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Abstract

Within the semiconductor industry, the variability in both supply and demand is quite
high; this uncertainty makes supply chain planning very difficult. We analyze the current
tools and processes at a large semiconductor manufacturing company and then propose a
framework for improvement based on hierarchical production planning. We present an
appropriate decomposition for this specific planning problem and illustrate some
limitations of traditional inventory models. New safety stock equations are developed for
this planning problem based on a simple analysis using the basic ideas from probability
theory. We also devise a new method to determine lead times that more accurately
captures the actual lead time seen in the supply chain. Finally, an algorithm is developed
to determine appropriate inventory levels and production allocation. These ideas, when
used together, provide a powerful framework to properly manage supply chains in highly
stochastic environments.

Thesis Supervisor: Stephen C. Graves
Abraham J. Siegel Professor of Management Science and Engineering Systems
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1 Introduction and Overview

This thesis examines several important issues in the management of the supply

chain for a semiconductor company. Many of the results easily extend to other

industries; however, this research was motivated by work with a large semiconductor

corporation. We open with a background on the industry and the manufacturing process.

Then, we diagnose the current supply chain / production planning system. Next, we

discuss a framework for improvement followed by several specific improvements

supported by the framework. In particular, we evaluate some generally accepted

inventory equations, show shortcomings in their application in this industry, and propose

new methods to evaluate inventory targets. Additionally, we propose a new way to

measure lead time that more accurately reflects the actual lead time seen in the supply

chain. We also propose a solution method to solve the production planning problem

given the semiconductor binning characteristics.

1.1 Industry Background

The semiconductor industry is characterized by very short product lifecycles,

rapid technological change, and very high fixed costs. To support these claims, we

provide the following facts. In 2004, a new wafer fabrication facility cost over $2 billion,

which clearly supports the notion of high fixed costs. To support the claims regarding

product lifecycles and technological change, we cite Moore's Law, which states that the

transistor density on integrated circuits doubles every 18-24 months 2. It is widely held

1http://www.semiconductorfabtech.com/industry.news/0006/20.08.shtm
2 http://www.intel.com/labs/emi/index.htm
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that this rapid technological advancement described by Moore's Law will hold for the

foreseeable future of the industry. Performance pressures in all aspects of the business

will only increase in the future and finding every area of competitive advantage has

become essential for growth companies.

Several companies have identified supply chain management and inventory

optimization as areas to explore in terms of deriving an advantage. Bain and Co. report

that 85 percent of senior executives say improving supply chain performance is a top

priority (see Cook and Hagey 2003). This recognition has led to significant investment in

making operations a source of competitive advantage for many companies.

We now continue with an overview of the semiconductor manufacturing process.

1.2 Manufacturing Process Overview

In this section, we provide an overview of the manufacturing process for

semiconductor products, specifically microprocessors. The figure below summarizes the

high level stages in the manufacturing process. Note that the actual process is much more

complicated; however, it is well beyond the scope of this thesis.
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FSM ATM

Fab Srt.MM-EEN ADI

Figure 1: Semiconductor Manufacturing Overview

The process begins in fab sort manufacturing (FSM). Fab is the term used by the

industry to describe a fabrication facility or the place where raw silicon is turned into

actual devices (e.g. microprocessor chip or memory chip) on a wafer. Generally, there

are hundreds of individual operations that take place in the fab. The details are

unimportant in terms of this thesis and will be omitted. These facilities are generally

located in higher cost countries that have highly trained personnel and support

infrastructure. At the fab, electrical components are formed in layers or stages using a

process that takes two to three months to complete (which represents a fairly lengthy

throughput time).

Once the wafers finish the 'fab' portion of the process, they are sent to the sorting

function where they are probed for functionality and performance in a process the

company calls die level cherry picking (DLCP). Here, the individual devices (or die) are

either given a code that corresponds to its predicated final characteristics (like power

consumption and speed) or marked as defective. This marks the completion of the FSM

portion of the manufacturing process. The wafer is then sent into assembly die inventory
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(ADI) where it waits for final assembly and testing. ADI is a major inventory location in

the internal supply chain.

After ADI, the process continues in assembly test manufacturing (ATM). ATM

sites are generally located in lower cost regions as they are less technologically intensive

as fab processes while also requiring a greater amount of manual labor. ATM is

responsible for turning die from ADI into finished goods. The process begins with the

ATM site taking wafers from ADI, sawing them into individual die and attaching them to

the appropriate piece parts (or packages). The decision made at this point is very

important as die sitting in ADI can be put into many different packages that can result in

different end products. These assembled units are then sent through testing machines

where they are tested and binned. Binning is the process that determines the speed at

which the processor will run. The binning process occurs by placing the product in a

machine that determines the natural speed (or "natural bin"). At this point, decision

makers can "downbin" a product whereby its speed is lowered by blowing fuses in the

chip. The natural bin is determined by the product design and events that occur during

the manufacturing process while downbinning is a decision that planners can make in

order to properly align supply and demand. The final product is then sent to the

component warehouse (CW) where it awaits shipment to the end customer. End

customers typically include large OEMs (e.g. Dell, Gateway, etc.), smaller OEMs (e.g.

Toshiba, Acer, etc.), and distributors (e.g. Arrow, Avnet, etc.) The ATM portion of the

process usually takes two to three weeks (much shorter compared to the FSM throughout

time).
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Many details were left out of the description above; however, they are not

necessary for the development of this thesis. For an approachable overview on the details

of the manufacturing process, see Quirk and Serda (2001).

1.3 Organization of Thesis

In this chapter, we have described the semiconductor industry and manufacturing

process as well as giving insight as to why supply chain management is important for the

future.

The remainder of this thesis is organized as follows. The next chapter describes

the planning details at the particular semiconductor manufacturing company examined,

provides background on variability and inventory, and concludes by describing this

system as a so-called "engineering system." Chapter three provides an analysis of the

current system while chapter four highlights a framework for improving the current

system. Chapter five details some specific improvements based on the framework,

including new inventory models and a new factory allocation algorithm.

We finally conclude in chapter six with some closing remarks and

recommendations for future work.
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2 Description of Process

We begin this chapter by discussing the naming conventions and current tools

used to manage the supply chain. Then, we describe the important issues in

understanding the key concerns behind managing the supply chain. Next, we discuss the

impact of variability and finally conclude by examining this supply chain as an

"engineering system."

2.1 Semiconductor Supply Chain -General Description

In this section, we describe the details around the information needed to manage

this system. Properly understanding and capturing appropriate data regarding the flow of

products through the internal supply chain is quite important in this context and further

aids in understanding the manufacturing process. Many pieces of critical information are

needed to "map" a product from beginning to end. This mapping provides a way to track

products as they move through the manufacturing steps as well as a way to plan future

products.

We now describe the flow of products through the internal supply chain in terms

of their naming conventions or product mapping. Recall that products begin in the fab;

these wafers are given base product names at this stage. We do not use any real product

names or numbers from the motivating company or any other company in this thesis.

Once a wafer has left the fab, it goes into the sort process and the resulting die are

given a sort name that depends on the assigned DLCP category. For example, there may

be three categories for a particular wafer type (let's call them A, B, and C). Category A

might be assigned to die that are expected to be very fast at the expense of consuming

18



higher than average power while category B might be assigned to die that consume much

lower power and thus are expected to run a bit slower. Category C may be the catch-all

category for those that do not fall into the other two. This is a one-to-many relationship

as one base product name usually feeds three to six sort names. We note that some

products may not be assigned DLCP categories. In this case, the die are still checked for

functionality and all those that pass are assigned the same category name.

Products wait in ADI as sort names; once they are pulled from inventory, they are

assigned level 3 names that signify the package type and test program they will run on.

This is a key decision point in the production process and is another one-to-many

relationship as one sort name can feed many different level 3 names.

These level 3 products go through the assembly/test process and are "binned" to

their final speed. Binning is the process by which the product is fused to run at its final

speed; at this time products are given an MM number based on several characteristics

(including the newly determined product speed and other characteristics, like package

type, that were determined when the level 3 name was assigned). End customers place

orders at the MM level. This is again a one-to-many relationship; however this time we

have a form of "recombination" in the products. Even though each level 3 has a one-to-

many relationship with MMs, different level 3's can feed the same MM. The figure

below provides a clear illustration of the mapping scheme.
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Level 3

Sort Name Level 3

Level 3

Level 3

Base Product Sort Name Level 3

Level 3

Level 3

Sort Name Level 3

Level 3

Name

Name MM

Name

MM
Name

Name M

Name
MM

Name

Name M

Name

Figure 2: Product Mapping Scheme

A common source of confusion in the manufacturing process is where decisions

are made versus where a probabilistic distribution governs the output from a process step.

Distribution Decision Distribution

Decision Decision

Base Product Sort Name Level 3 Name
The figure below provides a summary.

Figure 3: Decisions vs. Distributions
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The figure shows that decisions are made on base products and level 3 names

while probabilistic distributions govern the output as sort names and MMs. The last

decision we see represents the downbinning process whereby you can reduce the speed of

the final product from its natural bin by blowing appropriate fuses.

Obviously, the kind of level 3 products you have available depends on which type

of wafer you started (and which sort names result from those wafers). An example of

how the same sort name could be given different level 3 names is if the products were

placed into different packages. Specifically, the DLCP distribution governs which sort

names will come from a specific base product and the bin split distribution governs which

MMs will come from a specific level 3 name.

2.2 Variability Discussion

High levels of variability are commonplace in many industries, including the

semiconductor industry. We think of variability in terms of the two-by-two matrix

below.

Supply Demand
Time S-T D-T

Quantity S-Q D-Q
Figure 4: Variability Matrix

It shows that we are interested in both supply and demand variability in terms of

time and quantity uncertainties. Examples of each type of variability follow:

" supply/time uncertainty - the variability of factory throughput times,

" supply/quantity uncertainty - the variability of product yields,
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" demand/time uncertainty - uncertainty regarding when customers want products

delivered,

" demand/quantity uncertainty - uncertainty involving which products customers

want and how many units of each a customer wants.

These uncertainties cause manufacturing firms to hold inventory in their supply chain. It

is important to fully understand the uncertainties you face in order to properly manage the

risk.

A summary of all the important parameters for the semiconductor supply chain

follows below with definitions of each and a categorization into an uncertainty group.

We note that a data analysis of these different sources of variability is provided in

Levesque (2004).

* FSM TPT = throughput time for wafers in the fab. The data is in terms of

base product names. FSM TPT falls into supply-time uncertainty.

* GDPW = good die per wafer. This represents how many die on the wafer are

actually functional. The data is in terms of base product names. GDPW falls

into supply-quantity uncertainty.

" DLCP = die level cherry picking. DLCP provides a predictor of future

performance of each chip. The data is in terms of both base product names

and sort names. DLCP falls into supply-quantity uncertainty.

" ATM TPT = throughput time for die in the assembly/test site. The data is in

terms of level 3 names. ATM TPT falls into supply-time uncertainty.

* ATM yield = yield of products at the assembly/test site. The data is in terms

of level 3 names. ATM yield falls into supply-quantity uncertainty.
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0 Bin splits = provide information regarding the speeds at which each level 3 is

predicted to test out. The data is in terms of both level 3 names and MMs.

Bin splits fall into supply-quantity uncertainty.

0 Demand = end customer demand. Customers order by MM number and

currently forecasts are made by MM number. Demand falls into both

demand-time and demand-quantity uncertainty.

A typical engineer's approach to variability generally takes the following four

steps: (1) identify the uncertainty, (2) quantify its impact, (3) reduce what you can, and

(4) manage what's left. We refer the reader to Levesque (2004) for details regarding

steps one and two. This thesis focuses on methods to manage the remaining variability.

Properly managing variability is not always intuitive. The following example was

created to educate managers on the importance of variability and why properly

understanding it is both useful and profitable. It is included in this thesis to illustrate how

a simple example can have a profound impact on understanding. This example helped

managers in several organizations understand why properly comprehending uncertainty is

so important.

2.2.1 Variability Example

Let's assume a company manufactures two products, called Product A and

Product B. Also, assume we have a one period model, the total production capacity is

100 units, and we have the following demand and financial information (note we assume

that the demand is normally distributed).

23



Demand
Product A mean = 55
Product A st dev =3
Product B mean =55

Product B st dev =20

Revenue Costs
Product A revenue = $ 100 Product A cost = $ 30
Product B revenue = $ 105 Product B cost = $ 30

Figure 5: Variability Example Data

We see that Product B has the same average demand as Product A; however, there

are two important differences between the products. Product B has higher variability in

its demand forecast (as measured by standard deviation) than Product A, but it also has a

higher margin than Product A (the difference is $5).

We use the standard inventory result that our inventory level is calculated

according to the equation

InventoryLevel = p + zcr

Equation 1: Inventory Equation - Demand Variability

where p is the average demand, a is the standard deviation of demand and z corresponds

to the required service level. See Nahimas (2001) for details on this equation and a

detailed discussion of service levels. Note we will provide a basic overview of this

equation later in this thesis.

Given our data set and assuming a 95% service level (thus z=1.645), the company

should produce 55+(1.645*3)= 59.9 units of Product A and 55+(1.645*20) = 87.9 units

of Product B. Unfortunately, the company's capacity is only 100 units and they can not

provide this kind of service level. The question becomes how much of each product

should the company produce in order to maximize profit.
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We now turn to evaluating different strategies for dealing with this problem.

Three different ideas will be examined in terms of expected profit. The expected profit

will be calculated for each strategy and important questions will be discussed regarding

the results.

* Idea #1 - Allocate equal capacity to each product

Prod ~E[Profit]
Product A 50 $ 3,493
Product B 50 $ 3,318

Total 100 $ 6,811
Figure 6: Expected Profit - Strategy 1

We see this results in an expected profit of $6,811. The first important question is

given that the expected profit per unit of Product A is $70 and the company produced 50

units, why is the expected profit not $70*50 = $3,500?

The answer lies in the fact that even though 50 units are produced, there's no

guarantee that all 50 will be sold. A probabilistic model takes this possibility into

account. Since there's positive probability that the company will sell less than 50 units,

their expected profit cannot be $3,500, it must be less.

* Idea #2 - Allocate more capacity to the higher margin product

Prod -E[Profit]
Product A 47 $ 3,271
Product B 53 $ 3,447

Total 100 $ 6,718
Figure 7: Expected Profit - Strategy 2
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We see this results in an expected profit of $6,718; this is nearly $100 less than

the equal allocation policy. The important question here is why did the expected profit

go down? For many managers, this result is counterintuitive.

The reason it worked out this way is because the higher margin enjoyed by

Product B was not enough to counteract the variability that Product B sees. Thinking in

terms of certainty of dollars is helpful here. Each unit of Product B sold results in $5

more than Product A, but the certainty of selling that product and actually getting that

dollar is much lower with Product B. Stated another way, there's not a 1:1 relationship

between production and sales.

* Idea #3 - Allocate more capacity to the less variable product

Prod ~E[Profit]
Product A 53 $ 3,676
Product B 47 $ 3,176

Total 100 $ 6,853
Figure 8: Expected Profit - Strategy 3

We see this results in the highest expected profit yet at $6,853. Why is this the

highest profit yet?

This is because the variability in Product B is too great to be overcome by the

increase in profit. Under this strategy, the company is better off because it's producing

more of the product that's more certain to be sold.

An obvious last question is what strategy results in the maximum profit for this

company? The answer is shown in the graph and table below.
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Expected Profit

A B E[Profit]
47 53 $6,718

6850 48 52 $6,756
49 51 $6,785
50 50 $6,811

6800 -- 51 49 $ 6,832
52 48 $6,846

6750 -- 3 7 $6,853
4 46 $6,852

1 551451$ 6,840
6700

6650 -
47 48 49 50 51 52 53 54 55

Allocation to Product A

Figure 9: Expected Profit Graph and Table

2.3 Supply Chain Characterization

Now that we have introduced the manufacturing process, product naming

conventions, and given an introduction to variability, we will begin to discuss some of the

details within this supply chain. The semiconductor industry has some very specific

characteristics that make their supply chain planning problem difficult. We now turn to

identifying and discussing some of these important characteristics.

1. Lead time issues

The lead time in the fab (FSM) is usually between 8-12 weeks

while the lead time in assembly/test (ATM) is usually between 2-4 weeks.

Thus we see that ATM lead time << FSM lead time.
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2. Zero cancellation window

Competition has dictated that customers can cancel or modify

orders until they physically leave the company's shipment dock. Thus

customers are constantly pushing out or pulling in orders with no

repercussions.

3. Well-behaved supply parameters

The manufacturing process is well controlled and understood.

Thus, estimates of the probability distributions are available for supply

parameters (e.g. yield). Usually, normality holds and fairly good estimates

for mean and variance are available. Future estimates are more difficult

due to technology uncertainty, but not impossible.

4. Highly variable demand parameters

The demand parameters are much harder to characterize than

supply.

5. Binning & mapping complexities

We have discussed the ideas of binning and mapping already in

this thesis. This refers to the combinatorial explosion of products as you

move through the manufacturing process. Below is a figure that

summarizes the main ideas.
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Base Product

Bold
indicates product Sort Name MM
name at current stage a DLCP Categories Speed

Italics Level 3 Name

indicate important Package

transformations from Cache (SVR)
SVoltage (MB)

the previous stage

FSM ATM
Lead time = 8-10 weeks Lead time = 2-3 weeks

Figure 10: Binning and Mapping Complexity

2.4 Specific Supply Chain Description

We now turn our attention to the supply chain under consideration in this thesis.

We examine planning inventory and production beginning at FSM, through ATM to the

end customer. Distribution and warehousing details are not considered specifically in

this work. We use a generic components warehouse (CW) to represent the aggregate

final finished good inventory.

The supply chain considered in this thesis is an abstraction of the real life

situation. This abstraction is pervasive within the industry. We model one inventory

location at the end of FSM (called ADI) and a second at the end of ATM (called CW).

The following figure summarizes the supply chain under consideration.
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FSM/ATM Push/Pull Interface
Boundary

(D

FSM ADI ATM CW

Figure 11: Supply Chain

We recognize that ADI serves to decouple FSM and ATM. Thus ADI serves to

buffer ATM from uncertainties that arise in the fab. CW serves to decouple ATM from

customer demand. It is important to note that due to the zero cancellation window,

customers can (and do) change orders right up to the ship date. This means that actual

orders are not known until the product is shipped.

The implication of the zero cancellation window is the placement of the push/pull

interface (or inventory/order interface or push/pull boundary) after the CW inventory

location. This interface represents the change from make-to-stock to make-to-order (see

Hopp and Spearman 2004 for details). In this specific application, since customers can

modify orders up until shipment, this interface is placed after products are placed into

finished goods inventory (or CW).

2.5 Semiconductor Supply Chain as an Engineering System

In this section, we examine this system in terms of the definition of an

engineering system. We begin with several important definitions regarding engineering

systems; these are all taken from the MIT ESD Internal Symposium overview paper:

Engineering System - a system designed by humans having

some purpose; large scale and complex engineering system, which
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are of most interest to the Engineering Systems Division, will

have a management or social dimension as well as a technical one.

Complex system - a system with components and

interconnections, interactions, or interdependencies that are

difficult to describe, understand, predict, manage, design, or

change.

Large scale systems - systems that are large in scale

and/or scope; such systems have a large number of components; as

a result large scale physical systems will be distributed over a

region that is large relative to its smallest components.

Given that we have already described the semiconductor manufacturing process

and the high-level planning issues, we are in a position to claim the semiconductor supply

chain planning system is indeed an engineering system (ES).

This supply chain system was designed by humans for the purpose of fulfilling

customer requests for products, thus the first part of the ES definition is satisfied.

The next part of the definition says the system must be complex and large scale.

We will next connect the semiconductor supply chain planning system to the definitions

given for complex and large scale.

This system obviously has many interactions that are difficult to manage and

predict. Given the many uncertainties in the system (yield, DLCP, bin splits, demand),

the definition for a complex system is clearly satisfied.

Now, given that a company may simultaneously manufacture 10-15 base products

that give rise to a number of sort names in the hundreds that can yield several hundred

(potentially thousands) level 3 names, which finally produces several hundred

(potentially thousands) MMs. This combinatorial tree represents the kind of large scale
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scope of the planning problem. Combine this with the fact that the manufacturing sites

and inventory locations are distributed throughout the entire world and clearly the

definition for a large scale system is satisfied.

The final part of an ES is not only having technical complexity, but social or

managerial dimensions as well. This supply chain is distributed throughout the world.

Decision makers exist in the US, Europe, and Asia and have to coordinate constantly.

This distributed decision structure makes for tremendous social and managerial

complexity. For example, some stakeholders keep rather unorthodox hours in order to

keep up communication. Cultural differences also play a role in this system. For

example, the planning groups in Malaysia and Costa Rica have very different styles and

philosophies, but must come together under one process to manage the supply chain

effectively.

Another aspect of social and management complexity comes in the form of

working with customers. These companies each have their own cultures and you must

respond to that to keep them satisfied. A one-size fits all method would not work as

different customers have different value drivers and these must be comprehended.

Given the above analysis, we conclude that the semiconductor supply chain

planning system is an engineering system.
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3 Diagnosis of Current Planning System

In this chapter, we provide a detailed explanation of the planning problem and the

methods that are currently used to manage the decisions.

3.1 Concepts of the Planning System

We now look to continue our analysis of the supply chain in terms of identifying

how the different issues discussed in the previous section impact how the supply chain is

managed. Generally these problems can be decomposed based on answering two key

questions:

1. Can we still change capacity in a meaningful way?

2. Can we still change our allocation in a meaningful way?

If the answer to the first question is yes, then we're dealing with long range

planning (generally over 1 year in the future) which is out of scope for this thesis. If the

answer to the first question is no (i.e. capacity is more or less fixed), then we move on to

the second question. If the answer to the second question is yes, then we're making

"strategic" decisions while if it's no we're making "tactical" decisions. There are many

different terms used for these distinctions, we will proceed using the definitions above.

We concern ourselves in this thesis with strategic decisions.

Given these definitions and the problem structure at hand, it is reasonable to say

strategic decisions involve planning to uncertain demand. This is due to many things,

including the zero cancellation window issue. Thus, it is also reasonable to say that

tactical decisions involve planning when the demand is known. Again the push/pull
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interface is the place that separates these two modes of operation. See the figure below

for a graphical description of these issues.

FSM/ATM Push Pull
Boundary Boundary

FSM *ADI ATM CW

Plan to Forecasts Plan to Backlog React to
Demand

Strategic Execution
Decisions Decisions

Figure 12: Strategic vs. Execution Decisions

The figure further breaks strategic decisions into two sub-sections, the first being

'plan to forecasts' and the second being 'plan to backlog.' We begin by defining the

terms forecast and backlog. A forecast is defined as estimate of future customer

requirements. Forecasts are made by the marketing organization based on historical

sales, macroeconomic conditions, and price elasticity. Backlog is defined as customer

order on the books that have not yet shipped. Given what is known about orders in this

industry, it is clear that backlog is a form of a forecast. Since customers can modify

orders up until shipment, their orders give only an indication of their actual intentions. In

this context once an order is firm and cannot change, it is called demand.

Currently, many companies use forecasts to plan FSM production. Thus their

marketing organization provides numbers that are used to generate strategic FSM

production plans. Since the lead times are generally two to three months, this is a
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reasonable procedure. ATM production plans are generally built using backlog

information. The assumption is that backlog is the best predictor of actual customer

requirements given the short ATM lead time (recall that this lead time is only two to four

weeks). See Levesque (2004) for a detailed discussion of these issues and a detailed data

analysis.

In the execution space, the idea is to react to actual customer demand. Obviously

demand is defined here as the actual customer requirement. Many different definitions

for the term demand exist and here we define it as actual (known) customer requirements.

Reacting to demand includes various logistics issues, including deciding which

warehouse to ship the product from, deciding the mode of transportation, etc.

3.2 Details on the Current Planning Tools & Processes

We now briefly describe the current tools and business process to plan production

at this specific company. The process begins with demand forecast generation by the

marketing organization. Currently, point estimates are generated with no indication of

variability in the forecast. These forecasts, in addition to all other necessary supply data,

then are used by the FSM allocation linear programming tool to allocate fab (wafer)

capacity.

Once wafers are allocated, product planners request die from ATM through a

high-level analysis (i.e. without considering specific ATM site capacity or detailed

product characteristics). This is accomplished using a detailed set of MS ExcelTM

spreadsheets. The stakeholders for this specific step are spread throughout the world.

Once this high-level request for die from ATM is generated, it goes to the ATM planning

community for analysis based on the current fab plan and current conditions at the ATM
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sites. Upon completion of this analysis, ATM provides a response to the product

planners on their initial request. Again we emphasize that this is a high level plan;

processor speed has not been considered as of right now and the analysis has been at the

virtual ATM level (i.e. not broken down by specific sites).

The next step requires product planners to request specific speeds based on their

allocation of high level die. This time, a request is sent to each individual ATM site.

Again, the ATM planners analyze the request and return a response to the product

planners on their actual allocation. The above steps take about two weeks to complete,

starting from the FSM wafer allocation through the detailed ATM response.

There are many different computer systems involved in these planning processes.

These details only complicate things further and in the interests of keeping this work as

general as possible, specific ERP, planning, and data management systems will not be

examined.

We illustrate this process through the use of a figure. It shows when these models

are run relative to the manufacturing process.

9 month Wafers Builds Push Pull
horizon In FSM In ATM Interface

Manufacturing Timeline

FSM Model

Hih-Level ATM Model

Detailed ATM Model

Figure 13: Planning Tool Timing
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The FSM model has a 9 month horizon. Thus, it plans products from the current

week through week 39. This model is complete when the wafers go into the fab. This is

why, in the figure above, the arrow for the FSM model ends at the time when wafers

enter in the fab. We assume another system takes over the WIP management (which is

outside the scope of this thesis). The high-level ATM model also works on a 9 month

horizon. The key here is that this high-level model is completed at the virtual factory

level (meaning that all sites are viewed as one entity in the analysis). We see this model

runs all the way through product completion. Immediately before ATM begins working

on products, a detailed plan is worked out at each ATM site using an iterative procedure

between the high-level ATM model and the detailed ATM model.

We see that this process is very involved and cumbersome. It takes a very long

time to drive change and is fairly basic in its logic. Inventory targets are set according to

heuristic judgments and much of the planning is done with very little in terms of decision

support tools (i.e. many decision are made with the aid of only a simple spreadsheet).

There is both good and bad to this. The good is that the process remains somewhat

flexible and able to adapt quickly to changes in the marketplace. However, the down side

is that there is very little control of the system and the opportunity to bring analytics into

the process definitely exists.

Currently, the business organization is also very tied to its cumbersome computer

systems. At several points in the above process, planners will print out data from one

system and manually enter it into another. Just when the automation group gets a

computerized process to do this data transformation, another one comes up due to the

ever-changing business climate and needs.
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The main strength in the current planning system is the flexibility inherent with

not being tied to even more complex computer systems. Even though manual

transformations are cumbersome, it is still possible for the job to get done. Another

strength is that the system does not require advanced mathematical skill sets or large

investments in training. Although it is complex, it is fairly straightforward.

The main weaknesses of the system are a lack of coordination between

organizations and a lack of analytics to improve decision-making capability. We hope

through this thesis to provide models and methods to improve the analytics available to

the planning community at the company.
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4 Framework for Improvement

In this chapter, we provide a framework for improving the supply chain planning

system. Once the framework is established, we can begin to suggest improvements to the

current system.

4.1 Hierarchical Production Planning Framework

We use the concept of hierarchical production planning (HPP) as a basic

framework to analyze this supply chain and recommend improvements to the

management system. Hax and Meal (1975) describe the HPP framework in the following

way:

Optimal decisions at an aggregate level (planning) provide

constraints for detailed decision making (scheduling)

Based on this definition, we see that HPP is, in essence, a decomposition

technique. The key is to properly determine what are the aggregate levels and what are

the detailed levels.

Graves (1982) provides a nice discussion on the difference between the HPP

approach and the more traditional, or monolithic, approach. We summarize the key

points on this topic in the Graves paper as follows.

A monolithic approach attempts to formulate the entire planning problem in one

formulation while the HPP approach breaks the problem into a hierarchy of sub

problems. The key advantage of the monolithic approach is that you have one model that

solves the entire problem. The drawbacks are the sheer size of the resulting model,
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significant data requirements, and difficult stakeholder management since all parties are

at the mercy of one model.

The key advantages of the HPP approach represent the drawbacks of the

monolithic approach. First, with HPP, the computational burden is dramatically reduced

due to the decomposition. Thus, it is possible to solve problems that were intractable

before. Second, with HPP, the data burden is reduced as aggregated data is required as

opposed to detailed data. Finally, the HPP decomposition can be done to mirror a

company's decision making structure.

Thus, we propose thinking about managing the supply chain under examination in

this thesis using this HPP framework. It makes sense to break this problem apart given

the steps in the process as well as the fact the decision makers are distributed around the

work in different organizations. We will see that making optimal decisions for FSM

capacity allocation provides a constraint on the lower-level, more detailed ATM

decisions. This is the essence of the HPP framework and we will use this framework as a

basis to propose new ways to determine wafer start plans and inventory targets.

4.2 HPP Applied to this Planning Problem

The easiest way to understand HPP is through an example. Our next step is to

apply the HPP idea to the specific semiconductor supply chain planning problem under

discussion here. We break the problem into three key decisions (using the HPP

framework), they are:

1. Capacity Decisions

2. FSM Allocation

3. ATM Allocation
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We see that overall the capacity decisions create constraints on what the FSM and

ATM factories can produce. This is why it is considered the first step in the hierarchy.

Capacity decisions are generally made using a long-range planning process. This

particular process is out of the scope of this thesis and the capacity decisions are assumed

to have been made (although minor adjustments are allowed, for example, buying

additional low-cost bum-in boards for ATM).

Notice that the second and third decisions are allocating the FSM and ATM

capacity. Thus, we have effectively decoupled the two processes. The company

currently operates using this simplification (although the details presented later in this

thesis are new), and the HPP framework supports doing so. The idea is that solving the

FSM problem creates a die supply that can then be used by the ATM model. Thus

solving the FSM problem creates a constraint for the ATM problem, specifically the

amount of product that will be available to go into ATM.

We now turn our attention to the specific problem of determining wafer starts in

FSM. Solving this FSM problem consists of the following five key steps:

1. Determine product modeling (aggregation) based on critical economic

drivers

2. Determine CW inventory targets for these aggregated, finish good

products

3. Solve for die (i.e. how many die of each DLCP category are required to

meet the inventory targets determined in step 2)

4. Determine ADI inventory targets based on die requirements
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5. Solve for wafer starts (i.e. how many wafers are needed to meet the

inventory targets determined in step 4)

Step 1 (of the five steps presented above) represents where you abstract the real

life setting into a model. In reality, there are countless products in the supply chain.

Products can be tracked down to the lot number; however, planning wafers by using such

detailed data is cumbersome and unnecessary. Thus, step 1 is where you determine

which parameters are important enough to include in the model and what level of

granularity is required.

Proper modeling for products should depend on the company's strategy. We

provide two examples to clarify what we mean by modeling. Assume a set of five

finished goods in a single product family exists. Let us further assume that the products

are substitutable in the marketplace. Thus, for the purposes of planning wafers, we can

add their demands into one aggregate value. This represents a product family strategy

(where enough wafers are started to meet the demand for an entire product family, thus

the products are assumed to be completely substitutable). In order to implement this, we

can model all five products as one since their demand is substitutable.

Now assume that there exists a fast processor that has a poor bin split (meaning

that you get very few of these fast processors per wafer). Further assume that this

product is strategically important to the company and they want to meet the demand

regardless of its impact to other products. This is an example of a bin split chasing

strategy (where extra wafers may have to be started in order to get more of a fast product

if the bin split is poor at the expense of making large quantities of slower products). In

order to implement this, we must model the bin split to the fast product separately from
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the remaining products. Thus, in this case we represent all of the finished goods by two

planning items with one for the fast processor and the other for all of the rest. The key

idea here is to only model what is important for the decision being made. We call this the

simplicity principle.

Step 1 is perhaps the most difficult of them all as different people have different

opinions on what represents a critical economic driver for a product. The idea is that you

start wafers in the fab and thus we need to understand what drives us to start wafers. For

example, if we know that the wafer produces a very small amount of the fastest speed

chips, but the demand for those is expected to be quite high and important, then it is

necessary to model that trade-off (as in the bin split chasing case).

Many people want to place every bit of detail into a model; however, this does not

help and in fact may hurt. The details make the models much larger and harder to solve.

Also, when large amounts of uncertainty are in the representative data, vast quantities of

it make understanding the output very difficult and also makes what-if analysis nearly

impossible. Additionally, the extra details can suggest a level of precision that does not

exist in reality.

Once the proper product modeling has been determined for the model (i.e. will an

entire family be represented by one aggregate product, two products, etc.), the next step is

to determine a CW inventory target (step 2). In this step, you are figuring out how much

finished goods inventory you need (in CW) to buffer against demand and ATM

variability. Once this CW inventory target is determined, you can determine the die

requirements (step 3). In this step, you are calculating how many die it will take to

adequately meet the inventory requirements determined in step 2.
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In step 4, you are determining the inventory targets for ADI products. This is

accomplished by building safety stock on top of the die requirements determined in step

3. This is done to buffer against FSM variability. Once the safety stock requirement for

die is determined, you can finally solve for wafer starts (step 5).

Solving for ATM is a similar procedure to that described above for FSM. The

key difference is that there will be less steps and the product modeling will probably be

more detailed as ATM has a much shorter lead time and is the last major stage before the

product goes to the customer. A summary of the steps for ATM is as follows:

1. Determine product modeling (aggregation) based on critical economic

drivers

2. Determine CW inventory targets for these aggregated, finish good

products

3. Solve for die allocation (based on the targets generated in step 2)

Again, we determine the appropriate product modeling based on critical economic

trade-offs. This time the details are much more important as stated in the previous

paragraph. Then, based on this model, inventory targets are created and an allocation

scheme is determined.

We see that the ideas of HPP provide a very clear framework for solving the

semiconductor planning problem. In the next chapter, we use these ideas to tackle three

specific problems. The first is determining inventory targets, the second is how lead

times are calculated, and the third is a method for FSM allocation.
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5 Detailed Problems & Solutions

In this chapter, we begin by examining methods for setting inventory targets.

Afterwards, we use these equations to develop a production allocation model that

accurately captures the necessary binning and mapping complexities that exist within the

semiconductor industry and at this particular company.

In an effort to make this thesis self-contained and complete, we will derive and

explain some elementary results as experience has shown the author that many people in

industry have a hard time fully grasping what the equations really mean.

5.1 Inventory Target Background

One purpose of a planning system is to keep the WIP close to a specified target.

This target is set in order to maximize the chance that a customer will have their order

filled when it is desired. At many companies, this inventory target represents the amount

of inventory they desire to have in finished goods inventory (or CW in our context) and is

set using a simple weeks-of-inventory (WOI) model. This WOI model has a very simple

equation that generates the inventory target:

InvTar = WOI * PD where PD is the mean weekly demand forecast

Equation 2: WOI Equation

Note that when setting this target, one only needs to worry about two parameters. The

first parameter is WOI or the required number of weeks of inventory desired to buffer

against variability. The second parameter is the mean weekly demand forecast and is

usually provided to supply chain managers by the marketing/forecasting divisions. Two

obvious and important questions are
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1) How do the values for WOI get set?

2) How accurate is the demand forecast?

In practice, WOI values are generally set according to management gut feeling. This gut

feeling generally comes from years of experience in the industry and with the products.

The one and only certainty regarding demand forecasts is that they are uncertain.

The so-called three fundamental principles of forecasting are

1) The forecast is always wrong

2) The longer the horizon, the worse the forecast

3) The more granular the forecast, the worse the forecast

We intend to propose a model that will better account for the variability in forecasting

and give managers more than just intuition to set targets. The WOI model says inventory

is a function of demand and an arbitrarily set value for WOI.

A logical next step using the standard results from inventory theory is to set

inventory as a function of demand, service level and the variability that exists within the

system. Thus, our goal is to establish appropriate equations for setting inventory levels as

to account for the important uncertainties.

We begin this discussion by reviewing some of the basic results of inventory

theory. In the development of this thesis, we assume the system works as follows.

Assume there exists a finished goods inventory and it is replenished by starting wafers in

the fab. There is a finite lead time and the system is managed using a continuous (Q,R)

policy.

Let's assume that we have a single item with known (deterministic) lead time, L,

and stationary demand with mean p D and variance or2 . For simplicity, we also assumeD D
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we have a one period model that operates as follows. We begin with no initial inventory

and then a production decision is made. Once this decision is made, demand and yield

are realized for that period. Given the production quantity and the realized yield and

demand, a new inventory level can be determined by multiplying the production quantity

by the yield, adding this to the current inventory level, and finally subtracting the current

demand. Then, the next production decision is made given the current inventory level.

The inventory target represents the amount of finished goods inventory required in the

system.

For our simple one period model (assuming we start with no inventory), in order

to cover the average lead time demand, you would need to produce pDL units. Of course,

we must actually produce more than this quantity; otherwise, we would miss orders

approximately half of the time due to the variability under the normality assumption. We

introduce safety stock into the system to cover situations when the demand is higher than

average. We will express this safety stock using the expression z L o . Thus our base

stock target, called B, is

B = PDL + zL (cD

Equation 3: Demand Variability

If we assume that the demand is normally distributed, then this expression has real

meaning. Suppose we want the probability of the lead time demand being larger than B

(thus incurring a stockout situation) to be less than some a. We can write this as a

probabilistic expression Pr(DLT B) = 1- a where DLT is the actual demand over the

lead time in a particular interval. The normality assumption allows us to set the value z

in Equation 3 according to the expression 1'(z) = a where a)(-) represents the cumulative
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distribution function for the normal distribution. For example, setting z=1.645 provides

95% probability that demand will be satisfied while z=3 provides 99.9% probability. We

will refer to these coverage probabilities as the service level in this thesis. Thus, we will

proceed using the idea of Type I service. For details about this derivation, service level,

and multi period models, see Nahmias (2001).

Let us now assume that not only is demand a random variable, but lead time is

also a random variable. We will denote the mean lead time as IpLT and the variance of

lead time as T. We will first state the result for the inventory target, but a detailed

explanation will follow. Under the assumptions of random demand and lead time, the

target is

B = PDflLT +Z V 1
LTD + T

Equation 4: Demand and Lead Time Variability

The general form of this expression is that B equals average lead time demand plus safety

factor times standard deviation. The first term represents the average demand over the

expected lead time. The second term represents the required safety stock for a given

service level (corresponding to a value for the safety factor z) and the standard deviation

assuming stochastic demand and lead time.

We now look to explain the derivation of the mean and standard deviation in

equation 4. The explanation follows closely one found in Bertsekas and Tsisiklis (2002).

Let us assume that each unit of demand is an independent and identically distributed

random variable with mean p , and variance 7 D . We will denote the demand per time

period as D1, D2,..., DN where N corresponds to the lead time and it itself is an integer

random variable. For the purposes of this derivation let
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N

Y=DLT =Di + D2 +... + DN = Di . We first look to establish the first term. Let us

condition on the random variable being equal to a specific n. Thus,

E[YIN=n]=E[D, +...+DNIN=n]

= E (Dj + ... + D,| N = n]

=E[DI+...+D n]
= npD

Since the above argument is valid for all positive integer n, we have

E[YIN] = NpD. Note that N is a random variable in this expression. Finally, the law of

iterated expectations allows us to write

E[Y]= E[E[Y|N = E1uDN] = PDE[N] = p/DpLT*

We now turn our attention to the safety stock expression. We will focus on the variance

term as the safety factor is a simple multiplier that is not important to this derivation.

Again conditioning on N we can write

var(YN = n)= var(D + +... D IN = n)

= var(D, +...+ D,)

= no 2

This time using the law of total variance as defined in Bertsekas and Tsisiklis (2002), we

have

var(Y) = E[var(Y|N)]± var(E[YNJ

= E[No- ]+ var(NpD

= E[N 2 + 1 var(N)

= PLT 
2

/
1

TD + YDLT
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Thus, we have established the results in Equation 4. Note the following assumptions are

implicit in the equation:

* Lead times are integer values

* Lead time and demand are independent (for a given product)

* Lead time and demand have stationary distributions

* The demands are added together over the lead time (thus the mean lead time is not

squared in the variance term as would happen if you assumed that we were

multiplying by the lead time, this is very different)

The previous two expressions are well-known equations in inventory theory.

We now present an equation proposed in Levesque (2004) for handling demand,

lead time, and yield variability. This equation is

B#DLT. C~2 + / 2 
0

2 + /
1 DfL2

B = D Z LT D DLT Y L

P V Aly
Equation 5: Initial Demand, Lead Time, Yield Equation

Equation 5 above assumes that the yield variability is independent between all

products during the lead time, thus allowing the variability to "cancel" itself out over the

production run. This is evident in the last term involving the variance of yield; it assumes

that each unit of production is independent in terms of yield (i.e. the data required is

detailed yield estimates by individual lot). Stated another way, this equation assumes that

the variability is seen by each item in the production run and thus some will have higher

and lower yield values and the impact of the variability is diminished. However, this is

not true in practice as the data is usually summarized by week and thus variability data

represents the average variability over a week's worth of production (i.e. the yield values

are not independent for each unit of demand). We intend to improve on the ideas in this
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expression, as it does not accurately capture the way yield information is reported and

used by the planning community at the company of interest. We illustrate these

difficulties in the following example.

5.1.1 Inventory Target Example

We now provide an example that motivates our work to develop new equations

for setting inventory targets in this supply chain context. Assume the following set of

data (from Levesque 2004) for demand (D), lead time (LT), and yield (Y):

PD = 1,802,529 UD = 475,246
PLT 2.10 0 LT 1.58
py= 0.993 cy= 0.0258

The units for demand are the number of processors per week, the units for lead

time are weeks, and the units for yield are percent. Given the above data set, we use the

second term of equations 3, 4, and 5 to determine a safety stock target (using a z value of

1.645). The results of using the data set above with the three equations are given in the

figure below:

Variability Type Safety Stock Increase
Demand (Eq 3) 1,005,497
Demand & LeadTime (Eq 4) 4,277,920 3,272,423
Demand & LeadTime & Yield (Eq 5) 4,277,920 0.0006

Figure 14: Safety Stock Calculations

We see that demand variability causes the system to hold just over 1,000,000

units of safety stock. When lead time variability is added, the inventory requirement
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jumps by over 3 million units to approximately 4.27 million units. Finally, notice that

when yield is added, the inventory requirement does not change by a measurable amount.

There are two things that jump out of these results. First is the fact that even

though lead times are variable, the amount of safety stock required is much higher than

many company experts would imagine. Content experts hold this claim because nearly

all of these products are produced in a high volume manufacturing process, thus you

really don't have to buffer against entire weeks worth of output not being realized.

The second issue that we recognize in these results is the fact that yields have no

impact on the safety stock. This- illustrates the issue with equation 5 given our

assumption that the data is the aggregate yield for a product over an entire week. The

variability for the yield over the week is moderately high, but equation 5 does not

indicate any additional safety stock is needed. This is again because equation 5 assumes

that each individual unit of demand is independent and thus the variability in effect

cancels itself out. However, the data provided does not warrant such an assumption as

the yield values represent the average seen by an entire week's worth of production (not

individual units of production).

Given the fact that we do not have an appropriate expression for handling yield

variability, we derive an alternate model in the following section.

5.2 Demand and Yield Variability

Given some of the difficulties discussed in the previous section, we will now

propose a new set of equations to account for variability. We begin our analysis by

investigating demand and yield variability together for one product in a one period

model. We assume the system operates as follows. There is no initial inventory in the
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system. Next, a production decision is made. Then, the demand and yield are realized.

The production quantity is multiplied by the yield amount to determine the supply.

Finally, we subtract the demand from the supply to determine the new inventory level.

In the second period, you begin with an inventory level (where negative inventory

represents backlogged demand that is not lost). Then, another production decision is

made, followed by the realization of demand and yield. This time the supply is the

inventory level plus the production quantity multiplied by the yield. Finally, we subtract

the supply from the demand to determine the new inventory level. This process repeats

itself over a specified horizon.

Let us begin with the figure below that shows the above system. Production is in

terms of wafers while all of the other nodes are in terms of finished goods. We see that

supply comes from both inventory and production. Also note that in this context, the

yield value represents the yield for all wafers seen in that specific time period

(independent of demand). Both yield and demand values are independently, identically

distributed per time period.

I =Inventory

P yy, S D

P = Production S = Supply D = Demand

Figure 14: Supply and Demand Nodes
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Let us assume that demand and yield are general random variables, we operate

using the single period model described above, and that we have zero inventory in the

system. Given these assumptions, we can define the required supply as the following

expression

D

Y

Clearly, if demand and yield were known, deterministic values, then the required

supply to meet the demand given the yield would be determined using the equation

above. For a concrete example, if demand were 100 units and yield were 50%, then the

required supply would be 100/0.5 = 200 units.

We see that S is a ratio of two random variables. We will assume that Y > 0 to

ensure that S is defined.

Next, we write expressions for the expectation and variance of S where CFDY is the

covariance between demand and yield.

E[]=E- -2
E[S]=E ~ D Y ] DY

Var(S) = Var [2 ~ _ -D + 7 ]
Y p Py-_pD I _ Y PDPY

Equation 6: Expected Value and Variance of Supply

The derivations for both the expectation and variance are based on first-order Taylor

series expansions. Casella and Berger (1990) provide a clear explanation of the result.

If we assume that demand and yield are independent, then the equations simplify

to
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E[S]~ [[DI+ j
PY _ 7Y _'

-2 -2 [1-2

Var(S)~L-QDl D +a

. IY __-I _D. - Y _

Equation 7: Expected Value and Variance of Supply Under Independence

We will later assume that demand and yield are normally distributed; however,

the expressions above are general for any distribution provided that Y>O. There is an

exact result for the ratio of two normally distributed random variables. Hinkley's 1969

paper, "On the Ratio of Two Correlated Normal Random Variables," discusses the

derivation of the exact result. We make note of it here for completeness, but will use the

approximate results above in this thesis.

We now turn our attention to using these equations to develop an appropriate

safety stock equation. This analysis parallels the development of the traditional safety

stock equations given earlier in this thesis. We assume normality for demand and yield.

Let ps = E[S] and -s - Var(S) where S is the usual supply value. Given these

definitions, we can write the equation for supply requirements as ps + z . The safety

- 12 F 12 -2

stock expression is clearly z = z D UD Y

We see that the above expression is in terms of supply. Thus, if we produce

s z cr7 units (assuming zero starting inventory and a one period model), we can be

confident we'll meet demand according to the service level corresponding to the value

used for z. To bring it in the more traditional terms of demand, we multiply by the mean
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yield quantity. Thus we can write the safety stock expression in terms of demand as

-2 - -2 - -2
2

follows zpY S YD + Y1Lr _IrKD I LP
Given that we now have an expression for safety stock (one in terms of demand

and another in terms of the required supply to meet the demand), we turn our attention to

using these expressions to manage the supply decision. What is meant here, is how much

supply is required to buffer against the variability of demand and yield. Thus we can

think of managing the system in two ways, either in terms of supply or demand.

5.2.1 Supply Management Policy

Let SSs z oa be the safety stock requirement for the demand in terms of its

supply and let Bs = ps + z be the inventory requirement.

Assuming we begin with no inventory, producing Bs in the first period (recall that

we have assumed a single period model) will give us a percentage stock outs that

corresponds to the service level. For example, a 5% stock out result should correspond to

a 95% service level (z=1.645). This is illustrated in the simulation results that are

presented shortly.

Clearly, if we have inventory, we need to reduce our starts by the amount of

inventory (adjusted for yield). Thus we have the following expression for determining

the required amount of production (or starts)

Starts = Bs - -

Equation 8: Supply Management Policy Starts
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Thus, we have established the number of units we need to start each week in order

to meet our inventory requirements in terms of Bs. While this is a valid derivation, many

planning managers think in terms of reaching targets of finished goods, thus we extend

these results to capture such a situation.

5.2.2 Demand Management Policy

Let SSD =zuY crS be the safety stock requirement for the demand in terms of

demand and let BD I psuY + zpy oS be the inventory requirement for demand.

Assuming we begin with no inventory, producing BD in the first period (again we

have assumed a single period model) will give us a percentage stock outs that

corresponds to the service level. For example, a 5% stock out result should correspond to

a 95% service level (z=1.645). Again, this is illustrated in the simulation results that are

presented shortly.

Thus, we have the following expression for determining the required amount of

production (or starts)

Starts = PD + SSD

PY

Equation 9: Demand Management Policy Starts

We see that if our inventory level drops below the target, then we must

produce/order more then the mean amount. This adjustment is equal to the amount of

product that you are currently under the target by (adjusted for yield). A similar

argument holds if the inventory level is above the target.
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5.2.3 Simulation Results

We perform a simulation study to verify that these proposed policies perform as

expected. Microsoft Excel TM was used for the analysis. The code used to perform all

simulations for this thesis can be found in Appendix B. The data set consisted of

" mean and standard deviation for demand,

* mean and standard deviation for yield, and

* service level.

The model assumes zero initial supply and simulates a one quarter (13 week) cycle. Each

value for yield and demand makes a draw from the appropriate distribution. Inventory is

calculated as BOH + supply - demand where BOH stands for beginning on-hand

inventory. Note that the supply is the production amount adjusted for yield and is in the

same units as demand. Below is a sample run of the model.

DaaStlventr Vle
meanDemand 10 4 . .. .4..7

i e :mand 0io
Mean eld 0A fdsth

1 StDev YieldL 00
IStarts Target @95%SL 16600:

....... Supply Cycle Stock 1111.2 * 1........ .. ... ... .....

and Sf Stoc 4938 w e i( an s ks.d

Simulation Model 2
Week I 6I 8 1 9 -6 11 12i

Prdce 1600. 810.99 1612.08 949.481 1669.56 6357 3795 ! 1003.191 1175.06 1044.7 755 119.1

Yield 0.90 ~ 0.92 08 9 - 0.90 i 0.89 0.88 0.901 0.91 0,91 ~ 0.89 0.89

§uP pliy 1494.60 743.70 1429.88, 851.20 150.36 5131 383 899.231 1075.06 953.72 1505 1059.47

Dmand 730.70 1464.68 83.54 1499.27 56.-27 328.59] 898.......4 1039 976 102.49 15.6 14.0

lnelr 6.1 42.92 639.26 (8 81)1 92 6.286* 1159.041 590.92 43.2 (95.23)i 422.52 332.28

Figure 15: Simulation Sample

In all simulations in this thesis, the following output values are obtained. The

mean and standard deviation for the production levels (denoted in the output by P), the

mean and standard deviation of the inventory levels (denoted in the output by I) and the

percentage of time the inventory was negative (indicating a stock out has occurred,

denoted in the output by % Neg). Below we show the results of the simulation for this

section.
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Input Output
Service Level Mean(P) StDev(P) Mean(l) StDev(l) % Neg

93% 1148.47 346.43 443.30 300.25 7.0%
95% 1153.27 352.58 494.14 300.55 5.0%
97% 1158.74 362.19 565.18 300.98 3.0%

Figure 16: Simulation Results

The results are exactly as expected. We see that if a 93% service level is entered

into the system, the results show an expected 7% stock out probability. Similarly if a

95% service level is entered, a stock out occurs 5% of the time while if a 97% level is

entered, a stock out occurs only 3% of the time. Also, as the service level is increased,

the average production and inventory levels increase.

We ran all simulations for 100,000 iterations to ensure accuracy in the results.

This was an unusually large number of iterations; however, we wanted to ensure the

results were as accurate as possible. Additionally, confidence intervals are calculated for

the mean production quantity and mean inventory level in all simulations using the Excel

CONFIDENCE function. The results for the calculations on this data set are shown

below where CI(P) represents the 95% confidence interval for the mean production level

and CI(I) represents the 95% confidence interval for the mean inventory level. Thus for

the 93% service level run, we can be 95% confident that the true mean production level is

1148.47 +/- 2.15 wafers and the true mean inventory level is 443.3 +/- 1.86. These are

very tight confidence intervals (this is expected given the very large number of iterations

performed in the simulation) and lend much credibility to the results.

Service Level Mean(P) StDev(P) CI(P) Mean(l) StDev(I) CI(l)
93% 1148.47 346.43 2.15 443.3 300.25 1.86
95% 1153.27 352.58 2.19 494.14 300.55 1.86
97% 1158.74 362.19 2.24 565.18 300.98 1.87

Figure 17: Simulation Confidence Intervals

59



5.3 Alternative Policies

We now look to reduce the variance in production levels through two possible

smoothing procedures. These alternative policies are based on the idea of control limits

that attempt to smooth production levels. For example, maybe it is acceptable to have a

service level between 93% and 97% and to "correct" whenever we leave this range. The

idea is that if we make fewer corrections to the plan, then the factory will see less thrash

(or large swings in production requirements). Smoothing production is a key issue for

plant managers and thus the planning community tries to accommodate. We use standard

deviation of production starts as a proxy for measuring the thrash in the production

facility. We hope to see the standard deviation of production starts decrease using these

policies.

Specifically there are three correction policies that we will examine in this thesis.

The first has already been thoroughly discussed and is to make an adjustment in every

time period.

A second approach is called "Correct to the Target." Under this policy, upper and

lower service limits are set. If the inventory drops below the lower limit or above the

upper limit, the supply is adjusted to attempt to bring it back to the target level. This is

shown in the figure below.

Starts = YD + (SSD -nv) Starts - Starts = PD -(Iv- SSD

fly fly fly

93% 95% 97%
Figure 18: Correct to Target Policy
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A third approach is called "Correct to the End Point." Under this policy, upper

and lower service limits are again set. However, if the inventory drops below the lower

limit, the supply is adjusted back to the lower limit (i.e. only to bring the system back

inside the requirement). Similarly, if the inventory rises above the upper limit, the supply

is adjusted back to the upper limit. Again, the figure below illustrates this policy

pictorially.

Starts =D +(LED - m Starts = "D Starts = -(Inv-UE D)

fly fly f"y

....... 4 ................. --- --

93% 95% 97%
Figure 19: Correct to Endpoint Policy

The company was actively discussing the second policy while the author proposes

they consider the third.

There are countless additional policies that could be examined. Another common

one is "close a of the gap" where O<a<1. We see that if a= 1, then we see that this

corresponds to the first policy examined where we fully correct in every time period.

However, if a=0.5, we would only close 50% of the gap. We do not examine this policy

in this thesis, but mention it for completeness.

5.3.1 Simulation Results

We performed a simulation study to determine how these proposed policies

performed. Microsoft Excel TM was used to perform the analysis. Again, details about all

simulations performed for this thesis can be found in the appendix.
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For this study, each policy used the same data set and random number draws to

ensure consistency in the results. A sample of the model is shown below.

Data Set & Inventor Targets
Mean Demand 1000 93% 443.0
StDev Demand 300 95% 493.8
Mean Yield 0.9 97% 564.6
SIDev Yleld 0.01
Req Req @95%SL 1660.0
Cycle Stock 1111.2
Safety Stock 493.8

Week 21 3 4 5 6 7 8 9 10 11 2 1

Randon Number Generator
Rand-Y 0.' 079 .911 0.566 0.254 0.433 0.860 0.535 0.218 0.19 o.01

-Y 0.0501 0.81, 607 0.079 .. O.99 0.48
Rand-D 0.879 0.13 0.332 0.173 0.463 0.894 0.081 0.147 0.073 0.425. 0.4251

CorretTo targe_
Produce 1660.0 1531.321 754.32 963.99 812.28 1067.951 1525.15 655.61 761.98 617.91 104720 18.83 1116.06

Yield" 0.88 0.89 0.90 0.89 0.91 00 09 0.90 0.911 0.90 0.89 0.89 0.88

Supply 1466.64 1364.171 680.93 853.97 742.00 962.92 1362.55 588.94 694.02 556.66 934.32 1673.91 980.03

Demand 1351.04 664.87 869.63 717.43 137441 57996 684.68' 564.36 943.02 1682.25 98795 943.09
Inventory 115.60 814.91 626.21 762.74 532.64 121.16 903.75 808.01 937.67 55131 (19662) 489.34 526.28

butide Range -Correct To Target
Produce 1660.00 1531.32 754 32 .963.99 8228 1111.11 1481.91 655.29 761.98 617.91 1111.11 1814.88 1111.11

Yield 0.88 0.89 0.90 0.89 0.91 0.9_0 0.89 0.90 091 0.90 0.89 0.89 0.88
Supply 1466.64 1364.17 680.93 853.97 742.00 1001.84 1323.92 588.65 694.02 5666 991.34 1617.44 975.69

Demand 1351.04 -664.87 869.63 7-1743 9~72.10 1374.41 579.96' 684.68 564.36 943.02 1682.25 987.95 943.09
Inventory 115.60 814.91 626.21 762.74 532.64 160.07 904.03 808.01 937.67 551.31 (139.60) 489.89 522.49

........... .. ...... ................. ............ ...... .. .. .... ...-...... ...... ..... ... ...............I..... ..... ... ... ....... .............. ......... .. ... .......... ..... ........- ..........

Outside Range -Correct To Endpoint
Produce 1660.001 1474.931 888.84 963.58 812.27 1067.95 1390.06 789.71 762.23 617.91 1 047.20 1743.14 1114.75

Yield 0.881 0.89 0.90 0.89 .89 0.90 0.91 0.90 0.89 0.89 0.88
Supply 1466.64 1313.93 1 802.36 853.61 741.99 962.92 1241.87 709.40 694.25 55666 934.32 1553.51 978.88

.. . ...... .... ......... ..

Demand 1351.04 664.87 86963 717.43 972.10 137441 579.96 684.68 564.36 943.02 1682.25 987.95 943.09

Inventory 115.60 764.671 697.40 I 833.581 603.47 191.99 85389 878.61 1008.50 622.14 1 (125.79) 439.77 475.56

Figure 20: Simulation Sample

Again, we ran all simulations for 100,000 iterations to insure accuracy in the

results. Additionally, confidence intervals were calculated for the mean production

quantity and mean inventory level for all simulations using the Excel CONFIDENCE

function. The results for these tests again show very tight intervals (similar to the results

found in section 5.2.3) lending credibility to the results. We refer the reader to Appendix

B for the results of the confidence tests in this section.

The results for the data set with mean of demand = 1000, standard deviation of

demand = 300, mean of yield = 90%, standard deviation of yield = 1% is shown below.

Note that in the figure P = production starts and I = inventory level.
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Mean(P) StDev(P) Mean(l) StDev(l) % Neg
Replenish to Target (95% SL) 1152.38 352.62 494.60 300.39 4.9%
Replanish to Target if outside range (93%-97% range, 95% SL) 1152.53 352.56 496.11 300.711 4.9%
Replenish to Endpoint if outside range (93%-97% range, 95% SL) 1153.20 313.05 503.85 305.51 4.9%

Figure 21: Simulation Results - Data Set 1

We make the following important observations from the above results:

* Simulation results support the model validity as when a 95% service level

is entered, the probability of a stockout is approximately 5%

* Correcting to the target provides no value (because the standard deviation

of P is the same for using the range and correcting to the target and not

using the range)

* Correcting to the endpoint decreases variability of production (because the

standard deviation of P decreased from approximately 353 to 313)

We now present results where we modify the acceptable range. A total of four

different ranges (all with target service level of 95%) were used in separate simulations

and each has similar output characteristics.

Mean(P) StDev(P) Mean(l) StDev(l) % Neg
Replenish to Target (95% SL) 1152.38 352.62 494.60 300.39 4.9%
Replanish to Target if outside range (93%-97% range, 95% SL) 1152.53 352.56 496.11 300.71 4.9%
Replenish to Endpoint if outside range (93%-97% range, 95% SL) 1153.20 313.05 503.85 305.51 4.9%
Replenish to Target (95% SL) 1154.35 351.45 492.68 299.49 5.0%
Replanish to Target if outside range (93%-99% range, 95% SL 1156.36 350.48 514.34 303.70 4.4%
Replenish to Endpoint if outside range (93%-99% range, 95% SL) 1160.81 281.63 560.60 319.23 3.9%
Replenish to Target (95% SL) 1153.81 351.16 493.44 299.22 5.0%
Replanish to Target if outside range (91%-97% range, 95% SL) 1153.61 351.16 491.32 300.01 5.1%
Replenish to Endpoint if outside range (91%-97% range, 95% SL) 1152.96 301.63 484.33 307.95 5.8%
Replenish to Target (95% SL) 1153.12 351.56 493.60 299.51 5.0%
Replanish to Target if outside range (91%-99% range, 95% SL) 1154.82 350.70 511.66 304.36 4.6%
Replenish to Endpoint if outside range (91%-99% range, 95% SL) 1158.16 275.02 543.09 325.22 4.8%

Figure 22: Simulation Results - Data Set 1 - Four Different Ranges

We see in the results above that the "replenish to endpoint" policy reduced the

variability of production while the "replenish to target" policy offered no improvement in

all cases.
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The results for another data set with mean of demand = 10000, standard deviation

of demand = 3500, mean of yield = 95%, standard deviation of yield = 2% is shown

below.

Mean(P) StDev(P) Mean(l) StDev() Stockout %
Replenish to Target (95% SL) 10990.88 3893.11 5772.46 3500.248 4.9%
Replanish to Target if outside range (93%-97% range, 95% SL) 110992.46 1 3893.01 1 5789.53 13504.593 1 4.9%
Replenish to Endpoint if outside range (93%-97% range, 95% SL) 11000.10 3453.61 5877.98 3558.736 4.9%

Figure 23: Simulation Results - Data Set 2

Again we observe that correcting to the target provides no value while correcting

to the endpoint decreases the variability of production.

5.4 Lead Time Variability

We now turn our attention to lead time variability. So far, our analysis has

assumed a deterministic lead time (in fact, we have assumed it to be zero without loss of

generality). We now wish to examine issues related to managing this system when lead

time is a stochastic parameter. We examine this by proposing a new way to calculate

lead time variability, which we call the cumulative flow method.

5.4.1 Cumulative Flow Method

The motivation behind the cumulative flow method is that the usual or traditional

way of measuring lead time is not appropriate given this specific system. We define the

traditional lead time method as one that subtracts the out date from the in date for each

individual lot in the factory and then summarizes this data with a mean and variance.

During the semiconductor manufacturing process, there are several places where

orders can "cross" or "jump" each other. This can occur in the semiconductor supply
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chain in several ways. For example, as products move through the manufacturing

process they can easily be switched by moving one cart of wafers ahead of another when

moving between machines. Another example is when products are put on hold for

review. If a set of products is held for inspection, products that started afterwards will

move ahead in the process. These types of review are quite common (given the tight

specification required to product microprocessors) and the resulting impact on the lead

time statistics can be quite important.

This behavior has no impact on what actually comes out of the fab; however, it

can dramatically affect the summary statistics of lead time. Again, this is because lead

time is traditionally calculated per unit in terms of time period out minus time period in.

Thus if orders "cross," this calculation would be impacted.

In summary, we see that the lead times for individual lots can be quite variable,

but some of this variability is due to order crossing. Since this order crossing does not

affect the output of the factory, it is necessary to find a way to remove this when

considering inputs to a stochastic inventory model.

We propose the following alternative method that removes the effects of order

crossing from lead time calculations. The idea is to calculate cumulative ins and outs and

base lead time on their difference. This removes the effects of order crossing and

provides a much more accurate picture of the impact of lead time variability. The

following example introduces the method.
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Week Input TPT
1 10 2
2 10 3
3 10 1
4 10 2

Average LT = 2
StDev LT = 0.82

Week Output
3 10
4 10
5 10
6 10

Figure 24: Traditional vs. Cumulative Flow Lead Time Calculation

We see in the above example that 10 units were started in weeks 1, 2, 3, and 4

with the factory throughput time (TPT) being 1, 2, or 3 each with probability 1/3. We see

that the 10 units started in week 1 have a TPT of 2 weeks. Similarly, the 10 units started

in week 2 have a TPT of 3 weeks while the week 3 starts have a TPT of 1 week and the

week 4 starts have a TPT of 2 weeks. Thus, the traditional lead time method would say

the average is 2 weeks with a standard deviation of 0.82 weeks.

The cumulative flow looks to see how the inputs and outputs compare. In this

example, we see that the output is a steady 10 units despite the variability seen by each

lot. Thus, using this method, we claim the lead time is 2 weeks with no variability.

We now show an example based on a realistic data set consisting of weekly data

to further the intuition behind this idea. In the figure below, we have plotted the

cumulative number of products started in a facility (per week) and the cumulative cumber

of products exiting the facility (per week) against time. We note that the horizontal

distance between the cumulative in and cumulative out curves represents the lead time.

while the vertical distance represents the work-in-process (WIP).
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Figure 25: Cumulative Flow Lead Time Calculation Curves

If we sample the lead time at each data point on the cumulative starts line (i.e. at

each large cumulative start dot), we obtain the set of lead times shown in the figure

below.
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Week Starts Outs CumStarts CumOuts Obs Lead Time
0 0 0 0 0
1 400 0 400 0 12.46 11.46
2 400 0 800 0 12.99 10.99
3 375 0 1175 0 13.72 10.72
4 700 0 1875 0 14.82 10.82
5 550 0 2425 0 15.63 10.63
6 500 0 2925 0 16.58 10.58
7 500 0 3425 0 17.23 10.23
8 825 0 4250 0 17.83 9.83
9 1000 0 5250 0 18.87 9.87

10 1025 0 6275 0 20.06 10.06
11 1050 0 7325 0 21.51 10.51
12 500 51 7825 51.02041 22.58 10.58
13 0 757 7825 808.1633 22.58 9.58
14 500 509 8325 1317.347 24.54 10.54
15 0 679 8325 1995.918 24.54 9.54
16 900 682 9225 2677.551 26.32 10.32
17 900 430 10125 3107.143 27.32 10.32
18 900 1373 11025 4480.612 28.25 10.25
19 900 888 11925 5368.367 29.24 10.24
20 900 858 12825 6226.531 30.54 10.54
21 475 830 13300 7056.122 31.97 10.97
22 475 532 13775 7587.755 33.09 11.09
23 375 406 14150 7993.878 33.98 10.98
24 0 127 14150 8120.408
25 850 381 15000 8501.02
26 850 450 15850 8951.02
27 675 859 16525 9810.204
28 525 982 17050 10791.84
29 0 915 17050 11707.14
30 450 913 17500 12620.41
31 0 378 17500 12997.96
32 500 312 18000 13310.2
33 500 429 18500 13738.78
34 500 426 19000 14164.29
35 0 912 19000 15076.53
36 0 597 19000 15673.47
37 0 1012 19000 16685.71
38 0 253 19000 16938.78
39 0 255 19000 17193.88
40 0 426 19000 17619.39
41 0 352 19000 17971.43
42 0 479 19000 18450
43 0 76.5 19000 18526.53

Figure 26: Cumulative Flow Time Calculation - Sample Data

This time, the lead times were calculated using an interpolation method. As an

example, let's calculate the lead time for the first week. We see that in week one, the

cumulative starts were 400 wafers. Our next step is to determine when there was a

cumulative exit of 400 wafers. We see this occurs between weeks 12 and 13. Thus we

know it took between 11 and 12 weeks for the 400 wafers to exit the fab. We assume a

linear relationship with time and thus calculate a weighted average to arrive at a

calculated lead time of 11.46 weeks. For an exact calculation on this observation, the
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expression would be 11 + ((400-51.02)/(808.16-51.02)) ~ 11.46. The following figure

shows these calculated lead times plotted against the week for which they were

calculated.
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Figure 27: Cumulative Flow Time Calculation - Lifecycle Plot

In the plot, you can clearly see the effects of the product ramp and end of life.

Given this method yields a more accurate picture of lead time variability than the

traditional method of calculation, you could use the traditional lead time variability

equation (equation 4 in this thesis) combined with equations for demand and yield

derived in this thesis for a more accurate methodology for the combined problem. The

above example came from actual data regarding fab inputs and output.

We now provide results where we compare calculating lead time the traditional

way versus this new way. This analysis was based on daily, lot level data taken from one

of the fabrication facilities. Any identifying marks have been removed to protect
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company confidentiality. Below are the mean and standard deviations for three different

semiconductor products for both daily and weekly levels of aggregation.

Daily Data Weekly Data
Old Avg Old StDev Old Average Old StDev

Product A 9.38 1.59 9.35 1.68
Product B 9.41 1.71 9.41 1.76
Product C 12.59 2.76 12.56 2.81

Figure 28: Traditional Lead Time

Note that we calculated these values by simply taking weekly data and subtracting

the out week from the start week for each lot in the data set.

We will now use two different implementations of the cumulative flow method,

both described above, on all three of these products. The first is a lot level computation

method based on the trivial example in Figure 24 (called the sorting method). This will

be used on both our daily and weekly data sets. The second implementation method is

based on the example in Figure 25 (called the graphical method) and will be used only on

the weekly data set for reasons to be discussed later. We will see that they provide nearly

identical results.

We begin by describing the sorting method algorithm we used to implement the

cumulative flow method on the daily lot data. The idea is quite simple. Assume that you

have three columns in a spreadsheet where column A is the product name, column B is

the start date, and column C is the end date. An example of this is shown below.
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Product In Out
Product B 4 101
Product B 4 89
Product B 4 92
Product B 4 84
Product B 4 90
Product B 5 88
Product B 5 89
Product B 5 101
Product B 6 89

Figure 29: Sample Data - Cumulative Flow / Sorting Method

To remove the effects of order crossing, simply sort the numbers in ascending

order in the "In" column and "Out" columns independently. Performing this sorting on

the data in the figure above produces the result below.

Product In Out
Product B 4 84
Product B 4 88
Product B 4 89
Product B 4 89
Product B 4 89
Product B 5 90
Product B 5 92
Product B 5 101
Product B 6 101

Figure 30: Sorted Data - Cumulative Flow / Sorting Method

To finish the method, find the difference between the out and in date for each lot

(or row). This represents the leadtime with the effects of order crossing removed. We

summarize the impact on this small data set below.
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Old Method New Method
Product In Out TPT In Out TPT

Product B 4 101 97 4 84 80
Product B 4 89 85 4 88 84
Product B 4 92 88 4 89 85
Product B 4 84 80 4 89 85
Product B 4 90 86 4 89 85
Product B 5 88 83 5 90 85
Product B 5 89 84 5 92 87
Product B 5 101 96 5 101 96
Product B 6 89 83 6 101 95

Average 86.89 Average 86.89
StDev 5.88 StDev 5.23

Figure 31: Method Comparison

We see that the average leadtime did not change, but the standard deviation was

reduced from 5.88 to 5.23. This result is expected as our new method simply reduces the

impact when orders cross.

We now provide results when applying this method to the full data set for all three

sample products. The data set has 1007 observations for Product A, 6390 observations

for Product B, and 1807 observations for Product C. In the figure below, the results

using the traditional leadtime calculation method is referred to as "Old" while the results

using the sorting implementation is referred to as "New." Again, this analysis was done

using daily, lot level data.

Product Old Avg Old StDev New Avg New StDev StDev Reduction
Product A 9.38 1.59 9.38 0.80 50%
Product B 9.41 1.71 9.41 0.80 53%
Product C 12.59 2.76 12.59 1.52 45%

Figure 32: Daily Data - Sorting Implementation

In the results above, we see dramatic reductions in the standard deviations while

the average lead time remains identical.

We now move on to the situation where we use data at a weekly level. Note that

we are using the exact same source data; however, it has been aggregated to a weekly
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level before doing the analysis. To begin, we will use the sorting method implementation

as described earlier. The results are shown in the figure below again where the results

using the traditional leadtime calculation method is referred to as "Old" while the results

using the sorting implementation is referred to as "New.".

Product Old Avg Old StDev New Avg New StDev StDev Reduction
Product A 9.35 1.68 9.35 0.88 48%
Product B 9.41 1.76 9.41 0.92 48%
Product C 12.56 2.81 12.56 1.59 43%

Figure 33: Weekly Data - Sorting Implementation

We now show an alternative implementation method based on the graphical

method given earlier in this section to calculate lead times. Again, we are still using the

weekly data set.

Below is the data and leadtime calculation for a Product A aggregated into weekly

buckets. A description of the data in each column follows the figure.
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Name Ins Outs Cumi Ins Cumi Outs TPT
Product A 5 0 5 0 10.38
Product A 21 0 26 0 10.76
Product A 8 0 34 0 10.12
Product A 33 0 67 0 10.16
Product A 5 0 72 0 9.42
Product A 5 0 77 0 8.68
Product A 29 0 106 0 9.18
Product A 34 0 140 0 9.52
Product A 16 0 156 0 9.55
Product A 16 0 172 0 9.28
Product A 22 0 194 0 8.85
Product A 48 13 242 13 8.74
Product A 33 17 275 30 9.17
Product A 20 34 295 64 9.12
Product A 21 19 316 83 8.62
Product A 10 18 326 101 7.86
Product A 15 28 341 129 7.69
Product A 35 21 376 150 8.55
Product A 24 11 400 161 8.27
Product A 47 39 447 200 8.85
Product A 26 57 473 257 9.17
Product A 31 15 504 272 9.16
Product A 24 18 528 290 8.70
Product A 36 42 564 332 9.00
Product A 27 13 591 345 10.03
Product A 30 15 621 360 9.78
Product A 40 29 661 389 9.58
Product A 29 41 690 430 9.30
Product A 28 20 718 450 9.52
Product A 26 18 744 468 9.83
Product A 26 29 770 497 10.28
Product A 14 44 784 541 9.57
Product A 30 23 814 564 9.19
Product A 32 5 846 569 8.79
Product A 32 21 878 590 8.72
Product A 22 40 900 630 10.00
Product A 33 53 933 683 10.95
Product A 23 23 956 706 10.50
Product A 37 23 993 729 10.83
Product A 14 18 1007 747 11.00
Product A 0 10 1007 757
Product A 0 47 1007 804
Product A 0 53 1007 857
Product A 0 29 1007 886
Product A 0 9 1007 895
Product A 0 5 1007 900
Product A 0 13 1007 913
Product A 0 21 1007 934
Product A 0 44 1007 978
Product A 0 18 1007 996
Product A 0 11 1007 1007
Product A 0 0 1007 1007

Weighted Average 9.41
Weighted StDev 0.75

Figure 34: Product A - Lead Time Calculation - Cumulative Flow / Graphical Method
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The column "Ins" represents the number of wafer starts (in terms of lots) that

occurred for a given week. Note that the data set is ordered; thus, values in the first row

represent the first week of observation, values in the second row represent the second

week, etc. The column "Outs" represents the number of wafer lots that came out of the

fab in a given week. The "Cuml Ins" and "Cuml Outs" columns represent, respectively,

the cumulative number of wafer starts in a given week and the cumulative number of lots

that came out of the fab. The "TPT" column represents the calculated lead time using our

graphical implementation with interpolation. Note that the average and standard

deviation are weighted by the number of lots started in a particular week. Below is a

graph of the cumulative ins and outs over time.

Figure 35: Product A - Cumulative Flow / Graphical Method Plot

This analysis is completed for two additional products and

presented on the following pages.

the results are
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Name Ins Outs CumliIns CumlOuts TPT
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B
Product B

83 0
58 0
55 0
66 0
55 0
34 1
18 0
36 1
78 0
77 0
88 6
78 39
74 73
91 66
90 73
88 31
93 20
126 55
125 34
167 55
157 104
177 144
162 86
156 64
131 75
165 91
157 136
166 170
153 170
197 171
178 144
210 187
177 226
237 217
222 193
167 160
158 105
115 163
177 109
192 139
215 200
203 192
211 200
241 230
200 214
141 141
80 214
61 213
4 179
0 193
0 208
0 166
0 167
0 284
0 163
0 118

Weighted Average 9.39
Weighted StDev 0.80

Figure 36: Product B - Lead Time Calculation - Cumulative Flow / Graphical Method
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83
141
196
262
317
351
369
405
483
560
648
726
800
891
981
1069
1162
1288
1413
1580
1737
1914
2076
2232
2363
2528
2685
2851
3004
3201
3379
3589
3766
4003
4225
4392
4550
4665
4842
5034
5249
5452
5663
5904
6104
6245
6325
6386
6390
6390
6390
6390
6390
6390
6390
6390

0
0
0
0
0
1
1
2
2
2
8
47
120
186
259
290
310
365
399
454
558
702
788
852
927

1018
1154
1324
1494
1665
1809
1996
2222
2439
2632
2792
2897
3060
3169
3308
3508
3700
3900
4130
4344
4485
4699
4912
5091
5284
5492
5658
5825
6109
6272
6390

11.49
11.32
11.14
11.10
12.13
11.75
11.12
11.11
11.28
11.01
10.63
10.28
10.19
10.52
10.59
10.38
10.05
9.79
9.52
9.50
9.50
9.56
9.35
9.05
8.65
8.46
8.33
8.56
8.66
9.23
9.36
9.42
9.33
9.45
9.44
9.34
9.30
8.84
8.67
8.68
8.82
8.81
9.03
9.28
8.98
8.83
8.45
7.97



Name [ Ins Outsj Cuml_ins CumlOuts TPT
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C
Product C

0
0
0
0
0
0
0
0
0
0
3
1

21
28
51
49
34
10
38
68
39
48
69
84
50
34
28
42
46
50
41
68
62
65
82
66
14
24
82
34
15
16
15
18
32
11
26
76
56
44
41
8

33
31
54
0

48
70

102
145
196
253
293
328
373
434
486
543
587
650
723
796
890
983
1065
1113
1140
1164
1181
1193
1200
1223
1250
1289
1335
1360
1375
1375
1378
1399
1420
1478
1517
1567
1630
1680
1711
1735
1762
1784
1803
1807
1807
1807
1807
1807
1807
1807
1807
1807
1807
1807

Weighted Average 12.61
Weighted StDev 1.54

Figure 37: Product C - Lead Time Calculation - Cumulative Flow / Graphical Method
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0
0
0
0
0
0
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0
0
0
3
4
25
53
104
153
187
197
235
303
342
390
459
543
593
627
655
697
743
793
834
902
964
1029
1111
1177
1191
1215
1297
1331
1346
1362
1377
1395
1427
1438
1464
1540
1596
1640
1681
1689
1722
1753
1807
1807

12.82
12.33
11.96
11.84
12.90
13.26
12.85
12.64
12.65
12.64
12.32
12.00
11.88
12.82
13.57
14.07
14.82
15.29
15.44
15.03
14.44
13.80
13.29
13.08
12.38
12.10
11.43
10.90
11.27
11.88
11.87
10.87
10.06
10.13
9.78

11.18
10.70
10.48
10.77
10.98
11.67
11.42
11.17
10.57
9.926
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Figure 38: Product B - Cumulative Flow / Graphical Method Plot
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Figure 39: Product C - Cumulative Flow / Graphical Method Plot
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We summarize and compare the mean and standard deviation for each product

between the traditional method on weekly data (labeled "Old) and graphical method on

weekly data (labeled "New").

Product Old Avg Old StDev New Avg New StDev StDev Reduction
Product A 9.35 1.68 9.41 0.75 55%
Product B 9.41 1.76 9.39 0.80 55%
Product C 12.56 2.81 12.61 1.54 45%
Figure 40: Weekly Data - Traditional vs. Graphical Implementation

Again, we see that the average values don't change by a meaningful amount while

the standard deviations are reduced significantly.

Finally, note that regardless of the data granularity and implementation method

(sorting or graphical method), the results are nearly identical (see the summary below).

Data Method Product Old Avg Old StDev New Avg New StDev StDev Reduction
Product A 9.38 1.59 9.38 0.80 50%

Daily Sorting Product B 9.41 1.71 9.41 0.80 53%
Product C 12.59 2.76 12.59 1.52 45%
Product A 9.35 1.68 9.41 0.75 55%

Weekly Graphical Product B 9.41 1.76 9.39 0.80 55%
Product C 12.56 2.81 12.61 1.54 45%
Product A 9.35 1.68 9.35 0.88 48%

Weekly Sorting Product B 9.41 1.76 9.41 0.92 48%
r I_ Product C 12.56 2.81 12.56 1.59 43%

Figure 41: Summary of Cumulative Flow Implementations

We point out that the graphical method should be used only when the graphs are

strictly increasing over time. This is because when the function is nonincreasing, the

evaluation becomes much more difficult and the interpolation method suggested above is

no loner valid. Given this complication, the sorting implementation is preferred due to its

wider range of applicability and ease of implementation.

This difference in lead time variability has a large impact on safety stock

calculations given a stochastic lead time. Since the standard deviations have been cut

down considerably, the safety stock required to operate at a given service level would be

dramatically reduced.
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5.5 Production Planning

Using the hierarchical production planning framework and ideas, we develop a

procedure to plan production in this system. This procedure will be described by means

on an example. We will assume that all of the work in determining proper modeling,

grouping, etc. has been completed and we have the following representation.

Sq'rt
A AJ

Prod DK

YBJ
Wafer bYAKr

Prod-

1--bCK K DK

Figure 42: Product Mapping

We see that there is one wafer (called Wafer) that gives rise to three sort names

(Sort A, B, C) which become one of two finished goods (Prod J, Prod K). Note that we

have left out the level 3 complexities in this example. This was done to make the

explanation easier; it could easily be incorporated. We will assume in this example that

DLCP is deterministic while yield (denoted by YAJ, YAK, YBJ , YCK) and demand

(denoted by Di, DK) are normal random variables with given mean and standard

deviation. To make this example concrete, assume the following data set (where the units

for DLCP and yield are percent and the units for demand are number of products):

80



DLCP (Deterministic) Yield (Random Variable) Demand (Random Variable)
a= 0.2 E[YAJ]= 0.9 zJ= 1.645

b= 0.3 EEYAKI= 0.8 zK= 1.645

E[YBJ]= 0.8 E[Dj]= 100

E[YcK]= 0.95 E[DKd= 150

StDev(YAJ)= 0.05 StDeA(Dj)= 50

StDe(YAK)= 0.1 StDev(DK)= 50

StDev(YBJ)= 0.1

StDev(YCK)= 0.05

The first column shows that the DLCP split to Sort A is 20%, to Sort B is 30%,

and to Sort C is 50%. The expectation and standard deviation for yield are given in the

second column while the third column has the service level (represented by the z value)

for each finished product as well as the expectation and standard deviation for demand

for each product. Assuming our usual one stage model, we can write the inventory target

for product J using the equations derived earlier in this thesis as follows (the equation for

product K is analogous):

CW Tarj =

-- - -2 - ]2 -2 - -2]

'"D +fYj +ZI Dj ODj + j

where

Y AJ Y, + fBJ IYBiJ
2 2 2 ± B22

AJ

AJ + BJ

BJ

AJ + BJ

Note that AJ represents the number of Sort A products sent to satisfy Product J

demand while BJ represents the number of Sort B products sent to satisfy Product J
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demand. Similarly, we define AK as the number of Sort A products sent to satisfy

Product K demand and CK represents the number of Sort C products sent to satisfy

Product K demand. Given the product mapping, we see the system must observe the

following inventory and allocation constraints:

Inventory Relationship =

AJ+BJ CW Tar,

AK + CK CW TarK

Allocation Relationship =

AJ=A-f Y%

AK=A fAK -YAK

BJ = B-Y
CK = C- YCK

The inventory relationship says that the amount of product J produced must be

greater than or equal to the inventory target. An analogous expression is written for

product K.

The allocation relationship says that the amount of sort name A that is allocated to

either product J or product K equals the total available amount, multiplied by the

weighted average of the yields. Sort names B and C are straightforward as there are no

factional decisions being made.

This problem as formulated is a non-linear optimization problem. The fractional

allocations represent the non-linearity. The objective function is to minimize the number

of wafers subject to the inventory and allocation constraints. This example was solved

using the MS Excel TM solver and produced the following results.
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Model
Wafer 491.0769
Sort A 98.21539
Sort B 147.3231
Sort C 245.5385
AJ 88.39385
AK 0
BJ 117.8585
CK 233.2615
CwTarJ 183.7991
CwTarK 233.2615

meanYJ 0.842857
sdYJ 0.082375
meanYK 0.95
sdYK 0.05

206.2523 >= 183.7991 Inventory Constraint
233.2615 >= 233.2615 Inventory Constraint
88.39385 = 88.39385 Allocation Constraint

0 = 0 Allocation Constraint
117.8585 = 117.8585 Allocation Constraint
233.2615 = 233.2615 Allocation Constraint

Figure 43: Production Planning Model & Results

DLCP (Deterministic)
a= 0.2
b= 0.3

Yield (Random Variable)
E[AJ]= 0.9
E[AK]= 0.8
E[BJ]= 0.8
E[CK]= 0.95
StDev(AJ)= 0.05
StDev(AK)= 0.1
StDev(BJ)= 0.1
StDev(CK)= 0.05

Demand (Random Variable)
zJ= 1.645
zK= 1.645
E[J]= 100
E[K]= 150
StDev(J)= 50
StDev(K)= 50

We see the results show that we need to start 491 wafers to generate enough die

and finished goods to cover our inventory targets. We see the model used all of the Sort

A die for Product J, this is logical for the following two reasons, (1) the yield for Sort A

die on Product J is much higher then the yield when used for Product K and (2) the yield

from Sort C die is much higher for Product K than the yield for Sort A die.

We see here the basic idea is to perform the following steps.

1. Determine appropriate product modeling and collect relevant data

2. Write finished goods (or CW) inventory equations

3. Determine the inventory relationships and allocation relationships

4. Solve non-linear model to determine ADI requirements and wafer start

requirements
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This method could provide value as it uses more accurate inventory equations and

also captures the very important non-linear allocation relationship. Most models used

today do not explicitly take this non-linear relationship into account. This method easily

generalizes to more industrial sized problems provided a more sophisticated

mathematical solver is available.
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6 Conclusion

In this thesis, we have described the semiconductor supply chain, provided a

framework for improvement, and given a detailed analysis for several specific problem

areas.

This thesis developed out of a specific need at a company. The goal was to

determine an effective way to allocate fab capacity to the worldwide factory network.

This led to the creation of the allocation model described in section 5.5; however, the

inventory equations were problematic in the development of this model and these issues

led to the work of sections 5.2 through 5.4.

In this thesis we have (1) provided a new set of equations that captures demand

and yield variability, (2) provided an analysis of two different production smoothing

procedures and illustrated the one favored by the company provided no value, (3)

proposed a new method to calculate lead time based on the cumulative flow of products

through the factory, and (4) developed a non-linear model to determine wafer starts using

the new inventory equations.

There are many areas that warrant further attention based on the work presented

here, below are some key areas:

* Managing the evolution ofprocess and tools as the company 's products and

roadmaps evolve

The product lifecycle for companies continues to shrink and building

very large, complex, and cumbersome planning systems makes it difficult to

keep up with the company's ever changing products and offerings. There's a

need to examine ways to build effective planning systems that evolve easily as
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products become more complex or as the organization changes directions and

produces entirely new kinds of products.

" Integrating analytics into everyday planning and enterprise systems

It is critical to find ways to build analytic tools into enterprise systems.

MS Excel TM is a wonderful example of an analytic tool that is used in

businesses everyday. It is easy to use and intuitive, thus business analysts are

experts in using it. Giving the supply chain analyst a similar tool, but

specialized for their problems would greatly improve their ability to make

good decisions.

" Detailed investigation of the non-linear fab allocation model

The non-linear allocation model presented in this thesis is effective for

many small problems, it remains to be seen how well it can scale to larger

problems. Coding the model using an industrial strength solver (LOQO for

example) would help determine how strong the method could scale as the

business becomes more complex.

" Investigation of the lead time methods and integration with the demand and

yield model

We developed models where lead time was separated from the rest of

the problem. It would certainly be worth exploring how to integrate all of the

models together.

" Methods when normality assumption is not valid
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The question of handling non-normal parameters is a difficult one.

They theory breaks down quickly under this assumption, but many real-life

situations follow this behavior.
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Appendix A - Literature Review

Managing business operations under uncertainty is a well-studied area with the

field of operations research. We provide references to the work that most closely aligns

with the ideas examined in this thesis.

Clark and Scarf (1960) and Veinott (1965) are among the first researchers to

analyze inventory systems in a deep and meaningful way. Their work provides much of

the basis for subsequent work in the field.

Inventory models dealing with different forms of uncertainty are well studied and

several books have been written on the subject. Nahmias (2001) provides an introduction

to these models while Zipkin (2000) provides a rigorous treatment.

There are several academic papers that provide the basis for the models in the

books discussed above or extensions to the basic models. Several papers examining the

impact of demand and yield uncertainty have been written. Bitran and Dasu (1992)

discuss ordering policies when yields are random and demand is substitutable (as in the

semiconductor industry). Hsu and Bassok (1999) further analyze this situation with

several different solution methods. Lee and Yano (1988) discuss similar problems and

provide results for an application to a light-emitting diode manufacturer. Ettl et al (1996)

provide a supply network model with several realistic assumptions (e.g. non-stationary

demands and stochastic lead times).

Eppen and Martin (1988) discuss possible flaws in the standard approximations

for lead time uncertainty. Chopra et al (2004) extend this work and provide greater

details. These works are of interest because they point out how important it is to pay

attention to the assumptions you make when modeling.
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Product allocation and scheduling models are well studied and are relevant to the

issues examined in this thesis. Hausman and Peterson (1972) study scheduling under

limited capacity and forecast revisions. Graves (1986) proposes a model for the

operation of a job shop that allows for meaningful analysis for complex operations.

Bitran et al (1986) discusses production planning for so-called style goods. These are

products that have short selling seasons and stochastic demand. Microprocessors fall into

this category due to the rapid pace of technological change. Glasserman (1996) looks at

allocating production capacity among multiple items. Finally, we note the paper of

Graves, Kletter, and Hetzel (1998) that examines requirements planning in multistage

systems. Their Dynamic Requirements Planning (DRP) helps set inventory levels

between stages in the supply chain.

Related to the product allocation papers are those of strategic inventory

placement. Graves and Willems (2000) propose a dynamic programming algorithm to

solve the problem of optimal safety stock placement in a supply chain. An application of

this work was written by Billington et al (2004) and was a finalist in the INFORMS

Edelman competition for the best application of operations research.

Specifically in the semiconductor industry, Cakanyildirim and Roundy's (1999)

SeDRAM paper examines demand forecasting for the semiconductor industry in detail.

They discuss methods to estimate variance and covariance of demand forecast errors and

allows for correlations across time and products. In another paper, Cakanyildirim and

Roundy (2000) discuss the evolution of capacity planning in the industry and make

suggestions for improvements.
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Several MIT LFM theses have examined issues in the semiconductor industry.

Levesque (2004) provides a detailed analysis of variability for both supply and demand

parameters. Chow (2004) discusses the idea of service level and setting inventory

targets. Black (1998) proposes one method for dealing with yield variability in inventory

planning while Graban (1999) extends this work to evaluate the impact of different

sources of variability.

Introducing quality control ideas into inventory management is an idea discussed

in this thesis as several companies have started looking into this as a way to reduce

variability. Eilton and Elmaleh (1970) examine setting adaptive upper and lower

inventory limits based on forecasting techniques. Two decades later, Ernst, Guerrero,

and Roshwalb (1993) examine using quality control techniques to monitor inventory

levels for accuracy.
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Appendix B - Simulation Details

The code below was used to complete the simulations used in section 5.2.3 of this
thesis.

Sub Simulation()
Application.ScreenUpdating = True
Range ("B21:AA21") .Select

Range(Selection, Selection.End(xlDown)).Select
Selection.ClearContents
j = 0
While (j < 100000)

Worksheets ("DYV-Const95") .Calculate
Dim prod(l To 13) As Double
Dim inv(1 To 13) As Double
For i = 1 To 13

prod(i) = Cells(13, 1 + i).Value
Next i
For i = 1 To 13

inv(i) = Cells(17, 1 + i).Value
Next i

For i = 1 To 13
Cells(j + 21, 1 + i).Value = prod(i)

Next i
For i = 1 To 13

Cells(j + 21, 14 + i).Value = inv(i)

Next i

j = j + 1
Wend

End Sub
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The code below was used to complete the simulations used in section 5.3.1 of this
thesis.

Sub ComboSimulation()

Application.ScreenUpdating = True
Range("B40:CC40").Select
Range(Selection, Selection.End(xlDown)).Select

Selection.ClearContents

j = 0
While (j < 100000)

Worksheets("DYV-CombinedSheet95").Calculate
Dim prodl(1 To 13) As Double

Dim invl(1 To 13) As Double

Dim prod2(1 To 13) As Double
Dim inv2(1 To 13) As Double

Dim prod3(1 To 13) As Double

Dim inv3(1 To 13) As Double

For i = 1 To 13
prodl(i) = Cells(18, 1 + i).Value

Next i
For i = 1 To 13

invl(i) = Cells(22, 1 + i).Value
Next i
For i = 1 To 13

prod2 (i) = Cells (25, 1 + i) .Value
Next i
For i = 1 To 13

inv2 (i) Cells (29, 1 + i) .Value
Next i
For i = 1 To 13

prod3(i) = Cells(32, 1 + i).Value

Next i
For i = 1 To 13

inv3(i) Cells(36, 1 + i).Value

Next i

For i = 1 To 13
Cells(j + 40, 1 + i).Value prodl(i)

Next i
For i = 1 To 13

Cells(j + 40, 14 + i).Value = invi(i)

Next i
For i = 1 To 13

Cells(j + 40, 28 + i) .Value = prod2(i)
Next i
For i = 1 To 13

Cells(j + 40, 41 + i) .Value = inv2(i)
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Next i

For i = 1 To 13

Cells(j + 40, 55 + i).Value = prod3(i)

Next i
For i = 1 To 13

Cells(j + 40, 68 + i).Value = inv3(i)

Next i

j = j + 1
Wend
Application.ScreenUpdating = True

End Sub
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The confidence intervals for the mean production level and mean inventory level

for the section 5.3.1 simulation study are included below.

Mean(P) StDev(P) CI(P) Mean(l) StDev(I)
1152.38 352.62 2.19 494.60 300.39 1.86
1152.53 352.56 2.19 496.11 300.71 1.86
1153.20 313.05 1.94 503.85 305.51 1.89

Figure 44: Confidence intervals corresponding to Figure 21 results

Mean(P) StDev(P) CI(P) Mean(l) StDev(I) C(I)
1152.38 352.62 2.19 494.60 300.39 1.86
1152.53 352.56 2.19 496.11 300.71 1.86
1153.20 313.05 1.94 503.85 305.51 1.89
1154.35 351.45 2.18 492.68 299.49 1.86
1156.36 350.48 2.17 514.34 303.70 1.88
1160.81 281.63 1.75 560.60 319.23 1.98
1153.81 351.16 2.18 493.44 299.22 1.85
1153.61 351.16 2.18 491.32 300.01 1.86
1152.96 301.63 1.87 484.33 307.95 1.91
1153.12 351.56 2.18 493.60 299.51 1.86
1154.82 350.70 2.17 511.66 304.36 1.89
1158.16 275.02 1.70 543.09 325.22 2.02

Figure 45: Confidence intervals corresponding to Figure 22 results

Mean(P) StDev(P) C1(P) Mean(I) StDev(I) CI(I)
10990.88 3893.11 24.13 5772.46 3500.25 21.69
10992.46 3893.01 24.13 5789.53 3504.59 21.72
11000.10 3453.61 21.41 5877.98 3558.74 22.06

Figure 46: Confidence intervals corresponding to Figure 23 results
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