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Abstract

High cycle fatigue (HCF) cracks generated by compressor blade vibrations are a common
source of failure in gas turbine engines. Current methods for crack detection are costly,
time consuming, and prone to errors. In-situ blade vibration detection would help
operators avoid critical engine speeds, and help infer the presence of cracks via a change
in the mode of a blade. Blade vibrations can be detected using non-contacting sensors
like optical sensors, or contacting sensors like strain gauges. These methods have
drawbacks that make them poorly suited for installation in a gas turbine engine.

Eddy Current Sensors (ECS) have numerous advantages over other vibration detection
methods. This thesis aims to use ECS's for vibration detection. Testing was performed
in a spin pit rig in the Gas Turbine Lab at the Massachusetts Institute of Technology. The
rig contained a rotor on which three test blades spun, and strain gauge and ECS data were
extracted from the rig. Magnet arrays were used to provide an excitation force to the
blades, causing them to vibrate as they were spinning.

Force hammer testing was used to determine the resonant frequencies and mode shapes
of the test blades, as well as transfer functions from the strain gauges to the blade tip
acceleration. These transfer functions allowed for independent knowledge of the blade
vibration behavior. The case of a cracked blade was also considered. Estimates were
performed to determine the proper location and length of a crack in the test blade. A 10
mm edge crack was created in a test blade. The crack was found to lower the resonant
frequency of the first torsion mode of the blade by 0.2%, and to alter the transfer function
between strain and tip acceleration. While some evidence of the blade vibration appears
in the ECS signal, no definitive method for sensing blade vibration using an ECS has yet
been developed.

Thesis Supervisor: Dr. James D. Paduano
Title: Principle Research Engineer, Department of Aeronautics and Aeronautics
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1 Introduction

1.1 Compressor Blade Vibrations and Cracks

Compressor blade vibrations in a gas turbine engine are an important problem.

Vibrations can lead to non-ideal aerodynamic performance of the blades. More

importantly, excessive blade vibration can cause stresses in a blade that can lead to high

cycle fatigue (HCF) failure. HCF failure is caused by cyclic stresses that lead to crack

initiation and growth, and eventually to failure. HCF is distinguished from low cycle

fatigue (LCF) by the stress level. HCF is due to stress levels that are well below the yield

stress, causing solely elastic deformations of the material, and therefore requiring a high

number of cycles to bring about failure.[1] In fact, HCF is one of the most common

causes of failure in gas turbine engines. The high occurrence of HCF failures can be seen

in Figure 1.1

MI

JET ENGINE FAILURE MODES

Ovru

mrWooctwing 00

HCF

FO0DO, etc.

Figure 1.1: HCF Failure Percentage[2]

HCF failures occur during both development and engine operation, and can lead to

catastrophic events. A HCF crack that causes a blade to break off of the disk can damage

an engine severely enough to bring down the entire airplane. The 1989 crash of United

11
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Airline flight 232 killed 111 people, and was initiated by an undetected HCF crack in an

engine.[3] It is clear that blade vibrations, which can lead to HCF failures, are a

significant problem in gas turbine engines.

1.1.1 Compressor Blade Modes

Like all structures, compressor blades have resonant modes and corresponding resonant

frequencies. A mode is the shape that the structure deforms to when it vibrates at the

resonant frequency. A guitar string pinned at the ends, with the center vibrating

transversely is a simple example of a mode. Compressor blades can be modeled as

simple cantilever beams, with associated bending and torsion modes, as seen in Figure

1.2. For higher frequency modes, the shapes become more complex.

bending ' , torsion

Figure 1.2: Compressor Blade Mode Shapes[4]

When compressor blade modes are excited, the blade will vibrate, and these vibrations

can cause HCF cracks, as stated above. A particular mode of a compressor blade will be

excited when the resonant frequency is an integral multiple of the engine rotation speed.

For example, a mode at 1000 Hz will be excited when the engine rotation speed is 1000

Hz, 500 Hz, 333 Hz, etc. This relationship can be demonstrated visually using a

"Campbell diagram." An example of a Campbell diagram is shown in Figure 1.3. The

horizontal lines represent the resonant frequencies of the blade - in this case they

correspond to the first two bending modes. The diagonal lines have slopes that are

12



integral multiples of the engine rotation speed i.e. N, 2N, 3N, etc. The points where the

diagonal engine speed lines intersect the horizontal resonant frequency lines indicate the

critical engine speeds that can cause the modes of the blades to be excited. Thus, when

an engine operates at a critical speed, one of the blade modes will be excited, and the

blade will vibrate. The longer an engine resides at a critical speed, the more fully the

blade mode becomes excited, and so the stress levels increase.

5N
o speeas at wnicn

resonance may occur

33

may ocur 2nd t
2N

N

1 N idle Ndesign

Figure 1.3: Sample Campbell Diagram [4]

1.1.2 Blade Cracks

Vibrations cyclically stress blades, and this cyclic loading can lead to HCF cracks. HCF

cracks consist of three distinct steps. First, the crack must initiate. In this step, the cyclic

loading causes a small crack to form, usually in a region of stress concentration. Next,

the crack propagates, advancing incrementally with each cycle.[1] Finally, the structure

fails, as the crack grows rapidly after reaching a critical size. The total number of cycles

to failure is just the sum of the number of cycles needed for initiation and the number of

cycles needed for propagation; the number of cycles contributing to failure is

13
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insignificant. For the low stress levels associated with HCF, the number of cycles

required for initiation is greater than propagation.

Currently, there are several methods for blade crack detection, all of which require the

engine to be removed from the airplane and disassembled for periodic inspection. One

such method is fluorescent penetrant inspection (FPI).[5] Blades are coated with dye that

seeps into cracks, which can then be seen under ultraviolet light. However, FPI cannot

detect subsurface cracks. Ultrasonic and eddy current probes can also be used for crack

detection. All of these crack detection methods have several drawbacks. First, removing

and disassembling an engine is a time consuming and expensive process. Second, when

the testing occurs, blades are in their most relaxed states, and therefore cracks are

smallest and more difficult to detect.[5] Lastly, all of these methods require an

experienced operator, and are subject to human error. To minimize the possibility for

blade failure, disks are retired after substantially fewer cycles than would be expected to

cause crack initiation. Despite this precaution, blade failures do occur when cracked

blades go undetected. The result is that most blades are retired well before their lifetime

is up, while a small number of blades fail and cause significant damage.[5] The entire

process is extremely costly, as many useful blades are wasted, some bad blades cause

engine failure, and many hours are spent disassembling and inspecting the engine.

Currently, no method exists for detecting cracks in-situ. Such a system, imbedded in an

engine, would have the benefit of eliminating the need for the engine to be removed and

disassembled. This would lead to substantial cost savings. Moreover, an in-situ system

would detect cracks while the blades are at a high stress level, and so the cracks are

largest, and easier to detect. Obviously, there is substantial motivation to develop an in-

situ crack detection method.

1.1.3 Vibration Sensing

There are many existing techniques for blade vibration sensing. However none of these

methods are well suited for operation in gas turbine engines. Strain gauges are a well-

14



known method for vibration sensing. However, strain gauges take time to install, and are

prone to failure. They are far too fragile to withstand the gas turbine environment. Blade

vibrations can also be detected using non-contacting sensors, like optical or capacitive

sensors. These sensors use time of arrival data to sense blade vibrations. That is, they

measure the time at which the rotating blade tip passes a stationary sensor to determine

the vibration of the blades. A major drawback of this method is that it requires several

sensors to determine blade vibrations, usually at least four. This requirement for a large

number of sensors in each stage of an engine can make the cost of vibration sensing

prohibitive. Finally, optical and capacitive sensors tend to be heavy and expensive, and

are adversely affected by the extreme environment of a gas turbine engine. Gas turbine

engines are extremely high temperature environments with high vibration levels, and

conventional non-contacting sensors are poorly suited for these conditions.

Sensing blade vibrations while an engine is in operation is potentially very useful. First,

if blade vibrations could be detected, this knowledge would indicate critical engines

speeds that could be avoided in the future. Second, vibration sensing could be used for

crack detection. Cracks change the structural properties of a blade. This change in the

structural stiffness would alter the mode shape and frequency of a blade. Thus, if blade

vibrations can be sensed, then the presence of a crack can be inferred due to a change in

the mode shape and frequency of a blade.

1.1.4 Overview of Blade Vibrations and Cracks

There is a clear and compelling motivation to sense blade vibrations in gas turbine

engines. Blade vibrations lead to high cycle fatigue cracks, which can cause catastrophic

engine failure. Currently, blade vibrations can be detected using strain gauges or non-

contacting time of arrival methods. These methods have drawback ranging from

reliability to cost. The ability to sense blade vibrations would identify critical engine

speeds and potentially allow for crack detection. Current methods for crack detection are

expensive and subject to errors. In sum, the ability to sense blade vibrations in operating

gas turbine engines could improve safety and reduce maintenance costs.

15



1.2 Eddy Current Sensors

This thesis focuses on using eddy current sensors (ECS) for blade vibration sensing. As

discussed in Section 1.1.3, current methods for vibration sensing have numerous

drawbacks. Eddy current sensors have the possibility to mitigate these drawbacks, and

could be used for vibration sensing in an operating gas turbine engine.

This thesis will utilize an ECS developed by General Dynamics Advanced Technology

Systems (GDATS). The GDATS ECS was developed for the Joint Strike Fighter (JSF)

program.[3] Currently, the GDATS ECS is being used only for tip clearance detection in

the JSF, and not for vibration sensing. Technosciences Inc., the sponsors of this thesis,

intends to use the ECS to sense blade vibrations using only two sensors. They are

developing algorithms to utilize the full ECS signature for vibration sensing, rather than

using time of arrival methods, mentioned in Section 1.1.3, which requires at least four

sensors to sense vibrations.

1.2.1 Eddy Current Sensor Basics

Eddy current sensors operate by producing a time varying magnetic field. When a

conducting object, e.g. a compressor blade, enters the field of the sensor, eddy currents

are created in the conducting object. These eddy currents alter the magnetic field of the

sensor, and the sensor measures this change in the field. The behavior of an eddy current

sensor can be seen in Figure 1.4.
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Figure 1.4: Eddy Current Sensor Output[3]

The picture on the left shows a blade passing the face of an eddy current sensor at various

positions. The picture on the right shows the corresponding voltage output of the sensor.

Several important characteristics of the output are shown in the picture on the right.

First, when the blade passes the center of the sensor at position 3, the eddy current sensor

signature crosses zero. This zero crossing point can be used to calculate the time of

arrival of a blade. Second, the peak-to-peak amplitude of the eddy current sensor

signature is proportional to the tip clearance. As mentioned above, the ECS is currently

used for tip clearance measurements in the JSF program. Third, the speed of the passing

blade is proportional to the peak-to-peak width of the ECS signature.

1.2.2 Advantages of Eddy Current Sensors

ECS's have many properties that make them well suited for installation in an operating

gas turbine engine, and a superior choice to other vibration sensing technologies. First,

they are simply constructed and low in cost relative to optical sensors. Second, they are

small, light, and durable.[3] They can withstand the high temperatures and accelerations

of a gas turbine engine environment. Moreover, they can operate without any cooling.

Third, an ECS is immune to dirt and moisture in the gas stream, which is not the case for

optical and capacitive sensors. Overall, they are well suited for permanent installation in

a gas turbine engine.
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1.2.3 Goals

The long-term goal of the proponents of this technology is for ECS systems to become

permanently installed sensor systems in gas turbine engines. These casing mounted

systems would sense blade vibrations and potentially identify crack growth in blades. As

stated in Section 1.1.4, there is a strong motivation to sense blade vibrations and the

presence of cracks both from the perspective of safety and cost. Compared to other

vibration sensing technologies, an ECS system offers many advantages in terms of cost

and reliability.

For this thesis, the research performed aimed to fulfill several specific objectives.

1. Utilize magnet arrays to cause a spinning blade to vibrate. Determine to what

degree the magnets caused vibrations and verify that these vibrations can be

identified using strain gauges.

2. Determine the mode shapes of a blade, and generated transfer functions relating

the strain gauge signal to the blade tip behavior.

3. Resolve the following question: How much does a crack affect the mode of a

blade? How should a blade be cracked to make the situation as realistic as

possible?

4. Identify blade vibrations in the ECS signals.

1.3 Overview of Thesis

This thesis consists of experimental work performed in the spin pit rig in the Gas Turbine

Lab (GTL) at the Massachusetts Institute of Technology (MIT). Broadly, test blades

were spun in the spin pit to simulate a rotating engine. Magnet arrays were used to

provide forces to excite the modes of the blades. Strain gauges were installed on the

blades to provide independent measurements of the blade behavior. Eddy current sensors

were mounted around the circumference of the spin pit, and ECS data was taken while

the blades were rotating. ECS data was then analyzed in conjunction with strain gauge

data to identify blade vibrations. The basic structure of the thesis proceeds as follows:

18



- Chapter 2 describes the experimental setup for the testing, including the creation

of the test blade, the spin pit, the strain gauges, the magnet arrays, and the data

acquisition system.

" Chapter 3 describes the experimental procedure and preliminary data collection

and analysis. Force hammer testing and analysis, finite element analysis, rotor

balancing, and blade excitation are all discussed.

- Chapter 4 focuses on analysis of the ECS data and estimates of the size and effect

of a high cycle fatigue crack on blade modes.

- Chapter 5 discusses the conclusions reached from the analysis, and some

recommendations for future work.
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2 Experimental Setup

2.1 Spin Pit Rig

Experimental work for this thesis was conducted in the spin pit rig, located in the Gas

Turbine Lab at the Massachusetts Institute of Technology. The rig consists of a rotor

located within a 30-inch diameter and 7-inch deep steel cylinder. The rotor has three hub

mounts that are used to mount blades. A picture of the rig is shown in Figure 2.1. The

lid of the spin pit has been removed to show the rotor, as well as three blades mounted in

the rotor.

Figure 2.1: Spin Pit Rig

A motor drives the rotor, which is capable of spinning the rotor up to 300 Hz (18,000

RPM). The spin pit can be sealed and evacuated with a vacuum pump in order to reduce

the aerodynamic drag on the rotating blades. Thermocouples are mounted on the rotor

bearings to ensure that the temperature from frictional heating remains in an acceptable

range. The dynamic vibrations of the rotor are measured with an accelerometer located

in the housing of one of the rotor bearings.

21



Both stationary and rotating frame data can be extracted from the spin pit rig. Two

brackets have been installed around the circumference of the rig for the eddy current

sensors. These brackets are mounted on traversers that can be adjusted to position the

eddy current sensors at a desired distance from the rotating blade tips. The brackets can

be seen in Figure 2.1. The eddy current sensor output is extracted through a cable, which

passes through a vacuum seal in the lid of the spin pit, to a signal-conditioning box. Data

from the strain gauges mounted on the rotating blades can also be extracted from the rig.

The strain gauge output passes through a slip ring located at the top of the rotor, and

emerges through wires that are connected to the strain gauge amplifiers.

2.2 Test Blade Creation

A blade was created for the spin pit testing. The test blade profile started as a Matlab

description of the 'Fan C' transonic fan blade designed by GE. The profile contained x-

y coordinate cross-sections of the blade at nine different span-wise locations. A picture

of the original blade is shown in Figure 2.2.

Original Blade Profile

0........

0.2

0.0

-. 5 .0 0.04 02
x Y

Figure 2.2: Original Fan-C Blade Profile in Matlab

For each of the cross-sections, the twist and the camber were removed, so that the

description represents the thickness profile of a real blade, with twist and camber
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removed. The blade was then scaled down in size by normalizing the chord length of

each cross section to 2 inches to fit into the hubs of the test rotor. This easily

manufactured blade has a realistic taper ratio and thickness at each radial station, but is

much easier to analyze and test.

Next, the modified blade profile was imported into Pro Engineer, creating a three

dimensional representation with a simple 'fir tree' at the hub to secure the blade in the

spin pit rotor hub. A picture of the blade in 'Pro-E' appears in Figure 2.3.

Figure 2.3: Pro Engineer Representation of Test Blade

Finally, manufacturing files were created so that the blade could be manufactured in the

5-axis milling machine in the Gas Turbine Lab machine shop. To date, six blades have

been manufactured from aluminum.

2.3 Eddy Current Sensors

Three eddy current sensors have been mounted in the spin pit at various circumferential

and chord wise locations. Two sensors are mounted on a single traverser - one at 25% of

the chord, one at 75% of the chord of the blades. The third sensor is mounted on a

separate traverser, 90 degrees from the other sensors. This third sensor is positioned at

25% of the chord. The positions of the sensors can be seen in Figure 2.1. The sensor
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output passes through a vacuum seal to a signal-conditioning box. The output of the

signal-conditioning box is connected to a differential amplifier. The differential amplifier

is unity gain, and is used for common mode rejection. A schematic of the differential

amplifier is shown in Figure 2.4.

Figure 2.4: Differential Amplifier Schematic[16]

Finally the output of the differential amplifier connects to a BNC cable, so that the sensor

output can be viewed on an oscilloscope or connected to the data acquisition equipment.

The differential amplifier has been found to effectively reduce the noise level in the eddy

current sensor signal.

2.4 Strain Gauges

2.4.1 Strain Gauge Positioning

Two blades were each wired with strain gauges in order to independently sense blade

vibration. For one blade, four strain gauges were positioned to sense bending modes. On

this blade, the four gauges are all positioned so that they are parallel with the leading and

trailing edge of the blade. Two strain gauges are on one side of the blade, and the other

two strain gauges are mirror images on the other side. The strain gauges are all

positioned at approximately 1/3 of the span of the blade. Two of the gauges are at 4 of
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the chord, and two are at 3/4 of the chord. The positions of each of the strain gauges are

shown in the illustration in Figure 2.5. The strain gauges are highlighted in black, and

the dashed line indicates flipping from one side of the blade to the other.

I I I I

Figure 2.5: Strain Gauge Positions for Bending Blade

The strain gauges on the second blade were positioned to detect torsion modes. Once

again four strain gauges were used, with two on each side mirroring those on the other

side. The gauges are also at 1/3 the span and %4 and 3/4 of the chord. However, all four of

the strain gauges are positioned at 45-degree angles to the leading and trailing edges. The

positions of the strain gauges on the torsion blade are shown in Figure 2.6.

4*#

Figure 2.6: Strain Gauge

4*#

Positions for Torsion Blade
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2.4.2 Strain Gauge Wiring Scheme

The strain gauges for both blades were wired as a full Wheatstone bridge. A diagram of a

Wheatstone bridge is shown in Figure 2.7. Each resistor represents one of the strain

gauges.

t

V-1,

Figure 2.7: Wheatstone Bridge

For a full bridge, all four of the resistors correspond to each of strain gauges. When a

strain gauge undergoes tension, the resistance of the strain gauge increases. Likewise,

when it undergoes compression, the resistance decreases. The four strain gauges can be

connected to each other in such a way that they make a full bridge. Consider the case of

bending. When the blade bends, the two gauges on one side of the blade undergo a

tension force, while the two gauges on the opposite side undergo a compressive force.

V EX is the excitation voltage, which is provided by the amplifier to power the bridge.

If the gauges are wired such that the two gauges that experience tension are R1 and R3 in

the Wheatstone bridge, and the two gauges that experience compression are R2 and R4 in

the Wheatstone bridge, then a voltage will appear across VCH. This voltage, VCH, is

the output voltage signal. A similar effect occurs for the torsion blade, but with a small

difference. When a torsion blade twists, the strain gauges are affected differently. On

one side of the blade, one gauge will experience a tension force. However, the force on

the other gauge is perpendicular to the direction of the gauge. Consequently, that gauge

experience only a slight compressive force, which is the tension force felt by the other
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gauge, times the Poisson ratio of the material. On the other side of the blade, one of the

gauges will experience a compressive force equal to the tension force felt by the gauge on

the other side of the blade. The other gauge will experience a tension force equal to the

small compressive force felt by the gauge on the other side of the blade. Although these

changes in resistance are relatively small, they will result in a voltage signal, V_CH, to

appear across the bridge.

A full bridge is an advantageous setup for the strain gauges for a variety of reasons.

First, a full bridge eliminates centrifugal stress effects. When the blade is spun,

centrifugal forces produce a tension force throughout the blade. However, all four strain

gauges are at the same span-wise location, so they experience the same tension force.

Since each gauge experiences the same stress, the resistance of each gauge increases the

same amount. The result is that the bridge is unaffected by the centrifugal stress, and

V_CH is zero. Thermal effects are canceled out in the same way. As a spinning blade

heats up due to rotor and aerodynamic friction, the blade tends to lengthen somewhat.

Again, all four of the gauges experience the same force, and so the output of the bridge is

zero. Lastly, a full bridge greatly reduces the effect of noise in the slip ring. Originally,

the strain gauges were wired as half bridges. Two strain gauges on the blade made up

two of the resistors in the bridge, and the amplifier made up the other two resistors for a

half bridge. The slip ring was in series with the strain gauges. While the resistance of the

slip ring is nearly constant, it does vary slightly as the rotor spins. This small change in

the slip ring resistance can introduce a great deal of noise. When the strain gauges

experience some force, their resistance changes very slightly. When the variable

resistance of the slip ring is included in the bridge, the actual signal becomes drowned out

by the noise. However, when a full bridge is used, this effect is eliminated. For a full

bridge, all four gauges in the bridge are on the blade. The signal that passes though the

slip ring is the voltage signal VCH. V_CH is connected to the amplifier, which is a very

high impedance device, so that the small changes in resistance in the slip ring are

negligible. Thus, a full bridge offers many advantages over other wiring schemes.
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2.4.3 Strain Gauge Calibration and Output

In order to relate the strain gauge voltage output to the actual strain experienced by the

gauges, the amplifier must be calibrated. The amplifier used was a Model 2310 Strain

gauge Conditioning Amplifier from Measurements Group, INC. The method used to

calibrate the amplifier is called "shunt" calibration. Both the bending and torsion blade

were calibrated in this manner. The method proceeds as follows. A large resistor, a

"shunt resistor," is placed in parallel with one of the strain gauges in the full bridge. The

effect of the shunt resistor is to reduce the total resistance across the two resistors in

parallel. Because the resistance of the shunt resistor is large compared to the strain

gauge, the overall resistance is reduced only slightly. A decrease in resistance simulates

a compressive strain on the gauge. In this way, a known strain can be simulated on one

of the strain gauges, and the gain can be adjusted accordingly. The relation between the

simulated strain and the shunt resistance is given in Equation 2.1.[7]

R Equation 2.1
ECAL K( RCAL +RA)

where: ECAL simulated strain

K = gauge factor of the strain gauge

RA =resistance of the shunted leg

RCAL =resistance of the shunt resistor

The resistance of the shunted leg is just the resistance across the shunt resistor and the

strain gauge in parallel, so:

1 1 1 Equation 2.2

RA RSG RCAL

RSG is just the resistance of the strain gauge, and the gauge factor is a known property of

the strain gauge. Thus, if the resistance of the strain gauge and the shunt resistor are

known, the simulated strain can be calculated. Then, the gain on the amplifier can be

adjusted to produce a desired output. For this thesis, the amplifier was calibrated for a

conversion factor of:
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SG Conversion Factor = 5Equation 2.3

V

where ue is micro-strain, or strain divided by 10 ^6. This conversion factor applies to

the whole bridge, so that each strain gauge actually experiences 4 of the output. For

example, an output of 10 V corresponds to a total strain of 5200 pe, and a strain of 1300

pe per strain gauge. This conversion factor was chosen to achieve maximum sensitivity.

The shunt resistor had a maximum resistance of 11,000 Ohms, which limits the amount

of gain that is attainable. Also, this conversion factor applies to both the bending and the

torsion blade. However, for the torsion blade, each gauge does not read simply %4 of the

total strain calculated. As stated in Section 2.4.2, two of the gauges experience the full

force; the other two gauges experience this force times the Poisson Ratio. Thus, the

strain felt by each gauge is not equal to the the total strain. If the Poisson Ratio is

assumed to be small, then two of the gauges can be assumed to experience zero strain,

while the other two each experience half the total strain. In general, this approximation

will be used.

The output of the strain gauge amplifier is a simple voltage signal that can be connected

to a BNC cable. The BNC cable can then be connected to an oscilloscope to view the

strain output, or the data acquisition system to take strain gauge data.

2.5 Exciter Magnets

In order to sense vibrations, the test blade must be vibrating while the rig is spinning. An

array of magnets is used to excite the modes of the blade while it rotates.

2.5.1 Magnet Positioning

Three sets of six samarium-cobalt magnets were positioned in the spin pit to provide an

excitation to the blades. The magnets are each 1.0 x 0.5 x 0.25 inches in dimension. The

three sets are positioned 120 degrees apart from each other, so that the forces they impart

to the blades are balanced. Each holder for the set of magnets is bolted into the floor of
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the spin pit. The holders consist of a 3/4-inch thick steel plate, on top of which the

magnets are positioned. The magnets are held in place by 1/16-inch dowel pins.

Underneath the steel plate is a %-inch aluminum plate. Three jacking screws can be used

to raise the steel plate above the aluminum plate to bring it closer to the blades. The

magnets are positioned such that they lie on a circle centered at the axis of rotation of the

rotor, at a radius that positions them at approximately half the span of the blades. A

picture from Pro-Engineer of the magnets and the holder is shown in Figure 2.8. The

picture does not show the aluminum plate or the holes, but it gives a good representation

of the positioning of the magnets and the dowel pins.

Figure 2.8: Magnet Layout and Holder

2.5.2 Magnet Physics

The magnets in the holder alternate in polarity. That is, each magnet has either a north or

south pole facing upwards, and they alternate in which pole is facing upwards. Because

of this positioning, the magnetic field above the magnet array is setup like a series of

horseshoes, three per holder. As a blade passes through this magnetic field, eddy currents
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are setup in the blade. According to Lenz's law, the eddy currents will be setup up so

that they produce a magnetic field that opposes the change in magnetic flux in the blade.

This effect results in a force on the blades. Thus, the magnets can be used to provide a

periodic excitation to the blades as they rotate.

2.5.3 Magnet Excitation Frequency

The magnets will excite the blade at a certain frequency. This excitation frequency is

dependent on the speed of the rotor and the angular separation of the magnets. The

formula relating these parameters is:

F =F Equation 2.4
EX ROT AO

where: FEX = excitation frequency provided by the magnets in Hz.

FROT = rotational speed of the rotor in Hz.

AO = angular separation of the magnets

The angular separation of the magnets can be calculated geometrically. The inner two

corners of each magnet are positioned so that they lie on a circle of radius 5.5 inches.

The magnets are each 0.5 inches wide. Their angular separation was calculated using

these values in Figure 2.9, with the result that A 0=5.20.

5.500"

Figure 2.9: Angular Separation of Magnets
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Thus, if the resonant frequencies of the blade are known, a certain frequency, F, can be

excited by running the rotor at the speed, FROT , given by Equation 2.4.

2.6 Data Acquisition

A "Lab View" program was developed that can read data through a National Instruments

PCI-6071E A/D board. The strain gauge signals and the ECS signals can be measured

simultaneously using the A/D board. The A/D board can take a total of 2 million samples

per second. In general, data has been sampled at either 200 kHz or 400 kHz depending

on the number of channels being used. Originally, the A/D board picked up noise

produced by the spin pit motor. This problem was corrected by connecting the ground

wires of each channel to the box, so that the shield became grounded. This change

effectively eliminated the pickup of the rotor noise.
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3 Experimental Procedure and Data Collection

3.1 Force Hammer Testing

The goal of this research is to sense vibrations of rotating blades using stationary eddy

current sensors. In order to verify the accuracy of the eddy current sensors, it is important

to have an independent source of measurement of the blade behavior that can serve as a

"truth model." To that end, strain gauges are used to measure the blade vibrations while

the rig is spinning. Strain gauge signals can be extracted through the spin pit slip ring, so

that blade vibrations can be sensed simultaneously using both the eddy current sensors

and the strain gauges. Because the ECS measures the blade behavior at the tip only, it is

necessary to relate the strain reading at the location of a strain gauge to the blade tip

behavior. In order to determine this relationship, an experiment was performed with the

goal of determining the transfer function between the strain gauge reading, and the blade

tip vibrations.

3.1.1 Force Hammer and Accelerometer

An impulse force hammer and an accelerometer were used to perform this experiment.

The force hammer used was a Kistler model 9722A. Force hammers provide a structural

excitation to the blade so that a frequency response function can be measured.

Depending on the hammer tip selected, the hammer provides an input energy with nearly

constant amplitude over the desired frequency range.[8] A Kistler model 8614A

accelerometer was used to measure the blade vibrations. The force hammer and

accelerometer were both connected to a digital signal analyzer, which produces a

frequency response function for the accelerometer due to the force hammer input.
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3.1.2 Resonant Frequency Determination

The force hammer, accelerometer, and strain gauges were first used to determine the

resonant frequencies of both blades. The strain gauges on the "bending blade" were

positioned to sense bending modes, while those on the "torsion blade" were positioned to

sense torsion, as discussed in Section 2.4. Because the eddy current sensors are only

about 1 inch in diameter, the blade is passing the sensor for only a small amount of time.

However, this thesis proposes using the sensors to determine blade vibrations. Therefore

it is necessary for the modes we are sensing to have resonant frequencies greater than

1000 Hz. This was the cutoff so that a significant portion of the mode period occurred

within the window of the eddy current sensor. A sample frequency response function

between the force hammer and accelerometer for the bending blade is shown in Figure

3.1. Two prominent peaks at 1208 Hz and 1284 Hz indicate the resonant frequencies of

two different modes.

Hammer-Accelerometer Frequency Response
Go

Frequency (Hz)
200

-200
103

Frequency (Hzl)

Figure 3.1: Impact Hammer to Accelerometer Frequency Response Function for Bending
Blade

Similar tests were performed on the torsion blade as well. For the torsion blade, the

resonant frequencies occurred at 1176 Hz and 1236 Hz. It seems that manufacturing
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variations have caused the resonant frequencies to vary slightly between different blades.

A summary of the resonant frequency determination appears in Table 3.1.

Bending Blade Torsion Blade

1208 Hz 1176 Hz

1284 Hz 1236 Hz

Table 3.1: Summary of Resonant Frequency Determination

3.1.3 Mode Shape Determination

The next goal was mode shape determination. The mode shapes of the bending and

torsion blade were both determined. Originally, it was intended that the accelerometer be

placed at various locations along the blade tip, and then the blade would be struck with

the force hammer, producing frequency response functions at each location. However, it

was observed that the accelerometer's mass changed the inertia of the blade tip, causing

the resonant frequencies to shift, depending on the location of the accelerometer.

Therefore, an alternate method was used, in which the accelerometer remained positioned

near the root of the blade, and near the leading edge, where it was conjectured that the

effect of the mass would be small. The accelerometer position is shown in Figure 3.2,

and is labeled xa.
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Figure 3.2: Blade Layout for Force Hammer Testing

Then, the blade was struck at five different locations along the tip, producing a frequency

response function for each location. Each of the locations where the blade was struck by

the force hammer is shown in Figure 3.2, labeled xi. These locations are very close to

the full span of the blade, and are spaced at 0.5-inch intervals.

While this method is less intuitive, it yields equivalent information about the behavior of

the blade by using the "Reciprocity Theorem." If we define the following functions:

- A(xa) - Accelerometer response at position of the accelerometer, x_a. This can

be measured;

- F(xi) - Input force from force hammer at the ith position along the blade tip, x-i.

This can also be measured, and a frequency response function between this input

and A(xa) was obtained as described above;

- A(x-i) - Accelerometer response at ith position along the blade tip, x_i, if the

accelerometer caused negligible blade loading. This cannot actually be measured;

- F(xa) - Input force from force hammer at position of the accelerometer. This

force is not measured.
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The Reciprocity Theorem states: "If a force generator operating at a particular frequency

at some point (1) in a system of linear bilateral elements produces a velocity at another

point (2), the generator can be removed from (1) and placed at (2); then the former

velocity at (2) will exist at (1), provided the impedances at all points in the system are

unchanged."[9] This theorem comes from the mechanical analog of an electric circuit.

Essentially, a mechanical structure can be treated as a system of springs, masses, and

dampers. Any mechanical system of this form has an electrical circuit analogy. The

reciprocity theorem was originally derived for electric circuits, and then extended to

mechanical systems. The requirement for "linear bilateral elements" is satisfied by a

continuous material, according to (2). Thus, using the reciprocity theorem, it can be

stated that:

A(x a) A(x _ i) Equation 3.1
F(x i) F(x _a)

A(xa)/F(x-i) is the frequency response function that can be measured directly, using the

force hammer and the accelerometer. However, what is desired is A(x i)/F(xa), which

relates the force hammer input to the blade response at the tip. Thus, using the

reciprocity relation, the desired function is simply equal to the measured function.

These transfer functions were determined for each of the five locations, x-i, along the

blade tip, for both the bending and torsion blade. The blade was struck with the force

hammer at each xi approximately 40 times, and the signal analyzer averaged the

response information from all of the strikes to produce a frequency response function for

each location. A representative frequency response function is shown in Figure 3.1.

Finally, using the "Matlab" function "invfreqs" a least square fit to the data was created,

which eliminates some of the noise in the data. This fitted function will be referred to as

H-hat. An example of fitting H-hat to the data is shown in Figure 3.3. The raw data is

shown in blue, while H-hat is shown in red. H-hat appears to fit accurately the raw data

in the frequency range near the two modes.
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Fit to Hammer-Accelerometer Frequency Response

-Raw Data
------------ ---------- ------------------ ----- ---- - H-hat

10 3
Frequency (Hz)

Figure 3.3: Example of

10
Frequency (Hz)

H-hat fit to Frequency Response Function

The frequency response functions between the hammer and accelerometer were used to

estimate the mode shapes at the two resonant frequencies identified in Table 3.1 for each

blade. For each of these two resonant frequencies, five data points of H-hat around these

frequencies (the value at the resonant frequency, and at the two closest frequencies that

were higher and lower than the resonant frequency) were selected for each of the five

blade locations. Each of these ranges of H-hat have magnitude and phase values, as

shown in Figure 3.4 and Figure 3.5 for the 1208 Hz mode for the bending blade.
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Magnitude Behavior Near One Resonant Frequency
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Figure 3.4 - H-hat Magnitude near 1208 Hz Mode
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Figure 3.5 - H-hat Phase near 1208 Hz Mode

These figures show the behavior of the magnitude and phase for each of the blade

locations, x_i, in the frequency range around the 1208 Hz mode for the bending blade.
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The third point in each of the figures corresponds to the data point at 1208 Hz. At each

position xi the blade vibrates sinusoidally with a magnitude (M) and a phase (<p):

A(xi) = M * cos(W* t +#0) Equation 3.2

For each of the two resonant frequencies for the bending and torsion blade, x_1 was

chosen as a baseline, with a relative vibration magnitude of unity, and relative phase of

zero. Each of the other locations vibrates with a relative magnitude Mi/M_1, and a

relative phase difference Phi i - Phi_1. The relative magnitude was calculated as the

ratio, r_i, that satisfied M i*r i=M_1 in a least squares sense, for the range of five points

around each resonant frequency. Specifically, the ratio, r_i, is such that it minimizes the

error, e, given in Equation 3.3.[10] mi and m_1 are row vectors with five elements,

containing the magnitude of the frequency response function at the five points around the

resonant frequency.

e||2 =||m _i*r_- m_1||2  Equation 3.3

Minimization of ||e|| 2 is performed using Matlab's "inverse" function, which is applied to

the following syntax in Equation 3.4 in order to solve for each r i.

r _ i= (m iT *m i) 1 * m _i *m _ 1 Equation 3.4

where: mi = row vector of size 1x5

m _ iT = transpose of m_i, column vector of size 5x1

m_1 = row vector of size 1x5

The relative phase difference was just the average of Phi-i - Phi_1 over the same range,

for both resonant frequencies and both blades. In this way, the magnitude and phase,

relative to the baseline location x_1 was calculated for each of the other four locations, at

both resonant frequencies. A time history of the mode shape was then plotted for both

frequencies, in which each of the five blade locations vibrates sinusoidally, with a

magnitude equal to its relative magnitude, and phase equal to its relative phase

difference. The two modes for the torsion blade are shown in Figure 3.6 and Figure 3.7.

The bending blade exhibited similar behavior, but at slightly different frequencies, as
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shown in Table 3.1. The mode at 1176 Hz appears to be a torsion mode, while the mode

at 1236 Hz seems to be a bending mode.

Torsion Blade: Mode at 1176 Hz
1.5 . 1

1.5 2 2.5 3 3.5 4 4.5 5
Blade Tip Position

Figure 3.6: Mode Shape at 1176 Hz

Torsion Blade: Mode at 1236 Hz

- -II

1.5 2 2.5 3 3.5 4
Blade Tip Position

Figure 3.7: Mode Shape at 1236 Hz

4.5 5
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3.1.4 Strain Gauge Transfer Functions

Strain measurements are what can actually be measured using the strain gauges.

Therefore, another transfer function must be developed which relates the strain gauge

readings to the hammer input, for both the bending and torsion blade. The accelerometer

was removed from the blades, and the blades were struck with the force hammer at the

location where the accelerometer used to be located, x_a (See Figure 3.2). A frequency

response function between the force hammer strikes at this location and the strain gauges,

located at position sg in Figure 3.2, was created using the signal analyzer. As before, the

blade was struck approximately 40 times, and each of the strikes was averaged to produce

a frequency response function with low noise. This frequency response function can be

designated:

S(sg)
F(x _a)

where S(sg) is the strain gauge reading at the location of the strain gauge, sg, and F(xa)

is the input force from the force hammer at location xa, where the accelerometer used to

be located. This was done for the bending blade and the torsion blade. Once again, the

"invfreqs" function was used to fit a function to the data. This fit was called G-hat. The

last step was to combine the two transfer functions to obtain the desired transfer function:

A(x _ i) A(x _ i) S(sg) Equation 3.5

S(sg) F(x _ a) F(x _ a)

This final transfer function was obtained by dividing the raw data from each of the five

hammer-accelerometer frequency response functions, by the raw data from the hammer-

strain gauge frequency response function. This yields the final transfer functions,

A(x _ i) / S(sg), between the strain gauge data and the amplitude of the tip acceleration

for each of the five blade tip locations. Again, the "invfreqs" function was used to create

a least square fit to the final transfer function. An example of the final transfer function

for one blade tip location for the bending blade is shown in Figure 3.8. The large peak

occurs at 1208 Hz. This peak appears because the hammer-accelerometer frequency

response has a mode at 1208 Hz, but the hammer-strain gauge frequency response has no

42



such peak because the strain gauges on the bending blade do not sense torsion modes.

There is no peak in the final transfer function at 1284 Hz, the bending mode resonant

frequency. There is no peak at 1284 Hz because the peak in the hammer-accelerometer

frequency response and the peak in the hammer-strain gauge frequency response occur at

the same point, and so when these two functions are divided the peak is eliminated.

Fit to Hammer-Accelerometer Frequency Response

60 -- --- -- -- -- --- - --- -- --- -- --- -- --- -- - R aw D ata
M - H-hat

- 40 ------------- ---------- ----------- ----- - -------------------- - -----

M 0 ---------- + ------------------------------------------------

200

100
0

a) 0
CO,
Ca

0L -100

10 3
Frequency (Hz)

Raw Data
----------- ---------- -- ------------ ----------------- - H-hat

10 3
Frequency (Hz)

Figure 3.8: Example of Final Transfer Function and Fit

These final transfer functions, one for each blade tip location, can be used to predict the

blade tip behavior based on strain gauge measurements. For the bending blade, the

values of the transfer functions at 1284 Hz are chosen. These values are just complex

numbers. These complex numbers can then be implemented as a digital filter in

"Matlab." These filters can be applied to the strain gauge data, yielding estimates of the

blade tip behavior at each of the five blade tip locations.
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3.2 Finite Element Dynamic Analysis

Finite element analysis (FEA) provides an alternative means of determining the mode

shapes and resonant frequencies of a structure, and provides a check on the hammer

testing described in Section 3.1. "Pro/Mechanica" is a finite element analysis tool that is

linked to Pro/Engineer, a computer aided design (CAD) tool, and was used for the FEA

in this thesis.

3.2.1 Finite Element Analysis Background

FEA is a well-known structural analysis tool. Much has been written about the basis of

FEA, so only a short summary will be given here. FEA begins by importing a CAD

model, which is a model of the structure to be analyzed, created in a CAD program like

Pro/Engineer. Next, simulation parameters are applied to the structure. Simulation

parameters include material properties, applied loads, and constraints. In the next step,

the model is discretized to form a finite element mesh. The model is broken up, or

discretized, into small finite elements that collectively approximate the shape of the

model.[ 11] These finite elements are 3-D, tetrahedral or 8-node shapes. These elements

together make up the finite element mesh. In Pro/Mechanica, meshing is done

automatically. Once the mesh is created, the governing equations of the system are

solved. The governing equations are a set of partial differential equations (PDE's). The

dependent variable is the displacement, and the solutions are such that the equilibrium

position minimizes the total potential energy of the system.[12] For a FEA solution,

values of displacement are only calculated at the nodes of each element. The variation of

displacement within the element is calculated using the values at the nodes, and

approximately solves the governing PDE.[12] The loads, constraints, and shape of the

model provide the boundary conditions for solving the PDE. Once the displacement is

calculated, the strain in the structure can be calculated by taking the spatial derivative of

the displacement. Finally, the stress is calculated by multiplying the strain by the

stiffness matrix. In this way, the displacement, stress, and strain of a structure can be

calculated. A FEA program can also perform a dynamic analysis of a structure. In a
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dynamic analysis, the mode shapes and corresponding resonant frequencies are also

calculated.

3.2.2 Dynamic Analysis of Simplified Blade Model

The test blade, discussed in Section 2.2, has a geometry that is too complicated for

Pro/Mechanica to analyze. Instead, a simplified rectangular model of the test blade was

used in the FEA. A picture of the simplified model appears in Figure 3.9.

Figure 3.9: Simplified Blade Model

The simplified blade model has the same span and chord as the test blade. The thickness

of the simplified model is the approximate average thickness of the test blade, about 0.1

inches. The hub of the test blade was approximated as the 1-inch segment at the root of

the blade. In Pro/Mechanica, the surfaces of the hub section were constrained, in order to

approximate the actual constraints on the test blade in the spin pit rotor. The constrained

surfaces are denoted by the yellow marks in Figure 3.9. The material selected was

aluminum 2024, which is what the test blade was fabricated from.

The dynamic analysis calculated the mode shape and the resonant frequencies of the first

four modes for the simplified blade model, i.e. the four lowest frequency modes. The
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FEA outputs are plots of the displacement, stress, and strain for each of the modes. The

displacement results for two of the modes are shown in Figure 3.10

Figure 3.10: Mode Shapes for Second and Third Mode of Simplified Blade

The modes shown in Figure 3.10 are the second and third modes of the simplified blade.

The second mode is shown on the left, and appears to be a simple torsion mode. The

third mode is shown on the right, and appears to be a second bending mode. The

displacement is presented on a color scale, where blue is the minimum displacement, and

red is the maximum displacement. The first mode is a simple first bending mode, and is

not shown here. The frequencies of these modes are given in Table 3.2.

Mode Type Torsion - Mode 2 Bending - Mode 3

Frequency 1077 Hz 1601 Hz

Table 3.2: FEA Resonant Frequencies for Simple Blade Model

These two modes serve as a comparison and check of the hammer testing results

discussed in Section 3.1. The results of the hammer testing, given in Table 3.1, showed a

torsion mode at approximately 1190 Hz, and a bending mode at approximately 1260 Hz.

While the FEA results do not exactly match the hammer testing results, they do provide a

qualitative confirmation of the results. Both the FEA and the hammer testing show that

the second mode is a torsion mode, and the third mode is a bending mode. The resonant

frequencies do not exactly match, but they are on the same order, in the range of 1-2 kHz.
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These discrepancies are not surprising. The simplified blade model, while having similar

dimensions to the test blade, has a much different cross section, thickness distribution,

and constraints. These differences are sure to alter the mode shape and frequencies

somewhat. The qualitative similarities are the best that could be hoped for. In sum, the

FEA confirms the results of the hammer testing, indicating a torsion mode and a bending

mode at frequencies near the results of the hammer testing.

3.3 Dynamic Balancing of Spin Pit Rotor

Dynamic unbalance is a common source of vibration in rotating machinery. Dynamic

unbalance is characterized by a misalignment between the axis of rotation and the

rotating center of mass. That is, while the rotor spins, the center of mass rotates around

the axis of rotation. This unbalance of the rotor causes the rotor to vibrate at the same

frequency as the rotor rotation frequency. This can lead to extra loading on the rotor

bearings, and therefore reduced bearing lifetime. In order to prevent excessive bearing

loading, the spin pit rotor must by dynamically balanced. An in-situ balancing scheme

was used to balance the rotor and minimize rotor vibrations, and will be described here.

3.3.1 Theoretical Basis for Balancing Scheme

A graphical method can be used to balance the rotor. Dynamic unbalance occurs when

the center of mass of a rotor does not lie on the axis of rotation. The magnitude of the

unbalance will be called U. U can be measured in several ways; for the purposes of this

thesis, U will be the amplitude of the vibration of the unbalanced rotor. U can be

measured with an accelerometer placed on the bearing housing. While the center of mass

rotates around the axis of rotation in the stationary frame, in the rotating frame, U always

points in one direction. Thus, in the rotating frame, U can be treated as a vector, with

magnitude U, and unknown orientation. The point of the balancing procedure is to

determine the magnitude and direction of U. If this is known, then positioning some

mass in the opposite direction of U can offset the unbalance. This is the basis of the

balancing scheme. First, a simplified version of the balancing scheme will be described
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in order to elucidate the underlying geometric basis. Then, a more complicated version

will be described, which represents the actual scheme used in the spin pit.

The magnitude of U can be determined easily by running the rotor at a desired speed, and

then measuring the amplitude of the unbalance using an accelerometer. This will not

yield the orientation of U however. In order to determine the orientation of U, a system

of trial weights can be used. A weight of known mass, m, is placed at two different

locations on the rotor, 900 apart from each other, and at the same radius. Each time the

trial mass is positioned at one of these two locations, the rotor is run, and the vibration

amplitude is measured. The magnitude of each of these vibration measurements is

denoted R1 and R2. This situation is shown graphically in Figure 3.11.

R 1 t

t
U

R2

Figure 3.11: Simplified Balancing Setup Geometry

The axis of rotation is the black circle. The vector U is shown in an unknown direction.

The vector t is the magnitude of the unbalance due only to the trial mass. There are two t

vectors because the trial mass has been placed at two locations, which are each separated

by 900. However, t cannot be measured. RI and R2 are also shown in Figure 3.11. Each

of these vectors is the vector sum of U and t, depending on the position of the trial mass.

For example, the magnitude of the unbalance measured when the trial mass is located at

position 1, is equal to the vector sum of the unbalance with no trial mass, and the

unbalance of just the trial mass located at Hub 1. This measurement is therefore R1.

Thus, the geometric situation shown in Figure 3.14, indicates the effect of the trial mass

on the original unbalance of the rotor.
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The orientation of U and the magnitude of t can be solved for by geometrically

manipulating Figure 3.11. First, the yellow triangle in Figure 3.11 is rotated 90

counterclockwise to produce the situation shown in Figure 3.12.

Figure 3.12: Manipulated Geometry

Next, a circle can be drawn, centered at the red dot, of radius U. This circle will then

intersect both of the U vectors in Figure 3.12. Finally, at the points where the U vectors

intersect the circle, two more circles are drawn, one of radius RI, and one of Radius R2.

The result is shown in Figure 3.13. The blue and green circles are of radius R1 and R2,

respectively. These circles intersect each other at two points, one of which is a distance t

away from the center of the red circle. In this way, the magnitude of t can be determined.

Once the magnitude of t is determined, the orientation of U can be determined easily

using Figure 3.11.
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Figure 3.13: Manipulated Geometry with Circles

The situation in the spin pit is more complicated because the trial mass can only be

positioned on the struts, which are each 1200 from each other. Nonetheless, the

geometric formulation can be extended to this situation as well. Once again, the

magnitude of U is measured first. Then, the magnitude of R1, R2, and R3 are measured

by placing the trial mass at each of the three hub positions. The resulting geometry is

shown in Figure 3.14. Again, RI, R2, and R3 are the vector sums of U and t, depending

on the location of the trial mass.
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R1 t

Figure 3.14: Geometry of Unbalance

The solution to find the magnitude of t and the orientation of U proceeds as follows, and

is analogous to the simpler situation described above using two trial mass locations. A

circle of radius U is drawn about the axis of rotation, the black dot in Figure 3.14. At the

position on this circle where the hubs would lie, circles of radius R1, R2, and R3 are

drawn. The intersection point of these three circles is a distance t from the center of

circle of radius U, and is in the direction opposite U. The vector from the origin to this

point is denoted B. Thus, by simply finding the intersection of these circles, the

magnitude of t and the orientation of U are determined. These results appear in Figure

3.15.
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Figure 3.15: Balancing Solution

Next, a balancing mass must be positioned on the rotor to counteract the unbalance U.

The position of the balance mass is known - it is in the direction of B, at the same radius

where the trial masses were positioned. However, the mass of the balance mass is as yet

unknown. This can be solved for easily. The force causing rotor vibrations due to U can

be expressed as:

U oc mRta2  Equation 3.6

where: M= balance mass causing vibration U

R= radius of hubs where trial mass and balance mass are placed

w = angular velocity of rotor
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The force generated by the trial mass can be expressed as:

t oc mtRtaf Equation 3.7

where: m, = trial mass

Thus, the magnitude of both U and t are proportional to the mass causing the unbalance,

m, and mt, respectively. Solving for mu yields:

UI
MU = Mt IEquation 3.8

The trial mass is known a priori. The magnitude of U is measured in the initial run, and

the magnitude of t is found using Figure 3.15. Thus, it is possible to solve for m,. To

eliminate the unbalance, a weight of mass m, is placed at the radius of the trial mass, in

the direction of the vector B from Figure 3.15. This balance mass will produce an

unbalance vector of magnitude U, in the opposite direction of U. The net effect is to

remove the unbalance of the rotor, so that the center of mass and the axis of rotation are

in line.

3.3.2 Balancing Equipment

The procedure for dynamically balancing the spin pit rotor has been described in Section

3.3.1. The actual measurements for the magnitude of the unbalance are made using an

accelerometer, located at the housing of a bearing. A B&K charge condition amplifier

then amplifies the signal from the accelerometer. The output of the amplifier can then be

seen on an oscilloscope, where the amplitude of the vibration can be measured. The trial

mass used in the balancing procedure is just a small bolt with a few nuts attached. The

bolt can be screwed into holes that have been drilled into the struts.

In sum, the rotor balancing scheme described here can dynamically balance the rotor

using a total of five runs. The only equipment needed is an accelerometer, amplifier, and

oscilloscope. This scheme provides a quick means of balancing, and the rotor can be
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rebalanced at any time, in case different blades are used. One caveat to the balancing

procedure is the effect of rotor speed. As shown in Equation 3.6, the unbalance is

proportional to the square of the rotor speed. At high speeds, the unbalance can generate

a substantial force on the rotor bearings. If the rotor is balanced at a low speed, it should

probably be rebalanced when it is run at a higher speed.

3.4 Verification of Test Blade Excitation

This thesis aims to detect blade vibrations using an ECS. Therefore, the blades must be

vibrating as they rotate in the spin pit rig. In Section 2.5, three arrays of magnets were

described which were used to excite the blades. The magnets impart a force on the

blades, and the frequency of this excitation is proportional to the rotation speed of the

blades. The relationship between excitation frequency and rotation frequency is given in

Equation 2.4, which is given again below.

F*27 Equation 2.4
FEX = ROT A

AO

In order to ensure that the magnets excite the modes of the blades, a test run was

performed. The verification was performed using the bending blade, described in Section

2.4. The strain gauges on the bending blade were positioned to detect bending modes.

The resonant frequency of the bending mode for this blade was found to be 1284 Hz

(Table 3.1) using the hammer testing described in Section 3.1. In order to excite a mode

at 1284 Hz, the rotor should be spun at approximately 18.5 Hz according to Equation 2.4.

Blade vibrations were verified in two ways. First, as the rotor was spinning, the strain

gauge output was connected to the digital signal analyzer. The signal analyzer calculated

a power spectral density (PSD) of the strain gauge output. The PSD was plotted as a

function of frequency. The rotor speed was then adjusted until a prominent peak

appeared at 1284 Hz on the signal analyzer. When the peak occurred, it indicated that the

strain gauge output was oscillating at a frequency of 1284 Hz, and so it can be inferred

that the blade is vibrating at this frequency, which is its resonant frequency. An example

of a PSD on the signal analyzer is shown in Figure 3.16.
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PSD of Strain Gauge Output
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Figure 3.16: Example of PSD of Strain Gauge Output for Torsion Blade

Once the signal analyzer indicated that the blade was vibrating at 1284 Hz, strain gauge

data was taken using the A/D board. This data was then loaded into Matlab. The strain

gauge output displayed a good deal of noise in Matlab, and blade vibrations were difficult

to identify. A segment of the strain gauge output appears in Figure 3.17.
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Strain Gauge Output for Bending Blade
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Figure 3.17: Strain Gauge Output

The two regions of very high amplitude output are not vibrations. Rather, those regions

occur every time the blade passes the magnet arrays. Apparently the magnetic field of

the magnets produces a signal in the strain gauges. This electromagnetic pickup was

ignored. The blade passes a magnet array every 1/3 of a revolution, so each segment of

data between the regions of pickup represent just under 1/3 of a revolution of strain gauge

output. In Figure 3.17, the output between the regions of pickup shows some periodic

behavior. However, it appears inconsistent and noisy. In order to eliminate noise and

rotation-to-rotation variations, the strain gauge output was averaged over each revolution.

This "ensemble average" was performed in Matlab. The strain gauge data was broken up

into 1-revolution segments. These segments are approximately 21,600 samples long,

which is just the sampling frequency divided by the rotation speed, as shown in Equation

3.9. These segments were determined using a reference point from the ECS signal. The

details of this process are described in Section 4.2.2.
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Equation 3.9

Each of these time samples were summed and then divided by the total number of

revolutions to produce an ensemble average of the strain gauge data. The ensemble

average is shown in Figure 3.18.

Ensemble Average of 1 Rev. of Strain Gauge Output for Bending Blade
U.b

0.4
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0
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Samples

Zoom In of Ensemble Average of 1 Rev. of Strain Gauge Output for Bending Blade
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Figure 3.18: Ensemble Average Results

The top plot is the entire ensemble average, while the bottom plot zooms in on a segment

of the ensemble average between two of the regions of pickup. The top plot shows a

much cleaner signal than the data in Figure 3.17. The ensemble average removes much

of the noise and variations seen in the raw data. On the bottom plot, a red sinusoid is also

plotted. This sinusoid has a frequency of 1284 Hz. It was plotted in order to ensure that
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the vibration seen in the ensemble average is at the expected frequency. This plot shows

clearly that the sinusoid and the ensemble average have the same frequency. This

indicates that the blade is in fact vibrating at 1284 Hz, which is the frequency of the mode

that was meant to be excited. The magnitude of the blade tip displacement for both

blades will be estimated in Section 4.1.

These results are encouraging. Using Equation 2.4, a rotation speed can be calculated

that will cause the magnets to excite the blade at a desired frequency. In this case, the

excitation frequency was chosen to be the frequency of the bending mode for the bending

blade. The strain gauge output, when viewed on the signal analyzer, shows a prominent

peak in the PSD at 1284 Hz. Moreover, when the strain gauge output is ensemble

averaged, a clear vibration at 1284 Hz emerges. In sum, this test has verified that the

magnets provide an excitation sufficient to excite the desired modes of the blades.
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3.5 Eddy Current Sensor Data Output

As the spin pit rotor spins, the test blades will pass the ECS, producing a signature similar

to that shown in Figure 1.4. In order to sense blade vibrations using the ECS signature,

there should be a minimum of noise in the signal. As mentioned in Section 2.3, a

differential amplifier was used for common mode noise rejection. The spin pit rotor

produces electro-magnetic noise, which can be picked up by the ECS electronics. The

differential amplifier serves to reduce this pickup. A schematic of the differential

amplifier that was used is shown in Figure 2.4. The effectiveness of the differential

amplifier can be seen in Figure 3.19. The top plot shows ECS data before the differential

amplifier was used; the bottom plot shows the ECS data using the differential amplifier.

The x-axes for the two plots are on different scales because a different sampling

frequency was used for each of the data samples. Also, the orientation of the ECS signal

is different for the two plots; this is due to how the differential amplifier was wired.
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Figure 3.19: Effectiveness of Differential Amplifier
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Nonetheless, the comparison demonstrates the utility of the differential amplifier. The

ECS signal shown in the top plot has significantly more noise than the signal shown in

the bottom plot. By minimizing this noise, a more accurate representation of the ECS

signal can be extracted from the spin pit during testing.

To further reduce noise in the ECS signal, a low pass digital filter was employed in

Matlab. The filter type was a low pass "firl" filter. The motor noise has a frequency of

approximately 7000 Hz. Therefore, the filter has cutoff band frequencies of 5000 and

7000 Hz, so that signals in the data with frequencies over 7000 Hz are filtered out, but

signals in the data with frequencies less than 5000 Hz are unfiltered. The effectiveness of

the low pass filter can be seen in Figure 3.20. The data in blue is unfiltered, and the data

in red has been filtered. The filtered data is shifted to the right so that the comparison is

easier to see.
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Figure 3.20: Example of Low Pass Filtering

The filter effectively reduces the residual noise in the ECS signal. The steady-state signal

between the pulses is especially cleaned-up by the filtering. Thus using both a
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differential amplifier and a low pass filter, a clean ECS signal can be extracted from the

spin pit with a minimum of noise. A final example of an ECS signal is shown in Figure

3.21.

Example of Final ECS Signature
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Figure 3.21: ECS Signature with Low Noise

It will be ECS signatures with low noise like that shown in Figure 3.21 that will be

analyzed for evidence of vibrations in Chapter 4.
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4 Analysis

4.1 Estimate of Blade Tip Displacement

In order to use the ECS to sense blade vibrations, the blade itself must be vibrating. The

analysis in Section 3.4 confirmed that the magnet arrays do produce consistent vibrations

in the test blades. Beyond knowing that the blade is vibrating, it is also useful to know

how much the blade is vibrating i.e. the amplitude of the blade vibration. Combining the

force hammer testing from Section 3.1 with the strain gauge data results shown in Section

3.4 provides a means of estimating the displacement of the blade tip due to the vibrations,

for both the bending and torsion blade.

The results of the hammer testing were five transfer functions between the strain gauges

and the blade tip acceleration. These were denoted as A(x _ i)/ S(sg), where x_i

represents one of the five tip locations. These five transfer function were created for both

the bending and torsion blades. As the blade is spinning, strain gauge data can be

extracted, which allows for an independent measurement of the strain gauge behavior.

The strain gauge data can be ensemble averaged to produce a clear picture of the blade

vibrations. An example is shown in Figure 3.18. The amplitude of the strain gauge

signal differs between the bending and torsion blade. The torsion blade has an amplitude

of approximately 0.04 V, while the bending blade has an amplitude of approximately

0.02 V. These values are also given in Table 4.1.

Bending Blade Torsion Blade

Amplitude of Strain Gauge Signal .02 V .04 V

Magnitude of Transfer Function 20.0 4.0

Table 4.1: Amplitude of Strain Gauge Signal and Transfer Functions for Both Blades

The magnitude of the tip acceleration can be calculated using the transfer functions

calculated in Section 3.1. The magnitude of the tip acceleration is simply the product of

the magnitude of the strain gauge signal and the magnitude of the transfer function at the

frequency of the mode. The magnitude of the transfer function at the frequency of the
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mode can found easily by just taking the absolute value of the transfer function at the

point that corresponds to the frequency of the mode of interest. This is shown in

Equation 4.1.

A||= |TF * |ISG|| Equation 4.1

where: IAIl = amplitude of the tip acceleration at the frequency of the mode

ITFD| = amplitude of the transfer function at the frequency of the mode

ISG|| = amplitude of the strain gauge signal at the frequency of the mode

The frequency of the mode of interest is 1284 Hz for the bending blade and 1176 Hz for

the torsion blade, as stated in Table 3.1. The amplitude of the transfer function was taken

as the average of the five transfer functions for the bending blade at 1284 Hz. This is

because a bending mode should have a nearly constant tip amplitude at all chordwise

locations. For the torsion blade, the amplitude of the transfer function was taken as the

average of the transfer functions for the two blade tip positions closest to the leading and

trailing edge. The amplitudes of the transfer functions for both blades are also given in

Table 4.1. Thus, the amplitude of the tip acceleration in Volts can be calculated using

Equation 4.1. The results are given in Table 4.2.

Bending Blade Torsion Blade

Amplitude of Blade Tip Acceleration 0.40 V .16 V

Table 4.2: Amplitude of Blade Tip Acceleration for Both Blades

The accelerometer has a conversion factor of:

CF = 3 .6 9 MV

Thus, the blade tip acceleration can be converted to g's using the conversion factor, and

then from g's to SI units of m/s^2. These results are shown in Table 4.3.

Bending Blade Torsion Blade

Amplitude of Blade Tip Acceleration 1060 m/s^2 430 m/s^2

Table 4.3: Amplitude of Blade Tip Acceleration for Both Blades
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Finally, the amplitude blade tip acceleration can be related to the amplitude of the blade

tip displacement. If the displacement and acceleration are both assumed to oscillate

sinusoidally, then the acceleration is merely the second derivative of the displacement,

with respect to time. Therefore, the amplitude of the displacement is related to the

amplitude of the acceleration using Equation 4.2.

DII = 1II 
Equation 4.2

where: ||DI| = amplitude of the tip displacement at the frequency of the mode

Q = frequency of the mode

Thus, the tip displacement amplitude can be calculated using Equation 4.2 and the results

of Table 4.3. These results are shown in Table 4.4.

Bending Blade Torsion Blade

Amplitude of Blade Tip Displacement 0.64 mm 0.31 mm

Table 4.4: Amplitude of Blade Tip Displacement for Both Blades

In conclusion, the amplitude of the blade tip displacement is approximately 0.3 mm for

the torsion blade, and 0.6 mm for the bending blade. These values correspond to the

actual displacement of the blade tip while the blades are spinning in the rig and are being

excited by the magnet arrays. This calculation was based on the ensemble averaging of

the strain gauge signal, from Section 3.4, and the transfer functions determined in Section

3.1.

4.2 Eddy Current Sensor Data

One goal of this research is to detect blade vibrations using an ECS. The blades are made

to vibrate using magnet arrays, and the analysis discussed in Section 3.4 demonstrates

their effectiveness. As the blades spin in the rig, they will pass the ECS's mounted

around the circumference. Each blade passage produces a voltage signal from an ECS.

An example of the ECS waveform is shown in Figure 3.21. This section will discuss the

analysis that was performed in order to detect blade vibrations in the ECS signal.
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4.2.1 Summary of Data Collected

Many data sets have been compiled for this thesis. Each data set consists of two runs in

the spin pit. One run has the magnet array installed in the rig, and the other does not.

Therefore, the blade is vibrating for one run and it is not vibrating for the other. In this

way, the runs can be compared for a data set to see if the presence of blade vibrations

affects the ECS signal. The data sets include both bending and torsion data. For some

data sets, the rig was run at the speed necessary to excite the bending mode of the

bending blade, which is at 1284 Hz. This corresponds to a rotor speed of approximately

18.5 Hz, according to Equation 2.4. For the other data sets, the rig was run at the speed

necessary to excite the torsion mode of the torsion blade, which is at 1176 Hz. This

corresponds to a rotor speed of approximately 17.0 Hz. During each run, ECS data was

taken with one or two of the sensors, and strain gauge data was often taken. A summary

of the data appears in Table 4.5.

Data Summary Table

Date Length of Run (s) Speed (Hz) Blade Excited Eddy Current Sensor Strain Gauge Data
6/3 5 18.5 Bending Position 1 Yes
6/9 5 18.5 Bending Position 1 Yes
6/9 5 18.5 Bending Position 1 Yes

6/15 5 18.5 Bending Position 1 Yes
6/16 5 18.5 Bending Position 1 No
6/21 5 17.0 Torsion Position 1 Yes
6/22 5 18.5 Bending Position 1 No
6/22 5 17.0 Torsion Position 1 No
6/24 5 18.5 Bending Position 2 Yes
6/24 5 17.0 Torsion Position 2 Yes
7/12 5 18.5 Bending Position 1 No
7/12 5 17.0 Torsion Position 1 No
7/14 10 18.5 Bending Position 1 Yes
7/14 10 17.0 Torsion Position 1 Yes
7/23 5 18.5 Bending Position 1, Position 2 Yes
7/23 5 17.0 Torsion Position 1, Position 2 Yes

Table 4.5: Summary of Data Collected

The first three columns show the date of the data set, the length of the run, and the speed

of the rotor. The fourth column designates which blade is being excited, the bending or

the torsion blade. The fifth column indicates which ECS sensor is taken data. Position 1

corresponds to the ECS mount that holds two sensors (shown in Figure 2.1), and the
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sensor that is closer to the top of the spin pit. Position 2 corresponds to the ECS that is

90 degrees away from Position 1, in the counter-clockwise direction. Position 1 and

Position 2 are at approximately the same chordwise location along the test blade - about

25% of the chord. The sixth column indicates whether or not strain gauge data was being

taken.

4.2.2 Verification of Phase of Blade Vibration

In order to detect blade vibrations in the ECS signal, it is necessary to have an

independent measurement of the behavior of the blade. Strain gauges were installed on

two blades; on one blade they are arranged to sense torsion, and on another they are

arranged to sense bending. In Section 3.4, blade vibrations were verified by analyzing

the strain gauge data output. To simplify the analysis of the ECS data, it is useful to

know if the blade vibrations are synchronous. That is, each time the blade passes an

ECS, it is desirable that the same portion of the blade vibration period is taking place.

The ECS and strain gauge data taken from the spin pit were analyzed to confirm that the

blade vibrations are synchronous.

As discussed in Section 3.4, the strain gauge output from the spin pit can be "ensemble"

averaged. In order to average each rotor revolution, a reference point must be chosen.

This reference point is determined using the ECS data. Every time a blade passes the

ECS, a waveform is produced. The reference point is just the point where the ECS signal

first crosses an output value of -0.1 Volts. This can be seen in Figure 4.1. The point

where the vertical black line intersects the ECS signal is the chosen reference point.

Thus, once a reference point is chosen, a rotor revolution is just the time between two

consecutive reference points for the same blade. The ensemble averaging is performed

by averaging each of these rotor revolutions.
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Figure 4.1: Reference Point Determination

This same reference point can be identified in the strain gauge ensemble average, in this

case for the bending blade. This is shown in Figure 4.2.
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The blue line is the ensemble averaged strain gauge data for the bending blade. The red

line is the ECS signal, which has been scaled down to fit into the figure. The vertical

black line once again indicates the chosen reference point. The point where the vertical

black line intersects the strain gauge signal indicates the strain gauge output at the

reference point. It can be seen that as the blade passes the ECS, and the ECS signal is

produced, the strain gauge output is proceeding from a maximum through a minimum,

and then back towards a maximum. Approximately % of a full vibration period takes

place during the blade passage. Thus, using this method, the behavior of the bending

blade is known as the ECS signal is produced. The strain gauge data indicates where in

the vibration period the blade resides during the entire passage across the ECS face. The

same effect is seen with the torsion blade, except that the reference corresponds to a

different location in the strain gauge output. This is shown in Figure 4.3. For the torsion

blade, the reference point corresponds to approximately the maximum of the vibration

period.
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This result also indicates that the vibration for this data set is synchronous. Each time the

blade passes the ECS, a signal is produced which determines a reference point.

Therefore, each reference point corresponds to the same circumferential position of the

blade in the spin pit. Since the strain gauge data is averaged starting at this point, and

since the averaging shows a clear vibration, the vibration must be synchronous. If it were

not, then the strain gauge output would be at a different value at each blade passage.

That is, when the blade passes the sensor, it would not be at the same point in the

vibration period at each passage. Averaging all these different values would produce a

result that appeared to be noise, not the clear periodic signal seen in Figure 4.2.

Therefore, at each blade passage, the blade vibration must be at the same point in the

vibration period, and so the vibrations are synchronous. Moreover, this result is

consistent between data sets for both the bending blade and the torsion blade. Several

data sets were taken, and plots similar to Figure 4.2 and Figure 4.3 were created for each

data set. In each case, the reference point corresponded to the same point in the strain

gauge output - about 1/8 of a period beyond the maximum of the strain gauge output for

the bending blade, and at the maximum of the strain gauge output for the torsion blade.

Thus, the magnets appear to consistently produce a synchronous vibration in the blades.

4.2.3 Evidence of Blade Vibrations in ECS Data

To date, evidence of blade vibrations in the ECS data has not been confirmed. The

inability to detect blade vibrations is mainly attributable to the variation in the rotor

speed. The motor driving the rotor is unable to rest at a constant speed. Instead, the rotor

speed varies by approximately 0.1 Hz, and this variation has created problems for data

analysis. However, while no formal algorithms have been developed to deduce blade

vibrations from the ECS signal, there are some indications that blade vibrations are

affecting the ECS signal. In the future, a better data analysis method could help infer

blade vibrations from the ECS signal more systematically. Moreover, Technosciences

Inc. is charged with developing more sophisticated algorithms for analyzing the ECS

data. All the data taken in the spin pit has been sent to them for their own analysis.
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It was decided to examine primarily ECS data from the torsion blade for evidence of

blade vibrations. The torsion blade was chosen over the bending blade for several

reasons. First, the torsion mode was more consistently excitable in the spin pit. To

ensure that a blade was vibrating, a PSD of the strain gauge output was calculated on line

using a signal analyzer. The speed of the rotor was adjusted until a large peak appeared

at the frequency of the mode of interest. This process was described in Section 3.4, and a

sample PSD is shown in Figure 3.16. In general, the torsion blade produced a much more

consistent and repeatable peak in the PSD than the bending blade. The peak of the

bending blade tended to be half as many dB's in magnitude, and a very precise rotor

speed was needed to excite the bending mode. Because the rotor speed varied constantly,

this proved difficult, and so generally the bending mode was difficult to excite. One

possible explanation for this effect is that the force that the magnets provided on the

bending blade was located near a node of the bending mode, and so less excitation of the

mode was generated. Regardless, the torsion blade required a less precise rotor speed,

and the magnets consistently produced a force on the blade that caused a high strain

output at the frequency of the mode. Second, the phase of the torsion mode was

extremely convenient for analysis, although this was pure luck. The vibration period of

the torsion blade is plotted next to a simultaneous ECS pulse in Figure 4.3. It can be seen

clearly that as the blade begins passing the ECS face, and the ECS signal begins, the

strain gauge signal is at a maximum. Therefore, the displacement of the blade tip due to

the vibration of the mode is at a maximum at this location. This is a convenient

occurrence. Through the first half of the blade passage of the ECS, the blade tip is

vibrating from a maximum position to a minimum position. In this case, the blade tip is

moving in the direction opposite the rotation direction. For the second half of the blade

passage, the opposite occurs, as the blade tip moves in the same direction as the rotation

direction. In general, the phase of the vibration relative to the passage of the ECS sensor

makes it a simple exercise to understand the blade behavior throughout its passage of the

ECS. This observation will be discussed in more detail later in this section. Third,

eventually the effect of a crack on the test blade was tested. This analysis and testing is

described in Section 4.3. The crack was chosen to be a single edge crack. It was

hypothesized that a single edge crack, because of its asymmetry, would affect a torsion
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mode more than a bending mode, due to the asymmetry of a torsion mode. The actual

effect of a crack is discussed in Section 4.3. Regardless, the torsion mode seemed more

likely to be affected by a crack, and so this was another reason to focus on the torsion

blade. In sum, for multiple reasons, the presence of blade vibrations in the ECS signal

was examined primarily for the torsion blade.

There are indications that the blade vibrations do in fact affect the ECS signal. The

presence of blade vibrations can be seen by plotting the rotation speed of the rotor. The

rotation speed is determined by calculating the number of samples between every ECS

signal produced by one blade. Because there are three blades spinning at all times, this

essentially corresponds to the number of samples between every three ECS signals. The

sample that corresponds to the ECS signal is the point where the signal crosses a vertical

position of -0.10 V. This reference point was discussed in Section 4.2.2 and an example

is shown in Figure 4.1. The rotation speed is calculated by simply dividing the sample

rate by the number of samples in one blade revolution, shown in Equation 4.3.

Sample _ Rate Equation 4.3

#eof _Samples

Thus, the speed of the rotor can be plotted as a function of blade passages for a data set.

An example is shown in Figure 4.4. The blue line corresponds to the rotor speed for the

run when the magnet arrays are in the spin pit, so that the blade is vibrating. The red line

corresponds to the run with no magnet arrays in the spin pit, so that the blade is not

vibrating. In Figure 4.4, it can be seen that the non-vibrating speed plot is smoother than

the vibrating speed plot. The vibrating speed plot has more choppiness, and a less

smooth progression from blade passage to blade passage. This observation is likely an

indication of blade vibration. A vibrating blade will tend to arrive at the ECS a little

earlier or a little later than a non-vibrating blade, depending on where in the vibration

period the blade resides. This inconsistent arrival time could explain the choppiness seen

in Figure 4.4.
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Figure 4.4: Comparison of Rotor Speed for Vibrating and Non-Vibrating Blade

This effect is not consistent with a synchronous vibration however. As was discussed in

Section 4.2.2, the blade vibrations are synchronous, and so the blade arrives at the ECS at

the same point in its vibration period at every revolution. A synchronous blade vibration

should produce an equally smooth speed plot as a non-vibrating blade, because from

blade passage to blade passage, the blade is always at the same point in its vibration

period. The results of the speed plot shown in Figure 4.4 contradict this fact. However,

this same effect was seen in multiple data sets, so it cannot simply be treated as an

aberration.

One explanation is that the varying rotor speed affects the vibration amplitude of the

blade. The magnets excite the blade at a very precise rotation speed. Small deviations,

even 0.2 Hz, will cause the amplitude of the blade vibrations to decrease dramatically.

This can easily be seen by plotting a PSD on the signal analyzer, which is described in

Section 3.4. If the rotor speed is slightly off the correct rotor speed to cause the blade to

vibrate, the amplitude of the peak at the desired frequency will decrease dramatically, by

at least 10 dB. Because the rotor speed varies constantly, for certain revolutions, the
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magnets will be exciting the blade to a higher degree than during other revolutions. This

will cause the vibration amplitude to vary from revolution to revolution. So, even though

the blade will be at the same point in the vibration period at each blade passage (because

the vibration is synchronous), the blade will arrive at the ECS at slightly different times

depending on the amplitude of the blade displacement. This explanation seems to

reconcile the seeming contradiction between synchronous vibrations and varying time of

arrivals.

As stated above, one reason to focus on data from the torsion blade was the convenient

phase of the vibration. The ECS signal begins just as the blade reaches a maximum in it

vibrations period, and so there is a clear knowledge of the blade behavior throughout the

blade passage. A plot of this occurrence was given in Figure 4.3, and is given again

below in Figure 4.5.
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Figure 4.5: Phase of Blade Vibration - Torsion Blade

As a consequence of Figure 4.5, it was hypothesized that blade vibrations should be

identifiable in the ECS signal. The reasoning went as follows. When the vibrating blade

first begins to pass the ECS face, the displacement of the torsion blade is at a maximum.
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Specifically, the blade tip is displaced in the direction of the rotation. As the blade

continues to pass the sensor, its vibration continues, and so the blade tip moves in the

direction opposite the rotation direction, until it reaches a position where it is maximally

displaced in this direction. This occurs at about 50 samples before the ECS signal

reaches its minimum point, or at about sample number 1650 in Figure 4.5. So, during

approximately the first half of passing the ECS face, or about 150 samples, the vibrating

blade tip moves backwards relative to its hub. On the other hand, during the runs when

no magnet arrays are installed in the spin pit, the blade is not vibrating. During these

runs, when the blade first starts passing the ECS face, the blade tip has almost zero

displacement, and does not move at all during the rest of the passage. Therefore, between

the point when the blades first start passing the ECS face, and the point where the

vibrating blade tip reaches a minimum displacement (maximum in the direction opposite

the rotation direction), the vibrating blade tip will tend to lag behind the non-vibrating

blade tip. That is, the vibrating blade tip is moving slower than the non-vibrating blade

tip during this portion of the blade passage. Therefore, because the ECS produces a

signal that is a function of the position of the blade tip, and because the vibrating blade

lags the non-vibrating blade during the first half of the blade passage, it seems likely that

the ECS signal of the vibrating blade would lag that of the non-vibrating blade, and so be

shifted to the right somewhat, during the first half of the blade passage.

A calculation was made to estimate how much the vibrating blade's ECS signal should

lag that of the non-vibrating blade. The amplitude of the displacement of the torsion

blade was estimated in Section 4.1 to be approximately 0.3 mm. Therefore, during the

blade vibration period, the blade tip moves a total of approximately 0.5 mm (because of

rounding it is not 0.6 mm). Thus, during the first portion of the blade passage, the blade

tip moves from about 0.5 mm in the direction opposite the rotation direction. However,

the 0.3 mm estimate for the amplitude of the displacement is for a position at the leading

edge of the blade. The ECS is located at a chordwise location of approximately 25%, and

so the amplitude of the vibration is lower here. The hammer testing, described in Section

3.1, indicates that the magnitude of the transfer function from strain to blade tip

acceleration is approximately half at the chordwise location of the ECS sensor.
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Therefore, the blade tip moves approximately 0.3 mm total in the direction opposite the

rotation direction, during the first half of the blade passage, and so the vibrating blade is

lagging the non-vibrating blade by 0.3 mm at the point that corresponds to the minimum

in the vibration amplitude. The time it takes for the blade to travel this extra 0.3 mm

should correspond to the amount of time the vibrating blade is lagging by, and therefore

the number of samples that the vibrating blade ECS signal is lagging by. To calculate

this number of samples, the speed of the blade tip needs to be known. The speed of the

blade tip is simply calculated using Equation 4.4.

VTIP = f * 27r * RTIP Equation 4.4

where: VTp = velocity of the blade tip

f = rotation speed of the blade, approximately 18 Hz.

R TIP radius of the blade tip, approximately 9 inches, or 0.23 m.

Therefore, using the values for RTIP and f, the blade tip is traveling at approximately 26.0

m/s. The amount of time the blade takes to travel 0.3 mm at this speed is given in

Equation 4.5.

D 0.0003m 1 1 1 0 - Equation 4.5

VTIP 26mVF 26-
s

This value for t can be converted into samples by multiplying by the sample rate. This is

shown in Equation 4.6.

# _ Samples = (I.1 * 10-5s)* 400,000 Samples~ 4 _ Samples Equation 4.6

s)

Thus, using this argument, it can be hypothesized that the ECS signal of the vibrating

blade should be lagging that of the non-vibrating blade by approximately 4 samples by

the time the vibrating blade reaches its minimum displacement. To confirm this

hypothesis, the ECS signals for the vibrating and non-vibrating blade were plotted, using

the common reference point discussed in Section 4.2.2 as the initial point. However, this

situation is complicated greatly by the variations in the rotor speed. As stated previously,

the rotor speed changes continuously, as shown in Figure 4.4. Moreover, the width of the

ECS signal is proportional to the speed of the passing blade. Therefore, the changing
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rotor speed has the effect of producing ECS signals of varying width. This variation is on

the order of 5 samples, and so the ECS signals are spread out enough that any lagging of

the vibrating blade due to the blade vibration is masked by the rotor speed variation. To

counteract this effect, an interpolation scheme was employed to remove the effect of the

rotor variation. Each of the ECS signals for a single blade passage is of different lengths,

due to the variable rotor speed. These signals of different lengths were then stretched,

using linear interpolation, so that they were all of the same length. In this way, the rotor

speed variation was removed, because all of the signals were stretched an amount

proportional to their length, which is inversely proportional to the speed of the rotor

during that signal. Unfortunately, while this scheme helped reduce the variation in the

width of the signal somewhat, it was not effective enough to completely remove the

effect of the variable rotor speed. Because of this, the vibrations of the blade are still not

identifiable. That is, the poor resolution of the ECS signals, even after interpolation,

overwhelms any evidence of the vibrating blade lagging the non-vibrating blade. Thus,

while the strain gauge signal confirms that the blade is vibrating, these vibrations do not

affect the ECS signal in a way that is detectable using the current data analysis methods.

There are courses of action that may facilitate the detection of vibrations in the ECS

signals. First, reducing the rotor speed variations would make the data analysis

significantly simpler. The variable speed causes the ECS signals to have varying widths,

and this clouds any indication of blade vibrations. Moreover, the interpolation scheme

has not been perfected, and it is still insufficient to completely remove the effect of the

speed variations. A better interpolation scheme combined with a more constant speed

rotor would be much more likely to yield evidence of the blade vibrations. A more

consistent rotor speed would have the added effect of allowing the magnets arrays to

excite the blade more precisely. That is, speed variations cause the blade to be excited at

frequencies that are slightly different from its resonant frequency, and this reduces the

amplitude of the vibration. A more consistent speed would result in a more consistent

excitation, and therefore a larger amplitude of vibration. A larger vibration amplitude

would produce an even greater lag effect in the ECS signals, which would be easier to

identify.

77



In sum, while little evidence of blade vibrations has been identified in the ECS signal to

date, in the future it is likely that such vibrations will be evident. First, the strain gauge

output on the signal analyzer and the ensemble averaging indicate that the blade is

consistently vibrating due to the forcing from the magnet arrays. This forcing is

producing a sinusoidal displacement in the tip of the blade, and the magnitude of this

displacement can be estimated using the transfer functions developed in Section 3.1. The

convenient phase of vibration of the torsion blade, shown in Figure 4.5, should result in

the vibrating blade lagging the non-vibrating blade during the first half of the blade

passage of the ECS face. The variation of the rotor speed appears to be the source of the

problem, by drowning out this effect. While this effect has not been identified, there are

several courses of action that would likely reduce the rotor speed variations, and enhance

the lag effect in the ECS signals.

4.3 Crack Analysis

Excessive compressor blade vibrations can lead to the formation and growth of high

cycle fatigue cracks, as mentioned in Section 1.1.2. These cracks can lead to blade

fracture, which could result in a catastrophic failure of a gas turbine engine. Cracks also

affect the modes of blades, by reducing their structural stiffness. A hypothesis of this

thesis is that vibration sensing of blades can lead to crack detection, by inferring the

presence of a crack when the blade mode shape or frequency is changed sufficiently (See

Section 1.1.4). To that end, it is necessary to explore this hypothesis, by analyzing and

testing the effect of a crack on the mode shape and frequency of a blade.

This section will describe work that was done in order to examine this hypothesis. The

goal is to crack the test blade in a "realistic" way, so that it can then be tested in the spin

pit rig, and ECS data for a cracked an uncracked test blade can be compared. The term

"realistic" means a crack in the test blade that is representative of a crack in an actual

operating gas turbine engine. That is, blades in actual gas turbine engines crack in certain

locations, and these cracks grow to certain lengths after a number of engine cycles.
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These actual cracks will have a certain effect on the resonant frequencies and mode

shapes of the actual blades. To be consistent, the crack in the test blade should have a

location and size that affects the modes of the test blades to the same extent. Throughout

this section, a blade in an actual engine will be used as a baseline for comparison. This

blade will be referred to as the "real blade," to distinguish it from the test blade.

4.3.1 Crack Location

Before the effect of a crack can be examined, the location of the crack must first be

determined. Cracks will tend to form at locations where sharp edges exist. Sharp edges

lead to stress concentration, where the localized stress can be significantly higher than the

mean stress outside the vicinity of the sharp edge. The sharp edges can be on both the

leading and trailing edges of compressor blades, as well as at locations of foreign object

damage or microscopic material defects[13]. This supposition is supported by the work

of Professor Ritchie at the University of California, Berkeley. Ritchie explored the

growth of high cycle fatigue cracks in gas turbine compressor blades. Many of his tests

focused on through thickness cracks, initiating at the edges of material specimens, as well

as foreign object damage[14]. For this thesis, the leading and trailing edge of a blade will

be chosen as likely places for the initiation of a HCF crack.

HCF cracks grow due to cyclic loading. In engine blades, blade vibrations can generate

this loading. When a critical speed is reached, a blade mode is excited and proceeds to

vibrate, which stresses the blade. Thus, HCF cracks will tend to grow in regions of high

stress due to blade vibrations. That is, regions where an excited blade mode causes high

stress levels are likely locations for HCF cracks. For lower order modes, like the first

bending mode, and the first torsion and second bending modes shown in Figure 3.10,

regions of high stress tend to be near the root of the blade, and near the leading and

trailing edges. Moreover, the regions near the root of the blade have the highest

centrifugal stresses, which provide a steady-state stress level that contributes to crack

growth. The results of the FEM dynamic analysis, described in Section 3.2.2, confirm
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these locations of high stresses for the blade modes. The stress levels for the first torsion

mode and second bending mode are shown in Figure 4.6.

Figure 4.6: Stress Levels for Simplified Blade Modes

These plots of stress show that for the first torsion mode and second bending mode of the

simplified blade, the regions near the root and edges are the regions of highest stress.

In sum, HCF cracks tend to initiate in region of stress concentration near the blade edges.

HCF cracks grow due to cyclic stresses, which are generated by blade vibrations. The

regions of highest stress for the low order blade modes tend to be near the root and edges

of the blade, which is also where the centrifugal stress is greatest. These regions of high

stress will cause high cycle fatigue cracks to grow. Thus, the crack in the test blade

should be located near the root and edges.

4.3.2 Critical Crack Length Estimation

Next, the critical crack length of the real blade was determined. The critical crack length

is defined such that for a given stress level, material, and blade geometry, a crack with

length equal to the critical length will cause rapid crack propagation, and therefore

fracture. Thus, the critical crack length can be thought of as the maximum allowable

crack size in a compressor blade. In order to determine the critical crack length in the

real blade, the stress level must first be determined. A simplified centrifugal stress model

was used to estimate the stress level in the real blade. Vibratory stresses were ignored for
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the sake of simplicity. The centrifugal stress was calculated by treating the blade as a

constant cross sectional area bar rotating about an axis at some angular velocity. The

equation for the centrifugal stress at some radius r is:

(-= p2rdr = )r2 - r2) Equation 4.7

r

where: a = stress at some radius r

p = material density

w= angular velocity of rotating blade

rT= radius of blade tip

The fan blade from the CFM 56-3 engine was chosen as a representative real blade. The

material of the blade is Ti 6Al-4V. Some relevant material properties and geometry are

given in Table 4.6.

Tip Radius (m) .64

Root Radius (m) .17

Density (m/kgA3) 4400

Plane Strain Fracture Toughness (MPa*m^.5) 100

Table 4.6: Some Properties of the Real Blade

The root radius is the radius of the root of the blade, where the centrifugal stress will be a

maximum. The angular velocity w was calculated by assuming that the tip Mach

number of the blade is equal to one. This is a reasonable assumption for modem gas

turbine engines. Therefore the angular velocity can be calculated using Equation 4.8.

m
343-

fsound _ s =5401 Equation 4.8
rT .64m s

Using these values for r, rT , (o, and p, the centrifugal stress at the blade root can be

calculated using Equation 4.7. The result is an estimate of stress of a = 500MPa .

Because of the many simplifications made to calculate this value for stress, a margin of

safety of 20% was employed. Also, this estimate only considers centrifugal stress, and
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does not take into account the stress generated by vibrations. Therefore, in calculating

the critical crack length of the real blade, a value of stress of a = 600MPa will be used.

If a condition of plane strain is assumed, then the critical crack length can be calculated,

using Equation 4.9[1].

1 (K 2  Equation 4.9
QC IC

ac Ya

where: KrC = plane strain fracture toughness (given in Table 4.6)

a = stress calculated = 600 MPa

Y geometric property = 1.12 (for edge crack)

Thus, using Equation 4.9, the critical crack length can be estimated to be ac=10 mm.

This value is the estimate of the critical crack length for the real blade, which has

geometry and material properties based on a fan blade in an actual engine. This estimate

is meant to be realistic, in the sense that it approximates what the actual critical crack

length would be in a fan blade in an actual gas turbine engine. However, this value for

the critical crack length is not the appropriate size for the crack in the test blade. Because

the test blade is smaller, the crack in the test blade must be scaled. This scaling will be

based on the effect of the crack on the mode of the blade. That is, the crack in the test

blade will be scaled to such a size that it has the same percentage effect on the mode of

the test blade as the 10 mm critical crack has on the real blade. In order to perform this

scaling, an estimate of the effect of a crack on a mode must be performed. This will be

done in Section 4.3.3. Once this estimate is complete, then the scaling can be performed

to determine the crack length for the test blade.

4.3.3 Estimate of Crack Effect of Mode

A crack in a structure reduces its structural stiffness, causing its resonant frequencies to

decrease. A simple example of this effect is a guitar string. A string that is stretched

very tightly will have a higher resonant frequency than a string stretched fairly loosely.

Intuitively, stiff structures have higher frequency modes than compliant structures, and
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since a crack reduces structural stiffness, the resonance frequencies of a cracked structure

should be lower than an uncracked structure. For a cantilevered beam, which is a good

model of a compressor blade, the frequencies of the structural modes are proportional to

the square root of the structural stiffiess of the beam[15]. This relationship is given in

Equation 4.10.

On c VEI Equation 4.10

where: (o = frequency of mode of order n

E = Young's modulus

I = bending moment of inertia

The profile for the real and test blade will be modeled as a simple diamond shape with

chord c and thickness t, shown in Figure 4.7.

Figure 4.7: Model Blade Profile with No Crack

The moment or inertia of this profile is given in Equation 4.11.

1 3 Equation 4.11

48

The effect of the crack is estimated by modeling the crack as removing material from this

profile at one spanwise location. That is, the crack of length 'a' removes material from

the blade profile, shown in Figure 4.8, which decreases the moment of inertia of the blade

at this location.
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c a

Figure 4.8: Model Blade Profile with Crack

The moment of inertia for the cracked blade profile is given in Equation 4.12.

II t 1 a 4  Equation 4.12

48 c 4

Thus, as the crack increases in length, the moment of inertia decreases, causing the

resonant frequency to decrease. The percentage change in the resonant frequency of a

structure due to a crack is given in Equation 4.13.

h- cracked I _ cracked 1  a 4  Equation 4.13
w uncracked I uncracked c)

Thus, using Equation 4.13, the effect of a crack the resonant frequency of a blade mode

can be estimated for a given crack length and blade geometry.

4.3.4 Crack Length Scaling

The critical crack length for a real blade, based on the stress levels and geometry of a

blade in a real engine, was calculated in Section 4.3.2. The critical crack length was

estimated to be 10 mm. In Section 4.3.3, the effect of a crack on the resonant frequency

of a structure was estimated. The result is given in Equation 4.13, which gives the

percentage change in the resonant frequencies as a function of the crack length and blade

geometry. Thus, the effect of a critical crack on the real blade can be estimated. In order

to determine the appropriate size of the crack for the test blade, the crack length must be

scaled so that the test blade crack has the same effect on the mode of the test blade as the

critical crack length has on the real blade. The chords of both blades are given in Table

4.7.
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Real Blade Chord (m) .171

Test Blade Chord (m) .051

Table 4.7: Chord Lengths of Real and Test Blades

Using, the chord length given in Table 4.7 and the critical crack length of 10 mm, the

effect of a crack on the real blade can be calculated using Equation 4.13.

%change =1 - l -8 4) =.005% Equation 4.13

Because the test blade has a different chord length, a different crack length will cause the

same change in the resonant frequency of the test blade. While the test blade and real

blade are different materials, this change in material is irrelevant in the scaling. This is

because the material properties are constant for a given blade, whether the blade is

cracked or not. This is clear from Equation 4.13, which shows that the change in the

mode is dependent only on the crack length and blade chord. When scaling from the real

blade to the test blade, only the percent change in the resonant frequency for the real

blade is relevant to the calculation for the test blade. Thus, material properties do no

affect the crack length scaling. Again using Equation 4.13, the crack length for the test

blade can be calculated.

a _testblade =.005m = 5mm

This result gives the crack length of the test blade. A crack of this length changes the

mode of the test blade by the same amount that the critical crack of the real blade changes

the mode of the real blade. The scaling was performed by modeling the blade as a beam

and the crack as a reduction in the moment of inertia of the beam.

Using this method, the effect of a 5 mm crack on the test blade is a reduction in the

resonant frequency of only .005%. This is clearly a very small effect. However, the

method used to model the effect of a crack is very crude, and shouldn't be viewed as an

exact means of determining the relationship between a crack and a structural mode. Its

utility lies in its ability to scale crack length with blade geometry. This method allowed

for the calculation of an appropriate crack length for the test blade of 5 mm. A crack of
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this length can then be generated in the test blade, and its effect on the mode of the blade

can be determined experimentally. This will be done in later sections.

4.3.5 Numerical Estimate of Crack Effect

The effect of a crack on the test blade was also estimated numerically using "Pro-

Mechanica." A crack of length 5 mm was inserted into the simplified blade model

described in Section 3.2. A picture of the blade with the crack is shown in Figure 4.9.

The crack is positioned near the root and the leading edge of the blade, as described in

Section 4.3.1, and is 5 mm long.

Figure 4.9: Simplified Blade Model with Crack

A dynamic analysis was performed in Pro-Mechanica on the cracked blade. The dynamic

analysis was identical to that described in Section 3.2.2, which determined the mode

shapes and resonant frequencies of the simple blade model. The results of the analysis

are given in Table 4.8.
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Mode Type Frequency - No Crack Frequency - Crack % Change

Torsion - Mode 2 1077 Hz 1062 1.4

Bending -Mode 3 1601 Hz 1585 1.0

Table 4.8: Pro-Mechanica Results for Crack Effect

The results of the dynamic analysis of the cracked blade indicated that the resonant

frequencies of the cracked blade decreased, as expected. The frequency of the torsion

mode decreased by 1.4%, and the second bending mode decreased by 1.0%. These

results are in contrast to the results from Section 4.3.4, which indicated that a 5 mm crack

would only decrease the blade resonant frequencies by about .005%. However, the

methods used to analyze the presence of a crack in Section 4.3.3 were simplistic and only

beneficial for scaling. These results from Pro-Mechanica are encouraging. They indicate

that a 5 mm crack will have an approximate effect on the modal frequencies of 1 %.

During force hammer testing, described in Section 3.1, the signal analyzer was used to

generate frequency response functions between the hammer and the accelerometer, and

the hammer and the strain gauges. The resolution on the signal analyzer was

approximately 2 Hz. For these frequency response functions, so a change in the resonant

frequencies on the order of 15 Hz may be detectable using force hammer testing.

However, the model used in the dynamic analysis has a greatly simplified cross section

and constraints. The effect of an actual crack in the test blade may be less than is

indicated by the dynamic analysis. Only with experimental testing of an actual cracked

blade can the effect of a crack be truly determined. This will be discussed in Section

4.3.7.

4.3.6 Crack Generation

With the crack location and crack length determined, a crack can be generated in the test

blade. Two methods were used to generate the crack. The first was a rough-cut method.

A small saw, .01 inches thick, was used to cut the blade near the root of the blade, and at

one of the edges. This method was used for its simplicity and rapidity. The cut was 5

mm deep, which is the appropriate length of a crack calculated in Section 4.3.4. This cut
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was meant to simulate a crack, and provided a quick way of testing a blade that

represented a cracked blade.

The second method to crack the blade will involve cyclic loading that will more closely

approximate crack generation and growth in a gas turbine engine. As discussed in

Section 1.1.2, HCF cracks have distinct steps. First, as a material is cyclically loaded, a

crack is initiated at a point of high stress concentration. Next, the crack propagates,

advancing incrementally with each loading cycle. Finally, when the crack has reached its

critical size, it grows rapidly and the material specimen fractures. A second test blade

will be cracked in such a way as to mimic this process. To date, the second test blade has

not been cracked. However, an analysis was performed to estimate the number of cycles

and the amount of time required to generate a crack. The analysis proceeds as follows.

The crack will be located in the same location as the rough-cut crack described above - at

one edge of the blade, near the root. A small initiation site will be created, possibly using

a sharp cutting tool, or perhaps spark erosion. This initiation site is intended to model the

crack initiation process that is the first step in HCF crack growth. The initiation site is a

region of high stress concentration, perhaps near an edge, a location of foreign object

damage, or a material flaw. The size of the initiation crack will be 2 mm. This length is

based on the work of Ritchie[14], who used 2 mm notches as crack initiation sites in his

work. Next, an "Instron" tensile machine will be used to cyclically load the blade in

tension. The blade will be clamped in the machine, which provides a tensile stress to the

blade that varies sinusoidally in amplitude. This cyclic loading will simulate cyclic

vibratory stresses seen by a blade in an engine. As the blade is loaded, the crack will

begin to grow from the initiation site until it reaches a length of 5 mm. The crack growth

rate can be expressed using the Paris Law. The rate of increase of the crack length a, per

cycle N, is given in Equation 4.14[1].

da = Equation 4.14
-_ A(AK)M

dN

A and M are material constants of aluminum, and AK is the stress intensity range at the

crack tip, and is expressed in Equation 4.15[1].
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AK = Y(O - a Equation 4.15

where: Y = geometric property = 1.12 (for edge crack)

o M, = maximum of cyclic stress amplitude = 150 MPa

OM1N =minimum of cyclic stress amplitude = 4 MPa

The stress levels are based on the capabilities of the "Instron" machine. The total number

of cycles needed to generate the crack can be found using Equation 4.16 and Equation

4.17[1].

dN da Equation 4.16

A(AK)m

This can be integrated from the initial crack length, a, (2 mm), to the final crack length,

aF (5 mm), shown in Equation 4.17[1].

NTotad a' da aF da Equation
N Toal = fo dN = M 3,0~yls41

N A()AK) a, A(Y(TmA, - aMIN VM4

Thus, it will take approximately 230,000 cycles under these load conditions to grow the

crack from the initiation length to the final length. The "Instron" machine operates at a

frequency of approximately 8 Hz, so it should take about 8 hours to complete the process

of growing the crack to 5 mm. Using this method, a 5 mm crack will be generated in the

blade in a way that approximates cyclic loading that a blade undergoes in an engine.

4.3.7 Force Hammer Testing for Crack Analysis

The effect of a crack on a blade mode was estimated both analytically and numerically in

Section 4.3.4 and Section 4.3.5, respectively. The results varied considerably, as the

analytic result yielded an estimate significantly smaller than the numerical result. Both of

these methods have drawbacks, and so force hammer testing was utilized in order to

determine the actual effect of a crack on the test blade.

The torsion blade was used for this analysis. It was hypothesized that an edge crack

would have a greater effect on a torsion mode than a bending mode. This is because for a

89



torsion mode, at a spanwise position near the root, the highest stresses occur near the

edges, where an edge crack resides. For a bending mode, the stress is essentially uniform

at one spanwise location, not depending on the chord position. The results of the

numerical analysis, shown in Table 4.8, supported this hypothesis. Thus, the torsion

blade was cut with a small saw, described in Section 4.3.6, to simulate a crack. The cut

actually made to be 10 mm long instead of 5mm. This analysis is mostly a demonstration

that a crack affects a mode, and so a larger crack was used because the effect would be

greater, and easier to detect. In the future, when a crack is generated more realistically

using the cyclic loading described in Section 4.3.6, it will only be grown to 5 mm, which

is consistent with the scaling performed in Section 4.3.4.

A force hammer test was performed in order to determine the effect of the 10 mm cut on

the blade modes. The test was essentially identical to the force hammer testing described

in Section 3.1. First, five frequency response functions between the hammer and the tip

acceleration were created, using the accelerometer positioned at one location near the

root of the blade, and hitting the blade at five tip positions with the hammer. Next, a

frequency response function between the hammer and the strain gauges was created, as

the blade was struck by the hammer at the position where the accelerometer used to be

located. Lastly, each of the five hammer to accelerometer frequency response functions

were divided by the hammer to strain gauge frequency response function, yielding a

transfer function between strain and tip acceleration. Overall, this procedure is identical

to that described in Section 3.1.

The results of the force hammer test indicate some evidence that the crack has affected

the torsion mode of the test blade. First, the resonant frequency of the torsion mode has

decreased from 1176 Hz to 1174 Hz. While this is a small change, it is consistent. Three

identical hammer tests were performed on the cracked test blade, and all three revealed

this slight decrease in the resonant frequency of the torsion mode. Moreover, this

decrease in frequency appears in both the accelerometer and strain gauge tests. For both,

the peak of the torsion mode frequency response function has shifted downwards to 1174

Hz. While this change is indeed slight, its consistent with the hypothesis that a crack will
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decrease a the resonant frequency of a blade by reducing its structural stiffness. This

hypothesis was born out to varying degrees in the analysis described in Section 4.3.4 and

Section 4.3.5. A decrease in frequency of 2 Hz corresponds to a percentage change of

approximately .2%. This result is larger than the estimate of .005% from Section 4.3.4,

but smaller than the 1.4% estimate from the numerical analysis in Section 4.3.5.

The mode shape of the blade also appears to have changed slightly due to the presence of

the crack. This change can be seen by looking at the final transfer functions between

strain and blade tip acceleration. The magnitude of the transfer functions at the

frequency of the torsion mode is the relevant parameter. This can be found by merely

taking the absolute value of the five transfer functions at 1176 Hz for the uncracked

blade, and 1174 Hz for the cracked blade. These values can then be plotted and

compared to determine the effect of the crack. The results are shown in Figure 4.10.

- No Crack
10 3lmm Crack

3 -------- -------- - ----- T -------- T-------- -- 0 m rc

-2-------------------+-----------------------------

C .

I ,-i I IC.)

0)

1 1.5 2 2.5 3 3.5 4 4.5 

Blade Tip Position

Figure 4. 10: Comparison of Cracked and Uncracked Blade Transfer Functions

The blue line corresponds to the blade before it was cracked, and the red line corresponds

to the cracked blade. The x-axis is the blade tip position, where position 1 is very near

one edge, and each other position is 0.5 inches farther along the chord at the blade tip.
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Thus, position 3 is at the half-chord position, and position 5 is at the other edge. The

cracked blade transfer function is actually the average of three separate hammer tests all

performed on the blade with the 10 mm cut. All three exhibited the same qualitative

behavior. The relative phase of the blade tip positions is imposed in order to emphasize

the fact that this mode is a torsion mode. That is, while the magnitude of each transfer

function is positive, the values at position 4 and position 5 are made negative. This

serves to emphasize the fact that this is a torsion mode, and to clarify the presence of

asymmetry in the crack effect. The presence of the crack seems to have an asymmetric

effect on the blade mode shape. Position 1 has a slightly higher magnitude (about 6%),

while position 5 has a lower magnitude (about 13 %). This asymmetry is encouraging.

The crack is a single edge crack, so it is likely that it would affect the two edges

differently.

Overall, the crack seems to have a small but noticeable effect on the mode of the torsion

blade. The resonant frequency of the torsion mode is reduced by 2 Hz, and the mode

shape changes asymmetrically. These changes are consistent, as three separate hammer

tests produce similar results.
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5 Conclusions

This thesis aimed to develop the ability to test eddy current sensors in a simulated gas

turbine environment. The experiments were performed in a spin pit rig, in the Gas

Turbine Lab at MIT. The goals of this research, and the important questions to be

answered, were laid out in Section 1.2.3. To date, many of the questions have been

answered, and the capabilities are in place for future work. Several concluding remarks

can be made from the research performed in this thesis.

1. The experimental setup in the spin pit rig has been completed. The capability is in

place to take ECS data for a passing blade in the spin pit. Also, magnet arrays can be

used to provide an excitation force on the spinning blades at a desired frequency.

Strain gauges have been attached to some of the blades, and the strain gauge output

can be used to independently measure blade vibrations. Finally, a procedure for

dynamically balancing the spin pit rotor has been developed and its effectiveness has

been verified.

2. Force hammer testing was used to determine the resonant frequencies and mode

shapes of the test blades. The test blades each had a first torsion mode and a second

bending mode in the 1.1-1.3 kHz range. The force hammer testing was also used to

compute transfer functions between the strain gauges and the blade tip acceleration.

This provided independent knowledge of the blade tip behavior using just the strain

gauge output. Using these transfer functions, the amplitude of the displacement of

the vibrating blades can be estimated for a blade that is spinning in the rig.

3. Pro Mechanica was used to perform an FEM analysis on a simplified model of the

test blade. The results confirmed the mode shapes determined with the force hammer

testing, and gave a qualitative confirmation of the resonant frequencies.

4. An analysis was performed to understand how a crack would affect a blade. The

analysis began by determining the likely location and size of a crack in a compressor
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blade in an actual gas turbine engine. Next, an estimate of the effect of a crack on a

blade mode was made. This estimate was used to scale the crack size from a real

blade to the test blade used in the spin pit. A crack length of 5 mm was chosen for

the test blade. This analysis predicted a negligible change in the blade mode due to

the crack. However, FEA analysis was performed in Pro Mechanica on a cracked

blade, and this analysis provided a more substantial estimate of the effect of a crack

on a blade mode. A 10 mm crack was created in an actual blade by simply cutting the

blade with a narrow saw. A crack will be generated in a second blade using the more

realistic technique of cyclic loading. The cyclic loading will be carried out using a

tensile machine, and an analysis was performed to estimate the total number of cycles

needed to generate the 5 mm crack using this machine. Finally, force hammer testing

was used to experimentally determine the effect of a crack on the test blade. The

cracked blade was found to have a slightly lower resonant frequency - about 0.2%.

The transfer function from the strain gauges to the tip acceleration also changed due

to the presence of the crack. Thus, a crack does indeed seem to change the mode of a

blade.

5. Several data sets were compiled from spin pit testing. Each data set corresponded to

data for either the "torsion blade" or the "bending blade," so called for their

respective strain gauge instrumentation setups. The rotor speed was such that the

magnet arrays either excited the torsion mode of the torsion blade, or the bending

mode of the bending blade. Within each data set, two actual runs were performed.

For one run, the magnet arrays were installed in the spin pit to provide an excitation

force on the blade. For the second run, the magnet arrays were removed. In this

way, one run consisted of data for a vibrating blade, and one run did not. For each

run, ECS data was taken, and strain gauge data was also often taken. Thus, there are

numerous data sets that consist of ECS data for vibrating and non-vibrating passing

blades, for both the torsion and the bending blade.

6. To date, blade vibrations have not been conclusively detected in the ECS signals.

Some indication of blade vibrations can be seen by plotting the speed of the rotor for
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the vibrating and no vibrating case. However, the blade vibrations have not affected

the ECS signal in a way that is consistently identifiable with the current analysis

methods. It was believed that the tip of the vibrating blade would lag behind the non-

vibrating blade tip for the torsion blade. A calculation was performed that estimated

that the vibrating ECS signal would lag the non-vibrating ECS signal by

approximately 4 samples. To date, this lag effect has no been identified. The main

hindrance to the analysis is the inconsistency of the rotor speed. This variation causes

ECS signals of varying width, which likely masks any evidence of the vibrating blade

lagging. An interpolation scheme was used to remove the effect of the varying rotor

speed, but so far, it has not helped to yield evidence of blade vibrations. Several steps

can be taken to increase the likelihood of identifying blade vibrations in the ECS

signal. These recommendations will be listed in Section 5.1.

5.1 Recommendations

At the end of Section 4.2.3, several courses of action were mentioned that could improve

the process of vibration sensing in the ECS signal. These recommendations, as well as

some others, are given here.

1. Reducing the variation in the rotor speed is likely to greatly facilitate data analysis.

The varying speed produces ECS signals of varying width, and this hinders our ability

to identify blade vibrations in the ECS signals. Reducing the rotor speed variation

would have the added benefit of producing higher amplitude blade vibrations, by

allowing the magnet arrays to excite the blade more precisely. Larger blade tip

displacements due to vibrations should have a greater effect on the ECS signals.

2. There are two compelling reasons to focus on the bending blade over the torsion

blade. First, the amplitude of vibration is constant along the chord of the blade tip, so

the positioning of the ECS is irrelevant. Second, as calculated in Section 4.1, the

amplitude of vibration of the bending blade is about twice that of the torsion blade.

However, the torsion blade was chosen for several reasons, mentioned in Section
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4.2.3. The most important was the consistency of the vibration of the torsion blade.

The PSD of the strain gauge output was significantly more consistent for the torsion

blade. The bending blade excitation was much more sensitive to speed variations,

and given the unsteadiness of the rotor speed, this resulted in inconsistent blade

excitation. It was hypothesized in Section 4.2.3 that the magnet arrays are producing

a force on the bending blade that is located near a node of the bending mode. This

could result in smaller amount of blade excitation. To investigate this hypothesis, the

mode shape of the edge of the blade should be determined. The mode shape of the

blade tip was determined using the force hammer and accelerometer, as described in

Section 3.1. A similar test should be carried out on the blade edge. The edge should

be struck at several spanwise locations, and a mode shape for the bending mode

determined. If the magnet arrays' locations were near one of the nodes of the edge

mode shape, this would confirm the hypothesis. This effect could be eliminated by

moving the magnet arrays to a radial position that corresponds to a larger amplitude

of the edge mode shape. This would produce a greater response from the blade, and

therefore a larger and more consistent blade vibration. In this way, the bending blade

could be used to identify vibrations in the ECS signal, along with the torsion blade.
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