
LIDS-P-1497
August 1985
(revised November 1985)

MARKOV CHAINS WITH RARE TRANSITIONS AND SIMULATED ANNEALING'

John N. Tsitsiklis2

ABSTRACT

We consider Markov chains in which the entries of the one-step transition probability matrix are

known to be of different orders of magnitude and whose structure (that is, the orders of magnitude

of the transition probabilities) does not change with time. For such Markov chains we present a

method for generating order of magnitude estimates for the t-step transition probabilities, for any

t. We then notice that algorithms of the simulated annealing type may be represented by a Markov

chain which is approximately stationary over fairly long time intervals. Using our results we obtain

a characterization of the convergent "cooling" schedules for the most general class of algorithms of

the simulated annealing type.
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I. INTRODUCTION.

The main objective of this paper is th characterization of the cooling schedules under which

a simulated annealing algorithm converges to a set of desired states, such as the set where some

cost function is minimized, thus generalizing the results of Hajek [9]. The added generality over

the results of [9] may turn out to be useful in parallel simulated annelaing algorithms in which

some of the assumptions of [9] may not hold. The method we follow is based on the observation

that in simulated annealing algorithms the "temperature" remains approximately constant for

sufficiently long times. For this reason, we may exploit bounds and estimates which are valid for

singularly perturbed, approximately stationary Markov chains and obtain interesting conclusions

for simulated annealing algorithms. In the course of developing our results on simulated annealing

we derive certain results on approximately stationary singularly perturbed Markov chains which

seem to be of independent interest.

The structure of the paper is the following. In Section 2 we assume that we are dealing with

a discrete time Markov chain in which each of the one-step transition probabilities is roughly

proportional to a certain power of e, where e is a small parameter. We then present an algorithm,

consisting of the solution of certain shortest path problems and some graph theoretic manipulations,

which provides estimates for the transition probabilities of the Markov chain for any time between 0

and 1/e. Then, in Section 3, we indicate how the procedure of Section 2 may be applied recursively

to produce similar estimates on the transition probabilities for all times. In Section 4 we use the

results of Section 3 to characterize the convergence of simulated annealing algorithms. In Section

5 we discuss briefly the continuous time versions of our results.

II. MARKOV CHAINS PARAMETRIZED BY A SMALL PARAMETER.

In this Section we derive order of magnitude estimates on the transition probabilities of a non-

stationary discrete time Markov chain. Our results are based on the assumption that such order of

magnitude information is available on the one-step transition probabilities of the Markov chain.

We start with some notation. We use N and ANo to denote the positive and the nonnegative

integers, respectively. We also let E denote the set of functions f : (0, oo) '-+ (0, oo) such that for

every n E No there exists some c, > 0 such that f(E) < Cnen, Ve > 0. Notice that t has the

property that f(E)/E" E Ut, Vf E l1, Vn E N. Also notice that cl /
e E t, for any c E (0, 1).

We consider a (generally non-stationary) finite state, discrete time Markov chain X = {x(t):

t > O} with state space S = {1,...,N}. For any t > O we let qii(t) = P(x(t + 1) = j I z(t) = i) and

piy(t) = P(x(t) = j I x(O) = i). We assume that some structural information is available on this

Markov chain. More precisely, let there be given a collection A = {aij: 1 < i, j < N} of elements

of J 0o u {oo}. Let f E U and let C 1, C2 be positive constants. We assume that for some e > 0 we
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have

Cl1Ew' < q1j(t) < C 2 "'ii, Vt > 0, if aij < oo, (2.1)

0 < qij(t) < f(E), Vt > 0, if ij = 00. (2.2)

It is also natural to assume that for each i there exists some j such that aij = 0, because otherwise
no Markov chain could satisfy (2.1) and (2.2) for E small enough. We call A the structure of the

Markov chain X. We will now assume that A, C 1, C 2, f are fixed and we denote by M,(A, C1 , C 2, f)
the set of all Markov chains for which (2.1) and (2.2) hold. (Occasionally we use the shorter notation

Me, provided that no confusion may arise.)

We classify the states in the state space by considering a Markov chain in which only those
transitions from i to j with aij = 0 are allowed. Formally, we define a path from i to j to be a
sequence (il,...,i,) of (not necessarily distinct) states such that ii = i, i,, = j and m > 2. The
length of such a path is defined as '-=kl atiik+l. A state i is called transient if there exists a
state j and a zero length path from i to j but no zero length path from j to i. Otherwise, i is called
recurrent. This coincides with the usual definition if E = 0 and the Markov chain is stationary.
Let TR, R denote the sets of transient and recurrent states, respectively. For any i E R, we let R,
be the set of all j such that there exists a zero length path from i to j.

Lemma 2.1: j E R, if and only if j E R and i E Rj.

Proof: If j E Ri but j 0 R, then there exists a zero length path from i to j and a zero length path
from j to some k but no zero length path from k to j. It follows that there exists a zero length
path from i to k but no zero length path from k to i, which contradicts the assumption i E R.

Thus, j E Ri. The fact that i E Rj is then obvious. ·

In view of the above Lemma, the sets Ri determine a partition of R into disjoint classes which
is analogous to the usual partition of recurrent states into ergodic classes for stationary Markov
chains. We now introduce the following assumption on A:

Assumption TRI: For any i, j, k, such that at least one of them belongs to R, we have

aik < iij + ajk. (2.3)

This assumption is made for convenience because it leads to some simplification of the proofs. It
will be removed in the end of this section. We now collect a few useful consequences of Assumption
TRI.

Lemma 2.2: Under Assumption TRI:

(i) If i E R and aij = 0, i f j, then j E R and aji = 0.

(ii) If i E R, then ail = 0.

(iii) If i E R and j E TR, then aij > 1.
(iv) If i E TR, then there exists some j E R such that aij = 0. In particular, P(z(t + 1) E

TR I(t) = i) < 1 - C 1,Vi ETR.

Proof: (i) If i E R and aii = 0, then there exists a zero length path from j to i, because of the
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definition of R. We then apply Assumption TRI along this path to obtain aji = 0.

(ii) Let i E R. By assumption, there exists some j such that acij = 0. By part (i) of the Lemma,
we also have caji = 0. Using Assumption TRI, we obtain aii < aij + caji = 0.
(iii) This is an immediate consequence of part (i).

(iv) Given i E TR, we define a finite sequence (il,...,i,) of distinct states as follows. Let ii = i.
Having chosen i,, if i, E R let n = m and stop. Otherwise, choose i,+l so that there exists a

zero length path from i,n to i,+l but no such path from i,+l to i,. (Such an i,+l exists, by
the definition of TR and must be different from il, ... , i, because otherwise there would be a zero
length path from i, to i,-l.) Since the state space is finite, the termination condition must be

met eventually. Thus there exists some j E R and a zero length path from i to j. We then use

(inductively) Assumption TRI along this path, to conclude that aij = 0. The last statement of the
Lemma is then an immediate consequence of (2.1). ·

We need a preliminary result which provides order of magnitude estimates on the probability

that a state j e R is the first recurrent state to be visited, starting from a transient state i. We

use the notation T = min{t > 0: x(t) E R}. We also use the convention that Ce = 0.
Proposition 2.1: There exist F > 0 and g E U such that for any e > 0, X E M,, i E TR, j E R we
have

ClEa' i < P(x(T) = j I x(0) = i) < Fea'i + g(c). (2.4)

Proof: Let us fix some j E R. We define, for a E .Ao U {oo}, So, = {i E TR: aij = a} and

Qa = {i E TR : aiij > a}. We then define p,,, = supxEq6 maxiEQE P(x(T) = j x(O) = i). We
first prove, by induction on a, that for any ac < oo there exists some Fa > 0 such that p,at < FSa,
Ve > 0. This is clearly true for a = 0. Suppose it is true for all ca less than some positive integer

fl. Let i E Qu and X E Me. Notice that for any state k we have aik + Qaj > aij > A, because of
Assumption TRI. Using (2.1) and the induction hypothesis we obtain

#-1

P(x(T) = j I x(0) = i) < P(x(T) = jl(1) = k)P(x(l) = kl xz(0) = i) +
a=O kESa

+P(x(1) E Qp I x(O) = i) max P(x(T) = j I x(l) = 1) + P(z(l) = j I z(O) = i) <
IEQe

ES E FacEaikC 2O k + (1 - Cl)pO,, + Ck2$ 
a=O kES.

[N max{Fa}C2 + C 2IEC + (1 - CO)P,'

Taking the supremum of the left hand side over all i E Q, and all X E M,, we obtain, for some

constant F,

Pp,f < Fg + (1 - C)pP,,
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from which it follows that the induction hypothesis is also true for @.

Finally, we assume that i E So. Then,

P(x(T) = jil(O) = i) <

P(z(1) E TR, x(1) ¢ Soo I (O) = i) + P(z(1) = j I x(O) = i) + P(x(l) E So Ix(O) = i)p, 6c <

Nf(e) + (1- Cl),,.

Thus, Po,, < (N/Cl)f(E), Ye > 0. This completes the proof of the second inequality in (2.4). The
first inequality is a trivial consequence of (2.1). *

Let us mention another method for proving Proposition 2.1. We could first prove it for stationary

Markov chains in M e, because in this case there are explicit formulae for the absorption probabilities.

(Such is a result is obtained in [12].) Then, we notice that Pa,, is bounded above by the absorption

probabilities which would result if an adversary was allowed to choose qij(t) at each time t after

observing the current state, subject to the constraints (2.1) and (2.2). It follows from standard

results in Markovian decision theory that the optimal policy for the adversary is a stationary one

and therefore the bounds obtained for stationary Markov chains also apply to the nonstationary

ones. Unfortunately, this method does not seem to work for our subsequent results because they

correspond to a maximization over a finite horizon for which stationary policies are not in general

optimal.

Let us also point out that Proposition 2.1 is false if Assumption TRI is removed.

The main result of this section is based on the following algorithm which provides important
structural information on the long run behavior of Markov chains in M,.

Algorithm I: (Input: A = {aij : 1 < i,j < N}; Output: V = {V(i,j) : 1 < i,j < N}, sets R c S,

TR c S and for each i E R a set Ri C R.)

1. Given A, determine R, TR and the classes Ri using the definition given earlier.

2. Let cij = aij - 1, if i E R, j E R, j ¢ Ri and cri = aij, otherwise. (Notice that cij > 0 always

holds.)

3. Solve the shortest path problem from any origin i E R to any destination j E R, with respect

to the link lengths Cij and subject to the constraint that any intermediate state on a path must be

an element of R. Let V(i,j) be the length of such a shortest path. Notice that the V(i,j)'s satisfy

V(i,i) = O, Vi E R and

V(i,j) = min{V(i, k) + ckj}, i,j E R. (2.5)
kER

4. If iE R, jE TR, let

V(i,j) = min{V(i, k) + Ckj} = min{V(i, k) + akj}. (2.6)
kER kER
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5. If iE TR, let

V(i,j) = min{Cik + V(k, j)} = min{aik + V(k,j)}. (2.7)
kER kER

Notice that the output V(i,j) of the above algorithm is equal to the length (with respect to the
cij's) of a shortest path from i to j subject to the constraint that all states on the path belong to
R, except possibly for the first and the last one. We continue with a few elementary observations

on this algorithm:

Proposition 2.2: (i) V(i,j) > 0, Vi,j.

(ii) V(i,j) > 1, Vi, Vj E TR.

(iii) V(i,j) < V(i,k) + V(k,j), Vi, j,k.

(iv) If j E R and j' E Rj, then V(i,j) = V(i,j'), Vi. Also, If i E R and i' E Ri, then V(i,j) =

V(i',j), Vj.
Proof: Part (i) follows from the shortest path interpretation and the nonnegativity of the cij's.

Part (ii) follows from (2.6) and the fact (Lemma 2.2(iii)) that cakj > 1, whenever k E R and
j E TR. Part (iii) is clearly true for k E R, due to the shortest path interpretation. So, assume
that k E TR. Let us take shortest paths from i to k (of length V(i, k)) and from k to j (of length
V(k,j)) and concatenate them. This produces a path from i to j, of length V(i,k) + V(k,j), such
that all intermediate states, except from k, belong to R. If kl and k2 are the predecessor and the

successor, respectively, of k in this path, we have kl E R, k 2 E R and we can use (2.3) to conclude

that Cklk + Ckk 2 > Ck k2 which shows that k may be eliminated from this path, to produce a path
from i to j, with all intermediate states belonging to R, and with length less than or equal to

V(i, k) + V(k,j), as desired. Finally, part (iv) follows from the shortest path interpretation and

the fact that Ckl = akl = 0, whenever k E R and I E Rk, which is a straightforward consequence of

Assumption TRI. *

We notice that, as a consequence of part (iv) of the proposition, the algorithm need not be
carried out for all states. It suffices to consider transient states and one representative from each

class R,.

The following proposition establishes the relevance of the V(i,j)'s to the Markov chains under

study.

Proposition 2.3: For any Cs > 0, there exist positive constants G1, G2, G 3, G4, with G4 < 1, and
some g E U such that, for any E > 0, for any Markov chain in M, and any states i, j we have

Gl(E(t - N))NEV( ij ) < pij(t) < G 2EV( i 'j ) + XiGsG3 e'i + g(), Vt E [N,Cs/e], (2.8)

where Xi = O, if i E R, and Xi = 1, otherwise. (The upper bound in (2.8) is also true for t E [1, N].)
In particular, there exist G1 > 0, G 2 > 0, g E U such that

G1 EV(il") < Pij(-) < G 2EV(i,j)+g(E). (2.9)
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Proof: Notice that for any i E R, j 0 Ri we have qij(t) < C 2E, Vt. It follows that P(x(t + 1) 4
R, I x(t) E R,) < NC2 e, from which we easily conclude that there exists some F1 > 0 such that

P(x(t) E R I x(s) E R) F1, 0 < s < t < C3/e, Ve > 0, VX E M, Vi E R. (2.10)

We now start the proof of the lower bound in (2.8). If V(i,j) = oo, there is nothing to prove, so
we will be assuming that V(i,j) < oo. We first assume that i E R and j E R. Then, there exists
a sequence i = i 1,i 2,...,in = j of elements of R, (with n < N) such that Ek=l ciki,+- = V(i,j).
Let k E {1,...,n} and suppose that there exists some Fk > 0 such that, for all e > 0 and for all
X E M,,

P(x(t) E R,, I x(O) = i) > Fk(E(t - k + 1))k-lEL=l %i+L, Vt E [k- 1, Cs/]. (2.11)

We then have

P(x(t) E Rk+, I(0) =i) >
t-1

Z P(x(t) E Rik+l x x(s + 1) E Rik+,) P(x(s + 1) E Rik+l Ix(s) E Ri,) P(x(s) E R I x(0) ) =
8=0

t-1

-F 1Clc"1 "+' + Fk(e(- - k + >

(FFC,)e-= E -k + . (2.12)E l
(FkFlCl)EL~fi= C'~''+iE ~i~(E - k + l))k1'. (2.12)

=c=k

Clearly, there exists a constant F, such that

t-1

(s k + 1)k 1 > F(t- k)k, Vt.
e=k

Inequality (2.10) shows that (2.11) holds for k = 1. We have thus proved by induction on k that

(2.11) holds for all k. Notice that

P(z(t) = j I x(O) = i) > P(x(t) = j I (t - 1) E Rj) P((t- 1) E Rj I x(0) = i) >

ClP(x(t- 1) E Rj x(0) = i),

which completes the proof of the left hand side of (2.8), for the case where i E R and j E R.

Suppose now that i E R, j E TR and let k E R be such that V(i, j) = V(i, k) + akj. If akj = 00,
then V(i,j) = oo and there is nothing to prove. So, assume that akj < oo. Then,

P(x(t) = jl x(o) = i) > P(x(t)= j I x(t- 1) = k) P(x(t- 1) = k x(O) = i) >
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CclakiP(x(t - 1) = k I x(O) = i).

Given that we have already proved the lower bound for pic(t), the desired result for pij(t) follows.

Finally, let i E TR. The result follows similarly by choosing k E R so that aik +V (k, j) = V(i, j)
and using the inequality

P(x(t) = j x(0) = i) > P(x(l) = k I x(O) = i) P(x(t) = j 1(1) = k).

We now turn to the proof of the upper bound in (2.8). Let i E R be fixed. We define Ea = {j E
R : V(i,j) = a), Ta = {j E TR : V(i,j) = a}, E<a = Up<aEp. We also define similarly E>a,
T<a, T>ca. We will prove by induction that for any a < oo the following statements hold:
(SEa) : There exists some Ga such that Ve > 0, VX E Me, Vj E E>a and Vt < C 3/E we have

Pij(t) < GaEa.

(STa) : There exists some G' such that Ve > 0, VX E Mc, Vj E T>a and Vt < Cs/e we have
Pij(t) < G'Ea.

Statements SEo and STo are trivially true, with Go = G' = 1. We now prove ST1. (Notice
that T> 1 =TR.) Now,

P(x(t + 1) E TR I z() = i) <

P(z(t + 1) E TR I xz(t) E TR) P(x(t) E TR I x(O) = i) + P(z(t + 1) E TR I x(t) E R) <

(1 - C1)P(x(t) E TR I x(O) = i) + NC 2E. (2.13)

Since i E R, P(x(O) E TR I x(O) = i) = 0 and (2.13) implies P(x(t) E TR I x(O) = i) < (NC2e )/C1,
Vt > 0, which proves ST1.

Now let a be some positive integer and assume that statements SE'_ 1 and ST3 are true, for
all , < ce. We will prove that SEa and STa+1 are also true. We first need the following Lemma.
Lemma 2.3: If j E J = E<(a-1) U T<a and k E K = E>a U T>(a+l), then V(i,j) + aj'k > a + 1.

Proof: (i) If j E E<(a_l), k E E>a, then V(i,j) + aCk = V(i,j) + Cjk + 1 > V(i,k) + 1 > a + 1.
(ii) If j E E<(a-1), k E T>(a+l), then V(i,j) + aik = V(i,j) + cjk > V(i, k) > a + 1.

(iii) If j E T<a, k E E>a, let I E R be such that V(i,l) + cai = V(i,j). Suppose that I E Rk.
Then, V(i,l) = V(i,k) > a and V(i,j) = V(i,l) + cai > a + 1, which contradicts the assumption

j E T<a We thus assume that I ¢ Rk. Then, V(i,j) + cijk = V(i, l) + a ij + ajk > V(i, I) + alk =

V(i, ) + C >V + 1 > V(i,k) + 1 a + 1.

(iv) If j E T<a, k E T>(a+1), let I E R be such that V(i,1) + aij = V(i,j). Then, V(i,j) + ajk =

V(i, ) + a1, + aik > V(i,1) + atk > V(i, k) > a + 1. *

We now use the induction hypothesis and Lemma 2.3 to obtain

P(Z(t + 1) E K I x(t ) E J) P(z(t) E J I z(O) = i) <

E P(z(t+ l) = k x(t) =j)P(z(t) = j I x(O) = i) <
kEK, jEJ
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2_ C2 ecaikGeV(', j ) < (N2 C 2G)Ea+L,
kEK, jEJ

where G = max{Gp_, ,G'; @ < ca}. It follows that

P(x(t) E K I x(O) = i) < (N 2C 2G)'+IC3,/E, Vt E [1,C 3/EI,

which proves SEC. Finally,

P(x(t + 1) E Ta,+1 I x(0) = i) < (1 - C1)P(x(t) E T>a+ I xz(O) = i) + NGaceC 2E + N 2C 2GEc+

which shows that

P(z(t) E T>a+l I x(O) = i) < (1/C1)(NG,CC 2 + N 2C 2 G)ea+1, Vt E [1,C3/E].

This proves ST, and completes the induction.

We have thus completed the proof of the upper bound in (2.9) for the case where i E R and

V(i,j) < oo. The proof for the case i E R and V(i,j) = oo is very simple and is omitted. We now

assume that i E TR. Let T be the random time of Proposition 2.1. Then, for some F > 0, G > 0,

9,9',9" E l, we have

Pii(t) <

P(T > t)+ I P(z(t) = j I x(T) = k,T < t) P(x(T) = k,T < t Ix(O) = i) <
kER

(1- Cl)t + Z[GeV(C'i) + <g()][Fak + g'(E)] <

kER

(1 - Cl)t + NGFEV(',) + g"(E), Vt E [1,Cs/I].

This completes the proof of the proposition. .

Notice that the upper and lower bounds are tight, within a multiplicative constant independent

of c, when t = 1/E. For smaller times the bounds are much further apart. It is not hard to close

this gap, although we do not need to do this for our purposes. In particular, the exponent in the

term (e(t - N))N in the lower bound may be reduced. This may be accomplished with a minor

modification of the induction hypothesis in the proof of the lower bound. The upper bound may

be also improved in a similar manner.

The remainder of this section is devoted to showing that Assumption TRI is not an essential

restriction. Roughly speaking, we will establish that our results are applicable to any Markov chain

which is aperiodic in the fastest time scale.

Let there be given a set A = {(ij : 1 < i,j < N} of elements of A/0 U {oo}, not necessarily

satisfying (2.3). For any i,j E S, n E Jl, we define /0j1 = aij and . +: = mink{flak + akj). That

is, .Pnj equals the distance of a shortest path (with respect to the link lengths aij) from i to j
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which has exactly n hops. Also, let kij = minnE. V j. Notice that for every i,j, k, m, n we have

sik + k3' > ' ' +n. We introduce the following assumption on A.
Assumption AP: There exists some positive integer M with the following property: if i E R or

j E R, then .j = kii, Vn > M.

For any Markov chain whose structure is described by A, meaning that the estimates (2.1), (2.2)

are valid, assumption AP amounts to the following: if we substitute 0 for e, and decompose the re-

sulting Markov chain into ergodic classes, in the usual manner, then each of the non-communicating

classes of recurrent states is aperiodic.

It can be shown that if A satisfies assumption AP, then M can be chosen to be smaller than N 2 .

(This is related to the fact that the "index of primitivity" of any primitive nonnegative matrix is

bounded above by N 2 - 2N + 2; for more details, see Chapter 2 of [13].)

Given A, some positive constants C 1, C 2, some f E l and some c > 0, consider the set

.M,(A,C1,C 2,f). Let Q be some positive integer. For any X E M,(A,C1,C 2 ,f), let us define

XQ to be the discrete time Markov chain obtained by sampling X every Q time units. Finally, let

-Q = {,6iQ: 1 < i,j < N}. The following Proposition establishes that the coefficients #j describe

the structure of the sampled Markov chain X Q.

Proposition 2.5: For any A, C 1, C 2, f E U, and for any Q E X, there exist some positive C', C'
and some f' E U such that {XQ : X E M,(A,C 1 ,C 2 ,f)) is a subset of .M,(BQ,C1,C6,f').
Proof: The result is immediate from the fact that P(xQ(t + 1) = j zxQ(t) = i) equals to the sum,

over all paths from i to j with exactly Q hops, of the probability that x(t) follows any such path.

The desired conclusion follows with C' = C?, C' = CQ NQ and f'(E) = NQ f(). (The factor NQ

arises because there are less than N Q such paths.) *

The main reason, however, for introducing X Q is the following.

Proposition 2.6: Suppose that A satisfies Assumption AP and that Q > M + N, where M is the

constant in that assumption. Then BQ satisfies Assumption TRI.

Proof: Let us fix some i, j, k and suppose that i E R. Let n be such that 8jk = /i3,. Without

loss of generality we may assume that n < N. Furthermore, Rk > 6ijk = jlk~. Therefore, using

Assumption AP and the inequalities Q > M, Q - n > M, we have PiQ + -BQ > 6a + #5 k =

,aQ-" + i/sk > fi,Q which is the desired inequality. The proof for the cases j E R or k E R is

identical and is omitted. -

As a consequence of Propositions 2.5 and 2.6, Proposition 2.3 becomes applicable to an appropri-

ately sampled version of a given Markov chain, assuming condition AP. We notice that Proposition

2.3 will provide us with estimates of the transition probabilities only for those times which are

integer multiples of Q. However, it is easy to show that the same estimates are also valid for

intermediate times as well.

With a more elaborate choice of Q, the conclusions of Proposition 2.6 are valid even if Assumption

AP fails to hold. However, in this case, the corresponding conclusions of Proposition 2.3 will only
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be valid for the sampled chain XQ and not, in general, for the original Markov chain. Rather, the

order of magnitude of pij(t) will vary periodically with t.

We close this section by pointing out that there is nothing special about the coefficients aci
being integer. For example, if the tirj are rationals we could introduce another small parameter 6

(to replace E) and another set of integer coefficients Ilij, so that 6fli = sE"i. Even if the aci's are
not rational, neither are their ratios rational, the proof of Proposition 2.3 remains valid, as long as

min,i(j{ci} > 1. This can be always achieved by redefining the small parameter E.

-~~~~~--~1



III. DETERMINING THE STRUCTURE AT SUCCESSIVELY SLOWER TIME SCALES.

Proposition 2.3 allows us to determine the structure of a Markov chain X E M, in the first

of the slow time scales, that is for times of the order of 1/e. We now notice that the transition

probabilities P(x(1/e) = j x(O) = i) satisfy (2.1), (2.2), (with a new choice of C1, C 2, f) provided

that we replace cYij by V(i,j). Moreover, due to part (iii) of Proposition 2.2, the coefficients V(i, j)

satisfy the triangle inequality (2.3) and, therefore, Proposition 2.3 becomes applicable once more.

This yields estimates for the transition probabilities P(x(1/e2 ) = jlx(O) = i). This procedure

may be repeated to yield estimates for P(x(l1/d) = jlx(O) = i), for any positive integer d. To

summarize, we have the following algorithm:

Algorithm II: (Input: A = {aij : 1 < i,j < N}, satisfying Assumption TRI; Output: for each

d E Ao0, a collection Vd = {vd(i,j) : 1 < i,j < N}, a subset Rd of the state space and for each

i E Rd a set Rid C Rd.)

1. Let V°(i,j) = aij, Vi,j.

2. Let Vd be the input to Algorithm I; let Vd+l , Rd, TRd, Rd be the outputs returned by Algorithm

I.

Notice that Rd is the set of all states such that Vd(i,j) = 0 implies Vd(j,i) = 0. Also, for any

i E Rd, Rid = {j E Rd : Vd(i,j) = 0}. The remarks preceding Algorithm II establish the the next

proposition. (Notice that when we use Proposition 2.3 to obtain estimates for t ; 1/ed, the unit

of time becomes 1/ed - 1. For this reason, the variable t in Proposition 2.3 must be replaced by

ted - 1 .)

Proposition 3.1: Given some A satisfying Assumption TRI and some d E A/, let Vd(i,j), Rd, be

the collection of integers and the subset returned by Algorithm II. Then, for any positive constants

C 1, C 2, C3 and for any f E U, there exist positive constants D 1, D 2, D3, D 4 < 1 and g E U, such

that, for any e > 0 and for any Markov chain X E .Mc(A,C 1,C 2,f) we have

-(e(e t N))Nev d(i j ) < P(x(t) = j x(O) = i) < D2 eV (i' ,) + xiD3Dted-Vd- (ij) + g(E),

Vt E [N/ed- l ,Cs/Ed], (3.1)

where Xi = 0, if i E Rd-1 and Xi = 1, otherwise. (The upper bound in (3.1) is also valid for

t E [1/ed-1, N/ed-l].) In particular, there exist D 1, D 2 > 0, g E U such that

DleV •(ij< ) < D2Cvd(i'j) + g( e) (3.2)

We continue with a few remarks on the quantities computed by Algorithm II.

Proposition 3.2: (i) For any d, i, j, k, we have Vd(i,j) < Vd(i, k) + +Vd(k,j).

(ii) For any d, we have Rd+l C Rd.

(iii) Vd(i,j) + Vc(j,k) > Vmax(cd)(i,k), Vi,j,k,c,d.
Proof: (i) This is an immediate consequence of part (iii) of Proposition 2.2.
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(ii) Suppose that i E Rd+l. Then, Vd+1(i,i) = 0. Using part (ii) of Proposition 2.2, we conclude

that i 0 TRd, or, equivalently, i E Rd.

(iii) Using Proposition 3.1 twice, there exist constants D1, D2 such that

( 1 1Dleiv (i,)+V ) < p (X + C) = k x(0) = i < 2(i,k).

Moreover, this inequality is true for all X E Me and for all e > 0. Letting e be arbitrarily small,

we conclude that the claimed result holds. -

As a corollary of Proposition 3.2 we conclude that some of the upper bounds of Proposition 3.1

are true even for times smaller than 1/d - 1.

Corollary 3.1: If i E Rd, or if j E Rd, or if Vd(i, j) < VC(i,j), Vc < d, then there exists some C > 0

such that

pij(t) < Cevd(' , j ), Vt E [0,1/ed], VX E M3,,Ve > 0. (3.3)

Proof: If i E Rd, then Vd(i,i) = 0. For any c < d, and for any j, we may apply part (iii)

of Proposition 3.2 to obtain Vd(i,j) < Vd(i,i) + Vc(i,j) = Vc(i,j). A similar argument leads

to the same conclusion if j E Rd. Now, given some t < 1/ed, find some integer c such that

t E [1/eC-1, 1/Ec]. We then use Proposition 3.1 to obtain pij(t) < Dev° (i$ i ) < DeV'(i,j). -

Inequality (3.3) is in general false if its assumption fails to hold. We continue with a few remarks

on the applicability and usefulness of Algorithms I and II.

Looking back at Algorithm I, we see that in order to determine V(i,j) for i E R and j E R,

we only need to know the coefficients aii for i and j belonging to R. This has the following

implication for Algorithm II: in order to compute the coefficients {Vd+l(i,j) : i,j E Rd}, we

only need to know the coefficients {Vd(i,j) : i,j E Rd}. Since Rd+i c Rd, it follows that the

coefficients {Vd+l(i,j) : i,j E Rd+l } may be computed from the coefficients {Vd(i,j) : i,j E Rd}.

Thus, if we are only interested in determining which states are recurrent for each time scale (as

well as in determining the corresponding ergodic decomposition) we may eliminate, at each stage

of Algorithm II, the states which have been found to be transient, that is the elements of TRd.

This observation, together with the fact that we only need to carry out the algorithm for just

one representative from each class Rid, should result in a substantial amount of savings, were the

algorithm to be implemented.

Naturally, Algorithm II is applicable to the appropriately sampled versions of Markov chains

satisfying Assumption AP. Then, inequalities (3.1) and (3.2) are valid for times which are integer

multiples of the sampling period Q. Moreover, a simple argument shows that these inequalities are

valid for intermediate times as well. Also notice that sampling needs be carried out only once. Even

if A satisfies AP but not TRI, still the coefficients Vd, d > 0, will automatically satisfy Assumption

TRI and no sampling is required at subsequent stages of Algorithm II.

We compare Algorithm II and Proposition 3.1 to the results available in the literature. There has

been a substantial amount of research on singularly perturbed stationary Markov chains [1,2,3,4,12].
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Typical results obtain exact asymptotic expressions for the transition probabilities, as a small

parameter e converges to zero. These asymptotic expressions are obtained recursively, by proceeding

from one time scale to the next, similarly with Algorithm II. Each step in this recursion involves the

solution of systems of linear equations and, possibly, the evaluation of the pseudoinverse of some

matrices [1], which may be computationally demanding, especially if we are dealing with large scale

systems. However, we may conceive of situations in which we are not so much interested in knowing

the values of the transition probabilities, but rather we want to know which events are likely to

occur (over a certain time interval) and which events have asymptotically negligible probability (as

E goes to zero). For the latter case, a non-numerical, graph-theoretic, method is more natural.

Such a method (for stationary Markov chains) is implicit and easy to extract from the results of

[12]. Algorithm II also accomplishes the same.

On the more technical side, it does not follow from the literature, neither is it a priori obvious,

that there exist integer coefficients Vd(i,j) such that inequalities of the type (3.1) hold. The

existing results provide approximations for those transition probabilities which do not vanish as E

approaches zero [1,2,3,4,12], but much less is known about the asymptotic behavior of the vanishing

transition probabilities. Furthermore, the techniques which are usually employed are tailored to

stationary Markov chains (e.g. perturbation theory of linear operators) and do not seem applicable

to the analysis of non-stationary chains. The discussion following Proposition 2.1 suggests one

method for applying results for stationary chains to non-stationary ones but it does not seem to

be universally applicable. Let us also point out that Proposition 3.1 is fairly easy to derive for

"nearly decomposable" Markov chains [3]. This is not the case for more general Markov chains; in

particular, the existence of transient states which feed into different ergodic classes are the main

source of difficulty [12].
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IV. COOLING SCHEDULES FOR SIMULATED ANNEALING.

In simulated annealing [6,10] we are given a set S = {1,...,N} of states together with a cost

function J: S -4 A/ to be minimized. (Our restriction that J takes integer values can be relaxed.)

The algorithm jumps randomly from one state to another and forms a Markov chain with the

following transition probabilities:

P(x(t + 1) = j I x(t) = i) = Q(i,j) exp [min{O, -(J(j) - J(i))/T(t))], if j $ i, (4.1)

P(x(t + 1) = i I x(t) = i) = 1 - Z P(x(t + 1) = j I x(t) = i), (4.2)
jii

where the kernel Q(i,j) is nonnegative and satisfies Zj Q(i,j) = 1 and T(t) > 0 is the "temper-

ature" at time t. It is known that if T(t) decreases to zero slowly enough, then z(t) converges

(in probability) to the set at which J is minimized [5-9,11]. We are interested in determining

how slowly T(t) must converge to zero, so that convergence to the minimizing states is obtained.

This issue has been resolved by Hajek [9] under some restrictions on the structure of Q(i,j). We

shall derive shortly the answer to this question in a more general setting. Moreover our method

establishes a connection between simulated annealing and the structure of singularly perturbed

stationary Markov chains.

We formulate the problem to be studied in a slightly more general manner, as follows. Suppose

that we are given, a stochastic matrix PE, (whose ij-th entry is denoted by pij) parameterized

by a positive parameter e and assume that there exist positive constants C 1, C 2 and a collection

A = {aij: 1 < i,j < N} such that caij E o U {oo}, Vi,j and such that pj = 0, whenever aij = oo,

and Cle'i < pi <- C 2 e "i, Ve E (0,1], whenever aij < oo. Finally, we are given a monotonically

nonincreasing function (cooling schedule) c: JNo 0 - (0, 1). We are interested in the Markov chain

x(t) with transition probabilities given by P(x(t + 1) = j I z(t) = i) = p;t)

Clearly, the simulated annealing algorithm is of the type described in the preceding paragraph,

provided that we identify E(t) with e-1/T(t) and provided that we define aij = oo, if Q(i,j) = 0,

i - j, and aij = max{0, J(j) - J(i)}, if Q(i,j) : 0, i 0 j. Also, aii has to be accordingly defined.

We now return to our general formulation. We thus assume that A, C 1, C2 are given, together

with the schedule {e(t)}. We assume that A satisfies Assumption TRI and we define, for any d E MAo,

the quantities Vd(i,j) and the sets Rd by means of Algorithm II of Section III. Our main result is

the following.

Proposition 4.1: Assume that for some integer d > 0,

ZEd(t) = oo, (4.3)
t=O

d+l(t) < 00oo. (4.4)
t=o
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Then,

(i) limt_.o P(x(t) E Rd l x(O) = i) = 1, Vi.
(ii) For any i E Rd, limsupt.o.. P(z(t) = i I x(0) = i) > 0.

Proof: The main idea of the proof is to partition [0, oo) into a set of disjoint time intervals [tk, tk+l)

such that x(t) is approximately stationary during each such interval, in the sense of Section II, and

then use the estimates available for such Markov chains. To simplify notation, for any function

defined on the integers, we extend it on the real line in a piecewise constant and right-continuous

fashion. Thus, for example, c(t) = E(n), Vt G [n,n + 1), n E V.

The proof for the case d = 0 is rather easy and is omitted. We present the comparatively harder

proof for the case d > 1.

We start with the proof of part (i) of the proposition. We define to = 0 and

tk+1 = tk + d l(t ), if (tk + d-(t) (tk), (4.5)

tk+l = min{t : E(t) _< -(tk)}, otherwise. (4.6)

We define AL (respectively, As) as the set of all k's such that tk+l is defined by (4.5) (respectively,

(4.6)). We will need the following properties of the sequence {e(tk)}.

Lemma 4.1:

-e(tk) < E(t) < E(tk), Vt E [tk,tk+l) (4.7),

S C(tk) = 00, (4.8)
kEAL

oo

E e2(tk)< oo00 (4.9)
k=O

Let f(k, I) be the cardinality of AL n 1, ..., k - 1}, for k > I. Then, for any C E (0, 1),

oo k

ZE (1- C)f(kl)e(tk)e(ts) < 00oo (4.10)
k=O 1=O

k

-lm (1 -c )f (kL)e(t) = 0, Vc E (0,1). (4.11)
1=0

Proof: Inequalities (4.7) are an immediate consequence of (4.5), (4.6).

We notice that for any k E As, k' E As, with k' > k, we have f(tkl) < (1/2)e(tk). Hence,

00

E (tk) < s() E 2- < 0o. (4.12)
kEAs k=O
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Finally,

00

? E(tk) = i ed(tk)[tk+l - tkl = Ed (tk)[tk+l - tk]- C Ed(tk)[tk+l - tk] >
kEAL, kEAL k=O kEAs

oo

E (t)- IE (tk) = 00,
t=O kEAs

which proves (4.8).

From (4.12) we conclude that EkEAs C2 (tk) < oo. Also,

C f2(tk) = E d+ (tk)[tk+l -tk] < 2d+l ZEd+l(t) < 00,
kEAL k=O t=O

which proves (4.9).

Given any C E (0,1), we define a constant a by [2(1 - C)]' = 3/2, if 2(1 - C) > 1; otherwise,

we let a = 1. Let B = {(k,l): k > 1 and f(k,l) > a(k - 1)}. Then,

00co k
r (1- C)f(,,L)e(tk)e(t,) •< ~ [(1 _ C)]G-ke(tk)e(tl) < 00,

(k,l)EB k=O 1=0

because (1 - C)' < 1 and E(tk) is square summable by (4.9). Now notice that E(tk) <

2-(k-i)+f(kl)e(tl), if k > 1. Hence,

E (1 - C)f(kIL)e(tk)e(t)) < Y [2(1- C)]f(k l)2-(k--l) 2 (t) <
(k,l)OB, k>l (k,l)fB, k>l

>(3/2) (1/2)k-' E2 (tL) < 00,
k>l

which proves (4.10). The proof of (4.11) is similar and is omitted. ·

We now define subsets So, S 1,... of the state space inductively as follows.

So = R d = {i : if Vd(i,j) = 0 then vd(j,i) = 0},

Sn+l = {i E Rd - l : i So U ... U Sn and 3j E S, such that Vd-l(i,j) = 1},

Also let

To = {i E TRd-l: 3j e So such that Vd-l(j,i) = 1}

and let T1 be the complement of To in TRd-1. Notice that (un2 oSn) u To u T1 = {1, ..., N}. Also,

if i E S,, n $ 0 and Vd-l(i,j) = O, then j E Rid - 1 and j E S, . (For a proof of this fact, if i E S,,

then i E Rd-i; so, if Vd-l(i,j) = 0, then Vd-l(j,i) = 0 and therefore j E Rid-l. Let I E Sn- 1 be

such that Vd-l(i,l) = 1. Then, Vd-l(j,l) = 1. So, either j E Sn and we are done, or
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j E So U ... U S,,- 1. In the second case, the same argument shows that i E So U ... U S,_- which is
a contradiction.)

We let y(k) = x(tk). We need estimates on the transition probabilities of the y(k) process.
These are obtained by noting that, for any k, the Markov chain {x(t) : t E [tk,tk+l]} belongs
to M,(tk)(A,2-KC 1 ,C 2 ,0), where K = max{caij : cij < oo}. Since tk+l - tk < 1/(Ed-l(tk)),

Corollary 3.1 may be used to obtain upper bounds. Also, for k E AL, tk+l - tk = 1/(ed-l(tk)) and

therefore Proposition 3.1 may be used to obtain lower bounds. In more detail, we have:
Lemma 4.2: There are constants F > 0, G > 0, such that, for every k E C/0 we have
(i) If k E AL, then P(y(k + 1) E S, I y(k) E Sn+l) > FE(tk), Vn. (4.13)

(ii) P(y(k + 1) 0 Sn I y(k) E Sn) < Ge(tk), Vn. (4.14)

(iii) P(y(k + 1) 0 So U To y(k) E So) < G 2 (tk). (4.15)

(iv) P(y(k + 1) 0 So U To I y(k) E To) < GE(tk). (4.16)

(v) P(y(k + 1) E To I y(k) E So) < GE(tk). (4.17)

(vi) If k E AL, then P(y(k + 1) E So I y(k) E To) > F. (4.18)

(vii) If k E AL, then, for all i, P(y(k + 1) E TRd-l I y(k) = i) < 1 - F. (4.19)

Proof: (i) If i E Sn+1, then (by definition) there is some j E S, such that Vd-1(i,j) = 1. The
result follows from the lower bound in (3.2).
(ii) Let i E Sn, j ¢ S,. We have shown earlier that we must have Vd-l(i,j) > 1 and the result
follows from (3.3).
(iii) Let i E So and j So u To0 . If j E S,, n 0 O, then j 0 Rd; hence Vd(i,j) > 1. Therefore,
using the definition of Vd, we have 1 < Vd(i,j) < Vd(i,i) + Vd-l(i,j)- 1 = Vd-l(i,j) - 1. Hence

Vd-l(i,j) > 2. Finally, if j E T1, then Vd-l(i,j) > 2, because otherwise we would have j E To.
The result follows from (3.3).
(iv) Let i E To and choose some I E So such that Vd-1(l,i) = 1 (which exists by the definition
of To). Suppose that j 0 So U To. If j E S,, n $ O, then Vd-l(i,j) > 1, because otherwise
Vd-l(l,j) = 1, which contradicts the discussion in the proof of part (iii). So, for this case the
result follows from (3.3). Suppose now that j e T1. For any c < d - 1 we must have Vc(i,j) > 1
because otherwise (using Proposition 3.2) Vd-l(l,j) < Vd-l(l,i) + V 0(i,j) = 1, which contradicts
the assumption j E T1. The result follows again from (3.3).
(v) This is immediate from Vd-l(i,j) > 1, Vi E Rd-1, Vj E TRd-1 (Proposition 2.2, part (ii)).
(vi) Let i E To. Since i E TRd-i, there exists some j E Rd-1 such that Vd-1(i,j) = 0. By the
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previous discussion, such a j cannot belong to S,, for n > 1. The result follows from (3.2).

(vii) Similarly, for any i there exists some j E Rd-l such that Vd-l(i,j) = 0 and the result follows

from (3.2). X

Let

Hk = P(y(n) E So u To, Vn E [O,k] I y(O) E So),

Qk = P(y(k) E To I y(n) E So u To, Vn E (O,k - 1), y(O) E So).

Using (4.17), (4.18), we obtain

Qk+l < Ge(tk) + (1 - XkF)Qk,

where Xk = 1 if k E AL and Xk = 0, otherwise. So,

Qk < G E(tL)(1 - F)fl)
I=0

Using (4.15), (4.16),

Hk+l > [1 - GE(tk)Qk - Ge2 (tk)]Hk (4.20)

Now, E(tk)Qk is summable, by (4.10); also, e2 (tk) is summable, by (4.9). Hence infk-yoo Hk > 0.

More intuitively, once the state enters So, there is positive probability that it never leaves So u T o.

Consequently, the total flow of probability into So from S 1 must be finite. Hence, using (4.13), we

have
c0

ZE (tk)P(y(k) E S) < oo.

/c=O

We will prove by induction that for all n > 1,

00

E E(tk)P(y(k) E Sn) < oo. (4.21)
k=O

Using (4.13), (4.14), we have

P(y(k + 1) E Sn) > P(y(k) E Sn) - Ge(tk)P(y(k) E Sn) + xkFE(tk)P(y(k) E S,+l). (4.22)

By telescoping the inequality (4.22) and using the induction hypothesis (4.21), we see that

Zhao XIE(tk)P(Y(k) E Sn+l) < 00. Also, kEAS E(tk)P(y(k) E Sn + 1) < EkEAS E(tk) < 00

(because of (4.12)) which completes the induction step. Using (4.21) and the fact that E(tk) sums

to infinity we conclude that limsupkOo P(y(k) E So U TRd-l) = 1. We show next that the

probability of transient states goes to zero. Inequalities (4.14) and (4.19) imply

P(y(k + 1) E TRd-1) < GE(tk) + (1 - XkF)P(y(k) E TRd-1).

19



Thus,

P(y(k) E TR d - l) < (1 - F)f(k°) + G (1 - F)f(k)etl),
1=0

which converges to 0, as k tends to infinity, due to (4.11). We may thus conclude that
limsupk..o P(y(k) E So) = 1. By repeating the argument that led to (4.20) we can see that the
probability that y ever exits So u To, given that y(k) E S o, converges to zero, as k -. oo. (This

is a consequence of the square summability of e(tk).) It follows that limk-,,. P(y(k) E So) = 1.

Finally, for any t E [tk,tk+l] we have P(x(t) E So) > P(y(k) E So) - GE(tk), which converges to 1,

as k -- oo. This completes the proof of part (i) of the proposition.

For part (ii) of the proposition, in order to avoid introducing new notation, we prove the equiva-
lent statement that if Et=0 Ed(t) < oo, then limsupt,. P(x(t) = i I x(0) = i) > 0, Vi E Rd- l . So,
let i E Rd-l and consider the set Rd-1. For any j 0 Rd-1, we have Vd-l(i,j) > 1 and, therefore,
(using Corollary 3.1), there exists some G > 0 such that

P(y(k + 1) l Rd-' I y(k) E Rd-') < GE(tk), Vk.

Since we are assuming that ] t°_-o E d(t) < oo, it follows (as in the proof of (4.9)), that Z]=o E(tk) <

oo. Consequently,

inf P(y(k) e Rh-' I y(O) = i) > 0. (4.23)

Finally, for any j E R d- we have Vd-l(j,i) = 0. Hence, using Proposition 3.1, there exists some
F > 0 such that

P(y(k + 1) = i l y(k) E R id-) > F. (4.24)

By combining (4.23), (4.24), we obtain the desired result. ·

Remarks: 1. With a little more effort along the lines of (4.23), (4.24) it can be shown that, under

(4.4), we have inft P(x(t) = i I x(0) = i) > 0, Vi E Rd.

2. Proposition 4.2 may be extended to the case where A satisfies Assumption AP in a straightfor-
ward manner, using the method discussed in Section 2.
Corollary 4.1: Let the transition probabilities for the simulated annealing algorithm be given by
(4.1), (4.2). Consider cooling schedules of the form T(t) = c/log t. For any initial state, the algo-
rithm converges (in probability) to the set of global minima of J if and only if there exists some d
such that the set of global minima contains Rd and c is larger than or equal to the smallest such

d, to be denoted by d*.

Proof: Having identified exp[-1/T(t)] with c(t), we see that 'E-tO=e(t) = Et'l 1 = oo and

Etl Cc+l(t) = Eta 1(1/t(c+l)/c) < co. Thus, by Proposition 4.1, RC is the smallest set to which
the algorithm converges (in probability). Thus, for convergence to the set of global minima, we
need that set to contain RC, which establishes the desired result. *
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A possibility for generalizing Proposition 4.1 arises if we allow the schedule E(t) to be non-

monotonic. In fact the proof goes through (with a minor modification in the definition of the

sequence {tk}) if we assume that there exists some C > 0 such that E(t) < Ce(s), Vt > 8, which

allows for mild non-monotinicity. On the other hand, if e(t) is allowed to have more substantial

variations, then the conclusions of Proposition 4.1 are no more true. For a simple example consider

the Markov chain of Figure 1, together with the schedule E(t) = t -'/ 2 , if t is even, and e(t) = 1/t,

if t is odd. For this schedule, the largest integer for which Eto 0 Ed(t) = oo is equal to 2. Also,

R 2 = {3}. On the other hand, P(x(t) = 3 1 x(O) = 1) does not converge to 1.

We have claimed that our result generalizes the results of [9] and we conclude this section by

supporting this claim. Hajek's result characterized d* in an explicit manner, as the maximum

depth' of local minima which are not global minima, under a 'weak reversibility" assumption,

which is equivalent to imposing certain restrictions on the structure A. Our characterization is

less explicit because instead of describing d* we give an algorithm for computing it in terms of A.

Nevertheless, for the class of structures A considered in [9], we can use our Algorithm II to show

that Rd is the set of all local minima of the cost function J, of depth d+ 1, or more. Hence, the d*

produced by our approach is the smallest d such that all local (but not global) minima have depth

d or less, which agrees with the result of [9]. We do not present the details of this argument since

it would amount to rederiving a known result.

1. The depth of a state i is defined as the minimum over all j, such that J(j) < J(i), of the

minimum over all paths leading from i to j, of the maximum of J(k) - J(i), over all k's belonging

to that path; the depth of i is infinite if no such j exists.
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V. THE CONTINUOUS TIME CASE.

Algorithm II and the results of Section III are also applicable to continuous time Markov chains.

For example, let there be given a stationary (for simplicity) Markov chain whose generator is a

polynomial in e and where E is an unspecified positive parameter. Then, the transition probabilities,

over a time interval of unit duration, satisfy inequalities (2.1), (2.2) for a suitable choice of ciij.
(In fact, the aij's may be read off the Taylor series expansion of eAt , or, equivalently, by solving a

shortest path problem; the details are omitted.) Moreover, it can be shown that these coefficients

automatically satisfy inequality (2.3), for all i,j,k. Therefore, Propositions 2.3 and 3.1 may be

applied to the discrete time Markov chain obtained by sampling the continuous time Markov chain

at integer times. Then, an elementary argument shows that the estimates obtained are valid for

non-integer times as well.

Suppose now that the continuous time Markov chain is non-stationary and its generator is given

by A,(t), where A, is as above and where c(t) is some positive function of time. If E(t) does not vary

by more than a constant factor during time intervals of unit duration, then the unit time transition

probabilities will again satisfy estimates of the form ClEa'i(t) < P(z(t + 1) = j I x(t) = i) <

C 2 '" (t), with the same coefficients aij as in the previous paragraph. Then Proposition 4.1 may

be applied to the sampled Markov chain to characterize optimal cooling schedules for continuous

time simulated annealing algorithms.
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