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Abstract

A new algorithm for the hierarchical aggregation of singularly

perturbed finite-state Markov processes is derived. The approach

taken bridges the gap between conceptually simple results for a

relatively restricted class of processes and the significantly more

complex results for the general case. The critical role played by

(almost) transient states is exposed resulting in a straightforward

algorithm for the construction of a sequence of aggregate generators

associated with various time scales. These generators together

provide a uniform asymptotic approximation of the original

probability transition function.
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I Introduction

Many systems exhibit behavior at multiple temporal or spatial "scales".

Often, the existence of these different scales causes difficulty in the

analysis of a system either due to numerical ill-conditioning or due to

excessive complexity resulting from explicit consideration of the detailed

interactions within the system. A possible approach to such problems is to

try to isolate the various scales of behavior and to analyze them separately.

This basic approach has been applied with success to the analysis of

finite-state Markov processes with weakly coupled components and rare

transitions. As has been shown by several authors (Coderch (1983a),

Delebecque (1983), Courtois (1977) and others), processes with such structure

exhibit behavior at several time scales. Moreover, explicit identification of

the behavior at various time scales has been addressed through the

construction of reduced order aggregate processes.

The results presented in this paper address the decomposition of a

general class of perturbed Markov processes and provide a computationally

feasible algorithm for their analysis and uniform approximation. Some of the

previous algorithms (such as Courtois (1977) and Delebecque and Quadrat

(1981)) are applicable to only comparatively restricted classes of Markov

processes. By considering such restricted classes however, the algorithms for

the construction of the aggregated processes associated with various time

scales are generally straightforward and involve computations with clear

probabilistic interpretations. At the other extreme, Coderch (1983a) and

Delebecque (1983) deal with a completely general class of perturbed Markov

processes and the former also proves the uniform convergence of a

decomposition-based approximation. The price, however, that is paid for this

generality, and the guaranteed uniform convergence are algorithms of

singificantly greater complexity involving the computation of complex

quantities that are not easily interpreted in probabilistic terms.

The algorithm presented in this paper, which was originally outlined in

Lou, et at (1985), focuses on the gap between these two extreme sets of

results. In particular we present an algorithm for the construction of

uniform multiple time scale approximations of singularly perturbed Markov

processes that is as general as that of Coderch (1983a) and Delebecque (1983)

but has much the same straightforward, easily interpreted flavor as that of
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Courtois (1977). Indeed, when the class of systems is suitably restricted,

the construction is essentially identical to that of Courtois (1977).

The focus of this paper is on generators of continuous-time, finite-state

Markov processes which are analytic functions of a small parameter, a,

representing the presence of rare transitions between sets of states.

Consider such a Markov generator, A(O)(6) 1 of size nxn. The matrix

probability transition function X(t) satisfies the dynamical equation

X(t) = A(O)(6) X(t)

X(O) = I (1.1)

whose solution can be written as

X(t) = eA(O)(e)t (1.2)

The goal is to obtain an approximation of this solution which (a) explicitly

displays the evolution of the process for various orders of t (1,1/e,1/e2...)

using appropriately aggregated, 6-independent, Markov generators and which

(b) converges uniformly over the interval tE[O,0o) to the true probability

transition function as 10O. A solution to this (a) and (b) is presented in

Coderch (1983a,b) based on associating multiple time scales with different

orders of eigenvalues of A(O)(e). Building on Kato's (1966) perturbation

results for linear operators, Coderch, et at identify the subspaces associated

with these various orders of eigenvalues and devise a sequential procedure for

construction of the approximation. In particular, it is shown that the

solution (1.2) can be uniformly approximated using the unperturbed "fast"

evolution2

1 the superscript (0) is used here to maintain a uniform notation throughout

the paper. It signifies the first generator in a sequence which will be

constructed in the next section.

2 Here A(O)=A(O)(0) for simplicity. To avoid confusion, we will consistently

write A(O)(e) when we are referring to the full generator as in (1.2).



page 3

A(O)t
e (1.3)

and a "slow" evolution

A(1)
e (6)et (1.4a)

where

{c)(e) · = 1 p(O)(a) A(O)(e) p(O)(e) (1.4b)

Here P(O)(e) is the eigenprojection associated with all the eigenvalues of

order e or higher. The procedure can then be iterated to produce thse desired
approximation, consisting of exp{A(O)t}, exp{A(1)et}, exp{A(2)e2t}, etc.

There are, however, several drawbacks to this procedure. The first is the

need to compute the entire e-dependent eigenprojections, p(O)(e), p(1)()....

and a second is the absence of a simple probabilistic interpretation of the
computations being performed. Finally, while at the end of the procedure

Coderch provides a way in which to re-organize the approximation so that it

consists of increasingly aggregated (and hence simpler) Markov models at

successively slower time scales, all of computations are performed on the

full, unaggregated process.

The approach taken by Courtois (1977) overcomes all of these drawbacks.

Specifically, in essence what Courtois does is to replace the slow evolution

in (1.4a), (1.4b) by

e (1.5a)

where
F")(e) =1 p(O) A(O)(e) p(O) (1.5b)

Here P(O)=P(O)(O) has a simple probabilistic interpretation as the ergodic

projection of the unperturbed process
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This involves no e-dependent computations. Furthermore, we can always write

P(O) = U(O) (O) (1.7)

Here V(O) is a "membership matrix". In the case in which there are no

transient states generated by A(O) it consists entirely of O's and l's whose

rows identify which states of the process form individual ergodic classes of

A(O) . Also the columns U(O) denote the ergodic probability vectors, one for

each ergodic class of A (O), and finally

V(O) U(O) = I (1.8)

From (1.7), (1.8), we see that (1.5a) can be computed in an even simpler

fashion:

e ( 1 ) (6)et U(O ) eA(1)(6)6t V(O) (1.9)

where

A(1)(e) = 1 V(O) A(O)(e) U( O ) (1.10)

is an aggregated Markov generator with one state for each ergodic class of

A(O). Indeed (1.10) has an appealing probabilistic interpretation: we compute

the transition rate between aggregated ergodic classes of A(O) as an "average

rate", in which the rates of individual states in these classes are averaged

using the ergodic probabilities of At0 ).

While the procedure just described has a number of appealing features, it

cannot be applied to arbitrary processes. In particular Courtois (1977)

focuses his development on the class of "nearly completely decomposable"

processes introduced by Simon, Ando, and Fisher (Simon 1963, Ando 1963) in

which A(O) has no transient states. While this condition can be relaxed

somewhat (see Section III), it is restrictive. Furthermore, while the ideas

of Simon and Ando, and Courtois do allow one to consider several levels of

aggregation at different time scales, iterative application of this method
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cannot in general be performed since the constraint of nearly complete

decomposability may fail at one or more intermediate time scales.

As the previous paragraph implies, the need for a more general algorithm

can be traced to the role played by states which are transient at various time

scales. To illustrate this, consider the process depicted in Figure 1.1. At

e=O, states 1, 2, and 4 are individual ergodic classes, while state 3 is

transient, so that its steady-state probability is 0. Consequently,

application of the averaging implied by (1.10) (which uses the steady-state

probabilities at e=O) completely misses the possibility of transition from

state 1, 2, or 3 to state 4. Thus in this case the approximation implied by

(1.9) and (1.10) does not capture the fact that 4 is in fact a trapping state

for e)O. The problem in this example is that the critical path determining

long-term behavior involves a sequence of (in this case two) rare events

(namely a transition from 1 or 2 to 3 followed immediately by a transition to

state 4). Processes with such behavior arise in a variety of applications,

and are of particular interest in analyzing the long-term reliability or

availability of complex systems such as interconnected power networks (in

which sequences of events lead, on infrequent occasions, to blackouts), data

communcation networks, and fault-prone systems possesseing back-up capability.

The process depicted in Figure 1.1 can in fact be thought of as an (extremely

simplified) example of a system consisting of two machines, one of which acts

as a backup. States 1 and 2 correspond to both machines being in working

order. If a failure of one machine occurs, the process transitions to state 3

from which the machine is examined and then repaired (causing a transition to

state 1) or replaced (transition to state 2). However, on rare occasions the

second machine fails before the first is repaired or replaced causing a

stoppage in operation (and a transition to state 4).

Though the importance of transient states has been recognized in previous

work, no general approach has been developed. Korolyuk and Turbin (1974) have

considered a case where there is a particular ergodic structure. Recently,

Bobbio and Trivedi (1986) have proposed a method, similar to our own, for

analyzing the effect of transient states in the two time-scale case. Multiple

time-scale analysis of perturbed Markov processes with arbitrary ergodic

structure is not available in these works, however, particularly with respect

to the construction of a uniform asymptotic approximation.
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In this paper we perform this full multiple time scale analysis and prove

uniform convergence. The key to our development is a method for handling

transient states at various time scales (state 3 in the example) that couple

ergodic classes at slower time scales (as state 3 does between states 1 and 4

and between 2 and 4). In general such transient state may not be tranisent in

the full process and thus can be thought of as almost transient states. The

way in which we accommodate the presence of such states is essentially a

modification of (1.10). Specifically, recall that V(0 ) is a membership matrix

indicating which states are in which ergodic classes. When there are

transient states it is necessary to consider an e-dependent membership matrix

V(O)(e) to capture the fact that states that couple ergodic classes can be

thought of as being "partly" in each. Therefore, in such a case, we must

identify and retain certain e-dependent terms, but we can stop far short of

the complete computations required by Coderch and can maintain the advantage

of Courtois' approach of working direclty on increasingly aggregated versions

of the process. t

In the next section we present our algorithm and illustrate it on the

example introduced in this section. In Section III we outline the derivation

of the procedure and prove uniform convergence, and Section IV contains a

discussion of several issues including computational and numerical aspects of

hierarchical aggregation.
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II The Algorithm

In this section we present and apply our algorithm for the construction

of uniform multiple time scale approxiamtions of singularly-perturbed

finite-state Markov processes. For simplicity we assume that we begin with a

Markov generator A(O)(0 ) that has one ergodic class for e>0.1 The basic
th

algorithm involves the computation of a sequence of generators, the k of

which, A(k)(e), captures all behavior at time scales of order 1A/k or slower.

The procedure is iterative, with A(k+l)(e) determined directly from A(k)(e).

There are essentially four steps involved at each step of this algorithm as

shown below.

Algorithm

(O) Set k *-O.

Begin with the generator A(O)(e) of a finite-state Markov process.

(1) Partition the state set into the communicating classes E1, E2 ..., EN

and the transient set T generated by A(k)(O). If there is only a single

class (N=l), go to (5).

(2) For each class EI, compute the ergodic probabilities of the member states

at e--O u,(kI V iEE I.

(3) For each transient state jCT and each class EI, compute a term v(k)

such that2

-(k) (k)v () = v(k) (1+0()) (2.la)

N vtk)(6 = 1 ~(2.lb)
K=1

where
(2.2)

v·k) (e)E prob l)(6at*)EE I T (6 0)=j, t =inf(tin (k) E& t)CT 

and 7(k)(e,t) is a sample path of the Markov process generated by A(k)(6)

The generalization to more than one class is trivial, since we can re-order

the states of the process so that A(O)(e) is block diagonal and then can

consider each block individually.

2 Here 0(ek ) denotes a quantity of order 6k.
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(4) Form the matrices

U(k) = u(k), where u ( k ) = 0 if i f E (2.3)

V(k)(e ) -[(k) (2.4)
V (E) [V I(e)2

Then

A(k+l)(e) = 1 V(k)(e) A(k)(6) U(k) (2.5)

Set k *-k+l, go to (1)

(5) The overall approximation of the evolution of the transition

probabilities can be written as

A(O)(ast eA(O)t+

U( 0) eA() eA t V() - UO) (O)v ] +

U(O)U(1) eA( 2 )6 2 t V(l)v(O) _ U(O)U()V(l)V ( ) ] +

: (2.6)

[U(O)...U(k- ) eA(k)kt v(k1) (0 )

U(O)...U(k-l)v(k-l)...V(O) ] + O(e)

where v(k)-V(k)(o)=v(k)(o)

This approximation is uniformly valid for t20.3

As indicated in the previous section, the algorithm (1)-(4) is very

similar in structure to that of Courtois. In particular, compare (1.10) and

(2.5). The computation in step (2) of the ergodic probabilities that form

U(k) is identical to the corresponding step of Courtois' algorithm. The

critical difference, however is the computation of the "membership matrix"

v(k)(e). In particular, "membership", as needed here is defined in (2.2).

Specifically, for each state j in the process corresponding to A(k)(e), we

compute the probability that the process first enters each ergodic class EI of

3 Specifically, 0(e) is some (matrix) function F(e,t) such that

lim sup 11 F(a,t) l = < 
e10 t>0 6
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A(k)(O). If j is already a member of some EI, then the corresponding v(k)(E)

equals 1, i.e. in this case we have exactly the same membership as if we used

v(k)(o), the quantity employed in Courtois' algorithm. Furthermore, if j is a

transient state of A(k)(O) that does not couple transients - i.e. if j has

transitions in A(k)(e) into only one of the EI we still have the same 0-1

membership as in v(k)(o) However if j is a coupling transient state, v(k)(e)I,j

in general will be nonzero and e-dependent for several values of I. While

there is some e-dependence to be captured here, (2.la) indicates that we

actually only need to match the lowest-order term in each v (k(e) and then can

pick higher-order terms as we like in order to ensure that the probabilities

of membership sum to 1 (eq. (2.lb)). This has important computational

implications as we discuss in Section IV.

As indicated above, the only elements of V(k)(e) that require calculation

are those correspond to the transient state set T. The calculation of (2.2),

then, is a standard problem: we replace each' ergodic class EI of A(k)(o) with

a single trapping state I, and sum together all transition rates from each jET

into each EI, forming an aggregate rate into the new state I; the

probabilities in (2.2) are then simply the limiting transition probabilities

as t-~x of this simplified process. Furthermore, this is equivalent to

considering the limiting probabilities of the derived discrete-time Markov

chain whose transition at discrete time n corresponds to the nth transition of

the continuous time process. The state transition matrix P(e) of this

discrete-time process (with ergodic classes of A(k) collapsed into trapping

states) can be obtained directly from the original generator A(k)(e).

akJ(6) a. .(e)staska) ( cj).ee
Pkj() = -a. .() pIj(6) 2 -a..() Pj I(e ) = 0 (2.7)

J EI

where j,kET and I is a state representing a class EI

By suitably ordering the states, P(e) can be formed as
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PTT(E) 0P(a) = P (2.8)
PTR(e) I

and the limit therefore becomes

0 0 [01
lim P(6)n = (2.9)

n-~ p~r" ,TR(a) iPTT(- Iv)

The leading order terms of V(6) in (2.9) required in step (3) of the

algorithm can be obtained in a variety of ways such as by repeated

multiplication of P( e ) (retaining only the leading order terms after each

multiplication) or by series expansion of the inverse in (2.9) as

[I-P . ,I-P (0)] - J' ,(6)(I-P'0))]
m=--O

1irwhere L(e) - I? (6)-P (0)1

Example 1

In order to illustrate the algorithm, consider the generator A(O)(6)

associated with the state transition diagram in Figure 1.1. The communicating

classes and transient set are

E 1=({1}, E2 ={2}. E3 ={(4}, T={3}

The ergodic probabilities are all degenerate in this case

100

U 1' = u2,2 = u4,3= 1 or u(O) 010
Suitable' ter' 000

001

Suitable terms v(~) which satisfy (2.1) above are
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1 0 1/2-e/4 0 
1 o 01 1/2-/4 o

v1 3 (
6) V2,3 (

6) 2 4 or V(
0 0 e/2 1

v3 ,3 (e) =

Using these terms, A(1)(e) computed using (2.5) generates the process

illustrated in Figure 2.1.

-1/2-/2 1/2 0

A( 1 )(e) = 1/2 -1/2-e/2 0

e/2 6/2 0

This procedure is now repeated since A(1)(O) generates two ergodic

classes with the following ergodic probabilities

E1 = {1,2}, E2 = {4}, T = 

1/2 0 1 1 0

U( 1 ) 1/2 0 V (1)(6) 1

L 0 1

Using this, the generator A 2)(6) is computed.

At2 )(e) = 1/2 0

Since A(2)(0) generates only one ergodic class, namely {4}, the algorithm is

terminated. The set of 6-independent Markov models from which the

approximation is derived is shown in Figure 2.2.

Note that the process of Figure 1.1 has explicitly only order 6 rates.

However, as seen in Figure 2.2(c), this process has time scale behavior of

order 1/e2. The fact that there is slower behavior than is explicitly visible

in the original process is directly attributable to the presence of coupling

transient states or, equivalently, to critical sequences of rare transitions.

This is precisely the case in which the e-dependence of V(k)(6 ) is critical.

It is useful to make several comments about step (5) of the procedure

which assembles an overall approximation of the transition probability matrix.

The first term captures the fast, high-probability behavior at times of
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order 1. The next describes behavior at times of order 1/e by capturing

transitions between ergodic classes of the fast process, and, since these

transitions are sufficiently rare that the fast process can reach equilibrium

between two such transitions, the probability mass within each ergodic class

is distributed using the fast process ergodic probabilities. Similar

interpretations can be given to subsequent terms. Such intuition is certainly

present or implicit in most previous works. Indeed this idea has lead

researchers to develop iterative methods for computing steady-state

probabilities (Cao and Stewart, 1985) and error bounds for these computations

(Courtois and Semal, 1984). In contrast, what we prove in the next section is

that the error in this approximation to the entire transition probability

matrix (including the full transient behavior) goes to 0 uniformly for O<t<(

as 4LO. Coderch (1983b) has a similar uniform convergence proof, but our

result is stronger since we are able to work on successively aggregated

versions of the process and we can also discard all but the essential

p-dependent terms (while Coderch keeps then all). Finally, it is interesting

to note that the final approximation in (2.6) uses only V(k)(O)=V(k)(O), the

same matrices that appear in Courtois' development. The key point here is

that while v(k)(o) is adequate for describing the kth time scale, V(k)(e ) is

in general needed to capture accurately all slower time scales. For example,

the e-dependent terms of V(O)(a) in Example 1 directly influence v(i(o}).
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III The Derivation

The algorithm for the construction of multiple time scale decompositions

of a singularly-perturbed, finite-state Markov process is derived in this

section. At the same time, the uniform convergence of the associated

approximation (2.6) is established. The approach taken is as follows. We

first derive the algorithm assuming that there may be transient states at any

particular time scale provided that these states cannot "couple" aggregates

(i.e. aggregated ergodic classes) at slower time scales. The proof of uniform

convergence in this case involves keeping track of "weak" terms in the

generator which can ultimately be ignored since they do not effect the

multiple time scale decomposition. The uniform convergence result for this

case is stronger than that of Coderch (1983a) in that the continuous time

analog of Courtois' multiple time scale procedure (using ergodic projections

rather than the full perturbed eigenprojections) can be shown to provide a

uniform approximation. Also, this result forms the backbone for our general

algorithm in which we minimize the number of e-dependent terms which must be

computed in order to generate the complete multiple time scale decomposition

and uniform approximation when there are transient states that couple

aggregates. The generalization to this case is proved in Section III.2 by

showing that it is equivalent to first constructing a process with an expanded

state that does not have coupling transient states and then recovering the

probability transition function of the original model after the procedure of

Section III.1 is applied to the expanded process.

III.1 No Coupling Through Transient states

We first consider the case where any almost transient state has

transitions into a single ergodic class for e>O. In this case we show that

the "Courtois/Simon-Ando" approach is valid in that transient states have no

effect on multiple time scale behavior. As mentioned in Section II, in this

case the V(k)(e) are composed of entries which are either 0 or 1 since each

transient state is associated with a unique ergodic class. In order to

analyze the more restictive case, the following result is useful.
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Lemma 1

Suppose F(e ) = 12where (3.1)
eF21(i) eF22(e)

(1) F11(e) has eigenvalues with strictly negative real parts for all eE[O,e 0 )

for some e 0>0.

(2) F(e) has "well-defined multiple time scale behavior" in the sense defined

in (Coderch, 1983b).

Then

F(e) and

F11 (0) 0 where
H(e)= Kwhere K(a)-F22(e)-aF21(e)F:11 )F 12(e)'

0 eK(e) -

are "asymptotically equivalent" in the sense that

sup 11 eF(e)t_ eH()t 11 = O()
t>0

Proof: 

This result is an adaptation of the basic perturbation result used by

several authors. See for example Lou (1984), Coderch (1983b) or

Kokotovic (1980). o

This result is applicable to perturbed Markov generators since

(a) Coderch et aL (1983b) have shown that such matrices do have well-defined

time scale behavior and (b) it is straightforward to bring the generator into

the form in (3.1) by an e-independent similarity transformation. Before doing

this, let us introduce the following definition.

Definition 1

Consider the perturbed Markov generator A(e)=A+B(e), with IIB(e)11-=0(e). There

is no coupLing through transient states in this process if the following

conditions hold. It is possible to partition the state set into sets RK, each

of which consists, at e--O, of a single ergodic class EK together, perhaps,

with some transient states TK so that these transient states have transitions

only into the particular class with which they are associated, even with 6>0.

That is, if mETK then for any state nfRK, an m(e)=--. 
K n~~~~~~~~~~~~~~~~m~~~
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If we assume that A(O)(e) has no coupling through transient states, we

can order the states of the process so that

A(O)(o) = A(O) + B(O)(e) (3.2)

where IIB(O)(e)ll = 0(e) and

A( O) = diag(A1,A2 . -AN) (3.3)

Each AI corresponds to a process with a single ergodic class and possibly some

transient states that are uniquely associated with that state. If such states

are present, then the no coupling assumption implies that certain

corresponding elements of B (O)(e) are identically zero.

In order to transform A(O)(e) into the form (3.1), let U (O) and V(O)

denote the matrices of right and left zero eigenvectors of the unperturbed

I t .. A(0) th thgenerator A(O) where the kth column of and the kth row of V(O) have

nonzero entries only corresponding to the states in the set Rk. Note that the

matrices U(O) and V(O) correspond to U(k) and V(k)(e) constructed in the

Algorithm since there is no e-dependence in this case. Also, let Y(O) (Z(0))

be matrices whose columns (rows) span the right (left) eigenspace of the

nonzero eigenvalues of A(O). Furthermore, due to the structure of A(O), we

can clearly choose these matrices such that A(O)Y(O) and Z(O)A(O) are block

diagonal with partitions consistent with A(O ) and that a similarity

transformation T can then be constructed as

T (= ) ] T [y() (O) ]

Application of this similarity transformation to A(O)(e) results in the

form (3.1) given for F(e) in Lemma 1.

T A(O) T-1 [ A11(e) eA12(e) 1
= eA2 1 (e) eA22 (e)
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where

A11(e) Z(O) A= (O)() (O)

eA12(e) = Z(0 ) B(O)(e) U(0O

eA2 1(e) = V(O) B(O)(e) y( O)

eA2 2 (e) = V(O) B(O)(e) U (O)

Since Z( O) and Y(O) are associated with the non-zero eigenvalues of A (O)

and since the original system has no eigenvalues in the right half-plane,

Alj(e ) satisfies the conditions of Lemma 1. Applying Lemma 1 and expressing

the result in the original basis yields the following uniform asymptotic

approximation

A(O)(e)t A(0 I .A (;(I) (elet
: Z(0 ) + U( ) e (O) + 0()

Gr()e (°) ()t v( ° V) + O(e)-eA(O)t + U(O) eG(1)(e)et V(O) _ U(O)V(O) + °(e)

where G()(e) A22 (e) - eA21(e)A11 (e)A12() (3.2b)

From (3.2a) we see that the problem of uniformly approximating

exp{A(O (e)t} has been reduced to that of approximating exp{eG(1)(e)t}; one

time scale has been "peeled off" leaving a lower dimension problem. However,

the procedure is not perfectly inductive since G(l)(e) need not be the

generator of a Markov chain. On the other hand, it is very close to being

one . Specifically, a careful examination of (3.2b) shows that G(1)(e) can be

expressed as

G(1)(e) = A(1)(e) + W(l)(e)

where A(1)(e) is a Markov generator given by

1 Though the columns of G(1)(e) sum to zero, some of the off-diagonal

elements may be small but negative.
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A(1)(e) = 1 V(O) A(O)(e) U(O) (33)
a

= 1 V(O) B(O)(e) U(O) A(1) + B(1)(e)

where A ( 1 ) - A(1)(0) , IIB(1)(e)11 = O(e)

and

W(1)(e) - l v(O)B(O)(a)Y(O) [Z(O)A(O ()Y(O)] - 0z(O)B(O)()U ( ) (3.4)

where it is straightforward to show that I[W(1)(e)ll=O(e).

What will be shown is that the term W(1)(e) can be entirely neglected.

In the two time-scale case, this follows from the fact that A(1)(e) is

regularly perturbed since all the nonzero eigenvalues of A(1)(e) are 0(1) and

from the fact that W(1)(0)=0. G(1)(e) can then be uniformly approximated

using G(1)(O)=A (1 ). This yields the two time scale result

eA()(e)t A(O)t + U(O) A( )Et V(O) - U(O)V(0 ) + O(a)

If there are more than the two time scales 1 and 1/e in the original

process, A(1 )(e) is again a singularly perturbed Markov generator. W(1)(e)

cannot therefore be ignored based only on its being O(e) when considering the

order 1/e2 and slower time scales as was done above. In order to show that

A(1 )(e) is in fact asymptotically equivalent to G(1)(e) under the assumptions

that there is no coupling through transient states, the properties of W(1)(a)

must be considered. To do this let us give a precise definition of what we

mean by "weak" terms associated with a Markov generator.

Definition 2

Let F(e) be the generator of a Markov process with one ergodic class for e>0.

W(e) is weak with respect to F(e) if (a) 1TW(e)=O and (b) for any element

wi, j(e) there exists a path S = (s1=j,s 2...Sk=i) through the process state

space such that

ij () = 6 0( fs f fs ) 
J2'sl S3'S2 sk' k- 1

Condition (a) is necessary to avoid perturbation of the zero eigenvalue

of F(e) which is associated with the sum of the probabilities being

identically 1. In the derivations presented however, this condition is
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satisfied by construction; therefore we concentrate on property (b). Roughly

what this property means is that if we think of wij () as a "transition rate"

from state j to state i (although it may be negative), we can find a product

of rates in the generator F(e) leading from j to i that is of lower order in e

and therefore represents a significantly more likely sequence of events.

In the Appendix we provide a proof of the following:

Lemma 2

Suppose that A(O)(e) is as in (1.3) and (1.4) and there is no coupling through

transient states, then W(1)(e) (3.4) is weak with respect to A(1)(e) in (3.3).

Thanks to this Lemma, an iterative procedure can now be defined and

analyzed. Specifically, suppose that we have constructed

c(k)(6 )=A(k)(6)+W(k)(e), where (a) A(k)(e)=A(k)+B(k)(e) is a Markov generator

with no coupling through transient states, IIB(k)(e)I=-O(6 ), and (b) G(k)(e) has

well-defined time scale behavior. Applying Lemma 1 and stating the result as

in (3.2), we obtain the following uniform approximation.

eG(k)(a)t eA(k)t + U(k) eG(k+l)(6)et V(k) _ U(k)v(k) + O(e)

where

G(k+l)(e) = A(k+l)(e) + W(k+l)(e,)

A(k+l)(e) 1 V(k) A(k)(6) U(k) = 1 V(k) B(k)(6) U(k) (3.6)
6 e

and

W(k+l)(e) W(k+l) + W(k+l)
W1 ) 2 (e)

(k+l ) ( = -1 V(k) W(k) u(k)

w(k+l)() = _ 1 V(k) [B(k)(6)+W(k)(e) y(k) [(k)(k)()(k)3 z(k)

[B(k) (e)+(k)(e,) U(k)

Note that for k=2,3... the term W(k)(e) consists of two parts, namely the

"projection" W1 (k)(6) of the preceding weak term W(k-1)( 6), and a new term

w2(k) (e) defined similarly to the weak term computed previously in (3.4). We

know from Lemma 1 that under the conditions stated above G(k+l)(E) has

well-defined time scales and by construction that A(k+l)(e) is a Markov
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generator. By assumption in this section, there is no coupling through

transient states in A(k+l)(e). Thus in order to continue the iterative

procedure, we need to verify the following, which is done in the Appendix.

Lemma 3

Suppose that G(k) (e)=A(k)(e)+W(k)(e) satisfies the following

(1) G(k)(e) has well-defined time scale behavior

(2) A(k)(e)=A(k)+B(k)(e) is a Markov generator with no coupling through

transient states, IIB(k)(e)ll =O(e)

(3) W(k)(e) is weak with respect to A(k)(e)

Then

G(k+l)(e) has well-defined time scale behavior, and

w(k+l)(e) is weak with respect to A(k +)(e) in (3.5)

By first applying (3.2), followed by iterative application of (3.6) and

finally discarding the weak terms at the last time scale (since at this point

they represent a regular perturbation), the following sequence of

approximations is constructed for a system exhibiting k time scales and no

coupling transient states at any intermediate time scale.

eA(O)(6)t = eA(O)t + U(O) eG(1)(e)et V(O) - U(O)V(0 ) + O(a)

G(1)()t eA(1)t + U( 1 ) eG(2 )(e)et () _ (1)(1)+ 0(e)

(3.7)

eG(k- 2 )(e)t eA(k- 2 )t + U(k2) eG(k-l)(E)et V(k-2 )

U(k- 2 )v(k - 2 ) + O(e)

G(k-1)(a)t A(k-0)teG ()t = e + O(e)

Note that there is no problem here in determining when to stop the

procedure. Stop when A(k- l) has exactly one ergodic class. From Coderch

(1983a), we know that since A(O)(e) does have well-defined time scale

behavior, there is a k such that this is true, and this k is associated with

the slowest time scale. The approximation (2.6) follows directly by

collapsing the equations in (3.7).

Note also that in order to construct this approximation, we never need to

calculate y(k), z(k), or any of the terms W(k)(6). Rather, at each time scale
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we begin with A(k)(e)=A(k)+B(k)(e), compute the ergodic classes and

probabilities associated with A(k) to form U(k) and V(k) . A(k+l)(e) is then

calculated using (3.6). At this point, of course, we have only dealt with the

case in which there is no coupling through transient states at any stage of

the procedure. We now modify the procedure in order to remove this

restriction.

III.2 Transient States Which Couple Aggregates

Our basic approach to this general case is to reduce it to the one

considered in the previous subsection by expanding the state space, when

necessary, by defining an associated generator that satisfies the no coupling

constraint. Specifically, consider a generator A(e)=A+B(E) where A generates

N ergodic classes. The state space can be partitioned into N+1 parts

E1,E 2 ... EN,T where the EK are the ergodic classes of A and T is the set of

transient states. The set T is then "split" into N copies T 1T 2 ...TN such

that each copy is associated with a unique ergodic class. Specifically an

associated generator A(e)=A+B(e) is constructed on this expanded state space

such that once the process is in a state sCTk, the next state entered that

belongs to -E1 U2... UEN must be in Ek . By construction, then, A(6) satisfies

Definition 1. The precise nature of this construction can be stated as

follows:

Lemma 4

Let A(e)=A+B(e) and let U and V be the ergodic probability and membership

matrices for the unperturbed generator A. Then there exist C, D(e),

A(e)=A+B(e), and U and V similarly derived from A such that

(1) eA(e)t = C eA(6)t D(e)

(2) A(e) does not exhibit coupling through transient states

(3) C U = U

(4) V D(o) = V

(5) D(e) U = D(O) U = U

(6) C A(6) U = A(e) U

(7) The range of D(e) is A(e)-invariant

03
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The construction of A(e) can be described as follows. Let i, k be

elements of E (i.e. reccurent states of A(e) and A(e)). Then the transition

probability from i to k in A(e) is the same as the in A(e). Next let jET, and

let J ... jN denote the corresponding copies of j in the expanded process.

The basic idea behind the construction is that a transition to the state jI

corresponds to a transition in the original process to state j together with

the decision that the next ergodic class that will be entered is EI.

Consequently, the transition rates into the jI must reflect the probability of

this additional decisions. Specifically, if kEE, then

ajI.k(e) = ajk( ) Ij(e ) (3.8)

where vIj .(e), defined in (2.2), is precisely the probability of that

decision. Similarly, transitions out of JI must be adjusted to reflect

conditioning on knowledge of which ergodic class will be visited next.

Specifically the transition rate from jI to any state in an ergodic class

other than EI is 0, as is the rate from JI to any state in TK, K•I, i.e. to

any copy of any transient state corresponding to a subsequent transition into

a different ergodic class. The remaining transition rates out of jI are

specified as follows

ai (e) = a.ij(e) v (e) , i£E II I'j (3.9)

Vi k(6)

aki·Ji(e) = aktj(e) v j(Ce)· I

The construction of C is quite simple: the various copies of each

transient state are collapsed by summing their probabilities. Specifically

for each iCE, c i.=1, and c. j =1 for each JET and all its copies l ... 'jN

All other elements of C are 0. In the case of D(e) the initial probability of

each transient state j must be split by again making a decision concerning
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which E I is visited first. Thus, for each iEE, [D(e)]i i=l, while for jEI

dji.j(e) = vI j(6) (3.10)

with all other elements of D(e) equal to 0. The several properties (1)-(7) in

the lemma then follow directly from the construction (see Rohlicek (1985) for

detailed verification).

Example 2:

We illustrate the state expansion construction on the simple process

depcited in Figure 3.1, for which

-6 1 0

A(° )(e) = [ -1-e 0

In this case the construction of Lemma 4 calls for a splitting of the

transient state 2. Following the procedure cited in Lemma 4, the key

quantities are the probabilities that the perturbed process first enters each

of the unperturbed recurrent classes (namely E1={1} and E2={3}) given that it

starts in any particular transient state. These can be computed as the

limiting probabilities of the process illustrated in Figure 3.2, which is

obtained from the chain in Figure 3.1 by making each unperturbed recurrent

class a trapping state. The expanded state process is depicted in Figure 3.3

and the associated matrices are

1 0 0 

C = |0 1 0 1 D(6) 0 + 01+6
0 0 1 0

0 0 1

OL 
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1 0

00 1 0 0 1
U~to~l V=

0 1 0 1 1 0

0 0

Note that, as desired, states 2 and 4 in Figure 3.3 are transient but do not

couple the ergodic classes {1} and {3}. Consequently, the procedure of

Section III.1 can be directly applied.

A similar expansion of the state set can be performed using the generator

G(k)(e) defined in (3.6). In this case, the following properties also follow.

Lemma 5

Suppose G(e)=A(e)+W(e) where A(e) is a Markov generator and W(E) is weak with

respect to A(e). Let C, D(e) and A be determined as in Lemma 4 from A(£).

Then G(e)=A(e)+W(e) can be constructed such that

(1) eG(6) t = C e G(6) t D( ) + 0(e) and

, (2) W(e) is weak with respect to A(e)

Lemma 5 is essentially a minor extension of Lemma 4, and we limit

ourselves here to a brief sketch of the proof. We refer the reader to

Rohlicek (1985) for a complete proof. The only complication here is that G(e)

is not necessarily a Markov generator. Nevertheless we can follow the same

construction for G(e) as that for A(e), where in this case VJ i(e), computed

as in (2.7)-(2.9) with gij (e) in place of a. j(e), are not given direct

probabilistic interpretations. This construction yields the same C matrix as

that produced from A(e), and a slightly different set of vj i(e), which show

up both in G(e) and the corresponding D(6) matrix. The weakness of W(e),

however, implies that the difference in the VJ,i(e) values is higher-order,

from which we can immediately conclude that we can replace the D(e) computed

from G(e) with that constructed from A(e) and incur only an 0(e) error.

Finally, we can write G(6)=A(e)+W'(e)+W"(E). Here W'(e) results directly from

the construction, i.e. it is obtained from W(6) in the same way A(e) is

obtained from A(e) (see (3.8)-(3.9)). The weakness of W(e) allows us to

conclude that W'(e) is weak. The term W"(e) captures the fact that the G(e)
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used slightly different vI .(6) values than those used in A(e). The fact that

this difference is higher-order allows us to conclude that W"(e) is also weak.

We now can piece together a complete algorithm: at any stage k we begin

with G(k)(6)=A(k)(e)+W(k)(6) (starting with G(O)(e)=A(O)(e)); we then first

expand the state space, thereby eliminating all coupling transient states, and

then perform the aggregation step described in Section III.1 to produce

G(k+l)(6 ). This yields the following uniform approximations

C(k) E~t (k)
e(k)(6)t C(k ) eG(k) (k)( 0(e)

= C(k) [eA t + U(k) eG(k+l)(e6 )t v(k) (3.11)
= c(k) eAkt+ ~( k} e-(k

- U(k) (k)] D(k)(e) + 0(e)

= eA(k)t + U(k) eG(k+l)(e)et v(k)(6 ) + 0(6)
= )e + e(

Here (k) (k) are the ergodic probability and membership matrices

corresponding to A(k), and

6(k+l) = =1 -(k)-(k) (k) A(kfl) k~l)
G(k) = 1 k)k k = A(k+)(e) + w(k+l)(e) (3.12)

Also, with C(k) and D(k)(e) constructed from A(k)(e) as in Lemma 4, we obtain

the final form in (3.11), where it is straightforward to check that

V(k)(6) = V(k)D(k)(e) (3.13)

where v(k) () is defined in (2.4) using the actual vI j(6).

Combining Lemmas 2-5 shows that this procedure yields the sequences of

matrices U(i), V(i), A(i), i=0,1,... and the uniform approximation (2.6).

However, we can take this several steps farther. Specifically, while we have

used state expansion in order to prove that we can construct a uniform

approximation, we do not actually need to perform this expansion to obtain the

approximation. Indeed, while (3.11) implies a two-step procedure for

computing A(k+l)(e), it is a straightforward consequence of Lemma 4 that we

can compute A(k+l)(e) directly from A(k)(6):
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A(k+l)(e) = 1 v(k)(e) A(k)(e) U(k) (3.13)

(see Rohlicek (1985) for the demonstration of the validity of (3.11)).

Finally, when this procedure reaches the last time scale, we can discard

all of the accumulated weak terms, since at this point they are a regular

perturbation. Furthermore we can also replace the v(k)(e) with the V(k)(e)

introduced in the algorithm in Section II, since the difference between these

is of higher order and is consequently weak. This then yeilds the following.

Theorem 1:

The iterative algorithm given in Section II, (equations (2.1)-(2.6))

yields the uniform multiple time scale approximation (2.6).

There is another extremely important consequence of the derivation we

have just sketched. We state it in the following:

Corollary 1

Let F(e) and G(e) be two Markov generators so that F(e)=G(e)+W(e) where

W(e) is weak with respect to G(e). Then F(e) is asymptotically equivalent

(defined in Lemma 1) to G(e). o

This Corollary has the useful consequence that if one is trying to

construct an approximation of a Markov process with a generator A(e) which can

be separated into a simpler generator A(e) and a relatively weak part W(e),

then the weak part can safely be "pruned". A direct application of this is

that only the leading order terms in e of any transition rate need to be

considered in the construction of the approximation. This corollary not only

implies that we can use V(k)(e) rather the V(k)(e) but also has significant

additional computational implications elaborated on in the next section.
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IV Conclusion

In this paper, we have developed a new procedure for the hierarchical,

multiple time scale approximation of singularly perturbed, finite state Markov

processes. Our results bridge the gap between conceptually simple results

such as those of Courtois (1977) and the significantly more complex results of

Coderch (1983a) and Delebecque (1983). In addition to providing a general

algorithm, our work also provides additional insight into the nature of

multiple time scale approximations and the role played by almost transient

states. In particular, if we write out the expression for a single element of

A(k+l)(e) in (2.5) we obtain

ai+) u u(k) lk) 1 u(k) (k) ik)(k+l) = - ((
J,Ie i,I j,i i) J,i ek

JEEJ iEEI jET iEEI (4.1)

The first term corresponds to the usual average rate between aggregates used

by Cohrtois. The second term, on the other hand, involves transient states

and the additional weighting, captured by VJ i , reflects the critical "split

membership" of transient states that couple ergodic classes.

Another insight our work provides concerns Coderch's eigenprojection

interpretation. In particular, as we've seen the key to Coderch's approach is

the eigenprojection P(e) of a Markov generator A(e). When there are no

coupling transient states we can approximate P(e) by P(O) which has an easily

computed factorization UV which can be exploited to construct an aggregated

process at the next time scale. When there are such coupling states, this

approach fails, but what our results shows is that we can approximate P(e) by

the factored approximation UV(e) which can again be calculated in a

straightforward manner and exploited to construct an aggregate approximation.

Application of our decomposition to the area of reliability analysis

seems natural (Walker, 1980, Rohlicek, 1986). If faults occur at rate O(e)

and are repaired at rate 0(1), then at e=O, there exist many transient states.

Furthermore, the goal of fault tolerant design in general is to create an

apparent failure rate which is orders of magnitude smaller than the natural

failure rate. In the context of this paper, this correspdons to reaching some
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failed state only at time scales of order 1/e 2 or slower. As we've seen, such

implicit time scale behavior requires the presence of coupling transient

states.

Other applications may be found in engineering techniques based on very

large Markov models. For example, such models have been used as the basis of

estimation algorithms in speech recognition (Bahl, 1978) and electrocardiagram

analysis (Doerschuk, 1985). In applications, computational requirements grow

quickly as more ambitious analysis tasks are undertaken. Use of multiple time

scale decomposition of the underlying model may suggest possible hierarchical

approximation methods which are computationally feasible.

Finally, let us comment on numerical and compuational aspects of

hierarchical, multiple time scale approximation algorithms in general and our

procedure in particular. First of all, an assumption common to our work and

previous treatments is the use of e-independent Markov generators in the

approximation at each time scale. This raises an important point that

provides insight into why one would seek this type of approximation.

Specifically, there is an implicit assumption in this and previous work that

the e-dependent perturbation teerms in A(O)(e) capture all rare events and

ill-conditioning in the original Markov process. To the extent that is is

true, all of the 0(1) computations in our or any other procedure are

well-conditioned. Thus, by using these e-independent generators for each time

scale, the approximation of (1.2) becomes a numerically stable problem, as the

effect of the small parameter 6 is isolated from the approximation at any

particular time scale.

In our case, the critical quantities to be calculated in each step of our

algorithm are the ergodic probabilities that comprise U(k) and the

leading-order terms of the trapping probabilities vIj(e) for each transient

state j. Since e-dependence is completely absent in the U(k) calcualtion, the

terms of interest are guaranteed to be 0(1). The calculation of the leading

order coefficient of vIj(e) is also an 0(1) compuation. In fact, referring

to (2.7)-(2.8) and the accompanying discussion, we see that this computation

consists of a clearly stable symbolic part - identifying the lowest power of

e in the various elements of P(6 )n and an 0(1) computation corresponding to

the multiplication of the coefficients of these leading oder terms as we

compute the successive powers of P(e).
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To illustrate what can happen if we allow e-dependencies in the

generators used at each time scale, consider again the process depicted in

Figure 3.1. Suppose we intitiallyh group states 1 and 2 together as one

ergodic class at the fastest time scale and state 3 as the other. In doing

this, we keep the e rate from state 2 to state 1 as part of our fast time

scale model (and in essence are then treating it in the same manner as the

0(1) terms), while the a rate from 2 to 3 is viewed as a perturbation. With

this grouping, there are no transient states, and thus we can directly apply

Courtois' procedure. In doing this, we find that the "fast" ergodic

probability vector for the (1,2} class is

11
1+e

U(6) = ec 6

which as expected contains a small value for the probability of being in

state 2. This is the source of the difficulty with this approach. First of

all, it becomes necessary to know ahead of time which small terms should be

thought of as small and which shouldn't. Also, since these probabilities are

used as weights in computing the aggregate behavior at the next time scale, it

is actually necessary to know the O(6) component of u(e) to within 0(e2) in

order to extract a uniformly valid approximation. As the next paragraph makes

clear, this is a far more stringent numerical requirement than is needed in

our procedure. Furthermore if this approach is used for the model presented

in Section I, states 1, 2 and 3 must all be grouped together. Not only must

the small ergodic probability be calculated but what was a set of two small

(degenerate) problems has become larger; the advantaage of decomposition is

partially lost.

Finally, let us comment on the significant computational implications of

Corollary 1. Specifically, this states that it is only the leading-order

terms in all transition rates that matter at any stage of our procedure.

Consequently, errors of order e in the compuation of U(k ) or (k)(6) have no

effect on the asymptotic approximation, as errors are introduced into the

approximation by such perturbations in our calculations are at worst of the

same order as the accuracy of the overall compuation. This lemma also has

another important implication. Specifically, thanks to this lemma, using only
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knowledge of the (integer) orders of the elements of A(k)(e) we can determine

the location of the nonzero entries in U(k) and the orders of magnitudes of

the entries in V(k)(e). Therefore the orders of magnitude of the transition

rates in A(k+ l)(e) can be determined. Consequently, the problem of

determining the structure of the full set of time scale models (i.e. what

states are aggregated at what stage and the orders of the transition rates

between these aggregates) involves only connectivity calculations on the state

transition graph where transitions are labelled with their orders of

magnitude. Such analysis is then essentially an extension of the type of

analysis method used by Siljak (1978) for large scale systems. This

structural property suggests an interesting problem, namely the effect of a

change in the order of one or more transition rates has on the overall time

scale structure. Rohlicek (1986) presents an example of this applied to a

problem of determining the effect on overall system reliability of adjustments

in component failure rates and the rates at which faults are detected or

incorrectly indicated.
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Appendix

A.1 Proof of Lemma 21

First note that the term [Z A(te) y] - in (3.4) can be expressed as an

infinite series

A(e) Y] = Z (A+B(e)) Y

= 1I + D Z B(e) Y ] D

co

= [ -D Z B(e) Y] -mD
m=O

where D = Z A Y

Since Z and Y are associated with the the nonzero eignevalues of A, D- 1

exists. Substituting this expression into (3.4) gives

6 W (1)(6) = V B(e) S B(e) U + V B(e) S B(e) S B(e) U +

( C1 ee)2( + C2 (-) 

where S Y D -1 z = diag( S1, .... SN )

Without loss of generality, we assume that the states of each block are

ordered with any transient states at the end, so that the ergodic probability

vectors can be written as

U I = IJwhere rI>O, AI uI = 0

If B(e) is partitioned consistently with A(e), then from the no-coupling

assumption, the (I,J) block must have the form

We drop the superscript (0) in this proof to simply the notation.
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B(R)() B(R)
B E) 3IJ (R)

The (I,J) elements of A )1 (e) and C (e) can now be expressed as

eaIJ( =) BIJ(6) U

and

[eCm(6)J]I J =1T BIK (e) SK .- SK1 BK1.J(6) U
KK2.K m m 'K1 ,K2, .. .Kmm

There must therefore exist a sequence of aggregate states (K1,K2 ,...K ) such

that

[ eCm() ]I,J O( IIBI Km (e), *-- IIB K1.J(e)I ) (3.5)

From the structure of BI j(e) shown above and the positivity of Trj. it follows

that

IIBI, J(e)i = O( IlTBij(e )7rjI ) = O( aI,
1 (e) ) for IXJ

By constructing a new path (Ki ....K',) by removing the cycles in (K1,...Km)

[6Cm(6)I.J = 6 O( aI,K. (e) ... a4 )J(6)' )
m 1

where 2<n'<min(m,dim A)

from which follows that

(1) (1) (1)wIj(e) = O aIK,, (e) . aK,,J() ) ) IXJ
wosoe) p tm 1

for some path (K'1,...K,).

13
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A.2 Proof of Lemma 3

First, G(k+l)(e) has well-defined time scale behavior by Lemma 1. The

proof that W(k+l)(e) is weak with respect to A(k+l)(e) follows the proof of

Lemma 2 with the following exception. We first write G(k)(e) as

G(k)(e) = A(k) + [ B(k)()+W(k)(e) ] A(k) + k)()

Using the nonnegativity of the off-diagonal blocks of B(k)(e)

w( (e) (= O( IIBJs ()11I IIBs I(6 ) I•J
n 1

for some path (IS 1,... Sn,J), ,S1 I, Si.Si+l, Sn•J

therefore

IIBJ I(e)II = O( IIBjI(e)ll ) + e O( IIBJ S (a6)11 IIBS 1I(6) )
n 1

This expression can be substituted into (3.5) where IIBJ I(e)ll appears.

Equation (3.5) is therefore valid for some new path (K1,...Km) and the

remainer of the proof follow as in Lemma 2.
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1 1

Figure 1.1 Perturbed Markov process
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Figure 2.1 0(1/e) time scale
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Figure 2.2(a) 0(1) time scale
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1/2

Figure 2.2(b) 0(1/e) time scale

1,
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Figure 2.2(c) O(1/e ) time scale
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Figure 3.1 Example 2

1 e

Figure 3.2 Modified process

+Figure 3.3 Expanded state process

Figure 3.3 Expanded state process


