
 

Hidden Markov Models for Analysis of 
Pilot Instrument Scanning and Attention Switching 

by 

Miwa Hayashi 
 

M.S. Aerospace Engineering 
The University of Texas at Austin, 1997  

 
 

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN  
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF  

 
DOCTOR OF PHILOSOPHY IN HUMANS AND AUTOMATION 

AT THE 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

 
September 2004 

 
© 2004 Massachusetts Institute of Technology. All rights reserved. 

 
 
 

Signature of Author: _____________________________________________________________ 
Department of Aeronautics and Astronautics 

July 30, 2004 

 
Certified by: ___________________________________________________________________ 

Charles M. Oman, Senior Lecturer 
Committee Chair, Department of Aeronautics and Astronautics 

 
Certified by: ___________________________________________________________________ 

Thomas B. Sheridan, Professor Emeritus 
Engineering Systems Division 

 
Certified by: ___________________________________________________________________ 

Laurence R. Young, Apollo Program Professor of Astronautics 
Department of Aeronautics and Astronautics 

 
Certified by: ___________________________________________________________________ 

Michael Zuschlag, Research Scientist 
U.S. DOT Volpe National Transportation Systems Center 

 
Accepted by: __________________________________________________________________ 

Jaime Peraire, Professor of Aeronautics and Astronautics 
           Chair, Committee on Graduate Students 



2 



3 

HIDDEN MARKOV MODELS FOR ANALYSIS OF 
PILOT INSTRUMENT SCANNING AND ATTENTION SWITCHING 

 
by 

 
MIWA HAYASHI 

 
Submitted to the Department of Aeronautics and Astronautics 

on July 30, 2004, in partial fulfillment of the  
requirements for the Degree of Doctor of Philosophy in  

Humans and Automation 
 

ABSTRACT 
 
Pilots’ eye movements provide researchers rich information about the pilots’ cognitive process 
during flight. Indeed, many researchers have included pilots’ eye-movement measures in their 
flight simulator experiments. Currently, however, due to the lack of a reasonable model of pilots’ 
scanning process, most researchers must rely on simple statistical analysis of eye-movement data, 
such as mean fixation durations on each instrument. The problem is that such statistical analyses 
often involve time-averaging operations, and so the information regarding the sequence of 
instrument scanning, the richest part of the data that reflects the pilot’s moment-to-moment 
thought and attention processes, often has been lost or not fully utilized.  
 
The thesis proposes a new analysis tool based on Hidden Markov Models (HMMs). This analysis 
exploits pilots’ instrument-crosschecking eye movements within an instrument group related to 
the vertical-, horizontal-, or airspeed-tracking task. From the pilots’ eye-movement data, the 
HMM estimates the most likely sequence of underlying tracking tasks that the pilot attended to. 
HMM analysis is especially useful when some instruments overlap among multiple tracking 
tasks (e.g., the attitude indicator overlaps among all three tracking tasks) because it can utilize 
the sequential information from the instrument scanning to compute the likelihood of each of the 
possible tracking tasks.   
 
The actual pilot eye-movements data collected during ILS approach simulation experiments 
indicated that some experienced pilots may attend to more than three tasks during flight, with the 
fourth one being a monitoring task, while some inexperienced pilots may attend to only two, 
dropping one of the tracking tasks probably due to high workload. The results of another flight 
simulation experiment demonstrated how the pilots’ attention budgeting among these tasks 
estimated by HMM analysis, combined with the pilots’ eye-movement statistical results, could 
enhance a cockpit display format study. The experiments demonstrated what additional insights 
can be obtained by incorporating HMM analysis into the analysis of pilots’ eye movements.  
 
Thesis Supervisor: Charles M. Oman 
 
Title: Senior Lecturer in Aeronautics and Astronautics 
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Chapter 1:Chapter 1:Chapter 1:Chapter 1:     

IntroductionIntroductionIntroductionIntroduction    

Flying an aircraft is perhaps one of the most complex and demanding manual control tasks that 

human operators have ever been required to perform, and, because of that, a number of flight 

simulation experiments have been conducted to investigate pilots’ performance. In the last 

decade or so, there has been a notable trend in these flight simulator experiments; more and more 

researchers started including measures of pilots’ eye movements.  

Measuring eye movements requires special precision equipment and typically generates huge 

amounts of data, which are typically both noisy and complex, and thus, quite frankly, are tedious 

to analyze. So, why have researchers suddenly started to include these measurements in their 

flight simulator experiments? Of course, one of the reasons must be the rapid advance of 

eye-tracking technology in the recent years, which has made eye-tracking systems more reliable 

and affordable. However, there are also important theoretical motivations; since flying tasks are 

accomplished with the assistance of specialized flight instruments, a better understanding of 

pilots’ scanning process may help engineers design better cockpit displays. Furthermore, 

studying pilots’ scanning process may enable researchers to infer part of pilots’ thought processes. 

Therefore, for instance, by understanding the differences between novice and expert pilots’ 

thought processes, one may be able to develop more effective pilot training programs that teach 

novice pilots to assimilate expert pilots’ scan and thought patterns.  

Note that the nature of flight tasks also offers some additional convenience for eye-movement 

analysis. Compared to automobile driving or many other human-operator manual control tasks, 

flying tasks, especially when referring only to the flight instruments (i.e., instrument flying), are 

extremely busy tasks, to the extent that it is often safe for researchers to assume that pilots are 

actually attending to the instruments during almost all of the flight time. In fact, Clement et al. 

calculated the required sampling frequencies for all the necessary flight variables to perform an 

Instrument Landing Systems (ILS) approach, the type of instrument approach most frequently 

performed these days, and concluded that pilots would have barely sufficient time to sample all 
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these variables (Clement, Jex, & Graham, 1968). This is a convenient assumption, because it 

allows researchers to assume that what the pilots look at reasonably represents what they are 

thinking about. Notice that such an assumption may not hold in other cases. For instance, in the 

case of driving a car, drivers often have more than enough time to control the vehicle, and, thus, 

their thoughts may occasionally drift away from the driving task even when they are still staring 

at an instrument or an outside scene. Therefore, what drivers are looking at may not always 

represent what they are thinking about.  

Before introducing some of the past studies that have been completed in this field, let us briefly 

note the roles of foveal and peripheral vision. Most commercially available eye-tracker systems 

are based on the direction of the eyeball measured by electrooculography (EOG), pupil center, 

corneal reflex, and so on (Young & Sheena, 1988). Therefore, by definition, these account for 

only the foveal fixation, leaving out the other half of the story—peripheral vision. To illustrate 

the importance of peripheral vision, Levison and Elkind (1967) reported the interesting fact that, 

in their informal experiment of concurrently tracking two tasks on separate displays, where the 

participant had to move their fixation point from one display to the other, they blanked the 

display not being looking at by the participant. They reported that the participant quickly became 

unable to maintain tracking performance on both displays. In general, peripheral vision has been 

considered to help increase scanning efficiency by guiding the foveal fixation points (Levison & 

Elkind, 1967) and by forming an expectancy of the approximate instrument readout even before 

the foveal fixation gets there (Senders, Webb, & Baker, 1955). Thus, even though peripheral 

vision cannot be directly measured by any existing eye-tracking systems so far, if the analysis 

includes the fixation transitions among instruments, it still may indirectly take peripheral vision 

into account.  

Now, the following section presents a brief overview of selected past studies of pilots’ scanning 

process. Moray has also provided an excellent review of pilots’ eye-movement modeling 

research up to the mid 1980s (Moray, 1986). After the overview of past studies, exactly what 

causes the difficulties in modeling and analyzing pilots’ eye-movements, as well as the 

shortcomings that the models used in past studies had, will be explained. Then, the main purpose 

of the current thesis to address some of these problems will be stated.   
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1.11.11.11.1 Past StudiesPast StudiesPast StudiesPast Studies    
The earliest and largest pilots’ eye-movement database was established by Fitts and his 

colleagues in the late 1940s to early 1950s (Fitts, Jones, & Milton, 1950). Their data were 

recorded during actual flights, not flight simulations. Forty Air Force pilots participated in the 

study, and their eye movements while performing instrument approaches were recorded in 

35-mm motion-picture films. The films were later analyzed frame by frame to determine the 

instrument the pilot fixated on at each instance. The results of the analysis of the eye-movement 

statistics revealed that the instruments most frequently looked at were the cross pointer (similar 

to the modern course deviation indicator), directional gyro (heading indicator but in a magnetic 

compass format), and gyro horizon (similar to a modern attitude indicator (AI)). Their 

experiment results were used to redesign instrument panel arrangements.  

The first quantitative model of pilots’ scanning process was proposed by Senders (Senders, 1955). 

For a pilot to reconstruct the signal by sampling, where the signal bandwidth is denoted as W, the 

signal has to be sampled at least at the frequency of 2W, also known as the Nyquist frequency. 

Later, Carbonell extended Senders’s idea and applied queuing theory (Carbonell, 1966; 

Carbonell, Ward, & Senders, 1968). The basic idea was that a queue is associated with each 

instrument, and each instrument has a risk of not being looked at. Furthermore, the risk also 

grows as time goes on. Thus, the pilot’s task is to make an intelligent decision each time before 

looking at an instrument to minimize the overall risk. A series of flight simulator experiments 

demonstrated the model’s ability to accurately represent percent times of pilots’ fixation on each 

instrument during flights, although there was also an issue of parameter tuning for each pilot and 

each flight phase. The model also does not predict the scanning sequence itself.  

Weir and McRuer conducted crossover model analysis (McRuer & Jex, 1967) on the data of two 

air transport pilots flying instrument approaches on a flight simulator (Weir & McRuer, 1972). 

The data of these two particular pilots were selected for analysis because of their quite different 

multiloop control strategies: one pilot was flying predominantly by referencing pitch angle (inner 

loop), while the other pilot tended to attempt to directly minimize glide slope deviations (outer 

loop). Their eye-movement data were compared with their inner- and outer-loop crossover 

frequencies. The analysis results showed positive correlations between the pilots’ crossover 

frequencies and their look rate (looks per unit of time) or dwell fractions (fraction of the time 
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spent on each instrument). The results suggested that pilots’ workload increases with scanning 

requirements and task complexity.  

Tole et al. examined the potential use of eye-movement data as a measure of pilots’ workload and 

skill (Tole, Stephens, Vivaudou, Ephrath, & Young, 1983). In their flight simulator experiment, 

they measured eye-movement data for 11 pilots who had different skill levels. While maintaining 

a straight-and-level path, pilots were also asked to respond to certain mental-algorithm secondary 

tasks, where the questions were given auditory and the pilots responded verbally in order not to 

disturb the visual aspect of the main task. The results showed that the dwell time on primary 

instruments increased as the secondary task difficulty was increased. This effect was more 

noticeable for the novice pilots than for the expert pilots. The entropy, or disorderliness, of the 

instrument fixation sequence was also computed, and the results indicated a tendency for entropy 

to decrease as the secondary task difficulty increased, probably due to the increased dwell time 

(i.e., decreasing the disorderliness).  

A slightly different approach was taken more recently by Doane and Sohn (2000). They used a 

computational cognition model called ADAPT to explain and predict the scanning and control 

behavior of 25 pilots during various simulated flight maneuvers. ADAPT’s knowledge database 

consisted of hundreds of knowledge elements, which were classified into three categories: world 

knowledge (e.g., “current airspeed is 100 knots”), general knowledge (e.g., “power controls 

airspeed”), and plan element knowledge (e.g., “decrease airspeed”). Then ADAPT constructed a 

knowledge association network among these knowledge elements, and the most relevant plan 

element whose preconditions existed in the world was activated. The model predictions and 

human-pilot simulation results showed good matches. However, mismatches, such as altimeter 

fixation versus vertical speed indicator (VSI) fixation, also often occurred.   

Finally, some researchers also conducted Markov Model (MM) analysis of various human 

operators’ eye-movement data, such as pilots’ eye-movement data while monitoring the Cockpit 

Display of Traffic Information (CDTI) (Ellis & Stark, 1986), or radar operators’ eye movements 

while monitoring military aircraft intercepts (Moray, Neil, & Brophy, 1983). These studies were 

not about the pilots’ flight instrument scanning process, but they are mentioned here because 

their MM analyses approach has an important connection to the Hidden Markov Model analysis 

that will be introduced later. The first-order Markov model is a process such that the transition 
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probability, pt(i,j), which is the probability to transition from the state, i, to the state, j, at time, t, 

is independent of t. In MM analyses, each area of interest (AOI) serves as each state, and the 

fixation transition probabilities between each pair of AOI, i.e., p(i,j) for each i and j, are 

computed. The MM is a well-developed mathematical model, with which the researchers can 

perform various sophisticated analyses, such as the mean first passage time (MFPT)—the 

average time from the time the fixation left a particular AOI to the time it comes back to the 

same AOI (Moray et al., 1983; Kemeny & Snell, 1960). The weakness of the MM analysis 

approach is that if multiple different scanning strategies occur from time to time, the MM 

analysis returns the transition probabilities averaged over them, not the real transition 

probabilities of each scanning strategy.  

1.21.21.21.2 DifficultDifficultDifficultDifficultiesiesiesies in Modeling Pilots in Modeling Pilots in Modeling Pilots in Modeling Pilots’’’’ Eye Movements Eye Movements Eye Movements Eye Movements    
As described above, Fitts’s group’s study computed pilots’ eye-movement statistics, such as 

average fixation durations and look rates. In fact, the majority of pilots’ eye-movement study 

literature, even from the most recent studies, relys on this type of data analysis. Such statistical 

analysis is usually simple to conduct. It is also the only way to analyze if a researcher does not 

have any reasonable quantitative model of pilots’ scanning process. The statistical analysis 

provides researchers valuable information on how each instrument was actually used by the 

pilots throughout the total duration of the flight. However, the statistical analysis also inevitably 

involves time averaging, and so it loses information regarding the sequence of instrument scans, 

which contains valuable information about pilots’ thought process from moment to moment.  

About the fixation transition among the instruments, Fitts’s group computed the link values, 

which are the relative frequencies of eye movements from one instrument to another instrument. 

One link value is assigned for each pair of instruments (i.e., the same value accounting for both 

directions). However, the concept of link values was later questioned by Ellis et al., whose MM 

analysis on eye-movement data revealed a statistical dependency of the transition probabilities 

on the previous fixation point (i.e., different directions had different transition probabilities). 

Ellis’s group’s study also indicated apparent randomness in the transition probabilities, which 

might suggest the existence of multiple underlying scanning strategies.  

The other quantitative modeling studies described in the previous past-studies section may also 
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have incorrectly assumed that the pilot had only a single scanning strategy throughout the flight. 

As a result, the studies that defined a single “optimal” or “normative” scanning behavior model, 

which the pilots are supposed to follow all the time (e.g., sampling theory, crossover modeling), 

often failed to fit the model to the actual data. In other words, these models did not have enough 

parameters to account for the time-varying nature of the real pilots’ scanning behavior (i.e., an 

under-fitting problem). On the other hand, the studies that depended more on the actual data to 

construct a time-invariant scanning behavior model (e.g., queuing theory, computational 

cognitive modeling) tended to have to keep adding more and more model parameters to describe 

the scanning behaviors of the actual pilots, which may be actually time-varying. As a result, such 

models risked ending up with much more model parameters than actually necessary (i.e., an 

over-fitting problem).  

Furthermore, attempts to accurately predict pilots’ fixation sequence are often hampered by 

certain features of modern aircraft instruments that were intentionally provided to facilitate 

pilots’ scanning. One such feature is information redundancy. For example, the altimeter and the 

VSI both provide rate of climb/descent information, and therefore are partially redundant. As a 

result, accurate prediction of which instrument, the altimeter or the VSI, the pilot would look at 

next is usually difficult, as seen in the Doane & Sohn study. Another feature is information 

integration; some instruments provide more than one piece of information, such as the AI 

displaying both pitch and bank angle information as well as their higher-order derivatives. Thus, 

when a pilot is looking at the AI, the researcher cannot tell which information the pilot is actually 

attending to.  

1.31.31.31.3 Purpose of Purpose of Purpose of Purpose of TTTThis Thesishis Thesishis Thesishis Thesis    
To address the above difficulties, this thesis proposes the use of a new method for analyzing 

pilots’ eye-movement data—Hidden Markov Model (HMM) analysis. HMMs have been widely 

used in speech recognition and other pattern recognition applications (Rabiner & Juang, 1993), 

but this is the first time HMMs have been applied to the analysis of aircraft pilots’ eye-movement 

data. The HMM analysis proposed here takes advantage of information from pilots’ instrument 

crosscheck. That is, from a pilot’s eye-movement data, it estimates the pilot’s attention switching 

among different tracking axes, each of which corresponds to a particular set of instruments 
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within which the pilot crosschecks. As readers will see in the next chapter, many difficulties 

confronted by previous models can be resolved or lessened by the use of HMM analysis. For 

instance, HMM analysis utilizes the sequential information of pilots’ instrument fixation data, 

and provides more information than fixation statistics alone can offer. Moreover, the analysis is 

based on the HMM, a time-varying stochastic process model. This ability to accommodate the 

time-varying characteristics of the pilots’ eye movements, which none of the previous models 

had, may be the biggest advantage of using HMM analysis. Because of this ability, the problem 

of under-fitting or over-fitting is largely reduced. Furthermore, the issues of instrument 

redundancy and information integration are greatly lessened by taking advantage of instrument 

crosscheck. More details of HMM analysis are provided in Chapter 2.  

In addition to proposing the new concept of HMM analysis, the goals of the thesis also included 

establishing an implementable procedure of HMM analysis of pilots’ eye-movement data. The 

thesis also sought to demonstrate the usefulness of the extra information that HMM analysis 

results provide for advancing the knowledge essential for designing better cockpit displays and 

improving pilot training. It is also part of the thesis’ goals to observe the capacity and the 

limitations of HMM analysis for fitting actual pilots’ eye-movement data. Since actual pilots’ 

instrument scanning process must be much more complicated than the simplified model used in 

the HMM, observing the capacity and limitations of HMM analysis may help illuminate some 

important aspects of real human operators’ cognition system.  

To achieve these goals, the thesis takes the following steps: In Chapter 2, the basic concept of 

HMM analysis is introduced. Then, brief explanations of the original HMM algorithms and their 

adaptation for being implemented into the pilots’ eye-movement analysis are described. Chapter 

3 presents a flight simulator experiment conducted as a proof-of-concept of HMM analysis, 

which also can be used as a walk-through example of an actual implementation of HMM 

analysis. This flight simulator experiment examined differences in the scanning processes among 

four pilots who had different levels of flight expertise, and the HMM analysis results, which may 

have important implications for pilot training, are discussed. In Chapter 4, HMM analysis is 

incorporated into the actual analysis process of a head-up display format study. This study also 

can serve as another walk-through example. The result demonstrates how the pilots’ attention 

sequence estimated by HMM analysis helped the researchers to obtain further insight into the 
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experiment data by bridging the pilots’ eye-movement data and their flight performance. In 

Chapter 5, some issues of HMM analysis, such as implementation issues related to verbal-report 

requirements and theoretical issues related to the serial assumption and the Markov process 

assumption of the attention process, are discussed. Some suggestions for future work are also 

presented in this chapter. Finally, Chapter 6 presents the summary and contributions of the thesis.  
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Chapter 2:Chapter 2:Chapter 2:Chapter 2:         

HiHiHiHidden Markov Model Analysisdden Markov Model Analysisdden Markov Model Analysisdden Markov Model Analysis    

As mentioned in the previous chapter, HMM analysis utilizes the sequential information of 

pilots’ instrument crosscheck eye-movement data. In this chapter, first the characteristics of 

instrument crosscheck are explained. Second, original HMM estimation algorithms and its 

estimation process, also often used in speech recognition applications, are briefly reviewed. 

Third, how this technique can be adapted to estimating pilots’ hidden attention-switching process 

from their eye-movement data is described. Then, finally, the differences between the proposed 

use of HMM for pilots’ eye-movement data analysis and other conventional HMM applications, 

such as speech recognition, are discussed.  

2.12.12.12.1 Instrument CrosscheckInstrument CrosscheckInstrument CrosscheckInstrument Crosscheck    
In most modern airplanes, cockpit instrument panels present at least the following basic four 

instruments: the airspeed indicator (ASI), attitude indicator (AI), altimeter, and heading indicator 

(HI). These instruments are often arranged as the so-called “basic-T instruments” or “basic-T 

arrangement,” where the ASI appears to the left of the AI, the altimeter to the right of the AI, and 

the HI below the AI. The basic-T instruments have been required for all transport-type airplanes 

since 1957 (CAR 4b (CAB, 1953) later replaced with FAR §25.1321 (FAA, 1970)). In addition 

to these four, most cockpits are also equipped with a turn-and-slip indicator, vertical speed 

indicator (VSI), power indicators, course deviation indicators combined with vertical deviation 

indicator (CDI/VDI, or just CDI for short in this thesis), and so on.  

Since none of these instruments alone completely describes the entire behavior of an aircraft, 

pilots must crosscheck among multiple instruments. For example, if the altimeter indicates 

higher altitude than the desired value, then the pilot may also want to crosscheck with the VSI to 

determine if the aircraft is still climbing or not, because the appropriate actions are different for 

each case. As this example illustrates, some instruments are more closely related than others in 

this instrument crosscheck process. For instance, the AI, the altimeter, and the VSI each indicate 
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a different aspect of the information related to vertical-axis tracking, and pilots have to 

crosscheck among them if they are to fly at the intended altitude. Table 2-1 lists three groups of 

instruments characterized by tracking task: vertical tracking, horizontal tracking, and airspeed 

tracking. These groups are consistent with the instrument groups defined in the Instrument 

Flying Handbook (FAA, 2001), except that the ASI is not in the vertical group and the AI is 

included in the airspeed group. These particular groups in Table 2-1 were chosen to explicitly 

separate the airspeed-tracking task from the vertical-tracking task, because that fits the purpose 

of our later experiments and analysis better. (If, for some reason, it is believed that airspeed 

tracking is not being performed separately, then the airspeed-tracking instrument group could be 

merged into the vertical-tracking instrument group in Table 2-1. More about selecting proper 

instrument groups will be discussed in Chapter 3.) The pilot’s task is to perform multi-axis 

tracking along the three axes shown in Table 2-1 by crosschecking the appropriate instruments 

associated with each tracking axis.  

Table 2-1. Three instrument groups of each tracking axis 

 
Vertical-Tracking 
Instrument Group 

Horizontal-Tracking 
Instrument Group 

Airspeed-Tracking 
Instrument Group 

Instruments 

AI (Pitch) 

Altimeter 

VSI 

CDI (Glide Slope) 

AI (Bank) 

HI 

Turn and Slip 

CDI (Localizer / Course)

AI (Pitch) 

Power 

ASI 

 

Although there has been some controversy over whether human operators attend to multiple 

tasks in a serial or parallel manner, in the case of multi-axis tracking during instrument flight, the 

adequate working assumption is that pilots attend to each tracking axis in a serial manner rather 

than in a parallel manner. One of the justifications for the serial-processing assumption is the 

complexity of the task. Pilots use their mental model of the aircraft’s dynamics along each axis 

or cross-coupled dynamics among different axes to interpret the multiple instrument readings and 

eventually determine the appropriate amount and direction of input to adjust the aircraft’s 

behavior (Bellenkes, Wickens, & Kramer, 1997). Such a complex process requires a certain 

amount of cognitive effort, and thus the tasks are assumed more likely to be processed in a serial 

manner. Another justification for this assumption is the nature of vision—although there is 
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evidence that pilots use peripheral vision, accurate instrument reading requires fixation. Because 

fixations occur one at a time, it is an adequate approximation that pilots attend to tasks in a serial 

manner as well (Moray, 1986). This serial-processing assumption is the basis of the concept of 

this analysis and will be revisited and discussed again in Chapter 5.  

This serial-processing assumption now leads to a new model of pilots’ scanning process. In this 

model, pilots’ eye-movement patterns depend on their internal state, i.e., the tracking axis they 

are attending to. The model focuses more on the underlying process, the serial switching among 

multiple tracking tasks, that drives pilots’ eye movements rather than the eye movements 

themselves. Understanding how the pilot switched scan patterns during the flight, which in turn 

shows how the pilot switched among these tracking tasks, may provide researchers additional 

information to bridge the gap between pilots’ eye movements and pilots’ actual tracking 

performance.  

Note that in this new model framework, the problem of instrument information redundancy is 

greatly reduced. For instance, the altimeter and the VSI both provide rate of climb/descent 

information, and the HI and the turn-and-slip indicator both show rate of turn information. These 

information redundancies sometimes caused problems in previous models. In this new model 

framework, however, notice that all the redundant instruments belong to the same tracking-axis 

group. (In fact, the redundancy is more or less equivalent to membership in the same group in 

Table 2-1.) The focus of this new model framework is the tracking-axis group the pilots were 

attending, rather than which particular instrument the pilots looked at, and that is why instrument 

redundancy becomes much less of an issue in this model framework.  

The attention-switching process among the tracking tasks is, of course, not directly observable. 

Only the pilots’ eye movements are observable. So, the question is, is it possible to estimate the 

sequence of the pilots’ attention switching from their instrument fixation sequences? Such 

estimation would be trivial if the instrument and the tracking axis had a one-to-one relationship. 

Unfortunately, that is not the case, as Table 2-1 indicates. In Table 2-1, the AI and the 

CDI—notice both of them are integrated displays—are overlapping in more than one tracking 

task. Therefore, when one of these overlapping instruments is fixated on, investigators cannot 

determine which task the pilot is attending to. This is particularly a problem for the AI, because 

this is usually the instrument most looked at. The average percent times on the AI in the total 
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flight time that literature reported range from 15% to as much as 59%, depending on the flight 

segments and the instrument arrangement (Fitts et al., 1950; Weir & Klein, 1971; Pennington, 

1979). This indicates that the underlying tracking task could remain ambiguous for a rather long 

period of the flight time. Hidden Markov Model (HMM) analysis provides a solution for this 

ambiguity that is created by these overlapping instruments. It exploits pilots’ instrument 

crosscheck in Table 2-1; i.e., if an overlapping instrument is scanned along with other 

instruments that belong to a particular tracking task, then that instrument is more likely being 

used for that task. 

2.22.22.22.2 Hidden Markov ModelHidden Markov ModelHidden Markov ModelHidden Markov Modelssss (HMM (HMM (HMM (HMMssss))))    

2.2.12.2.12.2.12.2.1 OverviewOverviewOverviewOverview    
The basic theory of the HMM was first introduced by Baum and Petrie in 1966 (Baum & Petrie, 

1966). It has been since the late 1980s, however, that HMMs have become widely applied to 

various pattern recognition applications, including speech recognition (Rabiner & Juang, 1993, 

and numerous other references), face recognition (e.g., Oliver, Pentland, & Berard, 2000), sign 

language recognition (e.g., Starner, Weaver, & Pentland, 1998), protein structure analysis (e.g, 

Krogh, Brown, Mian, Sjolander, & Haussler, 1994), and so on. The nearly twenty-year gap 

between the introduction of the theory and actual applications was probably due to the fact that 

the HMM theory was first published in mathematical journals seldom read by pattern recognition 

engineers (Rabiner, 1989). Additionally there were no sufficient tutorial materials available. Now 

some good tutorials are available (e.g., see Rabiner & Juang, 1986; Rabiner, 1989; Rabiner & 

Juang, 1993, Chapter 6). The following presents brief descriptions of HMMs. For more details, 

the reader should consult the tutorial materials listed above.   

The HMM framework consists of two stochastic layers. One is a hidden-state process, which is 

not directly observable but is assumed to follow first-order Markov process transition rules. The 

other layer is an observation-symbol process, which is physically observable and has a certain 

probability distribution depending on the current hidden state. In the case of pilots’ scanning 

process, the tracking task was modeled as the hidden-state process, and the instrument fixation 

corresponded to the observation process. Figure 2-1 illustrates the transitions among the hidden 

states (depicted as arrows) and corresponding instrument fixations, given each hidden state. 
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A model structure for an HMM can be completely described by a set of three parameter matrices, 

λ = (A, B, π). The descriptions of each parameter are as follows. The initial state probability 

distribution matrix,  

π = {πi}  1 ≤ i ≤ N    (2.1) 

gives the probability that the hidden state, i, is the initial state; the state-transition probability 

distribution matrix,  

A = {aij}  1 ≤ i, j ≤ N   (2.2) 

gives the transition probability from the hidden state, i, to state, j; and the observation symbol 

probability distribution matrix,  

B = {bj(k)} 1 ≤ j ≤ N, 1≤ k ≤ M  (2.3) 

gives the probability of the observation symbol, vk, within the given hidden state, j.  

2.2.22.2.22.2.22.2.2 Illustrative ExampleIllustrative ExampleIllustrative ExampleIllustrative Example    
In order to illustrate the meanings of these model parameters, an example is presented in Figure 

2-2. (Readers already familiar with HMMs can skip this section.) In this figure, hypothetical 

numbers of the state-transition probabilities and the observation-symbol probabilities and the 

corresponding A and B matrices are shown.  

Figure 2-1. HMM with three states  
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The diagram in Figure 2-2 shows that the probability to transition from the vertical-tracking task 

(i = 1) to the horizontal-tracking task (i = 2) is 0.1, and the transition probability to the 

airspeed-tracking task (i = 3) is also 0.1. The recurring transition probability (i.e., the probability 

to stay within the same state) of the vertical-tracking task is 0.8. Note that all these transition 

probabilities from the vertical-tracking task add up to 1, and that is true for the other tracking 

tasks as well. In the A matrix in this example, the first row, i.e., {a1j} (1 ≤ j ≤ 3), represents the 

three transition probabilities from the vertical-tracking task (i = 1), including the recurring 

transition probability, a11. Likewise, the second and third rows represent all the transition 

probabilities from the horizontal-tracking and airspeed-tracking tasks.  

Note that the diagonal elements of the A matrix represent the recurring transition probabilities of 

each hidden state. In fact, these recurring probabilities may play a key role in pilots’ 

eye-movements data analyses. Since humans generally do not switch their thoughts around every 

half second or so, it is presumed that each task tends to have a certain duration of time. The 

Figure 2-2. Illustrative example of HMM parameters with hypothetical probabilities 
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HMM is capable of reflecting this kind of assumption by including higher recurring probabilities 

(the diagonal elements of the A matrix) than the other transition probabilities (the off-diagonal 

elements in the A matrix). It is effectively equivalent to imposing certain costs on switching tasks 

to ensure certain durations for each tracking task.  

Regarding the instrument-fixation level, the example in Figure 2-2 shows that if the pilot is 

attending to the vertical-tracking task, the probability that he/she fixates on the AI is 0.4. 

Likewise, the probabilities that he/she fixates on the altimeter, the VSI, and the CDI are 0.3, 0.2, 

and 0.1, respectively. Notice that all these probabilities within the vertical-tracking task also add 

up to 1, and the same is true for the other tracking tasks as well. In the B matrix, the first row 

represents the probabilities of each instrument fixation given the vertical-tracking task (j = 1). 

The second and third rows represent those given the horizontal-tracking task (j = 2) and the 

airspeed-tracking tasks (j = 3), respectively. Each column represents each instrument (1 ≤ k ≤ 8). 

Note that if there is more than one non-zero entry in a single column, the instrument is an 

overlapping instrument (i.e., the first column representing the AI, and the fourth representing the 

CDI in Figure 2-2). Also notice that the HMM does not take the transition probabilities among 

the instruments into account.   

In this example, the rows of the A and B matrices represented the current hidden states, and the 

columns represented the next hidden state or the instruments fixated on. By the way, this is not 

the only way to set up the A and B matrices. For instance, one can also reverse the row and 

column configurations without loss of generality. In fact, as long as it complies with the official 

definitions presented in Eq. (2-1)-(2-3), what constitutes the row or column is not important. In 

the following sections, all algorithms are described using on the official definitions.  

2.2.32.2.32.2.32.2.3 Three Problems of HMMs and Their SolutionsThree Problems of HMMs and Their SolutionsThree Problems of HMMs and Their SolutionsThree Problems of HMMs and Their Solutions    
Let us denote an observation-symbol sequence (i.e., the instrument fixation sequence data) as O 

= {o1, …, oT}. Then, given an observation-symbol sequence, O, the goal is to estimate the 

hidden-state sequence, q = {q1, …, qT}, which is “optimal” in some sense. To achieve this goal, 

the so-called “three problems” have to be solved (Rabiner & Juang, 1986). In the following text, 

these three problems and solutions are briefly described. The entire set of HMM analysis 

algorithms, resulting from these solutions, are tabulated later in Table 2-2.  



23 

Problem 1 is, given the observation sequence, O, and a model λ = (A, B, π), how can the 

conditional probability, P(O|λ), be computed efficiently? Here, the point is computational 

efficiency because, in theory, the probability can be directly computed by 

    (2.4) 

 

and 

(2.5) 

The number of multiplications required in Eq. (2.5) is 2T – 1 ≈ 2T, where T is the length of the 

observation sequence, O. Then, as indicated in Eq. (2.4), the computation results of 

P(O|q,λ)P(q|λ) for all possible q have to be summed. That is, the summation is repeated NT 

times, where N is the number of hidden states. For instance, even for relatively small N and T, 

such as N = 3 and T = 100, the required number of computations is 2T × NT = 2 × 100 × 3100 ≈ 

1049. This already seems computationally infeasible. Clearly a much more efficient algorithm is 

needed.  

Fortunately, there is a solution. The algorithm called “Forward Procedure” utilizes induction to 

greatly streamline the above computation process. Notice that there are only N hidden states, and, 

say, for an arbitrary hidden-state sequence, qarb, there are also many other qs, which are just 

slight variations of the qarb. So, why repeat the same computations over and over? To take 

advantage of repeated computations, first the forward variable,  

   (2.6) 

is defined. This is the probability of the partial observation sequence, {o1, …, ot} (1 ≤ t ≤ T) and 

the hidden state, i, at time, t, given the model λ. If the values of αt(i) for all i (1 ≤ i ≤ N) are 

known at a given time, t, then the values of αt+1(j) for all j (1 ≤ j ≤ N) can be computed by 

induction using the values of aij and bj(ot+1). Each induction step from t to t+1 requires N × N 

computations; thus, the total number of computations required is N2T—much smaller than 2T × 

NT. Finally, the probability in which we were originally interested is computed as 

(2.7) 
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It is also possible to define the “Backward Procedure”—the counterpart of the Forward 

Procedure—which computes the backward variable, βt(i). Both the forward variable and the 

backward variable will be needed to solve problem 3. The backward variable, βt(i), is defined as 

follows: 

(2.8) 

This is the probability of the partial observation sequence from t+1 to T, given hidden state, i, at 

time, t. This time, the values of βt(i), for all i (1 ≤ i ≤ N) are induced backward from t = T to t = 1. 

The required number of computations is, again, N2T.  

Note that in the actual computation of the Forward and Backward Procedures, scaling technique 

is used to prevent numerical underflow problems (Juang & Rabiner, 1985). Since computation of 

the original α and β involves a large number of multiplications of aij and bj(ot) terms (see Eq. 

(2.5)), whose values are generally significantly less than 1, the resulting values of α and β would 

quickly exceed the precision range of any machine if proper scaling were not applied. Table 2-2 

presents both the original and the scaled forms of the Forward and Backward Procedures so the 

reader can compare them.  

Problem 2 is: given the observation sequence, O, and the model, λ, how can an optimal 

hidden-state sequence, q, be chosen? Although there are several possible optimal criteria to apply, 

the most widely used criterion is to find the path that maximizes P(q|O,λ), which is also 

equivalent to finding the path that maximizes P(q,O|λ). To solve this maximization problem, a 

dynamic programming method called the Viterbi algorithm is employed (Viterbi, 1967). In this 

algorithm, a new variable, δt(i), is defined as follows:  

  (2.9) 

This variable, δt(i), indicates the highest probability among all possible paths, {q1, …, qt-1}, as 

well as having q = i at time t and the first t observations, {o1, …, ot}, given the model, λ. Again, 

δt+1(j) can be computed from the δt(i) by the following induction:  

(2.10) 
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To retrieve the hidden-state sequence at the end, the argument that maximizes Eq. (2.10) for each 

t and j is recorded by another variable,  

(2.11) 

As shown in Table 2-2, the Viterbi algorithms have two versions: the original form and a 

logarithm form. In the logarithm form, all multiplications in the original form are converted into 

additions, and, as a result, the numerical underflow problem can be avoided. Since no scaling is 

necessary for the logarithm form, often this form is used in the actual HMM estimation process 

rather than the original form.  

Problem 3 is that, given an observation sequence, O, how can the model parameters, λ = (A, B, 

π), be adjusted to maximize P(O|λ)? This is the most difficult to solve of the three problems. 

There is no known way to analytically solve for the global maxima of the model parameters in a 

closed form. However, there is still a way to locally maximize the likelihood, P(O|λ), using an 

iterative procedure called the Baum-Welch method, also known as the EM 

(expectation-maximization) method (Dempster, Laird, & Rubin, 1977).  

To start, a new variable, ξt(i,j), is defined as follows: 

(2.12) 

This variable indicates the probability that the hidden state is i at time t, and then j at time t+1, 

given the observation sequence and the model parameters. Then, the values of this variable, 

ξt(i,j), can be computed as  

 

(2.13) 

Furthermore, another new variable, γt(i), is defined as follows: 

(2.14) 

That is, γt(i) is the probability of being in the hidden state, i, at time, t, given the observation 

sequence and the model parameters. Thus,  
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(2.15) 

Now, if these new variables are summed over time, they can be interpreted as 

   Expected number of transitions from state i in O  

 

   Expected number of transitions from state i to state j in O 

 

Therefore, from the current model parameters, λ = (A, B, π), the re-estimation of the model 

parameters, λ’ = (A’, B’, π’), can be computed as 

(2.16) 

 

(2.17) 

 

 

(2.18) 

 

It has been proven that, when Eqs. (2.16)-(2.18) are used to compute the model parameters 

re-estimation, λ’ = (A’, B’, π’), from the original parameters, λ = (A, B, π), then, either (1) λ = λ’, 

or (2) P(O|λ’) > P(O|λ) (Rabiner & Juang, 1993).  

By combining the above algorithms, i.e., the Forward Procedure, the Backward Procedure, the 

Viterbi algorithm, and the Baum-Welch method, one can construct a generic HMM estimation 

process, which takes the initial model parameters, λ0 = (A0, B0, π0), and the observation sequence, 

O, as inputs, and returns the estimated model parameters, λ’ = (A’, B’, π’), and the estimated 

hidden-state sequence, q* (and the estimated probability of the observation sequence, P*, an 

important value in the case of speech recognition and other pattern recognition applications, but 

not used in pilots’ eye-movement data analysis). Table 2-2 lists the entire HMM algorithms, and 

Figure 2-3 summarizes the overall implementation of these HMM estimation algorithms. The 

MATLAB® codes for the HMM analysis used in the experiments are shown in Appendix A.  
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Table 2-2. HMM algorithms 
Original Form: 

1. Initialization:  (2.A1) 

2. Induction: (2.A2) 

3. Termination: (2.A3) 

Forward 
Procedure  

Scaled Form: 

1. Initialization: (2.B1) 

 (2.B2) 

 (2.B3) 

2. Induction:  (2.B4) 

 
 (2.B5) 
 

 (2.B6) 

3. Termination: (2.B7) 

Original Form: 

1. Initialization: (2.C1) 

2. Induction: (2.C2)

Backward 
Procedure  

 
Scaled Form: 

1. Initialization: (2.D1)

 (2.D2)

2. Induction:  (2.D3)

 (2.D4)
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Table 2-2. HMM algorithms (Continued) 

Original Form:  

1. Initialization: (2.E1, E2)

2. Recursion: (2.E3) 

 (2.E4) 

3. Termination: (2.E5) 

 (2.E6) 

5. Backtracking: (2.E7) 

Viterbi 
Algorithm  

 

Logarithm Form:  

1. Preprocessing: (2.F1,F2)
 
 (2.F3) 

2. Initialization: (2.F4, F5)
 

3. Recursion: 

 (2.F6) 

 (2.F7) 

4. Termination: (2.F8) 

 (2.F9) 

5. Backtracking: (2.F10)

Baum-Welch 
Method 

 

 (2.G1)

 

 (2.G2)
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2.32.32.32.3 HMMHMMHMMHMM Analysis o Analysis o Analysis o Analysis offff Pilots Pilots Pilots Pilots’’’’ Eye Movements Eye Movements Eye Movements Eye Movements    
The HMM algorithms described in the previous section are now adapted to estimate pilots’ 

attention-switching process from their eye-movement data. This section provides step-by-step 

descriptions of the analysis process. Some important details, such as assumption of instrument 

fixation durations, effects of the initial conditions of model parameter matrices, and the 

requirement for pilots’ verbal reports, are also discussed.  

Modern eye-tracking systems typically record eye-movement data at the rate of 60Hz or more, 

which is far more frequent than is needed for the purpose of HMM analysis. Therefore, the first 

task for researchers is usually data reduction. First, the saccade data points (i.e., the data points 

indicating rapid eye movements from one fixation point to the other) are eliminated so that the 

remaining data points are all considered fixations. Blinking should also be accounted for; for 

instance, if the pilot looked at the same instrument before and after a blink, then it was 

considered as if the pilot kept looking at the instrument even during the blink. On the other hand, 

if the pilot switched to a different instrument after a blink, then the fixation on the first 

instrument was considered to have been terminated right before the blink, and the fixation on the 

second instrument was considered to have been started right after the blink, and so on.  

When is a fixation considered consecutive fixations? This question is related to how long it 

usually takes for pilots to read an instrument. Fitts and his colleagues reported that, in their 

in-flight experiment, the average instrument fixation durations were about 0.6 seconds (Fitts et 

al., 1950). On the other hand, Carbonell and his colleagues presumed in their queuing theory 

model that pilot fixations longer than 0.4 seconds indicated consecutive selection of the same 

instrument (Carbonell et al., 1968). In this thesis, the 0.5-second threshold was chosen to identify 

consecutive fixations. Based on this threshold, the number of consecutive fixations were counted 

as follows: fixations staying on the same instrument for less than 0.5 seconds were considered a 

single fixation; fixations remaining for more than 0.5 seconds were counted as two fixations; 

those staying for more than one second were three fixations; and so on.  

The resulting instrument fixation sequence, O = {o1, …, oT}, and the initial conditions for the 

HMM parameters, λ0 = (A0, B0, π0), are sent to the HMM estimation process as shown in the left 

part of Figure 2-3. To determine an adequate λ0 at the beginning, researchers are forced to use 
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their engineering judgment. As described in the previous section, the Baum-Welch method 

computes the local maximums, not the global ones. Thus, it is critical to pick adequate initial 

conditions so that the resulting local maximums are as close to the global maximums as possible. 

Experience has shown that the estimation results are usually less sensitive to the choice of A0 or 

π0 than that of B0 (Rabiner & Juang, 1993). Even random or uniform A0 or π0 may be adequate 

for obtaining useful re-estimation results (subject to the constraints, Σj aij = 1, and Σi πi = 1). The 

diagonal elements of A0, aii, represent the recurrent probability of the state, i, and in the 

experiments in this thesis, these were set to 0.7 or 0.8 in most cases to slightly bias toward 

staying in the same state rather than moving out to another state. Then the remaining 0.3 or 0.2 

was distributed uniformly among the rest of the elements of the row, aij (i  ≠ j), each of which 

represents the transition probability from state i to state j. Uniform π0 was used in all cases.  

On the other hand, as previously mentioned, the choice of B0 seems to have relatively more 

influence on both the Baum-Welch and Viterbi estimation results than that of A0 or π0. Especially 

the balance of the elements of B0 among overlapping instruments seems to determine the bias on 

the Viterbi algorithm outcomes, and therefore should be chosen carefully. For example, if 

bvertical(AI) >> bhorizontal(AI), the Viterbi algorithm tends to pick the vertical task for AI fixations. 

Knowing these characteristics, researchers still have to rely on engineering judgment to pick the 

initial B0 (also subject to the constraint, Σk bj(vk) = 1). The actual initial conditions, A0, B0, π0, 

used in the experiments in Chapter 3 and 4 are listed in Appendix C.  

When the backward procedure and the Baum-Welch algorithm are completed, log[P’(O|λ’)] is 

calculated by the forward procedure with the new λ’, and checked for convergence with the 

original log[P(O|λ)] . The iteration loop is repeated until the difference between log P and log P’ 

becomes less than the user-defined tolerance threshold—1% was used for the experiments in this 

thesis—of log P’. In these experiments, the number of iterations rarely exceeded three. In fact, if 

log P does not reach convergence within the first couple of iterations, that may be a sign that the 

HMM structure needs to be modified. The issue of choosing a proper HMM structure will be 

discussed more in Chapter 3. After log P converges, the Viterbi algorithm computes the 

estimated hidden-state sequence, q* = {q1,…,qT}.  

To verify this estimated hidden-state sequence, q*, it is compared with the pilots’ own verbal 



32 

reports. During the simulation flights, the pilots’ verbal reports of the tracking tasks to which 

they are currently attending are collected. This can be done by asking them to verbalize either 

their current intentions or the instrument information they are attending to. In the first 

experiment, described in Chapter 3, the pilots were given no specific format for this verbal 

reporting, and they freely used their own words to describe their current flight intentions (e.g., 

“climbing,” “left turn for localizer”) or the instrument information they were attending to (e.g., 

“2.5 degree,” “169 knots”). This type of verbal report format will be called “free mumbling” in 

this thesis. With this format, the researcher can see the context of the flight. Also this format is 

convenient when the proper verbal report formats to be instructed to the pilots are unknown 

because the HMM structure is not initially known. In that case, the researcher can also use the 

pilots’ free-mumbling verbal report results to construct the initial HMM structure after some 

preliminary experiments. The drawback of this type of format is that the free generation of the 

verbal reports may increase the pilots’ cognitive workload, which in turn may affect their flight 

performance.  

In the effort to reduce the pilots’ cognitive workload, a different reporting format was attempted 

in the next experiment, described in Chapter 4. In this experiment, the pilots were instructed to 

say “pitch” when they were attending to the pitch information on the AI, and “bank” when 

attending to the bank information. The use of predetermined words eliminated the need of free 

generation of the verbal reports, and was expected to reduce the pilots’ cognitive workload. To 

use this reporting format, the researcher already had to have a good idea of what the HMM 

structure should be. Then, the reporting words were chosen to reduce ambiguity about tracking 

tasks when the pilots looked at overlapping instruments (in the experiment in Chapter 4, the AI 

was the only overlapping instrument). This type of format will be called “structured reporting” in 

this thesis. Although the structured reporting was originally implemented to address a certain 

disadvantage of the free mumbling, it turned out that both formats had their own pros and cons. 

Further discussion about the verbal-report format issues will be given in Chapter 5. 

Then, these verbal reports were converted to the corresponding tasks so that the reports could be 

used as the indicators of their true hidden states in the verification process. If an HMM estimated 

task matched the verbal report at the reported time, the report was considered to “match” the 

estimate. If the free-mumbling format was being used, the verbal reports regarding the 
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instruments included in only one tracking task, such as the ASI (airspeed tracking), the altimeter 

(vertical tracking), and the HI (horizontal tracking), was omitted from the analysis because they 

usually do match and easily increase the overall rate of match. Eliminating them kept the 

verification process conservative.  

If the match rate between the pilots’ verbal reports and the HMM estimation results did not turn 

out very good, and also there were certain trends or patterns in the way the mismatches occurred, 

then the researcher might be able to improve the match rate by adjusting the initial conditions of 

the HMM parameters, λ0 = (A0, B0, π0), especially the elements of the B0 matrix corresponding to 

the overlapping instruments. For instance, if missed detections repeatedly occurred when the 

pilot generated verbal reports related to the pitch-related task (vertical-tracking task) while the 

HMM estimation resulted in the horizontal-tracking task, then the bvertical(AI) in the B0 matrix 

could be increased in comparison with the bhorizontal(AI) to increase bias toward the 

vertical-tracking task when the AI was looked at.  

The entire HMM estimation process was repeated until the resulting rate of match showed no 

further improvement. The Figure 2-4 illustrates the overall iteration process described above.  

2.42.42.42.4 Comparison with Speech Comparison with Speech Comparison with Speech Comparison with Speech RecognitionRecognitionRecognitionRecognition    HMM HMM HMM HMM     
The way the HMM was utilized in the analysis of pilots’ eye movements above is fundamentally 

different in several ways from the conventional way that HMMs have been used in speech 

λ(A,B,π) =λ0(A0,B0,π0), 
O = {o1,�oT} 

Forward 
q* = {q*1,�q*T}
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No 

HMM estimation process (Figure 2-3) 

Modified λ(A0,B0,π0) 
O = {o1,�oT} 

Pilot’s verbal reports

q*

Figure 2-4. HMM analysis process for pilots’ eye movements 
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recognition and other pattern recognition applications. So far, most of the conventional HMM 

applications have been about searching for a particular hidden-state sequence based on noisy or 

probabilistic observation symbol sequences. For instance, in speech recognition cases, their main 

interest is to see if a sequence of phonemes in the sound data of a spoken word fits the sequence 

of any particular word in their vocabulary database. Analogously, the main interest in 

sign-language recognition is to look for a particular sequence of hand movements, and in protein 

structure analysis it is to seek similarities in amino acid sequences, and so forth.  

To further explain the difference from these conventional HMM applications, let us use the 

speech recognition application as a representative example. Such phoneme sequence recognition 

can be done with HMMs by defining the phonemes of a target word as the hidden states, and the 

actual spoken-sound data as the observation symbol sequence. For instance, the HMM structure 

for the word, “hello,” may appear as shown in Figure 2-5 (a), consisting of three hidden states 

corresponding to the three phonemes, “he,” “lo,” and “ou,” respectively. The state transition 

probability values are assigned so that only one-directional transitions from left to right are 

allowed. In other words, aij = 0 for i > j. Such HMMs are called left-right type models (Rabiner 

& Juang, 1993).  

Unlike the left-right type HMMs for the speech recognition, the HMM for pilots’ eye-movement 

process has the hidden states all connected to each other, and, thus, every hidden state can be 

reached from every other state within one step. In other words, and aij ≠ 0 for all i and j (Figure 

2-5 (b)). Such models are called ergodic type models.  

“he” “lo” “ou”

Vertical 
Tracking

Horizontal 
Tracking 

Airspeed 
Tracking 

Figure 2-5. HMM types 

(a) Three-state left-right model  
(e.g., Speech recognition) 

(b) Three-state ergodic model 
(Pilots’ eye-movement analysis) 

“hello” 
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By the way, the ergodic type models, as well as the left-right type models, assume that the 

transition probabilities, including the recurring probabilities, do not change over time. This 

assumption may be a little oversimplified for the case of pilots’ eye-movement data analysis, 

though these HMMs still would work fine regardless of whether this assumption is true or not. 

(In case the probabilities are time-varying, the probabilities estimated by the HMM will be 

simply the average over time.) This point will be discussed again in Sections 3.4.3 and 5.3.  

Another major difference between pilots’ eye-movement data analysis and speech recognition is 

that there is no training data (or labeled data) available indicating the pilots’ true hidden states. 

For this reason, the pilots’ own verbal reports have to be collected for verification. For speech 

recognition applications, there are spoken-word sound databases where the true states are known. 

Speech recognition engineers can use these databases to train their HMMs until correct 

recognition rates reach the maximum. Then, the engineers create a bank of HMMs whose model 

parameters are trained for different words. The spoken sound data of an unknown word are sent 

to each HMM and processed by the Viterbi algorithm to compute the probability of the model 

likelihood, P*. If the spoken word is the word that one of the HMMs was trained for, then the 

Viterbi algorithm of the corresponding HMM should return significantly higher P* than other 

HMMs. That HMM indicates the recognized word.  

This brings us to our final point. The ultimate purpose of speech recognition is to build a robust 

classifier that can recognize the spoken words that are yet to come. On the other hand, the goal of 

pilots’ eye-movement data analysis is to find out the model parameters and a hidden-state 

sequence that best describe the pilots’ eye-movement data already obtained. For the speech 

recognition case, to achieve robust performance, the engineers often use cross-validation for 

training (Bishop, 1996). In this validation method, the data are partitioned into S segments, and 

the HMM is trained using only the S-1 segments. Then, the omitted segment is used to test the 

trained HMM. This process is repeated S times so that all segments are assigned as the test data 

once. Then, the HMM that results in the highest correct recognition rate of the S HMMs is 

chosen as the best classifier. This approach was not taken for the pilots’ eye-movement data 

analysis in this study, and all data always were used to compute the model parameters. However, 

if one were interested in building a pilots’ eye-movement data classifier that could classify new 

data in the future, this cross-validation approach might prove to be useful.  
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Chapter 3:Chapter 3:Chapter 3:Chapter 3:     

Flight Simulator Experiment: Flight Simulator Experiment: Flight Simulator Experiment: Flight Simulator Experiment: 

Differences Differences Differences Differences AAAAmong Individual Pilotsmong Individual Pilotsmong Individual Pilotsmong Individual Pilots    

The HMM analysis described in the previous chapter is now applied to actual pilots’ 

eye-movement data collected in a flight simulator experiment. The experiment constitutes a 

proof of concept of the use of HMM analysis for investigating attention switching sequences. 

However, more importantly, this experiment also explores a potential HMM structure(s) for the 

actual pilots’ instrument fixation data. Although the three-state HMM introduced in the previous 

chapter mostly agrees with the instrument categorization used in instrument flight textbooks (e.g., 

FAA, 2001), that does not necessarily guarantee that this is the only possible HMM structure. If 

there is any other HMM structure, how can one identify it from the eye-movement data? This 

fundamental issue of HMM analysis is examined in this chapter.  

3.13.13.13.1 DifferenceDifferenceDifferenceDifferencessss    AAAAmong mong mong mong Individual Individual Individual Individual PilotsPilotsPilotsPilots    
It has been reported that there are large differences among the instrument scanning patterns of 

different pilots. For instance, Fitts and his colleagues noted marked differences in the 

eye-movement characteristics of 40 Air Force pilots (Fitts et al., 1950). During their in-flight 

instrument approach experiment, for example, one pilot made 154 fixations per minute on 

average, while another pilot averaged only 65 fixations per minute. Obviously, different pilots 

have different levels of agility of eye motion. In addition, it was also observed that one pilot 

made 41 fixations on the artificial horizon (i.e., the AI) out of 140 fixations per minute, while 

another pilot hardly used this instrument at all. While the varying eye-movement agility may be 

simply due to different scanning speeds of individuals, the different fixation frequencies on the 

AI may reflect more basic control strategy difference, such as the ones found in the crossover 

model analysis by Weir and McRuer (Weir & McRuer, 1972). They analyzed the control inputs 

of two airline pilots during instrument approaches on a simulator, and found quite different 
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longitudinal loop closing strategies between them: one pilot emphasized pitch response 

(inner-loop response), whereas the other emphasized glide slope deviation (outer-loop response). 

The eye-movement data of the pilot who controlled primarily based on pitch response indicated 

more frequent fixations on the AI than the other pilot (when flight director bars were off).  

Although these pilots’ personal scanning styles or control strategy differences are important for 

researchers to understand, and will certainly affect the parameters of the HMM, it is unlikely that 

they affect the HMM structure itself. Whether the pilot fixated on the AI and the altimeter (both 

in the vertical-tracking group) back and forth 5 times in 5 seconds or only 2 times in 5 seconds, 

or whether the pilot used the AI (pitch) more often than the CDI (glide slope deviation) for 

vertical axis control, as long as these are in the same vertical-tracking instrument group, it does 

not affect the HMM structure itself. The framework of the HMM structure provides robustness 

for these kinds of differences among pilots’ styles.  

What is being sought here is any new set of instrument groups different from the vertical-, 

horizontal-, and airspeed-tracking grouping regime. Even though these three instrument groups 

are taught to pilots during their initial stage of instrument flight instructions, their scanning 

patterns are mostly developed through their own flight experience. The large variety of scanning 

patterns among pilots reported in the literature supports this point as well.  

Therefore, the suspicion here is that the pilots’ levels of flight expertise may be a major factor in 

causing different HMM structures. Hence, in the following flight simulator experiment, the 

eye-movement data of four pilots who had different levels of flight expertise were analyzed to 

examine the following null hypothesis:  

H0: There is no other instrument scanning HMM structure than the three-state HMM structure. 

This null hypothesis is rejected if at least one HMM structure different from the original 

three-state HMM structure is found. This may sound simple. However, the real challenges in this 

investigation lie in how to identify an HMM structure from given data and how to justify it. Note 

that finding an exhaustive list of existing HMM structures is not the purpose of this experiment.  
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3.23.23.23.2 MethodMethodMethodMethod    

3.2.13.2.13.2.13.2.1 Pilot ParticipantsPilot ParticipantsPilot ParticipantsPilot Participants    
Four pilots of different levels of expertise participated in the simulation. The pilots were 

numbered in order of experience. Table 3-1 lists these pilots.   

Table 3 -1. Pilot participants 

Pilot # Pilot Types Total Hours Instrument 
Hours Major Aircraft Flown 

1 Private Pilot, Instrument Rated 250 60 C-172, PA-28 

2 Commercial Pilot,  
Certified Flight Instructor-Instrument 700 100 C-172, AA-5B, PA28, PA28R

3 Former Navy Pilot, Commercial Pilot, 
Instrument and Multi-Engine Rated 1050 225 P-3 

4 Airline Transport Pilot 3500 350 C-5, B-707, B-757, B-767 

 

All participants read and signed an informed consent form complying with the MIT COUHES 

Protocol 3021 (Appendix B) before the experiment started. All pilots were employees of Volpe 

Center in Cambridge, MA, and participated in the experiment as part of their normal work (i.e., 

no additional compensation was offered).  

Although Pilot 4 was mostly flying a C-5 at the time of experiment, this pilot also had previous 

experience of flying the Boeing 757, the flight dynamics the flight simulator used, and may have 

had an advantage in this experiment. Of the four pilots, Pilot 2 and 4 were current pilots as of the 

day of the experiment.   

3.2.23.2.23.2.23.2.2 Flight SimulatorFlight SimulatorFlight SimulatorFlight Simulator    
The experiment used a fixed-base flight simulator at Volpe National Transportation Systems 

Center located in Cambridge, MA. The simulator used the Boeing 757-200 flight dynamics 

model provided in Microsoft® Flight Simulator 1998, enhanced by the Precision Manuals 

Development Group 757-200 add-on. A custom OpenGL® program generated the instrument 

panels, which are described more in the next paragraph. In the simulator cockpit, a control 

column with a control wheel was provided in front of the pilot. A single throttle lever that 

controls both engines of the aircraft was at the right side of the pilot. The flaps, gear, and trim 
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thumb switches were provided on the control wheel, so that the pilots could change these settings 

without looking away from the display.  

3.2.33.2.33.2.33.2.3 DisplayDisplayDisplayDisplay    
The Basic-T instrument (Figure 3-1) was presented on a 17-inch computer monitor in front of the 

pilot, approximately 30 inches away from the pilot’s eyes. The instrument images in the display 

were generated by a custom OpenGL® program and depicted in bright green on a black 

background. The instruments included were the airspeed indicator (ASI), attitude indicator (AI), 

altimeter, course deviation indicator (CDI), heading indicator (HI), and vertical speed indicator 

(VSI). The power indicator (displaying the engine “N1” turbine RPM value) was presented at the 

lower right corner in a digital format, and the flaps-and-gear indicator was placed in the upper 

right corner. A turn-and-slip coordinator was not included in this display due to space limitations. 

The display area subtended a visual angle of 23.0° horizontally and 17.6° vertically at a viewing 

distance of 30 inches. The six large instruments subtended a visual angle of 5.2° in diameter, 

with 1.4° horizontal and 1.7° vertical separations. The visual angles for the instrument diameters 

were approximately comparable to those of actual aircraft gauges, but the visual angles for the 

Figure 3-1. Display used in the simulation: The six large instruments are (top, from left) airspeed 
indicator (ASI), attitude indicator (AI), altimeter; (bottom, from left) course deviation indicator 
(CDI), heading indicator (HI), vertical speed indicator (VSI). The flaps-and-gear indicator is at 
the upper right corner. The power indicator is at the lower right corner.  
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instrument separations were slightly smaller than those of actual aircraft instrument panels, due 

to the size of the monitor used in the experiment.  

3.2.43.2.43.2.43.2.4 Simulation ScenarioSimulation ScenarioSimulation ScenarioSimulation Scenario    
Figure 3-2 shows a schematic of the simulated ILS approach. No out-the-window view was 

presented; i.e., all flights were flown referencing only the instruments. The aircraft was initially 

positioned on the left side of the localizer course. The approach can be divided into three flight 

segments:  

(i) Straight and level at 1700 ft, 160 knots 

(ii) Level turn to intercept the localizer, flaps down by two notches, gear down, and slow to 130 

knots 

(iii) Final descent along the glide path to 1000 ft 

In segment (i), pilots were instructed to maintain 1700 ft and 160 knots. When the localizer 

needle became active, the pilots started a left turn and this started segment (ii). The angle of 

intercept was approximately 25°. This segment involved configuration changes, such as lowering 

gear as well as lowering flaps by two notches, and slowing to 130 knots. When the localizer was 

centered and the glide slope needle started to move in, the pilots began the descent, and this 

Go Around at 
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Middle 
Marker

Outer 
Marker

1700 ft 

25° 

1700 ft

(i) Straight and 
Level (ii) Level Turn 

(iii) Final Descent 

Figure 3-2. Three flight segments in the ILS scenario 
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started segment (iii). The pilots were instructed to keep the localizer and glide slope needles 

centered and maintain 130 knots. When the aircraft reached 370 ft, the pilots initiated a 

go-around, and data collection ended for the approach. It was decided not to add any wind in any 

segment of this simulation because the disturbance induced by the pilots themselves already 

made the approaches hard enough to fly.  

3.2.53.2.53.2.53.2.5 Data CollectionData CollectionData CollectionData Collection    
During each approach, the pilots’ eye-movement data were collected with a head-mounted video 

eye-tracker (RK-726PCI/RK-620PC, ISCAN, Inc., Burlington, MA) and a magnetic head tracker 

(InsideTRAK, Polhemus, Colchester, VT). The accuracy of the eye-tracker is approximately 1°. 

The static accuracies of the head tracker are 0.05” root mean square (RMS) for X, Y, or Z 

position, and 2° RMS for orientation.  

The eye-movement data were collected at the rate of 60 Hz. Flight variables were also recorded, 

at 1 Hz. In addition, the pilots’ verbal reports of their current intention or instrument reading 

were recorded on a videotape for later HMM analysis. The free-mumbling format (i.e., the pilots 

freely generate sentences using their own words) was used for the pilots’ verbal reports in this 

experiment. Each pilot flew three data-collection approaches. Before the data-collection 

approaches, each pilot received a briefing (Appendix B) and made several practice approaches, 

at least one of which was made while wearing the eye-tracking headgear and making verbal 

reports for familiarization.  

3.2.63.2.63.2.63.2.6 Data AnalysisData AnalysisData AnalysisData Analysis    
From the eye-movement and head-movement data, intersection coordinates of the pilots’ 

line-of-sight and the display plane were computed. All computations for the eye-movement data 

listed in this section (preprocessing, K-means segmentation, and HMM analysis) were performed 

by MATLAB® programs coded by the author. The MATLAB® codes for the HMM analysis are 

listed in Appendix A. 

First, the preprocessing for the saccade and blink data points was performed as follows. The data 

associated with saccades were eliminated by omitting the data points that failed to meet the 

fixation criteria (i.e., staying within an ellipse of 5 pixels horizontally, 3 pixels vertically, for 2 

consecutive samples). Blinking was also handled in the manner described in Section 2.3.  
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Second, the K-mean clustering segmentation was applied as follows to map each data point to a 

corresponding instrument. The line-of-sight intersections for each instrument were usually well 

separated, as shown in Figure 3-3 (a), and, thus, they could be easily clustered for the associated 

instrument. For instance, in the experiments in this thesis, a K-mean clustering segmentation 

algorithm (Bishop, 1996, pp.187-188) was employed to cluster them. In this algorithm, the n 

intersection coordinates vectors, {x1,…, xn}, were divided into K clusters, where each cluster was 

represented by the mean vectors, µj, j = 1, …, K. The j-th cluster contained Nj intersection 

vectors. First, arbitrary mean vectors, µj, were picked as the initial conditions, and distance to 

each xi,   

(3.1) 

was computed. Then, each xi was assigned to the nearest cluster, Sj, whose mean vector, µj, had 

the shortest distance dij. Then, the new mean vectors were recomputed by 

(3.2) 

Then, each xi was reassigned to new cluster, Sj, whose new mean vector was the closest to xi. 

This process was repeated until there was no further change in the grouping of xi. This could be 

assessed by monitoring the increments of the sum of distances,  

(3.3) 

Figure 3-3 (a) shows an example of the K-mean segmentation clustering results of actual 

line-of-sight intersection coordinates of a pilot scanning the display arranged as in Figure 3-3 (b). 

The centers of circles in Figure 3-3 (a) indicate the resulting representative mean vectors of the 

clusters. (Note that circles do not represent the boundaries of clusters.) Each xi was assigned to 

its closest cluster. Since all of the major six instruments had identical size and shape, and the two 

smaller instruments at the upper right and the lower right were sufficiently far apart from the 

major six instruments even though they were slightly smaller in size, no weight was imposed for 

each instrument when the distance from each xi to each mean vector, µj, was computed in Eq. 

(3.1). If each instrument had a different shape and size, weights could be applied for different 

instruments in this equation—as seen in the HUD experiment case described in the next chapter.   
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Once clustering was finished, the instrument fixation sequences were computed. As explained in 

Section 2.3, the intersections staying within the same instrument for less than 0.5 seconds were 

considered a single fixation. Likewise, intersections remaining for more than 0.5 seconds were 

counted as two fixations; those staying for more than one second were three fixations; and so on. 

Finally, HMM analysis was applied separately to each pilot’s data. In addition, since each flight 

segment had different task requirements, each segment was analyzed separately. Let Os,r,p = 

{o1
s,r,p, …, oT

s,r,p} denote the fixation sequence data from the segment, s (1≤ s≤ 3), of the r-th 

approach (1≤ r≤ 3), of the Pilot, p (1≤ p≤ 4). The simplest way to estimate the parameters that 

maximize P(Os,1,p,Os,2,p,Os,3,p|λ) for a given segment for a specific pilot was to concatenate Os,1,p, 

Os,2,p, Os,3,p  to make one long data string, Os,p = {o1
s,1,p, …, oT1

s,1,p, o1
s,2,p, …, oT2

s,2,p, o1
s,3,p, …, 

oT3
s,3,p} (T1 = Ts,1,p, T2 = Ts,2,p, T3 = Ts,3,p), and then estimate the parameters that maximize 

P(Os,p|λ). This process connected two data points that were not originally connected (i.e., {oT1
s,1,p 

and o1
s,2,p} and {oT2

s,2,p and o1
s,3,p}), but the effects of it were considered minimal because the 

model structure was an ergodic type, which did not have any prohibited hidden-state transitions 

(see Section 2.4 for model types). Finally, the estimated attention sequences, Qs,p (1≤ s≤ 3, 1≤ p≤ 

4), are divided back to the partial sequences corresponding to each approach, Qs,r,p (1≤ s≤ 3, 1≤ 

Figure 3-3. K-mean segmentation

(a) Intersections of the pilot’s line-of-sight and the display plane (the first approach of Pilot 2, 
saccade points have been removed) and K-mean segmentation results: the centers of circles 
indicate the centers of the clusters that the K-mean segmentation algorithm estimated. The units 
are pixels.  

(b) Display 
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r≤ 3, 1≤ p≤ 4). 

3.33.33.33.3 ResultsResultsResultsResults    
First, the three-state HMM shown in Figure 3-4 was applied to all twelve combined fixation 

sequences of all three segments and all four pilots, i.e., Os,p (1≤ s≤ 3, 1≤ p≤ 4). The three-state 

HMM applied (Figure 3-4) was similar to the one in Figure 2-1 but slightly adjusted for the 

specific display used in this experiment by adding the flaps/gear indicator in both the 

vertical-tracking group and the airspeed-tracking instrument group, and removing the 

turn-and-slip indicator from the horizontal-tracking instrument group. Appendix C lists all the 

initial conditions and the estimation results of these model parameters.   

Because the segment (iii) indicated the most drastic differences among the pilots, the results of 

this segment are presented first.  

3.3.13.3.13.3.13.3.1 Segment (iii) Segment (iii) Segment (iii) Segment (iii) –––– Final Descent Final Descent Final Descent Final Descent    
Figure 3-5 (a)-(d) plot fixation sequences and the corresponding attention sequence estimated by 

the three-state HMM in segment (iii), final descent, of the last approach each pilot flew, i.e., the 

fixation sequence, O3,3,p (1≤ p≤ 4), and the corresponding estimated attention sequence, Q3,3,p (1≤ 

p≤ 4). In this figure, the last approaches (s = 3) were selected to be plotted for illustration 

purposes, but the actual analysis included the other two approaches (s = 1, 2) as well.  

Figure 3-4. Three-state HMM 
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(a) Pilot 1 

(b) Pilot 2 

(c) Pilot 3 

(d) Pilot 4 

Figure 3-5. The fixation sequence (top) and estimated task sequence (bottom) from segment (iii), final 
descent segment, in the last approach each pilot made. The three-state HMM was used for all pilots. 
The circles with asterisk marks inside shown on the bottom plots indicate the tasks implied by the 
pilot’s verbal reports.  
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The circles with asterisk marks inside shown in the attention sequence plots (bottom plots) in 

Figure 3-5 (a)-(d) indicate the tasks implied by the pilot’s verbal reports, Rτ
3,3,p (1≤ τ ≤ T3,3,p). 

The time of each verbal report, τ, is the time the verbal report sentence started. As mentioned in 

the previous chapter, the verbal reports regarding instruments included in only one tracking task 

group (e.g., the ASI, the altimeter) were omitted, and only the reports related to the overlapping 

instruments (i.e., the AI and CDI) or the pilot’s current intentions (e.g., “climb up”) are shown in 

Figure 3-5.  

Each verbal report was considered “matched” if the estimated task attention within ±1 second of 

the time of the report coincided with the task of the verbal report. In other words, the Rτ
s,r,p is 

considered “matched” if 

(3.3) 

The ±1-second buffer was included for several reasons: 1) the time point of the verbal reports 

may not exactly coincide with any of the time points of the fixations; 2) it is natural to assume 

that there are delays in the pilots’ verbal responses simply due to their internal information 

processing time; and 3) it was sometimes difficult for the experimenter to pinpoint exactly when 

the verbal report sentence started from the videotape records, and, the ±1-second buffer covers 

the potential margin of the experimenter’s error.  

Table 3-2 lists the match rates of the verbal reports, i.e., the numbers of the matched reports 

divided by the total number of the reports × 100 (%), in this segment. The table shows that, while 

Pilot 1, 2, and 3 all resulted in relatively higher match rates (around 90%), Pilot 4, the most 

experienced pilot, resulted in a relatively low rate (66.7%). What happened with Pilot 4? 

Table 3-2. Match rates of verbal reports in segment (iii) 

Pilots 
Total 

Number of 
Reports 

Number of 
Matched 
Reports 

Match Rates 

Pilot 1 67 61 91.0% 

Pilot 2 41 37 90.2% 

Pilot 3 47 42 89.4% 

Pilot 4 36 24 66.7% 

 

[ ]prs
t

prs QRtt ,,,,11 =∧+≤≤−∃ τττ



47 

Indeed, Figure 3-5 (a)-(d) suggest Pilot 4 had characteristics that were very different from those 

of the other pilots. Figure 3-5 (d) shows that Pilot 4 spent most of the time on the 

horizontal-tracking task, which is, frankly, not realistic for the following reason. In this segment, 

the aircraft had to descend precisely, tracking the glide slope, and this required the pilot to pay 

close attention to the vertical-tracking task as well as the horizontal-tracking task, as the other 

three pilots did. Most of the missed detections (i.e., the HMM estimates failed to match the 

verbal reports) occurred when Pilot 4 was looking at the AI for a relatively longer duration of 

time (typically 2 to 7 seconds), and this AI fixation was either preceded or followed by a CDI 

fixation (e.g., in Figure 3-5 (d), the reports at τ = 167, 237, and 248). Since Pilot 4 also looked at 

the HI frequently, the combination of viewing those three instruments tended to make the HMM 

estimate these portions as a horizontal-tracking task, which conflicted with the pilot’s 

vertical-tracking-related verbal reports.  

The post-experiment interview with Pilot 4 revealed that, at these points, the pilot checked both 

pitch and bank to maintain stable path tracking on the final descent. The description did not fit 

either the vertical-tracking or the horizontal-tracking task. Therefore, a new hidden state, namely 

an “attitude-monitoring” task associated with longer fixation on AI with occasional looks at the 

CDI was created and added to make an alternative 4-state HMM (Figure 3-6). This fourth state 

may appear to be a subset of the vertical-tracking or horizontal-tracking task, but is different due 

to the much longer fixation on the AI. The fact that this state does not include performance 

instruments (e.g., altimeter, VSI, HI, ASI), which are necessary to directly check the aircraft’s 

response to the pilot’s input, implies that in this fourth state, the pilot was not actively controlling 

the aircraft. The aircraft was presumably already stabilized, and the pilot’s task was simply to 

Figure 3-6. Four-state HMM 
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monitor for any deviations from the “target” pitch and bank angles that maintain this stable 

tracking. Figure 3-7 plots the re-estimation results using the four-state HMM with the same 

fixation sequence data in Figure 3-5 (d). As a result, the match rate of the verbal report in this 

segment increased from 66.7% to 94.4% (= 34/36).  

From the HMM-estimated attention sequences, the durations of each tracking task were 

computed. Figure 3-8 (a)-(d) shows the percentages of the total duration time of each tracking 

task within the total flight times in segment (iii). The times in between two tasks that did not 

belong to any task were categorized in the “Transition” in Figure 3-8. The figure shows that Pilot 

4 spent only 6% of the time on the vertical-tracking task. However, the attitude-monitoring task, 

on which 37% of the time was spent, also watched for any pitch deviations that affect vertical 

tracking, and, together, the vertical-tracking performance should have been well covered. The 

same can be said for the airspeed-tracking task, on which only 4% of the time was spent. The 

aircraft probably had been already well-stabilized on the course, and the pilot did not have to 

control the aircraft actively. To examine this inference, RMS errors, attitude angle statistics, and 

Figure 3-7. The fixation sequence (top) and estimated task sequence (bottom) from segment (iii), final 
descent segment, in the last approach of Pilot 4. The four-state HMM was used.  

Figure 3-8. Percentages of time spent for each tracking task within the total flight times of segment 
(iii), final descent. 

(a) Pilot 1 (b) Pilot 2 (c) Pilot 3 (d) Pilot 4 
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instrument fixation percentages in this segment were computed and shown in Table 3-3. The 

relatively low RMS flight technical errors from the glide slope (vertical tracking) and 130 knots 

(airspeed tracking) and standard deviations of the pitch and bank angles of Pilot 4 shown in this 

table support this inference. It may be arguable that the vertical-tracking task and/or the 

airspeed-tracking task in the four-state HMM could be removed based on their infrequent 

occurrences. However, here, the fact that the pilot still kept checking the vertical speed, altitude, 

and airspeed occasionally is important, and thus these states were left in the model.  

Table 3-3. Flight-data and fixation-data statistics in segment (iii) 

RMS flight technical 
error Attitude angle statistics Instrument fixation percentages 

 

From 
glide 
slope 

[deg] 

From 
loc. 

[deg] 

From 
130 

knots 

[knots] 

Pitch mean 
(std.)  

[deg] 

Bank mean 
(std.)  

[deg] 

ASI

[%] 

AI 

[%] 

Alt 

[%] 

CDI 

[%] 

HI 

[%] 

VSI

[%] 

Pilot 1 0.44 0.74 14.9 4.13 (2.06) 0.08 (4.42) 1.29 9.80 5.62 21.6 19.5 10.7

Pilot 2 0.31 0.27 12.6 3.85 (1.55) -0.11 (1.29) 8.94 24.3 9.98 7.67 7.89 5.17

Pilot 3 0.29 0.54 6.60 4.41 (1.98) 0.24 (3.00) 5.93 34.0 4.93 6.42 8.63 1.53

Pilot 4 0.11 0.13 6.94 3.76 (0.64) 0.001 (1.79) 2.78 47.0 1.04 5.16 12.3 1.42

 

Besides Pilot 4, Figure 3-8 also shows that Pilot 1 spent only 3% of the segment (iii) flight time 

on the airspeed task. It was, however, a different story from Pilot 4’s case. The larger pitch and 

bank standard deviations and larger RMS flight technical errors shown in Table 3-3 indicate that 

the flight required more effort. The RMS airspeed error from 130 knots was relatively large, but 

the ASI was looked at for only 1.3% of segment (iii). Pilot 1 used the throttle several times in 

this segment, but almost always without an accompanying fixation on the ASI. This implies that 

the pilot was using the throttle mainly for rate-of-descent control rather than for the airspeed 

control. This suggests merging the airspeed task into the vertical task to make a two-state HMM 

Figure 3-9. Two-state HMM 
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(Figure 3-9). Basically the reduction of the number of hidden states did not change the rate of 

verbal report matches, i.e., the rates were 91% for both the three-state and the two-state HMM. 

In that case, the model with a lower number of hidden states was favored by parsimony. The 

principle of parsimony in model selection will be further discussed in the Discussion section in 

this chapter.  

3.3.23.3.23.3.23.3.2 Segment (ii) Segment (ii) Segment (ii) Segment (ii) –––– Level Turn Level Turn Level Turn Level Turn    
Analogous to segment (iii), the original three-state HMM structure shown in Figure 3-4 was 

applied in segment (ii). The HMM model parameters were re-estimated for segment (ii). The 

fixation sequence of the last approach each pilot made, O2,3,p (1≤ p≤ 4), and the corresponding 

estimated attention sequence, Q2,3,p (1≤ p≤ 4) are plotted in Figure 3-10 (a)-(d). The rates of 

verbal report matches are listed in Table 3-4. High match rates of verbal reports were observed 

for all pilots. Thus, the three-state HMM generally worked very well for all of the pilots in this 

segment.  

Table 3-4. Match Rates of verbal reports in segment (ii) 

Pilots 
Total 

Number of 
Reports 

Number of 
Matched 
Reports 

Match Rates 

Pilot 1 19 17 89.5% 

Pilot 2 42 40 95.2% 

Pilot 3 31 27 87.1% 

Pilot 4 30 27 90.0% 
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(a) Pilot 1 

(b) Pilot 2 

(c) Pilot 3 

(d) Pilot 4 

Figure 3-10. The fixation sequence (top) and estimated task sequence (bottom) from segment (ii), level 
turn segment, in the last approach each pilot made. The three-state HMM were used for all pilots. The 
circles with asterisk marks inside shown on the bottom plots indicate the tasks implied by the pilot’s 
verbal reports.  
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Figure 3-11 illustrates the percentages of the total duration time of each tracking task within the 

total flight times in segment (ii), and Table 3-5 shows RMS errors, attitude angle statistics, and 

instrument fixation percentages in this segment. The figure and the table indicate that for Pilot 1, 

attention characteristics similar to those that appeared in segment (iii) also appeared in segment 

(ii); the airspeed tasks accounted for only 3% of the total time in segment (ii), and the ASI was 

fixated less than 1%. Thus, the same two-state HMM (Figure 3-9) was applied for Pilot 1 in this 

segment. As in segment (iii), the resulting rates of verbal report matches were 89.5% for both the 

three-state and the two-state HMM.  

Table 3-5. Flight-data and fixation-data statistics in segment (ii) 

RMS flight 
technical error Attitude angle statistics Instrument fixation percentages 

 

From 
1700 ft 

[deg] 

From 
loc. 

[deg] 

Pitch mean 
(std.) 

[deg] 

Bank mean 
(std.) 

[deg] 

ASI

[%] 

AI 

[%] 

Alt 

[%] 

CDI 

[%] 

HI 

[%] 

VSI

[%]

Pilot 1 69.8 0.88 7.08 (1.33) 2.96 (5.23) 0.11 13.1 5.17 15.5 29.2 7.24

Pilot 2 61.2 0.37 5.20 (1.38) 3.01 (6.20) 5.04 34.6 7.10 6.01 9.18 4.89

Pilot 3 58.7 1.28 6.39 (1.77) 2.12 (6.53) 4.39 41.2 5.90 4.48 9.21 1.19

Pilot 4 40.7 0.49 5.56 (1.04) 2.44 (4.99) 2.83 37.2 9.68 6.54 9.13 0.39

 

 

 

Figure 3-11. Percentages of the time spent for each tracking task within the total flight times of the 
segment (ii), level turn. 

(a) Pilot 1 (b) Pilot 2 (c) Pilot 3 (d) Pilot 4 
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3.3.33.3.33.3.33.3.3 Segment (i) Segment (i) Segment (i) Segment (i) –––– Straight and Level Straight and Level Straight and Level Straight and Level    
Once again, Figure 3-12 (a)-(d) plot fixation sequences and the corresponding attention sequence 

estimated by the original three-state HMM (Figure 3-4) in segment (i), straight and level, of the 

last approach each pilot flew, i.e., the fixation sequence, O1,3,p (1≤ p≤ 4), and the corresponding 

estimated attention sequence, Q1,3,p (1≤ p≤ 4).  

The match rates of verbal reports are listed in Table 3-6. All pilots indicated high match rates. 

Again, the three-state HMM generally worked very well in this segment.  

Table 3-6. Match Rates of verbal reports in segment (i) 

Pilots 
Total 

Number of 
Reports 

Number of 
Matched 
Reports 

Match Rates 

Pilot 1 14 14 100% 

Pilot 2 26 26 100% 

Pilot 3 24 24 100% 

Pilot 4 15 14 93% 
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(a) Pilot 1 

(b) Pilot 2 

(c) Pilot 3 

Figure 3-12. The fixation sequence (top) and estimated task sequence (bottom) from segment (i), straight 
and level segment, in the last approach each pilot made. The three-state HMM were used for all pilots. 
The circles with asterisk marks inside shown on the bottom plots indicate the tasks implied by the pilot’s 
verbal reports.  

(d) Pilot 4 
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Figure 3-13 illustrates the percentages of the total duration time of each tracking task within the 

total flight times in segment (i). Notice that the time percentages of the horizontal task were 

decreased compared to segments (ii) and (iii). This is because the HMM learned during the 

parameter estimation that the pilots tended to look at vertical- and airspeed-tracking instruments 

more often than the horizontal-tracking instruments in this straight-and-level segment, and 

adjusted the parameters by itself to bias toward the vertical- and airspeed-tracking tasks when the 

overlapping instruments were looked at.  

 

Table 3-7 shows RMS errors, attitude angle statistics, and instrument fixation percentages in 

segment (i). In this segment, there was no assigned heading (although it was suggested that pilots 

maintain the heading of 320° to keep the flight paths consistent from approach to approach). 

Thus, the workload in this segment was likely lower than in the other two segments, where all 

three tracking axes had assigned values to track. Perhaps because of that, Pilot 1 looked at the 

ASI more often (2.6%) than during the other segments. As in segments (ii) and (iii), this pilot 

used the throttle for rate-of-descent control rather than for airspeed control. Therefore, a slightly 

altered three-state HMM in Figure 3-14, which included the power indicator in the 

vertical-tracking instrument group rather than in the airspeed-tracking instrument group, was 

applied to Pilot 1’s fixation sequence in segment (i). The airspeed task was not removed from the 

model this time because keeping this task conveys the important fact that, in this segment, the 

pilot occasionally looked at the ASI. The resulting match rate of verbal reports was 100%, the 

same as the original three-state HMM. Since the numbers of hidden states are the same for both 

the original and alternative HMMs, it could not be concluded which model was better than the 

Figure 3-13. Percentages of the time spent for each tracking task within the total flight times of the 
segment (i), straight and level segment. 

(a) Pilot 1 (b) Pilot 2 (c) Pilot 3 (d) Pilot 4 
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other based on analysis of this segment only. However, if the analyses of the other two segments 

were taken into account, the alternative HMM may have had a slight advantage, since it was 

more consistent with the two-state HMM used in the other two segments.  

Table 3-7. Flight-data and fixation-data statistics in segment (i) 

RMS flight 
technical error Attitude angle statistics Instrument fixation percentages 

 

From 
1700 ft  

[deg] 

From 
160 

knots 

[deg] 

Pitch mean 
(std.) 

[deg] 

Bank mean 
(std.) 

[deg] 

ASI

[%] 

AI 

[%] 

Alt 

[%] 

CDI 

[%] 

HI 

[%] 

VSI

[%]

Pilot 1 42.7 8.30 7.61 (1.30) 0.24 (0.46) 2.58 32.2 11.4 3.23 10.8 6.93

Pilot 2 62.6 6.85 6.31 (1.40) -0.15 (0.69) 8.03 30.9 10.7 2.49 6.17 3.71

Pilot 3 54.4 4.13 6.24 (1.13) 0.28 (0.78) 3.37 35.2 11.4 2.87 3.55 3.15

Pilot 4 38.5 5.48 7.25 (0.92) 0.46 (2.02) 4.53 38.2 10.7 1.58 7.93 1.30

 

3.43.43.43.4 DiscussionDiscussionDiscussionDiscussion    

3.4.13.4.13.4.13.4.1 Selection of HMM StructureSelection of HMM StructureSelection of HMM StructureSelection of HMM Structure    
The HMM analysis was started with the three-state HMM structure shown in Figure 3-4, and 

some variations of the model were derived that described the data of each pilot during the course 

of the analysis. In choosing the HMM structures, caution was used in selecting the proper 

number of hidden states, especially when a new hidden state was added. It is generally true that, 

Figure 3-14. Alternative three-state HMM for Pilot 1 in segment (i): the power 
indicator is included in the vertical-tracking instrument group 
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when maximum-likelihood principles are applied for selecting a model, the models that have 

more parameters, and thus provide more degrees of freedom in fitting the data, tend to result in 

higher probability than those that have fewer parameters, and therefore are always favored. This 

problem occurs wherever a “right” model has to be chosen from multiple alternative models with 

different dimensions, such as Markov chain analyses or Autoregressive Moving-Average 

(AR-MA) analyses. In fact, some criteria, such as Akaike Information Criterion (AIC) (Akaike, 

1974) or Bayesian Information Criterion (BIC) (Schwarz, 1978), have been introduced in these 

areas to avoid opting for the models with the highest possible dimensions. These criteria 

basically penalize the models for the number of model parameters.  

This experiment did not use these formal criteria, but the principle of parsimony employed had 

the same effect. In this experiment, adding a new state was justified only when the addition 

substantially improved the match rate between the HMM-estimated attention and the pilots’ own 

verbal reports. For instance, the fourth state was added to the HMM of Pilot 4 in segment (iii) 

because that improved the match rate considerably. No new hidden state was added to the 

original three-state HMM for Pilot 4 in the other segments (i) and (ii) or for Pilot 2 and Pilot 3 in 

any of the three segments, where few conflicts between the verbal report and the three-state 

model estimation results were found. For these cases, no hidden state was removed either, 

because all three hidden states occurred reasonably often. On the other hand, in the HMM of 

Pilot 1 in segments (ii) and (iii), the airspeed-tracking state was removed, since having this state 

or not did not affect the match rate with the pilot’s verbal reports.  

In addition to the match rate of verbal reports, sometimes the number of the HMM estimation 

loops required to achieve the convergence of logP may indicate the quality of the model 

selection. If logP did not converge within the first couple of loops, that would mean that the 

HMM estimation algorithms could not fit the fixation data to the given HMM very well. Thus, 

revising the model, including adding a new hidden state, may be needed. Note that the fast 

convergence of logP may be a necessary condition for a good model selection, but not a 

sufficient one. Therefore, it should be used when accompanied by other criteria.  

The other criterion sometimes used in the experiment was based on the researcher’s discretion to 

preserve certain characteristics of the data. It may be also seen as a criterion for construction 

validity. If a hidden state is removed from the model, the model will not be able to re-create the 
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actual data, where the removed state occurred. In any case, the decision for this criterion is 

inevitably more subjective than that for the parsimony-based criterion, and, therefore, when this 

criterion is being applied, the reason why a certain state was kept should be clearly stated. For 

instance, the airspeed tasks in the HMM for Pilot 1 in segment (i) and the HMM for Pilot 4 in 

segment (iii) were kept in the model even though the occurrence of this state was relatively rare, 

because it was an important fact that the pilots still looked at the ASI occasionally.  

3.4.23.4.23.4.23.4.2 Effects of PilotsEffects of PilotsEffects of PilotsEffects of Pilots’’’’ Expertise Level Expertise Level Expertise Level Expertise Level    
Based on the above criteria, the variations of the original three-state HMM (Figure 3-4) were 

found in pilots who have different expertise levels and also were flying different types of 

maneuvers. Thus, the null hypothesis, 

H0: There is no other instrument scanning HMM structure than the three-state HMM structure  

was rejected. As mentioned at the beginning, it was not the purpose of this experiment to find an 

exhaustive list of existing HMM structures.  

However, the experiment did find an interesting positive correlation between the number of 

hidden states and the pilots’ expertise level (Figure 3-15), and that was probably not a 

coincidence. The two-state HMM, exhibited by Pilot 1, the least experienced pilot in this 

experiment, indicated that one of the tracking tasks was dropped because of the high workload, 

while the added attitude-monitoring state in the four-state HMM, which appeared in the data of 

Two-State HMM 
 for Pilot 1 

Three-State HMM 
 for Pilot 2 & 3 

 

Four-State HMM 
 for Pilot 4 

 

Figure 3-15. Number of hidden states and pilots’ expertise levels 

More experienced 

More hidden-states Less hidden-states 
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Pilot 4, who was the most experienced pilot in this experiment and also had experience flying an 

actual Boeing 757, indicated extra time the experienced pilot had due to the well-stabilized 

aircraft behavior during the final descent segment. This characteristic of this expert pilot implies 

an interesting circular effect that skilled pilots fly well not only because they track and stabilize 

well, but also because the extra time this creates gives them more attentional resources so that 

they can respond more quickly. Both intermediate-level pilots, Pilot 2 and Pilot 3, indicated the 

three-state HMM.  

The attitude monitoring state of Pilot 4 may have a connection to the anecdotal scanning 

behavior that is said to exist among highly experienced pilots; that is, some highly experienced 

pilots look at the center of the instrument panel (about the point beneath the AI), and use 

peripheral vision to monitor all the instruments at once (Machado, 1999, p. 135). Indeed, it was 

possible that Pilot 4 also used his peripheral vision to scan the adjacent instruments, even though 

there was no evidence of that because the eye-tracking system cannot measure peripheral vision.  

Bellenkes and his colleagues reported that, in their flight simulator experiment, the flight 

instructors (i.e., expert pilots) made more fixations on the flight variables that were not being 

maneuvered (“minding the store”) than novice pilots, which may indicate a sign of good 

attentional flexibility (Bellenkes et al., 1997). Actually, in our experiment, the minding-the-store 

trend did not necessarily occur in proportion to the pilots’ expertise levels. For instance, Figure 

3-13 and Table 3-7 indicate that, in the straight-and-level segment, the pilot who attended the 

horizontal tracking task and also scanned the HI and CDI (i.e., not currently maneuvered) for the 

longest time period was Pilot 1. Also, Figure 3-11 and Table 3-5 show that, in the level-turn 

segment, the pilot who attended the vertical-tracking task or scanned the altimeter (i.e., not 

currently maneuvered) for the longest time period was Pilot 4, who was followed by Pilot 2, the 

third most experienced pilot in this experiment. Although the minding-the-store trend may 

generally exist for the experienced pilot, this phenomena itself may not necessarily be guaranteed 

to occur all the time. Yet, the expertise levels of all the pilots were correctly reflected in their 

HMM structure, which indicates the robustness of the HMM analysis.  

Note that it was not this study’s intention to declare that all expert pilots have this particular 

fourth state. In fact, the reader will see in the next chapter that that is not the case—some highly 

experienced pilots exhibit only the three-state HMM, but still fly very well. Obviously, the 
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three-state HMM is sufficient to fly approaches properly. The real message of the current 

experiment results is that expert pilots may have extra internal states, or “extra tricks,” up their 

sleeves that they can pull out whenever they need them. Indeed, there is no evidence that Pilot 4 

has only four states; there may be a fifth or sixth. The eye-movement data are only 2D 

coordinates, and there is a limit to how much information these data can convey. That is, if the 

pilot has multiple hidden states, each of which tends to generate similar eye movements, then it 

will be very difficult for the HMM analysis to detect them—or, for any other pattern recognition 

tools based only on the eye-movement data. Thus, in general, one should expect that the more 

experienced the pilot is, the more difficult the estimating of hidden states becomes. Nevertheless, 

HMM analysis has worked well for the eye-movement data of the moderately-experienced or 

less-than-moderately experienced pilots, where there data indicated the characteristics of the 

three-state or two-state HMM.  

While the scan patterns indicating the three-state HMM may be sufficient for flying instrument 

approaches, those indicating the two-state HMM may not be. Thus, detecting which pilots show 

a two-state HMM scan pattern may provide some benefit in pilot training and evaluation.  

3.4.33.4.33.4.33.4.3 Scanning Behavior Changes Within aScanning Behavior Changes Within aScanning Behavior Changes Within aScanning Behavior Changes Within a Segment  Segment  Segment  Segment     
As mentioned in section 2.4, the HMM used in the pilots’ eye-movement analysis assumes that 

the probabilities do not change over time. In order to assure the validity of this assumption, the 

experiment divided the entire approach into three segments: (i) straight and level, (ii) level turn, 

and (iii) final descent. Each of these segments requires different flight maneuvers and flight task 

priorities, so separating these segments was presumed to help the pilots’ scanning behavior stay 

relatively consistent within each segment.   

However, the actual eye-movement data suggested that that may not be always the case. For 

instance, in the straight-and-level segment (i), as the aircraft approaches the localizer, the pilots 

often started to shift their attention to the horizontal task more frequently. In the level-turn 

segment (ii), as the aircraft became established and stabilized on the localizer course, the pilots 

tended to start shifting their attention to the vertical-tracking task slightly more often. In the 

final-descent segment (iii), for instance, Pilot 4 showed the scan pattern associated with the 

fourth state more frequently as the aircraft became more stable along the glide path.  



61 

These transitions between scanning behaviors within a single segment are perhaps inevitable. So, 

does that mean each segment should be further divided into sub-segments? In theory, yes. 

However, exactly when each sub-segment starts within a segment would not be known until the 

HMM analysis were run with the regular three segments first. Some pilots may adjust and 

stabilize the aircraft behavior relatively quickly, and transition to the next sub-segment, while 

other pilots may take more time to do so, or even never transition within the segment. If the 

length of the time the pilot needed to stabilize on the course is the interest, the researcher can run 

the HMM analysis within one of the regular three segments first, and then divide each segment 

into sub-segments according to the result of the first HMM analysis to run the second HMM 

analysis. Yet, it also should be advised that dividing the flight segment into too many small 

sub-segments may also cause insufficient data for the estimation of reasonably accurate model 

parameters.  

3.53.53.53.5 ConclusionConclusionConclusionConclusion    
The eye-movement data from four pilots flying simulated ILS approaches were collected. The 

analysis of the data served as the proof of concept of the HMM analysis. The analysis also 

revealed variations of the HMM structures in the real pilots’ eye-movement data aside from the 

original three-state HMM introduced in the previous chapter. In fact, there was an interesting 

positive correlation between the number of hidden states and the pilots’ expertise level. The data 

from two intermediate-level pilots were described well by the three-state HMM, comprising 

vertical-, horizontal-, and airspeed-tracking tasks, for all segments. The level turn and final 

descent segment data of the least experienced pilot indicated that the pilot dropped the 

airspeed-tracking task, and thus the pilot’s data fit well with the two-state HMM, including 

vertical- and horizontal-tracking tasks. The data from the final descent segment of the most 

experienced pilot were best described by the four-state HMM, which includes vertical-tracking, 

horizontal-tracking, airspeed-tracking, and attitude-monitoring tasks. The fourth task is 

consistent with a flight technique well known among experienced instrument pilots. The criteria 

to select the right number of hidden states for each pilot, as well as the possibility to divide each 

flight segment into sub-segments for further analysis, were also discussed.  
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Chapter 4:Chapter 4:Chapter 4:Chapter 4:     

Application: HUD Airspeed Indicator Application: HUD Airspeed Indicator Application: HUD Airspeed Indicator Application: HUD Airspeed Indicator 

and Altimeter Symbology Formatsand Altimeter Symbology Formatsand Altimeter Symbology Formatsand Altimeter Symbology Formats    

This chapter demonstrates how HMM analysis can be used for the study of aircraft cockpit 

displays. This example application investigated the effects of the rotating pointers and gradation 

marks of head-up display (HUD) airspeed indicator (ASI) and altimeter symbology formats.  

4.14.14.14.1 Issues of HeadIssues of HeadIssues of HeadIssues of Head----Up Display Up Display Up Display Up Display (HUD) (HUD) (HUD) (HUD) Symbology FormatSymbology FormatSymbology FormatSymbology Format    
HUDs are transparent displays that provide flight information in the pilot’s primary field of view, 

superimposed on the outside scene. The HUD’s transparency offers various operational 

advantages that would not be attained by conventional head-down instrument panels, such as the 

ability to land and take off under very low visibility conditions (e.g., CAT IIIa) (Kaiser, 1994).  

At the same time, the characteristics of the HUD—the transparency and the criticality of 

operating conditions—raise unique design tradeoff questions. One important constraint related to 

transparency is that the number of symbology pixels must be reduced as much as possible so that 

the total area of the outside scene occluded by the HUD symbology is minimized. On the other 

hand, in the critical flight phases, where little or no margin of error exists (e.g., low-visibility 

landing or takeoff), any symbology pixels essential to accomplish precise path tracking should 

not be compromised. A number of human-factors design issues of the HUD are listed by 

categories in Zuschlag & Hayashi (Zuschlag & Hayashi, 2003). Among them, this study focuses 

on the issues regarding the airspeed indicator (ASI) and altimeter formats. (Conventionally, these 

two indicators are always presented in the same format.) 

There is a preceding study of HUD ASI/altimeter formats: Prior to developing a military standard 

for HUD symbology, the US Air Force (USAF) conducted a flight simulator study to investigate 

five ASI/altimeter formats, which included a) rotating pointers with gradation marks, b) rotating 



63 

pointers without gradation marks, c) vertical moving tapes, d) digits only, and e) digits with 

vertical trend bars (Ercoline & Gillingham, 1990; Weinstein, Gillingham, & Ercoline, 1994). 

Their study found both rotating-pointer formats (a and b) significantly reduced RMS airspeed 

and altitude errors in comparison to the other formats. Both rotating-pointer formats also resulted 

in better subjective ratings than the others. However, no difference was found between the two 

rotating-pointer formats—with and without gradation marks—in terms of RMS airspeed or 

altitude errors or subjective ratings. Accordingly, the resulting military standard, 

MIL-STD-1787B (USDOD, 1996), requires the rotating-pointer format to be used for 

ASI/altimeter symbology. In addition, the standard also requires the gradation marks to be 

present despite a formal lack of experimental evidence supporting their inclusion, as they are still 

believed to provide additional advantages.   

This study investigated this blunt “belief” in the advantages of the gradation marks. As seen in 

the USAF study, the effects of the gradation marks could be too subtle to be captured by the 

resolutions of the traditional simulator-study measures, such as the flight technical error or 

subjective rating. However, in addition to these traditional measures, the current study also 

incorporated eye-movement analysis, including HMM analysis. Thus, the purpose of this study 

was to see if these additional analyses could prove the benefits of the gradation marks, as well as 

confirm the advantages of rotating pointers over digits-only display formats. For this purpose, 

three ASI/altimeter formats similar to the ones used in the USAF study were compared in the 

current study: the two rotating pointers (with and without the gradation marks) and digits only.  

4.24.24.24.2 MethodMethodMethodMethod    

4.2.14.2.14.2.14.2.1 Flight SimulatorFlight SimulatorFlight SimulatorFlight Simulator    
The experiment used the same fixed-base flight simulator at Volpe Center that was used in the 

first experiment in Chapter 3. As in the previous experiment, the pilots were provided with a 

single throttle lever at the right side, and the flaps, gear, and trim thumb switches on the control 

wheel. In this experiment, however, the Boeing 737-400 flight dynamics model provided in 

Microsoft® Flight Simulator 2002 was used. A custom OpenGL® program generated the HUD 

symbology (Figure 4-1), which was projected on a screen mounted on a front wall, 

approximately 180 inches from the pilot’s eyes. The projection area had a subtended visual angle 
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of 21° horizontally and 16° vertically. The symbology was depicted in bright green with a black 

background.  

4.2.24.2.24.2.24.2.2 HUD ASI/Altimeter FormatHUD ASI/Altimeter FormatHUD ASI/Altimeter FormatHUD ASI/Altimeter Format    
Three ASI/altimeter formats similar to the ones used in the USAF study, rotating pointers with 

gradation marks and digits readout (PGD), rotating pointers with digits readout but no gradation 

marks (PD), and digits only (D) were used (Figure 4-2).  

4.2.34.2.34.2.34.2.3 Pilot ParticipantsPilot ParticipantsPilot ParticipantsPilot Participants    
Six airline transport pilots participated in the experiment, including 3 captains (CAPs), 2 first 

officers (F/Os), and 1 former first officer. Table 4-1 lists all the pilot participants. The individual 

[PGD] Rotating Pointers with 
Gradation Marks and Digits 

[PD] Rotating Pointers
with Digits 

[D] Digits Only 

Bank 

Pitch 

ASI 

Thrust
 (N1) 

Flaps/Gear

Glide Slope 

Altimeter

VSI 

Localizer

Heading 

Figure 4-2. Three ASI/altimeter formats 

Figure 4-1. HUD Symbology (with PGD) 
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pilots’ total flight time as of the date of the experiment ranged from 4,000 to 17,500 hours. One 

of the captains had previous experience flying approaches with HUD-equipped aircraft. All 

participants had flown Boeing type aircraft before, but only one had flown the Boeing 737, the 

flight dynamics of which were used in this experiment.  

Table 4 -1. Pilot participants 

Pilot # CAP or F/O Total Hours Major Aircraft Flown HUD Experience
1 F/O 4000 C-5, B-707, B-757, B-767 No 
2 CAP 11000 DC-9, MD-80, A-300, B-767 Yes 
3 CAP 11500 B-727, B-757, B-767, A-300, DC-9, MD-11 No 
4 F/O 5600 B-767, B-757, MD-80, B-1, KC-135 No 
5 F/O 4400 B-757, B-767, C-141 No 
6 CAP 17500 A-320, B-767, B-757, B-737, B-727 No 

 

All participants read and signed an informed consent form complying with the MIT COUHES 

Protocol 3021 before the experiment started (see Appendix B). The pilot who was also a Volpe 

employee participated in the experiment as part of his normal work. The other participants 

received a $100 gift certificate as compensation for their participation.  

4.2.44.2.44.2.44.2.4 Simulation ScenarioSimulation ScenarioSimulation ScenarioSimulation Scenario    
The pilots were asked to fly simulated ILS approaches (Figure 4-3). The aircraft was initially 

positioned on either the left or right side of the localizer course. The approach was divided into 5 

flight segments: 

(i) Straight and level at 3500 ft, 180 knots for 1 minute 

(ii) Constant-airspeed descent at 180 knots to 2000 ft, thrust set idle 

(iii) Straight and level at 2000 ft, flaps down to approach configuration, gear down, and slow to 

150 knots 

(iv) Level turn to intercept the localizer 

(v) Final descent along the glide path to 1000 ft 
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After passing 1000 ft, the flight continued until reaching the decision height (200 ft), and then 

the pilot initiated a go-around. The data from segments (i) through (v) were used in this study. 

The flight segment lengths were (i) 2.3, (ii) 4.5, (iii & iv combined) 5.5, and (v) 3.2 nautical 

miles, respectively. Each approach took approximately 7 minutes to complete.  

4.2.54.2.54.2.54.2.5 Data CollectionData CollectionData CollectionData Collection    
As in the experiment described in Chapter 3, pilots’ eye-movement data were collected with a 

head-mounted eye camera (RK-726PCI/RK-620PC, ISCAN, Inc., Burlington, MA) and a 

magnetic head tracker (FasTRAK, Polhemus, Colchester, VT). The accuracy of the eye-tracker is 

approximately 1°. The static accuracies of the head tracker are 0.03” root mean squares (RMS) 

for X,Y or Z position, and 1.5° RMS for orientation.  

The eye movements were collected at the rate of 60 Hz. Flight variables were also recorded, at 1 

Hz. For the verbal reporting collection, the participants were given a choice between the 

free-mumbling format (i.e., the pilots freely generate sentences using their own words, which is 

the same format used in the previous experiment in Chapter 3) or the structured-reporting format 

(i.e., the pilots reported the attitude indicator readings using the predetermined words, “pitch,” 

“bank,” or “both”) for the verbal report format. All participants except Pilot 2 used the 

structured-reporting format. Their verbal reports were recorded on videotape.  

Go-Around 
at 200 ft 

MM 

OM

2000 ft 

25°

2000 ft 

3500 ft 

1000 ft 

(i) 

(ii)

(iii) (iv)

(v)

Figure 4-3. Five flight segments in the ILS scenario 
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Each pilot flew 9 data-collection approaches: 3 approaches for each format in an order 

counter-balanced within and between the participants. The sides of the localizer for the approach 

started were also mixed and balanced to prevent the flight task becoming completely repetitive. 

Before the data collection approaches, each pilot received a briefing (Appendix B) and made 

several practice approaches. After all the approaches were completed, the pilots were asked to 

provide their subjective preferences between each pair of symbology formats by marking them 

on continuous preference scales (an example in Figure 4-4). 

 

4.34.34.34.3 ResultsResultsResultsResults    
In this section, first the analysis results of the traditional measures, such as RMS flight technical 

errors and subjective ratings, are presented to demonstrate the consistency with the previous 

USAF study. Then, the statistical analysis results of the eye-movement data and the HMM 

anlalysis are presented to demonstrate what additional information can be provided with these 

analyses.  

4.3.14.3.14.3.14.3.1 Root Mean Square Airspeed and Altitude ErrorsRoot Mean Square Airspeed and Altitude ErrorsRoot Mean Square Airspeed and Altitude ErrorsRoot Mean Square Airspeed and Altitude Errors    
Root Mean Square (RMS) airspeed error was computed for segments (i), (ii), (iv), and (v) from 

the assigned airspeeds of 180, 180, 150, and 150 knots, respectively. Since the distributions of 

the RMS error were positively skewed, the values were transformed by taking natural logarithms, 

and a generalized linear model (GLM) repeated measures analysis (SYSTAT 10, SPSS, Inc.) was 

applied, with the participant as the random effect. The main effect variables included in the 

model were Segment, Format, and Trial Block (block 1 included the first three approaches, block 

2 the second three, and block 3 the last three). A separate analysis indicated that the side of the 

localizer the approach started from did not have any effect, thus it was not included in the 

analysis. The results showed significant effects of Segment (df = 3, F = 11.45, p < 0.001), Trial 

Strongly 
preferred PGD 

Strongly 
preferred PD Neutral 

Somewhat 
preferred PGD

Somewhat 
preferred PD 

Figure 4-4. Preference scale with an example of a pilot’s marking  
for the preference between “PGD vs. PD.” 

PGD PD 
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(df = 2, F = 10.55, p = 0.003), and Format (df = 2, F = 5.955, p = 0.020) in the RMS airspeed 

error. No interaction effect (i.e., Segment × Trial, Segment × Format, Trial × Format, and 

Segment × Trial × Format) was found. Further pairwise comparison analysis regarding the 

Format effect indicated that the airspeed error was significantly reduced when PGD was used 

versus when D was used (df = 1, F = 8.848, p = 0.031), and also when PD was used compared to 

when D was used (df = 1, F = 8.522, p = 0.033). Figure 4-5 plots the grand means for each 

format with the pairwise comparison results (connected diamonds indicating the significant 

difference). The result was consistent with that of the USAF study.  

RMS altitude error was also computed for segments (i), (iii), and (iv) from the assigned altitudes 

of 3500, 2000, and 2000 ft, respectively, and transformed by taking natural logarithms. The same 

GLM repeated measures analysis was performed. Unlike the USAF study, no significant format 

effect was found in the RMS altitude error in this study.  

4.3.24.3.24.3.24.3.2 SubjectiveSubjectiveSubjectiveSubjective Preference Rankings Preference Rankings Preference Rankings Preference Rankings    
The positions of the pilots’ markings on the preference scales (Figure 4-4) were converted to 

preference scores by measuring the distance from the opposite side of the scale. Scores for the 

same format were added within each pilot and ranks within each pilot were assigned (3 for the 

most preferred, 2 for the second most, and 1 for the least preferred). The rank sum of all pilots 

indicated that the most preferred format was PGD (rank sum = 16), the second most preferred 

was PD (12), and the least preferred was D (8) (Friedman test statistic = 5.33, df = 2, p = 0.070). 

The result was consistent with that of the USAF study.  

Therefore, so far, the RMS airspeed error results and the subjective preference ranking results 

were consistent with the USAF study. These results indicated that the pilots preferred PGD over 

Figure 4-5. Grand means and standard errors of RMS airspeed error 
(the values before taking logarithms). Diamonds connected by a line 
indicate a significant difference between the two formats (p < 0.05) 
computed by pairwise comparisons. 
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PD, but there was no detectable difference in the RMS airspeed and altitude errors between these 

two formats. Next, the eye-movement data are analyzed to see if they show any difference 

between PGD and PD.  

4.3.34.3.34.3.34.3.3 IndicatorIndicatorIndicatorIndicator Fixation Durations and Look Rates Fixation Durations and Look Rates Fixation Durations and Look Rates Fixation Durations and Look Rates    
From the intersection coordinates of the pilots’ line-of-sight and the display plane, the saccade 

points were eliminated and blinking was handled in the same way as in the previous experiment 

to extract the fixation points (see Section 3.2.6 for details). Then, each fixation point was 

associated with each indicator by K-mean clustering segmentation, as described in section 3.2.6. 

One difference from the case in Chapter 3 was that the sizes of indicator areas were not equal. 

Therefore, weights were applied in the distance computation; i.e., Eq. (3.1) was modified to  

 (4.1) 

where W is a 2×2 diagonal matrix, whose diagonal elements were w11 = (width of the j-th 

indicator)-1, and w22 = (height of the j-th indicator)-1. (Note the weight was the inverse of the 

physical size of the indicator width or height so that the larger indicator will result in closer 

weighted distance). Figure 4-6 (a) shows example clustering results using a K-mean clustering 

segmentation algorithm. Note that the ellipses in this figure are not boundaries, but their centers 

( ) ,
2

Wxd jiij µ−=

(a) Intersections of the pilot’s line-of-sight and the display plane (the first approach of Pilot 3; 
saccade points have been removed) and K-mean segmentation results: the centers of ellipses indicate 
the centers of the clusters that the K-mean segmentation algorithm estimated. 

(b) HUD Symbology 

Figure 4-6. K-mean segmentation with weights 
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indicate the center of the clusters, and their width and height indicate the weights. Figure 4-6 (b) 

is the geometric arrangement of the display. As seen in this figure, the AI area cluster was 

initially divided into two elliptical areas, a large one for the entire AI area cluster, and a small 

one for the bank indicator area cluster. This was done because otherwise the mean vector for the 

AI area cluster would have shifted upward due to the density around the bank area cluster. After 

the clustering was done, the data points in the two AI clusters were merged together to make one 

large cluster. One may wonder if the bank area could be separated from the pitch area, then the 

HMM analysis might not be necessary because there would no longer be an overlap any more. 

However, the pilots can still extract the bank information from the artificial horizon line, and the 

line between the bank area and the other areas of the AI was often not clear. Thus, the data points 

in these two clusters were eventually merged, and submitted together to the HMM analysis.  

Due to the positively skewed distributions of the fixation durations, the values were transformed 

by taking natural logarithms before any statistical analyses were performed. The sizes of the 

fixation duration data were too large to be processed all together at once; thus, the data for each 

indicator format were further divided into each flight segment, and analyzed separately. Segment 

(iii) was not included in this analysis because of the large variation in the duration of this 

segment in the experiment (depending on how the descent in segment (ii) was performed, some 

approaches had a very short segment (iii), or sometimes even no segment (iii) at all). Since each 

format had a different number of fixations within each segment (i.e., “unbalanced” data), mixed 

regression repeated measures analysis (SYSTAT 10, SPSS, Inc.) was applied instead of a GLM. 

In this repeated measures analysis, the pilot was treated as the random effect. The model used 

was 

   (4.2) 

where Y was the fixation durations on each indicator, X1 and X2 were dummy variables for the 

indicator format, i.e.,  

 

(4.3) 

 

and the last variable, XTrial, was the trial block number. The estimated intercept term, α, 
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represented the grand mean of each format within each segment, and each β* was the estimated 

coefficient of corresponding variables, X*. After the coefficients, β1 and β2, in Eq. (4.2) were 

estimated in each segment, the null hypotheses, H0: β1−(−β1−β2) = 2β1+β2 = 0, H0: β2−(−β1−β2) 

= β1+2β2 = 0, and H0: β1−β2 = 0, were tested within each segment to assess the differences 

between PGD and D, PD and D, and PGD and PD, respectively. The test results are listed in 

Table 4-2. The p-values shown are 2-tail p-values. The same results are also shown graphically in 

Figure 4-7, where fixation duration grand means of each format in each segment are plotted 

along with the hypothesis test results tabulated in Table 4-2. Note that the grand means plotted in 

Figure 4-7 are not the log-values, but the values before taking logarithms for easier reference. 

The actual regression analyses and hypothesis tests were conducted on the log-values. In addition, 

the bar graphs plotted in Figure 4-7 are the simple grand means, suppressing all pilot and trial 

effects, and not exactly the same values that the mixed regression repeated measures analyses 

were performed on. However, these values usually correspond and, thus, are still useful for 

quickly grasping the results. For the exact estimated values, see Table 4-2.  
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Table 4-2. Indicator fixation durations: Mixed regression repeated measures analysis, 
indicator format effect hypothesis test results (only p < 0.05 are shown) 

Segment Effect Tested Estimate 
(log) 

Standard 
Error z p 

 ASI     
(i) PGD-D 0.2064 0.0400 5.1586 0.0000 
 PD-D 0.105 0.0398 2.6357 0.0086 
 PGD-PD 0.1014 0.0326 3.1106 0.0018 

(ii) PGD-D 0.1072 0.0348 3.0789 0.0020 
 PD-D -0.022 0.0352 -0.6256 --- 
 PGD-PD 0.1292 0.0286 4.5222 0.0000 

(iv) PGD-D 0.1536 0.0361 4.2565 0.0000 
 PD-D 0.1095 0.0363 3.0151 0.0026 
 PGD-PD 0.0441 0.0296 1.4920 --- 

(v) PGD-D 0.1076 0.0417 2.5813 0.0098 
 PD-D 0.0205 0.0416 0.4925 --- 
 PGD-PD 0.0871 0.0340 2.5609 0.0104 
 Altimeter     

(i) PGD-D -0.1705 0.0466 -3.6592 0.0002 
 PD-D -0.1127 0.0462 -2.4368 0.0150 
 PGD-PD -0.0578 0.0379 -1.5249 --- 

(ii) PGD-D -0.253 0.0498 -5.0776 0.0000 
 PD-D -0.2042 0.0501 -4.0746 0.0000 
 PGD-PD -0.0488 0.0408 -1.1960 --- 

(iv) PGD-D -0.1324 0.0419 -3.1625 0.0016 
 PD-D -0.1064 0.0413 -2.5770 0.0098 
 PGD-PD -0.026 0.0339 -0.7659 --- 

(v) PGD-D -0.1625 0.0766 -2.1207 0.0340 
 PD-D -0.2677 0.0775 -3.4520 0.0006 
 PGD-PD 0.1052 0.0629 1.6714 --- 
 VSI     

(i) PGD-D -0.1582 0.0379 -4.1765 0.0000 
 PD-D -0.0455 0.0375 -1.2142 --- 
 PGD-PD -0.1127 0.0308 -3.6635 0.0002 

(ii) PGD-D -0.0464 0.0474 -0.9789 --- 
 PD-D -0.0319 0.0472 -0.6763 --- 
 PGD-PD -0.0145 0.0386 -0.3756 --- 

(iv) PGD-D -0.0164 0.0443 -0.3705 --- 
 PD-D 0.0686 0.0429 1.5976 --- 
 PGD-PD -0.085 0.0356 -2.3873 0.0168 

(v) PGD-D 0.0285 0.0434 0.6573 --- 
 PD-D 0.0759 0.0431 1.7622 --- 
 PGD-PD -0.0474 0.0353 -1.3433 --- 
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As seen in Figure 4-7, the fixation durations on the ASI and altimeter showed opposite trends; 

the durations on the ASI tended to be longer when PGD or PD was used than when D was used, 

while those on the altimeter tended to be shorter when PGD or PD was used than when D was 

used. Differences between the two rotating-pointer formats (PGD and PD) were found in the ASI 

fixation durations except on (iv) the level turn segment. No difference between the two rotating 

pointers was found in the altimeter fixations, but, interestingly, a difference between them 

appeared in the fixations on the VSI during segments (i) and (iv). In those segments, the 

durations on the VSI were significantly longer when PD was used than when PGD was used. 

Note that the format of the VSI was always digits only and did not change.  

 

Figure 4-7. Grand means and standard errors of fixation durations (the values before taking 
logarithms) on (a) ASI, (b) altimeter, and (c) VSI in segments (i), (ii), (iv), and (v). Diamonds 
connected by a line indicate a significant difference between the two formats (p < 0.05) 
computed by hypothesis tests. 

(a) Airspeed Indicator 
(ASI) 

(b) Altimeter 

(c) Vertical Speed 
Indicator (VSI) 
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The look rates (i.e., frequencies of visits per second) in segments (i), (ii), (iv), and (v) were also 

examined. To analyze the format effects, GLM repeated measures analysis with the random 

effect being the Subjects, and the main effect variables being Segment and Format, was applied. 

In the look rates for the altimeter, the results revealed significant Segment effect (df = 3, F = 

38.71, p < 0.001) and Format effects (df = 2, F = 8.495, p = 0.007). In the look rates for the VSI, 

the result showed significant Format effects (df = 2, F = 8.657, p = 0.007). Further pairwise 

comparison with respect to the Format effects showed that the altimeter look rates were 

significantly higher when either one of the rotating-pointer formats (PGD or PD) was used 

compared to when D was used (df = 1, F = 12.605, p = 0.016 for PGD vs. D; df = 1, F = 16.638, 

p = 0.010 for PD vs. D). On the other hand, the VSI look rates were significantly higher when 

PD or D was used than when PGD was used (df = 1, F = 16.129, p = 0.010 for PGD vs. D; df = 1, 

F = 10.872, p = 0.022 for PGD vs. PD) (Figure 4-8).  

4.3.44.3.44.3.44.3.4 TrackingTrackingTrackingTracking Task Durations (HMM Analysis) Task Durations (HMM Analysis) Task Durations (HMM Analysis) Task Durations (HMM Analysis)    
In addition to the fixation durations and look rate analyses, HMM analysis was also applied to 

see the effects on the pilots’ attention management among tracking tasks in segments (i), (ii), (iv), 

and (v). The indicator-task associations are shown in Table 4-3. Unlike the Basic-T instrument 

used in the previous chapter, the HUD symbology used in this simulation had separate localizer 

and glide slope deviation indicators (as shown in Figure 4-1). Therefore, if the three-state HMM 

is used, the only portion that overlapped among the multiple tasks was the AI (and also the 

flaps/gear indicator, but this indicator is used much less frequently compared to the AI).  

 

Figure 4-8. Grand means and standard errors of 
(a) altimeter and (b) VSI look rates. Diamonds 
connected by a line indicate a significant 
difference between the two formats (p < 0.05) 
computed by pairwise comparison. 

(a) Altimeter (b) VSI 
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Table 4-3. Indicator-task associations 

Flight Tasks Vertical Tracking Horizontal Tracking Airspeed Tracking Attitude Monitoring

 

Associated 

Indicators 

AI (Pitch) 

Altimeter 

VSI 

Glide Slope 

Flaps/Gear 

AI (Bank) 

Heading 

Localizer 

AI (Pitch) 

ASI 

Thrust (N1) 

Flaps/Gear 

AI (Pitch, Bank) 

Heading* 

Localizer* 

Glide Slope* 

* Included when they apply          

In the attitude monitoring task, the localizer and glide slope deviation indicators were included 

during segments (iv), level turn, and (v), final descent. Some pilots looked at the localizer and/or 

glide slope deviations even in the earlier segments, such as segments (i), straight and level, and 

(ii), constant airspeed descent. For these pilots, these indicators were also included in the attitude 

monitoring task during these earlier segments as well. In addition, for some pilots, the small 

probability of heading indicator fixations (e.g., ≤ 0.05) was also included in the attitude 

monitoring task if that improved the HMM estimation results.  

Analogous to Chapter 3, HMM analysis was applied separately to each pilot’s data. Let Os,r,f,p = 

{o1
s,r,f,p, …, oT

s,r,f,p} denote the fixation sequence data from the segment, s (s = {(i), (ii), (iv), (v)}), 

of the r-th approach (1≤ r≤ 3), of the format, f (f = {PGD, PD, D}), and of the Pilot, p (1≤ p≤ 6). 

Then, the fixation sequence of the same segment, format, and pilot were concatenated together to 

make one long sequence, Os,f,p = {o1
s,1,f,p, …, oT1

s,1,f,p, o1
s,2,f,p, …, oT2

s,2,f,p, o1
s,3,f,p, …, oT3

s,3,f,p} (T1 

= Ts,1,f,p, T2 = Ts,2,f,p, T3 = Ts,3,f,p), and the model parameters that maximize P(Os,f,p|λ) were 

estimated.  

First, a three-state HMM (vertical-, horizontal-, and airspeed-tracking tasks) was applied for all 

cases, then the estimated task sequence was compared with the pilot’s verbal reports. If 

mismatches with the pilot’s verbal reports occurred, especially when the pilot was looking at the 

AI for a longer period of time, then a four-state HMM (vertical-tracking, horizontal-tracking, 

airspeed-tracking, and attitude-monitoring tasks) was applied. Example initial conditions of the 

model parameters and the estimation results of them are listed in Appendix C. Table 4-4 lists the 

resulting match rates of the pilots’ verbal reports. The numbers of the pilots’ verbal reports 

obtained vary largely from pilot to pilot. For instance, Pilot 1 generated plenty of verbal reports, 

while Pilots 2 and 5 tended to provide much fewer. Note that Pilot 2 used the free-mumbling 
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format for verbal reports, and many of his reports that were readouts of indicators involved in 

only one tracking task had to be discarded, in the same manner used in the previous experiment 

in Chapter 3. Generally, the more verbal reports, the more reliable the HMM estimates are (see 

Chapter 5 for further discussion). However, the fixation data of Pilot 2 and Pilot 5 seemed 

relatively orderly, and, in most of the cases, the Baum Welch method convergence was fast, 

which is a good sign of the data orderliness with respect to the given model. Since these pilots’ 

HMM estimates appeared reasonably reliable, it was decided to include their data in this study. 

Table 4-4. Match Rates between the verbal reports and the HMM hidden-state estimates 
(the number of matches/number of total verbal reports × 100 (%))  

when the 3-State or 4-State HMM was applied. 

PGD PD D 
Pilot 3-State HMM 4-State HMM 3-State HMM 4-State HMM 3-State HMM 4-State HMM
 Segment (i) Straight & Level 

Pilot 1 41/74 (55.4%) 64/74 (86.5%) 45/73 (61.6%) 66/73 (90.4%) 46/71 (64.8%) 70/71 (98.6%)
Pilot 2 5/6 (83.3%) --- 8/8 (100%) --- 9/9 (100%) --- 
Pilot 3 13/13 (100%) --- 13/14 (92.9%) --- 16/16 (100%) --- 
Pilot 4 29/36 (80.6%) 33/36 (91.7%) 25/32 (78.1%) 27/32 (84.4%) 25/29 (86.2%) 26/29 (89.7%)
Pilot 5 7/10 (70.0%) --- 6/7 (85.7%) --- 6/9 (66.7%) 6/9 (66.7%) 
Pilot 6 9/11 (81.8%) --- 8/10 (80.0%) --- 9/12 (75.0%) --- 

Segment (ii) Constant Airspeed Descent 
Pilot 1 59/102 (57.8%) 91/102 (89.2%) 32/53 (60.4%) 50/53 (94.3%) 65/94 (69.2%) 86/94 (91.5%)
Pilot 2 9/11 (81.8%) --- 15/15 (100%) --- 13/13 (100%) --- 
Pilot 3 18/18 (100%) --- 19/19 (100%) --- 16/16 (100%) --- 
Pilot 4 51/70 (72.9%) --- 37/67 (55.2%) 51/67 (76.1%) 46/66 (69.7%) 46/66 (69.7%)
Pilot 5 6/8 (75.0%) --- 8/9 (88.9%) --- 8/10 (80.0%) --- 
Pilot 6 15/16 (93.8%) --- 9/9 (100%) --- 14/18 (77.8%) --- 

Segment (iv) Level Turn 
Pilot 1 50/72 (69.4%) 63/72 (87.5%) 49/69 (71.0%) 59/69 (85.5%) 47/58 (81.0%) 55/58 (94.8%)
Pilot 2 12/16 (75.0%) 14/16 (87.5%) 14/16 (87.5%) --- 11/15 (73.3%) 14/15 (93.3%)
Pilot 3 24/35 (68.6%) 28/35 (80.0%) 39/47 (83.0%) 43/47 (91.5%) 33/41 (80.5%) 35/41 (85.4%)
Pilot 4 41/55 (74.6%) 51/55 (92.7%) 40/47 (85.1%) 42/47 (89.4%) 24/33 (72.7%) 29/33 (87.9%)
Pilot 5 16/20 (80.0%) 17/20 (85.0%) 13/17 (76.5%) --- 4/5 (80.0%) --- 
Pilot 6 26/33 (78.8%) 30/33 (90.9%) 25/33 (75.8%) 30/33 (90.9%) 28/42 (66.7%) 30/42 (71.4%)

Segment (v) Final Descent 
Pilot 1 43/55 (78.2%) 54/55 (98.2%) 31/44 (70.5%) 39/44 (88.6%) 40/56 (71.4%) 51/56 (91.1%)
Pilot 2 3/6 (50.0%) 4/6 (66.7%) 7/8 (87.5%) --- 3/3 (100%) --- 
Pilot 3 20/30 (66.7%) 23/30 (76.7%) 25/29 (86.21%) --- 25/33 (75.8%) 27/33 (81.8%)
Pilot 4 42/61 (68.9%) 54/61 (88.5%) 37/52 (71.2%) 50/52 (96.2%) 25/29 (86.2%) 27/29 (93.1%)
Pilot 5 9/9 (100%) --- 10/12 (83.3%) --- 11/11 (100%) --- 
Pilot 6 29/35 (82.9%) --- 22/36 (61.1%) 24/36 (66.7%) 31/40 (77.5%) --- 



As seen in Table 4-4, most of the HMM state estimates, with either the three-state or the 

four-state HMM analysis, indicated at least 70% match rates with the verbal reports. Note that 

increasing the number of states did not always improve the match rate, such as in the four cases 

in Table 4-4 that have numbers in the four-state HMM column struck out. In these cases, the 

match rates with the original three-state HMM estimation results were kept, even though these 

were below 70%. As Table 4-4 shows, better match rates for Pilot 1 always resulted when the 

four-state HMM was applied than when the three-state HMM was applied. Some of Pilot 4’s data 

also resulted in better match rates when the four-state HMM was applied. In segment (iv), all 

pilots showed longer fixation durations on the AI, the signature scan pattern of the attitude 

monitoring task, which thus resulted in better match rates when the four-state HMM was applied 

with at least one indicator format. In segment (v), only Pilots 1, 3, and 4 showed that signature 

AI fixation pattern, which thus resulted in better match rates when the four-state HMM was 

applied.  

Once the task sequences were estimated by HMM analysis, the sequences, Qs,f,p, were divided 

back into the original three approaches, {q1
s,1,f,p, …, qT1

s,1,f,p}, {q1
s,2,f,p, …, qT2

s,2,f,p}, and {q1
s,3,f,p, …, 

qT3
s,3,f,p}. Then, the task durations for each segment were computed. Again, since the task 

durations had positively skewed distributions, the values were transformed by taking natural 

logarithms before statistical analyses were performed. As in the fixation duration analyses, the 

task duration data were analyzed separately for each format in each segment. The same mixed 

regression repeated measures analysis was applied with the same model as in Eq. (4-2) and (4-3).  

Analogous to the fixation duration analysis, the null hypotheses, H0: β1−(−β1−β2) = 2β1+β2 = 0, 

H0: β2−(−β1−β2) = β1+2β2 = 0, and H0: β1−β2 = 0, were tested to examine the differences 

between PGD and D, PD and D, and PGD and PD, respectively. The hypothesis tests for the 

attitude-monitoring task were not performed for segments (i), (ii), and (v), due to the lack of 

sufficient data. The test results are listed in Table 4-5. The p-values shown are 2-tail p-values. 

Figure 4-9 plots the grand means along with the hypothesis test results. 
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Table 4-5. Flight task durations: Mixed regression repeated measures analysis, 
indicator format effect hypothesis test results (only p < 0.05 are shown) 

Segment Effects Tested Estimates (log) Std. Error z p 
 Vertical Tracking    

(i) PGD-D -0.1700 0.0831 -2.0448  0.0414  
 PD-D 0.0083 0.0833 0.0996  --- 
 PGD-PD -0.1783 0.0680 -2.6239  0.0088  

(ii) PGD-D 0.0041 0.0861 0.0476  ---  
 PD-D 0.2398 0.0866 2.7689  0.0056  
 PGD-PD -0.2357 0.0705 -3.3432  0.0008  

(iv) PGD-D 0.0422 0.0672 0.6284  ---  
 PD-D 0.2554 0.0666 3.8364  0.0002  
 PGD-PD -0.2132 0.0546 -3.9052  0.0000  

(v) PGD-D 0.0428 0.0693 0.6172  ---  
 PD-D -0.0815 0.0692 -1.1773  ---  
 PGD-PD 0.1243 0.0566 2.1973  0.0278  
 Horizontal Tracking    

(i) PGD-D -0.1893 0.1118 -1.6932  ---  
 PD-D -0.0744 0.1134 -0.6560  ---  
 PGD-PD -0.1149 0.0919 -1.2497  ---  

(ii) PGD-D 0.2904 0.1103 2.6334  0.0086  
 PD-D -0.0600 0.1106 -0.5427  ---  
 PGD-PD 0.3504 0.0902 3.8866  0.0002  

(iv) PGD-D 0.1609 0.0725 2.2187  0.0264  
 PD-D 0.0566 0.0719 0.7867  ---  
 PGD-PD 0.1043 0.0590 1.7685  ---  

(v) PGD-D 0.2828 0.0819 3.4542  0.0006  
 PD-D 0.2761 0.0813 3.3963  0.0006  
 PGD-PD 0.0067 0.0666 0.1006  ---  
 Airspeed Tracking    

(i) PGD-D 0.2325 0.0772 3.0120  0.0026  
 PD-D 0.1746 0.0770 2.2687  0.0232  
 PGD-PD 0.0579 0.0629 0.9200  ---  

(ii) PGD-D -0.1686 0.0809 -2.0828  0.0376  
 PD-D -0.3273 0.0815 -4.0147  0.0000  
 PGD-PD 0.1587 0.0663 2.3926  0.0168  

(iv) PGD-D -0.0597 0.0662 -0.9023  ---  
 PD-D -0.2160 0.0662 -3.2646  0.0012  
 PGD-PD 0.1563 0.0540 2.8932  0.0038  

(v) PGD-D -0.5161 0.0766 -6.7363  0.0000  
 PD-D -0.2639 0.0765 -3.4497  0.0006  
 PGD-PD -0.2522 0.0625 -4.0347  0.0000  
 Attitude Monitoring    

(iv) PGD-D -0.0823 0.0750 -1.0972  ---  
 PD-D -0.3071 0.0759 -4.0475  0.0000  
 PGD-PD 0.2248 0.0616 3.6495  0.0002  
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Figure 4-9 shows the switching of the pilots’ attention management strategies from one segment 

to another. For instance, in segment (i), straight and level, the vertical tracking and airspeed 

tracking had longer durations, and thus were the dominant tasks, while the airspeed tracking was 

the single dominant task in segment (ii), constant airspeed descent, and the vertical- and 

horizontal-tracking tasks were the dominant ones in segment (v), final descent.  

Significant differences between PGD and PD were observed in the task durations in many 

Figure 4-9. Grand means and standard errors of task durations (the values before taking 
logarithms) on the (a) vertical-tracking, (b) horizontal-tracking, and (c) airspeed-tracking tasks, 
in segments (i), (ii), (iv), and (v), and the (d) attitude-monitoring task, in segment (iv). 
Diamonds connected by a line indicate a significant difference between the two formats (p < 
0.05) computed by hypothesis tests. 

(a) Vertical-Tracking 
Task 

(b) Horizontal-Tracking 
Task 

(c) Airspeed-Tracking 
Task 

(d) Attitude-Monitoring 
Task 
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segments. Especially, in segment (ii), constant airspeed descent and (iv), level turn, the 

vertical-tracking task durations significantly increased when PD was used compared to when 

PGD or D was used.  

The frequencies of visits to each task per second—“task rates” (as the counterpart of “look 

rates”)—were also examined for segments (i), (ii), (iv), and (v). The GLM repeated measures 

analysis with the random effect being Subjects and the main effect variables being Segment and 

Format was applied. The results found no significant format effect on any of the four task rates.  

Now, to summarize the above results, Figure 4-10 shows the percent times of each tracking task 

within the total time of each flight segment by each indicator format. In these bar plots, all the 

pilots’ data are added together. Since there was no Format effect in the task rates, the percent 

times mostly reflect the Format effects on the task durations shown in Figure 4-9. For instance, 

in segment (i) (Figure 4-10 (a)), the vertical-tracking task percent time was larger when PD or D 

was used than when PGD was used. Also, the airspeed-tracking task percent time was smaller 

when the D format was presented compared to when the other formats were presented, which is 

consistent with the results in Figure 4-9. In segment (ii) and (v), the vertical-tracking task percent 

time increased when the PD format was used compared to when one of the other two formats 

was used. The extra time spent on the vertical task when PD was used was apparently taken from 

the horizontal-tracking (in segment (ii)), airspeed-tracking (in both segments), and 

attitude-monitoring (in segment (iv)) tasks. These are also consistent with Figure 4-9. 
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(a) Segment (i): Straight & Level 
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(b) Segment (ii): Constant Airspeed Descent 
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Figure 4-10. Total percent times (%) of each tracking task for each flight segment and for 
each indicator format. All pilots’ data were added together.  
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Figure 4-10. (Continued) Total percent times (%) of each tracking task for each flight 
segment and for each indicator format. All pilots’ data were added together.  

(c) Segment (iv): Level Turn 
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(d) Segment (v): Final Descent 
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4.44.44.44.4 DiscussionDiscussionDiscussionDiscussion    

4.4.14.4.14.4.14.4.1 Segment (i) Segment (i) Segment (i) Segment (i) –––– Straight and Level Straight and Level Straight and Level Straight and Level    
As Figure 4-7 (a) shows, the ASI fixation durations were significantly longer when either one of 

the rotating pointer formats (PGD or PD) was used than when the digit-only format (D) was used. 

Figure 4-9 (c) shows that the same trend was observed in the airspeed-tracking task durations as 

well. On the other hand, Figure 4-7 (b) indicates that the altimeter fixation durations were 

significantly shorter when PGD or PD was used than when D was used. However, Figure 4-9 (a) 

shows that, at the tracking task level, while the vertical-tracking task durations were significantly 

shorter when PGD was used, the vertical-tracking task durations for the PD were actually more 

similar to the D format than the PGD format despite the shorter trend observed in the altimeter 

fixation durations. The longer vertical-tracking task durations for the PD were probably due to 

the VSI fixations; the VSI fixation durations were significantly longer when PD or D was used 

compared to when PGD was used. The trends at the task level may be easier to see in Figure 

4-10 (a).  

Note that the VSI format was always digits-only, and did not change throughout the experiment. 

The ASI and the altimeter were the only indicators that changed formats. Therefore, the 

increased fixation durations on the VSI when PD was used compared to when PGD was used 

may imply that, when the gradation marks were not present, the pilots did not utilize much 

altitude rate information in the altimeter, even though the rotating pointers were present.  

Remember that the RMS flight technical error analysis results indicated that the RMS airspeed 

error was significantly reduced when either the PGD or the PD format was used compared to 

when the D format was used, but no significant format effect was observed in the RMS altitude 

error. These flight technical error results and the results from the eye-movements analysis and 

HMM analysis together mentioned above can provide an interesting insight into the attention 

budgeting of the pilots in this segment. When the gradation marks were not present (PD or D), 

the pilots attended the altimeter for a longer time than when they were present (PGD), and, as a 

result, they managed to maintain the same level of altitude accuracy as when the gradation marks 

were present (PGD). The extra time spent for the vertical-tracking task when the gradation marks 

were not present (PD or D) was taken from the airspeed-tracking task, resulting in larger airspeed 
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error when D was used. The airspeed error, however, did not increase when PD was used, despite 

the increased demand for the vertical-tracking task.  

These observations suggest that the pilots gave priority to altitude accuracy over airspeed 

accuracy. One reason for this could be that the airspeed is a derivative value of the aircraft 

position, and may be less conspicuous to the pilots than more direct values such as altitude. 

Another possible reason is that many flight segments were defined by attributes of the altitude 

rather than the airspeed (e.g., straight and level, level turn, descent), and thus the pilots may have 

unconsciously prioritized the altitude over the airspeed. Also, in real-world flights pilots are 

monitored by air traffic control by altitude, not airspeed. Thus, it was also possible that the pilots 

were more sensitive about errors in altitude than errors in airspeed. Such operational common 

sense may have affected their attention budgeting strategy.  

4.4.24.4.24.4.24.4.2 Segment (ii) Segment (ii) Segment (ii) Segment (ii) –––– Constant Airspeed Descent Constant Airspeed Descent Constant Airspeed Descent Constant Airspeed Descent    
In this segment, the pilots set the engine idle, and controlled the airspeed by pitch angle to 

maintain 180 knots. Thus, the ASI, the AI, and the VSI were the main indicators to look at (for 

the VSI, the pilots were instructed not to exceed the 2000 ft/min rate of descent). As Figure 4-7 

(a) shows, the ASI, one of the main indicators, was looked at for significantly longer when the 

gradation marks were present (PGD) compared to when they were not present (PD or D). As 

seen in Figure 4-7 (c), there was no Format effect in the VSI fixation durations. Figure 4-7 (b) 

indicates that the altimeter—mostly used near the end of the descent—was fixated for 

significantly longer when the digits-only format (D) was used than when one of the rotating 

pointer formats (PGD or PD) was used.  

According to the above observations, one would expect to see longer airspeed-tracking task 

durations with PGD and/or longer vertical-tracking task durations with D. However, the task 

duration analysis results showed that the longest airspeed-tracking task was with D, and the 

longest vertical-tracking task was with PD. Since the fixation duration results of the ASI, the 

altimeter, and the VSI did not directly reflect onto the task duration results, the results must have 

been coming from how the AI (the other main instrument in this segment) was used in 

combination with these indicators. In any case, as Figure 4-9 (a), (b), and (c) show, the 

vertical-tracking task durations were significantly longer when the gradation marks were not 

present (PD) compared to the other format (PGD or D), and the extra time spent for the 
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vertical-tracking task was seemingly taken from the horizontal- and airspeed-tracking tasks times. 

Again, these trends can be also observed in the percent times for each format in Figure 4-10 (b).   

4.4.34.4.34.4.34.4.3 Segment (iv) Segment (iv) Segment (iv) Segment (iv) –––– Level Turn Level Turn Level Turn Level Turn    
In this segment, the main task for the pilots was to capture the localizer course and stabilize 

along it. Thus, from this segment, the horizontal-tracking task starts demanding its share in the 

pilots’ attention budgeting. Indeed, as Figure 4-9 (b) and (c) indicate, the overall 

horizontal-tracking task durations jumped while the overall airspeed-tracking task durations went 

down. However, Figure 4-9 (a) shows that the vertical-tracking task durations did not change 

much compared to those in the other segments. This observation supports the speculation stated 

in the segment (i) section; that is, the pilots may have had the tendency to give priority to the 

altitude over the airspeed.  

At the fixation duration level, as Figure 4-7 shows, the basic trends in the fixation durations are 

mostly similar to those in segment (i), except that the absolute values for the fixation durations 

became smaller due to the increase for the horizontal-tracking instrument fixations. For the 

tracking task durations, as Figure 4-9 (a) shows, the vertical-tracking durations were significantly 

longer when the gradation marks were not present (PD) compared to when one of the other 

formats (PGD or D) was used. Again, as in segment (i), the increased vertical-tracking task 

duration is probably due to the increased demand for VSI fixations, which also implies that, 

when the gradation marks were not present, the pilots did not extract as much altitude rate 

information from the altimeter as when they were present (PGD), despite the presence of the 

rotating pointers. As shown in Figure 4-10 (c), the increased vertical-tracking task durations 

resulted in a decrease in the airspeed-tracking task and attitude-monitoring task durations in this 

segment.  

4.4.44.4.44.4.44.4.4 Segment (v) Segment (v) Segment (v) Segment (v) –––– Final Descent Final Descent Final Descent Final Descent    
In this segment, the aircraft is supposed to be already stabilized at the assigned airspeed, and 

descending along the glide slope. Since the ASI and altimeter are usually not looked at as often 

as in the other segments, it was expected that the effects of the ASI and altimeter would be 

minimal. However, some format effects were still observed. As Figure 4-7 (a) shows, the ASI 

fixation durations were significantly longer when the gradation marks were present (PGD) than 
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when one of the other formats was used. Figure 4-7 (b) indicates that the altimeter fixations were 

significantly longer when the digits-only format (D) was used compared to when one of the other 

formats was used. At the tracking task durations level, as seen in Figure 4-9 (c), the 

airspeed-tracking task durations were significantly longer when the digits-only format (D) was 

used compared to when one of the other formats was used.  

4.4.54.4.54.4.54.4.5 So,So,So,So,    AreAreAreAre    GradationGradationGradationGradation    MarksMarksMarksMarks    RecommendedRecommendedRecommendedRecommended    orororor    Not?Not?Not?Not?    
So far, a number of differences between PGD (with gradation marks) and PD (without gradation 

marks) were found, but, in general, it is difficult to tell which one is better than the other based 

on these differences. Are the longer fixation durations or longer tracking task durations good or 

bad? Longer fixations may mean the indicator is hard to read at a glance, but also shorter 

fixations may mean it does not provide much information. A longer tracking task duration may 

mean the attended task will be performed well, but it may also mean cognitive tunneling or 

attention trapping to a single tracking task is occurring while other tracking tasks are being 

neglected. 

Although it may not be clear whether some fixation durations or tracking task durations are too 

long or too short, some of the findings of the characteristics that seemed to be caused by lack of 

the gradation marks may raise the eyebrows of some people. For instance, the increased VSI 

fixation durations and look rates observed when PD was being used in segments (i) and (iv) may 

suggest that the pilots were not utilizing the gradation marks of the altimeter well, and, thus, 

were compensating for the lack of the rate of climb/descent information by fixating on the VSI 

for longer and/or more often. This observation implies that the lack of gradation marks in the 

altimeter is a disadvantage. Again, note that the indicators that changed formats were the 

altimeter and the ASI, not the VSI itself.  

In addition, knowing that the PGD format has been accepted as a standard Air Force HUD 

symbology for quite a while already, and that the D format has been regarded as insufficient for 

their operations, one may be able to assess if the PD format is acceptable or not by simply 

comparing it to PGD or D. For example, Figure 4-7 (a) indicates that, when PD was used, the 

fixation durations on the ASI in both segment (ii) and (v) were significantly shorter than those 

observed when PGD was used and, as a result, rather similar to those observed when D was used 

(see the connected diamond marks at the bottom). At the task level, as indicated in Figure 4-9, 
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the vertical-tracking task durations in segment (i), the horizontal-tracking task durations in 

segment (ii), and the airspeed-tracking task in segment (v) resulted in similar effects; that is, 

when PD was used, these tracking task durations were significantly different from those that 

resulted when PGD was used, while being rather similar to those observed when D was used.  

These observations suggest that in certain flight segments, when the gradation marks were not 

present, the rate information of the ASI and the altimeter were not utilized by the pilots very well 

despite the presence of the rotating pointers. This also may explain the pilots’ slight preference 

for PGD over PD. The difference between them may be subtle—in fact the experiment did not 

find any difference in the RMS flight technical errors, the ultimate performance measure 

criterion—but these slight differences may prevail someday after tens of thousands of 

operational runs. Therefore, it would be safer to recommend including gradation marks in the 

HUD ASI/altimeter rotating pointer formats.  

4.54.54.54.5 ConclusConclusConclusConclusionionionion    
The study showed that using either one of the rotating pointers (PGD and PD) resulted in smaller 

airspeed error and higher pilot preference ratings. These results were consistent with the USAF 

study, although, unlike their study, this study did not find any significant format effect in the 

altitude error.  

In addition to these conventional measures analyses, the study also incorporated eye-movement 

data analysis and HMM analysis, which provided further insight into the effects of the rotating 

pointers and gradation marks. These analyses revealed that the pilots seemed to have given 

higher priority to altitude over airspeed, and, consequently, when the digits-only (D) format was 

used in segment (i) or (iv), where the horizontal-tracking task demand increased, they tended to 

sacrifice airspeed-tracking performance for the vertical-tracking performance. This agrees with 

the RMS airspeed and altitude error analysis results. In addition, fixation analysis results showed 

that, when the gradation marks of the rotating pointer format were not present (PD), the VSI 

fixation durations and look rates both increased, suggesting that the pilots could not use the rate 

of climb/descent information in the altimeter when gradation marks were not present, despite the 

presence of the rotating pointers. This increased fixation demand on the VSI in turn resulted in 

the vertical-tracking task durations also tending to increase when the gradation marks were not 
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present. Furthermore, in both descent segments (segment (ii), constant airspeed descent, and 

segment (v), final descent), the pilots’ ASI fixation durations became significantly shorter when 

the gradation marks were not present (PD) compared to when they were present (PGD), 

resembling more those observed when the digits-only format (D) was used. When the gradation 

marks were not present (PD), the vertical-tracking task duration in segment (i), the 

horizontal-tracking in segment (ii), and the airspeed-tracking in segment (iii) also showed more 

resemblance to those observed when digits-only (D) was used, rather than those observed when 

the gradation marks were present (PGD).  

The study not only confirmed the superior scanning efficiency of the rotating pointer formats 

(PGD and PD) over the digits-only format (D), but also found a number of differences between 

the two rotating pointer formats (PGD vs. PD). Considering these results as well as the RMS 

flight technical error and the pilots’ subjective preference rating analysis results, the study 

concluded that PGD has slight advantages over PD, and thus including the gradation marks in the 

rotating-pointer HUD ASI/altimeter indicator format is recommended. Thus, this study provided 

empirical support for the common belief of many human factors practitioners about the 

advantages of including gradation marks.  
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Chapter 5:Chapter 5:Chapter 5:Chapter 5:     

Further DiscussionFurther DiscussionFurther DiscussionFurther Discussionssss    about HMM about HMM about HMM about HMM 

AnalysisAnalysisAnalysisAnalysis        

As described in Chapter 2, some aspects of the HMM analysis of pilots’ eye-movement data are 

distinct from such analysis in other HMM applications, e.g., speech recognition. One of the most 

characteristic differences is the verbal-report requirement. In this chapter, various issues raised 

by this requirement are discussed. Furthermore, the basic assumptions of the HMM analysis 

made at the beginning, such as the serial attention assumption and the Markov process 

assumption, are revisited. Finally, some areas for future study are suggested.  

5.15.15.15.1 Issues Related to Issues Related to Issues Related to Issues Related to the the the the VerbalVerbalVerbalVerbal----Report RequirementReport RequirementReport RequirementReport Requirement    

5.1.15.1.15.1.15.1.1 Different Pilot Types Different Pilot Types Different Pilot Types Different Pilot Types     
The first concern about asking pilots to speak during flight was whether this added workload 

would affect the way they scan and fly. In the experiments in this thesis, it seemed that it depends 

on the type of pilot. Some pilots seemed not to have any problem with speaking while flying. 

Pilots who regularly talk to themselves even in real flights may have felt more ease about the 

verbal-report requirement. Talking to himself or herself about the instrument readings or what to 

do next is an effective way to utilize one’s verbal short-term memory in addition to regular 

short-term memory to help increase alertness. In fact, in a preliminary study conducted before 

the experiments described in this thesis, there was one pilot who liked to speak during the flight 

and took advantage of it so much that, in the trials where he was prohibited to speak, his flight 

performance actually got noticeably worse.  

Other pilots, however, seemed to feel somewhat awkward about the verbal-reporting task at the 

beginning. In the experiments in this thesis, all pilots eventually got used to the verbal-report 

requirement after some practice. Still, many pilots stopped generating reports for a moment when 
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the flight workload became high, and had to be reminded by the experimenter to resume 

reporting. This implies that the verbal-report requirement did add to the workload, especially 

when the pilot was busy, and could have affected flight performance.  

In order to reduce the extra cognitive workload caused by the verbal-report requirement, two 

different reporting formats, the free-mumbling format and the structured-reporting format, were 

tried in the two experiments in this thesis. Although the structured-reporting format was 

supposed to cause less workload and therefore be more beneficial, it turned out that both of the 

formats had their advantages and disadvantages.    

5.1.25.1.25.1.25.1.2 FreeFreeFreeFree----Mumbling FormatMumbling FormatMumbling FormatMumbling Format    
In the first experiment (Chapter 3), the free-mumbling format was used, which meant that the 

pilots generated reporting sentences using their own words. The advantage of this format is that 

it provides context for the flight and helps the experimenter understand the pilots’ intentions. In 

cases where the HMM structure is initially unknown, free mumbling may be used as a starting 

point to construct an initial HMM structure. Another advantage is that, because the pilots have to 

speak to the radio or to the other crewmember during real flights, the free mumbling can actually 

be a realistic secondary task if the researcher wants to see the eye-movement data in a realistic 

setting. However, if the researcher does not want the pilots to be distracted, then forcing them to 

generate verbal sentences could be a problem, because that may require extra attentional 

resources, which may have to be drawn from the flight task.  

In addition, for the free-mumbling-type data, the researcher has to interpret the reports to identify 

corresponding tracking tasks, and, thus, it not only may substantially increase the data analysis 

workload of the researcher, but also may create an additional potential source of error. If the 

researcher has instrument flight experience himself/herself, identifying the task is mostly 

straightforward; thus, in the case of such researcher, the chance of errors caused by 

misinterpretation should be relatively small. However, in general, a more objective way to 

conduct such a process involving subjective judgments may be to have multiple researchers 

interpret the verbal data independently, and then compare the results. In this way, the chance of 

misinterpretation can be minimized.   
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5.1.35.1.35.1.35.1.3 StructuredStructuredStructuredStructured----ReportingReportingReportingReporting Format Format Format Format    
In the second experiment (Chapter 4), in the effort to reduce the pilots’ workload, the 

structured-reporting format was introduced. In this format, the pilots specifically reported which 

information on the AI—“pitch,” “bank,” or “pitch & bank (or both)”—they were attending to. 

Note that the only overlapping area was the AI in the HUD experiment, because the glide slope 

and localizer deviations were displayed separately on this display. Using predetermined words 

instead of self-generated sentences should reduce the cognitive workload and amount of attention 

required. In the experiment, the pilots were given options to use either the free-mumbling or the 

structured-reporting format, and all pilots except Pilot 2 chose to use the structured-reporting 

format. This suggests that the structured-reporting format imposed less workload than the 

free-mumbling format.  

The structured-reporting format also greatly reduces workload on the experimenter’s side 

because interpreting the verbal report data and converting the reports to the corresponding tasks 

are minimized. One disadvantage of the structured-reporting format is that the context of the 

flight is lost. For instance, if the pilot said “stop ballooning,” then the researcher can know that 

the pilot probably just had lowered the flaps, and the pilot was trying to reduce the pitch angle 

and/or trimming to stop the momentary climbing trend caused by the suddenly increased lift. 

However, if the pilot just said “pitch,” such context information is lost. Another disadvantage of 

structured reporting is that, when the pilot said “pitch,” the experimenter cannot distinguish if the 

pilot meant the vertical-tracking or airspeed-tracking task anymore, because both tasks involve 

the “pitch” angle. That means the existence of the vertical- or airspeed-tracking task cannot be 

assessed based on this format. For the HUD experiment, this was not a significant issue, because 

the approximate underlying HMM structures were known, and all the pilots were highly 

experienced and expected to have at least the three states; i.e., the vertical-, horizontal-, and 

airspeed-tracking tasks. However, for the cases in which the initial model selection was the main 

interest, such as the experiment in the Chapter 3, the structured-reporting format may not have 

been appropriate.  

5.1.45.1.45.1.45.1.4 VVVVerbal Report Frequencyerbal Report Frequencyerbal Report Frequencyerbal Report Frequency    
Another concern would be how frequently the verbal reports should be generated. The verbal 

reports are used to verify the HMM-estimated attention sequence; therefore, basically the more 
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verbal reports, the better. Yet, generating too many verbal reports may distract the pilot from the 

flying task. In addition, if the pilot generates too many verbal reports, it also becomes a concern 

that the verbal reports may start leading the eye-movements, not the other way around. In terms 

of the pilots’ workload level, the comfortable reporting frequency seemed to be around once 

every five to ten seconds for the current experiment settings.  

In terms of reliable model parameter verification, it may be useful to think in terms of degrees of 

freedom. For simple L-th order polynomial curve-fitting cases, for instance, at least L data points 

are required to prevent under-fitting (i.e., the coefficients cannot be specified from the given 

data). If a similar reasoning is applied to the HMM analysis, it is desirable to have at least the 

number of the model parameters being estimated, say L. For example, for the original three-state 

HMM in the first experiment (Figure 3-4), L = LA + LB + Lπ = (3×3) + (5+3+4) + (3) = 24. 

Here, note that the verbal reports are not being used to compute the parameter estimates, but to 

verify the attention sequence estimated by the Viterbi algorithm, which is based on the model 

parameters estimated by the Baum-Welch algorithm. Thus, even if the number of the verbal 

reports is less than L, a single set of the model parameters still can be estimated, although the 

resulting sequence estimated by these algorithms would never be fully verified.  

In practice, however, first of all, obtaining L independent verbal reports may be difficult, 

especially if the pilot has a tendency to generate the verbal reports at similar attentional instances. 

If that is the case, some of the L verbal reports are actually duplicates. Second of all, there is no 

guarantee that the pilots generate the L full-spectrum verbal reports that are required to fully 

verify the L model parameters. For example, if a pilot almost always reported vertical-tracking 

related reports, then it is not clear whether the pilot was always in the vertical-tracking task,or 

just skipped reporting all other tracking tasks. In such a case, one can actually attain the 

maximum match rate of the verbal reports by heavily weighting the model parameters toward the 

vertical-tracking task so that the estimation results would result in the vertical-tracking task 

almost all the time. However, the legitimacy of such a modification is questionable because there 

is no real reason to believe that the other tracking tasks did not happen.  

To minimize the above problems, the experimenter should instruct the pilots to generate verbal 

reports regarding not just one particular tracking task, but all the tracking tasks. Such instruction 

would be easier to give if the structured-reporting format were used (“Please try to report both 
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“pitch” and “bank.””), than if the free-mumbling format were used (How can one instruct pilots 

to report all tracking tasks without exposing what tracking tasks are being investigated?). 

Even if instructions are given, the resulting verbal reports still may be insufficient. This could be 

another limitation of HMM analysis. Note that since the problem of the verbal reports is shortage, 

not excess, it is still reasonable to use the verbal reports as a basis to justify adding new hidden 

states. When the verbal reports are used to justify removing a hidden state, however, care should 

be taken. In Chapter 3, for instance, when the airspeed-tracking task was removed from the 

HMM structure for Pilot 1, additional observation that the throttle was used mainly to control the 

rate of descent provided supporting evidence to confirm that it was not just that the pilot skipped 

reporting the airspeed-tracking task. One suggestion for supplementing this shortage of verbal 

reports is to incorporate the pilots’ flight control input data in this verification process. This 

option will be discussed further in the future work section.  

5.25.25.25.2 PilotsPilotsPilotsPilots’’’’ Attention Models Attention Models Attention Models Attention Models————Serial vs. Parallel AssumptionsSerial vs. Parallel AssumptionsSerial vs. Parallel AssumptionsSerial vs. Parallel Assumptions    
As mentioned in Chapter 2, the HMM analysis is based on the assumption that the pilots attend 

to each tracking task in a serial manner rather than in a parallel manner. Indeed, the pilots’ 

eye-movement data collected in the current experiments indicated that pilots tend to crosscheck 

among the related instruments, and that resulted in a serial-like attention sequence. Even though 

it is unknown whether the real attention process is serial or not, as long as the pilots’ 

eye-movement data indicate existence of a serial-like underlying process, the HMM analysis will 

work. Thus, for the purpose of the HMM analysis, the serial assumption appeared to be adequate.  

In general cases, readers should bear in mind that there is still controversy over whether people 

process information in a serial manner or a parallel manner. In fact, there were some signs even 

in this study that might suggest that the process was not entirely serial, although they did not 

seriously affect the analysis outcomes of the current experiments. These are described in this 

section to remind readers of the limitation of the serial assumption.  

One of these signs was that, as seen in the current experiments, some verbal reports did not fit 

the HMM-estimated attention sequence and, therefore, were labeled as missed detections. Taking 

a closer look, one may find that some of these reports described tasks that could not be 
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associated with any of the instruments the pilot was fixating on around the time of the report. 

Exactly what is happening in these instances? Of course, they could be simply the pilot’s 

mistakes. However, these reports also could be delayed reports, which the pilot held in 

short-term memory when the flight workload was too high to perform the additional verbal 

report task, and executed later when the workload became moderate. Or, the pilot could have 

been actually processing in parallel; that is, he/she was thinking about one tracking task while 

fixating on instruments of the other tracking group. The possibility of that being the case 

indicates that a certain degree of parallel processing may also be going on.  

The other sign was that there was also a slight trend for the pilots to make verbal reports at the 

same time they were switching the tracking task as well (see Figure 3-5, 10, and 12). This trend 

is, actually, not a desirable tendency for HMM analysis purposes, since such verbal reports can 

cause false positives in the verification process because of the ±1-second buffer. Nonetheless, it 

seemed to be consistently occurring. Generating verbal reports while flying certainly involves 

multitasking, and the trend that the verbal reporting occurred when the pilot switched to another 

tracking task may not be a coincidence. Whatever the neurophysiological function is that governs 

attention management (such as the central executive of Baddeley’s working memory model 

(Baddeley & Hitch, 1974)), the time when this function is activated to switch the tracking task 

may be the easier time for the pilot to initiate the verbal reporting as well. Such an attention 

management function is another kind of parallel process.  

These signs that suggest parallel processing may be accounted for with Wickens’s 

multiple-resource theory framework (1980). In this theory framework, there are three attentional 

resource reservoirs: stage of processing (perceptual encoding vs. central processing vs. 

responding), hemisphere of processing (verbal working memory vs. spatial working memory), 

and modalities of processing (auditory vs. visual, manual vs. vocal, etc.). Each tracking task 

requires a visual channel for sampling. Thus, the visual channel of the perceptual encoding stage 

has to be time-shared, and this makes the pilots’ eye-movement process appear to be driven by 

an underlying serial-like process. The pilots’ verbal reports not related to the instruments that 

they were currently looking at may indicate the parallel processing between all of the three 

stages, perceptual encoding (the fixation point), central processing (a delayed or parallel 

cognitive processing), and responding (verbal report). The central processing also includes the 
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working memory component, which is thought to govern attention management among multiple 

tasks. Thus, pilots’ tendency to generate verbal reports at the time they also switch tracking tasks 

may be caused by this capacity of central processing.   

5.35.35.35.3 Markov Process AssumptionMarkov Process AssumptionMarkov Process AssumptionMarkov Process Assumption    
As described in section 3.4.3, the HMM-estimated attention sequences indicated that the 

transition probabilities sometimes appeared to have changed within a segment. For instance, in 

the level-turn segment (ii) in the experiment in Chapter 3, the pilots usually attended to the 

horizontal-tracking task very often at the beginning of the segment, but as the aircraft finished 

turning, became stabilized straight on the localizer course, and approached the top of the glide 

slope, they tended to start attending to the vertical-tracking task slightly more often than before 

(Figure 3-10). Strictly speaking, this violates the assumption of the first-order Markov process 

(i.e., the transition probability from the state, i, to the state, j, at time, t, pt(i,j), is independent of 

t). Nevertheless, as pointed out in section 3.4.3, the estimated task sequence matched well with 

the pilots’ verbal reports, and, thus, the HMM analysis seemed to have worked fine, at least in 

the experiments in the current thesis.  

When the transition probabilities changed within a flight segment, the estimated hidden-state 

transition probabilities (i.e., the A matrix) basically represented the averages of these transition 

probabilities over time. Even though the Viterbi algorithm used the single, averaged hidden-state 

transition probabilities to estimate the most-likely attention sequence throughout the segment, the 

attention sequence estimated by this Viterbi algorithm showed the changes of the frequency 

trends of each tracking task as the time progressed. For instance, in Figure 3-10, the Viterbi 

algorithm plots show the trend that the pilots started attending to the vertical-tracking task more 

often right before they reached the glide slope. This was because the Viterbi algorithm could also 

utilize the information that the pilots started to look at the altimeter and the VSI, the instruments 

included only in the vertical-tracking task instrument group, right before they reached the top of 

the glide slope. Thus, even though the pilots’ attention sequence may violate the definition of the 

Markov process, eventually, the resulting estimated attention sequences may be relatively 

insensitive to this problem. 

The changes of the hidden-state transition probabilities within each segment may not be a big 
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problem for the purpose of task sequence estimation, but it may cause trouble with regards to 

generating synthetic eye-movement data. (The generation of synthetic eye-movement data will 

be discussed more in section 5.4.3.) If generating the data from the model parameters is the 

interest, then those segments where the transition probabilities appeared to change in the middle 

should be divided into sub-segments, so that the characteristics of the hidden-state transition 

probabilities in the generated eye-movement data correctly reflect the real trends of the 

hidden-state transition probabilities within each sub-segment. 

5.45.45.45.4 Future WorkFuture WorkFuture WorkFuture Work    
Finally, here are suggestions for future work.  

5.4.15.4.15.4.15.4.1 Incorporating PilotsIncorporating PilotsIncorporating PilotsIncorporating Pilots’’’’ Control  Control  Control  Control Input Input Input Input DataDataDataData    
In addition to the pilots’ verbal reports, it may be possible to incorporate their control inputs, 

such as elevator angle, aileron angle, rudder angle, and throttle lever position, in the analysis. For 

instance, if the pilot is controlling the aileron (by turning the wheel to left or right), he/she is 

more likely attending to the horizontal-tracking task. If the pilot is moving the throttle lever, then 

the pilot is more likely attending to the airspeed-tracking task. If there is any reasonably 

objective way to map the pilots’ control input movements to their corresponding attentional 

states, then it may be possible to incorporate the information of their input data to assist the 

HMM analysis of the pilots’ eye-movement data.  

There are two ways to incorporate these inputs. One is to incorporate them as another set of 

observation data for the HMM analysis. In this case, the control input sequence data and the 

fixation sequence data together form joint observation probability distributions. The other way, 

which is probably much simpler, is to incorporate them in the verification process. In this case, 

the HMM analysis is performed as described in this thesis, and then both the control input data 

and the verbal reports are used to verify the estimated attention sequence. This could be useful 

when the verbal reports collected are insufficient. Furthermore, there also may be potential that 

the verbal-report requirement can be completely eliminated and, if combined with remote 

eye-tracking technology (typically utilizing the facial-feature pattern recognition), the whole 

process can become completely unintrusive.  
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Some words of caution are that there are fundamental differences between the fixation sequence 

data and the control input data. The instrument fixations happen only one at a time; thus, this is a 

serial process. On the other hand, the control inputs can occur in parallel; that is, for instance, the 

pilot can pull the yoke (vertical tracking), turn the yoke (horizontal tracking), and push the 

throttle lever forward (airspeed tracking) all at the same time. Furthermore, again, borrowing the 

terminology of Wickens’s multiple-resource theory (1980), the fixation sequence is in the 

perception stage, while the control data are in the responding stage. Thus, whether the fixation 

sequence and the control inputs have common hidden states or not is unknown, and further study 

is required.  

5.4.25.4.25.4.25.4.2 Implementing Unsupervised LearningImplementing Unsupervised LearningImplementing Unsupervised LearningImplementing Unsupervised Learning    
In the current study, the selection of HMM structures for each pilot, including the selection of the 

number of hidden states, was performed manually by the investigator based on prior knowledge 

and simple observations. This is called supervised learning (Bishop, 1996). It would be 

convenient, as well as interesting from a theoretical standpoint, if the model selection could be 

performed in the manner of unsupervised learning; that is, a clustering of a given data set is 

applied automatically to seek all the potential HMM structure candidates. Of course, there is a 

risk that such automatic model selection will return totally unexplainable sets of hidden states. 

However, there is also a chance that the automatic protocol will return a similar or the same 

HMM structure as the one manually derived. Then, that would provide powerful evidence to 

support the HMM structure manually selected based on supervised learning.  

5.4.35.4.35.4.35.4.3 Generating Synthetic EyeGenerating Synthetic EyeGenerating Synthetic EyeGenerating Synthetic Eye----Movement DataMovement DataMovement DataMovement Data————Double MDouble MDouble MDouble Markov Processarkov Processarkov Processarkov Process    
Aside from HMM structure selection, model parameter estimation, and hidden-state sequence 

estimation, the HMM algorithm is also capable of generating synthetic eye-movement data using 

the model parameters. With the model parameters and two random number generators 

independent from each other, one for the hidden-state transition process and the other for the 

observation symbology sequence, one may be able to generate reasonably realistic synthetic 

eye-movement data. (Of course, how realistic such data can be is still a question to be explored.) 

This capacity could be useful for, for example, assessing prototype displays before calling in 

human subjects for a formal experiment. Also note that, as mentioned in section 5.3, if the human 

pilots tend to change the hidden-state transition probabilities within a segment, then the segment 
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should be divided into sub-segments, within each of which, the transition probabilities stay 

relatively the same, so that the generated synthetic eye movements would behave in a manner 

similar to that of the human pilots’ eye movements.  

In the illustration example of the HMM in section 2.2.2, it was briefly mentioned that the model 

that the HMM analysis is based on does not take the transition probabilities among the 

instrument fixations into account. This may be fine for estimation purposes, but may not be so 

for generation purposes. Say there are two instruments, a and b, on which the pilot would fixate 

when he is attending to a certain tracking task, i. Then, if the pilot looked at each instrument, 

alternatery every half a second while he is attending the tracking task, i, the total percent time of 

each instrument within the tracking task, i, would become 50%. By comparison, suppose the 

pilot looked at instrument a for the first half of the segment, and then switched only once to 

instrument b and looked at it for the rest of the time while attending the tracking task, i. If he 

repeated this behavior every time he attended the tracking task, i, then the percent time of each 

instrument within this tracking task, i, again would be 50%. Thus, these two very different cases 

would result in the same model parameters. More specifically, the row elements of the B matrix 

associated with this tracking task, i, would be the same. In other words, the same model 

parameters can generate two extremely different eye-movement behaviors. This was caused 

because there was no mechanism to handle the duration times of the fixations at the observation 

level. (Note that, at the hidden-state level, the recurring probabilities of the Markov process can 

control the probabilistic characters of the hidden-task durations.) Also, at the observation level, 

there was no mechanism to capture the probabilities of transitions from one instrument to the 

other.  

To generate synthetic eye-movement data reasonably similar to the eye movements of real 

human pilots, one solution could be to make the observation process a Markov process as well. 

Let us call such a model a Double Markov Model (DMM). In this model, the observations (i.e., 

the instrument fixations) have transition probabilities from one instrument to the other, or the 

recurring probabilities of each instrument within each hidden state (i.e., the tracking task). Thus, 

in the DMM, the observation symbol probabilities are no longer represented by a single matrix, 

such as the B matrix, but by multiple square matrices, B1, B2, …, Bn—one matrix for each hidden 

state.  
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Generating synthetic eye-movement data with the DMM would be actually quite simple. One 

just needs, again, two independent random number generators, one for the hidden-state process 

and the other for the observation process. To estimate the DMM model parameters to be used for 

this generation process, one can first run the regular HMM analysis on the actual pilots’ 

eye-movement data to obtain the most likely attention sequence, and, then count the numbers of 

transitions among the instruments for each hidden state to compute the probabilities of 

transitions among the instruments and the recurring probabilities within each instrument.  

5.4.45.4.45.4.45.4.4 Other ApplicationsOther ApplicationsOther ApplicationsOther Applications    
HMM analysis of eye movements was applied to research both the difference among pilots who 

had different expertise levels and the effects of different HUD formats. HMM analysis can be 

applied to many other investigations of the effects of different flight conditions, such as different 

weather conditions, different workload/stress/fatigue levels, different automation levels, etc., on 

pilots’ scanning and attention patterns  

HMM analysis can also be applied outside the airplane cockpit. Any human operator work 

environments in which the operators have multiple internal states, each of which is associated 

with a different set of fixation points and also occurs frequently enough to be meaningfully 

statistically characterized, can utilize this analysis technique. Such environments may include air 

traffic control, driving, medical or health monitoring, complex system fault diagnosis, military 

command and control, unmanned aerial vehicle (UAV) control, and so on.   

As described in section 5.4.3, the HMM algorithm can be used to generate synthetic 

eye-movement data using the model parameters. The potential practical usages of such an 

application were also mentioned in that section. In addition, the HMM algorithm may be used to 

recognize particular patterns of an individual pilot’s eye-movement data (as in speech 

recognition applications). This could be used for, for instance, identifying a pilot from his/her 

eye-movement data. Such applications may seem somewhat bold, but if there is any practical 

interest, their potential can be further explored as well.  
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Chapter 6:Chapter 6:Chapter 6:Chapter 6:     

SummarySummarySummarySummary    

6.16.16.16.1 Summary of Each ChapterSummary of Each ChapterSummary of Each ChapterSummary of Each Chapter    
Chapter 1 described how the previously existing quantitative models of pilots’ instrument 

scanning behavior tended to suffer either an under-fitting (too few model parameters to describe 

the large variety of the actual pilots’ eye-movement data) or an over-fitting problem (too many 

model parameters). The lack of reasonable models has forced many researchers to rely on simple 

statistical analysis of eye-movement data, such as average fixation durations, average look rates, 

and so on. Such statistical analysis often involves a time-averaging operation that eliminates 

information about the sequence of instrument scans, which, if kept, can provide valuable 

information about pilots’ moment-to-moment thought processes.  

In order to address these problems, a new HMM-based analysis of pilots’ eye-movement data 

was proposed in Chapter 2. HMM analysis exploits pilots’ instrument crosscheck within the 

vertical-, horizontal-, and airspeed-tracking instruments. In the HMM proposed, these tracking 

tasks constitute hidden states, and the pilots’ instrument fixation sequence corresponds to an 

observation sequence. The pilots’ switching among the tracking tasks is a hidden stochastic 

process. HMM algorithms can then be used to estimate the most likely hidden-state sequence of 

attentional states from a given instrument fixation sequence.  

Although HMMs have been used for speech recognition and other pattern recognition 

applications, this is the first time HMMs have been applied to the analysis of pilots’ 

eye-movement data. There are also several differences between the HMM for the analysis of 

pilots’ eye-movement data and the HMM for speech recognition applications. A pilot 

eye-movement HMM is based on the ergodic model, while the speech recognition HMM is 

based on the left-right model. Also, the pilots’ eye-movement HMM does not have labeled 

training data like the speech recognition HMM does, and, therefore, it is necessary to collect 

pilots’ own verbal reports for verification.  
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Chapter 3 presented a flight simulator experiment conducted to explore various potential HMM 

structures for the actual pilots’ eye-movement data. The experiment also served as a 

walk-through implementation example, or a proof-of-concept, of the HMM analysis. Four pilots 

with various flight expertise levels participated in the experiment, and each flew three simulated 

ILS approaches on a flight simulator. The pilots’ eye-movement data and the flight variables 

were recorded. The pilots’ verbal reports were also collected using a “free-mumbling” format.  

To select a proper HMM structure for each pilot in each flight segment (straight and level, level 

turn, and final descent), first the three-state HMM was applied for the instrument fixation 

sequences of all pilots and all flight segments. Then, the principle of parsimony was applied in 

deciding on the addition or removal of a hidden state; that is, a new hidden state was added only 

if doing so considerably improved the match rate of the verbal reports to the estimated 

hidden-state sequence, and a hidden state was removed only if the removal did not affect the 

match rate of the verbal reports. As a result, an interesting positive correlation between the 

number of hidden states and the pilots’ expertise levels was found. The eye movements of the 

most-experienced pilot flying the final segment were best described by the four-state HMM, 

while the eye movements of two intermediate-level pilots were best described by the three-state 

HMM. The eye movements of the least-experienced pilot indicated that the pilot dropped the 

airspeed-tracking task during the level turn and final descent segments, and thus the 

eye-movement data for that pilot were well described by the two-state HMM. While the three- 

and four-state HMMs appeared to be sufficient for flying the ILS approaches, the two-state 

HMM appeared not to be.  

The results of a second flight simulator experiment were presented in Chapter 4 to demonstrate 

how HMM analysis results can be helpful in a display study. Three head-up display (HUD) 

airspeed indicator (ASI) and altimeter symbology formats—rotating pointer with gradation 

marks (i.e., “PGD”), rotating pointer without gradation marks (i.e., “PD”), and digit only (i.e., 

“D”)—were examined. A previous study conducted by the U.S. Air Force found the difference 

between the digit-only format (D) and the rotating pointer formats (PGD and PD) in terms of the 

magnitude of the airspeed and altitude deviations and pilots’ subjective preferences, but could 

not find any difference between the two rotating pointers themselves. Thus, the challenge was to 

see whether eye-movement analysis and HMM analysis together could detect any difference 
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between these two rotating-pointer formats.  

Each of six Air Transport Pilots flew nine approaches; i.e., three approaches for each 

ASI/altimeter format. In this experiment, the pilots’ verbal reports were collected using the 

structured-reporting format. As in the USAF study, the difference between the two rotating 

pointer formats (PGD vs. PD) did not appear in the flight technical error. However, the 

eye-movement data analysis and the HMM analysis revealed significant differences between 

these two formats. When the gradation marks were removed (PD), the pilots tended to fixate on 

the ASI for significantly less time than when the gradation marks were present (PGD) in the 

straight-and-level, constant-airspeed-descent, and final descent segments. Although there was no 

significant difference in the altimeter fixation durations, the VSI fixation durations tended to be 

significantly longer when the gradation marks were removed (PD) than when they were present 

(PGD). In the straight-and-level and level-turn segments, the HMM analysis results showed that 

the vertical-tracking task duration tended to become significantly longer when the gradation 

marks were removed (PD) than when they were present (PGD), probably due to the increased 

demand for the VSI fixation durations (the VSI is one of the vertical-tracking task indicators). In 

addition, when the gradation marks were removed (PD), the horizontal tracking in the level-turn 

segment, and the airspeed tracking in final-descent segment also showed more resemblance to 

those observed when the digits-only (D)format was used, rather than those observed when the 

gradation marks were present (PGD).  

These results provided the researchers evidence that when the gradation marks were removed 

(PD), in flight segments involving level fight maneuvers, the pilots may have tended to spend 

more time for the vertical-tracking task by sacrificing time that would otherwise be used for the 

airspeed-tracking task. Moreover, if the gradation marks were removed (PD) in the final descent 

segment, the pilots may not have extracted the rate information on the ASI as much as they 

would if the gradation marks were present. The levels of the airspeed and altitude deviations 

were equivalent for these two rotating-pointer formats, but the scanning strategy changes may 

explain the difference in the pilots’ subjective preference scores between these formats (the pilots 

preferred PGD over PD). The trends found in the pilots’ eye movements and their attention 

patterns also suggested that the pilots tended to give priority to the altitude performance over the 

airspeed performance. In conclusion, the experiment in this chapter demonstrated how the HMM 
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analysis results could bridge between the eye-movement data and the pilots’ performance or 

preference data, and help the researchers to interpret the data from these experiments. 

In Chapter 5, some issues regarding the HMM analysis that were raised during the experiments 

were discussed. First, the issues related to the verbal-report requirement were discussed. 

Different pilots seemed to have different reactions to this verbal-report requirement. Pilots who 

habitually speak to themselves even during real flights may have had less problem with this 

requirement. Other pilots may feel some awkwardness at first. These pilots may need some 

practice to get used to this requirement.  

Two different formats to collect the verbal reports—free mumbling (pilots generate the reports 

using their own words) and structured reporting (pilots report using predetermined short words 

representing different information from the overlapping instruments)—were tried in the first 

experiment (Chapter 3) and second experiment (Chapter 4), respectively. It was found that these 

formats had different advantages and disadvantages. The free-mumbling format provided the 

researchers context for the flight. This format could also be useful when the underlying HMM 

structure is initially unknown. However, this format also may cause higher cognitive workload 

for the pilots. The structured-reporting format, on the other hand, seemed to require less 

cognitive workload for the pilots. Yet, this format loses the context of the flight and cannot be 

used to uncover new HMM structures.  

In the HMM analysis, the verbal reports were used to verify the HMM-estimated sequence of the 

attended tracking tasks. Therefore, the more verbal reports, the better. However, generating too 

many verbal reports may also distract pilots from the flight task. For the current experiment 

settings, the comfortable verbal reporting frequency seemed to be around once every five to ten 

seconds. How frequent verbal reporting would be sufficient or exactly when during the flight the 

verbal reports should be generated to fully verify the model parameters estimated by the 

Baum-Welch algorithm is not known at this point. The only way to ensure sufficient verification 

of the model parameter estimation each time may be to incorporate other measures, such as the 

pilots’ control input data.  

In addition to the issues related to the verbal-report requirement, the assumption of the serial 

attention process, on which the HMM analysis is based, was reexamined. The eye-movement 
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data collected indeed indicated patterns of frequent crosschecking among the related instruments, 

which made the fixation sequence data at least appear to be driven by an underlying serial 

process. Though it is not known whether the real attentional process is serial or not, as long as 

the actual eye-movement data indicated serial-like characteristics, the serial assumption would be 

adequate for the purposes of the HMM analysis. However, some signs of parallel attentional 

processing observed during the data analysis were also mentioned so as to remind the readers of 

the potential limitation of the serial assumption.  

Finally, some suggestions for future work were presented, such as incorporating pilots’ control 

input data in the HMM analysis, implementing unsupervised learning to automatically search for 

all candidate HMM structures, generating synthetic eye-movement data to assess prototype 

displays, and extending the HMM analysis to other application areas.   

6.26.26.26.2 Contributions of the ThesisContributions of the ThesisContributions of the ThesisContributions of the Thesis    
The thesis makes a number of practical and theoretical contributions to various academic and 

professional communities. First of all, the thesis provides a new analysis tool for pilots’ 

eye-movement data that is applicable in the human factors research domains, where tasks involve 

repetitive scanning of displays. This new analysis tool adds another dimension—the attention 

sequence level—to the analysis of pilots’ eye-movement data, which currently relies largely on 

simple statistical analyses at the instrument-fixation-sequences level only. This is an important 

breakthrough because eye-movement tracking technology is rapidly progressing. As eye-tracking 

equipment is becoming more reliable and more affordable, more research laboratories are 

equipping their simulators with eye-tracking devices, and, so, the amount of eye-movement 

research is expected to grow rapidly. The thesis provides researchers with more options to choose 

from for eye-movement data analysis methods.  

Second, the thesis introduces to the human factors research community the concept of the HMM, 

which already has been well developed in the pattern-recognition engineers’ community, but is 

less well known with human factors researchers. The concept of the HMM is very flexible and is 

versatile enough to be able to be applied to other eye-movement research and beyond.  

Third, the thesis also brings a new HMM application area to the pattern-recognition engineers’ 
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community. As described in Chapter 2, speech-recognition and other pattern-recognition HMM 

applications look for a particular hidden sequence based on the left-right model. HMM analysis 

of pilots’ eye-movement data, on the other hand, estimates recurring hidden-state transitions 

based on an ergodic model. The example demonstrated by the thesis may open up new 

possibilities for using the HMM technique.  

Fourth, the thesis reveals the differences among the eye movements of pilots who have different 

levels of expertise, and thus provides the pilot community with important implications for 

improving pilot training and instruction programs. The fourth state, the attitude-monitoring task, 

found in the most experienced pilot in the first experiment, is consistent with a flight technique 

well known among experienced instrument pilots. Now, the existence of this flight technique has 

been scientifically demonstrated. In addition, the two-state HMM found in the least experienced 

pilot seemed insufficient for flying the approach. Therefore, HMM analysis may provide a tool 

to detect pilots who exhibit such a pattern of instrument scanning and encourage them to take 

re-currency training.  

Fifth, the thesis also provides the display manufacturer and certifier community results showing 

the value of gradation marks in rotating pointers in HUD’s airspeed-indicator (ASI) and altimeter 

formats. Even though removing the gradation marks has not yet been found to degrade pilots’ 

flight performance, the experiments in this thesis revealed significant changes in pilots’ fixation 

and attention processes compared to when the gradation marks were present. Therefore, there is a 

chance in a long operational run that such effect may prevail and result in a catastrophic accident. 

Thus, even though the effect is very subtle, to be safe, presenting gradation marks in the HUD 

ASI and altimeter symbology is recommended. Of course, this should not be the only display 

format issue to concern the display manufacturer and certifier community, and for those who 

desire, the thesis also provides research means to investigate other similar display-format issues.   

Some contributions of this thesis are purely academic, such as the following:  

Sixth, the thesis provides the psychologist community with actual pilots’ eye-movement data that 

implies a serial, or at least a serial-like, underlying attentional process. The data are consistent 

with Wickens’s multiple resource theory (1980); that is, all the tracking tasks required the visual 

channel to sample the instruments, and, thus, the channel was time-shared. However, if 
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consideration is extended to include the central processing in addition to the perception process, 

then the experiment data also indicated some signs of potential parallel or hierarchical processes; 

the analysis results indicated that the pilots occasionally reported a task not related to any 

instruments they were looking at, and that the pilots tended to generate verbal reports when they 

switched the tracking task. As such, HMM analysis can be used to further investigate information 

processing in human cognition.   

Last of all, the observed trend that the pilots generated verbal reports when they switched 

tracking tasks may imply the existence of some neurophysiological function that governs 

attention management, such as the central executive of Baddeley’s working memory model 

(Baddeley & Hitch, 1974), which is considered to be associated with the prefrontal cortex. 

Therefore, this thesis also provided new research incentives for the cognitive neuroscientist 

community.  

To follow through on these contributions to these academic and professional communities, the 

thesis provides some suggestions for future work in section 5.4.   
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Appendix A:Appendix A:Appendix A:Appendix A:     

MATLAB CodesMATLAB CodesMATLAB CodesMATLAB Codes    

MATLAB codes used for HMM analysis are listed. The HMM_main is the main routine, and all 

other codes are subroutines called from HMM_main.  

•  HMM_main: The main routine. It takes a T×1 observation sequence vector, a T×1 time 

stamp vector corresponding to the observation sequence, and the initial model parameters (A, 

B, C) as inputs (the character “C” is used for “π” vector in the codes). The two input vectors 

can be read in from a file by user-defined codes. The model parameters are directly input 

from within the routine file. The sizes of A and B matrices automatically define the numbers 

of hidden states and observation symbols. At each iteration loop, the program outputs on the 

screen the previous and new values of A and B matrices and log_P, and asks the user 

whether to continue the iteration or not. Hit “y” to continue, or “n” or any other key to stop. 

When the iteration is finally stopped, the program shows the final estimation values of A, B, 

and C, and the history of the values of log_P.  Also, it plots the observation vector and the 

estimated state sequence (state_seq).  

•  forward_scale: A subroutine for the Forward Procedure (scaled form).  

•  backward_scale: A subroutine for the Backward Procedure (scaled form).  

•  ParaEst: A subroutine for the Baum-Welch method. 

•  viterbi: A subroutine for the Viterbi algorithm (logarithm form) 

 

 

 

 

 



108 

HMM_main 

clear 
 
%%%%%%%%%%%%%%%%%% 
Some additional codes to read in a Tx1 observation sequence vector (Observs) is  
required here (e.g., by using “textread” or “load” command).  If one wants to plot the  
estimation results, a Tx1 time vector (Observs_time) for the observation sequence  
is also required.  Basic plotting codes are shown at the bottom of the code,  
which can be customized in any way to suit one’s purpose.  
%%%%%%%%%%%%%%%%%%  
 
% Initial conditions for the morel parameters of a  
% 3-state HMM consisting of Vertical, Horizontal, Airspeed tracking tasks 
A0 = [ 0.70 0.15 0.15; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.37 0.15 0.27 0.00 0.16 0.05 0.00; 
 0.00 0.32 0.00 0.42 0.26 0.00 0.00 0.00; 
 0.39 0.17 0.00 0.00 0.00 0.00 0.05 0.39]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A1 = A0; B1 = B0; C1 = C0; 
 
M = size(A1,1); 
log_P_hist = []; 
 
iter = 'y';  
while iter == 'y', 
 
 %%%%% Forward & Backward Algorithm (Scaled) %%%%% 
 [alpha_scaled, scale, log_P] = forward_scale(Observs, A1, B1, C1); 
 [beta_scaled] = backward_scale(Observs, A1, B1, C1, scale); 
 
 display('*** Initial Parameters ***') 
 A1 
 B1 
 log_P 
 
 %%%%% Parameter Estimation (Baum-Welch) %%%%% 
 [A1, B1, C1] = ParaEst(A1, B1, alpha_scaled, beta_scaled, Observs); 
 [alpha_scaled, scale, log_P] = forward_scale(Observs, A1, B1, C1); 
 log_P_hist = [log_P_hist, log_P]; 
  
 %%%%% Viterbi Algorithm %%%%% 
 [state_seq, P, del, psi] = viterbi(A1, B1, C1, Observs); 
 
 display('*** Iteration Results ***') 
 A1 
 B1 
 log_P 
 
 iter = input('One more iteration? [y] or [n] = ','s'); 
  
end 
 
C1 
log_P_hist 
 
% Plot 
MB = size(B0,2); 
figure('Position', [3 377 1020 312]) 
subplot(311); plot(Observs_time, Observs,'.-'); 
ylabel('Observation');  
v = axis; axis([v(1), v(2), 1, MB]); grid 
 
subplot(613); plot(Observs_time, state_seq,'.-'); 
ylabel('State');  
v = axis; axis([v(1), v(2), 1, M]); grid 
xlabel('Sec') 



109 

 
 
 

forward_scale 

function [alpha_scaled, scale, log_P] = forward_scale(Observs, A1, B1, C1) 
 
M = size(A1,1);  % # of hidden states 
T = length(Observs); % Max time index 
 
% Initialization 
for i=1:M 
 alpha_loc(1,i) = C1(i) * B1(i,Observs(1)); 
end 
scale(1) = inv(sum(alpha_loc)); 
alpha_scaled(1,:) = scale(1) * alpha_loc; 
 
% Induction (scaled) 
for t=2:T 
  
 for j=1:M 
  alpha_loc(1,j) = alpha_scaled(t-1,:) * A1(:,j) * B1(j,Observs(t)); 
 end 
 scale(t) = inv(sum(alpha_loc)); 
 alpha_scaled(t,:) = scale(t) * alpha_loc; 
 
end 
 
log_P = -sum(log(scale)); 
 
 

backward_scale 

function [beta_scaled] = backward_scale(Observs, A1, B1, C1, scale) 
 
M = size(A1,1);  % # of hidden states 
T = length(Observs); % Max time index 
 
% Initialization 
beta_scaled = scale(T) * ones(T,M); 
 
% Induction (scaled) 
for t=T-1:-1:1 
  
 for i=1:M 
  beta_scaled(t,i) = A1(i,:) * ( B1(:,Observs(t+1)).*beta_scaled(t+1,:)' ); 
 end 
 beta_scaled(t,:) = scale(t) * beta_scaled(t,:); 
 
end 
 
 
 

ParaEst 

 
function [A2, B2, C2] = ParaEst(A1, B1, alpha, beta, Observs) 
 
M = size(A1,1);  % # of hidden states 
T = length(Observs); % Max time index 
 
A_num   = zeros(size(A1)); 
A_den   = zeros(size(A1,1),1); 
 
B_num   = zeros(size(B1)); 
 
for t=1:T-1, 
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 A_num_t = zeros(size(A1)); 
 for i=1:M, 
  for j=1:M, 
   A_num_t(i,j) = alpha(t,i)*A1(i,j)*B1(j,Observs(t+1))*beta(t+1,j); 
  end 
 end 
 
 A_num = A_num + A_num_t; 
 A_den = A_den + (sum(A_num_t'))'; 
 
 B_num(:,Observs(t)) = B_num(:,Observs(t)) + (sum(A_num_t'))'; 
 
 if t == 1, 
  C2 = sum(A_num_t') / sum(sum(A_num_t')); 
 end 
 
end 
 
for i=1:M, 
 A2(i,:) = A_num(i,:) / A_den(i); 
 B2(i,:) = B_num(i,:) / A_den(i); 
end 
 
C2 = C2'; 
 
 
 

viterbi 

function [state_seq, P, del, psi] = viterbi(A, B, C, Observs) 
 
M = size(A,1);  % # of hidden states 
N = size(B,2);  % # of observations 
T = length(Observs); % Max time index 
 
%%% Preprocessing %%% 
% Avoiding log of zero 
for i=1:M, 
 for j=1:M, 
  if A(i,j) == 0, 
   A(i,j) = 1E-3; 
  end 
 end 
 for j=1:N, 
  if B(i,j) == 0, 
   B(i,j) = 1E-3; 
  end 
 end 
  if C(i) == 0, 
   C(i) = 1E-3; 
  end 
end 
 
logA = log(A); 
logB = log(B); 
logC = log(C); 
 
%%% Initialization %%% 
del = logB(:,Observs(1))' + logC'; 
psi = zeros(1,M); 
 
%%% Rercursion %%% 
 
for t=2:T, 
 
 for j=1:M, 
  [y, max_i] = max( del(t-1,:)' + logA(:,j) ); 
  del_temp(j) = y + logB(j,Observs(t)); 
  psi_temp(j) = max_i; 
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 end 
 del = [del; del_temp]; 
 psi = [psi; psi_temp]; 
 
end 
 
%%% Termination %%% 
 
[P, max_i] = max( del(T,:) ); 
 
state_seq = zeros(T,1); 
state_seq(T) = max_i; 
 
%%% Path Backtracking %%% 
 
for t=T-1:-1:1, 
 state_seq(t) = psi(t+1,state_seq(t+1)); 
end 
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Appendix B:Appendix B:Appendix B:Appendix B:     

Participant Briefing MaterialsParticipant Briefing MaterialsParticipant Briefing MaterialsParticipant Briefing Materials    

The following materials used during participant briefing are listed: 

•  Informed Consent Form 

•  Authorization to Release Protected Health Information 

•  Briefing materials (used in the experiment in Chapter 3) 

•  Briefing materials (used in the experiment in Chapter 4) 

The same Informed Consent Form and Authorization to Release Protected Health Information 

were used in both experiments in Chapter 3 and 4 (except that, in the Informed Consent Form, 

the flight simulator type used was noted Boeing 757, not Boeing 737). Note that the briefing 

materials of both experiments contain the portions of each experiment that were not included in 

the analysis of this thesis, i.e., “Display 2” in the experiment in Chapter 3, and the flight segment 

after passing 1000 ft in the experiment in Chapter 4.  
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Informed Consent Form 

(Page 1) 



114 

 

(Page 2) 
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Authorization to Release Protected Health Information 

(Page 1) 
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(Page 2) 
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Briefing Materials (Experiment in Chapter 3) 
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Briefing Materials (Experiment in Chapter 4) 
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Appendix C:Appendix C:Appendix C:Appendix C:     

HMM ParametersHMM ParametersHMM ParametersHMM Parameters    

The matrices, A0, B0, and C0, are the initial conditions of the HMM model parameters used in 

the HMM_main program (Appendix A). The matrices, A, B, and C, are the estimation results 

from the same program. The vector, log_P_hist, records all the logP values computed during the 

iteration process. The length of this vector also tells how many iteration loops were performed. 

For the experiment in Chapter 3, the model parameter matrices for all the pilots and for all the 

segments are listed here. For the experiment in Chapter 4, due to the large number of the 

parameters, only those of Pilot 3 (who showed both a 3-state and a 4-state HMM in different 

segments or with different indicator formats) were listed. 

Experiment in Chapter 3 

*** Pilot 1 *** 
Pilot 1, segment (i): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.32 0.18 0.27 0.00 0.18 0.05 0.00; 
 0.00 0.32 0.00 0.32 0.36 0.00 0.00 0.00; 
 0.36 0.22 0.00 0.00 0.00 0.00 0.05 0.37]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.781528 0.137924 0.080548 

0.314858 0.629403 0.055739 
0.310023 0.231385 0.458593] 

B = [ 0.000000 0.483746 0.278080 0.041200 0.000000 0.196973 0.000000 0.000000 
0.000000 0.340820 0.000000 0.152013 0.507167 0.000000 0.000000 0.000000 
0.317890 0.335322 0.000000 0.000000 0.000000 0.000000 0.000000 0.346789] 

C = [ 0.703458 0.191439 0.105102] 
 
log_P_hist =  -460.9989 -458.4280 

 
Pilot 1, segment (i): Alternative 3-state HMM (Power indicator included in vertical task) 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.32 0.13 0.27 0.00 0.13 0.05 0.10; 
 0.00 0.32 0.00 0.42 0.26 0.00 0.00 0.00; 
 0.73 0.22 0.00 0.00 0.00 0.00 0.05 0.00]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.820673 0.134624 0.044703 

0.316468 0.631928 0.051604 
0.330717 0.279139 0.390145] 

B = [ 0.000000 0.453447 0.256113 0.044998 0.000000 0.181413 0.000000 0.064028 
0.000000 0.346610 0.000000 0.138500 0.514890 0.000000 0.000000 0.000000 
0.522080 0.477920 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000] 

C = [ 0.648781 0.189466 0.161753] 
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log_P_hist =  -462.8109 -461.1551 

 
Pilot 1, segment (ii): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.32 0.18 0.27 0.00 0.18 0.05 0.00; 
 0.00 0.32 0.00 0.32 0.36 0.00 0.00 0.00; 
 0.36 0.22 0.00 0.00 0.00 0.00 0.05 0.37]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.683760 0.257197 0.059043 

0.123111 0.856892 0.019998 
0.163038 0.391269 0.445692] 

B = [ 0.000000 0.096173 0.293759 0.177369 0.000000 0.431999 0.000700 0.000000 
0.000000 0.199820 0.000000 0.235270 0.564910 0.000000 0.000000 0.000000 
0.046020 0.313434 0.000000 0.000000 0.000000 0.000000 0.042290 0.598256] 

C = [ 1.000000 0.000000 0.000000] 
 
log_P_hist =  -602.1820 -598.3334 

 
 

Pilot 1, segment (ii): 2-state HMM 
A0 = [ 0.80 0.20; 
 0.30 0.70]; 
B0 = [ 0.05 0.32 0.13 0.27 0.00 0.13 0.05 0.05; 
 0.00 0.32 0.00 0.32 0.36 0.00 0.00 0.00]; 
C0 = [ 0.50; 0.50]; 
 
A = [ 0.714544 0.285456 

0.158672 0.841328] 
B = [ 0.006914 0.140137 0.235074 0.175384 0.000000 0.345696 0.006914 0.089881 

0.000000 0.196355 0.000000 0.223070 0.580575 0.000000 0.000000 0.000000] 
C = [ 1.000000 0.000000] 
 
log_P_hist =  -612.9896 -609.7237 
 
Pilot 1, segment (iii): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.32 0.18 0.27 0.00 0.18 0.05 0.00; 
 0.00 0.27 0.00 0.27 0.46 0.00 0.00 0.00; 
 0.43 0.12 0.00 0.00 0.00 0.00 0.01 0.44]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.770032 0.192663 0.037305 

0.229665 0.754401 0.015934 
0.258160 0.291849 0.449992] 

B = [ 0.000000 0.135085 0.175119 0.344774 0.000000 0.308308 0.036714 0.000000 
0.000000 0.144373 0.000000 0.287444 0.568183 0.000000 0.000000 0.000000 
0.342083 0.181250 0.000000 0.000000 0.000000 0.000000 0.003015 0.473653] 

C = [ 1.000000 0.000000 0.000000] 
 
log_P_hist =  1.0e+003 *   -1.3215   -1.3182 
 
 
Pilot 1, segment (iii): 2-state HMM 
A0 = [ 0.80 0.20; 
 0.30 0.70]; 
B0 = [ 0.05 0.32 0.13 0.27 0.00 0.13 0.05 0.05; 
 0.00 0.27 0.00 0.27 0.46 0.00 0.00 0.00]; 
C0 = [ 0.50; 0.50]; 
 
 
A = [ 0.790718 0.209282 

0.261125 0.738875] 
B = [ 0.029029 0.138098 0.158542 0.321520 0.000000 0.279123 0.033495 0.040194 

0.000000 0.145617 0.000000 0.279236 0.575148 0.000000 0.000000 0.000000] 
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C = [ 1.000000 0.000000] 
 
log_P_hist =  1.0e+003 *   -1.3367   -1.3360 
 
 
*** Pilot 2 *** 
Pilot 2, segment (i): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.32 0.18 0.27 0.00 0.18 0.05 0.00; 
 0.00 0.32 0.00 0.32 0.36 0.00 0.00 0.00; 
 0.26 0.42 0.00 0.00 0.00 0.00 0.05 0.27]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.777005 0.061060 0.161935 

0.237894 0.655147 0.106958 
0.257428 0.092838 0.649734] 

B = [ 0.000000 0.479609 0.301677 0.001137 0.000000 0.116557 0.101019 0.000000 
0.000000 0.236095 0.000000 0.230961 0.532944 0.000000 0.000000 0.000000 
0.367998 0.367682 0.000000 0.000000 0.000000 0.000000 0.003160 0.261160] 

C = [ 0.000000 0.000000 1.000000] 
 
log_P_hist =  -460.4763 -454.8730 -452.6376 

 
Pilot 2, segment (ii): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.32 0.18 0.27 0.00 0.18 0.05 0.00; 
 0.00 0.40 0.00 0.32 0.28 0.00 0.00 0.00; 
 0.36 0.22 0.00 0.00 0.00 0.00 0.05 0.37]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.776819 0.130021 0.093160 

0.219141 0.735561 0.045298 
0.179332 0.199551 0.621117] 

B = [ 0.000000 0.482673 0.262659 0.074167 0.000000 0.163167 0.017335 0.000000 
0.000000 0.407959 0.000000 0.202137 0.389904 0.000000 0.000000 0.000000 
0.476572 0.348955 0.000000 0.000000 0.000000 0.000000 0.055331 0.119143] 

C = [ 0.074955 0.925045 0.000000] 
 
log_P_hist =  -834.9901 -830.7192 

 
Pilot 2, segment (iii): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70] 
B0 = [ 0.00 0.32 0.08 0.47 0.00 0.08 0.05 0.00; 
 0.00 0.32 0.00 0.22 0.46 0.00 0.00 0.00; 
 0.36 0.22 0.00 0.00 0.00 0.00 0.05 0.37] 
C0 = [ 0.34; 0.33; 0.33] 
 
A = [ 0.753674 0.135034 0.111293 

0.262695 0.668023 0.069282 
0.228979 0.148283 0.622738] 

B = [ 0.000000 0.348938 0.279873 0.142252 0.000000 0.186582 0.042355 0.000000 
0.000000 0.349048 0.000000 0.193041 0.457911 0.000000 0.000000 0.000000 
0.573988 0.209135 0.000000 0.000000 0.000000 0.000000 0.047624 0.169253] 

C = [ 0.024434 0.954715 0.020851] 
 
log_P_hist =  1.0e+003 *   -1.2105   -1.2047 
 
 
*** Pilot 3 *** 
Pilot 3, segment (i): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
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B0 = [ 0.00 0.32 0.18 0.27 0.00 0.18 0.05 0.00; 
 0.00 0.32 0.00 0.32 0.36 0.00 0.00 0.00; 
 0.34 0.27 0.00 0.00 0.00 0.00 0.05 0.34]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.599194 0.061987 0.338819 

0.338972 0.514764 0.146265 
0.377992 0.163618 0.458390] 

B = [ 0.000000 0.483149 0.376774 0.032428 0.000000 0.107650 0.000000 0.000000 
0.000000 0.386560 0.000000 0.229809 0.383631 0.000000 0.000000 0.000000 
0.393498 0.446975 0.000000 0.000000 0.000000 0.000000 0.000000 0.159526] 

C = [ 1.000000 0.000000 0.000000] 
 
log_P_hist =  -434.3645 -428.9493 -426.5116 
 
 
Pilot 3, segment (ii): 3-state HMM 
A0 = [ 0.70 0.15 0.15; 
 0.10 0.80 0.10; 
 0.15 0.15 0.70] 
B0 = [ 0.00 0.27 0.18 0.32 0.00 0.18 0.05 0.00; 
 0.00 0.32 0.00 0.32 0.36 0.00 0.00 0.00; 
 0.37 0.22 0.00 0.00 0.00 0.00 0.05 0.36] 
C0 = [ 0.34; 0.33; 0.33] 
 
A = [ 0.636592 0.121591 0.241817 

0.122486 0.773076 0.104438 
0.294434 0.176802 0.528764] 

B = [ 0.000000 0.536844 0.315151 0.077615 0.000000 0.055026 0.015364 0.000000 
0.000000 0.516241 0.000000 0.150991 0.332768 0.000000 0.000000 0.000000 
0.386357 0.483141 0.000000 0.000000 0.000000 0.000000 0.006082 0.124420] 

C = [ 0.223538 0.776462 0.000000] 
 
log_P_hist =  -858.1734 -853.0620 
 
 
Pilot 3, segment (iii): 3-state HMM 
A0 = [ 0.80 0.10 0.10; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70] 
B0 = [ 0.00 0.37 0.08 0.42 0.00 0.08 0.05 0.00; 
 0.00 0.22 0.00 0.27 0.51 0.00 0.00 0.00; 
 0.37 0.22 0.00 0.00 0.00 0.00 0.05 0.36] 
C0 = [ 0.34; 0.33; 0.33] 
 
A = [ 0.682069 0.104936 0.212995 

0.126548 0.716956 0.156496 
0.461650 0.109987 0.428363] 

B = [ 0.000000 0.523826 0.188699 0.209811 0.000000 0.076499 0.001165 0.000000 
0.000000 0.365526 0.000000 0.201840 0.432634 0.000000 0.000000 0.000000 
0.501621 0.433678 0.000000 0.000000 0.000000 0.000000 0.002595 0.062106] 

C = [ 0.089034 0.050477 0.860488] 
 
log_P_hist =  1.0e+003 *   -1.2775   -1.2651 
 
 
*** Pilot 4 *** 
Pilot 4, segment (i): 3-state HMM 
A0 = [ 0.70 0.15 0.15; 

0.15 0.70 0.15; 
0.15 0.15 0.70] 

B0 = [ 0.00 0.37 0.15 0.27 0.00 0.16 0.05 0.00; 
0.00 0.32 0.00 0.42 0.26 0.00 0.00 0.00; 
0.39 0.17 0.00 0.00 0.00 0.00 0.05 0.39] 

C0 = [ 0.34; 0.33; 0.33] 
 
A = [ 0.737529 0.167275 0.095196 

0.329661 0.629410 0.040929 
0.236739 0.150682 0.612580] 

B = [ 0.000000 0.587102 0.344363 0.012313 0.000000 0.056223 0.000000 0.000000 
0.000000 0.517848 0.000000 0.103974 0.378178 0.000000 0.000000 0.000000 
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0.391880 0.239291 0.000000 0.000000 0.000000 0.000000 0.000000 0.368828] 
C = [ 0.926343 0.059556 0.014101] 
 
log_P_hist =  -372.5250 -370.5004 
 
 
Pilot 4, segment (ii): 3-state HMM 
A0 = [ 0.70 0.15 0.15; 

0.15 0.70 0.15; 
0.15 0.15 0.70] 

B0 = [ 0.00 0.32 0.15 0.32 0.00 0.16 0.05 0.00; 
0.00 0.32 0.00 0.42 0.26 0.00 0.00 0.00; 
0.39 0.17 0.00 0.00 0.00 0.00 0.05 0.39] 

C0 = [ 0.34; 0.33; 0.33] 
 
A = [ 0.752941 0.168784 0.078276 

0.262141 0.699770 0.038089 
0.307471 0.204662 0.487868] 

B = [ 00.000000 0.579324 0.304336 0.072424 0.000000 0.023156 0.020760 0.000000 
0.000000 0.417856 0.000000 0.200743 0.381401 0.000000 0.000000 0.000000 
0.387411 0.487903 0.000000 0.000000 0.000000 0.000000 0.027833 0.096853] 

C = [ 0.787428 0.137969 0.074603] 
 
log_P_hist =  -813.7323 -809.5535 
 
 
Pilot 4, segment (iii): 3-state HMM 
A0 = [ 0.70 0.15 0.15; 
 0.15 0.70 0.15; 
 0.15 0.15 0.70]; 
B0 = [ 0.00 0.32 0.15 0.32 0.00 0.16 0.05 0.00; 
 0.00 0.32 0.00 0.42 0.26 0.00 0.00 0.00; 
 0.39 0.17 0.00 0.00 0.00 0.00 0.05 0.39]; 
C0 = [ 0.34; 0.33; 0.33]; 
 
A = [ 0.624823 0.283601 0.091576 

0.125255 0.832025 0.042720 
0.156970 0.332681 0.510348] 

B = [ 0.000000 0.673942 0.084073 0.115877 0.000000 0.126109 0.000000 0.000000 
0.000000 0.565080 0.000000 0.143491 0.291429 0.000000 0.000000 0.000000 
0.380780 0.501047 0.000000 0.000000 0.000000 0.000000 0.000000 0.118173] 

C = [ 0.346500 0.561662 0.091838] 
 
log_P_hist =  -916.6211 -915.2449 
 
Pilot 4, segment (iii): 4-state HMM 
A0 = [ 0.70 0.10 0.10    0.10; 
 0.10 0.70 0.10    0.10; 
 0.10 0.10 0.70    0.10; 
          0.05     0.20     0.05    0.70]; 
B0 = [ 0.00 0.22 0.26 0.22 0.00 0.26 0.05 0.00; 
 0.00 0.22 0.00 0.22 0.56 0.00 0.00 0.00; 
 0.36 0.17 0.00 0.00 0.00 0.00 0.05 0.42; 
         0.00     0.75     0.00     0.25     0.00     0.00     0.00     0.00]; 
C0 = [ 0.25; 0.25; 0.25; 0.25]; 
 
A = [ 0.470391 0.193769 0.116333 0.219507 

0.112559 0.664348 0.032035 0.191058 
0.071911 0.211831 0.519828 0.196431 
0.072517 0.333111 0.041921 0.552451] 

B = [ 0.000000 0.560946 0.144047 0.078936 0.000000 0.216071 0.000000 0.000000 
0.000000 0.457450 0.000000 0.127977 0.414573 0.000000 0.000000 0.000000 
0.425621 0.442290 0.000000 0.000000 0.000000 0.000000 0.000000 0.132089 
0.000000 0.830499 0.000000 0.169501 0.000000 0.000000 0.000000 0.000000] 

C = [ 0.011794 0.014489 0.004910 0.968807] 
 
log_P_hist =  -936.6816 -925.6608 -920.5743 
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Experiment in Chapter 4 

*** Pilot 3 *** 
Pilot 3, segment (i), PGD: 3-state HMM 
A0 = [ 0.700000 0.150000 0.150000 

0.150000 0.700000 0.150000 
0.150000 0.150000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000] 

C0 = [ 0.340000 0.330000 0.330000] 
 
A = [ 0.662176 0.054339 0.283486 

0.210244 0.523574 0.266182 
0.208935 0.079432 0.711634 

B = [ 0.000000 0.000000 0.297221 0.000000 0.000000 0.021175 0.352920 0.317628 0.011055 
0.000000 0.000000 0.570759 0.150234 0.279007 0.000000 0.000000 0.000000 0.000000 
0.377604 0.197011 0.423012 0.000000 0.000000 0.000000 0.000000 0.000000 0.002374 

C = [ 0.053767 0.096677 0.849556 
 
log_P_hist =  -597.056181 -595.072930 
 
Pilot 3, segment (i), PD: 3-state HMM 
A0 = [ 0.700000 0.150000 0.150000 

0.150000 0.700000 0.150000 
0.150000 0.150000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000] 

C0 = [ 0.340000 0.330000 0.330000] 
 
A = [ 0.714776 0.086701 0.198524 

0.152049 0.521497 0.326454 
0.167054 0.085468 0.747478] 

B = [ 0.000000 0.000000 0.265179 0.000000 0.000000 0.019774 0.369110 0.342745 0.003192 
0.000000 0.000000 0.509315 0.094971 0.395713 0.000000 0.000000 0.000000 0.000000 
0.413576 0.231405 0.352480 0.000000 0.000000 0.000000 0.000000 0.000000 0.002539 

C = [ 0.000000 0.000000 1.000000 
 
log_P_hist =  -678.263349 -677.087724 
 
 
Pilot 3, segment (i), D: 3-state HMM 
A0 = [ 0.700000 0.150000 0.150000 

0.150000 0.700000 0.150000 
0.150000 0.150000 0.700000 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000 

C0 = [ 0.340000 0.330000 0.330000 
 
A = [ 0.677510 0.052448 0.270042 

0.210884 0.504727 0.284389 
0.207010 0.074065 0.718925] 

B = [ 0.000000 0.000000 0.300378 0.000000 0.000000 0.019325 0.373616 0.302758 0.003923 
0.000000 0.000000 0.517076 0.131706 0.351217 0.000000 0.000000 0.000000 0.000000 
0.422235 0.257461 0.318291 0.000000 0.000000 0.000000 0.000000 0.000000 0.002013] 

C = [ 0.573574 0.288147 0.138278] 
 
log_P_hist =  -650.837391 -650.275898 
 
 
Pilot 3, segment (ii), PGD: 3-state HMM 
A0 = [ 0.700000 0.150000 0.150000 

0.150000 0.700000 0.150000 
0.150000 0.150000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000] 

C0 = [ 0.340000 0.330000 0.330000] 
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A = [ 0.615797 0.133423 0.250779 

0.172827 0.483152 0.344021 
0.242091 0.090213 0.667696] 

B = [ 0.000000 0.000000 0.353465 0.000000 0.000000 0.019396 0.368525 0.258614 0.000000 
0.000000 0.000000 0.499756 0.197465 0.302779 0.000000 0.000000 0.000000 0.000000 
0.476029 0.081897 0.442074 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000] 

C = [ 0.000000 1.000000 0.000000] 
 
log_P_hist =  -671.951056 -670.176382 
 
 
Pilot 3, segment (ii), PD: 3-state HMM 
A0 = [ 0.700000 0.150000 0.150000 

0.150000 0.700000 0.150000 
0.150000 0.150000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000] 

C0 = [ 0.340000 0.330000 0.330000] 
 
A = [ 0.592433 0.123754 0.283814 

0.136223 0.573387 0.290390 
0.223795 0.124628 0.651577] 

B = [ 0.000000 0.000000 0.371364 0.000000 0.000000 0.000000 0.368152 0.250344 0.010140 
0.000000 0.000000 0.525284 0.147689 0.327027 0.000000 0.000000 0.000000 0.000000 
0.402313 0.094047 0.500385 0.000000 0.000000 0.000000 0.000000 0.000000 0.003254] 

C = [ 0.000000 0.000000 1.000000] 
 
log_P_hist =  -649.980511 -647.560887 
 

 
Pilot 3, segment (ii), D: 3-state HMM 
A0 = [ 0.700000 0.150000 0.150000 

0.150000 0.700000 0.150000 
0.150000 0.150000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000] 

C0 = [ 0.340000 0.330000 0.330000] 
 
A = [ 0.657681 0.110660 0.231658 

0.337061 0.404718 0.258221 
0.136541 0.099813 0.763645] 

B = [ 0.000000 0.000000 0.302278 0.000000 0.000000 0.020455 0.436378 0.231826 0.009063 
0.000000 0.000000 0.395736 0.174919 0.429346 0.000000 0.000000 0.000000 0.000000 
0.461281 0.136502 0.394353 0.000000 0.000000 0.000000 0.000000 0.000000 0.007864] 

C = [ 0.000000 0.000000 1.000000] 
 
log_P_hist =  -691.678567 -689.975851 
 
Pilot 3, segment (iv), PGD: 4-state HMM 
A0 = [ 0.700000 0.100000 0.100000 0.100000 

0.100000 0.700000 0.100000 0.100000 
0.100000 0.100000 0.700000 0.100000 
0.100000 0.100000 0.100000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000 
0.000000 0.000000 0.800000 0.100000 0.050000 0.050000 0.000000 0.000000 0.000000] 

C0 = [ 0.250000 0.250000 0.250000 0.250000] 
 
A = [ 0.564352 0.106754 0.261297 0.067597 

0.109672 0.748947 0.045686 0.095695 
0.216074 0.181302 0.524237 0.078387 
0.123694 0.191315 0.175227 0.509764] 

B = [ 0.000000 0.000000 0.306913 0.000000 0.000000 0.184670 0.266060 0.235826 0.006531 
0.000000 0.000000 0.257247 0.353705 0.389048 0.000000 0.000000 0.000000 0.000000 
0.455539 0.158448 0.379940 0.000000 0.000000 0.000000 0.000000 0.000000 0.006074 
0.000000 0.000000 0.691591 0.131876 0.069210 0.107324 0.000000 0.000000 0.000000] 
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C = [ 0.000000 0.932009 0.000000 0.067991] 
 
log_P_hist =  -1155.914774 -1149.768710 
 
 
Pilot 3, segment (iv), PD: 4-state HMM 
A0 = [ 0.700000 0.100000 0.100000 0.100000 

0.100000 0.700000 0.100000 0.100000 
0.100000 0.100000 0.700000 0.100000 
0.100000 0.100000 0.100000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000 
0.000000 0.000000 0.800000 0.100000 0.050000 0.050000 0.000000 0.000000 0.000000] 

C0 = [ 0.250000 0.250000 0.250000 0.250000] 
 
A = [ 0.627169 0.084804 0.244173 0.043854 

0.098277 0.723418 0.067782 0.110524 
0.231225 0.216509 0.470679 0.081586 
0.196235 0.128596 0.178371 0.496798] 

B = [ 0.000000 0.000000 0.232106 0.000000 0.000000 0.235103 0.323214 0.208846 0.000731 
0.000000 0.000000 0.199053 0.428088 0.372859 0.000000 0.000000 0.000000 0.000000 
0.477979 0.185881 0.323839 0.000000 0.000000 0.000000 0.000000 0.000000 0.012301 
0.000000 0.000000 0.727588 0.113351 0.052900 0.106161 0.000000 0.000000 0.000000] 

C = [ 0.000000 0.984731 0.000000 0.015269] 
log_P_hist =  -1190.548092 -1183.471128 
 
 
Pilot 3, segment (iv), D: 4-state HMM 
A0 = [ 0.700000 0.100000 0.100000 0.100000 

0.100000 0.700000 0.100000 0.100000 
0.100000 0.100000 0.700000 0.100000 
0.100000 0.100000 0.100000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000 
0.000000 0.000000 0.800000 0.100000 0.050000 0.050000 0.000000 0.000000 0.000000 

C0 = [ 0.250000 0.250000 0.250000 0.250000 
 
A = [ 0.592578 0.065025 0.290399 0.051998 

0.083451 0.663370 0.138553 0.114626 
0.171128 0.239716 0.516010 0.073147 
0.120204 0.124201 0.206080 0.549515] 

B = [ 0.000000 0.000000 0.194913 0.000000 0.000000 0.181588 0.346100 0.269189 0.008209 
0.000000 0.000000 0.236828 0.391580 0.371592 0.000000 0.000000 0.000000 0.000000 
0.478245 0.220729 0.283045 0.000000 0.000000 0.000000 0.000000 0.000000 0.017981 
0.000000 0.000000 0.677561 0.144726 0.070145 0.107569 0.000000 0.000000 0.000000] 

C = [ 0.000000 0.379747 0.000000 0.620253] 
 
log_P_hist =  -1012.491289 -1007.558588 
 
 
Pilot 3, segment (v), PGD: 4-state HMM 
A0 = [ 0.700000 0.100000 0.100000 0.100000 

0.100000 0.700000 0.100000 0.100000 
0.100000 0.100000 0.700000 0.100000 
0.100000 0.100000 0.100000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000 
0.000000 0.000000 0.800000 0.100000 0.050000 0.050000 0.000000 0.000000 0.000000] 

C0 = [ 0.250000 0.250000 0.250000 0.250000] 
 
A = [ 0.660911 0.076962 0.196454 0.065674 

0.086470 0.698801 0.108051 0.106678 
0.251231 0.188935 0.450050 0.109784 
0.137106 0.185769 0.169499 0.507625] 

B = [ 0.000000 0.000000 0.266975 0.000000 0.000000 0.325010 0.181517 0.215131 0.011366 
0.000000 0.000000 0.307363 0.353644 0.338993 0.000000 0.000000 0.000000 0.000000 
0.373103 0.177224 0.446788 0.000000 0.000000 0.000000 0.000000 0.000000 0.002885 
0.000000 0.000000 0.770352 0.115221 0.067093 0.047334 0.000000 0.000000 0.000000] 
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C = [ 0.000000 0.957863 0.000000 0.042137] 
 
log_P_hist =  -837.316038 -831.420022 
 
 
Pilot 3, segment (v), PD: 3-state HMM 
A0 = [ 0.700000 0.150000 0.150000 

0.150000 0.700000 0.150000 
0.150000 0.150000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000] 

C0 =  0.250000 0.250000 0.250000] 
 
A = [ 0.666216 0.150177 0.183607 

0.142234 0.663176 0.194590 
0.250523 0.165692 0.583785] 

B = [ 0.000000 0.000000 0.291266 0.000000 0.000000 0.327290 0.143548 0.229677 0.008218 
0.000000 0.000000 0.306312 0.386864 0.306823 0.000000 0.000000 0.000000 0.000000 
0.408388 0.190581 0.397160 0.000000 0.000000 0.000000 0.000000 0.000000 0.003872] 

C = [ 0.000000 0.000000 1.000000] 
 
log_P_hist =  -859.011893 -857.940029 
 
Pilot 3, segment (v), D: 4-state HMM 
A0 = [ 0.700000 0.100000 0.100000 0.100000 

0.100000 0.700000 0.100000 0.100000 
0.100000 0.100000 0.700000 0.100000 
0.100000 0.100000 0.100000 0.700000] 

B0 = [ 0.000000 0.000000 0.320000 0.000000 0.000000 0.170000 0.170000 0.170000 0.170000 
0.000000 0.000000 0.320000 0.290000 0.390000 0.000000 0.000000 0.000000 0.000000 
0.230000 0.230000 0.320000 0.000000 0.000000 0.000000 0.000000 0.000000 0.220000 
0.000000 0.000000 0.800000 0.100000 0.050000 0.050000 0.000000 0.000000 0.000000] 

C0 = [ 0.250000 0.250000 0.250000 0.250000] 
 
A = [ 0.676568 0.066415 0.202640 0.054377 

0.188194 0.623023 0.086097 0.102686 
0.160249 0.171168 0.578400 0.090183 
0.266001 0.095176 0.190626 0.448198] 

B = [ 0.000000 0.000000 0.263084 0.000000 0.000000 0.322280 0.139902 0.220614 0.054120 
0.000000 0.000000 0.212272 0.432522 0.355205 0.000000 0.000000 0.000000 0.000000 
0.454105 0.209587 0.322741 0.000000 0.000000 0.000000 0.000000 0.000000 0.013567 
0.000000 0.000000 0.685009 0.142436 0.042865 0.129689 0.000000 0.000000 0.000000] 

C = [ 0.000000 0.000000 1.000000 0.000000] 
 
log_P_hist =  -937.377627 -932.952313 
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