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ABSTRACT

Air travel continues to experience fast growth. Although the energy intensity of the air
transport system continues to improve, aviation fuel use and emissions of many
pollutants have risen.

This thesis focuses on developing, assessing and applying a system model to evaluate
global aircraft fuel consumption and emissions, and to examine technological and
operational measures to mitigate these emissions. The model is capable of computing
how much emissions are produced on a flight-by-flight, fleet and global basis and where
in the atmosphere the emissions are deposited. These are important questions for
aviation environmental policy-making.

Model development was followed by a comprehensive uncertainty analysis. It involved
comparisons of reported versus modeled results at both the modular and system levels.
On average, the aggregate-level composite fuel burn results showed about -6%
difference from reported fuel burn data. A statistical analysis showed that this mean
shift was a combined contribution of the key uncertainties in aircraft performance and
operations.

A parametric study followed to rank-order the effects that the key modeling uncertainties
had on estimates of fuel burn and emissions. Statistical methods were developed to
analyze both the random and systematic errors of the modeling tools.
The analyses showed that the uncertainties in engine and aerodynamic performance
had the largest impact on system errors, accounting for around 60-70% of the total
variance in full-mission fuel burn results. The uncertainties in winds aloft and take-off
weight explained another 20-25%. LTO procedures, which consist of engine throttle
setting, rate of climb/descent and flight speed, were the most influential uncertainties
that drove the variance in fuel burn results below 3000 ft. For emissions, the emissions
indices were the most influential uncertainties for the variance in model outputs.
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By employing the model, this thesis examined three policy options for mitigating aviation
emissions. More stringent engine certification standards, continuous descent approach
procedures, and derated take-off procedures were analyzed. Uncertainties of the model
were carefully accounted for in the fuel burn and emissions scenarios of the policy
options. The considered policy options achieved roughly 10-30% reductions in NOx
emissions. However, HC and CO emissions rather increased due to higher emissions
production rate for the CDA and derated take-off. In addition, the NOx emissions
reductions in some cases were not statistically significant given the uncertainty in the
modeling tool.

Thesis Supervisor: Ian A. Waitz
Professor and Deputy Head
Department of the Aeronautics and Astronautics
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CHAPTER 1

INTRODUCTION

Air travel continues to experience a fast, 4-5% growth each year. Although the energy

intensity' of the air transport system continues to decline, aviation fuel use and

emissions of many pollutants have risen. This trend, which represents a conflict

between industry growth and environmental impact, has motivated the aircraft

manufacturing and airline industries, the scientific community, and governmental bodies

to evaluate a variety of methods for emissions mitigation.

This thesis focuses on developing, assessing and applying a system model to evaluate

global aircraft fuel consumption and emissions. It examines technological and

operational measures that mitigate aviation emissions to support policy decision-making.

Uncertainties of the model are analyzed in detail and carefully accounted for in the

policy scenarios considered. This chapter provides an overview on the topic of aviation

and the atmospheric environment. A discussion of uncertainties and use of the model in

a policy scenario analysis will follow.

1.1 AVIATION ENERGY USE

Since passenger aircraft were introduced for large-scale commercial services in the

1950s, there has been fast growth in aviation as a form of mobility and consequently

significant growth in energy use. In 2002, aviation accounted for 3 trillion revenue

passenger-kilometers (RPKs), approximately 10% of world RPK's traveled on all

transportation modes, and 40% of the value of world freight shipments [ICAO, 2002].

Demand for air travel has grown fastest among all modes of transport. Note that

subsequent to the events of September 11, 2001, total RPKs fell by 8% and fuel burn by

16%, comparing 2-year averages before and after. In addition, the percentage of the

commercial fleet parked increased from 6% to 13% [Waitz et al., 2004]. However,

1 A measure of aircraft fuel economy on a passenger-kilometer basis. It is denoted by energy used per
unit of mobility provided (e.g. fuel consumption per passenger-kilometer).
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future projections estimate a resumption of the long-term growth trend within the next

several years. Worldwide growth is anticipated to continue at around 4-5% per year

[FAA, 2004; Boeing, 2004].

Aviation fuel consumption today corresponds to 2% to 3% of the total fossil fuel use

worldwide, more than 80% of which is used by civil aviation operations [Schafer and

Victor, 1999]. Energy use in the production of aircraft is relatively minor in comparison to

that consumed in their operation. While the majority of air transportation demand is

supplied by large commercial aircraft, defined as those aircraft with a seating capacity of

100 or more, smaller regional aircraft have emerged as an important component of both

demand and energy use within air transportation. For example, in the United States,

although regional aircraft currently perform under 4% of domestic RPK's, they account

for almost 7% of jet fuel use and for 40% to 50% of total departures. Future growth in

demand for regional aircraft RPK's could be up to double the rate for large commercial

aircraft [Babikian et al., 2002; Lee et al., 2004]. Cargo operations account for some 10%

of total revenue ton-kilometers and fuel use within the aviation sector. Economic activity,

as measured by world GDP, is the primary driver for air cargo industry growth. World air

cargo traffic is expected to grow at an average annual rate of over 6% for the next

decade [Boeing, 2004].

1.2 AVIATION'S IMPACT ON GLOBAL ATMOSPHERE AND LOCAL AIR QUALITY

The growth in air transportation volume has important environmental impacts

associated with climate change and stratospheric ozone reduction on a global scale. On

local to regional scales, noise, decreased air quality related primarily to ozone

production and particulate levels, and other issues, such as roadway congestion related

to airport services and local water quality, are all recognized as important impacts. This

section focuses on emissions-related impacts and provides some additional detail on

the aviation role in climate change, which, along with regional/local air quality, is the

primary motivation for the work of this thesis.

22



Because the majority of aircraft emissions are injected into the upper troposphere and

lower stratosphere (typically 9-13 km in altitude), resulting impacts on the global

environment are unique among all industrial activities. The fraction of aircraft emissions

that is relevant to atmospheric processes extends beyond the radiative forcing2 effects

of C02. The mixture of exhaust species discharged from aircraft perturbs radiative

forcing 2 to 3 times more than if the exhaust was C02 alone. In contrast, the overall

radiative forcing from the sum of all anthropogenic activities is estimated to be a factor

of 1.5 times C02 alone. Thus the impact of burning fossil fuels at altitude is

approximately double that due to burning the same fuels at ground level. The enhanced

forcing from aircraft compared with ground-based sources is due to different physical

(e.g. contrails3) and chemical (e.g. ozone formation/destruction) effects resulting from

altered concentrations of participating chemical species and changed atmospheric

conditions. However, many of the chemical and physical processes associated with

climate impacts are the same as those that determine air quality in the lower

troposphere [Penner et al., 1999].

Estimates of the radiative forcing by various aircraft emissions for 1992 offered by the

Intergovernmental Panel on Climate Change (IPCC) and projections for the year 2050

(see Penner et al. 1999) are shown in Figure 1.1. Note that the bar for C02 represents

instantaneous radiative forcing from the cumulative effects of all historical C02

emissions from aviation, while those for contrails and cirrus represent the instantaneous

radiative forcing without any atmospheric accumulation. Further, different gases have a

range of different lifetimes in the atmosphere. For example, the C02 has an effect long

into the future, while the contrails do not [Penner et al., 1999]. The estimates translate

to 3.5% of the total anthropogenic forcing that occurred in 1992 and to an estimated 5%

by 2050 for an all-subsonic fleet. Associated increases in ozone levels are expected to

decrease the amount of ultraviolet radiation at the surface of the earth. Future fleet

composition also impacts the radiative forcing estimate. A supersonic aircraft flying at

2 A measure of the change in Earth's radiative balance associated with atmospheric changes. Positive
forcing indicates a net warming tendency relative to pre-industrial times.
3 The moist, high temperature air in the jet exhaust condenses into particles in the atmosphere when it
mixes with the ambient cold air and saturation occurs. The result is a condensation trail, or contrail.
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17-20 km would have a radiative forcing 5 times greater than a subsonic equivalent in

the 9-13 km range. It is important to note that these estimates are of an uncertain nature

[Penner et al., 1999].

0.12 0. 2050 5% of Total
0. 3.5% of Total 0.4- Anthropogenic

C Anthropogenic Forcing

E00 Forcing 0.

-0.2-
0.04

U-

Diec % Direct
CH4  SulfateC

CO2  03 H20Contrailirrust Direct Total 0.l Direct Tota
Clouds Soot(wltho t 2  03 2  t Clouds So t (Totl t

-0.04 cirrus -71 cirrusclouds f clouds
from NOx from Nx

good fair poor poor fair very fair fair good poor poor poor fair very fair fair
poor poor

Figure 1.1 Radiative forcing estimated for 1992 (0.05 W/m 2 total) and projected to 2050

(0.19 W/m 2 total) [Penner et al., 1999]. Note differences in scale. Note also that the

heavier dashed bar for aviation-induced cirrus cloudiness describes the range of

estimates, not the uncertainty. The level of scientific understanding of this potential

impact is very poor and no estimate of uncertainty was made. Cirrus clouds are not

included in the total radiative forcing estimate.

While broadly consistent with these IPCC projections, subsequent research reviewed by

the Royal Commission on Environmental Protection (RCEP) in U.K. has suggested that

the IPCC reference value for the climate impact of aviation is likely to be an

underestimate. In particular, while the impact of contrails is probably overestimated in

Figure 1.1, aviation-induced cirrus clouds could be a significant contributor to positive

radiative forcing, NOx-related methane reduction is less than shown in Figure 1.1,

reducing the associated cooling effect, and growth of aviation in the period 1992-2000

has continued at a rate larger than that used in the IPCC reference scenario [RECP,

2002].

24



In addition to how much emissions are produced, where the emissions are deposited is

equally important. Figure 1.2 shows the radiative imbalance as a function of latitude.

The middle latitudes of the Northern Hemisphere experience a severe radiative

imbalance, which could have global climate importance. The region with the stronger

radiative forcing would be expected to suffer larger local climate change [Rogers et al.,

2002]. Therefore, it is important to understand the geographical distribution of aviation

traffic and subsequent emissions. This is one motivation for the development of a tool

like the System for Assessing Aviation's Global Emissions (SAGE) described in this

thesis.
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Figure 1.2 IPCC calculation of the aviation induced 1992 radiative imbalance at the

tropopause in Watts per square meter as a function of latitude [Penner et al., 1999]

1.3 TRENDS IN ENERGY USE

Fuel efficiency gains due to technological and operational change can mitigate the

influence of growth on total emissions. Increased demand has historically outpaced
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these gains, resulting in an overall increase in emissions over the history of commercial

aviation. The figure of merit relative to total energy use and emissions in aviation is the

energy intensity (Ei). When discussing energy intensity, the most convenient unit of

technology is the system represented by a complete aircraft. In this section, trends in

energy use and E, are elaborated. It also discusses the relation of E, to the

technological and operational characteristics of an aircraft.

Reviews of trends in technology and aircraft operations undertaken by Lee et al. [2001]

and Babikian et al. [2002] indicate that continuation of historical precedents would result

in a future decline in E, for the large commercial aircraft fleet of 1.2% to 2.2% per year

when averaged over the next 25 years and perhaps an increase in El for regional

aircraft as regional jets use larger engines and replace turboprops in the regional fleet.

When compared with trends in traffic growth, expected improvements in aircraft

technologies and operational measures alone are not likely to offset more than one-third

of total emissions growth. Therefore, effects on the global atmosphere are expected to

increase in the future in the absence of additional measures. A variety of industry and

government projections are in general agreement. Compared with the early 1990s,

global aviation fuel consumption and subsequent C02 emissions are expected to

increase three- to seven-fold by 2050, equivalent to a 1.8% to 3.2% annual rate of

change [Penner el al., 1999]. In addition to the different demand growth projections

entailed in such forecasts, variability in projected emissions also originates from

different assumptions about aircraft technology, fleet mix, and operational evolution in

air traffic management and scheduling.

Figures 1.3a and 1.3b show historical trends in Ei for the U.S. large commercial and

regional fleets. Year-to-year variations in Ei for each aircraft type, due to different

operating conditions, such as load factor4, flight speed, altitude, and routing controlled

by different operators, can be ±30%, as represented by the vertical extent of the data

symbols [Lee et al., 2001; Babikian et al., 2002].

4 Fraction of passengers per available seats
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Figure 1.3a Historical trends in energy intensity of the US large commercial fleets.

Individual aircraft El based on 1991-1998 operational data with the exception of the

B707 and B727, which are based on available operational data prior to 1991. Fleet

averages were calculated using a RPK weighting [Lee et al., 2001].
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Figure 1.3b Historical trends in energy intensity of the US regional fleets

[Babikian et al., 2002]
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For large commercial aircraft, a combination of technological and operational

improvements have led to a reduction in Ei of the entire US fleet of more than 60%

between 1971 and 1998, averaging about 3.3% per year. In contrast, total RPK has

grown by 330%, or 5.5% per year over the same period. Long-range aircraft are -5%

more fuel efficient than short-range aircraft because they carry more passengers over a

flight spent primarily at the cruise condition [Lee, 2000]. Regional aircraft are 40% to

60% less fuel efficient than their larger narrow- and wide-body counterparts, while

regional jets are 10% to 60% less fuel efficient than turboprops. Importantly, fuel

efficiency differences between large and regional aircraft can be explained mostly by

differences in aircraft operations, not technology [Babikian et al., 2002].

Reductions in El do not always directly imply lower environmental impact. For example,

the prevalence of contrails is enhanced by greater engine efficiency that leads to lower

exhaust gas temperature per unit of water emissions. NOx emissions also become

increasingly difficult to limit as engine temperatures and pressures are increased-a

common method for improving engine efficiency. These conflicting influences make it

difficult to translate the expected changes in overall system performance into air quality

impacts. Historical trends suggest that fleet-averaged NOx emissions per unit thrust

during landing and take-off (LTO) cycles have seen little improvement and total NOx

emissions have increased. However, HC and CO emissions have been reduced since

the 1950's [Waitz et al., 2004]. Reductions in emissions are also hindered by the

relatively long lifespan and large capital and operating costs of individual aircraft and the

inherent lag in the adoption of new technologies throughout the aviation fleet as a result.

Further, the impact of any efficiency improvements is diminished by fuel expended in

airborne or ground travel delays or in flying partially empty aircraft.

1.4 PREVIOUS WORK ON AVIATION EMISSIONS INVENTORIES

Three-dimensional global inventories of civil aircraft fuel burned and emissions have

been developed by NASA/Boeing for the years 1976, 1984, and 1992, and the

European Abatement of Nuisances Caused by Air Transport (ANCAT)/European

28



Commission (EC) Working Group and the Deutsches Zentrum fOr Luft- und Raumfahrt

(DLR) for 1991/92. For 1992, the three inventory results are in good agreement. Total

fuel used by aviation was calculated to be 129.3 Tg (DLR), 131.2 Tg (ANCAT), and

139.4 Tg (NASA). Total calculated emissions of NOx (as NO2 ) in 1992 ranged from 1.7

Tg (NASA) to 1.8 Tg (ANCAT and DLR) [Penner et al., 1999].

All of these models compile an aircraft movement database with aircraft/engine

combinations. They then calculate fuel burned and emissions along great-circle paths

between origin-destination cities. A similar approach is taken by Eurocontrol and the

Dutch Aviation Emissions and Evaluation of Reduction Options (AERO) in developing a

model to simulate technology and policy scenarios. Relative to these models, the

distinguishing features of SAGE include the use of radar-recorded aircraft trajectory

data. This not only enables more accurate aircraft movement and performance

modeling but also provides a basis for accounting for canceled and unscheduled flights.

In addition, flight-by-flight fuel burn data are available from a major US air carrier so that

SAGE outputs are directly compared to the reported airline data. This allows for

examining model fidelity in greater detail and provides a basis for assessing the

parametric and model uncertainties in fuel burn and emissions estimates made by

SAGE.

To assess the air quality impacts of proposed airport development projects, the

Emissions and Dispersion Modeling System (EDMS) was developed in the mid-1 980s

under the auspices of the Federal Aviation Administration (FAA). EDMS is capable of

assessing various airport emission sources, which consist of aircraft, auxiliary power

units, ground support equipment, passenger access vehicles and stationary sources. It

includes emissions and dispersion calculations, the aircraft engine emission factors

from the International Civil Aviation Organization (ICAO) Engine Exhaust Emissions

Data Bank [2000], vehicle emission factors from the Environmental Protection Agency's

(EPA) MOBILE5a, and EPA-validated dispersion algorithms.
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For cruise operations, a simple method for estimating NOx, CO, and HC emissions has

been developed based on engine performance and emissions data obtained via full-

scale engine tests at ground-level. It uses ICAO certification fuel flow versus emissions

data taken at sea level as the basis for correcting emissions results for ambient and

flight conditions. To report the emissions data, the emissions index (EI) in units of grams

of species per kilogram of fuel burned (g species/kg fuel) is mostly used. The method

proposed by Boeing, known as Boeing Method 2 (BM2), is currently used in SAGE

Version 1.

1.5 USE OF MODELS AND SIMULATIONS TO SUPPORT POLICY DECISION-

MAKING

While models are often employed to analyze policy options, the lack of understanding of

the uncertainties in them is an increasing concern of policy makers [Cipra, 2000]. For

instance, radically different estimates that arise from large uncertainties in different

computer models are fueling much of the global climate change debate [Cipra, 2000;

Jacoby and Prinn, 1994]. For local air quality regulations, computer models such as

EDMS are frequently used. However, the uncertainties in these models have not been

extensively quantified or considered for either global climate change or local air quality

policies.5

For policy makers, it is important to know how uncertain outcomes change with different

policy options and if the outcomes can be distinguished given the uncertainties of the

computer models used. Policy makers need to know where models disagree and the

modeling assumptions that cause the differences [Webster, 1996]. They also desire as

small output variability as possible in order to ensure "robustness" of their policy design.

Therefore, establishing and communicating model fidelity is an important task, which

must parallel model development efforts. Identifying the uncertainty associated with

model assumptions as modeling goes on is important because improving assumptions

can improve model performance as well [Cipra, 2000; IPCC, 2001].

5 Boeing has conducted a validation study for its 1992 aircraft emissions inventories [Daggett et al., 1999].
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It should be noted that non-model uncertainties can also be large. They include

technological, economic, social, and political uncertainties that impact any

environmental policy making [Jacoby and Prinn, 1994]. This thesis, however, focuses

on treatment of model uncertainties that are most relevant to the models and scenarios

considered in the subsequent chapters.

As a method to treat model uncertainties, uncertainty analysis allows one to obtain the

mean, variance, and probability distributions of the model output, and also conduct

variance analysis to quantify the contribution of an uncertain parameter to variance in

the output. Uncertainty analysis can also capture the relative likelihood that different

outcomes will occur [Morgan and Henrion, 1990]. There are two types of measurable

uncertainty in physical sciences. One is parametric uncertainty, and the other is model

uncertainty.6 Parametric uncertainty results from individual parameter values used in the

model [Taylor 1999; Webster, 1996]. For example, if engine thrust is used to determine

fuel flow rate, both thrust and fuel flow are parameters that have uncertainty in their

estimated values. Parametric uncertainties are often interlinked because one parameter

is used as input to determine other parameters.

Model uncertainty, also known as structural uncertainty, originates from biases in the

methods used to approximate the real world phenomena. It is harder to measure

because quantifying the uncertainty associated with the structure of the model is often

impossible [Webster, 1996]. The Aerospace System Design Laboratory (ASDL) led by

Mavris at Georgia Institute of Technology has applied robust design techniques for a

system design. This has provided the assessment of the impact of disciplinary

uncertainty (i.e. parametric and model uncertainties) on the confidence in the design

solution [Mantis, 2002].

6 Researchers including Mavris uses the terms, aleatory and epistemic uncertainties [Oberkampf et al.,
2004]. According to Mavris, "aleatory uncertainty is random and irreducible and generally due to the
variability in nature... Epistemic uncertainty, on the other hand, is due strictly to a lack of knowledge and is
generally considered to be reducible uncertainty since, as knowledge is gained, the uncertainty is
reduced."
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This thesis will assess both parametric and model uncertainties in the model introduced.

Various statistical techniques will be employed to analyze uncertainties in a way that is

most appropriate to communicating model fidelity and examining policy applications in

this thesis.

1.6 THESIS OBJECTIVES

The Federal Aviation Administration's Office of Environment and Energy and a team

comprised by Volpe National Transportation Systems Center, Massachusetts Institute of

Technology (MIT) and Logistics Management Institute have begun developing the

System for Assessing Aviation's Global Emissions (SAGE). SAGE is envisioned to be

an internationally accepted computer model that can be used for predicting and

evaluating the effects of different policy and technology scenarios on aviation-related

emissions and aircraft performance.

The work in this thesis is closely tied to the development, assessment and use of the

model. The objectives of this thesis are to:

1. Develop fuel burn and emissions sub-models that describe the performance of

current fleets

2. Perform a comprehensive uncertainty analysis of the model

3. Recommend steps that guide future development of SAGE

4. Apply SAGE in analyzing important policy questions

By delivering on these objectives, this thesis makes several contributions for the

aviation sector. First, a major contribution is made to develop SAGE, a tool to be used

by the FAA for international policy-making. The fuel burn and emissions modules

developed in this thesis are the core elements of the SAGE model. Further, this thesis

assesses the uncertainty in the fuel burn and emissions predictions of SAGE. It details

parametric and model uncertainties and quantifies their impacts on mean shift and

variance in final model results.

32



This thesis employs the SAGE model and airline data to assess the benefits of three

different emissions mitigation options under conditions of uncertainty. These options

are technological and operational measures that are currently being considered for

implementation. Lastly, the methodology presented in this thesis for assessing the

uncertainty of a modeling tool and its impact on policy scenario analysis provides a

framework that can be applied in support of other policy analyses.

1.7 ANALYSIS APPROACH AND DATA

The fuel burn and emissions module, the key component of SAGE, is based on

simplified principles of flight physics and operations. This simplicity is necessary for two

reasons, one for clarity for international acceptance and the other to reduce

computational complexity due to the large number of flights (i.e. more than 30 million

flights a year) to process.

SAGE has unique data sources for assessing the veracity of the model outputs. In

particular, flight-by-flight fuel burn data and computer flight data recorder (CFDR)

information were available from a major U.S. airline and the National Aeronautics and

Space Administration (NASA). Various statistical techniques were employed to establish

the uncertainty estimates of the model and understand the effects of key model

assumptions on model behavior.

More detailed modeling and analysis procedures as well as data sources used are

presented in the main body of the thesis.

1.8 ORGANIZATION OF THE THESIS AND CONTRIBUTIONS

Chapter 2 presents an overview of the model and key results. Specific performance

goals for SAGE, modeling methods and assumptions are discussed. Global aviation

fuel burn and emissions results are also included.
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Chapters 3 and 4 discuss an uncertainty assessment of the SAGE model at both

modular and system levels. Chapter 3 provides comparisons of reported versus

modeled results. Chapter 4 analyzes the effects that the key uncertainties have on

estimates of aggregate, fleet-level fuel burn and emissions. Statistical techniques are

employed to quantify the unique contribution of each key uncertainty to the variance and

mean of total error.

Chapter 5 presents three case studies analyzing one technological and two operational

policy scenarios that are of immediate interest to the aviation community today. New

NOx stringency measures, Continuous Descent Approach (CDA) procedures and

derated take-off procedures are analyzed with a research version of SAGE. The

research version of SAGE is capable of parameter and equation modifications that are

needed to examine these various policy scenarios. Uncertainties in model outputs are

considered in presenting the results and making recommendations for policy. A

successful outcome of this thesis is to help evaluate technological and operational

solutions that mitigate aviation's global emissions.

Research conclusions and recommendations for future development of SAGE are

summarized in Chapter 6.
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CHAPTER 2

OVERVIEW OF SAGE MODEL

SAGE is intended to be an internationally accepted model used for estimating aircraft

fuel burn and emissions and evaluating the effects of different policy and technology

scenarios on aircraft performance, aviation-related emissions, costs and industry

responses. From an aircraft level to airport, regional and global levels, the model is

capable of various analyses such as:

- Implementation of new aircraft technology

- Improvements to air traffic control/airspace capacity

- Enhancements to airport infrastructure

- Improvements in aircraft operations

The performance objectives for SAGE Version 1 are to compute aircraft performance,

fuel burn and emissions of C02, H20, NOx, HC and CO at each point along the flight

trajectory. The results are aggregated and fuel burn and emissions inventories are

constructed on 1 0 by 1 0 by 1 km world grids.

This chapter presents an overview of the SAGE model structure and results.

2.1 MODEL STRUCTURE

As shown in Figure 2.1, SAGE is composed of four basic computational modules-1)

aircraft movements, 2) capacity and delay, 3) fuel burn and emissions, and 4)

forecasting. The following section presents excerpts from the SAGE Detailed System

Architecture and Design Specification [FAA, 2002].
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Figure 2.1 SAGE-Version 1 model structure

2.1.1 Aircraft Movements

Aircraft movements data used in SAGE for past-year estimates are a mix of radar data

and flight schedule-generated trajectories. For SAGE-Version 1, radar data are from

the Enhanced Traffic Management System (ETMS), which mainly cover North America

and Western Europe. In addition to using a portion of radar data directly, thousands of

ETMS flights were statistically analyzed. The results of these analyses were used to

develop a vertical and horizontal flight track dispersion model that was used in place of

the traditional Great Circle7 and nominal altitude model for each origin-destination (OD)

pair in the Official Airline Guide (OAG) schedules.

The SAGE movements database includes commercial flights worldwide and the

associated global fleet mix for each of the past years that are modeled. Among the total

flights modeled in determining global fuel burn and emissions for the year 2000, ETMS

and OAG flights comprised 17% and 83%, respectively. Because of the reliance on the

OAG schedules for regions outside of the U.S. and parts of Western Europe where

7 Great circle distance is the minimum distance between two points on the surface of a sphere.
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ETMS data are not available, some unscheduled and cancelled flights are not

accounted for in SAGE-Version 1. Efforts are currently underway to acquire additional

radar-based data, similar to ETMS data, which is also radar-based.

Aircraft movements data in SAGE can be separated into three basic categories-1)

ground, 2) take-off/climb-out and near-terminal approach, 3) and en route cruise. For

SAGE Version 1, the ground movements are represented as a combination of taxi and

ground delay times. Taxi time statistics are extracted from the Airline Service Quality

Performance (ASQP) On-Time Performance Data, which are directly applicable to the

major airports in the U.S. and applied to other airports worldwide. Taxi times for major

airports in Europe are obtained from the Eurocontrol Central Flow Management Unit

(CFMU). Ground delays are obtained from WWLMINET. WWLMINET it is a queuing

model that runs the flight demand through a network of queues and outputs the delays

associated with serving the demand level [Long et al., 1998]. LTO trajectories are

modeled through a combination of using the methodologies and data from the Society

of Automotive Engineers (SAE) Aerospace Information Report (AIR) 1845 and the

Eurocontrol Base of Aircraft Data (BADA) [Bishop, 1992; SAE, 1986; Eurocontrol,

2000]. Airborne approach delays are also modeled and obtained from WWLMINET.

The SAE AIR 1845 provides engine and aerodynamic performance equations and

coefficients for standard LTO procedures. Its database offers a pre-computed static set

of aircraft profiles that describe departure and arrival performance of over 9000 unique

aircraft/engine combinations. All of the engine types in the ICAO emissions data bank

are included. For each aircraft type, there are up to seven take-off weight classes

based on stage lengths [SAE, 1986].

BADA provides a set of performance and operating procedure modules (equations and

coefficients) for 186 different aircraft types. They include those used to calculate drag,

thrust and fuel flow and those used to specify nominal cruise, climb and descent

speeds. More details on individual BADA modules are presented below.
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2.1.2 Aircraft Performance, Fuel Burn and Emissions

OAG (schedule)
No Trajectory Available

(SAE AIR 1845 LTO procedures)

Figure 2.2 SAGE fuel burn and emissions components

Figure 2.2 shows the structure of the fuel burn and emissions components. For SAGE

Version 1, an International Standard Atmosphere (ISA) with no wind is assumed. Take-

off gross weight (TOGW) must also be assumed. Stage-based TOGW information from

SAE AIR 1845 is used. From the ETMS or OAG-based trajectory data, the atmospheric

module computes ambient temperature, pressure, density, and speed of sound. The lift

coefficient (CL) is calculated using Equation 2.1. Drag coefficients (CDM and CD2) are

available from BADA and used to compute drag force for each aircraft type using

Equations 2.2 and 2.3. Note that the drag coefficients are mode-specific, meaning that

each of take-off, climb-out, cruise, approach and landing configurations has a unique

set of CDO and CD2 values.
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CL2mg (21)
p. V 2 .S

where:

m = aircraft mass

g = gravitational acceleration constant

p = air density

V = flight speed

S = wing area

CD =CDO +CD 2 (CL)
2  (2.2)

D-C_ pV 2 .S (2.3)
2

where:

D = aerodynamic drag force

Engine thrust at a particular point on a flight mission can then be computed using

Equation 2.4. Specifically, the excess power of the aircraft (from thrust minus drag) is

set equal to the time rate of change in potential energy (proportional to the rate of

change in height) plus the time rate of change in kinetic energy (proportional to the rate

of change in speed). Equation 2.4 is a scalar equation and thus must include all of the

components of velocity and the forces resolved in the direction.

Ah AV
(F - D)-V = mg-+mV (2.4)

At At

where:

F = engine thrust

Ah = change in flight altitude

At = change in time
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In some cases (e.g. near terminal area) where there is no trajectory data available,

landing and take-off (LTO) profiles are created using standard LTO procedures

specified in SAE AIR 1845 as below:

1. Take-off and climb at V2+10 knots to 1000 ft. Take-off flap and thrust.

2. Accelerate 10 knots.

3. Intermediate flap. Thrust cutback.

4. Accelerate to zero flap minimum safe maneuvering speed, Vf.

5. Clean flap. Climb at Vz to 3000 ft.

6. Accelerate to 250 knots at max climb thrust.

7. Climb out to 10,000 ft at 250 knots.

BADA provides values for V2 and Vz. For landing, 3' descent for jets and 50 descent for

turboprops are used.

The SAE AIR 1845 thrust model is employed to generate thrust force and complete the

LTO trajectory information. In SAE AIR 1845, the maximum thrust for jet aircraft is

determined using a quadratic expression that is a function of height and flight speed

with coefficients that are corrected for temperature effects as shown in Equation 2.5.

For descent modes (approach and landing), the maximum thrust is scaled down by

corresponding thrust coefficients (CTDESLOW, CTDES_AP and CTDESLD) in BADA.

Fmax = (Ero+Fro - VcAs + GA To h+G,6ro - h2 +HTO -T)xS3 (2.5)

where:

Fmax = maximum thrust

ETO, FTO, GA-TO, GBTO, HTo = SAGE AIR 1845 thrust coefficients

VCAS = calibrated airspeed

h = altitude

T = ambient temperature

8 = pressure ratio (ambient to sea-level)
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Once thrust is determined, the rate of climb (Ah/At) can be calculated from Equation

2.4, which then provides change in time (At) for calculating the subsequent fuel burn

and emissions below.

Total fuel burn is estimated from the thrust specific fuel consumption (SFC), thrust (F)

calculated and At as in Equation 2.6.

Fuel Burn = SFC x F x At (2.6)

BADA provides a linear expression for SFC as a function of flight speed as shown in

Equation 2.7. A thrust reduction factor is applied to this expression during cruise.

SFC=C,1- 1+ (2.7)
C,2

where:

Cf1, Cf2 = BADA SFC coefficients

If the calculated thrust falls below 7% of max thrust during descent, an SFC expression

for minimum fuel flow is used from BADA. Equation 2.8 shows that the BADA minimum

fuel flow associated with low engine power settings is only a function of altitude, the

simplicity of which causes inaccuracies during the idle and taxi modes.

For minimum fuel flow, SFC = C3 - 1 C (2.8)

where:

C3, Cf4 = BADA SFC coefficients

Emissions of C02, H20, and SO 2 are then calculated from a mass balance of the

chemical species in the fuel and the exhaust as shown in Equations 2.9 to 2.11.
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CO2 = 3.155x Fuel Burn

H 2 0 = 1.237xFuel Burn (2.10)

S02 = 0.8xFuel Burn (2.11)

To determine NOx, HC and CO emissions, SAGE uses Boeing Method 2 (BM2). BM2 is

a simplified method developed based on engine performance and emissions data

obtained via full-scale engine tests at ground level. It uses ICAO certification fuel flow

versus emissions data taken at sea level as the basis for correcting emissions indices

(EI) for installation effects, ambient conditions and flight Mach number. In SAGE,

Equation 2.12 corrects the BADA fuel flow (SFC x F) to account for ambient

temperature, pressure and flight Mach number. The corrected fuel flow gets correlated

with referred emissions indices (REINOx, REIHC and REICO), which are then

"unreferred" to account for ambient conditions as in Equations 2.13 to 2.15.

SFC x F 3.8 0.2(Mach Number)2

where:

Wf = corrected fuel flow rate

0 = temperature ratio (ambient to sea-level)

EINO = REINO .eH (2.13)

where:

EINOx = Emissions Index for NOx

REINOx = Referred Emissions Index for NOx

H = humidity factor

3.3

EIHC = REIHC 3. (2.14)

where:

EIHC = Emissions Index for HC
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REIHC = Referred Emissions Index for HC

EICO = REICO o33 (2.15)
(51.02

where:

EICO = Emissions Index for CO

REICO = Referred Emissions Index for CO

To compute total emissions amounts, the corrected emissions indices are multiplied by

fuel burn results as in Equation 2.16 to 18.

NO, = EINOx x Fuel Burn (2.16)

HC = EIHC x Fuel Burn (2.17)

CO = EICO x Fuel Burn (2.18)

During all taxi operations, a throttle setting of 7% of maximum thrust is assumed, from

which fuel burn and emissions are computed using the procedures shown above.

2.2 GLOBAL FUEL BURN INVENTORIES

Figure 2.3 shows the year 2000 output of fuel burn in two-dimensional grids. These

data are saved in 1-degree latitude by 1-degree longitude resolution. Note that altitude

information is also preserved within the SAGE database in 1-kilometer altitude

increments.
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Figure 2.3 SAGE global 2000 fuel burn plot

(1 0 by 1 0 all altitudes aggregated)

The SAGE global, aggregate fuel burn inventories for the years 2000, 2001 and 2002

are shown in Figure 2.4, along with some results of previous studies. For all turbojet-

and turboprop-powered commercial flights worldwide, the global fuel consumption is

computed by SAGE to be 179.6Tg, 159.3Tg, and 159.8Tg for the years above,

respectively. Neither general/military aviation nor piston-driven aircraft are included in

the inventory. As shown, the SAGE values follow the general trend of the previous

inventory results from Boeing and several other European studies. The increasing trend

in annual fuel burn reflects the growth in air traffic over the past 30 years with the

expected decreases in 2001 and 2002 due to the effects of September 11, 2001.
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Figure 2.4 SAGE global fuel burn inventories for 2000, 2001 and 2002 and comparison

to previous studies

Data from the inventories have also been aggregated by mode: ground (based on origin

and destination airport elevation), above ground-to-3000 feet, above 3000 feet, and

total. Figure 2.5 shows a comparison of results by year and mode for fuel burn. Most of

the global aviation fuel is consumed above 3,000 ft or during cruise.
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Global fuel burn results can be separated into regions based on the geographic

coordinates of the origin and destination airports. Detailed results are shown in

Appendix A. Figure 2.6 depicts fuel burn from flights originating in one region but

terminating in another region. Note that the term, bunker fuel (or bunker emissions) is

used to account for emissions from fuel used by aircraft flown in international transport.
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Figure 2.6 Bunker fuel burn by global regions

Table 2.1 shows a comparison of SAGE total fuel burn results with U.S. DOT Form 41

data for 10 major U.S. carriers. For year 2000, the sum of the major passenger carriers'

fuel consumption calculated by SAGE is 49.2 billion kg, almost identical to the reported

value in Form 41 data. Boeing has made the same comparison for its 1992 emissions

inventory that is based on GC trajectories and found an under prediction of 17%
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[Daggett et al., 1999]. The difference between SAGE and Boeing emissions results are

probably largely caused by the use of different types of trajectories (i.e. ETMS data and

OAG-based dispersion tracks) in SAGE. GC distance is the shortest distance on a

sphere between two points. Therefore, Boeing's GC trajectories model only the

shortest distances between origin-destination pairs. As a result, it has been found that

the GC distance is 4.6% smaller than actual distance on average for the 747-400 flights

flown in February 1997 [Daggett et al., 1999]. On the other hand in SAGE, horizontal

dispersion from the GC distance is determined via a statistical analysis of ETMS data.

This provides an estimate for actual distance traversed.

Table 2.1 Total fuel burn comparison for 10 major US carriers for year 2000

FORM41 reported SAGE calculated with
Carrier (Tg) OAG schedule (Tg)

United Air Lines 9.31 9.90
American Airlines 9.14 8.96
Delta Air Lines 8.23 7.87
Northwest Airlines 6.34 6.37
Us Airways 4.66 3.60
Continental Air Lines 4.48 4.47
Southwest Airlines 3.04 3.60
Trans World Airways 2.00 2.11
America West Airlines 1.27 1.32
Alaska Airlines 0.91 0.98

Total 49.4 49.2

Note also that Boeing consistently underestimates fleet fuel burn by about 16-17% for

all 10 major US carriers [Daggett et al., 1999]. On the other hand, SAGE fleet fuel burn

errors range around ±25%. Unscheduled and cancelled flights, which are not modeled

in SAGE, are believed to be the main reason for this trend (see Section 3.3.1.2).

This chapter has presented an overview of the SAGE model and results. SAGE has

been used to compute aviation's global fuel burn and emissions for the years 2000,

2001 and 2002. The results are consistent with prior studies given assumed increases
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in fuel usage. A detailed uncertainty assessment of the model assumptions and results

is presented in the next two chapters.
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CHAPTER 3

UNCERTAINTY ANALYSIS I: MODEL VALIDATION

This chapter quantifies the uncertainties in SAGE model inputs and outputs. While the

focus is on uncertainties in fleet-level outputs, consideration is also given to

uncertainties in flight segments below 3,000 ft and relative uncertainties of different

individual aircraft types. These results help establish the fidelity and applicability of

SAGE-Version 1 for evaluating aviation's global fuel burn and emissions. Future work

to improve the model is also identified as a result of these uncertainty assessments.

The first half of the uncertainty assessment discussion involves comparisons of reported

versus modeled results at both the modular and system levels. Data from government

and industry sources are used in the analyses. Modular evaluations mainly involve the

use of aircraft performance and fuel burn-related data. In contrast, system evaluations

involve the use of aggregate flight level fuel burn information, which takes into account

the complete movement (e.g. trajectory) for each flight.

The second half of the uncertainty assessment discussion is a parametric study. It is

presented in the following chapter. It includes an investigation into the sensitivity of the

model to key input parameters. Using statistical techniques, the uncertainties in the key

parameters are aggregated to explain the variability in calculated fuel burn and

emissions error. This then helps to identify the parameters that have the largest

influence on model accuracy and behavior.

The modeling assumptions and assessment data used are first described below.

3.1 MODELING ASSUMPTIONS
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Table 3.1a Detailed assumptions for SAGE modeling

Assessment Impact on
Category Assumption Uncertainty (1 Sigma) Source System Output

Dispersion track assigned for OAG 5% of flight time Volpe Large on OAG
flights 5% -of -- fligh tim Vope- flights
Constant cruise altitude assumed for 3000 ft for stage >= 500 nmi, 1500 ft for Volpe Large on OAG
OAG flights stage < 500 nmi flights

Trajectory and Unscheduled flights not modeled for 4% of total flights in the U.S. Form 41 Significant on
Schedules OAG flights global inventory

Some flights discarded due to outlying 1% of flights not flown Volpe Small
position data
Pressure altitude assumed for ETMS 100 ft Clarke, MIT Relatively small
trajectories

ISA temperature 3.3 K at cruise conditions Boeing Potentially large

Atmospheric No head or tail wind 12.5 m/s Boeing Large
Conditions No crosswind Small Boeing Small

WG3, CAEP
Relative humidity of 60% Less than 0.1% at cruise conditions and Lukachko, Small

MIT

Airframe/engine assignments based on SmallI (less than 10% of fleet fuel burn)
Arfraeangie asnernts bgedn because airframe/engine assignments Volpe Small

are made by tail number for most flights

BADA aerodynamic coefficients 14% when compared to manufacturer's Manufacturer SignificantL/D data data
SAE AIR 1845 engine thrust model for 2500 lbs underprediction Page, Wyle Significant for
LTO chords LTO emissions

Performance BADA fuel flow model 11% when compared to published SFC Jane's Significant
BADA uel low odeldata

Small and can
be included in

No aging effects in aircraft performance 2% increase in thrust specific fuel Manufacturer the
o aige t consumption at 5000 cycles and -1% to data and aerodynamic,or weight 4% change in average EINOx Lukachko, MIT engine and

weight data
uncertainties

SAE AIR 1845 takeoff weight based on 13% Major carrier Large
stage length

Potentially large
Fuel tankering not modeled 4% Boeing on individual

flights

Aircraft weight is assumed to remain Chord fuel burn is a very small fraction
constant for a chord element and gets of aircraft weight, and overpredictions Major carrier Small on
debited by the amount of fuel burned and underpredictions add up to cancel aggregate
after each chord

Operations Taef itnedfeecsbtenSmall on
SAE AIR 1845 takeoff ground roll Takeoff ditance d ierences between aggregate but
distance where balanced field length is power takeoff can be as much as 5000 Va Tech important on
not considered poe ground

emissions
Potentially large

SAE AIR 1845 takeoff procedure 10% of takeoff/climb time Major carrier for LTO
emissions
Potentially large

degree fod urboprlope for jets and 5 25% of approach/landing time Major carrier for LTO
degre fr tubopopsemissions
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Table 3.1a Detailed assumptions for SAGE modeling (continued)

Assessment Impact on
Category Assumption Uncertainty (1 Sigma) Source System Output

Landing stop distance which includes Thrust reverser uses about 60% engine MIT Small
thrust reverser not modeled power setting for a few seconds

BADA speed schedule for LTO chords
where speed is not specified by SAE 5% of flight speed Major carrier Small
AIR 1845
Constant BADA cruise speed if no 5% Major carrier Irportant
ETMS data is available

Full power takeoff 10% of rated output Major carrier Important for
LTO emissions

Reduced climb power as specified in 5% of max output Clarke, MIT Small
BADA 5 fmxotu lre I ml

BADA speed schedule for LTO Analysis of Potentially large
BAD esc l f10 to 20 knots for 12,000 ft and below major carrier's for LTO

Operation segments data emissions
Potentially large

No head or tail wind for LTO segments 4 m/s for 5000 ft and below Clarke, MIT for LTO
emissions

Landing gear deployment at 3000 ft Analysis of Can be
above the airport elevation 1800 ft +/- 600 ft major carriers significantdata

Opertios dta how % pwersetingSignificant for
7% power setting for taxing Operatins data show 5% power setting Major carrier ground

emissions

Average taxi-out times for each airport Analysis of Significant for

based on the analysis of ASQP data 10 minutes ASQP data ground
emissions

Average taxi-in times for each airport 5 minutes Analysis of Significant for

based on the analysis of ASQP data ASQP data ground
emissions

Agreement between P3-T3 method and
fuel flow correlations (i.e. BM2) to within IPCC Significant

BM2 applied to ICAO El database for a standard deviation of 6%
HC, CO, and NOx emissions Schumann's hybrid method had average Lukachko, MIT Significant

variability of +/- 18% for NOx at altitude

Fuel flow capped at 7% to prevent very Small because flight idle power is
low fuel flow that causes extremely usually higher than 7% ground idle Clarke, MIT Small
large HC and CO emissions power

Dopelheuer and Lecht found as much

Combustor efficiency not considered as 50% error for CO and probably HC if Lukachko, MIT an be
change in droplet evaporation time is significant

Emissions not considered at cruise conditions
Would be approximately +/-16%, +/-
23%, +1-54% for EINOx, EICO, and

Variability in the fleet not accounted for EIHC at 20 level, respectively, based on ukachko, MIT Significant
in ICAO El database historical experience with engine testing

and the compliance factors analyzed by
FAA

~ransientenn operation (er oengine Transient operation can increase CO, Can be
trst-p poeginge ertc(.g engin HC, and particulate emissions Lukachko, MIT significant for

accounted for in ICAO El database temporarily far beyond levels suggested ground and LTO
by steady-state measurements emissions

100% fuel combustion with Less than 5% for C02 and H20 but can Kim, Volpe and Can be
correspo din conversion of fuento be very high (-30%) for S02 Lukachko, MIT significant

51



Table 3.1a shows the large number of assumptions made in SAGE modeling. There

are five categories of assumptions - atmospheric conditions, trajectory and schedules,

operations, performance and emissions. Each assumption has a certain level of

uncertainty which contributes to the total error in SAGE. This uncertainty level has been

determined using the assessment sources discussed below. Note that the various

methods within the model also represent assumptions (e.g. Boeing Method 2 to model

emissions). These component assumptions are listed because they impact model

uncertainty as well.

Table 3.1b highlights the key uncertainties that have a major influence on predicting

aircraft performance, fuel burn and emissions. These are preliminary determinations

based on a literature review of previous aircraft emissions inventory studies [Baughcum

et al., 1996; Penner et al., 1999]. The key uncertainties are introduced by the use of

OAG-based flight trajectories, use of standard day ambient temperature, not correcting

for winds aloft, uncertain aerodynamic and engine performance, and simplified

assumptions about aircraft take-off weight, and flight speed. Note that in the emissions

category, there are several assumptions that can cause significant uncertainty in SAGE

emissions prediction. However, they will be considered on a limited basis because of

the lack of data sources for assessment.

Table 3.1b Major assumptions for SAGE modeling
Oategory Assumption

Radar flight trajectories for ETMS flights
Trajectory Dispersion flight tractories for OAG flights

Constant cruise altitude for OAG flights

Atmospheric ISA temperature, pressure and density
Conditions No head or tail wind

No crosswind
Airframe/engine assignment based on BACK database

Performance BADA aerodynamic performance data
BADA fuel flow model
SAE AIR 1845 takeoff weight based on stage length
SAE AIR 1845 takeoff and landing procedure

Operations Constant BADA cruise speed if no ETMS data is available
Full power takeoff
7% power setting for taxing
Average taxi times for each airport based on the analysis of ASQP data

Emissions Boeing Method 2 applied to ICAO El database for HC, CO, and NOx emissions
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3.2 DATA SOURCES FOR MODEL ASSESSMENT

Several sources and types of data were used for uncertainty assessment of SAGE.

They are described below.

3.2.1 Major United States (US) Carrier

The data provided by a major US carrier include both aggregate flight level fuel burn

and detailed computer flight data recorder (CFDR) information. The aggregate data

cover all carrier flights for the month of October 2000. The CFDR data include the

following eight aircraft types: B737-800, B767-200, B777-200, MD80, MD83, F100, and

A300-600. The data are high resolution, recorded every 8 seconds for take-off and

landing segments and every 256 seconds for the cruise segment. The database covers

gate-to-gate movement data, including taxi-out, take-off, climb-out, cruise, descent,

approach, landing, and taxi-in. For each aircraft type, six flights of data were available.

The data cover the full range of movement (i.e. taxi, take-off, cruise, and approach).

The parameters provided in the CFDR data are engine throttle setting, engine spool

speeds, engine pressure ratio, fuel flow rate, exhaust gas temperature, ambient

temperature, wind magnitude and direction, flap and landing gear settings, pressure

altitude, calibrated air speed, latitude/longitude and aircraft gross weight.

3.2.2 Major European Carrier

Data from a major European Carrier were similar in form, but less detailed than the

CFDR data from the US Carrier. Only the cruise portion of B747-400 flights from

October 2000 is included.

3.2.3 National Aeronautics and Space Administration (NASA)
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The data from NASA are very high resolution, 10-second time-step CFDR data obtained

from their B757-200 test aircraft. The data cover 20 flights and the full range of

movement from varying times of the year in 2000.

3.2.4 Form 41 Schedule T-2

Maintained by the U.S. Department of Transportation's (USDOT) Bureau of

Transportation Statistics (BTS), this databank contains detailed traffic data for all aircraft

operated on US and international routes by major US carriers since 1968. Schedule T-

2 reports various traffic statistics including Revenue Passenger Miles (RPM), Available

Seat Miles (ASM), airborne hours, block hours (timed from when the blocks are

removed from behind the wheels prior to taxiing to when they are replaced after the

flight), and fuels issued. Based on this information, further operating statistics, such as

load factor and fleet size, can be calculated [USDOT, 2002].

3.3 MODULAR ASSESSMENT

Modular validation involves the assessment of individual sub-models to gauge their

accuracies and uncertainties. The following sections discuss important uncertainties in

each assumption category. Then for each of these uncertainties, the net impact on

global emissions and flight-by-flight emissions will be analyzed in subsequent

discussions of system assessment and parametric uncertainty analysis.

3.3.1 Trajectory and Schedules

3.3.1.1 OAG-Based Trajectories

In the SAGE databases, trajectory data exist in two forms: ETMS trajectories and OAG-

derived trajectories. The latter type is created by a trajectory generator developed from

analyzing thousands of ETMS flights. The analysis involves the determination of offsets

(or dispersion) from the Great Circle (GC) route based on total flight distance (stage)
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categories. By using these offsets and the associated distributions, the trajectory

generator mimics the characteristics of real radar data on an aggregate level. The

offsets also represent a significant portion of the differences that may be seen between

SAGE results and any studies conducted using GC trajectories such as those by Boeing.

Boeing used GC trajectories for all worldwide flights, and estimated to have under-

predicted fuel burn by 17% as a result of the GC assumption and flight schedules

modeled [Daggett et al., 1999].

Using OAG-based trajectories rather than ETMS trajectories introduces additional

uncertainty into fuel burn and emissions calculated by SAGE. The main uncertainties

are associated with assuming constant cruise altitude derived from a statistical analysis

of ETMS data and constant cruise Mach number available from BADA. In practice,

airlines often change cruise altitude as well as cruise speed to achieve minimum total

operating cost (i.e. fuel cost and crew cost in particular). On a long flight, airplanes

typically perform step climbs. As fuel is burned and the weight of the airplane becomes

lighter, the pilot chooses to climb higher to save on fuel if the fuel consumption rate at

the next higher flight level is lower [Personal communication, 2003a; Padilla, 1996]. As

altitude increases, the combined effects of increased induced drag and decreased

parasitic drag shift the minimum drag condition to a point that corresponds to a higher

cruise speed. This is why airplanes tend to increase cruise Mach number with

increasing cruise altitude. For the case of maintaining constant cruise altitude, the

cruise speed for minimum drag scales with the square root of aircraft weight, which

continues to decrease along the flight path.

An analysis of both ETMS data and the European carrier's CFDR information has

shown cruise altitude variability of ±3000 ft (1a). Analyzing the same data for cruise

speed has shown variability of Mach ±0.02 (1a). The impact of cruise altitude and

speed uncertainties on fuel burn and emissions estimates is assessed in the next

chapter. The assumptions regarding take-off and landing trajectories will be discussed

in Section 3.3.4.2 below.
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3.3.1.2 Schedules

Unscheduled flights and canceled flights, which are not included in SAGE emissions

inventories, are a significant source of modeling bias. A comparison between OAG

schedules and ETMS records has indicated that unscheduled flights are around 20% of

total ETMS flights and cancelled flights are around 4% of total OAG flights [Malwitz,

2004]. This could explain the high variance in comparing the SAGE results to the Form

41 data for the US airlines in the previous chapter. It is, however, necessary to conduct

a more rigorous comparison of ETMS and OAG flights within the Form 41 data to

confirm some airlines have more unscheduled flights and/or cancellations than others.

3.3.2 Atmospheric Conditions

3.3.2.1 Ambient Temperature

Table 3.2 shows seasonal variations in ambient temperature at typical cruise altitude on

a US transcontinental route [Baughcum et al., 1996]. On average, the ambient

temperature at cruise altitude is only 1.1 K higher than the ISA temperature. This

increase is higher during summer times. Similar data for North Pacific, North Atlantic,

and North-South routes show typical temperature increases above ISA values to be less

than 5 K with an average increase of 1.6 K.

Table 3.2 Temperature variation on a US transcontinental route [Baughcum et al., 1996]

Annual Spring Summer Autumn Winter
ISA temps temps temps temps temps

Approximate Delta T (K) 0 1.1 0.6 2.2 1.1 0.6

As ambient temperatures increases, the density of air decreases. The aircraft then

must fly at a higher lift coefficient (thus a higher drag coefficient) to make the same lift.

This causes increased aerodynamic drag. Boeing analysis shows that the increase of

2.8 K over the ISA temperature results in an increased fuel burn by 0.55%. Of this

increase, about 0.15% would be the result of the larger aerodynamic drag, and the
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balance would be due to reduced engine performance [Baughcum et al., 1996].

Therefore, the ambient temperature uncertainty of 5 K may not have a major impact on

the system-level performance of SAGE.

3.3.2.2 Winds Aloft

Table 3.3 shows seasonal variations in winds aloft at typical cruise altitudes on a US

transcontinental route. Depending on the season, winds at cruise altitude range from

16.5 m/s to 29.3 m/s. An average wind for all US transcontinental, North Pacific, North

Atlantic, and North-South routes is calculated to be 18.8 m/s (-37 knots), and a

standard deviation is estimated to be 12.5 m/s (-20 knots) [Baughcum et al., 1996].

Table 3.3 Wind variation on a US transcontinental route [Baughcum et al., 1996]

Annual Spring Summer Autumn Winter
No wind winds winds winds winds winds

Approximate winds (m/s) 0 23.1 24.2 16.5 23.1 29.3

Fuel burn for a round trip flight with a constant wind magnitude and direction is not

equivalent to a round trip with no wind. The Boeing analysis shows that adding a wind

component increases the round trip fuel burn on average by approximately 1-2%

[Baughcum et al., 1996]. This is due to increased time and energy spent flying against

the headwind relative to the reduced time and energy spent flying with the tailwind. In

North America, eastbound flights mostly benefit from a tailwind while westbound flights

see a strong headwind and burn more fuel. A strong directionality in winds aloft is a

source of model uncertainty that can systematically bias SAGE fuel burn and emissions

results.

3.3.3 Performance
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The aerodynamic component and the fuel flow component for cruise were assessed

using proprietary industry data and CFDR information from NASA. The lift-to-drag ratio8

(L/D) was used as a measure of aerodynamic performance. It was shown that the

industry-validated data were within ±14% of the SAGE-generated L/D values with 1a

confidence. The thrust specific fuel consumption (SFC) 9 was used as a measure for

assessing the fuel flow component. The published SFC data were within ±11 % of those

generated by SAGE with 1a confidence. These flight-by-flight uncertainties in

aerodynamic and engine performance are quite substantial; however, their effects

become smaller when propagated through to a fleet level. A more detailed discussion is

presented below.

3.3.3.1 Aerodynamic Component
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Figure 3.1 SAGE aerodynamic component assessment of B747-400 at 35,000 ft

Figure 3.1 shows a SAGE (as obtained from BADA) L/D curve as a function of the lift

coefficient (CL) for a B747-400 at cruise altitude of 35,000 ft. When compared with

published data shown in Figure 3.2, the BADA lift curve is insensitive to flight altitude or

speed changes. This is due to the fact that BADA has only a fixed set of drag

8 A measure of aerodynamic efficiency, the ratio of lift force generated to drag experienced by the aircraft
9 A measure of engine efficiency as denoted by the rate of fuel consumption per unit thrust (e.g. kg/s/N)
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coefficients, which are mainly tuned for best cruise performance. To simulate flight

altitude and speed effects more accurately, it will be necessary to introduce a correction

factor for BADA drag coefficients in a future version of SAGE.
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Figure 3.2 Lift-to-drag ratio versus lift coefficient for various Mach numbers

[Cumpsty 1997]

A comparison of the L/D values for various aircraft types used in SAGE versus NASA-

industry provided data [see Lee et al., 2001] are shown in Figure 3.3. Analysis of the

data shows that the SAGE-generated L/D values are within ±14% of the NASA-industry

provided data with 1a confidence.
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Figure 3.3 Comparison of BADA L/D values to NASA-industry provided data

3.3.3.2 Fuel Flow Component

Figure 3.4 shows a comparison of fuel flow rate between reported and SAGE-predicted

values for six MD80 flights. High fuel flow rates (around 3 kg/s) correspond to take-off

conditions while low fuel flow rates (below 0.5 kg/s) are associated with approach and

ground idle conditions. Most data points appear in between 0.5 kg/s and 1 kg/s at

cruise conditions. In general, the SAGE fuel flow values agree reasonably well with the

reported fuel flow values with less than 5% error on average. For altitudes greater than

10,000 ft, the agreement is quite favorable where the standard deviation of fuel flow

errors is calculated to be about 17%. For altitudes below 10,000 ft, the errors become

larger where the standard deviation of errors is as high as 40%. These results are

consistent with the technological and operational uncertainties of the aircraft types

modeled in SAGE as shown in the next chapter. In particular, fuel flows at low engine
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power settings (e.g. idle and taxi) are not as well predicted. This is because the BADA

minimum fuel flow associated with low engine power settings is only a function of

altitude, the simplicity of which causes the inaccuracies during the idle and taxi modes.
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Figure 3.4 SAGE Fuel flow component assessment for the MD80

A more systematic investigation of the fuel flow component involves analyzing the

cruise SFC data used in SAGE. Figure 3.5 shows a plot of the SAGE cruise SFC

values versus those obtained from Jane's Aero-Engines [Gunston, 2000]. The engine

types shown essentially cover over 75% of those used in the world fleet. Analysis of the

data shows that the SFC values generated by SAGE are within ±11 % of the published

values with 1a confidence. It should be noted that the lack of proper dependence of

BADA SFC model on altitude and Mach number may be a cause of the differences here.
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Figure 3.5 Comparison of BADA SFC values to published data in Gunston [2000]

3.3.3.3 Airframe-Engine Combinations

The BACK fleet database contains a list of all registered aircraft in the U.S. and other

parts of the world. This allows for an identification of aircraft and engine types. When

these data are not available for a particular airline, the BACK database is analyzed to

develop distributions of aircraft and engines for the top 50 airlines from one year's worth

of flight schedules. Counts of different aircraft and engine types in each of the airline

categories serve as the basis for the distribution.

Once the airframe-engine combinations are made, airframe data (i.e. aerodynamic

performance) and engine SFC data come from the BADA database. Engine thrust and

emissions data are obtained from the FAA's Integrated Noise Model (INM) [Bishop,

1992] and ICAO/EDMS, respectively. If a particular airframe or engine type is not
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available from the corresponding databases above, a substitution is made. For

example, the MD90 is not available in the BADA database, so the MD80 is used in its

place.

The substitutions generate additional uncertainty in the aerodynamic and engine

performance. Based on the U.S. data [USDOT, 2002], the substituted aircraft-engine

types account for less than 10% of the total fuel consumed for major US carriers. Given

the uncertainties in the airframe and engine performance data (i.e. 14% and 11%,

respectively) as assessed above, the aggregate effects of the airframe-engine

substitutions are estimated to cause around 1 % error for total SAGE results. Therefore,

further treatment of this uncertainty is not addressed in this thesis.

3.3.4 Operations

3.3.4.1 Aircraft Take-off Gross Weight (TOGW)

Uncertainties in TOGW are dictated by the uncertainties in payload and fuel on board.

Payload and fuel together typically account for 25-50% of TOGW, depending on the

size and load factor of the airplane. The heavier the TOGW, the more fuel the airplane

burns. Boeing [1996] analysis shows that increasing the load factor from 70% to 75%

causes a small 0.80% increase in block fuel for a B747-400 but a large 2.54% increase

for a B737-300. This is due to the fact that mission fuel burn is roughly proportional to

the sum of operating empty weight plus payload. Thus, increasing payload has a

greater impact on the fuel burn of a smaller airplane due to the increased fuel

requirement relative to the lower operating empty weight.

The TOGW data used in SAGE are based on stage length flown as determined by the

SAE AIR 1845. The longer the stage length, the heavier the TOGW to account for the

increased fuel requirement. Figure 3.6 shows a comparison between SAGE take-off

weights versus CFDR-reported values for 17 flights. It shows that the stage-based

take-off weights in SAGE are within ±7% of the reported values with 1 c confidence.
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The take-off weights of short-haul flights tend to be overestimates while those of long-

haul flights are underestimates. It is necessary to obtain more CFDR data to examine

this trend and estimate the uncertainty in SAE AIR 1845 take-off weights with increased

confidence. Due to the lack of further assessment sources at present, a conservative

estimate of ±10% (1a) uncertainty is assumed for take-off weight in the subsequent

analyses of this thesis.
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Figure 3.6 Comparison of SAE AIR 1845 take-off weights to CFDR-reported values

3.3.4.2 Landing and Take-off (LTO) Procedure

For the LTO modes, the SAE AIR 1845 procedure and engine thrust data have been

implemented in SAGE. This is the same methodology employed in the FAA's

Integrated Noise Model (INM) [Bishop, 1992]. It is an internationally recognized and

accepted methodology that has been extensively validated [Flathers, 1982]. Note,

however, that SAE AIR 1845 assumes full power take-off. According to a major airline,

the number of de-rated take-off operations is increasing annually. They are performed

between 67% and 95% of the time depending on aircraft type and weight, runway length,

and weather conditions. Typical de-rates range from 5% up to 25% [Personal
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communication, 2003b]. Since aircraft emissions are highly sensitive to engine power

settings, the full power take-off assumption may have a significant impact on LTO

emissions predicted by SAGE.

Although the SAE AIR 1845 methodology has been implemented in SAGE, there are

some slight differences. Figure 3.7 shows LTO profiles generated for a B727-200. For

take-off, SAGE produces a slightly faster climb (i.e. steeper curve). This is mainly due

to the energy share factor used. The energy share factor is how the excess power

generated by aircraft engines is allocated to changing the potential energy versus

kinetic energy of the airplane. If the energy share factor is equal to 1, all excess power

of the engines goes to changing potential energy. For fast acceleration, it is usually set

to around 0.3 which indicates that the majority of the available power is devoted to a

change in speed. The energy share factor remains almost constant for the case of

SAGE. But for INM, it is programmed to decrease (less energy going into potential

energy change) with altitude increase. This is why it takes longer for the INM profile to

achieve the same altitude increase. Other differences in take-off performance are

attributed to different aerodynamic coefficients (i.e. CDO and CD2) used by the two

models. During approach and landing, the SAGE profile precisely overlaps with the

INM one because both use a 3-degree gliding slope.

Take-off Approach
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Figure 3.7 SAGE take-off and approach profiles in comparison to SAE AIR 1845

standards for a B727-200
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Figure 3.8 shows the horizontal distances traversed during take-off and climb up to

10,000 ft for various aircraft types. The INM and SAGE results agree with 10-20%

differences with no apparent bias in either direction. These uncertainties are mainly due

to the fact that airlines use slightly different LTO procedures depending on various

factors including aircraft types, airport configurations and traffic loads and weather

conditions.
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Distance (nmi)
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Figure 3.8 Comparison of horizontal distance traversed during take-off and climb

3.3.4.3 Taxiing Operations

SAGE assumes 7% engine power during taxiing. However, airlines use various

methods including decreased engine power, single-engine taxiing and tow trucks to

reduce ground emissions [Miller, 2001]. Table 3.4 shows typical engine power settings

calculated from a major airline's taxiing data for 5 aircraft types, assuming a linear

relationship between engine power setting and fuel flow [Personal communication,
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2003b]. On average, 5% engine power is used for taxiing in this case. An analysis with

SAGE has shown that HC and CO emissions are highly sensitive to throttle settings at

low engine power so that they can grow as much as twice if engine power is reduced

from 7% to 5%. While the impact of the 7% engine power assumption on global

emissions inventory is believed to be small, it is an important area of uncertainty in

estimating ground emissions.

Table 3.4 Typical engine power settings for taxiing operations

Fuel flow rate per aircraft during taxiing (kgls)
Flight No. B737-800/JT8D-15A B757-200/RB211-535C B767-200/PW4060 B777-200/GE90-76B A300-600/PW4158

1 0.184 0.217 0.365 0.446 0.366
2 0.189 0.216 0.385 0.478 0.370
3 0.205 0.276 0.370 0.468
4 0.208 0.293 0.357 0.451 0.339
5 0.200 0.288 0.392 0.486 0.362
6 0.204 0.289 0.368 0.481 0.360

Average ff (kg/s) 0.198 0.263 0.373 0.468 0.360
ICA O idle ff (kg/s) 0.302 0.440 0.469 0.616 0.464
% thrust calculated 4.6% 4.2% 5.6% 5.3% 5.4%

Additional uncertainty exists in taxi times when actual values are not available from

Airline Service Quality Performance (ASQP) for flights outside of the U.S. Analysis of

annual ASQP data shows that taxi-out times and taxi-in times vary by 10 minutes and 5

minutes, respectively, with 1a confidence.

3.4 SYSTEM ASSESSMENT

System assessment examines the effects that the uncertainties discussed above have

on estimates of aggregate, fleet-level fuel burn and emissions.

3.4.1 Assessment Using Airline Data

SAGE fuel burn results have been computed using 35,359 ETMS and matching OAG

flights for October 2000. Errors are computed between SAGE fuel burn outputs and

values reported by a major US carrier as shown in Figures 3.9 and 3.10 and

summarized in Table 3.5. The mean and standard deviation of errors are -5.7% and
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18.7%, respectively, when comparing ETMS flights to reported values, and -1.2% and

17.7% when comparing OAG flights to reported values. Standard errors (estimated

standard deviations of the mean) are 0.11 % and 0.10%, which confirm that SAGE can

predict fleet fuel burn with less than 6% error on average for both ETMS and OAG-

based flights. On a fleet total basis (i.e. the fuel burn sum of all 35,359 flights), the

ETMS flights underestimate the reported fleet fuel burn by 7.4% and the OAG flights

underestimate by 4.4%.

I 1 1

20000 40000 60000

Reported fuel burn (kg)
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x OAG Fuel Burn
0 ETMS Fuel Burn
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Figure 3.9 SAGE results comparisons to reported fuel burn data of a major airline for

October 2000 for 35,356 flights
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Table 3.5 System error statistics for ETMS versus OAG-based flights

All flights

mean -1.2%

Standard Dev. 18.7% 17.7%

Standard Error 0.11% 0.10%

Fleet Error -7.4% -4.4%

Flight counts 35,359 35,359

Mean -5.8% -6.2%

Standard Dev. 14.6% 13.5%
Flights > 500 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Standard Error 0.089% 0.082%

Fleet Error -7.4% -6.5%

Flight counts 27163 27163
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The results show that the dispersion model in SAGE is effective in predicting total fuel

burn for OAG-based flights. However, using a constant cruise speed of around Mach

0.8 for flights on a very short stage (i.e. less 500 NM) with a low cruise altitude (i.e. less

than 15,000 ft) causes excessively large fuel burn. Figure 3.11 shows that these short-

haul flights are a significant source of bias error for OAG flights. They are also a large

source of standard deviation increase for both ETMS and OAG flights. Table 3.5 shows

that the mean error in calculated fuel burn becomes around -6% and the standard

deviation decreases to less than 15% for both ETMS and OAG flights when the flights

on less than 500 NM stage are excluded.

60% ........... ................... ...........................................................

50%

40%

2 30%

0 20%

-10%

-20%

131 263 355 513 601 692 796 857 943 1026 1081 1249 1498 2128 2362

Stage Length (NM)

Figure 3.11 OAG fuel burn errors by stage length

(Vertical bars/ranges denote 0.95 confidence intervals of the mean)

The total number of ETMS and OAG flights modeled in determining global fuel

burn/emissions for 2000 are 4,524,728 and 21,899,800, respectively. Using the

appropriate weighting factors (equivalent to fractions of total flights) of 0.17 and 0.83 for

ETMS and OAG flights, respectively, the composite statistics are:

" Composite Mean Error = -2.0%

* Composite Standard Deviation of Errors = 17.9%
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Note that the composite mean error of -2.0% has a significant bias due to the large fuel

burn errors of short-haul flights as shown in Figure 3.11. Without the short-haul flights,

the composite mean error is -6.1%. The negative composite value of mean error

indicates that SAGE Version 1 tends to under-predict on average. This is due to

several modeling assumptions in SAGE. First, a round trip with a wind component

burns 1-2% more fuel over no wind condition [Baughcum et al., 1996]; therefore, the no

wind assumption of SAGE results in an underestimation of fuel burn. Second, the INM

take-off weights used in SAGE are nominal values. Actual take-off weights distributed

normally around the nominal values would lead to burning more fuel. Therefore, not

using actual take-off weights results in an underestimation of fuel burn. Other

technological and operational assumptions can also cause the under-prediction of fuel

burn in SAGE. A quantitative examination of the sources of the variability in mean and

standard deviation is possible and will be presented in the next chapter.

Analyzing errors without the OAG-based trajectory uncertainties provides further insight

for improvement. Figures 3.12a and 3.12b show errors by stage length and aircraft type

for ETMS flight results. Errors are small and relatively insensitive to stage length under

2500 nautical miles. However, for 2500-5000 NM flights, errors are systematically large

averaging around -19%. Interestingly, they are all DC10 flights to/from Honolulu. It is

clear from Figure 3.12b that fuel burn is systematically underestimated by about 18% for

the DC10. So it is Honolulu-related operations and DC10 performance data that cause

this error. Since there are only one hundred forty seven DC10 flights in the 2500-5000

NM category, the overall effect on aggregate fuel burn for a month or year is

insignificant.

Figure 3.12b also suggests that three other aircraft types with 20% or larger error

require further examination. Among them are MD90 and B737-800 for which MD80 and

B737-500 performance data have been substituted, respectively. It is clear that the

substitutions are not very successful. The B777-200 also requires improved

performance data. Cruise fuel burn outputs from SAGE have been also compared to

those from a manufacturer's performance model for the following aircraft: B747-400,
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B737-300, B737-500, B757-200, B767-300, B777, and B737-800. With two exceptions,

the errors were generally within 10%, often within 5%, with no apparent bias either

around zero or as a function of other variables (e.g. aircraft weight). The two exceptions

were again the B777-200 and the B737-800. For the B777-200, SAGE-predicted fuel

burn was about 20% high, and for the B737-800, the fuel burn was about 20-30% high

[Personal communication, 2003c]. As the next paragraph will show, aircraft

performance data is the primary source of the large error in the B777-200 and B737-800

results.

(a) Stage Length (b) Aircraft Type
30% 30%

20% 20%

10% 10%

0% 0%

-10% -10%

-20%
-20%.. . .

-30%
-30% MD80 F100 B752 B738 A306 B722 MD90 B772 B762 B763 DC1O

<=499 <=999 <=1499 <=1999 <=2499 <=5000 Aircraft Type
Stage Length (NM)

Figure 3.12 SAGE fuel burn errors by (a) stage length and (b) aircraft type for ETMS

(Vertical bars/ranges denote 0.95 confidence intervals of the mean)

An updated version of aerodynamic and engine fuel flow performance data is available

through BADA 3.5. Figure 3.13 shows the fuel burn results of B777-200, B767-200,

B767-300 and B737-800, the engine and aerodynamic performance data of which are

either added or improved in BADA 3.5. It is clear that the errors get reduced to less

than 10% for all four aircraft types. This illustrates the need for continuous assessment

and improvement in aircraft performance data. In this regard, obtaining data sources for

assessing turboprop aircraft performance is also necessary.
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Figure 3.13 New SAGE fuel burn results with BADA 3.5

3.4.2 Assessment of Terminal Area Performance

In order to assess the effects of different LTO procedures (i.e. engine throttle setting,

rate of climb/descent and flight speed), the times-in-mode based on the standard SAE

AIR 1845 procedure are compared to actual trajectory information in the CDFR data.

Figure 3.14 shows that actual time-to-climb from the ground to 3000 ft altitude is about

38% longer than that of the standard procedure when averaged across the six aircraft

types examined (MD80, B757-200, B737-800, A300-600, B777-200 and B767-200).
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Figure 3.14 Time-to-climb comparisons between (a) reported data and (b) SAGE

calculation for the ground-to-3000 ft

73



For descent, actual time-to-descent from 3000 ft altitude to the ground takes about 28%

longer than the standard procedure does as shown in Figure 3.15.
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Figure 3.15 Time-to-descent comparisons between (a) reported data and (b) SAGE

calculation for 3000 ft-to-the-ground

The fuel burn calculated by the LTO component of SAGE was compared to that

obtained from a major US airline's CFDR for 32 flights and 6 aircraft types. Actual flight

trajectory, speed, winds aloft and ambient temperature information is fed into SAGE.

This comparison then shows the error in the aerodynamic and fuel flow components of

SAGE. For the take-off segments (e.g. the ground to 3,000 ft), SAGE over-predicts

reported fuel burn by 10% on average with a standard deviation of 12% as shown in

Figure 3.16. A large portion of this error is driven by the inaccuracies in the

performance data of the B777-200. Using updated performance data (i.e. BADA 3.5)

for the B777-200 reduces the calculated fuel burn by about 20% and the subsequent

error to less than 5%.

Figure 3.16 also shows the results of BADA 3.5 implementation for B737-800, B777-200

and B767-200. As indicated by the dotted lines, the fuel burn of the take-off segments

decreases by 10-20% for these aircraft types which have updated engine and

aerodynamic performance coefficients.
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Figure 3.16 Take-off fuel burn comparisons between (a) reported data and (b) SAGE

calculation (BADA 3.5 results in dotted line for B737-800, B777-200 and B767-200)

For the descent segments (e.g. 3,000 ft to the ground), SAGE over-predicts reported

fuel burn by 8% on average with 42% standard deviation as shown in Figure 3.17. The

results of BADA 3.5 implementation for B737-800, B777-200 and B767-200 are also

shown with dotted lines. While the fuel burn error is reduced for the B767-200, there is

almost no change in the B777-200 results. The discussion below will show that

lowering the landing gear extension height improves the B777-200 results.
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Figure 3.17 Descent fuel burn comparisons between (a) reported data and (b) SAGE

calculation (BADA 3.5 results in dotted line for B737-800, B777-200 and B767-200)
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To improve the descent fuel burn of SAGE, two modifications have been examined.

Currently, if drag coefficients (i.e. CDO and CD2) at take-off, climb-out, approach or

landing mode are not available in the BADA database, those at cruise mode are

substituted. This assumption leads to an inaccurate representation of CDO. As shown in

Figure 3.18, CDO values at take-off, approach and landing modes are 1.5 to 2.5 times

larger than those at cruise mode. Therefore, it is necessary to adjust cruise CDo by an

appropriate factor and use adjusted CDO values for other modes. In Figure 3.18, CDO

values for various turboprop and jet aircraft types are plotted and a second-order

polynomial curve is fit through the data points.
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Figure 3.18 BADA CDO
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Adjusting CD0 values based on these curve fits has been shown to reduce over 30% of

descent fuel burn error for the A300-600 as shown in Figure 3.19.
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Figure 3.19 Improvements to descent fuel burn modeling

SAGE is also currently programmed to deploy the landing gear and full flaps at 3000 ft

above the elevation at the airport. This causes large drag and overestimation of

descent fuel burn when compared to CFDR information. Table 3.6 shows reported

landing gear extension heights for various aircraft types. On average, the landing gear

is extended at 1800 ft above the ground, with a standard deviation of 600 ft. Based on

this, lowering the landing gear extension height to 1800 feet has been shown to reduce

most of the descent fuel burn error for the A300-600 and the B777-200 as shown in

Figure 3.19.
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Table 3.6 Landing gear deployment height for various aircraft types

(Source: CFDR of a major US airline)

(in feet) A300-600 B737-800 B757-200 MD80S MD83
FLT1 835 1176 1538 1707
FLT2 1371 1173 3319 1660 1390
FLT3 1491 2240 1561 1890 1519
FLT4 1719 1986 1836 1834 516
FLT5 1075 1889 1597 1622 1979
FLT6 1143 2478 1612 1335 1595
AVE 1272 1824 1985 1647 1451
STDEV 317 543 754 202 500

3.4.3 Assessment of Emissions Component

In estimating engine emissions, BM2 is limited by the four, sea-level points (at 7%, 30%,

85%, and 100% rated output) published as certification data. At these four points, BM2

provides an agreement between measured and calculated emissions indices that is

within ±10% for most engine types. For dual annular combustor engines the HC

deviations may be greater than ±10%. These deviations are due to the multiple fuel

staging at low power. Considerable care needs to be taken in estimating sub 7% idle

emissions, particularly of HC. The errors may be large (as a percentage value) and

tend to be an under-prediction [CAEP, 2004].

The interpolation method (i.e. use of the ICAO emissions indices and curve-fitting

between them) is another source of uncertainty. For example, BM2 uses a bi-linear fit

on a log-log scale, having a horizontal mean line through the lowest two certification

power settings, and then a second line connecting the two highest settings. For NOx, a

single best fit line is used on the log-log scale. A comparison undertaken by ICAO

[Penner et al., 1999] found agreement between direct measurement and fuel flow

correlations using curve-fitted ICAO data to within a standard deviation of 6% and a

maximum error of 13%.

Other sources of uncertainty in most emissions data, including certification data, are the

variability in emissions inherent among engines in the fleet and aging of the engine
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[Fring, 1980; Lukachko and Waitz, 1997; CAEP, 2004]. Engine certification procedures

are based on historical experience in engine-to-engine variability [FR 58; FR 251; FR

155]. The resulting compliance factors imply that 67% confidence intervals for EINOx,

EIHC and EICO of any engine picked out of a fleet of engines based on a single engine

sampled three times would be approximately ±16%, ±54% and ±23%, respectively.

These standard deviations measure variability in the fleet based on new, uninstalled

engine performance, not the precision error in the measurement of a particular engine,

which is typically lower than 1% for all certification measurements [Lukachko and Waitz,

1997]. Note also that the estimated standard deviations are based on studies

conducted in the late 1970's. As engines have evolved since then with a significant

effort in reducing the variability in performance, these uncertainty estimates may be

conservative numbers.

A further source of uncertainty is found in the aging of the engine. The impact of

lifecycle deterioration on emissions must be discerned from the baseline of variability in

emissions indicated by the scatter in data taken for new engines. Lukachko and Waitz

[1997] found a maximum, but partially recoverable (with maintenance) change in

average EINOx with aging of between -1 % and +4% for typical aging scenarios. The

sensitivity of SFC and combustor flow parameters to component aging is enhanced by

increases in cycle temperatures and pressures (which are representative of more

advanced technology).

Based on all of the above, ±24% uncertainty for EINOx has been conservatively

estimated by aggregating the 16% uncertainty incorporated in the engine certification

process, adding (using sum of squares) the uncertainty in curve-fitting and BM2 (6%

and 10%, respectively) and then accounting for the bias error due to degradation (4%).

The uncertainties in the certification process for ElHC and EICO (54% and ±23%,

respectively) have been also aggregated with those in curve-fitting and BM2. As a

result, 1a uncertainty of ±55% has been obtained for ElHC and ±26% for EICO. These
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estimated uncertainties are to be confirmed by comparing SAGE emissions results to

actual emissions data, which are not readily available at present.

In this chapter, SAGE performance has been assessed at both the modular and system

levels. On average, SAGE predicts reported fleet fuel burn with less than 6% error. On

an individual flight basis, the error can be as large as 18% with 10 confidence. The next

chapter presents a parametric uncertainty analysis that reveals the biggest contributors

to fuel burn and emissions errors in SAGE. It summarizes uncertainties at both the

modular and system levels as a roadmap for model improvement and a reference for

assessing uncertainties in the technology and policy scenarios considered.
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CHAPTER 4

UNCERTAINTY ANALYSIS II: PARAMETRIC STUDY

The objective of this chapter is to identify the most influential uncertainties in SAGE and

to quantify the magnitude of their impact on system-level performance. The

uncertainties that have the largest impact on global fuel burn and emissions estimates

are first examined followed by those that impact local air quality. Note that the

uncertainties due to unscheduled and canceled flights are not fully addressed in this

thesis.

As previously discussed, the most influential uncertainties for global fuel burn results

are: use of standard day ambient temperature, not correcting for winds aloft, uncertain

aerodynamic and engine performance, and simplified assumptions about aircraft take-

off weight and flight speed. Additional uncertainties associated with the use of OAG-

based flight trajectories are considered only for OAG flights. Uncertainties in emissions

estimated are also significantly influenced by uncertainties in emissions indices.

A sensitivity analysis is performed first to show the effects that the key uncertainties

have on estimates of aggregate, fleet-level fuel burn and emissions. In order to quantify

the magnitude of their impact on system errors, errors in total fuel burn results are

correlated with uncertainties in key input parameters. Monte Carlo simulations are

employed to assess the unique contribution of each key input uncertainty to the

variance and mean of total error.

4.1 SENSITIVITY ANALYSIS

Figure 4.1 shows changes in SAGE emissions due to 1 % increase in specific fuel

consumption, aerodynamic drag, take-off weight, flight speed (headwind impact),

ambient temperature (in K) and altitude during cruise. The results are based on all

aircraft types in SAGE. They were flown under the same cruise conditions-altitude of
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35,000 ft at Mach 0.8. Their fuel burn and emissions were then aggregated based on

fuel burn weighting. For 1% increase in SFC, fuel burn increases by 1% because it is

directly impacted by the SFC increase through higher fuel flow rate. NOx emissions

increase by almost 2%, which shows a higher sensitivity to fuel flow change. This is

due to the fact that EINOx increases proportionally with increasing fuel flow so that the

overall impact of higher EINOx and fuel burn is multiplicative. HC and CO emissions

decrease by 0.5% and 0.2%. This is because EIHC and EICO are inversely

proportional to fuel flow rate so that the net impact of a lower El combined with

somewhat increased fuel flow leads to a relatively smaller increase or even a reduction

in total emissions, depending on the sensitivity of El to fuel flow.
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Figure 4.1 Changes in SAGE emissions due to 1% increase in key input variables

(Cruise at 35,000 ft, MO.8, all aircraft types in SAGE)

For 1 % increase in aerodynamic drag, fuel burn increases by 1 % while NOx emissions

increase almost 2%. This is because higher drag requires increased engine power and

hence increased fuel flow to keep the airplane at the same cruise speed. Note that the

net effect of increased drag is the same as that of increased SFC because thrust is

equal to drag during cruise. It should be noted, however, that the SFC and drag effects

are not strictly linear. For example, burning more fuel for the same mission (due to
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increased SFC or drag) requires that the airplane have a higher take-off weight (due to

the added fuel on board). This increased take-off weight then leads to additional fuel

burn for the mission [Baughcum et al., 1996]. For the cruise sensitivity study presented

here, these effects are not captured and therefore the estimated sensitivities may be an

underestimate.

Similar trends are observed with respect to 1 % increase in take-off weight as well as

flight speed. This is because higher aircraft weight or stronger headwind also impacts

fuel flow rate through increased engine power. The fact that all emissions species have

a higher sensitivity to flight speed change is also notable. This results from the Mach

number correction in BM2 as discussed in Section 2.1.2 above so the higher the change

in flight speed, the larger the change in El's and total emissions.

Figure 4.1 also shows changes in SAGE emissions due to 1% increase in ambient

temperature (in K). While fuel burn increases by about 1 %, NOx emissions increase by

as much as 3.5% and HC and CO emissions decrease about 2.5% and 1.5%,

respectively. Higher ambient temperature requires higher engine power through

increased aerodynamic drag. In addition, a temperature correction term in BM2 leads to

the high sensitivity of emissions species to ambient temperature change. If temperature

effects that lower engine fuel flow performance are considered (but not currently

modeled in SAGE), they may cause even higher sensitivity.

The most influential uncertainties in SAGE are judged by their impact on SAGE outputs

using a "biggest-hitters" analysis. This impact is a result of the multiplicative effects of

high uncertainty and high sensitivity. That is, a parameter that has high uncertainty and

causes high model sensitivity has the biggest impact on system error. Current SAGE

analysis shows that a 3.3 K (10 uncertainty) increase in ambient temperature results in

less than 2% increase in fuel burn. Therefore, ambient temperature may not be major

contributor to fleet-level fuel burn errors. Temperature effects, however, can grow much

more important on individual flight fuel burn or emissions estimates as illustrated in the

83



sensitivity analysis. For this reason, the ambient temperature remains in the analyses of

the subsequent sections.

Figure 4.1 shows the effect of increased cruise altitude as well. Fuel burn and NOx

emissions decrease by 0.2% and 1.0%, respectively. A higher cruise altitude is

associated with a lower air density, which reduces the drag on the airplane body. Since

this lowers the thrust required and fuel flow rate, the HC and CO emissions increase by

0.8% and 0.4%, respectively.

4.2 INTRODUCTION TO ROLL-UP OF UNCERTAINTIES

% error in fuel burn = -.0127 + .761 * % error in winds aloft
Correlation: r = .874
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Figure 4.2 Contribution of uncertainty in winds aloft to total error in fuel burn (B747-400)

In this section, the impact of the key input uncertainties on final output error is quantified.

For example, a large portion of fuel burn error can be attributed to the fact that SAGE

Version 1 assumes no winds aloft. In order to quantify the effects of the no wind

assumption, 34 flights from the major European carrier's B747-400 CFDR data in

October 2000 were randomly selected. Detailed position, actual TOGW, winds aloft,

and ambient temperature information were obtained from the sample. To determine the

effects of the no wind assumption, actual position and TOGW were used as input to
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SAGE, and errors in flight speed were calculated. Figure 4.2 shows that fuel burn error

is highly correlated with flight speed error as indicated by the correlation factor of 0.87.

A more systematic uncertainty roll-up can be performed via Monte Carlo simulation.

The key uncertainties are randomly varied according to the mean and standard

deviation established in the previous chapter, and a fuel burn calculation is made for

each set of randomly varied inputs. This allows for quantifying the unique contribution

of each key uncertainty to total error.

4.3 UNCERTAINTY ROLL-UP FOR FULL-MISSION FUEL BURN

4.3.1 Monte Carlo Simulation

Table 4.1 Key input uncertainties for Monte Carlo simulation on SAGE flights

(Dispersion track and cruise altitude applicable to OAG flights only)

Parameters Uncertainty estimates istroxibate

Dispersion track (OAG only) ±5% of flight time (10) Normal
Cruise altitude (OAG only) ±3000 ft (10) Discrete Normal
Ambient temperature at cruise 3.3 K (Ia) Normal (one sided)
Winds aloft 12.5 m/s (1a) Normal
Aerodynamic drag ±14% (1a) Normal
Engine fuel consumption ±11 % (1a) Normal
Takeoff weight. ±13% (1a) Normal

The values for the key uncertainties are randomly generated based on a normal

distribution where their default values as used in SAGE are assumed to be the mean.

Cruise altitude deviations from the mean altitude are generated using a discrete normal

distribution with a 1000 foot increment. Ambient temperature deviations from the ISA

temperature are generated using a one-sided normal distribution in between OK and

3.3K (1a). This is because the Boeing analysis (see Chapter 3 Section 3.3.2.1) showed

that at cruise altitudes, temperature deviations occur only above the standard day

temperature [Daggett el al., 1999]. Table 4.1 shows seven key uncertainties with their

estimated standard deviations for a simulation on SAGE flights. All 11 aircraft types of
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the major US carrier (e.g. B727-200, B737-800, B757-200, B767-200, B767-300, B777-

200, A300-600, DC10, MD80, MD90 and F100) are used. Dispersion track and cruise

altitude uncertainties are included only with a simulation on OAG flights to account for

the additional uncertainty caused by artificial flight trajectories used.

Based on these inputs, 3000 iterations were performed for both sets of ETMS and OAG

flights. Figure 4.3 shows the simulation results for the fuel burn of ETMS flights. The

difference between the nominal fuel burn (i.e. with mean input values) and mean fuel

burn (i.e. average fuel burn for the distribution) was calculated. The difference was -

3.9% with standard deviation of 16.5%. This accounts for about 90% of the total

variance in ETMS fuel burn errors in SAGE. Figure 4.4 shows the simulation results for

the fuel burn of OAG flights where the difference between nominal fuel burn and mean

fuel burn was -5.1% and standard deviation was 17.0%. This accounts for about 95%

of the total variance in OAG fuel burn errors in SAGE.
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Figure 4.3 Monte Carlo simulation results on ETMS trajectories

86



800

700

600

500

0
= 400

z

300

200

100

0
-40% -20% 0% 20% 40% 60% 80% 100%

% difference between Monte Carlo simulation results and the fuel bum value with mean inputs

Figure 4.4 Monte Carlo simulation results on OAG trajectories

It is important to check the convergence of the simulation results. The criterion is to

examine the total error in the simulation output as following:

Total error, e = -

where a = standard deviation of the entire population and n = number of iterations

The standard deviation of the entire population is given by:

n~x2 _(Zx 2
JX20" = I n2n

where x = subject variable (fuel burn output in this case)

Figures 4.5 and 4.6 show the convergence history of ETMS and OAG flights,

respectively. After 1500 iterations, both ETMS and OAG flights converge with less than

2% error.
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Figure 4.7 Monte Carlo simulation results of all aircraft types in SAGE on OAG

trajectories

Simulation results based on 11 aircraft types (B727-200, B737-800, B757-200, B767-

200, B767-300, B777-200, A300-600, DC10, MD80, MD90 and F100) were shown to

compare directly to the error distribution for the 35,356 flights for a major US carrier.

Figure 4.7 shows the same type of uncertainty roll-up for all aircraft types in SAGE. The

difference between nominal fuel burn and mean fuel burn is -4.4% with standard

deviation of 16.0%. This result shows that the 11 aircraft types represent well the

aircraft performance characteristics and associated uncertainties in the full SAGE fleet

(359 aircraft types).

4.3.2 Understanding Variance of Error

In order to quantify the unique contribution of the key uncertainties to total error, the fuel

burn results of the Monte Carlo simulations are regressed on the input values. Both the

input and the output values are standardized (i.e. z-scored) by subtracting the mean
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from the respective value and dividing the difference by the standard deviation. Tables

4.2 and 4.3 show the regression results for ETMS and OAG flights. The magnitude of

the beta coefficients shows the relative contribution of each key uncertainty in the

prediction of fuel burn.

Table 4.2 Regression among the Monte Carlo simulation variables for ETMS flights

Beta Std. Err. Contribution to Var.
Engine fuel consumption 0.480 0.00271 29.4%
Aerodynamic drag 0.592 0.00313 44.7%
Takeoff weight 0.374 0.00312 17.9%
Winds aloft 0.249 0.00271 7.91%
Ambient temperature at cruise 0.024 0.00271 0.075%

R2 =.986 Adjusted R2=.986 n=3000

F(5,2994)=26848. p<0.0001 Std. Error of estimate: .12113

where:

Beta = standardized regression coefficient

Standard Error = standard deviation of the estimated coefficient or

relationship

R2 = the coefficient of determination (variance in the dependent variable

that is explained by the independent variables)

Adjusted R2 = R2 adjusted by the degrees of freedom of both the

numerator and the denominator

F = F-statistic (for the regression result to be significant)

p = p-value (probability for the regression result to be false)

Table 4.3 Regression among the Monte Carlo simulation variables for OAG flights

Beta Std. Err. Contribution to Var.
Engine fuel consumption 0.480 0.00271 24.0%
Aerodynamic drag 0.592 0.00313 36.5%
Takeoff weight 0.374 0.00312 14.6%
Winds aloft 0.249 0.00271 6.46%
Ambient temperature at cruise 0.024 0.00271 0.061%
Cruise altitude -0.111 0.00374 1.28%
Dispersion track 0.406 0.00374 17.1%

R2 =.968 Adjusted R2 =.967 n=3000

F(7,2992)=9991.7 p<0.0001 Std. Error of estimate: .16670
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For ETMS flights, the uncertainties in engine and aerodynamic performance are the

largest sources of error, together accounting for over 70% of the total variance. The

take-off weight and winds aloft uncertainties account for 17.9% and 7.9%, respectively.

The ambient temperature uncertainty accounts for less than 1 % of the error. However,

on an individual flight basis on a specific day or in a region, the ambient temperature

uncertainty can be large and therefore become a major source of fuel burn error. For

OAG flights, the engine and aerodynamic performance uncertainties also account for

the largest fraction of the error, 24.0% and 36.5% each. The take-off weight uncertainty

accounts for 14.6% of the error while the winds aloft uncertainty accounts for 6.5%. The

uncertainties in dispersion track explain most of the remaining variance, 17.1%. The

cruise speed and ambient temperature uncertainties together comprise less than 2% of

the total variance.

4.3.3 Understanding Bias Error

In the previous chapter, it was shown that the average fuel burn error was around -6%

for both ETMS and OAG flights. This indicates a bias error in SAGE. In order to

understand why fuel burn in SAGE is underestimated, another statistical technique

(namely "vary all but one") is employed.

Figure 4.8 shows two uncertainty roll-up results. One ("vary all") is the same histogram

from the Monte Carlo simulation of the 7 key uncertainties on OAG trajectory with 11

aircraft types as seen before. The other ("vary all but take-off weight") is a result of a

Monte Carlo simulation of only 6 key uncertainties on OAG trajectory where take-off

weight uncertainty has been frozen. Since there is one less source of uncertainty, the

mean and standard deviation of the fuel burn differences change. The magnitude of

this mean shift indicates the unique contribution of the respective variable to bias error.

In this case, take-off weight is responsible for about 1 % mean shift.
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Figure 4.8 Vary-all-but-one technique to understand bias error

By freezing the variability of one source of uncertainty at a time, a complete "vary all but

one" analysis for the 7 key uncertainties has been conducted and summarized in Table

4.4. Mean shifts are shown with their confidence intervals. With the exception of

dispersion track, all the key uncertainties together cause the mean fuel burn to be

shifted by -4% to -5%. As previously noted (see Chapter 3 Section 3.3.2.2), a round trip

with a wind component burns 1-2% more fuel than without a wind component. Also,

take-off weights distributed normally around a nominal value (as used in SAGE) lead to

burning more fuel than for the case of using the single nominal weight. Thus not having

a wind component or using a true take-off weight would lead to an underestimation of

fuel burn when a large number of flights are aggregated. On the other hand, the large

standard errors associated with the estimated mean shifts due to SFC and ambient

temperature imply that the mean shifts could occur in the other direction.
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OAG flights would have a larger bias due to the additional uncertainty in cruise altitude,

which is estimated to cause a mean shift of -1.0%. When the standard errors of the

estimated mean shifts are considered, most of the mean error in SAGE fuel burn (-6%)

seems to be explained by the key uncertainties examined here. This is also consistent

with the 4-5% difference in nominal fuel burn and mean fuel burn described earlier (see

Section 4.3.1).

Table 4.4 Estimated contributions of key uncertainties to mean shift

Parameters Contribution to mean shift

Engine fuel consumption -0.073% 0.36%
Aerodynamic drag -0.81% 0.28%
Takeoff weight -1.3% ± 0.34%
Winds aloft -1.8% 0.31%
Ambient temperature at cruise -0.38% ± 0.38%
Cruise altitude -1.0% ± 0.37%
Dispersion track 0.012% ± 0.38%

4.4 UNCERTAINTY ROLL-UP FOR FUEL BURN BELOW 3000 FEET

Below 3000 ft where aircraft emissions have a greater impact on local air quality, LTO

procedures become an important uncertainty. LTO procedures mainly consist of engine

throttle setting, rate of climb/descent and flight speed. Based on the previous analysis

of the major carrier's CFDR data (see Chapter 3 Section 3.3.4.2), the engine throttle

setting at take-off is assumed to have 10% derate with 1a confidence. The rate of

climb/descent and flight speed together are assumed to cause a 30% increase in time-

to-climb and time-to-descend with 1a confidence when compared to SAE AIR 1845's

standard procedures (see Chapter 3 Section 3.4.2).

The ambient temperature uncertainty is estimated to be 10K with 1a confidence, which

is larger than for the full-mission uncertainty roll-up. This is because deviations from the

standard day temperature are larger (mostly ranging ±20K) near the ground across four

seasons. Table 4.5 summarizes these uncertainty estimates for an uncertainty roll-up

below 3000 ft.
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Table 4.5 Key input uncertainties for Monte Carlo simulation of LTO fuel burn

Parameters Uncertainty estimates distributo
Ambient temperature ±10 K (1a) Normal
Winds aloft ±12.5 m/s (1a) Normal
Aerodynamic drag ±14% (1a) Normal
Engine fuel consumption ±11% (1C) Normal
Takeoff weight ±13% (1a) Normal
Rate of climb/descent + speed +30% of flight time (1 a) Normal (one sided)
Takeoff throttle setting -10% (1 a) Norrnal (one sided)

Based on these inputs, 3000 Monte Carlo runs were performed for the 11 aircraft types

flown on OAG trajectories. The mean difference in fuel burn was -1.8% with standard

deviation of 46.5%. Table 4.6 shows the results of a regression among the

standardized input and output values of the Monte Carlo simulation. The rate of

climb/descent and flight speed account for 61.8% of the variance while drag, wind and

ambient temperature together account for most of the remaining variance. Note that the

increased uncertainty in ambient temperature leads to the larger effect of ambient

temperature on the fuel burn results below 3000 ft.

Table 4.6 Estimated contributions of key uncertainties to variance of LTO fuel burn

Beta Std. Err. Contribution to Var.
Ambient temperature 0.295 0.00928 9.15%
Winds aloft 0.316 0.00934 10.5%
Aerodynamic drag 0.404 0.00928 17.1%
Engine fuel consumption 0.090 0.00929 0.852%
Takeoff weight -0.016 0.00932 0.025%
Rate of climb/descent + speed 0.768 0.00930 61.8%
Takeoff throttle setting 0.075 0.00930 0.583%

R2=.915 Adjusted R2=.914 n=3000

F(7,2992)=1 518.3 p<0.0001 Std. Error of estimate: .29321

4.5 UNCERTAINTY ROLL-UP FOR FULL-MISSION EMISSIONS

In the previous chapter, the uncertainties in emissions indices were estimated to be

±24%, ±55% and ±26% for EINOx, EIHC and EICO, respectively, at 1a confidence.
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Table 4.7 summarizes them along with the key uncertainties for full-mission fuel burn

results.

Table 4.7 Key input uncertainties for Monte Carlo simulation of emissions

Parameters Uncertainty estimates Adpipsroximt

Dispersion track (OAG only) ±5% of flight time (1a) Normal
Cruise altitude (OAG only) ±3000 ft (1a) Discrete Normal
Ambient temperature at cruise 3.3 K (1 a) Normal (one sided)
Winds aloft ±12.5 m/s (1a) Normal
Aerodynamic drag ±14% (1a) Normal
Engine fuel consumption ±11% (1a) Normal
Takeoff weight ±13% (1a) Normal
EINOx 24% (la) Normal
ElHC 55% (1a) Normal
EICO 26% (1a) Normal

Based on these inputs, 3000 Monte Carlo runs were performed for the 11 aircraft types

flown on OAG trajectories. The standard deviations for NOx, HC and CO were 40.0%,

60.0% and 31.6%, respectively. The differences between the nominal (i.e. with mean

input values) and the mean (i.e. average for the distribution) emissions were calculated.

The differences were -8.2%, -9.4% and -4.7% for NOx, HC and CO results, respectively.

In order to quantify the unique contribution of the key uncertainties to these emissions

results, a regression was performed among the standardized input and output values of

the Monte Carlo simulation.

Table 4.8 Estimated contributions of key uncertainties to variance of NOx emissions

Beta Std. Err. Contribution to Var.
Engine fuel consumption 0.291 0.00593 11.2%
Aerodynamic drag 0.389 0.00682 20.1%
Takeoff weight 0.252 0.00681 8.45%
Winds aloft 0.202 0.00592 5.43%
Ambient temperature at cruise 0.128 0.00592 2.17%
Cruise altitude -0.143 0.00592 2.71%
Dispersion track 0.180 0.00609 4.28%
EINOx 0.587 0.00608 45.7%

R2=.930 Adjusted R2=.930 n=3000

F(8,2991)=3331.9 p<0.0001 Std. Error of estimate: .26416
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Table 4.8 shows the regression results for NOx emissions. EINOx is the biggest hitter

accounting for over 45% of the variance. Drag and engine fuel consumption are the

next biggest hitters explaining 20.1% and 11.2%, respectively. Tables 4.9 and 4.10

show the regression results for HC and CO emissions. ElHC and EICO are the single

most influential contributors to the variance of HC and CO emissions results,

respectively.

Table 4.9 Estimated contributions of key uncertainties to variance of HC emissions

Engine fuel consumption
Aerodynamic drag
Takeoff weight
Winds aloft
Ambient temperature at cruise
Cruise altitude
Dispersion track
ElHC

Beta
0.041
0.056
0.031
0.027

-0.074
0.005
0.107
0.963

Std. Err.
0.00413
0.00475
0 .00475
0.00412
0.00412
0.00413
0.00413
0.00413

Contribution to Var.
0.180%
0.326%
0.099%
0.074%
0.583%
0.002%

1.20%
97.5%

R2 =.966 Adjusted R2 =.966 n=3000

F(8,2991)=7133.9 p<0.0001 Std. Error of estimate: .18397

Table 4.10 Estimated contributions of key uncertainties to variance of CO emissions

Engine fuel consumption
Aerodynamic drag
Takeoff weight
Winds aloft
Ambient temperature at cruise
Cruise altitude
Dispersion track
EICO

Beta
-0.086
-0.117
-0.080
-0.058
-0.294
0.127
0.171
0.914

Std. Err.
0.00393
0.00453
0.00452
0.00393
0.00393
0.00393
0.00393
00393

Contribution to Var.
0.747%

1.37%
0.634%
0.337%

8.65%
1.61%
2.95%
83.7%

R2=.969 Adjusted R2=.969 n=3000

F(8,2991)=7881.4 p<0.0001 Std. Error of estimate: .17531

4.6 UNCERTAINTY ROLL-UP FOR EMISSIONS BELOW 3000 FEET
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Table 4.11 shows the key uncertainties for a Monte Carlo simulation of NOx, HC and

CO emissions below 3000 ft. Those uncertainties that impact LTO performance and

emissions indices are included as discussed above.

Table 4.11 Key input uncertainties for emissions results below 3000 ft

Parameters Uncertainty estimates disriu t .io

Ambient temperature ±10 K (1a) Normal
Winds aloft ±12.5 m/s (1) Normal
Aerodynamic drag ±14% (1a) Normal
Engine fuel consumption ±11% (Ia) Normal
Takeoff weight ±13% (1a) Normal
Rate of climb/descent + speed +30% of flight time (1a) Normal (one sided)
Takeoff throttle setting -10% (1a) Normal (one sided)
EINOx 24% (1,a) Normal
EIHC 55% (1a) Normal
EICO 26% (1a) Normal

Based on these inputs, 3000 Monte Carlo runs were performed for the 11 aircraft types

flown on OAG trajectories. The standard deviations for NOx, HC and CO were 71.2%,

85.0% and 37.3%, respectively. The differences between the nominal and the mean

were -3.1%, -1.9% and -3.4% for NOx, HC and CO emissions results, respectively. In

order to quantify the unique contribution of the key uncertainties to these emissions

results, a regression was performed among the standardized input and output values of

the Monte Carlo simulation.

Table 4.12 Estimated contributions of key uncertainties to variance of NOx emissions

below 3000 ft

Beta Std. Err. Contribution to Var.
Ambient temperature -0.145 0.00985 6.38%
Winds aloft -0.193 0.00985 11.3%
Aerodynamic drag 0.289 0.00985 25.4%
Engine fuel consumption 0.163 0.00985 8.03%
Takeoff weight 0.131 0.00949 5.16%
Rate of climb/descent + speed 0.235 0.00990 16.7%
Takeoff throttle setting 0.013 0.00985 0.0525%
EINOx 0.298 0.00990 27.0%

R2 = .823 Adjusted R2 = .821 n=3000

F(8,2991)=1 814.8 p<0.0001 Std. Error of estimate: .23627
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Table 4.12 shows the regression results for NOx emissions. EINOx is the biggest hitter

accounting for 27% of the variance. Drag and the LTO procedure (as modeled by the

rate of climb/descent plus flight speed) are the next biggest hitters explaining 25.4% and

16.7% of the variance, respectively.

Table 4.13 Estimated contributions of key uncertainties to variance of HC emissions

below 3000 ft

Ambient temperature
Winds aloft
Aerodynamic drag
Engine fuel consumption
Takeoff weight
Rate of climb/descent + speed
Takeoff throttle setting
EIHC

Beta
-0.210
-0.069
-0.046
0.009

-0.008
0.398

-0.025
0.809

Std. Err.
0.00738
0.00739
0.00739
0.00738
0.00739
0.00739
0.00738
0.00739

Contribution to Var.
5.08%

0.557%
0.244%

0.00986%
0.00811%

18.4%
0.0718%

75.7%

R2= .892 Adjusted R2 = .892 n=3000

F(8,2991)=2055.2 p<0.0001 Std. Error of estimate: .18614

Tables 4.13 and 4.14 show the regression results for HC and CO emissions. EIHC and

EICO are the most influential contributors to the variance of HC and CO emissions

below 3000 ft. The LTO procedure (as modeled by the rate of climb/descent plus flight

speed) also accounts for a significant portion of the remaining variance.

Table 4.14 Estimated contributions of key uncertainties to variance of CO emissions

below 3000 ft

Ambient temperature
Winds aloft
Aerodynamic drag
Engine fuel consumption
Takeoff weight,
Rate of climb/descent + speed
Takeoff throttle setting
EIHC

Beta
-0.328
-0.089
-0.050
0.012

-0.031
0.626

-0.040
0.663

Std. Err.
0.00673
0.00673
0.00674
0.00673
0.00672
0.00673
0.00673
0.00673

Contribution to Var.
11.3%

0.833%
0.267%

0.0152%
0.102%

41.2%
0.164%

46.1%
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4.7 CHAPTER SUMMARY AND CONCLUSIONS

The previous chapter and this chapter presented an assessment of parametric and

model uncertainties in SAGE. On average, the aggregate-level composite fuel burn

results showed about -6% difference from reported fuel burn data. It should be noted

that many of the uncertainties produce a shift in the mean of the output distribution

because of the non-linear nature of many of the relationships. For example, the

uncertainties in fuel burn account for most of the -6% mean shift suggested by the error

compared to airline data.

In addition to the comparisons to reported data, a sensitivity analysis followed by Monte

Carlo simulations confirmed the most significant uncertainties contributing to the

variance of fuel burn and emissions results. The analyses showed that the

uncertainties in engine and aerodynamic performance have the largest impact on

system errors, accounting for around 60-70% of total variance in full-mission fuel burn

results. The uncertainties in winds aloft and take-off weight explain another 20-25%.

Since the uncertainty in ambient temperature during cruise is relatively very small, its

impact on full-mission fuel burn results is minimal.

Ambient temperature has a greater impact on fuel burn results below 3000 ft where

aircraft emissions have a greater impact on local air quality. LTO procedures, which

consist of engine throttle setting, rate of climb/descent and flight speed, are the most

influential uncertainties that drive the variance in SAGE fuel burn results below 3000 ft.

For both global and local emissions, it has been shown that the emissions indices are

the most influential uncertainties for the variance in SAGE outputs. The direction of

mean shift in the emissions results is consistent with that of the fuel burn results. That

is, the NOx, HC and CO emissions tend to produce underestimates from SAGE. The

degree of underestimation is two to three times greater for full mission emissions and
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roughly the same for emissions below 3000 ft when compared to the magnitude of

mean shift in fuel burn results.
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CHAPTER 5

APPLICATIONS TO POLICY SCENARIOS

The ICAO's Committee on Aviation Environmental Protection (CAEP) is primarily

responsible for monitoring the aviation industry's emissions and noise reduction efforts

and seeking further options to mitigate the impacts of aviation on community noise, local

air quality and the global atmosphere. Over the years, CAEP has set aircraft engine

certification standards and phase-outs of noisy aircraft. In its most recent meeting

(CAEP/6), increasing the stringency of NOx emissions standards was one of the issues

under consideration. In 2001, CAEP also specifically recommended use of operational

practices to reduce aircraft emissions [ICAO, 2001]. In this regard, there is high interest

in using SAGE to analyze some of the important technological and operational options

for aviation emissions reduction.

This chapter analyzes three aviation policy options. The first is more stringent engine

certification standards and their impact on fleet-level emissions. The other two are

Continuous Descent Approach (CDA) procedures and derated take-off procedures,

which are operational practices. CDA was developed as a means to reduce the

community noise impact of aircraft on approach [Clarke et al., 2004] and has not

previously been evaluated as to its emissions benefits. Derated take-off procedures are

used very frequently by airlines to reduce the maintenance costs by reducing the

amount of time the engines are operating at the high temperatures characteristic of full

throttle take-offs. While the airline industry uses derated take-off procedures commonly,

the procedures are not included in the accounting when emissions fees are calculated

at many European airports. Thus there is interest in evaluating the emissions impacts

of these procedures.

5.1 ANALYSIS OBJECTIVES
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For each policy alternative, fuel burn, emissions and associated uncertainties are

analyzed by employing the research version of SAGE. The objectives are to:

e Estimate the fuel burn and emissions benefits of the representative policy options

e Estimate the uncertainty in the prediction of the difference in global aviation

emissions between:

1) a baseline scenario and an increased NOx certification standards scenario

2) a baseline scenario and a CDA scenario

3) a baseline scenario and a derated take-off scenario

5.2 GENERAL APPROACH
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To consider the difference in emissions between two scenarios where many of the

component uncertainties are common, we employ a statistical approach introduced

below. The following example illustrates the general approach to quantify the

uncertainty in the SAGE prediction of the difference in aviation emissions between a

baseline scenario and a more stringent NOx certification standards scenario.

The uncertainty in NOx output is caused by a number of influential parameters. To

simplify the illustration, we take three representative parameters with uncertainties-1)

specific fuel consumption (SFC) of the engine, 2) cruise speed and 3) NOx emissions

index (EINOx). The NOx emission is then a function of these three input variables as

shown graphically in Figure 5.1. However, in the modeling presented in the first case

study of this chapter, 7 key input and modeling uncertainties are considered.

When we evaluate the change in NOx (NOxdelta) from no stringency (baseline) to 5%

stringency scenario, it is important to account for the uncertainty associated with the

estimated NOxdelta. Figure 5.2 shows two NOx emissions scenarios where the mean

NOx output goes down from no stringency to 5% stringency. If the input uncertainties

(i.e. SFC, cruise speed and EINOx) were unrelated from one scenario to the other, then

the uncertainty in NOx delta would be simply estimated by

UNO_ _delta = j NOx _5% NOX _baseline

N.Baseline 1
jNO 2x +U

55% Stringency UNOX delta NOx _5% baseline

Two NOx Emissions Scenarios Change in NOx Emissions (NOx delta)

Figure 5.2 Uncertainties in the difference between two scenarios
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However, the above equation does not hold when some uncertainties are common from

one scenario to the other. We apply the same SFC and cruise speed in both baseline

and 5% stringency scenarios while only different EINOx values are applied to account

for the increased stringency on NOx emissions. In other words, SFC and cruise speed

are common uncertainties because it is assumed that the same aircraft types are

operated the same way on the same routes for both baseline and 5% stringency

scenarios. However, EINOx is not a common uncertainty because emissions

performance (i.e. combustor technology) is improved from baseline to 5% stringency.

The uncertainties associated with the new combustor will be different from those with

the old combustor. This is why we vary EINOx uncertainty independently between the

two scenarios.

To determine the uncertainty in NOxdelta we employ a Monte Carlo simulation. Each

run consists of a set of random input values. The input values are determined based on

the probability distributions specified from above. For each run, the same input values

are applied to both baseline and 5% stringency if the uncertainties are common

between the two scenarios as illustrated by the green diamonds and hollow circles in

Figures 5.3a and 5.3b. Otherwise, independent input values are selected for the two

scenarios based on their unique probability distributions as illustrated in Figures 5.3c

and 5.3d. These inputs are then run for baseline and 5% stringency scenarios,

respectively, and the change in NOx emissions (e.g. NOx-delta) is plotted. When this is

repeated multiple times, a distribution for NOxdelta is obtained as shown in Figure 5.3e.

This output contains information about the model behavior and the impact of the

parameter values assumed.
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5.3 CASE STUDY I: INCREASED NOx CERTIFICATION STANDARDS

5.3.1 Analysis Overview

The analysis is based on comparisons of two fleets of aircraft: baseline and scenario.

The baseline is the Forecasting and Economic Support Group (FESG 10)-developed

2002 fleet and corresponding operations. The scenario is a fleet composed of the

baseline aircraft except that all aircraft-engine combinations not meeting a particular

stringency level are replaced with new aircraft-engine combinations as exemplified in

Table 5.1. Only changes in equipment and operations were modeled. No other effects

(e.g. a fuel burn penalty) were assumed.

Table 5.1 A sample output from NOx stringency results for scenario year 2020

Year of NOx per
FESG Aircraft FESG Engine Implementation Stringency Cycle (kg)

737-7 CFM56-7B24 Baseline 0% 133369
CFM56-7B24 TL5b 2008 15% 112670

A330-3 CF6-80E1A3 Baseline 0% 589243
CF6-80E1A3 TL2 2008 15% 504327

A Monte Carlo simulation was used to estimate the uncertainty in the prediction of the

difference in fleet NOx between the baseline and stringency scenarios. The aircraft

types of B727-200, B737-800, B757-200, B767-200, B767-300, B777-200, A300-600,

DC10, MD80, MD90 and F100 were included in the simulation. These aircraft types

were assumed to represent the NOx emissions characteristics and associated

uncertainties in the FESG fleet in part because they represent a good mix of small

versus large aircraft and old versus new aircraft. Also, the uncertainty assessment

provided in Chapter 4 Section 3.3.1 has shown that these aircraft provide uncertainty

estimates that are representative of the SAGE fleet.

The procedure for performing the analysis is shown below.

10 FESG is a sub-group of United Nations' Intergovernmental Panel on Climate Change (IPCC) and is
responsible for forecasting economic scenarios related to climate change.
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- NOx delta = NOxTL - NOx baseline (where TL denotes technology level) was

estimated 2,000 times. For each of the 2000 simulations key input uncertainties

were varied randomly using a Monte Carlo simulation to represent the

uncertainty in these parameters.

- With the exception of EINOx, the key uncertainties (engine performance,

aerodynamic performance, take-off weight, flight speed, winds aloft, ambient

temperature and cruise altitude) were randomly varied but applied identically for

both NOx baseline and NOxTL in formulating NOxdelta. This is because

these uncertainties remain the same between the baseline and TL scenarios.

- EINOx was randomly varied with 1a uncertainty of ±24% (see Chapter 3 Section

3.4.3) in NOxbaseline. As a conservative estimate, the TL combustors were

assumed to have the same ±24% variability. Therefore for each run, the EINOx

values were drawn from two independent random distributions with ±24%

variability as illustrated in the previous section (see Figures 5.3c and 5.3d).

The variance (02) in flight-by-flight NOxdelta was calculated for the population of 2000

flights for the 11 aircraft types. This uncertainty was applied to the NOx results of each

aircraft-engine combination in the FESG fleet's TL scenario. The uncertainty in the NOx

results was then propagated analytically to arrive at an estimate for the uncertainty in

the difference in fleet total NOx emissions. The uncertainty was propagated by

assuming that the difference in NOx for each of the flights for each of the aircraft-engine

combination is an independent random variable. Therefore the propagated uncertainty

is estimated using the square root of the sum of squared a's of only those aircraft-

engine combinations that are replaced due to the stringency option considered. That is,

2 2 +,2
c'NOX _delta for entire fleet V NOx _delta 737-7 CFM56-7B24 UOx _delta A330-3 CF6-80E1A3

Ninety five percent confidence intervals based on the 0 NOx_delta for entire fleet are then added

to the scenario plots. Note that this uncertainty in part originates from the performance

of an aircraft-engine combination (e.g. the curve fitting uncertainty in El) - not the flight-

by-flight effects (e.g. aging, or engine-to-engine variability). Thus by taking advantage
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of the averaging of the uncertainties over many flights of the same aircraft-engine

combination, one does not get the conservative estimate. To get a conservative

estimate, one could propagate the uncertainty only up to the type of aircraft-engine and

then weight the results by the number of flights. This increases the 0 NOxdelta for entire fleet.

The question of uncertainty propagation to the fleet level is a fairly complex problem

which goes beyond the scope of this thesis. For the purpose of this study, a few test

cases have shown that the conservative UNOxdelta for entire fleet has a small impact on the

outcome of the mean difference tests below. Therefore, it is still possible to resolve a

small difference between two NOx scenarios, using the paired Monte Carlo approach

here.

Twice the calculated uncertainty in 0 NOxdelta for entire fleet serves as the 95% confidence

interval. From these, one can tell the likelihood that the scenario values (NOx

reductions) will be statistically significant relative to the known modeling and input

uncertainties in SAGE.

5.3.2 Results and Discussion

Figure 5.4 shows a result from the Monte Carlo simulation for NOx-delta for the

aforementioned 11 aircraft types. The calculated standard deviation in NOxdelta on a

flight-by-flight basis is ±45% (1a). The flight-by-flight uncertainties in NOxTL and

NOxbaseline are 42% and 40%, respectively. If it were assumed that all of the input

and modeling uncertainties were independent (versus being applied identically to both

the baseline and the stringency scenario), then the propagated uncertainty is 58% (i.e.

the square root of the sum of the squared 42% and 40%). As discussed previously,

because many of the uncertainties are common between NOx_TL and NOx baseline,

the estimated uncertainty in NOxdelta from the Monte Carlo simulation is smaller.
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Figure 5.4 Monte Carlo simulation results for NOxjdelta (% change from baseline)

This uncertainty (±45%) in flight-by-flight NOxdelta is propagated for the entire fleet for

each combination of stringency level and implementation year. As a result, the

propagated uncertainties range from 9% to 14% of the estimated NOx.delta for various

stringency levels and implementation years. Based on this information, 95% confidence

intervals are attached to the scenario plots as shown in Figure 5.5. They show the

range in which the scenario values can be interpreted with statistical significance given

known input and modeling uncertainties. Both the 2008 and 2012 implementation of

each of the stringency levels results in reductions in NOx that are statistically different

from zero based on the 95% confidence intervals.

In addition, the confidence intervals show that some scenario estimates may not be

statistically different from each other given knowledge of the uncertainties inherent in

the modeling tool. For example, Figure 5.5 shows that for the 2008 implementation, the

20% stringency may not achieve more reduction in NOx than the 15% stringency does

as indicated by the uncertainty bars. To address this more rigorously, a t-test was
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conducted to see if the 15% and 20% stringency scenarios were statistically different

from each other. It was confirmed that even at 99% confidence level, the 15% and 20%

stringency scenario values were statistically the same. Table 5.2 shows t-test results

for implementation years 2008 and 2012.

0% Stringency Level

0 o % 10% 15% 20% 25% 30% 39%

* 2008 Implement

2012 Implement

Figure 5.5 NOx stringency scenario for year 2020

Table 5.2 t-test results for testing the difference between

each implementation year

15% and 20% scenarios for

2008 Implement 2012 Implement

Sample size, n 413 413

tn(.005) 2.33 2.33

t-statistics calculated 0.464 0.339

Separate t-tests are required for analyzing other scenario pairs. One interesting

example is testing the difference between 2008 and 2012 implementation years at each

stringency level. Table 5.3 shows that the scenario estimates of the two implementation

years are not statistically different for the stringency levels of 5% to 15%, as indicated

by the calculated t-statistics being smaller than tW(.025), the significance t value at 95%

confidence.
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Table 5.3 t-test results for testing the difference between 2008 and 2012

implementation for each stringency level

Stringency Sample size, n tW(.025) t-statistics

level calculated

5% 377 1.65 0.402

10% 390 1.65 1.03

15% 392 1.65 1.53

20% 413 1.65 1.69

25% 420 1.65 2.57

30% 434 1.65 3.54

Although the absolute uncertainty in flight-by-flight NOx predictions from SAGE is

estimated to be 40% (1 a) (see Chapter 4 Section 4.5), it is well within the current

capabilities of SAGE to distinguish between the various NOx stringency options

considered. It is estimated that the uncertainty (95% confidence) in the difference

between the baseline and the NOx stringency scenarios ranges from 9% to 14% of the

predicted difference.

Both the 2008 and 2012 implementation of each of the stringency levels results in

reductions in NOx that are statistically different from zero based on 95% confidence.

Although, the reductions in NOx generally increase with increasing stringency levels,

statistical tests indicate that the scenario estimates of some stringency levels and

implementation years are not statistically different from each other.

5.4 CASE STUDY II: CONTINUOUS DESCENT APPROACH (CDA)

5.4.1 Background
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Figure 5.6 Conventional approach and Continuous Descent Approach

As a measure to address aircraft noise issues, a continuous descent approach (CDA)

procedure is examined. In a conventional approach, the airplane is brought down in

stages-descending and leveling off several times before landing-with the final level

flight segment being only 3,000 ft above the elevation at the airport. Each time the

airplane descends to an intermediate altitude and levels off, thrust must be applied to

maintain level flight. Increasing thrust increases noise impact on the ground as well as

fuel consumption. The CDA procedure addresses both the thrust and low-altitude level

flight issues by keeping the planes higher longer and then bringing them down in a

continuous descent. Figure 5.6 shows an example of both approaches. A two-segment

CDA with a constant flight path angle (FPA) initial segment (-2.5 0) followed by a -3

instrument landing system (ILS) glide slope is shown. The altitude profile for a

conventional step-down approach, with the aircraft descending from 11,000 ft to 3,000 ft,

followed by a level-flight segment before intercepting the 3 * ILS glide slope, is also

shown [Clarke et al., 2004].

The utility of this procedure was evaluated through a flight demonstration test where the

noise impact of the CDA and the conventional approach were measured at seven

different locations in Floyds Knobs, Indiana. The results proved that the CDA provides
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consistent noise reduction. There were statistically significant differences at all seven

measurement sites between the CDA and the conventional approach over the testing

period. In fact, the observed reductions of between 3.9 and 6.5 dBA are very significant

given the fact that a 3 dBA difference represents a 50% reduction in acoustic energy

and is noticeable to the human ear. Given the subsequent analysis showing that the 50

DNL contour at Louisville would shrink by 7% if all aircraft were to perform the CDA, it is

clear that adoption of the CDA at major airports would provide much needed relief for

residents in communities near airports [Clarke et al., 2004].

3000

2500 -CDA
Conventional

00

1500

1000

7 500

0
-800 -700 -600 -500 -400 -300 -200 -100 0

Time to Runway Threshold (sec)

Figure 5.7 Cumulative fuel consumption of conventional approach and Continuous

Descent Approach (from 11,000 ft to the ground; B767 at Louisville)

The reduced thrust levels of the CDA procedure lead to lower fuel consumption. Figure

5.7 shows that the CDA procedure burns about 20% less fuel than the conventional

approach does on aggregate from 11,000 ft to the ground. This would translate to

about 1 % of typical full mission fuel burn of the B767. For this reason, there is high

interest in estimating the emissions benefit from a procedure change using the CDA.

This study entails use of SAGE for estimating the fuel burn and emissions benefits of

the CDA procedure. The focus is on quantifying the uncertainties in the estimated CDA

benefits.
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5.4.2 Analysis Overview

For conventional approaches, actual trajectory, wind, ambient temperature and aircraft

weight information for five aircraft types is available from the CFDR information of a

major airline. For each aircraft type, the data for six flights are available and used to

represent the actual flight profiles of conventional approaches. The CFDR data are

then fed into SAGE for calculating aircraft performance and fuel burn. This allows for

asserting the differences between true profiles and CDA when almost all of the

uncertainties are removed except for those in the performance module of SAGE.

To model the CDA procedure, airplanes are flown on a 3 * glide slope with SAGE.

Indeed, this is the standard approach procedure employed in SAGE, so the analysis

also provides an assessment of the uncertainties in fuel burn and emissions associated

with this idealized model of approach procedures.

A thousand random performance models were flown on each of the CDA versus CFDR

trajectories. This was done in a paired fashion as described in Sections 5.2 and 5.3.1,

applying the same performance to each trajectory, calculating the difference in fuel burn

and emissions, and then moving on to a new randomly selected performance.

5.4.3 Results and Discussion

Figure 5.8 shows a result for the B737-800 based on the thousand performance model

runs. For the descent segment from 3000 ft above the elevation of the airport to the

ground, the average fuel burn reduction is 30.4%. The 2a interval for the mean is

±8.21%.
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Figure 5.8 Continuous Descent Approach's impact on B737-800 descent fuel burn

The results for all aircraft types in this study are summarized in Figure 5.9. For all six

aircraft types, the fuel burn savings of the CDA procedure are estimated to be around

30%.11 Note that the large variability (indicated by 2- confidence intervals) of the

estimated fuel burn benefits originates from several factors. For each aircraft type,

differences in airport runway configurations, landing procedures, aircraft weight and

ambient conditions are the primary sources of the variability. Due to these uncertainties,

the confidence intervals on the fuel burn savings estimates are quite large. Work is

ongoing to obtain a larger sample of CFDR data for a unique set of airport/runway and

flight date/time. By removing several sources of uncertainty this way, it will be possible

to estimate the CDA benefits with higher confidence.

1 These results are based on SAGE-modeled fuel burn values. For the descent segments (e.g. 3,000 ft
to the ground), SAGE over-predicts reported fuel burn by 8% on average with 42% standard deviation.
See Figure 3.17 for details.
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Figure 5.9 Fuel burn reductions due to Continuous Descent Approach (landing segment

below 3000 ft to the ground shown)

Figure 5.10 shows percent changes in emissions produced by the six aircraft types of

the above. Both the conventional and CDA profiles were flown in SAGE, and the

uncertainties in the difference in emissions between the two procedures were estimated.

Since the CDA procedure utilizes a reduced throttle setting, which causes the NOx

emissions production rate to decrease, total NOx decreases by about 30-50%. The HC

and CO emissions production rates sharply increase and outweigh the reductions in fuel

burn. Therefore, total HC and CO increase by 20-70%. The large 2a ranges of the

estimated changes are due to the high uncertainty associated with the emissions

indices modeled in SAGE in addition to the small number of flights tested for this case

study. To examine the emissions scenarios of the CDA procedure for more aircraft

types on an airport level, further work is planned.
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Figure 5.10 Emissions impacts of Continuous Descent Approach (landing segment from

3000 ft to the ground shown)

5.5 CASE STUDY lIIII: DERATED TAKE-OFF

5.5.1 Background

Many aircraft operators currently utilize derated take-off power for various reasons

including operating cost savings (through decreased wear and tear on engine parts and

thus increased engine life) and noise abatement. The amount of derate possible is

limited by such factors as take-off weight, runway length and weather conditions [Hall et

al., 2003].

Derated take-off can also result in reduced NOx emissions because of the lower fuel

flow rate and NOx production rate. This is particularly of high interest to aircraft
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operators as they are asked to pay emissions charges at some European airports. The

charges are based on the ICAO certification data assuming maximum thrust take-off.

However, aircraft rarely take off with maximum thrust, so the aircraft operators would

like to make a case for a reduced charge based on their typical operating procedures.

5.5.2 Analysis Overview

Two B777-200 flights with 18% and 23% derate were assessed. Their CFDR

trajectories were flown within SAGE to compute the fuel burn and emissions of derate

operations. On the same trajectories, ambient conditions, and aircraft weight and

performance, flights were flown for maximum thrust take-off to give corresponding fuel

burn and emissions estimates.

By employing paired Monte Carlo simulations, the uncertainties in the difference in fuel

burn and emissions between the two scenarios (i.e. derate versus maximum thrust)

were assessed. For each pair of take-off procedures, 1000 comparisons were run with

randomly chosen technology performance for the B777-200 with a mean given by

BADA and a standard deviation given by the estimated uncertainty in the technology

performance specification (see Chapter 3). Then the average of these 1000 different

comparisons was taken. All other major uncertainties were removed by using the winds,

ambient conditions and aircraft weight given in the CFDR data for both the derated

procedure and the full throttle procedure.

5.5.3 Results and Discussion

Figures 5.11 and 5.12 show percent changes in fuel burn12 and emissions due to derate

operations below various mixing height13 altitudes for the take-off segment only.

Derated take-off uses more fuel than maximum thrust take-off does because it takes

12 These results are based on SAGE-modeled fuel burn values. For the take-off segments (e.g. the
ground to 3,000 ft), SAGE over-predicts reported fuel burn by 10% on average with a standard deviation
of 12%. See Figure 3.16 for details.
13 The mixing height is the height below which emissions are important for local air quality and can vary
from location to location and from day to day.

118



longer to climb with derate. HC and CO emissions increase roughly 1 % for each 2% of

derate due to the increased time-to-climb and increased ElHC and EICO outweighing

the reduced fuel burn rate. Tables 5.4 and 5.5 show the elapsed time from take-off to a

given mixing height altitude. On the other hand, NOx emissions are reduced roughly

1 % for each 2% of derate due to the reduced EINOx and reduced fuel burn rate

outweighing the increased time-to-climb.
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Figure 5.11 Fuel burn and emissions impact of 18% derate for the take-off segment only
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Figure 5.12 Fuel burn and emissions impact of 23% derate for the take-off segment only
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Note that these results are only for the take-off segment. For the flights examined in

this analysis, the take-off segment NOx emissions comprise about 5-10% of the full

mission results and 80-90% of the full LTO results. For the HC and CO emissions, the

take-off segment emissions comprise about 2-5% of the full mission results and 40-60%

of the full LTO results. Based on this, the emissions reduction results above can be

approximately translated in terms of the full mission and LTO results. For instance, the

18% derate would reduce about 3-7% of the full mission NOx emissions and 65-70% of

the LTO NOx emissions.

Table 5.4 Time-to-climb from take-off to various mixing height altitudes for 18% derate

Mixing Height Max Thrust (s) 18% Derate (s) % Change
3000 ft 82 104 26.8%
3500 ft 100 128 28.0%
4000 ft 124 160 29.0%
4500 ft 148 192 29.7%
5000 ft 166 216 30.1%

Table 5.5 Time-to-climb from take-off to various mixing height altitudes for 23% derate

Mixing Height Max Thrust (s) 23% Derate (s) % Change
3000 ft 80.5 128 59.0%
3500 ft 86.5 136 57.2%
4000 ft 92.5 144 55.7%
4500 ft 104.5 160 53.1%
5000 ft 118.5 176 48.5%

Figures 5.11 and 5.12 also show 95% confidence intervals. These uncertainty levels

are a result of the current uncertain knowledge of the B777-200 performance

coefficients given by BADA. Since the uncertainties apply equally to the CFDR derated

trajectory and to the simulated full-throttle trajectory, they have a small impact on

determining the difference in emissions between the two take-off procedures. The

estimated fuel burn and emissions changes due to derated take-off are statistically

significant relative to the given uncertainty in the aircraft performance coefficients of

SAGE.
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The way in which derated take-off impacts fuel burn and emissions is the same among

various studies [Yamartino et al., 2004; Hall et al., 2003]. However, different operating

conditions and underlying assumptions result in a varying degree of emissions benefits

associated with derated take-off. It is necessary to define the most standard full throttle

take-off and derated take-off procedures and synchronize the key operating conditions

(e.g. take-off weight and ambient conditions) between them. This way, it will be

possible to assess the emissions benefits of derated take-off on a fleet level with higher

confidence.

5.6 CHAPTER SUMMARY AND CONCLUSIONS

Three policy options have been analyzed in this chapter. Increased NOx stringency, the

CDA procedure and the derated take-off procedure were modeled and their impacts on

fuel burn and emissions were estimated. Note that the increased NOx stringency

analysis was more relevant for assessing global emissions whereas the CDA and

derated take-off procedures were mainly for evaluating emissions below 3000 ft. For

the case of increased NOx stringency, its effects on reducing NOx emissions would be

enhanced during take-off (i.e. below 3000 ft). It is because the rate of NOx emissions

production is higher during take-off where the engine power setting is highest. On the

other hand, increased NOx stringency may not have as strong an effect on reducing

NOx emissions during descent as the CDA procedure does because descent thrust

settings are usually lowest.

The analyses showed that the considered policy options would reduce NOx emissions

but with trade-offs. One or all of fuel burn, HC and CO emissions would increase with

reduced NOx emissions. Nonetheless airlines are willing to make such trade-offs as

NOx emissions are considered more important than the other emissions species when

airports impose emissions charges.

When one considers which of these technological and operational options is more

effective for mitigating emissions impacts, a more detailed analysis on emissions and
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associated costs should be conducted. For example, the CDA procedure would require

advanced air traffic control systems both on board and at the control tower. This is an

added cost to implementing the CDA procedure, which makes it difficult to compare the

net benefits between technology and operations.

The results of this chapter do not support any policy decisions in one way or another.

Rather, they were intended to test policy concepts with a focus on quantifying the

uncertainty in the SAGE prediction of the difference in aviation emissions between a

baseline scenario and a policy scenario. Although large uncertainties exist in aircraft

performance and trajectories on a flight-by-flight basis, one can use SAGE to distinguish

very small differences in emissions (a percent or less) for different policy options. For

this, a paired Monte Carlo technique was introduced to analyze the difference in

emissions between two scenarios where many of the component uncertainties are

common. The statistical significance in the modeled scenario results was determined

via this approach.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis focused on developing, assessing and applying the SAGE model to evaluate

global aircraft fuel consumption and emissions, and to examine technological and

operational measures to mitigate these emissions. Uncertainties of the model were

analyzed in detail and carefully accounted for in the policy options considered. In doing

so, this thesis provided a basis for understanding model uncertainty and fidelity. It

assessed both random and bias errors of the model and demonstrated how they affect

policy scenario outcomes. Future work to understand when one may or may not use

the methodology and the results presented is also discussed below.

6.1 SUMMARY

In SAGE Version 1, the aircraft performance, fuel burn and emissions of C02, H2 0,

NOx, HC and CO were modeled at each point on a flight mission. The most influential

modeling assumptions were use of standard day ambient temperature, not correcting

for winds aloft, uncertain aerodynamic and engine performance, and simplified

assumptions about aircraft take-off weight and flight speed. Additional uncertainties

associated with the use of OAG-based flight trajectories and the emissions estimation

method were also important.

Chapter 3 and Chapter 4 presented an assessment of parametric and model

uncertainties in SAGE. On average, the aggregate-level composite fuel burn results

showed about -6% difference from reported fuel burn data. A statistical analysis

showed that this mean shift was a combined contribution of the key uncertainties above.

In addition to the comparisons to reported data, a sensitivity analysis followed by Monte

Carlo simulations confirmed the most significant uncertainties contributing to the

variance of fuel burn and emissions results. The analyses showed that the
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uncertainties in engine and aerodynamic performance had the largest impact on system

errors, accounting for around 60-70% of the total variance in full-mission fuel burn

results. The uncertainties in winds aloft and take-off weight explained another 20-25%.

LTO procedures, which consist of engine throttle setting, rate of climb/descent and flight

speed, were the most influential uncertainties that drove the variance in SAGE fuel burn

results below 3000 ft. For emissions, it was shown that the emissions indices were the

most influential uncertainties for the variance in SAGE outputs. Note that these are the

key uncertainties associated with the use of the SAGE model for decision-making as

well.

Three policy options were analyzed in Chapter 5. More stringent NOx certification

standards, Continuous Descent Approach procedures and derated take-off procedures

were modeled. The uncertainty in the SAGE prediction of the difference in aviation

emissions between a baseline scenario and a policy scenario was quantified. Although

large uncertainties exist in aircraft performance and trajectories on a flight-by-flight

basis, it was possible to use SAGE to distinguish very small differences in emissions (a

percent or less) for different policy options.

The considered 5% to 30% increases in NOx certification standards resulted in 1 % to

9% reductions in the fleet-level NOx emissions. The uncertainty ranged from 9% to

14% at 95% confidence. Given this uncertainty in the modeling tool, it was not possible

to distinguish a difference between 2008 and 2012 implementation years for 5-15%

stringencies at a 95% confidence level.

The CDA procedures achieved around 30% reduction in fuel burn and as much as 50%

reduction in NOx for landing segments below 3000 ft. HC and CO emissions increased

20-70% as a result of the higher emissions production rate at reduced engine throttle

settings. Derated take-off used more fuel than maximum thrust take-off did because it

takes longer to climb with derate. HC and CO emissions increased roughly 1 % for each

2% of derate due to the increased time-to-climb and increased EIHC and EICO

outweighing the reduced fuel burn rate. On the other hand, NOx emissions were

124



reduced roughly 1 % for each 2% of derate due to the reduced EINOx and reduced fuel

burn rate outweighing the increased time-to-climb.

6.2 CONCLUSIONS

In this thesis, the key uncertainties and their impacts on the variance and mean shift of

the output error were assessed. The influence of random errors (i.e. component

uncertainties) on the policy scenario results was quantified. Note, however, that those

bias errors due to the effects of unscheduled and canceled flights were not addressed.

Such unscheduled and canceled flights are expected to be a major source of bias error,

which is to be better addressed in further research.

Although large uncertainties existed in aircraft performance and trajectories on a flight-

by-flight basis, it was possible to use the SAGE model to distinguish small differences in

emissions (a percent or less) for different policy options. To generalize this

methodology for analyzing policy options under conditions of uncertainty, fleet

averaging effects are important. Even though flight-by-flight uncertainties are large,

their impacts get reduced when fleet-level fuel burn and emissions are considered.

In this context, a sensitivity study of fleet fuel burn and emissions with varying levels of

component uncertainties would be valuable. For example, in the case of increased NOx

stringency scenarios, one could examine what level of improvements in model

uncertainty would be needed to distinguish between the implementation years for the 5-

15% stringency options. This could help to guide model development resources and

explain to what extent addressing the model development items would contribute to

reducing uncertainty with respect to the ultimate decision-making. Once such mapping

is complete between component uncertainties and fleet-level uncertainties, it might be

even possible to estimate the confidence intervals on the policy scenario results without

going through time-consuming Monte Carlo simulations.
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Another important question is when the application of uncertainty analysis along with

SAGE model results may or may not be relied upon for decision-making. It should be

noted, however, that such reliability depends on the context. In the NOx stringency

case, it might be possible to quote a statistically significant difference between 2008 and

2012 implementation years for 5-15% stringencies if one were to lower the confidence

level to 90% or even less. The implication of using 90% confidence as opposed to 95%

confidence is that there is higher likelihood for the scenario results to be incorrect. It is,
therefore, the choice of the policy maker as to how certain he or she desires to be in

order to make a policy decision under conditions of uncertainty.

For the other two policy analyses, it is still unclear to what extent these case studies can

be used to make decisions concerning system-wide CDA or derated take-off procedure

implementation. Acquiring data and designing analyses on a fleet level are required. In

this regard, the results presented are only specific to the particular policy options

considered. A contribution of this thesis is to articulate how uncertainties of the SAGE

model should be treated for decision-making via a statistical approach that can be

generalized.

6.3 SUGGESTED MODEL IMPROVEMENTS

The following are recommended for future development of SAGE:

- Wind and temperature databases: The ISA assumes only averaged weather

conditions for the entire world over many years. Hence, both the seasonal and

regional variations from standard day winds and temperatures should be

modeled to higher fidelity. Work is ongoing to have gridded weather data into

SAGE.

- Aerodynamic coefficients: Proper dependence on altitude and flight speed should

be modeled.
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- Adjust cruise CDo by an appropriate correction factor (see Chapter 3

Section 3.4.2) when substituting it for CDO for other modes.

- Drag coefficients at take-off, climb-out, approach and landing are currently

missing for several major aircraft types (e.g. A300 and MD11). Use the

latest BADA (version 3.5) for added/updated drag coefficients.

- Work is ongoing to revise the BADA aerodynamic model to account for

transonic drag rise.

- Landing gear extension height

- Conduct additional examination to lower the current height (3000 ft) to

1500-2000 ft in order to avoid getting excessively large drag caused by

the landing gear.

- Thrust reduction coefficients

- Examine if descent thrust coefficients (CTDES LOW, CTDES_AP and CTDESLD)

cause excessively low thrust values for part of descent segments.

- Fuel flow coefficients: Fuel flows at low engine power settings (e.g. idle and taxi)

are not well predicted because the BADA minimum fuel flow model is only a

function of altitude.

- Work is ongoing to introduce proper dependence of fuel flow on both flight

altitude and Mach number.

- Use the latest BADA (version 3.5) for added/updated fuel flow

coefficients.

- LTO components

- For descent profiles, cut all ETMS points below 3000 ft and replace them

with OAG-based trajectory points.

- Compare SAGE LTO profiles to more CFDR data. Consider developing a

module for a statistical choice of landing profiles.
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- Cruise speed and cruise altitude

- For flights on less than 500 NM stage, raise cruise altitude and lower

cruise speed. Perform additional work to determine the exact magnitude

of this adjustment.

- Conduct additional research for implementing step climbs and cruise

speed variations (routing optimization) for OAG flights.

- Other uncertainty assessment

- Compare SAGE emissions results to measured data.

- Compare SAGE turboprop results to CFDR data.

- Generalization of the CDA and derate studies

- Obtain more CFDR data for a unique selection of airport/runway and flight

date/time to separate aircraft-to-aircraft differences from other

uncertainties such as airport-to-airport differences.

- Develop a Monte Carlo simulation capability in the research version of

SAGE.

- Conduct a parametric study on important variables such as mixing height

and throughput volume.

- Develop emissions scenarios for a fleet or an airport.

6.4 FINAL REMARKS

A key word for engineering systems today is sustainability. In this context, four major

elements of sustainable air transportation would be-1) increased mobility for people

around the world, 2) profitable industry growth, 3) protection of the environment and 4)

continuous improvement in safety and security.

For protection of the environment, it is important to stabilize, reduce or even eliminate

conventional greenhouse gas emissions. To do so, we must consider not only the

technological/operational solutions and economic costs but where aviation stands in
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relation to society. Currently, there is not a strong public demand to reduce aircraft

emissions. For the cases of aircraft noise or automobile emissions, a clear

demonstration of health damages followed by strong public pressure to reduce the

environmental nuisances have led to dramatic improvements in both technologies and

the way the engineering systems are operated. However, people's awareness about

aircraft emissions is relatively low today. There are also very large scientific

uncertainties about the potential effects of jet engine emissions discharged at altitude.

Therefore, it will be important to continue to advance atmospheric science of jet engine

emissions and raise general public awareness about aviation's impacts on local air

quality and the global atmosphere. Such efforts along with modeling and assessments

of various emissions reduction options will be another step toward sustainable air

transportation.
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APPENDIX A-1 - SAGE Inventory of Commercial Jet & Turboprop Global Activity for Calendar Year 2000

Regions* Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (Tg) C02 (Tg) H20 (Tg) SOx (Tg)
Africa to Africa Ground 4.27E+06 5.38E-02 1.23E-03 3.46E-04 4.27E-04 1.70E-01 6.66E-02 4.30E-05

Ground to 3000 ft 6.80E+06 1.07E-01 4.39E-04 1.0 1E-04 2.12E-03 3.38E-01 1.33E-01 8.60E-05

3000 ft and Above 1.74E+08 1.54E+00 3.47E-03 6.53E-04 2.25E-02 4.86E+00 1.91E+00 1.23E-03

Total 1.85E+08 1.70E+00 5.14E-03 1.1OE-03 2.51E-02 5.37E+00 2.1OE+00 1.36E-03

Africa to Other Ground 6.08E+06 9.82E-02 2.30E-03 4.55E-04 1.87E-03 3.1OE-01 1.22E-01 7.90E-05

Ground to 3000 ft 1.03E+07 2.48E-0I 9.34E-04 1.49E-04 6.67E-03 7.83E-01 3.07E-01 1.98E-04

3000 ft and Above 4.79E+08 6.OOE+00 1.25E-02 1.61E-03 1.00E-01 1.89E+01 7.42E+00 4.80E-03

Total 4.96E+08 6.34E+00 1.58E-02 2.21E-03 1.09E-0l 2.OOE+01 7.85E+00 5.08E-03

Asia to Asia Ground 1.84E+07 3.59E-01 7.73E-03 1.23E-03 2.07E-03 1.13E+00 4.44E-01 2.87E-04

Ground to 3000 ft 2.92E+07 8.07E-01 2.76E-03 3.52E-04 1.95E-02 2.55E+00 9.98E-01 6.46E-04

3000 ft and Above 7.19E+08 9.8 1E+00 1.61E-02 1.98E-03 1.74E-01 3.1OE+01 1.21E+01 7.85E-03
Total 7.67E+08 1.1OE+01 2.66E-02 3.56E-03 1.95E-01 3.46E+01 1.36E+01 8.78E-03

Asia to Other Ground 9.03E+06 1.79E-01 4.39E-03 8.46E-04 8.79E-04 5.66E-01 2.22E-01 1.44E-04

Ground to 3000 ft 1.49E+07 4.95E-O1 1.70E-03 2.57E-04 1.28E-02 1.56E+00 6.12E-01 3.96E-04
3000 ft and Above 9.96E+08 1.59E+01 2.63E-02 3.32E-03 2.60E-01 5.01E+01 1.96E+01 1.27E-02

Total 1.02E+09 1.66E+01 3.24E-02 4.42E-03 2.74E-O1 5.22E+01 2.05E+01 1.32E-02
Australia & Oceania Ground 5.28E+06 4.57E-02 1.07E-03 3.58E-04 3.91E-04 1.44E-01 5.65E-02 3.70E-05

to Australia & Oceania Ground to 3000 ft 7.29E+06 1.01E-01 3.89E-04 7.40E-05 1.89E-03 3.17E-01 1.24E-01 8.OOE-05

3000 ft and Above 1.61E+08 1.09E+00 2.82E-03 4.40E-04 1.64E-02 3.45E+00 1.35E+00 8.75E-04

Total 1.73E+08 1.24E+00 4.27E-03 8.71E-04 1.87E-02 3.91E+00 1.53E+00 9.92E-04

Australia & Oceania to Other Ground 1.16E+07 1.71E-01 3.51E-03 6.34E-04 1.37E-03 5.41E-01 2.12E-01 1.37E-04

Ground to 3000 ft 1.83E+07 3.84E-01 1.33E-03 2.07E-04 8.40E-03 1.2 1E+00 4.74E-01 3.07E-04

3000 ft and Above 6.75E+08 7.85E+00 1.52E-02 2.28E-03 1.26E-01 2.48E+01 9.71E+00 6.28E-03

Total 7.05E+08 8.41E+00 2.OOE-02 3.12E-03 1.36E-01 2.65E+01 1.04E+0l 6.73E-03

Eastern Europe to Eastern Europe Ground 2.17E+06 3.41E-02 1.40E-03 4.23E-04 1.57E-04 1.08E-01 4.22E-02 2.70E-05
Ground to 3000 ft 3.84E+06 7.48E-02 8.36E-04 1.74E-04 1.07E-03 2.36E-01 9.25E-02 6.OOE-05
3000 ft and Above 1.42E+08 1.46E+00 9.70E-03 1.02E-03 1.62E-02 4.59E+00 1.80E+00 1 .16E-03

Total 1.48E+08 1.56E+00 1.19E-02 1.62E-03 1.75E-02 4.93E+00 1.93E+00 1.25E-03

Eastern Europe to Other Ground 5.03E+06 8.76E-02 2.42E-03 4.87E-04 8.52E-04 2.76E-01 1.08E-01 7.OOE-05
Ground to 3000 ft 8.40E+06 2.11 E-0 l 1.05E-03 1.85E-04 4.99E-03 6.66E-01 2.61E-01 1.69E-04

3000 ft and Above 4.01E+08 4.66E+00 1.27E-02 1.65E-03 7.14E-02 1.47E+01 5.76E+00 3.73E-03

Total 4.14E+08 4.96E+00 1.62E-02 2.33E-03 7.72E-02 1.56E+01 6.13E+00 3.97E-03

* Regions were defined for SAGE analysis purposes and to some extent relate to the areas of influence for ICAO regional offices.



Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (Tg) C02 (T) H20 (TgY) SOx (T)

Middle East to Middle East Ground 2.92E+06 5.50E-02 1.20E-03 2.32E-04 3.34E-04 1.74E-01 6.81E-02 4.40E-05

Ground to 3000 ft 5.38E+06 1.30E-01 5.19E-04 1.OOE-04 3.15E-03 4.09E-01 1.60E-01 1.04E-04

3000 ft and Above 1.29E+08 1.48E+00 3.64E-03 5.50E-04 2.62E-02 4.67E+00 1.83E+00 1. 19E-03

Total 1.37E+08 1.67E+00 5.36E-03 8.83E-04 2.96E-02 5.25E+00 2.06E+00 1.33E-03

Middle East to Other Ground 3.56E+06 7.OOE-02 1.78E-03 3.91E-04 8.28E-04 2.21E-01 8.66E-02 5.60E-05

Ground to 3000 ft 6.45E+06 1.84E-01 8.2 1E-04 1.69E-04 4.67E-03 5.79E-Ol 2.27E-01 1.47E-04

3000 ft and Above 3.46E+08 4.24E+00 1.07E-02 1.48E-03 6.82E-02 1.34E+01 5.25E+00 3.39E-03

Total 3.56E+08 4.50E+00 1.33E-02 2.04E-03 7.37E-02 1.42E+01 5.56E+00 3.60E-03

North America & Caribbean Ground 1.43E+08 1.85E+00 4.12E-02 7.59E-03 1.46E-02 5.85E+00 2.29E+00 1.48E-03

to North America & Caribbean Ground to 3000 ft 1.93E+08 3.32E+00 1.20E-02 1.88E-03 6.36E-02 1.05E+01 4.11 E+00 2.66E-03

3000 ft and Above 6.86E+09 5.19E+01 1.37E-01 1.96E-02 6.86E-01 1.64E+02 6.41E+01 4.15E-02

Total 7.20E+09 5.70E+O1 1.90E-Ol 2.91E-02 7.64E-01 1.80E+02 7.05E+O1 4.56E-02

North America & Caribbean Ground 1.92E+07 3.37E-01 7.25E-03 1.36E-03 2.26E-03 1.06E+00 4.17E-01 2.69E-04

to Other Ground to 3000 ft 3.01E+07 8.11E-01 2.73E-03 4.23E-04 1.97E-02 2.56E+00 1.00E+00 6.48E-04

3000 ft and Above 1.82E+09 2.53E+01 4.63E-02 6.21E-03 4.08E-01 7.98E+01 3.13E+OI 2.02E-02

Total 1.87E+09 2.64E+O1 5.63E-02 7.99E-03 4.30E-01 8.34E+01 3.27E+01 2.12E-02

South America to South America Ground 2.45E+06 3.1OE-02 6.34E-04 1.14E-04 1.22E-04 9.77E-02 3.83E-02 2.50E-05

Ground to 3000 ft 4.08E+06 5.77E-02 2.43E-04 3.60E-05 9.12E-04 1.82E-01 7.13E-02 4.60E-05
3000 ft and Above 7.90E+07 5.73E-01 1.39E-03 2.16E-04 7.59E-03 1.81E+00 7.08E-01 4.58E-04

Total 8.56E+07 6.61E-01 2.26E-03 3.66E-04 8.62E-03 2.09E+00 8.18E-Ol 5.29E-04

South America to Other Ground 5.93E+06 8.56E-02 1.96E-03 3.72E-04 4.30E-04 2.70E-O 1.06E-01 6.90E-05
Ground to 3000 ft 9.54E+06 1.84E-01 7.42E-04 1.22E-04 3.53E-03 5.81E-01 2.28E-01 1.47E-04

3000 ft and Above 3.05E+08 3.33E+00 7.85E-03 1.1OE-03 5.08E-02 1.05E+01 4.12E+00 2.66E-03
Total 3.21E+08 3.60E+00 1.06E-02 1.59E-03 5.47E-02 1.14E+O1 4.45E+00 2.88E-03

Western Europe & North Atlantic Ground 3.72E+07 4.77E-01 9.64E-03 1.18E-03 6.85E-03 1.51E+00 5.90E-01 3.82E-04
to Western Europe & North Atlantic Ground to 3000 ft 5.67E+07 8.72E-01 3.55E-03 4.06E-04 1.72E-02 2.75E+00 1.08E+00 6.98E-04

3000 ft and Above 1.28E+09 1.1OE+O1 2.44E-02 2.80E-03 1.74E-01 3.48E+01 1.36E+01 8.82E-03
Total 1.38E+09 1.24E+O1 3.76E-02 4.39E-03 1.98E-01 3.90E+0 1 1.53E+01 9.90E-03

Western Europe & North Atlantic Ground 1.72E+07 2.89E-01 6.64E-03 1.18E-03 2.77E-03 9.1lE-01 3.57E-01 2.31E-04
to Other Ground to 3000 ft 2.70E+07 6.98E-0I 2.46E-03 3.95E-04 1.81E-02 2.20E+00 8.63E-01 5.58E-04

3000 ft and Above 1.54E+09 2.06E+O1 4.25E-02 5.75E-03 3.34E-01 6.5 1E+O1 2.55E+01 1.65E-02
Total 1.59E+09 2.16E+O1 5.16E-02 7.33E-03 3.55E-01 6.82E+O1 2.67E+01 1.73E-02

Calendar Year 2000 Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (Tg) C02 (Tg) H20 (Tg) SOx (Tg)
Global Totals Ground 2.94E+08 4.23E+00 9.44E-02 1.72E-02 3.62E-02 1.33E+01 5.23E+00 3.38E-03

Ground to 3000 ft 4.31E+08 8.68E+00 3.25E-02 5.03E-03 1.88E-01 2.74E+01 1.07E+01 6.95E-03
3000 ft and Above 1.61E+10 1.67E+02 3.73E-0I 5.07E-02 2.54E+00 5.26E+02 2.06E+02 1.33E-01

Total 1.68E+10 1.80E+02 4.99E-O1 7.29E-02 2.77E+00 5.67E+02 2.22E+02 1.44E-01

Note: All fuel burn and emissions units are in Tg where 1 Tg = 1012g.

Regions



APPENDIX A-2 - SAGE Inventory of Commercial Jet & Turboprop Global Activity for Calendar Year 2001

Regions* Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (Tg) C02 (Tg) H20 (Tg) SOx (Tg)

Africa to Africa Ground 4.14E+06 5.05E-02 L.1OE-03 2.98E-04 4.07E-04 1.59E-0l 6.24E-02 4.OOE-05

Ground to 3000 ft 6.86E+06 1.03E-01 4.05E-04 8.40E-05 1.94E-03 3.24E-0l 1.27E-01 8.20E-05

3000 ft and Above 1.66E+08 1.36E+00 3.04E-03 5.99E-04 1.96E-02 4.29E+00 1.68E+00 1.09E-03

Total 1.77E+08 1.51E+00 4.55E-03 9.81E-04 2.20E-02 4.78E+00 1.87E+00 1.21E-03
Africa to Other Ground 5.55E+06 8.59E-02 1.94E-03 3.59E-04 1.73E-03 2.71E-01 1.06E-01 6.90E-05

Ground to 3000 ft 9.5 1E+06 2.21E-01 8.12E-04 1.21E-04 5.92E-03 6.98E-01 2.74E-01 1.77E-04

3000 ft and Above 4.19E+08 5.12E+00 1.06E-02 1.32E-03 8.57E-02 1.62E+01 6.33E+00 4.1OE-03

Total 4.35E+08 5.43E+00 1.34E-02 1.80E-03 9.33E-02 1.71E+01 6.7 1E+00 4.34E-03

Asia to Asia Ground 1.59E+07 3.01E-01 6.61E-03 1.06E-03 1.78E-03 9.50E-01 3.73E-01 2.41E-04

Ground to 3000 ft 2.71E+07 7.28E-01 2.48E-03 3.13E-04 1.77E-02 2.30E+00 9.01E-0I 5.83E-04
3000 ft and Above 6.43E+08 8.73E+00 1.44E-02 1.70E-03 1.57E-01 2.75E+01 1.08E+01 6.98E-03

Total 6.86E+08 9.76E+00 2.35E-02 3.07E-03 1.76E-01 3.08E+01 1.21E+01 7.81E-03
Asia to Other Ground 8.12E+06 1.60E-01 3.81E-03 7.02E-04 7.77E-04 5.05E-01 1.98E-01 1.28E-04

Ground to 3000 ft 1.42E+07 4.65E-01 1.53E-03 2.20E-04 1.19E-02 1.47E+00 5.75E-01 3.72E-04
3000 ft and Above 8.56E+08 1.35E+01 2.23E-02 2.89E-03 2.21E-01 4.25E+01 1.67E+01 1.08E-02

Total 8.79E+08 1.41E+01 2.77E-02 3.82E-03 2.34E-01 4.45E+01 1.74E+01 1.13E-02
Australia & Oceania Ground 4.91E+06 4.44E-02 1.03E-03 3.19E-04 3.80E-04 1.40E-01 5.49E-02 3.60E-05

to Australia & Oceania Ground to 3000 ft 7.17E+06 1.03E-01 3.87E-04 6.90E-05 1.95E-03 3.25E-01 1.27E-01 8.20E-05
3000 ft and Above 1.55E+08 1.08E+00 2.62E-03 4.04E-04 1.70E-02 3.4 1E+00 1.34E+00 8.65E-04

Total 1.67E+08 1.23E+00 4.03E-03 7.93E-04 1.94E-02 3.88E+00 1.52E+00 9.83E-04
Australia & Oceania to Other Ground 1 .13E+07 1.66E-01 3.43E-03 5.76E-04 1.42E-03 5.25E-01 2.06E-01 1.33E-04

Ground to 3000 ft 1.83E+07 3.80E-01 1.30E-03 1.93E-04 8.36E-03 1.20E+00 '4.70E-01 3.04E-04
3000 ft and Above 6.56E+08 7.5 1E+00 1.37E-02 1.98E-03 1.22E-01 2.37E+01 9.29E+00 6.0 1E-03

Total 6.86E+08 8.05E+00 1.84E-02 2.75E-03 1.32E-01 2.54E+01 9.96E+00 6.44E-03
Eastern Europe to Eastern Europe Ground 2.09E+06 2.89E-02 9.81E-04 3.34E-04 1.47E-04 9.12E-02 3.58E-02 2.30E-05

Ground to 3000 ft 3.68E+06 6.17E-02 5.68E-04 1.30E-04 9.OOE-04 1.95E-01 7.63E-02 4.90E-05
3000 ft and Above 1.24E+08 1.25E+00 6.87E-03 7.71E-04 1.51E-02 3.94E+00 1.55E+00 1.OOE-03

Total 1.30E+08 1.34E+00 8.42E-03 1.24E-03 1.61E-02 4.23E+00 1.66E+00 1.07E-03
Eastern Europe to Other Ground 4.73E+06 7.8 1E-02 2.02E-03 4.1OE-04 7.48E-04 2.47E-01 9.67E-02 6.30E-05

Ground to 3000 ft 8.19E+06 1.98E-01 8.62E-04 1.51E-04 4.74E-03 6.26E-01 2.45E-01 1.59E-04
3000 ft and Above 3.65E+08 4.29E+00 1.03E-02 1.39E-03 6.74E-02 1.35E+01 5.30E+00 3.43E-03

Total 3.78E+08 4.56E+00 1.32E-02 1.95E-03 7.29E-02 1.44E+01 5.65E+00 3.65E-03

* Regions were defined for SAGE analysis purposes and to some extent relate to the areas of influence for ICAO regional offices.



Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (T) CO2 (Tg) H20 (Tg) SOx (Tg)
Middle East to Middle East Ground 2.71E+06 5.12E-02 1.21E-03 1.89E-04 2.75E-04 1.62E-01 6.34E-02 4.1OE-05

Ground to 3000 ft 5.13E+06 1.26E-01 5.27E-04 7.90E-05 3.06E-03 3.99E-01 1.56E-01 1.01E-04

3000 ft and Above 1.19E+08 1.40E+00 3.08E-03 3.88E-04 2.51E-02 4.42E+00 1.73E+00 1.12E-03

Total 1.27E+08 1.58E+00 4.82E-03 6.55E-04 2.84E-02 4.98E+00 1.95E+00 1.26E-03

Middle East to Other Ground 3.14E+06 5.98E-02 1.49E-03 3.33E-04 7.02E-04 1.89E-01 7.39E-02 4.80E-05

Ground to 3000 ft 5.81E+06 1.66E-01 6.98E-04 1.48E-04 4.26E-03 5.22E-0I 2.05E-01 1.32E-04

3000 ft and Above 3.01E+08 3.74E+00 9.33E-03 1.3 1E-03 6.11 E-02 1.18E+O1 4.63E+00 2.99E-03

Total 3.10E+08 3.97E+00 1.15E-02 1.79E-03 6.61E-02 1.25E+O1 4.91E+00 3.17E-03

North America & Caribbean Ground 1.35E+08 1.68E+00 3.78E-02 6.32E-03 1.41E-02 5.3 1E+00 2.08E+00 1.35E-03

to North America & Caribbean Ground to 3000 ft 2.07E+08 3.26E+00 1.26E-02 1.77E-03 6.13E-02 1.03E+01 4.03E+00 2.61E-03

3000 ft and Above 6.21E +09 4.65E+01 1.12E-0I 1.55E-02 6.50E-01 1.47E+02 5.76E+OI 3.72E-02

Total 6.55E+09 5.15E+OI 1.63E-01 2.36E-02 7.26E-01 1.62E+02 6.37E+01 4.12E-02

North America & Caribbean Ground 1.84E+07 3.14E-01 6.82E-03 1.26E-03 2.34E-03 9.89E-0I 3.88E-01 2.5 1E-04

to Other Ground to 3000 ft 3.07E+07 7.85E-01 2.67E-03 3.99E-04 1.87E-02 2.48E+00 9.70E-01 6.28E-04

3000 ft and Above 1.57E+09 2.15E+OI 3.77E-02 4.89E-03 3.51E-01 6.79E+O1 2.66E+O1 1.72E-02

Total 1.62E+09 2.26E+O1 4.72E-02 6.55E-03 3.72E-Ol 7.13E+OI 2.80E+O1 1.81E-02

South America to South America Ground 1.95E+06 2.60E-02 5.78E-04 9.1OE-05 9.40E-05 8.19E-02 3.21E-02 2.10E-05

Ground to 3000 ft 3.63E+6 5.32E-02 2.39E-04 3.40E-05 8.46E-04 1.68E-01 6.58E-02 4.30E-05

3000 ft and Above 7.40E+07 5.39E-Ol 1.33E-03 1.99E-04 7.1OE-03 1.70E+00 6.67E-01 4.31E-04

Total 7.96E+07 6.18E-01 2.15E-03 3.24E-04 8.04E-03 1.95E+00 7.64E-01 4.94E-04

South America to Other Ground 5.64E+06 7.99E-02 1.79E-03 3.17E-04 3.73E-04 2.52E-01 9.88E-02 6.40E-05
Ground to 3000 ft 9.52E+06 1.81E-01 6.99E-04 1.1OE-04 3.46E-03 5.70E-O1 2.24E-0I 1.45E-04

3000 ft and Above 2.91E+08 3.1OE+00 7.13E-03 9.63E-04 4.71E-02 9.79E+00 3.84E+00 2.48E-03

Total 3.07E+08 3.36E+00 9.62E-03 1.39E-03 5.1OE-02 1.06E+O1 4.16E+00 2.69E-03

Western Europe & North Atlantic Ground 3.67E+07 4.45E-01 9.15E-03 1.13E-03 6.85E-03 1.41E+00 5.51E-01 3.56E-04

to Western Europe & North Atlantic Ground to 3000 ft 5.43E+07 7.89E-Ol 3.35E-03 3.76E-04 1.57E-02 2.49E+00 9.76E-01 6.3 1E-04

3000 ft and Above 1.17E+09 1.02E+O1 2.24E-02 2.56E-03 1.63E-01 3.20E+O1 1.26E+OI 8.13E-03
Total 1.26E+09 1.14E+OI 3.49E-02 4.07E-03 1.86E-01 3.59E+O1 1.41E+O1 9.1lE-03

Western Europe & North Atlantic Ground 1.59E+07 2.48E-0I 5.82E-03 1.07E-03 2.83E-03 7.8 1E-01 3.06E-01 1.98E-04
to Other Ground to 3000 ft 2.54E+07 6.12E-Ol 2.25E-03 3.64E-04 1.58E-02 1.93E+00 7.57E-Ol 4.90E-04

3000 ft and Above 1.31E+09 1.74E+01 3.43E-02 4.61E-03 2.88E-01 5.50E+OI 2.16E+0I 1.40E-02

Total 1.35E+09 1.83E+01 4.24E-02 6.05E-03 3.06E-01 5.77E+01 2.26E+O1 1.46E-02

Calendar Year 2001 Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (Tg) CO2 (Tg) H20 (Tg) SOx (Tg)
Global Totals Ground 2.76E+08 3.82E+00 8.56E-02 1.48E-02 3.50E-02 1.21E+01 4.73E+00 3.06E-03

Ground to 3000 ft 4.36E+08 8.23E+00 3.14E-02 4.56E-03 1.76E-01 2.60E+O1 1.02E+O1 6.59E-03
3000 ft and Above 1.44E+10 1.47E+02 3.12E-01 4.15E-02 2.30E+00 4.65E+02 1.82E+02 1.18E-01

Total 1.51E+10 1.59E+02 4.29E-01 6.08E-02 2.51E+00 5.03E+02 1.97E+02 1.27E-01

Note: All fuel burn and emissions units are in Tg where 1 Tg = 10"g.

Regions



APPENDIX A-3 - SAGE Inventory of Commercial Jet & Turboprop Global Activity for Calendar Year 2002

Regions* Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (Tg) C02 (Tg) H20 (Tg) SOx (Tg)

Africa to Africa Ground 4.35E+06 5.54E-02 1.11E-03 2.70E-04 3.17E-04 1.75E-01 6.86E-02 4.40E-05

Ground to 3000 ft 6.90E+06 1.09E-01 4.06E-04 7.50E-05 2.06E-03 3.44E-01 1.35E-01 8.70E-05

3000 ft and Above 1.71E+08 1.47E+00 3.12E-03 5.77E-04 2.16E-02 4.64E+00 1.82E+00 1.18E-03

Total 1.82E+08 1.63E+00 4.64E-03 9.23E-04 2.40E-02 5.16E+00 2.02E+00 1.31E-03
Africa to Other Ground 5.68E+06 9.14E-02 2.04E-03 3.77E-04 1.59E-03 2.88E-01 1.13E-01 7.30E-05

Ground to 3000 ft 9.24E+06 2.28E-01 8.14E-04 1.31E-04 6.36E-03 7.20E-01 2.82E-01 1.82E-04

3000 ft and Above 4.28E+08 5.38E+00 1.09E-02 1.44E-03 9.11 E-02 1.70E+01 6.66E+00 4.3 1E-03

Total 4.43E408 5.70E+00 1.38E-02 1.94E-03 9.91E-02 1.80E+O1 7.06E+00 4.56E-03
Asia to Asia Ground 1.86E+07 3.48E-01 7.30E-03 1.06E-03 1.98E-03 1.1OE+00 4.30E-01 2.78E-04

Ground to 3000 ft 3.OOE+07 8.22E-01 2.52E-03 2.86E-04 2.OOE-02 2.59E+00 1.02E+00 6.57E-04
3000 ft and Above 7.34E+08 9.55E+00 1.57E-02 1.77E-03 1.69E-01 3.01E+01 1.18E+OI 7.64E-03

Total 7.83E+08 1.07E+O1 2.55E-02 3.12E-03 1.91E-01 3.38E+O1 1.33E+01 8.58E-03
Asia to Other Ground 9.56E+06 1.92E-01 4.47E-03 7.62E-04 9.53E-04 6.06E-Ol 2.38E-01 1.54E-04

Ground to 3000 ft 1.57E+07 5.36E-01 1.69E-03 2.32E-04 1.45E-02 1.69E+00 6.63E-01 4.28E-04
3000 ft and Above 9.47E+08 1.45E+01 2.31E-02 2.94E-03 2.45E-01 4.58E+OI 1.80E+01 1.16E-02

Total 9.73E+08 1.52E+01 2.93E-02 3.93E-03 2.60E-01 4.81E+O1 1.89E+01 1.22E-02
Australia & Oceania Ground 4.72E+06 4.16E-02 9.34E-04 2.63E-04 3.14E-04 1.31E-01 5.15E-02 3.30E-05

to Australia & Oceania Ground to 3000 ft 6.46E+06 9.19E-02 3.30E-04 5.1OE-05 1.67E-03 2.90E-01 1.14E-01 7.40E-05
3000 ft and Above 1.28E+08 9.17E-01 2.19E-03 3.09E-04 1.45E-02 2.89E+00 1.13E+00 7.34E-04

Total 1.39E+08 1.05E+00 3.46E-03 6.22E-04 1.65E-02 3.32E+00 1.30E+00 8.41E-04
Australia & Oceania to Other Ground 1.09E+07 1.61E-01 3.18E-03 4.70E-04 1.52E-03 5.07E-01 1.99E-01 1.28E-04

Ground to 3000 ft 1.70E+07 3.57E-01 1.15E-03 1.58E-04 8.19E-03 1.12E+00 4.41E-01 2.85E-04
3000 ft and Above 6.16E+08 7.25E+00 1.25E-02 1.70E-03 1.22E-01 2.29E+01 8.97E+00 5.80E-03

Total 6.44E+08 7.77E+00 1.68E-02 2.33E-03 1.32E-01 2.45E+O1 9.61E+00 6.21E-03
Eastern Europe to Eastern Europe Ground 2.52E+06 3.75E-02 1.55E-03 4.88E-04 1.79E-04 1.18E-01 4.64E-02 3.OOE-05

Ground to 3000 ft 4.26E+06 7.84E-02 8.99E-04 1.94E-04 1.14E-03 2.47E-01 9.69E-02 6.30E-05
3000 ft and Above 1.35E+08 1.37E+00 9.39E-03 1.02E-03 1.55E-02 4.32E+00 1.69E+00 1 .OE-03

Total 1.42E+08 1.48E+00 1.18E-02 1.70E-03 1.68E-02 4.68E+00 1.84E+00 1.19E-03
Eastern Europe to Other Ground 5.26E+06 8.74E-02 2.42E-03 4.67E-04 8.29E-04 2.76E-01 1.08E-01 7.OOE-05

Ground to 3000 ft 8.64E+06 2.15E-01 1.04E-03 1.73E-04 5.19E-03 6.77E-01 2.65E-01 1.72E-04
3000 ft and Above 3.80E+08 4.56E+00 1.24E-02 1.55E-03 7.11E-02 1.44E+O1 5.64E+00 3.65E-03

Total 3.94E+08 4,86E+00 1.59E-02 2.19E-03 7.71E-02 1.53E+01 6.01E+00 3.89E-03

* Regions were defined for SAGE analysis purposes and to some extent relate to the areas of influence for ICAO regional offices.



Regions Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg NOx (Tg CO2 (Tg) H20 (T2 SOx (T)
Middle East to Middle East Ground 2.81E+06 5.33E-02 I.16E-03 1.81E-04 2.73E-04 1.68E-01 6.59E-02 4.30E-05

Ground to 3000 ft 5.12E+06 1.27E-01 5.1OE-04 8.1OE-05 3.13E-03 4.02E-0I 1.58E-0l 1.02E-04
3000 ft and Above 1.08E+08 1.31E+00 3.04E-03 4.08E-04 2.40E-02 4.14E+00 1.62E+00 1.05E-03

Total 1.16E+08 1.49E+00 4.71E-03 6.70E-04 2.74E-02 4.71E+00 1.85E+00 1.19E-03
Middle East to Other Ground 3.34E+06 6.43E-02 1.65E-03 3.56E-04 4.94E-04 2.03E-01 7.96E-02 5.1OE-05

Ground to 3000 ft 5.76E+06 1.68E-01 7.54E-04 1.59E-04 4.29E-03 5.30E-01 2.08E-01 1.34E-04
3000 ft and Above 3.01E+08 3.74E+00 9.70E-03 1.38E-03 6.12E-02 1.18E+01 4.63E+00 3.OOE-03

Total 3.1OE+08 3.98E+00 1.21E-02 1.90E-03 6.60E-02 1.25E+01 4.92E+00 3.18E-03
North America & Caribbean Ground 1.30E+08 1.54E+00 3.46E-02 5.11 E-03 1.49E-02 4.87E+00 1.91E+00 1.24E-03

to North America & Caribbean Ground to 3000 ft 1.79E+08 2.88E+00 9.99E-03 1.28E-03 5.94E-02 9.1OE+00 3.57E+00 2.31E-03
3000 ft and Above 6.24E+09 4.52E+01 1.05E-01 1.3 1E-02 6.80E-01 1.43E+02 5.59E+01 3.61E-02

Total 6.55E+09 4.96E+0I 1.49E-01 1.95E-02 7.54E-01 1.57E+02 6.14E+01 3.97E-02
North America & Caribbean Ground 2.OOE+07 3.46E-0I 7.35E-03 1.24E-03 2.39E-03 1.09E+00 4.28E-01 2.77E-04

to Other Ground to 3000 ft 3.24E+07 8.48E-01 2.82E-03 4.OOE-04 2.09E-02 2.68E+00 1.05E+00 6.79E-04
3000 ft and Above 1.57E+09 2.15E+0l 3.79E-02 4.89E-03 3.59E-01 6.77E+0l 2.65E+01 1.72E-02

Total 1.63E+09 2.27E+01 4.80E-02 6.54E-03 3.83E-01 7.15E+01 2.80E+01 1.81E-02
South America to South America Ground 2.31E+06 3.OOE-02 6.29E-04 l.OOE-04 1.18E-04 9.45E-02 3.71E-02 2.40E-05

Ground to 3000 ft 4.11 E+06 6.11 E-02 2.39E-04 3.70E-05 1.1OE-03 1.93E-0l 7.56E-02 4.90E-05
3000 ft and Above 8.0 1E+07 5.99E-01 1.42E-03 2.24E-04 8.56E-03 1.89E+00 7.40E-01 4.79E-04

Total 8.66E+07 6.90E-01 2.29E-03 3.61E-04 9.78E-03 2.18E+00 8.53E-01 5.52E-04
South America to Other Ground 5.89E+06 8.32E-02 1.80E-03 3.13E-04 3.96E-04 2.63E-01 1.03E-01 6.70E-05

Ground to 3000 ft 9.OOE+06 1.78E-01 6.69E-04 1.09E-04 3.60E-03 5.60E-01 2.20E-0I 1.42E-04
3000 ft and Above 2.88E+08 3.1OE+00 7.09E-03 9.57E-04 4.84E-02 9.78E+00 3.83E+00 2.48E-03

Total 3.03E+08 3.36E+00 9.55E-03 1.38E-03 5.24E-02 1.06E+0I 4.16E+00 2.69E-03
Western Europe & North Atlantic Ground 3.62E+07 4.29E-01 8.60E-03 1.06E-03 6.3 1E-03 1.35E+00 5.3 1E-01 3.44E-04

to Western Europe & North Atlantic Ground to 3000 ft 5.36E+07 7.66E-0I 3.13E-03 3.61E-04 1.51E-02 2.42E+00 9.48E-01 6.13E-04
3000 ft and Above 1.13E+09 9.24E+00 2.09E-02 2.47E-03 1.48E-01 2.92E+01 1.14E+01 7.39E-03

Total 1.22E+09 1.04E+01 3.26E-02 3.89E-03 1.69E-01 3.29E+01 1.29E+01 8.35E-03
Western Europe & North Atlantic Ground 1.61E+07 2.54E-0l 5.84E-03 1.04E-03 2.88E-03 8.02E-01 3.14E-01 2.03E-04

to Other Ground to 3000 ft 2.56E+07 6.30E-01 2.23E-03 3.59E-04 1.69E-02 1.99E+00 7.80E-01 5.04E-04
3000 ft and Above 1.36E+09 1.82E+01 3.60E-02 4.81E-03 3.02E-01 5.75E+01 2.26E+01 1.46E-02

Total 1.40E+09 1.91E+01 4.41E-02 6.21E-03 3.22E-0I 6.03E+01 2.36E+01 1.53E-02

Calendar Year 2002 Distance (nm) Fuel Burn (Tg) CO (Tg) HC (Tg) NOx (Tg) CO2 (Tg) H2O (Tg) SOx (Tg)
Global Totals Ground 2.78E+08 3.82E+00 8.46E-02 1.36E-02 3.54E-02 1.20E+01 4.72E+00 3.06E-03

Ground to 3000 ft 4.12E+08 8.1OE+00 2.92E-02 4.08E-03 1.84E-01 2.55E+0l 1.00E+01 6.48E-03
3000 ft and Above 1.46E+10 1.48E+02 3.1OE-0I 3.96E-02 2.38E+00 4.67E+02 1.83E+02 1.18E-01

Total 1.53E+10 1.60E+02 4.24E-01 5.72E-02 2.60E+00 5.04E+02 1.98E+02 1.28E-01
Note: All fuel bum and emissions units are in Tg where 1 Tg = 1012g.


