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Abstract

The supersonic flight community is currently faced with two cavity-under-cross-flow related
problems, one being the high noise levels inside the cavity and the other being the return
of a store into the cavity after being released from inside. This thesis provides a systematic
framework to understand the dominant physics in both problems and to provide solutions
for ameliorating the problems. For the first problem, an innovative cavity acoustics model
is developed that rigorously explains the role of leading edge microjets in cavity noise
suppression and predicts the magnitude of noise reduction for a given control input (that
is the steady pressure at which the microjets are fired). The model is validated through
comparison of its noise reduction predictions with experiments done using the Florida State
University cavity and wind tunnel for different microjet pressures and under Mach 2.0 and
Reynolds number 3 million flow, with the microjets being of diameter 400 microns. Based
on the cavity acoustics model, optimization of the control input is performed for microjet-
based noise suppression of a general cavity under external cross-flow. The resulting control
strategy for the FSU cavity is that of an open loop steady microjet firing with the pressure
being uniform along the leading edge. This corresponds to a noise reduction of 9 dB OASPL
and 20 dB SPL at the dominant tone. The cavity also exhibits saturation in noise reduction
for microjet pressures higher than 30 psig.

The second problem that the thesis is concerned with, is that of unsuccessful store drops
from an external bay of an aircraft in flight. A group of researchers under the DARPA-
funded HIFEX Program is currently developing an effective control mechanism to ensure
safe release of a slender axi-symmetric store from a rectangular cavity under supersonic
external cross-flow. The actuator being tested under this program is based on a tandem
array of microjet flow injectors distributed in the spanwise direction near the leading edge
of the cavity, and the control input is the steady pressure levels at which the microjets
are fired. In order to optimize the control input to ensure safe store departure, a low
order model that reliably predicts the trend in the store drop trajectory in the presence
of microjets becomes necessary. In this thesis, a suitable low-order model is developed
with separate components to predict the pitch and plunge motion of the store when it is
inside the cavity, when it is passing through the shear layer at the mouth of the cavity
and when it is completely outside the cavity. The model is based on slender axi-symmetric
body aerodynamics, thin shear layer at the cavity mouth, high Reynolds number external
cross-flow, plane shock waves associated with the microjet actuators, no-flow condition
inside the cavity and inconsideration of the cavity acoustic field. The model is validated by
comparing with the results of store drop experiments performed under the HIFEX Program
at Mach 2.0 and 2.46 using a generic sub-scale weapons bay for different control inputs. The

3



store drop was observed experimentally and predicted by the model to fail when microjets
were switched off and successful with microjets on. However, with an increase in microjet
pressure, the store drop became unsuccessful. Finally, an optimization of the control input
to ensure clean store departure for a host of drop conditions is performed using the low-order
model.

Although the underlying time scales of the cavity noise and store release problems are
different with the result that the two problems have distinct governing equations and so-
lutions, a notable common thread for both the problems is the microjet-dependent control
parameter (that is the microjet-cross-flow momentum flux ratio). Microjets introduce mo-
mentum flux into the cavity noise dynamics, that damps out noise inside the cavity. The
magnitude of noise reduction is saturated at higher momentum ratio (or higher microjet
pressure) because of nonlinear damping effects. The addition of momentum flux also cre-
ates a virtual obstruction to the external flow which gets decelerated, compressed and turns
away from the cavity, thereby affecting the forces on the store and in turn its separation tra-
jectory. Lower microjet momentum ratio causes the store to drop successfully while higher
ratio results in its return towards the cavity because of the nonlinear interaction between
the normal force and moment on the store, and store velocity and angle of attack together
with the external flow turning angle.

Thesis Committee Member: Dr Anuradha M. Annaswamy
Title: Senior Research Scientist of Mechanical Engineering

Thesis Committee Member: Dr Ahmed F. Ghoniem
Title: Professor of Mechanical Engineering

Thesis Committee Member: Dr James D. Paduano
Title: Principal Research Engineer of Aeronautics and Astronautics

Thesis Committee Member: Dr Karen E. Willcox
Title: Assistant Professor of Aeronautics and Astronautics

Thesis Committee Member: Dr Jaime Peraire
Title: Professor of Aeronautics and Astronautics

4



Acknowledgments

I would like to express my gratitude to my advisor, Dr Anuradha Annaswamy, for in-

troducing the problem to me and for giving me unstinting guidance, advice and support

throughout the execution of the thesis work and especially during the difficult times. Many

thanks to my other thesis committee members (Professors Ahmed Ghoniem, Karen Will-

cox, Jaime Peraire and Jim Paduano) and Prof. Edward Greitzer whose inputs during the

critical stages of the thesis work were invaluable. The patience of my thesis committee,

particularly while I was traversing the learning curve, is indeed commendable.

A special mention must be made of the folks at the Florida State University Fluid

Mechanics Research Laboratory. Among the faculty members are Drs. Farrukh Alvi, An-

janeyulu Krothapalli and Luiz Lourenco. Among the students are Ning Zhuang, Bahadir

Alkislar, Brent Greska, Joe Allard, Richard Trotta, Huadong Lou and Charney Davy. Fi-

nally among the staff members are Bobby Depriest and Robert Avant. They provided

timely help and allowed me to use the necessary laboratory facilities for my experimental

work. The warm Florida weather and the enthusiastic support of the Florida State folks

also enabled me to undertake non-thesis-related activities which are not possible in the rel-

atively colder Boston area. Because of all this, my trips to Florida State during summers

of 2002 and 2003 will always be cherished.

In addition, I am grateful to the following graduate students at the Active Adaptive

Control Laboratory and Reactive Gas Dynamics Laboratory of MIT who provided valuable

inputs during various stages of the project - Jae Jeen Choi, Sungbae Park, Daehyun Wee and

Youssef Marzouk. I must also thank Marie Stuppard, the Academic Program Administrator

of Aeronautics and Astronautics for making my graduate life a little smoother despite me

facing funding problems on a regular basis during my graduate life.

The unflinching support and encouragement of my family also helped me a great deal

to grow as an individual and a researcher during my tenure at MIT.

This work was performed through a subcontract from The Boeing Company under the

DARPA program "High-Frequency Excitation Active Flow Control for Supersonic Weapons

Release" (Cooperative Agreement F49620-00-2-0384) and their cooperation is highly appre-

ciated.

5



6



Contents

Abstract 3

Acknowledgments 5

Table of Contents 7

List of Figures 10

List of Tables 18

1 Introduction 21

1.1 Problem (I): Cavity Noise Under Supersonic Flow ..... .............. 21

1.1.1 Problem Statement ....... ............................ 22

1.1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1.3 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2 Problem (II): Store Separation From Bay Under Supersonic Flow . . . . . . 27

1.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.2 B ackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.3 Contributions of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Comparison of Cavity Noise and Store Release Problems . . . . . . . . . . . 30

1.4 Scope of T hesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 The Cavity Acoustics Problem 33

2.1 Cavity Tones in the Absence of Microjets . . . . . . . . . . . . . . . . . . . 33

2.1.1 Cavity Acoustics Model . . . . . . . . . . . . . . . . . . . . . . . .. 33

2.2 Effect of Microjets on Cavity Tones . . . . . . . . . . . . . . . . . . . . . . . 37

7



2.2.1 Noise Suppression Using Microjets . . . . . . . . . .

2.2.2 Observations After Using Microjets . . . . . . . . . .

2.3 Cavity Acoustics Model in the Presence of Microjets . . . .

2.3.1 Uniform Control Case . . . . . . . . . . . . . . . . .

2.3.2 Non-Uniform Control Case . . . . . . . . . . . . . .

2.4 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Optimization of Control Input for Microjet-Based Cavity Noise Suppres-

sion

Problem Formulation . . . . . . . . . . . . . . .

Standard Optimal Control Solution Methods

New Approach for Optimizing Control Input

3.3.1 Proper Orthogonal Decomposition . . .

3.3.2 POD-Based Optimization Procedure . .

3.3.3 RePOD-Based Optimization Procedure

Experimental Results . . . . . . . . . . . . . . .

Sum m ary . . . . . . . . . . . . . . . . . . . . .

4 Store Separation From Bay Under Supersonic

4.1 Store Release Model Development . . . . . . .

Cross-Flow

4.1.1 General Governing Equation for Two Dimensional Model . .

4.1.2 Contribution of Wavy Structures to Store Force and Moment

4.1.3 Store Motion Induced Velocity Potential . . . . . . . . . . . .

4.1.4 Force and Moment for Store Inside Cavity . . . . . . . . . . .

4.1.5 Force and Moment When Store Crosses Shear Layer . . . . .

4.1.6 Force and Moment for Store Outside Cavity . . . . . . . . . .

4.2 Analysis of the Complete Store Drop . . . . . . . . . . . . . . . . . .

4.2.1 No microjets present . . . . . . . . . . . . . . . . . . . . . . .

4.2.2 M icrojets Present . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Experimental Validation of Store Drop Model . . . . . . . . . . . . .

4.3.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . .

4.3.2 Comparison with the Model . . . . . . . . . . . . . . . . ...

4.4 Optimization of Control Input in Store Drop Setup . . . . . . . . . .

8

. . . . . . . . . 38

. . . . . . . . . 39

. . . . . . . . . 40

. . . . . . . . . 4 1

. . . . . . . . . 46

. . . . . . . . . 48

3.1

3.2

3.3

3.4

3.5

49

49

.. . . . 50

. . . . . . . . 50

. . . . . . . . 51

. . . . . . . . 52

. . . . . . . . 53

. . . . . . . . 54

. . . . . . . . 57

59

59

62

63

67

68

70

72

74

75

76

79

79

80

84



5 Conclusions 87

5.1 Cavity Noise Under Supersonic Flow . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Store Separation from Bay Under Supersonic Flow . . . . . . . . . . . . . . 89

5.3 Limitations of the Low Order Models . . . . . . . . . . . . . . . . . . . . . . 90

A Order-of-Magnitude Analysis for the 2-D Uncontrolled Cavity Acoustics

Model 93

B Derivation of Green's Function in 2-D Uncontrolled Cavity Acoustics

Model 95

C Relationship Between Microjet Pressure and Associated Leading Edge

Shock Geometry 97

D Derivation of Forcing Function in 2-D Cavity Acoustics Model 99

E Derivation of Forcing Function in 3-D Cavity Acoustics Model 105

F ARX Model for Leading Edge Pressure Prediction for Cavity Noise Con-

trol 109

G Relationship Between Microjet Pressure and Shear Layer Shape, and

Plane Shock Strength 111

H Expression for Store Induced Potential and Forces For Inside Cavity 115

I Expression for Store Induced Potential and Forces For Store Portion Par-

tially Immersed in External Flow 117

J No-cavity Model for Store Outside Cavity 121

K Zero-depth-cavity Model for Store Outside Cavity 125

L Model for Store Outside But Near Cavity 129

M Model for Store Outside Cavity With Thick Shear Layer 133

N Non-dimensional Scheme Used in Different Store Drop Models 135

9



10



List of Figures

1-1 High acoustic noise inside a cavity exposed to external cross-flow with M

2.0, Re = 3 million (based on cavity length) and L/D = 5.1. . . . . . . . . . 22

1-2 Illustration of optimal closed-loop control strategy to be employed in this

thesis for cavity noise reduction. . . . . . . . . . . . . . . . . . . . . . . . . 22

1-3 Classification of models used for various types of cavity-under-external-cross-

flow problem s in this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1-4 Different flow regimes seen by a cavity under external cross-stream. . . . . . 24

1-5 Rossiter mode feedback loop and its components. . . . . . . . . . . .. . . . . 24

1-6 Two interpretations of the driving mechanism for cavity tones under external

cross-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1-7 Possible mechanism for generation of acoustic waves inside the cavity under

external cross-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1-8 Different factors affecting the store release trajectory under supersonic cross-

flow and in the presence of microjet-based actuators. Labels 'a' and 'b'

indicate different rows of microjets located near the cavity leading edge. . . 28

2-1 Configuration of supersonic cavity flow used in the model. . . . . . . . . . . 34

2-2 Illustration of the assumptions behind the reduced-order cavity acoustics model. 35

2-3 Illustration of the method of images for solving the pressure perturbation

field inside the cavity under external cross-flow. . . . . . . . . . . . . . . . . 36

2-4 Matching of experimental and model-predicted SPLs at the cavity leading

edge. The experiment was conducted with external flow having M = 2.0, Re

= 3 million (based on cavity length) and cavity having L/D = 5.1. Uncer-

tainty in experimental SPL was ±0.5dB and uncertainty in frequency ±40Hz

which is 0.8% of the dominant tone. . . . . . . . . . . . . . . . . . . . . . . 37

11



2-5 Various passive devices used for cavity tone suppression in literature and

device location relative to the cavity . . . . . . . . . ... . . . . . . . . . . . . .38

2-6 Experimental arrangement for realizing control in the FSU cavity. The con-

trol input is given in terms of the three microjet pressure banks, from bottom

to top.......... ........................................ 39

2-7 Effect of leading edge shock on the external cross-flow over the cavity. . . . 40

2-8 Close-up of flow structure near the exit of microjet nozzle in the presence of

external cross-flow. Adapted from Papamoschou and Hubbard [16]. . . . . . 41

2-9 Forcin Term versus Z measured at the leading edge for 30 psig microjet1nertia erm P C

pressure. External flow conditions: M = 2.0 and Re = 3 million (based on

cavity length). Cavity dimension: L/D 5.1. . . . . . . . . . . . . . . . . . 42

2-10 Response of 9 measured at the leading edge (LE) for 30 psig microjet pres-p

sure. The initial conditions (at t = 0) correspond to uncontrolled cavity

condition and were: 9 = 0.36 and 2- = 0 (arbitrary). Also, T refers to

the time period corresponding to the dominant cavity tone. External flow

conditions: M = 2.0 and Re = 3 million (based on cavity length). Cavity

dim ension: L/D = 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2-11 Model prediction versus experimentally observed OASPL reduction corre-

sponding to the pressure transducer location at the middle of the leading

edge. External flow conditions: M = 2.0 and Re = 3 million (based on

cavity length). Cavity dimension: L/D =- 5.1. Uncertainty in experimental

OA SPL: ±i1.dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2-12 Model prediction versus experimentally observed SPL spectrum correspond-

ing to the pressure transducer location at the middle of the leading edge and

30 psig microjet pressure. External flow conditions: M = 2.0 and Re = 3

million (based on cavity length). Cavity dimension: L/D = 5.1. Uncertainty

in experimental SPL: ±0.5dB. Uncertainty in frequency: ±40Hz. . . . . . . 44

12



2-13 Experimentally observed SPL spectra corresponding to the pressure trans-

ducer location at the middle of the leading edge. The two spectra are for

the microjets-off and 30 psig microjet pressure respectively. External flow

conditions: M = 2.0 and Re = 3 million (based on cavity length). Cavity

dimension: L/D = 5.1. Uncertainty in experimental SPL: ±0.5dB. Uncer-

tainty in frequency: ±40H z. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-1 Model prediction versus experimentally observed SPL spectrum (a) and OASPL

reduction (b) corresponding to the pressure transducer location at the middle

of the leading edge. External flow conditions: M = 2.0 and Re = 3 million

(based on cavity length). Cavity dimension: L/D = 5.1. Uncertainty in ex-

perimental SPL: ±0.5dB. Uncertainty in frequency: ±40Hz. The microjet

pressure naming convention is based on Figure 2-6. . . . . . . . . . . . . . . 55

3-2 Model prediction versus experimentally observed OASPL reduction corre-

sponding to the pressure transducer location at the middle of the trailing

edge. External flow conditions: M = 2.0 and Re = 3 million (based on cav-

ity length). Cavity dimension: L/D = 5.1. The uncertainty in the pressure

sensor reading was ±1.5dB and in frequency was ±40Hz. Also the initial

conditions for determining d,, were: - = 1.98 and = 0 (arbitrary). . . 56
_ at

4-1 Shock geometry outside the cavity due to application of microjet-based flow

injectors at the leading edge and upstream end. . . . . . . . . . . . . . . . .. 61

4-2 Reference frame for the general problem of a slender axi-symmetric store

falling through a cross-flow in the absence of viscosity and body forces. . . . 64

4-3 Velocity of store while inside cavity for various drop cases, with V = r.

The values of parameters used: Vo = 0.186Uo, g4|= 0.75. . . . . . . . . . 69

4-4 Reference frame used when the store crosses the shear layer slip surface. . . 70

4-5 Conformal transformation required to solve for the velocity potential associ-

ated with the store region partially immersed in the external flow. . . . . . 71

13



4-6 Stability region predicted by the five outside-cavity models in the no-control

case. The initial conditions for the models are: Y -= - -1.63 and

1 = 2I = 0.01 with Vi = V and wi = shown in the above plot. The

uncertainty in the stability boundaries are as follows: AV1 = ±0.005, Awi -

±0.125. The cross-flow Mach number is 2.46, Reynolds number based on

store length is 4.9 million, cavity aspect ratio is 5 and store length is half of

cavity length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-7 Variation of external flow properties with C, due to application of microjets. 77

4-8 Model-predicted F and M evolution with time for different 0 when the store

passes through the shear layer. The other external flow parameters used are:

,2 - 1.818, and U-, 2 - 0.915. Also, the cross-flow uncontrolled Mach
Poo,1Uo,

number is 2.46, Reynolds number based on store length is 4.9 million, cavity

aspect ratio is 5 and store length is half of cavity length. A smoothing

function is used to remove noise in the force and moment predictions of the

m odel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4-9 Different components of the model-predicted M (from Eqn. (4.37)) and their

evolution with time for different 0 when the store passes through the shear

layer. The other external flow parameters used are: P,2 =2 1.818, and U

- 0.915. Also, the cross-flow uncontrolled Mach number is 2.46, Reynolds

number based on store length is 4.9 million, cavity aspect ratio is 5 and store

length is half of cavity length. A smoothing function is used to remove noise

in the moment prediction of the model. . . . . . . . . . . . . . . . . . . . . 78

4-10 V and a^ evolution with time for different control inputs when the store passes

through the shear layer. The control inputs are specified in Table 4.1. Also,

the cross-flow uncontrolled Mach number is 2.46, Reynolds number based on

store length is 4.9 million, cavity aspect ratio is 5 and store length is half of

cavity length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4-11 Radius profile of the store. Here x = and a = -Also x = 0 corresponds

to the store c. g. ....... ................................. 80

14



4-12 Store trajectory prediction (outside the cavity) versus experimental obser-

vation for: (a) no control (NOC), (b) microjet-control on (MC) and (c)

high-microjet-pressure-control (HC). Also (F, Yc) = 0 correspond to the in-

stance when the store just exits the cavity, and increasing -fc corresponds

to the store moving away from the bay. The cross-flow Mach number is 2.46,

Reynolds number based on store length is 4.9 million, cavity aspect ratio is

5 and store length is half of cavity length. The model used for trajectory

prediction is the near-cavity one, with the initial conditions given in Table 4.2. 82

4-13 Model-predicted normal force, pitching moment and state of the store af-

ter being dropped from inside the cavity to when the store either returns

back into the cavity or drops successfully in the three control cases: no con-

trol(NOC), microjet-control on(MC) and high-microjet-pressure-control(HC).

The cross-flow Mach number is 2.46, Reynolds number based on store length

is 4.9 million, cavity aspect ratio is 5 and store length is half of cavity length.

The model used for outside-cavity trajectory prediction is the near-cavity

one, with the initial conditions given in Table 4.2. A smoothing function is

used to remove noise from force and moment predictions of the model. . . . 83

4-14 Successful/Unsuccessful store drop from cavity versus microjet momentum

ratio C,. The model used for prediction of the trajectory that lies outside the

cavity is the near-cavity one. The cross-flow Mach number is 2.46, Reynolds

number based on store length is 4.9 million, cavity aspect ratio is 5 and store

length is half of cavity length. The drop conditions for this simulation are:

Yo = 1.30, oio = 0.01, Vo = -0.18,wo = 0.62 and Y1  -1.63. . . . . . . . . 84

C-1 Predicted shock trajectory based on Schetz[27] and Papamoschou and Hubbard[16].

External flow conditions: M = 2.0 and Re = 3 million (based on cavity length). 98

C-2 Shadowgraph image for the FSU cavity corresponding to 30 psig microjet

pressure. The encircled region was used for calculating the shock angle.

External flow conditions: M = 2.0 and Re = 3 million (based on cavity

length). Cavity dimension: L/D = 5.1. . . . . . . . . . . . . . . . . . . . . . 98

15



D-1 Flow visualization results for the FSU cavity. Shown here are the mean

transverse velocity gradient for different microjet pressures. Notation follows

from Eqn. (D.7). The indicated box is the region of averaging for estimating

the mean transverse microjet velocity gradient. External flow conditions:

M = 2.0 and Re = 3 million (based on cavity length). Cavity dimension:

L /D = 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t04

E-1 Coordinate system for the three-dimensional Green's function in the cavity

acoustics m odel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

F-I ARX model used for predicting leading edge pressure data from trailing edge

ones in the presence of several microjet pressure profiles. The model was

realized using MATLAB's arx.rm function and the microjet profiles used in

this study were: 50-50-50, 200-200-200 and 200-0-200 psig. The microjet

pressure naming convention is based on Figure 2-6. . . . . . . . . . . . . . . 109

F-2 ARX model output versus experimental sensor reading for 50-50-50 psig mi-

crojet pressure. The microjet pressure naming convention is based on Figure

2-6. Location of the pressure sensor: middle of the leading edge face of the

cavity. Uncertainty in experimental SPL: +0.5dB. Uncertainty in frequency:

±40Hz. Also, T refers to the time period corresponding to the dominant

cavity tone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

G-1 Flow visualization results for the FSU cavity. Shown here is the shear layer

shape for different microjet momentum ratios. The shear layer shape is in-

dicated by a bold line in figures (a), (b) and (c). This. line indicates the

outer thickness of the shear layer (the side far from the cavity) that have

non-negligible vorticity Q. Here L is the cavity length and Uoc is the ex-

ternal undisturbed flow speed. The notations X' and Y' are explained in

Eqn. (2.10). External flow conditions: M = 2.0 and Re = 3 million (based

on cavity length). Cavity dimension: L/D = 5.1. . . . . . . . . . . . . . . . 113

16



J-1 (a) Motion of a circle falling in an unbounded stream, representing far-from-

cavity conditions. (b) Motion of a circle falling from a rigid wall, representing

a cavity of zero depth. (c) Motion of a circle falling from a free surface,

representing store falling away from the shear layer. In all cases, the free

stream is in the X-direction. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

M-1 Piecewise cosine wavy structure for the shear layer. The cosine component

chosen here corresponds to the X' coordinate of a point on the store surface,

with X' = X'+px and the non-dimensionalization scheme is same as Eqn. (4.9).134

N-1 Reference frames (both fixed to the store and inertial) for computing F and

MI on store. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

17

I



18



List of Tables

2.1 Dominant cavity frequency predicted by model and obtained from experi-

ments done on FSU cavity (under M = 2.0 and Re = 3 million flow). Re is

based on cavity length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 All possible acoustic tones in the 3-D FSU cavity under M = 2.0 and Re = 3

million flow. Re is based on cavity length. . . . . . . . . . . . . . . . . . . . 46

4.1 Changes in external flow properties with control. Three control inputs are

considered: no control(NOC), microjet-control on(MC) and high-microjet-

pressure-control(HC). MC refers to 100-250 psig microjet pressure and HC

refers to 200-250 psig microjet pressure. The first number here refers to the

rows of microjets closest to the leading edge and the second number to the

rows at the upstream end of the cavity. Also, the cross-flow uncontrolled

Mach number is 2.46, Reynolds number based on store length is 4.9 million,

cavity aspect ratio is 5 and store length is half of cavity length. . . . . . . . 80

4.2 Initial conditions for the store trajectory analysis used in Figure 4-12. The

cross-flow Mach number is 2.46, Reynolds number based on store length is

4.9 million, cavity aspect ratio is 5 and store length is half of cavity length. 81

C. 1 Shock angles predicted by model and obtained from experiments done on

FSU cavity (under M = 2.0 and Re = 3 million flow). Re is based on cavity

length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

G.1 Plane shock geometry for different microjet momentum ratios (C) corre-

sponding to the FSU setup. External flow conditions: M 2.0 and Re = 3

million (based on cavity length). Cavity dimension: L/D 5.1. . . . . . . . 112

19



20



Chapter 1

Introduction

This thesis discusses two problems related to a cavity when it is exposed to a supersonic

cross-flow. Problem (I) is the high noise levels observed inside the cavity, and problem (II)

is the return of a store into the cavity after being released from inside. The thesis provides

a systematic framework to understand the dominant physics in (I) and (II), and to provide

solutions for ameliorating the problems, based on a microjet-based actuator array near

the cavity leading edge. In particular, this document quantifies the extent of disruption

of the dominant mechanism behind (I) because of the introduction of microjets, and the

influence of the actuator on forces and moments on the store and on its drop trajectory

in (II). The thesis also identifies the most relevant microjet-dependent control parameter

that characterizes both (I) and (II), and provides a strategy for optimization of the control

input to alleviate the two problems. The problem statement, background and the thesis

contributions for (I) are outlined in Section 1.1 and for (II) in Section 1.2 in the current

chapter. A brief comparison and the connection between (I) and (II) are made in Section

1.3, and the scope of this thesis is enumerated in the concluding section of this chapter.

1.1 Problem (I): Cavity Noise Under Supersonic Flow

The first problem that the thesis deals with is that of high noise levels produced when a

cavity, such as the open internal bay of an aircraft, is exposed to an external cross-flow.

Noise levels of around 170 dB noise have been observed in a cavity under Mach 2.0 flow [1],

as illustrated in Figure 1-1. Such noise levels can potentially be harmful to the structural

life of weapon systems inside a weapon bay and to landing gear deployment. The problem
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Figure 1-1: High acoustic noise inside a cavity exposed to external cross-flow with M = 2.0, Re
= 3 million (based on cavity length) and LID = 5.1.

statement related to (I) is outlined in Section 1.1.1, its background explained in Section

1.1.2, and the contributions of this thesis towards solving (I) is given in Section 1.1.3.

1.1.1 Problem Statement

A group of researchers under the DARPA-funded HIFEX Program [1, 2, 3, 4] has, through

an extensive set of experimental investigations, zeroed in on the leading edge microjets as

the most effective actuator for problem (I), that uses the smallest flow rate. This thesis

develops a model-based optimal closed-loop control strategy for this problem. This strategy

is depicted in Figure 1-2. The pressure sensors on the cavity walls measure noise based on

which the control input, which in this case is the steady pressure at which the microjets

can be fired at the leading edge, is given.

- I shear layer structures

Up

cavity wall pressure sensor
acobstic wakes \

f0 L

p = microjet pressure optimal closed-loop
(steady control input) control strate

Figure 1-2: Illustration of optimal closed-loop control strategy to be employed in this thesis for
cavity noise reduction.

The model to be employed for control should necessarily be reduced-order and para-

metric (say, in pp), thus allowing for closed-loop optimization. The model should also

reliably capture the correct trend in the change in OASPL (Overall Sound Pressure Level)

of pressure sensors with variation in control input. Along with these features, the model

developed in this thesis also identifies the most relevant microjet-dependent control param-

eter that characterizes the extent of disruption of the dominant mechanism behind problem

(I) because of the introduction of the actuator.
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From what follows, it is expected that for an uncontrolled cavity and for a cavity with

uniform spanwise microjet firing, the flow dynamics inside is two-dimensional, while the flow

dynamics due to non-uniform firing is three-dimensional. Hence, the thesis first discusses a

two-dimensional model valid for the no-control and uniform firing cases, and then a three-

dimensional model valid for non-uniform firing. The three cases are depicted in Figure 1-3.

The three-dimensional model is subsequently used for developing the appropriate closed-

AL_ -2 no F 9 unifonn firing non .. ifor m tring
Mj:4 2,V M= 2

Figure 1-3: Classification of models used for various types of cavity-under-external-cross-flow
problems in this thesis.

loop optimal pressure profile. The study is limited to obtaining a steady optimal pressure

profile for firing microjets.

To validate the predictions of the model, suitable tests were conducted on a cavity at

the Florida State University (FSU) wind-tunnel experimental facility. These tests include

flow visualization and noise measurements from pressure sensors on the cavity walls. More

details of the facility are available in Zhuang et. al. [1]

1.1.2 Background

Cavity flow under the influence of an external cross-stream can exhibit the following kinds

of dynamics - bulk mode (Helmholtz mode), acoustic mode (longitudinal and transverse),

Rossiter mode and wake mode [5]. In general, the nature of cavity flow depends on the

external flow Mach number and L/D ratio, where L is the cavity length and D is the cavity

depth. It also depends on L/W (where W is the cavity width), the level of turbulence

and thickness of the boundary layer in the incoming stream. However, it is more useful to

look at the cavity flow in the L/D - M plane which contains the dominant factors. Such

a scheme is shown in Figure 1-4. As the figure illustrates, low speed (M <- 0.1) cavities

typically exhibit fluid-resonant (acoustic) mode oscillations if they are either very shallow

(L/D >~ 13) or deep (L/D <~ 0.5); otherwise they exhibit bulk mode oscillations. Higher

speed cavities exhibit Rossiter and wake modes.

Rossiter and wake modes are the most dominant types of dynamics in the typical regions

of operation of the internal bay. Rossiter mode [6] has been one of the most extensively
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Figure 1-4: Different flow regimes seen by a cavity under external cross-stream.

studied cavity modes for both subsonic and supersonic flows and is a result of an edge-

tone phenomenon. It arises when a jet (in this case, the downstream propagating shear

layer disturbances) hits an edge and tones are produced. The tones propagate upstream

and further excite vortical disturbances at the leading edge, which propagate downstream

in the shear layer and complete a feedback loop. Figure 1-5 illustrates the feedback loop

characterizing this phenomenon.

shear layer structures
- ~ ~ -- '-~~~)Shear-Layer -

acoustic Waves Acoustics Trailing Edge

Figure 1-5: Rossiter mode feedback loop and its components.

The frequencies of these cavity tones depend on the cavity geometry and flow conditions

and is given by Rossiter's [6] modified formula [7]:

U N - t
fN-= M +1f L ___(1.1)

1+2-M2 k

where fN is the frequency (Hz) of the Nth mode, N = 1, 2,-, p is a phase constant

between the downstream propagating vortical disturbances and the upstream propagating

acoustic waves, 1/k is a vorticity parameter, 7 is the specific heat ratio. p and k are
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typically obtained empirically. The Rossiter's modified formula is obtained by matching of

time scales of the shear layer oscillations and acoustic waves, where 'time scales' refers to

the frequency and phase of oscillation.

There are currently two interpretations for the driving mechanism for cavity tones under

Rossiter mode and are delineated in Figure 1-6. The mechanism, given by Rossiter [6], is

the momentary flow separation at the leading edge that results in periodic shedding of

localized vortices. A literature survey, however, indicates that vortical shedding has not

been observed at all Mach numbers (only between 0.4-1.2) using current experimental

techniques. The alternative mechanism, given by Tam and Block [8], and Bilanin and

Covert [9] among others, is the Kelvin-Helmholtz instability of the free shear layer formed

at the cavity lip. The flow separation in the first interpretation and Kelvin-Helmholtz

instability in the second one are initiated by disturbances in the boundary layer at the

upstream end and sustained by excitation due to acoustic waves at the leading edge inside

the cavity. We can, however, treat the two explanations as equivalent in the sense that

vortical disturbances mentioned in the first interpretation arise due to Kelvin-Helmholtz

instabilities.

U1,U

incoming
boundary layer momentary flow cnvective amplification

separation leading to ( of disturbances along
vortex shedding s ear layer

Figure 1-6: Two interpretations of the driving mechanism for cavity tones under external cross-
flow.

The noise generation mechanism at the trailing edge can be attributed to the streamwise

impingement of shear layer on the trailing edge, as outlined in Figure 1-7. The impingement

results in creation of a high-pressure center at the trailing edge. The transient nature of the

impingement results in acoustic waves being produced. As explained in Tam and Block [8],

these acoustic waves can be accounted for by introducing a periodic line source of monopoles

at the trailing edge. The streamwise pressure gradient due to impingement of the shear layer

on the trailing edge is: Vip' pooU2 and thus, the strength of the equivalent monopoles

is proportional to poo

In contrast to the Rossiter mode, the wake mode [10] frequency is independent of Mach

and Reynolds number. The wake mode is accompanied by coalescence of vortices shed at the

leading edge into large scale structures, violent ejection of the vortices at the trailing edge

25



Center of high pressure

Instantaneous U-velocity profile at time i Instantaneous U-velocity profile

at time +-T (T: time period)

Figure 1-7: Possible mechanism for generation of acoustic waves inside the cavity under external
cross-flow.

and flow separation at the leading and trailing edges. It has not been frequently observed

in practice and would not be discussed further in this document.

1.1.3 Contributions of Thesis

This thesis uses the framework of Tam and Block [8] and Bilanin and Covert [9] to develop

a low order parametric model for the Rossiter tones. An order-of-magnitude analysis per-

formed on the Navier-Stokes equations determines the simplified governing equation for the

cavity acoustics, which is the wave equation, similar to Refs. [8, 9}. The solution of this

equation is determined by the techniques of Green's function, method of images and proper

orthogonal decomposition. The first two solution techniques are similar to Refs. [8, 9] and

the last method is a contribution of this thesis. This document also proposes an original

technique of incorporating the effect of microjets as an actuator in suppressing the cavity

tones. The most relevant microjet-dependent control parameter for the cavity noise reduc-

tion problem, identified by this thesis, is the microjet-external-flow momentum flux ratio.

The thesis also identifies the underlying mechanism, based on microjet injection, by which

noise is suppressed inside the cavity. Using the model, this thesis predicts the magnitude of

noise reduction inside the cavity for a given microjet pressure distribution that is validated

by experiments performed at the Florida State University wind tunnel [1]. In addition, the

thesis develops a strategy for optimizing the microjet-based control -input for noise reduction

inside the cavity.
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1.2 Problem (II): Store Separation From Bay Under Super-

sonic Flow

In addition to high noise inside a cavity under external cross-flow, the aircraft industry is

faced with problem (II), i.e. it has been observed that a store, when released from an internal

aircraft bay, can return back under suitable flight conditions. Instances of unsuccessful

store drops under subsonic [30] and transonic [31] flows have been found in the literature.

In addition, recent experiments under the DARPA-funded HIFEX Program [2, 3, 4] have

illustrated the problem under supersonic flow conditions. It should be noted that unsafe

store separation is a dangerous problem for an aircraft while it drops weapons from its

internal bay. To ameliorate this problem, a group of researchers under the HIFEX Program

is currently developing an appropriate control strategy to ensure safe release of a slender

axi-symmetric store from a rectangular cavity (bay) with an external supersonic flow. The

effectiveness of various flow-disrupting actuators has been studied by the group, and the

most promising one is based on an array of microjet flow injectors distributed in the spanwise

direction near the leading edge of the cavity. The associated control input is the steady

pressure levels at which the microjets are activated. The same actuator has been shown

experimentally in [2] and through a low-order model (Chapters 2-3 of this thesis) to be

effective in quietening the shear layer at the cavity opening and reduction of the cavity tones.

In addition, this actuator introduces shocks which in turn induce additional corrective forces

and moments on the store when it is external to the bay, thereby enabling control of its

trajectory for ensuring safe separation. As in section 1.1, we discuss in sections 1.2.1, 1.2.2,

and 1.2.3, the problem statement for (II), its background, and the contributions of this

thesis in solving (II), respectively.

1.2.1 Problem Statement

The development of an effectual control strategy for safe store separation from a cavity

under cross-flow necessitates a low order model that accurately predicts the trend in the

store trajectory, i.e. whether the store is ejected from the cavity safely or returns back

into the cavity, under given initial drop conditions and a given control input. This trend

is potentially influenced by a host of factors (Figure 1-8), including the inhomogeneous

flow field generated by the wavy shear layer structures at the cavity opening, the potential

27



induced by the store motion, the shock waves introduced by the microjets and at the store

nose, and noise inside the cavity, all of which should be incorporated in the model. What is

examined in this thesis is an investigation of the forces and moments on the store due to these

factors, a low-order model that captures the dominant mechanisms, and an optimization

scheme for the control input to ensure safe store separation.

- resenice of
cavity walls

inhomoeneous flow field dLue to wavy
shear laver stnicture

} potential induced by store motion

shock due to flow injectors

Figure 1-8: Different factors affecting the store release trajectory under supersonic cross-flow and
in the presence of microjet-based actuators. Labels 'a' and 'b' indicate different rows
of microjets located near the cavity leading edge.

1.2.2 Background

The dynamics of a slender body separating from a rectangular cavity under a cross-flow

is difficult to analyze, expensive to experiment upon and is mostly used for military ap-

plications. As such, limited models are available in literature and the pertinent ones are

outlined here. The problem of store release from a cavity under subsonic flow has been

extensively analyzed by Shalaev, et. al. in Ref. [30]. In this paper, a low-order model of

the store dynamics is derived, based on slender body potential flow theory, and results in

a set of ordinary differential equations for the store motion which is analytically solvable

under suitable conditions. This model is shown to predict the store trajectories observed in

subsonic wind tunnel experiments. However, in the paper, neither a detailed discussion of

the underlying mechanisms nor a qualitative analysis of the conditions for unsafe departure

is carried out. In Ref. [31], the store separation from a cavity under transonic flow has

been studied by the same authors. A similar model as in [30] is developed here too, but

results in a set of nonlinear differential equations for the store trajectory that cannot be

solved analytically. This model is then used to show conditions under which .unsafe store

departure occurs. However, no experimental confirmation is carried out. Also as in [30], the

mechanism for unsuccessful store drop is not investigated in detail. Finally in [33], the same
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problem is considered in supersonic flow, with the treatment being similar to [31]. Ref. [33]

predicts the conditions for unsafe store ejection and also discusses the store interaction with

shock waves due to the parent body from which the store is separated. However, as before,

no detailed insight into the mechanism for failure in store drop is found and no experimental

validation is carried out.

An alternative approach for external store separation found in the literature [34] is

based on grid testing. In this method, the store aerodynamic load at any position in

the grid is assumed to be a function of only its free stream aerodynamics and the parent

aircraft induced aerodynamics at that flow field position. The free stream aerodynamics is

a property of the store alone while the aircraft induced aerodynamics is determined by the

aircraft flow field, with the mutual interference between the aircraft and the store being

considered a secondary effect. The aerodynamic loads are then fed into a six degrees-of-

freedom (6 DOF) program based on Newton's laws to compute the external store release

trajectory from an aircraft. An improvement over this approach is tried in a store separation

problem for the SH-2G helicopter [35] in which a linear interference effect between the

store and the helicopter is incorporated in the 6 DOF program. To reduce the cost of

testing, a judicious combination of wind tunnel testing and CFD analysis is used. This

method is validated by comparing with experimentally available store release trajectory

data. However, the limitations of this approach are lack of available free stream data for

all store shapes for all possible pitch angles, lack of physical insight into the problem and

expensive experiments required.

1.2.3 Contributions of Thesis

The model followed in this thesis is based on the store separation work carried out for

supersonic flows in Ref. [33]. By using a careful investigation of the force and moment

expressions on the store obtained from the reference, we obtain a set of parametric nonlinear

ordinary differential equations that enables us to identify the mechanism and, therefore, the

criteria for unsafe store release from a cavity. We believe that the mechanism governing

the trajectory of a store released from a cavity onto a supersonic cross-flow has not been

identified before, and is therefore an import ant contribution of the thesis. A more important

contribution is the extension of the model to include the effect of microjets on the store

trajectory. The model identifies the most relevant microjet-dependent control parameter
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(that is the microjet-cross-flow momentum flux ratio) and the underlying process by which

the store trajectory is influenced, thereby predicting the microjet pressures for realizing

a successful store departure. The model is also used to determine the optimal microjet

pressure distribution for a clean weapon release and this control strategy is shown to agree

with experimental observations made by the HIFEX group [2, 3, 4] for different supersonic

Mach numbers. Finally, the model suggests better choices for the actuator parameters at

some of the operating conditions.

1.3 Comparison of Cavity Noise and Store Release Problems

As the above discussions indicate, this thesis contains two distinct contributions which were

presented in sections 1.1 and 1.2. Here, a brief comparison and connection between the two

contributions are made. The underlying time scales of the cavity noise and store release

problems are different, with the dominant frequencies being in the MHz and KHz ranges

respectively. As such, the governing equations and solution tools for both problems are

different. The cavity acoustics problem is governed by the damped wave equation, while the

store release trajectory is governed by the Laplace Equation in the store cross-section plane.

The wave equation is solved using the techniques of Green's function, method of images

and proper orthogonal decomposition; the Laplace Equation by multipole expansion and

conformal transformation. Further, the wave equation gives the pressure perturbation inside

the cavity, which is then summed over all frequencies to give the overall sound pressure level.

On the other hand, the Laplace Equation gives the velocity potential of the store which

is converted to pressure using the Bernoulli's equation and then integrated over the store

surface to give the normal force and moment on the store which in turn determine the store

release trajectory.

A notable common thread for both the problems is the microjet-based actuation system.

Microjets introduce momentum flux into the cavity noise dynamics, that manifests itself as

an active damper which suppresses noise inside the cavity. The magnitude of noise reduction

is saturated at higher momentum ratio because of nonlinear damping effects. Interestingly

enough, the same momentum flux introduction also creates a virtual obstruction to the

external flow because of which leading edge shock waves are created along with external

flow deceleration, compression, and flow turning. These effects affect the normal force and
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pitching moment on the store and therefore influence whether the store drops safely from

the cavity or not. Both the extent of noise damping and the strength of the shock waves

are determined by the shape of the micro-shock structure at the exit of the microjet nozzle.

These dependencies are accurately quantified in the current document, and the strategies to

optimize the control input for both the noise reduction and safe store separation problems

are derived.

1.4 Scope of Thesis

This thesis outlines the development of a reduced order model for optimal control of noise

inside a cavity under supersonic cross-flow, and a low order model for optimization of the

control input of the drop trajectory of a store released inside a bay under supersonic flow.

The actuator used in both problems is microjet-based fluid injection system placed at the

cavity leading edge, with the injection being transverse to the external flow direction.

Chapter 2 discusses the development of a reduced-order model to describe the tones

in the absence and presence of microjets at the leading edge. Further, two microjets-

on cases are tackled: (i) microjets are fired with uniform pressure along the leading edge

(referred to as uniform control), and (ii) microjets are fired with pressure that varies in a pre-

defined manner along the leading edge (referred to as non-uniform control). This chapter

also describes the experimental arrangement used in Florida State University (FSU) for

demonstrating microjet-based cavity noise reduction phenomenon.

Chapter 3 uses the three-dimensional acoustics model developed in Chapter 2 to optimize

the control input for noise suppression inside a cavity under supersonic cross-flow, using

microjets at the leading edge. This study is limited to the control input being a steady

spanwise microjet pressure distribution. The strategy is also derived based on the proper

orthogonal decomposition technique and implemented using the FSU experimental setup.

Chapter 4 deals with the second problem that the thesis is concerned with: the problem

of safe store separation from a cavity under supersonic cross-flow using microjet-based

actuator. This chapter outlines the development of an appropriate low order model that

predicts the correct trend in the store drop trajectory. It also analyzes the low-order in

terms of the store drop behavior for two cases: (I) when microjets are off, and (II) when the

microjets are switched on. It then compares the low order model predictions with results
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from experiments performed by the HIFEX group. Finally, it describes an optimization

process to find the best control input (in terms of microjet-free-stream momentum ratio)

that would ensure a successful store drop from a cavity under supersonic cross-flow.

Chapter 5 summarizes the work done and conclusions made therein. It also gives an

outline for the extensions that can be made to the reduced-order models related to cavity

acoustics and store release trajectory under supersonic cross-flows and their limitations.
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Chapter 2

The Cavity Acoustics Problem

In this chapter, we derive a reduced-order model to describe the tones in a cavity under

supersonic cross-flow. Section 2.1 describes the microjets-off case and outlines the assump-

tions involved in developing the reduced-order governing equations and the derivation of the

same from the Navier-Stokes equations. Section 2.2 explains the process of suppression of

tones inside a cavity under supersonic cross-flow using microjets at the leading edge. It also

describes the experimental arrangement used in Florida State University (FSU) for demon-

strating microjet-based cavity noise reduction phenomenon. Finally, section 2.3 outlines the

derivation of the governing equations for the cavity acoustics problem with microjets-on.

2.1 Cavity Tones in the Absence of Microjets

This section discusses the development of a reduced-order model to describe the tones in a

cavity under supersonic cross-flow in the absence of microjets.

2.1.1 Cavity Acoustics Model

The motivation behind the proposed reduced-order model (to be used for cavity tones

control) lies in two independent pioneering works by Tam and Block [8], and Bilanin and

Covert [9]. During the decade of 1970, these authors developed models predicting the

frequencies of the tones in a two-dimensional rectangular cavity under external flow. The

acoustic presence of the trailing edge and cavity walls was modelled by a periodic line source

at the trailing edge and suitably placed images of the line sources respectively. The model

agreed well with experimental results for speeds ranging from low subsonic to low supersonic
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flows (M = 0.4-1.2). These studies are used as a starting point for constructing the desired

reduced-order model.

Since the cavity tones are essentially a two-dimensional phenomenon, we consider a

two-dimensional reduced-order model for the same. The model domain is restricted to the

internal cavity volume bounded by the cavity walls and the shear layer which is at the

cavity lip, as illustrated in Figure 2-1.

U1

Ua 0 D

L

Figure 2-1: Configuration of supersonic cavity flow used in the model.

Based on shadowgraph and PIV visualization studies [1], the following assumptions are

made with regards to the internal cavity flow field:

(1) The shear layer separates the cavity flow field from the external supersonic stream.

The supersonic flow does not expand into the cavity and there is no Prandtl-Meyer

expansion fan inside the cavity.

(2) The mean convective flow inside the cavity is ignored. In practice, a reverse flow with

speeds up to 40% of the external flow stream has been observed. This is neglected in

the first-order proposed model.

(3) The mean static pressure is assumed to be uniform inside the cavity. In practice, the

mean static pressure varies by about 15% along the streamwise direction.

(4) Static temperature and mean density is assumed to be uniform all over the cavity.

(5) Effects of gravity and viscosity are ignored.

These assumptions are outlined in Figure 2-2. Based on the assumptions, the flow inside

the cavity can be considered as isentropic. Then we can apply the isentropic flow, mass and

momentum conservation equations respectively to the inner cavity volume as follows:

p' =E p' (2.1)
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Figure 2-2: Illustration of the assumptions behind the reduced-order cavity acoustics model.

+ V - PV = 0 (2.2)t

DV
p =- i - Vp (2.3)

Here '-' indicates (zero-mean) perturbation quantities and '-' indicates the mean component.

We use Eqns. (2.1)-(2.3) to obtain the governing equation as follows:

2
2P'=- V- -- ' + (Vp') -(' - V-') +p'V - (-' Vt') + (2.4)a2t V V)+(V/t-(

Stiffness1 Stiffness2
Inertia Damping

Z (2 TV)
Inhomogeneous

We then use an order-of-magnitude analysis to identify the dominant groups (details given

in Appendix A). The governing equation obtained on keeping the dominant terms is given

by:

1 2 V 2 p' =0 (2.5)

with the equation valid for 0 < < 0.2, O < <

Here, the subscript 'a' refers to the amplitude of the quantity.

Eqn. (2.5) can be solved using Green's function technique and method of images, similar

to Tam [8] and Covert's [9] work. Green's function method is used to derive the pressure

field in an infinitely long two-dimensional quiescent medium while the method of images is

used to account for reflection of waves at the cavity walls, as illustrated in Figure 2-3.

The governing equation for obtaining the Green's function is as follows:

d2p 2pd2 + 0 (2.6)
dt 2
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Figure 2-3: Illustration of the method of images for solving the pressure perturbation field inside
the cavity under external cross-flow.

This equation is same as (B.3) in Appendix B where the solution procedure is detailed.

Then the solution inside the uncontrolled cavity based on Green's function and method of

images is given by:

p(X, y, t; W) ;Z 0 H L-X)2 + y2) + HM V(L + X)2 + y2) +

H (L -- x)2 + (y + 2D)2)] exp(iwt) + (-)* (2.7)

Here w is the frequency of a cavity tone in radians per second and is given from Eqn. (1.1).

It may be noted that N = 4 corresponds to the most dominant tone in the FSU cavity and

our region of interest is between N = 1 to 8 that corresponds to frequencies less than 12000

Hz. This limitation arises from the sampling frequency of the instrumentation used in the

cavity experiments. Also H(1)(-) is the first order first kind Hankel function [11].

The other unknown in Eqn. (2.7) is Q which is the strength of the source introduced in

the problem and can be determined by matching the experimentally obtained spectrum with

the spectrum predicted from this model. The latter is obtained by summing the pressure

given by Eqn. (2.7) over all major Rossiter frequencies from N = 1 to 8 as follows:

8

p'(X, 7y, 0) - 1p'(X, Y, t; WN) (2-8)
N=1

The matching between the model and experimental spectra is done so as to equalize the

SPLs (Sound Pressure Levels) at the different tones and is illustrated in Figure 2-4. Apart

from the peak matching, it is clear from the figure that there is a discrepancy in frequencies

of about 10% between the values predicted by Eqn. (1.1) and the experimentally obtained

ones. The reason is that the values of p and k used in Eqn. (1.1) (that are, respectively, 0

and 0.6 for the FSU cavity) are commonly accepted values used in literature. It was further

observed that in order to match the frequencies exactly, the values of p and k need to be

changed for each tone. So no attempt was subsequently made to refine the frequencies used
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in the model and the 10% difference was considered to be acceptable.

2 4 6 8 10
Frequency (kHz)

Figure 2-4: Matching of experimental and model-predicted SPLs at the cavity leading edge. The
experiment was conducted with external flow having M = 2.0, Re = 3 million (based
on cavity length) and cavity having LID = 5.1. Uncertainty in experimental SPL
was t0.5dB and uncertainty in frequency i40Hz which is 0.8% of the dominant
tone.

Now we consider the effect of assumptions (2) and (3) on the pressure field inside the

cavity. The governing equation in the presence of a uniform reverse flow Ur due to pressure

gradient inside the cavity is:

- Ur '-V 2  ' =0 (2.9)
49t ax

We have:

W w 27r(N - p) Uoo
O0= -- = (2.10)

Ur 8 Ur L Mo. + -1 Ur
X ~ 1+1[1~M2 kX_ j+'Y2 1 .

This ratio is 3.2 at the dominant frequency, and so the inverse term Ur 9 is not negligible.

The presence of the term Uri would change the Hankel function in Eqn. (2.7) but the

change can potentially be absorbed by the acoustic source strength Q. In this first order

model, the reverse flow effect is ignored and the pressure field given by Eqns. (2.7) and (2.8)

is considered to describe the uncontrolled cavity.

2.2 Effect of Microjets on Cavity Tones

In this section, we explain the process of suppression of tones inside a cavity under supersonic

cross-flow using microjets at the leading edge.
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2.2.1 Noise Suppression Using Microjets

There are several ways of suppressing the cavity tones. One option is to disrupt the feedback

loop that causes the tones, thereby reducing the acoustic noise level. This can be realized

by passive and active devices located at the leading or trailing edge (depicted in Figure

2-5). Several noise control devices in literature have also been observed at the upstream

end or inside the cavity, all fulfilling the objective of breaking the feedback loop. Spoilers,

ramps and vortex rods are examples of the passive devices [5] that have been used for noise

suppression while active devices include piezoelectric flaps [12], pulsed air injectors [13),

powered resonance tubes [14], jet screens (currently being tested at Boeing) and microjets

[1]. In general, passive devices tend to exhibit undesirable performance at off-design con-

LE spoiler TE ramp

Figure 2-5: Various passive devices used for cavity tone suppression in literature and device
location relative to the cavity.

ditions. As for the active devices, all the air injection systems, except for microjets, need

a significant mass flow (1-10% or higher) to be effective. In contrast, microjets require less

than 1% [1]. The reference mass flow here is the amount of free flow through an area equal

to the cavity side wall. Microjets have the additional advantage of high momentum flux

when compared to other air injection systems. Piezoelectric devices have been shown to

work at low subsonic flows but their effectiveness in high speed flows remains to be seen. A

detailed review of noise suppression techniques is given in Cattafesta, et. al. [15)

The arrangement for realizing microjet-based control for noise reduction in the FSU

cavity is shown in Figure 2-6. In this configuration, there are three microjet banks connected

to a pressure-regulated nitrogen supply chamber. Each bank feeds four microjets; the three

banks thus take care of the entire set of 12 microjets (of diameter 400 Im each). The

pressure regulation of microjets is done manually and hence only steady-input control can

be implemented.
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Figure 2-6: Experimental arrangement for realizing control in the FSU cavity. The control input
is given in terms of the three microjet pressure banks, from bottom to top.

2.2.2 Observations After Using Microjets

The following changes were observed from flow visualization and noise measurement studies

in the FSU cavity after introduction of microjets:

" Damped pressure perturbation field inside the cavity.

" Decrease in frequency of the dominant cavity tone and similar behavior in the other

tones.

" Weak shock observed at the cavity leading edge.

* Deceleration and turning of external flow behind the shock.

A simple explanation for the decrease in frequency of the dominant cavity tone is as follows.

Because of decelerated flow behind the shock, the modified Rossiter frequency expression

becomes:

U2x N-p
N L M2 1 2'11)

1+7- m k

where the notations follow from Figure 2-7. Since U2, in the numerator has the dominant

effect on the frequency, it is clear that the latter would decrease with decrease in flow

velocity, in other words, with increase in microjet pressure input. This is because the shock

strength increases with microjet pressure input and flow speed behind the shock decreases

with increase in shock strength. The dominant frequency for different microjet pressures is

shown in Table 2.1 (taken from Zhuang, et. al. [1]) and illustrates this phenomenon.

The free stream speed, used for computing the dominant frequency from Eqn. (2.11) in

Table 2.1, was derived from oblique plane shock relationship. The reason for using plane
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Table 2.1: Dominant cavity frequency predicted by model and obtained from experiments done
on FSU cavity (under M = 2.0 and Re = 3 million flow). Re is based on cavity length.

pA, psig No control 30 100 200
Experiment (KHz) 5.55 5.35 5.31 5.16

Model (KHz) 5.66 5.36 5.33 5.12

UN~ M~x : streamwise component

microje

Figure 2-7: Effect of leading edge shock on the external cross-flow over the cavity.

shock relationship is that the characteristic wavelength of the acoustic waves is typically

negligibly smaller than the shock radius of curvature for most of the shock region. Now

the shock properties (orientation and strength), used for the calculations in Table 2.1, were

obtained from flow visualization experiments. It would be useful at this stage to develop a

model that can predict the shock properties (orientation and strength) given the microjet

pressure. Appendix C gives the details of such a model. The model in Appendix C was

validated by comparing its predictions with the flow visualization experiments. Such a

model can be used in applications that require resulting shock properties given a jet-in-

cross-flow, e. g. the present problem.

Another consequence of the presence of leading edge shock is the apparent change in

the acoustic source strength which in the presence of the microjets is given as: Q' oc p 2 U2.

Now from the shock relationship, - > 1 and u < 1, with the inequalities being not very

far from unity. So we have O = 1. That is, the change in acoustic source strength

is not expected to be significant due to the presence of shock.

2.3 Cavity Acoustics Model in the Presence of Microjets

This section describes a reduced order model for the cavity tones phenomenon under su-

personic cross-flow and in the presence of leading edge microjets. Two cases are tackled:

(i) microjets fired with uniform pressure along the leading edge (referred to as uniform

control), and (ii) microjets fired with pressure that varies in a pre-defined manner along the

leading edge (referred to as non-uniform control).
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2.3.1 Uniform Control Case

Keeping the observations of Chapter 2.2 in mind, the reduced-order model in the presence

of uniform microjets is derived as follows. Microjets are introduced in the cavity acoustics

model through a forcing term addition to the momentum conservation equation while the

mass conservation equation is left untouched. The reason, as mentioned before, is that

the mass injection ratio pjetUetAet < 1% while the momentum injection ratio
__c~ UoLcavity vi

p ' )j > 1 for typical microjet pressure profiles. So the mass addition effect of thekP7 U 1J
microjets is neglected. It may be noted here that the subscript 'jet' refers to the mean flow

conditions at the microjet nozzle exit.

Having neglected the mass contribution of microjets, the governing equations for this

problem are given by Eqns. (2.1), (2.2) and the following momentum conservation equation:

DVT
P = -V + f y (2.12)

Following the procedure adopted in obtaining Eqn. (2.5), we get:

-a 2v2, I 2V - f, (2.13)

Now the forcing term on the right hand side of this equation can be obtained from the

isentropic flow relationship applied at the microjet nozzle exit, with the mean nozzle flow

assumed to be isentropic and sonic. The microjet flow structure at the nozzle exit is

illustrated in Figure 2-8 and the detailed derivation of the forcing term is shown in Appendix

D.

equi lent
ow shock solid y

U. of radiusRc of radius
at nose at nose

U mach disk

p= microjet pressure (steady control input) a l o

barrel shock

Figure 2-8: Close-up of flow structure near the exit of microjet nozzle in the presence of external
cross-flow. Adapted from Papamoschou and Hubbard [16].

After deriving the forcing function, Green's function and method of images can be used
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to get the pressure field inside the controlled cavity, as before. Using the separation of

variables p' ~ F(x, y)P(t), the governing equation for Green's function is given by (details

given in Appendix D):

d2 P+ (t) + ' P = 0 (2.14)
dt2  Oy dt

which is the same as Eqn. (D.12) in Appendix D. Here, Ou (t) is the transverse microjet

velocity gradient at the jet exit and acts as the damping factor for the two-dimensional

model, resulting in noise reduction.

Having obtained the governing equation for the Green's function, we proceed as follows.

Eqn. (2.14) is simulated to find the forcing term, inertia term and the pressure perturbation

response for a given microjet pressure input. The following ratio is then calculated:

E F (x, y) '9u (t) '
Forcing Term ZF ) t (1
Inertia Term E F (x, y) i(1

dt2

where the summation is done over all Rossiter frequencies. On plotting this term versus

the non-dimensional pressure perturbation term 4 measured at the leading edge, it was

found for all control inputs that the ratio -+ 0.1 (i.e., becomes negligible)Inertia Term -+01(e.beoenglil)

after some time t = t.. This is illustrated in Figures 2-9 and 2-10. So the forcing term is

0.3

0.25.

0.2

.0.15,

0.1 ----- --- -igib e b th line_

0.051
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Amplitude of P/

Figure 2-9: Forcin Term versus 4 measured at the leading edge for 30 psig microjet pressure.
Inertia Term P
External flow conditions: M = 2.0 and Re = 3 million (based on cavity length).

Cavity dimension: LID = 5.1.
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4 5
t/T

Figure 2-10: Response of P measured at the leading edge (LE) for 30 psig microjet pressure. The

initial conditions (at t = 0) correspond to uncontrolled cavity condition and were:

= 0.36 and apj = 0 (arbitrary). Also, T refers to the time period corresponding
to the dominant cavity tone. External flow conditions: M = 2.0 and Re = 3 million
(based on cavity length). Cavity dimension: L/D = 5.1.

switched off after time t = t, and the damping factor due to microjet introduction is then:

_P(ts)

d = (2.16)
SP (0)

where P (0) is the no-control value. After the forcing term is switched off, the pressure field

resembles the uncontrolled field, except that the 'virtual' acoustic source strength is now

reduced. So the damped solution is given by:

p'(x, y, t; w') [H [ ( (L - x) 2 + y2) + H (L + x)2 + y2)

H~ ( (L - x)2 + (y + 2D)2) exp(iw't) + (-)* (2.17)

where the acoustic source strength in the presence of control is:

Q= dp ~ m d,, (2.18)
Q Poooo

The total pressure field is obtained by summing the pressure given by Eqn. (2.17) over all

major Rossiter frequencies from N = 1 to 8 as follows:

8

P' (X, y, t) ~ [ p(X, y, t; W'N) (2.19)
N=1

The model predictions and the experimental results for the FSU cavity are compared in

43



Figures 2-11 and 2-12. The model and experimental results both show similar saturation

10

8
7
6

3
-- Experiental data

- Model prediction

0
No microjet 10 20 30 40 50 60 70 80

Microjet pressure, psig

Figure 2-11: Model prediction versus experimentally observed OASPL reduction corresponding
to the pressure transducer location at the middle of the leading edge. External
flow conditions: M = 2.0 and Re = 3 million (based on cavity length). Cavity

dimension: LID = 5.1. Uncertainty in experimental OASPL: i1.OdB.

160 30 psig

140

100_

80
- Model prediction (OASPL = 146 dB)

--- Experimental result (OASPL = 150 dB)

2 4 6 8 10
Frequency (kHz)

Figure 2-12: Model prediction versus experimentally observed SPL spectrum corresponding to

the pressure transducer location at the middle of the leading edge and 30 psig
microjet pressure. External flow conditions: M = 2.0 and Re = 3 million (based on

cavity length). Cavity dimension: LID = 5.1. Uncertainty in experimental SPL:
t0.5dB. Uncertainty in frequency: i40Hz.

behavior in the noise reduction ability of microjets with increase in microjet pressure. Both

suggest that for the FSU cavity, OASPL reduction at the leading edge is saturated for

microjet pressure 30 psig and above. This validates the model ability to predict the correct

trend in noise reduction with change in the control input. However, the prediction of

the frequency spectrum for both the control-off (Figure 2-4) and control-on (Figure 2-12)

situations is not good compared to the experiments. This can be attributed to a first order

simplified model being used for this problem. Figure 2-13 shows the spectrum for control-off

and control-on situations obtained from the FSU experiments. The figure illustrates the

shift in frequency of the dominant tone that was mentioned earlier. Also, the FSU cavity

shows a maximum SPL reduction of 20 dB and OASPL reduction of 9 dB at the leading
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edge.

2 4 6 8 10
Frequency (kHz)

Figure 2-13: Experimentally observed SPL spectra corresponding to the pressure transducer
location at the middle of the leading edge. The two spectra are for the microjets-
off and 30 psig microjet pressure respectively. External flow conditions: M = 2.0
and Re = 3 million (based on cavity length). Cavity dimension: LID = 5.1.
Uncertainty in experimental SPL: ±0.5dB. Uncertainty in frequency: ±40Hz.

The following is an explanation for the observed saturation behavior. The reduction

in OASPL is an increasing function of the magnitude of the damping factor. The latter,

in turn, is an increasing function of the mean transverse microjet velocity gradient. The

microjet velocity gradient varies with increasing microjet pressure as shown in Figure D-1

(Appendix D). Clearly the saturation in the microjet velocity gradient results in satura-

tion in noise reduction inside the cavity. The reason for the saturation in microjet velocity

gradient is not clear at this stage but Eqn. (D.15) in Appendix D provides some insight.

It is evident that the barrel shock shape at the exit of the microjet nozzle must change

increasingly slowly with increasing microjet pressure and converge to a particular shape at

high microjet pressure in order for Figure D-1 to hold true. The validation for this hy-

pothesis of the shock structure behavior requires the development of a relationship between

the shock structure and microjet pressure. This in turn could be found using in-depth

gas dynamic analysis (possibly two- or three-dimensional flow analysis) or using detailed

flow visualization experiments done near the microjet nozzle exit but is not possible using

current knowledge bank. This relationship, if developed in future, would shed light on the

aforementioned behavior.

It is to be noted that the parameter, microjet-cross-flow momentum ratio as defined in

Eqn. (C.2), is directly proportional to microjet pressure. Therefore, Figure 2-11 also shows

saturation of the magnitude of noise reduction with increasing momentum ratio.
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2.3.2 Non-Uniform Control Case

For the non-uniform control case, we need to consider the flow dynamics in the spanwise

direction in addition to the details considered till now. But first, we discuss every conceivable

flow dynamic mode that can be realized in a three-dimensional cavity. Table 2.2 shows all

possible acoustic tones in the three-dimensional FSU cavity. However, the only observed

Table 2.2: All possible acoustic tones in the 3-D FSU cavity under M = 2.0 and Re 3 million
flow. Re is based on cavity length.

Typeof N=1 N=2 N=3 N=4
tone (Hz) (Hz) (Hz) (Hz)

Rossiter 1417 2834 4250 5667
tone, fN

Streamwise 1506 3011 4518 6023
tone, fA = "

Spanwise 8748 17496 - -

tone, fw = 2

Streamwise 3822 11468 -

tone, fD -

frequencies in the experiments were of the Rossiter tones because of their self-sustaining

nature and this phenomenon is two-dimensional (i.e., is restricted to the streamwise and

transverse plane). So the governing equations for the uncontrolled and controlled three-

dimensional cases are Eqns. (2.5) and (2.13) respectively, i.e. same as in the two-dimensional

model, except that separation of variables for the pressure perturbation field in the three-

dimensional case is given by:

p' ~ P (t) F (x, y) 4D (z) = P (t) R (r) F (<) <> (z) (2.20)

Here < (z) is a spanwise mode shape to be determined in chapter 3 and z is in the spanwise

direction.

The solution process is development of Green's function and application of the method-

of-images, same as in the two-dimensional case. The governing equation for Green's function

is (details in Appendix E):

d2 P + f1 (t) dP +W' P = 0 (2.21)
dt2 f tiadt ob

where fi (t) is the three-dimensional damping factor that is obtained by integrating the
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transverse microjet velocity gradient along the leading edge and is given by Eqn. (E.7) in

Appendix E and repeated here for convenience.

1 7RT0o I 5~ rp pr
fi (t) = 2 (z) 30 P Psq + 6 Ps

f 22(z)dz)(o .

5RTo p 1 DpI/z
4 P1Pb d( ) (2.22)42 pso pA 0y W

where the individual terms are defined in Appendix E. It follows that fi (t) consists of two

components: (i) which is the mean transverse microjet velocity gradient at the cavity

leading edge and is independent of time, and (ii) the rest of the expression which are

dependent on the ambient noise and thus on time. It also follows that an increase in (

results in a larger value of fl (t) and thus causes a greater reduction in the cavity noise

level. We now seek to find the relationship between the control input, p, and the damping

factor, fi (t). From the results of flow visualization experiments shown in Figure D-1 of

Appendix D, it follows that ( and p, are increasing functions of each other. Moreover, if

we replace by p, in Eqn. (2.22) and remove the time-dependent term altogether, we get

the following parameter:

f D2 (z) p. (z) d (
0 , 2 (pz) 0 (2.23)

f (D2 (z) d (g)W
0

where 9 represents the element-by-element multiplication of two vectors. It follows from the

aforementioned argument that fi (t) is an increasing function of the parameter (4, 4D @ pl1)

that, in turn, explicitly depends on p.. This relationship is exploited in the next chapter

to optimize the control input for microjet-based cavity noise suppression.

It is noted that to account for the discrete number of microjets, the contribution of

microjet velocity gradient in the integration done in Eqn. (2.22) was taken only at the

points where the microjets are present. Also the pressure field inside the cavity for the
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microjet-off and microjet-on cases, respectively, are as follows:

p'(x, y, t; w) H [( ( (L - x) 2 + y2) + H(') ( (L + x) 2 + y2 +

H (L - x)2 + (y + 2D)2 b (z) exp(iwt) + (-)* (2.24)

p'(X, y, t ;o') HL-X)2+ y2) + HO (L + X)2 +y2) +

H(+ (L X)2 + (y + 2D)2 <b (z) exp(iw't) + (-)* (2.25)

where the acoustic source strength in the presence of control is given by Eqn. (2.18).

2.4 Summary

In this chapter, we developed a reduced-order model to describe the cavity tones under

supersonic cross-flow, in the absence and presence of microjets. Further, two microjets-

on cases were tackled: (i) microjets fired with uniform pressure along the leading edge

(referred to as uniform control), and (ii) microjets fired with pressure that varies in a pre-

defined manner along the leading edge (referred to as non-uniform control). The framework

developed for the uncontrolled cavity tones model was based on the Navier-Stokes equation

and order-of-magnitude analysis. The presence of microjets was treated by introducing an

equivalent momentum flux to the cavity dynamics such that an active damper term was

added to the governing equations. This chapter also describes the experimental arrangement

used in Florida State University (FSU) for demonstrating the microjet-based cavity noise

reduction phenomenon.
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Chapter 3

Optimization of Control Input for

Microjet-Based Cavity Noise

Suppression

The three-dimensional acoustics model from Chapter 2 is used in this chapter to optimize

the control input for noise suppression inside a cavity under supersonic cross-flow, while

applying microjets at the leading edge. This study is limited to the control input being a

steady spanwise microjet pressure distribution. In section 3.1, we give the problem formu-

lation for optimizing the control input. Standard solution techniques for an optimal control

problem are discussed in section 3.2. Section 3.3 gives an outline of the proper orthogonal

decomposition and recursive proper orthogonal decomposition based techniques that are

adopted here to optimize the control input for cavity noise suppression. In addition, section

3.4 discusses the experimental results of the optimization process and their implications,

and section 3.5 summarizes the results of optimization of the control input for the cavity

acoustics problem under supersonic cross-flow.

3.1 Problem Formulation

Since the aim is to maximize the amount of noise reduction inside the cavity by using

microjets under a pre-specified mass flow constraint, the relevant optimization problem can
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be defined as follows:

Maximize fi (t)

subject to mass flow constraint (3.1)

where fi (t) is the damping factor defined in Eqn. (2.22). This follows the rationale that

maximizing the damping factor would result in maximum noise reduction. Also from section

2.3.2, we know that fi (t) is an increasing function of the parameter (l, 1 a p,,). Therefore,

the optimization problem (3.1) can be reformulated as:

Maximize (), ® 0 p,)

subject to mass flow constraint (3.2)

3.2 Standard Optimal Control Solution Methods

When optimal control formulations for a linear process involve a quadratic performance

criterion, the Liapunov equation technique found in standard control textbooks such as [18]

guarantees the existence of the optimal control input. In this case, a linear control law

suffices. However, the determination of the optimal control law for non-quadratic perfor-

mance criterion, and possibly for nonlinear processes, must be approached by the methods

of the calculus of variations or dynamic programming. The general methods of obtaining

the optimal control law using the variational approach are obtained from a standard text-

book on optimal control theory, such as [19] or [20]. Also, Ref. [21] outlines the theory and

application of optimal control theory specifically for nonlinear processes. In Ref. [22], the

technique of dynamic programming is used to derive the optimal control law for both linear

and nonlinear processes.

3.3 New Approach for Optimizing Control Input

In the optimization problem for cavity noise suppression given in Eqn. (3.2), the perfor-

mance criterion is expressed in terms of <k and the control input p., where D is as yet not

determined. Hence, the standard tools mentioned in section 3.2 for determining the opti-

mal control strategy is not useful here. Instead, we adopt proper orthogonal decomposition
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(POD) and recursive proper orthogonal decomposition (RePOD) based techniques here to

obtain an estimate of the optimal control strategy. The rest of this section is organized

as follows. Sections 3.3.1 and 3.3.2 outline the POD algorithm and the POD-based tech-

nique for obtaining an estimate of the optimal control strategy, respectively. Lastly, section

3.3.3 describes the RePOD-based technique for obtaining an estimate of the optimal control

strategy.

3.3.1 Proper Orthogonal Decomposition

In order to solve the optimization problem given by Eqn. (3.2), the spanwise mode shape

<1 (z) is required and the analysis done so far does not provide a procedure for obtaining

<1 (z). However, it is desired to have <D (z) such that the error between the pressure perturba-

tion signal and the expression used in its place in Eqn. (2.20), i.e. ||p' - P (t) F (x, y)<b (z) 1,

is minimized for given x and y (z and t being the variables of interest here). This is

equivalent to performing a proper orthogonal decomposition (POD) on p' in z and t. The

algorithm for performing POD is given below.

Expressing p' as a function of only z and t, and noting that p'(z, t) is a zero-mean flow

variable, the POD method seeks to generate an approximation for p' by using separation of

variables as

p'(z, t) ai (t)#i(z) (3.3)
i= 1

where ai(t) is the ith temporal amplitude, #i(z) is the ith spatial basis function, I is the

number of modes chosen, and t and z are the temporal and spatial variables respectively.

The set of realizations from a plant required for the POD basis calculation is typically

obtained experimentally or computationally and as such is discrete in nature. So, what

follows in this section refers to discrete nature of the variables concerned.

Let m be the number of temporal points in the flow data ensemble, and n be the number

of spatial points (depending upon the number of sensors). The POD method consists of

finding #i(z) such that the projection error p'(x, t) -p'(z, t) is minimized. This optimization

problem can be stated as follows. Denote {#i(z)}z=z1 . .Z = 0i E , = 1,- - , 1. The
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optimization problem is then given by:

Min Jm(# 1 , ,) = E' Yj - E=1(YT ) 2

(3.4)

subject to:q#>#i = , 1 1) i l,,j =

where Y C !R' is the vector of flow datap' at time t - tj, i.e. Y= {p'(zi, ty), - ,(z, t)}

Also, (Y T k) in the cost function is the kth temporal amplitude ak at time tj. So the ex-

pression within the first summation sign is ||Y -- E akk1|2 which refers to the projection

error for the data Y. The constraints imply that {Jili = 1,- . , l} satisfy the conditions of

orthonormality.

From Volkwein [17], # from Eqn- (3.3) is a POD modal set if it is a solution to the

optimization problem (3.4) for any value of 1 < m. The POD modal set can be obtained

using the method of snapshots [23, 24] as follows.

Denote Y (zk) = p'(zk, tj). Also, let the matrix Y be formed as follows: Y = [Y1T- , Ym]

Then, a singular value decomposition of the matrix Y gives: Y = BEAT, where A and B

are unitary matrices, and

Ul

o~2

Then

#i(zk) - )1 (z)7i= 1,., ;k = 1, ...,I n. (3.5)

The eigenvalues corresponding to the POD modes are the squares of the singular values

{1 o, -2 - 2-, and represent the 'energy content' of the modes.

3.3.2 POD-Based Optimization Procedure

The POD-based optimization procedure is as follows.

1. Measure pressure data from sensors distributed at a particular x, y with varying z and
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t, for the case of flow without microjets.

2. Perform a proper orthogonal decomposition on the data snapshots collected in step 1

by the method shown in section 3.3.1.

3. Determine the dominant spanwise mode shape and denote it as 1 (z) as used in

Eqn. (3.2).

4. Perform steps 1-3 for various microjet pressure distributions and obtain the corre-

sponding OASPL reduction magnitude in each case.

5. Plot the OASPL reduction versus (b, D 0 pt).

6. Identify the best microjet pressure profile from this plot.

Steps 4 and 6 need further explanations. From Figure 2-11 and from the similar govern-

ing equations of the uniform and non-uniform control problems given by Eqns. (2.14) and

(2.21), respectively, we expect the cavity to exhibit a similar saturation behavior in the

noise reduction ability of microjets with increase in (P, 4b ® p,,) for the non-uniform control

problem. Therefore, the microjet pressure distributions used in step 4 are varied so as to

obtain (4, D 0 pp) 1 < (4, @ P)2 < (4 4 PA)3 < -... until saturation is observed. This

can be realized by gradually increasing the mean microjet pressure profile. In step 6, the

best microjet profile corresponds to the minimum (4, 4) 0 p,,) that satisfies the mass flow

constraint and provides maximum noise reduction. This solution, based on the aforemen-

tioned physical insight, is thought to provide a good estimate of the optimal solution to

Eqn. (3.2).

3.3.3 RePOD-Based Optimization Procedure

The approximate optimal control strategy derived so far is a particular case of the general

real-time control theory that requires the implementation of an on-line proper orthogonal

decomposition of the data snapshots collected from the cavity pressure sensors and on-line

variation of microjet pressure. The latter is based on solving Eqn. (3.2) in a real-time

environment. Now, the theory and procedure of realizing on-line proper orthogonal decom-

position is given in Ref. [25]. A summary of the technique of recursive proper orthogonal

decomposition (RePOD) is given here.
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Suppose we begin at time tm, with the flow data set [Yf Y, Yl], where the notations

are given in section 3.3.1. When a new measurement set Ym,+1 at time tm+1 is given, then

the updated basis function is given by:

# (m+l - s(i > 0)

= () s Ym+1 - YY1dk)k (3.6)
S (Y+1 -k=1 +0 k +0

where i =1, - , 1, s is a step-size chosen suitably (typically, by inspection) and the super-

scripts '(n)' and '(m + 1)' on the mode shape refer to the computation done at time tm

and tm+1 respectively.

Also, on-line variation of microjet pressure can be implemented by an appropriate

choice of valves to modify the pressure such that the response time of the valves is sig-

nificantly slower than the time scale associated with the dominant Rossiter tone. This

requirement enables us to use the on-line proper orthogonal decomposition algorithm given

in Eqn. (3.6). Finally, the optimization problem Eqn. (3.2) can be solved real-time using

standard techniques[26}.

3.4 Experimental Results

The POD-based approximate optimal control solution of Eqn. (3.2), as given in section

3.3.2, was experimentally implemented using the FSU cavity with four leading edge and

three trailing edge pressure sensors, and one sensor in the middle of the leading edge face of

the cavity. These sensors were used for computing <b (z) in the optimization process. The

results are outlined in Figure 3-1 for the leading edge.

Both model and experimental results (Figure 3-1(b)) show similar saturation behavior

in the noise reduction ability of microjets at the leading edge with increase in microjet

pressure. In fact, the point of saturation suggested by the model and experiments is around

(<b, <b 0 p,) = 30 psig. This validates the model ability to predict the correct trend in noise

reduction with change in the control input, as in the two-dimensional case. Also the optimal

control input can be chosen, based on the mass flow constraint. However, as expected, the

prediction of the frequency spectrum for the control-on (Figure 3-1 (a)) situation is not good

compared to the experiments and is henceforth not discussed.
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Figure 3-1: Model prediction versus experimentally observed SPL spectrum (a) and OASPL
reduction (b) corresponding to the pressure transducer location at the middle of the
leading edge. External flow conditions: M = 2.0 and Re = 3 million (based on cavity
length). Cavity dimension: LID = 5.1. Uncertainty in experimental SPL: ±0.5dB.
Uncertainty in frequency: ±40Hz. The microjet pressure naming convention is based
on Figure 2-6.

It may be noted that it was not possible to directly measure 4 (z) from the leading

edge sensors in the presence of microjets because lack of space excluded the possibility

of including both microjets and sensors at the leading edge. A multivariate ARX model

(details in Appendix F) was used to predict the leading edge sensor readings from the trailing

edge pressure sensors for various microjet pressure profiles. P (z) was computed using the

predicted leading edge pressure data. It was found that the predicted normalized 1 (z) was

very similar to the experimentally obtained one from the microjet-off case. Hence, 4 (z)

used in Figure 3-1 was obtained from the experimental leading edge pressure data under

the control-off condition.

Optimization results for the trailing edge are shown in Figure 3-2. The figure clearly

illustrates the effect of saturation of the noise suppression ability of steady microjets al-

though here the noise reduction after saturation is not as flat as in the leading edge case.

While implementing the optimization process, the presence of trailing edge sensors made it

possible to estimate 4 (z) for each case of microjet input. This proved fortuitous when com-
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pared to the leading edge optimization process because the mode shape at the trailing edge

varied with different microjet input. Also, it was observed[1] that there is a poor coherence

between the leading and trailing edge sensor readings except at the Rossiter frequencies.

Hence the cavity acoustics model is expected to predict the trailing edge noise not as well

as at the leading edge. This is because the model relies on good coherence between the

two. The relative poorer model performance is illustrated in the form of a gap between the

model-predicted and experimentally obtained noise reduction at high microjet pressures in

Figure 3-2. On the other hand, the gap between the two is close to the uncertainty in the

trailing edge pressure sensor; hence we consider the model to be validated. Also based on

the model and experimental data, we can take the point of saturation as (4, P 0 ppt) = 30

psig because increasing microjet pressures further does not result in drastic gain in resulting

noise reduction.

-- -- Upenental data

-0- Model prederm

N, m e M 24 30 40 0 70)

(04,opt), psig

Figure 3-2: Model prediction versus experimentally observed OASPL reduction corresponding
to the pressure transducer location at the middle of the trailing edge. External
flow conditions: M = 2.0 and Re = 3 million (based on cavity length). Cavity
dimension: LID = 5.1. The uncertainty in the pressure sensor reading was i1.5dB
and in frequency was i40Hz. Also the initial conditions for determining d, were:

= 1.98 and - = 0 (arbitrary).

It is to be noted that the parameter, microjet-cross-flow momentum ratio as defined

in Eqn. (C.2), is directly proportional to the microjet pressure. The reason is that in the

expression for momentum ratio given in Eqn. (C.2), the term jet density is proportional

to the microjet pressure. Therefore, Figures 3-1(b) and 3-2 also show saturation of the

magnitude of noise reduction at the leading and trailing edges, respectively, with increasing

momentum ratio.
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3.5 Summary

In this chapter, we derived an estimate for an optimal control strategy that guarantees noise

suppression inside a cavity under supersonic cross-flow, while applying microjets with steady

pressures at the leading edge. The derivation was based on the three-dimensional acoustics

model from Chapter 2 and on proper orthogonal decomposition of the pressure perturbation

data along the spanwise direction at the desired location inside the cavity. The strategy

was implemented using the FSU experimental setup and illustrated saturation of the noise

reduction ability of microjets above a certain pressure level. Because of the early saturation

behavior of the cavity acoustics system, the RePOD-based optimal control strategy is not

necessary for this problem. On the contrary, the best estimate for the optimal control

strategy is to fire the microjets with a steady pressure profile that satisfies the mass flow

constraint and corresponds to a value of (<b, <D 0 p.) which is as close to the saturation point

as possible. Since a particular value of (<b, <b 0 pp,) can result from several pp (z) profiles, it

follows that the best estimate does not give a unique microjet pressure distribution for the

cavity acoustics problem under supersonic cross-flow.
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Chapter 4

Store Separation From Bay Under

Supersonic Cross-Flow

In chapters 2 and 3, we developed and validated an approximate optimal control strategy for

suppressing noise inside a cavity under supersonic cross-flow using leading edge microjets.

The next problem is to use microjet-based actuator to control the trajectory of a store that

is released from inside the cavity into external supersonic flow with the goal of achieving a

safe drop. This can be done by deriving a low order model for predicting the correct trend

in the store trajectory in the presence of microjets. This chapter outlines the development

of an appropriate low order model in section 4.1. In section 4.2, we analyze the low-order in

terms of the store drop behavior for two cases: (I) when microjets are off, and (II) when the

microjets are switched on. We then compare the low order model predictions with results

from experiments performed under the DARPA-funded HIFEX Program [2, 3, 4] in section

4.3. Finally in section 4.4, we describe an optimization process to find the best control

input (in terms of microjet-free-stream momentum ratio) that would ensure a successful

store drop from a cavity under supersonic cross-flow.

4.1 Store Release Model Development

The model, used to optimize the microjet-based control input for safe store ejection, is

restricted to the pitch and plunge motion of the store. Additionally, it is assumed that the

store release is an ejected drop from the middle of the cavity. The development of the store

release model is further based on the following five major assumptions:
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(M1) The store is thin and axi-symmetric, and the vertical store velocity and angle of attack

are small. Then the following hold true:

a0  V, aS 7- < 1e< O (1), a - 0 (1). (4.1)
10 '5U00

Here indicates dimensional quantities, 10 is the store length, ao is the maximum store

radius, V is the characteristic plunge speed, Um is the undisturbed free stream velocity

and 6Um is the scale of the vertical velocity perturbations in the external free stream.

Also & is the store angle of attack in radians and a is the appropriately scaled angle of

attack. Eqn. (4.1) illustrates the slender body assumption that is later used to simplify

the model governing equation. A related extension to this set of assumptions is flow

attachment to the store surface at all stages in the store trajectory. These assumptions

are not critical when the store successfully departs from the cavity. However, they

become critical after the store starts to return towards the cavity because it tends to

exhibit large angle of attack followed by flow separation. Now, since the objective of

this model is to predict whether the store departs successfully or not, we are justified

in applying this set of assumptions to predict the store vertical motion till the point

where the store starts to turn back into the cavity or till the store makes a successful

drop outside the cavity.

(M2) The shear layer geometry is governed by:

< (4.2)
a0

where 3, is the shear layer thickness. In other words, Eqn. (4.2) illustrates the thin

shear layer assumption which implies that the shear layer can be treated as a flat free

slip surface with a tangential velocity jump and continuous normal velocity, pressure

and density across itself. A related extension to this assumption is that the wavy

structures that form inside the thin shear layer have a small slope.

(M3) The external cross-flow is of high Reynolds number, i.e.

62Re >> 1, Re = p. U.l. (4.3)
yOO
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Here Re is the Reynolds number based on the store length, poo is the free stream

density and p is the free stream viscosity coefficient. This assumption allows us to

neglect viscous forces on the store.

(M4) Based on the slender body assumption (1), the shock waves associated with the store

nose when it is facing the external supersonic cross-flow are expected to be consider-

ably weak and consequently can be replaced by Mach waves. In addition, with the

application of flow injectors at the leading edge and upstream end of the cavity, shock

waves are introduced, as illustrated in Figure 4-1. It is reasonable to assume that the

Flow
injectors

Shear layer

Plane shock

Figure 4-1: Shock geometry outside the cavity due to application of microjet-based flow injectors
at the leading edge and upstream end.

associated shock wavefront radius is much greater than the store radius so that the

incident shock can be treated as a plane shock for this problem. Plane shock theory

together with assumptions (3) and (4) allow us to apply slender body potential flow

theory to the store when it is outside the cavity. Moreover, if the store is released

sufficiently away from the cavity leading edge, the store is not expected to intersect

the microjet shock line and so the associated diffractive effects can be neglected.

(M5) The mean convective flow inside the cavity is ignored. In practice, a reverse flow with

speeds up to 40% of the external flow stream has been observed. This is neglected in

this low-order proposed model. Thus, the store drop model consists of the motion of

a slender axi-symmetric body in a quiet medium inside the cavity. In addition, the

acoustic field inside the cavity due to Rossiter tones [Chapter 2] is neglected. The

reason is that the associated time fluctuations are short on the time scale of dropping

of the store [31]. In fact, the Strouhal number of dominant Rossiter tones is 0 (10)

while that associated with store drop is negligibly less than 1.
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The model also incorporates the factors that affect the store plunge and pitch motion given

in Figure 1-8, out of which, the wavy structures, the store induced potential, the leading

edge microjets and gravity can be treated as the primary factors and the cavity walls as

boundary conditions. We limit the scope of the model to first order effects since we can

introduce these factors separately.

The procedure employed for developing the first order model is as follows: Assumptions

(M2)-(M5) allow the use of potential function in solving the velocity field associated with

store motion. Using this method, it is first shown that because of the thin shear layer and

the thin store diameter, the wavy structures provide negligible influence on aerodynamic

forces and moments on the store. It is then shown that the velocity potential induced by

the store motion as it drops from inside the cavity satisfies the Laplace Equation in the

cross-section plane. Owing to the linearity of the problem, the Laplace Equation is solved

separately for the cases when the store is inside the cavity, when it crosses the shear layer

and when it is completely outside the cavity. The technique used for solving the Laplace

Equation is a combination of multipole expansion and conformal transformation.

The resulting model predicts that when the store just exits the cavity in the no-control

case, it experiences an aerodynamic force (in a direction normal to the external flow) and

pitching moment such that the linear velocity of the store becomes positive and the store

starts to return back to the cavity. When microjets are switched on, the external flow

stream is changed so that the force and moment on the store are altered mainly when the

store passes through the shear layer and when it is completely outside the cavity. These

changes cause the store to drop successfully from the cavity. The model is also used to

predict that when the microjet pressures are increased to higher values, the nonlinearities

in the normal force and moment cause the store to return back towards the cavity. These

predictions are then corroborated with experimental results [4]. Finally, the model is used

to optimize the control input in order to ensure safe store drop under a variety of drop

conditions.

4.1.1 General Governing Equation for Two Dimensional Model

Before deriving the two dimensional first order model, we consider the general problem of

a slender axi-symmetric body falling through a cross-flow in the absence of viscosity and

body forces. To derive the governing equation for this problem, we use the equation of
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continuity:

1 Dp 0+ V- Q- 0,(4.4)

Bernoulli's equation for irrotational flow:

dp ( Q 2 u2 (4.5)

and the isentropic flow relationship:

c 2 0 (4.6)
dfi'

where P is the local pressure, # the flow density, Q the velocity field and c the sound

speed. Also P.. is the free stream pressure and Um the free stream cross-flow velocity.

By eliminating density and introducing the velocity potential <D, we get the full unsteady

potential equation [36] for the pitch and plunge store motion as follows:

V 1= 1 + a +& Q -V (4.7)
c2 -T2 at 2

Moreover the relation between local sound speed and sound speed under free stream con-

ditions is given by:

c2 = c2 7-1 (Q2-U .(48

Here -y is the ratio of specific heats and coo is the free stream sound speed. In the presence

of plane shock near the cavity leading edge, these quantities refer to the region in front

of the shock. Gravity does not influence the velocity potential as the associated Froude

number Fr = U >> 1, where g is the acceleration due to gravity. The reference frame forglo
this particular problem is illustrated in Figure 4-2.

4.1.2 Contribution of Wavy Structures to Store Force and Moment

We now consider the effect of the wavy shear layer structures on the normal force and pitch-

ing moment on the store. A shear layer is typically formed between the no-mean-flow inside

the cavity and the external uniform flow outside the cavity. Small vortical disturbances
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Figure 4-2: Reference frame for the general problem of a slender axi-symmetric store falling
through a cross-flow in the absence of viscosity and body forces.

which originate at the upstream boundary layer and at the leading edge due to excitation

by the Rossiter tones [Chapter 2], get amplified as they propagate downstream inside the

shear layer. This gives rise to wavy shear layer structures that convect downstream. These

wavy structures result in non-uniformity in the flow domain outside the cavity. Then the

shear layer, according to assumption (M2), can be treated as a free slip surface with a

tangential velocity jump and continuous normal velocity, pressure and density across itself,

with the slip surface now consisting of wavy structures.

Because of assumption (M5), we can use the full potential equation given by Eqns. (4.7)

and (4.8) to model the velocity potential induced by the wavy shear layer structures. To

identify the expression for the loads, the technique of Ref. [33] is adopted in which a combi-

nation of non-dimensional analysis and the method of perturbations is used to identify the

dominant terms in Eqns. (4.7) and (4.8). Then we perform an order of magnitude analysis

on the force and moment expressions to quantify the effect of the wavy structures.

The non-dimensional scheme is given by:

X _ = ' - , =- (4.9)
Lo Lo Lo

where L, is the cavity length. Another useful parameter to consider is the Strouhal number

S = -where t, = is the characteristic time scale for the store plunge motion.

Now, since we are interested in finding the first order effect of the presence of the wavy

structures, we neglect the presence of the store. In that case, the method of perturbations

results in:

<b = Uoo,r [Zk + 6Lo >+ (4.10)

64



where Um, is the external cross-flow velocity relative to the wavy shear layer structure

and is typically -. Also q is the perturbation velocity potential induced by the wavy

structures. Here it is assumed that the wavy structures are uniform along the cavity width.

The explanation is that the cavity dynamics dominated by Rossiter tones [Chapter 2] can

be treated as two-dimensional and microjets, whenever present, are fired uniformly along

the spanwise direction. For a two-dimensional flow problem, the flow perturbation [37] is

of the order 6, where 6,= < 1.

Next, we substitute Eqn. (4.10) in (4.7) and (4.8), and use (4.9) to get:

[1 S 1=

M 2  - ( 1) P -t + - (3s4x + 6,0y + 24x))1 [xx + 7v y]ps = S2 3se +
_M., pX 2 pS2 Y

2Sos [osx xt + 5xt + 6sbY Yt] + pAs [(1 + 6iex) 4xx + 2

(4.11)

where y = < 0 (1). Eliminating terms with , 62, 6,. - - and assuming S < 6, we get:

02bxx - yy = 0 (4.12)

where #2 = M 1.

Assuming that the wavy structure has small slope, the associated boundary condition

is given by [33]:

dh (X') 
(4.13)

X'='

where the non-dimensional wavy structure shape is given by:

Y' = 6sh (X') , h (-) 0 (1). (4.14)

This boundary condition implies that the perturbation velocity normal to the wavy structure

varies as the slope of the structure which is because the flow represented by 4 is tangential

to the wavy structure, to a first order.

The problem is solved to give [33]:

# = (X' + OY'). (4.15)
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Next, we convert the velocity potential from Eqn. (4.15) to pressure as follows [33]:

h' (X' + OY') (4.16)

where the prime on h (-) indicates differentiation, pressure is non-dimensionalized with

respect to (6,U)r s and the other variables are non-dimensionalized using the scheme

given in Eqn. (4.9).

Integrating this pressure along the store cross-section and axis gives the normal force

and pitching moment on the store [33]:

F= -6s p(X'+px±+Y')a(x)sin0dOdx
xo

fxe 
2,r

M - -6s (27, (XI + px + OY') xa (x) sin ddx (4.17)
xo 0

where (X', Y) are the store c. g. coordinates in the X' - Y' system, X' + px is the X'-

coordinate of a point on the store surface, Y' = Y- pax+poa (x) sin 0 is the Y'-coordinate

of the point and 0 is the angle formed between the point and the reference at the store

axis, as illustrated later in Figure N-1. Also the force and moment expressions are non-

dimensionalized by (#52U2), 6sl2 and (p'UI) osf3 respectively.

In this thesis, we further estimate the order of magnitude of F, and M, from these

expressions. Without any loss of generality, we further assume that the wavy structures

consist of piecewise cosine components, such as:

h (X') =Wi cos (AiX' + Ci) + Ri (4.18)

where i is an integer, W = 0 (1) and Ai = 0 (10). Then we have:

IF,I rr 7if 8 6 max (Wi Aj2) Go

|MI < rpo6o max (WA.) G1. (4.19)

where G0 = fxe a2 (x) dxG, fa 2 (x) x dx x = a - 4-and (xo, xe) are the nose0 ~ a2  (x) dll 0'

and tail coordinates of the store.

Since G0 < 0 (1), G1  0 (1), 3 < 1 and 6, < 1, we have |F,|I < 1 and IM,I < 1.

Thus because of slender body and small thickness of wavy structures, the effect of the wavy
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structures on the normal force and moment on the store is negligible.

The remaining factors affecting the pitch and plunge motion of the store are the store-

induced velocity potential as it drops from the cavity, the shock waves due to microjets and

gravity. We consider the first factor below.

4.1.3 Store Motion Induced Velocity Potential

To derive the velocity potential associated with store motion inside and outside the cavity,

we identify the dominant terms of the general governing equations given by Eqns. (4.7) and

(4.8) by a combination of non-dimensional analysis and method of perturbations as before,

following Ref. [33]. The non-dimensional scheme is:

X=,-Y= -,Z= ,t=- (4.20)
61, 61, t

Using the method of perturbations, we ignore the wavy structures (which do not produce

appreciable force and moment on the store) and set [33]:

<b = U0jo[ (X + 62 + -_.. (4.21)

keeping in mind that the dominant flow perturbation is of order 62 for a body of revolution

[37]. Here @ is the perturbation velocity potential. Now, substituting Eqn. (4.21) in (4.7)

and (4.8), and using (4.20), we get:

1 - - 1)62 (s2 + 2 (6Xc + 02 + 42 + 20X 620XX + OYY + OZZ

S 262 @tt + 2S62 (620X @Xt + OXt + qYy4Yt + OZkZtI + 62 (1 + 62@X ) [620X@XX+

OXX + qYqXY + ZXq
5
xz] + 6

2
0y [620XqXY + kXY + OYYY -+ OZOYZ +

2 Z [620XOXZ + XZ & YOYZ + OZOZZj .(4.22)

Eliminating terms with 62,3,--- and assuming S < 6, we get [33]:

YY + zz = 0 (4.23)

which represents the Laplace Equation in the transverse (Y - Z) plane. Since the store

angle of attack is small by assumption (Ml), we can assume that the potential is governed
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by two dimensional Laplace Equation in the cross-flow plane perpendicular to the store axis.

Thus, the problem of a slender axi-symmetric body that falls through an inviscid cross-flow

(while neglecting gravity) is reduced to solving the Laplace Equation of the perturbation

velocity potential in the store cross-section plane.

After solving for the velocity potential, we use Bernoulli's equation to convert # to pres-

sure, then integrate the pressure along the store surface to get normal force and pitching

moment on the store. The force and moment expressions are given in Ref. [33]. These

expressions are further processed in the current paper to obtain a set of parametric non-

linear ordinary differential equations for the store trajectory. We develop the appropriate

parametric expressions for the force and moment in three stages: (I) when the store is

completely inside the cavity, (II) when the store passes through the shear layer, and (III)

when the store is completely outside the cavity.

4.1.4 Force and Moment for Store Inside Cavity

Let the store be released with the conditions (V0 , &o, o, Co) from within the cavity. The

problem of the store drop inside the cavity, which is assumed to be quiet, reduces to the fall

of a circle towards the free slip surface in an immovable fluid. The presence of the cavity

walls is ignored because the cavity is sufficiently wider and taller than the slender store

diameter. In particular, the effect of the front and back wall on the store potential is of

0 ~(,
D

2  where b> is the width of the cavity, and the effect of the top wall is of 0 ,

where Ho is the depth of the cavity.

The problem of a circle falling in an quiescent fluid towards a free surface can be solved

using the multipole expansion (Laurent series) technique [31]. The resulting potential func-

tion is given in Appendix H and the associated normal force and moment on the store,

expressed in a parametric form, are given by:

d e' &
F=rrpoo0 ( go d 5o + gi - 1, + 92C21 + 94V + g9o0Ye)

dVe dM = 1 ho d Eo + hi - + h2 C921 + h4V 2 + hl (4.24)0 d dt 0 ± 9W 0  )

where #30 is the external free stream density, 9o, 91, 94, g and ho, hi, h4 , h9 are non-dimensional

factors that depend on the store geometry, position and orientation relative to the shear
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layer and are given in Appendix H. Also, V is the store linear velocity (positive upwards)

and w is the rotational velocity (positive nose-up). The most dominant term in the above

equation is the store velocity (linear or angular velocity term). Assuming linear velocity

term to be dominant, the vertical motion of the store inside the cavity is given by:

dV - dYc -
r s = 7rpoo5l g4V - Ms9, dt =

- do - - d&
s = ir poo6l h4 V2 , - =, (4.25)

dt dt

where h, and i. are the mass and moment of inertia of the store about its axis, y is gravity,

Yc is the store c.g. position relative to the shear layer line (positive upwards) and & is the

angle between the store axis and the external free stream direction (positive clockwise).

The store state (position, orientation and velocity) is illustrated in Figure 4-2. Also the

factor 94 typically does not vary significantly when the store is inside the cavity.

The following velocity expression can be obtained from this equation:

c= - VI tn tv + 1 log ,94 > 0
AV 2 +VO

AA

- ia~ Aarctan )9<0

where A = S and Vo is the store vertical velocity at drop point. Figure 4-3 illustrates

the velocity of store while inside cavity for various drop cases.

0.2

1Instability regic n

Stability regioni

-0.2

-0.4- 0 <Og 4-- V >0g>0

V 0<0,'g4< 0

-0.6 -~ V >0, g 4 <0
0 0.2 0.4 0.6 0.8 1

Figure 4-3: Velocity of store while inside cavity for various drop cases, with Vc = . The

values of parameters used: Vo l 0.186Uoo, 1941 = 0.75.
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It is clear that irrespective of the signs of 94 and Vo, V eventually becomes negative

inside the cavity, although if V > 0, then V remains positive for a certain time duration

before turning negative. In other words, the inner volume of the cavity has a stabilizing

influence on the store, in that it eventually falls towards the shear layer irrespective of Vo.

Also typically h4 > 0 so that rotational velocity and angle of attack increase monotonically.

If c2 terms in force are significant, a similar analysis can be done to find the drop

conditions (i.e., Vo and Go) that would ensure that the store falls towards the shear layer.

For example, if the store is dropped with very high 6o and low o, the store may pitch up

and move towards the cavity roof instead of the shear layer.

4.1.5 Force and Moment When Store Crosses Shear Layer

When the store crosses the shear layer, a part of the store falls inside the cavity with no

flow, another part falls outside the flow facing a uniform flow Uoo and the remaining part

faces both flows. This is illustrated in Figure 4-4.

Side view

Inside cvty ' Partially submerged

(X X2 in flow

y. Outside cavity
Store

Figure 4-4: Reference frame used when the store crosses the shear layer slip surface.

Because of the linearity property of solutions of the Laplace Equation, the problem of

the store crossing the shear layer can be reduced to three unit problems: one is a circle that

falls towards the slip surface in an immovable fluid (problem (I)), another one is a circle

partially immersed in a flow (problem (II)), and the last one is a circle that falls from a free

surface into a uniform stream (problem (III)). Problem (I) has been solved in the previous

section and problem (III) is solved in the following section. Problem (II) can be solved using

conformal transformation [31] of the store region partially immersed in external cross-flow

to an 'equivalent' flat plate in the complex plane a = + ir as illustrated in Figure 4-5.

The mapping of the store region submerged in the external cross-flow is given by [31]:

R' +1 ir -0 o- + b c
=f (a,X,t) =c ,n = , R = , b = - (4.26)

Rn- I a-b n
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Back view

1

Body Y

Z'z -b b

Body Y < 0 Body Y < 0

(a) Physical plane () (b) Transformed plane(a)

Figure 4-5: Conformal transformation required to solve for the velocity potential associated with
the store region partially immersed in the external flow.

while the mapping for the store region inside the cavity is:

=RT +1 ___+_+

(+ ++ (, X, t) = c M , m = -R+ = + 7b+ (4.27)
R+ -1 o, -b+ m

To verify the transformation of the store cross-section into a flat plate, we solve Eqn. (4.26)

to obtain the transformed (Y, Z) from (, r/). The result is:

Y ()=o = -2c D Z (), = c D , D = Q2n - 2Q" cos 7rin + 1, Q = - b

(4.28)

It can be shown that:

(Y () 1 0 - c ) + Z(}| = (sC )) 2  (4.29)
\ 7= tan 7r (1 - n) ?= sin 7r (1 - n)

thus showing that the transformed (Y, Z) form an arc from the flat plate ((, r; = 0). This

type of transformation has been used for the flow over a log given in Milne-Thomson [38]

for slip line boundaries. Also for n > 1, the flow velocities have a singularity of type2'

( - b2) n at the points where the free surface intersects the body. Since this singularity

is integrable, P and M are not singular.

After the transformation to a flat plate, P and MI due to the store partially immersed in

the external flow are computed. To this, the contributions of the store portion completely

inside and completely outside the cavity are added. Before we can predict the force and

moment as the store crosses the shear layer, let us study problem (III) when the store is

outside the cavity.
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4.1.6 Force and Moment for Store Outside Cavity

The problem of store moving outside the cavity reduces to a circle falling in a free stream.

If the store is far from cavity, then the stream can be considered unbounded (the no-cavity

model - Appendix J). If the cavity depth is small, then the stream can be considered to be

bounded by a rigid wall (the zero-depth-cavity model - Appendix K). Also if the store is

close to the shear layer, then the stream can be considered to be bounded by a free surface

(the near-cavity model - Appendix L). All these cases can be solved using the multipole

(Laurent series) expansion technique [31]. Finally the presence of shear layer structures is

to be taken into account if the thickness of the shear layer is not small (Appendix M).

The steps for solving the problems for velocity potential and converting the potential to

force and moment on the store is given in Ref. [31]. Here we use the same steps to obtain

F and M, the expressions of which are further manipulated so that they are represented in

a parametric form:

dV dA
F= 61oo 0 go i5d + g 1 - + g 2  0 4 V + Uoog&5C' 0 + U 96&+

U.J967Vc ± U.g 8&C2'l0 + 9 wl0IVc + UooglO&Vc ± 02U0g1)

( dV c _lD2 C2 2& 2u
M = 7r&p,6 h o +1 + h26 2i + Uah 3

2 + h4 YeC + Uoo6hs5h6lo + U(oh 6 &+
di di

Uoooh7 1c + Uoohs&C;'lo + h9 cD0 V0 + Uoohi 0 &c + 62U2 h)

(4.30)

where go,. , g1, ho, - , hu depend on the model used (i.e., the no-cavity, zero-depth-

cavity or near-cavity model or the model with wavy structures) and are given in Appendices

J-L. It may be noted that this equation also gives the general expressions for F and M

when the store crosses the shear layer, with the corresponding go,--- ,gi, ho, , h1u being

outlined in Appendix I.

We cannot use the models developed above to obtain an insight into the release trajectory

when the store is outside the cavity, due to their complexity. To address this issue, we now

outline a simple model that captures the dominant physics of the problem.

Because of the high speed of the external flow and because the store is inclined to the

flow, the component of the external flow normal to the store is dominant compared to the

store velocity. Hence the dominant terms in F and M, when the store is external to the
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cavity, contain 6, and is of the form:

F =r U ( 6362 + e)

-= (h3&2 + Jhed) (4.31)

The second order dependence of F and M on d makes it difficult to analyze the dominant

trend in the store motion outside the cavity. Hence, we linearize Eqn. (4.31) about d = 0

to get:

#A~ = 7r24 f(d
AI=rS2 fj/3fm (&),

# = poo UK,

f (d) = g6,

fm (6) = h6 d, (4.32)

It should be mentioned here that the error incurred in using assumption (M1) to develop

the above expression for F is less than 10% for & < 40'. Using Eqn. (4.32) and following

Eqn. (4.25), the governing equation for the store trajectory outside the cavity becomes:

d~r d Y
ms-?=7rpooUt2/19d rsy -

dt dt

is- = rpU fh 6 , = . (4.33)
dt dt

After the store exits the shear layer, let its state be denoted by (y1 , d ,)I/i, 1). When

di is large, since 96 > 0 in Eqn. (4.33), the linear dependence of f (&) on & results in

large F. This increases the likelihood of F to overcome gravity and the store to return

back towards the cavity. This is further demonstrated from the expression for c which is

obtained by solving Eqn. (4.33) with 1 as the initial condition. As a result we get:

Oc = B (-c1 cos Ai+ Ai sin Ai) - t+ B2 1 + Zi (4.34)

where A2  r v '27 0 1h 6 , B = . The linear velocity expression consists of a sinusoidal

term, a linear term and an offset. From an order of magnitude analysis, it can be shown
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that the offset term is the dominant one. For a given (i, 61), if

W1 1
-- > ,(4.35)
V B

then 9e becomes positive when - arccos (I + < < -1 arccos (1 + Bw. The

implication is that over this time interval, the store returns towards the cavity. The above

discussions indicate that the store dynamics outside the cavity can be characterized by a sta-

ble region with linear boundary, where a stable region is defined as the set of (Yh' &i, 1, )
such that the store exhibits a safe drop.

The stability analysis performed so far, particularly Eqn. (4.35), is based on the sim-

plified dynamics of the store in Eqn. (4.33). To compare this stability analysis with the

predictions of the more complex models, we evaluate the four models (i.e., the no-cavity,

zero-depth-cavity, near-cavity models and the model with wavy structures) and determine

the conditions (Zi,01) that result in an unsafe store departure for a particular (i, &1),d

The safe and unsafe drop conditions for the four models are shown in Figure 4-6, together

with the stability boundary predicted by the dominant order model given in Eqn. (4.35).

For the dominant order model, the values of g6 and h6 are obtained from Eqn. (L.2) (corre-

sponding to the near-cavity model), after taking their mean over the time duration in which

the store is present outside the cavity. Figure 4-6 illustrates that all the models predict a

stability region with a linear boundary having different slopes. The varying slopes are due

to the fact that the models capture the store release mechanism under different resolutions.

It should also be noted that the near-cavity model predicts the most conservative stability

region. Therefore, out of the five models, the near-cavity one is used for optimizing the

control input for successful store release in section 4.3.

4.2 Analysis of the Complete Store Drop

The low order model developed in section 4.1 is now used to analyze the store trajectory

as it is dropped from inside the cavity to the point where it has either exhibited successful

drop or it starts to return back into the cavity. This analysis is performed for two cases:

(I) when microjets are off, and (II) when the microjets are switched on.
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Figure 4-6: Stability region predicted by the five outside-cavity models in the no-control case.

The initial conditions for the models are: Y1 - g = -1.63 and i = 0.01

with V = V and wi = 0'0 shown in the above plot. The uncertainty in the
stability boundaries are as follows: AV = t0.005, Awi = ±0.125. The cross-flow
Mach number is 2.46, Reynolds number based on store length is 4.9 million, cavity
aspect ratio is 5 and store length is half of cavity length.

4.2.1 No microjets present

Let the store be dropped from inside the cavity with the conditions (Y, &o, Z o0), with do

positive and small, Vo < 0 and ''o > 0 but not large enough so that the store hits the cavity

roof immediately. It follows from Section 4.1.4 that Cv, & and c inside the cavity increases

monotonically by the time it reaches the shear layer. Also, from Eqns. (4.25) and (4.32), it

follows that when the store crosses the shear layer, the portion of the store inside the cavity

experiences a normal force proportional to fc while the portion outside experiences a force

proportional to f (a). The latter is dominant because of the high external flow speed. Now

from Eqn. (4.32) (with h6 < 0) and from the fact that the tail side is first exposed to the

external stream when the store exits the cavity, it follows that there is an increase in I

in the nose-down (negative) direction and a consequent decrease in Co. Despite this, if the

store is released with a large c'o when compared to Vo, then 621 is large when the store exits

the cavity and Eqn. (4.35) is satisfied, thus implying an unsuccessful drop. It also follows

that if the store is released with a small cZ'o, then cZ'i is small and Eqn. (4.35) is not satisfied.

In that case, the store exhibits a clean departure. In summary, if the store is dropped with

a small cZ'o when compared to Vo, the store exhibits a safe departure from inside the cavity.

It is instructive to compare the analysis performed here with that done for subsonic and

transonic flows [30, 31]. Because of the high speed of supersonic flow, the dominant term in
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F and M are dependent on & when the store is external to the cavity. Hence it is relatively

easy to analyze its stability. On the other hand, in the subsonic and transonic cases, the

terms containing Vc, c2 and their time derivatives are equally important and hence it is more

difficult to analyze the trend in store trajectory outside the cavity. However, it should be

noted that unsafe store departure depends on the nature of the drop conditions in all flow

cases; in the subsonic and transonic cases, unsafe departure occurs if either Vo is small or

do is large whereas in the supersonic case, we note that unsuccessful departure occurs if

is large.

4.2.2 Microjets Present

Next we analyze the store drop phenomenon when microjets are switched on. The following

dominant effects are observed due to the introduction of microjets: (i) flow deceleration

< 1 (ii) flow compression ( > 1), (iii) flow turning (away from the cavity by

an angle 0), and (iv) introduction of plane shock waves at the cavity leading edge. Figure

4-1 gives a pictorial description of these effects.

Since the store is released in the middle of the cavity, it is not expected to intersect the

plane shock line; therefore effect (iv) is not directly considered any further in the discussions

below. However, effects (i)-(iii) influence F and M on the store and their magnitudes are

determined by the ratio of microjet-cross-flow momentum ratio C,, defined below':

1(pAU2N)
Ct, = 4 .(4.36)

S( pU 2 )o(booBL)

The dependence of effects (i)-(iii) on C was experimentally determined in the Florida State

University (FSU) setup and is explained in Appendix 1. The main idea is twofold: (a) the

flow visualization studies done using the FSU cavity setup established the C,-dependence of

the shock orientation angle 0 and 0 (Figure 4-1), and (b) the effects (i)-(iii) were quantified

using results of (a) and plane shock theory [36]. The resulting dependence of (i)-(iii) on

C, is given in Figure 4-7. It should be noted that all these effects are introduced when the

The subscript I refers to the mean microjet properties at the microjet nozzle exit, subscript o
refers to the mean undisturbed external flow properties, p and U are the mean dimensional density and flow
speed, A is the microjet cross-section area, N is the number of microjets, D is the cavity width as shown
in Figure N-1 (in Appendix N) and 6

BL is the dimensional boundary layer thickness at the cavity leading
edge. Also, (pU 2

) depends on the pressure at which the microjets are activated, thereby establishing a

direct relationship between the microjet pressure and C,.
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store exits the cavity, whereas they do not affect the mean flow field inside the cavity.
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Figure 4-7: Variation of external flow properties with C, due to application of microjets.
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Figure 4-8: Model-predicted F and k evolution with time for different 0 when the store passes
through the shear layer. The other external flow parameters used are: = 1.818,

and U-* 2 = 0.915. Also, the cross-flow uncontrolled Mach number is 2.46, Reynolds
U0 0 ,1

number based on store length is 4.9 million, cavity aspect ratio is 5 and store length
is half of cavity length. A smoothing function is used to remove noise in the force
and moment predictions of the model.

Now F and M have been derived and analyzed in Chapter 4 for general values of p
and Uo. In order to study the effect of microjets, we vary C,, which in turn introduces the

changes (i)-(iii). This in turn changes P and k as outlined in Chapter 4. An important

point to note here is the change in P and M as a function of 6. In Figure 4-8, the responses

of P and k as a function of time and as 6 is varied, is illustrated. It is clear from the figure

that a dramatic change in the slope of M occurs when 0 is increased. In particular, k

becomes negative when 6 is below a certain value and positive for higher value of 6, which

essentially indicates onset of the store returning towards the cavity, as explained below. A

similar trend is observed for F. It should also be noted that the variations of F and k
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with effects (i) and (ii) are more gradual.

To further analyze the dependence of M on 6, we consider the general expression for M

given by Eqn. (4.30) when the store crosses the shear layer. Keeping the dominant terms

in the equation and with microjets on, we have:

= r 1 h4Y2+ hofoc + Uh 3 (& -)2+ U,h 6 (& -6). (4.37)

.I II III IV

These terms are plotted in Figure 4-9. It is clear that when the store touches the shear layer

x10-3 7.45deg X 10-3 7.94deg

-2 -2

-4- I-4

-6,_ _ y -6

-8 -8 -1I
-- -IV

-10 -10
0 2 4 6 0 2 4 r 6

Figure 4-9: Different components of the model-predicted M (from Eqn. (4.37)) and their evo-
lution with time for different 0 when the store passes through the shear layer. The

other external flow parameters used are: = 1.818, and = 0.915. Also,
the cross-flow uncontrolled Mach number is 2.46, Reynolds number based on store
length is 4.9 million, cavity aspect ratio is 5 and store length is half of cavity length.
A smoothing function is used to remove noise in the moment prediction of the model.

from inside the cavity, the dominant effect is the introduction of terms III and IV in M,

both of which depend on & - 6. Because of this feature, a drastic change in k is observed

at the instant when the store hits the shear layer. At this point, if & is greater than 6,

there is a negative pitching moment because the store tail is exposed to the external flow.

However, if 6 is increased by introducing higher microjet pressures such that & is less than

6 at this point, then there is a positive pitching moment.

It follows that when the microjets are switched on such that 6 is less than a certain

value, M increases in the negative direction and causes cZ to decrease when the store crosses

the shear layer. At this point, Eqn. (4.35) is not satisfied which implies that the store

exhibits a safe drop. When microjet pressures are increased, there is a further increase in 6.

If 6 exceeds the limiting value, k increases positively and corresponding c2 increases when
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the store crosses the shear layer. Increase in cZi1 causes Eqn. (4.35) to be satisfied leading to

an unsuccessful drop. Also this trend is independent of c'o. The variation of the store state

as it crosses the shear layer in the absence and presence of microjets is given in Figure 4-10.

-0.17 0.64
-NOC O

--- MC --- MC
-0.18 -H H.

-0.19

0.58

-0.21 -0.2 - - 0.54

-0.22 Outside cavit 0.52 Outside cavity

-0.230 5 10 15 _20 0.50 5 10 15 _ 20

Figure 4-10: Zc and cD evolution with time for different control inputs when the store passes
through the shear layer. The control inputs are specified in Table 4.1. Also,
the cross-flow uncontrolled Mach number is 2.46, Reynolds number based on store
length is 4.9 million, cavity aspect ratio is 5 and store length is half of cavity length.

In summary, the introduction of microjets can ensure safe departure for any Coo as long

as 6 is less than a certain value. However, for 6 greater than this limit, which occurs for

large microjet pressures, the store tends to return back to the cavity.

4.3 Experimental Validation of Store Drop Model

In this section, we compare the low order model predictions with results from experiments

performed under the DARPA-funded HIFEX Program [2, 3, 4].

4.3.1 Experimental Details

A series of free drops of a slender axi-symmetric store from a generic sub-scale weapons

bay cavity was conducted under the HIFEX Program at various supersonic cross-flow Mach

numbers [3, 4]. For brevity, this thesis considers the experiments that were performed at

two Mach numbers, 2.0 and 2.46. In addition, the bay model has the aspect ratio = 5
H.

and N 5, with ft0 being the depth and &0 the width of cavity. The Reynolds number
Do,

of the flow based on the store length is approximately 4.9 million and the speed of flow at

Mach 2.46 is 579 m/s. The store is half the cavity length, its associated 6 is 0.0615, the

ratio of the free stream density to the store density is 1.1869e-4, and the store geometry is
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illustrated in Figure 4-11. Moreover, the flow-injection actuator consists of two rows of sonic

............ '...

01
-0.4 -0.2 0 0.2 0.4

x

Figure 4-11: Radius profile of the store. Here x = - and a = . Also x 0 corresponds to
the store c. g.

microjets along the leading edge and two rows near the upstream end of the cavity, situated

about L/8 distance from the leading edge. Here L is the cavity length, the microjets are of

400 pm in diameter and each row consists of 50 microjets.

The store was dropped from Y = Q = 1.3 inside the cavity with nearly zero angle of

attack and the store trajectory outside the cavity was recorded in high speed video [3, 4].

The drop tests were conducted using three different control inputs: no control (NOC),

microjet-control on (MC), and high-microjet-pressure-control(HC). Table 4.1 shows the

changes in the external flow for the three control inputs and the store drop results are

discussed below.

Item NOC MC HC MC-NOC, % HG-MC, %
0,2 1.000 1.818 1.826 81.8 0.4

0oo,1

,2  1.000 0.915 0.914 -8.5 -0.1

02 ,2  1.000 1.523 1.524 52.3 0.1

6, deg 0 7.827 7.947 - 1.5

Table 4.1: Changes in external flow properties with control. Three control inputs are considered:
no control(NOC), microjet-control on(MC) and high-microjet-pressure-control(HC).
MC refers to 100-250 psig microjet pressure and HC refers to 200-250 psig microjet
pressure. The first number here refers to the rows of microjets closest to the leading
edge and the second number to the rows at the upstream end of the cavity. Also, the
cross-flow uncontrolled Mach number is 2.46, Reynolds number based on store length
is 4.9 million, cavity aspect ratio is 5 and store length is half of cavity length.

4.3.2 Comparison with the Model

As mentioned in Section 4.1.6, we have four models (i.e., the no-cavity, zero-depth-cavity,

near-cavity models and the model with wavy structures) to describe the trajectory outside

the cavity. To choose the appropriate one, we varied the initial conditions (91, 1) keeping
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( 1, &1) fixed as a starting point and performed stability analysis using all the models,

as shown in Figure 4-6. MATLAB's ode45.m was used to solve for the store governing

equations in the simulations. From these studies, we identified that the near-cavity model

provided the most conservative stability region for the store, and was the model of choice

for subsequent model simulations.

Next we use a combination of the inside-cavity model, the model of the store passing

through shear layer, and the near-cavity model to obtain the complete trajectory after

the store is released from inside the cavity. Using this tool, we predict the store release

trajectory in the NOC case and then consider two specific experiments in the MC and HC

cases, where the corresponding flow deceleration, flow compression, and flow turning angle

are calculated as outlined in Section 3.2, and the resulting store release trajectory under

these flow conditions and the same drop conditions as the NOC case are determined. The

model-predicted trajectories are compared with experiments in Figure 4-12. The figure

Item Inside cavity (Point 0) While exiting cavity (Point 1)
No control(NOC)

Y 1.30 -1.63
a 0.01 8.96
Vc -0.18 -0.22
w 0.62 0.59

Microjet-control on(MC)

Yc 1.30 -1.63
a 0.01 9.10

Vc -0.18 -0.22
w 0.62 0.57

High-microjet-pressure-control(HC)

Y 1.30 -1.63
a 0.01 9.49

Vc -0.18 -0.22
W 0.62 0.60

Table 4.2: Initial conditions for the store trajectory analysis used in Figure 4-12. The cross-flow
Mach number is 2.46, Reynolds number based on store length is 4.9 million, cavity
aspect ratio is 5 and store length is half of cavity length.

shows unsafe store separation for the no-control and high microjet pressure cases and safe

separation for the low microjet pressure case. The figure also indicates that the prediction

of the experimental store trajectories by the low order models is somewhat poor. However

it should be noted that the models correctly predict the variation of Y as the store drops

outside the cavity, which in turn implies that the models accurately foretell whether the
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drop is successful or not. This validates the models and indicates that the low-order models

are suitable for application in the optimization process to identify the best control input

for clean store departure.

80 .
(a) NOC -

60 Model

2 0

-20

-40

0 10 20 30 40 50 60 70 80 90 1

60

00
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Store trajectory prediction (outside the cavity) versus experimental observation for:
(a) no control (NOC), (b) microjet-control on (MC) and (c) high-microjet-pressure-
control (HC). Also (i, Yc) = 0 correspond to the instance when the store just exits

the cavity, and increasing -Yc corresponds to the store moving away from the bay.
The cross-flow Mach number is 2.46, Reynolds number based on store length is 4.9
million, cavity aspect ratio is 5 and store length is half of cavity length. The model
used for trajectory prediction is the near-cavity one, with the initial conditions
given in Table 4.2.

To explain the behavior depicted in the figure, we refer to section 3 where we have ana-

lyzed the aerodynamic loads on the store for given drop conditions and microjet pressures.

The point to note is that the store drop is successful when is small and unsuccessful

otherwise. When microjets are off and the store just exits the cavity, Cui is large because of
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Figure 4-13: Model-predicted normal force, pitching moment and state of the store after being
dropped from inside the cavity to when the store either returns back into the cavity
or drops successfully in the three control cases: no control(NOC), microjet-control
on(MC) and high-microjet-pressure-control(HC). The cross-flow Mach number is
2.46, Reynolds number based on store length is 4.9 million, cavity aspect ratio
is 5 and store length is half of cavity length. The model used for outside-cavity
trajectory prediction is the near-cavity one, with the initial conditions given in
Table 4.2. A smoothing function is used to remove noise from force and moment
predictions of the model.

large 6o at the drop point. The large w1 in comparison to V1 results in the store to exhibit

a unsuccessful drop. When microjets are switched on, the external flow is compressed, de-

celerated and turns away from the cavity with an angle 6. There exists a linear relationship

between k and & -6 as soon as the store hits the shear layer such that k becomes negative

when 6 is small and positive when 6 is large. In the case of MC, 6 is small and the result

is an increase in k in the negative direction and decrease in C, when the store exits the

cavity. Low 61 in comparison to i results in the store to exhibit a safe drop. When the

microjet pressures are increased in the case of HC, 6 exceeds the limiting value. The result

is that M and therefore c2; increase positively when the store crosses the shear layer. This
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results in large i in comparison to 1, thus leading to an unsuccessful drop. Figure 4-13

illustrates the force and moment as well as the state of the store after being dropped from

inside the cavity to when the store either returns back into the cavity or drops successfully

in the three control cases.

4.4 Optimization of Control Input in Store Drop Setup

Having developed, validated and analyzed models for predicting the store trajectory inside

and outside the cavity, the next step is to optimize the control input for a successful store

drop. A suitable control parameter that can be optimized is the microjet momentum ratio

C, as defined in Eqn. (4.36). The optimal input is defined as the minimum value of C,

which satisfies the user-specified microjet mass flow constraint and which guarantees safe

release under a variety of drop conditions. For this purpose, the drop conditions from Table

4.2 were taken as the baseline and a combination of inside-cavity and outside-cavity models

were used to determine whether the store exits the cavity successfully for different values

of the control input. The procedure was repeated for a different Mach number of external

flow that was also tested under the HIFEX Program. The result is shown in Figure 4-14.

(a) M, =2.46, q =I1.6 psi (b) M,= 2, q = 13.9 psi

Observed in HIFEX test Observed in HIFEX test

C)
CC (C

0.04 0.0 0.08 0.1 0.12 0.04 0.06 0.08 0.1 0.12
o .. 0

Observe in HIFEX test

Figure 4-14: Successful/Unsuccessful store drop from cavity versus microjet momentum ratio
C,. The model used for prediction of the trajectory that lies outside the cavity
is the near-cavity one. The cross-flow Mach number is 2.46, Reynolds number
based on store length is 4.9 million, cavity aspect ratio is 5 and store length is
half of cavity length. The drop conditions for this simulation are: Yo = 1.30, ao =

0.01, Vo = -0.18, wo = 0.62 and Y1 = -1.63.

It is clear that a general trend of successful drops at C,, < 0.09 and failed drops at

C, > 0.09 are predicted for both the Mach number cases. The successful drop at Mach 2.0

for C,, = 0.08 is corroborated by a series of store drop experiments performed under the

HIFEX Program. It can also be observed that for Mach 2.0, a much smaller value of C,,
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than that used experimentally suffices for ensuring a successful drop whereas for Mach 2.46,

failure can occur for small C, and the optimal C, lies close to where the successful drop

experiments were conducted. Once the optimal C,, is determined, a suitable microjet-based

actuator corresponding to this value of C, can be designed, which may be based on sonic

or converging-diverging nozzles, the latter having the advantage of lower mass flux for the

same momentum flux.
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Chapter 5

Conclusions

5.1 Cavity Noise Under Supersonic Flow

The supersonic flight community is currently faced with two cavity-under-cross-flow related

problems, one being the high noise levels inside the cavity and the other being the return

of a store into the cavity after being released from inside. This thesis provides a systematic

framework to understand the dominant physics in both problems and to provide solutions

for ameliorating the problems. The first portion of this thesis is concerned with high noise

in a cavity developed when exposed to an external supersonic cross-flow. The high noise

level can potentially be harmful to the structural life of weapon systems inside a weapon bay

and to landing gear deployment. The noise is due to a feedback loop between shear layer

disturbances at the cavity lip and acoustic waves inside the cavity. A group of researchers

under the HIFEX Program[2, 3, 4] has proposed that the most effective mechanism for

suppressing noise is by introducing microjets along the cavity leading edge and thereby

disrupting the loop. This thesis focuses on the development of a reduced order cavity

acoustics model that is used to optimize the control input for cavity noise suppression.

The model rigorously explains the role of the microjets in suppressing noise inside the

cavity and predicts the amount of noise reduced for a given steady pressure profile under

which microjets are fired. The model is developed using an innovative rigorous framework

based on the standard aeroacoustic equation with the microjets being introduced through

a momentum addition term that acts as an active damper.

The model developed in this thesis was validated by comparing its noise reduction

predictions with those obtained from experiments conducted using the FSU cavity at Mach
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2.0 flow. The comparison was done at the cavity leading and trailing edges for different

microjet pressure profiles and for different numbers of microjets. In all these cases, the

model predicted saturation of the noise reduction ability of the actuators at approximately

the same microjet pressure as the experiments showed. The reason for the saturation is

related to the way the shock structure shape above the microjet nozzle exit changes with

increasing microjet pressure. Current knowledge base, however, precludes an explanation

for this shock structure behavior. Also the magnitude of noise reduction estimated from

the model is a maximum of 2 dB above the observed level at the leading edge, while it is

close to the experimental one at the trailing edge within limits of sensor uncertainty for all

cases studied in this paper. Finally, the spectral content of the predicted pressure field of

the model is not as good as the experimentally observed one, and is not useful for control

purposes. So the model can be reliably used to identify the optimal microjet configuration

that would be suitable for a given cavity configuration, provided the criteria for optimality

is reduction in OASPL and the constraint set is the allowable mass flow of the microjets.

The validated model was then used for deriving an estimate of the optimal control

strategy for cavity noise suppression using microjets, both off-line and on-line, with the

control input being the spanwise microjet pressure profile. The off-line strategy can be

implemented after performing a proper orthogonal decomposition (POD) on the pressure

data obtained from a spanwise distribution of sensors present along the cavity walls. For

the on-line strategy, a recursive technique of performing POD is required. Since currently

available tools preclude the realization of recursive POD, one such technique was invented.

This tool is essentially an algorithm for updating the dominant basis of a dynamical system

recursively so as to facilitate a on-line control design with bounded projection error. In

addition, various simulations have demonstrated that the recursive POD method can be

used to compute the dominant basis of a time-invariant system starting from an arbitrary

orthonormal basis, potentially resulting in substantial savings in computational resource

and time, compared to standard POD techniques.

The model predictions and experiments clearly show that a closed-loop on-line strategy

would be unnecessary for the FSU cavity. In fact, an open loop steady uniform control input

that satisfies the pre-specified mass flow constraint would suffice. The reason is because the

cavity shows early saturation with respect to OASPL reduction with increase in microjet

pressure.
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5.2 Store Separation from Bay Under Supersonic Flow

Apart from the high cavity noise problem, the problem of unsuccessful store drops from an

external bay of an aircraft in flight is another problem of interest for the aircraft industry.

Work is currently being done by a group of researchers under the HIFEX Program (see

[2, 3, 4] for preliminary results) on eliminating the problem of a slender axi-symmetric body

returning back after being dropped from a rectangular cavity under supersonic flow. The

proposed- solution is an array of microjet-based-transverse-fluid-injection system placed near

the leading edge of the cavity. The microjet-based actuator modifies the flow field under the

cavity through the associated shock waves and thereby affect the store forces and moments.

The concluding part of this thesis focuses on one aspect of the program, i.e. the develop-

ment of a low-order model to predict the store trajectory under given drop conditions and

control input. The model was used to optimize the control input to ensure a successful store

departure using a given setup. The model has three components - one for when the store is

inside the cavity, one for when the store passes through the shear layer, and the last one for

when the store is completely outside the cavity. The low-order model was developed based

on the slender store geometry, thin shear layer at the cavity opening, high Reynolds num-

ber external cross-flow, plane shock waves associated with the microjets, no-flow condition

inside the cavity and ignorance of cavity acoustic field.

The model was validated using a series of store drop experiments performed under the

HIFEX program at Mach 2.0 and 2.46 using a generic sub-scale weapons bay. The trajectory

information was obtained from high speed video. Three observations were recorded: (I)

the store drop was unsuccessful for microjet-off case, (II) the store dropped safely when

microjets were switched on, and (III) the store returned back to the cavity when the microjet

pressures were increased. These features were seen in the model as well.

The low-order model developed in this thesis provides the following explanation for the

experimental observations. The relevant points to be kept in mind are that: (a) F outside

the cavity depends linearly on & such that the store exits successfully if is small at the

bay exit, and (b) M, when the store passes through the shear layer, depends linearly on &

which changes sign depending on the external flow turning angle 0. The reason for effect

(a) is that small L2 results in low & and therefore F does not grow high enough to overcome

gravity and the store is ejected from the cavity safely. Because of high speed and no turning
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of the external flow in the no-control case, the main effect felt by the store is (a). Thus, if

the store is dropped with a large initial cZ, it leaves the cavity with a large c2 in comparison

to Z. This violates (a) and results in an unsuccessful drop, confirming observation (I). On

the other hand, if the drop condition is such that c2 is low in comparison to Vc when the

store exits the cavity, the store will exhibit a safe drop.

With microjets on, the external flow turns away from the cavity. If the turning angle 0

is less than a certain value, A increases in the negative direction. This results in decrease

in L2 as the store crosses the shear layer and satisfies effect (a). Thus, the store exhibits a

safe drop,confirming observation (II). Higher microjet pressures cause a small increase in 0.

If the flow turning angle exceeds the limiting value, M and consequently L increase in the

positive direction, when the store crosses the shear layer. This violates (a), leading to an

unsuccessful drop and confirming observation (III).

Finally, optimization was performed to identify the best control input that ensures

clean store departure for a host of operating conditions. Expressed in terms of the microjet

momentum ratio C., the best control input was observed to match that used experimentally

for certain flight conditions, and is predicted to be even smaller at other conditions.

5.3 Limitations of the Low Order Models

The low order model developed for the cavity acoustics problem is useful for predicting

the overall sound pressure level inside the cavity for a given microjet pressure distribution,

although it may not accurately describe the spectral content of the noise inside the cavity.

It is also to be noted that the shape of the shock structure at the exit of the microjet

nozzle influences the magnitude of the damping term due to the microjets in the governing

differential equation for the cavity acoustics. The determination of the shock structure for

an arbitrary microjet array of actuators is beyond the scope of this low order model and

requires additional work.

The reduced order model developed for the store release problem may not accurately

predict the exact drop trajectory of the store, but it reliably foretells the trend in the tra-

jectory (i.e., whether the store drops safely or not) for a given microjet pressure distribution

and a given set of drop conditions. However, the model prediction is not reliable when the

drop conditions are very close to the stability boundary of the problem. For example, if
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the store state is close to the stability boundary depicted in Figure 4-6 within the given

uncertainty level, the predictions of the model are not conclusive.

Another point to be noted is that the low order model for store separation is derived

under the assumptions (M1)-(M5). Despite this, when assumption (M2) is relaxed, i.e. the

shear layer is thick, the model derived in this thesis is valid and it predicts that the stability

region for the store release trajectory increases (see Figure 4-6); hence the store trajectory

outside the cavity is more stable. In addition, when assumption (M5) is relaxed, i.e. the

recirculation region inside the cavity is considered, the model is also valid and it predicts

that the store trajectory inside the cavity becomes more stable because of an increase in

negative pitching moment that results when the external flow enters the cavity on the side

of its trailing edge and hits the store tail. However, the effect of relaxing the assumptions

(Ml), (M3) and (M4) on the store release trajectory is beyond the scope of this model and

needs more work.
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Appendix A

Order-of-Magnitude Analysis for

the 2-D Uncontrolled Cavity

Acoustics Model

In order to realize a reduced-order model for the pressure field inside the uncontrolled cavity,

an order-of-magnitude analysis is done to identify the dominant groups in the full governing

equation given by (2.4). The different components of Eqn. (2.4) have the following relative

orders of magnitude:

O Stiffness1 I

Inertia)

O Damping
Inertial

O Stiffness2)
O Inertia

0( Inhomoefleous)

U00 6 )2 (1+ L2wL Uc ) D2

Uo( u' v' L

wL U0 Uco D

2 O(U)(0u') + (v L)2

(,) K) 2 c 0 (.O O , W + 0 V, )L)2(A.1)

These expressions are derived under the assumption that the typical acoustic wavelength

inside the cavity is of the order of cavity dimension in the desired spatial orientation. The

expressions, as derived here, further require the value of w and the latter can be obtained

from Rossiter's modified formula given by Eqn. (1.1). In addition, they require the value of
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C- that can be obtained as follows:

F= M<1 + M 1 M (A.2)

Last but not the least, the non-dimensional groups given in Eqn. (A.1) require an estimate of

o ) and 0 ). The estimations can be obtained from flow visualization experiments.

Having obtained the non-dimensional groups, it is easy to identify the dominant groups

among them, the 'dominant' group being defined as having a relative magnitude above 0.1

(or 10%). Eqn. (2.5) and the inequality results given below the equation follow from this

definition.
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Appendix B

Derivation of Green's Function in

2-D Uncontrolled Cavity Acoustics

Model

The Green's function for the

polar coordinates as follows.

perturbation term:

pressure field in an uncontrolled cavity can be obtained using

Consider the following separation of variables of the pressure

(B.1)

The governing equation (2.5) becomes:

1 d2 P 1 d ( dR) 1 d2
]p

O2 Pdt 2 Rr dr dr + 2T d@2

This leads to three set of equations:

Sd 2 P d 2

1d dR , 2 M2 3 - -
d dr (.2

1 d 2 F -i il =0,1 2 3 -
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(B.2)

(B.3)

p' ~ R (r) r (o) P (t) ~ F (x, y) P (t)



The solutions of three equations are, respectively:

FQ() cos (n) , sin (m#0)

R(r) HQ (wr)

P(t) = e-i"t ,e" (B.4)

Choosing the solution that represents outgoing waves propagating uniformly outwards

(m = 0), we get the Green's function as follows:

p'(,t) = , r e ( (B.5)

F(x,y)
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Appendix C

Relationship Between Microjet

Pressure and Associated Leading

Edge Shock Geometry

The problem associated with a shock due to jet in cross-flow is traditionally modelled as

follows. The jet turns and starts mixing with the external cross-flow and is treated as an

'equivalent' solid body, as illustrated in Figure 2-8. The shock trajectory due to such a

blunt body in the presence of a supersonic flow is[27]:

Xshock Rb -Rb co Rb Yshock 2 2 2(tan2
+- -coti 1 + -r) R \.C tan I- (C.1)

r r Rb r Rb r I ) b R

where A =0.143 exp , = 1.143 exp 0 1.2 cot y = v/M - 1 and = 4.34J 0 3 6 .
Rb M I Rb (M. 1)12 2r-

Following Papamoschou and Hubbard[16], we have:

J = pjet Ut .(C.2)
Poo U02

Here, the subscript 'jet' refers to the flow conditions at the jet exit into the cross-flow. Also,

Eqn. (C.1) is valid for yshock > 0.5417& + 0.0205.

This empirical relationship connects the microjet-cross-flow momentum flux ratio to the

shock trajectory. From this, we can estimate the near-field and far-field shock angles for

the FSU cavity arrangement. The results are illustrated in Figures C-1 and C-2. The
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0. Shock trajectory

0.08 p =30 psig
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xshock/L

(a) Near-field result
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Shock trajectory
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(b) Far-field result

Figure C-1: Predicted shock trajectory based on Schetz[27] and Papamoschou and Hubbard[161.
External flow conditions: M = 2.0 and Re = 3 million (based on cavity length).

Figure C-2: Shadowgraph image for the FSU cavity corresponding to 30 psig microjet pressure.
The encircled region was used for calculating the shock angle. External flow con-
ditions: M = 2.0 and Re = 3 million (based on cavity length). Cavity dimension:
LID = 5.1.

shock angles predicted by the model and FSU experiments are shown in Table C.1, and the

results of the FSU experiments are taken from Zhuang, et. al.[1]

It is clear that the far-field shock angle predicted by the model corresponds to the

Mach angle for a 2.0 Mach flow and that there is a close match of the near-field shock

angle between this empirical model and the FSU experiments, thus validating the model.

Therefore, this model can be used in applications that require the shape of the shock for

any jet-in-cross-flow setup.

Table C.1: Shock angles predicted by model and obtained from experiments done on FSU cavity
(under M = 2.0 and Re = 3 million flow). Re is based on cavity length.

py, psig 30 100 200
Experiment, deg 37 38 42

Near-field, theory (deg) 36.5 37.8 42.4
Far-field, theory (deg) 29.9 29.9 29.9
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Appendix D

Derivation of Forcing Function in

2-D Cavity Acoustics Model

In this section, we derive the forcing function associated with uniform spanwise microjet

firing at the cavity leading edge. Retaining the first order terms, the force addition (i.e., rate

of change of momentum per unit volume) due to introduction of microjets at the leading

edge is given by:

7 &=A S (x, Y) (D.1)

where

1 0< x < 2r, O <y < E <1
S (x, y) -

0 |x > 2r, Iy > 0

such that 0 (VS) = 0 Vx, y. Also 0 is the transverse mixing length at injection point and

is considered to be equal in magnitude to the penetration depth of the microjets in the

cross-flow. Last but not the least, U, is the microjet velocity at the nozzle exit, as shown

in Figure 2-8. Then we can write:

V. 7,1 =a +ap US(xy) (D.2)

Having obtained an expression for the forcing function, we use Green's function tech-

nique and method of images to solve the governing equation given by (2.13). The Green's
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function can be obtained as follows. Consider:

p' ~ F(x, y)P(t) (D.3)

The governing equation (2.13) becomes:

d2 P E2 V2 F & 'P OFU ~ Y ~ 1 U
P = - S(x,y) - 2T [ F I_ AS (x, y) (D.4)dt2 F Ot _F Oy . t _ F Oy.

It is shown in Eqn. (2.17) that F is the first order first kind Hankel function. So, we have:

2 2 F = F (D.5)

Also, consider the term }.Up + S (x,y) inEqn. (D.4). Here,

OF a F y U] S (x, y) = E U, (D.6)Hre

where e is arbitrarily small. Moreover,

O S(x,y) = b (D.7)

where U. is the mean component of the microjet exit velocity, ( < 1 and can be estimated

from flow visualization experiments and is also derived later in Eqn. (D.15). Assuming that

the perturbation component of the microjet exit velocity is not dominant over the mean

component, we can make the following estimation: O S (x, y) = (. Then we have:

} aU/l3(x, y) / 6 «
0 < 1(D.8)

Thus, the term in the numerator can be neglected from Eqn. (D.4) because the microjets

are introduced at the leading edge and the Hankel function behaves as in Eqn. (D.6) at that

point. Next we consider the following expression in Eqn. (D.4):

O [ =ay (D.9)
dt2 p' U,, o'L6
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whereO( ~ 0 4, O ( ) ~ 1, 0 (f) = 8 for the dominant Rossiter tone and 0 ) 3

for 100 psig microjet pressure (from flow visualization experiment). Here P is the mean

static pressure at the leading edge. Thus, because of high frequency of the dominant cavity

tone and high transverse microjet velocity gradient at the nozzle exit, the numerator in the

above expression can be neglected from Eqn. (D.4), resulting in:

d2 P &Up dP ( 2 0 Up\
dt 2 + -t P = 0 (D.10)

&t y dt atOy/

Finally we consider the expression u' 2 + la L. We have:

0 (=W2 0 (w'O 0 (LUo> 1 (D.11)
aUt U

So neglecting A a again because of high frequency of the dominant cavity tone and high

transverse microjet velocity gradient, we get:

d2 P &U~ dP 2D12
d2 + y (t ) dt +W /' P = 0 (D. 12)dt2 +&y d

Now, we proceed to estimate a. Since the microjet diameter versus nozzle length is

negligible, we can apply quasi-one-dimensional compressible flow analysis to the microjet.

Also because the microjets are spaced along the spanwise direction at the leading edge

(interjet distance/jet diameter - 3.4 for the 12 400 pm microjets) that precludes them from

interacting with each other at the nozzle exit, we can consider the jets individually and later

integrate their effect along the spanwise direction in the three-dimensional model. From

steady quasi-one-dimensional compressible flow analysis, we have the following influence

coefficient [29]:

dM(y) 1 + dA (y)
=5 (D. 13)

M (y) M 2 (y) _ I A (y)

where A(y) is the cross-section area of the jet and y is taken as . Using the relationship
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between mean jet velocity and Mach number, we have:

/7 M(y)U, (y) = -RTo (D.14)

5 + ___ (.4

where R is the gas constant of air and To is the stagnation temperature of the microjet.

Then using Eqn. (D.7), it can be shown that

1 1 dA(y) (D.15)
0 M 2 (y) 1A(y) dy

Since currently the shape of the barrel shock region above the microjet exit is not accurately

known, we cannot derive the magnitude of from Eqn. (D.15) but we can use the flow0

visualization experiments performed on the FSU cavity to get an estimate of the gradient,

as mentioned at the end of this section. However, we use Eqn. (D.15) to derive the forcing

function as follows.

We have:

Up(y t = RTb (Y) M (y, t) (D. 16)

where T (y) is the static temperature and M (y, t) is the Mach number of the jet. The

relationship between static and stagnation temperature is:

T 1 (Y) = (D.17)
1+ 5 (

and that between Mach number and pressure ratio is:

M(y,t)= 5 [ -) (D.18)
[pb (X = 0, y, t))

where p, is the steady microjet pressure and PA (x, y, t) is the static pressure. We now use

the fact that the nozzle is sonic so that V2 (0) = 1. Also using Eqn. (D.15), it can be shown

that:

OUP 7 RT (52 p7 5 7R 1 42p'
- 0 - q - RT P 1 (D.19)

y 30 psy 42 PsqAb p Y
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where we can write: Pb = Pb + P' = static pressure (mean+perturbation quantity), Pr = E
Pb

and Psq = pr - 1, all referring to the nozzle exit region. The value of Pb can be obtained

from experimental conditions while p' is the result of solving Eqn. (D.12).

In order to obtain an estimate of the mean transverse microjet velocity gradient ,

as mentioned before, we use the results of laser-based flow visualization experiments on the

FSU cavity for different microjet pressures. The details of the experiments are given in

Zhuang, et. al.[1] The experiments measured the mean streamwise and transverse velocity

field inside and outside the cavity. From this data, the velocity gradients were computed.

Now the velocity field data is corrupted by laser reflections from the cavity at the upstream

end of the domain, up to about Y/L = 0.03 in the transverse direction near the leading edge.

So the magnitude of was estimated by averaging the transverse gradient in a small box

just adjacent to the corrupted region, near the leading edge as shown in Figure D-1. The

size of the square box was sufficient to accommodate the initial part of the microjet trace

near the leading edge.

The dependence of a" on microjet pressure is shown in Figure D-1. It is to be noted&Y
that the parameter, microjet-cross-flow momentum ratio as defined in Eqn. (C.2), is directly

proportional to microjet pressure. Therefore Figure D-1 also illustrates the variation of ay

with jet momentum ratio. From this figure, au can be obtained for any microjet pressure

or equivalently any momentum ratio by interpolation.
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Figure D-1: Flow visualization results for the FSU cavity. Shown here are the mean transverse
velocity gradient for different microjet pressures. Notation follows from Eqn. (D.7).
The indicated box is the region of averaging for estimating the mean transverse
microjet velocity gradient. External flow conditions: M = 2.0 and Re = 3 million
(based on cavity length). Cavity dimension: LID = 5.1.
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Appendix E

Derivation of Forcing Function in

3-D Cavity Acoustics Model

This section shows the derivation of the forcing function in the case when non-uniform

spanwise firing of microjets is commenced at the leading edge of the cavity. First, us-

ing Eqns. (2.20) and (2.13), we derive the Green's function for the uncontrolled three-

dimensional cavity as follows, with the coordinate system for this problem being illustrated

in Fig. E-1. Multiply the governing equation (2.13) by <b (z) and integrate in the spanwise

direction from z = 0 to z = W (the cavity width) to get:

1 d 2 R2 P 1 d ( 1 d2 F f2

c P EE Rr d r dr ) rTdp -

62 f <D (Z) d24) d(g)1z 2

f2 = 1 (E. 1)

f <b2 (z) d ( )z
0

This leads to three set of equations:

Figure E-1: Coordinate system for the three-dimensional Green's function in the cavity acoustics
model.
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1 d (dR
r dr dr )

1 d2 P U2 - f2

E2P dt2  C2

+ wL2 _m2)R 0
2 r2 R=0

Sd 2 F 2

F d4
2 - (E.2)

The solutions of three equations are, respectively:

F (4) cos (m#) , sin (m#)

Rr =Q H ~nr
27r c

P(t) e-it 2 " 2 -f2 ,ejt '2 f 2  (E.3)

Choose the solution that represents outgoing waves propagating uniformly outwards (m = 0).

Also, we have:

O2 2 =z 0.L1
W2~~ L W w L U,W (E.4)

and so can be neglected because of high frequency of the dominant Rossiter tone. Thus,

the Green's function is:

p' (r, t) = H(1 ) ( r <b (z) exp (iwt) + ()* (E.5)

The pressure field inside the three-dimensional cavity, given by Eqn. (2.24), follows from

the above using the method-of-images.

For the cavity under non-uniform control, following Appendix D, it can be shown that

the Green's function satisfies:

d2 P dP (E.6)
dt 2 + f1(t) dt+W
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where

fi (t) = (D<b2 (z) L 3 Psq + ( ) P

f <b2 (z) d (g) (
0

2 1
5RT p b 1 dp z(E7

42 Psq Pb DY W

Here Pb, P', Pr and Psq refer to the leading edge and depend on the spanwise direction z

while pA and To do not. Also the mean microjet velocity gradient at the jet exit, given by

Eqn. (D.7) and obtained from flow visualization experiments, depends on microjet pressure

and thus on the spanwise direction.

Eqn. (E.6) was treated similar to (2.15) and (2.16) to estimate the damping factor

d. Clearly, this involves estimating pressure field at both the leading and trailing edges.

Therefore the model relies on a good coherence between the leading and trailing edge

pressure fields. Having obtained the appropriate damping factor, the pressure field inside

the controlled cavity given by Eqn. (2.25) can be obtained using the method-of-images.
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Appendix F

ARX Model for Leading Edge

Pressure Prediction for Cavity

Noise Control

Because of lack of space to accommodate pressure sensors at the leading edge due to the pres-

ence of microjets, a multivariate system identification analysis package (Auto-Regression

with eXogeneous variables (ARX)[26]) can be used to estimate the leading edge pressure

readings from the trailing edge ones in the presence of several microjet pressure profiles.

The predicted leading edge sensor readings can be used to perform proper orthogonal anal-

ysis and thus obtain the dominant spanwise mode <D (z). The order of the ARX model is

obtained by trial-and-error and is depicted in Figure F-1. This model is validated as follows.

The model predicted pressure is compared with the experimental data, derived from a sen-

ARX Model Characteristics:

U Input: PT (6-7) Output: P,1(1-2-3-4-5)
UPoles 10 # Zeros- 10 # Delays -U

4 / 2 6

57
7

Cavity leading edge (LE) pressure sensors Cavity trailing edge (TE) pressure sensors

Figure F-1: ARX model used for predicting leading edge pressure data from trailing edge ones
in the presence of several microjet pressure profiles. The model was realized using
MATLAB's arx.m function and the microjet profiles used in this study were: 50-
50-50, 200-200-200 and 200-0-200 psig. The microjet pressure naming convention is
based on Figure 2-6.
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sor located in the middle of the cavity leading edge face. Such a comparison is performed

for several control-on situations. One such case is depicted in Figure F-2. Although the

ARX model predicts up to 12% of the frequency content of the sensor data (as shown in

the figure), the OASPL prediction is close to the experimental one. Since the dominant

spanwise mode, obtained from a POD of the leading edge sensors, is mostly influenced by

the OASPL, we consider the ARX model to be validated and useful for our purpose of

estimating the dominant spanwise mode shape at the leading edge.

p = 50-50-50 psig

4000 Fit = 12%

2000

0

0-200
Time (t/T)

-00 50 100 150 200 250

140

a120

100- SI prediction: OASPL =149 dB
- - - Experimental result: OASPL =151 dB

80
2 4 6 8 10

Frequency (kHz)

Figure F-2: ARX model output versus experimental sensor reading for 50-50-50 psig microjet
pressure. The microjet pressure naming convention is based on Figure 2-6. Location
of the pressure sensor: middle of the leading edge face of the cavity. Uncertainty
in experimental SPL: +0.5dB. Uncertainty in frequency: i40Hz. Also, T refers to
the time period corresponding to the dominant cavity tone.

110



Appendix G

Relationship Between Microjet

Pressure and Shear Layer Shape,

and Plane Shock Strength

The control action consists of the introduction of microjets near the leading edge of the

cavity. After being introduced in the transverse direction, microjets turn and start mixing

with the external cross-flow, forming a virtual solid body. This obstruction to the cross-flow

leads to formation of plane shock waves near the cavity leading edge.

Empirically, the shock strength is governed by the microjet-to-external-flow momentum

ratio [Appendix C]. In order to find the empirical relationship for a given microjet pressure

profile, flow visualization experiments were conducted on a rectangular cavity of aspect

ratio 5.1 under Mach 2.0 flow in the Florida State University (FSU) wind tunnel facility[1].

This setup used 12 microjets of diameter 400 pm at the leading edge. To match the 12

microjet FSU setup with the HIFEX test [3, 4], the momentum ratio parameter C,, defined

in Eqn. (4.36) is used. The numerator in Eqn. (4.36) is the mean momentum flux of all

the active microjets while the denominator is the mean momentum flux of the external

flow through the cross-section area of the virtual solid body formed by the microjets. The

thickness of the body is same as the penetration height of the microjets into the external flow

and the latter is of the same order as the boundary layer thickness at the point of injection

-of microjets into the cross-flow. Also the factor ! is to take into account the blockage of

several microjet holes in the HIFEX setup owing to faulty construction. Additionally, in
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Eqn. (4.36), 6
BL ~ 0.015L, for the FSU cavity setup while for the HIFEX setup, 6BL

0.017L0 , where L is the cavity length as shown in Figure N-1.

The shear layer shape for different microjet momentum ratios are given in Figure G-1.

From this result, the shear layer shape for any microjet momentum ratio C, can be found

by interpolation.

The plane shock geometry resulting from the introduction of microjets was also studied

for different momentum ratios using flow visualization techniques and the FSU setup. The

results are adapted from Zhuang, et. al.[1J and shown in Table G.1. From this table,

Table G.1: Plane shock geometry for different microjet momentum ratios (CO) corresponding to
the FSU setup. External flow conditions: M = 2.0 and Re = 3 million (based on
cavity length). Cavity dimension: L/D = 5.1.

CP 0.119 0.306 0.573
Shock-to-free-stream 37 38 42

inclination angle
Angle 0 (Figure 4-1) 8 9 12

the shock geometry corresponding to an arbitrary C,1 can be determined by interpolation.

Using the shock geometry and plane shock wave theory[36], the external flow properties

(density, speed and flow orientation) under the cavity can be determined.
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0.3
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0.1

0

-0.1

-0.2

0.05

" 'C
(c) C,=-0.439 "0 0.2 0.4 0.6

Flow visualization results for the FSU cavity. Shown here is the shear layer shape
for different microjet momentum ratios. The shear layer shape is indicated by a
bold line in figures (a), (b) and (c). This line indicates the outer thickness of the
shear layer (the side far from the cavity) that have non-negligible vorticity Q. Here
L is the cavity length and Uoo is the external undisturbed flow speed. The notations
X' and Y' are explained in Eqn. (2.10). External flow conditions: M = 2.0 and Re
= 3 million (based on cavity length). Cavity dimension: LID = 5.1.
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Appendix H

Expression for Store Induced

Potential and Forces For Inside

Cavity

The problem of store drop inside the cavity reduces to a circle falling to the slip surface

in an immovable fluid. The solution can be found using the multipole expansion technique

(Laurent series)[31]. The resulting potential solution, accurate up to ± ,is:

2
-(2B-Ve)asin0-aAcos20 - aC sin 30,3

B = Ve 1 - q2S(q)]

A = -2Veq 3S 2 (q),

C = 3Veq 4S 3 (q),

S1 (q) = 1-q 2 -q 4

S 2 (q) = 1 - q2 -2q,

S 3 (q) = 1 -q 2  4q 4

Ve = V -Wx,

q a (H.1)

where the non-dimensional scheme given in Appendix N has been followed.

The normal force and moment expressions are given by Eqn. (4.24) with the concerned
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parameters, accurate up to ±, are as follows:

go = -rj a (x) 2 (2q4 + 2q 6 + 1- 2q2) dx,

1 = 7r I a(x)2x (2q4+2q6+1- 2q2) dx,

92 = 47rJ a(x) x2 (1+q 2)(4q +8q6 +3q2 _1 )q3dx,

g4 = xe ( 3 a (x)4 + Ia (X) 2 H 2 - H4 7a (x) 4 - 4q3 3q2 - 1 1 + q2) ra (x) dx,

g a(X) a(X) 2 H 2 +H xa(x)4 +

32q9 (2q2 + 1) (3q2 - 2) (1 + q2) 7rxa (x) dx,

ho = - 7 r a(x)2x (2q4+2q6+1 -2q2) dx,

hi = r ex2a (X)2 (2q4 + 2q 6 + 1 - 2q2) dx,

h2 = 4r x 3a (x) (1+ q2) (4q 8 + 8q6 + 3q 2  i) q3 dx,

h4 = ( a (x)4 + a (x)2 H2 - H4) ,rxa (x

4xq3 (2q2 - 1 1 + q (12q +4q6 2q4 -q 2 ± 1)ira(x) dx,

hg Xe ( - a (X -4_a(X)2 H 2 + H4 7rx2a (x)4 +

32q 9 (2q2 + 1) (3q2 - 2) (1 + q2 )rX 2a (x) dx. (H.2)
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Appendix I

Expression for Store Induced

Potential and Forces For Store

Portion Partially Immersed in

External Flow

This problem is solved using conformal transformation[311 of the store region partially

immersed in external cross-flow to an 'equivalent' flat plate as shown in Figure 4-5. The

corresponding velocity potential is:

sin rn ( V 22nQn 2a da
#= Ve 1 2 -2 sin 7rn --- 1 - A2 E,n Dr J dx

D Q2, - 2Q" cos 7rn + 1,

A-

E -V) (s) ds

(s) tan -' Q( 1cot ,

V V - a -WX,(I1

where E refers to the principal value of the integral in the above equation, Q and n are

given by Eqn. (4.26), o-, and b are referred to in Figure 4-5 and the non-dimensional scheme

given in Appendix N is followed. Based on this potential, the P and M expressions are
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obtained. They are given by:

$ = ?r1Cxi g ( 90 c [o + 91 l + gi2 0L + U2 3 62 + 9 4 Y2 + Uoo6g5sE+di

U2 .g 6  + Uo6g7Y + Uog8&C0 0 + 994EV, + Uoog 10&c + g2U2)

iho 0 + h1 - + h 2 02i + U2h 3&2 + h4Y 2 + Uoo6h 5 lo

+U26h 6& + Uoooh 7 Ye + Uooh8 &io + h9qwEole + Uoch10 &c + 62U2h)

with the concerned parameters, accurate up to t , are as follows:

go =- a (x) 2 [<bi (n) + <bp (in)] dx,

1

g2 = x2[a(x)Pi(x,t)--Pp(x,t)]+

X22

93 a (x) Pi (x, t) dx,

94 = X2 a (x)P,(,t -PP())+a X

g4d = a(x)P1(x-t-P 2x t n+

95 = a (x) (X) x a() n )

[r a (x)2 - H2

x 2a ( d)2 <P (m) - d<i (n)
dx,

r a(x)2 - H2

2 [ d b (n) - dbi (-D dn)

7r a (x)2 - H 2

P 12 (x, t)I + bi (n) a (x) 2 dx +

a (x2) 2 bi (n2) X2 - a (xI) 2 <i (ni) x1 ,

96 = X- a (x (X) P12 (x, t) dx + a (X2)<b (n2) - a (x1)2 <bi (ni) ,

9 = a (x) - P12 (x,t)a
I 1 dx _r a(x)

98 = a (x) x 2P1 (x, t) -a (x)n b

I I 7r a (x7)2

X2

gg = 2 x [P, (x, t) - a (x) Pi (x, t)] +

<b2 (n)

2 -H2 I
i(n)) dx,

a (x)2 x <bi (n) - g7 by (m)
dx,

(X)2-2

X2 a (x) -- D (n)
910 = a (x) (n) - 2P1 (x, t) dx,

I1 ra (x?2-- H2 2
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dx + a (x1) 2 <b1 (ni) - a (X2) 2 <i (n2),



gil = a (xi) 2 (x 1 ) <b2 (ni) j a (x) da P 2 (x, t) dx - a (x 2 )2 da (x 2 ) <b2 (n 2 )

ho - X2 a (x) 2 
x [<bi (n) + <b, (in)] dx,

hi = 2 a (x) 2 
x

2 [.i (n) + <b, (m)] dx,

X2 X3 a (X) 2 --Lb4, (m) - -4<i (n)
h2 x3 [a(x) P (xt) - Pp (xt)]+ dx,

x1 ,r a(x)2 - H2

h 3 = 2xa (x) P1 (x, t) dx,

x2~~d P x2xdb (mn) - - <biD (n)
h4 x [a (x) Pi (x, t) - P(x±, t)] +  n dx,

x1 r a (x) 2 - H2

h 5 = x2a(x) da a (x) b2 (n) P12 (x,t) dx
1 dx Lr a (x)2 - H2

+X2 2a (x2) 2 
<i (n2) - x 1

2 a (x 1 )2 1 (ni)

h6 = -a (X1) 2 I1 (ni) xi + a (x 2 )2 1i (n2) x2 -

< i (n) a (x) 2 - xa (x) da (x) P12 (x, t) dx,

X2da a a(X)2 X,(X) L42 (ni)
h7 = a (x) a (x) <bi (n) + x (x) P12 (X, t) (x) 2n dx +

2dx I Wa (X2 - H2

a (X1 )2 <i (ni) x 1 - a (X2 )2 )1 (n2) X2,

fX2 a (Xc) 2 X2 dI-D (n)
h8  2x2a (x) Pi (x, t) -- dx,

7r a (x)2 -H
2

2X2 a (X)2X2 A(DbI (n) -a )- <b, (m)

h9 = 2 xPd(X, t)-a (x)P1(x, dx,
xI 7r a (x)2 - H2

ho = -2xa (x) P1 (X, t) +A dx,
X -ir a (X) 2 - H 2

h11 = 2 2a (x) I- (x)2 P2 (x, t) x + a (x)2 -(X) <T2 (n) dx +

dx Idx
xia (x1)2 y(x) < 2 (ni) -x 2 a(x 2 )2 (x2)<2 (n2) ,

r, t) -2.2n 5 + 8.9n4 - 7.8n 3 - 2.8n 2 + 3.1n - 0.67,

xt) 46543.4n 3 - 11980.9n 2 + 758.1n + (n < 0.13),
2

= -7.8n 3 + 8.8712 + 0.91n - 0.35 (n > 0.13),

x, t) = -10n 5 + 38n 4 - 36n 3 + 5n2 - 0.66n + 0.19,
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PP (X , t) = sin (7rm) 1 67rm (I +2m 2 ) Cot (7171) (n < 0.9),

= 501427.6n 2 - 969470.9n + 468042.7 (n > 0.9) ,

1D (n) = -23n + 59n' - 27n5 - 30n4 + 28n -- 7.8n2 + 0.071n + 2,

d 1 (n) -= -161n 6 + 354n5 
-- 135n -- 120n 3 + 84n2 - 15.6n + 0.071,dni

(D2 (n) = 5.8n 5 - 28n4 + 34n 3 - 9.6n 2 + 0.3n - 2.4,

d D2 (n)4 3 2dn - = 29n4 - 112n 3 + 102n 2 - 19.2n + 0.3,
dn.

(n) = 23n 7 - 100n 6 + 160n5 
- 100n 4 + 6.9n 3 + 13,n2 + 0.12n - 0.0013,

db (n) -= 161n 6 
- 600n 5 + 800n4 - 400n3 + 20.7n 2 + 26n + 0.12. (1.3)

dn

Here m, n are defined in Eqn. (4.27). In addition, the expressions for P, --- -, , are obtained

by the process of polynomial fit, wherever applicable, instead of their exact expression given

by Malmuth, et. al.[31] This is done to achieve faster computation and to avoid the problem

of singularities associated with the exact expressions.

It is to be noted that Eqn. (1.3) gives the contribution of the store portion partially

immersed in external flow to P and M. The contribution of the store portion inside the

cavity to F and M is given in Appendix H, while that of the portion outside the cavity is

given in Appendix L (Eqn. (L.2)).

120



Appendix J

No-cavity Model for Store Outside

Cavity

When the store is far from the cavity (i.e., H > a in Figure N-1), the cavity walls and the

shear layer are not expected to play any role in determining the potential. The problem can

be formulated in terms of a slender axi-symmetric body falling in an unbounded free stream

with the associated potential satisfying Laplace Equation in every store cross-section. In

the store cross-section plane, the problem thus reduces to the vertical motion of a circle of

radius a(x) with a velocity Ve under a uniform flow Uoo perpendicular to the plane, following

the non-dimensional scheme given in Appendix N. This problem is further illustrated in

Figure J-1(a).

Ve Ve~ VeV

(a) (h) (c)

Figure J-1: (a) Motion of a circle falling in an unbounded stream, representing far-from-cavity
conditions. (b) Motion of a circle falling from a rigid wall, representing a cavity of
zero depth. (c) Motion of a circle falling from a free surface, representing store falling
away from the shear layer. In all cases, the free stream is in the X-direction.

The vertical velocity of the circle that represents the store cross-section a(x) is given

by:

V = Vc - -w VwavyVshock (J.1)
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where the first term on the right hand side is the vertical store c. g. velocity, the second

term is the upwash due to the store angle of attack and the third term is due to the store

rotation about its c. g. In addition, Vavy arises from the non-uniformity in the free stream

due to the wavy structures and Vh,,ck arises from the shock waves due to microjets. Now

Vwavy is given by:

Vwavy = - h' (X' + 0Y') (J.2)
26 ~ X'=X' +pxY'=Y" -p6ax

where the factor 2 takes care of U,,, = 0.5U,,. To estimate Vwavy, we assume that the

wavy structures consist of piecewise cosine components as in Eqn. (4.18). Then

|Vwavy| < - 3max(WiAj) (J.3)26

Now ( = 0 (1), (WiA) < 0 (10). So if < <0.01 which implies that the shear layer is much

thinner than the store, Vwavy is negligible.

The remaining item to analyze is Vhock. Basing on assumption (5), we assert that there

is negligible non-uniformity in flow (or equivalently, flow is potential) through the region in

the front of the shock waves at the cavity leading edge. So Vhsock, which arises because of

this non-uniformity (or non-potential flow), can be neglected. Then, assuming thin shear

layer and using assumption (5), we have:

Ve = V - a -wX (J.4)

The problem of free fall of a circle in unbounded medium can be solved by choosing the

following potential solution:

= Vea sin 0 (J.5)
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The complete expressions for the corresponding P and Af in this case are given by:

F = ,rp ol8 + Gdi,+ U"6dt (Go + xea (Xe)2) C4+

U 6a (Xe) 2 & -- Ux6a (Xe) 2 Yc)

I = 7r&64 G1C E.o+G2 l, +Uxx 2 a(xe)2dit

-U2. (Go - xea (Xe)2) & + UxO (Go - xea (Xe)2) ()

(J.6)

with Go and G 2 being store shape dependent parameters that are given in the following

list:

Go = a 2 (x) dx,

G= xe a 2 (x) x dx,

G2 = a 2 (X) X 2 dx.
xo
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Appendix K

Zero-depth-cavity Model for Store

Outside Cavity

When the cavity depth is small or zero (i.e., H >> H, in Figure N-1) but the store is close

to the cavity (i.e., 0 = 1 in Figure N-1), the problem reduces to a circle falling from

a rigid wall, as illustrated in Figure J-1(b).

The problem of free fall of a circle from a rigid wall can be solved using the multipole

expansion technique (Laurent series)[311. The potential solution, accurate up to ±, is:

# (2B-Ve)asin9-aAcos29,

B Ve[1+q2S1(q) +q qS2(q),

A = -q 2  S3 (q) + 2VeqS 4 (q),

S1(q) = 1+ 2 +3q+8q6 ,

S 2 (q) = 1+q 2 +2q 4 +5q 6 ,

S 3 (q) = 1+2q2 +5q 4 +14q 6 ,

S 4 (q) = 1+q 2 +4q 4 ,

a 1
q = < 1 (K.1)

with Ve given by Eqn. (J.4) again assuming thin shear layer and using assumption (5). Also

the non-dimensional scheme of Appendix N is followed.

The corresponding F and MI expressions are given by Eqn. (1.2) with the concerned
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parameters, accurate up to te, are as follows:

go jea2 2q4 + 66 + 1 + 22 + 16q8)dx

91 = Xe a2 x (2q4 + 6q 6 + 1 + 2q 2 + 16q8) dx,

92 j 4ax2 (6q2 + 72q6 + 3 + 15q 8 + 24q4) q3 dx,

g3 = 4a (15q8 + 8q 6 + 1 + 2q+2 + 6q4) q3 dx,

g4 = 4a (6q2 + 72q 6 + 3 + 15q 8 + 24q4) q3 dx,

95 (-2q2) (35q4 +116q6 + 4+122 )a x +a2 (2q4 + 6q6 +1+22 +16q")dx+

(2q (xe) 4 + 2q (xe) 2 + 1 + 6q (Xe)
6 + 16q (Xe)8) a (Xe)

2 Xe

96 - 15q + 46q6 + 6q 2 +2 aT dx

+ (2q (Xe) 4 + 2q (Xe) 2 + 1 + 6q (Xe)
6 + 16q (Xe)8) a (Xe)

2

97 = 2q2 (35q4 + 116q6 +4+ 12q2) a da dx

+ (-2q (Xe) 2 - 6q (Xe)
6 _ 16q (xe) 8 - 2q (Xe)) a (Xe) 2

98 -- 8ax (2 + 4q 2 + 40q6 + 15q 4 + 15q8) q3 dx,

99 = X 8ax (6q2 + 72q6 + 3 + 15q 8 + 24q 4)q3dx,
X0

910 = xe8a (2+4q2+40)6+15q4+15q q3

911 = 2q (I + 14q6 + 2q 2 + 5q 4 ) a dx +

-10q (Xe) 7 - 4q (Xe) 5 - 2q (xe) - 2q (xe)3) a (Xe) 2 da

ho - x a2x (2q4 + 696 + 1 + 2q2 + 16q8) dx,

h1 = x 2a2 (2q4 + 6q6 + 1 + 2q2 + 16q") dx,
0

h2 = 4x3a (6q2 + 72q 6 + 3 + 15q8 - 24q ) q3 dx,

h = e4ax (44 + q2 + 1) (8q - 3q6 + q4 + q2 + 1) q 3dx,

h4 = e4ax (6q2 + 72q 6 + 3 + 15q8 + 24q4) q3 dx,
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h5  - j 2q 2 (35q4 + 116q6 + 4+ 12q2) a 9x2 dx +

2q (xe) 4 + 2q (xe) 2 + 1 + 6q (Xe) 6 + 16q (xe)8) a (Xe) 2 Xe

h6 -e (2q2) (15q4 + 46q6 + 6q 2 + 2) a djx + (-2q2 - 2q 4 - 6q6 
- 16q8 - I) a2

+ dx
+ (2q (Xe )4 + 2q (Xe) 2 + 1 + 6q (Xe )6 + 16q (xe )8 a (Xe) X2

h7  J 2q 2 (35q4 + 116q 6 + 4 + 12q2 a da x + a2 (2q4 + 6q 6 + 1 + 2q 2 + 16q8) dx

(2q (Xe) 4 + 2q (Xe)
2 + 1 + 6q (Xe) 6 + 16q (xe)8) a (Xe) 2 

Xe,

h8  8ax2 2 + 1) (12q8 + 27q6 + 13q4 + 2 + 2) q3 d,

hg = - 8ax2 (6q2 + 72q6 + 3 + 15q8 + 24q 4) q3 dx,

hio -jo 8ax (q2 + 1) (-12q8 + 27q6 + 13q4 + 22 + 2 q3 dx,

h11 =J 2 q (1 + 14q6 2q +5q)a a 2 x + 2q (5q6 + I + q2 + 2q4 4 a2 dx

-2xeq (xe) (I +q (Xe)
2 + 2q (Xe) 4 + 5q (xe)6) a (Xe) 2 (K
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Appendix L

Model for Store Outside But Near

Cavity

When the store is outside but near the cavity (i.e., 0 = 1 in Figure N-1), the problem

reduces to a circle falling from a free surface (the shear layer slip surface), as illustrated in

Figure J-1(c). Again this can be solved using the multipole expansion technique (Laurent

series)[31]. The potential solution, accurate up to ± , is:

S=-(2B-Ve)asin0-aAcos2O

2 1
-- aC sin 30 - 1aD cos 40,3 2

da
B = Ve 1-q 2S _(q) Jq S2(q),

A = q2 [aS(q)+2VqS4(q)]

C = q3 a  S5 (q) + 3VqS 6 (q)]

D = -q 4 a  S7 (q) + 4VeqS8 (q)j

S1(q) = 1-q 2 -q -2q 6

S 2 (q) = 1-q 2 - 3q6

S3 (q) = 1-2q2 -q- 4q 6

S4 (q) = 1 --- q 4 1

S5 (q) = 1-3q2 - 3q,

S6 (q) = 1 - q2 - 3q4
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S7 (q) = 1 - 4q2 6q4,

S8 (q) = 1 -92

q <
2 IHI - 2'(L1

with Ve given by Eqn. (J.4) as before. Also the non-dimensional scheme of Appendix N is

followed.

Then the P and M expressions are given by Eqn. (1.2) with the concerned parameters,

accurate up to t-, are as follows:

9o a 2 (2q4 + 696 + 1 + 2q2 + 16q8) dx,

91 a2x (2q4 + 6q6 + + 22 + 16q8 )dx,

92 J 4ax2 (6q2 + 72q6 + 3 + 15qs + 24q 4) q3 dx,

93 4a 15q8 + 8q6 + 1 + 2q2 + 6q4) q3 dx,

g4 4a (6q2 + 72q6 + 3 + 15q8 + 24 q3 dx,

95 X(4q 2)(-2+21q6+6q2) a dax+a2 4q 8+2q4 -2q2+ 2q6+1 dx +

(-2q (Xe)
2 + 4q (xe)

8 + 2q (xe) 6 + 1 + 2q (Xe) ) a (Xe ) 2 X,

96 -4q 2) 1 + 3q 2)a dx

+ (-2q (Xe) 2 + 4q (xe) 8 + 2q (Xe) 6 + 1 + 2q (Xe)4) a (Xe) 2 ,

97 = 4q2 (-2 + 21q6 + 6q 2)a dx

+ (2q (xe)2 - 2q (xe)6 - 29 (xe) 4 
- 1 - 4q (x)8 a (Xe)

2

98 Xeax(3q42 + 4q2+9q 6 17q8 )q3dx

-9 f- 8ax (-3±+6q 4 - 17q" + 17q6 + 6q 2)q3 dx,

9IO - Xe 8a (3q 4 -2±+ 4q 2 + 9q 6  I7q8 ) q 3 dx,

f 2 1/ + 2q( -2q - 2 qa y) dx -

2q (xe) (1 + 3q (Xe)6 + q (xe)2) a (Xe)2 da
dx X
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ho = a2 4 2q 4 - 2q 2 + 2q 6 + ) dx,

h1 = xa22 (4q8 + 2q4 2q +2q6 +1) dx,

j2 = 4x 3a (-3 + 6q 4 
- 17q8 + 17q 6 + 6q2) q3 dx,

ha = Xe 4ax (2q2 - 1 - 17q 8 + q6 q3 dx,

h4 4ax (-3 + 6q 4 - 17q8 + 17q6 + 6q2 q3 dx,

h, = -j 4q 2  2 + 21q6 + 6q2) da x2

-2q (xe) 2 + 4q (xe) 8 + 2q (xe) 6 + 1 - 2q (ze)*) a (xe)2

h6 - 2) (-I + 3q2) a djx + (-I + 2q 2 - 2q 4 - 2q 6 - 4q8) a 2 dx

+ (-2q (Xe) 2 + 2q (xe) 4 + 2q (xe) 6 + 4q (xe)8 + 1) a (Xe) 2 Xe,

h7  492 (-2+2196+6q2 (4q8 + 2q 4 -2q 2+2q6+1) dx -

2q (Xe) 2 - 2q (xe)6 - 2q (Xe) 4 
- 1 - 4q (xe)8) a (xe) 2 xe

h8  =] 8ax 2 (3q 4 - 2 +4q 2 + 9q6 _ 17q") q3 dx,

h 9 = -] 8ax 2 (-_3 + 6q4 - 17q' + 17q6 + 6q 2) q3 dx,

h 10 = - 8ax N39 - 2+4q2 +9q6 _17q8 )3 d

h = Xe -2q) (1 + 2q4 - 2q2) a (da 2 x + 2 (q2 _ 1 + 36 a dx,
+x dx 

±2xeq (Xe) (-q (xe )2 
- 3q (xe)6 + 1) a (Xe )

2 da (L.2)
dxLe
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Appendix M

Model for Store Outside Cavity

With Thick Shear Layer

When f > 0.01 in Eqn. (J.3), we cannot discount the effect of the wavy shear layer

structures on the velocity Ve. In this case, again assuming piecewise cosine components

for the wavy structures as in Eqn. (4.18), we get the different parameters of F and MI

expressions (given in Eqn. (1.2)) as follows:

97 = WiAf Ecos (Ai{Xe*+/Ye*} +( ~ke± sin (Ai{Xc*+#Y*}+( 0 ke,i],

h7 - + WA2 [cos (A, {X* + Yc*} + ()kc, + sin (A {X* + #Yc*} + () ks,],
26911 3= + ((e) k, W+ A{sin (Ai {Xc* +,Y, IY* + (j)co (A, pze)

cos (A {Xc* + [Ye*} +I () sin (AJ* ye)} ,

h =-ea (e)2 6 W A {sin (A3 {X'* + 3Yc*} + (j)cos (Axe) +
25

cos (A3 {X* + 3Y*} + (j) sin (Aj ye)}. (M.1)

The rest of the parameters axe zero. It is to be noted that this contribution of the wavy

structures is added to Eqn. (J.6) to get the complete expressions for normal force and
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moment in the thick shear case. Also, the index j in Eqn. (M.1) corresponds to xe and

kc,4= Jcos (Aipx) a (x)2 dx,
X

ks=i J sin (Aipx) a (x) 2 dx,
X

kcz,4 = cos (Ai px) a (x) 2 x dx,

ksxj = sin (Aitpx) a (x) 2 x dx,

kexx,i = cos(Aipx)a(x)2X2 dx,

kS22,4 = sin (Ailpx) a (x) 2 
x

2 dx. (M.2)

Here the integrations are carried over that portion of the store which corresponds to the

piecewise cosine component represented by the index i of the wavy structure. This is

illustrated in Figure M-1.

U.

Wavy structure shape (piecewise cosine component)
corresponding to the store position :

h(X')= W cos(X* +( + W',i E linteger}

Figure M-1: Piecewise cosine wavy structure for the shear layer. The cosine component chosen
here corresponds to the X' coordinate of a point on the store surface, with X' =
X' + px and the non-dimensionalization scheme is same as Eqn. (4.9).
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Appendix N

Non-dimensional Scheme Used in

Different Store Drop Models

The complete set of non-dimensional parameters involved in computing F and M on the

store is outlined below:

X Y Z U00 9
X =--Y = ,Z = ,t= - , = , = -z - , = -

10 lo 6lo 10 lo A4, 6l0 610

H Do & H c __o

Ho= -D,Do=-",a =- H = - Y- ax, V ,W (N.1)
AO O 6 10 Uo

where Y, V and w are the vertical coordinate, vertical linear velocity and angular velocity

of the store c. g. respectively. The reference frame for integration is attached to the store

axis and is illustrated in Figure N-1.

X L
x, 

7

Store xRa sa )Radius 6 (x)

Side view Back view

Figure N-1: Reference frames (both fixed to the store and inertial) for computing F and I on
store.
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