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ABSTRACT

The inverse scattering problem for an acoustic medium is con-

sidered within the homogeneous background Born approximation. A

constant density acoustic medium is probed by a wide-band plane

wave source. The scattered field is observed along a receiver array

located outside the medium. Two methods for partial reconstruction

of the medium velocities are presented. In the first method (the

slant-stack method), the projections of the velocity potential at a

range of angles are obtained from the plane-wave components of

the scattered field. The range of available projection angles is

determined by the receiver array aperture and the incidence direc-

tion of the probing plane wave. The medium velocities are, then,

partially reconstructed from available projections via well-known

methods of straight-line tomography. In the second method (the

imaging-filtering method), the observed traces are filtered, back-

propagated into the medium and imaged at the source travel times,

in the same way as in migration. The resulting image is, then,

filtered by a linear space-invariant filter to obtain a partial recon-

struction of the medium velocities. Both reconstruction methods
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are illustrated by some synthetic examples for several receiver

geometries.

1. Introduction

Consider the scattering experiment described in Figure 1. A constant density

acoustic medium is probed by a wide-band plane wave and the scattered field is

observed along a receiver array. Then, the Fourier transform P(r,o) of the pres-

sure field satisfies

[ V2 + k 2 nZ2 () ] P(r,r,) = O , (1)

where k = co/ c is the wavenumber, c is a reference velocity, and if v (_) denotes

the medium velocity function, nL(r)=c/v((r) is the refraction index measured

with respect to the velocity c. Throughout this paper, it will be assumed that the

velocities v (.) do not deviate significantly either in value or in extent from the

background velocity c, so that

nz2(r) = 1 + (r_) , (2)

where the scattering potential 7(-) is small with respect to unity. By substituting

(2) inside (1), we can rewrite equation (1) as

[ V2 + k 2 ] pC(ra) = _-22 7(r) P(r,co), (3)

where the operator Do = V2 + k 2 appearing on the left hand side of (3) is a con-

stant unperturbed Helmholtz operator, and where the forcing term on the right

hand side can be viewed as a small perturbation. The solution of (3) can be

expressed as

P(ir..) = Po(z,Co) + k 2 f ' (') ( ',) PG(r' r..) G ',c ) , (4)
V
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where the incident field Po(r,c,) is a solution of the homogeneous equation

DoPo0(-,w) = 0, and where the second term in (4) is obtained by superposition by

using the Green's function G 0 (rr_',c) associated to Do. In the above equation, V

is a volume enclosing the domain where 7(r-) is nonzero. For the experiment

geometry considered here, the medium is probed by a plane wave, so that the

incident field Po(r_,c) = e/m ':, where ks is the incident plane-wave vector.

Furthermore, for a two dimensional (2-D) medium

Go (Ml- SA) 4 H1m) (k I r' I) (5a)

where HSi) (.) denotes the Hankel function of the first kind, and for a 3-D medium

_ik Ir--_' I

The main feature of equation (4) is that it is exact, i.e. no approximations are

involved up to this point. This equation is known as the Lippmann-Schwinger

equation [1], and it puts in evidence the nonlinear relation existing between the

potential 7y(x_) and the pressure field P(xr,c). A simple method of linearizing this

equation consists in approximating the total field P(r_',c) inside the integral in

(4) by the incident field P0 (r-',c). In this case, the scattered field

PS (r_,co) = P(T.,Co) - P0 (x_,o) can be expressed as ([1], [2])

P.S (ic) = k 2 S(w) f dr' 7(r-') PO(r.,c) GO(z',co) , (6)

Equation (6) represents the constant background Born approximation of the

scattered field, and throughout this paper we will assume it is valid. In this

approximation it is assumed that the incident field e created by the source

propagates through the medium undistorted by the velocity variations. Then,

each point in the medium can be viewed as a secondary point source with source



-4-

excitation given by k2S(rw)7(z)eQ'V in the Fourier domain. The scattered field

is constructed by the superposition of these secondary sources. Since the

incident field is assumed to be independent of the velocity variations, multiple

scattering effects are neglected in this model. The inversion problem considered

here consists of reconstructing the scattering potential y7(.) from observations

of the scattered field at various locations outside the medium. In some cases this

can be accomplished only approximately due to insufficient receiver coverage,

and/or because the source has only a finite bandwidth.

The multidimensional Born inversion problem has been investigated for vari-

ous observation geometries and background velocity models. The majority of the

solutions which have been proposed assume a homogeneous background model,

as is the case in this paper. The zero-offset reflection geometry consisting of

coincident sources and receivers was considered by Cohen and Bleistein [3] for a

line aperture in two dimensions, and by Norton and Linzer [4] for plane, cylindri-

cal and spherical apertures in three dimensions. Raz [5] and Clayton and Stolt

[6] considered the same experiment geometry as Cohen and Bleistein, but with

unstacked data. In other words, for each source the scattered field is recorded at

all receivers rather than only at the coincident receiver. They showed that both

the density and bulk modulus of the acoustic medium can be recovered with this

experiment. A slightly different experiment geometry has been considered in the

context of diffraction tomography. The acoustic medium is probed from various

directions by monochromatic plane waves and the scattered field is recorded

along a line ([7], [8], [9]). From this data, which in general contains both

reflected and transmitted waves, the velocities of the medium can be recon-

structed partially or completely depending on the range spanned by the angles of

incidence of the plane waves ([10]). The diffraction tomography formulation has

been extended by Devaney and Beylkin [11] to the case of receiver array surfaces

of arbitrary shapes surrounding the medium. Another scattering experiment pre-

viously considered consists of a single wide-band point source, with receivers

surrounding the medium Esmersoy et. al. [12] have shown that, in this case, the

inversion problem can be reduced to a straight-line tomography problem and

that the medium velocities can be reconstructed completely.
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The velocity inversion problem is closely related to the reflector imaging or

migration problem. The reflectors can be imaged in two steps: first the observed

scattered field is extrapolated (backpropagated) into the medium. Then, the

extrapolated field is imaged at every point in the medium at a time equal to the

travel time of the incident field to that point. In migration the main objective is

to map the locations of the reflectors. Nevertheless, at least for simple

reflectors, the peak amplitudes-along the imaged reflectors can be related to the

local plane-wave reflection coefficients [13]. Also, Weglein [14] observed that for

zero-offset reflection data the normal derivative of the inverted velocities and the

migrated image were quite similar. Subsequently, it was shown by Cheng and Coen

[15] that for bandlimited data these quantities are essentially the same and that

one can be obtained from the other.

In this paper we consider the inversion problem with a single wide-band

plane-wave source. This is the dual of the diffraction tomography problem, i.e.,

instead of using one frequency and all angles of incidence, we use one angle of

incidence and all frequencies. We present two methods, namely the slant-stack

and imaging-filtering methods, for partially reconstructing the velocity potential

from the observed scattered field. First, it is shown that there is a simple map

between the plane-wave component of the scattered field at a fixed angle ' and

the projection of the potential at an angle rp which is algebraically related to '

and is, where As is the angle of incidence of the probing plane wave. Therefore,

projections of the potential at various projection angles can be obtained from the

plane-wave scattering amplitudes. The plane-wave scattering amplitudes are

obtained from the scattered field by performing a slant-stack operation. If the

receiver array does not surround the medium (incomplete coverage), only an

incomplete set of projections can be obtained. For example, if the receivers are

located on the surface, the available projection angles are contained in a cone of

iT/2. Once the projections are obtained, the velocity potential is reconstructed

either by using the filtered backprojection method for the available angles, or by

a multidimensional inverse Fourier transform. In both cases we set the missing

projections to zero.
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The imaging-filtering method consists of two steps. The first step is similar to

migration. The observed traces are filtered in time, extrapolated back into the

medium and imaged at the source-travel times. The velocity potential is, then,

obtained by filtering this image in the spatial domain with a linear space-

invariant filter. The filter is independent of the receiver array geometry, and is

completely determined by the angle of incidence of the probing plane wave.

Again, if the receiver coverage is incomplete, the potential can only be recovered

partially. The two methods presented here are quite different conceptually and

computationally. However, it can be shown that they give mathematically identi-

cal inversion results.

In the following section we discuss the slant-stack method of inversion for

the general case of incomplete receiver coverage. In Sections 2.1 and 2.2 we con-

sider the special cases of straight-line and weak-curvature receiver arrays,

respectively. In Section 3 the imaging-filtering method is presented. Synthetic

examples illustrating both reconstruction methods for various receiver

geometries are given in Section 4.

2. Inversion by Slant-Stack

Consider the plane-wave scattering amplitude defined by

A (J.) = -f di [ P w (,.) Ve *' - V P. (7. ) e- ' ] ZL , (7)

where R is the curve along which the receivers are located, &L is the unit vector

normal to R pointing towards the scatterers as shown in Figure 1, and k = k.

The above representation of the plane-wave scattering amplitude was introduced

by Devaney and Beylkin [11] for the case where the receiver array R completely

surrounds the scattering medium. As such, A (k/,c) can be viewed just as a con-

venient mathematical object which will be used in subsequent derivations. How-

ever, for the case of a straight-line receiver array, as indicated by equation (18)

below, A (,cw) has also a simple physical interpretation as the plane-wave com-

ponent of the scattered field which is in the direction of the unit vector A;.
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Furthermore, for a curved array, it can be shown that A (J,c) is equal to the

corresponding plane-wave component which would be observed by a line array

normal to the direction A. This justifies therefore the fact that we call A (',C)

the plane-wave scattering amplitude for the general array geometry shown in

Figure 1. The relation between the plane-wave components of the scattered field

and the potential is derived in Appendix A for the case when the receivers provide

only an incomplete coverage of the scattering medium. By incomplete coverage,

we mean that the receiver array does not completely surround the domain V

where the scattering potential 7(m_) is nonzero. It is shown that when R is an

open surface asymptotic to radial lines with angles al and a 2 (as indicated in

Figure 1) then

A (1,w) = k2 S(w) f dr' -(m') e(t-)' ; oI E[ a2; al (8)

= ; otherwise,

where 6 is the angle corresponding to the unit vector . It is seen from this iden-

tity that, for fixed k] and c, the plane-wave amplitude is related to one point in

the Fourier transform of the potential. If the receiver array surrounds the

medium, we have [a 2 ;al] = [0;27r] and equation (8) corresponds to the complete

coverage case discussed in [11].

In the following, we will derive the relationship between the plane-wave

scattering amplitude for fixed £ and the projection of the potential onto a line

defined by a unit vector ii. We consider a two-dimensional problem (the receivers

are located on a curve and the velocity is a function of z and z). However, a

three-dimensional formulation can be obtained following similar steps. Let

[cosr 1 -fr.,
~= sin~E-E = Ii4s | (9a)

uZLl -k k 2 |i- (9b)



i.e., -2 is the unit vector along the direction k-k-, and u is obtained by multiply-

ing the wavenumber k by the length of i--i as shown in Figure 2. The angle rp

and the magnitude u can be simply related to the angles ) and As as follows

· + 's ± T
-2 (10a)
2

=/ =k2{cos(--as) { = k 2{sin( ), (lob)

where the sign of rp in equation (10a) is chosen such that

6s + 7/2 < P < Os + 37r/2. Replacing the exponent k-k- in equation (8) by

uiL, we find that for an angle a) which belongs to the angular aperture of the

receiver array (i.e., a E [ a 2 ; a 1 ]) we have

A(k,) = k 2 S(c) f dir' 7(r') en al. (ii)

Thus, for fixed i and varying o, the plane-wave scattering amplitude gives the

Fourier transform of 7 along a line with angle 9', where (p is algebraically related

to the angle ) of E via equation (10a). If we consider all available plane-wave

components we obtain a cone in the Fourier transform domain of 7, where the

angles p contained in this cone are given by

a 2 -E ±r aI + ls ± 7± (1)
E; lb = 1 (12)

2 2

as shown in Figure 3. By taking the Fourier transform of both sides of equation

(11) the projection of the potential onto the line defined by i is given by

?(iL,sa) = 4 ' y(.,) =( ir.' -s )

= 1,/du A f eiss. (13)
_~7r k2S~o
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Finally, changing the integral variable from u to k according to equation (9b), we

obtain

(14)q(fl,S) = | k* I J dkA eik21A Is (14)
Tr _- k 2 5(o)

The projections of the velocity potential are given by equation (14) when k is

within the angular-aperture of the receiver array. The projections for the

remaining angles cannot be obtained from the data. Therefore, if the receivers do

not surround the medium, only a subset of the projections can be recovered. In

this case, the reconstruction problem is similar to the limited angle tomography

problem. The range of available projection angles is determined by the angles al,

a 2 specifying the receiver array and by the angle As of the incident plane wave

(equation (12)). In the discussion above we have seen that for fixed£ and varying

X the plane-wave scattering amplitude gives the Fourier transform of 7 along a

line with angle V. From the projection-slice theorem the inverse Fourier

transform along this line gives the projection of the potential 7 onto the line

defined by the angle ro. This is the dual of the problem considered in diffraction

tomography ([10]), where for fixed o and varying i the plane-wave scattering

amplitude gives the Fourier transform of the potential along certain circular tra-

jectories.

The velocity potential is reconstructed from its projections by Radon's inver-

sion formula ([16])

1f ) d., ?J7 (.U - ) r (15)

where 4 is the range of available projections specified by equation (12), and

where the filtered projections are defined as

?O(A,p ) f du p- Iu f ds eSS (A,s ). (16)

27r~~~~~~~~---
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From equations (9b) and (13), the filtered projections can be written in terms of

the scattering amplitude as

^ (X p) 2 l k 12 dk A (1,) ik219 (17)
_rr - I I S(O) (17)

For a given array geometry, the scattering amplitude obtained in equation (7)

can be substituted in the above equation, thus providing a direct relation

between the observed data and the projections of the potential.

From equation (7), we see that both the scattered field and its normal deriva-

tive are needed to obtain the plane-wave scattering amplitude. It is easy to show

that for a straight-line receiver array the two terms inside the brackets in equa-

tion (7) become identical, so that only the scattered field itself is needed to

obtain the scattering amplitude. In general the normal derivative of the scattered

field along a curve (or surface) can be obtained from the field itself, but there is

no simple analytical expression between these two quantities. In the next section

we consider the case of a straight-line receiver array.

Straight-line receiver array

Consider the observation geometry shown in Figure 4, where receivers are

located on a straight line defined by the unit vector .i. In this case, the plane-

wave scattering amplitude becomes

A WE,c) = 2 AL *k . ds ik P (s A) e Wo C S) a (18 )

where Ai is the unit vector pointing towards the scatterers and r is the origin of

the receiver array indicated in Figure 4. From equations (17) and (18), the

filtered projections of the potential can be expressed directly in terms of the

observed scattered field as follows



^ (a Pi) -4 ^& *4 12 - 1 -
7f(O,p) = I . I .

j ds .fdk i sgn(ca) E (S I) (sc4 ,i)( I)1-Z1£* , (19)
4M S(o)

where sgn (c) denotes the sign of o. The expression inside the integral in equa-

tion (19) can be interpreted as obtained by the following sequence of steps:

1) First, we perform a deconvolution of P,(s,wo), so that Ps(s,co) is multi-

plied by 1/ S(CO).

2) The resulting deconvolved field is then Hilbert transformed, which

corresponds to a multiplication by isgn (co).

3) The dk integral corresponds to an inverse Fourier transform.

The filtered projections can therefore be expressed in the time domain as

(2,p) = 8 1 - z1 2 i .. k

J ds, PR(s, t =I-k - - |L *s |P+ -k*S)a (20)
-~-m ~C C C

where PH(s ,t) is the deconvolved and Hilbert transformed data and where the ds

integral corresponds to a slant-stack operation.

Weak-curvature receiver array

If the receiver array is not a straight-line both the scattered field and its

normal derivative are needed to obtain the projections. It can be seen from equa-

tions (7) and (17) that in this case the projections are obtained by slant-stacking

both the field and its normal derivative. This increases the processing time by a

factor of two. Moreover, if the normal derivative field is not observed, it must be

obtained from the field observations numerically. However, if the local radius of

curvature of the receiver array is much larger than the dominant wavelength, the

normal derivative field can be approximately written in terms of the field along
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the array. The simplest way is to assume that the receiver array is locally a

straight line. With this assumption the plane-wave scattering amplitude becomes

A (k, ) = 2 f ds L (s). * kk Ps (-.,) e " ( (21)

This is essentially the same expression as in equation (18) except that the'

tangent (E_) and normal (it) unit vectors are functions of the receiver location.

Therefore, the filtered projections in this case are given by

(l.,p) = 8 i1-Es12

f ds fi(s). iPd[st = k£.ro _- IX.*i pa+ k-k..(s)s].-

(22)

For straight-line and weak-curvature receiver arrays, the slant-stacking

reconstruction method consists therefore in obtaining first the filtered projec-

tions -f (l,p) via equations (20) or (22), and then in using (15) to reconstruct

the potential T(r).

3. Inversion by imaging-filtering

The second inversion method considered here consists of a sequence of steps

where the scattered field is first backpropagated inside the medium, imaged at

the travel times and then filtered in space. Consider the extrapolated wavefield

P, (7:,co) defined by

P;I'(MC) f dL [ P . (rR,w ) VG( (r xR, ) -

where R denotes the curve where the receivers are lcated, is the normal unit

where R denotes the curve where the receivers are located, AL is the normal unit
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vector pointing towards the scatterers, and Go is the complex conjugate of the

Green's function. The extrapolated field Pe is the solution of a boundary value

problem for the homogeneous wave operator, where the time reversed scattered

field PS and its normal derivative are imposed as boundary conditions at the

receiver locations ([17]). In equation (23), due to the presence of the incoming

Green's function Go, the observed data is backpropagated towards the scatterers

to obtain the extrapolated field. The backpropagated field converges and focuses

(collapses) at the scatterers in the medium and then diverges and propagates

away from the scatterers. Therefore, the extrapolated field contains both incom-

ing and outgoing waves. The extrapolated field concept has been used in various

problems previously. Porter [17] introduced the idea in the holographic imaging

context to analyze the image kernels for various array geometries. Bojarski [18]

used this concept to study the inverse source problem, and Esmersoy et. al. [12]

used it for the inverse scattering problem for a single wide-band point source.

Also, the mapping principle of migration for reflection data introduced by Claer-

bout [19] is essentially the travel time imaging of the extrapolated field.

The following volume integral representation of the extrapolated field can be

obtained from equations (6) and (23)

P C.M,) = k 2 S(W) f dr' t(a') e"' E(xr!',w) (24)

where the extrapolated field kernel is defined as

E*(;', ) - J dl [ Go(xR"', c) VG o,Cr ) --

VGo(xrr x',w) G (rrR, c) ] · . (25)

The kernel appearing in equation (24) represents the contribution of the field

scattered from point r' to the field extrapolated to r. Comparing equations (6)

and (24) E(r,',c) can be interpreted as the "Green's function" for the extrapo-

lated field. It was shown by Porter [18] that when R is an open surface asymp-

totic to a.wedge of angular range [a 2 ; al], the extrapolated field kernel can be

written as
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E(7 ,C) = 7T f() df o e ') (26)

where i is the angle corresponding to the unit vector and k = k/. Let now

-1 P(M'T -W)
f,) 2d-it dc X iw S(o) e (27)

be the function obtained by filtering the extrapolated field, and by imaging it at

the source travel times T(1) = 1 -s or (which corresponds to a plane-wave
C

source and a homogeneous background). Here the filter [/coS(co)]- corresponds

to a deconvolution operation followed by an integration in the time domain. From

equation (23) it is seen that the filtered extrapolated field can be obtained by

first filtering the scattered field and then backpropagating the resulting field into

the medium The travel time image B(r_) is similar to the migrated image except

for the time integration performed before extrapolation. It turns out that f8(r) is

simply a spatially filtered version of the velocity potential 7(r_) where the filter

impulse response depends on the incidence angle of the plane wave and the

angle-aperture of the receiver array. To see this, combine equations (24), (26)

and (27). Then, the travel time image can be expressed as

(7) = f dr' -(r') h (.r-r') (28)

where h (') is a space-invariant filter with point spread function

a, 

h()= 12 Jf do J dk II e (klw) (29)

Thus, the image OV(_) represents the velocity potential filtered by the space-

invariant filter given above. This filter has a simple interpretation in the Fourier

domain. Consider the change of variables given by equations (9a) and (9b) and
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let r be the angle corresponding to the unit vector i. In terms of the new coordi-

nates (q , u) the filter can be written as

h(r)-- 67r Tf - j du uL eiuh x-a (30)
16ir2 * IJjr ~ 12

where a is the integration range for the angles rp corresponding to , E [a 2 ; al].

Define an extended range of angles 0 such that if r El 4 then both rp and

rp + rT EC 0. Then, equation (30) can be written as

4= hr 0 4 d ' f duLu e ( 

we= ET -l denose }e -F (31)

where FT- 1 denotes the multidimensional inverse Fourier transform and

Neo= ; 1 El8

= ; otherwise . (32)

The Fourier magnitude of the filter h (r_) for the case of a line array and when

the plane wave is at normal incidence is shown in Figure 5. From equation (28),

we see that the potential 7(r) can be obtained by deconvolving the image (Yr)

with the filter h (_). However, in general the inverse filter does not exist because

of the zero region of Ne in the Fourier transform of h (r). This zero region is

determined by the array geometry and the incidence angle of the plane wave. It

can be shown that, in fact, the zero region Ng corresponds to the missing projec-

tions of the potential discussed in Section 2. Since we cannot deconvolve in this

region, the Fourier transform of 7 cannot be recovered in the domain where No

is zero. Although other choices could be made, we set the Fourier transform of y

to zero in this region. This corresponds to setting the missing projections to zero

in the slant-stack method. A partial reconstruction YRECC(T) of the potential is
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then given by

YREC(-) = FT- 1 {-41 . 12 (33)

where B(124) is the spatial Fourier transform of B(x_).

The imaging-filtering method can be summarized as follows. First, the

observed scattered field is deconvolved by the source wavelet, integrated in time

and backpropagated into the medium The backpropagation can be done by using

the Kirchhoff integral in equation (23). Note that, except for the straight-line

array case, both the field and its normal derivative are required in the Kirchhoff

integral. An alternative way to obtain the extrapolated field is to implement the

boundary value problem specifying this field by the finite-difference method. In

this approach the observations of the field alone are sufficient to obtain the

extrapolated field. This is accomplished by running the finite-difference algo-

rithm without any sources, and by using the time-reversed scattered field to

specify the boundary values at the receiver locations. The second step of the

imaging-filtering method is to image the extrapolated field at every point in the

medium at the corresponding travel time of the incident source field. For the

homogeneous background problem, considered here, the travel times can be

computed analytically. In the third and final step, using equation (27), the result-

ing travel time image is filtered by the approximate inverse filter of the point

spread function.
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4. Examples

In this section we give some examples for the slant-stack and imaging-

filtering methods discussed in the previous sections. We consider a two dimen-

sional medium in which velocities do not vary along the y-axis. The data used in

the examples are obtained by a finite difference algorithm. In all cases a four

point Blackman window with approximately 50 Hz bandwidth (corresponds to a

pulse duration of 0.02 seconds) is used as the source wavelet. The synthetic

traces are deconvolved, using a Wiener inverse filter, before further processing.

The velocity structure and the observation geometry of the first example is

shown in Figure 6(a). In this example the scatterer is a high velocity cylindrical

object (the figure shows the cross-section in the plane y = 0) with a 14 meter

diameter, which is approximately equal to the smallest wavelength contained in

the exciting wavelet. The medium is probed by a normally incident plane wave

and the scattered field is recorded on the surface (z = 0) along a 128 meter hor-

izontal array, and along a 64 meter vertical array. The scattered field is shown in

Figure 6(b) where h and v indicate the horizontal and vertical arrays respec-

tively. The projections of the velocity potential are shown in Figure 7. Note that

by simply using appropriate phase shifts on the data we can choose any point in

the medium as the origin for the projections. Here we choose the center of the

scatterer (z = 64, z = 18) as the origin to display the projections. The true pro-

jections obtained from the velocity model used to create the synthetics are

shown in Figure 7(a). Since the object is circularly symmetric, the projections at

all angles are the same. Figure 7(b) shows the projections obtained from the

scattered field observed along the horizontal receiver array only. Figure 7(c)

describes the projections recovered from the horizontal array combined with the

vertical array. From equation (12), for an infinite horizontal array (a 2 = 180 °,

al = 3600) the range of available projections is 2250 < < < 315 ° and for an

infinite horizontal-vertical array (a 2 = 180 °, ai = 450 ° ) the range is given by

225° < o < 360 °. For finite length arrays, however, only a subset of these projec-

tions can be recovered as can be seen from Figures 7(b,c). The slant-stack inver-

sion result is shown in Figure 8 for the region indicated in Figure 6(a) by dashed

lines. Figures 8(a) and 8(b) are the results obtained by using only the horizontal



array, and the combined horizontal and vertical arrays, respectively. Figures 9(a)

and 9(b) show the velocity structure obtained by the imaging-filtering method for

the same data sets. It is seen that the two methods give very similar results.

In the second example, shown in Figure 10, the scattering medium consists of

two halves of a cylinder. The velocities in the top and bottom halves are lower and

higher than the background velocity, respectively. The velocity contrast between

the two regions is about 14% and the radius of the cylinder is 15 meters, approxi-

mately one minimum wavelength. The medium is probed by a plane wave with

angle of incidence As = 45°, and the scattered field is observed on the surface

and along two vertical arrays on both sides of the object. The length of each line

array is about ten minimum wavelengths or five times the size of the scatterer.

The scattered fields observed along the vertical array located at offset x = 0, on

the surface, and along the vertical array located at offset x = 150 meters are

shown in Figures 11(a), (b) and (c), respectively. The projections of the velocity

potential are shown in Figure 12, where the projection origin is chosen at

x = z = 75 meters. The true projections obtained from the velocity model are

shown in Figure 12(a), where the shaded region corresponds to the positive

values of ?', i.e. velocities lower than the background velocity. Figures 12(b), (c)

and (d) are the projections obtained from the observed data. Figure 12(b) is

obtained by using the surface array only, (c) by using the surface array com-

bined with the vertical array at zero offset and (d) illustrates the result obtained

by using all three arrays. Note that the projections in the range of angles 1350 to

315 ° represent a complete set from which the potential can be totally recon-

structed. However, due to the finite extent of the arrays and the fact that the

data is bandlimited , we can recover only a portion of the projections with this

experiment. In general, the missing projections can be obtained by performing

several experiments with appropriately chosen probing waves. For example, for

the receiver geometry used in this example, a second probing wave with an angle

of incidence equal to 135 ° could provide the proper complementary coverage.

Figure 13 shows the inversion results using all three receiver arrays. Figure 13(a)

is the result of the slant-stack method. Figure 13(b) shows the travel time image

P(r_) (defined by equation (27)), and Figure 13(c) is the result obtained by filter-

ing fiB(r) via equation (33). Figure 13(d) shows the inversion result for the case
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where a second probing wave with an angle of incidence equal to 135 ° is used to

obtain a complementary coverage.

5. Conclusion

In this paper we have considered the direct velocity inversion problem for a

constant density acoustic medium probed by a single wide-band plane wave. Two

methods, namely, the slant-stack and imaging-filtering methods, have been

presented for partially reconstructing the velocities of the medium from the

observed scattered field. It was shown that there is a simple map between the

plane-wave components of the scattered field, which are obtained by performing

slant-stack operations on the observed data, and the projections of the velocity

potential of the mediurm The range of plane-wave components and the range of

angles of projections that can be recovered from the observed data is determined

by the aperture of the receiver array. In the slant-stack method, first the projec-

tions of the potential are obtained from the plane-wave scattering amplitudes.

Then, the medium velocities are reconstructed partially from the available pro-

jections via well-known methods of tomography and by setting the unknown pro-

jections to zero. The imaging-filtering method consists of two-steps. First, the

observed data is filtered in time, backpropagated into the medium and imaged at

the travel times, as in migration. It is shown that the resulting travel time image

is simply a spatially filtered version of the velocity potential. The filter relating

the two is space-invariant, and is completely determined by the angle of

incidence of the probing plane wave and by the aperture of the receiver array.

Therefore, in the second step, the velocities of the medium can be obtained by

filtering the travel time image with an inverse filter designed for the given experi-

ment geometry. It is seen that, if the receivers do not surround the medium

(incomplete coverage), the exact inverse filter does not exist and the velocities

can only be obtained approximately.

An interesting extension of the results discussed in this paper would be to

analyze the case where, instead of using a single plane-wave source, several

plane waves are used to probe the scattering medium. Indeed, as was noted in the

second example of Section 4, the use of several plane waves improves
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considerably the resolution of the reconstructed image of the velocity potential.

For the slant-stacking reconstruction method, the use of several plane waves

requires some averaging of the projections obtained for each experiment.

Another extension that we are currently investigating is for the case of a single

point source. Note that the case when the receivers provide a complete coverage

was examined in [12], but the incomplete receiver coverage case is more compli-

cated, and may require the use of a space-variant filter instead of the space-

invariant filter employed in the imaging-filtering method described above.

a)The work of this author was supported by the Army Research Office under Grant
No. DAAG29-84-K-0005, and by the National Science Foundation under Grant ECS-83-
12921.
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Appendix A: Derivation of the Relation Between Plane-Wave Components of the

Scattered Field and Projections of the Velocity Potential

In this appendix the relation (8) between the plane-wave scattering ampli-

tude and the velocity scattering potential is derived for an arbitrary receiver

array with angular-aperture [ a 2 ; a 1 ] as shown in Figure Al. The plane-wave

scattering amplitude is defined as

A ( ,O) = -J dl [ Ps (I_, ) Ve ' -V PS (ICo) e ] * : , (Al)

where R is the surface where the receivers are located and At is the unit normal

vector pointing towards the scatterers as in Figure Al. From equations (6) and

(Al) we have

A ( k2,c) = c2 S(Wc) I dr' 7(.') e I( ,r'), (A2)

I(k,') --f d [ Go(:r', ) e - V G o(r', ) e-ik'] - .
R

(A3)

Here, G0 (rr',c) is the free space Green's function, and as indicated in (5a), in

two-dimensions it is given by

G O(,r',cO) = 4 H (k (A4)
4

Now, consider the arc S of the circle of infinite radius centered at :r' which is

shown in Figure Al. Since there are no scatterers within the volume surrounded

by the closed surface R+S, from Green's theorem we have

I(kir) fs [ - H' ) (k I-r' I) w'Ve - V HS') (k Ir-r |I) e-' ]A * .
s 4 4

(A5)
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Let (r ,*) be the polar coordinates centered at r_' and let lO be the angle

corresponding to the unit vector k. Then, in this coordinate system the boundary

integral in equation (A5) takes the form

I(k,') = e im f d[ H) (krT) S( -)

i. HS) (k ) e - cOs(*-) ] (A6)
dr 4

For r - oo and k • O, we have the following asymptotic expansion of the Green's

function and its normal derivative

i-.gn ikr
lim H1') (kr) = lime (A7)

T -* 4 r- (87r) | I |7 )

linm Ha k H1)(kr) lim ik Ž' HAl)(kr) . (A8)
! imir 4 T-= r 4

Consequently, as r -+ o, the boundary integral becomes

I (kT) =-e - lim HS') (kT) ikT

a,

f dL [ cos(* -6) + 1 ]efkrcos(*-) (A9)
a2

The above integral can be evaluated by the method of stationary phase. The sta-

tionary points 0o of the phase function are given by

ac kcos(* -- ) 0= = 0 (A10)

so that *0 = a , +Tr. For i 0 = 9 + 7r the integrand of equation (A9) vanishes,

therefore the only stationary point to be considered is to = I. Now, if 9 is not
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within the integration range [a 2 ; al], there is no contribution from this point

and the integral is zero. However, if El [al2 ; al] equation (A9) becomes

I( t') =-e-' lim i Hr1) (kr) ikr e s ) 27

(All)

Finally, using the asymptotic form of the Green's function given in equation (A7),

and noting that

ikr e 2 = -Ikr , (A12)

we obtain

I (k ') = e i' - O E [a2; a,]

= 0 ; otherwise . (A13)

Using this expression in equation (A2), we find that the plane-wave scattering

amplitude is given by

A (,w) = k 2 S(;) Vdt' (r')se( ) ; E [a; al 

= O ; otherwise. (A14)
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Figure Captions

Figure 1. Scattering experiment. The medium is probed by a wide-band

plane wave and the scattered field is observed along a receiver array asymp-

totic to angles al and a 2 .

Figure 2. The relation between the angle of incidence 1, of the plane-

wave source, the angle I of the scattered plane wave and the projection

angle p.

Figure 3. Coverage in the Fourier transform domain of the potential y.

Figure 4. Straight-line receiver array; X_ is the unit vector along the

array, iL the normal unit vector pointing towards the scatterers, o-0 an arbi-

trary origin along the array.

Figure 5. Fourier domain representation of the filter relating the

migrated image to the velocity potential. The filter which is shown

corresponds to the experiment where the receiver array is on the surface

(z -axis) and the probing plane-wave is normally incident (Is = Tr/ 2). (a)

Zero and nonzero regions in the Fourier domain. (b) Fourier magnitude of

the filter along the semi-circle shown in (a).

Figure 6. Scattering experiment. (a) High velocity cylindrical object

probed by a normally incident plane wave. (b) Observed scattered field. The

horizontal array on the surface is indicated by "h" and the vertical array is

indicated by "v".

Figure 7. Projections 7(ii,s) of the velocity potential. The origin for

the projections is chosen at the center of the object. The horizontal axis is

the projection angle r corresponding to the unit vector AL, where the angle

is measured clockwise from the x-axis. The vertical axis is the variable s.

(a) True projections. (b) Projections obtained from the surface array only.

(c) Projections recovered from the combined horizontal and vertical arrays.

Figure 8. The slant-stack inversion result for the region shown inside

the dashed lines in Figure 6(a). One trace spacing corresponds to a

100 m/s velocity difference from the background. Reconstruction (a)

using only surface data, (b) using the combined surface and vertical data.
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Figure 9. The imaging-filtering inversion result for the same region as in

Figure 8. One trace spacing corresponds to 10Om /s velocity difference

from the background. Reconstruction (a) using surface data only, (b) using

both surface and vertical data.

Figure 10. Scattering experiment. The medium is probed by a plane

wave with 45 ° angle of incidence. The scattered field is observed on the sur-

face and along two vertical arrays on both sides of the scatterer.

Figure 11. Observed scattered field in the time window 0.2-0.35

seconds. (a) The vertical array at zero offset (amplitude scale 0.1). (b) The

surface array (scale 0.24). (c) The vertical array at offset 150 meters (scale

0.71).

Figure 12. Projections %(.i,s) of the velocity potential. The origin for

the projections is at z = z = 75 meters. The horizontal axis is the projec-

tion angle so measured clockwise from the z-axis. The vertical axis is the

variable s. (a) True projections. (b) Projections obtained from the surface

array only. (c) Projections obtained from the surface array combined with

the vertical array at zero offset. (d) Projections recovered from all three

arrays.

Figure 13. Reconstruction. One trace spacing corresponds to a 50 m/s

velocity difference from the background. (a) Slant-stack inversion result.

(b) Travel time image l(r_). (c) The result obtained by filtering ,X(X) in the

imaging-filtering method. (d) Slant-stack inversion result for two probing

plane waves with angles of incidence 45 ° and 135 ° .

Figure Al. Receiver array with angular aperture [a 2 ;al]. R is the curve

where the receivers are located and S is the arc of the circle of infinite

radius centered at r_'.
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