As the company reaches predefined milestones,

it will be awarded incentive payments (in addition to pro-rata fees). Most important,

these collaborations allow for royalties on all drugs produced by these efforts,

providing a potential stream of future cash flow. In many respects, the

continued rollout of this outsourced offering will reposition many industry

participants as in silico drug discovery ventures rather than software developers.

6 Commercialising the "Regulatory Sequence Analysis Package"
This section addresses the issues that need to be considered for commercialising the work

produced from this thesis. In particular, this section will provide an overview of the TABS

algorithm, the value that it adds for its customers, the ways in which it can be

commercialised and the various issues that need to be considered in that process. Regulatory
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Sequence Analysis falls under the realm of "functional genomics" in the value chain of drug

discovery.

I TABS - Teiresias-based Algorithm for identification of Binding Sites

This thesis led to the development of a software called TABS that enables identification of

regulatory signatures in DNA sequences that control expression of genes. The program takes

as input a set of upstream regions of "hypothetically" co-regulated genes, and performs

pattern discovery analysis to identify motif signatures that are shared among those upstream

regions and are possible involved in gene regulation. See Figure 15.
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6.2 Enhancing the knowledge derived form Gene Expression Analysis

Microarray data produces gene expression information that can be analysed to understand

which genes are co-expressed, and which genes are implicated in a certain disease/ in a

certain pathway. The regulatory sequence analysis package can be used to increase the

confidence in the results from such an analysis.

The software searches for conserved regulatory sequences upstream of genes that are

clustered based on their different expression profiles in response to external stimuli over time

or across different tissue types. If these genes indeed share a common regulatory mechanism,

then their upstream regions would be expected to contain a common binding site. The

binding site or the discovered motif can throw some light on the nature of protein that

regulates the genes and hence helps elucidate the regulatory network. Thus the end-

customers of this product are all the biologists conducting drug discovery research in

academic and commercial laboratories and want to understand the mechanism behind the

various biological processes. See Figure 16.

Figure 16: Integrating regulatory sequence analysis with microarray data analysis platform

6.3 Commercialising TABS

A first approach would be to attempt to commercialise this software as a complete tool by

itself. The product being niche, however, this approach would have various downsides.

Firstly, there is free-for-academic-use publicly available software that competes directly with
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TABS. Examples of this are numerous: Consensus, dyad analysis, PromoterInspector,

AlignACE, etc. Given that academic use constitutes a significant chunk of our customer base,

it will be hard to make a profitable case. However, there is tremendous value in integrating

the software with an existing functional genomics toolbox to deliver a complete solution at

the desk of a researcher. This would also enable easier and faster penetration of the market

through the already existing sales force of other established companies which could act as

partners.

According to Frost and Sullivan, the entire gene expression market size was about $60M in

2003 and is growing at 10% an year (Source: Frost and Sullivan). The market is highly

fragmented and several small analysis software companies as well as larger players compete

in this market. Companies such as Affymetrix and Agilent sell bundled software with their

gene-chip toolkits, thus penetrating a larger segment of the market. SpotFire, Inc is one of the

leading players in this market with a revenue share of approximately $1 OM. Selling a license

to any of these companies would be an attractive proposition.

TABS uses Teiresias®, copyright product of IBM. Before licensing TABS to any third party,

commercial rights from IBM would need to be purchased. IBM's Life Sciences group

already has a functional genomics product on market that includes a gene expression analysis

tool (Genes@Work), Teiresias® and a sequence database. One possible approach would be

to bundle TABS with this product and demand some royalty on sales from IBM. Since the

basic software platform is common, integration issues would be minimal in this case.

However, given that the market penetration of IBM's product is very small, this might not be

a very attractive option.

6.4 Business Model

6.4.1 Integrate the product with a larger technology

Based on the previous discussion an attractive business model would be to license the

product to a third-part player which is a market leader, such as SpotFire, Affymetrix or

Rosetta. The official figures of revenues from the functional genomics toolbox is difficult to

determine from the 10Ks of these companies (SpotFire is a private company, anyway) since

these companies derive revenues across a range of products and services. However, we can

estimate the yearly cash inflow by making some assumptions. For instance, SpotFire has

annual revenues of $20M based on investor reports. SpotFire's revenues are primarily
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derived from the sales of its product DecisionSite®, an enterprise software solution that

provides visualization and analytical tools. 57% of its revenues come from the

biotech/pharmaceutical sector. It sells a functional genomics and lead discovery add-on

package to these companies. Table 4 shows prices of the base-software and each add-on. The

number of users who use the functional genomics package has been estimated based on the

total revenues and product price. Given that the functional genomics tool has 4 utilities

(Visualization, PCA, k-means clustering and hierarchical clustering) for which a charge of

$2000 per user/year is made, each utility has a worth of about $500. This would be a

reasonable benchmark to use while pricing the TABS utility (Note: Of course, a better way

would be to estimate the "value" that the software brings to SpotFire and its customers.

However, in the absence of any direct comparables we are proposing a simple approach to

estimating the value that we can demand). With a user base of 912 (Table 4), this implies an

yearly revenue of $500x912=$456K for the company from the TABS utility. Assuming a

10% royalty back, we can make about $45K per year based on this simple model. A part of

this would go back to IBM as royalty for using Teiresias®.

The primary upfront initial investment needed to start the company would go towards

obtaining rights from MIT (since this IP belongs to MIT). Other steps involving costs would

be to reach out and sell the product to potential third-part customers and also product

development.

Base Price Browser $3,500per user/yr

Server $5,500 per user/yr

Total $9,000
Add-ons Functional Genomics Package Add-on $2,000per user/yr

Lead Discovery Package Add-on $1,500per user/yr
Total Price $12,500 per user/yr
otal Revenue otal $20,000,000per year

Biotech $11,400,000 per year
Implies user base 912
Price of TABS feature $500per user/year

Revenues from TABS $456,000 per year

Table 4: Licensing to SpotFire

6.4.2 Generate IP related to metabolic pathways and regulatory network

An alternate business model would be to sell "content" in the form of information related to

metabolic pathways and regulatory networks related to specific diseases which drug-

discovery companies would be willing to buy. Starting from public microarray gene
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expression databases, one could use TABS to analyse and search for regulatory signatures.

Together, this information along with wet-bench experiments for validation, can be used to

reconstruct pathways. This business model could lead to higher revenues than the previous

one, since it is possible to demand higher for "content" databases. However, the operating

cost associated will also be larger (maintaining laboratories, paying skilled labour, etc).

6.5 Reaching out to the customer

A very important part of the selling process would be to reach out to "sell" the product to

potential customers and convince them about the utility of the product. Since the end-

customers are scientists and people who work in the academic laboratories, a scientific

publication in a renowned journal could serve as a key marketing tool. Once the credibility is

established, it will be a lot easier to approach the customers and demonstrate live the value of

the software.

6.6 Recommendation

Based on the above analysis, we conclude there are several options to commercialise TABS.

The more attractive options are those where the technology can be made a part of a larger

platform and bundled with a pre-existing and established software product of a pre-

established player such as Rosetta Inpharmatics, SpotFire or Affymetrix. An alternate model

would be operate as a "content" company that sells intellectual property related to specific

pathways that can serve to find targets for particular diseases. We believe, given the trends in

the industry, that this model would be very attractive in the long term.
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