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Abstract

The human polymeric immunoglobulin receptor, pIgR, is a glycosylated type I transmembrane
protein expressed on the basolateral surface of secretory epithelial cells. pIgR plays a key role
in mucosal immunity and, together with bound immunoglobulins (Igs), provides a first line of
specific defense against pathogens and their toxins. pIgR binds dimeric IgA (dIgA) and
pentameric IgM (pIgM) produced by local plasma cells and transports these polymeric Igs to
the apical surface of the cell where the complexes are cleaved from the membrane and
deposited into mucosal secretions. The Fc portion of dIgA initially interacts non-covalently
with the N-terminal domain (D1) of pIgR, followed by a covalent interaction with D5. In order
to gain insight into the molecular details of the initial interaction, we solved the 1.9 A
resolution crystal structure of D1 of pIgR. The structure reveals a folding topology similar to
variable Ig domains with differences in the complementarity determining regions (CDRs).
CDR1, the primary determinant in dimeric IgA binding, contains a single helical turn. CDR2,
the main determinant in binding to pIgM is very short and contains a potentially critical
glutamic acid involved in pIgM binding. CDR3 points away from the other CDRs, preventing
dimerization of D1 analogous to the variable heavy and light chains in antibodies. Surface
plasmon resonance studies showed that D1, regardless of its glycosylation state, binds dIgA
with an equilibrium dissociation constant of 300 nM in the absence of other pIgR domains, but
does not bind to monomeric IgAl-Fca. The structure of D1 allows interpretation of previous
mutagenesis studies and structure-based comparisons with other IgA and IgM receptors. To
further characterize the interaction between intact pIgR and dIgA, we have also initiated
structural studies of the other extracellular domains of pIgR, both alone and in complex with
the Fc portion of dIgA. Finally, we have also undertaken structural studies of pIgR in complex
with the choline-binding protein A, CbpA, a protein found on the surface of Streptococcus
pneumoniae, a pathogen that uses pIgR as a receptor to invade the human mucosal epithelium.

Thesis Supervisors:
Peter S. Kim, Professor of Biology, Massachusetts Institute of Technology; President, Merck
Research Laboratories
Pamela J. Bjorkman, Professor of Biology and Investigator, HHMI, California Institute of
Technology
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Introduction

The majority of human pathogens and toxins enter susceptible hosts at mucosal surfaces. Since

the adult human has approximately 400 m2 of respiratory and gastrointestinal mucosae

(Norderhaug et al., 1999), immunologic protection at these surfaces is essential. Innate defense

and local adaptive immune molecules work together to protect these surfaces. Nonspecific

antimicrobial agents such as bile, digestive enzymes, acid, and lysozyme, in combination with

the mechanical motions of cilia in the respiratory tract and smooth muscle contractions in the

intestinal, reproductive and respiratory tracts can clear some pathogens trapped in the mucosae

(Lamm, 1997). However, a more specific neutralizing defense is provided by secretory

immunoglobulins (SIgs), which are capable of binding and neutralizing specific antigens.

SIgs include polymeric IgA (mainly dimers containing joining (J) chain, but also trimers

and tetramers (Vaerman et al., 1995)) and polymeric IgM (J chain-containing pentamers), which

are secreted by local plasma cells in the lamina propria, just beneath the epithelium. J chain-

lacking IgM hexamers are also secreted by these plasma cells, but only J chain-containing

polymeric Igs (pIgs) bind the transmembrane polymeric Ig receptor (pIgR) (Vaerman et al.,

1998a), also known as the transmembrane secretory component (SC), expressed on the

basolateral surface of epithelial cells. The pIgR-pIg complexes are transported to the apical

surface where they are released by the cleavage of pIgR from the membrane, forming SIgs

(Figure 1). Actively transcytosed secretory IgA (SIgA), and to some extent secretory IgM

(SIgM), provide protection by binding to pathogens and blocking their adherence to, and

invasion of, epithelial cells, a process known as immune exclusion. pIgR is constitutively

expressed and transcytosed to the apical surface, where uncomplexed pIgR is also cleaved to

release free SC (Brandtzaeg, 1973). In addition to actively transporting pIgs across the
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epithelium, pIgR also protects the antibodies from proteolytic cleavage in the harsh environment

of the mucosae (Crottet and Corthesy, 1998), especially in the gastrointestinal tract.

Immunoglobulin structure

Antibodies are tetramers of two heavy and two light chains, arranged in an approximately Y

shape. The light chain contains an N-terminal variable and C-terminal constant region, while the

heavy chain contains one N-terminal variable and three or four C-terminal regions. The Fab

(fragment antigen binding) is composed of a light chain and the two N-terminal Ig domains of

the heavy chain, and is connected by a hinge region to the Fc (fragment crystalline, named for its

ability to crystallize readily), which is a dimer of the two C-terminal domains of the heavy

chains. The Fab fragments recognize and specifically bind antigens at the antibody-combining

site, and the Fc fragments interact with Fc receptors that either elicit immune effector functions,

transport the antibody to specific cellular locations, or stabilize the antibody to protect it from

proteolytic degradation. The five classes of antibody isotypes (IgG, IgE, IgD, IgM and IgA) are

determined by the features of their heavy chains, which differ in their sequences, the number and

position of their disulfide bonds, the number and type of carbohydrates attached, the length of

their hinge regions, and the number of C-terminal domains (Janeway et al., 1999).

IgG, the most abundant serum Ig, was the first antibody isotype for which high-resolution

structural information became available. Crystal structures of IgG Fab fragments and Fab-

antigen complexes revealed their four domain -barrel arrangement and showed that in some

cases the antibody combining site is a concave pocket that the antigen fits into, but in other cases

the antibody protrudes into the antigen (reviewed in (Wilson et al., 1991)). Similar to the Fab

structures, Fc fragments also have four 3-barrel Ig domains with extensive contact surface
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between the Cy3 domains and no contact between the Cy2 domains (Huber et al., 1976). A

carbohydrate attached to the inner surface of the Cy2 domain interacts with this domain through

both polar and hydrophobic residues (Deisenhofer, 1981). Intact IgG structures have provided

several snapshots of these flexible molecules with an overall Y or T shape but each with an

asymmetric arrangement of the Fab and Fc fragments, consistent with antibodies' dynamic nature

(Harris et al., 1992; Harris et al., 1998). Another Ig isotype, IgE, is present at low concentrations

in serum and is produced mainly against parasites. The interaction of IgE with its receptor is

responsible for inflammation and allergic reactions. IgE contains an Ig constant domain in place

of the hinge region. The crystal structure of Fce revealed the overall structure is very similar to

Fcy, including the position of the N-linked carbohydrate in between the CE3 domains, which is

an analogous location to the carbohydrate on Cy2 in IgG (Wan et al., 2002; Wurzburg et al.,

2000).

IgA has two subclasses, IgAl and IgA2, which differ from each other in the number of

N-linked oligosaccharide attachment sites and in the hinge region. IgAl contains a heavily O-

linked glycosylated 23-residue hinge region and two N-linked glycosylation sites, whereas IgA2

has a 13-residue deletion that removes the five O-linked glycosylation sites, and contains

additional N-linked oligosaccharide attachment sites. Serum IgA is predominantly monomeric

IgAl while mucosal IgA is mainly dimeric with a relative increase in IgA2 (Kerr, 1990; Kett et

al., 1986; Mestecky and McGhee, 1987). Early electron microscopy studies of IgA showed that

the attachment of the Fab and Fc fragments resembled that of IgG (Svehag and Bloth, 1970).

More recently, small-angle X-ray and neutron solution scattering and homology modeling

experiments, however, suggest that the hinge regions of IgAl (Boehm et al., 1999) and IgA2

(Furtado et al., 2004) cause an extended Fab and Fc conformation that is different from the
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arrangement seen in IgG. This results in a predominantly T shape for IgA versus the overall Y

shape for IgG. These studies also suggested that IgA2, with its shorter hinge region, is

significantly more compact than IgAl, and that the C-terminal 18-residue extension (the

tailpiece) in both IgA subtypes is probably folded up against the Ca3 domain (Boehm et al.,

1999).

Although a high-resolution crystal structure of intact IgA is presently not available,

crystal structures of the Fab and Fc fragments have been solved. Murine Fab fragment crystal

structures confirmed the -sandwich conformation of the individual domains, with an overall

arrangement similar to IgG Fab structures (Satow et al., 1986; Suh et al., 1986). A recent crystal

structure of Fca (Herr et al., 2003), however, has revealed differences between the Fc fragments

of IgA and previously determined structures of Fcy and Fce. It should be noted that the structure

of Fca was extracted from the co-crystal structure of Fca in complex with the FcaRI receptor,

but significant conformational changes between the FcaRI-bound Fca structure and free Fca are

not expected (Herr et al., 2003). Although the overall architectures of Fca, Fcy and FcE are very

similar, the different features of Fca include the presence of unusual disulfide bonds in the Cat2

domain and at the base of the hinge region, and external, rather than internal, N-linked

oligosaccharides (Herr et al., 2003) (Figure 2).

Humoral immunity at mucosal surfaces

IgA, found in both serum and mucosal secretions, is the most abundant human Ig isotype and the

principal mucosal antibody (Kerr, 1990). IgA in mucosal secretions has been described as the

"first line of defense", while serum IgA is a "second line of defense" against antigens that have

penetrated the epithelial barrier. dIgA is delivered to mucosal secretions by pIgR, a receptor that
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actively transcytoses J chain-containing pIgs from the basolateral side of epithelial cells

(Mostov, 1994). Once in secretions, SIgA binds pathogens and their toxins and prevents their

attachment to, and penetration of, the host. SIgA can neutralize pathogens by directly blocking

interactions between bacterial adhesins and their cellular receptors or by inhibiting the movement

of the bacteria by crosslinking them or interacting with their flagella (reviewed in (Lamm,

1997)). Binding can occur to specific antigens by the IgA antigen-binding site (Armstrong and

Dimmock, 1992; Lamm, 1997; Outlaw and Dimmock, 1990) or nonspecifically to bacterial

lectins by carbohydrate moieties on IgA or pIgR (Wold et al., 1990). In addition to its barrier

function in mucosal secretions, SIgA is also a major component in human breast milk and

provides passive immunization to newborns (reviewed in (Brandtzaeg, 2003; Cleary, 2004; Van

de Perre, 2003)).

IgA has long been considered non-inflammatory because it does not bind and activate

compliment by the classical pathway (Russell et al., 1989). However, many studies have now

shown that aggregated serum IgA triggers cellular functions such as phagocytosis, antibody-

dependent cell-mediated cytotoxicity (ADCC), degranulation and respiratory burst similar to IgG

after binding to its receptor, FcaRI (reviewed in (Monteiro and Van De Winkel, 2003)).

Intracellular signaling by IgA, IgG and IgE receptors is transduced via the same intracellular

protein, the y chain (Monteiro and Van De Winkel, 2003). Monomeric and dimeric forms of

IgA, but not SIgA, can elicit these cellular responses in the absence of an integrin co-receptor

(van Egmond et al., 2000; Vidarsson et al., 2001). As described above, the main function of

SIgA is immune exclusion at mucosal surfaces, where the body is in constant contact with

antigens from both pathogens and commensal bacteria and ingested food. Therefore, it would

actually be disadvantageous for SIgA to elicit inflammatory signals to foreign substances
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because the body would be in a constant state of mucosal inflammation, which would eventually

damage the protective barrier of the epithelial lining. However the ability of IgA to trigger these

cellular functions after interacting with antigens that have already crossed the epithelium

provides additional protection in the serum. The structural basis for the ability of monomeric

and dimeric IgA but not SIgA to initiate phagocytosis is described later.

IgM, the first antibody produced in the humoral response to infection, is also present in

both serum and mucosal secretions (Janeway et al., 1999). While SIgA is the primary Ig in

secretions, SIgM is also present at lower concentrations and clears pathogens via similar

mechanisms (Norderhaug et al., 1999). Similarly to IgA, serum IgM is able to activate

complement very effectively, while mucosal IgM does not (Davis et al., 1988; Randall et al.,

1990; Wiersma et al., 1998). In patients with IgA deficiency, IgM is thought to substitute for the

function of IgA (Brandtzaeg et al., 1987).

A minority of the plasma cells in the lamina propria secrete IgG. While there is no

known active transport of IgG to mucosal secretions in humans, damage to the epithelial layer

can result in passively-transferred IgG molecules at mucosal surfaces with low proteolytic

activity, such as the respiratory and reproductive tracts. Therefore, IgG provides some, albeit

minimal, protection at mucosal surfaces (Lamm, 1997; Norderhaug et al., 1999).

Polymeric immunoglobulins

IgA and IgM, unlike IgG, IgD and IgE, are unique in that they can form higher ordered

oligomers. While serum IgA is monomeric, mucosal IgA is predominantly dimeric, with trimers

and tetramers present at lower levels (Vaerman et al., 1995). Similarly, serum IgM is hexameric,

and mucosal IgM is pentameric (Davis et al., 1988; Niles et al., 1995). Because of their
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multivalency, pIgs can effectively crosslink multiple pathogens to limit their mobility and

facilitate their clearance (Lamm, 1997). pIgs, especially IgM, bind their antigens with relatively

low affinity, an effect that is compensated for by the high avidity effects due to the presence of

four identical binding sites in the case of dIgA and ten sites in pIgM.

Polymeric forms of both IgA and IgM contain a C-terminal 18-residue extension, called

the tailpiece, which is required for J chain incorporation and polymerization. The tailpiece

sequences in human IgA and IgM differ at seven amino acid positions (Yoo et al., 1999), but

both contain a penultimate cysteine residue that is essential for efficient polymerization and a

highly conserved N-linked glycosylation site that is required for efficient polymer assembly

(Atkin et al., 1996; Wiersma et al., 1997). Besides the tailpiece, additional structural elements

within the Ca3, and to a lesser extent Ca2, domains of IgA and the C¢4 and C¢3 domains of

IgM are required for J chain incorporation and polymer formation (Yoo et al., 1999).

Based on mutagenesis experiments and electron microscopy, a model for dIgA structure

has been proposed (Bastian et al., 1995; Feinstein et al., 1971; Garcia-Pardo et al., 1981;

Krugmann et al., 1997) (Figure 3A). One J chain molecule covalently bridges two IgA

molecules arranged in an end-to end configuration (Garcia-Pardo et al., 1981). J chain Cysl5

forms a disulfide bond with tailpiece Cys471 in the first Fca homodimer, and J chain Cys69

forms a second disulfide bond with Cys471 in the tailpiece from the second Fca homodimer.

The two remaining tailpieces, one from each homodimer, are linked directly to each other by a

disulfide bond between their penultimate cysteine residues (Bastian et al., 1995; Krugmann et al.,

1997).

Pentameric IgM contains J chain and, like pIgA, is actively transported to mucosal

secretions by pIgR, but hexameric IgM lacks J chain, and therefore does not bind to or get
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secreted by pIgR (Randall et al., 1990). The polymerization state of IgM depends on the amount

of J chain, where in the absence of J chain IgM is secreted as hexamers and an increase in J chain

production results in an increase in pentameric IgM (Niles et al., 1995). J chain is not found in

small IgM assembly intermediates, suggesting that it does not get incorporated until late in the

assembly (Brewer and Corley, 1997; Randall et al., 1990). Pentameric IgM appears to be the

substrate for J chain incorporation. A model proposes that five IgM molecules are joined by J

chain, excluding a sixth IgM molecule that would normally be added to form hexameric IgM in

the absence of J chain (Brewer and Corley, 1997) (Figure 3B).

Joining (J) chain

J chain, a 15 kDa polypeptide, was first identified about 35 years ago as a component of SIgA

(Halpern and Koshland, 1970) (Figure 3C) and SIgM (Mestecky et al., 1971). This polypeptide is

expressed by immunocytes containing various Ig classes (Brandtzaeg, 1974), however, in the

absence of IgA or IgM, J chain is degraded intracellularly (Mosmann et al., 1978). The number

of J chain molecules in dIgA and pIgM is commonly accepted to be one (Zikan et al., 1986),

however early immunochemical studies suggested dIgA may contain two and pIgM may contain

three to four J chains (Brandtzaeg, 1975b).

Although the exact function of J chain is not clear, it appears to be essential for the

specific transport of pIgs by pIgR, and while it facilitates or stabilizes polymer formation, it is

not essential for Ig polymerization (Hendrickson et al., 1995) (Vaerman et al., 1998b) (Johansen

et al., 2001). In J chain knockout mice, a higher ratio of monomeric to dimeric IgA was

observed, but low levels of dIgA were still present (Hendrickson et al., 1995). Increased serum

IgA and reduced biliary and fecal IgA levels were also reported because J chain-deficient IgA
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are not actively transported by the hepatobiliary transport mechanism in rodents, and the lack of

transfer of IgA from knockout mice was confirmed in vitro in Madin-Darby Canine Kidney

(MDCK) cells (Hendrickson et al., 1995). Further analyses of these mice showed that SC was

not associated with IgA, and although IgA levels were decreased in bile and feces, they were

unaffected in mucosal and glandular secretions, suggesting the possibility of an alternative

mechanism for the transport of J chain-deficient IgA from wild type IgA (Hendrickson et al.,

1996). J chain knockout mice showed no change in serum IgM levels in one study (Hendrickson

et al., 1995), but a reduction in serum IgM with impaired ability to activate complement was

observed in another study (Erlandsson et al., 1998).

J chain has a hydrophobic secretion signal that directs its synthesis into the endoplasmic

reticulum for processing and secretion. Mature human J chain contains 137 amino acids

including eight cysteine residues (Max and Korsmeyer, 1985) of which six are involved in

intramolecular disulfide bonds and two disulfide bonds to the tailpiece penultimate cysteine in

polymeric Igs (Bastian et al., 1992; Bastian et al., 1995; Frutiger et al., 1992). J chain also has an

N-linked oligosaccharide attachment site, which appears to be important for the efficient

assembly of dIgA (Krugmann et al., 1997). J chain is highly conserved across different species

and is also found in invertebrates and amphibians that lack adaptive immunity, suggesting it

originated as a component of the ancient innate immune system (Takahashi et al., 1996). In

addition to sequence conservation, J chain is also functionally conserved since it is

interchangeable between species to form pIgA molecules capable of binding SC, although with

lower affinity (Johansen et al., 2000).

The three dimensional structure of J chain remains elusive. It is normally found as an

extracellular protein in complex with IgA or IgM and it is found as a free protein only inside Ig
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secreting plasma cells. It is sequestered within pIgs so it is not readily available, and separation

from pIgs requires reduction of the intermolecular disulfide bonds, which results in the reduction

of the intramolecular disulfide bonds as well (Morrison and Koshland, 1972). While J chain

does not resemble any known protein, several models have been proposed about its secondary

structure. In the first model, a two domain structure was proposed in which the N-terminal

domain was predicted to contain -sheet structure and a mixture of a-helical, -sheet and

random coil structures in the C-terminal domain (Cann et al., 1982). In the second model, J

chain was modeled as an eight stranded (A-H) P-sandwich based on its circular dichroism (CD)

spectrum and amino acid profiles for -sheet propensity and hydrophobicity (Zikan et al., 1985)

despite having only a low degree of sequence similarity with other Ig domains. However, the

assigned disulfide bonds in this model were incorrect (Frutiger et al., 1992). A third model

based on conserved sequence features and the inter- and intra-molecular disulfide bond pattern of

J chain was also proposed (Frutiger et al., 1992). In this model J chain contains a domain with

two antiparallel -sheets held together by two disulfide bonds, which is associated with a second

domain with both a-helical and P-strand propensities (Frutiger et al., 1992). A similar two

domain, although less specific, model with mostly P-strands, extended coils and two short a-

helices based on disulfide bonds and predicted secondary structure was recently proposed

(Johansen et al., 2001).

IgA and IgM receptors

There are two functional classes of Fc receptors (FcRs). One class of receptors is involved in

transporting Igs to specific places and protecting them from proteolytic degradation, and include

the pIgR and the neonatal Fc receptor (FcRn). The second class, consisting of the FcyRs, FceRs
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and FccaRI, is responsible for eliciting effector immune responses, such as phagocytosis,

endocytosis, ADCC, B cells activation and activation of cytokines and inflammation. Fc

receptors can also be grouped into three distinct structural groups (Wurzburg and Jardetzky,

2003) (Figure 4). The receptors in the first group are composed of tandem Ig domains and

include the IgG receptors (FcyRI, FcyRII and FcyRIII) (Hulett and Hogarth, 1994; van de Winkel

and Anderson, 1991), the high affinity IgE receptor (FcERI) (Metzger, 1991), the IgA specific

receptor (FcaRI) (Maliszewski et al., 1990), and two receptors that bind both IgA and IgM (pIgR

(Mostov et al., 1984) and Fca/[tR (Shibuya et al., 2000)). The second group resembles MHC

class I homologs, and its sole member is the IgG receptor, FcRn (Simister and Mostov, 1989).

The third group belongs to the C-type lectin superfamily and includes the low-affinity IgE

receptor (FceRII) (Kikutani et al., 1986) and the recently identified chicken FcY receptor (FcRY)

(West et al., 2004).

Polymeric Ig receptor

The most extensively studied IgA and IgM receptor is pIgR, also known as the secretory

component, which was identified almost 40 years ago as a component of pIgA isolated from

musocal secretions (Brandtzaeg, 1996). This glycoprotein was shown to occur in both a

transmembrane bound and a secreted free form, expressed by secretory epithelial cells

(Brandtzaeg, 1974; Tomasi et al., 1965). Since then, pIgR transport of J chain-containing pIgs

has been demonstrated both in vivo and in vitro. Expression of the rabbit pIgR cDNA in

polarized MDCK cells, which normally do not express pIgR, results in the basolateral expression

of pIgR and the transport of the receptor to the apical surface in a ligand-independent manner

(Mostov and Deitcher, 1986). Similar results were observed in MDCK cells transfected with the
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human pIgR cDNA (Tamer et al., 1995). Although pIgR transcytosis is constitutive, binding by

dIgA stimulates increased transcytosis (Song et al., 1994). Knocking out the mouse pIgR gene

results in a drastic increase of serum IgA, a slight increase in serum IgG and IgE, but unchanged

IgM levels (Shimada et al., 1999). Additionally, IgA levels were reduced but not negligible in

bile, feces and intestinal secretions, further suggesting dIgA is mainly transported by pIgR

although a small amount may be secreted via an alternative pathway (Shimada et al., 1999).

pIgR is a type I transmembrane glycoprotein consisting of a 620 residue extracellular

region arranged as five tandem Ig-like domains, a 23 residue transmembrane anchor and a 103

residue cytoplasmic region. Human pIgA and pIgM bind to the extracellular region of SC with

an affinity of approximately 10 nM (Natvig et al., 1997; Roe et al., 1999). Binding of human

pIgR to dIgA takes place in two steps. In the first step, the pIgR N-terminal domain (D1), which

contains regions analogous to the three antigen-binding complementarity determining regions

(CDR) loops of Ig variable domains, binds the Ca3, and possibly Cct2, domains of dIgA

(Frutiger et al., 1986; Geneste et al., 1986). In the second step, Cys467 of the human pIgR

domain 5 (D5) forms a disulfide bridge with Cys311 in the Ca2 domain of the second IgA

molecule in dIgA (Fallgreen-Gebauer et al., 1993) in a late transcytotic compartment

(Chintalacharuvu et al., 1994), however this disulfide bond does not form in all species (Knight

et al., 1975). Also, pIgM, in contrast to dIgA, does not become covalently bound to human pIgR

(Brandtzaeg, 1975a). Further, transport of pIgs by pIgR is species dependent. For example,

human pIgR binds and transports both pIgA and pIgM, but pIgR from some other species (e.g.

rabbit, rodents and chicken) only bind pIgA (Socken and Underdown, 1978; Underdown et al.,

1992; Wieland et al., 2004).
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Mutagenesis and peptide binding experiments have been used to localize the pIgR D1

regions responsible for binding pIgA and pIgM. For dIgA binding, all three pIgR D1 CDR loops

were shown to be essential, in addition to the EF loop, which is located on the opposite side of

the domain from the CDRs (Coyne et al., 1994). In pIgM binding, pIgR D1 CDR2 appears to

contribute most to the binding, however, for maximal binding the CDR1 and CDR3 loops are

also required (Roe et al., 1999). Peptide binding studies also identified residues in dIgA that

participate in binding to pIgR. The potential binding sites are in the Ca3 domain of dIgA and

involve residues 402-410 in the DE loop and residues 430-443 in the FG loop (Hexham et al.,

1999; White and Capra, 2002) (Figure 5A). Since J chain-containing pIgs are preferentially

bound and transcytosed by pIgR (Vaerman et al., 1998a), J chain may also contact pIgR directly.

The intracellular trafficking of pIgR and SIgA has been studied extensively (Rojas and

Apodaca, 2002). The 103 residue cytoplasmic tail of pIgR contains a number of cellular sorting

signals. Deletion of the cytoplasmic tail results in a truncated pIgR that is able to bind ligand,

but is transported from the Golgi apparatus directly to the apical surface where it can be cleaved

to SC (Mostov et al., 1986). Newly synthesized wild type protein is targeted from the trans-

Golgi network to the basolateral surface of epithelial cells via a 17 residue signal immediately C-

terminal to the transmembrane region (Casanova et al., 1991). pIgR-pIg complexes are initially

internalized by clathrin-coated pits and delivered to basolateral early endosomes (Mostov, 1994).

After sorting in this compartment, pIgR-pIgs are targeted to common recycling endosomes.

Next, the complex is either delivered to apical recycling and from there, or directly from the

common recycling endosome (Mostov, 1994), the protein arrives at the apical surface where

pIgR is cleaved from the cell by an unidentified protease releasing free SC or SIg. Multiple C-

terminal truncations of released pIgR have been identified, indicating multiple cleavage sites

18



exist ( Eiffert et al., 1984; Asano et al., 2004). Some pIgR escapes cleavage, however, and is

internalized and delivered to apical early endosomes and recycled to either the apical surface or

the basolateral surface by a process known as reverse transcytosis. Recently, a subcomplex of

the mammalian retromer, a multimeric complex that mediates intracellular sorting of a vacuolar

enzyme-transporting receptor (VpslOp) (Seaman et al., 1998), has been implicated in the proper

sorting of pIgR (Verges et al., 2004).

Protection from pathogens has been proposed to occur at three different stages during

pIgR mediated transport of dIgA (Monteiro and Van De Winkel, 2003). As discussed

previously, SIgA in external secretions can bind and crosslink pathogens thereby slowing their

mobility and inhibiting their ability to adhere to epithelial cells (Lamm, 1997). Additionally,

SIgA can also intercept and neutralize pathogens, primarily viruses, intracellularly during

transepithelial transport, assuming the pathogen and SIgA go through the same intracellular

compartment (Mazanec et al., 1992). Finally, dIgA can bind bacteria and viruses that have

already invaded target cells at the basolateral surface of the protective epithelial layer, and pIgR

can shuttle the antibody-antigen complex to the apical surface, safely removing the pathogen

(Kaetzel et al., 1991; Lamm et al., 1992).

FcaRI

Another well-characterized IgA receptor is FcaRI (also known as CD89), which is a membrane-

bound glycoprotein with two extracellular Ig domains, a transmembrane anchor and a

cytoplasmic tail lacking recognized signaling motifs (Maliszewski et al., 1990; Monteiro and

Van De Winkel, 2003). Although FcaRI is a member of the Ig superfamily of Fc receptors, it

shares higher sequence similarity with the killer inhibitory receptors (KIRs) and the leukocyte

19



Ig-like receptors (LIRs) (Wende et al., 1999). FcaRI is expressed on the surface of monocytes,

eosinophils, neutrophils and macrophages, and binds both monomeric and dimeric forms of IgA

(Monteiro and Van De Winkel, 2003). FcaRI mediates immune effector responses such as

phagocytosis, ADCC, respiratory burst and cytokine release (Monteiro et al., 1990). Monomeric

and polymeric IgA, but not SIgA, can bind FcaRI to trigger phagocytosis through the clustering

of the receptor (van Egmond et al., 2000; Vidarsson et al., 2001).

The recent crystal structures of FcctRI (Herr et al., 2003; Ding et al., 2003) and the

complex between FcaRI and IgAl-Fc (Herr et al., 2003) have shed some light on IgA-mediated

immune responses. FcaRI contains two Ig domains oriented at approximately right angles to

each other (Ding et al., 2003; Herr et al., 2003). Although the FcyRs (Maxwell et al., 1999;

Sondermann et al., 1999; Sondermann et al., 2000) and FceRI (Garman et al., 1998) also have

overall bent structures, FcaRI domains are rotated to resemble the KIR and LIR folds (Chapman

et al., 2000; Fan et al., 1997; Wurzburg and Jardetzky, 2003). Another difference between the

Fca-FcaRI structure from the Fcy-FcyRs (Sondermann et al., 2000) and FcE-FcERI (Garman et

al., 2000) structures is that the latter interact with a 1:1 stoichiometry at the hinge region,

whereas two molecules of FcaRI bind to one Fca homodimer at the Ca2-Ca3 interface (Herr et

al., 2003). This binding surface is analogous to the Cy2-Cy3 interface of Fcy, where a number of

proteins, including FcRn, bind to IgG (Martin et al., 2001). The cocrystal structure also revealed

the FcaRI binding regions on Fca, which include residues in the FG loop of the Ca3 domain of

Fca (Herr et al., 2003) (Figure 5B). This loop was shown to be one of the binding sites for pIgR

D1 (White and Capra, 2002) (Figure 5A) and is only -10A away from Fca Cys311 (Herr et al.,

2003), which forms a disulfide bond with pIgR D5. The overlapping binding site (Figure 5C),

and the close proximity of the pIgR D5 disulfide bridge, has been suggested (Herr et al., 2003) to
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explain why SIgA does not bind to or activate FcaRI in the absence of an integrin coreceptor

(van Egmond et al., 2000; Vidarsson et al., 2001).

Fca/tR

Fca/tR, a relatively recently-identified receptor, can bind to monomeric and polymeric IgA as

well as IgM (McDonald et al., 2002; Shibuya et al., 2000). It is expressed on the surface of B

lymphocytes, macrophages and mesangial cells and has been identified as a candidate for a

receptor responsible for the deposition of immune complexes in IgA nephropathy (McDonald et

al., 2002), a condition that can result in kidney failure. Fca/[tR expressed on B cells can mediate

the endocytosis of IgM-coated microbes and may therefore also play a role in antigen

presentation (Shibuya et al., 2000). Additionally, the authors suggested that uptake of IgM

through Fca/[tR plays a role in priming T helper lympyhocytes (Shibuya et al., 2000) based on

the observations that mice lacking SIgM have a delayed development of specific IgG antibodies

to T cell dependent antigens (Ehrenstein et al., 1998) and dissemination of pathogens in

peripheral but not secondary lymphoid organs (Ochsenbein et al., 1999). Sequence analysis of

Fca/[tR predicts an approximately 50 kDa extracellular region with an N-terminal Ig domain that

shares 43% sequence identity with the human pIgR D1, a transmembrane anchor, and a

cytoplasmic tail that contains a di-leucine motif in the mouse protein, which is potentially

involved in receptor internalization (Shibuya et al., 2000).

Alternative IgA receptors

The asialoglycoprotein receptor (ASGPR) and transferrin receptor (TfR) have also been shown

to interact with IgA. ASGPR, a C-type lectin, recognizes galactose and N-acetylgalactosamine
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on desialylated glycoproteins and mediates the endocytosis of serum glycoproteins, including

IgA (Stockert et al., 1982). The ASGPR recognition site appears to be the O-linked

carbohydrates in the hinge region of IgAl (Stockert et al., 1982). ASGPR is thought to provide a

degradative pathway to maintain glycoprotein homeostasis in the blood (Stockert, 1995). TfR

(also known as CD71) has also been shown to interact with IgA1, and suggested to be involved

in tissue deposition of IgA (Moura et al., 2001). TfR was implicated in the pathogenesis of IgA

nephropathy because its expression is upregulated in cultured mesangial cells and on glomerular

mesangial cells in patients with the disease (Moura et al., 2001).

Streptococcus pneumoniae and pIgR

Treatment of human infection by gram-positive bacteria is becoming increasingly challenging

mainly due to the emergence of antibiotic-resistant bacterial strains. Streptococcus pneumoniae

(S. pneumoniae or pneumococcus), a bacterium that colonizes the upper respiratory tract is an

example of such a pathogen (Tuomanen et al., 1995). A number of pneumococcal virulence

factors have been identified including the polysaccharide capsule, cell-wall components and a

variety of bacterial proteins that facilitate adhesion and invasion, or inhibit host defense

(Jedrzejas, 2001). One of these virulence factors, the choline-binding protein, is secreted by the

pneumococcus and is anchored to the cell surface by binding to the terminal phosphorylcholine

moieties of teichoic or lipoteichoic acid structures on the bacterial cell wall (Jedrzejas, 2001).

The choline binding protein A, CbpA, is anchored to choline on the surface of S.

pneumoniae via a highly conserved choline-binding motif, which consists of about ten tandem

repeats of -20 residues at the C-terminus (Jedrzejas, 2001). CbpA was shown to be important

for bacterial adherence (Rosenow et al., 1997) and the host receptor for S. pneumoniae was
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identified as the human pIgR (Zhang et al., 2000). An insertional knockout of cbpA, or

antibodies against either CbpA or pIgR, abolished bacterial adherence and invasion, and two

CbpA domains, R1 and R2, were shown to bind to the extracellular domains of human pIgR

(Zhang et al., 2000). R1 and R2 share 89% sequence identity and are highly conserved in CbpA

from many strains of the bacteria. Peptide mapping and mutagenesis results highlighted the

importance of a conserved hexapeptide motif (YRNYPT) within the R domains (Elm et al.,

2004b; Hammerschmidt et al., 2000). Domain deletion, mutagenesis and peptide binding studies

have recently revealed that domains 3 and 4 of pIgR (D3-4) are necessary and sufficient to bind

and uptake CbpA (Elm et al., 2004a; Lu et al., 2003). Interestingly, while SIgA and free SC in

mucosal secretions inhibit pneumococcal invasion, pneumococci translocate across

nasopharyngeal epithelial cells using the pIgR reverse transcytosis pathway (Zhang et al., 2000).

When I started this project, an extensive amount of work had been done to characterize IgA-

based immunity, however there was no high-resolution structural information available for any

of the proteins involved. Shortly after I began, the crystal structures of FcaRI (Herr et al., 2003;

Ding et al., 2003) and the cocrystal structure of FcaRI-Fcct were published (Herr et al., 2003),

but the structures of pIgR, J chain, dIgA (or dFca), and CbpA remained unknown. For my thesis

project I wanted to use structural biology to contribute to the understanding of the molecular

mechanisms between these key IgA-based immunological proteins. The subsequent chapters

describe the structural characterization of the human polymeric Ig receptor and two of its binding

partners, dIgA and CbpA. In Chapter 2, I describe the 1.9 A resolution crystal structure of the N-

terminal, ligand-binding domain of pIgR (D1) and present complementary surface plasmon

resonance binding experiments between pIgR D1 and dIgA. Based on the D1 structure, I
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interpret previous mutagenesis results and make comparisons to other IgA receptors. This work

was done in collaboration with Dr. Anthony P. West, Jr. who taught me how to use the biosensor

instrument and the crystallographic software used to solve the structure. Chapter 3 describes the

solution structure of an adhesion domain (R2) of CbpA, the S. pneumoniae surface protein

responsible for pIgR binding. Additional biophysical experiments are also presented that were

used to characterize the binding properties of CbpA domains and pIgR. This work was done in

collaboration with several groups at St. Jude Children's Research Hospital. My contribution to

the project was providing purified pIgR and performing the initial binding experiments to show

that the recombinant protein was able to bind to CbpA. In Chapter 4, I describe ongoing work

toward crystallizing the full-length extracellular region of pIgR, the Fc region of J chain-

containing dIgA (dFca), CbpA, and the pIgR binding regions of CbpA, R1 and R2, all of them

alone and in complex with each other.
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Figure 1. Model for pIgR transcytosis. Newly synthesized pIgR is expressed on the basolateral

surface of epithelial cells where it binds to dIgA secreted by local plasma cells in the lamina

propria. pIgR-dIgA complexes are initially internalized by clathrin-coated pits (1) and are

delivered to the apical surface (2) where pIgR is cleaved from the cell releasing SIgA (3) or free

SC (4). pIgR that escapes cleaveage is internalized (5), and recycled to either the apical surface

(6) or the basolateral surface by a process known as reverse transcytosis (7).
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Figure 2. Crystal structures of Fc fragments. Ribbon diagrams showing front views of (A)

Fcct(PDB code lOWO), (B) Fcy (PDB code 1DN2), and (C) FcE (PDB code 1O0V). One

monomer in each Fc homodimer is shown in green, the other in blue. N-linked carbohydrates are

shown in magenta and disulfide bonds are yellow in ball-and-stick representation.
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A

Figure 3. Putative models for the structures of dIgA, plgM and SIgA. Monomeric Igs are

composed of two light chains (yellow) and two heavy chains (blue). One molecule of J chain

(pink) bridges two IgA molecules in an end-to-end arrangement to form dIgA (A), or five IgM

molecules in a cyclic configuration to form plgM (B). One molecule of plgR D1-5 (red) binds

noncovalently to Ca3 (and possibly Ca2) of one IgA via D and covalently to Ca2 in the second

IgA molecule in dIgA via D5, to form SIgA (C). Red spheres in (A) and (B) indicate tailpiece-

tailpiece and tailpiece-J chain disulfide bonds. Figure adapted from (Rojas and Apodaca, 2002).



A 

pIgR FcoaRI Fca/gR Fc/RI FcyRII FcyRIII FcERI

B C

FcRn

O Ig-like domain

O C-type lectin-like domain

FceRII FcRY

fl Fibronectin type II domain

A Cysteine rich domain

Figure 4. Schematic representation of the three structural groups of Fc receptors. The first group

is composed of tandem Ig domains, and include the FcyRs (FcyRI, FcyRII and FcyRIII), the high

affinity IgE receptor (FcERI), the IgA specific receptor (FcaRI), and two receptors that bind both

IgA and IgM (pIgR and Fca/[tR) (A). FcRn resembles MHC class I homologs (B) and the third

group belongs to the C-type lectin superfamily and includes the low-affinity IgE receptor

(FceRII) (FceRII) and the chicken FcY receptor (FcRY).
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Figure 5. Receptor binding sites on Fca. The two monomers in the Fca homodimer structure

are colored grey and light grey. The residues in the Ca3 domain implicated in binding to plgR

D1 are shown in blue (A) and the residues involved in binding to FcaRI are shown in green.

Overlapping residues in the two binding sites are shown in red (C). Circles in (A) indicate

Cys311 (yellow) in Ca2, the residue that forms a disulfide bond with plgR D5.



CHAPTER 2

Crystal Structure of a Polymeric Immunoglobulin-Binding Fragment of the Human

Polymeric Immunoglobulin Receptor

This chapter describes the 1.9 A resolution crystal structure of pIgR D1 and characterization of

the interaction between D1 and dimeric IgA. My contribution to this work included construction

of the pIgR D1 and Fca-tp expression vectors, establishing a stable mammalian cell line

expressing Fca-tp, protein purification, performing the binding experiments, crystallization of

D1, data collection and solving the structure of D1. Dr. Anthony P. West Jr. taught me how to

use the biosensor instrument and the crystallographic software used to solve the structure.
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Summary

The polymeric immunoglobulin receptor (pIgR) is a type I transmembrane protein that delivers

dimeric IgA (dIgA) and pentameric IgM to mucosal secretions. Here, we report the 1.9 A

resolution X-ray crystal structure of the N-terminal domain of human pIgR, which binds dIgA in

the absence of other pIgR domains with an equilibrium dissociation constant of 300 nM. The

structure of pIgR domain 1 reveals a folding topology similar to immunoglobulin variable

domains, but with differences in the counterparts of the complementarity determining regions

(CDRs), including a helical turn in CDR1 and a CDR3 loop that points away from the other

CDRs. The unusual CDR3 loop position prevents dimerization analogous to the pairing of

antibody variable heavy and variable light domains. The pIgR domain 1 structure allows

interpretation of previous mutagenesis results and structure-based comparisons between pIgR

and other IgA receptors.

Introduction

Polymeric immunoglobulins (pIgs) at mucosal surfaces provide the first line of defense against

pathogens and toxins. Polymeric IgA (mainly dimeric IgA; dIgA) is the predominant Ig found in

secretions, with pentameric IgM (pIgM) present at lower levels (Norderhaug et al., 1999b).

Unlike other antibody isotypes, IgA and IgM can form polymers via an 18-residue extension at

their C termini called the tailpiece. The joining (J) chain, a 15 kDa polypeptide, promotes the

oligomerization of IgA and IgM to form pIgs by cross-linking the homodimeric Fc regions of

two or five antibody molecules, respectively (Halpern and Koshland, 1970; Mestecky et al.,

1971). In dIgA, J-chain forms two intermolecular disulfide bonds, the first with one of two

tailpieces in the first Fc homodimer and the second with a tailpiece from the second Fc
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homodimer. The two IgA heavy chains that are not covalently attached to J-chain form a

disulfide bond to each other via Cys471 in their tailpieces (Bastian et al., 1992).

The polymeric immunoglobulin receptor (pIgR) transports pIgs across mucosal epithelia

into mucosal secretions. pIgR is expressed on the basolateral surface of epithelial cells, where it

binds selectively to J-chain-containing pIgs secreted by local plasma cells (Brandtzaeg and

Prydz, 1984; Radl et al., 1971; Vaerman et al., 1998a). Human pIgR binds and transports both

dIgA and pIgM, whereas pIgRs from other species (e.g., rabbit, rodents and chicken) only bind

dIgA (Socken and Underdown, 1978; Underdown et al., 1992; Wieland et al., 2004).

Biochemical and mutagenesis studies revealed that pIgR binding to dIgA takes place in two

steps. First, the N-terminal pIgR domain (D1) makes a noncovalent interaction with the Ca3,

and possibly Ca2, domains of one of the Fc regions of dIgA (Frutiger et al., 1986; Geneste et al.,

1986; Hexham et al., 1999). In the second step, Cys467 in the C-terminal domain of the

extracellular portion of human pIgR (D5) makes a disulfide bond with Cys311 in the Ca2

domain of the second IgA molecule (Fallgreen-Gebauer et al., 1993). pIgR/pIg complexes are

transcytosed to the apical surface of the epithelial monolayer, where the pIgR/pIg complex is

released from the membrane by the proteolytic cleavage of pIgR, forming secretory Ig (SIg).

The cleaved ectodomain of human pIgR, also known as secretory component (SC), is covalently

attached via a disulfide bond to dIgA or noncovalently to pIgM (Brandtzaeg, 1975; Mostov et al.,

1980). Free SC that is not complexed to a pIg is also released into secretions (Brandtzaeg,

1973).

pIgR is a glycosylated type I transmembrane protein, consisting of a 620 residue

extracellular region, a 23 residue transmembrane region and a 103 residue cytoplasmic tail. The

extracellular region contains five domains (domains 1-5; D1-D5) that share sequence similarity

44



with Ig variable (V) regions (Mostov et al., 1984). Thus, the pIgR D1-D5 domains are predicted

to be 13 sandwich structures each containing two j3 sheets (composed of strands A, B, E, and D

and strands C", C', C, F, G and A' in the case of D1 -D4, and strands A, B, E, D and strands A',

C, F, and G in the case of D5). D1-D4 each contain regions homologous to the three antigen

binding complementarity-determining region (CDR) loops of Ig variable domains.

Mutagenesis and peptide binding studies have identified probable binding sites on pIgR

and dIgA. pIgR D1 is necessary and sufficient for binding to dIgA (Frutiger et al., 1986) and all

three of its CDR loops have been implicated in the interaction with the antibody (Coyne et al.,

1994). Potential pIgR binding sites on dIgA involve the dIgA Ca3 domain and include residues

402-410 in the loop connecting strands D and E and residues 430-443 in the FG loop (Hexham et

al., 1999; White and Capra, 2002). Since pIgR preferentially binds and transcytoses dIgA

molecules containing J-chain, pIgR D1 may also directly interact with J-chain (Brandtzaeg and

Prydz, 1984; Vaerman et al., 1998a; Vaerman et al., 1998b). In order to contribute to the

molecular description of the interaction between pIgR and pIgs, we determined the 1.9 A crystal

structure of a pIg binding fragment of the human pIgR consisting of the N-terminal or D1

domain. The structure reveals an Ig variable-like domain that allows interpretation of previous

mutagenesis studies and comparison with other IgA receptors.

Results and Discussion

Biosensor Binding Experiments

The ligand binding domain of human pIgR, an Fc receptor that is specific for dimeric and

polymeric forms of IgA and IgM, was expressed in E. coli and refolded from inclusion bodies.

A glycosylated form of the protein was also expressed in baculovirus-infected insect cells. D1
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was tested for binding to dimeric and monomeric versions of the IgA Fc region. For the dimeric

version of IgA, we used dIgA/J-chain complexes purified from human serum (Vaerman et al.,

1995), and for the monomeric version, we used recombinant IgA Fc regions expressed in CHO

cells. One Fc region was expressed without the tailpiece (Fca) as described (Herr et al., 2003b),

and the other Fc region included the tailpiece (Fca-tp). Binding was evaluated using a surface

plasmon resonance-based binding assay. Both the glycosylated and nonglycosylated forms of

D1 bind to dIgA with an equilibrium dissociation constant (KD) of -300 nM (Figure 1A),

consistent with other binding studies (Bakos et al., 1994). Both versions of D1 show greatly

reduced or negligible binding to the monomeric Fca and Fca-tp proteins at concentrations up to

5 tM (Figure B). By contrast, another IgA Fc receptor, FcaRI, binds dIgA, Fca-tp and Fcca

when injected at a concentration of 5 FM (data not shown) (Herr et al., 2003b).

Structure of pIgR D1

The 1.9 A crystal structure of the human pIgR D1 was solved by multiple isomorphous

replacement with anomalous scattering (MIRAS). As predicted by sequence analysis, the

folding topology of pIgR D1 resembles the topologies of Ig variable heavy (VH) and variable

light (VL) domains (Mostov et al., 1984). Like Ig variable domains, pIgR D1 contains ten 3

strands assembled into two antiparallel sheets with strands A, B, E and D on one face and C",

C', C, F, G and A' on the other (Figure 2A-2C). Five residues that are characteristic of Ig

regions (Williams and Barclay, 1988) are found in the expected positions in pIgR DI: Cys22 and

Cys92, which form a disulfide bond linking the two 13 sheets, Trp37, the "invariant" tryptophan

(Figure 2D) that packs into the hydrophobic core, and Arg63 and Asp86, which form a salt

bridge (Figure 3). In addition, pIgR D1 contains a second disulfide bond between Cys38 and
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Cys46 that link the C and C' strands, which is also found in NKp44, a natural killer cell

cytotoxicity activating receptor (Cantoni et al., 2003).

Antibody VH and VL domains each contain three hypervariable complementarity-

determining region (CDR) loops (CDR1, CDR2, and CDR3), which together form the antigen

combining site in a VH-VL heterodimer (Alzari et al., 1988). Although the pIgR D1 structure

closely resembles an isolated Ig variable domain, the positions of the three CDR loops in D1

differ substantially from their antibody counterparts. Comparative analyses of the CDR regions

in antibody structures have allowed classification of CDR loops into a set of canonical structures

(Chothia and Lesk, 1987). Although the sequence of the D1 CDR1 loop shares similarity with

sequences found in type 1 of the six canonical CDR1 structures in Ig VK domains (Bakos, 1993),

the CDR1 structure in pIgR D1 differs considerably. Unlike any of the canonical structures for

CDR1 loops in VL or VH domains (Al-Lazikani et al., 1997), the pIgR D1 CDR1 includes a

single helical turn composed of residues that are highly conserved among sequences of pIgR

from different species (Figure 3). By contrast, CDR1 loops in VH and VL domains are composed

of extended structures joined by short links or hairpin turns (Chothia et al., 1989). CDR2 and

CDR3 in pIgR D1 do not appear to resemble any of the canonical sequence or structure patterns.

The pIgR CDR2 loop is very short, with only two residues in the loop region between the C' and

C" strands. By contrast, CDR2 loops in VK domains consist of three residues that form a classic

y-turn (Al-Lazikani et al., 1997). Unlike its position in antibody VH and VL domains, the CDR3

loop of pIgR D1 is tilted toward the C"C'CFGA' sheet, away from the other CDRs (Figure 4A).

A conserved hydrophobic residue, Tyr36, is buried at the interface of the D1 CDR3 and the

C"C'CFGA' sheet (Figure 4B). The position of the CDR3 loop is stabilized by hydrogen bonds

between Asn97 within the loop and two residues on the C"C'CFGA' sheet: Arg34 in the C strand
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and Thr48 in the C' strand. The observed conformation of the D1 CDR3 loop is likely to

represent its conformation in solution because the loop is not involved in crystal contacts. The

different orientation of the pIgR CDR3 loop as compared to the CDR3 loops of Ig V domains

(Figure 4A) is consistent with why D1 does not form dimers analogous to antibody VH-VL

heterodimers (Figure 4C) or VL-VL homodimers. When pIgR D1 is superimposed on an Ig VH-

VL combining site (Zdanov et al., 1994) (Figure 4C) to create a D1 dimer, the CDR3 regions

clash with the CC' loop from the partner molecule (Figure 4D). Although two different dimers

of pIgR D1 are observed in the crystal packing, neither is analogous to Ig VH-VL dimers. The D1

dimers in the crystals are unlikely to be biologically relevant because there are two different

dimeric arrangements and the D1 protein migrates in the position expected for a monomer on a

gel filtration column (data not shown).

Although the protein used for our structural studies is not glycosylated because it was

expressed in bacteria, the pIgR D1 structure can be used to locate residues to which carbohydrate

would normally be attached. Human pIgR D1 contains two N-linked carbohydrates attached to

Asn65 and Asn72 (Hughes et al., 1999). These residues are located on the D strand and the DE

loop, respectively, and their sidechains are accessible to solvent (Figure 2B). Studies comparing

the binding of bacterially expressed nonglycosylated D1 with glycosylated D1 expressed in

insect cells revealed nearly identical binding affinities for dIgA (Figure 1A), consistent with

earlier studies showing that pIgR glycosylation is not necessary for specific binding to dIgA

(Bakos et al., 1991). Carbohydrates may be required, however, for efficient transport or release

of the pIgR ectodomain during transcytosis of dIgA, since nonglycosylated pIgR is released from

the apical surface at low levels (Matsumoto et al., 2003). In addition, carbohydrates on SC
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contribute to stabilization of SIgs by protecting it from proteolytic degradation (Crottet and

Corthesy, 1998).

Structure-Based Interpretations of Binding Studies

Previous mutational and peptide-mapping experiments to define the regions of pIgR that form

the binding sites for dIgA and pIgM can now be interpreted using the pIgR D1 structure. CDR1

of pIgR D1 was proposed to make essential contacts with dIgA because it is the most highly

conserved region of D1 among different species of pIgR, and a synthetic peptide corresponding

to residues 15-37 of SC, a region that contains the D1 CDR1 loop, is capable of binding pIgs

(Bakos et al., 1991). Interestingly, this peptide binds Igs indiscriminately, interacting with pIgs

as well as with monomeric IgA and IgG (Bakos et al., 1991). The promiscuous binding of this

peptide suggests that other parts of D1, in addition to the CDR1 loop, likely contribute to pIg

binding specificity. The D1 structure reveals a solvent-exposed helix within the CDR1 loop

containing residues with the potential to make direct contacts with pIgs (Figure 5).

Point mutations in the CDR1 region of the rabbit pIgR D1 highlighted the importance of

three charged residues (two arginines and a lysine, which correspond to Arg31, Arg34 and Lys35

in the sequence of human pIgR D1). Substitution of these residues with alanine abolished pIgR

binding to dIgA (Coyne et al., 1994). The human pIgR D1 structure shows that Arg31 (rabbit

Arg37) is solvent exposed and could interact directly with dIgA. Although Arg34 and Lys35

were predicted to be in the CDR1 loop (Coyne et al., 1994), an analysis of main chain hydrogen

bonds in the D1 structure shows that they are both in the C strand. Arg34 is the first residue in

the strand, as its main chain carbonyl group forms a hydrogen bond with the main chain amino

group of Gly95 in the F strand. Human D1 Arg34 (rabbit Arg40) points in the opposite direction

from Arg31 and is occluded by the CDR3 loop, forming a hydrogen bond to CDR3 loop residue
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Asn97 (Figure 4B). Arg34 is thus unlikely to interact directly with a ligand, but may affect

ligand binding indirectly by stabilizing the CDR3 loop. This interpretation is consistent with the

results of mutagenesis experiments involving rabbit pIgR in which replacing the rabbit

counterpart of Arg34 with a glutamic acid, a residue that can still form a hydrogen bond with

Asn97 in CDR3, had no affect on ligand binding, whereas substitution to an alanine, which

cannot form the hydrogen bond, abolished binding (Coyne et al., 1994). Lys35 (rabbit Lys41) is

buried between the two j3 sheets and is also unlikely to represent a direct point of contact with

the antibody. However, it stabilizes the position of the CDR1 loop by forming hydrogen bonds

with Arg31 and Thr33 in the conserved helical turn in the CDR1 loop (Figure 5). Single point

mutations in surrounding residues corresponding to human pIgR residues Thr27, Ser28, Asn30,

His32 and Thr33 resulted in decreased dIgA binding (Coyne et al., 1994). Residues Ser28

through His32 comprise the helical turn in CDR1 and, together with the adjacent Thr27 and

Thr33, are surface exposed in positions that could interact with dIgA directly. The rabbit

counterpart of human D1 Val29 was not substituted because it was predicted to be buried (Bakos

et al., 1993; Coyne et al., 1994), however the crystal structure reveals that it is a surface-exposed

residue located on the helix within the CDR1 loop (Figure 5). Although its role in binding dIgA

is difficult to predict because it points in the opposite direction from another critical residue,

Arg31, solvent-exposed hydrophobic residues are often located at binding interfaces (Dall'Acqua

et al., 1996; Kelley and O'Connell, 1993; Lebron and Bjorkman, 1999; Tsumoto et al., 1995;

Vaughn et al., 1997; Wells and de Vos, 1996).

In addition to CDR1, mutagenesis and binding experiments using rabbit pIgR have

implicated the other CDRs in binding dIgA. Replacing the CDR2 or CDR3 regions in D1 with

their corresponding regions from D2 results in complete loss of dIgA binding (Coyne et al.,
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1994). The human pIgR D1 structure reveals that CDR3 is positioned away from the other

CDRs (Figure 2B), unlike the CDR3 loops of Ig V domains, which form a contiguous binding

surface with CDRs 1 and 2 (Alzari et al., 1988). It may therefore be difficult for a ligand

contacting the CDR1 and CDR2 regions of pIgR D1 to simultaneously contact CDR3. Thus it is

possible that the loss of affinity upon replacing the D1 CDR3 with another sequence may be due

to steric interference with dIgA binding rather than alteration of a direct binding surface. The

results of other loop replacements are harder to interpret using the pIgR D1 structure: replacing

the rabbit D1 EF loop with its counterpart in D2 led to the loss of dIgA binding, whereas

replacing the C"D loop had little effect (Coyne et al., 1994). Both loops are on the opposite side

of the D1 domain from the CDRs (Figure 5) and are not expected to contact the ligand.

Although human pIgR binds both dIgA and pIgM, rabbit pIgR only binds dIgA (Roe et

al., 1999; Socken and Underdown, 1978). By taking advantage of these binding differences,

studies using site-directed mutants and human/rabbit chimeric pIgR molecules have identified

regions required for binding pIgM (Roe et al., 1999). All three CDR loops were shown to

contribute to binding pIgM, but to different extents. For maximal binding of rabbit pIgR to

pIgM, replacing all three CDR loops with their human counterparts was required, but CDR2

appears to be the most critical: replacing rabbit CDR2 with the human equivalent transferred

pIgM binding, and replacing human CDR2 with the rabbit sequence resulted in substantial loss

of binding (Roe et al., 1999). Sequence alignment shows large differences in the human and

rabbit CDR2 loops, including a deletion of a charged residue, Glu54, in the rabbit CDR2 (Figure

3). Thus, deletion of the surface-exposed Glu54 may eliminate a point of electrostatic interaction

between pIgR and pIgM. Interestingly, only bovine and human pIgR D1 regions contain the
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glutamic acid in their CDR2 loops (Figure 3), and these are the only species of pIgR that show

high affinity pIgM binding (Socken and Underdown, 1978).

The Human pIgR D1 Structure as a Model for Similar Domains

Amino acid sequence alignment of pIgR D1 sequences from eight different species reveals

conservation of residues identified as critical for the human pIgR D1 structure (Figure 3), thus

the human pIgR D1 structure can be used as a first-order model for the D1 domains of pIgR

proteins from other species. In addition to the five residues characteristic of Ig V domains

(asterisks in Figure 3), the cysteines that participate in the second disulfide bond and the three

CDR loops (which are 67-100% conserved in CDR1, 50-100% in CDR2 and 40-80% in CDR3),

residues that participate in anchoring the CDR1 and CDR3 loops are also highly conserved. All

of the residues comprising the helical turn in CDR1 are either conserved or conservatively

substituted in all eight species, and Lys35, a buried residue that stabilizes the helix, is also

conserved (Figure 3). Tyr36, the residue buried under the CDR3 loop (Figure 4B), is conserved

in 7 of 8 species of pIgR, and conservatively substituted by a phenylalanine in the eighth species

(rabbit) (Figure 3). Three other residues that interact to stabilize the CDR3 loop position are

either conserved or conservatively substituted in D1 sequences: CDR3 residue Asn97 (a polar

residue in all sequences), Arg34 (conserved), and Thr48 (conserved) (Figure 3). Conservation of

these critical residues suggests that the helical turn in CDR1 and the unusual CDR3 location

observed in the human pIgR D1 structure are preserved in other pIgR D1 domains. The most

notable difference in the D1 sequence alignments is seen in the CC' loop in all of the sequences.

The pIgR D1 structure can also be used to make predictions about the structures of the

remaining domains in the human pIgR extracellular region. The characteristic disulfide bond

seen in members of the Ig superfamily (Williams and Barclay, 1988) is retained in all five
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domains. Also, pIgR domains 3, 4 and 5 each contain cysteines in positions to make the second

disulfide bond that bridges the C and C' f strands of D1 (Figure 2C). In addition, D5 contains a

third disulfide bond that rearranges as a result of the covalent association with dIgA, whereby

Cys467 of pIgR is linked to Cys311 in the IgA heavy chain (Fallgreen-Gebauer et al., 1993).

The characteristic salt-bridge in Ig-like domains, which involves Arg63 and Asp86 in D1, is

conserved in D2-D4, and the "invariant" tryptophan is present in D4 and D5 (Figure 3). By

contrast with these conserved sequence features, which suggest an overall similar folding

topology to that observed for the human D1 structure, the three CDR loops in human pIgR D1 do

not share significant sequence identity with their counterparts in D2-D5 (Figure 3), suggesting

local differences in loop structures. Such differences are not unexpected since the CDR loops

are implicated in binding to dIgA, and only D1 can bind to dIgA in isolation (Frutiger et al.,

1986). Overall, the sequences of D2-D5 are more variable than D1 across species (Piskurich et

al., 1995). This observation is not surprising given the differences across species that D2-D5

make to dIgA binding. In the case of human pIgR, D2 and D3 enhance pIgR's affinity for dIgA

(Norderhaug et al., 1999a). The presence of D2-D3 in bovine pIgR also increases ligand binding

affinity (Beale, 1988), but D2-D5 in rabbit pIgR do not contribute significantly to dIgA binding

(Frutiger et al., 1986). Thus, the full length ectodomain (D1-D5), an alternatively spliced

version (lacking D2-D3), and D1 of rabbit pIgR bind to pIgs with similar affinities (Deitcher and

Mostov, 1986; Frutiger et al., 1986). Murine pIgR D2-D3 are not necessary for high affinity

noncovalent binding to dIgA (Crottet and Corthesy, 1999), and chicken pIgR contains only four

extracellular Ig-like domains, with no ortholog to D2 of mammalian pIgRs (Wieland et al.,

2004).

53



Sequence alignment suggests that human pIgR D1 also shares structural similarities with

the corresponding region of another IgA and IgM receptor, the Fca/!x receptor (Fca/!pR) (Figure

3) (Shibuya et al., 2000). Fca/!R, which can bind to monomeric and polymeric IgA and IgM,

but not IgG, is expressed by the majority of B lymphocytes and macrophages (McDonald et al.,

2002; Shibuya et al., 2000). Human pIgR D1 and the Ig-like domain of Fca/xR share 43%

sequence identity. The five characteristic residues in Ig V domains (Figure 3) and the second

disulfide bond linking strands C and C' are conserved between pIgR D1 and Fca/tR, suggesting

similar tertiary structures. In addition, Fca/!tR shares 67% sequence identity with pIgR D1 in

one of the identified ligand binding sites, the CDR1 loop, including complete conservation of all

of the residues that comprise the helical turn within this loop in pIgR D1. The unusual CDR3

position is potentially another feature shared by the two proteins since the buried D1 residues

Tyr36, Arg34 and Thr48 are conserved in Fca/IR, and D1 Asn97 is replaced by a glutamic acid.

A hydrogen bond between Fca/!xR Glu97 and Thr48 (analogous to the Asn97 to Thr48 hydrogen

bond in pIgR D1) and a salt bridge between Fca/iiR Glu97 and Arg34 (replacing the hydrogen

bond in pIgR D1 between Asn97 and Arg34) (Figure 4B) would preserve the downward

orientation of the CDR3 loop. The overall conservation of structurally important residues within

the CDR loops of Fca/iR and pIgR D1 suggests a similar mode of interaction with the common

ligands of these receptors.

Another IgA receptor, FcacRI, shares an overlapping binding site on the IgA Fc region

with pIgR that includes the FG loop of Fca (Herr et al., 2003a; Hexham et al., 1999; White and

Capra, 2002). The overlap of the binding site has been suggested (Herr et al., 2003a) to explain

why secretory IgA (dIgA plus the pIgR ectodomain) cannot bind to or activate FcaRI in the

absence of an integrin co-receptor (van Egmond et al., 2000; Vidarsson et al., 2001). Although
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pIgR and FcaRI appear to recognize at least some of the same portion of Fca, their structures do

not share detailed common features beyond the fact that both molecules are Ig superfamily

members. The crystal structure of an FcaRI/Fca complex shows that the site on FcctRI at the

interface with Fca involves residues in the FcaRI BC loop, the D strand, the DE loop, and the

FG loop (Herr et al., 2003a). The BC and FG loops in FcaRI are topologically equivalent to

CDR1 and CDR3, respectively, but are not technically CDRs because FcaRI does not resemble

an Ig variable domain. Further, the two Ig-like domains of FcctRI lack C" strands and therefore

a loop equivalent to the CDR2 region. Thus, although pIgR and FcaRI bind to the same or to an

overlapping site on Fca, they do so with different recognition modes and folding topologies.

Further structural studies of pIgR in complex with dimeric Fca will be required to compare the

recognition properties of pIgR, Fca/[tR, and FcaRI, and to fully understand the mechanism by

which pIgR is specific for the binding and transport of polymeric Igs.

Experimental Procedures

Protein Expression and Purification

The cDNA encoding the full-length human pIgR was kindly provided by Roland Strong (Fred

Hutchinson Cancer Research Center, Seattle, WA). For bacterial expression, pIgR D1 (encoding

residues Lysl-Vall09) was subcloned into the pET20b expression vector (Novagen) in frame

with the C-terminal 6x-His tag using the following primers: 5'-G GAA TCC CAT ATG AAG

AGT CCC ATA TTT GGT CC-3' and 5'-GG AAT TCA CTC GAG GAC CTC CAG GCT

GAC-3'. The protein was expressed in E. coli BL21(DE3) cells (Novagen) by induction at

ODw=0.5-0.6 with isopropyl-j3-D-thiogalactoside (IPTG) at a final concentration of 0.4 mM for

5 hours at 37C. pIgR D1 inclusion bodies were solubilized in 8 M guanidine-HCl and 10 mM
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DTT. The protein was refolded by the rapid dilution method in refolding buffer (100 mM Tris

[pH 8.0], 400 mM L-arginine, 2 mM EDTA, 0.5 mM oxidized glutathione and 5 mM reduced

glutathione) (Garboczi et al., 1992). The refolded protein was concentrated in a stirred-cell

pressurized concentrator (Amicon) and loaded onto a Superdex 75 26/60 column (Amersham

Biosciences) for size exclusion chromatography.

For insect cell expression to produce glycosylated protein, pIgR D1 containing a C-

terminal 6x-His tag was subcloned into the baculovirus transfer vector pAcGP67A (BD

Biosciences) in frame with the gp67 secretion signal. Recombinant baculovirus was generated

by cotransfection of the transfer vector with linearized viral DNA (Baculogold; BD Biosciences).

pIgR D1 was harvested from the supernatant of baculovirus infected High 5 insect cells, which

was concentrated and buffer exchanged into TBS (20 mM Tris [pH 8.0], 150 mM NaCl) and

purified by Ni-NTA affinity followed by size exclusion chromatography on a Superdex 200

16/60 column (Amersham Biosciences).

Human pIgA isolated from the sera of a patient with a pIgA-producing myeloma was

kindly provided by Jean-Pierre Vaerman (Catholic University of Louvain, Brussels, Belgium)

(Song et al., 1995; Vaerman et al., 1995). pIgA was further purified by size exclusion

chromatography on a Superdex 200 HR 10/30 column (Amersham Biosciences) to separate dIgA

from higher order polymers. The peak corresponding to dIgA (two IgA molecules linked by J-

chain) was used for the binding studies. Soluble FcaRI and monomeric Fca (Fca homodimers

lacking a tailpiece that are not linked by J-chain) was purified from the supernatants of stably

transfected Chinese hamster ovary (CHO) cells as described previously (Herr et al., 2003b).

Monomeric Fca with the 18 residue tailpiece (Fca-tp) and an N-terminal 6x-His tag was

generated and purified as described for Fca (Herr et al., 2003b).
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Protein concentrations were determined spectrophotometrically at 280 nm using

extinction coefficients of 13,370 M-'cm-' for pIgR D1 and 64,940 M-'cm1- for monomeric Fca

and Fca-tp, calculated from their amino acid sequences using the ProtParam tool on the ExPASy

Proteomics Server (Gill and von Hippel, 1989).

Binding Studies

Surface plasmon resonance (SPR) biosensor assays were carried out using a BIAcore 2000

instrument (Pharmacia Biosensor, Uppsala, Sweden). In this system, binding between a

molecule coupled to a biosensor chip (the "ligand") and a second molecule injected over the chip

(the "analyte") results in changes in the SPR signal that are read out in real time as resonance

units (RUs) (Malmqvist, 1993). dIgA was covalently coupled to a reagent-grade CM5 sensor

chip (Biacore) at three different densities (412, 763 and 1426 RUs) using the primary amine

coupling method described in the BIAcore manual. The first flow cell was mock coupled with

buffer only for background subtraction. A two-fold dilution concentration series (from 10.24

RM to 20 nM glycosylated D1 or from 6.4 tM to 12.5 nM nonglycosylated D1) of 180 FLL of

pIgR D1 (the analyte) was injected over the chip at 5 RL/min in 50 mM HEPES (pH 8.0), 150

mM NaCl and 0.005% (v/v) P20, and the binding reactions were allowed to closely approach or

to reach equilibrium. Two-minute injections of 1.5 M MgCl2 were used to regenerate the surface

of the chip between injections. The sensorgrams were processed and analyzed with the Scrubber

software package (BioLogic Software, Campbell, Australia). Equilibrium dissociation constants

(KDs) were derived by nonlinear regression analysis of plots of Req (the equilibrium binding

response) versus the log of the concentration of analyte, and the resulting binding data were fit to

a single-site binding model. Data collection and binding analyses were performed identically for

the glycosylated and nonglycosylated forms of pIgR D1. To compare the binding of pIgR D1 to
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monomeric and dimeric versions of the Fc region of IgA, Fca, Fca-tp, and dIgA were coupled to

a CM5 biosensor chip at densities of 2457 RUs, 1411 RUs and 3153 RUs, respectively, as

described above. 100 iL of 5 FM glycosylated D1, nonglycosylated D1, or FcaRI were injected

over the chip at 50 !xL/min in 50 mM HEPES (pH 8.0), 150 mM NaCl, 0.005% (v/v) P20.

Crystal Growth and Data Collection

Crystals were grown by vapor diffusion in 1:1 hanging drops containing bacterially-expressed

pIgR D1 (10 mg/mL in 20 mM HEPES (pH 7.0), 150 mM NaCl), 20% (w/v) polyethylene

glycol 8000 (PEG 8000), 0.2 M magnesium acetate tetrahydrate, 0.1 M sodium cacodylate pH

6.5 and reproduced by streak seeding. Before data collection, crystals were cryopreserved in

23% (w/v) PEG 8000, 0.2 M magnesium acetate tetrahydrate, 0.1 M sodium cacodylate (pH 6.5)

with 15% (v/v) glycerol. Heavy atom derivatives were prepared by soaking crystals in the

following solutions: 1 mM di-IA-iodobis (ethylenediamine) diplatinum (II) nitrate (PIP), 40 mM

trimethyl lead acetate, or 100 mM gadolinium (III) chloride. Data from a native crystal and the

PIP derivative were collected at -1700 C using an R-AXIS IV mounted on a Rigaku RU-200

rotating anode generator. This native data set (Native I) was used for initial phase determination

and model building. A higher resolution native data set (Native II), which was used for

refinement, and the lead and gadolinium derivative data sets were collected on beamline 8.2.2 at

the Advanced Light Source (ALS, Berkeley, CA) at -1700 C (Table 1).

Structure Determination and Refinement

Data were processed and scaled with DENZO and SCALEPACK (Otwinowski and Minor,

1997). The data could be indexed in either primitive monoclinic (P2,) or C-centered

orthorhombic (C2221) space groups with unit-cell parameters a = 42.1 A, b = 156.4 A, c = 53.9

A; f3 = 113.0 ° or a = 42.1 A, b = 99.2 A and c = 156.4 A, respectively. The overall scaling
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statistics for C2221 were significantly worse than for P2 (Rsym = 14.3% (47.7%) versus Rym =

8.5% (34.3%)) and the h01 plane did not show mm symmetry, indicating the crystals were

monoclinic. After examination of systematic absences in the OkO reflections, the space group

was assigned as P21. The asymmetric unit contains six molecules with a solvent content of

~40% (VM=2.1 A3/Da) as calculated from the Matthews coefficient (Matthews, 1968).

For merging the native and derivative data sets, two options for indexing had to be

considered. Two identical but nonequivalent unit cells can be defined in monoclinic space

groups when cosp=-a/(2c) (Rudolph et al., 2004), a condition met by the D1 unit cell parameters.

Each derivative data set was compared to two versions of the Native I data set: as originally

indexed, and reindexed using the transformation (h, k, 1) to (h, -k, -h-l). The correct indexing of

each derivative as compared to the native I data was determined by comparing Rmerge values,

which were systematically higher when the opposite indexing had been chosen for the two data

sets being compared (Tucker et al., 1996).

In addition to indexing ambiguities, the D1 diffraction data exhibited evidence of

pseudomerohedral twinning, a rare type of twinning that can occur in monoclinic and

orthorhombic crystal systems when the unit cell parameters meet certain conditions (Rudolph et

al., 2004). One such condition, as discussed above, is when cosl=-a/(2c), in which case twinned

crystals in the monoclinic system can mimic an orthorhombic space group. Since the D1 crystal

parameters meet this condition, all data sets were checked for twinning. The cumulative

distribution of intensities (I/<I>), as calculated with TRUNCATE (Collaborative Computational

Project No. 4., 1994) showed a sigmoidal shape, suggesting twinning in all of the crystals.

However, the second moment of intensities (<II12/(<III>)2) for some of the data sets was 2.0,

which is the expected value for untwinned data. For the data sets with the seemingly
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contradictory twin test results, further examination of a related value (<IFI>2/<F2>) confirmed

twinning (Brunger et al., 1998). The estimated twin fractions calculated with CNS (Brunger et

al., 1998) ranged from 20.7% to 37.3% (Table 1). Similar cases of pseudomerohedreal twinning

in monoclinic crystal forms have been described by others (De La Fortelle and Bricogne, 1997;

Larsen et al., 2002; Rudolph et al., 2004).

Heavy atom positions and initial phases were derived with the programs SOLVE

(Terwilliger and Berendzen, 1999) and SHARP (De La Fortelle and Bricogne, 1997; Terwilliger

and Berendzen, 1999) using the Native I, trimethyl lead acetate, gadolinium chloride and PIP

derivative data sets with no corrections for twinning. An initial electron density map was

calculated to 2.7 A and solvent flattened with Solomon (Collaborative Computational Project

No. 4., 1994). The first four molecules in the asymmetric unit were located in the initial

experimental map using the program MOLREP (Vagin and Teplyakov, 1997) and a "3 strands-

only" model of NKp44 (PDB code 1HKF) (Cantoni et al., 2003) (nonconserved side chains

truncated to alanine and residues 5-9, 14-15, 25-31, 40-45, 53-55, 69-71, 80-85, 95-101 and 112

omitted). The remaining two molecules were located using the real space search program

ESSENS (Kleywegt and Jones, 1997). Maps were calculated by solvent flattening and histogram

matching with DM in CCP4 (Collaborative Computational Project No. 4., 1994). NKp44

(Cantoni et al., 2003) served as a starting point for model building with the program O (Jones

and Kjeldgaard, 1997).

Refinement was performed using the CNS suite of programs (Brunger et al., 1998). The

test set of reflections for calculating Rfre was generated with the thin shell method in

DATAMAN (Kleywegt and Jones, 1996) to minimize the bias from the 6-fold

noncrystallographic symmetry (NCS) and twin-related reflections. Initial refinement was
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conducted using the 2.5 A Native I data with NCS constraints, grouped temperature (B) factors,

bulk solvent and anisotropic temperature-factor corrections. In subsequent refinement using the

1.9 A Native II data set, the NCS constraints were relaxed to NCS restraints (300 kcal/mol A2)

and individual B factors were calculated, taking into account the twin fraction of 37.3% and

maintaining the same set of test reflections for calculating Rfre. NCS restraints were limited to

the main chain atoms of the 15 strands, excluding regions that differed in the six molecules

(mostly at crystal contacts and in the loops). R,t and Rfire improved by 5.1% and 3.4%,

respectively, after inclusion of the corrections for twinning.

The final model (Rcry,,t = 18.3%, Rfee = 24.4%) contains six D1 domains (residues 2-109)

arranged as three dimers, five or six residues of the C-terminal 6x-His tag in two of the six D1

domains (molecules B and A, respectively), 158 water molecules, and two Mg2+ ions. Each of

the two Mg2+ ions are coordinated by three histidine residues in the 6x-His tags from two

molecules (His112 and Hisl15 from molecule A with His112 from molecule F coordinate one

ion and His 112 and His 15 from molecule B with His 112 from molecule E from the adjacent

asymmetric unit coordinate the other). Residue 2 in molecules B, C and D, the CC' loop

(residues 41-45) in molecules A, B, C and D and the 6x-His tag for molecules C, D, E and F

were disordered and are not included in the refined model and 2.8% of the residues were

modeled as alanine. The electron density is weak for residues 97-101 (with B factors averaging

49.6 A2, compared with an average of 32.3 A2 for the rest of the model). Ramachandran plot

statistics were calculated using PROCHECK (Laskowski et al., 1993). Automated structural

comparisons of pIgR D1 were done using the DALI server (Holm and Sander, 1993). Least-

squares alignments of pIgR D1 and its closest structural homolog, the VL and VH domains of a

mouse scFv (PDB code 1MFA), were done using O (Jones and Kjeldgaard, 1997). Sequence
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alignments were performed with T-Coffee (Notredame et al., 2000). Figures were generated

with Molscript (Kraulis, 1991), Bobscript (Esnouf, 1997), and Raster 3D (Esnouf, 1997; Kraulis,

1991; Merrit and Murphy, 1994).
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Table 1. Data Collection, Phasing, and Refinement Statistics for pIgR D1

No. Unique Twin
Wavelength Resolution Reflections/Total Completeness Fraction Rmerge Phasing

Data Set (A) (A) Reflections (%)a (%) (%) I/ Powerc

Native I 1.54 2.5 21,524/ 97.4 26.5 8.5 19.6
(2.59 - 2.50) 76,172 (80.7) (34.3) (2.5)

Native II 1.078 1.9 49,755/ 99.6 37.3 7.8 17.7
(1.93-1.90) 185,798 (99.1) (46.2) (2.6)

PIP 1.54 3.2 10,464/ 98.5 20.7 9.7 11.3 0.4
(3.31 -3.20) 28,678 (94.3) (20.8) (5.3)

Gd 1.7108 2.8 27,967/ 89.6 30.3 10.4 8.6 1.0
(2.85 -2.80) 47,501 (58.7) (41.3) (1.5)

Pb 0.9509 2.0 79,649/ 94.1 37.0 6.5 12.2 0.6
(2.03 -2.00) 153,910 (92.7) (23.8) (3.5)

Refinement Statistics (P21) Number of Nonhydrogen Atoms
Resolution (A) 30-1.9 Protein 4993
Number of reflections in working set 47,117 (93.4%) Water 158
Number of reflections in test set 2,476 (4.9%) Mg2+ 2
Rcryst (%)d 18.3

Rfree (%) 24.4
Ramachandran plot quality (%)
Nonglycine residues in

most favored 87.3
Rmsd from ideality additionally allowed 12.3

Bond lengths (A) 0.007 generously allowed 0.4
Bond angles (deg) 1.30 disallowed 0.0

Values in parentheses indicate data in the highest resolution shell.
a Completeness is defined as the number of independent reflections/total theoretical number.
b Rmerge= 100 X 2(II-<I>I)/EI, where I is the integrated intensity of a given reflection.
c Rms fh/E (phasing power), where fh is the heavy atom structure factor amplitude and E is the lack of closure error.
The phasing power statistics were derived using twinned data and may therefore not be accurate.
d R,,st(F)=IhllFobs(h)I-IFlc(h)ll/IhIFob,(h)l, where IFobs(h)l and IFca(h)l are the observed and calculated structure factor
amplitudes for the hkl reflection.

Rfree is calculated from reflections in a test set not included in the atomic refinement.

Table 1. Data Collection, phasing and refinement statistics for pIgR D1.
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Figure 1. Biosensor Analyses of pIgR D1 Binding to dIgA

(A) Equilibrium binding data for biosensor experiments in which nonglycosylated (expressed in

bacteria) and glycosylated (expressed in insect cells) versions of pIgR D1 were injected over

dIgA immobilized at three different densities (412, 763 and 1426 RUs). The plot shows the

equilibrium binding response (Req) versus the log of concentration of the indicated proteins.

Best-fit binding curves based on a 1:1 binding model are superimposed on the binding data.

(B) Sensorgram from binding experiments in which 5 [M glycosylated or nonglycosylated forms

of D1 were injected over monomeric (with and without the tailpiece) and dimeric versions of the

IgA Fc region. The injected protein is indicated in front of an arrow pointing to the immobilized

protein.
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Figure 2. The Structure of Human pIgR D1

(A) Ca trace (molecule E). The 6xHis tag from molecule A (dashed line) was superimposed

onto molecule E.

(B) Ribbon diagram showing side and front views of pIgR D1. strands A, B, E, D are shown

in blue, P strands C", C', C, F, G, A' are in green and the three CDR loops (including the a helix

within CDR1) are red. Cysteines involved in disulfide bonds are shown in yellow in ball-and-

stick representation and the locations of potential N-linked glycosylation sites are indicated by

pink spheres.

(C) Topology diagram of pIgR D1. The color schemes for the 13 strands, a helix and CDR loops

are the same as in (A).

(D) Stereoview of the pIgR D1 model in the region of the "invariant" tryptophan, Trp37,

superimposed on a 2.7 A experimental electron density map (calculated with MIRAS phases)

contoured at 1.0 o.
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Figure 3. Amino Acid Sequence Alignment of Human pIgR D1 and Related Proteins

Top panel: pIgR D1 from eight different species and the Ig-like domain from the human Fca/[tR

were aligned. Cysteines involved in disulfide bonds are shown in red, conserved residues are

highlighted in yellow and conservatively substituted residues are highlighted in blue. Asterisks

indicate the positions of five characteristic residues in Ig V domains. Sequences within the three

CDR loops are shown in bold and underlined. Crystallographically determined secondary

structure elements are shown above the sequences. Accession codes for the pIgR sequences are:

P01833 (human), P01832 (rabbit), 070570 (mouse), P15083 (rat), P81265 (bovine), AAK69593

(Macropus eugenii (tammar wallaby)), AAD41688 (Trichosurus vulpecula (silver-grey brushtail

possum)), and AAP69598 (Gallus gallus (chicken)); and AAL51154 (human Fca/[tR).

Bottom panel: The D1 domain of pIgR is aligned with the other domains within the human pIgR

extracellular region.
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Figure 4. Structural Consequences of the Position of the pIgR D1 CDR3 Loop

(A) Stereoview of the superposition of pIgR D1 (red) with an Ig VL domain (blue) derived from a

mouse single-chain Fv (PDB code 1MFA).

(B) Stereoview of the region in the vicinity of the pIgR D1 CDR3 loop showing Tyr36 buried at

the interface between CDR3 and the C"C'CFGA' sheet. A ball-and-stick representation of Tyr36

is shown in red. Atoms in residues that stabilize this position of CDR3 are highlighted with an

atom-based color code (carbon: black; oxygen: red; nitrogen: blue), and hydrogen bonds are

indicated as black dashed lines.

(C-D) Comparison of an Ig VH-VL heterodimer (PDB code 1MFA) (panel C) with a computer

model of a pIgR D1 homodimer (panel D) created by superimposing D1 on the VH and VL

domains of a VH-VL heterodimer (panel C). The rmsd values are 1.39 A for the VH-D1

superposition (calculated for 101 Ca atoms) and 1.38 A for the VL-D1 superposition (calculated

for 78 Ca atoms). CDR3 loops are highlighted in pink.
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Figure 5. Mutagenesis Data Mapped onto Structure

The positions of substitutions that abolished (red) or decreased (blue) pIgA binding to rabbit

pIgR (Coyne et al., 1994) are mapped onto the human pIgR D1 structure. A close-up of the

CDR1 region is shown in the upper right, and the sequence of CDR1 in human and rabbit pIgR

D1 is shown in the lower right. Val29 (black), which is solvent exposed in the D1 structure, was

assumed to be buried and was therefore not substituted (Bakos et al., 1993; Coyne et al., 1994).
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CHAPTER 3

Solution Structure of Choline Binding Protein A, the Major Adhesin

of Streptococcus pneumoniae

This chapter describes the solution structure of an adhesion domain (R2) of CbpA, the S.

pneumoniae surface protein responsible for pIgR binding, and biophysical experiments

characterizing the binding properties of CbpA domains and pIgR. This work was done in

collaboration with several groups at St. Jude Children's Research Hospital and my contribution

included providing purified pIgR and performing the initial binding experiments to show that the

recombinantly expressed pIgR binds CbpA, R1 and R2.
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Abstract

Streptococcus pneumoniae (pneumococcus) remains a significant health threat world-wide,

especially to the young and old. While some of the biomolecules involved in pneumococcal

pathogenesis are known and understood in mechanistic terms, little is known about the molecular

details of bacterium/host interactions. We report here the solution structure of the "repeated"

adhesion domains (domains R1 and R2) of the principal pneumococcal adhesin, choline binding

protein A (CbpA). Further, we provide insights into the mechanism by which CbpA binds its

human receptor, polymeric immunoglobulin receptor (pIgR). The R domains, comprised of 12

imperfect copies of the leucine zipper heptad motif, adopt a unique 3-a-helix, raft-like structure.

Each pair of a-helices is anti-parallel and conserved residues in the loop between Helixes 1 and

2 exhibit a novel "tyrosine fork" structure that is involved in binding pIgR. This and other

structural features that we show are conserved in most pneumococcal strains appear to generally

play an important role in bacterial adhesion to pIgR. Interestingly, pneumococcus is the only

bacterium known to adhere to and invade human cells by binding to pIgR.

Running title

Solution structure of the pneumococcal adhesin, CbpA

82



Introduction

Streptococcus pneumoniae (pneumococcus) remains the most common invasive bacterial agent

leading to hospitalization in all age groups (Schuchat et al., 2001), with the majority of these

cases affecting either children or the elderly. Penicillin remains the primary mode of treatment

but the emergence of antibiotic resistance has intensified the search for new therapeutic

approaches (Whitney et al., 2000). While disease prevention through vaccination is partially

effective, this approach is less effective in the youngest and oldest patients (Butler et al., 1993).

Hence, studies of disease mechanisms may provide insights into new anti-bacterial therapies.

The pneumococcus invades human nasopharyngeal epithelial (NE) cells and enters the blood

stream through a process termed reverse transcytosis mediated by polymeric immunoglobulin

receptor (pIgR) (Zhang et al., 2000). The normal function of pIgR is to transport secretory IgA

(sIgA) from the basolateral to the apical surface of NE cells (Mostov and Kaetzel, 1999). A

protein on the bacterial surface, choline binding protein A (CbpA), binds specifically to an

extracellular domain of pIgR and hijacks the endocytosis machinery to translocate pneumococci

across NE cells into the blood stream. While the participation of CbpA in pneumococcal

adhesion and invasion is well established (Rosenow et al., 1997), the molecular details of these

processes are not understood.

CbpA (also referred to as PspC, SpsA, and PbcA) is one of 15 proteins identified in the

genome of the TIGR4 strain (Tettelin et al., 2001) that exhibit multiple C-terminal repeats of a

-19 amino acid motif that binds choline moieties present on the bacterial cell wall (Gosink and

Tuomanen, 2000). The mechanism of bacterial surface attachment by CbpA can be understood

on the basis of structural studies of another choline binding protein (Cbp), LytA. [Note: We use

the generic term CbpA to refer to the CbpA protein from the TIGR4 strain.] The C-terminal
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domain of LytA contains seven repeats of the choline binding motif and adopts a unique P-

solenoid structure, with choline groups binding between P-hairpin "steps" of the staircase-like

structure (Fernandez-Tornero et al., 2001). Similarly, CbpA has eight repeats of this motif in its

C-terminus (Fig. 1A) and is predicted to bind surface-exposed choline groups in similar manner

(Fernandez-Tornero et al., 2001). The N-terminal domains of the 15 TIGR4 Cbps differ widely,

with functions ranging from bacterial autolysis (LytA) and glucosaminidase activity (LytB) to

adhesion to human NE cells (CbpA) (Gosink et al., 2000; Tettelin et al., 2001). The sequence of

the CbpA N-terminus (residues 39-514 (Tettelin et al., 2001)) exhibits numerous repeats of the

leucine zipper (LZ) motif (Landschulz et al., 1988) that cluster within five domains termed A, B,

R1, R2 and C (Fig. 1A). Domains A, B and C are 21 to 25 amino acids in length and are

predicted to form coiled-coil dimers (Fig. B) (Lupas et al., 1991). The -110 amino acid-long,

"repeated" domains, R1 and R2 (78% identical) (Zhang et al., 2000) are also predicted to form

self-associated, coiled-coil structures. We refer to these as "R" domains. The segments that

connect these domains are predicted to lack secondary structure. In general, LZ motifs mediate

intra- or inter-molecular a-helix/a-helix interactions, and are well understood as the basis for

parallel self-association into a-helical dimers, trimers, and tetramers (Lupas, 1996). LZ motifs

also mediate anti-parallel a-helix/a-helix interactions (Oakley and Hollenbeck, 2001). To date,

however, the R domains of CbpA have not been structurally characterized.

CbpA R domains bind the extracellular, immunoglobulin-like (Ig-like) domains of pIgR

termed secretory component (SC) (Hammerschmidt et al., 1997; Zhang et al., 2000). SC

covalently binds to IgA dimers and, after transcytosis from the basolateral to apical surface of

NE cells, the SC/IgA2 complex is proteolytically cleaved from pIgR to release sIgA (Mostov,

1994). A conserved hexapeptide motif within the R domains is required for binding to sIgA

84



(Hammerschmidt et al., 2000). Here we present the solution structure of domain R2 of CbpA

containing this motif determined using NMR spectroscopy. Further, we used this structure to

model that for domain R1. Surface plasmon resonance (SPR) and isothermal titration calorimetry

(ITC) were used to gain insight into the mechanism by which CbpA binds components of pIgR.

Our results provide the first molecular insights into the structurally novel mechanism by which

pneumococcus binds pIgR and subsequently invades human cells.

Results

Conserved features of CbpA sequences from many pneumococcal strains

The R domains of CbpA from the TIGR4 strain of Streptococcus pneumoniae are highly

conserved in CbpA sequences from other pneumococcal strains (Iannelli et al., 2002). We

compared CbpA sequences (excluding the choline binding motifs) from 47 pneumococcal strains

and quantified R domain conservation (Fig. 2A and B). Thirty-nine sequences exhibit R1 and R2

domains that are >50% identical to the TIGR4 domains, six exhibit one R2-like (>50% identical)

domain, and one exhibits one RI-like (93% identical) domain. Residues at 22 positions are

identical in these R1 and R2 domains, 87 in total, including five residues within the hexapeptide

motif discussed earlier. Thus, our structural and biophysical results for the R domains of the

TIGR4 strain are relevant to CbpA from virtually all known pneumococcal strains.

Solution Structure of CbpA, Domains R1 and R2

The secondary structure of N-terminal CbpA domains was elucidated using circular dichroism

(CD) and NMR spectroscopy. Domains R1 and R2 (78 % identical) each contain 12 imperfect

copies of the LZ motif and span residues 175-285 and 327-442, respectively. Eight of the 24

differences between R1 and R2 correspond to substitution of Glu by Lys, or vice versa (Fig. 1C).

85



The CbpA R domain LZ motifs are similar to those found in coiled-coil proteins (Fig. 1C)

(Lupas et al., 1991); however, the amino acid at position d of the heptad motif, which is usually

Leu in the classical LZ motif, is most frequently Ala in the R domains.

CbpA-R1 and -R2 possess extensive a-helical structure on the basis of CD spectra (Fig.

3B) and we used NMR spectroscopy to determine the CbpA-R2 structure in solution. Secondary

13C, chemical shifts for CbpA-R2 (Fig. 4A), which are indicative of secondary structure, clearly

revealed three a-helices: Helix 1 (residues 330-357), Helix 2 (residues 366-390) and Helix 3

(residues 396-425). These adopt an unusual three-a-helix, raft-like structure through anti-parallel

a-helix/a-helix interactions (Fig. 4B). The a-helices, while anti-parallel, are not exactly co-axial

due to slight coiling (Fig. 4C). The crossing angle for Helices 1 and 2 is -178° and that for

Helices 2 and 3 is -176 °. In addition, we generated a homology model of CbpA-R1 based on the

structure of CbpA-R2. The structures of CbpA-R2 (Fig. 4B) and -R1 indicate that many

hydrophobic residues are buried at the two a-helix/a-helix interfaces and that the protein

surfaces are dominated by polar and charged residues (Fig. 4D). CbpA-R2 exhibits a bi-lobed

electrostatic potential, with one face of the structure highly electronegative (red contours in Fig.

4D, left) and the other electropositive (blue contours). The differences in charged residues

between CbpA-R2 and -R1 cause increased electronegative character on one face of CbpA-R1

and reduced electropositive character on the other (Fig. 4D, right).

Peptides with the sequence RNYPT bind to sIgA and SC, and mutations in this motif in

SpsA, a CbpA variant with one R domain, abolish binding to sIgA (Hammerschmidt et al.,

2000). The YPT motif, which occurs once in each of the two TIGR4 CbpA R domains (Fig. 1C),

is found in the loop between Helix 1 and Helix 2 in the CbpA-R2 structure (Fig. 4B and E).

Interestingly, these and other conserved residues in the loop protrude into solvent from an
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electrostatically neutral region of CbpA-R2, with two partially stacked Tyr residues forming a

"tyrosine fork" structure (Fig. 4D, left, and E). Most residues in the Helix 1/Helix 2 loop are

conserved in CbpA-R1 and thus the homology model of domain R1 exhibits a similar tyrosine

fork feature. While the differences in charged residues mentioned above affects the electrostatic

properties of domain R1, the potentials in the vicinity of the YPT motif in this domain are very

similar to those of the R2 domain (Fig. 4G, right), suggesting that the negative charge of this

region, and the protruding YPT motif, are involved in binding to pIgR. Many of the residues in

this region have significant hydrophobic character, including Tyr 358 and 363, Pro 359, and Thr

360 and 362 (Fig. 4E) (Creighton, 1993; Nozaki and Tanford, 1971), suggesting that

hydrophobic interactions are involved in receptor binding.

Proteins that contain multiple LZ motifs often self-associate. However, the results of

equilibrium analytical ultracentrifugation (AUC) experiments showed that CbpA-R1 and -R2 are

predominantly monomers in solution (Suppl. Fig. 1C & D). Analysis of sedimentation data for

both domains did, however, provide evidence for very weak self-association at high protein

concentration (Suppl. Table 1). Further, we showed using equilibrium AUC that CbpA-R1 and

Cbp-R2 do not interact to form hetero-oligomers (data not shown). Importantly, these results

show that the principal role of the CbpA LZ motifs is to mediate the folding, not oligomerization,

of the R domains.

Structural properties of CbpA-N (residues 39-174)

The role of the N-terminal domain of CbpA (containing LZ domains A and B, Fig. 1A) in

adhesion and invasion is not known. To provide preliminary insights into function, we

characterized the structure and self-association properties of CbpA-N (residues 39-174). CD

results show that CbpA-N adopts a-helical secondary structure (Fig. 3B) and that it has a stable
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fold (Fig. 3C). As observed for CbpA-R1 and -R2, AUC analysis showed that CbpA-N is

monodisperse; however, a small degree of oligomerization was observed at 0 and 50 mM NaCl

(Suppl. Table 1).

The full CbpA N-terminus (residues 39-442) is comprised of three a-helical domains

We used CD to compare the structure of a 404 amino acid fragment of CbpA (CbpA-NR12; Fig.

3A) with that of the three domains within this fragment (CbpA-N, -R1 and -R2). CD spectra for

CbpA-N, -R1, -R2 and -NR12 (Fig. 3B) showed that all constructs are highly a-helical. Further,

we monitored ellipticity at 222 nm for each construct as the temperature was raised from 5 C to

95 C to characterize thermal stability. CbpA-R1 and -R2 exhibited thermal unfolding transitions

at 44 C and 47 C, respectively (Fig. 3C). CbpA-N also exhibits a single thermal transition but

at a much higher temperature, 71 C (Fig. 3C). Based on these data we conclude that CbpA-N, -

R1 and -R2 are individually folded, stable a-helical domains. The thermal melting curve for

CbpA-NR12 is a composite of those for the individual domains, exhibiting two thermal

transitions, one at 45 C and a second at 71 C. These data suggest strongly that the structure of

the individual CbpA domains is preserved in the multi-domain construct, CbpA-NR12.

We also compared the structure of CbpA-R2 with that of the R2 domain within CbpA-

NR12 by analyzing 2D H-15N TROSY spectra. The spectrum of CbpA-R2 (Fig. 5A) exhibited

the appropriate number of resonances, most of which appeared outside the crowded central

region. The resonance pattern of CbpA-R2 was well reproduced in the spectrum of CbpA-NR12.

The similarity between the two spectra is illustrated by the blue overlays in Fig. 5A and 5B; the

blue layer identifies resonances that appeared at identical positions in the two spectra. In Fig. 5A,

the spectrum of CbpA-R2 is the red colored layer; however, most resonances appear blue

because they also appeared in Fig. 5B. In Fig. 5B, approximately 40 isolated resonances
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(excluding obvious side chain resonances) are colored blue, indicating that they also appeared in

Fig. 5A. CbpA-R2 is comprised of 119 amino acids and the fact that resonances for one third of

these appeared at identical chemical shift values in the two spectra suggests that the structure of

CbpA-R2 is the same in the two constructs. These data provide further support for the conclusion

that the N-terminus of CbpA (residues 39-442) is comprised of three independent, a-helical

domains.

Role of CbpA "R" domains in pIgR binding

We studied the binding of domains of CbpA to components of pIgR using several approaches to

understand the underlying interaction mechanism. First, we used ELISA to measure the extent to

which CbpA constructs bind to sIgA. In agreement with previous studies (Hammerschmidt et al.,

2000; Zhang et al., 2000), our results show that multi-domain fragments of CbpA, including

CbpA-R12 and -NR12, bind to immobilized sIgA (Suppl. Fig. 2). However, this assay detected

only a weak interaction between sIgA and CbpA-N, -R1 and -R2. These results suggested that

multiple CbpA domains cooperate in binding sIgA.

To clarify the role of domains R1 and R2 in pIgR binding, we performed binding

experiments using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC).

We immobilized either sIgA or SC expressed in Sf9 insect cells (SC-D15) on SPR biosensor

surfaces and monitored CbpA binding. The experiments were performed at several different

concentrations of each CbpA construct (Suppl. Fig. 2B) and a global fitting procedure was used

to determine association (ka) and dissociation (kd) rate constants (Fig. 6A, Suppl. Table 2).

Further, these rate constants were used to calculate the apparent Gibbs free energy of binding

(AGSPR) for each reaction (AGSPR = -RT ln(kd/ka); Fig. 6A). SPR data for CbpA fragments

binding sIgA and SC-D 15 showed similar trends and, therefore, only those for binding to sIgA
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are illustrated in Fig. 6A and Suppl. Fig. 2B. Kinetic constants for all reactions (sIgA and SC-

D15) are given in Suppl. Table 2. Because CbpA-NR12 and -R12 each contain two "R" domains,

each with one YPT motif, we determined whether the individual R domains bound to

components of pIgR. CbpA-R1 and -R2 bound to the sIgA surface more rapidly than did those

containing two R domains (CbpA-R12 and -NR12) (Fig. 6A and Suppl. Table 2), as would be

expected if association was controlled by diffusion. These constructs dissociated from the sIgA

surface with rates that depended on the number of R domains; CbpA-R1 and -R2 dissociated

more rapidly than did CbpA-R12 and -NR12. CbpA-R1 and -R2 exhibited similar AGSPR values

(-13.4 kcal/mol and -12.8 kcal/mol, respectively), and the value for CbpA-NR12 was only

slightly more negative (-14.0 kcal/mol). In this surface-based assay, the presence of two R

domains in CbpA-NR12 appears to enhance binding to sIgA only slightly.

While the SPR data provided important insights into CbpA:sIgA (and SC) interactions,

due to the surface-based format of this assay, AGSPR values may not reflect binding behavior in

solution. Further, the analysis of binding stoichiometry from SPR data can be problematic. To

overcome these limitations, we used ITC to monitor binding of the CbpA constructs to SC-D 15.

Solutions of CbpA-R1, CbpA-R2, CbpA-R12, or CbpA-NR12 were injected into a solution of

SC-D15 and the evolved heat was measured (Fig. 6B and Table 1). These data were fit using

standard equations to give values of the enthalpy (AHITC), Gibbs free energy (AGITC), and entropy

(-TASITC) of binding. In addition, the CbpA:SC-D15 mole ratio (N) for each construct was

determined (Table 1). Binding to SC-D15 was studied because only this protein could be

obtained with sufficient purity and in sufficient quantities. The absolute values of AGITC are

between 3 to 4 kcal/mol smaller than those determined from SPR-derived rate constants;

however, only a small difference was observed between the values for the different CbpA
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constructs, which parallels the results from SPR (Table 1 and Fig. 6A). Surface immobilization

of sIgA and SC-D 15 in the SPR experiments may promote association relative to the situation in

solution, and give rise to anomalously large values of AGSPR. Despite this caveat, AGSPR values

can be compared to give an accurate measure of relative binding affinities for different CbpA

constructs. The ITC results show that two moles of CbpA-R1 or CbpA-R2, or one mole of

CbpA-R12 or CbpA-NR12, bind to one mole of SC-D15. This latter result, along with the

similarity of the AGITC values and kinetic constants for CbpA-R1 and -R2 binding SC-D15,

strongly suggests that there are two thermodynamically indistinguishable binding sites in SC-

D15 for CbpA R domains. AGITC values for CbpA-R12 and -NR12, each with two R domains,

are only marginally larger in absolute magnitude than those for CbpA-R1 and -R2 which, at first,

may seem inconsistent with the presence of two binding sites in SC-D 15. However, the values of

the entropy parameter (-TAS) for the former constructs are twice those for the latter (Table 1),

which largely nullifies the enthalpic benefits (in CbpA-R12 and -NR12) associated with having

two R domains. The large entropic penalty of binding for constructs with two R domains may

arise from restriction upon binding of a highly flexible polypeptide linker between domains R1

and R2.

Mutation of residues within the YPT motif of CbpA interferes with sIgA binding

(Hammerschmidt et al., 2000). To further confirm our binding model, we prepared three CbpA-

NR12 constructs in which the Tyr residue of the YPT motif was mutated to Gly in the R1

domain (CbpA-NR12-Y205G), the R2 domain (CbpA-NR12-Y358G) or both domains (CbpA-

NR12-Y205G/Y358G) and used SPR to determine ka,, kd and AGSPR values (Fig. 6A). Similar

mutant CbpA constructs in which the Pro residue of the YPT motif was mutated to Gly were also

prepared and analyzed. We reasoned that Gly would readily mimic the backbone conformation
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of Tyr and Pro residues and, therefore, other than eliminating a side chain, this substitution

would not disrupt the structure of the R domains, as was shown by CD studies of CbpA-NR12-

Y205G/Y358G (data not shown). The results for the GPT and YGT mutants binding to sIgA and

SC-D15 were similar (Suppl. Table 2), and only those for the GPT mutants binding sIgA are

discussed here. The ka values for the mutant constructs binding to immobilized sIgA were similar

to that of CbpA-NR12. However, the kd values were different and depended on the number of

intact YPT motifs. These rates are on average 5-fold larger (faster) than that observed for CbpA-

NR12. Mutation of both YPT motifs increased the dissociation rate further to a value that is

approximately 500-fold larger than that for CbpA-NR12. The value of AGSPR for CbpA-NR12

binding to sIgA is -13.2 kcal mol' while those for the single GPT mutants are -12.2 kcal mol-'

and -12.3 kcal mol' l (for CbpA-NR12-Y205G and -Y358G, respectively). The AGSPR value for

the double GPT mutant, CbpA-NR12-Y205G/Y358G, is -9.8 kcal mol l1. These results show that

one R domain, either R1 or R2, is sufficient for CbpA to bind sIgA (and SC) with high affinity.

Affinity is diminished by about 1 kcal mol'l if one residue in the YPT motif in either R1 or R2 in

CbpA-NR12 is mutated and by about 3.5 kcal mol' if one residue in each YPT motif in CbpA-

NR12 is mutated (Fig. 6A). CbpA-N failed to bind immobilized sIgA or SC-D15 in SPR

experiments at concentrations up to 1.5 [tM (data not shown), showing that the R domains within

CbpA-NR12 are the principal determinants of interactions with sIgA (and SC). Further, the

similarity of binding data for CbpA-R1 and -R2, and the two single GPT mutants of CbpA-

NR12, indicates that the R1 and R2 domains interact similarly with the two R domain binding

sites within sIgA and SC. It has been shown recently that CbpA binds to Ig-like domains 3 and 4

of secretory component (Elm et al., 2004a; Lu et al., 2003). It is possible that the two binding

sites we have identified are found within these two domains.
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Role of CbpA "R" domains in adhesion to nasopharyngeal epithelia

To understand whether there were parallels between our in vitro findings on the effects of

mutations within the YPT motifs on CbpA binding to pIgR and bacterial adhesion to cellular

receptors, we performed adhesion assays with pneumococci and human NE cells (Detroit cells).

We expressed wild-type and mutant CbpA proteins in a CbpA null pneumococcal strain (ACbpA-

) and measured adhesion of these bacteria to Detroit cells (Fig. 6C). While the reproducibility of

results from this biological assay is inferior to that associated with our SPR results, the adhesion

results clearly show the same trends as do results from SPR. For example, mutation of the Tyr

residue in one of the two YPT motifs does not have a statistically significant effect on the

number of pneumococci that adhere to epithelial cells. However, mutation of Tyr within both

YPT motifs reduces adhesion to the level associated with pneumococci that lack CbpA. These

results show that, while CbpA is not the sole determinant of adhesion to human target cells,

incorporation of mutations in two out of 693 amino acids in the CbpA sequence that significantly

decrease affinity for sIgA and SC in vitro (Fig. 6A) have similar effects on adhesion to human

cells.

Discussion

Novel structural features of CbpA domains

The mode of attachment of pneumococci to the surface of human epithelial cells is uniquely

characterized by the absence of pili or fibrillar bacterial protrusions. Rather, the pneumococcus

utilizes a novel mechanism to adhere to and invade human cells; this mechanism is mediated in

part by CbpA which is secreted and recaptured onto the bacterial surface. Amongst pathogenic

bacteria, the use of choline moieties on the bacterial surface as binding sites for functional
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proteins is uniquely essential to pneumococci (Rosenow et al., 1997; Tomasz, 1967). We show

here that domains R1 and R2 of CbpA adopt a strikingly simple structure comprised of three a-

helices that bundle together through anti-parallel interactions into a flat, raft-like structure. While

we have not experimentally determined the structure of CbpA-R1, the similarity of its primary

sequence, CD spectra and thermodynamic and kinetic properties to those of the R2 domain

strongly suggest that our homology model is accurate. The R domains are unusual in their helical

topology and in the highly polar and charged nature of their molecular surfaces. A prominent

feature with mixed polar and hydrophobic character-the tyrosine fork-near the loop between

Helices 1 and 2 contains several conserved residues that are likely to play a key role in binding to

Ig-like domains of pIgR. Most other conserved residues (Figs. 1C and 4D) are hydrophobic and

are involved in a-helix/a-helix interactions. These may be conserved to preserve the helical

topology of the R domains. Other conserved residues are charged and/or polar and are generally

surface exposed; these residues may also play roles in interactions with pIgR.

The arrangement of the three a-helices of CbpA-R2 is different from that of other LZ

proteins in that the anti-parallel a-helices are nearly co-axial, with crossing angles near -180° (-

178 ° for Helices 1 and 2, -176 ° for Helices 2 and 3). We identified four proteins with one pair of

anti-parallel a-helices comprised of LZ sequences that exhibit structural similarity to CbpA-R2

(Pdb file ROP, Dali Z-score, 5.4; 1GRJ, 4.9; 1CXZ, 4.8; and 1AQT, 4.2) (Holm and Sander,

1993; Oakley and Hollenbeck, 2001). The a-helix crossing angles in these proteins are -161°, -

153°, -160°, and -159°, respectively. These crossing angles arise due to the bulky nature of the

hydrophobic side chains of Ile, Leu and Val at positions a and d in the heptad repeats, which

forces the helices to twist in order to pack "knobs-into-holes" (Crick, 1953). The LZ motifs in

CbpA-R1 and -R2 differ from the classical motif in that alanine is often found at position d (Fig.
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1C). The presence of a limited number of small alanine side chains at the a-helix/a-helix

interface may allow nearly perfect anti-parallel packing of a-helices into the flat, raft-like

structure of CbpA-R2.

Phylogenetic analysis reveals conserved structural features of CbpA

Our CbpA mutagenesis results showed that preservation of the Tyr and Pro residues within at

least one YPT motif is essential for high-affinity binding to sIgA. Our results are consistent with

the findings of others. In particular, Elm et al. (Elm et al., 2004b) showed that a fragment of

SpsA (residues 37-283) with a single R2-like domain (SpsA is also termed PspC 2.1, which

constitutes Group 4 in Fig. 2) was a competitive inhibitor of pneumococcal adherence to human

cells that express pIgR. Importantly, this group also showed that a related CbpA fragment in

which Tyr 201 (within the YPT motif) was mutated to Asp was not an inhibitor of adherence.

We also observed that the isolated domains, CbpA-R1 and -R2, bind sIgA and SC with similar

kinetic and thermodynamic constants. This suggests that the conserved features of the R domains

are associated with receptor binding. Further, we reasoned that the residues in these domains that

are most highly conserved amongst different CbpA sequences are involved in receptor binding.

Our phylogenetic analysis showed that 22 residues that are conserved in all sequences (Figs. 1C

and 4D) are found in the C-terminal portion of Helix 1, in the loop connecting Helices 1 and 2,

and in the N-terminal portion of Helix 2. These residues, many of which are hydrophobic, are

evenly distributed on the two faces and within the two a-helix/a-helix interfaces of the CbpA-R2

structure. The majority are found in Helix 2. For the R2 domain of the TIGR4 strain, an

abundance of acidic residues in the midst of the conserved residues gives rise to a strong,

negative electrostatic potential on one face of CbpA. However, the electronegative character near

the loop containing the YPT motif is neutralized, in part due to the influence of two conserved
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basic residues, Arg 356 and Lys 364 (Fig. 4E). This causes the side chains of the two Tyr

residues (Tyr 358 and 363) of the tyrosine fork to protrude from one face of the raft-like

structure into a region of low electrostatic potential (< lkt). In addition, several other conserved

residues (Pro 359, Thr 360, and Thr 362) protrude prominently from the loop on the opposite

face of the raft-like structure. Together, our results from mutagenesis and binding experiments

and this structure-based analysis, strongly suggest that these conserved residues play important

roles in binding to SC. While these residues sit in a node in the electrostatic potential map, it is

possible that the SC surface has electropositive character that serves, in the initial stages of

binding, to attract the electronegative surface of CbpA-R2 and possibly other CbpA R domains.

Materials and Methods

Construction of CbpA expression plasmids and Expression and purification of CbpA proteins.

Expression plasmids for CbpA proteins were prepared using standard methods, as discussed in

detail under Suppl. Materials. CbpA proteins for structural and biophysical studies were

expressed in E. coli and purified using standard procedures, as given under Suppl. Materials.

Expression of SC-D15 in Sf9 cells andpurification. A gene encoding pIgR D1-D5 (residues 1-

589 of the mature protein with a C-terminal 6x His-tag) was subcloned into the baculovirus

transfer vector pAcGP67b (Pharmingen) in frame with the gp67 hydrophobic secretion signal.

Recombinant virus was generated by cotransfection of the transfer vector with linearized viral

DNA (Baculogold; Pharmingen). SC-D 15 was harvested from the supernatants of baculovirus-

infected High 5 Cells (Invitrogen), which were concentrated and buffer exchanged into 20 mM

96



Tris pH 8.0, 150 mM NaCI. SC-D15 was purified on Ni-NTA resin (Qiagen) followed by gel

filtration chromatography (Superdex 200, Amersham-Pharmacia).

Adhesion experiments. Pneumococci were grown in C+Y media (Lacks and Hotchkiss, 1960) to

early stationary phase. All strains were grown in the presence of chloramphenicol (5 g ml-'), the

ACbpA- mutant strain with erythromycin (1 !xg ml-'), and those transformed with the

pNE1/CbpA vectors, with spectinomycin (500 [tg ml-'). Cells were pelleted and resuspended in

fluorescein isothiocyanate (FITC; 1 mg/ml; Sigma) (Rosenow et al., 1997; Gosink et al., 2000).

After incubation at 25 °C for 30 minutes, the bacteria were washed with PBS containing Ca2+

and Mg2+ (Mediatech), and diluted to 1 x 107 cfu/ml. Confluent monolayers of Detroit 562

epithelial cells (ATCC) were established in 96 well Terasaki trays and activated prior to infection

with human TNFa (10 ng/well) for 2 hours. The cells were infected with 105 cfu of labeled

bacteria for 30 minutes at 37 °C. The cells were washed four times with PBS containing Ca2+ and

Mg2+ and fixed with 2.5% (vol/vol) glutaraldehyde. The number of adherent bacteria was

determined by counting using fluorescence microscopy. We used the following procedure to

determine that pneumococci transformed with pNE1/CbpA vectors expressed equal amounts of

wild-type and mutant CbpA on the bacterial surface. The total bacterial CbpA and surface-bound

CbpA (extracted from the bacterial surface with 10% choline) were quantified by Western

analysis using a polyclonal anti-CbpA antibody generated against the CbpA N-terminus

(residues 39-443) in rabbits. The antibody was purified using affinity chromatography before

use.

NMR spectroscopy. Isotope labeled samples for NMR studies were prepared by culturing

BL21(DE3) cells in isotope-labeled MOPS-based minimal media (Neidhardt et al., 1974). For
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15N-labeling, 15 N-ammonium chloride was used; for 13C/15N-labeling, 13C-glucose was also used;

and for 2H/1 3C/SN-labeling, 2H20 was also used. 1 mM NMR samples were prepared in 10 mM

potassium phosphate, 50 mM NaCl, pH 6.5, 5 % (v/v) 2H20 and 0.02 % (w/v) sodium azide.

Gradient-, sensitivity-enhanced 2D 1H-'5N TROSY spectra (Rance et al., 1999; Weigelt, 1998;

Zhu et al., 1999) for CbpA-R2 and -NR12 were recorded using identical acquisition parameters:

1H: spectral width, 14,368 Hz; data size, lk complex points; 5N: spectral width, 2,433 Hz; data

size, 128 complex points. A Cosine window function and zero-filling were applied prior to

Fourier transformation in each dimension. Backbone resonance assignments for 2H/ 3C/15N-

labeled CbpA-R2 were determined through the analysis of multiple 3D and 4D spectra, including

3D constant time- (CT-) HNCA, CT-HN(CO)CA (Yamazaki et al., 1994b), CT-HN(CA)CB, and

CT-HN(COCA)CB (Yamazaki et al., 1994a), and 4D HNCOCA and HNCACO (Mulder et al.,

2000). In addition, a 4D 'H- 5N HSQC-NOESY-1 H-'5N HSQC spectrum was analyzed to

confirm backbone assignments and to obtain local backbone helical distance restraints. Side-

chain assignments were made through the analysis of 3D C(CO)NH-TOCSY, H(CCO)NH-

TOCSY, HBHA(CBCACO)NH, HCCH-COSY and HCCH-TOSCY spectra. Additional 3D and

4D NOESY spectra, including 3D NOESY-H-S5N HSQC, 3D NOESY-H- 3C HSQC, 4D 'H-

15N HSQC-NOESY-'H-'3 C HSQC and 4D 'H-'3C HSQC-NOESY-1H-'3 C HSQC, were used to

obtain distance restraints for structure calculations. Spectra were recorded at 25 °C using several

spectrometers: a Varian Inova 600, a Varian INOVA 900, and a Bruker AVANCE 800. Spectra

were processed using NMRPipe software (Delaglio et al., 1995) and analyzed using Felix

software (Accelerys, Inc.). The 1H dimensions of spectra were referenced to external TSP and

the '3C and '5N dimensions were referenced indirectly using the appropriate ratios of
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gyromagnetic ratios (Cavanagh et al., 1996). Secondary 13Ca chemical shift values (A813C,) were

calculated as described (Schwarzinger et al., 2001).

Structure Calculation, Refinement and Analysis. CbpA-R2 structures were calculated using

interproton distance restraints estimated from 3D and 4D NOESY cross peak volumes. Restraint

lower bounds were set to 1.8 A and upper bounds to 2.5, 3.5, and 6.0 A for large, medium, and

small volumes, respectively. The program TALOS (Comilescu et al., 1999) was used to estimate

backbone dihedral angles psi () and phi () based on Ha, 15N, 13Ca, 13Co, and 13C' chemical

shift values within the a-helical segments of CbpA-R2. In addition, hydrogen-bond (H-bond)

restraints were used within a-helices. Amide protons involved in H-bonds were identified on the

basis of slow exchange with 2H20. Restraints are summarized in Table 2. Structures were

calculated using torsion angle dynamics (TAD) (Stein et al., 1997) within CNS (Brunger et al.,

1998). The TAD protocol was performed in stages: (1) 75 ps high-temperature TAD (50,000 K)

followed by (2) cooling to 1,000 K over the course of 75 ps and ramping of the van der Waals

scaling term from 0.1 to 1.0. (3) The molecules were further cooled to 300 K over the course of

20 ps using conventional Cartesian dynamics followed finally by (4) 10,000 steps of conjugate

gradient energy minimization. The NOE (dihedral) restraint energy term was 150 kcal mol-1 (100

kcal mol 1) for stages 1-3 and 100 kcal mol-1 (300 kcal mol') for the last. Two hundred structures

were calculated, and the 40 lowest-energy structures were further refined by using the SANDER

module of AMBER 8.0 (Case et al., 2004). Solvent was represented by the Generalized-Born

(GB) model (Xia et al., 2002). Structures were first energy minimized for 1 ps without restraints

followed by 40 ps of simulated annealing from 400 K to 0 K with all restraints. The distance and

angle restraint force constants were 20 kcal mol'1 A-2 and 2 kcal mol-1 A-2, respectively. Statistics

for the 20 lowest-energy structures are given in Table 2. The program Define_S was used to
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determine the a-helix crossing angles for CbpA-R2 and other LZ-containing proteins (Richards

and Kundrot, 1988). Further, we compared the structure of CbpA-R2 with those of other proteins

using the Dali server (http://www.ebi.ac.uk/dali/Interactive.html).

Homology modeling of CbpA-RI. We used the program MOE (Chemical_Computing_Group) to

calculate a homology model of CbpA-R1 using the experimental structure of CbpA-R2 as the

template. Briefly, MOE first aligned the sequence of the target (R1) with that of the template

(R2). Next, the side chains of non-identical residues were built and side chain conformations

were adjusted by reference to a rotomer library followed by energy minimization using the

AMBER '94 forcefield.

SPR measurements. SPR experiments were performed at 25 C using a BIACORE 3000

instrument (Biacore, Inc.). sIgA and SC-D15 were covalently attached to different

carboxymethyl-dextran coated gold surfaces (CM-5 Chip, Biacore) using the manufacturer's

procedures. Binding was measured by flowing CbpA proteins in 10 mM HEPES, 150 mM NaCI,

3 mM EDTA, 0.005% Surfactant P20, pH 7.4 (HBS-EP buffer, Biacore) at a flow rate of 20

I[L/min through the reference and sIgA-containing flow cells in sequence. A blank was also run

consisting of only buffer. Following the injection, dissociation of CbpA proteins was measured

by flowing only buffer through the cells. The chip surfaces were regenerated by injecting 20 [tL

of 0.1% SDS through the cells. Data reported is the difference in SPR signal between the flow

cell containing sIgA and the reference cell. Contributions to the signal from buffer were removed

by subtraction of the blank (buffer only) injection from the reference-subtracted signal (Morton

and Myszka, 1998). Triplicate injections were made and the average taken. Data were analyzed

by simultaneously fitting association and dissociation phases at all concentrations using the

BiaEvaluation software (Biacore, Inc.). The model used for fitting was the simplest that was able
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to account for the observed binding. The concentrations of CbpA constructs used in these

experiments are given in the legend to Suppl. Fig. 3.

ITC experiments. ITC experiments were performed at 25 C using a VP-ITC (Microcal)

calorimeter. A preliminary 2 FtL injection of either CbpA-R1, CbpA-R2, CbpA-R12, or CbpA-

NR12 (all at 40 M) was followed by multiple injections of 5 [tL at 300 sec intervals into a

solution of 4 FM SC-D 15. All proteins were dissolved in 20 mM sodium phosphate, pH 6.5, 100

mM NaCl. Thermodynamic parameters were obtained using Origin software (OriginLab) using a

single binding site model after correcting heat values for the effect of dilution. The results of

titrations with the CbpA constructs and SC-D 15 indicated that the effective concentration of SC-

D15 was 1.42 [tM, indicating that only 36% of SC molecules were competent for binding CbpA.

This conclusion was confirmed using gel filtration chromatography, as follows. In the absence of

CbpA, SC-D15 migrated as a single species. Addition of an excess of CbpA-R1 caused only

-40% of the parent SC peak intensity to shift to a more rapidly migrating species (corresponding

to the CbpA-Rl:SC-D15 complex). Formation of this complex was complete upon addition of

approximately 0.8 molar equivalents of CbpA-R1. We used this effective concentration of SC-

D15 (1.42 jtM) when analyzing raw heat data to obtain CbpA:SC-D15 mole ratios (Table 1).
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Table 1. Thermodynamic parameters obtained from analysis of ITC data for CbpA fragments

binding to SC-D15 in solution.

Construct AG (kcal mol1 ) AH (kcal mol") -TAS (kcal mol") N.noaa.,d* (moles
CbpAlmoles SC)

CbpA-R1 -9.82 ± 0.01 -26.60 ± 0.05 +16.78 ± 0.10 1.86 ± 0.01
CbpA-R2 -10.23 ± 0.02 -21.19 ± 0.07 +10.96 ± 0.10 2.19 ± 0.01
CbpA-R12 -10.39 ± 0.02 -46.30 ± 0.14 +35.91 ± 0.10 0.87 ± 0.01
CbpA-NR12 -10.40 ± 0.01 -38.88 ± 0.07 +28.48 ± 0.10 1.07 ± 0.01

* Nnormed values were determined using 1.42 [tM as the effective SC-D1 5 protein concentration

(see Experimental Procedures for details). AG, AH and -TAS values are in units of kcal per mole

of CbpA construct.
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Table 2. Statistics of 20 lowest-energy structures of CbpA-R2 based on solution NMR data.

Total number of NOEs 2,292
Intra-residue 922

Inter-residue 1,370

Sequential 622

Medium-range (i, i up to ± 4) 599
Long-range (i, i 5 or larger) 149

Total number of dihedral restraints 166

VC 83

q~¢~~~~~ ~83

RMSD from mean structure (A)
All residues within structural region

Backbone heavy atoms (328-425) 1.1 ± 0.2

All heavy atoms 1.8 ± 0.4

Helixes 1-3 (residues 330-357, 365-390, 395-425)

Backbone heavy atoms 0.6 ± 0.1
All heavy atoms 1.5 ± 0.3

Distance restraint violations (average number per structure)
Restraints violated by >0.50 A 1.5

Maximum distance restraint violation (A) 1.7

Torsion angle restraint violations (average number per structure)
V restraints violated by >50 0

q restraints violated by >5° 0

Ramachandran , 0 statistics
Angles in most favored region 86.7%

Angles in allowed region 10.2%

Angles in generously allowed region 2.4%
Angles in disallowed region 0.7%
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Figure 1. Domain structure of CbpA (from the TIGR4 strain of Streptococcus pneumoniae). (A)

Domains labeled A, B, R1, R2 and C exhibit multiple repeats of the LZ motif, and the domain

labeled CBD (choline binding domain) contains eight repeats of the choline binding motif. (B)

Leucine zipper probability for CbpA determined using COILS (Lupas et al., 1991). (C)

Sequences of domains R1 and R2. The letters a-g and horizontal lines indicate the locations of

the 12 LZ heptad motifs. Within the LZ motifs, hydrophobic residues are colored brown (L, V, I,

and A); acidic residues, red (D and E); and basic residues, blue (K and R). Sites in the R1 and R2

sequences where an acidic residue is swapped for a basic residue, or vice versa, are indicated by

red and blue shading, respectively. Residues of the conserved RNYPT motif are colored green

and the three a-helices of CbpA-R2 are indicated by black rectangles. Residues that are

conserved in 87 R domain sequences from 47 pneumococcal strains are also given.
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Figure 1. Domain structure of CbpA (from the TIGR4 strain of Streptococcus pneumoniae).
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Figure 2. R domain structure is conserved in CbpA sequences from most pneumococcal strains.

(A) Phylogenetic tree showing the relationships between 47 CbpA sequences, which cluster into

six groups. The TIGR4 sequence is also termed PspC 3.4 (marked by arrow). (B) The histogram

illustrates the percentage of amino acid identity (relative to TIGR4 CbpA) for the R1 and/or R2

domains (R1, blue bars; R2, red bars). Details of this analysis are found in Supplementary data.
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Figure 3. Secondary structure of CbpA domains. (A) CbpA constructs used in this study. (B) CD

spectra for CbpA-N (violet trace), -R1 (blue trace), -R2 (red trace), and -NR12 (green trace). (C)

Thermal denaturation traces obtained by measuring CD ellipticity at 222 nm at different

temperatures. The coloring scheme is as in (B).
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Figure 4. Solution structure of CbpA R domains. (A) Secondary 13Ca chemical shift values for

CbpA-R2 showing the three a-helices. Resonances for residues marked by red asterisks are

unassigned. (B) Superposed ensemble of 20 lowest-energy structures of CbpA-R2 obtained from

solution NMR data; the backbone and select hydrophobic residues (in brown color) at the two a-

helix/a-helix interfaces are illustrated. Helix 1 is colored red; Helix 2 blue; and Helix 3 green.

The location of the YPT motif is noted. (C) End-on view of the three a-helices of domain R2,

colored as in (B). (D) Contour maps of electrostatic potentials (± lkt; red, negative potential;

blue, positive potential) for CbpA-R2 (left) and homology model of CbpA-R1 (right) generated

using GRASP (Nicholls et al., 1991). The ca-helices are colored as in (B). Tyr 358 & 363

(magenta; labeled "tyrosine fork"), Pro 359 (yellow), and Thr 360 & 362 (orange) are also

illustrated. The Ca atoms of other conserved residues are illustrated as colored spheres (Lys 346,

Arg 356 and Lys 364 (blue); Glu 352, Asp 354 and Glu 372 (red); Gln 350 & Thr 365 (gray);

Ala 347, Ile 368, Ile 370, Ala 371, Val 375, Val 377, Ala 80 and Leu 382 (yellow)). (E) Close-up

view of conserved residues in loop between Helix 1 and Helix 2 of CbpA-R2 that protrude into a

region of neutral electrostatic potential. Key residues are illustrated as in (D).
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Figure 5. 800 MHz 2D 1H-15N TROSY spectra of 2H/13C/ 15N-labeled CbpA-R2 (A) and -NR12

(B). The individual spectra are illustrated in red (A) and green (B) ink. The blue overlays in

panels A and B identify resonances that appear at identical positions in the two spectra.
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Figure 6. Insights into the molecular mechanism of CbpA/pIgR interactions. (A) Histogram

illustrating the association (ka) and dissociation (kd) rate constants derived from SPR data for

different CbpA constructs interacting with immobilized sIgA. The rate constants were obtained

by fitting equations for a 1:1 binding model to raw data like those illustrated in Supplementary

Figure 2B. (B) Raw ITC data (top) and binding curves (bottom) for CbpA-R1 (blue), -R2 (red), -

R12 (black) and -NR12 (green) binding to SC-D15. In the bottom panels, the colored circles

show raw data points and the black lines show the fit of equations for a single binding site model

to the raw data. Only every second data point is illustrated although all points were included in

the analysis. The CbpA fragment:SC-D15 mole ratios at the reaction endpoints are noted in each

bottom panel. (C) Adhesion of pneumococci to NE (Detroit) cells. ACbpA- pneumococci were

transformed with pNE1 plasmids that encoded full-length CbpA or CbpA with one or two

mutations within the YPT motif. ACbpA- (control) corresponds to results for untransformed

ACbpA- bacteria.
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Supplementary Material

Materials and Methods

Construction of CbpA expression plasmid. The following segments of CbpA genomic DNA from

the TIGR4 strain of Streptococcus pneumoniae (accession number: nucleotide, AAK76241;

protein, AAK76241) were sub-cloned into plasmids for protein expression in E. coli: residues

39-174 (CbpA-N), 175-289 (CbpA-R1), 329-443 (CbpA-R2), 175-443 (CbpA-R12), 39-321

(CbpA-NR1) and 39-442 (CbpA-NR12). CbpA-N, CbpA-R1, CbpA-R2, and CbpA-R12 were

subcloned into the bacterial expression vector pET28a (Novagen). CbpA-NR1 and CbpA-NR12

were subcloned into pQE-30 (Qiagen). Site-directed mutagenesis was used to introduce

mutations into the expression plasmid for CbpA-NR12 (pQE-CbpA-NR12), as follows. In each

construct, the following residues were mutated to Gly, Tyr 205 (pQE-CbpA-NR12-Y205G), Tyr

358 (pQE-CbpA-NR12-Y358G), Tyr 205 and Tyr 358 (pQE-CbpA-NR12-Y205G/Y358G), Pro

206 (pQE-CbpA-NR12-P206G), Pro 359 (pQE-CbpA-NR12-P359G), and Pro 206 and Pro 359

(pQE-CbpA-NR12-P206G/P359G). Further, full-length genomic DNA for CbpA was subcloned

into pNE1 (Bartilson et al., 2001) (pNE1-CbpA) to express CbpA in ACbpA- pneumococci. Site-

directed mutagenesis was used to prepare pNE1 plasmids for expression of full-length CbpA

with the same mutations as described above; these plasmids were pNE1-CbpA-Y205G; pNE1-

CbpA-Y358G; pNE1-CbpA-Y205G/Y358G; pNEl-CbpA-P206G; pNEl-CbpA-P359G; and

pNE 1-CbpA-P206G/P359G.

Expression and purification of CbpA proteins. The pET and pQE CbpA plasmids were used to

express CbpA fragments as His-tagged polypeptides in E. coli BL21(DE3) (Studier et al., 1990)

using standard procedures. Proteins were purified using Ni2+-affinity chromatography
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(Amersham-Pharmacia resins), followed in some cases (CbpA-Rl, -R2, and -R12) by thrombin

(Calbiochem) cleavage to remove the His-tag. CbpA-N, -NR1 and -NR12 exhibited secondary

site cleavage by thrombin within the CbpA sequence and, therefore, were prepared with intact

His tags. Proteins were further purified by gel filtration chromatography (Superdex 200,

Amersham Biosciences) in 20 mM sodium phosphate, pH 6.5, 20 mM NaCl, and 0.02% (w/v)

sodium azide. CbpA proteins contained exogenous N-terminal residues, as follows: CbpA-N,

MGSSHHHHHHSSGLVPRGSHM; CbpA-NRl and -NR12, MRGSHHHHHHGSM; and CbpA-

R1, -R2 and -R12, GSHM. Protein concentrations were determined using absorbance at 280 nm

(Gill and von Hippel, 1989) and extinction coefficients determined using the ProteinParameters

tool at the ExPASy web site (http://us.expasy.org/tools/protparam.html).

CD experiments. Circular dichroism (CD) spectra (Fig. 3B and C) were recorded at 25 °C using

an AVIV 62A DS spectropolarimeter in 1.0 cm path length quartz cells. CbpA samples were

prepared by dialysis against 1 mM sodium phosphate, pH 6.5, 50 mM NaCl. In thermal

denaturation experiments, the ellipticity at 222 nm was recorded after 1 min. equilibration at

temperatures from 5 °C to 95 C in 2 °C steps.

CbpA-sIgA binding experiments using ELISA. To analyze CbpA-sIgA binding, each well of a 96

well plate was coated with 0.5 mg purified recombinant CbpA protein. Wells were blocked for 1

hour with rabbit serum (diluted 1:50 with 10 mM sodium phosphate, pH 7.2, 150 mM NaCl

(PBS)), and 0.5 mg sIgA protein (ICN) was applied for 1 hour. After washing with PBS, an

antibody to secretory component (Sigma) was applied after a 1:2000 dilution in PBS for 1 hour.

Biotinylated anti-mouse IgG (Vector Labs) and ABC detection reagent were then applied
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according to the manufacturer's protocol. Turbo TMB (Pierce) was used as a chromogenic

substrate. Reactions were stopped with 1 M sulfuric acid, and the absorbance at 450 nm of each

well was determined with a plate reader. All reactions were performed in triplicate at room

temperature.

AUC experiments. Sedimentation equilibrium experiments were performed with CbpA-N,

CbpA-R1, CbpA-R2 and CbpA-A at 20 C in a Beckman XL-A analytical ultracentrifuge, at

operational speeds in the range 27,000 - 40,000 rpm. The polypeptide concentrations for CbpA-

N, CbpA-R 1, and CbpA-R2 ranged from 0.01 mM to 4 mM. Polypeptides were dissolved in 20

mM sodium phosphate buffer, pH 6.5, in the presence of 0 mM, 50 mM or 200 mM NaCl.

Depending on the protein concentration either 12 mm or 3 mm optical path length cells were

used. Data were manipulated using the Beckman XL-A software.

The software INVEQ (Rowe, in preparation) was employed to analyze sedimentation

equilibrium data. INVEQ fits the data set to the following equation:

r = {(ln(crc) + 0.5*(ow/(1+2BMcr))*ri2) / (0.5*(ow/(1+2BMcr)))}0.5 (Equation 1)

where r is any radial position at which the solute concentration c has the value cr, and ri and c; are

the values of these parameters at a defined reference position. The latter radial position is

usually taken as being the data point closest to the meniscus. The parameter a is the reduced

molecular weight of the solute, defined as

o = M(1 - vp)co2/2RT (Equation 2)
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where M is the molecular weight of the solute, v (ml/g) its partial specific volume, p is the

density of the solvent, w (radians/sec) the angular velocity of the rotor, R is the gas constant and

T the temperature (K).

For any monomer-dimer equilibrium system it is simple from a knowledge of the

equilibrium association constant (Ka) and the solute molar concentration to define the mole

fraction a of monomers which have dimerised, from which the weight averaged a value ((Cw, in

mass rather than molar units) can be derived. Representing the thermodynamic non-ideality by a

single second virial coefficient term BM (formally the B value is a B,1, term) assumed to be the

same for both monomer and dimer, the apparent a value (apparent ) to be used in the equilibrium

equation is given by

0 apparent = (w/(l+2BMcr)). (Equation 3)

It should be noted that equation 1 is simply a usual form of the equation for sedimentation

equilibrium inverted to give r = f(c) rather than the normal c = f(r) format. Although apparently

trivial, this is important for stability in curve fitting. The more usual (c = f(r)) format becomes

recursive when terms covering self-association and/or non-ideality are introduced. The INVEQ

format avoids this problem, and by providing a more rigorous way of fitting for Ka than is

employed in direct fitting methods (Rowe, in preparation) it becomes possible to float both Ka

and the non-ideality term (BM) in the fitting algorithm. Using this approach, it was possible to

estimate weak (Kd up to 100 mM) interaction coefficients despite the inevitable presence of a

non-ideality term of similar numerical magnitude.
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All data were analyzed using locally written programs in the software Pro FitTM

(Quantumsoft). In order to obtain a fit when lower solute concentrations were being studied we

either fixed BM = 5 ml/g, a typical value for this system, and/or we floated the baseline offset E.

The latter quantity can justifiably be set equal to zero for higher c values, where absorption

optics are in use, but small errors can cause problems with more dilute systems.

CbpA sequence analysis. Methods. The analysis of CbpA (Fig. 2) was performed using Vector

NTI 9.0.0 software (Informax). The accession numbers for CbpA sequences are as given in

Tables 1 and 2 of Iannelli, et al. (Iannelli et al., 2002). The sequences of the C-terminal choline

binding domains were deleted before analysis so that relationships within the N-terminal

segments could be more clearly observed. The phylogenetic tree illustrated in Fig. 2A was

generated using the Align feature in Vector NTI, which uses the Neighbor Joining (NJ)

algorithm of Saitou and Nei (Saitou and Nei, 1987). For Fig. 2B, all CbpA sequences were

individually aligned with the sequences of domains R1 and R2 from the TIGR4 strain. If

similarity to one or both domains was identified, the percentage identity was determined. Also,

whether the sequence RNYPT was identified within the R domains was noted. The sequences of

the R1 and/or R2 domains were aligned; the consensus sequence illustrated in Fig. 1C shows

residues that are identical in all 87 R domain sequences. The sequence of the R2 domain of

PspC 5.2 used in this analysis consisted of residues 308-371 which correspond to Helices 1 and 2

of the CbpA TIGR4 R2 domain.

Results. The N-terminal segments of the 47 CbpA sequences can be divided into six

phylogenetically related groups. The CbpA sequences in Groups 1, 2, 5 and 6, including the

TIGR4 sequence (also referred to as PspC 3.4) (Iannelli et al., 2002), are highly related and all
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but four (PspC 3.12, PspC 5.2, PspC 6.4, and PspC 6.14) exhibit two R domains that are very

similar to domains R1 and R2 of the TIGR4 sequence (Fig. 2B). The sequence of PspC 3.12

(Group 1) exhibits only one R domain, which is most similar to the TIGR4 R2 domain. PspC 5.2

(Group 5) exhibits a typical R1 domain but lacks a complete R2 domain. However, a segment of

this sequence is 85% identical to the Helix 1 and Helix 2 segment of domain R2 of CbpA-

TIGR4, including the conserved residues illustrated in Fig. 1C. PspC 6.14 (Group 6) exhibits a

single R2-like domain while PspC 6.4 (Group 6) exhibits a single Rl-like domain. A lone

sequence constitutes group 4, PspC 2.1, which contains a single R2-like domain. R domain

sequence similarity is illustrated in Fig. 2B. Group 3 is comprised of three CbpA and four

CbpA-like sequences that each exhibits a single R2-like domain, with identity to that of the

TIGR4 sequence ranging from 50% to 78%. All of the aforementioned sequences contain the

conserved consensus sequence (Fig. 1C), including the YPT motif and other conserved residues

(Fig. 1C and 4D).
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Supplementary Table 1. Values of the non-ideality term (2BM) and equilibrium dissociation

constant (KD) derived from analysis of sedimentation equilibrium centrifugation data for CbpA

domains.

Self-association parameters
Construct 2BM (ml g' ) KD (mM) Polypeptide

concentration
(mM)

CbpA-RI, 0 mM NaCI 4.2 22.2 4.5
CbpA-R1, 50 mM NaCI 15.0 2.4 1.9
CbpA-R1, 200 mM NaCI 8.0 4.0 3.4
CbpA-R2, 0 mM NaCI 13.4 75.8 2.4
CbpA-R2, 50 mM NaCI 9.5 106.0 2.7
CbpA-R2, 200 mM NaCI 15.0 67.3 1.9
CbpA-N, 0 mM NaCI 10.0* 10.0 0.4
CbpA-N, 50 mM NaCI 10.0* 10.0 0.4
CbpA-N, 200 mM NaCI 10.0* >100.0 0.4

* The non-ideality term (2BM) was set to these values to analyze AUC data under these
conditions.
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Supplementary Table 2. Association (k.) and dissociation (kd) rate constants obtained from

analysis of surface plasmon resonance data for CbpA fragments binding to immobilized sIgA or

SC-D15. Results from triplicate measurement are given.

Binding to sIgA Binding to SC
Construct k, (s" M') kd (s"') k, (s9 ' M') kd (s-')
CbpA-R1 1.93 ± 0.10 _10 2.71 ± 0.13 _10 2.11 ± 0.21 _ 10 5.65 ± 0.53 _ 10-

4

CbpA-R2 9.13 ± 0.59 _ 10- 3.71 ± 0.13 _ 104  4.38 ± 0.84 104 4.99 ± 0.14 _ 10'
4

CbpA-R12 138 ± 0.03 _ 10' 7.06 ± 0.47 _ 10 4.04 ± 0.34 _ 0s  2.50 ± 0.38 _ 10
4

CbpA-NRI2 2.55 ± 0.07 _ 10 5.57 ± 1.17 _ 10s  5.01 ± 0.20 _ 104 4.83 ± 0.30 _ 10

CbpA-NR12-Y205G 2.22 ± 0.63 _ 10s 2.41 ± 0.0.94 _ 104 9.69 ± 3.59 _ 104 8.49 ± 3.68 _ 10

CbpA-NR12-P206G 1.27 ± 0.01 10' 2.72 ± 0.12 _ 10 1.93 ± 0.71 _ Is 4.06 ± 0.57 _ 10
S

CbpA-NR12-Y358G 3.29 ± 0.02 _ 10 3.14 ± 0.26 _ 10 1.27 ± 0.03 _ 10s 2.51 ± 0.21 _ 10'
4

CbpA-NR12-P359G 6.64 ± 0.09 _ 10W 3.30 ± 0.13 _ 104 6.66 ± 3.62 _ 10 1.66 ± 0.62 _ 10'
4

CbpA-NR12-Y205G/Y358G 4.17 ± 1.26 -_ 1 2.90 ± 0.64 10.2 1.74 ± 0.86 _ 10s 1.83 ± 0.43 _ 10'
2

CbpA-NR12-P206G/P359G 1.03 ± 0.09 _ los 1.91 ± 0.27 - 10.2 ND* ND

SND, not determined.
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Supplementary Figure 1. Characterization of CbpA domains by NMR (A) and AUC (B-D).

(A) 900 MHz 2D 'H-'5N TROSY spectrum of 2H/'3C/'SN-labeled CbpA-R2. Resonances of

many residues overlap due to the repeating nature of the amino acid sequence (Fig. 1C). We

overcame resonance overlap by using TROSY (Pervushin et al., 1997) to narrow 'H and 15N

resonances and by using high magnetic field strengths. The crowded, central region is expanded

in the upper left panel. Representative sedimentation equilibrium data obtained for (B) CbpA-N

(0.4 mM), (C) CbpA-R1 (1.9 mM), and (D) CbpA-R2 (2.7 mM) dissolved in 20 mM sodium

phosphate, pH 6.5, 50 mM NaCl. Experimental data points are shown as colored circles and the

fit of Equation 1 to the raw data as a solid black line.
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Supplementary Figure 2. Molecular mechanism of CbpA/pIgR interactions. (A) Binding of

wild-type and mutant CbpA fragments to sIgA based on results from ELISA. Results for CbpA-

R1 (blue), CbpA-R2 (red) and CbpA-NR12 (green) are emphasized. NUS(-) corresponds to

background binding in the absence of a CbpA construct. (B) Raw SPR data for CbpA-R1 (blue),

CbpA-R2 (red) and CbpA-NR12 (green) binding to immobilized sIgA. The black lines show the

fit of equations for a 1:1 binding model to the experimental data (colored points). The

concentrations of CbpA constructs in the solutions that flowed over the sIgA or SC-D15 surfaces

were as follows (based on amino acid analysis): CbpA-R1, 1462, 731, 292, 146, 73.1, 29.2, 14.6

nM; CbpA-R2, 1450, 725, 290, 145, 72.5, 29, 14.5 nM; CbpA-N, 1584, 792, 396, 198, 99, 49.5,

24.8 nM; CbpA-R12, 4.0, 2.0, 1.0, 0.4, 0.2, 0.1, 0.04 nM; CbpA-NR1, 665, 333, 133, 66.5, 33.3,

13.3, 6.7 nM; and CbpA-NR12, 207, 82.9, 41.4, 20.7, 8.3, and 4.1 nM. The concentrations of

mutant CbpA-NR12 constructs used were as follows: 500, 250, 125, 62.5, 31.8, 12.5 and 6.3 nM.
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CHAPTER 4

Expression and Crystallization Trials of pIgR, Fcca/tR, dFca and CbpA
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Introduction

As described in the previous chapters, pIgR plays a key role in mucosal immunity by

transporting pIgs to mucosal surfaces. Although the recent crystal structures of the pIg-binding

domain (D1) of pIgR (Hamburger et al., 2004) (Chapter 2) and the Fc fragment of IgA (Fca)

(Herr et al., 2003) have shed some light on IgA-based immunity, many questions remain to be

answered. For example, the extracellular region of pIgR contains five tandem Ig-like domains

(Mostov et al., 1984) and the detailed structural features of D2-5, and the overall arrangement of

the five domains, remain unknown. The high-resolution structure of dIgA also has not been

determined. Previous work has shown that dIgA is arranged in an end-to-end configuration with

one J chain molecule covalently bridging two IgA molecules (Garcia-Pardo et al., 1981) via a C-

terminal 18-residue extension in IgA, called the tailpiece (tp). The Fca structure revealed the

arrangement of the Ca2 and Ca3 domains (Herr et al., 2003), but did not contain tp. Further,

nothing is known about the high-resolution structure of J chain, or about the precise arrangement

of the two IgA (or Fca-tp) molecules with J chain in dIgA (or dFca). Ultimately, the cocrystal

structure of the pIgR-dFca complex will be necessary to fully understand the molecular details

of the mechanism by which pIgR binds dIgA.

Another point of interest is to determine the molecular basis for the specificity of pIgR

for pIgA and pIgM. FcaRI binds both monomeric and dimeric forms of IgA (Monteiro and Van

De Winkel, 2003), and Fca/!xR can bind to monomeric IgA in addition to pIgA and pIgM

(McDonald et al., 2002; Shibuya et al., 2000). Further structural studies of pIgR and Fca/tR are

needed to be able to compare the recognition properties of these receptors with those of FcaRI

(Ding et al., 2003; Herr et al., 2003). Although detailed structural information about the human

Fca/tR is currently unavailable, sequence analysis predicts an approximately 50 kDa
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extracellular region with an N-terminal Ig-like domain that shares 43% sequence identity with

the human pIgR D1 (Shibuya et al., 2000).

Although pIgR provides immunologic protection at mucosal surfaces, it is also used by

Streptococcus pneumoniae (pneumococcus) to invade human cells (Zhang et al., 2000). CbpA,

the major pneumococcus adhesin (Rosenow et al., 1997), contains two regions, R1 and R2,

which bind to D3-4 of human pIgR (Zhang et al., 2000)((Elm et al., 2004; Lu et al., 2003). The

recent solution structure of R2 revealed a unique three-a-helical structure, with the three helices

in an antiparallel orientation and a "tyrosine fork" involved in pIgR binding between the first two

helices (Luo et al., 2004) (Chapter 3). However, to determine the molecular details of the

interaction between pIgR and CbpA, the structures of full-length CbpA, D3-4 of pIgR, and the

complex between the two proteins need to be elucidated.

In order to address the topics mentioned above, I set out to obtain high-resolution crystal

structures of these proteins, alone and in complex with each other. To obtain diffraction quality

crystals of pIgR, dFca, Fca/[tR and CbpA, milligram quantities of these proteins are necessary.

With large and flexible proteins, such as these, a "divide and conquer" approach is sometimes

required either to get high expression levels, or to obtain diffracting crystals. Therefore, I made

a series of expression constructs (Table 1) based on secondary structure predictions, sequence

alignments with proteins of known structures, and available biochemical and mutagenesis data.

Another consideration for maximizing protein expression levels is what expression

system to use (Table 1). The extracellular region of pIgR contains seven N-linked glycosylation

sites (Hughes et al., 1999), which seem to be required for the efficient transport of pIgR during

transcytosis or for release from the apical surface (Matsumoto et al., 2003). However, these

carbohydrates are not necessary for specific binding to dIgA (Bakos et al., 1991). Therefore, I
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tried expressing pIgR fragments in both bacteria and baculovirus-infected insect cells. Since the

extracellular portion of Fca/[tR also has several N-linked oligosaccharide attachments sites

(Shibuya et al., 2000), baculovirus-infected insect cells were utilized for protein expression. An

E. coli expression system was used to express CbpA.

The most challenging of these proteins to express was dFca because of the complexity of

this protein. First, two molecules of Fca-tp form a homodimer and then two Fca-tp homodimers

and one molecule of J chain together from dFca. The human IgA tp contains a cysteine residue

and an N-linked glycosylation site that are required for efficient polymer assembly (Atkin et al.,

1996). Mature human J chain contains 137 amino acids including eight cysteine residues (Max

and Korsmeyer, 1985) of which six are involved in intramolecular disulfide bonds and two

intermolecular disulfide bonds to the tp penultimate cysteine in polymeric Igs (Bastian et al.,

1992; Bastian et al., 1995; Frutiger et al., 1992). J chain also has an N-linked oligosaccharide

attachment site, which appears to be important for the efficient assembly of dIgA (Krugmann et

al., 1997). J chain CyslS forms a disulfide bond with tailpiece Cys471 in the first Fcct

homodimer, and J chain Cys69 forms a second disulfide bond with Cys471 in the tailpiece from

the second Fca homodimer. The other two tailpieces, one from each homodimer, are linked

directly to each other by a disulfide bond (Bastian et al., 1995; Krugmann et al., 1997). Due to

the presence of essential N-linked oligosaccharide attachment sites and the extensive disulfide

bonding between J chain and Fca-tp, both baculovirus-infected insect cells and stably transfected

mammalian cells were used to coexpress the two proteins.

After optimizing the expression and purification conditions, I set up extensive

crystallization screens of the proteins alone and in complex with each other (Table 2). I have
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obtained small, disk-shaped crystals of the full-length pIgR ectodomain, although the current

crystals do not diffract. Additional crystallization and optimization trials are ongoing.

Materials and Methods

Expression and purification of pIgR

The cDNA encoding the full-length human pIgR was kindly provided by Roland K. Strong at the

Fred Hutchinson Cancer Research Center in Seattle, WA. Three constructs for bacterial

expression were generated: D1, MBP-D1 and D3-4 (Table 1). Expression, refolding and

purification of D3-4 (residues N214-V448) were performed as described for D1 (residues K1-

V109) (Hamburger et al., 2004) (Chapter 2). Briefly, the protein was expressed in E. coli

BL21(DE3) cells (Novagen) in inclusion bodies, which were solubilized in 8 M guanidine-HCl

and 10 mM DTT. The protein was refolded by rapid dilution in refolding buffer (100 mM Tris

pH 8.0, 400 mM L-arginine, 2 mM EDTA, 0.5 mM oxidized glutathione, and 5 mM reduced

glutathione) (Garboczi et al., 1992). The refolded protein was purified by gel filtration

chromatography. D1 was also subcloned into the pMAL-p2x expression vector (New England

Biolabs) for periplasmic expression as a fusion with the maltose binding protein (MBP). E. coli

BL21(DE3) cells (Novagen) were induced with 0.3 mM isopropyl-o-D-thiogalactoside (IPTG) at

an OD = 0.5 for 3-5 hours. The cells were lysed by osmotic shock and the protein was purified

on an amylose resin column. D1 was cleaved from MBP with Factor Xa protease (New England

Biolabs) according to the manufacturer's recommendations.

Seven additional pIgR constructs were generated by PCR for protein expression using

baculovirus-infected insect cells (Table 1). Six of the genes (D1, D1-3, D145, D1-5, SC577 and

SC607) were first subcloned into the pET20b vector in frame with the C-terminal 6xHis tag, and

then re-amplified by PCR to acquire the His tag, and subcloned into the pAcGP67A baculovirus
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expression vector (BD Biosciences) in frame with the gp67 hydrophobic secretion signal. D3-4

was amplified by PCR and subcloned directly into a modified version of pAcGP67A, containing

an N-terminal 6xHis tag and Factor Xa cleavage site. Expression and purification of the proteins

were carried out as previously described for SC607, which was referred to as SC-D15 (Luo et al.,

2004) (Chapter 3). Briefly, recombinant baculovirus was generated by cotransfection of a

transfer vector with linearized viral DNA. Recombinant proteins were isolated from the

supernatants of infected High five cells, which were concentrated and buffer exchanged into TBS

(20 mM Tris pH 8.0, 150 mM NaCl) and purified by NiNTA affinity and size exclusion

chromatography. Protein purity was analyzed by SDS-PAGE.

Expression and purification of Fca4pR

The cDNA encoding the full-length human Fca/[tR was kindly provided by Kenneth J.

McDonald at the Renal Unit, Western Infirmary in Glasgow, UK. Four Fca/tR constructs were

generated for protein expression using baculovirus infected insect cells (Table 1). The full-

length ectodomain (ecto; residues L1-R434) and the N-terminal Ig domain (residues L1-A165)

were subcloned into the pFastBacI vector (Life Technologies) with its native secretion signal

sequence and a C-terminal 6xHis tag and Factor Xa cleavage site. Ecto and the Ig domains were

also subcloned into the pAcGP67A expression vector in frame with the gp67 hydrophobic signal

sequence and an N-terminal 6xHis tag and Factor Xa cleavage site. Protein expression and

purification was carried out as described above.

Expression and purification of dFca (Fca-tp and J-chain) and dIgA

The cDNA encoding the human J chain was kindly provided by K. R. Chintalacharuvu at the

University of California, Los Angeles. For coexpression in baculovirus infected insect cells,

Fca-tp and J chain were subcloned into the pFastBacDual expression vector (Life Technologies)
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(Table 1). J chain, including its natural hydrophobic signal sequence (M1-D 159, the numbering

reflects inclusion of the secretion signal), was subcloned into the pFastBacDual multiple cloning

site (mcs) 1. Fca-tp (S240-Y473, encoding the IgAl Ca2 and Ca3 domains and the 18 residue

tailpiece) was first subcloned into a modified version of pAcGP67A (containing an N-terminal

6xHis tag and Factor Xa cleavage site) in frame with the gp67 hydrophobic secretion signal. The

gene was then re-amplified by PCR to acquire the signal sequence, 6xHis tag and protease

cleavage site and subcloned into pFastBacDual mcs2. To increase the amount of J chain

expressed, and therefore to increase the levels of secreted dimeric Fca, J chain (Q23-D159) was

also subcloned into the pAcGP67B expression vector in frame with the gp67 secretion signal for

co-infection with the pFastBacDual(Fca-tp/J chain) construct. Protein expression and

purification was performed as described above.

For expression in mammalian cells, Fca-tp (S240-Y473) containing an N-terminal 6x-

His tag and Factor Xa cleavage site was subcloned into the in pBJ5-GS-MCS3 expression vector

in frame with the rat IgG2a hydrophobic secretion signal (Martin and Bjorkman, 1999). J chain

(residues M1-D159) was subcloned into two mammalian expression vectors, pBJ5-GS-MCS and

pcDNA3.1(-) (Invitrogen). Chinese hamster ovary (CHO) cells were cotransfected with pBJ5-

GS-MCS3(Fca-tp) and pBJ5-GS-MCS(J chain) and stable colonies were selected and amplified

using methionine sulfoximine (MSX) as described previously (Martin and Bjorkman, 1999). To

increase the amount of secreted dFca, the stably transfected CHO cells were retransfected with J

chain in the pcDNA3.1(-) vector. Selection and amplification of stable cell lines using 100 tM

MSX and 750 [tg/mL Geneticin (Gibco) were carried out. A CHO cell line expressing Fca-tp

alone was also generated as described above, using 100 ptM MSX selection.
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Human dIgA was isolated from the sera of a patient with a pIgA-producing myeloma

(Vaerman et al., 1995) and purified as described previously (Hamburger et al., 2004) (Chapter

2).

Expression and purification of CbpA, R1 and R2

The S. pneumoniae TIGR4 strain CbpA gene was kindly provided by Elaine Tuomanen at St.

Jude Children's Research Hospital in Memphis, TN. CbpA (E39-A444), R1 (T174-A280) and

R2 (L327-A433) were amplified by PCR and subcloned into pET19b in frame with an N-

terminal 10xHis tag and Enterokinase cleavage site (Table 1). The proteins were expressed in E.

coli BL21(DE3) cells (Novagen) by induction with 0.4 mM IPTG at an OD = 0.5 for 5 hours at

37 C. The cells were lysed by sonication and the soluble proteins were purified by NiNTA

affinity followed by size exclusion chromatography on a Superdex 75 16/20 column (Amersham

Pharmacia).

Binding studies

Surface plasmon resonance (SPR) binding assays were performed using a BIAcore 2000

instrument (Pharmacia Biosensor, Uppsala, Sweden). Using this system, binding between a

molecule coupled to a biosensor chip and a second molecule injected over the chip results in

changes in the SPR signal that are monitored in real time as resonance units (RUs) (Malmqvist,

1993). To test whether the pIgR constructs were folded properly, dIgA was covalently coupled

at three different densities (412, 763, and 1426 RUs) to a reagent-grade CM5 sensor chip

(Biacore) using primary amine coupling, and the various pIgR proteins (the analytes) were each

injected over the chip. Similarly, to test whether CbpA, R1 and R2 were folded properly, each of

the three proteins was coupled to a CM5 sensor chip and pIgR SC607 was injected over the chip.

To test the activity of recombinantly-expressed dFca from CHO cells, pIgR SC607 was coupled
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to the biosensor chip at three different densities (2615, 5599, and 6567 RUs) and dFca was

injected over the chip. Fca-tp was also coupled to a chip and FcaRI was injected over the chip.

In each case one flow cell was mock coupled with buffer for background subtraction. To obtain

equilibrium dissociation constants (KDS) for D1 and D1-3, the sensorgrams were processed and

analyzed with the Scrubber software package (BioLogic Software, Australia). KDS were derived

by nonlinear regression analysis of plots of Req (the equilibrium binding response) versus the log

of the concentration of the injected analyte, and the binding data were fit to a single-site binding

model.

Protein crystallization

Purified proteins were concentrated to -5-110 mg/mL in an Amicon Ultra centrifugal filter

device with 10 kDa molecular weight cut-off for crystallization trials. Protein concentrations

were determined spectrophotometrically at 280 nm using extinction coefficients calculated from

the amino acid sequence of each protein using the ProtParam tool on the ExPAsy Proteomics

Server (Gill and von Hippel, 1989). Crystallization trials with grid screens and commercially

available sparse matrix screens were set up using both the hanging drop and sitting drop vapor

diffusion methods (Table 2).

Results and Discusssion

Expression, purification and characterization of pIgR

To produce sufficient amounts of pIgR for crystallization, three bacterial constructs (D1, MBP-

D1 and D3-4) were generated and tested for expression levels (Table 1). MBP-D1 was

expressed in the periplasm of E.coli, and purified on amylose resin. Cleavage of the fusion

protein with Factor Xa protease resulted in the release of insoluble D1 and not pursued further.

Expression, refolding, purification and characterization of D1 was described in Chapter 2
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(Hamburger et al., 2004), and the same methods were used to generate D3-4. Refolded D3-4

migrates in the position expected for the folded monomer on a gel filtration column (data not

shown).

Seven baculovirus expression constructs (D1, D1-3, D145, D3-4, D1-5, SC577, and

SC607) were also produced to test expression levels in baculovirus infected insect cells (Table

1). D1-5 expressed at less than 1 mg/L of insect cell supernatant and was not further pursued.

Slightly longer C-terminal truncations of the full-length extracellular region of pIgR, SC577 and

SC607, and the other constructs (D1, D1-3, D145 and D3-4) all expressed and were secreted

between 6 and 35 mg/L (Table 1). The recombinant proteins were harvested from baculovirus-

infected insect cell supernatants and purified by NiNTA and gel filtration chromatography to

over 95% purity (Figure 1). Each protein migrates in the position expected for the monomer on a

gel filtration column (data not shown).

To determine if the pIgR proteins were folded properly, a surface plasmon resonance

(SPR) binding assay using human dIgA was utilized. dIgA was isolated from the serum of a

patient with a pIgA-producing myeloma (Vaerman et al., 1995) and dIgA was purified as

described (Hamburger et al., 2004) (Chapter 2). dIgA was coupled to a biosensor chip and the

various pIgR proteins were injected. Both D1 proteins (refolded nonglycosylated, and insect

cell-expressed glycosylated) bind dIgA with an equilibrium dissocation constant (KD) of -300

nM (Hamburger et al., 2004) (Chapter 2). In the same binding assay, D1-3 bound dIgA with a

KD of -1 [M (data not shown). Since the N-terminal D1 domain of pIgR is necessary for

binding to dIgA (Frutiger et al., 1986), D3-4 was not expected to bind dIgA and therefore not

tested. However, in collaboration with Richard Kriwacki's laboratory at St. Jude Children's

Research Hospital, the ability of D3-4 to bind to CbpA was confirmed (data not shown). The
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other constructs (D145, SC577 and SC607) all contain Cys467 in D5, which forms a disulfide

bridge with Cys311 in Ca2 (Fallgreen-Gebauer et al., 1993). Due to the covalent nature of this

interaction we were unable to obtain off-rates or equilibrium dissociation constants for these

proteins. We were, however, able to show qualitatively that the binding interaction took place

and approximately 33% of the injected proteins remained covalently bound to the biosensor chip

(data not shown). The low pH and high salt conditions used to regenerate the chip after injection

of D1 and D1-3 did not result in obtaining the original baseline after injection of proteins

containing D5 because of the covalent interaction with dIgA.

Expression and purification of Fcal/tR

To try to obtain large amounts of Fca/pR sufficient for crystallization trials, baculovirus-infected

insect cells were used to express four different constructs (Table 1). Two of the constructs

contained the putative full-length ectodomain of the protein (residues L1-R434 of the mature

protein): one with the natural hydrophobic secretion signal and a C-terminal 6xHis tag, while the

other contained the baculovirus gp67 secretion signal and an N-terminal 6xHis tag. The other

two constructs contained the N-terminal region of the ectodomain, including the Ig-like domain

(residues L1-A165 of the mature protein). Similar to the full-length constructs, one of them

contained the natural secretion signal with a C-terminal 6xHis tag, while the other had the gp67

secretion signal and an N-terminal 6xHis tag. Analyses of the baculovirus infected insect cell

supernatants by SDS-PGE revealed that expression levels were very low (less than 1 mg/L),

regardless of the secretion signal used or the position of the affinity tag. Nonetheless, protein

was purified from the supernatants of baculovirus infected insect cells by NiNTA affinity and gel

filtration chromatography. The gel filtration profile indicated that the majority of the protein was

aggregated and eluted in the void volume. Therefore, due to the low expression levels and the
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apparent misfolding of the protein, further characterization and crystallization trials were not

attempted.

Expression, purification and characterization of Fca-tp and J-chain

In order to produce dFcca capable of binding to pIgR, expression levels in both baculovirus

infected insect cells and mammalian CHO cells were tested. For expression in insect cells, J

chain and Fca-tp (encoding IgA1 Ca2 and Ca3 domains and the 18 residue tailpiece) were

coexpressed using a dicistronic expression vector, pFastBacDual (Life Technologies). The

protein was purified by NiNTA and gel filtration chromatography, which revealed the presence

of both monomeric Fcca as well as polymeric Fcca (pFca) in the preparation (Figure 2A). Others

have observed that polymerization of another polymeric immunoglobulin, pIgM, depends on the

amount of J chain present, where an increase in J chain production results in an increase in J

chain-containing IgM secretion (Niles et al., 1995). Therefore, in order to try to increase the

ratio of secreted dFcct to monomeric Fca, the J chain gene was subcloned into another

expression vector, pAcGP67B, for coinfection with the dicistronic vector. However, coinfection

with the two recombinant baculoviruses resulted in the drastic decrease in expression levels of

both proteins (P.M. Snow and A.E.H., unpublished observations). Later protein preparations,

using a new viral stock of recombinant baculovirus containing the dicistronic vector showed an

increase in the amount of pFca and dFcct relative to the amount of monomeric Fca (Figure 2B).

For expression in mammalian cells, CHO cells were cotransfected with Fca-tp and J

chain in the expression vectors pBJ5-GS-MCS3 and pBJ5-GS-MCS, respectively, and a stable

cell line expressing both proteins was generated using MSX selection. As was the case for the

insect cells, both monomeric Fcca and pFca were purified from the supernatants of the CHO cells

(Figure 2C). The pFca peak was broad with two shoulders. The peak that eluted first was
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assumed to be higher ordered oligomers, and the peak that eluted second was assumed to be

dFcca. To increase the amount of secreted dFca, the stably-transfected CHO cells were

retransfected with the J chain gene in another vector, pcDNA3.1(-) (Invitrogen), which uses a

different selection marker, G418 or Geneticin. Selection and amplification of a stable cell line

was repeated using both MSX and Geneticin (Gibco). Although the amount of secreted pFca

increased proportionally over the amount of monomeric Fca in the new cell line, both complexes

were nonetheless present (Figure 2D). Biosensor analyses of the purified proteins revealed that

dFca bound to pIgR SC607 coupled to the chip, but no binding was observed when monomeric

Fca was injected (Figure 3).

Expression, purification and characterization of CbpA, R1 and R2

The pIgR-binding protein on the surface of Streptococcus pneumoniae, CbpA, and two smaller

pIgR-binding CbpA fragments, R1 and R2, were expressed in E. coli and purified by NiNTA and

gel filtration chromatography. An SPR binding assay with SC577 coupled to the biosensor chip

and the CbpA proteins injected confirmed that the recombinantly expressed CbpA, R1 and R2

were folded properly and retained their ability to bind to pIgR (data not shown).

Protein crystallization trials

Proteins estimated to be over 95% pure by SDS-PAGE were concentrated to 5-110 mg/mL.

Protein concentrations were determined spectrophotometrically at 280 nm using extinction

coefficients calculated from the amino acid sequence of each protein. Crystallization trials with

pIgR constructs (refolded D1 and D3-4 as well as insect cell-expressed D1, D1-3, D3-4, D145,

SC577 and SC607); dIgA fragments (CHO cell-expressed Fcct-tp, dFca and commercially

available IgA (Sigma)), and CbpA constructs (bacterially-expressed CbpA, R1 and R2) were set

up using both grid screens and commercially available sparse matrix screens (Table 2).
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Although an extensive number of conditions were tested, diffracting crystals have not yet been

obtained. SC577 has yielded small crystals but attempts to improve these disk-shaped crystals

(Figure 4A) have not been successful. SDS-PAGE analyses of the highly reproducible disks

suggest they are protein crystals (Figure 4B), however X-ray diffraction was not observed.

In addition to setting up crystallization trials with the individual proteins, we also tried to

cocrystallize several protein complexes (Table 2). Soluble pIgR and dIgA are thought to interact

with a 1:1 stoichiometry (Morrison et al., 1997; Rindisbacher et al., 1995). Therefore, D1 or

SC577 were each mixed with dFcct in a 1:1 molar ratio prior to crystallization. ITC results

presented in Chapter 3 show that the stoichiometry of the CbpA:pIgR interaction is 1:1, while the

R1 and/or R2:pIgR ratio is 2:1 (Luo et al., 2004). Consequently, D3-4 or SC607 were each

mixed with CbpA in a 1:1 molar ratio, and both refolded and insect cell-expressed D3-4 were

each mixed with R1 and R2 with a 1:1:1 molar ratio prior to cocrystallization.

Summary

In the absence of high-resolution structural information, previous electron microscopy studies,

mutagenesis results and binding data have been used to propose models for the relative

arrangements of pIgR and dIgA (including J chain) in SIgA (reviewed in (Norderhaug et al.,

1999b; Rojas and Apodaca, 2002)). Given the complexity of the interactions between, and the

flexibility within, the molecules in SIgA, many potential structural arrangements are possible.

By combining data from available literature and results from the studies presented in Chapters 2

and 4, two of the more simple but structurally accurate models are described below (Figure 5).

In monomeric IgA, tp appears to fold up against the Ca3 domain (Boehm et al., 1999),

however its position in dIgA is unknown. Since dIgA is arranged in an end-to-end orientation

with disulfide bonds between the tp penultimate cysteine residues either directly to each other or
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to J chain, it is possible that at least the tps that are covalently bound to each other extend away

from the Ca3 domains, toward the partner molecule (Figure 5). Alternatively, if the tps remain

folded against the C3 domains, the two IgA molecules would be overlapping, with J chain

between two of the Ca3 domains.

Inhibition studies with Fab fragments specific for IgA have shown that the Ca3, and

possibly Ca2, domains of dIgA are involved in noncovalent binding to pIgR (Geneste et al.,

1986). Peptide binding studies have further implicated two loops in the Ca3 domain in the

binding interaction (Hexham et al., 1999; White and Capra, 2002) (Chapter 1, Figure 5A).

Additionally, the fact that J chain is a required component in pIgs for binding to pIgR suggests

that J chain may also form part of the binding interface with D1. Therefore it is likely that D1 of

pIgR interacts through noncovalent interactions with one of the two dIgA Ca3 domains whose tp

is covalently bound to J chain (Figure 5).

The SPR based binding experiments described in Chapters 2 and 4 showed that D1 binds

to dIgA with an equilibrium dissociation constant of 300 nM (Hamburger et al., 2004) (Chapter

2), D1-3 binds with an equilibrium dissociation constant of 1 [iM, and D145 retains its ability to

bind to dIgA through both noncovalent and covalent interactions (Chapter 4). Together, these

results suggest that D2-3 do not contribute to the binding affinity of human pIgR for dIgA.

Similarly, D2-3 in rabbit (Deitcher and Mostov, 1986; Frutiger et al., 1986) and murine (Crottet

and Corthesy, 1999) pIgR are not necessary for high affinity noncovalent interaction with dIgA,

and chicken pIgR has no ortholog to the mammalian D2 (Wieland et al., 2004). Therefore, in

these species pIgR D2-3 are not expected to interact with dIgA (Figure 5A). However, contrary

to our results, others have observed that D2-3 are required for human pIgR expressed on the

surface of cultured cells to bind to and transcytose dIgA (Norderhaug et al., 1999a). It is difficult
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to reconcile the difference between the two findings. Although the surface expressed D145

retained the ability to bind to pIgM, it was not recognized by an antibody specific for D5

(Norderhaug et al., 1999a), indicating the protein might have been misfolded in a way that

artificially disrupted binding to dIgA, but not pIgM. However, bovine pIgR also utilizes D2-3,

although to a lesser extent than D1, for binding dIgA (Beale, 1988), suggesting that in certain

cases pIgR D2-3 might make additional contacts with dIgA, either through Fcca, J chain, or both

(Figure 5B).

In human SIgA, pIgR D5 is covalently linked to the Ca2 domain of the second IgA

molecule in dIgA (Fallgreen-Gebauer et al., 1993). Since the Ca2 and Ca3 domains are

arranged symmetrically in monomeric Fca (Herr et al., 2003) human pIgR D5 may bind to either

monomer in the second Fcct homodimer with similar preference (Figure 5A). However, because

of J chain, dIgA is asymmetric so in cases where D2-3 enhance binding between the two

molecules, those domains may interact with dIgA such that it would orient D5 to be sterically

closer to one of the two Fcca homodimers (Figure 5B).

The models presented here take into account currently available data and represent two

likely arrangements of dIgA and pIgR. However, to fully understand the detailed intermolecular

interactions in SIgA, a cocrystal structure of pIgR in complex with dFca (or dIgA) is necessary.
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Table 1. pIgR, Fca/[tR, dFca and CbpA protein expression constructs. The table shows the

name of the constructs; the system used for expression (bacteria, baculovirus infected insect cells

or mammalian CHO cells); the expression vectors used, the name of the signal sequence used to

direct the protein for secretion; the type and location (C- or N-terminal) of the affinity tag; the

protease cleave site present to remove the affinity tag; the residues in the mature proteins; the

approximate molecular weights of the proteins not taking into account potential glycosylation;

the number of N-linked carbohydrate sites (listed as zero for all constructs expressed in bacteria);

and the expression level of each protein in mg/L.
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Table 2. Crystallization trials for pIgR, dFca, CbpA and complexes. The table shows the

different crystallization condition tested for each protein and protein complex. The names of the

commercially available sparse matrix screens are listed, and the numbers in parentheses indicate

the number of conditions in that kit. Crystal Screen I, Crystal Screen II, Peg/Ion, Salt Rx and the

Index screens were purchased from Hampton Research; Cryo I, Cryo II, Wizard I, and Wizard II

were purchased from Emerald BioStructures; and the Cation, Anion, and the PHClear Suite

screens were purchased from Nextal.
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Figure 1. SDS-PAGE analysis of purified pIgR proteins. plgR Dl (lane 1), D1-3 (lane 2), D145

(lane 3), SC577 (lane 4), SC607 (lane 5), and D3-4 (lane 6) were purified from the supernatants

of baculovirus infected insect cells. Protein preparations were analyzed by SDS-PAGE prior to

crystallization trials. The purity of each protein was estimated to be over 95%. Dl (lane 1) runs

as a doublet due to partial glycosylation at the two N-linked carbohydrate sites.
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Figure 2. Size exclusion chromatography profiles of dFca protein preparations. (A) Small scale

coexpression of Fca-tp and J chain in baculovirus infected insect cells results in the secretion of

mainly monomeric Fca. (B) Large scale coexpression of Fca-tp and J chain using a different

viral stock results in mainly dFca and pFca. (C) pFca purified from the supernatants of CHO

cells cotransfected with Fca-tp and J chain, both under selection with MSX. (D) pFca purified

from the supernatants of CHO cells retransfected with J chain under Geneticin selection.

Positions of molecular weight standards are indicated with arrows.
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Figure 3. Biosensor analyses of monomeric and dimeric Fcc binding to pIgR. Sensorgrams

from binding experiments in which monomeric Fcct-tp (A) or dFca (B) were injected over plgR

SC607 immobilized on a biosensor chip at three different densities. The end of the injection is

indicated with an arrow.
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Figure 4. SDS-PAGE analysis of pIgR SC577 crystals. (A) Disk-shaped crystals (~120 [Lm in

diameter) of SC577 were grown by hanging drop vapor diffusion and photographed in the drop.

(B) Three to four crystals were removed from the drop, washed three times in the crystallization

solution and analyzed by SDS-PAGE: last wash (lane 1), SC577 crystals (lane 2), molecular

weight standards (lane 3) and SC577 protein used for the crystallization trials (lane 4).
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Figure 5. Putative models for the structure of SIgA. pIgR (red) Dl binds to the Ca3 domain,

and possibly Ca2 domain and J chain, in the first IgA molecule in dIgA. (A) If pIgR D2-3 do

not interact with, or contribute to, dIgA binding, D5 might interact with the Cat2 domain in the

second IgA molecule that is sterically more accessible. (B) If pIgR D2-3 interact with dIgA,

pIgR D5 might be oriented to interact with the Ca2 domain in the second IgA molecule that is

on the opposite side of dIgA.
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APPENDIX I

Expression and Characterization of a Native Retroviral Envelope Glycoprotein

Appendix I describes my efforts to try to express a soluble, trimeric form of the Moloney Murine

Leukemia Virus envelope glycoprotein for structural studies.
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Introduction

Enveloped viruses such as influenza and the human immunodeficiency virus (HIV) pose a great

risk to human health. Although some important differences exist in the way they invade target

cells, it is likely that different families of enveloped viruses use similar mechanisms. In each

case the entry process requires fusion of the viral and cellular membranes, a process that is

mediated by the interaction between a key viral surface glycoprotein, env, and a cellular

receptor.

Retroviral envelope glycoproteins are synthesized as fusion-incompetent single chain

precursors that are post-translationally cleaved by a cellular protease to yield the surface (SU)

and the transmembrane (TM) subunits. The SU subunit is responsible for receptor recognition

and binding. The ectodomain of TM contains a hydrophobic region, called the fusion peptide,

which inserts into the membrane of the target cell. This initiates fusion between the viral and

cellular membranes, allowing the virus to deposit its genetic information into the cytoplasm of

the target cell. TM also contains a transmembrane region that anchors env to the viral membrane

and a cytoplasmic region that can vary in size from just a few residues to well over a hundred.

Env is thought to exist as a trimer of the SU/TM heterodimer on the surface of virions [1-3].

To date, the best-characterized surface protein involved in viral membrane fusion is

hemagglutinin (HA) of the orthomyxovirus, influenza. Similar to retroviral env glycoproteins,

HA is synthesized as a precursor protein, HAO, which is subsequently proteolyzed into two

disulfide-bonded subunits, HA1 and HA2 [4, 5]. HA1 is responsible for binding to the cellular

receptor, sialic acid, and is functionally equivalent to the retroviral SU subunit. HA2 is

membrane bound and is responsible for mediating fusion, similar to the retroviral TM subunit.

On the surface of virus particles, HA is a trimer of HA1/HA2 heterodimers [6].
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The structure of the native HA revealed that HA2 forms a mostly a-helical stalk with the

HA1 trimer at the membrane distal end contributing to the stalk, but primarily forming three

globular domains that contain the receptor-binding domain. The length of the molecule is

approximately 135 A and the fusion peptide is buried in a pocket close to the base of HA [7].

These observations suggested that the protein must undergo major conformational changes for

the fusion peptide to reach the target membrane. During infection, HA1 binds sialic acid at the

plasma membrane, but unlike retroviruses, fusion does not occur at this point. Instead, the virus

particle is taken up into the target cell by endocytosis. As the pH drops within the endosome,

HA undergoes major, irreversible conformational changes, as revealed by the low-pH converted

form [8]. HAl is thought to dissociate from the complex, the amino-terminus of HA2 is

displaced 100 A and at least 36 residues are recruited to the viral membrane distal end of the

triple stranded coiled coil seen in the native structure. This liberates and propels the fusion

peptide into the host membrane by the "spring-loaded" mechanism [9], resulting in membrane

fusion and the release of the viral core into the cytoplasm.

Based on striking structural and functional similarities to influenza HA, a membrane

fusion model for HIV, and presumably other retroviruses, has been proposed [10]. The envelope

protein is initially in its native, or pre-fusogenic, state on the surface of virions. Once SU (gp120

in the case of HIV) binds the cellular receptor (CD4 and chemokine coreceptor) conformational

changes occur in SU that alter the SU/TM (gpl20/gp41) interactions. This leads to

conformational changes in the TM subunit resulting in the insertion of the fusion peptide into the

target cell membrane. The TM domain then resolves into a fusion-active trimer-of-hairpins

structure, in which the N-terminal region forms a trimeric coiled coil and the C-terminal region

packs into the grooves of the coiled coil in an anti-parallel orientation [11]. This structural
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rearrangement results in the apposition of the cellular and viral membranes and leads to

membrane fusion. The fusion process can be inhibited in a dominant negative fashion by the

addition of synthetic C and N peptides, corresponding to the C and N terminal regions of the

prehairpin (Figure 1).

There are many high resolution structures of the fusion-active state of the membrane

anchored ectodomain subunits, including the retroviral TMs: HIV-1 gp41, simian

immunodeficiency virus (SIV) gp41, Moloney Murine Leukemia Virus (Mo-MLV) Mo-55, and

human T cell leukemia virus (HTLV-1) gp21 [11-15]; the orthomyxovirus influenza HA [8, 16];

and the filovirus Ebola GP2 [17, 18]. Despite considerable sequence diversity among these

viruses, they all share a number of common features. They all contain an N-terminal

hydrophobic fusion peptide (not seen in the crystal structures), an adjacent coiled coil forming

region, a disulfide bonded loop, and a second heptad repeat containing region at the C-terminus.

In contrast to the many fusogenic TM structures, there is only a limited amount of

structural information about retroviral SU subunits. A monomeric HIV-1 gpl20 structure at 2.5

A resolution was solved, although the variable loops, V1, V2 and V3 were deleted and the

construct was truncated at both the N- and C-termini. The protein is in complex with a two

domain fragment of human CD4 and an Fab from a neutralizing antibody that blocks coreceptor

binding, thus it may represent a non-native conformation [19]. A model of trimeric gpl20 has

been proposed, although the structure has not yet been solved [20]. The monomeric receptor-

binding domain (RBD) of Friend MLV (Fr-MLV), which comprises approximately half of the

SU subunit, has also been solved to 2.0 A resolution [21]. A model for the trimeric packing of

the Fr-RBD was also proposed [22]. However, currently there are no structures of trimeric

retroviral SU/TM complexes. Therefore, the location of the fusion peptide, the contacts between
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the SU and TM subunits and the interactions between the three SU/TM complexes within the env

are unknown in the native state.

The availability of a high-resolution structure of a native envelope protein would provide

a better understanding of retroviral binding and entry. This information would help to validate

and complete the current model for viral membrane fusion. It may also have implications for

structure-based drug discovery, the development of gene therapy vectors with defined cellular

receptor specificity, and for the identification of new targets for viral entry inhibitors.

Ultimately we want to understand how human pathogenic retroviruses, such as HIV,

invade cells. However, we expect that all retroviruses utilize very similar, if not identical,

mechanisms to gain entry into target cells. Therefore, for technical reasons we chose to study

one of the simple retroviruses, Mo-MLV, as a model system. Mo-MLV is expected to be a better

candidate than HIV for structural studies for a number of reasons. For example, Mo-MLV is

smaller in size, less heavily glycosylated, and the SU/TM subunit association is more stable (due

to the disulfide bond) than in HIV.

In the case of Mo-MLV, the precursor gp85 is cleaved into the SU (gp70) and TM (p15E)

subunits that remain covalently associated via a labile disulfide bond [23]. During or shortly

after viral budding, pl5E is further processed by the viral protease (PR), which removes the C-

terminal 16 residues of the cytoplasmic tail, the R peptide [24, 25] (Figure 2). This cleavage is

responsible for increasing the fusogenic ability of env [26, 27].

Mo-MLV is the prototype of the mammalian C-type retrovirus group. The murine

viruses within this group are further classified according to their host range and superinfectivity

resistance, a phenomenon in which prior infection with a retrovirus blocks further infection of

the same cell by another retrovirus that uses the same receptor. Replication of Mo-MLV is
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restricted to cells of mouse or rat origin, so it is classified as an ecotropic virus. The cellular

receptor for ecotropic MLVs is the 14-pass transmembrane murine cationic amino acid

transporter, mCAT-1 [28-30]. As with most other retroviruses, receptor binding and membrane

fusion occur at the plasma membrane at neutral pH.

In order to better understand the mechanism that retroviruses utilize to invade target cells,

we used biophysical and biochemical methods to characterize the Mo-MLV envelope

glycoprotein in its native state. We used several different recombinant expression systems to try

to obtain milligram quantities of purified protein necessary for crystallization trials. We also

characterized the protein using analytical ultracentrifugation, circular dichroism and chemical

cross-linking.

Materials and Methods

Construction of Mo-Env expression vectors

pCL-Eco [31] was kindly provided by Harvey F. Lodish (Whitehead Institute for Biomedical

Research, MIT, Cambridge, MA). pCL-Eco, which contains the Mo-MLV env gene from strain

J02255 of the virus, was used as the PCR template to generate expression constructs. See Table

1 for construct details.

Expression and purification of Mo-Env in bacteria

Constructs designed for bacterial cell expression (Table 1) were transformed into E.coli

BL21(DE3)pLysS or AD494 cells (Novagen). Protein expression was induced with IPTG and

analyzed by SDS-PAGE. A1-233, the protein with the highest expression level, was refolded

from inclusion bodies and purified by Ni-NTA affinity followed by size exclusion

chromatography on a Superdex 200 26/60 gel filtration column (Amersham Biosciences).

Expression of Mo-Env in Drosophila cells
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Stable Drosophila cell lines expressing the Mo-MLV env were generated according to the

manufacturer's DES protocol (Invitrogen). Briefly, cells were cotransfected with one of the two

Mo-MLV env DNA constructs (Table 1) and the selection vector, pCoHYGO, using the calcium

phosphate transfection reagents included in the kit. Stable cells were selected with 300 [tg/mL

hygromycin-B. Supernatant was continuously harvested from cells transfected with the

pAc5.1/V5-HisA(env) construct, which utilizes the Ac5 promoter for constitutive expression of

the gene of interest. Recombinant protein expression from the cells transfected with the

pMT/BiP/V5-HisA(env) construct was induced with the addition of 500 jiM copper sulfate.

Supernatants were analyzed for protein expression by SDS-PAGE and western blotting.

Expression and purification of Mo-Env in baculovirus infected insect cells

Two different systems were used for protein expression in baculovirus infected insect cells. All

of the constructs in the pFastBacl vector (Table 1) were expressed in Sf9 cells using the Bac-to-

Bac Baculovirus Expression System according to the manufacturer's protocol (GibcoBRL, Life

Technologies). Briefly, recombinant bacmid DNA was isolated from DH1OBac cells

transformed with the recombinant pFastBacl vector, and used to transfect Sf9 cells.

Recombinant baculovirus was harvested from the supernatant several days after the transfection

and used to amplify the virus and to infect Sf9 cells for recombinant protein expression. The

four constructs in the pAcGP67B and pAcSecG2T transfer vectors were cotransfected with

linearized viral DNA (Baculogold, BD Biosciences) to generate recombinant baculovirus and the

proteins were expressed in High Five insect cells. Secreted env proteins were harvested from the

supernatants of infected cells, which were dialyzed against or buffer exchanged into Tris

buffered saline (TBS; 20 mM Tris pH 8.0, 150 mM NaCl) and purified by Ni-NTA affinity

(Qiagen) followed by size exclusion chromatography. Supernatants were also passed over an
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immunoaffinity column prepared by coupling a purified monoclonal a-SU antibody from the

supernatant of a rat hybridoma (83A25) [32] to cyanogen bromide activated sepharose 4B beads

(Pharmacia).

Expression of Mo-Env in yeast

To test yeast as an expression host, Mo-MLV env constructs were made for expression in Pichia

pastoris and Saccharomyces cerevisiae (Table 1). Pichia expression tests were performed

according to the manufacturer's instructions (EasySelect Pichia Expression Kit, Invitrogen).

Briefly, the Mo-MLV env genes were subcloned into the pPICZa expression vector in frame

with the a-factor hydrophobic secretion signal. Pichia pastoris strains X-33 and GS1 15(his4)

were transfected with the recombinant plasmid and protein expression was induced by the

addition of methanol. Protein secretion was monitored by incubation of the media with Ni-NTA

beads and analyzed by SDS-PAGE. The constructs for expression in S. cerevisiae (Table 1)

were subcloned into the p423Gall vector and cells were transformed with the plasmids but

expression was not tested.

Expression of Mo-Env proteins in mammalian cells

Stable mammalian cells were also generated to express the Mo-MLV env protein (Table 1).

293T cells were transiently transfected with full-length env constructs using the ProFection

mammalian transfection system according to the manufacturer's protocol (Promega). Protein

expression was analyzed 48 hours post-transfection by SDS-PAGE and western blotting. For the

expression of secreted proein, stable CHO-K1 and CHO lecR- 3.2.8.1 cells [33] were generated

as described [34]. Briefly, CHO cells were transfected with approximately 16 [tg of DNA and

stable colonies were selected with 100 p.M methionine sulphoximine (MSX). Supernatants

containing secreted protein were harvested and analyzed by SDS-PAGE and western blotting.
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Chemical cross-linking

Chemical cross-linking experiments were carried out using a modified version of a published

protocol [35]. Briefly, 6.7 fig of AC was incubated with 0.08, 0.8 or 4.0 mM concentrations of

ethylene glycolbis(succinimidylsuccinate) (EGS; Pierce) in 10 FtL reactions at room temperature

for 30 minutes. 0.6 [L of Tris-HC1 pH 7.4 was added to quench the reaction and incubated on

ice for an additional 20 minutes. The cross-linked products were analyzed by SDS-PAGE. The

same experiment was also performed with a constant concentration of 0.2 mM EGS and

increasing amounts of AC (3.3, 6.7 and 10 g). The cross-linked samples were analyzed by

SDS-PAGE and western blotting using a monoclonal a-PentaHis antibody (Qiagen).

Circular dichroism analyses and thermal denaturation

CD experiments were performed with an AVIV 62A DS spectrometer. Absorbance readings

from 190 to 250 nm were recorded on a 4.5 IM solution of AC in Hepes buffered saline (HBS;

20 mM Hepes pH 7.0, 150 mM NaCl) at 25 C. The thermal denaturation of AC (4.5 [LM in

HBS) was monitored at 220 nm from 1 to 99 °C in 2 °C increments.

Sedimentation velocity analytical ultracentrifugation

Sedimentation velocity analytical ultracentrifugation experiments were performed with a

Beckman Coulter Optima XL-1 analytical ultracentrifuge. Two solutions of ARBD (11.1 and

-31 M in TBS) were centrifuged at 36,000 rpm at 20 C, and two solutions of AC (2.3 FLM in

HBS and 2.9 FM in citrate buffered saline (CBS; 20 mM sodium citrate pH 5.6, 150 mM NaCl))

were centrifuged at 30,000 rpm at 20 C. Absorbance readings for ARBD and AC were

measured at 280 and 230 nm, respectively. The data were fit using the c(s) and c(M) analyses of

SEDFIT, which calculates the differential sedimentation coefficient distribution or molar mass

distribution, respectively, taking into account sample diffusion [36].
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Crystallization attempts

RBD, ARBD and AC were concentrated to approximately 28, 20 and 7 mg/mL, respectively, and

crystallization trials were set up using both the hanging drop and sitting drop vapor diffusion

methods. Commercially available sparse matrix crystallization solutions (Hampton and Emerald

BioStructures) as well as homemade grid screens were used.

Viral infectivity and inhibition assay

Mo-36 [37] (the Mo-MLV N peptide; D481-F515) and Mo-MLV C peptide (T536-E565)

were synthesized on a Perkin Elmer Model 431 peptide synthesizer. Both peptides had an

acetylated N terminus and C terminal amide. The peptides were purified by reverse-phase high-

performance liquid chromatography on a Vydac C18 column using a water-acetonitrile gradient

in the presence of 0.1% trifluoroacetic acid and lyophilized. a-Mo-92 [37] polyclonal antibodies

were purified from rabbit serum on a protein A column (Pierce).

293T cells were cotransfected with pCL-Eco [31] and pMX-IRES-GFP [38] to generate a

replication defective virus carrying the gene for GFP, Mo-GFP. 48 hours post-transfection, cell

supernatants containing Mo-GFP virions were harvested. To titer the virus, NIH/3T3 mouse

cells were then infected with increasing amounts of Mo-GFP in the presence of 4 [tg/mL

polybrene. Based in the viral titer, inhibition experiments were carried out with 4 ItL of Mo-

GFP in the presence of increasing concentrations of Mo-MLV C-peptide (0, 0.01, 0.1, 1, 10 and

50 ItM) or ac-Mo-92 antibodies (0, 1.6, 16, 32, 80 and 160 nM).

Results and Discussion

Structural studies of retroviral envelope proteins have been hindered in part because the

glycoprotein complexes are difficult to produce in high quantities, many are heavily glycosylated

and the instability of the SU/TM complexes often leads to dissociation of the two subunits. In
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order to obtain a soluble, trimeric form of the native Mo-MLV env, we made a series of

constructs for recombinant protein expression using a number of different expression systems

including bacteria, stably transfected Drosophila cells, baculovirus infected insect cells, yeast

and stable mammalian cells (Table 1).

Protein expression and purification in baculovirus infected insect cells

To allow for proper folding and processing to occur, baculovirus infected insect cells were used

to express the Mo-MLV env protein in its native state. The original construct contained the

native Mo-MLV hydrophobic signal sequence to direct the protein into the endoplasmic

reticulum, the complete gp70 (SU) subunit and the ectodomain of p15E (TM), terminating just

prior to the transmembrane anchoring domain resulting in secretion of the protein. Similar

constructs have been used to successfully express a stable, soluble, trimeric ectodomain of the

SIV gpl60 in insect cells using a baculovirus expression system [35], and HIV gp140 [39] in

mammalian cells.

Analyses of the supernatants of insect cells expressing the Mo-MLV env protein revealed

that cleavage between the SU/TM subunits was only approximately 50% efficient using the

baculovirus expression system (data not shown). Others have also noted that proteolytic

processing is sometimes inefficient in insect cells when the level of protein synthesis is high.

For example, HA cleavage is slow and inefficient when produced in insect cells using a

baculovirus expression system compared to when expressed in a vertebrate cell line. Similar

observations have been reported for other viral proteins such as the HIV-1 gpl60 ([40] and

references therein). The heterogeneity of the protein due to partial cleavage is expected to cause

difficulties with crystallization. In addition, after cleavage of the precursor, the Mo-MLV SU

and TM subunits remain linked through a labile disulfide bond. The majority of viral SU and
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TM proteins derived from mammalian cells migrate independently by SDS-PAGE even in the

absence of a reducing agent. If virions are pretreated with N-ethylmaleimide (NEM) they

migrate as a covalent complex [23]. It has been proposed that this phenomenon is caused by an

endogenous reducing agent in the Mo-MLV env, a free thiol from an unpaired cysteine, that can

cause disulfide rearrangement and lead to the loss of the SU/TM association. The NEM would

block the free thiol and prevent the disulfide rearrangement [22]. Regardless, in the absence of

NEM long-term storage conditions could lead to the loss of the covalent SU/TM association and

result in shedding, which would be disadvantageous in attempts to crystallize the protein.

Therefore, to stabilize the SU/TM complex and to avoid heterogeneity due to incomplete

cleavage or shedding, we eliminated the SU/TM cleavage site (Table 1). The cleavage

recognition site, RHKR, was mutated to RHAA using site directed mutagenesis. Expression of

these mutants (AC) resulted in no detectable cleavage between the two subunits (data not

shown). We expect this mutation to still represent the native state of the ectodomain for two

reasons. First, the 2.8 A resolution uncleaved influenza HAO structure as compared to the

cleaved HA structure showed mainly minor changes in the overall structure, and all of them were

centered around the cleavage site [41]. Second, uncleaved Mo-MLV env is still incorporated

into virions, although they are non-infectious [42].

To eliminate another source of potential heterogeneity among the secreted proteins, we

also made a number of mutants to minimize the number of the N-linked glycosylation sites. The

mature SU subunit of Mo-MLV contains seven N-linked oligosaccharides [43]. Mutagenesis

studies have revealed that when each glycosylation site is mutated individually, five of the seven

mutants produce viable and infectious virions. Mutations at positions 2 and 3 (A2 and A3,

respectively) result in a detectable phenotype. A2 is temperature sensitive while A3 is lethal to
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the virus. A triple mutant, A147, also results in viable virus [44]. Friend Murine Leukemia

Virus (Fr-MLV), a related ecotropic MLV, contains eight N-linked glycosylation sites. The Fr-

MLV A4 mutation is analogous to Mo-MLV A3, and is the only mutation to yield non-infectious

virions [45]. These studies indicate that the oligosaccharide at position 3 in Mo-MLV and the

corresponding one at position 4 in Fr-MLV may be sufficient for function.

To determine the minimum number of glycosylation sites required to retain full activity

of the Mo-MLV env, we constructed A14567, a mutant lacking all five glycosylation sites which

produced no phenotype when individually mutated [44]. The gene for this construct was made

by site-specific oligonucleotide-directed mutagenesis (Quickchange, Stratagene) in the

pcDNA1.1/Amp mammalian expression vector (Invitrogen). Wild type env and a A147 mutant

were also generated to use as controls (Table 1). To generate a high-titer, helper-free retrovirus

by transient transfection, the packaging cell line Anjou [46] was cotransfected with the

pcDNA1.1/Amp plasmid carrying the env gene and pMX-IRES-GFP, a vector that contains the

retroviral packaging signal and the gene for the green fluorescent protein (GFP) [38]. The

resulting replication deficient virus is capable of undergoing a single round of infection and

expresses GFP. NIH/3T3 mouse cells were infected and assayed for infection by fluorescence

activated cell sorting (FACS) by monitoring GFP expression. However, we were unable to

detect virions in the Anjou cell supernatants by western blotting and therefore could not test for

infectivity in NIH/3T3 cells. Moreover, the expression level of secreted A14567 was even lower

than for A147 in baculovirus infected insect cells, potentially indicating that the oligosaccharides

at positions 5 and 6 aid in protein folding and may be necessary. Therefore, overexpression of

A14567 was not pursued further.
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The amount of secreted protein in the supernatants of baculovirus infected insect cells

was very low with the original constructs (<0.5 mg/L), all of which contained the native Mo-

MLV env hydrophobic signal sequence. To increase expression and secretion levels, the Mo-

MLV secretion signal was replaced with the signal sequences of two secreted baculovirus

proteins, the ecdysteriod UDPglycosyltransferase (EGT) and the envelope glycoprotein gp67 for

baculovirus expression. This method increased expression of HIV-1 gpl20 6- to 20-fold over

using its native signal sequence [47]. To further optimize the chances of successfully

overexpressing the Mo-MLV env, we also made a number of constructs with different

combinations of truncation points, signal sequences, affinity tags, membrane anchors, intact

glycosylation sites and the presence or absence of the SU/TM cleavage site (Table 1). The four

best expressing proteins from baculovirus infected insect cells, RBD, ARBD, AC and A147C,

were overexpressed in large-scale infections. These 6xHis tagged proteins were purified by Ni-

NTA affinity and size exclusion chromatography to about 90% purity as determined by SDS-

PAGE analysis. Secreted insect ferritin, a minor contaminant, was consistently present in the

protein preparations of the lower expressing constructs ( 1 mg/L; ARBD and A147C) when

isolated from the supernatant of baculovirus infected insect cells. Attempts to further purify

these proteins with an immunoaffinity column prepared with a monoclonal a-SU antibody

isolated from the supernatant of a rat hybridoma (83A25) failed because the protein did not bind

to the column.

Protein expression in Drosophila S2 insect cells

The Mo-MLV ectodomain was also expressed in stably transfected cell lines derived from

Drosophila melanogaster, Schneider 2 (S2) cells (DES, Invitrogen). Two stable cell lines were

generated, each of them expressing the A147C glycosylation and cleavage mutant form of env
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with enhanced signal sequences (Table 1). One cell line was transfected with the pAc5.1/V5-

HisA(env) construct, which drives the constitutive expression of recombinant protein from the

Drosophila actin 5C (Ac5) promoter and the env protein contained the EGT signal sequence.

The second cell line was transfected with the pMT/BiP/V5-HisA(env) construct, which contains

the Drosophila BiP signal sequence and an inducible metallothionein (MT) promoter. Both

secreted proteins contained a C-terminal 6xHis tag, which was used for purification using Ni-

NTA resin (Qiagen) and detection by western blotting. Although both versions of the protein

were detected, the expression and secretion levels were very low (<0.5 mg/L), which was not

sufficient for purification of the quantity of protein necessary for biochemical characterization

and crystallization.

Protein expression and purification in bacterial cells

Mo-MLV env constructs (Table 1) were also expressed in E.coli BL21(DE3)pLysS and

AD494(DE3)pLysS cells (Novagen). AD494(DE3)pLysS is a thioredoxin thioreductase-

deficient strain with a mutation in the trxB gene, which allows disulfide bond formation and

proper folding for some proteins in the E.coli cytoplasm (Novagen). However, bacterial

expression of Mo-MLV env resulted in the production of insoluble protein localized to inclusion

bodies using both cell lines. The highest expressing construct, A1-233, was purified from

inclusion bodies and refolded. The refolded protein was completely aggregated and eluted from

a Superdex 200 26/60 gel filtration column in the void volume (data not shown).

Protein expression in yeast

Several Mo-MLV env constructs were also made to test expression in two yeast strains,

Pichia pastoris and Saccharomyces cerevisiae (Table 1). A147C and ARBD were transformed

into Pichia pastoris X-33 and GS115(his4) cells and protein expression was induced with the
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addition of methanol. Protein expression was not observed during analyses of the media by Ni-

NTA affinity and SDS-PAGE. After failure to detect protein expression with Pichia pastoris,

expression tests in S. cerevisiae were not pursued.

Protein expression in mammalian cells

Mammalian cells were also employed to overexpress the Mo-MLV env protein. Stably

transfected wild type chinese hamster ovary cells (CHO) K1 and CHO lecR- 3.2.8.1 cells [33], a

variant cell line which N-glycosylates with only simple oligosaccharides to decrease the

heterogeneity in glycosylation sometimes seen in wild type CHO cells, were generated (Table 1).

As with the other expression systems, very low expression levels were observed for all of the

constructs, regardless of the signal sequence used.

Biochemical and biophysical characterization

To determine if the Mo-MLV env ectodomain secreted by baculovirus infected insect

cells is a soluble, trimeric species we used gel filtration chromatography, chemical cross-linking

and sedimentation velocity experiments. ARBD, AC, and A147C, but not RBD, eluted from size

exclusion chromatography columns as multiple, overlapping peaks indicating the presence of

multiple species (Figure 3A). The peak fractions in the region expected to contain the trimeric

form of the env protein were pooled and used for further characterization. The oligomeric state

of the Mo-MLV env was investigated by chemical cross-linking (Figure 3B). Various

concentrations of AC were mixed with increasing concentrations of the cross-linking reagent,

EGS, and analyzed by SDS-PAGE. This method was used to show that the SIV gpl60 protein is

trimeric [35]. The results with AC, however, suggested there was a mixture of different

oligomeric states and aggregated protein present as a smear of high molecular weight bands were

observed rather than distinct bands corresponding to ordered oligomers.
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Sedimentation velocity analytical ultracentrifugation experiments were also performed to

investigate the oligomeric state of the Mo-MLV env protein. Two solutions of ARBD were

centrifuged at 36,000 rpm while sedimentation was monitored at 280 nm, whereas two solutions

of AC were centrifuged at 30,000 rpm and absorbance was measured at 230 nm. The data for

both experiments were fit using SEDFIT [36] to calculate the sedimentation coefficient, c(s), and

molar mass, c(M), distributions of each sample. Analyses of the sedimentation coefficient

distributions revealed the presence of a mixture of many different oligomeric species, primarily

aggregates for both ARBD and AC (Figures 4A-B), suggesting that the proteins are misfolded

and/or nonspecifically aggregated.

The stability of the protein was examined by thermal denaturation, monitoring circular

dichroism (CD). CD analyses were preformed on a 4.5 M solution of AC in HBS to detect

secondary structural elements. The absorbance scan from 190 to 250 nm showed the presence

of a mixture of secondary structural elements or possibly random coil (Figure 5A). A thermal

denaturation experiment failed to detect a melting transition between 1 and 99 °C (Figure 5B).

This further supports the hypothesis that the protein is in a partially folded or aggregated state

rather than in a stably folded, trimeric conformation.

Initial crystallization attempts of ARBD resulted in the crystallization of a minor (10%)

contaminant, secreted insect ferritin. Further crystallization trials with AC yielded microcrystals

that were too small to characterize. Optimization of the crystallization solutions and seeding

attempts did not improve the crystals. RBD did not yield any crystals.

Viral infectivity and inhibition assay

To determine if the mechanism used by Mo-MLV to invade target cells is similar to other

retroviruses, we established a viral infectivity and inhibition assay (Figure 6A). The HIV TM
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(gp41) contains two regions, the N and C peptides, which are transiently exposed after SU

(gp120) interacts with the cellular receptor and coreceptor. The N peptides form a trimeric

coiled coil and the C peptides pack into the hydrophobic grooves on the N core in an antiparallel

orientation to resolve into the fusion-active trimer of hairpin structure [11]. The gp41 transient

intermediate has been identified as an attractive target for inhibition [48]. The fusion process can

be inhibited in a dominant negative fashion by the addition of synthetic C or N peptides

(reviewed in [49]). To inhibit the infection of mouse NIH/3T3 cells by Mo-GFP, Mo-36 [37],

the functional equivalent of the N peptide and Mo-MLV C peptide were synthesized and purified

by reverse-phase HPLC. Antibodies raised against the Mo-MLV N/C core, Mo-92 [37], were

also purified to test these antibodies' ability to inhibit viral infection (Figure 6B). When Mo-

MLV C peptide (up to 50 tM concentration) or ct-Mo-92 antibodies (up to 160 nM

concentration) were added to NIH/3T3 cells in the presence of 4 [LL Mo-GFP, no inhibition of

infection was observed (Figure 6C-D).
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Table 1. Mo-MLV envelope expression constructs

Expression of the Mo-MLV env was tested in five different expression systems: bacteria, stably

transfected Drosophila cells, baculovirus infected insect cells, yeast and stably transfected

mammalian cells. The table shows the expression host, expression vector, presence or absence on

the SU/TM cleavage site recognition sequence, origin of the hydrophobic secretion signal,

presence of an affinity tag, presence of a cleavage site for the removal of the affinity tag or

another modification, the residues in the mature protein, the approximate molecular weight of the

mature protein not taking into account the potential glycosylation, the number of potential N-

linked glycosylation sites and the expression level in mg/L.
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Figure 1. Model for retroviral membrane fusion and its inhibition

Prior to exposure to the cellular receptor, the viral envelope protein is in its native state. Binding

of the viral SU subunit to the host receptor triggers major conformational changes in the TM

subunit causing the N-terminal fusion peptide to be exposed and inserted into the target

membrane, forming a transient prehairpin intermediate. The TM subunit N peptides, which form

a trimeric coiled coil, also get exposed and the C peptides pack into the hydrophobic grooves on

the N core in an antiparallel orientation. The prehairpin N and C peptide regions are vulnerable

to inhibition by the addition of exogenous N and C peptides in a dominant negative manner. In

the absence of inhibitors, the intermediate resolves into the fusion-active trimer of hairpins

structure, brining the two membranes together and allowing fusion to occur. Figure adapted

from [10].
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Figure 2. Schematic representation of the Mo-MLV full-length envelope protein

Mo-MLV is synthesized as a precursor protein, which undergoes post-translational modifications

and processing: The signal sequence (SS) is cleaved off after insertion into the endoplasmic

reticulum; seven N-linked oligosaccharides are added to the SU subunit (indicated by Y); a

cleavage between the SU and TM subunits exposes the fusion peptide (FP); the transmembrane

region (TM) anchors the protein to the lipid bilayer; and the R-peptide is removed during or

shortly after budding. Disulfide bonds are shown with yellow lines, hydrophobic regions are

shown with diagonal lines, and the shaded areas indicate regions of the MLVs for which X-ray

crystal structures are available.
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Figure 3. Gel-filtration and chemical cross-linking of Mo-MLV AC

(A) Gel filtration profile of AC (blue line) on a Superdex 200 16/60 column. Fractions that were

pooled and used for characterization are marked with a black line. Molecular weight standards

are shown in red.

(B) Chemical cross-linking of AC with various amounts of EGS as indicated by numbers above

the lanes. Western blot probed with PentaHis antibody (Qiagen) is shown on the left and

coomassie stained gel is shown on the right.
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Figure 4. Sedimentation velocity analytical ultracentrifugation of Mo-MLV ARBD and AC

(A) Sedimentation velocity analytical ultracentrifugation of ARBD was performed. Data were

collected at 20 0 C at 36,000 rpm and fit with SEDFIT [36].

(B) Sedimentation velocity analytical ultracentrifugation of AC at pH 5.6 and pH 7.0 are shown.

Data were collected at 20 TC at 30,000 rpm and fit with SEDFIT [36].
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Figure 5. Circular dichroism analyses and thermal denaturation of Mo-MLV AC

(A) CD spectrum of a 4.5 RM solution of AC in HBS was collected at 25 *C. A baseline

spectrum recorded from buffer alone was subtracted from the signal.

(B) Thermal melt of AC (4.5 tiM in HBS) is shown. CD signal was measured at 220 nm in 2 TC

increments from 1 C to 99 *C.
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Figure 6. Viral infectivity and inhibition

(A) Schematic representation of infectivity and inhibition assays. Human 293T cells were

cotransfected with pCL-Eco and pMX-IRES-GFP to generate replication deficient virions, Mo-

GFP. NIH/3T3 mouse cells were infected with Mo-GFP in the absence or presence of inhibitor.

Infected cells express GFP and can be analyzed by FACS.

(B) Schematic representation of the Mo-MLV TM subunit. Mo-36 (equivalent of the N peptide)

and the Mo-MLV C peptide are shown with the sequences specified.

(C) Infection of mouse NIH/3T3 cells with Mo-GFP. Percentage of infected cells is plotted

against the volume of virus added. Blue box indicates the amount of virus added to the viral

infection inhibition experiments in part (D), based on the viral titer.

(D) Results from individual viral infection inhibition experiments. Increasing concentrations of

Mo-MLV C peptide (blue) or an a-Mo-92 antibody (red) were added to NIH/3T3 cells at the

time of infection with 4 FL Mo-GFP based on the titer of the virus in part (C). Infection was

detected by FACS, monitoring for GFP expression. The percentage of infected cells is plotted

against the concentration of inhibitor added.
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APPENDIX II

Crystal Structure of a Secreted Insect Ferritin Reveals a Symmetrical Arrangement

of Heavy and Light Chains

Appendix II has been submitted for publication. This project started when yellow-tinted ferritin

crystals grew during crystallization trials of the Moloney Murine Leukemia virus envelope

glycoprotein (Appendix I). My contributions to this work include "purification" and

crystallization of ferritin, identification of the two subunits, isolation of the heavy and light chain

genes, collecting the first data set and writing part of the manuscript. Anthony West Jr. helped

me find the molecular replacement solution, did the structure refinement, collected the high-

resolution data set and wrote the manuscript. Zsuzsa Hamburger taught me how to handle and

freeze the crystals and we collected the initial data set together. Peter Hamburger contributed to

the mathematical discussion.
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Summary

Ferritins are iron storage proteins made of 24 subunits forming a hollow spherical shell.

Vertebrate ferritins contain varying ratios of H and L chains, however, known ferritin structures

include only one type of chain and have octahedral symmetry. Here we report the 1.9 A structure

of a secreted insect ferritin from Trichoplusia ni, which reveals equal numbers of H and L chains

arranged with tetrahedral symmetry. The H/L-chain interface includes complementary features

responsible for ordered assembly of the subunits. The H chain contains a ferroxidase active site

resembling that of vertebrate H chains with an endogenous, bound iron atom. The L chain lacks

the residues that form a putative iron core nucleation site in vertebrate L chains. Instead, a

possible nucleation site is observed at the L chain 3-fold pore. The structure also reveals inter-

and intra-subunit disulfide bonds, mostly in the extended N-terminal regions unique to insect

ferritins. The symmetrical arrangement of H and L chains and the disulfide crosslinks reflect

adaptations of insect ferritin to its role as a secreted protein.
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Introduction

Iron is an essential element in biological systems whose levels are strongly regulated to

ensure availability but prevent toxicity (Arosio and Levi, 2002). Key to this regulation are the

two stable oxidation states of iron. In the ferrous (Fe2+) state, iron is soluble and readily used, but

it is quickly oxidized under aerobic conditions, potentially producing harmful reactive species.

The ferric (Fe3+) ion resulting from oxidation has extremely low solubility under physiological

conditions, rendering it inaccessible for incorporation into metalloproteins. Ferritin, which

functions as a ferroxidase to control the transition between hydrated Fe2+ and insoluble Fe3+ and

provides a site for storage of Fe3+, represents a solution to this chemical dilemma that is utilized

by bacteria, fungi, plants, insects, and vertebrates (Harrison and Arosio, 1996).

Ferritin functions as a spherical assembly of one or more types of individual subunits. In

most cases, 24 subunits come together to form a hollow sphere with octahedral (O or 432)

symmetry (Arosio and Levi, 2002). Up to 4500 Fe3+ atoms can be stored in a mineralized form

inside the protein shell. Mammalian ferritins contain a variable mixture of two types of subunits:

heavy (H) and light (L) chains. The H subunit contains a ferroxidase center and the L chain

contains a site for nucleation of the mineral core. Ferritins isolated from different tissues contain

varying and characteristic ratios of H and L chains, thought to reflect tuning of ferritin function

for specific organs (Arosio and Levi, 2002).

An unusual property of ferritin is the existence of functional forms in both cytoplasmic

and vacuolar/extracellular environments. In bacteria and vertebrates, ferritin is predominantly a

cytoplasmic protein. However, a secreted form of ferritin is found in mammals, and serum

ferritin is a clinically important measure of iron stores (Harrison and Arosio, 1996). The

mechanism by which mammalian ferritin is secreted is unclear, since no conventional
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hydrophobic leader peptide sequence is present. A recent study provides evidence that cytosolic

ferritin can be directed to the secretory pathway through a regulated process (Ghosh et al., 2004).

Insect ferritins are primarily extracellular or vacuolar, and their sequences include recognizable

hydrophobic leader peptides (Nichol et al., 2002). An interesting contrast in iron regulation

between mammals and insects is provided by the roles of ferritin and transferrin. In mammals,

transferrin is the primary iron transport protein, and serum ferritin is an acute phase protein

whose concentrations increase dramatically during infection. In insects, secreted ferritin is a

major iron storage/transport molecule, while transferrin is strongly upregulated by infection

(Nichol et al., 2002).

Here we report the structure of a secreted ferritin from the cabbage looper/tiger moth

Trichoplusia ni (T. ni), which is the first structure of a secreted ferritin, and the first structure in

which two different subunit types are resolved. T. ni ferritin contains an equal number of H and

L chains arranged with tetrahedral (T or 32) symmetry, as compared with previous bacterial and

vertebrate ferritin structures, which have octahedral (O or 432) symmetry and only a single type

of resolved subunit. The tetrahedral symmetry arrangement of T. ni ferritin creates two distinct

types of 3-fold axis pores. The 3-fold pore made by the L chain subunits contains several

coordinated ions. The innermost of these, modeled as Fe3+, is a potential site for nucleation of the

iron core. The pore created by three H chain subunits is relatively open, providing for passage of

ions in and out of the ferritin cavity. The H chain ferroxidase sites of T. ni ferritin each contain a

single Fe3+ ion. The structure also reveals both intra- and inter-subunit disulfide bonds, consistent

with insect ferritin being a secreted protein.
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Results and Discussion

Isolation of Insect Ferritin Protein and Genes

Secreted ferritin was isolated from the supernatants of baculovirus-infected T. ni cells as a

contaminant during purification of an unrelated recombinant 6xHis-tagged protein on a Ni-

agarose column. The affinity of ferritin for the Ni-agarose may reflect binding of the Ni-NTA to

an iron-binding site. Crystallization trials of the recombinant protein yielded yellow-tinted

crystals in several different conditions, both with and without added divalent ions. The largest

crystals, which grew in 20% Jeffamine, 0.1 M Hepes (pH 7.5), were in space group C2 (a =

203.8 A, b = 146.6 A, c = 206.9 A, 3= 92.7°) with one complete ferritin shell per asymmetric

unit. Analysis of the crystals by SDS-PAGE under reducing conditions revealed the presence of

two bands of equal intensity migrating at 22 and 27 kDa rather than the 45 kDa expected for the

recombinant protein. N-terminal sequencing of the two bands and a BLAST search revealed

sequence similarity to insect ferritin H and L chains, but the sequence of the T. ni ferritin L chain

had not been previously determined and only a partial EST was available for the H chain. Using

the N-terminal protein sequence information, degenerate oligonucleotides were designed, and the

genes for the two subunits were isolated to obtain the sequence of the entire protein for use in the

crystallographic structure determination.

The derived amino acid sequences for the two T. ni ferritin chains are shown in

Supplementary Figures lA-lB. The smaller of the two chains (191 residues not including the

hydrophobic leader peptide) includes seven conserved residues that define the ferroxidase center

(Lawson et al., 1989) that are not present in the other chain (212 residues not including the

hydrophobic leader peptide). By analogy with vertebrate ferritin subunits, we refer to the insect

subunit containing the ferroxidase site as the H chain, although it is the smaller of the two T. ni
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subunits, and the subunit lacking the ferroxidase site as the L chain. Several other nomenclatures

have been used to designate insect ferritin subunits. The subunit containing the ferroxidase site

has been called the heavy chain homolog (HCH), the S (small) subunit, FER1, or Fersubl

(Nichol et al., 2002). The other subunit is known as the light chain homolog (LCH), the G

(glycosylated) subunit, Fer2LCH, or Fersub2. LCH is a misleading name for the non-ferroxidase

subunit because it is not more similar to vertebrate L than to vertebrate H chains (Nichol et al.,

2002).

The T. ni H chain shares a high level of sequence identity with previously reported

Lepidoptera sequences: Manduca sexta (84%), Galleria mellonella (83%), and Calpodes ethlius

(77%). The mature L chain sequence includes a potential N-linked glycosylation site (Asnll 15)

observed in other Lepidoptera L chains. The L chain sequence identity with other butterfly and

moth L chain sequences is also high: Manduca sexta (80%), Galleria mellonella (78%) and

Calpodes ethlius (70%). The T. ni H and L chains are related by only 22% sequence identity.

While the T. ni H chain has 30% sequence identity with the human H chain, the T. ni L chain has

low identity with both vertebrate H and L chains (20% with the human H and 17% with the horse

L chain).

Structure Determination

The structure of T. ni ferritin was solved at 3.1 A by molecular replacement using the bullfrog M

ferritin structure (PDB code 1MFR) (Ha et al., 1999) as a search model. Since the search model

contained 24 copies of one chain type, it was initially unclear whether the H and L chains in the

T. ni structure were randomly distributed or symmetrically arranged. Therefore, we repeated the

molecular replacement using a search model with tetrahedral symmetry (constructed from

1MFR) containing conserved H chain residues, which yielded a structure with 12 copies of two
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apparently distinct chains (Figures 1A-IB). Confirmation of this symmetric arrangement was

provided by an anomalous difference Fourier map (Figure 1C), which revealed 12 strong peaks

in the H chain ferroxidase sites but no significant peaks in the corresponding regions of the L

chains. A 1.9 A native data set was later collected from crystals grown in 20 mM Tris (pH 8.0),

150 mM NaCl at 40C (Table 1) and used for subsequent refinement.

H and L Chains are Packed in a Symmetrical Arrangement

Although vertebrate ferritins are composed of a mixture of H and L subunits, structures have

been determined only for recombinant ferritins made of a single chain type (amphibian H and L,

human H, horse L, and mouse L) (Granier et al., 2001; Ha et al., 1999; Hempstead et al., 1997;

Trikha et al., 1994), and for native ferritins modeled with a single chain type representing the

predominant chain (horse spleen ferritin (Granier, 1997)). Ferritins containing a single type of

subunit have octahedral (432) symmetry. When 24-mer shells are assembled from two different

chain types, the highest possible symmetry is tetrahedral, as seen in the T. ni ferritin crystal

structure. Another ferritin structure with tetrahedral symmetry was found for a dodecameric

ferritin from Listeria innocua (Ilari et al., 2000), although this ferritin includes 12 copies of a

single subunit (rather than 12 copies of a heterodimer), which form a spherical molecule with an

inner cavity capable of storing only 500 iron atoms (Bozzi et al., 1997) as compared with 4500

for conventional ferritins.

Octahedral symmetry ferritin shells contain three 4-fold symmetry axes, eight 3-fold

axes, and six 2-fold axes (not counting 2-fold axes along the 4-fold axes). A consequence of the

tetrahedral symmetry of the T. ni structure is that the 2-fold axes, about which homodimers of

ferritin subunits are arranged in an octahedral structure, are lost because the 2-fold symmetric

homodimers are replaced by heterodimers of H and L chains. Likewise, the exact 4-fold axes in
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octahedrally-symmetric ferritins become pseudo 4-folds or true 2-fold axes in tetrahedrally-

symmetric ferritin. The 3-fold axes remain, although there are two distinct local 3-folds: one

made of three H chains and one made of three L chains.

Folding Topology of Insect Ferritin H and L Chains

The overall structures of insect ferritin H and L subunits closely resemble the structures of

mammalian ferritin subunits - each contains a core of four helices (A, B, C, and D) and a fifth

helix (E) that is involved in intersubunit interactions near the pseudo 4-fold axis (Figure 2A). A

notable difference from mammalian ferritins is an approximate 10 or 20 residue N-terminal

extension in the T. ni H and L subunits, respectively. These extensions, which are unique to

secreted insect ferritins (Nichol et al., 2002), form extended loops that bridge adjacent subunits

on the outside of the ferritin shell (Figure 2A). Excluding the N-terminal extensions, the T. ni

ferritin H and L chains are structurally very similar to mammalian ferritins: the root mean square

(rms) deviation of the H chain Ca positions from those of the human H chain (PDB code 2FHA)

is 1.08 A (calculated for 160 residues) (Figure 2B). Other comparisons reveal comparable

degrees of similarity: rms deviations for the following pairs are all close to 1 A: insect L chain

versus human H chain (1.11 A for 159 Ca positions), insect H chain versus insect L chain (1.27

A for 156 Ca positions) (Figure 2C), insect L chain versus horse L chain (PDB code 1AEW)

(1.08 A for 159 Ca positions). The largest difference between the T. ni ferritin chains and

previously reported ferritin structures is in the L chain loop connecting helix B to helix C

(residues 99 to 121). In mammalian ferritin structures, short segments of the BC loops from

adjacent subunits form antiparallel, hydrogen bonded P-strands. In T. ni ferritin, the L chain BC

loop, which is longer than its mammalian counterpart, extends away from the subunit-subunit

interface, with the side chain of Tyrl 16 inserted into a hydrophobic region between helices A
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and C. This loop is relatively disordered, perhaps due to the N-linked glycosylation site at

Asnl 15 (although no ordered carbohydrate is observed in the crystal structure).

The H Chain Ferroxidase Site Contains a Bound Iron Atom

The initial difference Fourier and anomalous difference Fourier maps revealed that a dense ion

was bound at the H chain ferroxidase site in the T. ni ferritin (Figure 3). The ferroxidase center is

located within the hydrophilic core of the four-helix bundle of the H subunit and resembles those

of vertebrate ferritins. Divalent ions (mainly Cd+2 or Mg+2), which compete for the iron-binding

site, have been critical in the crystallization solutions for vertebrate ferritins. Hence, the only

ferritin structures containing native Fe3+ are of bacterial origin: the bacterioferritin from

Desulfovibrio desulfuricans (Coelho et al., 2001; Macedo et al., 2003) and the unusual

dodecomeric ferritin from Listeria innocua (Ilari et al., 2000). Because T. ni ferritin crystallized

in the absence of added divalent ions and showed a very strong anomalous signal (over 35 in

the 12-fold NCS-averaged map) at this site, we have modeled the ion as Fe3+. The ion-ligand

distances (Figure 3) are similar to those seen in other ferritin ferroxidase sites (Macedo et al.,

2003; Stillman et al., 2001). The low B value of the ion (19 A2 compared with 14-22 A2 for 29

Ca atoms within approximately 10 A of the ion) supports the Fe3+ assignment. The Fe3+ ion is

coordinated in an approximately octahedral geometry by Glu32, Glu67, His70 and two water

molecules with one coordination site unoccupied (Figure 3). In the ferroxidase centers of

previous ferritin structures, two metal ion-binding sites (called A and B) were observed

(Langlois d'Estaintot et al., 2004). The conserved residues that normally coordinate the two

metals in mammalian ferritins (Hempstead et al., 1997) are also conserved in insects

(Supplementary Figure 1A). The T. ni ferritin contains one metal ion at site A as observed in

previous ferritin structures that contain a single bound ion (Langlois d'Estaintot et al., 2004).
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Potential coordinating residues at the B site include Glu67 (shared with site A), Gln153, and

Glul 16. Although site B is unoccupied in the 1.9 A structure, a weak anomalous signal was seen

at this site in the 3.1 A resolution structure and in data sets from crystals that were soaked in

ferrous ammonium sulfate prior to cryopreservation (data not shown).

Inter- and Intra-Subunit Disulfide Bonds

In common with other secreted proteins but in contrast to cytoplasmic ferritins, the T. ni H and L

chains both contain intrasubunit disulfide bonds. In the H chain, a disulfide bond between

residues 21 and 130 connects the N-terminal region of helix A to the C-terminus of helix C. In

the L chain, a disulfide bond between residues 4 and 24 contributes to forming the relatively

compact N-terminal region of this subunit (Figure 2A). This domain is on the outside of the

ferritin shell, and it makes contact with an L chain related by a 3-fold. Specifically, the helical

portion on this domain contacts the N-terminal region of the adjacent subunit's C helix.

The T. ni ferritin also includes intersubunit disulfide bonds (Figure 2A) connecting H

chain residue 3 to residue 12 of a non-adjacent L chain (for example, subunits I and VIII of

Figure 1B). Although intersubunit disulfide bonds have not been observed in previous ferritin

structures, such crosslinking has been suggested to occur in artemin, a ferritin homolog in brine

shrimp (Chen et al., 2003). Confirmation of the crystallographically-observed interchain

disulfide bond is provided by SDS-PAGE analysis of T. ni ferritin: a single band of apparent

molecular weight -50 kDa is observed under non-reducing conditions as compared with two

bands of molecular weights of 22 kDa and 27 kDa under reducing conditions (data not shown).

With the exception of the ferritin sequences of Anopheles gambiae and Aedes aegypti, which

have divergent N termini, the three cysteines in the N-terminal region of the L chain and the

cysteines at positions 3, 21, and 130 in the H chain are conserved among insect ferritins (Nichol
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et al., 2002) (Supplementary Figures A-iB), suggesting that the pattern of disulfide bonds

observed in the T. ni ferritin structure is common to secreted insect ferritins. Others have

speculated that fatty acylation of the conserved cysteines in the N termini allows ferritin to be

retained in the endoplasmic reticulum (ER) and in vacuolar compartments (Nichol and Locke,

1999), which are major sites of localization of insect ferritin (Locke, 2003)). Although the T. ni

structure does not show evidence of fatty acylation, an alternative hypothesis is that the "knobs"

formed by the N-terminal extensions on the surface of insect ferritin bind an ER-resident

receptor.

The Major H and L Chain Interface and Subunit Assembly

Assembly of ferritin shells with octahedral symmetry is thought to begin with the formation of

homodimers of ferritin subunits (Ford et al., 1984; Hempstead et al., 1997). The corresponding

dimer for insect ferritin is the H/L heterodimer (molecules I and II from Figure B). If subunits

first associate at the I-II interface to exclusively form H/L heterodimers, and 12 dimers assemble,

the ferritin shell will contain a 1:1 ratio of H:L subunits. The T. ni ferritin structure suggests a

molecular basis for the specificity of heterodimer versus homodimer assembly. Examination of

the I/II interface suggests that two tryptophan residues contribute to the specificity of

heterodimer assembly (Figure 4). L chain Trp84 is located near the pseudo-2-fold axis relating

the H and L chains at the "heterogen" binding site (where bacterioferritins (Coelho et al., 2001)

and horse spleen ferritin (Michaux et al., 1996) bind hemes). The L chain Trp84 position is

usually an arginine in mammalian ferritins and a methionine in bacterioferritin, and both of these

residues play a role in heme binding (Frolow et al., 1994; Precigoux, 1994). The corresponding

residue on the T. ni H chain is Arg68, which makes cation-pi interactions (Gallivan and

Dougherty, 1999) with L chain residues Trp84 and Tyr53 and forms a salt bridge with L chain
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Asp81. The arginine at this position in mammalian ferritin usually forms an intra-helix salt

bridge with a glutamate at position i+4, but the L chain i+4 residue is an isoleucine in T. ni and

most other insects (Supplementary Figure B). Hence, the L chain intrasubunit salt bridge in

mammalian ferritins is replaced by an intersubunit salt bridge in insect ferritins. The second

tryptophan at the I/II interface of T. ni ferritin is H chain residue Trpl4. Together with H chain

IlelO and Ile15, this tryptophan forms a hydrophobic binding pocket for L chain Tyr65.

Computer models of insect H/H and L/L homodimers reveal that the described interactions

around both tryptophans are possible only in the heterodimeric H/L structure (data not shown),

contributing to the preferential formation of heterodimers from a mixture of H and L chains. The

conservation of these key residues (Supplementary Figures 1A-iB), in addition to the cysteines

involved in intersubunit disulfide bonds, suggests that T symmetry ferritin is common in the

lepidopteran, coleopteran, hemipteran, and, to a lesser extent, dipteran orders.

Although stepwise assembly beginning with H/L heterodimers assures a 12:12 mixture of

H and L chains, this is not enough to ensure tetrahedral symmetry because there are 186 distinct

shells that can be formed from 12 heterodimers (Appendix). To obtain a tetrahedral symmetry

shell, additional specificity must occur at either the 3-fold subunit-subunit interfaces (to create

two distinct 3-folds), at the pseudo 4-fold subunit-subunit interfaces, or at both. The significant

differences between the H and L chain 3-fold pores (see below) suggest that assembly may be

more favorable with three identical chains. Also, around the pseudo 4-fold axis a salt bridge

between adjacent H and L chains involving His174 (H) and Asp196 (L) may contribute to a

preference for alternating H and L subunits rather than forming a 4-fold with identical subunits.
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The 3-fold and Pseudo 4-fold Symmetry Axes

The hydrophilic channels located along the 3-fold axes of ferritins are believed to be the major

site of iron entrance into the central cavity (Arosio and Levi, 2002). The T. ni ferritin structure

contains two significantly different types of 3-fold pores. The pores formed from H chains are

relatively open and contain a number of ordered water molecules, while the pores formed by

adjacent L chains contain several coordinated ions. Three peaks in the electron density map are

observed along the L chain 3-fold pore (Figure 5A). The middle peak is the strongest, and the

corresponding ion is fully coordinated by the side chains of Glnl61 and Glu164 from the three

adjacent L chains. Previous ferritin structures have also contained ions along the 3-fold pores,

although these ions were partially or fully hydrated (Granier et al., 2003; Langlois d'Estaintot et

al., 2004). The outermost peak is a hydrated ion coordinated by Glu164 and potentially His144.

The innermost peak is a partially hydrated ion and is coordinated by the side chains of the three

symmetry-related Glu165 residues in the 3-fold pore.

Along the pseudo 4-fold axis, the E helices of two H and two L chains form a

hydrophobic interface without any large cavities or bound ions. Beneath the polar surface

residues (H chain His174 and L chain Asp196) at the pseudo 4-fold, two hydrophobic layers

consisting of L chain Leul99 and H chain Leul77 and, more inward, L chain Val203 and H

chain Ile 181, make it unlikely for ions to permeate along this axis.

Possible L Chain Ferrihydrite Nucleation Site at the 3-fold Pore

L chain is thought to assist formation of the iron core by providing a nucleation site on the inside

of the ferritin shell. For mammalian L chains this nucleation site has been proposed to consist of

a cluster of four glutamates directed into the cavity (Chasteen and Harrison, 1999). A high-

resolution structure of mouse L chain ferritin has revealed details of this site: four cadmium ions
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are coordinated by Glu57, Glu60, Glu61 and Glu64 (Granier et al., 2003). These glutamates are

not conserved in bacterial or insect ferritins, and the corresponding residues in the T. ni L chain

are Lys78, Asp81, Glu82, and Ser85. The side chain of Asp81 points away from the other three

residues and is involved in a salt bridge to H chain residue Arg68. We observed no non-protein

electron density in this region, further suggesting that these residues are unlikely to provide a

ferrihydrite nucleation site.

There is a possible ferrihydrite nucleation site on the inside of the ferritin shell at the L

chain 3-fold pore, where we observed an ion coordinated by Glu165 (Figures 5A-5B). We

modeled this peak as an Fe3+ ion because it showed a strong anomalous peak in the original 3.1 A

resolution data set, while we assigned the two outer peaks as Ca2+ ions due to their weak

anomalous signals. Additional density in Fo-Fc and anomalous difference Fourier maps around

the Fe3+ ion suggest the presence of other metal ions and/or water molecules (data not shown),

however the density is not sufficiently strong to model more ions. Ordered water molecules and a

small cluster of metal ions were also observed at the analogous site in the horse L chain

structure, although in this case the ions were thought to derive from the crystallization solution

(Hempstead et al., 1997). In addition to the presence of metal ions near the T. ni L chain 3-fold

pore, the region surrounding the pore seems particularly suited for serving as the ferrihydrite

nucleation site. The surface around the pore is highly charged: the inner surface within 12 A of

the 3-fold axis is covered by 12 negatively-charged residues (Glu165, Glu166, Glu169 and

Asp 170 from each of the three L chains) (Figure 5B).

Mathematical Basis of Tetrahedral Symmetry

An equal number of H and L chains can be assembled into ferritin shells in 113,048 distinct

configurations (Appendix). We consider two questions: what is unique about the T symmetry
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arrangement found in T. ni ferritin, and is this the only conceivable symmetrical arrangement?

Two types of subunits could potentially be assembled into ferritin shells with point groups T, D4

(requiring a 16:8 subunit ratio), D 3, D2, C4, C3, C2 or C,. Besides T being the largest proper

subgroup of O, T symmetry has another unique property: only with the tetrahedral arrangement

will each of the 12 subunits (of both types) always be in the same environment. A closely related

property is that the T configuration is the only perfect 2-coloring of a polyhedron representing

ferritin (see Appendix). A coloring of a polyhedron is 'perfect' if each symmetry operation of the

underlying polyhedron causes a permutation of the colors. The molecular consequence is that

this is the only arrangement in which each interface surface of each subunit will always contact

one type of subunit (e.g., the I-II interface is always heteromeric and the I-III interface is always

homomeric). For all other arrangements, there will be at least one class of interface (e.g., the I-II

interface of H chains) that joins subunits of the same type at one position of the ferritin shell

while joining different types elsewhere.

Conclusions

The structure of the T. ni secreted ferritin reveals, for the first time in a ferritin structure, the

molecular basis by which two different subunits are assembled into a ferritin shell. The T. ni

structure contains 12 H and 12 L chains arranged with tetrahedral symmetry. An advantage of

ferritin with two subunits arranged with tetrahedral symmetry, versus two subunits arranged

randomly, could be a greater tendency to crystallize. For example, we observed that T. ni ferritin

formed crystals readily - during storage in a saline buffer and as a minor contaminant during

crystallization trials of an unrelated protein. The tendency of native T. ni ferritin to crystallize

may reflect a general property of secreted insect ferritin. Crystals of insect ferritin have been

observed in vivo (Locke and Leung, 1984), and crystallization appears to assist in the formation
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of protein storage granules in fat bodies of insects (Locke, 2003). For example, crystals of

secreted ferritin are found in the storage granules of the premetamorphic fat body of Calpodes

ethlius (Larsen, 1976).

The existence of homopolymeric ferritins in bacteria and the structural similarity of H

and L chains in eukaryotes strongly suggest that the earliest ferritins were homomeric. The

presence of heteromeric ferritins in animals suggests that there is an adaptive value in altering

ferritin function by mixing two types of subunits. The random mixture of H and L subunits in

vertebrate ferritin compared to the symmetrical arrangement in insect ferritin may be a reflection

of the localization of these proteins. Vertebrate ferritin is principally cytoplasmic, and the ability

to vary the ferritin H/L ratio in different cell types permits ferritin function to be tuned to

different tissues (Arosio and Levi, 2002). For secreted insect ferritins that enter a common

extracellular space, this regulatory mechanism would not be applicable. What might be the

adaptive value of a non-random arrangement of subunits? If a particular subunit arrangement

creates a favorable feature (e.g., a specialized pore), then a symmetric configuration would

ensure that all assembled shells contained the maximum number of these features. As an

example of an activity that depends on the specific arrangement of subunits, one study showed

that the redox activity of recombinant human ferritin heteropolymers reached a maximum in

molecules that contained a 1:1 ratio of H:L chains, which was suggested to be a result of specific

interactions at the H/L interfaces (Johnson et al., 1999). In addition to the distinct H and L 3-fold

pores, the tetrahedral arrangement in T. ni ferritin also permits all of the subunits to be involved

in intersubunit disulfide bonds increasing the stability of the ferritin shell. Further studies will be

required to fully understand how the structural features of insect ferritin relate to its function as a

secreted protein.
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Experimental Procedures

Purification and Identification of T. ni Ferritin

Secreted ferritin was harvested from supernatants of baculovirus-infected T. ni (Tn5-B 1-4, High

Five) cells, exchanged into 20 mM Tris (pH 8.0), 0.3 M NaCI and subjected to Ni-NTA

chromatography (Ni-NTA Superflow, Qiagen). Protein from a 250 mM imidazole elution was

further purified by gel filtration chromatography on a Superdex 200 column (Amersham

Biosciences). The H and L chains were resolved by SDS-PAGE and transferred to PVDF

membrane. The bands were excised and sequenced by automated Edman degradation, yielding

the sequences ADTCYNDVALDC (L chain) and TQCNVNPVQIP (H chain).

Isolation of Ferritin H and L Chain cDNAs

mRNA was prepared from baculovirus-infected T. ni cells using the QuickPrepTM mRNA

Purification Kit (Amersham Biosciences). cDNA was generated from the mRNA with murine

reverse transcriptase and random hexadeoxyribonucleotides (Amersham Biosciences).

Degenerate 5' primers were designed based on the N-terminal protein sequences and a 3' primer

was designed based on a partial EST sequence of the T. ni H chain (accession code CF258131).

A 3' poly dT oligonucleotide was used for the L chain. DNA fragments were amplified by PCR

with Taq DNA polymerase (Boehringer Mannheim) and cloned into pCR®2.1- TOPO

(Invitrogen) and sequenced with M13 forward and reverse primers.

Crystallization, Data Collection, and Processing

Initial crystals (space group C2; one 24-mer per asymmetric unit) of "as isolated" T. ni ferritin

were grown at 18 C in hanging drops containing 20% v/v Jeffamine M-600, 0.1 M Hepes (pH

7.5), and flash frozen in 30% v/v Jeffamine M-600, 0.1 M Hepes (pH 7.5). Data were collected

at -150°C to 3.1 A resolution at the Stanford Synchrotron Radiation Laboratory beamline 9.1
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with X=0.95369 A. Large crystals of T. ni ferritin also appeared after several months at 4 °C in

the gel filtration column elution buffer (20 mM Tris [pH 8.0], 150 mM NaCl, 0.05% sodium

azide). These crystals were transferred stepwise into 2.6 M sodium malonate (pH 7.0), prior to

flash cooling and data were collected at -150°C to 1.9 A resolution at the Advanced Light Source

beamline 8.2.2 with X=1.1 A. Data were processed and scaled with DENZO and SCALEPACK

(Otwinowski and Minor, 1997).

Structure Solution and Refinement

The structure was determined by molecular replacement using AMoRE (Navaza, 1994) and a

polyglycine version of the 2.8 A structure of bullfrog M(H) ferritin (PDB code 1MFR (Ha et al.,

1999)) as a search model. The R value of the initial molecular replacement model was 49.3%.

The assignment of H and L chains was determined by repeating the molecular replacement with

a tetrahedral symmetry model of 1MFR (polyglycine model except the conserved H chain

ferroxidase residues were retained). Rebuilding was performed using the program O (Jones et al.,

1991) with maps calculated by solvent flattening, histogram matching, and 12-fold non-

crystallographic symmetry (NCS) averaging using the program DM in the CCP4 suite

(Collaborative Computational Project, 1994). Anisotropy and bulk solvent corrections were

applied, and the model was refined with 12-fold NCS constraints and individual temperature (B)

factors using the program CNS (Briinger et al., 1998). The NCS constraints were retained since

nearly all subunit-subunit contacts should obey the NCS (except those at crystal contacts). The

final model (1/12 of the asymmetric unit) contains residues 1 to 212 of the L chain and 1 to 191

of the H chain, 375 water molecules, 2 Fe3+ ions, and 2 Ca2+ ions. The average B factors for the

H chain, L chain, and water molecules are 25.9, 29.8, and 39.1 A2, respectively. The ferroxidase

site Fe3+ has a B factor of 18.9 A2. The L chain pore ions were modeled as two Ca2+ ions (with B
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factors of 18.5 and 63.9 A 2) and an Fe3+ ion (with a B factor of 34.0 A2 and occupancy of 0.78).

Buried surface areas were calculated using a 1.4 A probe using CNS. Figures were generated

with MOLSCRIPT (Kraulis, 1991), BOBSCRIPT (Esnouf, 1999), and Raster3D (Merritt and

Bacon, 1997).
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Appendix

Calculation of the number of distinct arrangements of 12 H and 12 L subunits

This calculation is equivalent to finding the number of ways of 2-coloring a polyhedron with 24

faces and octahedral symmetry. We have modeled ferritin as a pentagonal icositetrahedron

(Figure 1B); it has previously been modeled as a "split" rhombic dodecahedron (Hempstead et

al., 1997), where each face is bisected by a line parallel to one pair of its edges, in such a way

that each edge meets a single bisector. These two models have identical symmetries, and are

therefore interchangeable for our purposes. Two colorings are considered the same if one can be

obtained from the other via some rotation of the polyhedron. This calculation can be performed

using the P61lya-Burnside method of enumeration (based on an extension of the Cauchy-

Frobenius lemma). The lemma, as applied in our case, states that the average number of fixed

elements (colorings left unchanged by a rotation) of a group (O) acting on a set (of all possible

colorings) is equal to the number of orbits (distinct colorings taking rotations into account). This

results in the following expression (see Table 2) for the number of distinct arrangements (Gilbert

and Nicholson, 2004)

)24 + 9( +6+ 8(4+ 6(3)] =113,048

The calculation can be understood as follows: if we do not allow the polyhedron to rotate,

then we have 12 = 1212 = 2,704,156 different colorings. Many of these are only rotations of

each other; in fact, if one considers a coloring with no symmetry at all (one which looks different

after any non-identity rotation), then it will be counted 24 different times. Colorings with

212



symmetry, however, are going to be counted fewer times. Hence, 1/24th of (12 is almost

correct, but we need to add back terms for symmetrical colorings.

To account for the symmetrical colorings, for each rotation we will count the number of

colorings that are fixed by that rotation (i.e., that look the same after rotation). For a rotation

about a particular 3-fold, the 24 faces divide into 8 groups of 3 faces related by the rotation. In

this case, symmetrical colorings are those in which each group of 3 faces has a single color.

Since there are an equal number of faces of both colors, there are (4) different symmetrical

arrangements for this rotation. There are 8 distinct 3-fold rotations, so we need to add this term 8

times. Similar terms need to be added for rotations about 2-fold and 4-fold axes. By the end, we

have counted every coloring 24 different times, so we need to divide by that number to get our

final answer.

Formally, the Burnside-Cauchy-Frobenius lemma can be stated as follows (Gilbert and

Nicholson, 2004). Let G be a group that acts on the elements of a set X. For each g E G, let Fix g

= {x E X I g(x) = x}, the set of elements of X left fixed by g. If N is the number of orbits of X

under a group G, then

S gGFix gl

(where IGI = number of elements of G). When applied to our case (Table 2) we have

Z 2,713,152
N = 113,048

101 24

Table 2. Colorings of a pentagonal icositetrahedron with octahedral symmetry
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The number of distinct ways of assembling 12 heterodimers is calculated in a similar

manner. Without considering rotations, there are 212 distinct colorings, with asymmetric

colorings counted 24 different times. For symmetric colorings we find that 24 colorings are fixed

by a given rotation around a degree 3 axis, 23 colorings are fixed by a 90° rotation around a

degree 4 axis, 26 colorings are fixed by 180° rotation around a degree 4 axis, and that no

colorings are fixed by rotations about the 2-fold axes. Thus the number of distinct arrangements

of heterodimers is

24(212 +8 24 +6.23 + 326)=186
24

Perfect Coloring

214

Type of element, gi, Number of

of the octahedral Number, s, of colorings left fixed

group Order of gi such elements by gi, IFix giI s IFix gil

Identity 1 1 (24 24

90 ° rotation 4 9 12 12

120° rotation 3 8 ( 8(4)

180° rotation 2 6 (3) 6

101 = 24 = 2,713,152



When considering the different ways that a polyhedron could be colored, perfect coloring is

defined as when each symmetry operation causes a permutation of the colors. In other words,

perfect coloring means when each symmetry operator of the underlying polyhedron is applied,

all faces of a particular color are rotated onto a single color, which could be the same or different

(Cromwell, 1997). Consider the 113,048 different ways that a 24 sided polyhedron representing

ferritin (e.g., the O symmetry pentagonal icositetrahedron shown in Figure B) could be colored

with 12 green and 12 blue faces. Of these possibilities, the only one with perfect coloring is the

one with T symmetry.

Sketch of proof that there is only one perfect 2-coloring of the O symmetry pentagonal

tetraicosahedron

Consider three adjacent faces related by a 3-fold axis: if two faces are colored blue, and the third

face is green, then a rotation about this axis will take one blue face to blue and the other blue

face to green. Hence, perfect coloring requires the three adjacent faces to have the same color.

This is true of all eight "trimers". Now consider a 90° rotation about a 4-fold axis. Two adjacent

trimers related by this rotation have either the same or different colors. If they have the same

color, perfect coloring requires a set of four trimers related by rotations about this 4-fold to have

the same color. Consider a perpendicular 4-fold: two adjacent trimers related by this 4-fold have

already been assigned the same color, hence the other two trimers related by this 4-fold also must

have this color. Continuing in this manner, we see that all eight trimers would be required to

have the same color - this is not a 2-coloring. Therefore, two adjacent trimers related by a 90°

rotation about a 4-fold axis must have different colors. Considering the three 4-fold axes, this
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alternating coloring completely determines the coloring: it is the T symmetry coloring depicted

in Figure 1B.

Proposition: For a 2-colored polyhedron with identical faces, consider the edges of the polygon

that makes up each face. A 2-coloring is perfect if and only if each type of edge always joins

faces of the same color or always joins faces with opposite colors.

Sketch of Proof

Consider a perfect 2-coloring. Taking any two adjacent faces, the edge between these faces either

joins the same color or different colors. A symmetry operation will either leave the colors of

these faces unchanged or reverse them. In either case the edge will still join faces of the same

color or different colors. This proves the "if" part of the proposition. Consider a non-perfect 2-

coloring. There is a symmetry operation that leaves some faces the same color, while reversing

the colors of other faces. For this symmetry operation, we have two sets of faces: "reversing"

faces and "non-reversing" faces. Choose an edge joining a reversing face to a non-reversing face.

Before the symmetry operation, this edge joins faces of either the same color or different colors;

after the operation the edge joins faces in the other manner.
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Atomic coordinates and structure factors will be deposited in the Protein Data Bank. The
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Table 1. Data Collection and Refinement Statistics

Space group
Unit cell (A)
Data collection

Resolution (A)
Number of observations
Unique reflections

% Complete*
I/oI

Rmerge(%)t
Refinement

Resolution (A)
Reflections in working set IFI>O
Reflections in test set IFI>O

Rcryst (%)

Rfree (%)
Number of non-hydrogen atoms

Protein (403 residues) §

Water

Other (2 Fe+ 3, 2 Ca+ 2)

Model geometry
Rmsd bond length (A)
Rmsd angles (deg)

Ramachandran plot
Most favored region (%)
Additional allowed region (%)
Generously allowed region (%)
Disallowed region (%)

C2
203.8, 146.6, 206.9; P = 92.7 

30.0-1.90 (1.97-1.90)
875,805

463,465
97.0 (98.7)
11.7 (2.2)

6.5 (34.4)

20.0-1.90
440,103
23,175

18.9

19.4

3,225

375

4

0.009
1.26

91.7

8.3

0.0
0.0

Values in parentheses indicate the high-resolution shells. *Complete is the number of
independent reflections/total theoretical number. tRmerge ()= (Il(i) - <I(h)>llE(i)), where l(i) is
the ith observation of the intensity of the hkl reflection and <I> is the mean intensity from

multiple measurements of the h,k,l reflection. RC,,st (F) = ~hIFob(h)l - IFcaic(h)II ]hlFo b(h)l,
where IFotb(h)l and IFa,,,,(h)l are the observed and calculated structure factor amplitudes for the
h,k,l reflection. Rfee is calculated over reflections in a test set not included in atomic refinement.
§Number of atoms in strict NCS refinement.
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Figure Legends

Figure 1. Structure of Secreted T. ni Ferritin Reveals Symmetric Arrangement of H and L

chains.

(A) Ribbon diagram showing the H (green) and L (blue) chains. Native Fe3+ ions at the

ferroxidase sites are shown as red spheres.

(B) Schematic diagram illustrating the tetrahedral symmetry of insect ferritin. Each face of this

pentagonal icositetrahedron represents a subunit. The total buried surface areas at the subunit-

subunit interfaces are: I/II (heterodimer) 3250 A2, I/III (H chain trimer) 1690 A2, I/VI (pseudo 4-

fold) 1250 A2, I/VII (pseudo 4-fold) 1525 A2, II/VII (L chain trimer) 2560 A2.

(C) Stereoview of a 4 A anomalous difference Fourier map (not NCS averaged; contoured at 3

a). Each of the 12 peaks results from an iron atom bound at the ferroxidase site in a ferritin H

subunit. When this map is contoured at a lower level additional peaks appear along the L chain

3-fold pores, but not in the L chain four helix bundle. The superimposed chiral, non-regular

icosahedron whose 12 vertices correspond to the peaks in the anomalous difference Fourier map

is the simplest polyhedron with exact T symmetry.

Figure 2. Structures of T. ni Ferritin H and L Chains.

(A) Ribbon diagrams of the H (green) and L (blue and light blue) subunits. The Fe3 + ion at the

ferroxidase site is shown in red. Also shown are the approximate locations of the 3-fold axes

(blue and green triangles) and the pseudo 4-fold axes (black ovals). Disulfide-bonded cysteines

are shown in yellow in ball-and-stick representation. The N-terminal region of each subunit

extends on the outside of the ferritin shell and forms a disulfide bond with a non-adjacent subunit

of the opposite type. Helices A-E are labeled in green for the H chain and in blue for the L chain.
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(B) Stereoview of a superposition of the T. ni ferritin H chain (green) with the human ferritin H

chain (magenta, PDB accession code 2FHA). Rms deviation for the superposition is 1.08 A

calculated for 160 Ca atoms.

(C) Stereoview of a superposition of the T. ni ferritin H (green) and L (blue) chains. The rms

deviation value for the superposition is 1.27 A calculated for 156 Ca atoms.

Figure 3. Stereoview of a Close Up of the H Chain Ferroxidase Site.

Residues at or near the Fe3" binding site are shown in ball-and-stick representation. The Fe3" ion

is shown as a dark red sphere and the two water molecules are shown as small red spheres.

Coordinating side chains and their distances (A) are shown.

Figure 4. Packing of the Major H/L Interface.

Residues involved in key intersubunit interactions are shown in ball-and-stick representation.

The H and L chains are colored green and blue, respectively. Hydrogen bonds and salt bridges

are shown as dashed lines. The location of the pseudo 2-fold is shown as an open oval.

Figure 5. Close Up of the L Chain 3-fold Pore.

(A) A side view of the L chain 3-fold pore shown with the inside of the shell at the bottom. A 12-

fold NCS-averaged annealed omit Fo-Fc electron density map (cyan mesh) is contoured at 8o.

The NCS-averaged anomalous Fourier map (red mesh) is contoured at 13o. The Fo-Fc electron

density was calculated excluding the coordinates of the ions coordinates. The top two ions (cyan)

were modeled as Ca2*, while the lower ion (red) was assigned as Fe3", based in part on the

stronger anomalous signal at the Fe3+ location.
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(B) The L chain 3-fold pore viewed from the inside of the shell. A large cluster of negatively

charged residues line the inner surface near the 3-fold axis.

Supplementary Figure 1. Sequence Alignment of Insect H and L Chains.

(A) Sequence alignment of insect ferritin H chains. Residues at the ferroxidase center are

highlighted in yellow. Cysteines involved in disulfide bonds are shown in red.

(B) Sequence alignment of insect ferritin L chains. Cysteine residues involved in disulfide bonds

are shown in red and asparagines with potential N-linked oligosaccharides are shown in blue.

Pairs of cysteines in disulfide bonds are marked with symbols (* for L chain 4 and L chain 24, #

for L chain 12 and H chain 3, and @ for H chain 21 and H chain 130).
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chains.
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Figure 3. Stereoview of a Close Up of the H Chain Ferroxidase Site.
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Figure 4. Packing of the Major H/L Interface.
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Figure 5. Close Up of the L Chain 3-fold Pore.
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Trichoplusia ni H chain
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Leptinotarsa decemlineata
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Leptinotarsa decemlineata
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Leptinotarsa decemlineata
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Leptinotarsa decemlineai
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Leptinotarsa decemlineata:
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

: TQCNVN PVQIPK DWITMHRSCRNSMRQQIQMEVGASLQYLAM
: TQCHVN PVNIQR EWITMHRSCRDSMRRQIQMEVGASLQYLAM
: TQCTVN PVNIPK EWITMQRPCRDSMRRQIQMEVAASLQYLAM
: TQCNVN PVTIPT DWITMTSGCRTSVRHQIQMEVAASLQYLAM
: E IECRGE NVNVPT DWLDMQQFCVSSVRNQIEEELKAAMQYMAM
: A LECSYK ELDIPK DWIDMEKACVKKMRAQVEDELKAAMQYMAM
: DFKCSLA VPEITK WVDMKDACIKGMRNQIQEEINASYQYLAM
: QNANDRCSIDMDDTLEKVEWKTMHSNCTLEVKDQIKMEYNAAMIYLSL
: QVT DTDAPSSTDEWNYMNRSCSAKLQDQINKEFDAAIFYMQY
: QEQTVGATDNYQWDSVDDQCLAALHRQINKEFDASIIYLKY

: GAHFSKDVVNRPGFAQLFFDAASEEREHAMKLIEYLLMRGELTNDVSS
: GAHFSKDKINRPGFAKLFFDAAGEEREHAMKLIEYLLMRGELTNDVTS
: GAHFSKDTINRPGFAKLFFDAGSEERGHAMKLIEYLLMRGELTSDVTS
: GAHFSRDGINRPGFAKLFFDASSEERGHALKLIEYLLMRGELTSNISS
: GAHFSKDIVNRPGFAKMFFEAASEERQHAIKLISYLLMRGELTSKVSE
: GAHFSKDTVNRPGFAEIFFKSASEERERAIKLISYLLMRGELTSKVSS
: GAYFSRDTVNRPGFAEHFFKAAKEEREHGSKLVEYLSMRGQLTEGVSD
: GVHFSRDFVNRPGFAKFFFESASEERQRAIKLIEYLSMRGESVTDIAK
: GAYFAQYQVNLPGFEKFFFNAASEEREHGMKLIEYALMRGQKPIDRNT
: AAYFAQEKINLPGFEKFFFHAAABEREHGIKLIEYALMRGKAPAD KH

: L LQVRP PTRSSWK GGVEALEHALSMESDVTKSIRNVIKACEDD
: L IQVRA PQRNKWE GGVDALEHALKMESDVTKSIRTVIKACEDD
: L IQIRP PERKSWS SGVEALEHAVKMESDVTKSIRTVISDCESD
: L ITIRP PERKSWE SGQEALEHALRMETAVTKSIKNVIVNCEHD
: L IRSRK LVPQKTYWD SGVEALKDALNLEASVTKKIRKVIKNCEED
: L IK RN LMPSQTTWT NGVSALKDALKLEASVTRKIRDVIKVCEEA
: L INVPT V AKQEWT DGAAALSDALDLEIKVTKSIRKLIQTCENK
: L VKLDPETMPGMASVSLNGKEALEKALQQEVLVTNNILKVMKACENE
: FSLNFANPAARVDAEQGSVALTALKAALAKEQEVTKSIRELIKICEED
: FKLNYDHEV PTVTT GESALETALQKEVEVTKSIRGVIKACEDG

: SEFN DYHLVDYLTGDFLEEQYKGQRDLAGKASTLKKLMDRH
: PEFN DYHLVDYLTGEFLEEQYKGQRDLAGKASTLKKMLDRN
: PNFN DYHLVDYLTGEFLEEQYKGQRDLAGKASTLKKMMDRH
: REANGRDDNDYHLVDYLTGEFLDEQYKGQRDLAGKAATLKKMMDRH
: S FN DYHIVDYLTGDFLTEQYQGQRDIAGKVSTLEKLKVKH
: KSFN DYHLVDYLSGDFLGEQYQGQRDIAGKISTLEKMTEKH
: P YN HYHLVDYLTGVYLEEQLHGQRELAGKLTTLKKMMDTN
: EVKDAAWTLPNDYHLVDWLTAEFLDEQYKGQRDIAGKLSTLLKMGSSN
: HN DYHLVDYLTGEFLEEQHQGQRDLAGKITMLSKLLRTN
: SN DFHLADYLTGEYLDEQHKGQRELAEKIATLKKMKKSA

EALGEFIFDKKLLGIDV
SALGEFIFDKKLMGMDI
ASLGEFIFDKKLLGIDV
SALGEFIFDKRLLGMDI
GALGEFLFDKKLLNGEL
GALGEWLFDKKLLKGEL
GELGEFLFDKTL
YHLGEFLFDKKLLSNEA
PKLGEFMFDKQNM
PKLGEFLFDKNHM

42

90

133

174

191

Supplemental Figure 1A. Sequence alignment of insect H chains
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Trichoplusia ni L chain
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

Trichoplusia ni
Manduca sexta
Galleria mellonella
Calpodes ethlius
Apriona germari
Drosophila melanogaster
Nilaparvata lugens
Anopheles gambiae
Aedes aegypti

: ADTCYNDVALDCGITSNSLALPRCNAVYGEYGSHGNVATELQA
: ADTCYQDVSLDCSQVSNSLTLPNCNAVYAEYGHHGNVAKEMQA
: EDACYNDVSLQCAQASNNLGLAHCNSIYGEYGRHGNVATEMQA
: DVCYQDASMECGLASNSLELSNCNAVYGNYGRHGNVASEMQA
: QVEDHLSKSCYNDIDTICKHSKLSPKDSYCSAKYGGIN KVQEGLQK
: KD DEYCQNTVITACSTSAFS GNSICNARFAGIDH IEPEIQS
: IKPDAEKGACVKSVANFCHATEQ KISDCNAQYSGF HH VHSDLQQ
: TDLSANDCEINVE ECSPTYSSF LSRSGKT VENDLKQ
: DNNNSTVSFT AQFSSIAH IGNDLQT

: YAKLHLERSYDYLLSAAYFNNYQTNRAGFSKLFKKLSDEAWSKTIDIIK
: YAALHLERSYEYLLSSSYFNNYQTNRAGFSKLFRKLSDDAWEKTIDLIK
: YANLHLERSYEYLLSAAYFNNYQTNRDGFSKLFKKLSDQAWEKTIELIK
: YANLHIERSYQYLLSPAFFDNYNTNRKGFSALFKKLSDHAWSKSIELIQ
: FVNDHFTLSFHYLLMATHFDNYNKNRPGFEKLFRGLSDDTWEDGIELIK
: YINANLAKSYDYLLLATHFNSYQKNRPGFQKLYQGLSDRSFEDSIALIK
: FVVTQIEQSFQFLTMATKFGNYKSNRPGFEKLYRGLADKSWEESIELMK
: YTSQLVDKSFHFLMMSSAFNKHSLDRPGFEKLYRKISDKAWADAIELIK
: FTSQQLEKSFDFLLLAFNFDQYMIDRPGFEKLYRKISDKAWEDTEKLIK

: HVTKRGDKMNFD QHSTMK TERKNYTA ENHELEALAKALDTQ
: HITMRGDEMNFA QRSTQKSVDRKNYTV ELHELESLAKALDTQ
: HITKRGGEMNFA QRSTQQPAERKNYTV ELHELESLAKALDTQ
: HITKRGDVMDFS RRSTLASTA KNVTL ELPELESLAHALDTQ
: YITKRGGEMNFN LQ SYFNETKP DA ELYEYYAVGKALDNH
: QVTRRGGIVDFN TRHESSGSVSTKRVTL EVDELHSLALALDTE
: YITSRGYDVNLK IT PYQYSNNTKSLTEISTYPEISELKSLSMALEMN
: YQSRRGSFGHL VQPS KGENYGKVL DVQELSSLQFALDYE
: YQSKRGLTVELKDLKGGVIGQLNDGKVGGSISLLDSDEISSLKVALGYE

: KELAERAFYIHREATR NSQ H LH DPEIAQYLEEEFIEDHA
: KELAERAFFIHREATR NSQ H LH DPEVAQYLEEEFIEDHA
: KEIAERAFYIHREATR NSQ H LH DPEVAQYLEEEFIEDHS
: KEMAERAFYIHREATR NSQ K TH DPEIAQYLEEEFVEYQA
: KKLALEAFEVQKEAAN KAK D YH DPEITSYLEHEFMHKHR
: KQLATGATHVHSRATH ATD A ER DPELAHYFEENFLGKQA
: KFLAEKAHDIHHNAAS HSKDK PH DAEVMSFLENTYVHKHA
: KQMAKEAHAIHRKISHAHSKAGSNGSDDVYHYDPDAAHYLDENIIEYQS
: KILAEESHHIHKKISHAHDNKA TY DPDVAHFLDEEIIEYQS

: EKIRTLAGHTSDLKKFITANNGHDLSLALYVFDEYLQKTV
: KTIRNLAGHTTDLKRFVSGDNGQDLSLALYVFDEYLQKTV
: KTIRELAGHTTDLKSFITVNNGQDKSLAFYLFDEYLQKTV
: KVIRDLAGHTTDLKKFVVSNKGQDLSLALYLFDEYLQKSV
: DIVK LAGYTSDLNKIL DGPDSSLSLYLFDEYLQKQ
: ESVRKLSGYANDLAKLM KVPDPSLSVYLFDEYLQKQ
: DTIRTLTGHVNDLHK ITQTRGVDANLATFMFDEFLLKA
: GVVRDLAGYVHNLKHFTSAKHAAN DLGNHVFDEFLAKVE
: GTIRKLTGYIYNLDSIIKEDKTKD LGIHMFDEYLDKVE

43

92

133

172

212

Supplemental Figure 18B. Sequence alignment of insect L chains
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APPENDIX III

Steric Accessibility of the HIV- 1 gp41 N-Trimer Region

Appendix III has been accepted for publication in the Journal of Biological Chemistry. I started

this project in Peter Kim's lab at MIT. My contribution to this work includes coming up with the

initial ideas for the study, cloning and expressing most of the proteins, performing the initial

syncytia assays and assisting in the editing of the manuscript. The initial viral infectivity assays

were done by Heng Chhay in the Kim lab. After the Kim lab closed, a former postdoc from the

Kim lab, Michael Kay, finished the project in his lab at the University of Utah in Salt Lake City.

Michael Kay's contribution includes supervising the research done in his lab, data analysis and

writing the manuscript. The viral assays, binding studies, Ub data collection, and the proteolysis

and precipitation studies were carried out by Brett Welch. Sunghwan Kim did the syncytia

assays, expression of IQN36, refolding and characterization of BPTI, and performing the

extended linker studies.
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STERIC ACCESSIBILITY OF THE HIV-1 gp4l N-TRIMER REGION

Agnes E. Hamburger* t*, Sunghwan Kimt", Brett D. Welcht", and Michael S. Kayo

From the Department of Biochemistry, University of Utah School of Medicine, Salt Lake

City, UT, 84132 and *Department of Biology, 31 Ames Street, Room 68-132, Massachusetts

Institute of Technology, Cambridge MA 02139

Running Title: Steric Accessibility of the HIV-1 gp41 N-trimer Region

*Current Address: Department of Biology, 114-96, California Institute of Technology,

Pasadena, CA 91125
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Medical Drive, Salt Lake City, Utah 84132, Tel. 801-585-5021; Fax 801-581-7959; E-mail:

kay@biochem.utah.edu

During HIV entry, gp41 undergoes a series of conformational changes that induce

membrane fusion. Immediately prior to fusion, gp41 exists in a pre-hairpin intermediate, in

which the N-peptide and C-peptide regions of gp41 are exposed. Rearrangement of this

intermediate into a six-helix bundle composed of a trimeric coiled coil from the N-peptide

region (N-trimer) surrounded by three peptides from the C-peptide region provides the

driving force for membrane fusion, while prevention of six-helix bundle formation inhibits

viral entry. Because of its central role in mediating viral entry, the N-trimer region of gp4l
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is a key vaccine target. Extensive efforts to discover potent and broadly neutralizing Abs

against the N-trimer region have, thus far, been unsuccessful.

In this study, we attach a potent C-peptide inhibitor that binds to the N-trimer region

to cargo proteins of various sizes to examine the steric accessibility of the N-trimer during

fusion. These inhibitors show a progressive loss of potency with increasing cargo size.

Extension of the cargo/C-peptide linker partially restores inhibitory potency. These results

demonstrate that HIV defends its critical hairpin-forming machinery by steric exclusion of

large proteins and may explain the current dearth of neutralizing Abs against the N-trimer.

In contrast, previous results suggest the C-peptide region is freely accessible during fusion,

demonstrating that the N- and C- peptide regions are in structurally distinct environments.

Based on these results, we also propose new strategies for the generation of neutralizing

Abs that overcome this steric block.

HIV entry is mediated by the viral envelope (Env) glycoprotein. Env is initially produced as

gpl60, which is proteolytically cleaved into non-covalently associated transmembrane (gp41)

and surface (gpl20) subunits. gpl20 is primarily involved in recognition of cellular receptors,

while gp41 is anchored in the viral membrane and mediates membrane fusion. The gp41

ectodomain contains two helical heptad repeat sequences (N- and C-peptide regions) (1,2).

Peptides corresponding to these helical regions (N- and C-peptides) are dominant-negative

inhibitors of HIV membrane fusion (2,3). Isolated N- and C-peptides form a six-helix bundle

(trimer-of-hairpins) when mixed in solution (4-6). In this structure, three N-peptides form a

central parallel trimeric coiled coil (N-trimer) surrounded by three anti-parallel C-peptides that

nestle between neighboring N-peptides.
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Based largely on these inhibitory and structural data, a working model of HIV-1 membrane

fusion has been proposed (Fig. 1) (3,5). Initial interaction of Env with its target cell occurs via

gpl20 binding to CD4 and a coreceptor (typically CCR5 or CXCR4). This binding induces a

series of large conformational changes in gpl20, which are propagated to gp41 via the gp41-

gp120 interface. At this stage, gp41 transiently adopts an extended "prehairpin intermediate"

conformation that bridges both the viral and cellular membranes. This state is believed to persist

for at least 15 min (3,7,8), but eventually collapses into a trimer-of-hairpins structure, which

pulls both membranes into tight apposition and induces membrane fusion (Fig. 1).

In this model, the prehairpin intermediate exposes the isolated N-trimer, while the C-peptide

region exists in an unknown and possibly unstructured conformation remote from the N-trimer

(3). At this stage, the prehairpin intermediate is vulnerable to binding of exogenous N- and C-

peptides. Binding of these peptide inhibitors denies access of the endogenous N- or C-peptide

regions to their appropriate intramolecular partner, thwarting hairpin formation and membrane

fusion. This model predicts that any molecule that binds to the prehairpin intermediate and

disrupts association of the N- and C-peptides will inhibit membrane fusion and has been

successfully applied to the development of several potent entry inhibitors (9-11).

Additionally, the gp41 prehairpin intermediate has several promising features as an

inhibitory target (12). Peptide mimics of the N-trimer region have been structurally characterized

at high resolution (4-6). The interface between the N- and C-peptides is highly conserved among

diverse HIV strains of both lab-adapted and clinical isolates (9). The N-trimer also presents a

long (>100 A), deep groove with an extensive binding surface (4-6). These special properties

have led many groups to search for Abs that can disrupt this interface (reviewed in (13)).

C-peptide Inhibitors
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Several peptide fusion inhibitors derived from the N- and C-peptide regions of gp41 have

been described (2,3,12,14-16). The most potent are peptides derived from the C-peptide region

(e.g., C34, DP178/T20, T1249), which have low nM IC50's against viral entry in cell-cell fusion

(syncytia formation) and viral infectivity assays (reviewed in (17)). Several mutations leading to

T-20 resistance have been mapped to the N-peptide region of gp41 (18), providing strong

support that the N-trimer is the primary target of C-peptide inhibitors.

gp41 N-trimer as a vaccine target

As demonstrated by the efficacy of C-peptide inhibitors, the N-trimer region of gp41 is a

very attractive candidate for vaccine efforts. Many such efforts have been undertaken using

various peptide mimics of the N-trimer region (e.g., N-peptide, 5-helix, IZN36, and N35cCG-N13

(17,19-21)). These efforts have produced a large number of Abs with specific and high affinity

binding to their targets, but weak and/or narrow neutralizing activity in standard viral entry and

spread assays. Interestingly, some of these anti-N-trimer Abs can inhibit fusion if bound to a

temperature-arrested intermediate fusion state (19) or in the presence of soluble CD4 (sCD4)

(21). Currently, there are only two reported anti-gp41 Abs that exhibit potent and broadly

neutralizing activity, 2F5 and 4E10, which bind just outside the C-terminal border of the C-

peptide region, an area with uncertain structure (reviewed in (22)).

In this study, we test the hypothesis that the N-trimer of gp41 is sterically restricted in the

prehairpin intermediate, which may explain the current dearth of broadly neutralizing Abs

against this target (Fig. 1). All of the known fusion inhibitors that target this structure (e.g., C34,

T-20, T-1249, D-peptides) are small (<40 residue) peptides and could circumvent such a steric

block. We have constructed fusions of a well characterized C-peptide inhibitor (C34) to a series

of protein cargoes of varying sizes to determine if such a steric block exists and, if so, to define
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its size cutoff. Our results demonstrate that C-peptide fusion proteins lose inhibitory potency

with increasing size and that the N-trimer region of gp41 is likely to be poorly accessible to

proteins as large as Abs. These results have important implications for gp41 vaccine design as

well as for the production of second-generation C-peptide entry inhibitors. This steric restriction

also helps to better define the conformation of the pre-hairpin intermediate.

Materials and Methods

Reagents

Plasmids were obtained from the following sources: pET vectors (Novagen), pMAL-c2G

(NEB), pEBB-HXB2 and pEBB-JRFL (gifts from B. Chen) (23). Reverse phase HPLC (RP-

HPLC) was performed using a C18 column (Vydac). All Ni affinity purifications used His-Select

HC Nickel Affinity Gel (Sigma) or His-Select HC Nickel Magnetic Resin (Sigma). The NIH

AIDS Research and Reference Reagent Program provided the following reagents: pNL4-

3.Luc.R-E- (N. Landau), HeLa-CD4-LTR-B3-gal cells (M. Emerman), HOS-CD4-fusin cells (N.

Landau).

Protein Expression Purification, and Characterization

C37-H6 (C37), derived from the HXB2 Env sequence, was expressed and purified as

previously described (9). Proteins used in this study were Bovine Pancreatic Trypsin Inhibitor

(BPTI), Human Ubiquitin (Ub), Sperm Whale Myoglobin (Mb), enhanced Green Fluorescent

Protein (GFP, from Clontech), and E. coli Maltose Binding Protein (MBP, from NEB). Linker

sequences were Ser4Gly2 for BPTI-C37, Ub-C37, and GFP-C37 and Ser5Gly2 for Mb-C37 and

MBP-C37 (linker sequences are slightly different for cloning reasons). The extended linker

constructs had the following linker sequences: SSS(GGGS)3SSSGG (MBP1-C37) and
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SSS(GGGS)3S(GGGS)3SSSGG (MBP2-C37). The DNA encoding each protein was cloned into

the following plamsids: pET9a (for BPTI-C37, Ub-C37, Mb-C37, and GFP-C37), pET20b (for

BPTI-H6, Ub-H6, Mb-H6, and GFP-H6); pMAL-c2G (for MBP-H6, MBP-C37, MBP1-C37, and

MBP2-C37). Proteins were expressed in BL21(DE3)pLysS (Novagen) for pET9a and pET20b

vectors and XL1-Blue (Stratagene) for pMal-c2G vectors. All proteins have C-terminal His-tags

(His6) and were purified using Ni affinity chromatography.

BPTI required refolding after expression for correct formation of disulfide bonds. Briefly,

after Ni affinity purification, BPTI-C37-H6 and BPTI-H6 were reduced with 100 mM 13-

mercaptoethanol at pH 8 and dialysed into 5% acetic acid. The proteins were air oxidized in the

presence of a 1:10 ratio of oxidized:reduced glutathione at pH 8, 4C for 24 h. The correctly

folded proteins were isolated using RP-HPLC and were confirmed by near-UV circular

dichroism (Aviv 62DS) and measurement of trypsin inhibiting activity as previously described

(24).

Cys-Gly-Gly-Asp-IZN36 (10) was cloned into pET14b and expressed in BL21(DE3)pLysS.

IZN36 was purified from inclusion bodies (solubilized in 6 M GuHCl) using Ni affinity

chromatography. The protein was then dialyzed into 5% acetic acid and purified by RP-HPLC.

This material was reduced with TCEP (Pierce) and biotinylated at its unique Cys residue using

Biotin-HPDP (Pierce). After biotinylation, the His-tag was removed by thrombin cleavage

(Novagen) and the cleaved product was purified by RP-HPLC. The sequence of the final product

is:

GSHMCGGDIKKEIEAIKKEQEAIKKKIEAIEKEISGIVQQQNNLLRAIEAQQHLLQLTVWG

IKQLQARIL.
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All protein masses were confirmed by MALDI or electrospray MS (U. of Utah Core Facility).

All proteins were judged >98% pure by SDS-PAGE. Protein concentrations were measured by

UV absorbance at 280 nm (25).

Surface Plasmon Resonance (SPR) Analysis

Binding experiments were performed using a Biacore 2000 optical biosensor (U. of Utah

Protein Interaction Core Facility) equipped with research-grade CM5 sensor chips (Biacore). A

standard coupling protocol was employed to immobilize streptavidin (SA, Pierce) (26).

Biotinylated IZN36 was captured on a SA surface, and free SA surfaces served as references.

Binding analysis of C37 and C37-fusion proteins was performed at 250C with a data

collection rate of 2.5 Hz. The binding buffer (PBS (Gibco) + 0.005% P20 detergent (Biacore) + 1

mg/mL BSA (fraction V, Fisher)) was prepared, vacuum filtered, and degassed immediately

prior to use. Stock solutions of C37, C37-fusion proteins, and corresponding control proteins

(without C37) were prepared in binding buffer at 100 nM. Protein binding was analyzed by

injecting samples for 1 min over the IZN36 and reference surfaces using KINJECT at a flow rate

of 50-100 yL/min. The dissociations were monitored for 3 min. The IZN36 surfaces were

completely regenerated using one 3 s pulse of 6 M guanidine-HCl or three 6 s pulses of 0.1%

SDS.

Data from the reference flow cells were subtracted to remove systematic artifacts that

occurred in all flow cells (27). The data were normalized to the highest point in the response

curve to facilitate comparison. Binding at one concentration was analyzed using a 1:1 binding

model in CLAMP (28) assuming enough information from the curvature of the responses to

determine the approximate kinetic parameters for the reactions (29).
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Cell-Cell Fusion and Viral Infectivity Assay

Cell-cell fusion was monitored as previously described (30). Briefly, HXB2 Env expressing

CHO cells (gift from M. Krieger (31)) were mixed with HeLa-CD4-LTR-Beta-gal cells in the

presence of inhibitors for 20 h at 37C. Syncytia were stained with X-gal (Invitrogen) and

counted.

Viral infectivity was measured as previously described (9). Briefly, pseudotyped viruses

were produced by co-transfecting 293T cells using Fugene (Roche) with pNL4-3.Luc.R-E- and

either pEBB-HXB2 or pEBB-JRFL. After 36-48 h, viral supernatants were collected and sterile

filtered. HXB2 or JRFL pseudotyped virus was added to HOS-CD4-fusin or HOS-CD4-CCR5

cells, respectively, in the presence of inhibitors. HXB2 assays included 20 g/mL DEAE-dextran

(23). After 12 h, virus and inhibitor were removed and replaced with fresh media. Cells were

lysed 40-44 h after infection using Glo Lysis buffer (Promega), and luciferase activity was

measured using Bright-Glo (Promega). IC50 values for both assays were calculated by fitting data

to the equation, y = k/(l+ [inhibitor]/IC,,), where y = normalized number of syncytia or

luciferase activity and k = scaling constant (k = 1 for syncytia assay and is floated for viral

infectivity assay, see Fig. 2B legend).

Assays for Inhibitor Proteolysis and Precipitation

C37 fusion inhibitors were incubated in tissue culture media (DMEM + 10% fetal bovine

serum, Invitrogen) at 37C for 20 h. Proteins were purified from the media by 1 h incubation at

RT with magnetic Ni affinity beads. The resin was washed 3x with PBS and proteins were eluted

by boiling in LDS sample buffer (Invitrogen). Eluted samples were separated by SDS-PAGE and

visualized with SimplyBlue stain (Invitrogen). Unpurified media samples were analysed before

and after centrifugation (10 min. at 18,000x g) by Western blot using polyclonal rabbit anti-His-
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tag Ab (Abcam) and SuperSignal West Pico substrate (Pierce), as well as visually analysed for

precipitate.

RESULTS

Production of Fusion Proteins

To test for steric constraints in accessing the gp41 N-trimer region, we have constructed a

series of inhibitors containing a C-peptide attached to cargo proteins of various sizes (Fig. 1).

The cargo partners used in this study were selected for the following properties: monomeric,

soluble, globular, stable, tolerant to C-terminal additions, and free of non-specific peptide

binding. Cargo proteins meeting these inclusion criteria and used in this study range from 6 to 41

kDa (Table 1). For these studies, C37 (9), the recombinant His-tagged version of the previously

characterized synthetic peptide C34 (30,32), was used as the reference inhibitor. In each fusion

protein, C37 is connected at its N-terminus to the cargo's C-terminus by a flexible six or seven

residue Ser/Gly linker. This linker was designed to be long enough to allow the proper

orientation of C37 as it binds to the N-trimer, but short enough for the attached cargo to prevent

access to an occluded binding site. The N-terminus of C37 was chosen for attachment of cargo

because this attachment site points away from the membrane (whereas, the C-terminus of C37 is

expected to be near the viral membrane, and, therefore, less accessible - see Fig. 1). For each

fusion protein, a matching control protein lacking C37 was also produced.

Size and inhibitory potency are inversely correlated

The inhibitory potency of each inhibitor was tested using a cell-cell fusion (syncytia) assay

utilizing HXB2 env and two viral infectivity assays utilizing either HXB2 (X4) or JRFL (R5)

envs (Table 1, Fig. 2). C37 shows high potency inhibition in all assays (IC50 = 0.85 to 8.2 nM).
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Inhibition is slightly weaker than seen with C34 (30), as expected from the loss of helix-

stabilizing synthetic blocking groups found in C34. For reference, the anti-gp41 Abs 2F5 and

4E10 have reported IC50 values of -0.2 to 7 nM against HXB2/IIIB lab strains in cell-cell and

viral infectivity assays similar to those used in this study (33,34).

The smallest fusion protein, BPTI-C37, also displays high potency in both assays, very

similar to C37, demonstrating that our C37-cargo linker does not interfere with inhibitory

activity. Ub-C37 is a slightly weaker (2.5 to 5.5-fold) inhibitor than C37, while Mb-C37 and

GFP-C37 both show more substantial (21 to 65-fold) reductions in potency in both assays. MBP-

C37 shows the most dramatic change with a 75 to 228-fold drop in potency. None of the control

proteins (cargo without C37 peptide) inhibit at up to 1 M (10 PM for MBP with JRFL env) in

either assay (data not shown).

In general, the cell-cell fusion and viral infectivity assays show similar losses of activity

with increasing size of the inhibitors with a slightly more pronounced effect on cell-cell fusion

and JRFL-mediated viral entry. For HXB2 env we observe up to a 4-fold greater potency in cell-

cell fusion vs. viral infectivity, as seen in studies of other fusion inhibitors (2,11,30,35). As

expected, inhibitors were less potent against the primary isolate JRFL in the viral infectivity

assay. For most of the inhibitors, the viral infectivity data shows a reproducible increase in

infectivity (above the uninhibited values) at low inhibitor concentrations (see legend Fig. 2B).

This "overshoot" has also occasionally been seen in other studies of fusion inhibitors (36-38), but

has not been explained.

The C-peptide remains accessible when linked to fusion partners

To ensure that linkage of C37-H6 to each of the partner proteins did not affect the

accessibility of C37 for binding to a sterically open target, the fusion proteins and C37 were
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assayed for binding to IZN36, a soluble mimic of the N-trimer (10), using SPR. Each fusion

protein was flowed over the control and IZN36 surfaces. C37 reversibly bound to IZN36 with a

low nM KD (Fig. 3). The calculated KD's for the fusion proteins are clustered in a narrow range

around the C37 value (2-fold lower to 2-fold higher). The estimated kinetic parameters are

similarly clustered, ranging from 3.2-fold slower to 1.4-fold faster (association rate) and up to

3.2-fold slower (dissociation rate). These rates are only approximate due to small systematic

deviations from the fitting model, but as expected there is a slight trend towards slower

association and dissociation rates with increasing molecular weight. These small differences in

binding kinetics are likely responsible for some of the variation in potency observed here but rule

out distinct binding kinetics as the major contributor to the substantial differences in potency

among these inhibitors. These results also show that the accessibility and affinity of C37 are not

significantly altered in the context of the fusion proteins. None of the cargo proteins alone

showed measurable association with IZN36 at 100 nM (inset, Fig. 3).

Partial restoration of inhibitory potency with extended Gly/Ser linkers

To test if a longer linker could overcome the steric block and restore inhibitory potency of

our weakest inhibitor, we extended the flexible linker in MBP-C37 from its original length of 7

amino acids to 20 (MBP1-C37) or 33 (MBP2-C37) using Gly/Ser residues (Table 1). Both

extended linker inhibitors exhibit partial recovery of inhibitory potency. Compared to MBP-C37,

MBP1-C37 and MBP2-C37 are 2.3 to 2.9-fold and 2.6 to 6.1-fold more potent, respectively

(Table 1). Compared to MBP-C37, MBP1- and MBP2-C37 interact similarly with IZN36 as

measured by SPR (Kds vary by <20%, ka and kd are <2-fold higher). In contrast to the other

cargo-C37 fusions, a significant portion of the increased potency in MBP1- and MBP2-C37 may

be attributable to an increased association rate.
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Stability of fusion proteins during fusion assays

Inhibitors were analyzed for precipitation or extensive proteolysis to demonstrate that these

processes did not cause the observed decrease in potency of the fusion proteins. C37 and the

C37-fusions were incubated in tissue culture media at 370C for 20 h to simulate the harshest

conditions faced by the inhibitors during the cell-cell fusion and viral infectivity assays. We

observed only trace (<2%) degradation for all of the inhibitors (data not shown), allowing us to

conclude that proteolysis did not cause a significant decrease in the potency of our inhibitors. We

cannot, however, rule out the contribution of minor proteolytic breakdown products to increased

inhibitory potency, particularly for the least potent inhibitors (1% contamination with free C37

would result in an apparent cell-cell fusion IC50 value of -100 nM for a completely inactive

inhibitor). Therefore, the described potencies of the inhibitors presented in this study should be

considered an upper limit. An anti-His tag Western blot comparing samples before and after

high-speed centrifugation revealed no precipitation (data not shown).
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DISCUSSION

In principle, the gp41 N-trimer is an especially promising inhibition target, but despite the

generation of numerous Abs with tight and specific binding against various mimics of the N-

trimer, none of these Abs display broadly neutralizing activity, reviewed in (17). Our results

suggest that HIV may have developed a strong steric defense against immune attack for its

critical N-trimer region. In this study we show that the gp41 N-trimer region has poor

accessibility to large proteins. It is a logical extrapolation of the data presented here that a protein

as large as IgG (150 kDa), even though it forms a somewhat elongated shape, will suffer a steric

block at least as severe as we observe with our largest protein, MBP (41 kDa), which is smaller

than the individual (-50 kDa) domains of an IgG. This defense may be a major factor in

frustrating efforts to induce neutralizing Abs against the N-trimer region and may also explain

why such neutralizing Abs against the N-trimer have not yet been observed in infected patients.

The steric restriction of the N-trimer stands in stark contrast to apparent accessibility of the

extreme C-terminal region of the gp41 ectodomain (between the C-peptide region and the

transmembrane domain). The only known potent and broadly neutralizing Abs against gp41 (2F5

and 4E10) target this region (22). Recent studies have suggested that this region may adopt a

helical or beta-strand conformation or cycle between the two (33,39). For the most thoroughly

studied Ab against this region, 2F5, a full length IgG (150 kDa) is more potent than the Fab

(-50 kDa) (33), suggesting a freely accessible site.

There is also suggestive evidence that the C-peptide region may be more accessible than the

N-trimer. The designed proteins 5-helix (25 kDa) (9) and NCcG-gp4 l (35 kDa) (40) target the C-

peptide region and are potent entry inhibitors. Recently, a Pseudomonas Endotoxin (PE) fusion

with 5-helix (5-helix-PE, 65 kDa) was shown to inhibit viral entry with similar potency as 5-
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helix (41), although a toxic effect from PE may mask a loss of potency. While the C-peptide

region is likely accessible, it is difficult to target for vaccine studies, as it is unclear what

organized structure (if any) this region adopts during viral entry.

C37 inhibits viral fusion by binding along the full length of the surface groove of the N-

trimer, including the deep hydrophobic "pocket" region, previously shown to be an essential

player in viral fusion. Inhibitors that specifically target this pocket have been developed ((10),

B.D. Welch and M.S. Kay, unpublished results). In future studies, it will be important to test

such pocket specific inhibitors to see if they can circumvent the steric block observed here. It

will also be important to check if cargo fused to the C-terminus of C37 shows a similar pattern of

steric blockage.

The steric block we observe in the gp41 N-trimer is reminiscent of steric restrictions

observed in gpl20. These restrictions have been attributed to glycosylation ("glycan shield")

(42,43) and/or inaccessible antigens (38,44,45). Previous studies with several broadly

neutralizing gpl20 Abs have shown that smaller versions of these Abs (Fabs or scFvs) often

have significantly improved potency, despite a loss of avidity (38,46). The N-trimer steric block

observed here may be more strict than seen in gpl20. Proteins the size of Fabs (-50 kDa) and

scFvs (25 kDa) are already too large to fully access the gp41 N-trimer. Interestingly, the N-

trimer region does not contain any glycosylation sites, probably due to its ultimate complete

burial in the six-helix bundle structure. The N-trimer, however, may be affected by nearby

glycosylation sites in gpl20 or other regions of gp41 (the C-peptide region and N/C-peptide

connecting loop are extensively glycosylated). A glycosylation site near the gpl20 V3 loop has

been shown to affect accessibility of the 2F5 Ab to its gp41 epitope in resistant strains (43).
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Implications for C-peptide inhibitors

Our results suggest that attempts to improve the longevity of C-peptide inhibitors in the

bloodstream may also be frustrated by steric issues. For instance, T-20, a 36-residue peptide

recently approved by the FDA, is rapidly cleared from the bloodstream by kidney filtration,

dramatically increasing dosing requirements. A reasonable approach for prevention of this rapid

clearance is to crosslink C-peptide inhibitors to larger proteins (e.g., albumin) or high molecular

weight polyethylene glycol (PEG), which also can reduce peptide immunogenicity (47). Our

results suggest that these straightforward approaches will likely reduce the potency of modified

C-peptides, although use of smaller proteins or low molecular weight PEG may lessen this effect.

Our extended loop constructs suggest the possibility that longer linkers between these bulking

groups and the C-peptide inhibitor could improve accessibility to the N-trimer. Stiffer (e.g.,

helical) linkers may provide better separation from large fusion partners and restore inhibitory

potency better than the flexible Gly/Ser linkers employed here.

An important caveat to applying our results to T-20 is that, compared to C34, T-20 is

derived from a gp41 sequence shifted about ten amino acids towards the C-terminus and its

binding site extends beyond the N-trimer region. Although they are thought to have a similar

mechanism of action, T-20 and C34 (and the similar T-1249) vary in their potencies against

different HIV-1 strains and their sensitivities to resistance mutations (18,48,49).

Future directions - Overcoming the steric block

We hope that the observation of this steric block can be used to improve the chances of

discovering a broadly neutralizing Ab against this valuable HIV target, rather than discouraging

this effort. Specifically, we suggest that a designed, sterically restricted N-trimer antigen could

be used to generate, boost, or screen for potent neutralizing Abs able to overcome the steric
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block. Currently used mimics of the N-trimer region (e.g., 5-helix, IZN36, NccG-gp41) could be

modified by attachment to bulky proteins or large inert particles such that only Abs capable of

penetrating a sterically recessed target would be selected.

Neutralizing Abs against sterically blocked gpl20 targets often utilize unusually long CDR

H3 loops to access recessed antigens (33,46,50). The insertion of longer linkers connecting MBP

to C37 results in partial recovery of inhibitory activity, suggesting that extended CDR H3 loops

may help penetrate the steric block on the gp41 N-trimer. These Abs are difficult to generate in

small animals, as Abs in primates have longer CDR H3 loops on average than rodents (51).

Potent N-trimer Abs may be more easily found using strategies that enrich for this type of Ab

(e.g., engineered Ab libraries, Ab phage display, immunization of primates). Alternatively, very

high affinity (sub-nM) Abs against the N-trimer may still be sufficiently neutralizing despite a

substantial decrease in potency caused by the steric block. Recently, Merck has reported

preliminary results on an antibody that binds to the N-trimer region and possesses neutralizing

activity against some HIV strains (M. Miller and R. Geleziunas, Abst. 13th International HIV

Drug Resistance Workshop, abstract #9, 2004). No detailed information on this Ab has yet been

published, but it will be interesting to see if or how this Ab circumvents the steric block we

observe here (e.g., high affinity Ab that can tolerate several hundred-fold loss in activity,

extended variable loops, specific targeting of a subsite in the N-trimer).

Finally, our results suggest that the traditional depiction of the prehairpin intermediate as a

symmetric structure (e.g., Fig. 1) may be inaccurate. The steric block of the N-trimer and

apparent accessibility of the C-peptide region show that they reside in very different

environments. Possible sources of this asymmetry include interactions with gp120, other regions
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of gp41, or cell surface proteins, as well as glycosylation and differences between the curvature

of the viral and cellular membranes.
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Table 1: IC50 in (nM) of fusion proteins in cell-cell fusion and viral infectivity assays

Protein Fusion Cell-cell IC50 ratio Viral IC50 ratio Viral IC50 ratio
partner fusion (cell-cell infectivity HXB2 infectivity JRFL
MW fusion) HXB2 JRFL

C37 0 0.85 1.0 2.8 1.0 8.2 1.0
BPTI-C37 6.5 kDa 1.5 1.8 3.1 1.1 4.8 0.6
Ub-C37 8.6 kDa 4.7 5.5 6.8 2.5 37.7 4.6
Mb-C37 17 kDa 30.8 36.2 58.0 21.0 414 50.5
GFP-C37 27 kDa 28.9 34.0 118 42.8 533 65.0
MBP-C37 41 kDa 192 225 206 74.8 1874 228
MBP1-C37 41 kDa 75.1 88.4 88.9 32.2 640 78.0
MBP2-C37 41 kDa 31.2 36.7 79.2 28.7 516 62.9
IC50 standard errors are <25% for both assays. IC50 ratios are relative to C37.
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Fig. 1. Model of HIV-1 membrane fusion pathway (adapted from (9)). Formation of the trimer-

of-hairpins drives the viral and cellular membranes together, leading to fusion. The N-peptide

region (gray), C-peptide region (blue), gpl20 (green), gp41 (light blue), gp41 fusion peptide

(red), and transmembrane domain (purple) are shown. gpl20 is removed from the prehairpin

intermediate for clarity. Also shown are a series of C37 fusion proteins of different sizes and an

anti-N-trimer Ab attempting to access the N-trimer, but potentially blocked by a steric

restriction. Sizes of the Ab and fusion proteins are only approximately to scale.
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Fig. 2. Inhibitory activity of C37 and C37-fusion proteins. Data points are averages of at least

quadruplicate measurements. Data are normalized to uninhibited fusion activity. A. Cell-cell

fusion assay (HXB2 env). Standard errors of each point are <0.05. B. Viral infectivity assay

(HXB2 env). Standard errors of each point are <0.1. An "overshoot" is observed at low inhibitor

concentrations (data above 1.0). Fitting the viral infectivity data to a simple Langmuir equation

with a fixed zero inhibitor point produces noticeable deviation from the data near the zero point

because of this overshoot. Fitting the data without fixing the zero inhibitor point (as done in this

study) improves the quality of the fit, but does not significantly affect the relative IC5 values of

the inhibitors.
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Fig. 3. Binding of C37 and C37-fusion inhibitors to IZN36 measured by SPR. Responses for

representative inhibitors were normalized and overlaid to facilitate their comparison (thick

traces). Fits to the interaction model are included (thin traces). Inset: Interaction of control

proteins (no C37) with IZN36 surface.
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