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ABSTRACT II. PROBLEM FORMULATION

A specific distributed decisionmaking problem is A. Team Structure
formulated that includes processing load constraints on
team members. Solutions are possible that place team Consider the two member, tandem, distributed detec-
members in regions where random behavior is required tion network shown in Figure 1. Each team member re-
and/or where individual errors are likely. p(lHH) - N(mjk a)

I. INTRODUCTION PO 
yP P., U,v ·ef0,£

A main goal in most distributed decisionmaking for- 1,
mulations, particularly team theoretic ones, is to ob- v = -
tain normative decision rules that represent the desired 
behavior of each decision agent or team member [1].
This paper considers a modified team theoretic problem Figure 1 Team Structure
that incorporates decision rules that are descriptive of
actual human behavior, and furthermore takes into ac- ceives a conditionally independent, gaussian observation
count the processing load incurred to execute these de- on the presence or absence of a given phenomenon H.
cision rules. The problem formulated is motivated by Based on his observation, the first member selects one
considerations in the design of human information pro- of two symbols to send to the second member. The latter
cessing organizations of the type where organization then incorporates his own measurement with the received
members perform routine processing tasks under the symbol to make a detection decision for the network.
pressure of time. Examples of such organizations are The optimal decision rules yl for each team member that
found in air traffic control and command and control minimize the probability of error in detection are known
situations. In this context, the usual team problem can [2]. They are threshold tests as given in (1).
be taken as a model of organization structure, and Yf : :
decision rules as idealized: behavior for organization
members, When models for actual human behavior are sub-
stituted for the normative decision rules in the team if y > t = if Y2 t2 = I
structure, team behavior in general changes. Further- 1 1
more, the workload of team members may be such that if y1< t n = 0 if Y< t2i v (
desired team operation exceeds human processing limita-
tions. Thus, given the basic team structure, a problem Basically, the first member biases the second member's
can be formulated to choose decision rules, to be real- choice by selecting the latter's threshold.
ized by actual human behavior for best team performance,
subject to their feasibility with respect to team member B. Information Processing Models
processing load.

Now consider that the threshold comparison tests in
The specific team structure considered is that of a (1) are to be accomplished by humans. For example, the

two-member, tandem distributed detection network. Sec- observation could be displayed visually as a horizon-
tion II describes this structure and reviews the charac- tally displaced dot, with the threshold also displayed
teristics of theoretical team member behavior. A key as a vertical line displaced according to its value.
feature of the decision rules is the presence of thresh- Viewing such a display and selecting a response takes
olds, which each member uses to make comparison tests. time. Furthermore, threshold position with respect to
A model for the information processing required to the likely position of observations will have an effect
execute such a test is then described, with processing on the time required to select a response. In par-
time used as the measure of workload. The complete ticular, assume that a comparison with threshold t re-
model for each member's actual behavior includes a sec- quires, on the average, tp seconds to make, where
ond element, however, which accounts for behavior when - a > 0, b (2)
processing time for threshold tests exceeds the time P = p(t) = a - b-(t) 
allowed. This element derives from human ability to Given that observations are predominantly near zero, the
trade accuracy for speed. Two different mechanisms for model in (2) reflects the observed behavior that
doing this are incorporated, one for each member. The response time decreases as the uncertainty decreases in
overall actual behavior and processing load realized is the response required. In eq.(2), as t becomes large in
parameterized by the thresholds used and other param- absolute value (b # 0), the likelihood that observations
eters that figure in the speed/accuracy tradeoff capa- will fall only on one side of t is high.
bility. The modified team theoretic problem is then to
place these parameters for minimum team error, subject First Team Member
to processing time used being less than processing time
available for each member. Section III discusses the The first team member performs his task using a
characteristics of the problem solution. A particular single threshold. The processing time required to do
consideration of interest is whether, and if so under this test is given by eq.(2); specifically, it is
what conditions, it remains desirable to retain the t ll(t,) = a, - b, (tl) . In addition, it is assumed
thresholds obtained in the original (unconstrained) team that the input/output behavior realized is such that a
problem. Section IV investigates a special case of the flawless comparison can be made. Denote by k,1 the
problem, from which principles of general interest are conditional distribution p(uly z) realized using the
apparent. Finally, Section V summarizes the paper. threshold test. The model is then that of
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the member must complete comparison tests at the rate of



one every vl seconds. If it happens that tz is set such tween the "odds-ratio' (1-q.)/q2 and processing time is
that tpl(t1) > l,, the member will be overloaded. derived from Pew (4]. Note that values of fs and fm are
Therefore, an alternative processing mode is provided: not selected; they represent fixed human behavior.
an option to 'guess', i.e. to essentially ignore the
observation y, and to arbitrarily respond u = 1 with C. Problem Statement
some guessing bias g,. Input/output behavior when
guessing is modeled by the conditional distribution k,,: Five independent variables have been specified

within the models of team members. They include the
: : n = O wrp 1 - gl and n = 1wp gl (4)k12 g u = 0 wp 1 - g 1 and u = 1 vp g 1 (4) three comparison thresholds (t1 ,t1 0,t1z), the amount of

To make this a viable option, assume that t .he time guessing by the first member (q,), and the processing
required to eercise this option denoted by is time deadline for the second member (td). Substituting

required to exercise this option, denoted by tpz2, is (_ f ov pi51 K. for y? and adding the processing time constraints for
less than tp11 (tl) for some range of tx values. .1each member, a constrained optimization problem can be

Finally, because the team member has two options, formulated to minimize the detection error probability
Finally, because the team member has two options,

for the organization, subject to meeting the processing
there will be an additional amount of processing time

time limitations of each member. Denote by Jo the
required to switch between them. Switching overhead de- time limitations of each member. Denote by 

detection error probability. Then formally stated, the
pends on switching frequency, as given by the expression

problem is as follows.
dl.(1 - q1 )-ql (5)

Problem Al (Constrained Optimization Problem)where q, is the fraction of guessing and dx is a scale
factor. If one option is used exclusively, (5) is zero.
Thus, the first team member has an input/output behavior min Jo(ql'tltt2O't2l td)
modeled by K1 that requires a processing time of Tpi: tl't2 0 't2 1 'qlt d

Kx (1 - ql)-,ik + q1 'kl _ (6) T < t 
Tp, = (1 - q,)-tpll(t z) + ql-tpz + d.'(l-ql)q,1 (7) pl l td 2

The model given in eq.(6) and eq.(7) is basically the III. SOLUTION CHARACTERISTICS
so-called Fast-Guess model [3], which reflects one
mechanism whereby humans can trade speed for accuracy. There are several issues of interest with respect

to the solution of Problem Al. One is whether it is
Second Team Member ever to any advantage to set the deadline td for the

second member to be strictly less than ',. This is
The second team member switches between two shown not to be the case, due to the monotonicity of q2

thresholds. Assuming an overhead for switching similar in td. A second issue is whether a possible solution is
to (5), the average time required to accomplish this to leave the thresholds at their unconstrained optimal
task depends on the threshold values, and the relative values, i.e. t*,tro,ti,, and to tolerate any consequent
frequency of using them: input/output errors (q,) or guessing (q,). At the other

1 extreme is the possible solution of adjusting thresholds

2) ] such that q, and q, are minimized. The basic
p2 = 2 2i 2i consideration is one of whether it is better to absorb

i=0 guesses and input/output errors some of the time in
+ d2'p(n = O) p(u = 1) (8) order to use quality thresholds most of the time, or to

use an 'inferior' set of thresholds all of the time. In
As with the first team member, it assumed that the Problem Al, so long as the thresholds to ,t11 affect
second member is subject to a processing time limit; in processing time of the second member, it is better to
this case it is assumed to be a like a deadline adjust them. However, solutions to Problem Al do not
constraint r,. So long as Tp2 ( c2, the team member can necessarily minimize q, and q1.
accomplish this processing without error. Errors will
be made, if however, if p(u), to, and t,1 are such that Examination of Problem Al is greatly facilitated by
T , > =z. The likelihood of errors depends on the taking advantage of the fact that the joint distribution
difference between the deadline imposed, denoted td, and p(u H) completely characterizes the analytical link
the processing time required Tp._ Thus the input/output between team members [2]. Thus the minimization in
behavior of the second member, g,, is as follows: Problem Al can proceed in two stages. First t2o, t21

K : if u = i (i = 0,1) and (9) and td can be placed as a function of p(u,H). Since
~~~~~~~~~~2 , ~there is a 1-1 relationship between (q1 ,tl) pairs and

Y2 > t2i , then v = 1 wp l-q2 ; v = 0 wp q2 p(u,H) distributions, a second minimization can be
performed over these distributions to place q, and t,,

Y2 < t2i then v = 0 wp l-q2 ; v =1 wp q2 and thereby solve Problem Al. Denote by Pik the
quantity p(u=i,H=Hk). Then it is convenient to

where represent the distribution p(u,H) as a vector T, where

q2 q2 (Tp2'td
) =

(1 + ef(Tpzltd)) -1 (10) T = CpO*, Pioe Po1 pill' (12)

and Furthermore, possible T values depend on t1 and q,

f. (t d -T + f T > t according to
| f S TP2 m p2 d (11) T = (1-q) [Poot(t), Po-Poot(tl), PI-Plt(td), P1]

f ~m I Tp2 < + qx-[(1-gd)-Po gx-Po. (1-gi) 'P' g 'Pz]

In words, the second member performs the threshold p
comparison test correctly a fraction (1 - q2) of the = Tt,q,) (13)
time, and makes an error on the fraction q2 of the ob- where
servations processed. For analytical convenience it is
assumed that fm < X, which effectively means that the (14a
minimum value of q2 is non-zero. Eqs.(8)-(11) form the P00t(tl) = o (14a)
model of the second team member. It reflects a second
mechanism of trading speed for accuracy exhibited by
humans. In particular, the log-linear relationship be-



tation of I as the detection error probability of the
Pllt(tl) = 1 - · *p1 (14b) team when q, = 0. A value of J ) 0.5 implies that the

\lt 1 J thresholds are being used to give observations an

and ( .) is the unit normal culative . opposite interpretation, one which results in worse than
chance behavior. Assuming that the minimization infunction. From eq.(13) it is evident that T is deter- chance behavior. Assuming that the minimization in

mined as a combination of two veq.(16) assures that at least chance performance willmined as a combination of two T vectors, one corre- 0.5, thn q.(17) implies
sponding to exclusive use of the threshold and one obtain, i.e. J < min(p,,pz) _ 0.5, then eq.(l7) implies
corresponding to exclusive use of guessing. that td = r,. That is, always place the deadline at the

maximum allowable. This result is valid independent of

Define Tps and T values.

$(T,t 2 0,t 2 1) = Using Unconstrained Optimal Thresholds

[ ( to-o lt -m 20tse 2 Continuing with examination of the inner minimi-
n00' * -t + ) ' i 'P\OOa /1 Lor a zation, consider the question of whether the

2 unconstrained optimal thresholds can be a solution to

tZx-m0\ t21 -mi \ Problem A2. Because of the reformulation in terms of T
+ Plo 1 -+ Ptl ' (15) and the stagewise minimization structure, this question

0 -, j must be answered in a more general way. Whereas the
Eq:(15) represents the detection error probability of minimization in eq.(16) resulted in the construction of
the team as a function of A, t,,, and t2,, assuming q, = two functions t,i(T_ ,l T , performing the minimization of
0. Rewriting To using I and showing the decomposition I without the constraint in eq.(16) results in two
by stages, Problem Al becomes different functions that represent the unconstrained

optimal values of t,i for a given T value. Included in
min min [ - 21(T,t20,t21 )-q2(Tp2 td) this set is the pair of thresholds that define of y*.
tl,ql tZo,tZl,td Indeed, if the functions defined by the unconstrained

s.t. s.t. (C, 't20,t21) minimization are denoted t* i(3, then
Tpl < t ti 

= t 2i(T ,0)) (18)

T = T(t,,q,) The investigation below proceeds in terms of T and
determines whether t Ci( represent a possible solution

Finally, before proceeding to an analysis of to the inner stage minimization. Denote by T*(1) the
solution characteristics, it is convenient to formulate processing time required by the second memer when
a modified version of Problem Al. It is true that unconstrained optimal thresholds are used. Setting td =
explicit dependence on thresholds t,, and t2l occurs in r2 in Problem A2, the inner stage minimization becomes
Problem Al only in the function I and in the determina- that of finding a value of Tp that solves
tion of processing time T . Therefore it is possible q
to aggregate these thresholds into the single variable -ql + - - = 0 (19)
Tpz and to substitute a new function I for J, where aT 

( T,T2) = in J(T,t o,t21) (16) The issue at hand iseq.(19).

s 'tzz T -Because T_*(C) represents a giobal minimum of 1, the
s.t. T 2 = Tp p*

s*t. * Ts first term in eq.(19) is zero. Now, if T* (1) I v, the
In other words, given a T and T.2 value, the relation- second term is also zero, since q2 does not depend on
ship of t,, and t2l is defined (in fact they describe an T 2 in this region. Thus unconstrained optimal thresh-
ellipse). The minimization in eq.(16) generates ods are solutions when the processing time they require
threshold values i that are the solutions to eq.(16) does not exceed the deadline. This is reasonable, since
as a function of T 2. Using this aggregation, Problem any adjustment of thresholds would have no effect on
Al an be stated in Pterms of q1,t1,T p and td as: input/output errors; hence the thresholds can be left

at their unconstrained optimal values.
Problem A2

min mtin T -2[ (r-Te )] (Tq pp' tHowever, for Tp*2,((0 ) > , a different result
mm~tl mm [1 -2 2T2 d ~ ~obtains. In this situation, q, is monotonically

td pt increasing with Tp,. Furthermore, since I < 0.5, as
s.t. T < t + JY(' Tp2) discussed earlier, it is true that the second term is

p1 I t1 < non-zero and hence T*2(l) does not solve eq.(19). This
T- T(tl,ql.) tdresult means that if the processing time required by use

of the unconstrained optimal threshold values is greater
than that allowed, it is always desirable to adjust t,,

Assigning Deadline and t,, to reduce TpU and thereby reduce the
input/output error q2.

Consider now the inner minimization in Problem A2.
For given Tp2, necessary conditions for a solution value Minimizing Second Member Input/Output Errors
of td [51 are given by

The discussion above has concluded that, when it is
a 8q2 an issue, it is more advantageous to reduce the second

. [1 - 2.q21 + - I - 2.3] + = 0 (17a) member's input/output errors than to retain the best
atd atd thresholds for processing observations. The question

arises as to whether input/output errors should be
(d-2 = 0 (17b) minimized as much as possible, at the expense of the

_ > 0 (17c) threshold settings. In terms of Problem A2, this issue
is one of whether Tp2 = v2 is a solution to the inner

The first term in eq.(17a) is zero since Y does not minimization, given that T*(1) > - or whether T >
depend on td. The first factor in the second term is va is a solution instead. [ts resolution depends on how
negative, since q2 is monotonically decreasing with drastically the trade of speed for accuracy is made by
respect to increasing td. Furthermore, Y is bounded the team member, which is modeled by the parameter fs.
above by 0.5. The latter derives from the interpre-



To properly investigate this issue, it is necessary
to add another constraint to Problem A2 in the inner
stage that restricts values of T 2 according to the
region of interest. The result is The problem pi - t,=0

min J(T2 + - 21('T p2)].q2(T p2'2) (20) ii
p2 s.t. .C p2 2'2

where it is assumed that T*1() > s2. The necessary 0 P0 Poo
conditions for a solution value of Tp. are

ay aq, Figure 2 Typical Region of T Values in (p,,,per) Plane

-2*[l- 2-7 J 0 (21a)
-aT - 2 - aT lower boundary represents a non-zero guessing frequency

Tp 2p by the team member. Note that the unconstrained optimal

-(S- Tp2) = 0 (21b) value of ts=tz is therefore on the upper boundary as

)- 0 (21c) illustrated. Finally, the geometric representation in
Figure 2 has many properties in common with the Receiver

and the issue is whether TpS = s, is a solution to (21). Operating Characteristic in signal detection theory [6].
If so, g > 0. Furthermore, it must be true that the Besides the association of the lower 'diagonal' to
first two terms in (21a) are positive in sum. The guessing, it is also the case that better team perfor-
second of the two is always positive, as discussed pre- mance results when the operating point in the (Poo0,P1)
viously. However, the first is always negative for the plane moves nearer to (p,,ps), where perfect discrimina-
region of Tp¶ of interest. This assumes that q, < 0.5, tion between hypotheses is made (by the first member).
which is again the assumption that the second member's
processing behavior is better than chance level. Fur- Consider now the outer minimization of Problem A2.
thermore, in the interval where < T. < T*st CM, J While Figure 2 represents possible T values, not all of
monotonically decreases with increasing p-2 ?hat is, them will be feasible due to the constraint on
as TP forces the thresholds t,, and t., to move away Figure 3a shows typically how this constraint restricts
from t*i(D, I increases.

Thus it is unclear whether Tp = satisfies PX P
(21a). A more specific test to resolve the ambiguity G 
can be derived as follows. At Tps = , qs is at its s 
minimum: q, = (1 + exp(fm)) e

= 
tsm' Furthermore

qf s) f -2 0 PO'% Po Poe
= f · (e m)-(qm)- (22) () (

Substituting (22) into (21a) and rearranging gives Figure 3 Constraint on TpI in (po,,pe1 ) Plane; g,=0.5

2f > _fm. 1m 1 ,) _ (23) T values for dI = 0, i.e. when the first member has no
9> - (qm) .es j ' a = F (23) switching overhead. A guessing bias of 0.5 has been

p aT assumed. The arc ACB represents the locus where T =
pi

which must be satisfied if T.s = S, is a solution. Fs r,, and the shaded area designates the region of
is a non-negative quantity. He parameter fs models the feasible T values. A similar depiction is given in
rate at which input/output errors increase as the Figure 3b, except for the case where d, has increased
processing time required increases beyond the deadline. from zero to a relatively significant value. Again, the
If fs > Fs, then the marginal increase in q2 is great arc ADB represents the locus where T = ,.
enough such that it is optimal to minimize input/output
errors and to adjust thresholds accordingly. If fs < The solution to Problem A2 is found by searching
Fs, then there exists a compromise between the two over regions such as those in Figure 3. It can be
extremes - minimum q2 at T- or minimum I at Tp = T* - shown, however, that a solution to A2 is such that
that gives better overall ?eam performance. either q, = 0 or Tp = ',. This means that the upper

boundary of the feasible region contains the solution of
Guessing by First Member Problem A2. In Figures 3a and 3b, therefore, the

solution must be on the arcs YACBZ or YADBZ, respective-
Discussion thus far has considered solution ly. In particular, it is possible that solutions will

characteristics in terms of T, and the conclusions be obtained on the arcs ACB or ADB, i.e. it may be
reached pertain to the second member. Turning now to optimal to guess. This can be explained qualitatively
the outer minimization in Problem Al, the question as follows. All other things being equal (i.e.
arises as to if and under what circumstances the problem neglecting the second member), it is desired to operate
solution involves guessing by the first member. This in the (p,,,p,,) plane as close as possible to the point
issue can be resolved by considering, in geometric where q, = 0 and to = t*. In Figure 3, neither region
terms, how feasible (t,,q,) values map to T values. admits the unconstrained optimal solution as feasible.

In Figure 3a, however, point E is closer than point B,
For fixed a priori probabilities on H (i.e. p,,p,), where the former is such that q, # 0 and the latter is

it is possible to characterize all T values in the the nearest feasible point where q, = 0. In Figure 3b,
(Po0 ,p11) plane as tz and q, range over their values. A point B is closer to the unconstrained optimal point.
region is determined typically as shown in Figure 2. Thus the situation in (a) is likely to have a solution
The upper boundary of the region is the locus where q, = where q, t 0, while in (b) the solution will likely be
0. Points Y and Z correspond to where t, -* -X and +-, at point B. Though shown for cases where d, = 0 or d, A
respectively. The lower boundary is the locus of points 0, this behavior does not represent a special case, tied
determined when q, = I and the guessing bias ranges from to the presence of switching overhead, nor is it
0 to 1. Point S corresponds to g1 = 0.5. When viewed dependent on having the bias in guessing at 0.5. Figure
as part of the lower boundary, points Y and Z correspond 4 shows the same constraints for a bias of g, = 0.75.
to g1 =l and 0, respectively. In terms of the underlying
(tl,q,) values, any point in the interior or on the



suppose that after the team has been set into operation
P., * A P' A the constraint on the first member becomes binding, say

Pt -l/ Piy T X due to external factors that reduce the value of ran As
SI S' C per design, the team member can resort to guessing to

B I t T Z meet the constraint. Figure 6 shows a trajectory in the

01 pz# 0.z
0 Po" 0%O PI % Po 't o 3O.S

(Q) J.- 0 (I) d, = J

Figure 4 Constraint on TpI in (p,,,p,,) Plane; g,=0.75 S

V. SPECIAL CASE 0 Pao

To highlight particular mechanisms of how one Figure 6 Illustration of Special Case Operation
member can affect the other and also team performance,
consider the following special case. Suppose that the (poo,p1 1 ) plane corresponding to increasing q, for two
second member's processing time is independent of the biases in guessing. Point H corresponds to the solution
threshold positions, but that it takes longer to use operating point (with t to). Points S and P
threshold t,, than t,,. Arso, assume that the switching correspond to completely random operation with guessing
overhead for the second member is significant and that biases of 0.5 and 1.0, respectively. The locus of where
the deadline t2 affects the use of t,, but not that of qo = 0.5 has also been shown. As q, increases the
t,,. That is, mathematically assume that operating point moves away from H to either S or P.

= 0; a.,1 )> 2 > a,, (24) Because the movement is toward the diagonal "guessing'
line, team performance will generally be worse. How-

Also, assume that the first member is unconstrained. ever, a significant qualitative difference is apparent.
For this special case, Problem Al can be summarized in Along the trajectory HS, T s is increasing and in fact
terms of Figure 5. Since Tp2 is independent of t1 i, its comes to rest where swiching frequency is at its

maximum. Performance thus not only degrades because of
-Tp- _t- changes in I but also because of an increase in q,.

TP S __\Along the trajectory HP, however, Tp9 first rises due to
-_ i- |\ - - -i\\the increase in switching, but decreases as switching

overhead goes to zero. In this case the contribution to
performance degradation due to input/output errors is

dtO?/ it t 1~T Eless. Within these cases are examples of increasing
4-X_ _ I ai _ processing load and degrading performance, as well as

I-- -I -- decreasing processing load and degrading performance.

V. SUMMARY
O O.5 1.0 fnr 0

to f The addition of processing time constraints to a
team theoretic problem modifies team operation. In

Figure 5 Illustration of Special Case Solution particular, partially random behavior by team members
can be optimal, either by a member's choice, through the

variation is due entirely to variation in p(u), which is selection of an option to guess; or by design, through
determined by the first team member through placement of selection of thresholds such that processing time
t,. The dependence of Tp, on p(u=0) (denoted = q) is exceeds a deadline, which in turn makes processing
shown in the left part of Figure 5. The relationship errors more likely. Furthermore, the- special case con-
between Tp, and input/output errors q5 (through f) is sidered has demonstrated that a variety of relationships
shown in the right part of the figure. Recall from can exist between team performance and member workload.
eq.(ll) that a given value of T . determines a locus of Because of this variability, a general guideline is sug-
f values as a function of td. *ith td = l,, a specific gested, whereby a first step toward understanding a par-
operating point on this locus is selected. As qo moves ticular structure might be to identify which of the pos-
from 0 to 1, the resulting T values trace out feasible sible relationships actually exists. The effects of
operating points in the righ? part of the figure, moving switching, as seen in the special case, also suggest a
from a to b and back to c. Each point on this locus has principle of general interest. Given that changing
a minimum detection error probability obtained by tasks or procedures may require processing resources,
solution of the first stage of the minimization. The and that the necessity to switch may be governed by
overall solution thus becomes a matter of searching over another team member, the recognition of the potential
t 1 (and thereby qo) values. The interesting feature of for switching within a team structure may lead to a
the minimization in this special case is that the trade- better understanding of team behavior.
off between speed and accuracy required for the second
member is governed entirely by the first member. Fur- References
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