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Abstract

A pseudospectral method for solving nonlinear optimal control problems is proposed
in this thesis. The method is a direct transcription that transcribes the continuous
optimal control problem into a discrete nonlinear programming problem (NLP), which
can be solved by well-developed algorithms. The method is based on using global
polynomial approximations to the dynamic equations at a set of Gauss collocation
points. The optimality conditions of the NLP have been found to be equivalent to
the discretized optimality conditions of the continuous control problem, which is not
true of other pseudospectral methods. This result indicates that the method can take
advantage of the properties of both direct and indirect formulations, and allows for
the costates to be estimated directly from the Lagrange multipliers of the NLP.

The method has been shown empirically to have very fast convergence (exponen-
tial) in the states, controls, and costates, for problems with analytic solutions. This
convergence rate of the proposed method is significantly faster than traditional finite
difference methods, and has been demonstrated with many example problems.

The initial costate estimate from the proposed method can be used to define an
optimal feedback law for real time optimal control of nonlinear problems. The appli-
cation and effectiveness of this approach has been demonstrated with the simulated
trajectory optimization of a launch vehicle.
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Chapter 1

Introduction

Optimal control problems arise in a wide range of applications, particularly in the
aerospace industry. Optimal control problems can be defined for trajectory optimiza-
tion, attitude control, and missile guidance, among others. The objective of optimal
control theory is to determine the control (or controls) that will cause a system to
meet a set of physical constraints and at the same time minimize (or maximize) some
performance criterion. Acceptable criteria can be defined by any number of things,
including time, fuel expenditure, or various trajectory parameters.

The solution to general optimal control problems can be found by applying the
calculus of variations ([10] [45] [48]) and Pontryagin's maximum principle [53] to de-
termine the first order necessary conditions for a solution. The necessary conditions
reduce the optimal control problem to a two-point boundary value problem. The re-
sulting boundary value problem is difficult or impossible to solve analytically for most
problems, therefore numerical techniques are required to determine an approximation
to the continuous solution. Many numerical techniques have been developed to solve
optimal control problems. These numerical methods generally fall into the categories
of indirect methods and direct methods (6] [64]).

Indirect methods involve approximating the solution to the continuous necessary
conditions. Some of these methods are multiple shooting ([54] [51]), finite difference
[43], quasi-linearization [3], and collocation ([18] [58]), among others. The primary ad-

vantages of indirect methods is the high accuracy and assurances the solution satisfies
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the necessary optimality conditions. However, indirect methods have significant dis-
advantages. First, the necessary optimality conditions must be derived analytically,
for most problems this derivation is non-trivial. Second, the radius of convergence
is typically small, therefore requiring a good initial guess. Third, a guess for the
costates must be provided, which is difficult because the costate does not represent
a physical entity such as the states and controls. Finally, the constrained and un-
constrained arcs, or switching structure, for problems with path constraints must be
know a priori.

Direct methods overcome some of the deficiencies of indirect methods by trans-
forming the continuous optimal control problem into a nonlinear programming prob-
lem (NLP), which can be solved by well-developed algorithms. Direct methods have
the advantages that the optimality conditions do not need to be derived; they have
a large radius of convergence, therefore they do not need a good initial guess; there
is no need for a guess of the costates; and finally the switching structure does not
need to be known. Direct methods are not as accurate as indirect methods and many
do not give any costate information. There are many types of direct methods. One
approach, direct shooting, is to parameterize the controls and use explicit numerical
integration to satisfy the differential constraints ([69] [46] [40] [8] [66] [59]). These
methods suffers from the computationally expensive numerical integration that is re-
quired. Another approach is to parameterize both the states and controls. In these
methods, piecewise polynomials can be used to approximate the differential equations
at collocation points ([35] [7] [46] [21] [65] [33]). The states and controls can also be
parameterized using global polynomials ([72] [73] [22] [23] [19] [20]). These methods
are based on spectral methods which were extensively used to solve fluid dynamics
problems and typically have faster convergence rates than traditional methods ([13]
[26] [68]).

Spectral methods were largely developed in the 1970’s for the numerical solution
of partial differential equations. These methods were used as an extension to finite-
element and finite-difference methods which were mostly explored during the previous

two decades. Spectral methods were developed from a class of discretization schemes
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for differential equations known generally as the method of weighted residuals [24].

Spectral representations have been used for studies of differential equations since
Fourier in 1822 [27] and the idea of using them for numerical solutions of differential
equations goes back to Lanczos in 1938 [47]. The spectral collocation method was
first used by Slater [62] and Kantorovic [42] in 1934, but it was the work of Lanczos
that established that a proper choice of trial functions and distribution of collocation
points was crucial to the accuracy of the solution. The method was revived by
Clenshaw [14], Norton [15], and Wright [70] in the late 1950’s and early 1960’s for
Chebyshev polynomial expansions to initial value problems. In the 1970’s the first
unifying mathematical theory of spectral methods was compiled by Gottlieb and
Orszag [31]. The application of spectral methods to problems in fluid dynamics and
meteorology made the method famous, with the primary work done by Gottlieb,
Orszag, Canuto, Hussaini, Quarteroni, and Zang ([13] [32] [52]). Orszag was first to
use the term pseudospectral when referring to spectral collocation methods in 1972.
Further development of spectral methods was done by Funaro {29], Fornberg [26], and
Trefethen [68].

Spectral methods were applied to optimal control problems by Vlassenbroeck
and Var Dooren ([72] [73]) in the late 1980’s using Chebyshev polynomials and
later Elnagar, Kazemi, and Razzaghi ([19] [20]), developed the Legendre pseudospec-
tral method using Lagrange polynomials and collocation at Legendre-Gauss-Lobatto
(LGL) points. An extension of the Legendre pseudospectral method was done by
Fahroo and Ross ([22] [55]) to generate costate estimates.

The costate estimates are important for verifying the optimality of the solutions,
mesh refinement, sensitivity analysis, and real time optimization. Costates can be
determined for many direct methods. Some of these estimates are based on solving an
approximation to the costate dynamics in post processing ({37] [49]). Other estimates
are based on relationships between the Karush-Kuhn-Tucker (KKT) multipliers of the
NLP and the continuous costates found by a sensitivity analysis [60], or relating the
KKT conditions of the NLP to the continuous costate dynamics ([65] [34]). Recently

costate estimates have been developed for pseudospectral methods. A costate map-
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ping principle has been derived by Fahroo and Ross to define the relation between the
KKT multipliers and costate estimates ([22] [55] [56]). However this principle, based
on the relation between the KKT conditions of the NLP and the continuous costate
dynamics, does not hold at the boundary points. This deficiency is a result of the
defects in the discretization when using LGL points. The resulting costate estimates
at the boundaries do not satisfy the costate dynamics or boundary conditions, but
only a linear combination of the two.

The method proposed in this thesis is a direct transcription method using parame-
terization of the states and controls by global polynomials collocated at Gauss points.
The method differs from other pseudospectral methods in the fact that the dynamic
equations are not collocated at the boundary points. This approach is advantageous
because the KKT conditions from the resulting NLP are exactly equivalent to the dis-
cretized form of the first-order necessary conditions of the optimal control problem.
This means that the optimality conditions for the discretized problem are consistent
with the continuous optimality conditions of the optimal control problem, which is not
true for other pseudospectral methods. Only a special class of Runge-Kutta methods
have been shown to have this property [33]. The consistency of the KKT conditions
allow for an estimate of the costate based on the KKT multipliers from the NLP that
does not suffer from a problem at the boundary points. This property allows for a
costate estimate that is more accurate than other methods.

Furthermore, the costate at the initial time can be estimated very accurately using
the Gauss pseudospectral method. The initial costate, along with the initial state,
defines the entire solution of the optimal control problem by reducing the two point
boundary value problem resulting from the necessary conditions to an initial value
problem, where the control can be found by applying Pontryagin’s maximum princi-
ple. By having a very good estimate of the initial costate, a dynamic optimization
problem can be reduced to a series of static optimization problems [38]. Therefore,
the initial costate can be used to define a feedback law resulting in real time optimal
control for nonlinear systems.

The Gauss pseudospectral method has been shown to satisfy the optimality con-
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ditions for a large class of problems. The KKT conditions resulting from problems
with free initial or final times, problems with state and control path constraints, and
problems involving multiple phases, have been shown to be consistent with the con-
tinuous first-order necessary conditions. The proposed method has also been shown
to satisfy Pontrvagin’s maximum principle. This analysis indicates that the Gauss
pseudospectral method can be used to solve a large set of problems, shown with many
numerical examples.

The Gauss pseudospectral method was originally developed from the integral form
of the optimal control problem. In this form, the optimal control problem is dis-
cretized using pseudospectral approximations of the integral of the differential dy-
namic equations. This was done to facilitate the discretization at Gauss points while
still enforcing the boundary conditions. However, the differential form of the optimal
control problem can also be discretized at Gauss points in a way that allows the
boundary conditions to be enforced. It has been shown that this differential form of
the Gauss pseudospectral method is mathematically equivalent to the integral form
of the Gauss pseudospectral method. The KKT conditions of the resulting NLP from
the differential and integral forms of the Gauss method have been shown to be con-
sistent with the continuous first-order necessary conditions. This property is a result
of the fact that the dynamic equations are collocated only at Gauss points. which
do not include the boundary points. The differential form of the method has the
advantage that the resulting NLP is more sparse than the NLP from the integral
form. Therefore, numerical solvers can take advantage of this sparsity to solve the
NLP with less computation time for large problems.

The Gauss pseudospectral method derived in this thesis has many advantages over
other numerical methods for solving optimal control problems. The first and most
important, is that the KKT conditions for the NLP are exactly equivalent to the
discretized first-order necessary conditions. This property indicates that the solution
to the NLP is mathematically equivalent to the solution to the discrete optimality
conditions, meaning that the NLP solution is guaranteed to satisfy the pseudospectral

approximation to the optimality conditions. This distinction signifies that the direct
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and indirect solutions are the same. Therefore, the Gauss pseudospectral method can
take advantage of the properties of both types of methods. An accurate solution can
be found using well-developed sparse NLP solvers with no need for an initial guess
on the costates or derivation of the necessary conditions. The method is robust and
can handle path constraints without knowledge of the switching structure. Another
consequence of the consistency of the KKT conditions is that the costates can be
estimated directly from the KKT multipliers of the NLP. Second, the Gauss method
have been shown to be consistent for a large class of problems including those with
path constraints, free time, and requiring Pontryagin’s maximum principle. The final
advantage of the Gauss pseudospectral method, is that they take advantage of the
very fast exponential convergence typical of spectral methods. This convergence rate
has been shown empirically for many example problems. The fast convergence rate
indicates that an accurate solution to the optimal control problem can be found using
fewer nodes and hence less computation time. The rapid solution of the problems
along with an accurate estimate for the costate can be used to realize real time optimal

control for nonlinear systems.

1.1 Thesis Overview

Chapter 2 describes the basic mathematical background for the formulation and anal-
ysis of pseudospectral methods for optimal control. The concepts of numerical integra-
tion and polynomial interpolation are explored, as well as a brief introduction to the
theory of spectral methods. Also included in this chapter is a discussion of optimiza-
tion methods. Static optimization involving both inequality and equality constraints
are examined, including the derivation of the Karush-Kuhn-Tucker (KKT) conditions,
which define the solution to the optimization problem. Finally optimal control the-
ory is described including the derivation of the first order necessary conditions and
Pontryagin’s maximum principle.

In Chapter 3, several direct transcription methods are described including an

Euler, Runge-Kutta, and the Legendre pseudospectral method. The KKT conditions
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for the Legendre pseudospectral method are derived to show how the costate mapping
principle is defined as well as the defects in the costate estimates.

Chapter 4 describes the integral formulation of the continuous optimal control
problem as well as the derivation of the first order necessary conditions. The pseu-
dospectral transcription at Gauss points of the integral form of the problem is ex-
plored, which leads to the derivation of the KKT conditions for the proposed method.
The KKT conditions are shown to be consistent with the first order necessary con-
ditions, for a large class of problems. Finally the method for the costate estimates,
including the initial costate, is described.

In Chapter 5 the Gauss pseudospectral transcription of the differential form of
the problem is derived. It is shown that the Gauss pseudospectral transcription is
mathematically equivalent to the integral pseudospectral transcription. It is also
shown that the KKT conditions from the Gauss pseudospectral transcription are
consistent with the first-order necessary conditions, and a costate estimate from the
KKT multipliers can be defined.

In Chapter 6 many example problems of different types are solved by several -
numerical methods to demonstrate the advantages and disadvantages of the Gauss
pseudospectral method. The types of example problems solved are linear, nonlinear,
those which have discontinuous solutions in the control and costates. problems with
singular arcs, and problems with multiple local minimum. A comparison of both the
integral and differential forms of the method is made on a common orbit transfer
problem.

Chapter 7 tests the use of the initial costate for real time optimal control. Several
examples demonstrating the method are included for linear and nonlinear problems.

Chapter 8 describes a launch vehicle trajectory optimization problem. The vehi-
cle dynamics are described as well as the formulation and solution of the resulting
optimal control problem. The real time control algorithm described in Chapter 7 is
used to demonstrate the real time control of the launch vehicle in the presence of a

disturbance. Finally Chapter 9 includes the final summary and concluding remarks.
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Chapter 2

Mathematical Background

In this chapter, we review many mathematical concepts that aid in the understand-
ing of the proposed pseudospectral method. The first and most important is the
idea of polynomial interpolation using a basis of Lagrange polynomials. Polynomial
interpolation is used in the development of quadratures, for numerical integration.

Another important concept is the application of spectral methods for the solution
of differential equations. A brief outline of the most common types of spectral meth-
ods is included, as well as the background for spectral collocation or pseudospectral
methods, which are the most important for this thesis.

Also included in this chapter is the development and solution methods of static
optimization problems or nonlinear programs (NLP). Unconstrained, equality con-
strained, and inequality constrained problems are considered, along with the deriva-
tion of the necessary conditions or Karush-Kuhn-Tucker (KKT) conditions for a so-
lution of each.

Finally a review of basic optimal control theory is included, along with the deriva-

tion of the first-order necessary conditions and Pontryagin’s maximum principle.

2.1 Numerical Integration

Explicit closed form solutions cannot be found for integrals of most functions. There-

fore numerical procedures must be used to approximate the value of the integral. The
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methods of numerical integration considered in this thesis are based on polynomial

interpolation.

2.1.1 Polynomial interpolation

The interpolation formula of Lagrange [63] is based on the fact that given N arbitrary

support points of the function f(t), on the interval t; € [a, b],
(. fi), i=1,---,N, tift, i#k, (2.1)
there exists a unique polynomial P(t), of degree N — 1 so that
Pt)=fi, i=1,---,N. (2.2)

The unique polynomial can be found using the Lagrange interpolation formula, so

that

N
Pt)=)_ fi- Li(®), (2.3)

where L;(t) are the Lagrange interpolation polynomials [17]. These polynomials can

be found using the formula,

(2.4)

These Lagrange polynomials have the property that they are one at the ith support,

and zero at all the others, so that

1 i=k
Li(te) = 0a = . (2.5)
0 itk

An example of several Lagrange polynomials are shown in Fig. 2-1. The error in the

Lagrange interpolation formula for functions in which N derivatives exist is known
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Figure 2-1: Lagrange Interpolating Polynomials

to be [41]

N (N)
RW=1(t) ~ P) = 5 []¢ ~ 1) - Toa(©) (2.6
Ti=1

where ( € [a,b]. This equation shows rapid convergence for functions whose deriva-

tives are bounded.

2.1.2 Quadrature

Quadratures are a common approach to the numerical approximation of integrals. A

numerical quadrature is an approximation to a definite integral in the form,

b N
[ e~y a1, @7)
e i=1

where a; are the quadrature weights and ¢; are the quadrature points or nodes. An

interpolatory quadrature formula can be created for arbitrary support points by ap-
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proximating the integrand by Lagrange polynomials [41], so that

b b N
f f(t) dt = / D Li(t) - f(ts) dt . (2.8)

a =1

The quadrature weights can be easily determined as

o5 = / L) d. (2.9)

Quadrature formula of this type have a degree of precision of N — 1, which means
they are exact for polynomials of degree NV — 1 or less.

The quadrature formula with the maximum degree of precision is the Gauss
quadrature formula, which is exact for polynomials of degree 2N — 1 or less. The
Gauss formula is found by choosing the weights w; and points ¢; which make the for-
mula exact for the highest degree polynomial possible [16]. The points and weights

are determined so that
1 N
/ f#)dt=>Y wi- f(t:)+ En, (2.10)
-1 i=1

and the error, E, is zero for a polynomial, f(t), of degree 2N — 1. The Gauss
points are determined as the zeros of the Nth degree Legendre polynomial [12] and
the weights are the integrals of the resulting Lagrange interpolating polynomials, so

that

M ﬁ (t=t) , . _
w; = ; t, i=1,---,N, (2.11)
~1 g (t: — tx) _

where t; are the zeros of the Nth degree Legendre polynomial. The Gauss weights

can also be determined using the formula [36],

w; = 1—;2? [15'1\,(::,-)]2 , (2.12)

1

where Py(t) is the derivative of the Legendre polynomial of degree N. The Gauss

points are all interior to the interval [—1,1] and tend to be more dense near the
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boundaries. A sample distribution of Gauss points for several numbers of nodes are
shown in Fig. 2-2. The error in the Gauss quadrature formula is proportional to the

(2N)th derivative of the integrand ([44] [36]), so that

N 2N+1( \T1)4 N
En= (7}\7)' (:;tor{ / (H(f = ) ) dt = (2;, n 1)([1(\2!])\7)|]3 {;212,\{ (€). (€lab].
(2.13)
Tables of Gauss points and weights can be found in [36].
The Gauss-Lobatto (LGL) quadrature formula is similar to the Gauss formula,
except the boundary points are fixed at —1 and 1. The formula is created by choosing
weights w; and N — 2 remaining points t;, to integrate the highest degree polynomial

possible with zero error, so that

/f dt = sz D+En, ti=-1, ty=1. (2.14)

Because two degrees of freedom have been removed, the LGL quadrature formula is
exact for polynomials of degree 2N — 3. The LGL points are determined to be the
zeros of the derivative of the Legendre polynomial of degree N — 1, Rmr-l(t), plus the

two end points, —1, 1 [16]. The weiglts are determined as

2
w; = = s t‘ +1. 2.15
NN - DPva@E 7 219
. . 2 .
The weights at the boundary points are wq, wy = m The error in the LGL

quadrature formula is

—N(N _ 1)322N+1[(N _ 2)|]4 d(2N—2)f

Ev = (2N - 1)[(2N - 2)!]3 di(2N-2) €), ¢€lab. (2.16)

Tables of LGL points and weights can be found in [36]. A plot of the distribution of
LGL points is shown in Fig. 2-3.
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2.2 Spectral Methods

Spectral methods are used to numerically approximate the solution to partial or
ordinary differential equations, and are characterized by the trial functions and test
functions. The trial functions are used as a basis for the truncated series expansion of
the solution, while the test functions are used to ensure that the differential equation
is satisfied as closely as possible.

The choice of trial functions is what distinguishes spectral methods from finite-
difference and finite-element methods. Finite-difference methods approximate deriva-
tives using local approximations. In the case of finite-element methods, the domain
is divided into small elements with a trial function for each element. The resulting
trial functions are therefore local in character. Trial functions for spectral methods

are infinitely differentiable global functions [26], so that

N
z(t) = Y a - ot , (2.17)
k=1

where the basis functions, ¢ (t), are for example orthogonal polynomials or trigono-
metric functions. The global nature of the trial functions is the primary distinguishing
characteristic of spectral methods.

The test functions used distinguish the three most common types of spectral meth-
ods, Galerkin, tau, and collocation. In the Galerkin approach, the test functions are
the same as the trial functions, which are infinitely smooth -functions that satisfy
the boundary conditions. The differential equation is enforced by requiring that the
residual, the error in the differential equation produced by using the truncated expan-
sion, be orthogonal to all the test functions. Tau methods are similar to the Galerkin
methods in the way the differential equation is enforced, but the test functions do not
satisfy the boundary conditions so an extra set of equations must be used to apply
the boundary conditions. In the collocation approach, the test functions used are
Dirac delta functions centered at a set of collocation points. This approach requires

the differential equation to be satisfied exactly at the collocation points.
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Spectral methods have the notable strength that for analytic functions, errors
typically decay exponentially as N increases, rather than the much slower polynomial
rates typical of finite difference methods [31). For periodic problems, trigonometric
basis functions are generally used because of the rapid convergence to smooth periodic
functions. For non-periodic problems, orthogonal polynomials of Jacobi type have
proven to be the most useful, with Chebyshev and Legendre polynomials as the most

important special cases.

2.2.1 Orthogonal Polynomials

Orthogonal polynomials of Chebyshev and Legendre, are commonly used in spectral
methods. The polynomials belong to a larger class of Jacobi polynomials. The class of
Jacobi polynomials are all the eigenfunctions of a singular Sturm-Liouville problem on
the interval [—1,1]. The special case for the Legendre polynomials are eigenfunctions

of the singular Sturm-Liouville problem [13],

% ((1 — 19 %}(t)) +N(N+1)-Pu(t) =0, (2.18)

with the normalization Py (1) = 1. Legendre polynomials are orthogonal with respect

to the inner product,
1
<1090 >= [ 10-9® (2.19)
-1
and satisfy the three term recursion
(N+1)-Pnsa(t) = (2N+1)-t-Pn(t)—N-Pn-a(t), Po(t)=1, P(t)=t. (2.20)

Chebyshev polynomials of the first kind are the eigenfunctions of the singular

Sturm-Liouville problem,

d dTw N?
= (\/1 —. —dt—(t)) + = T(t) = 0. (2.21)
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Using the normalization T (1) = 1 leads to the polynomials of
Tn(t) =cos(N-6), 6=arccost, (2.22)

which are orthogonal with respect to the inner product

< f(t).g(t) >= /_ 1 mi—\/%(? dt . (2.23)

2.2.2 Tau, Galerkin, Collocation

There are three fundamental types of spectral methods, tau, Galerkin, and collocation
[13]. They differ in the choice of test functions that keep the residual, or error in the
differential equation small.

Consider a general differential equation for x(t) € R”, so that
F(&(1),x(t),1) =0, te[-11], (2.24)

where F : R" X R® x R — R". The boundary conditions are, 8(x(—1),x(1)) = 0,
with ;3 : R" xR™ — RY. The solution x(t) is approximated using a basis of orthogonal

polynomials, ¢ (t), as trial functions, so that

N
x(t) mxn(t) =Y ap- oult) . (2.25)
k=1
Using this approximation, the residual of the differential equation is
RN(t) = F(iN(t), XN(t), t) ) (226)

where Ry (t) is the residual.
The objective of the tau method [26] is to determine the coefficients aj so that

the approximate solution satisfies the boundary conditions, B(xny(—1),xnx(1)) = 0,
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and the residual is orthogonal to as many basis functions as possible, so that
<Rn,¢>=0, k=1,---,N—-gq. (2.27)

In the Galerkin method [31], the basis functions, ¢(t), are combined to form a
new set of basis functions, qhﬁk(t), which span the space of polynomials that satisfy the
boundary conditions, 3 = 0. The solution is then approximated using the new set of

basis functions,

X( ~XN(t Zbk ¢k(f (228)

where the objective is to find the coefficients, by, so that the residual Ry is orthogonal

to as many basis functions as possible, so that
<Ry, >=0, k=1,.--,N. (2.29)

Note that the boundary conditions are automatically satisfied because the polynomial
xn(t) is a linear combination of the basis functions ¢(t) that span the space of
polynomials that satisfy the boundary conditions.

Finally, in the collocation or pseudospectral method [26], the solution x(t) is

approximated using the basis of polynomials, ¢(t),

x(t) = xn(t) = Zak Pr(t) (2.30)

where the objective is to determine the coefficients a so that the boundary conditions
are satisfied, S8(xny(—1),xn(1)) = 0, and the residual is zero at a set of collocation

points. In this method the test functions are chosen as Dirac delta functions, so that
RN(t.i)=0, 7',=1,---,N—q. (231)

The pseudospectral technique can be used with the basis of Lagrange polynomials
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formed from the collocation points, so that

]\Y
X(t) mxn(t) =Y ap- Li(t) . (2.32)
k=1

This approach is advantageous because the coefficients of the Lagrange polynomials

are equal to the value of the approximating polynomial at the collocation points,
XN(tk) = a - (233)

This section describes the fundamental differences between the most common
types of spectral methods. The collocation or pseudospectral method is the most

important technique that is applied in this thesis.

2.3 Static Optimization

Another important concept in the understanding of the method proposed in this
thesis, is the development and solution to static optimization problems, or nonlinear
programs (NLP). Static optimization problems are a class of parameter optimization
problems wliere time is not a parameter. The objective is to find the set of parameters
that minimize some cost function that could be subject to a'set of algebraic equality

or inequality constraints.

2.3.1 Unconstrained Optimization

The objective of unconstrained optimization is to find the set of parameters, z € R”,
that give a minimum value to a scaler function, J(z) : R® — R [48]. A local minimum
occurs when any arbitrary increment of the variable z, produces an increase in the
function, J, so that

J(z+dx) > J(z), Y dz . (2.34)
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The conditions for a solution are determined by first writing the Taylor series expan-

sion for an increment in J. The expansion is
1
dJ=JT -dx + §me - Jgz - dx + higher order terms , (2.35)

where the higher order terms are of order three and higher. The gradient of the
function, J, with respect to z is a vector and the Hessian of the function with respect

to z is a matrix, so that

oJ 0%J
Jp=— €R"” Jgz =
oz € Oz?

e R™" (2.36)

For the increment in J to be positive for any increment of z, two conditions must
be met. First, the gradient of the function must be zero. Second, the Hessian matrix

must be positive definite. These conditions are
J:=0, Jzz > 0. (2.37)

These conditions define the sufficient conditions for a local minimum. The gradient
condition is a set of n conditions to determine the n unknown variables . The
gradient condition by itself is a necessary condition (or optimality condition) of an
extremal and could define local minimum, maximum, or saddle points. The are many
numerical algorithms for solving unconstrained nonlinear problems, such as gradient

methods, Newton’s method, and conjugate direction methods [4].

2.3.2 Equality Constrained Optimization

The objective of equality constrained optimization is to minimize a scaler function,

J(z), that is subject to a set of ¢ < n constraints, f(z) : R® — R, so that

flz)=0. (2.38)
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A classical approach to finding the solution is to define the Lagrangian by augmenting

the cost with a set of Lagrange multipliers [7], so that

L(z,X) = J(z) = AT f(z) = J(z) = D - fula) . (239)
k=1

where A € R? is a vector of Lagrange multipliers. Note that the constraints are
subtracted from the cost in the Lagrangian. This convention of subtraction is used
throughout this thesis. The conditions for a minimum are found by taking a first-order

expansion of an increment in L(x. A), so that
dL =L, -dr+Ly-d\. (2.40)

For a point (z*, A*) to be a minimum, the gradient of L with respect to the variables
z and A must be zero. These two conditions result in n + g constraints to determine

the n + ¢ unknowns of x and A. These constraints are

Li= J,—GT -\, G =9 e goxn
Ox (2.41)

Ly= —f(x).

The partial derivative of the constraints. G, is called the Jacobian. This result is from
the Lagrange Multiplier Theorem [4]. These conditions do not distinguish between
a point that is a maximum, minimum, or a saddle point. For the stationary point
to be a minimum, conditions on the curvature of the Lagrangian must be met. The

Hessian of the Lagrangian is defined to be

2 2 9 2
6L_§_J__Z)\8fk

H; = = —_— 2.42
L™ 922~ 922 Pt e (242)

Therefore, a sufficient condition for a minimum is that
vl CHp-v>0, (2.43)
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for any vector v € R" in the constrained tangent space. This requirement is such that
any feasible variation, v, of the unknown variables, z, must satisfy the constraint,

f(z*+v)=0.

2.3.3 Inequality Constrained Optimization

The final case os static optimization problems is when the constraints of the problem
are inequality constraints. The problem is then to find the variables, z, to minimize

a function, J, subject to a set of r inequality constraints, m(z) : R® — R", so that
m(z) <0. (2.44)

In contrast to equality constraint problems, the number of inequality constraints can
exceed the number of unknown variables, z. Any set of points that satisfy all the
constraints is called feasible. The set of all feasible points is called the feasible region.
At the optimal solution, z*, some of the constraints may be satisfied as equality
constraints,

mi(z*) =0, VieA, (2.45)

and soine constraints may be strictly satisfied,
m;(z*) <0, VieA. (2.46)

A is called the active set while A’ is called the inactive set. The active set of constraints
can be treated exactly as equality constraints and the inactive set can be ignored.
The problem then is to determine which of the constraints are active and which ones
are inactive. The conditions for a solution to an inequality constrained problem are
found by applying the Karush-Kuhn-Tucker optimality conditions [4].

Consider a problem with both equality and inequality constraints. The objective

is to minimize a cost function, J(x). subject to a set of equality constraints, f(z),
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and inequality constraints m(z). The problem is then

minimize  J(x)
subject to  f(x) =0, (2.47)

m(x) <0.

The Karush-Kuhn-Tucker (KKT) conditions are found by first defining the Lagrangian,

or augmented cost function, L, so that

L(z, A p) = J(x) = > M fula) — Z pi - mi(x) (2.48)

where A, u; are the Lagrange multipliers or KKT multipliers. Note that both the
equality and inequality constraints were subtracted from the cost to keep with the
convention of subtraction. The gradient of the Lagrangian defines the conditions for
an optimal solution, z*. If J, f, and m are continuously differentiable functions then

there exists Lagrange multipliers A* and p* such that

aL * * * —
_a_i__(r,)‘iu)_oa

These conditions along with f(z*) = 0 and m(z*) < 0 make up the KKT conditions.
The KKT conditions are necessary for local stationary points but do not distinguish
between minimum, maximum, or saddle points.

The are many well-developed algorithms and software packages that have been
created to solve optimization problems. The software used in this research was pri-
marily SNOPT [30], which uses a sequential quadratic programming algorithm (SQP)

to solve large sparse optimization problems.
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2.4 Optimal Control

Optimal control problems arise in a wide range of applications. The analytic solu-
tion to optimal control problems can be found by using the calculus of variations to

determine the first-order optimality conditions.

2.4.1 Calculus of Variations

The calculus of variations is a useful tool in solving minimization problems that are
dependent on continuous functions of time. The minimization of a functional, J(x(t)),
is found by requiring that the variation of the cost on an extreme path x* vanish for

all admissible variations dx [45], so that
8J(x*,6%) = 0. (2.50)

This is used along with Lagrange theory to determine the conditions for a minimum

of a constrained cost functional.

2.4.2 Necessary Conditions

For optimal control problem the calculus of variations is used to determine the nec-
essary conditions for a local minimum.

Consider the optimal control problem where the objective is to find the states
x(t) € R™ and controls u(t) € R™ on the interval ¢ € [t,,t;] that minimizes a cost in

Bolza form. The cost is

ty
T =0(x(ty) )+ [ glxlt) u(o). 0t 2.51)
to
where @ : R” xR — R is the terminal cost, and g : R® XxR™ xR — R is the integrated

cost. The states are subject to the differential dynamic constraints,

&~ fx(), u(e). 1), (2.52)
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where f: R®” x R™ x R — R"™. The states are also subject to the boundary conditions

in their most general form,

S(x(to). to, X(t1), /) = 0, (2.53)

where ¢ : R*" x R x R" x R — RY.

The first-order necessary conditions are found by applying the calculus of varia-
tions to the Lagrangian or augmented cost function. The augmented cost function
is created by adjoining the costate, A(t) € R", and Lagrange multipliers, » € R, to

the differential and boundary constraints, so that

Ja =@ (x(t),ty) = V7 - b (x(to), tos X(t), )

+ [f [g (x(t),u(t),t) — AT(t) - (d—’f —f(x (t),u(t),t))] dt . (234

Taking the first-order variation of the Lagrangian with respect to all free variables

results in

0% b T a¢ a¢
(SJa aw(tf)&nf + — 81’ (5ff ¢ V ( o) 6f
o~ 0P T 0 T .
— T — —_— - —— T' —_—
ax(tf)om_f v 8tf5tf+ (g=AT-(z- 1) !mf&f ~
) ’ £ dg (2.55)
—(g=-A"-(z-1) t=t06to+[o [& auéu
AT (z—f)+ AT - afa +AT. gf du — AT(Sa:] dt .

Integrating the last term in the integrand by parts removes the variation with respect

to the derivative of the states, so that
YT T T YT
/ —AN0x dt = =7 (t5)ox(ty) + A (to)dz(2s) +/ Adxdt. (2.56)
io to

It is important to note that there is a difference between the variation of the final
state, 0xs, and the variation of the state at the final time, dx(ts), because the final

time is free. The relation between the two can be found using the derivative of the
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state and the variation of the final time. The same is true of the initial state, so that

oxy = 0x(t5) + &(ty) - Oty ,
(2.57)
0xo = 6x(t,) + &(t,) - Ot

Substituting the results of (2.57) into (2.56) and then into (2.55) and combining
terms, defines the necessary conditions for optimality. The variation of the augmented

cost is

([ 0% o6 r 06
0 = (fm:(tf) “V o) *T“f)) oz + ( ax(ig) TN ¢ )) o,

-+ (—uTgt% —g(to) = AT (2,) - f(t,,)) ot

. (2.58)
+ (G~ e+ o)+ ATt ) g+ [ BT ()

+(8 +2 ax+/\>c$x—|-(a +A “u du| dt.

The optimality conditions define a stationary point so that any arbitrary variations

in any of the free variables results in no change in the total cost. The optimality

conditions are

& (t) = £(x(1); u(t),?) ,
-3 = %+>\T—g—i.

The resulting boundary value problem is defined as a set of nonlinear (in general)

(2.59)

coupled first-order differential equations. Therefore, there will be 2n integration con-
stants needed to find the solution. The total number of unknown constants is 2n+g+2.
There are 2n integration constants, ¢ Lagrange multipliers, and the initial and final
time.

The last function that has to be defined is the control. It is assumed in this case

that the control is uniquely defined by the relation,

_9g r of
0= u A 3 (2.60)
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The boundary conditions define the ¢ Lagrange multipliers,

¢ (X(to), to, X(tf), tf) =0 s (261)

and the boundary conditions on the costate, A(t). define the 2n integration constants,

(2.62)

.
M=o Y o)

Finally the conditions that define the initial and final times are

—g(ts) = AT(t,) - £(t,) VTg%

a¢ 0D
T —— =
at; ot

=0,
(2.63)

g(ts) + AT (ty) - f(ts) —v 0.

The conditions (2.59) - (2.63) make up he first-order necessary conditions for a
local minimum ([10],[45],[48]). These conditions can be simplified using the definition

of the Hamiltonian,
H(x(t). u(t), A(t), 1) = g(x(t), u(t), £) + AT(1) - £(x(t), u(t), 1) . (2.64)

so that the resulting necessary conditions are

OH
.T _
T oH
> 0=
0= __6“
- au 9 (2.65)

79¢
H(t,) —v =

op 8D
Y Sl —
Rt —vig +a, =0

0,

along with the boundary conditions on the state and costate (2.61 - 2.62).
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2.4.3 Pontryagin’s Maximum Principle

For some problems, the control can not be determined with the equation (2.60).
For these problems, Pontryagin’s maximum principle must be used to determine the
control.

Consider a general nonlinear optimal control problem (2.51)-(2.53) with a general

control constraint,

m(u(t),t) <0, (2.66)

where m : R™ xR — R?. This function defines the region of feasible control, u(t) € U.

The control u* that gives a local minimum value of the cost J is by definition [45],

J(u) —J(u*) = AJ(u*,u) >0 (2.67)

for all admissible control u sufficiently close to u*. If u is defined as u = u* + du

then the change in the cost can be expressed as
AJ(u*,6u) = §J(u*, éu) + higher order terms . (2.68)

If du is sufficiently small then the higher order terms approach zero and the cost has

a local minimum if

dJ(u*,éu) > 0. (2.69)

By using the definition of the Hamiltonian, H (2.64), the first-order variation of
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the augmented cost is (assuming fixed initial/final time)

6Ja(u*,(5u) = (af(q:f) - IIT . -gxi; - AT(ff)) . (5Xf - (SVT . ¢
r _9¢ T
+ (I/T' (1) +A (to)) - 0%,

/ttf [(}"T(f) + %%(x(t), u(t), )\(t),t)) - 6x(t) (2.70)

4 (g—’;(xu). u(t), A1), ) — i.(t)) )

oH

+ (El-(x(t), u(t). A(t), t)) : Ju(t)] dt .

At the optimal solution, x*, u*, A*, v*, the differential equations along with the bound-
ary conditions are satisfied, therefore all the coefficients of the variation terms are zero

except the control term. This leaves the variation of the cost as

5, (0", ) = /'f’ [%%(x*(t), w(6), A(£), £) - Su(t)| dt . (2.71)

The variation of the cost is the integral of the first-order approximation to the change
in the Hamiltonian caused by a change in the control alone. The first-order approxi-

mation of the change in the Hamiltonian is by definition

aH * * * N
El-(x (t)= u (t) A (t)t) ' 6u(t) = (272)
H((2), 0 (t) + du(t), A(2), 1) — H(x" (), u™(£), A"(2), t) -

The variation of the cost for all admissible and sufficiently small du becomes

ty

0J,(u*,du) = [H(x(t), u*(t) + du(t), A* (1), ) — H(x*(t), u* (), X*(),t)] dt .
. (2.73)
In order for éJ,(u*,du) to be non-negative for any admissible variation in the
control, the Hamiltonian must be greater than the optimal Hamiltonian for all time,

so that
H(x* (), u™(t) + du(t), A*(t),t) > H(x"(t), u*(t), A*(t),1) . (2.74)
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Therefore, the optimal control is the admissible control that minimizes the Hamilto-

nian. Pontryagin’s maximum principle is stated as
w* (£) = argmin [H(x" (), u(®), X' (6),1)] - (2.75)
u

Note that in Pontryagin’s original work, a different sign was used in the Hamilto-
nian. This difference resulted in the optimal control being defined as the control that
maximized the Hamiltonian.

In this chapter the most important concepts for the understand of the proposed
pseudospectral method has been introduced. The most important of these are poly-
nomial interpolation and numerical integration. Also included was a brief outline
of the most common types of spectral methods for the solution of differential equa-
tions. Finally the derivation of the first-order optimality conditions for both static
optimization problems as well as optimal control problems was included, along with

the derivation of Pontrvagin’s maximum principle.
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Chapter 3

Direct Transcription Methods

A common numerical approach to solving optimal control problems, falls into a class
of direct methods. These methods rely on a discretization scheme to transcribe the
continuous optimal control problem into a discrete nonlinear programming problem
(NLP). The resulting NLP can then be solved by one of the many well developed
nonlinear optimization algorithms.

In this chapter, two finite difference based methods, Euler and Runge-Kutta [7],
are explored. The final method considered in this chapter is the Legendre pseudospec-
tral method ({19]. This method has many advantages over the finite difference meth-
ods, the most important being the convergence rate. However, the Legendre pseu-
dospectral method suffers from a defect in the optimality conditions at the boundary

points. Correcting this defect is the primary motivation for this thesis.

3.1 Euler Transcription

Some direct methods are based on methods for solving initial value problems [7]. The
methods are extended to optimal control problems by including an approximation of
the cost. The independent variable of time is discretized at a set of nodes or intervals,
so that

to=11 <---<ty=ts. 3.1
f
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Note that the discretization nodes may or may not be at equal intervals.

A direct transcription method can be formulated based on the simple Euler
method for solving initial value problems ([12] [41] [63]). Euler's method is derived
from Taylor’s theorem. Defining h; = t;4y —t;, i = 1,---, N — 1, as the distance

between two nodes, the state z(t) € R" can be expanded,

dzx h? dx
2(tesr) = w{ti + o) = a(ts) + he- () + 5 256, (32)

for some {; € [t;,t;11]. Since the state satisfies the differential equation (2.52), the

approximation made is
= = fla(t),ults) ) , (3.3)

for sufficiently small h;. The cost (2.51) can be approximated by noting that the cost
is

J = ®(x(ts),ts) + =(t5) (3.4)

where z(t) satisfies the differential equation,
dz
% (4) = gla(t) u(t). 1) (39)

The cost term z(ts), is approximated in the same way as the state, resulting in the
cost of
N-1

J = @(x(tn),tv) + ) 9(w(te), ulte) te) - P, (36)

k=1

where t; =ty is the final time.
The objective of the NLP is to find the state variables z(t;) = z; € R*, ¢ =
1,---, N and control variables u(ty) = ux € R™, k = 1,--- , N — 1 that minimize
the cost (3.6), subject to the set of dynamic equation approximations (3.3), i =

1,---, N —1, and boundary conditions
¢("1'.17 tl) IN, tN) =0. (37)

50




This method is relatively simple to understand and use, but it generally does not
have very good accuracy. The accuracy is improved by using a better approximation

to the differential equations, such as the Runge-Kutta method.

3.2 Runge-Kutta Transcription

An improvement over the Euler method can be made by using a better discretization
scheme. The method outlined here is the classic Runge-Kutta method of order four

([12] [41] [63]). The differential equation (2.52) is approximated using the relations,
1
«(tiv1) = x(t;) + g(slk + 282+ 2- 83 + s4y), (3.8)
where the stages are defined as

51 = hi- fz(t:),u(ts), ),

82 = hi ) f (T(tl) + 'lslivu(ti + ﬁ)vti + h) i
2 o, (39)
S3; = hz . f (I(fz) + ‘.IESQi?U(ti + %L)ytz + %) ,

sgi = hi+ J(x(ti) + sz, utiz), tiv1) -

Note that additional variables must be added to the NLP to approximate the control
at the midpoints of each interval, @;+1 = u(t; + '—‘;) i=1,---,N—1,[7]. The cost is
approximated in the same way as (3.4), so that the Runge-Kutta approximation to
the cost is

N-1

1
J = ®(x(tn),tw) + 5 (Bu 2 5o+ 2 Bou + 5uk) (3.10)
k=1
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with the stages defined as

Sie = hi-g(x(ts), ultc) t),

Sk = hi- g (z(te) + 281, Ugsr, T + ’-12*') ,
(3.11)

S3c = hi- g (z(t) + 3ok, Unsr, e + %)

Sae = by g (x(te) + san, ultesn), tesr) -

Note that the stages used in the approximation to the cost integral, require the same
stages used to satisfy the differential equation. This fact is a result of satisfying the
differential equations for the state and cost z(t), as a coupled differential equation.

The objective of the NLP is then to find the variables for the state, z; = z(t;) € R",

t=1,---, N, and variables for the control u; = u(t;) € R™,i = 1,--- , N, and controls
at intermediate points, @i+ = u(ty + ’—LZL) eR™ k=1,---,N —1, that minimize the

cost (3.10) subject to the constraints (3.8),7=1,--- , N —1 and boundary conditions
d)(I],tl,HIN,tN) =0. (312)

While the Runge-Kutta method is an improvement over the Euler method in
accuracy, it is significantly more complicated to implement. An improvement over
both these finite difference methods is made by applying the ideas of spectral methods

to optimal control problems.

3.3 Legendre Pseudospectral Method

The Legendre pseudospectral method ([19] [22] [55]), is a direct transcription method
that converts a continuous optimal control problem into a discrete nonlinear program-
ming problem. The resulting NLP can be solved by many well developed computa-
tional algorithms. The method uses a set of Lagrange-Gauss-Lobatto (LGL) points

for collocation of the differential dynamic constraints of the optimal control problem.
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3.3.1 Problem Formulation

The LGL points lie on the interval from —1 to 1, so the first step in the Legendre
pseudospectral transcription is to change the time interval of the optimal control

problem from t € [t,,ts] to 7 € [-1,1]. This is done using the mapping

— (t.f — tO)T + (ff + o) )

t
2 2

(3.13)

The mapping is used to replace the optimal control problem (2.51) - (2.53), with the

problem of minimizing the cost
: (tf - t,,) !
J=o(x(1),tf) + 59 (x(7),u(r),7) d7, (3.14)
-1

subject to the dynamic constraints

2 dx

G‘f—:t_j 5= f(x(1),u(r),7) , (3.15)

and boundary conditions
¢ (x(—1).t0.x(1),t5) =0. (3.16)

To discretize the dynamic constraints, the states and controls are approximated

using a set of Lagrange interpolating polynomials at the N LGL points, so that

N

x(t) = X(t) = Zx(ti) - Li(t)

- (3.17)

u(t) ~ Ut) = D u(t) - L(t) ,

i=1

where t;, i =1,---, N, are the LGL points and L;(t) are the Lagrange polynomials of
degree N — 1. From a property of the Lagrange polynomials, L;(t;) = d;; (Kronecker



delta), it follows that

(3.18)

The derivative of the state is approximated as the exact derivative of the interpolating

polynomial. Evaluating the derivative at the LGL points results in

N
Z(tk) Zx Dy, k=1,---,N. (3.19)

This defines the derivative matrix, D, as the derivative of the Lagrange polynomials

at the LGL points, so that

dL;

Dy = —(t) (3.20)

The derivative matrix allows the dynamic equations to be collocated at the LGL

points. The resulting algebraic constraints are

(tf—t ZDM Xi = (X, Up, t) , k=1,---,N. (3.21)

The boundary constraints are enforced using the boundary points of the approxi-

mating polynomial for the state, X;, Xy, so that
(X1, to, Xn,t5) =0. (3.22)

The integration in the cost function is discretized using the Gauss-Lobatto quadra-

ture rule, so that

N
tr —t,
J=‘I>()(J\;,tf)-i~(—f-:z—"'2

Z 9 (X, U), t) - wi (3.23)

k=1

where w;, are the LGL weights.
The continuous optimal control problem is discretized to a NLP where the objec-
tive is to find the variables X, € R*, Uy € R™, k= 1,---,N, and t,,t; € R that

minimize the cost (3.23), subject to the constraints (3.21) and (3.22). The solution
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to the NLP is defined by the resulting KKT conditions.

3.3.2 KKT Conditions

Analysis of the Kurush-Kuhn-Tucker (KKT) conditions is aided by several properties
of the derivative matrix, which can be derived by looking at the integration by parts

formula for two functions p(t), q(t) € C*[-1,1]. The formula is

[ o0 awae=p0-aw| - [ pt-ictar. (3.24)

1

If p(1), q(t) are polynomials of degree .N — 1, the product p(t) - g(t) and p(t) - ¢(t) are
polynomials of degree 2 - N — 3. The integrals in (3.24) are replaced exactly by a
Gauss-Lobatto quadrature using NV LGL points. Using the derivative matrix to find

the exact derivative of the polynomials at the LGL points results in

Z z DM .L tk) Wy = p(t l Zp(tk Z Dk., cUWg . (325)

=1 i=1

Since this must be true for all polynomials of degree IV — 1, it must be true for the

sets of Lagrange interpolation polynomials at the LGL points,
p(t) = Lit), alt)=Li(t), Lj=1---,N. (3.26)
Because these polynomials have the property L;(t;) = ¢;;, this implies
Dji-wj = Dy-wr, (I,j)#(1,1),(N,N). (3.27)
Also since wy, # 0, it also implies

Dy -wy =~
(3.28)
DNN CUWN =

N = N =



The derivation of the KKT conditions is simplified by using the relations (3.27) and
(3.28).

The solution to the NLP derived in Section 3.3.1 can be found using the KKT
conditions. The KKT conditions are determined from the augmented cost function

or Lagrangian, so that

N
tr —1t,
Jo= P(Xn,t5) + % ng cwp — VT (X, 1o, X, )
k=1

N 5 N
—th' (a—'_)szi‘Xd—fk) )

=) T

(3.29)

where gr = (X4, Uy, tx) and £, = £(X;, U, tx). The KKT multipliers, X € R”,
are associated with the approximation to the dynamic constraints (3.21), and the
Lagrange multipliers, v € RY, are associated with the boundary constraints (3.22).
The KKT conditions result from taking the partial derivatives of the Lagrangian with

respect to the control and state variables and setting equal to zero, so that

oy 0 _
X, 7 O0Up

0, k=1,---.N. (3.30)

Taking the partial derivatives of the Lagrangian with respect to the interior state

variables X, k=2,---, N — 1, results in

0Jo _ (ty —t,) Ogs - Of: 2 N
= e+ Ak - AiDy=0, 3.31
OX 2 akak A OXi  (ty—to) ; D=0 (331)
9gr _ Oy ofc _ Of .
where 3X, _ ox (X, Ug, tx) and Xy &(Xk,Uk,tk). Multiplying through by
————— results in
(tf - to) * Wk

) 2 X Of \;
9k+ Ak k

w2 & 2
oX, (tf—to) wy, 00X, (tf—to) Py (tf—to) Wy,

Using the property w; - Dix = —wi - Dy; on the interior nodes k # 1, N (3.27), the
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equation is simplified to
(3.33)

N ¢
2 X
2. Du=0.
o,

2 ik ofi. 2
—+ —_ +
(ty —to) wi OXp  (t5—to) ; (tr — o)

Ogx
00Xy
This result leads to the costate mapping principle, [22], between the KKT multipliers

Ar and the estimate for the costate A, € R". This principle is
(3.34)

2 A
A= —2 X
(ty —to) wi
Using the costate mapping principle, the KKT condition (3.31), is equivalent to the

sing the costate
discretized form of the continuous first-order necessary conditions for the costate

dynamics (2.59), at the interior LGL points. These resulting conditions are
N-1. (3.35

dA __ Ogk
A ff—t,,)ZD’“)‘ CoX, TF X,

This relation however, is not true for the boundary points
The KKT conditions from the two boundary points are explored by taking the

derivatitve of the Lagrangian (3.29) with respect to the boundary states, X;, Xx. The

dJa _ (t;—t,) g r 06 2 s < Of
w—vT o (tf—to)kg'\’“ Dia+ Xy 5o = 0. (3.36)

result is

X, 2 X,
Using the property that Dy = —(wy/wy) - Dy, k = 2,--- , N (3.27) and adding
2 -

2- (7_51)“ A1 to both sides of the equation results in

L — 1o

(ts —to) 691 of; 2 r 0
: 2k p = 2. Du-A
SR SR T )Z“’1 wth gy =2y Dt toae
(3.37)

and using the property 2- D;; = —1/w, (3.28)

Multiplying through by W=t u
f —lo) " U1



results in

aX; * tf—f t,—f,,, Vo T ) w0
B 2 2 )\1+ r 0%
Tt —to) un \ (b5 —t) wr X, )

Finally using the costate mapping principle (3.34), the equation is simplified to

p) N A 2 A Of
91 Z e Dyx 1 1
=1 (3.38)

N
56%+@’TZAL D+ A da;;l (tf_fo).wl ( A +0T 88)?1) . (3.39)
The left-hand side of the equation is the discretized form of the continuous costate
dynamics at the initial LGL point (¢;). The right-hand side of the equation is the
discrete form the costate boundary condition (2.62). This KKT condition (3.39)
shows that at the initial LGL point, the costate estimate A;, does not satisfy the
boundary condition or the differential equation, but a linear combination of the two.

The KKT condition derived from the final state can be used with the properties
Diny = —(wn/wy) - Din, k=1,--- ,N—1(3.27) and 2- Dyy = 1/wy (3.28) to show
that

agN 2 Av  Ofy
Xy (t,—t Z(tf—t wy Dy (tf—to) ‘wy 0Xy

B 2 2 Ay 0@ L. 00
- (tf—t,,)-wN (t_f—to) wWN 6XN 8X1\, '

Again using the the costate mapping principle (3.34), the equation is simplified to

(3.40)

Ign
+ ,_t 2. ZAk ‘Dyk+An-

ofn 2 0 . 9¢
Xy (t ( ) '

8XN (tf - to) cWxN B 6XN tv aXN

(3.41)
This condition also indicates that the costate estimate at the final LGL point, Ay,
does not satisfy the boundary condition or the differential equation, but a linear

combination of the two. The correction of these errors is the primary motivation for
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this thesis.
Taking the partial derivatives of the Lagrangian (3.29) with respect to the control

variables, Uy, results in the second set of KKT conditions. These conditions are

0J, _ (ty —1,) Ogk - Of
= > A =—=0. 3.42
90, = 2 au, T ™M au, (342)
Multiplying both sides of the equation by (t——;‘-)—_ gives the equation in the
f—lo)" W
desired form, so that _
agk 2 AJ; af;\

o0, TG —t) we 9U; " ° (343)

This equation is simplified using the costate mapping principle (3.34). resulting in

g ofy. N
_BU‘. + A _8Uk =0. (3.44)

This result is the discretized form of the continuous necessary condition for the control
(2.60).

The KKT conditions for the Legendre pseudospectral method, define the set of
conditions that approximate the continuous costate dynamics. The costate can be
estimated from the KKT conditions using the costate mapping principle (3.34). The
costate estimate however, does not satisfy the discrete forin of the costate dynamics at
the boundaries. These defects in the costate equations lead to significant errors in the
costate estimates, especially at the boundary points. The Legendre pseudospectral
method works well on many problems, but has the deficiency that the KKT conditions
which define the solution to the transcribed NLP are not the same as the discretized
first-order necessary conditions from the continuous optimal control problem. Im-
proving the Legendre pseudospectral method is the most important motivation for

this thesis.
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Chapter 4

Integral Gauss Pseudospectral

Method

The previous chapter outlined the deficiencies of the Legendre pseudospectral method.
To correct these deficiencies, a pseudospectral transcription is proposed, which is
based on the integral form of the optimal control problem. It is shown that this
Gauss pseudospectral method does not suffer from the deficiencies of the Legendre
pseudospectral method and will return more accurate solutions.

The Legendre pseudospectral method transcribes a continuous optimal control
problem in differential form by discretizing the problem and collocating at a set of
Gauss-Lobatto points. These points have the property that they include the bound-
aries of the interval between -1 and 1. To remove these end points and collocate at a
set of Gauss points, which are all interior to the interval (—1,1), the dependence on
the boundary points must be removed or expressed in a different form. The transfor-
mation is done by reformulating the optimal control problem using an equivalent form
of the state dynamics. This equivalent form is found by integrating the differential
dynamics and adding in the initial condition.

In this chapter, it is shown that the continuous optimal control problem in integral
form satisfies the same optimality conditions as the differential form of the problem.
This result allows a pseudospectral transcription to be defined in terms of the integral

form of the continuous optimal control problem. The discretization is accomplished
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at a set of Gauss points using the integration approximation matrix, which allows the
optimal control problem to be transcribed into a nonlinear program (NLP).

It is also shown that the Karush-Kuhn-Tucker (KKT) conditions of the NLP
from the integral method are exactly equal to the discretized first-order optimality
conditions. This relation indicates that solving the optimal control problem using
the integral pseudospectral method is consistent with the continuous optimal control
problem, and the direct and indirect formulations are the same. This result is not true
of other pseudospectral methods. This consistency allows the Gauss pseudospectral
method to return more accurate solutions than other methods.

The Gauss pseudospectral method has also been shown to be consistent for a
large class of problems, including free time, multiple phase, path constraints, and

those requiring Pontryagin's maximum principle.

4.1 Analytical Necessary Conditions

Consider the general optimal control problem, (2.51) - (2.53), but with the differential

dynamic constraints defined as integrals, so that

x(t) = x(to) + /t f(x(7),u(r), ) dr, (4.1)

where x(t) € R™ is the state, u(t) € R™ is the control and f: R® x R™ x R — R" is
the right hand side of the differential equation describing the dynamics.

The cost function remains the same as the differential form, and is stated most
generally in Bolza form as the sum of a terminal cost, ® : R" x R — R, and an

integrated cost, g : R" x R™ x R — R. The cost is then
ty
T =8ty t)+ [ ot u(t),tat. (42)
to
The boundary conditions are stated in their most general form as

¢ (X(to), to, X(tf), tf) =0, (43)
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where ¢ : R" x R x R" x R — R?. The final state, x(t ), occurring in the expressions
for the final cost, @, and in the boundary conditions, ¢, is defined in terms of the

states and controls at the interior points of the problem, so that

x(ty) = x(to) + [ fx(t), u(t). 1) dt . (4.4)

1o

This relation is necessary to allow for the discretization at Gauss points (see Section
4.2.3). Both the initial time, t,, and the final time, t;, can be free. The optimal
control problem in this form will be referred to as the integral Bolza problem.

The solution to the integral Bolza problem is the same as the solution to the
differential form of the problem. This equivalence can be seen by looking at the

first-order necessary conditions for optimality.

Theorem 4.1.1. The first-order optimality conditions for the integral Bolza problem
are equivalent to the mecessary conditions for the Bolza problem in differential form
(2.59). The costates from the differential and integral forms can be related by

o0 . d¢
ox(t;) © Dalty)

tf
AT (1) = / pTdr + (4.5)
t
Proof. The necessary conditions for the integral Bolza problem are derived using the
calculus of variations on the augmented cost function or Lagrangian. The augmented
cost function is created by adjoining the dynamic constraints (4.1) with costates,
p(t) € R™, and the boundary conditions (4.3) by Lagrange multipliers, » € R?. The

augmented cost is then

Jo = @ (x(t5), t5) = v7 - @ (X(to), to, X(t5), 1) _
+ /t:f [g (x,u,t) — p7 - (x —x(t,) — /t: f(x,u,7) dT)] dt . 0

Note that the adjoints p are not the same as the costates A from the differential
formulation (see Section 2.4). According to Lagrange theory, the stationary point of
the constrained cost J (4.2), is equal to the stationary point of the unconstrained

augmented cost J, (4.6).
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Before applying the calculus of variations, a more convenient form of the aug-
mented cost is found. Taking advantage of a property of the double integral allows
for the independent variables in the integrands to be switched. For example, in the

double integral

/t,, ’ (f (t) /t:g(f) d'r) dt = /ttf ( /t ¥ f(r) dT) g(t) dt, 4.7)

the independent variables of integration, ¢ and 7, are switched between the left and
right sides of the equation. Applying the integration substitution (4.7) to the aug-
mented cost (4.6) allows the independent variables, ¢ and 7, in the double integral to

be switched resulting in

Jo = o (x(tf)v tf) - VT : ¢ (x(to)= Lo, X(tf), tf)

+ /t:f [g (x,u,t) — p7 - (x — x(t,)) + /ttf pdr - f(x,u,t)} it (4.8)

Now the first-order variation is taken with respect to all free variables. Note that
when taking the variation of the cost with respect to the final time the form of (4.6)
is used while the variation of the cost with respect to the initial time the form of
(4.8) is used. These forms are used because the integrand in (4.6) does not depend
on the final time and the integrand in (4.8) does not depend on the initial time. This

procedure is valid because both forms of the cost, (4.6) and (4.8), are equivalent. The
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first-order variation of the augmented cost becomes

(4.9)
Sto

t=to

' [9g 99 T !
= - A x=x(t,)— | £f-dr ) —pT
+/t,, [axéx—!— auéu op (x x(15) /to d ) p’ox

ty ty
+ / pldr =—6x + / pldr- ﬁ(Su + pT(Sx,,] dt .
¢ ‘ ou

There are many things that can be done to simplify the expression. First, the variation
of the final states is expressed in terms of the variations of the initial states and
intermediate points. This expression is used because the variation of the final state
is not independent, but depends on the variations of the other independent variables
based on the relation between the final state and the interior states (4.4). The first-

order variation of the final state 1s

5%s = 0%, + f U e X dt + £(t;)5t; — £(to)5t (4.10)
Xf = 0X,o . Ix p.¢ ou 9143} .0)00s - .

The final state variation (4.10) is substituted into the variation of the augmented cost

(4.9) and like terms can be grouped. Note that the terms

0% - 0

—Bx(tf) and v -—8X(tf)7 (4.11)

do not depend on time, and therefore can be moved inside the integral. Also in the
final term of the integrand in (4.9), the variation of the initial state dx,, does not

depend on time and can be moved outside the integral. The simplified variation is
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then

d¢ 8% d¢ ts
T + 7 + / Tdt) 5%,
ox(ty) T ox(t;) ~ ox(ty) S, ¥

5ty

+ (9 —p (x ~ o) - /t de)) =ty

6% ¢ 0% r O
(&, e~ ft) oy

N (_ g+pT - (x = x(to)) — [ ! pidr- f) - (4.12)

dp 0P fol0]
+ (—VTa—t,, - mf(to) +7 i (tf)f(t")) ot,

YT (89 o /*f i 0% , a¢> 8f)
= _ d S Sk N el
+/ta [(dx P +(t Pt o) T i) k)
t
—6pT - (x—x(to)—/ fd'r)
to
g o 8 . 9 \ Of
+(%6u+(/t pdT+Bx(tf)+V ax(t)) "u du| dt.

The necessary conditions for stationary point are defined as the conditions so that

6J, =-wTo+ (—-V

for any arbitrary variation of the independent variables the variation of the cost is
zero. The necessary conditions for the optimal solution are therefore found by setting
the coefficients of the independent increments, év, 0x,, 0t,, 6tf, 0x, ép, and du, equal

to zero. The resulting necessary conditions are
t

x(t) =x(t,) + [ f(x,u,7)dr,

g ty 8% ap \ of
T _ ~7J T I & bl
P “ax+</t Pt oty 8x(tf)) ox’
_9g Y or 09 r_ 09 of (4.13)
0=u™ (/ P e Y axey) o
¢ (x(to)vtm X(tf), tf) =0 5

ty 0% o¢ d¢
Tdt 4+ T =7 .
/t,, P& oty ¥ axtt) " ox(t)
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The condition for the terminal time

glty)—p" (ts) (X(tf) = x(to) — /: fdt)

80 . 9 206 00
(o~ ey ) G g =0

(4.14)

tr
is reduced by setting the term x(t7) —x(t,) — / f- dt equal to zero. This term must

to
be zero to satisfy the definition of the final state relation (4.4). The terminal time

condition is then

0% ¢ 9 0% i
g(tf) =+ (m — VTa—x@) f(fj) — l/Ta—t; + a—tf‘ =0. (413)

The condition for the initial time

—g(to)+D7 (t0) (X(to) — x(to)) / T pTdt - 1(t,)

(22 08 (416

oxt;) ax(tf))f(t")_” o,

is simplified to

N I T T I Y ]
—~g(ly) — (/; p dt+(‘)x(tf) —-v Bx(tf))ﬂt")_u -(,)—t;-—O. (4.17)

0

If there exists a solution to the necessary conditions for the differential problem
(2.59), then the conditions (4.13), (4.15), and (4.17) define an equivalent solution if

the costate, A, is defined as

o [Y o9 ¢
AT(t)—/t pTdT+ax(tf) _"Tax(tf)' (4.18)

The relation (4.18), indicates that the differential equation for the costate, A(t)

(second equation in (2.59)). is the same as the integral equation involving p(¢), (second
equation in (4.13)) because of the derivative of (4.18) is
A (t)=-p"(t). (4.19)
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The relation (4.18) also defines the same boundary conditions of the costate, A(t).
The boundary at the final time comes from evaluating the relation (4.18) at the final
time. The boundary condition at the initial time comes from evaluating the relation
(4.18) at the initial time, and substituting into the last necessary condition in (4.13).

Therefore, the boundary conditions

0% r O0¢
Alt)" = ox(ty)  © ox(ty)
B ty T oo _ 0 _ 9¢
Afto)" = / Pl ) T B Y ()

(4.20)

are equivalent to (2.62). Using the boundary conditions (4.20), it can be seen that

the conditions for the initial and final times, (4.15) and (4.17), can be expressed as

glte) = AT(t) - £(ts) — 722 — 0,
Oto (4.21)
0o od )
olty) + MT(t)) - K5) w752 4 T2 =0,

which are the same as (2.63).

This derivation shows that first-order necessary conditions for the integral Bolza
problem (4.1)-(4.3) are equivalent to the necessary conditions for the differential op-
timal control problem (2.531) - (2.53). It also indicates that the costates from the
integral Bolza problem and the differential form of the problem can be related by
(4.5) a

Theorem 4.1.1 shows that the necessary conditions are equivalent for the integral
and differential forms of the problem. Therefore, any stationary points of the problem
in integral form will be exactly the same as the stationary points of the differential

problem, and the global minimum for both problems will also be the same.
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4.1.1 Pontryagin’s Maximum Principle

In Section 4.1, it was assumed that the control, u(t) € R™, was uniquely determined
quel]

from the algebraic equation

0= g—i(t) + AT (t) - gg(t) = %{—f—(t) . (4.22)
For some problems, such as those with control path constraints, it may not be possible
to determine the control from (4.22). For these problems, Pontryagin’s maximum
principle is applied to determine the control (see Section 2.4.3). It can be shown
that the solution to the integral Bolza problem also satisfies Pontryagin's maximum
principle.

Consider a general nonlinear optimal control problem with fixed initial and final

times. The cost is

J = ®(x(ts), t;) + /t / g(x,u,t) dt (4.23)

and the dynamics are written in integral form, so that
t
x(t) = x(t,) + / f(x,u,7)dr. (4.24)
to
The boundary conditions are

d(x(t0), to, x(t5),t5) =0, (4.25)

with a control path constraint

u(t) e U, (4.26)
where U defines the set of admissible controls.

Theorem 4.1.2. The optimal control of the integral Bolza problem satisfies Pontrya-

gin’s maximum principle.

Proof. In order for the control to be optimal, the variation of the cost at the opti-

mal solution for sufficiently small admissible variations in the control, must be non-
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* negative ([10], [45]). so that

éJ(u*,é6u) >0,
(4.27)
Véu st. w+dueU.

The integral Bolza problem can be shown to satisfy Pontryagin’s maximum principle,
by applying the condition (4.27) to the augmented cost function. The first step is to
form the augmented cost function and find the first-order variation. The variation

(from Section 4.1) is

_ . od B d¢ o7 do i
R R ot Bt ) #xt

+ [ (Gms ([ vorars 5 - 5its) )
- (x(t) —x(to) — [ fdr) 5p

dg iy oP o of
* (E * (/ T B "Tax(tf)) '%> 5“] @ s

At the optimal solution, the state and costate necessary conditions (4.13) along with

the boundary constraints must be are satisfied. Simplifying the variation of the cost

at the optimal solution results in

_[Y[( (" x, ., 8 . 3¢ \ o
&L,,—/ta {(-a—l;+(/t pd’r-l—ax(tf)—u Bx(tf)).%)au] dt . (4.29)

The first-order change of the integrand with respect to changes in the control alone

can be expressed as

dg . R o r 00 o\ .
(ﬁ * (/ P Bty ax(m) ' %) bu=
g(u” + du) + (/t- ’ pldr+ af(qt)f) - UTB)?((Z—)) f(u* + du)  (4.30)




Note that because of the definition of the costate relation (4.5) and the definition of

the Hamiltonian, H = g + A - f, the relation (4.30) is equivalent to (2.72), which is

oH

du

(u*) - éu = H(u* + éu) — H(u"). (4.31)

For the variation of the cost to be non-negative for any admissible control variation,

it must be true that

ty ¢ 0
g(u® + du)+ / pldr + 0 _ vT ¢ ). f(u™ + d6u) >
: ox(ty) " ox(ty) ws2)
ts 0% O¢ '
")+ Tdr + -7 ) -f(u*) .
g(e’) (/t P ax(ty)  Ox(ty) )
Therefore, the optimal control is the admissible control that minimizes
ts 0P O0¢
x*,u,t) + / Ndr + -7 >-fx*,u,t , 4.33
o)+ ([0 g - ) o, 8

for all time. This equation is the same condition as (2.74) because of the costate
relation (4.5), and the definition of the Hamiltonian.
This derivation demonstrates that the solution to the integral Bolza problem sat-

isfies Pontryagin’s maxiinum principle. i

4.2 Discrete Transformation

The previous sections demonstrated that the solution to the integral Bolza problem is
equivalent to the solution to the continuous problem in differential form. To find an
approximate solution to the continuous optimal control problem, the integral Bolza
problem is discretized.

To discretize the integral Bolza problem several steps must be taken. The first is
to change the time interval from arbitrary bounds t € [t,,tf] to the interval [-1,1],
which is more convenient for the discretization. The next step is to discretize the
integral form of the dynamic constraints using an integration approximation matrix,

and finally the cost can be approximated using the Gauss quadrature rule. These
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steps allow the continuous optimal control problem to be transcribed into a discrete

NLP.

4.2.1 Time intervals

The first step in defining the approximate solution of the integral Bolza problem is to
map the independent variable of time to a new interval. Both the Gauss quadrature
rule and the integration approximation matrix are applied on the time interval 7 €
[—1,1]. General problems on the interval ¢ € [t,, ] can be scaled to [—1, 1] using the

relation

_ (tg—to) - T+ (ts + o)

' 2

(4.34)

This relation allows an integral on a general interval to be rescaled and then approx-
imated by the Gauss quadrature rule, so that
to)

! e = L=te)

' d N(tf-to) al ¢ 435
o R AL 'TN—Z—__;f('k)'wk- (4.35)

The same time scaling can be done for the integral form of the dynamics, so that
! (tf - to) T
/ J(7)dT = ——— 5 / f(7) dr. (4.36)
to “~ -1

4.2.2 Integration Approximation Matrix

The discrete transformation of the continuous optimal control problem relies on an
approximation of the dynamic constraints. The integral form of the differential dy-

namics,

x(t) = x(t,) + / f(x(7),u(r),7) dr, (4.37)

to
is approximated using an integration approximation matrix [2]. The integration ap-
proximation matrix approximates the integral of a function by using the exact integral
of an interpolating polynomial fit to the function.

The integration approximation matrix is derived from the Lagrange interpolating
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polynomials at a set of collocation points, —1 < t; < --- < ty < 1. The associated

Lagrange polynomials [63] are

. w(t)
Ly(t) = ————, 4.38
(1) (t — te)u (t) (4.38)
where t1,- - .1y are the roots of the polynomial w(t), where
N
wity = [Jet-t). (4.39)
i=1
The Lagrange polynomials satisfy the property at the collocation points
1 i=k
Li(t;) = 0 = , (4.40)
0 i#£k

so that the Lagrange interpolation formula approximates a function by a polynomial

(see Section 2.1.1)

7

N
F8) =Y f(te) - Le(?) - (4.41)

k=1
Definition 4.2.1. The integration approzimation matriz, A € RV*Y, is a matrir
which approzimetes the integral of a function from -1 to t;, where t; is the ith collo-

cation point, so that
ti N
/ frydr = Aw- f(te). (4.42)
-1 k=1

The entries in the matrix A are found by integrating the Lagrange interpolation

formula (4.41), so that

t; t N N t;
/ f(r)ydr = / Zf(tk) s Ly(7) dT = Zf(tk)/ Li(t) dr,
-1 -1 3= k=1 -1

) (4.43)
A = / " Li(r) dr .

-1

The elements in the matrix A4 for Gauss points can also be approximated by using



Axelsson’s algorithm [2],

n—2
A = % (1 +t + Z Py (tx) [Pet1(ti) — Po-1(ts)] + Prv_1(te) [Pn(ti) — Py—o(t)] | »

= (4/44)
where w; is the ith Gauss weight, and P; is the jth Legendre polynomial.

Using the integration approximation matrix A is then equivalent to finding the
Lagrange interpolating polynomial and taking the exact integral from -1 to t;. The
Lagrange interpolating polynomial is exact for polynomials of degree N — 1, therefore
the integration approximation matrix is also exact for polynomials of degree N — 1,
so that

J-1

t; N
/ g(r)dr =3 Au-glte), Vglt) € P¥. (4.45)
k=1

Convergence

Consider the integration approximation matrix, A € R¥*¥_ which integrates a func-
tion from —1 to t; exactly for polynomials of degree N —1 or less. For general functions

there will be some error involved in the approximate integration, so that
t N
[ 10y =Y Aue sw) + 5. (4.46)
-1 k=1

Theorem 4.2.1. For functions f(t) € CN[-1,1], the error in the pseudospectral
integration at the ith Gauss point is bounded by

2
m )

d"f(¢)
dtN

|E:| < (el-1,1], (4.47)

and the pseudospectral integral will converge for any f(t) whose derivatives are bounded,

as the number of nodes used approaches infinity, so that

lim
N—oo

—0, Vi. (4.48)

t; N
/ flr) dT—ZAik‘f(tk)
-1 k=1

Proof. The error in the integration using the approximation matrix can be bounded
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by looking at the error of the Lagrange interpolating polynomial. The error in the

Lagrange interpolating polynomial, g(t) = S"n_, f(tx) - L(t), is known to be [28]

avf 1

W(C) = w(t) = e(t), (4.49)

ft) —g(t) = 1

for infinitely differentiable functions f(t) € C>[-1, 1], where w(t) is defined as (4.39),

and ( is a function of { and lies on the interval, [—1,1]. The integral of f(t) is

/_tli f(r)dr = /-tl' g(r)dr + /j e(r) dr. (4.50)

The polynomial, g(t), is integrated exactly by the integration approximation matrix

because it is of degree N — 1, so that

/_ 1 f(r) dr = ;Aik Flte) + /_ 1 o(r) dr . (4.51)

Therefore, the maximum error of integration is bounded by the integral of the absolute

value of interpolation error, so that

l/'j (7) dr -Z Ap- Tt =

- l/ e(7) d*‘ : (4.52)

The integral of the interpolation error can then be bounded by

/j e(r) dr

o

Hlavf(0) 1
S/_l T ]—ﬂ-w(r)'dr

HavHO 1
S[ v a e

dr,

HdvQ) 1 '

< /_ N w(r)|dr (4.53)
< | Q)

S N'(/l ()| dr,

@V fQ)] 2

= aty N!‘
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Figure 4-1: Integration Approximation Matrix Convergence

d*f(¢)
dt*
approximate integration will approach zero as the number of nodes, N. approaches

< C, Vk, then the error in the

If the derivatives of f(t) are bounded, l

infinity, so that

[ s =3 a0 0. (454)

k=1

lim
N—oc

The error in the approximate integrétion is bounded by the error in the polynomial
interpolation (4.52), therefore the approximate integral will converge for any function

that can be approximated by a polynomial. |

The convergence properties of the integration approximation matrix were tested
on three different functions, #1°, exp(¢), and |¢|- The infinity norm error between the
approximate integral and the exact integral is plotted as a function of the number
of nodes used in Fig. 4-1. The integration of the first function ¢!° is exact, within
the numerical round-off error, when using 11 nodes. This result is as expected for a

10-th degree polynomial. The error in the integration of exp(t), which is infinitely

76




differentiable, tends to zero very quickly. Finally, the error in the integration of |¢|,
which has a discontinuous first derivative, is tending to zero but at a much slower
rate.

These results indicate that the error in the approximate integration of functions
will converge to zero very quickly (exponentially) if the function is infinitely differen-

tiable.

Integration Approximation Matrix Adjoint

In the analysis of the integral pseudospectral method, it is convenient to use the

adjoint of the integration matrix A.

Lemma 4.2.1. The adjoint of A is

T = ?—lz : 4 55
AL - Aki - (4.55)

i

Proof. The adjoint, AT, is a generalization of a transpose with a non-Euclidean inner

product. If the discrete inner product used is

AT
<fyg>= Z Wi fre - g (4.56)
k=1
then the adjoint of A must satisfy
N N N N
Swn fie S Awgi= w3 Al S ws7)
k=1 i=1 i=1 k=1
for every f, g € RV, where w; is the Gauss quadrature weights. O

It can be shown that the adjoint of A approximates the integral from ¢; to 1, so

that

1 N
/ Fr) dra SO AL ft), i=1,0 N
b k=1

1
Al = / Li(7) dr .
t.

1
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Ordinary Differential Equations

The integration approximation matrix can be used to solve initial value problems [2].

The ordinary differential equation

dx

— = f{x(t),1),

o (x(),?) (459)
x(t,) = X, ,

can be integrated into the form

x(t) = x(t,) + /tt f(x(7),7) d7, (w50

x(to) =Xo,

where x(t) € R", and f : R® x R — R™. The dynamic equation (4.60) can then
be approximated by the integration approximation matrix A, using the approximate

state X(t) ~ x(t). The approximate state at the ith Gauss point is

X(t) = X(t) + L2 S Ay 6X )10,
2 = (4.61)

X(to) =%, -

This set of N + 1 equations (N equations for the state dynamics and one for the
boundary condition) define the approximate state at N + 1 points (the boundary

point plus the N Gauss points).

Lemma 4.2.2. The pseudospectral solution to the initial value problem satisfies the

boundary condition and differential equation at the collocation points, so that

X(to) = Lo »

. 4.62
%]t‘{(ti)=ﬂx(ti),ti)7 1=1,---,N. (462

Proof. The approximation of the state X(t) is the integral of the polynomial approx-
imation to the function f(X(¢z), ) based on the definition of the integral approxi-
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mation matrix, so that

+ N
X() = X(ta) + [ 38K (t) 1) Lulr) dr (4.63)
to k=1
where Li(t). k= 1,--- . N, are the Lagrange interpolating polynomials. Differentiat-

ing the approximation of the state (4.63) results in

%(t) = ; B(X(tk). te) - Li(t) - (4.64)

Using the property of the Lagrange polynomials (4.40), the derivative of the approx-

imate state at the collocation points becomes

%(ti) = f(X(t:),t;), i=1,---,N. (4.65)

This result means that the approximate state X(t) satisfies the initial condition and

the differential equation at all the collocation points. O

The approximate state can be found by solving (4.61) to determine its value at the
N collocation points. Using the initia! condition. the value of the approximate state
is known at a total of NV + 1 points and a polynomial of degree N can be fit to these
points. This fact implies that X(¢) is a degree N polynomial, and is in agreement
with (4.63), which indicates that the approximate state is the integral of a degree
N — 1 polynomial.

An example of an initial value problem is
i(t) = —2-2(t) +3- €, z(0) = =3, (4.66)
which has an exact solution of
z(t) = —4-e% + ¢ . (4.67)

This problem can be solved using the pseudospectral integration approximation on
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Figure 4-2: Initial Value Problem Convergence

the interval from [0, 1] by solving the linear system for Xy.
1
Xy =Xn(0)+5 A (<2 Xy +3-€) (4.68)

X~ € RY is the vector of the approximation to z(t) at the N Gauss points, Xy (0) =
—3 is the initial condition, and ty € R¥ is the vector of times at the Gauss points.
The infinity norm error between the pseudospectral solution and the true solution
is shown as a function of the number of Gauss nodes used in Fig. 4-2. The conver-
gence plot indicates that the pseudospectral approximation is converging very rapidly

(exponentially) to the exact solution.

4.2.3 Pseudospectral Transcription

The integration approximation matrix along with the Gauss quadrature rule can now

be used to discretize the integral Bolza problem into an NLP.
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The pseudospectral transcription of the integral form of the continuous optimal
control problem (4.1 - 4.4) is expressed as an NLP where the objective is to miniize
an algebraic cost function subject to a set of algebraic constraint functions. The cost
is

(tr — t) &
J = 0(X(tg)tg) + 3 g(Xe Upo ta) - wi (4.69)

k=1
which comes from approximating the integral in the continuous cost (4.2) with a Gauss
quadrature. Note that a notation simplification has been made for the approximate

states and controls at the Gauss points, so that

X, = X(ti) eR",
(4.70)
UizU(ti)ERm, i=1,---,N.

The integral form of the dynamic constraints (4.1) are approximated using the integral

approximation matrix, so that
. (t = to) v . : -
-Xizx(to)_'__.2_244ik'f(x-k7Uk:tk) 3 1= 17“' :]\’ . (4{1)
k=1

The nonlinear boundary constraints,
d(X(15), to, X(tf),t5) =0, (4.72)

remain unchanged from the continuous form (4.3). Finally, the final states occurring
in (4.69) and (4.72) are defined as

X(t9) = X(to) + L1 Sy (X, U @73)

k=1
which is a Gauss quadrature approximation to the continuous definition of the final
states (4.4).
The algebraic cost (4.69), along with the nonlinear constraints (4.71 - 4.72), make

up the nonlinear programming problem, which can then be solved by well-developed
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NLP algorithms and software. Finding the approximate solution to the continuous
optimal control problem in this way is referred to as the direct solution, because
the continuous problem is approximated as an NLP and solved directly. An indirect
solution to the continuous optimal control problem can be found by approximating

the continuous first-order necessary conditions.

Indirect Pseudospectral Solution

A solution to the integral Bolza problem can be found by pseudospectral collocation
of the continuous first-order necessary conditions (4.13). This discretization at the set
of Gauss points converts the continuous necessary conditions into a set of nonlinear

algebraic equations, so that

X; = X(t )+(t—f'—t°—)§:,4- (X, U, t)
1 o 2 ra ik ky Yk k)
dg (tr — to) o ¢ 8% o of
T _ J .pT Y S .
Pi=axt ( 2 Z_:A“f Petaxe) ~Y axe) ) ax%
9y 0% s 0 of
0= 70, ( EA Pt ox) " c')X(ff)) 20,
i=1.-.. N, (4.74)

¢(X(t0)7 t0= X(tf)7 tf) =0 9
(st §~ y p7 4 02 _yr. B0 r 0

5 —-vt . =v

T Y X Y X )

k=1

The variables that satisfy this set of equations, X;, U;,P;,i=1,---, N, and v, make
up an approximate solution of the integral Bolza problem. Solving the problem in

this way is classified as an indirect approach to solving the problem.
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4.3 KKT Conditions

The direct approach to approximate the solution to the integral Bolza problem is
found by solving the nonlinear program defined by the cost (4.69) and constraints
(4.71 - 4.72). The solution to the NLP is defined by the Karush-Kuhn-Tucker (KKT)
conditions. These KKT conditions are the first-order optimality conditions for the
NLP. It will be shown that the KKT conditions are equivalent to the discretized
form of the continuous first-order necessary conditions for the integral Bolza problem
(4.74). First consider the case with fixed initial and final times, control uniquely
determined by the equation )

g—i+,\T-%=o, (4.75)

and no state or control path constraints.

Theorem 4.3.1. The KKT conditions from the resulting NLP of the pseudospectral
discretization are exactly equivalent to the discretized form of the first-order optimality
conditions (4.74). These conditions are equivalent by relating the KKT multipliers of
the NLP, P;, to the approzimate integral costates at the Gauss points, P;, using the

integral costate mapping principle, so that
Pi=———P;, i=1---.N. (4.76)

Proof. The KKT conditions for the NLP from discretizing the continuous problem
(4.69 - 4.73), are found by applying Karush-Kuhn-Tucker theorem [4]. These condi-
tions define the direct solution to the integral Bolza problem. The cost function is

augmented with KKT multipliers P € R" and Lagrange multipliers v € RY, so that

A’
t—t,
Jo= ®(X(ts), t5) + (—f—2—l ; wi - 9(Xk, Uy, tk)

N N i
-3 B (Xi ~X(t)) - US4 fX,, UL, tu) (4.77)

2 k=1

-7 ¢(X(to)a to, X(tf): tf) :
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The KKT conditions are found by setting the partial derivatives of the augmented
cost with respect to all free variables equal to zero. The free variables in this case
are the multipliers, P and v, the state variables at the Gauss points, X, the control
variables at the Gauss points, U, and finally the initial state, X(¢,).

The partial of the augmented cost with respect to the multipliers set equal to zero,

return the original constraints, so that

N
e _ o X, —X(t,) - ("J’T") 3 A £(Xp Ui, ta)
oP; — (4.78)
aJ,
2% = 0= G(X(to), to X(t1), 1)

Setting the partial of the augmented cost with respect to the states results in

0o ~ T (ty — to) 6g (ty T of
ax, 0= “hituTa— et ZA’” X,
(4.79)
S 1) . 0 \ Of
+u 2 (tf) Y Xa)) X

Note that chain rule was applied to final cost and boundary constraint terms because
the final state is expressed in terms of state at all collocation points (4.73). Taking
advantage of the adjoint of A, Lemma 4.2.1, and dividing through by the Gauss

. (ty—t .
weights w; and ‘—LQ—Q, results in

0= 2 -7 Jg ( oo r O¢ ) of

- -(tf—to)Pi +ax- Xty  © X)) X,

o (4.80)

tf 0) ~T
Z wk(tf—t Pk OX

Simplification by the integral costate mapping principle defines the relation between
the KKT multipliers P;, and the approximation for the integral costate P(t;)=P

so that
2

— = P, i=1,---,N. .
o iyt 1T L (4.81)

Piz
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Using the integral costate mapping principle, the constraint (4.80) is reduced to

dg (ts — to) % d¢ of
Pl= 2 4 [N AL Pl ——— 0T | . (482
i T BX, ( 2 g w Pt oxmy Y Xy ) ax 482
This equation is the discrete form of the continuous costate dynamics for the integral
Bolza problem.

The same simplification procedure can be applied for the partial derivatives of the

augmented cost (4.77) with respect to the control. The result is

N _

g (tr —to) t BT oo r O¢ of

0= : Ay Prt -V | = - 4.83

au, + ( 2 A; w Pt oxay TV ey ) aw 48

This equation is the discrete form of the control equation for the continuous integral
problem.

The final KKT condition is found by taking the partial of the augmented cost

with respect to the initial state X(¢,), so that

8, Yo.r 9% R ¥ O
Xty 0= D P+ X)) Y aXay Y X (484)

Applying the integral costate mapping principle (4.81) results in

(tr — to) — 8% o d¢ ;
——2——"Z1Uk'P{+5‘X(—tf5—VT'a—XE-)—VT'm- (483)

k=1

This equation is the discrete form of the costate boundary conditions for the integral
problem.

The resulting KKT conditions (4.78, 4.82, 4.83, 4.85) define a set of nonlinear
algebraic conditions, which define the solution to the NLP. This set of equations
is exactly equivalent to the discretized form of the continuous necessary conditions
(4.74), including the boundary points. The equivalence of the KKT conditions and the
discretized necessary conditions implies that the KKT multipliers satisfy the discrete

form of the integral costate dynamics and the integral costate mapping principle is



valid. This demonstrates the ability to estimate the costates of the integral Bolza

problem directly from the KKT multipliers from the direct solution. |

Numerical evidence has suggested that the costate estimates from the integral
Bolza problem are significantly more accurate than the costate estimates of the Leg-
endre pseudospectral method.

A summary of the direct and indirect relationship for both the Legendre pseu-
dospectral method and the Gauss pseudospectral method is shown in Fig. 4-3. The
chart shows the differential formulations on the left half and the integral formulations
on the right. In the second column the original optimal control problem is at the top.
Moving down the column is the indirect formulation of the differential form. The first
step is the formulation of the continuous first-order necessary conditions which define
the solution to the optimal control problem, indicated by the double arrow. The last
step is the pseudospectral discretization of the necessary conditions resulting in a set
of algebraic equations which approximate the solution, indicated by the single arrow.
In the first column is the direct formulation of the problem. The continuous prob-
lem is discretized into a discrete NLP. The next step is the formulation of the KKT
conditions which define the solution to the NLP. For the differential pseudospectral
transcription, the KKT conditions are not the same as the discretized first-order nec-
essary conditions (see Section 3.3.2). This error is due to the presence of the defects
in the costate dynamics and boundary conditions resulting from the discretization at
LGL points, and is not the case for the Gauss pseudospectral transcription.

The third column shows the indirect formulation of the optimal control problem in
integral form. The first step is the formulation of the continuous first-order necessary
conditions. These conditions have been shown to be equivalent to the conditions of
the differential formulation based on the relationship between the two costates. The
final step is the pseudospectral discretization of the necessary conditions at Gauss
points. In the fourth column is the direct formulation of the problem. The contin-
uous optimal control problem in integral form is transcribed to an NLP which has
a solution defined by the KKT conditions. This set of algebraic KKT conditions is

exactly equivalent to the discretized first-order necessary conditions. This relation-
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Figure 4-3: Direct/Indirect Pseudospectral Solutions

87



Continuous

Continuous <«—» Necessary Conditions
Control Problem Optimality TPBVP
Conditions
A Transcription
at Gauss
points
(Indirect)
Transcription . .
ot Gauss Discretized
oin ogs
(Direct) Necessary Conditions
Costate A
v Mapping ‘
. Optimality .
Discrete Conditions Discrete
4> . . oy
NLP Optimality Conditions
KKT conditions

Figure 4-4: Gauss Pseudospectral Discretization

ship indicates that the KKT conditions are consistent with the continuous first-order
necessary conditions. The discretization of the optimal control problem at Gauss
points has no defects, so that the direct solution is exactly equivalent to the indirect
solution. This result means that the operations of discretization and optimization
commute, and the solution is the same whether vou discretize then optimize, or opti-
mize then discretize. This consistency is shown in Fig. 4-4, which is not true of other

pseudospectral methods.

4.3.1 Pontryagin

Now consider the case where the control can not be determined from (4.75) and
Pontryagin’s maximum principle is required to determine the first-order necessary
conditions (see Section 4.1.1).

Consider the discretized optimal control problem with a control inequality con-
straint. The states and controls are discretized with N Gauss collocation points,

Gauss weights wy, and integration approximation matrix A. The cost is

N
tr—t,
7= 2(X(t7),t) + U1 S (X, U ), (4.86)
k=1
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with dvnamic constraints in integral form,

N
ty — 1, .
X; = X(t) + (—f—z—)E Auf(X, U t), i=1,- N, (4.87)

i=1

boundary constraints,

D (X(t5). to. X(tf)v tf) =0, (488)

and control path constraint,
m(UIt,)SO 1=1 ,N (489)

The control constraint, m : R™ x R — R?, defines the set of admissible controls at

each Gauss point.

Theorem 4.3.2. The pseudospectral transcription of the integral Bolza problem also

satisfies Pontryagin’s maximum principle at the collocation points.

Proof. The pseudospectral transcription of the integral Bolza problem is shown to
satisfy Pontryvagin's maximum principle at the collocation points by deriving the
KKT conditions from the angmented cost function.

The Lagrangian, or augmented cost function, is found by subtracting the con-
straints, multiplied by Lagrange multipliers, from the cost. The multipliers associ-
ated with the control constraints, u; € R®, i=1,---, N, are zero when the control
is off the boundary of admissible controls and negative when the control is on the

boundary of admissible controls. If

i1 my(Us, t;)
B = : m(Ui7 ti) = ) (490)
Hib mp(Us, t:)
then
ik = O . my. Ui, tz‘ < 0 s
ik & ( ) (4.91)
pi <0 = my(Ui.t;) =0,



fori=1,---,Nand k= 1,---,b. This relation is a result of duality and complimen-
tary slackness [4] and is shown in Section 2.3.3.

The augmented cost function of the discrete optimal control problem is

tr —1t,
Jo = ‘1’+Lf—,;—lzl’x g —v-¢p- Zﬂ, m(U;, t;)

- k=1

N (4.92)
-y B (Xk-—X( _ = ")ZA,,k f)
k=1
where gr = g(Xi, Uk, &), £ = f(Xi, Up, k), and v € RY, P, € R", p, € R? are
Lagrange or KKT multipliers. The KKT conditions are found by setting the gradient

of the augmented cost equal to zero, so that

0Ja x4 %o sy e -6X(to)+%-5ﬁ+%-5u+a"“-an. (4.93)

0Je=7x X+ 55 X (1,) v Em

At the optimal solution the gradient must be zero and therefore each of the coef-
ficients associated with each variation must be zero. The partials of the augmented

cost with respect to the control are

8Ja _ (tr—t) |9 A R d¢ f;
au; 2 [8Ui+ ;P F o T aXa,) Y Xy | o,

om
g, ,.
(4.94)
for i =1,---, N. This equation can be simplified to
0Ja _ (ty—1t,) JH; Oom .
a0, 2z “au, Mau (4.95)
where H; is defined as
a A o d
5 kz
- -f; . 4.
=t (;P T xG) Y BX(tf)) (4.96)

Therefore, the variation of the cost at the optimal solution with respect to changes
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in the control at the ith collocation point is

_ (tj - to) B’Hi om _
5.]0 = ( ) w; - aUl - H; 6_[[: . 6Uz =0. (497)

Note that at the optimal solution all other necessary conditions are met. i.e. the
gradient of the augmented cost with resect to all the other variables is zero. The

total variation of the cost can be expressed as

81, = Uty (11,007 + 6U) = H(UD) =it (m(U + 80, 1)~ m(U}. ) = 0.
(4.98)

There are only two possible cases at the ith point, the control is off the boundary
m(U;,t;) < 0, or the control is on the boundary, m;(U;,t;) = 0, for some j €
[1,---,b]. When the control is off the boundary u,; is equal to zero, so that the

condition for the control (4.97) is reduced to

OH,;

This condition is the same that is found if the control is unbounded (4.83). When
the control is on the boundary the associated multiplier is negative, y;; < 0, and the
control constraint is zero, m;(Uj, t;) = 0. Taking advantage of this, the condition for

the control can be expressed

2
i U* 5U1 - biq TN, U* JUi.ti = i .lJ"= 5 4100
H( z+ ) wi'(t_f'_to) Zj:/l] mJ( z+ : ) H( 1,) ( )
where j € [1,- -, b] are all of the tight or active constraints. This equation can also

be expressed as

H,(U: + JUI) - = Ht(U:) s

2

4.101
e > wi - my(UT + 60U 1), o
j

Twi - (ty—t,
where a must be non-negative. This fact is because both the Gauss weight w; and the
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time interval ¢y —t, are positive, u;; is negative and m;(U; +6U;, ¢;) is non-positive. If
m;(U; +0U;, t,) were positive, the constraint would be violated, meaning this would
not be a feasible variation of the control. Because ¢ is non-negative, the function H;

is always increased by a feasible variation of the control,
H;(U; +6U;) > Hi(U7) . (4.102)

Therefore the optimal control at the ith collocation point, U}, is defined as the feasible
control which minimizes H;. This relation must be true at all the collocation points.

The function H; can be shown to be the approximation of the Hamiltonian at
the ith collocation point. The adjoint of the integration approximation matrix Alk =

%Aki, is used to simplify H;. Substituting into the definition of H; (4.96) yields

i

N
Al 8% A
Hi=git (ZPL W Xty Y ax(tf)> RS (4.103)

k=1

Further simplification is done by the integral costate mapping principle (4.76), to

obtain

. od O
H; =g+ ( ZPk 8X(tf) -v. BX(tf)) f;. (4.104)

This relation is the discrete form of continuous Hamiltonian (4.33) at the ¢th colloca-
tion point. Therefore, the approximation to the optimal control satisfies Pontryagin’s
maximum principle, that is to say, the optimal control minimizes the discrete Hamil-

tonian at each collocation point. O

4.3.2 Free Time

Now consider the problem with free initial and final times. For problems with free

time, the initial or final times are determined by the conditions in terms of the
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Hamiltonian (see Section 2.4), so that

r9¢

—H(X(to), A(to): u(to) t ) - B_t_ =0,
‘ (4.105)
H(x(ty), Mts) ulty), ty) + 3;1) gz 0.

For the pseudospectral approximation in integral form. the KKT conditions for free
time are determined by finding the partial of the augmented cost (4.77), or La-

grangian, with respect to the initial and final times and setting equal to zero.

Final Time

The partial of the augmented cost function (4.77) with respect to the final time is
found using the chain rule. The terminal cost and boundary constraints are functions
of the final state, which is a function of the final time, based on the definition of
the final state (4.73). Also, the cost function g and dynamics f are functions of
time (if time varying) which is also a function of the final time, based of the time
transformation to [—1,1] (4.34). The partial of the augmented cost with respect to
the final time is then

8J, 9D L 0¢ R
Fra £
ot — oty dif+ (aX(tf) X tf) ;“”‘ :

(tf—to)( 0 r 99 ) i v af,_vk+1

2 aX(t;) | 0X(t)
. . (4.106)
1¢ (tf—to) 6(}1, T+ 1
+2k§wk Gkt =5 ;w" at )
N N '—
A of, 7.+ 1
+§ZPZZAik~fk+ Z ZA,L-(—i.Tk .
i=1 i=1 i=1

The expression can be simplified by using the integral costate mapping principle

(4.76), and the adjoint of the integration approximation matrix, Lemma 4.2.1. The
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result is

0=

80  19¢  (tr—1o) B9
a; Utz =M

(tr=to)xm 4t pr, 0P 1 06 \ K| m+1
+( 2 ;A“ Pty Y x| | 2

N N
L3 {gk+(__2 IR T I
(4.107)

The expression can be further simplified using the definition of the approximation to
the Hamiltonian (4.104). The discrete Hamiltonian and the partial of the Hamiltonian

with respect to time are

Hk—gk+((tf o)ZA r, 92 0% Tﬁ;).fk,

2 4 oX(t;)  0X(ty)
(4.108)
MMy _ O 00 o 99 )| %
ot ot aX(ff) aX(t;) ) -

Using these two equations the KKT condition for the final time can be simplified to

o0d T‘ ff—-fo) k Tk+1
—-v r— - wy - H 4.109
- S T PR AT
This equation does not appear to be the discrete form of the continuous final time con-
dition (4.15). However, it can be shown to be the same by looking at the continuous
version of the final time condition (4.109).
The summation terms in (4.109) are Gauss quadrature approximations to inte-

grals. The continuous form of this condition can be expressed as

0% (tf—to)/ IOM(t) T+1 1/1
0= 7, at, dr + 5 _IH(t) dr .
(4.110)

This equation can then be transformed back to the time interval [t,, ts], noting that
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T+1 t—t,

5 = P so that
0P ;09 1 b OH(t) 1 /tf
= oV o= (t—t dt+—— ,
et T / (1) ri [ e @
(4.111)

This equation is then the continuous form of the discrete condition (4.109), which is
equivalent to the original final time condition (4.105). It can be shown that the sun
of the integral terms in the above relation are equal to the Hamiltonian at the final
time.

The first step is to show that at the optimal solution, the partial of the Hamiltonian
is equivalent to the total derivative of the Hamiltonian. This relation can be shown

be finding the total derivative of the Hamiltonian, so that

dH OH OH . OH . OJH
7wt T et (4.112)

The first-order necessary conditions (see Section 2.4),

. _OH j‘__d_H O_B_H

= , = . = . 4.113
T ox u (4.113)
. ) dH O0H | . . .
reduce the right hand side so that FIERrT Therefore, the integrals in (4.111) can

be expressed as

1 ts Y dH
— H dt+/ — - (t—1 dt) . 4.114
(tf — 1) (/to t, dt ( ) ( )

The second term can be integrated by parts resulting in

(t,—t,,)(/to t+ H(ty) -ty — (to)'to"’L H t_/t =t

i}

) .

(4.115)
The last term can be integrated, so that
1 ty ty _
(tr —to) ( H dt‘/ H dt+H(ty) -ty = Hlto) - to = Hlts) - to + H(to) - Lo
F— % to to
(4.116)
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The expression is then simplified to

1

=) (H(ts) -ty = H(ts) - o) , (4.117)

which is the Hamiltonian at the final time, H(ty).

This derivation shows that the pseudospectral transcription of the problem in
integral form has a KKT condition for the final time (4.109) that is the discrete form
of a condition (4.111) that is analytically equivalent to the final time condition for
the original analytic control problem (4.105). The condition (4.111) can be derived
from the continuous optimal control problem by finding the final time condition by
calculus of variations. after transforming the time interval to [—1,1]. In differential

form the optimal control problem is

I= bty t)+ 5 [ gxrumn)
U1 _ fi(r), i), (4128)

¢(X(to), tos x(tf)1tf) =0.

In integral form the optimal control problem is

J = ®(x(ty, 1) + (—tf—;—t—o)— /_1 g(x(7),u(7),7) dr,
x(r) = x(t,) + L= te) / " f(x(s), u(s), 5) ds | (4.119)
2 -1

¢(x(t0)7 toa x(tf), tf) =0.
Initial Time

The KKT condition for the initial time is found using the partial of the Lagrangian

(4.77) with respect to the initial time. The chain rule must be used again because of
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the dependence of the final state on the initial time, so that

0o _ _ 70 1( 00 - a¢
o, 7 o, (aX(tf) ) Z“ &

. N
n (ff — 1) 7 oo T Z (9fk Tk +1
7 \oX(,) ax Z 2

_liwk. ,. O)Z dgk —Tk+1
2

k=1

(1 & Of;, —7 +1

=1

(4.120)
The expression can be simplified by using the integral costate mapping principle
(4.76), and the adjoint of the integration approximation matrix, Lemma 4.2.1, result-

ing in .

_ 3¢ (ff —1,) Ogx
0= at, Z [

+( 5 ;A'ﬂ' Poroxe) TV X)) o )

e ‘ o (ty —1,) ol i BT oo r O
5 W+ | gr 5 ZAM P; + aX(;) v X)) AN
k=1 i=1 f I
(1.121)

Using the definition of the approximation to the Hamiltonian (4.108), the expression

is simplified to

r0® | (tr—to) = oMy ~m+1 1
0= —u w2 e+l 1 M, 4.12
at; T 2 2 Yk "5t 2 2 k};l“”‘ Tk (4.122)

This condition for the initial time is the discrete form of the continuous relation,

B _ 1
oo 9 (b t.,)/ OH(®) T+1 dT_l/ H(t) dr . (4.123)
8ff 2 -1
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T+1 tf—t

which transformed back to the time interval [t,, 7], noting that — 5 =i is
f~ Lo
o1} 1 tr OH(t) 1 ts
0=-vT—~+ / Sty —t dt-————/ H(t dt .
Oty (ty—to) Jy, O (b —1) (tr —to) Ji, ©
(4.124)

This equation is exactly equivalent to the necessary condition for the continuous
problem (4.105). This relation can be shown by integration of the final terms.

The equation (4.124) can be expressed as

0o 1 2 tr . ty
0=—vT- +—(/ H-t dt+/ ’H-t-dt—/ H dt).

g dtf (tf "tO) to d to to
(4.125)

After integration of the first term and integrating the second term by parts results in

799

0=-v at;

—H(,) . (4.126)

This derivation shows that the KKT condition for the initial time (4.122) is the
discrete form of the continuous necessary condition for the initial time (4.105).

The derivations of the KKT conditions with free initial and final times, indicates
that these conditions are the discrete form of the continuous necessary conditions of
the integral Bolza problem. This fact indicates that the pseudospectral transcription

is consistent (Fig. 4-4) for problems with free time.

4.3.3 Path Constraints

Finally, consider the case involving a state and control path constraint,
C(x(t),u(t),t) <0, (4.127)

where C : R® x R™ x R — R®. Direct formulations of the optimal control problems
are well suited for solving problems with path constraints because the NLP solvers
handle the constraints automatically.

For the integral pseudospectral transcription, the path constraint can be enforced
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at the collocation points, so that

C(XkrUkatk) <0 ’ k= 1: e 7N - (4128)

It can be shown that the KKT conditions for the problem involving the path con-
straint are consistent with the continuous first-order necessary conditions. The KKT
conditions for the discretized problem are found by formulating the Lagrangian with

the added path constraint, so that

tr—t, .
Jo = <I+(f )ZU’A-'QL«*VT (b—ZM;{ G
k=1 k=1 (4.129)
M7 (tf —to) o
- P X; — X(¢,) - ° A - f
; i (o) 5 g k- fi

where fi; € R" are the multipliers associated with the path constraint Cy = C(Xy, Uy, t1),
k=1,---,N. It can be shown that the KKT conditions resulting from the augmented
cost function (4.129) are the same as the conditions from (4.77), with the exception

of the additional terms on the costate and control equations,

By 2 _, aC
P7 = =2 _ r
i T aX, (tf—t)-'u”‘ X,
£ = t) pro 08 . 99 ) of
( Z aX(t;) © aX(t)) X’
50 ) e (4.130)

0=

au, (tf—to)-w,-“i " 9U;
—to) 0% s O¢ of
( ZA P taxu) TV Xy | au

By defining the estimate of the continuous Lagrange multiplier associated with the

continuous path constraint (4.127), u(t) € R?, as

2 ~T

B = (tf _to) 'wi”i :

(4.131)

the KKT conditions resulting from the Lagrangian (4.129) are exactly equal to the

99



discretized first-order necessary conditions for the optimal control problem with a
path constraint [10].

It has been shown that the Karush-Kuhn-Tucker conditions for the nonlinear pro-
gram, found from discretizing the integral Bolza problem, are consistent with the
continuous first-order necessary conditions, Fig. 4-4. The consistency of the Gauss
pseudospectral method has also been shown for many special cases including, prob-
lems requiring Pontryagin’s maximum principle, free time problems, and problems
with state and control path constraints. The consistency of the KKT conditions is

not true for other pseudospectral methods, Fig. 4-3.

4.4 Costate Estimates

For many problems is it advantageous to have estimates for the costate from the dif-
ferential problem, A(¢). In the previous section the integral costate mapping principle
(4.76), showed how to get an estimate for the costate from the integral problem, p(t),
directly from the KKT multipliers of the NLP. It will be shown that estimates for
the differential costate can also be found directly from the NLP of the integral form
of the problem. Also an estimate of the initial costate, A(¢,), can be found from the

KKT multipliers.

Theorem 4.4.1. The costates of the differential Bolza problem can be found from the
KKT multipliers of the pseudospectral transcription of the integral Bolza problem, so

that

N ~T
P, 0P op
T . k T .
Aj = E:l Api e + 3X(t;) Vs ) (4.132)

Proof. The estimate for the differential costate can be found by using the integral
costate mapping principle, along with the relation between the differential and integral
costates.

It has been shown in Section 4.3 that an estimate for the integral costate, p(t) €

R", can be found directly from the KKT multipliers using the integral costate mapping
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principle, Theorem 4.3.1, restated here as

2 P

t; zP-LZ———‘-—'———-
p() (tf_to) w;

(4.133)

It. has also been shown in Section 4.1 that the integral costate is related to the

differential costate, A(t) € R", Theorem 4.1.1, so that

T —thT'T oP T 0¢
A (t)‘/t PN ATt 5y T ()

(4.134)

The pseudospectral approximation of this relation can be expressed using the adjoint

of the integration approximation matrix, Lemma 4.2.1, so that

N
tr —1o) % o0 0¢
AT(fl)R“uAlT:(—f——o AI T+——‘—VT'-,——. (4135)
2 ; R D) X (ts)
Combining (4.133) and (4.135) allows for the estimation of the differential costate
directly from the KKT multipliers of the pseudospectral approximation in integral

form. The expression can be simplified to

N ~T . .
1\31 :v/'l-;‘":—PL'{” B ()(,I) —VT—-C)i—g
L."_‘ Eowy C:’X\Tf) dX(tf)

(4.136)

k=1
N ~T

——’ZAki-Pk-f'raq) VT._8.¢—_
1 wy dX(ff) BX(tf)

This derivation shows that the differential costate can be estimated from the KKT

multipliers of the integral pseudospectral method. O

Using this estimate for the differential costate (4.136), it can be shown that the

pseudospectral approximation to the Hamiltonian is

v (=t S g or, 0 1 09 ,
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and in terms of the KKT multipliers,

7 P, 0% r  O¢
H(t:) (ZA;,, k 5 (tf)—u 'aX(tf))'f"' (4.138)

4.4.1 Initial Costate

The initial differential costate, A(t,), can also be determined directly from the KKT
multipliers of the NLP.

Theorem 4.4.2. The initial differential costate, A(t,), can be found in terms of the

KKT multipliers of the integral Bolza problem, so that

& or 09 r O
AT(t,) = ;Pk + axe) Y X (4.139)

Proof. The initial costate in terms of the continuous integral costate is

00 1 9
ox(ty) | Ox(ty)

ty
AT(t,) = / pT(t)-dt + (4.140)
to
The pseudospectral approximation to A(t,) is found using a Gauss quadrature, so
that
AT(t,) = ! 0) Z vr - PE + aa<1> uT-—ﬁ’—, (4.141)

X(ty) 0X(ty)
which can be expressed in terms of the KKT multipliers. The result is

_ _9¢
T(t,) = Z P+ 8X(t, ~v7 X (4.142)
O

The estimate for the initial costate can also be found using the KKT condition

for the initial state (4.85), which is

(tr —to) BT ¢ 3¢
T > wi-PL 4+ X)) VT (P VT X (4.143)

k=1
Therefore, using the equation (4.141) with the initial state KKT condition, the initial
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costate estimate is equivalent to

Ty _,T 0P
AT(ty) = o7 (4.144)

This equation shows that the estimate for the initial differential costate can be found
directly from the KK'T multipliers of the NLP by using either (4.139) or (4.144).

Empirical evidence has suggested the the initial costate estimate is more accurate
than the intermediate costate estimates. This fact is consistent with the results
reported by Axelsson [2] for the boundary points of ODEs.

In this section, it was shown that an estimate for the differential costate, A(t),
along with an estimate for the initial costate, A(t,), can be found directly from the
KKT multipliers of the NLP from the discretized integral Bolza problem. Information
about the differential costate can be used for optimality verification, mesh refinement,

sensitivity analysis, as well as real time control applications.

4.5 Multiple Phases

The Gauss psendospectral method is well suited for solving optimal control problems
with multiple phases. Multiple phase problemns can arise if the problem has distinc-
tive differences on two or more sections of the solution. These differences could be
different dynamic relations on one segment or another, or a different cost function to
be minimized on different segments. A multiple phase problem can be used to model
a specific event, such as an intermediate point constraint, or a state discontinuity such
as a mass drop. Another use for a multiple phase formulation is to model artificial
events such as the entry or exit from a path constraint. This formulation can be
particularly useful for pseudospectral approximations where a potentially discontin-
uous solution can be approximated using piecewise polynomials rather than a global
polynomial. Linking phases of an optimal control problems is considered in [7] and

[57}.
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4.5.1 Implementation

The pseudospectral implementation of a multiple phase problem is treated by defining
each phase separately and then linking the phases with a set of phase boundary
conditions. The problem defined with R distinct phases, has a cost on phase r €
[1,---,R] of
_ () - t(r) N(r)
JO = (X (#0140, XO (D), 1) + o Z“’ g (X U 40y
(4.145)

and constraints

(10 — ) X0
IS AR OXO, U, =1, N,

XM = x0 t(r)
(3 ( ) + 2 k::l

(4.146)
where X" € R, U € R™" is the approximate state and control at the Gauss
points on phase 7, k = 1,--- , N(r). The cost function g™ : R x R™") x R — R
and state dynamics function £ : R™") x R™" x R — R™") may be different (and
have different dimensions) on each phase. Note that the initial and final times of the
phase are t{) and tff”, and the initial and final states are X (t7) and X(T)(tgf) ). As
in the single phase formulation (see Section 4.2.3), the final state must be related to
the initial state on each phase using the relation
(1) — 4y X)

22N W XD, U, 1) (4.147)

XMy = XO D) + 5
k=1

Finally, the phase boundary constraints must be defined to link the states and times
between phase r and phase r + 1, so that
ﬁg";-l) (X(r) (t(f1)) t(fr)7 X(r-‘rl) (tgr-i—l)), t‘()'r+l)) =0. (4148)

In most cases, the initial time of phase r + 1 is equal to the final time of phase r,
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so that one of the phase boundary constraints is
t) — ) = 0. (4.149)

If the states are continnous across the phase boundary the phase boundary constraint
is defined as

Xt - Xy =0. (4.150)

However, the general phase boundary constraint (4.148) allows for discontinuities or
even different numbers of states on each side of the phase boundary, such as if different
coordinate frames are used on different phases.

This implementation shows that the multiple phase optimal control problem can
be discretized into an NLP where the cost is the sum of the costs on each phase

(4.145), so that

R
J=3"Jn, (4.151)

r=1
The dynamic constraints are approximated on each phase (4.146), r = 1,--- , R,
along with the conditions between the phases (4.148), r = 1,--- ;R — 1. The last

coustraints of the NLF are the boundary constraints of the problem. which are the
boundary constraints at the beginning of the first phase and the end of the final

phase, so that
LHEOE), i) =0,
(4.152)
ﬁgﬁ;r-l)(x(R)(t(fR))’t(fR)) =0.

The NLP defined by the cost (4.151), and constraints (4.146, 4.148, 4.152), results in
a pseudospectral transcription of the multiple phase problem in integral form. The
method will retain the consistency property of the single phase problem, allowing for
an accurate solution to the optimal control problem. The consistency of the method

will also allow for accurate costate estimates for the multiple phase problem.
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4.5.2 Costate Estimate

The costate estimate for the multiple phase problem is generated in the same way
as the single phase problem (see Section 4.4). The costate is found from the KKT
multipliers of the dynamic constraints along with the Lagrange multipliers of the

boundary constraints. The costate estimates on each phase are

~ (1) T
N(r) P (r+1)
M\ T r k od™) oLC,,
(Ag')) =ZA§H')'( (r)) + o~ (T))T' ()(r) ’
P w; X"t XM () (4.153)

The initial and final costate estimates on each phase are

. r)
(A(r)(ty)))T = ,_ﬁl’(_)__ + (,,(r—l))T. _a_cﬂ :
XM (1) XM )
" oL+ (4.154)
(A(r) (t}r)))T _ od - (U(r))T i (r) ,
X (t%)) ax" (1)
with the relation between the two as
" NE) -
ADED) = ADE) + B (4.155)
k=1
The costate estimate across a phase boundary A(’")(tg.r)) to AT (t5 )Y may or may

not be continuous depending on the phase boundary constraints (and phase boundary
costs).

The Gauss pseudospectral method is well suited for solving multiple phase optimal
control problems. The consistency of the method allows for accurate solutions in the

states, controls, and costates.
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4.6 Polynomial Approximation

The Gauss pseudospectral method returns an estimate of the states, controls, and
costates, at the Gauss collocation points. Because the method is using global poly-
nomials as trial functions, the solutions for the states, controls, and costates must be
polynomials. The derivation of the KKT conditions indicate the properties of the so-
lution polynomials. Examination of these polynomials leads to a better understanding
of how the Gauss pseudospectral method works.

The pseudospectral approximation to the differential dynamics indicates that the
approximation to the states, X(t) € R", is a polynomial of degree N that satisfies
the state dynamics at the N Gauss collocation points and satisfies the boundary

conditions (Lemma 4.2.2), such that

X (1) = £X(t), Ulte),te),  k=1,---,N,
dt (4.156)

B(X(Lo): tor X(t7),5) = 0.

The estimate for the controls, U(t) € R™, is defined only at the N Gauss points, so
that U(?) is a polynomial of degree N — 1. The discrete form for the integral costate
dynawics (4.82) defines the costate estimate, P(t) € R", at the N Gauss points so
that it is also a polynomial of degiee N — 1. The estimate for the differential costate,
A(t) € R™, is the pseudospectral integration of the integral costate (4.135). Because
the integral costate is a polynomial of degree N — 1, the pseudospectral integration is
exact. This result defines the differential costate estimate as a polynomial of degree

N. so that

ty od ¢
AQt) = P(r)dr+ —— - vl  ——. 4.157
0= PO+ o X (®157)
The exact derivative of this costate is
%-it—) - _P(t). (4.158)

Using this relation with the approximation to the costate dynamics (4.82) shows
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that the differential costate estimate satisfies the costate dynamics at the collocation

points,

(tk) (fk) —AT(#)- da)f((tk) k=1.---.N. (4.159)

Thus the polynomial approximation of the states, controls, and costates, satisfy the

equations

X (1) = KX (0, U (), 1)

B )= - (n).

Ulty) = arg Uglki)léU[H(X(tk), Ul(te), A(te), te)] -

T
2 % (1) — A7)

k=1,---,N,
N

X(tr) = X(to) + g—f—zi-) Z; wi - (X (t:), Ulta), ta) (4.160)
¢(X(to): to, X(tf)’ tf) =0,
o6
aX(t,)
0% r 0
aX< N 0X(ty)
to)

2=j () +AT0) - )

AT (to) =v’.

AT/tf)

AT (tr) = AT(t,)

These equations indicate that solving the NLP generated from the pseudospectral
transcription of the optimal control problem in integral form is equivalent to find-
ing polynomials of degree N for the states, X(t¢), and costates, A(¢), along with a
polynomial of degree N — 1 for the controls, U(t), that satisfy the state and costate
boundary conditions, and the state dynamics, costate dynamics, and Pontryagin’s

maximum principle at the N Gauss collocation points.
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4.7 Summary

In this chapter, the Gauss pseudospectral transcription has been outlined and ana-
lyzed. The integral form of the continuous optimal control problem has been defined
and shown to have equivalent first-order optimality conditions as the differential form
of the problem. This equivalence indicates that a pseudospectral transcription can
be defined in terms of the integral form of the continuous optimal control problem.

The discretization using the integration approximation matrix was introduced,
which allows the optimal control problem to be transcribed into a nonlinear program
(NLP), which then can be solved by well-developed algorithms. Unlike other pseu-
dospectral methods that collocate at the boundary points, the Gauss pseudospectral
method is collocating only at the Gauss points, which are all interior. The result of
this difference is that the Karush-Kuhn-Tucker (KKT) conditions of the NLP from the
Gauss method are exactly equal to the discretized first-order optimality conditions.
This relation indicates that solving the optimal control problem using the Gauss pseu-
dospectral method is consistent with the continuous optimal control problem, and the
direct and indirect formulations are the same.

The Gauss pseudospectral method has been shown to be consistent for a large
class of probleins, including free time, multiple phase, path constraints, and those
requiring Pontryagin's maximum principle. Finally, the relationship between the ap-
proximation polynomials was derived. This relationship indicates that the Gauss
pseudospectral method is equivalent to finding the set of polynomials for the states,
costates, and controls, that satisfy the state and costate dynamics and Pontryagin’s
maximum principle at the collocation points, along with the state and costate bound-
ary conditions. This relation between the approximating polynomials does not hold
for other pseudospectral methods. The approximating polynomials for the states,
costates, and controls indicate that an equivalent discretization of the optimal con-
trol problem in differential form can be made at Gauss points. The derivation of this

discretization is shown in Chapter 5.

109



[This page intentionally left blank.




Chapter 5

Differential (Gauss Pseudospectral

Method

It has been shown (see Section 4.2.2) that the pseudospectral approximation of an
ODE in integral form is equivalent to finding the polynomial of degree N that sat-
isfies the differential equation at the N Gauss collocation points and satisfies the
initial condition. It has also been shown (see Section 4.6) that the pseudospectral
approximation of an optimal control problem with dynamics in integral form is equiv-
alent to finding polynomials of degree N that satisfy the state and custate dynamic
equations at the N Gauss collocation points. along with the boundary constraints. A
pseudospectral transcription can be devised directly from the differential form of an
ODE (or optimal control problem) that is exactly equivalent to the pseudospectral
transcription of the integral form.

This differential approximation is different from the Legendre pseudospectral ap-
proximation in several ways. The first is that the differential equation is not collocated
at the boundary points. The second is that the approximating polynomial, X(t), is
of degree N, so that N + 1 points are required to determine its derivative. In the
Legendre pseudospectral method, N points are used to determine the derivative of

the approximating polynomial of degree N — 1.
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5.1 Discretization

A pseudospectral approximation of the differential form of the continuous optimal
control problem is made by transcribing the continuous optimal control problem into
a nonlinear program. This transcription is done by approximating the states, x(t),
with polynomials, X(t) € R™, of degree N, formed from a basis of N + 1 Lagrange
interpolating polynoinials [17] on the interval from [—1, 1]. These polynomials are

N
x(t) ~ X(t) = x(tr) - L(t) - (5.1)
k=0
The interpolation points used are the boundary point, —1, along with the N Gauss

points, ti, k= i, -++, N, which are all in the interior of the interval [—1, 1].

Definition 5.1.1. The differential approzimation matrices D € RM*Y and D € RV,
are found using the ezact derivative of the Lagrange interpolating polynomials, Ly (t),
so that
N
&(t) ~ X (t:) = 2(t,)  D; + Y x(tx) - D , (5.2)
k=1

where Dy, = Lk(t,;) and D; = Ly(t;) are the differential approzimation matrices.

Theorem 5.1.1. The approximate derivative found using the differential approzima-

tion matrices is exact for polynomials of degree N or less.

Proof. The differential approximation matrices finds the approximate derivative by
using the exact derivative of an interpolating polynomial at N + 1 distinct points.
The Lagrange interpolating polynomial is exact for polynomials of degree N or less
[17] and therefore, the differential operator is exact for polynomials of degree N or

less. O

In the remainder of this section, several properties of the differential approxi-
mation matrices are derived. These properties are important in the analysis of the

transcription method.
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Lemma 5.1.1. The differential approzimation matriz. D, is related to D by the

relation N
Di=-) Du. (5.3)
k=1

Proof. The relationship between the differential approximation matrix, D. and D,
can be shown by examining the derivative of a constant function, f(t) = ¢. Applyving
the differential differential approximation matrices to find the derivative results in

AY
C'D1+C-2Dik=f(t.,;)=0.
k=1
This relation is exact for all values of N, because the function f(¢) = ¢ is a polynomial

of degree 0. The result can be simplified to (5.3). O

A pseudospectral approximation can also be made using a slightly different basis
of Lagrange polynomials. The N + 1 points used in this case are the N Gauss points
along with the final point ¢;, so that

N+1

x(t) ~ X(t) = Y x(t) - LL(1) . (5.4)
k=1
Another differential approximation watrix can be found by differentiation.
Definition 5.1.2. The differential approzimation matrices, D' € RV*N and D' €
R, are found using the ezact derivative of the Lagrange interpolating polynomials,

L}:(t) These matrices are

ot
ot
~—

a(t) ~ X (1) = S aty) - Dl + alty) - DI, (5.
k=1

where D}, = L1(t;) and D! = L}, +1(t:) are the differential approzimation matrices.

Lemma 5.1.2. The relation between the differential operator, DY, and D' is
) N
Dl =->"D. (5.6)
k=1

113



Proof. The relation can be found by examining the derivative of a constant function

(see Lemma 5.1.1). O

Lemma 5.1.3. The relation between the differential approzimation matriz D and its
adjoint D' is
wy,
Di=-—"Dy. (5.7)

/i
Proof. Consider the integration by parts formula for two polynomials of degree N,

10,900, 50 that
[ iw-swa=s 0] - [ 10-a0a.

The polynomials f(t)-g(t) and f(t)-g(t) are of degree 2N —1, so that the integrals can
be replaced exactly by a Gauss quadrature [16]. The derivatives of the polynomials
at the Gauss points can be found exactly using the differential approximation (5.2)

for f(t) and (5.5) for §(t). The integration by parts formula is replaced exactly by

N
Z[ DHZDM (t)} (te) - wy =
1 _ N
9., - S 1o [gm Dl + 3" Di;- gt
k=1 i=1

where wy, are the Gauss weights. Because this must be true for all polynomials, it must
be true for the set of Lagrange interpolating polynomials generated from the points —1
plus the N Gauss points, f(t) = L(t), [ = 0,--- , N and the polynomials generated
from the N Gauss points plus the end point 1, g(t) = L;’-(t), j=1,-+-,N+1. These
are the same Lagrange polynomials used to generate the differential approximations
(5.2) and (5.5). If the Lagrange polynomials corresponding to [ = 1,---, N and
j=1,--- N are used in (5.8), the expression is simplified because the polynomials
L, are zero at the points —1 and all but the /th Gauss point, and the polynomials
L;r. are zero at 1 and all but the jth Gauss point. The non-zero terms result in the
relation,

Dﬂ-wjz—DlTj-wl. D
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Note that the differential approximation matrices used here are not the same as
the approximation matrix from the Legendre pseudospectral method (see Section

3.3.1).

5.2 Differential - Integral Relation

The differential approximation matrix is related to the integral approximation matrix
(see Section 4.2.2). This relationship can be seen by looking at the discretized form
of an ordinary differential equation (ODE).

The pseudospectral approximation of a differential equation in integral form is
(ff — to) al . T =4
X(tl) = X(to) + ——2—' Z Azk ) f(X(tk)afk) s = 1: T :]\’ 3 (09)
k=1

with initial condition X(t,) = X,. which defines a polynomial of degree N, X(t) € R".
This polynomial satisfies the initial condition and the differential equation at the N

collocation points, so that

aX .
—-(1,) :f(X(b)f,‘) . 1= 1 .N s
dt (5.10)

X(lo) = Xo .

Note that the collocation points are at the Gauss points, so the differential equation
is not satisfied at the initial time, t,.
The discretization of the ODE using the differential approximation matrices results

m

2

_ 2 N
% X(t)-Di+ —=—5" Dy - X(t) = £X(t:), ),  i=1,--,N,
=t (to) to); k- X(t) = £(X(t:), t:)

(ts —
X(t,) =X, .
(5.11)

The fraction, , has been included to account for the transformation of the

2
(ty —to)
independent time variable from t € [t,, ;] to 7 € [—1,1] (see Section 4.2.1). Note that
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the differential approximation uses N + 1 points of the function X(t) to determine
the derivative at the N collocation points. The pseudospectral approximation of
the differential equation using the differential approximation matrices, also satisfies

(5.10).

Lemma 5.2.1. The differential and integration approzrimation matrices are related

by
D=A"1. (5.12)

Proof. The relation between the integration approximation matrix, 4, and the differ-
ential approximation matrix, D, can be more easily seen by looking at a one dimen-

sional initial value problem on the interval from —1 to 1, so that

dx

(5.13)
z(-1)=1x,.
The pseudospectral approximation in integral form can be written
X=X(-1)+A-F, X(-1)=2z,. (5.14)

where X € R¥ is the approximation to z(t) at the N Gauss points, X(—1) € R is
the approximation to z(t) at —1, and F' € RV is the function f(z(t),t) evaluated at
the N Gauss points. The pseudospectral approximation in differential form can be
written

D-X(-1)+D-X=F, X(-1)=z,. (5.15)

The differential equation and boundary condition can be expressed together as

1 0 || X(-1) o
) = . (5.16)
D D X F
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The integral form (5.14) can be expressed in a similar manner as

X-n|_|10 T, 5.1
X 1 A F

For botli of these equations to be true, the matrices must be inverses of each other.

so that
1 0 10 10

_ = : (5.18)
D D 1 A 0 I

Note that the integration approximation matrix in non-singular. From this relation

it follows that
Al'=D,
(5.19)
D-1=-D.

Using these relations (5.19), the differential and integral pseudospectral approx-
imations the the ODE can be shown to be the same. Multiplying the integral form
(5.14) by the inverse of the integration approximation matrix results in

‘4_1 'X :.'4_1 '1‘1‘0+A—1'14'F,
D - X=-D-z,+F, (5.20)
D-ro+D-X=F,
which is equivalent to the differential form (5.15). O

This derivation indicates that the differential form of the pseudospectral approx-
imation can be found from the integral form by simply inverting the integration

approximation matrix.

5.3 Optimal Control Problem

The differential Gauss pseudospectral method is a pseudospectral transcription of

the differential form of the continuous optimal control problem at Gauss collocation
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points. The NLP is formed by approximating the cost using a Gauss quadrature, so
that

(tf-t

J = ®(X(ts), ts) + Zwk 9(Xe, U, 1) - (5.21)

k_.
The differential dynamic constraints are approximated using the differential approx-
imation matrices, which are collocating the constraints at the Gauss points, so that

N

2_p. 2 Zp,kxk—f(ka,m i=1,---,N. (522

(t; — t,,)D X{t)+ (tr —to)

The boundary constraints are expressed in their most general form as

$(X(to), to, X(t7), t7) = 0. (5.23)

Finally, the terminal states, X(ts), are defined in terms of the quadrature approxi-
mation to the dynamics. This relation is required to enforce boundary constraints at

the final time. The final states are

N
tr—1,
X(tf) = X(to) + (—1“7"—) Zwk . f(Xk, Uk, tk) . (524)
k=1
The cost (5.21) and constraints (5.22 - 5.23) define an NLP, whose solution approxi-

mates the solution to the continuous optimal control problem.

5.4 KKT Conditions

The differential Gauss pseudospectral method can be shown to be consistent with the
continuous first-order optimality conditions of the optimal control problem by looking

at the KKT conditions.

Theorem 5.4.1. The Karush-Kuhn-Tucker (KKT) conditions of the NLP are ezactly
equivalent to the discretized form of the continuous first-order necessary conditions of
the Bolza problem. Furthermore, a costate estimate can be found from the KKT multi-

pliers, Jik, and Lagrange multipliers, v, that satisfy the pseudospectral approxrimation
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to the costate dynamics, so that

~T
r_ 2 A, 0® r 0

- = .k _ o
¥ (tf - to) Wy + BX(ff) v d.X(tf) . (O.Qo)

Proof. The Karush-Kuhin-Tucker (KKT) conditions of the NLP can be found from
the augmented cost function, or Lagrangian [4]. The augmented cost is formed using

the multipliers .7&@- eR" i=1,---,N. and v € RY, so that

(t -1 ) ol T
— f ° MYy . .
Ja - (I) 2 ’E 1 Wy gk v ¢

; (ff_t)D (to)+(tf_toZDm Xy — )

where g = g(Xg, Uy, tx) and f; = f(X;,U;,t;). The KKT conditions are found by

(5.26)

setting the gradient of the Lagrangian to zero.

The partials with respect to the states are

aJ, 2 < T (tr—t) dg;
0=—%= — DA, + Cw;
X (t_f—t(,); kT 2 % (527)
AT =) 1 02 06 1) Of
(A T [axun YU aXap))

Note that the chain rule was used because the final states, X(ts), are defined in

2w .
terms of the interior points (5.24). Dividing (5.27) through by 2% and using

(ty —to)’
the adjoint of the differential approximation matrix (Lemma 5.1.3) results in
XNZ AL
tf - to) b tf - t Wk .
o (5.28)
ag; 4 2 A L9 od T 0 of;
ox (t; — to) w;  OX(tg) oX(ty) ] Ox
The term y
\ D) | m=——— -V - 5.2
1 2 D (axw) > (5:29)
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can be added and subtracted to the left side of the equation resulting in

2 Al 50 86
(ff —t,) 4 Z ( (tr —to) ’MA IX(ty) v aX(tf))
N

2 . oe - T__a_‘é_ . 1 .
+(1-f—fo) (BX(tf) v OX(tf)) ZDik (5.30)

k=1

dg; ( 2 A, 0 r 0 )_af,-,

"o T\ W X Y aXG) ) ax

Finally, this can be simplified using Lemma 5.1.2, resulting in

ol A, 0% - 0o
<tf—f 2 ((tf—m w oK) ()

2 0P o¢ _,
+(tf —t,) (8X(tf) -V BX(tf)) - D; (5.31)

dg; ( 2 Al 0 r 0 ) Of;

Tox \Gr -t w Xy Y aX@) ) x

The right hand side of (5.31) is the approximation to the right hand side of the costate
dynamics (2.59), and the left hand side is the approximate derivative of the costate.
This result defines a costate mapping from the KKT multipliers, Ay, to the estimates

for the costate, A;. so that

9 A, 0 S

Af:(tf—to)'ﬁ+m_" ) (5.32)
The costate mapping (5.32), along with the estimate for the final costate,
AT(t)) = a)??;f) _T. aﬁ}’if) , (5.33)
allows (5.31) to be expressed as
5 T 2 T At _ agm T, of;
(tf_t kz zk-Ak-%—Gf_—tJ-A(tf)-Di S AT S, (5.34)
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which is the discrete form of the continuous costate dynamics (2.59)
The partial of the Lagrangian (5.26) with respect to the control can be simplified

in the same manner to
dg. I oo \ of
0= L —T. L 5.35
du ((tf —to)  wy + 0X(ty) v BX(tf)) du (5:35)
Using the costate mapping (5.32), this becomes
_ 691 T Bf‘ -
0——6;+Ai-5;, (5.36)

which is the discrete form of the continuous control equation (2.59)
Finally, the last KKT condition is found from the partial of the Lagrangian (5.26)

with respect to the initial state. The partial is
aJ, _ 0% O r  O¢ 2 niT - ]
ORI (Y =D DL R L EC

0X
where the last term is the Gauss quadrature of the approximation to the derivative

of the costate. This result can be shown by using the approximate derivative of the

N A,-

(if—to) = AL J3 o
T;wk-Ak = (ff"'t )Zu ) (; ki w;

costate from (5.28). The Gauss quadrature of the derivative is
~T )

The definition of the adjoint is used, Lemma 5.1.3, resulting in

- al A}
e (B k)
97 =1 i=1
) N N (5.39)
~T
= Ai : =Dy )
(tf ~to) ; ;
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which can be simplified by the definition of D;, Lemma 5.1.1. The result is

]\7

NAT p, = (tr—to) Al 5.40
Zi'i—_2—zu7i'i' (5.40)

i=1 i=1

_?2
(tf - tO)

This derivation indicates that (5.37) is the relation between the initial and terminal

costates, so that

8% ;00 r 0¢  (ti—t) N~ T
et A

oX(ty) U aX(ty) Py

(5.41)
r Ty (b —t) o T
AT(t;) = A (to)—l-——?—Zwi-Ai :
=1

The KKT conditions found from the NLP defined by (5.21 - 5.24), are exactly
equivalent to the set of conditions that are the discretized form of the continucus
first-order necessary conditions. This result indicates that solving the NLP derived
from the pseudospectral transcription of the optimal control problem in differential
form is exactly equivalent to solving the discretized form of the continuous first-order
necessary conditions. It also indicates that the differential costate mapping (5.32) is
valid, so that the costate can be estimated directly from the KKT multipliers of the
NLP. The initial and final costates can also be found from the Lagrange multipliers

(5.41). O

Theorem 5.4.1 indicates that solving the NLP derived from the pseudospectral
transcription of the optimal control problem is exactly equivalent to solving the dis-
cretized form of the continuous first-order necessary conditions. The state dynamics
are collocated at the Gauss points, and the resulting costate dynamics are also col-
located at the Gauss points. This result indicates that solving the NLP from the
discretized problem is mathematically equivalent to finding the polynomials of degree
N for the states and costates, X(t), A(t) € R™, and polynomial of degree N — 1 for
the control, U(t) € R™, that satisfy the boundary conditions and the control, state,
and costate dynamics at the collocation points. This result is exactly equivalent to

the result from the integral form of the optimal control problem (see Section 4.6).
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The approximating polynomials satisfy

8 4) = KX (1), U10), 1)
904 = ~ 9L (K1), Ulta), ) ~ A7 (1) - o (X (t), Ut 1)
0= 23 (X (1), U(te), 1) + AT(t) - 2 (X(t), Ulte). )

k=1,---,N, (5.42)
¢(X(to>: to: X(t.f)i tf) =0,
_,r. 9
A(fa) - VT ax(to) H

od 0

Al =%y Y X

It has been shown that the differential Gauss pseudospectral method is mathe-
matically equivalent to the integral pseudospectral method. Both of these methods
overcome the problems at the costate boundaries associated with the Legendre pseu-
dospectral method. The differential formulation has the advantage over the integral
method, in that the resulting NLP has a significantly more sparse Jacobian matrix.
For software packages that take advantage of this éparsity, such as SNOPT [30],
an improvement in computation time can be made for large problems by using the

differential method.

5.5 Summary

In this chapter, the differential Gauss pseudospectral method was derived. This pseu-
dospectral method transcribes the continuous optimal control problem in differential
form to a nonlinear program (NLP). This transcription has significant differences
from the Legendre pseudospectral method. In this case, the dynamic constraints are
collocated at Gauss points, which do not include the boundary points.

It was shown that the Gauss pseudospectral method using the differential form is

mathematically equivalent to the integral form. As a result, the Karush-Kuhn-Tucker
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(KKT) conditions from this method are also consistent with the continuous first-
order necessary conditions. This property indicates that the Gauss pseudospectral
method using the differential form, can be used to find accurate solutions of the states,
costates, and controls of optimal control problems.

The differential form of the Gauss pseudospectral method has the advantage that
it yields an NLP that is more sparse than the integral formulation. Numerical solvers
can take advantage of the sparsity and solve the NLP in less computation time. In
the next chapter, many example problems are considered to show the advantages of

the Gauss pseudospectral method.
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Chapter 6

Example Problems

In this chapter, several example problems are considered to show the advantages and
disadvantages of the proposed Gauss pseudospectral method. The first is a simple
LQR problem, which is used to compare the convergence properties of the Gauss
pseudospectral method with the Legendre pseudospectral method, as well a some
common finite difference methods.

The second example is a simple nonlinear optimal control problem, which shows
the advantages of using the Gauss method in the estimation of the initial costate.

The third example is a bang-bang problem. In this example, the exact solution for
the control has a discontinuity. It is shown that this discontinuity presents a problem
for the pseudospectral methods, and how this problem can be overcome by using the
multiple phase approach.

The fourth example is one that has a state path constraint. This constraint
introduces discontinuities that again present a problem for the Gauss pseudospectral
method. The multiple phase approach, however, does not work as well on the example
with a state path constraint.

The fifth example considered is the classic brachistochrone problem. In this prob-
lem, one of the costates is infinite at the initial time. This infinite point is shown
to reduce the accuracy of the Gauss pseudospectral method. It is also shown that
control problems having an infinite point near the solution interval also significantly

effects the accuracy of the proposed method.
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The sixth example is one that includes a singular arc. This example shows that
the Gauss method is not well suited for solving problems that contain singular arcs.

The seventh example considered is one that has multiple local minimum. It is
shown that special care must be taken in choosing an initial guess for the method in
order to find the desired global minimum to the problem.

Finally, the last example considered is a more complicated nonlinear optimal con-
trol problem, involving a low thrust orbit transfer. It is shown in this example that
the Gauss pseudospectral method returns a significantly better solution than the
Legendre pseudospectral method.

Note that the example problems in this chapter were solved using the integral
form of the Gauss pseudospectral method (see Chapter 4). This was done because the
example problems were solved before the differential form of the Gauss pseudospectral
method was developed. Is has been shown in Chapter 5, that the differential and
integral forms are mathematically equivalent and therefore, the solution using either
formulation will be identical. A comparison of the differential and integral forms of

the Gauss pseudospectral method is made on the low thrust orbit transfer problem.

6.1 LQR Problem

The first example considered is a linear quadratic regulator (LQR) problem. The
problem is solved numerically using the Euler, Runge-Kutta, Legendre pseudospec-
tral, and Gauss pseudospectral methods. The problem is to minimize a quadratic

cost function with fixed initial and final times, so the cost is

J= %x(tf)T - S-x(ts) + %/tf (z®)T- Q- z(t) +u(t)” - R-u(t)) dt, (6.1)

subject to linear system dynamics,

d
d—f:A-erB-u, (6.2)
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and possible boundary conditions on some or all the states,

x(t,) = 2o ,
(6.3)

x(ty) = x5 .

The number of states is n, z(t) € R", and the number of controls is m, u(t) € R™, so
that S € R™", Q € R™", Re R™™, A € R"™", and B € R™*™.
The solution to the problem can be found by defining a two-point boundary value

problem derived from the first-order optimality conditions ([10] [45]). The result is

4 |z A -B-R'.BT z(t)
@) -Q —AT A(t)
where A € R" is the costate. The boundary conditions are
$(to) =To . )‘(to) =V,
(6.5)
x(ty) = 25, Mty) = S-=(ts) — vy,
with Lagrange multipliers, v,, vy € R". The optimal control is defined to be
u(t)=—-R71-BT - \(t). (6.6)

The specific case considered here is for single state and single control, n,m = 1,
so that the matrixes, S, @), R, A, and B are scalars. The values for these scalars are
chosen so that S = 0 (no terminal cost), and A, B, Q, and R are chosen to be one.
The initial condition, z, is one, and the final condition x; is zero. The initial time,
to = 0, and the final time, t; = 5. The problem is reduced to solving for z(t) € R
and A(t) € R, so that

d | =@ 1 -1 z(t) | z(t)
= . =M. , (6.7)
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with boundary conditions,

(6.8)
T(tf) =0 s /\(tf) = —Vy.

The solution can be found by defining the eigenvectors, v; and v,, and eigenvalues, p;
and po, of the matrix M € R?*2. The state and costates are then linear combinations

of eigenvalues and eigenvectors, so that

=cp- v e ey v - e (6.9)

The integration constants, ¢; and co, are determined from the boundary conditions

on the state, z(t,) and x(ts). The final solution for the state, costate, and control is

z(t) = 1.0000 - e~V —7.2135 x 1077 - eV

At) = 2.4124 - e™V? —2.9879 x 1077 - eV | (6.10)

and the Lagrange multipliers are
v, = 2.4124 vy = —0.0024 . (6.11)

The solution is plotted in Fig. 6-1. This solution will be referred to as the exact

solution for comparison to the numerical approximations.

6.1.1 Euler Transcription

The one dimensional LQR problem is solved numerically by using an Euler tran-

scription (see Section 3.1). The dynamic constrains are approximated at a uniform
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Figure 6-1: LQR Exact Solution

distribution of nodes, 0 = t; < --- <ty = 5. o = z(t)) and vy = u(ty). so that

$k+1=xk+h-(:17k+'uk), k=1,---.N-1, (612)
1 .. .
where h = N_1 The cost function is approximated as
1 V=1
J=3 (z7 +ui)h. (6.13)
k=1

This approximation then defines an NLP to find the N state variables, x;, k =
1,---,N,and N —1 control variables, uz, k = 1,---, N —1, that minimize J subject
to the N — 1 equality constraints (6.12) and the two boundary conditions z; = 1 and

xn = 0. The approximate solution is plotted in Fig. 6-2 and Fig. 6-3.

129



6.1.2 Runge-Kutta Transcription

The LQR problem is solved using a four stage Runge-Kutta transcription (see Section
3.2) at the same set of equidistant points, 0 = t; < --- < tx = 5. The state dynamics

are approximated as

1
—(s1i+2-8i+2-83+84), i=1,---,N-1, (6.14)

Tit1 = T; + G

where the stages are defined as

s1u=h-(z; +u),
82 = h-(2;+ 0.5 815+ %i11) ,
(6.15)
83 = h - (z; + 0.5 - 535 + Uiyq) ,

845 = h - (z; + 83, + uit1) ,

and @;41 is the estimate for the control u(t;+h/2). The cost function is approximated

as
N-
1 1
J=§Zg(1k+2'~§2k+2‘§3k+§4k): (6.16)
where the stages are defined as
_ h
S = E(Il‘ + “L) )
. _h . 2 -2
Sop = —2-((.'17],_ +0.5- Slk) + Uk—rl) y
. (6.17)
Sgp = 5((“ +0.5 - 521) + 341)
_ h 2, o
ak = 5 ((Tk + Sz k+1)
3 5 ((zx + S31)* + ugyy)

The cost and constraints along with the boundary conditions, z; = 1 and zy =
0, define the NLP over the NV state variables, N — 1 control variables, and N — 1
intermediate control variables. The approximate solution is plotted in Fig. 6-2 and

Fig. 6-3.
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Figure 6-2: LQR Approximate State Solution

6.1.3 Legendre Pseudospectral Method

The LQR is solved using the Legendre pseudospectral method (see Section 3.3) by
defining the state constraints in terms of the pseudospectral differentiation matrix,
so that

2

gD-XN =Xy +un, (6.18)

where x5 € RV is a vector of the approximation to the states at the Gauss-Lobatto
points, and uy € R” is the approximation to the control. The fraction in the
constraint is to take care of the time transformation from [0, 5] to [-1,1]. The cost

is found using the Gauss-Lobatto quadrature rule, so that

5 = 1

where x4 is the kth component of the vector xy, and uy is the kth component of

the control vector. Also, wy is the Gauss Lobatto weight. The boundary conditions
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are r; = 1 and zn = 0, the first and last components of the state vector. These
constraints and the cost function make up the NLP for the Legendre pseudospectral

transcription. The approximate solution is plotted in Fig. 6-2 and Fig. 6-3.

6.1.4 Gauss Pseudospectral Method

Finally, the LQR problem is solved using the Gauss pseudospectral method by defin-
ing the state constraints in terms of the pseudospectral integration matrix, A, so
that

xy=1+ gA- (xn 4+ un), (6.20)

where xy and uy are vectors of the state and control at Gauss points. The cost

function is found using the Gauss quadrature rule, so that

.'Bk + uk 'U)k ) (6.21)

I\Dlp—l

l\DICﬂ
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where x; and u; are components of the state and control vectors, and wy, is the Gauss
quadrature weight. The initial condition is already included in (6.20), and the final
condition is included using the integral of the state dynamics. This condition is

X
0=1+5> (o +ux) wi. (6.22)

k=1

N Ot

These constraints and cost define the NLP for the Gauss pseudospectral method. The

approximate solution is plotted in Fig. 6-2 and Fig. 6-3.

6.1.5 LQR Problem Convergence

The plots of the approximate solutions, Fig. 6-2 and Fig. 6-3, indicate that all four
methods are in reasonable agreement with the exact solution. The rates of conver-
gence of the control for the four transcription methods is shown in Fig. 6-4. These

convergence plots are found by taking the infinity norm of the difference between the
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approximate solution for the control and the exact solution for the control. The error
is then plotted as a function of the number of nodes used. While the Runge-Kutta
problem converges at a faster rate than the Euler problem, neither one is nearly as fast
as the pseudospectral transcriptions. The solution found using the Gauss pseudospec-
tral method has the same convergence rate (the lines are parallel) as the Legendre
pseudospectral method, but it is always approximately two orders of magnitude more
accurate. This example shows that the Gauss pseudospectral method converges for
the linear quadratic optimal control problem.

The time to solve the LQR problem for each of the four transcriptions using
SNOPT [30] is shown in Fig. 6-5. All four methods were setup in an efficient manner
and solved using the same initial guess. The figure shows that the pseudospectral
transcriptions are significantly more accurate than the finite difference schemes for the
same amount of computation time. Also the Gauss pseudospectral method is faster

than the Legendre pseudospectral method for the same amount of accuracy. This
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property is due to the fact that the Gauss method can achieve the same accuracy as the
Legendre method using fewer nodes. Note that both the pseudospectral transcriptions
were solved directly (see Appendix B) for the convergence plot (Fig. 6-4) but solved
with SNOPT to compare CPU time (Fig. 6-5).

6.2 Nonlinear Example

The nonlinear problem considered here is a problem that was derived from a simple
one-dimensional LQR problem. Formulating the problem in this way allows for the
generation of a simple nonlinear problem with a known analytic solution. The problem
was created by defining a new state y(t) € R, as the square of the original state
z(t) € R, in the LQR problem (6.1 - 6.3). The transformation is valid because the
relation y(¢) = z(t)?, is one-to-one and a surjection for y(t), z(t) > 0. The new cost

function becomes

J= %/tf (q-y(t)+r-u®)?)dt, (6.23)

with state dynamics

d
d—f=2-a-y(t)+2-b-\/y(t)-u(t), (6.24)
and boundary conditions
y(to) = 23 .
(6.25)
y(ty) = 2% .

In the example considered here, the scalers a, b, q, and r are set equal to one.
The initial condition is z, = \/5, and the final condition is x; = 1. The time interval
considered is from [0,5]. The solution of the nonlinear problem is found from the
solution to the original LQR problem, which can be computed using the technique

shown in Section 6.1. The solution of the LQR problem shown to five significant



figures is
(t) = 1.4134 - eVZ* 4 8.4831 x 1074 V2t

Az(t) = 3.4122 - eVZt — 35138 x 1074 - eV21 (6.26)
u(t) = —3.4122 - V2t 4 3.5138 x 1074 V21
The solution to the nonlinear problem is found by squaring the state, the control
is unchanged, and the costate can by found by the relation between the control and
costate for the two problems. The solution to the continuous nonlinear optimal control
problem (6.23 - 6.25) is

2
y(t) = z(t)*> = (1.4134 ce~V2t 4 84831 x 1074 - e\/ir.)

M) = = _ (3.4122 ceVEt _ 35138 x 1074 - eﬁ") / (2 : \/y(-t)) :

2-\ylt)

u(t) = —3.4122 - e7V2 4 3.5138 x 1074 V2.
(6.27)

The solution for the state is shown in Fig. 6-6, and the solution for the costate is

shown in Fig. 6-7.

6.2.1 Legendre Pseudospectral Method

The Legendre pseudospectral solution to the nonlinear optimal control problem is
found by defining a NLP with a cost based on the Gauss-Lobatto quadrature rule, so
that

J= 1 v’ (Yn+UR) , (6.28)

where w € RY is the vector of LGL weights, and Yy,Uy € R¥ are the vectors
of the state and control at the LGL points respectively. The state dynamics are

approximated using the differential matrix D € RV*¥, so that

§-D-YN=2-YN+2~\/YN-UN. (6.29)
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Figure 6-6: Nonlinear Approximate State Solution

Finally the boundary conditions are enforced by requiring the first entry in Yy to be
2 and the final entry to be 1. The solution to this NLP was found using SNOPT {30].
The estimation for the costate was found using the costate mapping principle [22].

The costate is estimated to be
2 -1 g
Ay = 5 W= An, (6.30)

where W is a square matrix with the LGL weights on the diagonal, and A is the
vector of KKT multipliers. The approximate solution, using 10 nodes, for the state

is shown in Fig. 6-6, and the costate in Fig. 6-7.

6.2.2 Gauss Pseudospectral Method

The Gauss pseudospectral solution to the nonlinear problem is found by defining the

NLP based on the integral form of the optimal control problem at Gauss points. The
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cost function is defined in terms of a Gauss quadrature, so that
5 1 2
J=q-w' - (Yn+ Uuz) , (6.31)
where w € R" is the vector of Gauss weights, and Yy, Uy € RY are the vectors of
the state and control at the Gauss points respectively. The integral form of the state
dynamics are approximated using the integration approximation matrix A € RV*V,
so that
5
YN=Y;+§-A(Q-YN+2-\/YN-UN). (6.32)

The boundary constraints are enforced using the conditions Y, = 2 and Y; = 1, with

the relation
Yf=]’;+g~wT-(2-YN+2-\/YN-UN). (6.33)

The solution was again found using SNOPT [30], and the costate estimate was
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found using the integral costate mapping principle (4.76). The costate estimate is
ANZ VV—I -AT'PN—Vf s (634)

where W is a square matrix with the Gauss weights on the diagonal, Py is the vector
of KKT multipliers associated to the dynamic constraints, and vy is the Lagrange
multiplier associated to the final state constraint. The initial costate is estimated

using the sum of the KKT multipliers, so that
A(Q) =Py —vs. (6.35)

The approximate solution for the state is shown in Fig. 6-6, and the costate in Fig.

6-7, again using 10 nodes.
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Figure 6-9: Nonlinear Problem Costate Convergence

6.2.3 Nonlinear Problem Convergence

Figures 6-6 and 6-7 show excellent agreement between the approximate pseudospectral
solutions and the exact solution. The convergence of the Legendre pseudospectral
method and the Gauss pseudospectral method on this nonlinear problem is examined
in Figures 6-8 and 6-9. Fig. 6-8 shows the convergence of the state and control in the
infinity norm as a function of the number of nodes used, for both the Legendre and
Gauss methods. The figure indicates that both methods are converging very rapidly,
but the Gauss method error is always slightly better than the Legendre method.
Fig. 6-9 shows the convergence for the costate and initial costate in the infinity
norm, as a function of the number of nodes. The convergence rates for the costates
are again the same, with the Gauss method costate always better than the Legendre
costate. The convergence rates for the initial costates, however, are not the same.
The convergence rate for the initial Legendre costate is the same as the convergence

of the other costates, but the convergence rate for the initial costate from the Gauss
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method is much faster. Note that the error in the initial costate is decreasing un-
til it approximately reaches the tolerance of SNOPT. This result indicates that the
initial costate estimate from the Gauss method is significantly more accurate than
the costate estimates at the Gauss points and the costate estimates from the Legen-
dre method. This example shows that the Gauss pseudospectral method can solve

nonlinear optimal control problems with very fast convergence properties.

6.3 Bang-Bang Control Problem

The next example considered is one with a discontinuity in the control. The bang-bang
control problem is a reorientation problem of a double integrator, from an arbitrary
state to the origin in minimum time. The control is bounded in both the positive and

negative directions by a maximum value. The cost is the final time,
J=ty, (6.36)

which is free. The state dynamics of the double integrator are

dr
— () =22(1),
i (6.37)
T2
—(t) =ult),
—2(0) = u(t),
with initial conditions
11(0) = T10 12(0) = T2 - (6-38)
The feasible control is defined as
Iu(t)l < Umaz = 1. (639)

The exact solution to the bang-bang problem can be found by using Pontryagin's
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maximum principle to determine the control. The control is

aty=4 O Aa(t) <0, (6.40)
-1, )\Q(t) >0.

This control can be used to determine the switching curve in the state space. The

exact solution for the case r1, = 1, 19, = 3 is

—t2/2 4+ Top -t + 115, t<ty,

.Z‘](t): 9
t22—tpt+13/2, t>t,
—t+ Ty . t<t,
7o(t) = o ! (6.41)
t—ts, t>t,
-1, t<ty,
u(t) =
1, t>1,

where the switching time is t; = x2,++/0.5 - 3, + 10, and final time is ¢ § = 2:t1—T9.

The costates are

M) =c,
(6.42)

)\Q(t) =-c-t+co,

where ¢; = —1/(¢; — t5) and ¢; = ¢ - t;. The exact solution for the states is plotted
in Fig. 6-10, 6-11, the control is plotted in Fig. 6-12, and the exact solution for the
costates is plotted in Fig. 6-13, 6-14.

6.3.1 Legendre Pseudospectral Method

The Legendre pseudospectral solution to the bang-bang problem was found by defin-
ing the NLP in terms of the variables X;y, Xon, Uy € RY, which are the approxima-
tions to the states and control at the LGL points. The final time t; € R is also a free

variable to be estimated. The cost is to minimize the final time

J=tg, (6.43)
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subject to the set of dynamic constraints

tzD'XlN"X2N=07
2 (6.44)
_D 'XQ_T\Y —IIN = 0,
ty
and boundary conditions
XlN[l] =1 ’ X?N[]-] = 37
(6.45)

XlNUV] = O ) XQN[]V] = 0 .

which are the first and last entries in the vectors. Finally the control constraint is

enforced as

~1<Uy<1. (6.46)

The NLP was solved using SNOPT [30], and the approximate solution for the states
and control using 10 nodes is shown in Fig. 6-10,6-11, and 6-12.
The costate estimates were generated using the KKT multipliers fromn the NLP

solver. The costate estimates are

Ay = g-iw—l A1,
h ) (6.47)
Do = -’éiwﬂ )2,

where W is a square matrix with the LGL weights on the diagonal. The costate

estimates are shown in Fig. 6-13, 6-14.

6.3.2 Gauss Pseudospectral Method

The Gauss pseudospectral solution is found by defining an NLP in terms of the
variables X1y, Xon,Uxy € R, which are the approximations to the states and control

at the Gauss collocation points. The final time, ¢, is minimized so that
J=ty, (6.48)
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subject to the dynamic constraints in integral form

t
XlN'" —-%A-XQN=0,
t
X2N—3—§fA-UN=0,_
with boundary constraints in terms of a Gauss quadrature

t
1+§f'wT-X2N=O,

3+%fwT-UN=O.

Finally, the control is constrained as

-1<Ux<1.
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Figure 6-15: Bang-Bang Problem State/Control Convergence

The NLP was also solved using SNOPT [30] with 10 nodes and the solutions for the
states and control are shown in Fig. 6-10, 6-11, and 6-12.

The costate estimate was found using the KKT multipliers and Lagrange multi-
pliers from the NLP solver. The costates are

/\1]\] =H/_1 "4T'P1 -,
(6.52)

M =W AT . Py =1y,

where 14 and 1, are the Lagrange multipliers associated with the boundary constraints

(6.50). The costate estimates are plotted in Fig. 6-13, 6-14.

6.3.3 Bang-Bang Problem Convergence

The plots of the approximate solutions show significant errors in the states and con-

trol, Fig. 6-10, 6-11, and 6-12, around the point of the control discontimuity. At the
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Figure 6-16: Bang-Bang Problem Costate/Final Time Convergence

switching point the control is discontinuous, the second state has a discontinuous
first derivative, and the first state has a discontinuous second derivative. Both of
the pseudospectral methods use polynomials to approximate these non-smooth func-
tions. It can be seen in the figures that the polynomials do not do a very good
job of approximating the exact solutions. The approximating polynomials exhibit a
Gibbs phenomenon that is consistent with the results for polynomial interpolation of
non-smooth functions [31].

The Gauss pseudospectral method, does however, have a significantly better costate
estimate that the Legendre method as seen in Fig. 6-13, 6-14. The large errors in
the costate for the Legendre method have been attributed to the problem with the
defects in the costate equations (see Section 3.3.2). The Gauss method does not have
these defects and therefore, results in a much improved costate estimate.

The convergence of the Legendre pseudospectral solution and the Gauss pseu-

dospectral solution is investigated by looking at the infinity norm of the error between
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the approximate solution and the exact solution for the states, costates, control, and
final time. The plots for the error as a function of the number of nodes used for the
states and control is shown in Fig. 6-15. The convergence plots for the costates and
final time is shown in Fig. 6-16. These plots indicate that although the Gauss method
seems to outperform the Legendre method, neither one shows much improvement as
the number of nodes is increased. This result is due to the fact that the interpolation
polynomials used in the pseudospectral methods are not well suited for approximating
functions with discontinuities.

An improvement of the approximate solution can be found by using the multiphase

approach to link two segments at the switching point.

6.3.4 Multiphase Solution

The multiphase solution to the bang-bang problem is formulated once the switching
structure is known. The switching structure is estimated from the single phase solu-
tion (see Section 6.3.2), and for the initial conditions, x1, = 1, 19, = 3, the control
starts at —1 and switches to 1 at some time ¢;, Fig. 6-12. The control is

-1, t<t,

u(t) = (6.53)

1., t>1t.
The problem can be formulated so that the control is constrained to be —1 before
the switch and 1 after the switch with the switching time as a free variable to be
estimated.

The Gauss pseudospectral transcription of the multiphase problem is formulated
with the variables X14x, Xoan, Usny € RY, as the states and control on the first phase
and Xypn, Xopn, Upy € RV, as the states and control on the second phase. Note that
the number of nodes used does not have to be the same on all phases, but for this
example the same number was used for simplicity. The states at the switching time,
X1bos Xapo € R are used in the phase boundary constraints to link the two phases.

The switching time, {,, and final time, t;, are also free variables.
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The cost of the NLP is again the final time,
J=t. (6.54)

The dynamic constraints for the first phase are

t
XlaN—l_—Ql'A'X2aN=07

p (6.55)
XZQN-3—§1A-UQN =0.
The dynamic constraints on the second phase are
tr—1
Xun — Xipo — (—f—z—le - Xoony =0,
(6.56)
(tr = t1) _
Xsz—X2bo————-2 A-Upn=0.

Note that different time transformations were used for the two different phases because
the phases are not the same length of time. The final state constraints are expressed

using a Gauss quadrature, so that

ty—1
)yt Xy =0,

2
tr—t
X2bo+(f2 1)

lea +
(6.57)

’U)T'UbN=0.

The phase boundary constraints which enforce continuity of the states are also ex-

pressed using a Gauss quadrature, so that

leo_l"%sz'X2aN=Oa

(6.58)
(t1) _
X2b0—3——2-w U,y =0.
Finally, the control is constrained as
Un =-1,
(6.59)
UbN =1.
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These equations define the cost and the constraints of the NLP. which defines the
solution to the multiphase bang-bang problem.
The costate estimate is found using the KKT and Lagrange multipliers from the

NLP solver. The costates on the first phase are

Ala.-’\/ = ‘/V_l : 14T : plaN — V1,
N (6.60)
Aan =W AT - Pyun — vps

where PlaN, Pga, ~ € RY are the KKT multipliers associated with the dynamic con-
straints (6.55), and v1,v.2 € R are the Lagrange multipliers associated with the

phase boundary constraints (6.58). The costates on the second phase are

Aoy =W AT . Py — 1y,
) (6.61)
Aoy = W1 AT . Py — s,

where }51;,_:\1., 1521,1\1 € R" are the KKT multipliers associated with the dynamic con-
straints (6.56), and vy, v, € R are the Lagrange multipliers associated with the bound-

ary constraints (6.57). The final costates of the first phase are defined as

Malty) = ~ver s

(6.62)
Aaa(t1) = ~va
The initial costates for the second phase are defined as
A(t) = Puv —n,
Z (6.63)

Aap(ty) = szij — V.

The KKT condition that relates the two costate estimates (from (4.155) defines that

the costates are continuous across the phase boundary, which is what is expected
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Figure 6-17: Bang-Bang State/Control Multiphase Solution

from the exact solution, so that

Ma(t1) = A(ta) ,

Aaa(t1) = dap(t1) -

(6.64)

The approximate solution for the states and control for the bang-bang multiphase
problem, using 5 nodes per phase, along with the exact solution is plotted in Fig.
6-17. The approximate costates are shown in Fig. 6-18. The pseudospectral solution
is exactly equivalent (within machine tolerances) to the true solution for the states,
costates, control, and final /switching times, for any number of nodes used greater than
two per phase, because the exact solution is a piecewise polynomial with a highest
degree of two (in the first state), (6.41). Because the solution can be approximated
exactly by polynomials, the pseudospectral solution can be exact for any number of
nodes two or higher on each phase.

This example demonstrates that the integral pseudospectral method can be used
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Figure 6-18: Bang-Bang Costate Multiphase Solution

on problems with control constraints to first determine the switching structure, and
then with a multiphase formulation provide a much better result to the problem. This

approach however, does not work as well for problems with state path constraints.

6.4 State Path Constraint Example

This example is a minimum energy problem with a second order state variable in-
equality constraint. This example appears in the text by Bryson and Ho [10]. The

objective is to minimize the energy from the control,

1
J=1 / (8) dt (6.65)
2 Jo
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subject to the dynamic constraints.

.’I'](i) = .’132('[') .

_ (6.66)
and boundary conditions,
21(0) =0, 24(1)=0,
(6.67)
$2(0) =1 ) 1'2(1) = -1
with the state path constraint,
z1(t) <0.1. (6.68)

The solution to the optimal control problem for the states is determined to be

4 t 3
0111—-{11—- —— R
( ( 3~0.1>)‘ 0<t<03,
z1(t) = ¢ 0.1, 03<t<0.7,
1-t)° 0.7<t<1
1-(1-— st= 4
0 (1-(1-355) )
(6.69)
4 ¢ 2
(_3 0_1) ) 0<t<03,
zo(t) = 4 0, 03<t<0.7,
2
_1-t 07<t<1
\ 3'0.1 !
The exact control is
¢ 2 t
— <t <
301(1 3-0.1)’ 05103,
U(t)=4 0, 03<t<0.7, (6.70)
2 1—t |
—_— (1~ — 7<t<1
\ 3-0.1( 3-0.1)’ 0
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The exact costates are

A(t) = j
Ao(t) = \

6-19: Path Constraint, State 1 Solution

2
9001’ 0<t<03,
0, 03<t<0.7,
__ 2 , 07<t<1,
9-0.01
2 ¢
301 \' T 3701 0<t<03,
0, 03<t<0.7,
__2 (j_ 1=t 07<t<1.
3.01 3.01) "

The plot of the exact states are shown in Fig. 6-19, 6-20, the control in Fig. 6-21, and

costate in Fig. 6-22, 6-23.
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Figure 6-20: Path Constraint, State 2 Solution

0.1 0.2 0.3 0.4 0.5
Time

Figure 6-21: Path Constraint, Control Solution
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6.4.1 Gauss Pseudospectral Method

The solution to the state path problem is found using the Gauss pseudospectral
method using the variables X1y, Xon € RY for the states. and Uy € R" as the

control at the Gauss points. The cost is to minimize
L 7
J=-w"-Uy, (6.72)
subject to the constraints,

Xiw — %A'X:)N —o,

1 (6.73)
XZN_I—EA'UNIO,
and terminal conditions,
1
EwT : X2N =0 s
1 (6.74)
2 + §’U)T . UN =0.
The path constraint is enforced at all the collocation points.
Xiny <£0.1 (6.75)

The resulting NLP was solved with 10 nodes using SNOPT [30], and the costates

were estimated using the KKT multipliers. The costate estimates are

Mn=W1-AT Py -1,
) (6.76)
A2N=‘/‘/—1'AT'P2N—U2,

where 131N,P2N € RY are the KKT multipliers associated with the dynamic con-
straints (6.73), and 14,1, € R are the Lagrange multipliers associated with the termi-
nal constraints (6.74). The approximate solution is shown in Fig. 6-19, 6-20 for the
states, Fig. 6-21 for the control, and Fig. 6-22, 6-23 for the costates.




6.4.2 State Path Constraint Problem Convergence

The approximate solution for the states seems to be a good approximation to the
exact states, Fig. 6-19, 6-20, but the approximate control and costates, Fig. 6-21, 6-
22, 6-23, do not do a good job of approximating the exact solution, especially the first
costate. Because the problem has a path constraint, the first costate is discontinuous,
and the second costate and control have discontinuous derivatives. Consequently, the
second state has a discontinuous second derivative and the first state a discontinuous
third derivative. The approximating polynomials do not do as well in approximating
functions that are discontinuous or have discontinuous derivatives.

A convergence plot of the infinity norm error of the approximate solution versus
the number of nodes is shown in Fig. 6-24. The figure shows that the approximate
solution does not improve much as the number of nodes is increased. This result is
because of the discontinuities in the problem solution. The resulting approximating
polynomials in the approximate solution exhibit a Gibbs like phenomenon, which
causes them to converge very slowly to the exact solution. An attempt to correct for
the deficiencies of the approximating polynomial is made by using the multiple phase

approach.

6.4.3 Multiphase Solution

The multiple phase approach is used on the state path problem by breaking the
problem into three phases. On the first phase, the state is off the path constraint, the
second it is on the constraint, and finally the state is again off the constraint on the
final phase. The variables used for the multiphase approach are Xjxq, Xone € RY
for the states on the first phase, X;ns, Xons € RV for the states on the second phase,
and Xine, Xone € RY for the states on the final phase. The control for the three
phases is Ung, Uny, Une € RY, with t;,t, € R as the times of the phase boundaries.
The states at the switching time, X1po, X1c0, X2bo, X2c0 € R are used in the phase
boundary constraints to link the phases.

The total cost to be minimized is the sum of the integrals on the three phases, st

159



"= State 1
| == State 2 ]
- Costate 1 |1

Nodes

Figure 6-24: Path Constraint, Convergence

that

J = .:.l. (E/LUT . UNa + (ﬁ-;—t-QwT . l]Nb + g};_tﬁ_)wT . UN{;) .

2\2

2

The dynamic constraints on the first phase are approximated as

Xina — %‘A Xona =0,

X2Na—1—%1A-UNa=O.

On the second phase the dynamic constraints are

Xine — X1po —

Xone — Xopo —

(t2 —t1)

—A-Xonp =0,

2
(t2 —t1)

2
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A-Uwmp=0,

(6.77)

(6.78)

(6.79)




and on the final phase,

—t
Xinve = Xieo — u 3 2)A - Xone =10,
(6.80)
- (1=12) _
X2Nc - A'Zco - A- UNc =0.
The terminal constraints are
1-t
cho + (——Q—QwT . XQ]VC =0 ,
(1— 1) (6.81)
Xoeo + 2w Uye—1=0,
with phase boundary conditions for the second and third phase.
to —
X1bo + (_22_7‘1)1”7" - Xonp — X100 =0,
by — 1) (6.82)
Xoyo + LQ—%LWT ~Unp = Xoeo =0 ’
and phase boundary conditions for the first and second phase,
b T ;oo
W Xone — X0 =0,
(6.83)

t
1+31wT-UNa—X2,,,,=O.

The path constraints are enforced as inequalities on the first and third phases, so that
Xine <01, Xine <01, (6.84)

and the path constraint is forced to be active on the second phase, so that
Xiny=0.1. (6.85)

The initial state on the second and third phases were also forced to be on the con-
straint, so that

leo = 01 , cho =0.1. (686)
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The costates for the multiphase solution were found using the KKT multipliers of

the NLP. On the first phase they are

/\1Na=W—1'AT'151Na—V1a,
i (6.87)
dona =W AT - Pyng — v,

where I51Na, PgNa € RY are the KKT multipliers associated with the dynamic con-
straints (6.78) and ¥4, 15, € R are the Lagrange multipliers associated with the phase

boundary constraints (6.83). The costates on the second phase are

Mne =W AT Py — vy,
) (6.88)
dany = WL AT - Pony — vy,

where Ple, Pony € RN are the KKT multipliers associated with the dynamic con-
straints (6.79) and vy, vop € R are the Lagrange multipliers associated with the phase

boundary constraints (6.82). The costates on the final phase are

)‘1Nc =W-1. AT. P]Nc —Vie,
) (6.89)
)‘2Nc =W-1.A4T. P2Nc — V¢,

where 151Nc, 17321\7c € RY are the KKT multiﬁliers associated with the dynamic con-
straints (6.80) and v, 15, € R are the Lagrange multipliers associated with the
terminal constraints (6.81).

The solution to the multiphase formulation of the state path constraint problem
was closer to the exact solution than the single phase solution, but did not show
the significant improvement of the bang-bang problem. The convergence plot of
the solution errors (Fig. 6-25) shows improved convergence over the single phase
formulation (Fig. 6-24) but it is not as quick as expected. The exact solution is a
piecewise polynomial of highest degree of three. In theory, three nodes per phase
should be enough to get the exact solution.

The reason for the lack of significant improvement can be seen by looking at the
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Figure 6-26: Path Constraint, State 1 Multiphase Solution
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phase boundaries of the first state. A zoomed in plot of the approximate solution
for the first state, using five nodes per phase, is shown in Fig. 6-26. The plot shows
the approximate solution at the Gauss points, but also the interpolating polynomial

derived from these points. The polynomial is
J\Y
X1(t) = X1(0) - Lo(t) + Y Xa(tx) - Li(2) . (6.90)
k=1

The plot shows that the interpolating polynomial violates the state path constraint
between the collocation points. Even though the path constraint is satisfied at the
collocation points, the solver is able to “cheat” by exceeding the constraint between
the points. The violation of the constraint allows the solver to find a solution that
has a lower cost, 4.4405, than the true solution, 4.4444. As the number of nodes is
increased, the resulting polynomial can not exceed the constraint in as many places so
the approximate solution tends toward the true solution, as shown in the convergence
plot Fig. 6-25.

This example shows that using the multiphase approach for solving problems that
have state path constraints with active and inactive sections does not work as well as

the multiphase approach for problems with bang-bang control.

6.5 Brachistochrone Problem

The next example considered is the brachistochrone problem. The brachistochrone
problem was proposed and solved by Johann Bernoulli in 1696, and is one of the
earliest applications of the calculus of variations [48]. The objective is to determine
the optimal path that a bead would take sliding down a frictionless wire to reach a
given horizontal position in the minimum possible time, Fig. 6-27.

The equations of motion are [10]

T=1+4/2-9g-y-cosb, y=+/2-g-y-sinf, (6.91)
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Figure 6-27: Brachistochrone Problem

with initial conditions,

and terminal condition,

T(tf) =1L.

The true solution for the control angle is

. .L
where w = 4 / z-—z and the final time is 4/ ——. The resulting states are
: g
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The costates for the brachistochrone problem are

)\:z = —‘_w' 3
g (6.96)
—Ww
)‘y: —g—'COt((u“t) .

The difficulty in solving the brachistochrone problem numerically comes from the fact
that the second costate is infinite at ¢ = 0.

The brachistochrone problem is solved using the Gauss pseudospectral method by
defining an NLP where the objective is to find the variables Xy € RY, Yy € RV, 6y €

RY, and t; to minimize the final time,
J=t;, (6.97)

subject to the discretized dynamic constraints in integral form,

XN—%A-(\/Z_-Q-—YN-COSGN)=O,
YN—%f—A-(\/M—-YN-sinHN) ~0.

(6.98)

Note that the square root, trigonometric functions, and multiplication within the
parenthesis is performed term by term. The terminal condition is expressed using a

Gauss quadrature, so that

%fwT- (\/2 g Y- cosGN) —L=0. (6.99)

Note again that the operations with the parenthesis are performed term by term. The
costate estimates are computed using the KKT multipliers P, Py € RV associated
with the dynamic constraints (6.98), and the Lagrange multiplier » € R associated

with the boundary condition (6.99) from the NLP solver. The costate estimates are

A=W AT . P, +v,
(6.100)




Figure 6-28: Brachistochrone Convergence

where W € RY*¥ is a diagonal matrix of the Gauss weights.

The NLP was solved using the constants g = L = 1. The convergence proper-
ties of the approximate solution are shown in Fig. 6-28. The figure shows that the
convergence rate on the states, control, and first costate is slow and it appears that
the second costate does not converge at all. This result can be attributed to the fact
that the exact solution for the second costate (6.96) is infinite at t = 0. Because the
states and costates are approximated using interpolating polynomials, the error in the
solution can be expected to be related to the error in the interpolating polynomial

of the exact solution. The error in the Lagrange polynomial interpolating formula is

(2.6)

N d)
B(t) = [Tt -0 S ) (6.101)
T =1

where ¢ are the Gauss collocation points and ¢ € [0,¢;]. The Nth derivative of the
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second costate can be found to be approximately

N, NtV

)|~

(cot (w- )V, (6.102)

which could be very large especially if ( is close to zero. This equation indicates that
the error in the polynomial interpolation of the second costate could be growing as
the number of nodes is increased which leads to the poor convergence of the states,
costates, and control as shown in Fig. 6-28.

The effect of the infinite costate can be reduced by redefining the problem to start
at a different point on the optimal path. This approach also shows the effect of having
the infinite point nearby the solution time interval. The initial starting time can be

chosen to be t,, with the initial position of the bead defined by the exact solution of

z(t,) = ———2 ;rL (w ty — sm (2 '2‘*" : t,,)) ’

the states,

(6.103)
2-L . 2
y(to) = T (sin (w - 10))"
The problem is solved similarly to before with the addition of the non-zero initial
conditions. The state dynamic constraints are approximated by

ty —
XN_m(to)_.(_'[T

YN—y(to)—'(t_f;'@A' (VQ'Q'YN'SinaN) =0,

2

o) 4. (V2 g Yo - costin) =0,

(6.104)

with the terminal constraint approximated as

z(to) + (—fJi;—

fo) 7. (\/2 g Yn - coseN) ~L=0. (6.105)

The convergence rate of of the second costate using the approach is shown in
Fig. 6-29 for several starting times ¢,. It can be seen that as the starting time gets
larger, the convergence rate of the costate gets better. This result makes intuitive
sense because the error in the interpolating polynomial for the second costate will be

smaller as the initial start time f, gets large. The convergence rate for the control
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is also shown in Fig. 6-30. This figure also indicates that the convergence rate gets
better as the problem gets further from the point where the costate is infinite.

This example shows that the convergence rate can be slow, if there is convergence
at all, for problems whose exact solutions are infinite at any point near the time
interval of the problem. The convergence rate for the approximate solution of the
states, costates, and controls are all effected by the infinite point. This effect could
potentially be a difficulty, as it may not be obvious that a costate could be infinite

for some optimal control problems.

6.6 Singular Arc Example

The next example considered is a problem that contains a singular arc.

In an optimal control problem, if there is a finite interval of time in which Pon-
tryagin’s maximum principle (2.75) does not define the relation between the control,
states, and costates, then the problem is said to be singular ([10] [45] [48]). One
example of a singular problem is found in [45]. The problem is to find the states,
z1(t), z2(t) € R, and control, u(t) € R, that minimize the quadratic cost with free

final time. The cost is

ty
J= -21- / (22(6) + 22(0)) dt , (6.106)
0
with linear dynamics,
dil'l
& =0
(6.107)
2 g
dt ’
and constrained control,
lu(t)] < 1. (6.108)

The boundary conditions used for the example are

(6.109)
.’L'z(()) = -0.8 y Ig(tf) = —-0.01.
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The problem can be shown to be singular, and the exact solution is found by using

the fact that the Hamiltonian must be zero. The solution is given by

Il(t) =0.8: et \
(6.110)
.Tg(t) =—0.8-¢7t s
with control
u(t)=08-e7, (6.111)
and costates
)\1 (t) = 0.8 €_t
(6.112)
The final time is determined to be t; = —In(z). The exact solution to the singular

problem is shown in Fig. 6-31 for the states, Fig. 6-32 for the control, and Fig. 6-33
for the costates.

The pseudospectral solution to the singular problem is found by defining the states
at the Gauss points, X;n, Xon € RY, and control at the Gauss points, Uy € RY.

The cost is approximated using a Gauss quadrature, so that

~~

J=z Lowl (X2 + X3y) - (6.113)

2

N =

The state dynamics are approximated in integral form as

t
X]_N—O.S—EfA'XzN=O,

; (6.114)
X2N+0.8—§fA-UN=o.
The terminal conditions are enforced using a Gauss quadrature, so that
t
0.01 — 0.8 — EfwT Xon =0,
(6.115)

t
—0.01 +0.8 - —2’in Un=0
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Finally, the control constraint is enforced at the Gauss points using
-1<Unx<1. (6.116)

The NLP is then solved for the states, control, and final time that minimize the cost
(6.113) subject to the constraints (6.114 - 6.116).

The costates were estimated using the KKT multipliers, ﬁ’w, 132 ~ € RY, associ-
ated with the constraints (6.114), and Lagrange multipliers, 1,12 € R, associated

with the terminal constraints (6.115). The costate estimates are

)\1N=‘V_1'AT'P1N—V1,
] (6.117)
A2N=VV_1-AT-P2N—V2.

The approximate solution for the states, control, and costates using 30 nodes is shown

in Fig. 6-31 - 6-33.
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The figures show that the approximate solution for the states and costates is a
relatively good approximation to the exact solution. However, the error in the control
is significant. The source of the error comes from the fact that the NLP solution is
satisfying a set of conditions (the discrete form of Pontryagin’s maximum principle)
that do not give any information about the control.

A plot of the convergence of the pseudospectral solution is shown in Fig. 6-34.
The convergence plot shows that the approximate solution is not getting closer to the
exact solution as the number of nodes is increased. This example demonstrates that
the Gauss pseudospectral method is not well suited for solving problem with singular
arcs. The resulting NLP does not have enough information to accurately determine

the control on a singular interval.
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6.7 Multiple Solution Example

The problem considered here is an optimal control problem with two distinct local
minimum [25]. The problem has one state and one control, z(t), u(t) € R, where the

objective is to maximize the square of the final state, z(ts), or to minimize

J = —x?(ts). (6.118)
The dynamic constraints are

dz 2

é =22 tu, (6.119)

with initial condition, (0) = 9. The variables have bounds defined by

—5<u(t)<5,
~12<z(t) <9, (6.120)

telo,1].

The exact solution for the global minimum for the problem is shown in Fig. 6-35.
Note that there also exists another local minimum shown in Fig. 6-36.

The Gauss pseudospectral solution was found by defining the NLP in terms of
the state and control, Xy,Ux € R”, at the Gauss points. The cost function to be

minimized is

1 2
J=—-]9+ §wT (=X + UN)] , (6.121)
subject to the dynamic constraints,
1
Xy—9-3A- (=X%+Un)=0, (6.122)
and variable bounds,
-5 S UN _<_ 5 i
(6.123)
-12< XNy <9.

There were two solutions to the NLP found, shown in Fig. 6-35, 6-36. The solution
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found was highly dependent on the initial guess and number of nodes used. As seen
in the plots, one of the solutions is approximating one of the local minimum, and the
other is approximating the other local minimum.

This example illustrates that the NLP resulting from the integral pseudospectral
method may have several local minimum. This result is because the solution approx-
imates the first-order necessary conditions of an optimal control problem, which only
defines local extremals. For control problems that may have several stationary points,
the pseudospectral method can only identify local extremals and give no information
about global results. Care must be taken in determining an initial guess for an NLP

on problems that have several local solutions.

6.8 Low-Thrust Orbit Transfer Problem

The final example considered here is a low-thrust orbit transfer problem that first
appears in [50]. The problem has been solved numerically in many places, ([10] [11]
[22] [33] [67]). The objective is to transfer a spacecraft from a circular orbit using a
low thrust engine to the largest possible circular orbit in fixed time. The problem is
described using the states r(t),u(t),v(t) € R, for the radial position, radial velocity,
and tangential velocity respectively. The control ¢(t) € R, is the angle between the
thrust vector and tangential velocity. All motion is considered planar. The cost is to

maximize the final radius, or to minimize

J= —T(tf) . (6124)

The dynamics describing the motion are

dr

a -
du v* pu  T-sin¢ _
@2 m, g (6.125)
dv  wu-v T -cos¢
da me — |mlt’

177



where p is the gravitational parameter, T is the thrust magnitude, m, is the initial
spacecraft mass, and 7 is the fuel consumption rate. The boundary conditions used

to constrain the initial and final orbits to be circular are

r(0)=r,,
u(0)=0, u(ty) =0, (6.126)
_ K K _
’L’(O) = 'r_o 3 ,U(ff) - T'(tf)

The states and mass are normalized, and the constants used are

T=01405, m=00749, my=r,=p=1, t;=3.32. (6.127)

6.8.1 Legendre Pseudospectral Method

The Legendre pseudospectral transcription was used the solve the orbit problem using
the variables Ry, Un. Vi, &n € RY for the states and control at the LGL points. The
cost to be minimized is the negative of the final radius, which is the last entry in the

state vector. The cost is

J = —Ry[N]. (6.128)

The dynamic constraints are approximated using the differential matrix. The right
hand sides of the dynamics are calculated at the LGL points for simplification. The
dynamics are
F R= U N,
Vi T -sin ¢y
2 R?v mMe — |m|t N ’
_UN-VN T -coson
RN mey — lmlf N ’

(6.129)




where ty is the vector of time at the LGL points. Note that all vector math in (6.129)

is performed term by term. The dynamic constraints of the NLP are then

2
ZD-Ry-Fr=0,

ty
2
}—D Uv—Fy=0, (6.130)
'f
2
—D-Vy—F, =0,
ty
with the boundary constraints,
RN[I] —Te = 0 s
Un[1] =0, Ux[N]=0, (6.131)

V[1] - %:0, VN[N]—,/KfEmzo.

The solution for the states and control, Fig. 6-37, 6-38, was found by solving the
resulting NLP with SNOPT (30].

The costate estimates, Agr, Ay, Ay € RV (Fig. 6-39), was found at the LGL points
using the KKT multipliers, Ag, Ay, Ay € RY, from the NLP solution. The costate

estimates are

9 -
Ar = “w-! -Ag,
ty
2 -1 X
2 -
Ay = —w? <Ay .
ts

6.8.2 Gauss Pseudospectral Method

The Gauss pseudospectral transcription of the orbit problem is done using the vari-

ables Ry,Un.Vy, dn € RY for the states and control at Gauss points. For simplicity
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the right hand sides of the state dynamics are calculated at the Gauss points as

Fr= Uy,
V2 u T -singy
FU = 5 T T,
2 RF\' mo - |m|t1\]
U‘_r\r . V}V T - cos ¢N
RN Mo — ‘mltN ’

(6.133)

FV -

where tx is the vector of time at the Gauss points. Note that all vector math in
(6.133) is performed term by term. The cost to be minimized is the negative of the

final radius, which is expressed in terms of a Gauss quadrature. The cost is
t
J=—-r,— LuT Fg. (6.134)
The dynamic constraints in integral form are

t
RN—TO—QJAFR:(),

t
Un—FA Fy=0, (6.135)

t
Vv —/E-Za. R =0.
Te 2

The terminal constraints are also expressed using Gauss quadratures, so that

t
Suw Fr =0,
t 6.136
E+—2£'UJT'F\/— __’—"—tu — =0. ( )
To To + Ef'wT-FR

The NLP was solved using SNOPT [30] for the states and control at the Gauss points,
Fig. 6-37, 6-38.

The costate estimates, Ag, Ay, Ay € RY, at the Gauss points were found using
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the KKT multipliers of the dynamic constraints. The costate estimates are

Ap=W-1.AT.Pp—1— vay/b 7
2 (T‘o-l- tEf’wT-Fﬁ)

AU=W_1'AT'PU—V1,

Ay =W AT . Py — 1y,

(6.137)

where PR,]-:"U, Py € RY are the KKT multipliers associated with the dynamic con-

straints, and v;,v, € R are the Lagrange multipliers associated with the terminal

constraints, Fig. 6-39.

Both the Gauss and Legendre pseudospectral solutions are in reasonable agree-

ment with each other, and with the solution from other places ([10] [11] [22] [33] [67]).

This result confirms that the integral pseudospectral solution to the orbit problem is

approximately equivalent to the solution from other methods. The major differences
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in the two solutions are seen in the costates, Fig. 6-39. While the costate estimates
from the Legendre pseudospectral method exhibit the typical large variations, the
estimates from the integral method are much smoother, especially in the first costate,
Ar. These variations in the costate also contribute to errors in the control as seen
by the relatively large variation of the control from the Legendre method. Fig. 6-38.
When using the integral method. the elimination of the relatively large variations in
the costate is attributed to the elimination of the defects in the costate approximation
equations. The fact that the KKT conditions that define the solution to the NLP
are exactly equivalent to the discretized form of the first-order necessary conditions
is why the integral pseudospectral method has an improved costate estimate.

The costate estimate along with the approximate solution for the states and con-
trol can be used to verify the optimality of the solution. The approximate state,
costate and control, X*(t), A*(t) € R%, and U*(t) € R, can be formulated for the low
thrust orbit problem using a set of interpolating polynomials for both the integral
pseudospectral and Legendre pseudospectral solution. These functions can then be
used to test how well they satisfy the first-order optimality conditions derived in [10]

for the low thrust orbit problem. These conditions are

X(t) = £(X*(t), U"(1), 1),

*

A= -ZExe 0. 400, 00,0, (6.138)

U*(t) = arg i [HOX"(8), A" (1), u(t) 1))

The error in satisfying these conditions was computed using the infinity norm, and
the comparison of the integral method and the Legendre method is shown in Table
6.1. The table shows that the solution found using the Legendre method satisfies the
state dynamics and Pontryagin’s maximum principle very well but does not satisfy
the costate dynamics. The integral method however satisfies all three conditions very
well. This result indicates that the solution from the integral method can be said to
be optimal with higher confidence. Because the solution from the Legendre method

does not satisfy the optimality conditions, the verification of the control can not be
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Table 6.1: Low Thrust Orbit Optimality

Integral Gauss Legendre
Pseudospectral | Pseudospectral
X7 () — £(X*(1), U (), )]l oo 0.0459 0.0197
AT () + Ho(X*(t). A (), U*(2), )|l o 0.0019 572.65
||U*(t) — arg 1(rt1)inU[H(X*(t), A*(t),u(t), )]l 0.3379 0.4047
u(t)e

done.

6.8.3 Low-Thrust Orbit Problem Convergence

An estimate of the convergence of both pseudospectral methods can be made by
comparing the approximate solutions to a solution of the two point boundary value
problem derived in [10]. The solution of the boundary value problem was found using
the MATLAB function bvp4c, with a tolerance of 10~°. The solution of the low thrust
orbit problem using the integral pseudospectral method and 128 nodes was used for
the initial guess.

The convergence in the infinity norm of the states for both the Gauss pseudospec-
tral and Legendre pseudospectral methods are shown in Fig. 6-40. The figure shows
that the convergence for the states is similar for both methods. However, the conver-
gence of the costates is not the same, shown in Fig. 6-41. The error in the costates
for the Legendre method is significantly higher than the integral method, which was
also indicated in Fig. 6-39. Fig. 6-41 indicates that a significantly greater number
of nodes for the Legendre method is required to achieve the same level of accuracy
as the integral method for the costates. As expected, the larger errors in the costate
affect the error in the control as shown in Fig. 6-42. The figure indicates that as many
as 40 additional nodes would be required of the Legendre pseudospectral method to

achieve the same accuracy in the control as the Gauss pseudospectral method.
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Figure 6-42: Orbit Problem Control Convergence

6.8.4 Differential and Integral Relation

In this section, the differential and integral formulations of the Gauss pseudospectral

method are compared on the nonlinear orbit transfer problem.
The NLP for the differential form is found using the same NLP variables as the

integral form (see Section 6.8.2) and the right hand sides of the differential equations

(6.133).
The cost function to be minimized is the opposite sign of the final radius, so that

.
J=—ro—LuwT Fg. (6.139)
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The dynamic constraints in differential form are

2 -
t—(D'T'o‘l'D'RN)—FR:O,
f

2

;;D‘UN—FU:O: (6.140)

Z(l—)' ﬁ“"D"/N)—FV:O,
tf \/7’0

Where D and barD make up the differential approximation matrix. The terminal

constraints are expressed using Gauss quadratures, so that

B Y g m o (6.141)

The NLP was solved using SNOPT [30] for the states and control at the Gauss points.
The costates, Ag, Ay, Ay € RV, at the Gauss points, were estimated using the costate

mapping (Theorem 5.4.1), so that

ARZtE'W_l'[\R‘l— /i 372
0 t -
! 2<’I‘a+3f’wT'FR)

2 - 6.142
AU=—"VV_1'AU*V], ( )
ty

2 1 7

AVZ——'VV 'Av—VQ,

ty
where W is the diagonal matrix of Gauss weight, Ag, Ay, Ay € RY are the KKT
multipliers associated with the dynamic constraints, and vy, 1, € R are the Lagrange
multipliers associated with the terminal constraints. The resulting solution for the
states, costates, and control are the same (within numerical tolerances of SNOPT) to
the solution using the integral formulation (see Fig. 6-37, 6-38, 6-39).

The constraint Jacobian (see Section 2.3) is defined as the partial derivative of

the nonlinear constraints with respect to the optimization variables. It is common
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for NLP solvers to estimate the Jacobian numerically. The sparsity pattern provides
information as to which entries are non-zero.

The sparsity pattern of the Jacobian from the differential formulation is shown
using 10 nodes in Fig. 6-43. The sparsity pattern indicates which nonlinear constraints
(6.140 - 6.141), depend on which variables, Ry,Un, Vn,¢n. In this case there are
32 nonlinear constraints, 10 for each differential equation and 2 for the boundary
conditions, and 40 variables, 10 for each state and 10 for the control. The figure
indicates that most of the Jacobian is zero, and has a density of approximately 25%.

The sparsity pattern of the Jacobian from the integral formulation is much more
dense (Fig. 6-44). The density of this Jacobian is approximately 67%, indicating the
many more derivatives must be estimated. The more sparse NLP from the differential
formulation leads to more efficient computation of the solution.

The time to find the solution of the NLP using the differential formulation, is

compared to the integral formulation in Fig. 6-45. Note that in both cases the same
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initial guess was used. The figure indicates that less computation time is required
to solve the NLP in the differential form. This result is a consequence of the more

sparse NLP generated using the differential form.

6.9 Summary

These example problems demonstrate empirically that the Gauss pseudospectral so-
lution is very well suited for solving a large class of problems. The method works
well on linear and nonlinear problems whose solutions are infinitely differentiable.
The method does not work as well on problems that contain discontinuities in the
solution, problems with a singular arcs, or problems that have singularities near the
solution interval. For problems with discontinuities in the solution or in the deriva-
tives of the solution, using the multiple phase approach can dramatically improve the
approximate solution for some, but not all, problems.

It has been shown in these examples that the Gauss pseudospectral method has
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significantly better convergence properties than finite difference methods and yields
a better costate estimate than the Legendre pseudospectral method. These examples
have also shown that the initial costate estimate from the Gauss method converges to
the true solution faster than the states and costates at the Gauss points. This accurate
initial costate is useful for real time control of nonlinear systems. The development

of a real time control algorithm using the initial costate is derived in Chapter 7.
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Chapter 7

Real Time Optimal Control

The Gauss pseudospectral method has the potential to be used for real time optimal
control of complex nonlinear systems. This potential can be attributed to two proper-
ties of the transcription method. First, it has very fast convergence, as demonstrated
in Chapter 6, which allows for an accurate solution to be generated with a relatively
small number of nodes. The fewer nodes that are required results in the NLP being
smaller. which can then be solved quickly. The second property is the availability
of accurate costate information, particularly the initial costate. It has been empiri-
cally shown (see Chapter 6) that the initial costate estimate is more accurate than
the costate estimate at the interior collocation points. The accurate initial costate
information, along with the initial state information, can be used for real time control.

The initial costate can be used, with the initial state, to estimate the state and
costate for all time. This estimation is done by integrating forward the state and

costate dynamic equations,

X = fx(t),u(0), ).

_ayT
% _ % (x(t), M), u(t), 1) .

(7.1)

This integration can be done quickly and accurately using single step numerical tech-
niques such as a classic Runge-Kutta integration scheme ([41], [44], [63]). The optimal

control can be found at any point by applying Pontryagin’s maximum principle ([10],
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[45], [53]), with the known state and costate, so that
u(t) = argmin{H(x(t), u(t), A(), 1) (7.2)

Once the optimal control is known, it can be applied to the system. By continuing
to integrate the state and costate dynamics and applying Pontryagin’s maximum
principle, the optimal control can be found for all future time. As time increases,
the system could drift from the optimal path because of disturbances and modeling
errors. The optimization problem can be resolved using the current state to find the
new current costate. This re-initialization would compensate for any errors that have
accumulated and the system would follow the new optimal path.

Figure 7-1 shows the block diagram of the proposed optimal controller. The
diagram shows that the state dynamics do not need to be propagated numerically
because the current state can be measured (or estimated) directly from the plant.
The controller is then defined as the system from the state to the control, which
requires periodic re-initialization of the initial costate from the Gauss pseudospectral
method. The re-initialization rate as well as the accuracy of the initial costate required

to adequately control a system in real time is highly dependent on the system to be
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controlled.
The implementation and effectiveness of this real time control approach is shown

with two examples below.

7.1 Examples

7.1.1 LQR Problem

The linear quadratic problem considered here is a one-dimensional, fixed-time problem

with fixed initial and final states. The cost to be minimized is

J= -;-/0 (2®(t) + u?(t)) dt , (7.3)

subject to the dynamic constraint

L) = 2(t) + ult). (74)
and boundary constraints
z(0)=1, =z(5)=2. (7.5)

The true solution for the state, control, and costate was calculated to be

z(t) = 0.9983- e~V2 4 1.6979.10°3 - ¢V2 ,
u(t) = —2.4101- eV2 1 7.0331-1074. V2, (7.6)

At) = 2.4101-¢ V2 —7.0331-1074. V%

and is shown in Fig. 7-2. The pseudospectral solution to the LQR problem was found
using a similar formulation to the LQR example in Section 6.1.4. The convergence of
the approximate solution, infinity norm error versus number of nodes used. is shown
in Fig. 7-3. Note that the error in the control is equal to the error in the costate. As
expected, the initial costate converges to the exact solution at a faster rate than the

state, control, and costate at the interior nodes. The accurate initial costate will be
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Figure 7-2: LQR Exact Solution

exploited to determine an accurate approximation to the control.
The state and costate dynamics for the problem can be found using the first-
order necessary conditions and the control determined using Pontryagin’s maximum

principle (see Section 2.4). The control is found to be

u(t) = —A(t) (7.7)

_ (7.8)
At) = —z(t) — (1) .

Given the initial conditions for state and costate, z(t,), A(t,), the exact solution
for the system can be found using the eigenvalues and eigenvectors from the sys-

tem matrix. By determining the exact state and costate resulting from any initial
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conditions avoids any numerical integration techniques to approximate the resulting

behavior of the system. The solution to the dynamics can be found to be

z(t) = ¢ - vyy - e 7%) 4y gy - e (EE0) |

(7.9)
At) = ¢1 - vgy - €1 7t) 4 gy gy - eh2(tto)
where p; = —v/2, p2 = V/2 are the eigenvalues of the system and
U1 —0.3827 V12 —0.3827
va —0.9239 | | va 0.9239
are the eigenvectors. The coefficients, ¢i, c2, are determined to be
o = =12 - Mo) + va2 - 2(to)
V11t V22 — V12 V21
(7.10)

o = v11 - Ato) = va1 - (1)
2 —_— .
U11 " V22 — T12 * V21
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The initial state, £(0) = 1, along with the estimate for the initial costate from
the Gauss pseudospectral method was used to propagate the system forward in time
using the dynamic relations (7.9). The system was propagated to the final time
t; = 5. The error in the resulting control, the propagated control subtracted from
the exact control (7.6), is plotted in Fig. 7-4. The initial costate was found using 3
nodes. As expected, the error in the control starts at approximately 10~ and grows
exponentially with time. This large control error is because the Hamiltonian system
is unstable. The error in the control leads to a significant error in the final state,
z(ty) = —92.79, which does not meet the terminal constraint. The solution can be
improved by resolving the optimal control problem and updating the costate, which
updates the control, several times as the system is propagated forward in time.

Resolving the system four times, once every time unit, the propagated state and
costate is much closer to the exact solution, as shown in Fig. 7-5 and Fig. 7-6. Three

nodes were used in the pseudospectral solution each time the problem was re-solved.
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The propagated state is within 2.5-107* of the exact state at the final time, with a total
cost of 2.2151 versus 2.0307 for the exact solution. As the number of system updates,
or number of nodes used is increased, the propagated solution gets closer to the
exact solution and the cost approaches the cost for the exact solution. This example
demonstrates that the control can be found from the approximate initial costate, that
causes the system to meet the required boundary conditions by continually resolving

the optimal control problem to update the costate.

7.1.2 Low-Thrust Orbit Problem

The low-thrust orbit transfer problem [50] solved by the Gauss pseudospectral method
in Section 6.8 was used to demonstrate the real time control approach using the initial

costate. The state dynamics for the problem are

dr
—=u,
dt ’
du v* u  T-sing
&2 2 m (7.11)
dv  u-v T -coso
d r me — ||t

Using the calculus of variations and Pontryagin’s maximum principle the costate

dynamics can be shown to be [10]

dA, v? 2u Uu-v
it —‘“'(‘ﬁﬁ)‘*v‘(r—z) ’

di v -
uz_Ar )\v._ ((.12)
dt + r’
d, 2-v U
- =— ut T )\v T,
dt A + r
with the control defined as
tang = %\3 . (7.13)

v
The Gauss pseudospectral method is used to estimate the initial costate. Using

the initial costate along with the initial states, the state and costate dynamics are
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Table 7.1: Orbit Problem Real Time Results
| Nodes per Solution W‘ina.l RadiusJ Error in Final Radiuﬂ Final Eccentricity
5 1.5228 25-1073 7.73-107®
10 1.5252 1.2-107 9.04-107"

integrated forward in time in MATLAB using the ode45 integrator. The dynamics are
integrated for a fixed time then the optimal control problem is resolved to reestimate
the costate at this time. In this case the dynamics are integrated for 0.0332 tine
units, which divides the problem into 100 intervals.

The NLP from the Gauss pseudospectral method was solved using SNOPT [30]
and used five nodes for each solution. The solver required on average approximately
0.6 seconds to determine each solution. The plot of the approximate real time solution
is shown in Fig. 7-7 for the states, Fig. 7-8 for the costates, and Fig. 7-9 for the
control. The “true” solution that these are compared to is the solution of the two
point boundary value problem using the MATLAB boundary value solver bvpdc. The
figures indicate that although the costates and control seem have significant errors,
the states satisfy the boundary conditions, the final orbit is very nearly circular, and
the final orbit radius is within 0.16% of the maximum possible radius (Table 7.1).
This performance is all achieved using only 5 nodes in the pseudospectral solution.
The solution accuracy can be increased by using 10 nodes per solution as shown in
Fig. 7-10 for the states, Fig. 7-11 for the costates, and Fig. 7-12 for the control. In
this case the final states satisfy the boundary conditions and the final orbit radius is
within 0.0079% of the maximum (Table 7.1).

These examples show how the initial costate can be applied with Pontryagin’s
maximum principle for real time optimal control of nonlinear systems. By continually
resolving the optimal control problem to update the costate, errors that accumulate
from propagation, modeling errors, and disturbances, can be canceled out. The Gauss
pseudospectral method is ideally suited to be used to estimate the initial costate. The
method can quickly solve for a highly accurate initial costate because it needs only a

few nodes to return a good solution.
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Chapter 8

Launch Vehicle Example

In this chapter, the trajectory optimization of a Delta III launch vehicle is presented.
The dynamic model is formulated and the desired trajectory parameters are described.
The resulting optimal control problem is then solved using the integral Gauss pseu-
dospectral method.

Next, the real time control approach from Chapter 7 is used to simulate the real
time control of the launch vehicle. The simulation was run with and without external
disturbances to the vehicle. In both cases, it is shown that the real time control
algorithm is able to correct for any errors in the system, and keep the vehicle on the

optimal trajectory.

8.1 Problem Description

The problem considered here is the guidance for a Delta III launch vehicle. The
objective is to get the spacecraft from the launch site into a predetermined target
orbit, while maximizing the fuel remaining in the upper stage. This approach is used
to maximize the amount of fuel available to correct the trajectory in flight. In this
way, the control for the vehicle can account for any disturbances or uncertainties,
during of the flight. The less fuel that is required to get the vehicle into the desired

orbit, the larger the disturbance that can be tolerated.
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Table 8.1: Delta I1I Properties

TSolid Boosters | Stage 1 l Stage 2 |
Total Mass (kg) 19290 104380 | 19300
Propellent Mass (kg) 17010 95550 | 16820
Engine Thrust (N) 628500 1083100 | 110094
Isp (sec) 284 301.7 462.4
Number of Engines 9 1 1
Burn Time (sec) 75.2 261 700

8.1.1 Vehicle Properties

The Delta III expendable launch vehicle has two stages along with nine strap-on solid
rocket boosters. The flight of the vehicle can be broken into four distinct phases. The
first phase starts on the ground where the main engine burns along with six of the
solid boosters. When the boosters are depleted their remaining mass is dropped and
the final three boosters are lit. This begins phase two where the main engine continues
to burn with the three remaining solid boosters. When the final three boosters are
depleted their mass is also dropped leaving only the main engine burning. Phase three
continues until the main engine fuel has been exhausted (MECO). In the fourth and
final phase the main engine is dropped and the second stage is ignited. The second
stage burns until the target orbit has been reached (SECO), and the payload is
separated from the launch vehicle. A summary of the Delta III vehicle characteristics

(1] is found in Table 8.1.

8.1.2 Dynamic Model

The dynamics of the vehicle are expressed in an Earth centered inertial (ECI) frame

as

dr
@
dv 7 T D
E=—m§-r+—n;-u+7—n—, (81)
dm T
‘E———go'lsp’
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where r € R? is the position, v € R? is the velocity, u is the gravitational parameter,
T is the thrust, m is the mass, u € R® is the unit vector in the direction of thrust,

and D € R? is the aerodynamic drag [61]. The drag is defined as
1
D= '—§Cd . Aref ‘P "L‘rell *Vrel (82)

where Cy is the coefficient of drag, A, is the reference area, p is the atmospheric
density, and v, is the relative velocity with respect to the atmosphere. The relative
velocity is computed to account for the fact that the Earth’s atmosphere is rotating
with the Earth, so that

Vie =V+wXr, (8.3)

where w is the rotation rate of the Earth. The atmospheric density is modeled as

exponential, so that

p = po - exp[—h/h,], (8.4)

where p, 1s sea level density, A is the altitude above the Earth’s surface, and h, is the
scale height of the atmosphere.

The dynamic model used has many simplifying assumptions. First, the thrust from
each engine is assumed to be the vacuum thrust. Therefore, the thrust magnitude does
not depend on the atmospheric pressure. Second, the reference area and coefficient
of drag are constant for the entire trajectory with no dependence on Mach number or
angle of attack. Third, the drag is assumed to always be in the opposite direction of
the relative velocity. There is no component of lift, and the drag has no dependence
on the vehicle orientation. The final assumption is the the Earth is a sphere. This
assumption is used when determining the position of the launch site and the altitude
above the Earth. The spherical Earth also satisfies the point mass gravity model.

These assumptions cause the dynamics to be the same during each phase of the
flight, and only the thrust magnitude and mass changes. Each phase is linked to the
next phase by a set of boundary constraints that force the position and velocity to

be continuous, and takes the mass drops into account.



8.1.3 Optimal Control Formulation

The objective of the launch vehicle problem is to determine the guidance, or thrust
direction, of the vehicle to place the payload into the determined target orbit, while
maximizing the remaining fuel in the second stage at orbit insertion. The initial time
for the problem is tg, and tq,ts,13,t4 are the end times of each of the phases. The
times to through t3 are fixed and only ¢4 is free.

The initial conditions are determined by the coordinates of the launch site and

the initial mass of the vehicle, so that

r(to) =r,,
V(t()) = Vo, (85)
m(to) = my, .

The dynamic constraints for the four phases are expressed in integral form as

t
ri(t) = r(ti-1) + / vidT
tio1

T; D;
(—L-ri+—'-u,~+—-)dr,

lTi|3 m; m;

vi(t) = v(tie1) + / t

ti-1

mi(t) = mi(t )+/t( il )d
i\l) = i - T,
' tio1 90 Isp;
1=1,---,4.

(8.6)

The phase boundary constraints are defined in terms of the states at the final time

of each phase. This relation defines the initial condition for the next phase as

ti
r(t;) = r(ti-1) +/ vidr
ti-1

-t.
' p T D
v(t;) = v(ti- +/ (———r-r,—+——-ui+——)d7,
) ( 1) tio1 Irild m

i i (8.7)
[ (o) er-s
m(t;)) = m(ti=1) + - dr — Am; ,
( ) ( 1) ti—1 gO‘Ispi ¢
1=1,---.,4,
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where Am; is the mass dropped at the end of phase i. The final conditions are

imposed so that the final states r(t4) and v(t4) satisfy the required orbital elements,

a(ts) = fa(r(ta), v(ts)) = a5 .

e(tr) = fe(r(ts), v(ta)) = €5 ,

i(ty) = fi(r(ta), v(ta)) = iy, (8.8)
Qts) = falr(ts), v(ta)) = Oy,

w(ts) = fu(r(ts), v(ts)) = wy .

The orbital elements, a,e,i.€), and w, are the semi-major axis, eccentricity, inclina-
tion, right ascension of ascending node (RAAN), and argument of perigee respectively.
The functions, f,, fe, fi, fo, and f,, (Appendix C) are the relations between the iner-
tial position and velocity, and the respective orbital elements [71]. These constraints
define the final position and velocity of the payload to lie in the designated orbit,
but it does not constrain the location within the orbit, usually defined by the true
anomaly v.

A state path constraint is imposed so that the vehicle’s altitude is always above
zero, so that

Iri(t)] > R, , (8.9)

where R, is the radius of the Earth. This constraint is to ensure that the path of
the spacecraft does not pass through the Earth. A path constraint is imposed on the

control to guarantee that the control vector is of unit length, so that
lu; ()] =1. (8.10)

Finally, the objective is to maximize the fuel remaining, therefore the cost function
is to minimize

J = —m(ts) . (8.11)

This cost function (8.11), along with the dynamic constraints (8.1), boundary con-
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straints (8.5, 8.8), path constraints (8.9 - 8.10), and phase boundary constraints (8.7),

define the continuous optimal control problem to be solved.

8.2 Gauss Pseudospectral Implementation

The integral form of the Delta 3 launch problem is discretized at a set of Gauss
collocation points on each of the four phases of the problem. The NLP variables
to be solved for, are defined as the position r; € RV*3, velocity v; € RV*3, mass
m; € RY, and control u; € RV*3 at the N Gauss points on the interior of each phase
i = 1,--+,4. The initial state values for each phase are, r(t;;) € R3, v(t;;) € R3,
and m(t;-;) € R. Finally the final state values, r(ts) € R3, v(¢;) € R3, and m(ts) € R,
along with the final time, f4 € R are included as NLP variables. There are a total of
10 - N + 7 variables for each phase along with the 7 final state variables and the final
time. Therefore, there are a total of 40 - N + 36 NLP variables that are solved for in
the problem.

The objective of the NLP is to minimize
J = —m(ty), (8.12)

subject to a set of nonlinear constraints. The approximation to the dynamic con-

straints using the pseudospectral integration approximation matrix are

r - r(tioa) L"1:2”—"‘1—)/1(\7,.) —0,
bi — tie 1; D;
( ) T ' (8.13)
t; —ti—1 i _
m; — m(ti—1) — 2 A(—go'lspi) =0,
i=1,--- .4,

where drag D, is defined by (8.2). The path constraint (8.9) is enforced at each node
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on all phases. The initial conditions are

l‘(to) =Ty,
v(to) = v, (8.14)
m(tO) =My .

where r,, v, correspond to the launch site inertial position and velocity, and m, is

the initial mass of the vehicle. The phase boundary constraints are

t—ti
r(t;) —r(tic) — (—'Q—I)U’T (vi) =0,
(ti - t,'__l) T 1 ) 77; Di _
v(t;) — v(ti-1) 5 w - r; + y u; + )= 0,

(8.15)

f, - ti_ T;
m(ti) = m(ti1) = L’z—L)wT (-go : Ispz) +amlt) =0,

i=1,---.,4,

where w is the vector of Gauss quadrature weights. The state and control path

constraints are enforced an all phases, so that

lril 2 Ro y
(8.16)
|ui| -1=0.

Finally the terminal constraints are
fa(r(t4)rv(t4)) — a5 = 0 )
fe(r(ta), v(ts)) —eg =0,
fi(l‘(t4), V(t4)) - ‘if = 0 s (817)
Ja(r(ts), v(ts)) =2y =0,

fo(x(ts), v(ta)) —ws =0.

The cost function along with all the constraint equations (8.12 - 8.17) define the NLP
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to be solved.

8.2.1 Numerical Values

The inertial coordinates of the initial condition in an Earth centered Cartesian frame,
is determined using the location of the Cape Canaveral launch site, at a latitude of
28.5 degrees, for the initial position and velocity of the vehicle. The initial position

and velocity are

5605.2 0
r, = 0 km, Vo= | 0.4076 | km/s. (8.18)
3043.4 0

The initial mass, m, = 301454 kg, is the total mass of the two main stages, nine
solid boosters, and a payload of 4164 kg. The magnitude of the thrust and mass flow
rate for each phase is determined using the vehicle engine properties (Table 8.1). The
mass dropped at the end of each phase is the dry mass of the expended engines. At
the end of the first phase six solid boosters are dropped, Am(t;) = 13680 kg, in the
second three boosters are dropped, Am(ts) = 6840 kg, in the third the main engine
is dropped, Am(t3) = 8830 kg, and finally there is no mass dropped at the end of the
final phase, Am(t;) = 0.

The aerodynamic characteristics of the launch vehicle are assumed to be constant
over the entire trajectory. The reference area is chosen to be A, = 47 m? based
on the diameter of the vehicle, and the coefficient of drdg is C4 = 0.5, which is
independent of angle of attack and Mach number. This value is determined from a
typical drag coefficient of a similar shaped projectile [9]. The exponential atmosphere
model (8.4) is chosen with a sea level density of p, = 1.225 kg/m® and a scale height
of h, = 7.2 km.

The length of each phase is determined by the burn time of the engines. The phase
boundary times are, ¢ty = 0, t; = 75.2, t, = 150.4, and t3 = 261, in seconds, where t4

is free. Finally, the terminal conditions are to put the payload into a geosynchronous
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Figure 8-1: Delta III Control Direction
transfer orbit (GTO), which has the set of orbit elements

af = 24361.14 km,

ey = 0.7308,

if = 28.5 deg, (8.19)
Qf = 269.8 deg,

wy= 130.5 deg.

The problem is scaled to change the magnitude of variables to be on the order of
one. Distances are scaled by the radius of the Earth, 6378.14 km, velocities are scaled
by the circular orbit velocity at Earth radius, 7.905 km/s, mass is scaled by the total
vehicle mass 301454 kg, and forces are scaled by the vehicle weight 2956250 N. Using

these scale factors, the resulting scale factor for time is 806.8 seconds.
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Figure 8-2: Delta III Vehicle Altitude Profile

8.2.2 Results

The launch vehicle optimization problem was solved in MATLAB using the TOMLAB
[39] toolbox. The NLP was solved using the TOMLAB version of the sparse NLP
solver SNOPT [30].

The optimal solution was found using 30 collocation nodes per phase. An initial
guess was generated by integrating the system dynamics numerically using an arbi-
trary control direction, in this case the direction of the inertial velocity. The states
and control generated in this way satisfies the initial conditions and the differential
dynamic constraints, but does not satisfy the terminal constraints, nor are they op-
timal. Using this initial guéss, SNOPT was able to solve the NLP in approximately
two minutes.

The burn time of the second stage was found to be 665.3 seconds out of a possible
700 seconds. This leaves 668.2 kg of fuel remaining in the tank, or 4.0% of the total

fuel available.
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Figure 8-3: Delta III Vehicle Ground Track

The control direction is show in Fig. 8-1, where U,, U, and U; are the x,y, z, ECI
components of the unit thrust direction vector. The phase boundaries are also shown
in the figure. The vehicle altitude profile is shown in Fig. 8-2, along with the phase
boundaries. Finally, the ground track (Fig. 8-3) shows the vehicle path from lift-off
at Cape Canaveral and its path over the Atlantic ocean.

This example demonstrates that the Gauss pseudospectral method cam be used
for the optimal trajectory design of the Delta III launch vehicle. In the next section
the real time control approach (see Chapter 7) is used to control the launch vehicle

in flight to correct for disturbances.

8.3 Real Time Control

The launch vehicle control problem is solved in real time by finding the estimate
of the initial costates and integrating the state/costate adjoint equations forward in

time. The optimal control is found by applying Pontryagin’s maximum principle with
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the optimal state and costates. At a future time, the new initial costate is estimated
and the process is repeated until the final conditions are meet. The two variables
that effect the performance of the solution are the number of nodes used to solve the
optimal control problem and how often the initial costate is reestimated. There is a
trade off in these two variables. Using a larger number of nodes will give a better
estimate of the initial costate, but will require longer computation times. Solving for
the initial costate more often will correct any errors in the system faster, but it may
not be possible to solve the optimal control problem fast enough.

The state dynamics for each phase of the problem is given in (8.1). The costate

dynamics are found by the first-order necessary conditions (2.59), so that

dx  OHT

where H is the Hamiltonian and x is the vector of states. The Hamiltonian for the

launch vehicle optimization problem is

H= N .v+aT. <——u——-r+z-u+2)
Ir|® m m
T (8.21)
#an- (= ,Isp) ve-(lul-1)

where X,.(t) € R, A,(t) € R, and \,(t) € R are the costates and c(t) € R is the
Lagrange function associated with the control path constraint. The costate dynamics

are derived as

T
A _ O By 3B Ty A
dt or Ir|® Ir|® ar m (8.22)
A, _ _0H _ _, DT A |
dt v Toov m’

Details of derivation appear in Appendix D.

The optimal control for the launch vehicle problem is determined by applying
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Pontryagin’s maximum principle, so that

oHT T u
L I d4c—=0. 2
5 m/\1,+clul 0 (8.23)

Solving for the control, and using the fact that the magnitude is constrained to be

one, results in

T

c-m

u=——2A,. (8.24)

Again the fact that the control is unit length is used to determine the value of the

Lagrange multiplier c. The multiplier is then

L=,

“? (8.25)
c=—|A|-

m

lu| =

Using the value of the multiplier in the constraint (8.24) results in the optimal control.
The control is therefore determined to be in the opposite direction of the velocity

costate, so that
A

—m . (8.26)

u=

In summary, the dynamics of the system are defined by (8.1) for the states, (8.22)
for the costates, and (8.26) for the control. Note that the costate )\, is not needed,
because it does not appear in any of the relations for the state, costates, or control.
Given the initial states and costates, the solution to the trajectory problem can be
generated by integrating the states and costates forward in time, while applying the
optimal control. The initial costate is estimated using the Gauss pseudospectral
method on the integral form of the problem. The states and costates are integrated
forward for a small time interval, and then the problem is resolved using the current
states as the initial conditions, and the current costate is updated. This approach will
correct for errors generated by not using the exact costate, as well as any disturbances

or numerical integration error.
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Figure 8-4: Delta III Real Time Altitude Profile

8.3.1 Results

The Delta III launch vehicle trajectory optimization problem was solved using the real
time approach first without any disturbances. The solution was found using 5 nodes
per phase and updating the solution approximately every 40.3 seconds of simulation
time. The average time required to solve the NLP was approximately 0.5 seconds.
This solution will be referred to as the real time solution. The system equations were
propagated forward in time using the MATLAB ode45 numerical integrator.

These results are then compared to the trajectory found by integrating the vehicle
dynamics (8.1) using the control found from interpolating the pseudospectral solution
in Section 8.2.2. This solution will be referred to as the open loop solution. The
altitude profiles for both methods are shown in Fig. 8-4, and compared to the nominal
profile computed in Fig. 8-2. A summary of the terminal condition errors in the semi-
major axis and eccentricity are shown in Table 8.2.

As expected, both the real time and open loop solutions are nearly identical, and
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Figure 8-5: Delta III Real Time Altitude Profile with Disturbance

Table 8.2: Delta I1I Trajectory Errors

Error | Relative Error |
Real Time Semi-Major Axis | 0.259 km | 1.07-1073%
Real Time Eccentricity 3.15-107% | 4.31-104%
Open Loop Semi-Major Axis [ 0.006 km | 2.45-10"%%
Open Loop Eccentricity 7.59-107% | 1.04-107°%

meet the terminal orbit conditions. This result is due to the fact that there were no
disturbances considered in the problem.

There were significantly different results when a small disturbance was added.
The thrust on the solid rocket boosters was changed to 98% of its nominal value, and
the real time approach was compared to the open loop result. The altitude profiles
are shown in Fig. 8-5, and the terminal condition errors are summarized in Table 8.3.

The results indicate that the real time approach was able to correct for the dis-
turbance and still meet the terminal conditions. The new real time solution required

the second stage to burn for an additional 7 seconds, leaving 504.9 kg of fuel, or 3.0%

217



Table 8.3: Delta III Trajectory Errors with Disturbance
Error LRelative Error I

Real Time Semi-Major Axis | 0.307 km | 1.26-1073%
Real Time Eccentricity 3.76-107% | 5.14-107*%
Open Loop Semi-Major Axis | 1650 km 6.77%
Open Loop Eccentricity 1.67-10~* 2.27 %

(compared to 4.0% for the original solution). The open loop solution did not correct

for the disturbance and resulted in significant errors in the terminal conditions.

8.4 Summary

In this chapter, the trajectory optimization of a Delta III launch vehicle was com-
puted using a simplified dynamic model. The optimal control problem was defined
to find the thrust direction of the launch vehicle to place a payload into a desired
geosynchronous transfer orbit (GTO), while minimizing the amount of fuel used. The
optimization problem was solved using the Gauss pseudospectral method on the in-
tegral form of the problem. It was shown that a trajectory could be found to achieve
the trajectory parameters that used approximately 96.0% of the fuel in the second
stage.

The real time control approach using the initial costate was used to correct the
trajectory in flight. It was shown that the real time control algorithm was able to
find the optimal control that corrected for accumulating error, as well as an applied
disturbance. For the case with the applied disturbance (an error in the solid booster
thrust) the nominal control was unable to achieve the trajectory parameters. The
real time control algorithm, however, was able to find the optimal control to meet
the orbit parameters. The optimal trajectory in this case, used approximately 97.0%
of the total fuel in the second stage. The results demonstrate that the initial costate

can be used for real time control of the simplified launch vehicle model.
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Chapter 9

Conclusion

There are many numerical methods to approximate the solution of an optimal control
problem. These methods can generally be put into one of two categories, indirect and
direct. Indirect methods attempt to find a solution to the optimal control problem by
approximating the first order necessary conditions derived from the calculus of vari-
ations and Pontryagin’s maximum principle. Direct methods convert the continuous
control problem into a discrete nonlinear programming problem (NLP). The result-
ing NLP can then be solved by well-developed NLP algorithms. Indirect methods
generally are more accurate, while direct methods have simpler, more convenient. for-
mulations and are more robust. Pseudospectral methods for solving optimal control
problems are a class of direct transcription methods that are based on spectral meth-
ods, which were developed for solving partial differential equations. The Legendre
pseudospectral method with nodes at Lagrange-Gauss-Lobatto points is a formula-
tion where costate estimates have been derived directly from the Karush-Kuhn-Tucker
(KKT) multipliers from the resulting NLP. However, the method suffers from a defect
in the costate estimates at the boundary points. At these points the costate estimates
do not satisfy the costate boundary conditions or the discretized costate dynamics.
This deficiency results in a relatively poor estimate of the costate especially at the
boundary points.

In this thesis, a direct pseudospectral transcription method has been developed

based on collocation at Gauss points, which do not include the boundary points. The
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Gauss pseudospectral method has been derived from both the integral and differential
forms of the optimal control problem. It has been shown that the continuous optimal
control problem in integral form is exactly equivalent the the continuous problem in
differential form. In the integral form, the optimal control problem is discretized using
pseudospectral approximations of the integral of the differential dynamic constraints.
The problem was originally solved in this way to allow for the discretization at Gauss
points while still enforcing the boundary conditions. It was later found that the
discretization of the problem could be made directly from the differential form of the
optimal control problem. It has been shown that the differential and integral forms
of the Gauss pseudospectral method are mathematically equivalent and result in the
same solution. The differential form, however, results in a more sparse NLP that can
be solved faster.

The primary property that distinguishes the Gauss pseudospectral method from
other pseudospectral methods is the fact that the dynamic equations are not collo-
cated at the boundary points. As a result the the KKT conditions of the resulting
NLP are exactly equivalent to the discretized form of the first~order necessary condi-
tions. This result indicates that the Gauss method does not suffer from a defect in
the costate estimates. The fact that the optimality conditions of the Gauss method
are consistent with the continuous first-order necessary conditions allows the method
to take advantage of the convenient formulations and robustness of direct methods,
while preserving the accuracy of indirect methods.

Empirical evidence has suggested that the Gauss pseudospectral method converges
rapidly (exponentially) for a large class of problems and gives a better costate estimate
then the Legendre pseudospectral method. These advantages have been shown on
several linear and nonlinear example problems. However, it has been shown that
the Gauss pseudospectral method is not well suited for solving problems that have
discontinuities in the solution (or discontinuities in the derivatives of the solution),
problems with singularities on or near the solution interval, and problems that contain
singular arcs. For some problems with discontinuities (such as bang-bang control),

good solutions can be found by dividing the optimal control problem into multiple
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phases once the switching structure is known.

Additionally, the Gauss pseudospectral method is well-suited for real time optimal
control. The method has the advantage of rapid convergence, which allows for accu-
rate solutions that can be found quickly, as well as providing a very good estimate
for the initial costate. This initial costate has been used in the development of a real
time optimal control algorithm for nonlinear systems. In this approach, the state and
costate dynamic equations are integrated forward in time using the state and esti-
mate for the initial costate. The optimal control is then defined from Pontryagin’s
maximum principle. The costate is updated at a later time by re-solving the optimal
control problem. By continually updating the costate, the algorithm is able to correct
for the accumulation of error, changes in optimization parameters, modeling errors,
and applied disturbances. The real time control approach has been demonstrated on

several examples include the trajectory optimization of a Delta III launch vehicle.
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Appendix A

MATLAB Code

Included are the MATLAB scripts that were used to generate the Gauss points,

weights, and Gauss matrices for both the integral and differential formulations.

A.1 Gauss Points

function r = legroots(N);
% The function r = legroots(N) computes the roots of the

% Legendre polynomial of degree N.

% J.A.C. Weideman, S.C. Reddy 1998.

n = [1:N-1]; % Indices

d = n./sqrt(4*n."2-1); % Create subdiagonals
J = diag(d,1)+diag(d,-1); % Create Jacobi matrix
r = sort(eig(sparse(J))); % Compute eigenvalues

A.2 Gauss Weights

function [x, w] = gauss_points(n)

% function returns weights and points for gauss quadrature
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x = legroots(n);

legendre(n+1,x);
Pnpi(1,:)?;
Pndot = -(n+1)./(1-x.72).*Pnpi;

Pnpl

Pnpl
w =1./(Pndot). 2.%(2./(1-x.72));

A.3 Integration Approximation Matrix

function [A, x, w] = legint(n)
% Function generates the Gauss collocation points and weights (x, w) and the

% integration approximation matrix A

[x, w] = gauss_points(n);

if n ==
A =w/2;
return
end
g=1

Pn = zeros(n+1,n);
for v = 0:n
P = legendre(v,x);
if v ==
P =P’
end

Pn{v+1,:) = P(1,:);
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end

)2

loop through i,k

for i = 1:n;

for k = 1:n;
SUMP = O;
for v = 1:n-2
SUMP = SUMP + Pn(v+1,k)*(Pn(v+2,i) - Pn(v,i));
end
A(i,k) = w(k)/2*(1+x(i) + SUMP + g*Pn(n,k)*(Pn(n+1,i) - Pn(n-1,i)));

end

end

A.4 Differential Gauss Approximation Matrix

function [Dg, Dbar, x, w] = legdiff_G(n)

YA
YA

%

%

%

Function generates the Gauss collocation points and weights (x, w) and the

Differential approximation matrix D, bar D

Gauss Pts

[x, w] = gauss_points(n);

Add initial point -1

= [x; -1];
= sort(x);
= n+l;

Eval derivative of Lagrange polynomials

for j = 1:n

for i = 1:n;

prod = 1;



sum = 0;

if j==1
for k = 1:n
if k™=1i
sum = sum+1/(x(1)-x(k));
end
end
D(i,3) = sum;
else
for k = 1:n

if (k"=1)&(k"=j)
prod = prod * (x(i)-x(k));
end
end
for k = 1:n
if k=]
prod = prod/(x(j)-x(k));
end
end
D(i,j) = prod;
end
end
end
Dg = D(2:end,2:end);
Dbar = D(2:end,1);
x = x(2:end);
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Appendix B

LQR Pseudospectral Solution

The solution to the LQR problem can be found by solving the KKT conditions of
the NLP, which is the direct solution, or by discretizing the continuous necessary
conditions, which is the indirect solution. Both methods involve solving a set of linear
equations. These equations only differ by the use of the integral costate mapping

principle (4.76).

B.1 Indirect Solution

The indirect pseudospectral solution to the LQR problem can be found easily from the
first order necessary conditions because they are all linear. The continuous necessary
conditions for the one dimensional LQR problem, described in Section 6.1, in integral

form are

2(t) = 70+ / (2(r) + u(r)) dr,
5
p(t) = z(t) +'/t p(T)dT — vy, (B.1)

0=u(t)+ /sp(f)d’r - vy,
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with boundary conditions,

To=1,

.’Iff=0,

5 B.2)
/ p(t)dt — vy = v, (
0

5
Tf =T+ /0 (x(t) + u(t))dt .

The discretized form of the first order necessary conditions using the integration
approximation matrix, 4, and its adjoint, A', along with the Gauss weights as a

vector w, are
XN=X0+§-A-(XN+UN) .

PN'—‘XN-}-'%AT-PN—I/f,
O=UN+g'AT'PN—Vf,

XO = 1 1 (B's)

5 T —
E"UJ ‘P}\'—I/f—l/o,

X;=Xo+3 wh (Xn+Un) ,
where X, Uy, Py € RY are the approximations to the state, control, and integral
costate, respectively at the N Gauss points. The variables, X, and Xy, are the
boundaries of the state, and v, and v; are the Lagrange multipliers of the boundary
constraints. Note that the fraction ; was used in the equations to transfer the time
interval from [0, 5] to |-1,1].
The linear system of equations (B.3). involves 3 - N + 4 equations and 3- N + 4

unknowns, which can be solved by the inversion of a matrix. Expressing in matrix
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form results in

5.4-1 3.4 0o 10 0 o] [xy]| [o]
I 0 2.A-7T0 0 0 -1 Uy 0
0 I 2.4 0 0 0 -1 Py 0

0 0 0 1 0 0 O X, |=1]1 (B.4)
0 0 01 0 0 X; 0
5wl 2T 0 1 -1 0 0 Vo 0
i 0 0 2w 0 0 -1 =11 | v | ;O_

The solution to the problem can be found by inverting the matrix on the left hand
side.

The estimates for the differential costates Ay € R" can be found from the integral
costates as

5
Ay = % AT Py — vy, (B.5)

and the estimates for the initial and final costates are

Ao =V,
(B.6)
Af = ~Vs
B.2 KKT Conditions
The NLP found from the LQR problem in Section 6.1 is to minimize
Lo rxe w2 |
J=3-5w (X3 +U3%) . (B.7)
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subject to the constraints,

Xn =Xo+%_)'A'(XN+UN)-,
X,=1,
(B.8)
X f= 0 .
X_f =Xo+§-wT'(XN+UN) .
The KKT conditions are found by adjoining the cost with the constraints and KKT
multipliers Py e RY and Lagrange multipliers v, and vy, and setting the gradient to

zero. The resulting conditions are

Xy =X,+3-A- Xy +Uy),

0=§-W’-UN+3-AT-13v——%-uf-w,
Xo=1, (B.9)
X;=0,
Xf=Xo+§-wT-(XN+UN) )
O=1T-15N—Vo—l/f,
where W is a matrix with the Gauss weights on the diagonals. The set of equations

(B.9) can be shown to be exactly the same as the set of equations (B.3) by using

the integral costate mapping principle (4.76) and the definition of the integration
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operator adjoint (Lemma 4.2.1). The set of equations in matrix form is

(5.4-71 3.4 o 10 0 o |[xy] [o]
2.W 0 3-AT-70 0 0 -%-w Ux 0
o fw 4T 0 0 0 -fw||Py 0
0 0 1 0 0 0 X, |={1].(B10)
0 0 0 01 0 0 Xy 0
g wt g-wT 0 1 -1 0 0 Ve 0
|0 0 17 00 -1 -1 || wy | {0]

The solution to this set of linear equations is equivalent to the solution of the NLP
(B.7 - B.8).
The estimate for the integral costate, Py, is found from the KKT multipliers,

P N, by use of the integral costate mapping principle, so that

Py=z-W1.Py. (B.11)

o] N

The estimate for the differential costates, Ay, can also be found directly from the

KKT multipliers, so that
A=W AT . Py — vy, (B.12)

with initial and final costates as

(B.13)

This derivation demonstrates that the NLP resulting from the continuous opti-
mal control problem can be solved by forming the KKT conditions and solving the
resulting set of equations. This approach is particularly easy for the LQR problem

because the resulting KKT conditions are all linear.
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Appendix C
Orbital Elements

The orbital elements can be determined from the inertial position r and velocity v

[71]. The first step is to find the angular momentum h,

h=rxv. (C.1)
Next is the vector pointing to the node,

n=kxh, (C.2)

where k is the unit vector in the z direction. The eccentricity vector is defined as

(|v|‘l——‘:->-r—(r.v)-v

e= Ir , (C.3)
©

and the eccentricity is the magnitude of the vector, so that

e=le|. (C.4)
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The semi-major axis is found from the energy of the orbit, so that

_ Pk
E=5%m
_ s

2F -~

(C.5)
a

The inclination is the angle between the angular momentum vector and the = direc-
tion, so that

hy,
cost = — . C.6

The right ascension of the ascending node is the angle between the node vector and
the z direction, so that

n; )
cos = — . C.7

If the y component of the node vector is negative, n; < 0, then a quadrant correction
must be made, 2 = 27 — (). Finally the argument of perigee is the angle between the
node vector and the eccentricity vector, so that

nee

cosw = —— . (C.8)

A quadrant correction is also needed if e < 0, then w = 27 — w.
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Appendix D

Launch Vehicle Costate Dynamics

The costate dynamics are derived from the Hamiltonian,

T m 3 :
, I e (D.1)
+An (_go-Isp) +c¢-(u-1),
where the drag is defined as
1
D= _§Cd : Ar('.f P l'Urel| * Vyel s (DQ)
with the relative velocity and density as
V9l = V+WXT,
(D-3)

P = Po €XP [—(Irl - Tearth)/ho] .

The rotation rate of the earth is w = [0, 0, w,]. The costate dynamics are found by
the partial derivatives of the Hamiltonian (2.59). Writing out the scalar components

of the states,

r=|[ry, 1y, T
(D.4)

V= [, Uy 'Uz] )
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and the costates,
Ar = [)‘r:c: )‘ry7 )‘r:]T s

(D.5)
Av = [Aur A'uy; AL’:]T 3
and the relitive velocity;,
Viyel = ['Ua: — We Ty, Uyt We:Ts, 'U::]T ) (DG)
the costate dymanics become
d\.,  OH
dt — or’
i\, OH (D-7)
d o ov

Expressed term by term for the position costates,

Ae = Ayg - e =3t ATy

ITI"’ e 7
Uy — We * T
Cd . Are:f 4 [ 'Lrell A Vel + ue(y—gz)Af"rel - lurcllweAvy] 9
m ho l | |'Ure!.|
- 7 TN
Ary = ’\vy'F_Tg“g"’"yl_rl?,'/\vr
1 (vz + we - 1y)

T
Av Vrel — lvrellu"e)\vz:l 3

:
e [Tl M S
! T

. U U T 1 Tz T
Arz = Av:' — =3 T, A 4 '441'e Y re ‘A ret
R T R A

(D8)

and term by term for the velocity costates,

1 [(vy + we - 7
Cd'Aref'P ( = = "l)
g | Ivrell

.v:cz "')\r:c o
A +2-m

. AZv‘rel + Aez - Ivrel ‘} 3

. 1 [ — We * Ty
)\vy = "')\7'y + —Cd . Are.f P (_’Uy___u__'r_) : AZwvrel + Avy : lvTell] s (DQ)

2-m [vrel]

) -
mCd “Ares e p Iglrel)l ATVt + A - Iz,rell]
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