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Abstract

This document proposes and implements a new guidance paradigm for an autonomous
aerobatic helicopter. In addition, it presents the design of a hammerhead aerobatic maneu-
ver on the same helicopter, and validates both designs in flight. The proposed guidance
architecture integrates a new path-following algorithm with a syntax-based dynamically-
reconfigurable automaton to enable autonomous flight with aggressive aerobatics in a spatially-
constrained urban environment.
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Chapter 1

Introduction

1.1 Background and Motivation

C URRENT trends in unmanned aerial vehicles (UAVs) indicate an interest in extending
their autonomy as much as possible. Many of the most successful vehicles, such as the

Predator [2], [3] are entirely remote-controlled by a human operator, while some, such as
Aerovironment's Pointer and Raven, are capable of simple autonomous navigation among
a limited number of waypoints [4]. Higher levels of autonomous operation are rare, and are
represented by largely experimental efforts.

The MIT autonomous aerobatic helicopter is one such experimental system. It is based
on an off-the-shelf airframe with a 5-foot rotor diameter, originally designed for RC hobby-
ists. A distinguishing feature of the helicopter is its ability to perform aggressive aerobatic
maneuvers, such as an aileron roll, a split-s (Figure 1-1) or a hammerhead (Chapter 4).
In this respect, the MIT helicopter is unique among UAVs. The rigidity of its rotorhead
allows for large rotor control moments, while its small size results in small moments of in-
ertia. This extreme agility and high thrust-to-weight ratio enable the helicopter to address
mission scenarios previously inaccessible to UAVs. A particularly relevant application is
street-level surveillance.

Urban environments are attracting growing interest as a theater for UAV deployment.
Their geography makes path-following a critical component of any UAV system. Other
experimental projects have addressed the problem of accurate path-following. LaCivita et
al. [5] have demonstrated an Hoo controller for trajectory-tracking. Johnson and Kannan [6],

[7] have developed a neural-network approach to the same end. Both efforts have performed
well in tracking simplel paths at moderate speeds. However, surveillance and threat avoid-
ance in the "urban jungle" requires accurate and aggressive tracking of geometrically com-
plex trajectories at high speeds.

Until recently, navigation on the MIT helicopter had been accomplished using a simple
cross-track error minimization algorithm between discrete points. This essentially replicated

'Johnson has reportedly succeeded in tracking a hammerhead-like position/attitude trajectory in 2002.
To the best of the author's knowledge, the results haven't been published.
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Introduction

Figure 1-1: MIT's Helicopter performing a Split-S (courtesy of Popular Science Magazine).

the capabilities of most commercial UAVs, such as the Raven or the Aerosonde [8], but failed

to take full advantage of the vehicle's unique agility, and limited the scope of its missions.

Until now, the MIT helicopter has been largely a technology demonstrator. The main

purpose of its flights has been to show off the basic capabilities described above. While

its agility is unmatched by any other autonomous UAV, the guidance architecture lacks

some of the features of more complete, production-ready vehicles. While fully autonomous,

its flights have been predetermined, simulated, and hard-coded into firmware. The flight

sequences could not be altered in real time. Doing so required direct interaction with the

low-level software, extensive testing, and recompilation. Thus, the end-user was required

to possess firm knowledge of the complete UAV system. This made the helicopter less

accessible as a generic flight platform, and limited its applications.

The design of aerobatic maneuvers had similar limitations. It is a non-trivial problem,
involving a somewhat tedious, iterative process, requiring familiarity with the inner workings
of the control software. Consequently, maneuvers had previously been designed solely by the

project's originator [9]. It had become necessary to demonstrate a repeatable, methodical
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1.2 Thesis Objectives

procedure for maneuver design, one that would be accessible to most controls engineers,
and demonstrate its portability to other UAV systems.

As confidence grows in the reliability of the low-level hardware and software processes,
the helicopter has begun to transition from a technology demonstrator toward a more ver-
satile, more user-friendly platform, ready to serve the needs of a variety of users. To enable
this transition, it has become necessary to address the concerns presented above.

1.2 Thesis Objectives

This thesis proposes, implements, and validates a new guidance architecture paradigm for an
autonomous aerobatic helicopter. In addition, it demonstrates the design of an autonomous
hammerhead aerobatic maneuver entirely in a laboratory environment, and validates the
design in flight.

The guidance architecture proposed and implemented in this thesis is a syntax-based
dynamically-reconfigurable automaton, which extends the capabilities of the hybrid system
developed by Frazzoli [10] and Gavrilets [9]. The new automaton is a generic finite state
machine (FSM), whose states and transitions can be specified dynamically in flight. The
FSM logic is abstracted away from the operator, making the vehicle operable with a mini-
mal amount of training. The automaton provides an integrated framework for prescribing
complete missions and modifying them in real-time, while remaining easily adaptable to
various high-level functions. The result is a more versatile platform, capable of addressing
the needs of a variety of users, no longer requiring knowledge of the low-level hardware or
software components. The proposed system provides for fully autonomous flight without re-
striction on the flight envelope, thus enhancing the usability of the vehicle without limiting
its unique capabilities. The basic principles presented in this document are demonstrated
on a rotary wing vehicle but are readily adaptable to any unmanned platform.

Firstly, this thesis will present the current guidance model and mode of interaction with
the vehicle. Secondly, a new guidance architecture will be introduced, integrated around
a much-improved path-following algorithm. Next, the complete design of a hammerhead
aerobatic maneuver will be demonstrated, from the initial data collection and analysis to
the final validation in flight. Selected source code will be given in the form of pseudo-code.
Lastly, the new guidance architecture will be validated in the design of a complete mission
across the entire envelope of the vehicle, utilizing the hammerhead maneuver.

1.3 Thesis Organization

This thesis is divided into 6 chapters, including this introduction.
Chapter 2 describes the experimental setup, and should be read by anyone who is not

familiar with the project.
Chapter 3 describes the new path-following algorithm and the guidance automaton.
Chapter 4 describes the design and validation of a hammehead aerobatic maneuver.

Chapter 4 is self-contained.
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Chapter 5 presents the results from a validation flight test for the guidance architecture
developed in Chapter 3 and the autonomous hammerhead design from Chapter 4.

Chapter 6 provides a summary of the work, and some concluding remarks, as well as
suggestions for future work.

16-



Chapter 2

Experimental Setup

2.1 Physical System

T HE MIT helicopter is based on an X-Cell .60 airframe [11], shown in Figure 2-1. The
empty weight is about 10 lbs, with fuel capacity of about 1 lb. The payload consists

of a 7 lb avionics suite. The main rotor is about 5 ft in diameter, and is equipped with a
Bell-Hiller stabilizer bar. It is a hingeless rotor, which increases the agility of the helicopter.
The helicopter is powered by a .90 hobbyist glow-fuel engine, which is to say a piston engine
with displacement of 15 cc, running on a mixture of methanol, nitromethane, and oil. The
engine provides a peak power output of 3 hp. The helicopter is equipped with an electronic
governor to maintain a constant RPM of 1600. The governor dynamics are included in the
modeled helicopter dynamics.

2.2 Avionics

The avionics sensor suite consists of an inertial measurement unit (IMU), a global position-
ing system (GPS) receiver, and a barometric altimeter. The particular sensor devices were
selected for their high accuracy, high bandwidth and low latency.

The IMU is assembled by Inertial Science [12]. It contains three accelerometers, and
three gyroscopes, based on Micro-Electro-Mechanical-Systems (MEMS) technology. The
gyros have a range of ±300 deg/sec, and the accelerometers have a range of t5 g. The
helicopter's physical rates were limited in software to remain within the sensor ranges. The
IMU has internal power regulation and temperature compensation. It is equipped with
analog anti-aliasing filters operating at 20 Hz. Data output is at 100 Hz via serial link
(RS-232 compliant).

The GPS unit is the Ashtech G14, featuring 10 Hz update rate and a maximum of
50 msec latency. The GPS provides WAAS-corrected 2-D position and velocity(Doppler)
measurements.

The barometric altimeter unit is the Honeywell HPA200, with resolution of 2 ft (0.001
psi). It features internal power regulation and temperature compensation. The internal
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Experimental Setup

Figure 2-1: The MIT Helicopter

sampling rate is 120 Hz, averaged to produce 5 Hz RS-232 output. Ambient pressure
changes are neglected for the short duration of the flight.

The flight computer is a DSP Design TP400 single-board Pentium MMX, with 32 MB
of RAM, operating at 400 MHz, and 32 MB of non-volatile Flash storage, running the QNX
4.25 real-time operating system [13]. The flight software is embedded in the computer's
Flash. It is written in ANSI-compliant C. The flight software operates at a rate of 50 Hz;
this is the maximum rate for state estimation and servo actuation. The state estimator is
a 16-state Extended Kalman Filter, described in detail in [9].

Communication with the ground is accomplished via wireless serial modems, the MaxStream
9XStream [14], operating at 900 MHz for a range of about 7 miles. The link is one-way,
and the ground station uses it to continuously monitor a reduced state vector, updated at
3 Hz.

Pilot commands are received via a standard hobbyist receiver, and converted to digital
form by an integrated A/D and servo-control board (a.k.a. the servo board), designed
in-house. The servo board also converts the flight computer's digital commands to analog
servo commands.

The avionics suite is enclosed in an aluminum box, to minimize electromagnetic inter-
ference, and is mounted on a custom-designed vibration-isolation system to minimize sensor
noise.

18



2.3 Simulation Environment

VISUALIZATION COMPUTER
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Figure 2-2: Hardware-in-the-Loop Simulation

2.3 Simulation Environment

All of the development described in this thesis took place in simulation before it was val-
idated in flight. A hardware-in-the-loop simulation (HILSim) was employed. The overall
structure is presented in Figure 2-2.

The HILSim uses exact copies of the flight computer (referred to as the clone computer),
servos, RC receiver and servo board. The RC transmitter and ground station are the
ones used during actual flights. The servo rack couples each actuator servo to a modified
servo used only for sensing the actuator's position. The servo positions are measured by
potentiometer. The measurements pass through an analog-to-digital converter and on to a
simulation computer which calculates the aerodynamic forces and moments resulting from
the control surface deflections. These data are used to simulate sensor output, which is then
fed to the clone computer. The simulation also produces position and attitude estimates
which are passed on to a visualization computer to provide a real-time 3D visualization of
the flight.

While the servos should ideally be loaded to simulate forces and inertias, this was deemed
unnecessary, given the bandwidth of the actuators [91.
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Experimental Setup

Figure 2-3: Longitudinal-Vertical Controller.

2.4 Control Architecture

Guidance on the MIT helicopter utilizes several low-level controllers. Navigation, or trim-
trajectory-following is accomplished by a velocity-tracking loop, which implements 2D con-
trol of body-frame velocities (u, v), and a complementary altitude loop for full 3D nav-
igation. Aerobatic maneuvers are executed by rate-tracking loops, providing control of
the body-frame angular rates (p, q, r). Ultimately, the guidance architecture must enable
the execution of advanced missions, combining accurate navigation in spatially-constrained
environments with the ability to execute aerobatic maneuvers at points along the trajectory.

2.4.1 Velocity Control

Velocity control is accomplished by two decoupled loops, as developed in [9]: a longitudinal-
vertical controller (Figure 2-3), and a lateral-directional controller (Figure 2-4). The com-
bination of these controllers allows constant-altitude flight at a commanded forward speed,
with coordinated turns at prescribed turn rates. Using this functionality, waypoint navi-
gation was previously implemented by Gavrilets [9], utililizing a classical cross-track error
minimization algorithm. The forward speed for waypoint navigation was a constant param-
eter (8 m/s). The guidance was aware of up to four waypoints at a time, and was capable
of navigating among them in a prescribed order. A modified version of this guidance logic
has been demonstrated by MIT's partner, Nascent Technologies, which allows the waypoint
coordinates to be updated dynamically from the ground [15].

-20-



2.4 Control Architecture

Figure 2-4: Lateral-Directional Controller.

2.4.2 Rate Control

In addition to the velocity controllers, the MIT helicopter is equipped with rate-tracking
control loops, which implement independent command of the vehicle angular rates and of
the main rotor collective. While the velocity controller provides the capabilities needed for
trim-trajectory navigation the rate controllers take full advantage of the helicopter's agility,
and are particularly well-suited for performing aerobatics, as will be shown in Chapter 4.
The two control modes are mutually exclusive. It is the responsibility of the guidance logic
to integrate these controllers into a coherent architecture, handing off vehicle control to the
appropriate set of loops, as necessary for various phases of the mission.

2.4.3 State Machine Paradigm for Hybrid Control

The helicopter has evolved to perform a particular type of autonomous mission. Or, rather,
some structure has been imposed on the mission scenarios to make the algorithmic imple-
mentation more feasible. The missions usually consist of navigation among several way-
points of interest, performing aerobatics in between. The navigation is performed by the
velocity-and-turn-rate-tracking control loop, while the aerobatic maneuvers are executed by
the body-rate-tracking control loops. Thus, the autonomous guidance layer operates in two
major modes: trim-trajectory-tracking, and rate-tracking. Switching between the modes is
delegated to the guidance automaton.

Figure 2-5 illustrates the basic logic for a simple mission. The helicopter climbs to
120 meters, heads toward a waypoint, accelerating to its maximum allowed forward speed,
performs a Split-S and descends, heading toward another waypoint, and finally slowing
down to a hover. The guidance logic is a finite state machine (FSM) that implements the
desired sequence as it appears in the figure. In this case, the FSM consists of six states:

-21--
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NO~bReached 120m?7

Reached max. speed? Transition Logic

YS Split-S complete?

Reached min. altitude? N

Zero speed? YES

Figure 2-5: Hybrid logic for a simple mission.

climb, acceleration, Split-S, descent, deceleration, and hover. An actual mission may have
as many as fifteen states.

Note, however, that the helicopter only switches control modes twice: it transitions from
velocity-control to rate-control prior the executing the maneuver, and transitions back to
velocity control after the maneuver is complete. The rest of the states are simply used
to generate a sequence of commands to the velocity controller. This begs the question
whether such a large number of states is really necessary. This is largely the motivation for
Chapter 3.
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Chapter 3

Syntax-Based State Machine

T HE ORIGINAL guidance architecture had several shortcomings that limited its ap-
plicability in spatially constrained environments. Waypoint navigation, as previously

implemented, used a classical navigation algorithm to minimize the cross-track error. This
algorithm was well-suited to following straight lines, but was prone to overshoot oscillations
when the cross-track error grew large. The algorithm was ill-suited for tracking corners,
which are a dominant feature of urban terrains.

The FSM implementation of the guidance logic imposed another constraint on the vehicle
capabilities. Varying speeds and altitudes could be commanded from state to state, but
this paradigm required a new state for every new command, which dramatically increased
the number of states, and resulted in unwieldy flight code. The parameters for each state
and the conditions for state transition were hard-coded in the actual FSM. Thus, the FSM
code served as its own data storage unit, as well the logic execution unit. This made the
missions entirely static, as the logic could not be altered in flight.

The following sections describe a new guidance architecture which eliminates these prob-
lems by employing a new path-following algorithm, and changing the role of the FSM. The
new path-follower is capable of accurately tracking continuous, geometrically complex paths,
including corners. It is a variation of proportional navigation, and was first proposed by
Park [1] for fixed-wing vehicles. It has been adapted for the helicopter, and expanded to
act as a data storage and retrieval unit for the FSM. The new state machine is significantly
simpler, and acts as an interpreter for the supplied data. This allows for missions of any
complexity to be encoded with only a small, fixed number of states.

The new guidance paradigm was motivated by two important observations about UAV
missions:

" The main component of any mission is the vehicle's commanded trajectory.

" Many parameters, such as altitude, forward speed, and the actions taken by the
vehicle, are defined by its position along the trajectory.

For instance, the vehicle's desired altitude depends on terrain features, and thus on
position. The same is true of forward speed: the complexity of the commanded path, when

-23-



Syntax-Based State Machine

Md. speed
altitude
acion code

Path Data
From Ground Station,

Planning Software, etc.

Figure 3-1: The New Guidance State Machine

combined with the vehicle dynamics, imposes strict limits on the maximum vehicle speed.
Evasive aerobatic maneuvers are usually necessitated by obstacles at specific points along
the path. Loitering is only performed in particular areas of interest.

Consequently, the parameters of a mission may be specified along its trajectory. A
syntax can be established so that every point along the path prescribes a forward speed, an
altitude, and a particular action to be taken, such as loitering or the execution of a maneuver.
When the path-follower achieves a particular point, it would extract these parameters and
pass them to the appropriate controllers. In the event that a maneuver is requested, the
FSM could interrupt the path-follower and hand control over to the rate-tracking loops..
After the maneuver has been completed, the path-follower would be put in control again,
and return the vehicle to the desired trajectory, as in the sample mission we examined in
Section 2.4.3.

Thus, the guidance state machine can remain generic, with a minimal number of states,
and effectively act as an interpreter for the mission parameters specified along the path.
Figure 3-1 illustrates the proposed state machine architecture. The details of its operation
are described in the following section.

3.1 Path-Follower

To address the problem of navigation in the "urban jungle", a vehicle must be able to track
a quasi-continuous path in space, allowing for varying levels of complexity. The path is
specified as a series of individual waypoints, relatively close together, but preferably with
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3.1 Path-Follower

no restrictions on their separation, so that any desired level of fidelity could be achieved.
Few algorithms have been developed to accurately track such a path.

Navigation between waypoints is traditionally implemented using cross-track error tech-
niques, i.e. designing a simple PD feedback controller to minimize the cross-track error.
This was the method previously employed on the MIT helicopter, and it had several short-
comings. The transition from one waypoint to another required some complex switching
heuristics, and the algorithm was prone to overshoot whenever the vehicle wandered too
far off the desired path, which could easily happen when performing aerobatics, or under
adverse wind conditions.

These problems can be alleviated by employing a nonphysical virtual leader, as proposed
by Niculescu [8]. The leader travels between the waypoints, always ahead of the vehicle,
which tries to follow it. While this algorithm gives satisfactory performance in following
straight lines between waypoints, it is ill-suited for following other trajectories. In general,
a simple virtual leader path-follower, when applied to a complex path, acts as a low-pass
filter, parameterized by the lead distance, which is chosen to account for the dynamics of
the vehicle. However, the smoothing effect of this approach effectively discards the high-
frequency features of the trajectory, e.g. sharp corners, which are predominant in urban
terrains.

Another approach to the tracking of individual waypoints is classical proportional nav-
igation. Developed for missiles, proportional navigation aims to maintain a constant angle
of the line-of-sight (LOS) between missile and target. This is generally done in two dimen-
sions, though it has been extended to 3D by Adler [16]. For the purposes of this document,
only the 2D case is relevant. Zarchan [17] gives the formal control law as follows:

nc = N'Voi

Here, nc is the commanded acceleration perpendicular to the LOS, VC is the closing
speed between missile and target, A is the rate of change of the LOS angle, and N' is a
designer parameter gain. Proportional navigation is widely acknowledged as an accurate and
efficient approach to interception, and thus to waypoint tracking. With some modifications,
it can be successfully adapted to the problem of following continuous paths.

This has been done at MIT by Park [1]. His algorithm, titled Lateral Guidance, com-
bines proportional navigation with a virtual leader, and has shown excellent performance
in disturbance rejection and the tracking of high-frequency features. Its basic operation is
shown in Figure 3-2.

The formal statement of lateral guidance is as follows:

U 2

ascmd = 2- sinq (3.1)
L/

Here, ascmd is a commanded lateral acceleration, U is the forward speed, L is the distance
to the virtual leader, and 77 is the angle between the LOS to the leader and the vehicle's
heading (assuming no side-slip, the latter coincides with the forward velocity vector). The
lateral acceleration command effectively produces a turn rate, which causes the vehicle's
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Figure 3-2: Park's Illustration of Lateral Guidance [1].

path to quickly converge with the desired path.

3.2 Lateral Guidance on The MIT Helicopter

Lateral guidance was developed for a fixed-wing vehicle with a limited range of forward
speeds and turn-rates, whereas agile flight in urban environments requires large variations
in both. Since the smoothing effects of the algorithm depend on L, it was desirable to be
able to vary the parameter in real-time, to accomodate the complexity of the path. Since
the tracking peformance also depends on forward speed, it was assumed that lower speed
will be commanded through the high-frequency features of the trajectory. This would be
the responsibility of a higher-level path-planning, or mission-planning algorithm, such as

those developed at MIT by Schouwenaars [18].
Further analysis by Park, Deyst, and How [19] shows that, when linearized, the lateral

guidance control law reduces to a PD feedback controller around the cross-track error.
Taking y = cross-track error, and using small-angle approximations, Equation 3.1 becomes:

ascmd= 2 i + y (3.2)

Note that the ratio e essentially determines the gains of the controller, and thus the
tracking performance of the vehicle. Furthermore, the authors show the system to be
critically damped, i.e. ( = , with a natural frequency wn = v/2-, where the transfer
function input is the lateral position of the leader relative to the vehicle.

For implementation on the helicopter, it was decided to keep this ratio constant through-
out the flight, commanding forward speed U, and adjusting the lead distance L accordingly.
To be able to perform safe and effective surveillance in an urban environment, it was de-
termined that the helicopter must be able to fly around corners at 8 m/s with a maximum
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Table 3.1: L and Cross-Track Error

(Lead/Speed) Max. Cross-
Track Error

0.5 17 m
1 2.3 m

1.5 0.8 m
2 1.2 m

2.5 2.3 m
3 3.2 m

3.5 5.0 m
4 7.0 m

4.5 8.0 m
5 9.0 m

cross-track error of 2 meters. The appropriate 1 value for this mission was determined
experimentally. Sensitivity analysis was performed in simulation; the results are summa-
rized in Table 3.1, and in Appendix A. Finally, the value of 1.5 was selected, based on the
simulation results. This has proven adequate, as shown in Chapter 5.

3.2.1 Step Response and Path Smoothing

The helicopter's step responses under the lateral guidance are is presented in Figure 3-3.
Somewhat counterintuitively, the overshoot varies inversely with the amplitude of the step
input. This suggests that the oscillatory tracking behavior observed in flight (Chapter 5,
Appendix A) is more likely a non-linear effect. The trajectories observed in Appendix A
suggest the existence of limit cycles, most likely resulting from a commanded turn rate which
exceeds the physical limits of the vehicle. Increasing the lead distance of the path follower
is very effective in eliminating these effects, albeit at the cost of tracking performance, as
shown in the same appendix.

Alternately, step commands in position can generally be avoided during the path plan-
ning phase. Sharp corners can be replaced by smooth turns, whose turn radius is no smaller
than the vehicle's turn radius (~ 10 meters @ 10 m/s for the MIT helicopter). The above
step command was smoothed out in this fashion, and the path-following performance im-
proved drastically, as shown in Figure 3-4.

3.3 Waypoints as Data Structures

A waypoint is simply a data structure, usually containing the GPS coordinates of a location
in space. It can just as easily include the desired velocity at that point, or a trigger for the
execution of a maneuver, or for initiating loitering or surveillance.
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Figure 3-3: Lateral Guidance Step Responses

The helicopter's agility allows it to navigate most urban terrain at 7 to 15 m/s. At
these speeds, a waypoint separation of 1 m is sufficiently small to establish a relatively
smooth path '. Then, while traversing a given trajectory, the path-follower would advance
through the waypoints at the rate of 7-16 per second. If each waypoint were associated
with a commanded forward speed and altitude, the command bandwidth will be 7-16 Hz,
which is higher than the bandwidth of the inner velocity and altitude loops. Currently, no
hard limits are imposed on the input frequency. Rather, the path-generating component
is expected to provide smooth velocity and altitude commands. It has been implemented
and flown on the MIT helicopter (see Chapter 5), and has proven to be a reliable control
strategy.

'This nominal separation was used for all flight tests and simulations in the rest of this thesis.
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Figure 3-4: Lateral Guidance Step Response with Path Smoothing

Table 3.2 shows the current syntax specification for waypoints. Each waypoint structure
is defined by its position (East, North), the desired altitude and forward speed at that
position, and an integer that represents a possible action to be taken at that waypoint.

The actions are denoted by integers codes, separated into several classes, as follows.
Codes 0 - 99 are reserved for aerobatic sequences. These are performed in rate-tracking
mode and imply mode-switching. Codes 100 - 499 are reserved for loitering. A value of 130
will command loitering for 30 seconds. A value of 100 will command indefinite loitering,
until interrupted by another guidance routine, or possibly by a ground operator. Codes
500 - 999 command hover, with 500 corresponding to unconditional hover, and 530 causing
hover for 30 seconds.
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Table 3.2: The waypoint data structure.

Index Position Position Forward Altitude Action
East North Speed

34 150.3 m 25.56 rn 15.12 m/s 25.2 m 0
35 151.3 m 25.56 m 14.62 m/s 24.9 m 0
36 152.3 m 25.56 m 14.12 m/s 24.6 m 0
37 153.3 m 25.56 rn 13.62 m/s 24.3 m 3

Table 3.3: Helicopter Action Codes

Action Code Code Meaning

0 Do Nothing (follow path)
1 Perform an Aileron Roll
2 Perform a Split-S
3 Perform a Hammerhead

4-99 Reserved for other aerobatic sequences
100 Loiter indefinitely (until instructed otherwise)

101-499 Loiter for (ActionCode - 100) seconds
500 Hover indefinitely (until instructed otherwise)

501-999 Hover for (ActionCode - 500) seconds

3.4 Hovering

Hovering allows the vehicle to remain at a particular waypoint, e.g. for surveillance pur-
poses. This is implemented using the velocity controller, as follows. If a waypoint requests
hover mode, the path-follower is applied to bring the vehicle in the waypoint's proximity,
at which time position hold is requested, and the velocity controller continuously attempts
to minimize the position error to the given waypoint.

3.5 Loitering

During surveillance missions, the helicopter is likely to remain near the named area of
interest (NAI) for extended periods of time, which makes it an attractive target. Since the
vehicle is inherently more vulnerable while stationary, it is desirable to loiter, rather than
hover, maintaining some forward speed while remaining in the vicinity of the NAI. It is also
desirable that the loiter path not be easily predictable.
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Table 3.4: Loiter Radius and Loiter Speed

The properties of lateral guidance make it particularly suitable for an implementation
of loitering that adresses all of the above concerns. Namely, if the virtual leader stops
advancing, the vehicle will continue moving toward it, at the last commanded speed, and
will overshoot the leader position, passing through it, and heading away from it. The
guidance law will then turn the vehicle back towards the leader, causing another overshoot,
and so on. The turns can be quite aggressive, depending on forward speed and the choice
of -. The direction of the turns is determined by the sign of r/ immediately after the
overshoot, which is very sensitive to small perturbations, making the vehicle's trajectory
less predictable. The radius of the turns is determined by the speed of the vehicle. Thus a
"loiter radius" may be enforced, restricting the overall excursions from the coordinates of
the NAI. Some investigation was conducted on the variation of loiter radius with forward
speed, and . The results are presented in Table 3.4, and in Appendix B.

3.5.1 Loiter Modes

Two loiter modes are available on the MIT helicopter: timed loiter, and indefinite loiter.
Timed loiter mode is triggered by action codes > 100. The vehicle loiters for (actioncode -
100) seconds. The implementation uses a countdown timer, which is initialized at the
desired number of seconds, and decremented with each control cycle. The virtual leader
does not advance until the timer has reached zero.

Indefinite loiter is exactly that: the helicopter stops following the path and loiters about
the last specified waypoint, at the last specified speed, indefinitely. This capability allows
the mission to be "paused," by the ground operator should there be need to re-plan, to
generate a new path, or to simply wait for further instructions. When the mission can
proceed, the indefinite loiter is deactivated and the vehicle continues along the path.
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Fwd. Avg. Fwd. Avg. Fwd Avg.L/U Speed Loiter L/U d Loiter L/U d Loiter
Radius Radius Radius

1.5 2 m/s 4 m 2.5 2 m/s 4 m 3.5 2m/s 4m
1.5 3 m/s 5 m 2.5 3 m/s 6 m 3.5 3m/s 8m
1.5 4 m/s 10 m 2.5 4 m/s 11 m 3.5 4 m/s 12 m
1.5 5 m/s 12 m 2.5 5 m/s 15 m 3.5 5 m/s 15 m
1.5 6 m/s 15 m 2.5 6 m/s 17 m 3.5 6 m/s 15 m
1.5 7 m/s 18 m 2.5 7 m/s 20 m 3.5 7 m/s 17 m
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Average Loiter Radius vs. Loiter Speed
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Figure 3-5: Variation of Loiter Radius with Loiter Speed for Several L.

3.6 Path Management

Since lateral guidance relies on advancing a virtual leader along the trajectory, robust
and efficient path management logic is critical for the guidance architecture. The path
must extract the mission parameters embedded in each waypoint and pass them to the
appropriate controllers. It must also accomodate non-linearities in the trajectory resulting
from the aerobatic sequences.

Leader Position

Lateral guidance aims to brings the vehicle closer to a virtual leader. It is the responsibility
of the path manager to maintain the desired lead distance, i.e. keep advancing the leader
along the trajectory. This is accomplished by exhaustively checking the waypoints lying
ahead of the vehicle until the best candidate for a leader is found. Let W be an array of
waypoints, representing the path. Let W(n) denote the nth waypoint along the path. Let
P denote the current 2D position of the vehicle. Let L denote the desired lead distance for
lateral guidance. Then, a possible approach for locating the leader is finding the closest point
along the trajectory which is at a distance greater than or equal to L. A simple algorithm
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Figure 3-6: Leader Position Ambiguity

for advancing the leader is a single iterative loop:

while (distance between P and W(n) < L) { n = n + 1; }

If the vehicle is far away from the path, this algorithm will stop advancing the leader
and guide the vehicle toward the latest leader position. When the vehicle finds its way
within range L of the leader, the algorithm will simply keep moving forward along the path.
This approach guarantees a minimum lead distance of L, and prevents overshoot.

Note, however, that the chosen criterion for finding the leader is usually satisfied at two
or more points along the path, as shown in Figure 3-6. Our simple algorithm will simply
select the first one (point A). But consider the algorithm's behavior when the helicopter
executes an aileron roll. The guidance logic hands control over to the rate-tracking loops
for the duration of the maneuver, about 5 seconds. When the path follower regains control
of the vehicle, it is about 70 meters ahead of the last leader position. This is the situation
shown in Figure 3-6 (assuming L << 70). The algorithm will force the vehicle to turn
back toward the location where the maneuver was initiated. Once within L meters of that
location, the leader will finally advance to point A, causing another 1800 turn. This behavior
is inefficient, and the wide turns may be dangerous in a spatially constrained environment.
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It can be avoided by requiring that the leader is always placed ahead of the vehicle. This
would place the leader at point B, which is clearly a better choice.

The modified algorithm proceeds as follows: the leader advances as before, to the closest
point at a distance greater than or equal to L. Then we examine the gradient of the vehicle's
distance to this waypoint. If the gradient is negative, i.e. the distance is decreasing, there
necessarily exists another waypoint, further along the path, that also satisfies our criterion.
We keep advancing until this gradient becomes positive, then reapply the original algorithm.
This yields the first leader waypoint ahead of the vehicle, in this case, point B. This is a
satisfactory solution and the logic will not proceed any further, thus skipping only a small
portion of the path, at most 2L in length.

The pseudo-code for this implementation is presented below:

while (distance between P and W(n) < L)

n = n + 1;

}

if (distance between P and W(n) > distance between P and W(n+1))
{

while (distance between P and W(n) >= distance between P and W(n+1))
f

n = n + 1;

}

while (distance between P and W(n) < L)
{

n = n + 1;

}
}

A condensed version of the path-management source code is presented in Appendix C.

3.7 Action Queue

As the leader advances along the path, the path follower retrieves the data at the leader
waypoint. It applies the lateral guidance law, as previously described, and stores the spec-
ified forward speed, the calculated turn rate, and the prescribed altitude in a set of global
variables. At the end of the control cycle, the velocity and altitude control loops access
those variables and use the given values as their command inputs.

The action codes require a bit more effort to handle properly, as they involve controller
switching. Recall that the guidance FSM is the first piece of code to get executed at every
control cycle, and it then calls the path-follower, or initiates a maneuver sequence, utilizing
the appropriate control loops. The FSM's decision is simply based on the action code.
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Namely, a zero action code would cause the vehicle to be controlled by the path-follower,
as would an action code of 100 or higher, albeit in loiter/hover mode. A code between 1
and 99 will command a state transition that hands control to the rate-tracking loops for
aerobatic maneuvering.

In the most basic implementation, the FSM can simply check the action code at the
current leader, along with speed and altitude. However, the path management stategy, as
developed in Section 3.6 will occasionally skip some waypoints, omitting the action codes.
For this purpose, an action queue was implemented. Even if the leader skips some waypoints,
the path manager still advances through all of them. When it encounters a non-zero action
code, it pushes it at the end of a finite queue (currently of size 7). At every control cycle,
the guidance FSM checks for a non-zero action code at the beginning of the queue and takes
the appropriate action, pulling that action code from the queue, and shifting the rest of the
queue down. When the action code has been carried out to completion, the FSM once again
examines the first position and proceeds as before. This also allows for maneuvers to be
easily chained together, by simply specifying a maneuver at several consecutive waypoints.

This functionality is sometimes dangerous, as maneuvers and loitering require space and
can only be executed in certain areas. Thus, if a maneuver takes the vehicle away from the
path, a subsequent maneuver may in fact carry it into a building. For this reason, some
extra functionality was added, to ensure that selected action codes only get enqueued when
there are no other actions in the queue, and when the vehicle is not skipping portions of
the path2 . This is accomplished by specifying negative action codes. If a negative code is
encountered, and the above criteria are met, the absolute value of the code is enqueued.
Otherwise, the action code is ignored.

3.8 Advanced Mission Planning and Multi-Vehicle Support

Each waypoint data structure is uniquely identified by its index. This allows a path, and
thus an entire mission to be manipulated in real-time, splicing in or clipping out waypoints
at desired locations. For instance, in a multi-vehicle setting, portions of the mission can be
handed off to different vehicles by simply uploading the appropriate section of the mission
path. In the event that a vehicle malfunctions, or is destroyed, its portion of the mission
may be spliced into that of the nearest available vehicle. Should the mission parameters
change suddenly, an appropriate sequence of waypoints can easily be added or deleted on
all vehicles. If an obstacle appears in front of the vehicle, an action code may be inserted at
the appropriate waypoint, causing the vehicle to stop, or to execute an evasive maneuver.

In a well-known environment, such as a city grid, with dynamic target evolution, all
vehicles may be provided with the full database of waypoints. The ground station would
then simply command different arrangements of the waypoints and append various action
codes, as necessary. This would conserve bandwidth while providing a flexible, responsive
network of UAVs, capable of addressing any mission requirements. It would also allow

2which would indicate large external disturbances or emergence from a maneuver
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Following a Moving Target with Speed-Matching
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Figure 3-7: Target Following

vehicles to be added or removed to the network at any time. This deployment strategy is
particularly well-suited to full-time surveillance of a fixed area.

A locking mechanism is provided for path-manipulation, in order to avoid race conditions
in reading/writing waypoints. When the path is being manipulated, the path-follower is
suspended and the vehicle simply hovers at its current position, until modifications to the
path are complete. Currently, this command has no noticeable effect, since the flight code
runs in a single thread, and manipulation of the path will always be completed before the
path follower accesses it.

The path is implemented as a finite array of waypoints, currently limited to a maximum
of 500 points. However, the array can easily accomodate a much larger path. Since the
path follower only moves forward, waypoints behind the leader can be overwritten with new
points, and the leader index reset to the first new waypoint. The path-follower needs not
be aware of these modifications, as it will simply continue advancing the leader.

3.9 Formation Flight and Moving Target Surveillance

The path management stategy presented above allows for the ready implementation of
several valuable features, such as the tracking of a moving target, and basic formation
flight.

The following of a moving target is very similar to path following, with the small differ-
ence that the leader is no longer virtual. If the target is another UAV in close proximity,
the follower will effectively be maintaining a a loose formation with the leader. If we require
that the speed of the follower matches that of the leader, we can guarantee their separation.
Formations of more than two vehicles can be implemented with a corresponding formation
of virtual leaders; in this case, more stringent separation algorithms may be required.

As a proof of concept, a target follower was implemented and tested in simulation. The
results are shown in Figure 3-7. The helicopter was commanded to loiter at (50, 60) until
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a pop-up target appeared. It then followed the target, matching its own speed with the
target's speed.

Interesting results can be observed if the helicopter follows the target at a speed greater
than the target's speed. In this case, the loitering behavior is recreated about a moving
point, thus producing a trajectory that appears somewhat random, but in fact continues
to follow the target in a more covert fashion. This may be especially desirable when flying
above rooftop level in an urban environment, as it allows the follower to stay in the vicinity
of the target, while remaining largely out of sight. Furthermore, this strategy makes the
target harder to identify by external observers.
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Chapter 4

Hammerhead Design

4.1 Rate Controllers

A EROBATIC maneuvers are inherently defined by their angular rates, rather than
their longitudinal velocities. Thus, they are implemented using the rate-tracking

control loops. Direct control over attitude, position, or velocity is generally unnecessary
over the short duration of the maneuver, and would result in poor vehicle response. The
challenge of maneuver design is determining the necessary rate command trajectories.

4.2 Maneuver Logic

Flight tests conducted at MIT have shown that a human RC pilot, performing aggressive
aerobatics, commands rate trajectories that are essentially piecewise linear functions as
observed by Gavrilets, Frazzoli, Mettler, Piedmonte, and Feron [20]. Repeatedly, these
trajectories have been found to conform to the following general form:

1. The pilot commands a sharp (linear) rate increase until a particular rate is achieved.
(ramp-up stage).

2. The pilot maintains this rate until the vehicle reaches a certain attitude along the
respective axis of rotation (constant rate stage).

3. The pilot commands a sharp (linear) drop in rate until the rate returns to zero (ramp-
down stage).

Figure 4-1 shows an idealized rate trajectory and the effected attitude change. This
figure could represent an aileron roll, for instance, although in this case the scale is entirely
arbitrary. It becomes apparent that these trapezoidal trajectories are described by several
important parameters:

1. Ramp-up time

2. Maximum rate command
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Figure 4-1: Idealized Rate Trajectory and Resulting Attitude Change

3. Attitude threshold for ramp-down

4. Ramp-down time

Thus, the entire maneuver can be conveniently encoded as a finite state machine, where
each state controls the appropriate body rate for generating a single leg of a single trapezoid.
The rate trajectory from Figure 4-1 may be defined by the following pseudo-code:

/* define the trapezoid parameters */
RAMPUPTIME = 2;
Q_MAX = 1.0;
THETARAMPDOWNTHRESHOLD = 2.1;
RAMPDOWNTIME = 2;
SETTLETIME = 0.5;

/* declare variables */

t = 0.0; /* counts time since the beginning of the maneuver
dt = 0.02; /* control cycle frequency */

Q = 0.0; /* start with zero pitch rate */

theta = 0.0; /* we'll integrate theta ourselves */
t_enteredstateCD = 0.0; /* when do start ramping down? */

t-enteredstateSETTLE = 0.0; /* when do we start settling? */
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STATE = AB; /* begin by generating leg A-B */
loop{

t = t + dt;
theta = theta + Q * dt;

/ *********************************************
* First, take care of the state transitions *
** ***** **** *** ***************** *** ******/

if ( (STATE == AB) and (t > RAMPUPTIME) ){
STATE = BC; /* Generate Leg B-C */

}

if ( (STATE == BC) and (theta > THETARAMPDOWNTHRESHOLD) ){
STATE = CD; /* Generate Leg C-D */

t-entered-stateCD = t;

}

if ( (STATE == CD) and ((t - tenteredstateCD) > RAMPDOWNTIME)
STATE = SETTLE; /* settle any transients */

t-enteredsettle = t;

}

if ( (STATE == SETTLE) and ((t - tenteredsettle) > SETTLETIME)
exito; /* FINISHED */

}

/ *****************************************
* Now, specify what to do in each state *
* *** ******** ** ************** ** * *** ******

if (STATE == AB){
Q = Q + dt * QMAX / RAMPUPTIME;

}

if (STATE == BC){
Q = QMAX;

}

if (STATE == CD){
Q = QMAX - dt * QMAX / RAMPDOWNTIME;

}
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Pilot-Commanded Hammerhead
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Figure 4-2: Hammerhead: Pilot Inputs and Responses

if (STATE == SETTLE){
2= 0;

}

}

Note the settling state at the end of the sequence. This allows any transients to settle,
so the helicopter can safely initiate another maneuver, or return to velocity-tracking mode.

4.3 Hammerhead

A hammerhead was designed and flown on the MIT helicopter. In a hammerhead, the rate
trajectory consists of several trapezoids, and involves more than one axis. First, a human
pilot flew the helicopter by directly controlling the rate control loops. This is not difficult,
as the response is similar to actuating the control surfaces directly. The collected data for
a sample maneuver is presented in Figure 4-2.

It was observed that pilot commands can be broken down into three strictly sequential
phases:

1. a trapezoid in pitch rate, while climbing into the maneuver,
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2. a trapezoid in yaw rate, while turning around at the top of the maneuver,

3. a trapezoid in pitch rate, while climbing out of the maneuver.

4.4 Data Collection

The exact parameter values for the trapezoids are arbitrarily determined by the human
pilot, but are consistent between instances of the same maneuver. The only hard constraint
on the parameters is that the rate trajectory integrates to the desired attitude change
about the respective axis, e.g. during a roll, the roll rate trajectory should integrate to
27r. Obviously, this condition is insufficient, as infinitely many trapezoids will satisfy it. A
number of qualitative restrictions must also be satisfied in order for a trapezoid to produce
an effective, aesthetically pleasing maneuver. For instance, the exact temporal coordination
between the various axes is difficult to derive analytically, but is crucial to the overall
appearance of the maneuver.

A skilled human pilot intuitively accounts for these subtleties. After some practice,
the human's commands generate rates that approach some "best rate trajectory." Thus,
the pilot inputs can provide reasonable guesses for the parameters of each trapezoid. The
trapezoids can then be hard-coded on-board the helicopter and fed to the rate loops, when-
ever a maneuver needs to be executed. This produces repeatable maneuvers, as long as
the entry conditions are consistent between instances, which can be guaranteed using the
velocity control loops. This is the approach currently employed on the MIT helicopter. The
pilot's inputs and the corresponding rate responses were recorded during multiple hammer-
heads. Five of the most consistent and well-behaved maneuvers were analyzed and used for
autonomous maneuver design. The pilot's commands were fairly smooth curves that were
approximated by trapezoids. The relevant parameters for each trapezoid were estimated
by taking into account the maximum rate command, the average slope of the ramp-up and
ramp-down phase, and checking that the area of the trapezoid produced the needed change
in attitude. The slope estimates were intentionally conservative, so as to eliminate over-
shoot in the rate responses. The final maneuver parameters were generated by averaging
the values from the five selected maneuvers.

Dever [21] has proposed an optimization approach to maneuver design, which uses the
vehicle dynamics as constraints for the maneuver parameters, and interpolates in the space
of feasible maneuvers to satisfy certain maneuver entry and exit conditions.

Johnson et al. have demonstrated a neural networks approach to maneuver generation [6],
[7], directly tracking position and attitude to effect the maneuver trajectory. Their work

appears to mainly address the problem of path following.

4.5 Implementation and Validation

The FSM implementation for the hammerhead looks similar to the code presented in the
previous section, albeit with twelve states (four states per trapezoid). The actual C code is
quite readable and is presented in Appendix D.
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First Autonomous Hammerhead

50

0 -

-50.....................................

-100
0 1 2 3 4 5 6 7 8

100- - - - - -

-O qdeg/s c.-

-100 - O deg - lb-ot t

0 1 2 3 4 5 6 7 8
--- r, deg/sec0 0, ~deg

12r7...... ..... ........ rb-L

-100..................... ..... . .. ......... A.t.ude. m
200 -

0 1 2 3 4 5 6 7 8
140
120 - . . -..... ... - - -...................... .............- -. ..

1 - --- Altitude, m -

-10 ........ I

0 1 2 3 4 5 6 7 8
30 s! !
2 0 -. ..-. . . .-. . .. . .-. .-. .-.-. .-.-. .-.-.-. .-.-

10 u, m /se. |.. . . . .. . .. . . . . . . . .

10 LL0 1 2 3 4 5 6 7 8
time, sec

Figure 4-3: Autonomous Hammerhead

For safety reasons, it was decided that the hammerhead exit altitude should be 10-15
meters above the entry altitude. The recorded pilot inputs were modified accordingly to
produce a sligtly slower climb into the maneuver, and a faster pull-out.

The code was flown in simulation, and judged to behave satisfactorily. The maneuver
was incorporated into a flight mission and flown in the field. The physical responses of the
vehicle were recorded and found to be comparable to the pilot's performance'. The recorded
data is presented in Figure 4-3. The three phases of the maneuver are clearly marked.

This was also the first mission to chain-up two maneuvers together into a single ma-
neuver sequence. A split-s and hammerhead were connected by sequentially executing their
respective state machines. The combined maneuver executed perfectly, without any unusual
behavior. The success of this experiment proves that maneuver sequences, as implemented
on the MIT helicopter, can truly be used as path primitives, in support of innovative path-
planning approaches, such as those developed by Frazzoli [10].

'In the end, the best validation for the hammerhead design was provided by the pilot's reaction: I couldn't
have done it better myself.
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Linked Split-S and Hammerhead
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Figure 4-4: Autonomous Split-S linked with Hammerhead

4.6 Hammerhead Implementation on the Yamaha R-Max
Helicopter

In the summer of 2003, the author repeated the above design procedure on a Yamaha R-Max
helicopter at NASA's Ames Research Center as part of a technology transfer program. A
hammerhead was successfully implemented over a three-week period and flown in simulation.
Unfortunately, the data is proprietary and cannot be presented in this thesis. However, the
technology transfer serves as further proof of the generality and portability of the design
method presented above.
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Chapter 5

Validation Flight

To demonstrate and validate the developments presented in this thesis, a sample mission
was designed and flown in the field. The mission consists of the following phases:

" navigation to several faraway waypoints,

" tracking a 1800 smooth turn at 8 m/s,

" tracking a straight line East at 8 m/s,

e tracking a 90' smooth turn at 8 m/s,

" tracking a straight line South at 8 m/s to a loiter at (120, 0),

" tracking a straight line South at 6 m/s,

" tracking a 90' smooth turn at 6 m/s while descending to 35 m,

e tracking a straight line West at 6 m/s,

e tracking a 90' smooth turn while accelerating smoothly from 6 m/s to 14 m/s, in
preparation for a maneuver,

" execution of Hammerhead at (50, -30),

" return to a loiter at 3 m/s near (50, -60).

The planned mission path is presented in Figure 5-1. The complete set of waypoints
for this mission was generated by a Perl script, provided in Appendix E, should the reader
have the desire or patience to examine it.

Figure 5-2 presents the commanded, simulated, and actual recorded trajectories. It is
apparent that the path follower is quite reliable. A slight discrepancy between simulation
and reality occurs during loiter: in simulation, the helicopter exits the loiter phase near
and tangent to the commanded path, while in reality the loiter phase ends with the vehicle
moving perpendicular and away from the path. This is entirely possible, due to the random
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Figure 5-1: Planned Mission Path

nature of the loiter trajectory. It is worth noting that the path follower quickly and smoothly
brought the vehicle to the commanded path. Another slight discrepancy is the drift distance
during hammerhead. This is due to crosswinds at the field, and is to be expected.

The validation mission was executed three times in total, in order to determine repeata-
bility. The results are presented in Figure 5-3. The path-following portion of the mission
was found to be consistent between flights, with the exception of some oscillations during
flight 1. These were attributed to non-linear effects, resulting from the loiter exit conditions,
and discussed in Section 3.2.1. They can be avoided by increasing the lead distance.

For the curious, an online version of the helicopter simulation has been made available at
http://www.formafterfunction.com/. It allows uploading a custom mission file, and outputs
visualization data, as well as a MATLAB-readable record of the state trajectory.
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Chapter 6

Conclusion and Future Work

6.1 Thesis Summary

This thesis has implemented and demonstrated a new guidance architecture for an au-
tonomous aerobatic helicopter. The guidance module is implemented as a finite state ma-
chine (FSM), with the unique development that its structure can be dynamically modified
in flight. FSM parameters and other mission data are encoded along a commanded path.
This data is interpreted by a path-follower, which constructs the mission states on the
fly, and executes the specified mission logic. The work presented in this thesis effects a
transition from a statically encoded FSM, to a guidance automaton which serves as a syn-
tax interpreter for FSM parameters specified along a commanded path. This makes the
mission specification entirely external to the flight code. All mission parameters can be
modifed dynamically (e.g. from a ground station) and the syntax for mission specification
is readily extendable to address a variety of scenarios. The new architecture results in a
more versatile UAV platform, easily adaptable to missions of varying complexity. This work
has enabled the implementation of various high-level path-planning algorithms on the MIT
helicopter [18], [22].

The path follower used for the guidance implementation was developed at MIT by
Sanghyuk Park, as part of his doctoral work. It was selected for its performance in tracking
the high-frequency features of urban terrains. The guidance architecture takes advantage of
some inherent properties of the algorithm to implement features such as high-speed loitering
(Section 3.5) and deceptive target following(Section 3.9).

This thesis has also demonstrated the design of an autonomous hammerhead and has
validated it in flight. The design is enabled by the observations [9] that pilot-commanded
maneuvers are highly repeatable in their commanded rate trajectories, and that small,
hingeless-rotor helicopters behave as rate-command systems in response to cyclic inputs.
The high agility of the MIT helicopter results in high controller bandwidth, allowing the
tracking of very aggressive trajectories. Thus, pilot commands were recorded and approx-
imated as piecewise-linear rate trajectories, which were input to a set of rate controllers.
The resulting hammerhead was no inferior to pilot-executed maneuvers. It was shown to be
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Conclusion and Future Work

repeatable and was chained-up with a previously designed split-s maneuver, thus demon-
strating the ability to construct more complex composite maneuver sequences.

6.2 Recommendations for Future Work

As shown in the validation flights, the path-following algorithm exhibits some non-linear

behavior, manifested by large (but stable) oscillations. It was suggested in Section 3.3 that

these are limit cycles, resulting from a commanded turn rate that exceeds the maximum

physical turn rate of the vehicle. This behavior requires further investigation, and analysis

of the complete nonlinear system. The oscillations are effectively mitigated by increasing

the lead distance (or -), which is the approach taken in this thesis. A more rigorous ap-

proach could involve continuously varying m (resulting in a time-varying linearized system),
depending on the cross-track error. Such an algorithm would find the maximum safe speed

for any trajectory: a task that is currently left to the mission-planning component.

Currently, the raw speed and altitude commands specified along the path are passed

directly to the velocity and altitude loops. They are clipped to within reasonable limits but

no checks are performed of their frequency. Thus, a path that commands high-frequency

inputs can cause loop interactions that drive the system unstable. In the demonstration

phase, the path-planner guaranteed smooth controller inputs along the trajectory. A more

robust solution would be for the flight software to low-pass the frequencies of the inputs

before sending them on to the controllers.
The aerobatic maneuvers are performed in rate-tracking mode, without any position-

tracking. As a result, low-frequency disturbances such as wind gusts can cause large de-

viations from the planned spatial trajectory. Adding a true airspeed sensor can reduce

the effect of these disturbances. In addition, the maneuver logic may be modified to take

position measurements at critical points of the maneuver (e.g. at the top of a hammer-

head), and correct the vehicle's attitude to compensate for the effects of the disturbance.
The maneuver logic may further be improved to allow adaptive modification of the defining

maneuver parameters (i.e. the trapezoidal rate trajectories from Chapter 4.2, so as to acco-

modate various maneuver entry and exit conditions. Some efforts in this direction have been

undertaken by Dever [21]. Adaptive maneuver augmentation could allow the helicopter to

enter and exit a maneuver with variable velocity vectors and at variable altitudes, which

would enable the assembly of more complex paths, as proposed by Frazolli [101.
Finally, it must be acknowledged that navigation on the MIT helicopter still relies on

GPS reception, which is susceptible to jamming, and may not be available in an urban

environment. Alternative methods of position measurement would be required, mostly

likely utilizing machine vision algorithms. In particular, terrain-matching approaches seem

very applicable to the highly structured city grids.

In conclusion, it is the author's hope that the work presented in this thesis will bring

UAV technology closer to a deployment-ready, fully autonomous robot, combining aerial

agility with the ability to plan and execute complex mission in a variety of scenarios.
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Appendix A

Guidance Law Sensitivity Analysis

The following figures present simulated flight trajectories used to establish the sensitivity
of the path-follower to variations in ! (ratio of lead distance to forward speed). The same
mission was performed for different values of . The green dots define the commanded path.
The maximum cross-track error along the first two legs of the trajectory was measured (i.e.
the portion of the path that lies in the Northern half-plane). The commanded speed in this
region was 8 m/s. The measured cross-track error was used to populate Table 3.1.

The vehicle was commanded to loiter between the Northern and Southern portions of
the mission, then return to the path and continue on South. This enabled qualitative ob-
servations of the vehicle behavior (i.e. overshoot), when reacquiring the path. As expected,
higher values of L resulted in a much smoother path, with less overshoot.U
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Appendix B

Investigation of Loitering Behavior

B.1 Average Loiter Radius at Various Speeds and L
U
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B.1 Average Loiter Radius at Various Speeds and LU
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Appendix C

Condensed Path Manager Source
Code

#define ROUTELENGTH 500
#define MANEUVERSTACKSIZE 7

typedef struct {
5 long id;

double posN;
double posE;
double speed;
double alt;

10 int man;
} waypoint-t;

/ *
7*
7*
7*
7*

index of waypoint within array (if applicable) *7
m, North position relative to the local origin *7
m, East position relative to the local origin *7
m/s, forward speed command at waypoint *7
m, altitude at waypoint */
selects a maneuver at this waypoint (0 for none) */

typedef struct {
waypoint-t data[ROUTELENGTH]; /* the array of waypoints *7

15 long length; /* length of the array */
long cur-idx; 7* current position of leader along path */
long last-validid; /* last valid ID */
int ready; /* path is initialized and ready to go (unused)

this is in case we want to upload/swap paths on
20 waypoint-t cur-wpt; 7* waypoint at cur-idx (makes references to it less

int man[MANEUVERSTACKSIZE]; /* the queue of maneuvers *7
int man-idx; /* the last element in the queue.

Note however, that we always stuff out from the
double lu-gain; /* L/U ratio for the path follower *7

25 } route-t;

/* Find the next best guess for a virtual leader along the path */
long get-leader-wpt(route-t * route, waypoint-t cur-pos, double 11)

{
30 7* retrieves a waypoint that is a distance 11 from the current position

in the forward direction along the route */
long idx = route->cur-idx; /* the current working index along the path *7
double dl = 0.0;

the fly. */
cumbersome */

front (idx=0) *7



Condensed Path Manager Source Code

double 110 = 0;
35 double 111 = 0;

int done = 0;
int i = 0;

/* if at the end, stay there *7
40 if (idx == route->length - 1) {

/* If the last action code is a loiter/hover command, use it *7
if (route->data[idx]. man >= 100)

push-man(route, route->data[idx]. man, 0);
route->cur-idx idx;

45 route->cur-wpt = route->data[idx];
return idx;

}

dl = 11 - dist(curpos, route->data[idx]); /* (specified - actual)distance to leader *7
50

while (dl > 0) { /* the point at idx is closer than Li *7
idx++; /* move forward along the path *7

/* if at the end, stay there */
55 if (idx == route->length - 1) {

/* If the last action code is a loiter/hover command, use it *7
if (route->data[idx]. man >= 100)

push-man(route, route->data[idx]. man, 0);
route->cur-idx idx;

60 route->cur-wpt route->data[idx];
return idx;

}
push-man(route, route->data[idx]. man, 0);
dl = 11 - dist(cur-pos, route->data[idx]); /* compute dl *7

65 }

if (idx > 0) {
7* at this point we've found a point that's 11 from us (but could be

behind us) or we were already at dist > 11 when we started.
70 *7

/*
Make sure the leader point we just found is the one that's
furthest forward along the path. Basically looks at the gradient

75 of the helo's distance to consecutive waypoints. If that distance
is shrinking, the leader we just found is actually behind us. We
can keep going until we find a leader ahead of us. So we do.

*/

80 /* First we find the closest point to us, i.e. where the gradient
* changes sign, then we repeat what we did
* before to go forward to L1*/

/* Here I switch variables temporarily, but i has the same sense as
85 * idx. I only switch them while I'm looking for the nearest

* point. */
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i = idx;
111 = dist(cur-pos, route-> data li]);
110 = dist(cur-pos, route->data[i - 1]);

90 done = (111 > 110) ? 1 : 0;
while (!done) {

i++;
/* if at the end, stay there *7
if (i == route->length - 1) { /* remove this condition to make the array circular *7

95 /* If the last action code is a loiter
* command, use it */

if (route->data[i].man >= 100)
push-man(route, route->data[i.man, 0);

route->cur-idx =;
100 route->cur-wpt route->data[i];

return i;

}

/* Push the code, but raise the 'skipping' flag */
105 push.man(route, route->data[i]. man, 1);

111 = dist(curpos, route->data[i]);
110 = dist(cur-pos, route->data[i - 1]);
done = (111 > 110) ? 1 : 0;
if (done) {

110 idx = i;

/* now idx points to closest point on the path. We still want to */
/* try to go forward if we can. This is the exact code we

ran before. */

115 dl = 11 - dist(cur-pos, route->data[idx]); /* compute dl */
while (dl > 0) { /* the point at idx is closer than Li *7

idx++; /* move forward along the path */
/* if at the end, stay there */
if (idx == route->length - 1) {

120 /* If the last action code is a loiter/hover command, use it *7
if (route->data[idx].man >= 100)

push-man(route, route->data[idx]. man, 0);
route->cur-idx idx;
route->cur-wpt route->data[idx];

125 return idx;

}

/* Push the code, but raise the 'skipping' flag *7
push-man(route, route->data[idxl. man, 1);

130 dl = 11 - dist(cur-pos, route->data[idx]); /* compute dl */
}

}
}

}
135

route->cur-idx idx;
route->cur-wpt route->data[idx];
return idx;

}
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140
/* push a maneuver at the back of the queue (if there's room) */
void push-man(route-t * path, int man, int skipping)
{

/* Make sure we have a maneuver and we stay within the allocated size */
145 if ((man == 0) (path->man-idx >= MANEUVERSTACKSIZE - 1)) {

return;

}
/* if it's a positive action code, just queue it up */
if (man > 0) {

150 path->man[path->man-idx] = man;
path->man-idx++;

} else {
7* negative action codes only get enqueued when we're not

* skipping and when the queue is empty */
155 if (!skipping && (path->man-idx) == 0) {

path->man[path->man-idx] = -man;
path->man-idx++;

}
}

160 }

/* pull a maneuver from the front and shift the queue down by 1
* This returns the maneuver in question, but you might want to just refer to
* path->man[O] and just pulLman() when you're ready for the next one *7

165 int pull-man(route-t * path)

{
int i;
int woman = 0;
woman = path->man[0]; // retrieve the first maneuver in the queue

170 for (i = 0; i < path->man-idx; i++) { // shift everything down
path->man[i] = path->man[i + 1];

}
path->man[path->man-idx] = 0; // and set what used to be the last maneuver to 0
if (path->man-idx > 0) // decrement the queue size

175 path->man-idx--;
return woman;

}
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Hammerhead Source Code

int
hammerHead(StateEstimate-t * state, UplinkCmd-t * pilotCmd,

surface-angle-t * sfcCmd, double t)
{

5 /* service constants *7
static double d-coll-max 0.00; /* rad, max change in collective command *7
static double d-coll-min -0.06; /* rad, max -change in collective command */
static double coll-nom 0.15; /* rad, nominal collective (entry) */
static double in-q-max = 0.6; /* rad/sec, maximum pitch rate command *7

10 static double out.q-max = 2.0; /* rad/sec, maximum pitch rate command */
static double r-min = -3.1; /* rad/sec, maximum yaw rate command */
static double theta- in-rampdown = 0.85; /* rad, threshold for in-pitch-ramp-down *7
static double theta-out-ramp-down = -0.6; /* rad, threshold for out.pitch-ramp-down *7
static double psi-yaw-ramp-up = -145 * DEG; /* rad, threshold for yaw.rampup *7

15 static double phi-abort = 20 * DEG; 7* rad, max excursion in |roll| before abort *7
static double theta-max 70 * DEG; 7* rad, max pitch before kicking over *7
static double u-min = 3; /* m/s, min speed before kicking over *7

/* times in different states */
20 static double t -in-pitch -ramp-up = 2.0; /* sec, pitch rate ramp up time *7

static double t-in-pitch-ramp-down 0.6; /* sec, pitch rate ramp down time *7
static double t-u-settle-max = 2.0; 7* sec, max wait time for u-settle */
static double t-yaw-ramp-down = 0.7; /* sec, yaw rate ramp down time *7
static double t-yaw-ramp-up = 0.7; /* sec, yaw rate ramp up time *7

25 static double t-yaw-settle = 0.1; /* sec, yaw settle time */
static double t-out-pitch -ramp-up = 0.2; /* sec, pitch rate ramp up time *7
static double t...out pitch-ramp-down = 0.3; /* sec, pitch rate ramp down *7
static double tmaneuver-time.max 7; /* sec, max time */
static double t-coll-ramp-up = 2.0; 7* sec, collective ramp up time *7

30 static double t-all-settle = 0.5; 7* sec, settle heli at exit *7

/* state definitions */
static short int just-entered = -1;
static short int in-pitch-ramp-up = 0;

35 static short int in-pitch-const = 1;
static short int in-pitch-rampdown = 2;
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static
static
static

40 static
static
static
static
static

45 static
static

short
short
short
short
short
short
short
short
short
short

int
int

int
int
int
int
int
int

int
int

zero velocity-settle = 3;
yaw-ramp-down = 4;
yaw-const = 5;
yaw-ramp-up = 6;
yaw-settle = 7;
out-pitch-ramp-up = 8;
out.pitch-const = 9;

out-pitch-ramp-down = 10;

alLsettle = 11;
exit = 12;

/* other variables */
/* These are parameters that need to be reinitialized before the maneuver

50 * and at the end of it (for posterity)*7

static short int maneuver-state = -1;
static double phi = 0.0; /* rad, pseudoroll *7

55 static double theta = 0.0; /* rad, pseudopitch */
static double psi = 0.0; 7* rad, pseudoyaw */

static double theta-top 0.0; /* rad, max theta during climb *7
static double t-in-pitch..ramp-down-begin = 0.0; /* the time when we start ramping down *7
static double t-u-settle-begin = 0.0; /* the time when we begin waiting for u 0 */

60 static double t-yaw-ramp-down-begin = 0.0; /* when we start kicking over */
static double t-yaw-ramp-up-begin = 0.0; /* when we start ramping back up *7
static double t-yaw-settle...begin = 0.0; /* when we're done yawing */
static double t-out-pitch-ramp-up.begin = 0.0; /* when we start pulling out *7
static double t-out-pitch -ramp-down-begin = 0.0; /* when we ramp down on pitch during pullout *

65 static double t.alLsettle-begin = 0.0; 7* when we enter all-settle state *7
double Zdc = 0.0;

/* Always command zero roll rate *7
/* Integrate phi (check last line for exit condition on phi *7

70 pilotCmd->RollRate = 0.0;
phi += state->p * EKF.TIMESTEP;

if (t < EKFTIMESTEP) { /* Before a single time step has passed */
maneuver-state = just-entered; 7* surely, we must have just entered the maneuver *7

75 }

/* The following are state transitions statements.
* They are executed only once, at the beginning of each state

if ((maneuver-state == just-entered) && (t < t.in-pitch-ramp-up)) {
maneuver-state = in-pitch...ramp-up;

}

if ((maneuver-state == in-pitch-ramp-up)

&& ((t >= t-in.pitch-ramp-up) (state->u <= u-min))) {
maneuver-state = in-pitch-const;

}
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90

if ((maneuver-state == in-pitch-const)
&& ((theta > theta-in-ramp-down) (state->u <= u-min))) {
t-in-pitch-ramp-down-begin = t;

95 maneuver-state = in-pitch-ramp-down;

}

if ((maneuver-state == in-pitch-ramp- down)
&& ((t > (t-in-pitch-ramp-down-begin + t-in-pitchramp-down))

100 [ (theta > theta-max) (state->u <= u-min))) {
theta-top = theta;
t-u.settle-begin t;
maneuver-state zero-velocity-settle;

}
105

if ((maneuver-state == zero-velocity-settle)
&& ((t > (t-u-settle-begin + t-u-settle-max))

(state->u <= u-min))){
t-yaw-ramp-down-begin = t;

110 maneuver-state = yaw-ramp-down;

}

if ((maneuver-state == yaw-ramp-down)
&& (t > (t-yaw-ramp-down-begin + t-yaw-ramp-down))) {

115 maneuver-state = yaw-const;

}

if ((maneuver-state == yaw-const) && (psi < psi-yaw-ramp-up)) {
t-yaw-ramp-up-begin = t;

120 maneuver-state = yaw-ramp-up;

}

if ((maneuver-state == yaw-ramp-up)
&& (t > t-yaw-ramp-up-begin + t-yaw-ramp-up)) {

125 t.yaw-settle-begin = t;
maneuver-state = yaw-settle;

}

if ((maneuver-state == yaw..settle)
130 && (t > t-yaw-settle.begin + t-yaw-settle)) {

t-out-pitch-ramp-up-begin = t;
theta = -theta-top;
maneuver.state = out-pitch-ramp-up;

}
135

if ((maneuver.state == out-pitch-ramp-up)
&& (t > t-out..pitch..ramp-up-begin + t-out-pitch-ramp-up)) {
maneuver-state = out-pitch-const;

}
140

if ((maneuver-state == out-pitch-const)
&& (theta > theta-out-ramp-down)) {
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t-out-pitch-ramp-down-begin = t;

maneuver-state = out-pitch-ramp-down;

145 }

if ((maneuver-state == out-pitch-ramp-down)

&& (t > t-out-pitch-ramp-down-begin + t out-pitch-ramp-down)) {
t-all-settle-begin = t;

150 maneuver-state = allsettle;

I

if ((maneuver-state == alLsettle)

&& (t > t-alLsettle.begin + tLall-settle)) {
155 maneuver-state = exit;

}

/* Things we do in the states */

160 if (maneuver-state == just-entered) {
pilotCmd ->PitchRate = 0.0;

I

if (maneuver-state == in-pitch-ramp-up) {
165 pilotCmd->PitchRate = t * (in-q-max / tin-pitch-ramp-up);

sfcCmd->coll = collinom + t * (d-coll-max / t in-pitch- ramp-up);

theta += state->q * EKFTIMESTEP;

}
if (maneuver.state == in-pitch-const) {

170 pilotCmd->PitchRate = in-q-max;
sfcCmd->coll = colLnom + d-coll-max;
theta += state->q * EKFTIMESTEP;

I
if (maneuver-state == in-pitch-ramp-down) {

175 pilotCmd->PitchRate =
in-q-max + (t-in-pitch-ramp-down-begin -

t) * (in-q-max / t-in-pitch-ramp-down);

sfcCmd->coll =
collinom + d-coll-max + (t-in-pitch-ramp-down-begin -

180 t) * ((d-colLmax -

d-coll-min) /
t-in-pitch-ramp-down);

theta += state->q * EKFTIMESTEP;

}
185

if (maneuver-state == zero.velocity-settle) {
pilotCmd->YawRate 0.0;
pilotCmd->PitchRate 0.0;
sfcCmd->coll = collinom + d-colLmin;

190 }

if (maneuver-state == yaw-ramp-down) {
pilotCmd->YawRate =

(t - t-yaw-ramp-down-begin) * (r-min / tyaw-ramp-down);

195 pilotCmd->PitchRate = 0.0;
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sfcCmd->coll = coll-nom + dcolLmin;
psi += state->r * EKFTIMESTEP;

}

200 if (maneuver-state == yaw-const) {
pilotCmd->YawRate r-min;
pilotCmd->PitchRate 0.0;
sfcCmd->coll = coll-nom + dcoll-min;
psi += state->r * EKF.TIMESTEP;

205 }

if (maneuver-state == yaw-ramp-up) {
pilotCmd->YawRate =

r-min + (t-yaw-ramp-up-begin - t) * (r.min / t-yaw-ramp-up);
210 pilotCmd->PitchRate = 0.0;

sfcCmd->coll = coll-nom + dcolLmin;
psi += state->r * EKFTIMESTEP;

}

215 if (maneuver-state == yaw-settle) {
pilotCmd->YawRate 0.0;
pilotCmd->PitchRate 0.0;
sfcCmd->coll = colLnom + dcoll-min;

}
220 if (maneuver-state == out-pitch..ramp-up) {

pilotCmd->YawRate = 0.0;
pilotCmd->PitchRate

(t -
t-out..pitch-ramp-up-begin) * (out-q-max /

225 t-out-pitch-ramp-up);
sfcCmd->coll =

(t <
t..out-pitch-ramp-up-begin + t-coll-ramp-up ? coll-nom +
d-colLmin + (t-out-pitch-ramp-up-begin -

230 t) * (dcolLmin / t.colLramp-up) : coll-nom);
theta += state->q * EKFTIMESTEP;

I
if (maneuver.state == out-pitch-const) {

pilotCmd->YawRate 0.0;
235 pilotCmd->PitchRate out-q-max;

sfcCmd->coll = (t < t-out-pitch-ramp.up-begin + t-colLramp-up ?
coll-nom + d-colLmin +
(t-out-pitch-ramp-up-begin -
t) * (d-coll-min / t-coll-ramp-up) coll-nom);

240 theta += state->q * EKFTIMESTEP;

}

if (maneuver-state == out-pitch-ramp-down) {
pilotCmd->YawRate 0.0;

245 pilotCmd->PitchRate
(t -out-pitch-ramp-down-begin -
t) * (out-q-max / t-out pitch-ramp-down);

sfcCmd->coll =
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(t <
250 t.out-pitch-ramp-up-begin + t-coll-ramp-up ? coll-nom +

d-coll-min + (t-out pitch-ramp.up-begin -
t) * (d-collimin / t-coll-ramp-up) : coll-nom);

theta += state->q * EKFTIMESTEP;

}
255

if (maneuver-state == all-settle) {
pilotCmd->YawRate 0.0;
pilotCmd->PitchRate 0.0;
sfcCmd->coll = (t < t..out-pitch-ramp.up..begin + t-coll-ramp-up ?

260 coll-nom + d-coll-min +
(t-out-pitch- ramp-up-begin -
t) * (d-coll-min / t-coll-rampup) : coll-nom);

}

265 if (maneuver-state == exit) {
phi = 0.0; 7* rad, pseudoroll */
theta = 0.0; 7* rad, pseudopitch */
psi = 0.0; 7* rad, pseudoyaw *7
theta..top = 0.0; 7* rad, max theta during climb *7

270 t-in-pitch-ramp-down-begin = 0.0; /* the time when we start ramping down *7
tLu-settle-begin = 0.0; /* the time when we begin waiting for u 0 *7
t-yaw-ramp-down-begin = 0.0; /* when we start kicking over */
t-yaw-ramp-up-begin = 0.0; 7* when we start ramping back up *7
tLyaw-settle-begin = 0.0; 7* when we're done yawing */

275 t-out pitch-ramp-up-begin 0.0; /* when we start pulling out *7
t-out..pitch-ramp-down-begin 0.0; /* when we ramp down on pitch during pullout */
t-all-settle-begin = 0.0; 7* when we enter all-settle state *7
Zdc = 0.0;
return 1;

280 }

pilotCmd->autopilotMode = RATETRACKING; /* change mode to rate tracking *7
rate.controller(state, pilotCmd, sfcCmd);
pilotCmd->autopilotMode VELTRACKING; 7* change mode to vel tracking *7

285

if ((fabs(phi) > phi.abort) (t > tmaneuver-time-max)) {
maneuver-state = exit;

}
290

return 0;

}
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Appendix E

Scripting the Mission

The waypoints for the validation flight (Chapter 5) were specified in a text file, one per line.
The text file was generated using a simple perl script, presented below.

E.1 Script for Generating the Sample Mission

#!/usr/bin/perl -w

###########################################################
## Generate a sequence of waypoints, specifying a mission #

5 ###########################################################

## action code at waypoint
$man = 0;
## speed at waypoint

10 $speed = 8.0;
## altitude at waypoint
$aft = 50.0;
## waypoint id
$j = 0;

15
## These are smooth turns with a radius of 15 meters:
## - -- - --

## turnES means you enter the turn headed East and exit headed South

20 @turnESe = (2.9300, 5.7400, 8.3300, 10.6100, 12.4700, 13.8600, 14.7100);
@turnESn = (-0.2900, -1.1400, -2.5300, -4.3900, -6.6700, -9.2600, -12.0700);
@turnENe = (2.9300, 5.7400, 8.3300, 10.6100, 12.4700, 13.8600, 14.7100);
@turnENn = (0.2900, 1.1400, 2.5300, 4.3900, 6.6700, 9.2600, 12.0700);
@turnWSe = (-2.9300, -5.7400, -8.3300, -10.6100, -12.4700, -13.8600, -14.7100);

25 @turnWSn = (-0.2900, -1.1400, -2.5300, -4.3900, -6.6700, -9.2600, -12.0700);
@turnWNe = (-2.9300, -5.7400, -8.3300, -10.6100, -12.4700, -13.8600, -14.7100);
@turnWNn = (0.2900, 1.1400, 2.5300, 4.3900, 6.6700, 9.2600, 12.0700);
@turnNEe - reverse @turnWSe;
@turnNEn - reverse @turnWSn;
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30 @turnSEe = reverse @turnWNe;
@turnSEn = reverse @turnWNn;

@turnSWe = reverse @turnENe;
@turnSWn = reverse @turnENn;
@turnNWe = reverse @turnESe;

35 @turnNWn = reverse @turnESn;

## The initial solitary waypoints

40 printf "$j 90.0 40.0 8.0 $alt.0 0\n";

$i++;
printf "$j 100.0 30.0 3.0 $alt.0 0\n";

45
## The rest of the mission is specified in the thesis.

$speed = 5.0;

50 for ($i=O;$i<7;$i++){
$x=$turnWNe[$i];
$y=$turnWNn[$i];
printf "$j %.2f %.2f $speed.0 $alt $man\n", $x+25, $y+ 3 0;

55 }

for ($i=0;$i<7;$i++){
$x-$turnN Ee[$i];
$y=$turnN En[$i];

60 printf "$j X.2f X.2f $speed.0 $alt $man\n", $x+25, $y+60;

$j++;

$speed = 8;
65

for ($i=50;$i<=105;$i++){
printf "$j $i.0 60.0 %.2f $alt $man\n", $speed;

}
70

for ($i=0;$i<7;$i++){
$x=$turnESe[$i];
$y=$turnESn[$i];
printf "$j %.2f %.2f

75 $j++;
}

$speed.0 $alt $man\n", $x+105, $y+ 6 0;

for ($i=45;$i>0;$i--){
printf "$j 120.0 $i.0 %.2f $alt.0 $man\n",$speed;

80 $j++;
}
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$speed = 6;
printf "$j 120.0 0.0 6.0 $alt.0 115\n";

85 $j++;

for ($i=0;$i>=-75;$i--){
printf "$j 120.0 $i.0 %.2f $alt.0 $man\n",$speed;

$j++;
90 }

$aft = 40;

for ($i=O;$i<7;$i++){
$x=$turnSWe[$i];

95 $y=$turnSWn[$i];
printf "$j %.2f %.2f $speed.0 $alt $man\n", $x+105, $y- 9 0;

}

100 for ($i=105;$i>=65;$i--){
print "$j $i.0 -90.0 $speed.0 $alt.0 $man\n";

}

105 for ($i=O;$i<7;$i++){
$x=$turnWNe[$i];
$y=$turnWNn[$i];
printf "$j X.2f %.2f

$j++;
110 }

for ($i=-75;$i<-30;$i++){
printf "$j 50.0 $i.0

$j++;
115 }

$speed.0 $alt $man\n", $x+65, $y- 9 0;

%.2f $alt.0 $man\n",$speed;

printf "$j 50.0 -30.0 %.2f $alt.0 3\n",$speed;

$j++;

120 printf "$j 50.0 -60.0 3.0 $alt.0 0\n";

$i++;

print "1-1 -1 -1 -100 -1337 0";
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