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ABSTRACT

One characteristic of intelligence is adaptation. Computers should adapt to who
is using them, how, why, when and where. The computer's representation of the
user is called a user model; user modeling is concerned with developing techniques
for representing the user and acting upon this information. The DOPPELGXNGER
system consists of a set of techniques for gathering, maintaining, and acting upon
information about individuals, and illustrates my approach to user modeling.

Work on DOPPELGXNGER has been heavily influenced by the field of machine
learning. This thesis has a twofold purpose: first, to set forth guidelines for the
integration of machine learning techniques into user modeling, and second, to identify
particular user modeling tasks for which machine learning is useful.
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Preface

Writing a thesis is hard. On one hand, you're trying to convince the reader that you're
knowledgeable and methodical, and that you've made a worthwhile contribution.
These goals are best served by a formal, didactic style. On the other hand, you're
trying to spread your ideas, and that requires a good read-prose that people will
enjoy and recommend to others.

I've chosen an informal writing style because I'd like a lot of people to read this.
There is a potential for a wide audience, because instead of targeting a particular
problem, this is a "cross-pollination" thesis: I'm advocating a set of approaches for a
set of tasks, rather than suggesting the best way to solve one task.

This thesis is available for anonymous FTP from media.mit.edu (IP address 18.85.0.2),
in the directory pub/orwant/doppelganger.

Thanks to the people who have helped me develop DOPPELGXNGER: Michelle Mc-
Donald, Gillian Lee, and Klee Dienes. Michelle in particular has written a significant
amount of code described in this thesis, including the code relating to advertise-
ments and the dopmail parser. Klee is facilitating conversion of DOPPELGXNGER to
AFS and Kerberos 5.0. Gillian is working on the storage of portable user models on
PCMCIA cards. Mark Kortekaas wrote C and Postscript code that facilitates the
generation of Markov Model diagrams.

Thanks to Walter Bender for providing me with the opportunity and the envi-
ronment in which to perform my research, and IBM and the News in the Future
Consortium for providing financial support. Further thanks to my readers, Judy Kay
and Pattie Maes.
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Chapter 1

Why Model Users?

This chapter provides a motivation for user modeling in general, and

my system, DOPPELGANGER, in particular.

A friend of mine once recounted an episode from his childhood. He was showing

a computer program to a neighbor, and the program asked the neighbor to type his

name. He typed the characters "BOB", but didn't hit the return key. When the

program did nothing, he complained, "Why isn't it working?" My friend retorted,

"You can't expect the computer to know your name! You have to hit the Return

key!"

The point of user modeling is this: Your computer should not only know you, it

should be an expert about you. I'm not suggesting that they hit your return keys-

that would generate more problems than it solves. And I'm certainly not advocating

computer illiteracy to the extent that computerphobes should be free of the return-

key burden. Man-machine interfaces can only be simplified so much. Every task

has an "interface limit"- the more complicated the task, the more complex is the

simplest interface. There's simply no way to banish all the frustration inherent in



any complex task.1 The more ways there are to use something, the more ways there

are to make mistakes.

But your computer could allow a typo in a long name. Or it could sense you

coming before you get to the computer, and log you in automatically. Or it could

recognize your voice, or your face [TP91]. It could sense the pressure of your footstep

[Spe88], [Spe90], [Spe93], or the pressure with which you hit the keys on the keyboard

[GB86]. Once you logged in, it could customize your environment, infer your goals

and help you reach them, teach you, remember what you had trouble with before,

and perform tasks for you without explicit instruction. Computers should act like

intelligent conversational partners. Instead of telling the computer what to do, people

should be able to show the computer what they want, or better yet, have the computer

deduce what they want.

When a computer customizes its behavior for individuals, it is said to be modeling

its users. The study of how best to accomplish this feat is called user modeling.

1.1 People are Complex

The more computers know about their users, the better they can serve them. In the

ideal computing environment, your computer will know all about you-where you

are, the topics that interest you, your favorite foods, the differences between you and

other people, and (perhaps most important) how much you value the privacy of this

information.

'My utopian interface is a computer with only a large red button marked NO; users swat the
button when the computer isn't doing what they want. The computer figures out what the user
wants instead, and does it.



1.1.1 Natural Language

Our greatest source of information about people we see on a daily basis is natural

language--what they speak, or what they write. And for the majority of user mod-

eling researchers, who want to infer the user's cognitive state, their sole means of

obtaining information about the user is through text typed by him. Complete com-

puter understanding of natural language is still many years away, but there are plenty

of tools that provide clues to understanding.

A model of what the user is thinking can help computers understand their natural

language, and in turn, understanding the natural language can help computers under-

stand what people are thinking. Thus, natural language research and user modeling

research have a lot to offer one another, and there are many projects working at this

junction. These projects can be further divided into two classes, generation systems

and acquisition systems. A good review of the relationships between user modeling

and discourse modeling can be found in [KF91]. Natural language generation systems

tailor natural language output of a system to users. By inferring what a user knows,

the computer can present information that neither repeats concepts the user already

knows, nor assumes knowledge of concepts unfamiliar to the user. Natural language

acquisition systems modify the interpretation of hard-to-parse natural language based

on knowledge about the user.

1.1.2 Planning

Another common direction for user modeling is planning. When using a computer,

a user often has a particular goal or plan in mind. If the computer is aware of it,

that information can be used to help the user reach his goal or fulfill his plan. Plan

recognition systems attempt to infer and represent these plans.

Detecting user misconceptions is an important part of an effective interface. Con-

sider the interchange in Figure 1.1, from [Kap82] (printed in [Kob9la]):



Without presupposition analysis:

User: Which students got a grade of F in CS200 in spring, '79?

System: NIL

User: How many people passed CS200 in spring, '79?

System: Zero.

User: Was CS200 given in spring, '79?

System: No.

With presupposition analysis in COOP:

User: Which students got a grade of F in CS200 in spring, '79?

System: CS200 was not given in spring, '79.

Figure 1.1: An example of plan recognition.

Plan recognition is a necessary prerequisite for correcting faulty plans, this be-

ing the concern of Intelligent Tutoring Systems (ITS). These attempt to teach users

through personalized, automated instruction by modeling the user's knowledge and

identifying mistakes or inconsistencies. There is an ongoing argument about whether

this is feasible, or even desirable [KL91]. Webb uses feature-based modeling [Web9l]

to describe student cognition at a very high level. Several systems model students'

knowledge growth from novice to expert: Chin's system [Chi] does this for the UNIX

operating system domain, McCalla et al.'s [MGGC91] system addresses recursive pro-

gramming in LISP, and the system described in [MST91] models this performance

independent of the domain.

1.2 People are Different

The Apple Macintosh bills itself as "the computer for the rest of us." And it is

preferred by millions of people, because it has a simpler interface than its competitors.



But it's not for everyone. Some people will always prefer an interface that trades off

ease of use for power. 2

People want different things when they interact with a computer. And when

they interact, they bring with them different skills, experiences, and misconceptions.

Human beings are complex systems, and because they're so complex, there are many

ways in which they can differ. The executive, the game player, and the information

hound all have different tasks, goals, and even styles of interaction. And sometimes

the same person is all of these, just at different times.

1.3 People Change

People exhibit change between sessions with a computer, but they also change over

longer periods. Yet virtually no user modeling systems, save DOPPELGXNGER, at-

tempt to model change over minutes, days, months, and years; they usually merely

model users for the duration of their sessions with the computer.

As we change, we want our computers' user models to change with us. When I

play chess against a computer, I want the computer to know how good I am. And as

I get better, I want it to notice that as well. A good chess tutor, one who knows his

student and wants him to become more proficient, will play in a way that furthers

those goals. He will mentally model his student: predicting what traps will work

best, what mistakes the student will make, and even what the student will think

when making his next move, and change this model as his student learns.

A large proportion of user modeling research is divorced entirely from applications. 3

It's purely theoretical, and considered part of the AI knowledge representation lit-

erature [Kob9la]. This research focuses on representations for user models: how a

2NeXTSTEP users get the best of both worlds.
3I use the word applications frequently in this thesis. It's hard to define exactly, but what it

really means is "some other computer program." If it helps, think of a personalized newspaper, or

an electronic mail program, or a calendar program, or a video game.



system can organize knowledge so as to facilitate reasoning that resembles human

cognition.

1.4 Big Stuff vs. Little Stuff

A computer chess program should think while its opponent is thinking, and most

importantly, think about what its opponent is thinking. It should watch its opponent's

eyes to identify what problems he considers worthy of attention. And it's easy for

a computer to put on a poker face. It's a bit more difficult, but possible, for the

computer to notice when humans lack poker faces.

The Basser Data Project [TBKC91] monitored students' use of a text editor, and

suggests that useful information can be deduced from the low-level editor events of

keystrokes and mouse clicks. From these events, repertoires and patterns of commands

can be deduced, from which statements about each student's learning style can be

made. Any computational environment needs to pay attention to this level of data if

it is to best adapt to its users.

To me, user modeling is about providing a useful, intelligent repository of all

possible information about a user. Of course, this is an unreachable goal. Our ef-

forts should then be directed toward accumulating information that will be useful for

adapting to user behavior. Some types of information are often deemed uninteresting

by user modeling researchers because they aren't "deep", i.e. related to some aspect

of the user's cognitive state, such as his plans, beliefs, or knowledge. But shallow

information-the "little stuff", or "pragmatic" data, as it is known in the user mod-

eling community- is useful for two reasons: first, it is needed by applications trying

to make your life easier, as in the calendar program that needs to know you want

your newspaper in the early morning on weekdays, and in late morning on weekends.

Second, these minutim can provide profound insights into deeper states, just as the

direction of a chess player's gaze reveals what he is thinking about.



And little stuff is much easier to obtain than big stuff. In the future, as people's

lives become increasingly accessible to a computer, the opportunities for user modeling

will multiply. This is one of the tenets underlying the DOPPELGANGER user modeling

system, described in the next chapter.



Chapter 2

Doppelgingers!

This chapter provides an overview of my work, and sets the tone for the

next chapter, which specifically addresses the aspects of machine learning

that can benefit user modeling.

2.1 The History and Philosophy of Doppelgainger

DOPPELGANGER is a user modeling system I've developed over the past three years

in the MIT Media Lab Entertainment and Information Technology Group [Orw9la],

[Orw9lb]. 1 DOPPELGXNGER was originally developed as a component of a person-

alized electronic newspaper; further discussion of the role of user modeling in this

context can be found in Appendix A.

DOPPELGXNGER can be thought of as a server, with two types of clients: sen-

sors and applications. This is illustrated in Figure 2.1. Sensors provide data about

people to DOPPELGXNGER, which applies reasoning to the data. Applications make

requests to DOPPELGXNGER for information about people. The intelligence behind

'A Doppelginger is a mythical creature from German folklore that observes someone and slowly

changes its appearance to look like him. It is evil.



Figure 2.1: The DOPPELGXNGER architecture.

DOPPELGXNGER, and what makes it more than a mere database of personal infor-

mation, comes from the reasoning that is applied to the personal information. This

reasoning occurs when information arrives at DOPPELGXNGER from sensors, and

when applications make requests to DOPPELGXNGER.

Formally, DOPPELGXNGER is an application-independent user modeling system

consisting of executable programs, C libraries, a user modeling database, and proto-

cols for communicating about the user. DOPPELGXNGER accumulates information

about people through a large number of sensors, and has an extensible architecture

that permits addition of new sensors. Application-independent means that it's not

built for a specific application such as a personalized newspaper, datebook program,

television, or mail program, but instead fields inquiries about users from all of them.

Its sensors are passive (non-intrusive), in comparison to active sensors that require

intervention by the user. Sensor passivity is gained at the expense of accuracy; since

the sensors don't require feedback from users, their information is less reliable and

less complete, necessitating better inference engines and a capability for fault toler-

ance. Although I refer to DOPPELGXNGER as simply a user modeling system, it can

more properly be called a User Modeling Shell to distinguish it from user modeling

components that are constructed for a particular domain [Kay9l].



DOPPELGXNGER's models contain both short-term and long-term information,

and both pragmatic ("the little stuff") and cognitive data. New information is gath-

ered continuously, and models change as the new information becomes available. In

addition to inferences on data within individual models, DOPPELGXNGER obtains

default information from communities which it constructs. Each user is a member of

multiple communities of people who share some trait or set of traits. When an appli-

cation asks DOPPELGANGER for information not explicitly present in a user model,

DOPPELGANGER makes an educated guess by evaluating the contents of similar mod-

els and communities.

DOPPELGXNGER was originally targeted toward one set of applications: person-

alized electronic newspapers. Personalized newspapers are demanding; to create a

presentation maximally tailored to the user, the system must model not only the

user's cognitive state, beliefs, interests, and preferences, but also the capabilities of

the display in front of him, the amount of ambient noise and light, and whether

he's in a hurry, so that the selection of multimedia articles is appropriate for the

user's computational environment. Constructing the perfect personalized newspaper

is what I call a UM-complete task, meaning that any system that can model users

sufficiently well for a personalized newspaper will be sophisticated enough to tailor

the behavior of most applications. In other words, the amount of knowledge about a

person needed to create the ideal personalized newspaper is so great that the same

compendium of knowledge will be sufficient to tailor the behavior of countless other

applications.

This chapter presents some features of DOPPELGXNGER that bring it closer to

the goal of supporting UM-complete tasks.

2.2 Tolerance

If you forgot everything about other people as soon as they left our presence, you'd

have considerable trouble getting along in life. But many user modeling systems do



just this when they remove all traces of the model as soon as the user's session with

the computer has finished.

And if you had only one way of gathering information about people, say your

ears, you'd have a great deal of difficulty communicating. But many user modeling

systems do this by maintaining only one sensor with which to gather data about their

users.

The above two criticisms suggest something lacking in many user modeling sys-

tems: they should be robust. The system should not stop modeling people because

its lone sensor fails. Instead, it should maintain many sensors, so that it can degrade

gracefully, and compensate for less complete information by making educated guesses

based on communities of users within the modeled population. And users should be

modeled continuously.

Systems that claim to adapt their behavior to the user should have many ways

of gathering information about the user. One of the most important areas of user

modeling research should be building and integrating new sensors of information, such

as a chair sensor that identifies whether someone is sitting in it, into user modeling

systems. There is a reluctance to explore new avenues of information about the

user, because of the distance from the lofty goal of understanding cognition. This is

unfortunate, because such exploration can be quite creative, fun, and illuminating.

Sensors should be aggressive in attempting to gather as much information as

possible. This means they will often fail, or conflict with one another. The "sensor

fusion" problem in robotics is well known; briefly, the problem can be stated as

"How should a system arbitrate between conflicting sources of information about

the environment?" DOPPELGXNGER makes use of many sensors; its methods of

arbitration are discussed in section 3.4.

DOPPELGANGER was developed in a UNIX2 environment; consequently, many of

its sensors make use of UNIX to gather information about the user. As operating

systems go, UNIX allows extensive access to information about user actions.

2UNIX is a trademark of AT&T.



A user modeling system should make use of all available information about a

user. And the field of user modeling should concern itself with trying to make more

information available.

The sensors used by DOPPELGANGER (in various stages of completion, anticipa-

tion, and disrepair) are:

* A "login sensor" that tracks when people log in to computers.

* Command sensors that keep track of which UNIX commands users are execut-

ing.

e Various personalized electronic newspapers.

* "Active badges" that transmit physical locations of users.

* Model-editing programs that let DOPPELGXNGER know what the user wishes

to change. This is feedback about how well DOPPELGXNGER is doing.

* A calendar sensor that understands scheduling information.

* A face recognition system.

* A program that identifies subscribers to electronic mailing lists.

* Floors that can identify who is walking on them from weight and the duration

of the step.

e The "DOPPELGANGER seeder", which is a questionnaire that people can use to

bootstrap or augment their user models.'

* A mail interface to DOPPELGXNGER to which people can direct natural lan-

guage input.

e Remote Doppelgingers share information about people, and are treated as sen-

sors, complete with estimates of their accuracy.

3If you want to try it out, type telnet monk.media.mit .edu 10891 from a machine that has a
TCP/IP connection to the Internet.



2.3 Passivity

Ideally, sensors should be passive, requiring no user intervention. Many user modeling

systems depend upon an interaction session with the user, and if that session doesn't

occur, no user model will exist. Forcing users to describe themselves is a good way to

ensure that user models are complete and accurate. Unfortunately, it is also a good

way to ensure that the system remains unused.

"When people go home at night, they don't want to watch television with a

joystick," says Walter Bender. They also don't want to navigate their newspaper

through pull-down menus, or even log in. Keyboards and mice make entertainment

into chores. People are lazy; they want to talk to their computers. Or even better,

they want the computers to read their minds. Some people will want to exert control

some of the time, but the perennial mistake made by designers of interactive media

is this: More control isn't better if the user must always exert that control. Interac-

tive televisions will fail if viewers can't just sit back sometimes and let the network

programmers do the choosing for them.

When DOPPELGXNGER creates a model for someone, it estimates an annoyance

parameter for the person. The higher the value, the less the person will be expected

to help DOPPELGANGER out in its objectives to better understand users. This an-

noyance parameter belies a conservative attitude on the part of DOPPELGXNGER-if

in doubt, don't bother the user. It's difficult to quantitatively measure the nega-

tive impact of intrusive sensors because it's difficult to measure intrusion, but Dop-

PELGANGER assumes that junk electronic mail is as annoying as its paper counterpart.

DOPPELGANGER maintains a queue of messages for each user. The lower the

annoyance parameter, the more often this queue is flushed, which means that DOP-

PELGANGER will send an electronic mail message to the user telling him what DOP-

PELGANGER has done to his model recently. In the DOPPELGXNGER server, there

are three messages: (get last message), which returns the latest message from the



message queue, (get messages), which returns all the current messages, and (flush

messages), which removes the message queue. When messages are removed from the

queue, they aren't lost forever. They're stored in the user model, providing a history

of DOPPELGXNGER's actions for each user.

2.4 Communities

The sensor passivity just described places DOPPELGXNGER at a disadvantage, be-

cause passive sensors are less informative than active sensors. To compensate, DOP-

PELGANGER makes educated guesses about users based on aggregate information

from user populations. If you heard about someone at MIT, you might assume cer-

tain things about them: that "he" is male, a student, knowledgeable about science,

good at math, and so on. When you do this, you are using a stereotype. Their use

is common in user modeling systems.

DOPPELGANGER maintains communities, which are like stereotypes, except that

they change continuously as their constituents change, they can be generated auto-

matically, and membership is a matter of degree rather than "yes or no." This allows

DOPPELGXNGER to make use of relationships between different user models, such as

having applications behave the same for person X as it does for person Y. But more

important, communities make possible multiple inheritance in user models: the an-

swer to a query about a user, if not present in the user's model, can be estimated from

the combination of communities which claim the user as a member. If an application

asks if Orwant is interested in tennis (perhaps to ascertain whether he's interested in

a local racquet sale), the knowledge needed to answer might not be contained in Or-

want's user model. DOPPELGXNGER would then analyze the communities in which

Orwant is a member. The more members who like tennis in the community, the

greater the confidence of DOPPELGXNGER's answer that "Orwant does like tennis."



DOPPELGXNGER's communities allow customization of behavior to groups of in-

dividuals. A personalized newspaper application can generate a newspaper for the

student population; a scheduling application can tell when the members of some small

community (say, of a lab group) will be free for a lunch meeting.

It's important for DOPPELGXNGER to allow impatience in its users. Since there's

potentially a huge amount of information about which applications might ask, a user

can prime the pump by saying, "I don't want to have to train you from scratch, and

I'm too impatient to wait for you to learn about me. Start me off with Walter's

user model." It's important that the right parts of Walter's user model be used: his

newspaper interests, but not his name, which is a reason for embedding knowledge

representation into the user modeling system.

2.5 Cooperation Between Applications

Everything in your environment should be integrated: Your calendar program should

tell your mail program that you're on vacation. Your car should tell your purchasing

program that your tires are bald. Figure 2.2 shows communication between Dop-

pelgingers4, sensors' (represented as ovals), and applications. Thick arrows denote

large information transfers.

The reason applications always fall short of good adaptive behavior is simple:

they don't talk to one another. The mail program knows who you talk to and what

you say, and the calendar program knows where you'll be on Tuesday. But the

mail program doesn't know about the calendar program, and the calendar program

doesn't know about the mail program. The friendlier personal computers integrate the

4The word "Doppelginger", when in a normal font, refers to a particular Doppelginger at some

location. DoPPELGANGER refers to the entire research project.
sThe word sensor has a broad meaning in DoPPELGANGER: anything that provides information

about a person. A program that gathers natural language input from people is as much a sensor as

an EEG electrode.



Figure 2.2: The flow of information in DOPPELGANGER.
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applications into the operating system, so the communication between applications

is richer. However, it's not rich enough, because they don't communicate in an

expressive enough language. Integrating your application with the operating system

isn't enough; it should know how to talk to other applications about you, and that

requires a language general enough to express anything that applications might want

to say. That lies dangerously close to knowledge representation, which is a bit far-out

for operating systems, which need to be fast and reliable.

This places an additional burden upon the application developer: treating ap-

plications as not solely consumers of personal information, but also as providers.

For instance, a personalized newspaper that makes use of the user modeling system

should provide feedback so that the system can learn for subsequent newspapers, or

a television that observes your reaction to its selections and modifies its behavior

accordingly.

2.6 User Modeling Awareness

User modeling has a low profile. The forthcoming Apple Newton is the only marketed

computer system that touts a user modeling component. In reality, this means that

after you've associated "Jake" with "Jake Barnaby" once, the Newton will remember

his last name for different applications. This is definitely a step in the right direction.

But in spite of the Newton, people don't think about user modeling very often. People

are bound by the unfortunate idea that an application is isolated: it works well, or it

doesn't.

When people build new applications, they should ask themselves, "How can I

make this information available and useful?" A wider variety of applications will

prompt more flexible views of the field, and argue for a toolkit of general techniques

for manipulating user modeling data. This will spur other people to develop and use

user modeling systems.



2.7 Knowledge Representation

2.7.1 Sponge

Any system that attempts to encode aspects of user mental states requires a knowl-

edge representation language. I wrote a knowledge representation language called

SPONGE. I wrote my own, rather than using another, for three reasons. First, I

wanted something fast, POSIX-compliant, 6 and able to make use of multiple com-

puter architectures and remote procedure calls. Second, I wanted something flexible

enough to handle other representations. Third, I wanted to learn more about knowl-

edge representation, and the best way to reach this goal was to do it myself.

DOPPELGXNGER is written in C, but the models are encoded in SPONGE. SPONGE

is neither complicated nor ambitious-it's more a collection of conventions for storing

data. Each data object is stored within parentheses, like a LISP list. The first

element of the list is a number, called a Sponge Tag, that tells programs what to

do with the data that follows.7 These elements and lists are not quite LISP; they

are transportable C data structures called Dtypes, developed by Nathan Abramson

[Abr92a], [Abr92b]. Dtypes have LISP-like structure, but with the efficiency of C,

portability across different architectures, and support for client-server operations.

Sponge Tags illustrate my laissez-faire approach to knowledge representation. The

sole purpose of each tag is to tell programs what data will follow the tag. OBJECT

is the most generic tag, with no constraints on what may follow. The MARKOV

MODEL tag is more specific: following the tag are the numbers of states and output

symbols, then a MATRIX (itself a Sponge Tag) of the Markov Model's transition

probabilities, another MATRIX of the output probabilities, and optionally the names

of the states and output symbols. New Sponge Tags are added all the time, whenever

6POSIX is a set of standards for portability across UNIX operating systems; a POSIX-compliant

application is guaranteed to be portable across POSIX-compliant platforms.

'A listing of Sponge Tags is in Appendix C.



Figure 2.3: DOPPELGXNGER building blocks.

DOPPELGXNGER developers find it convenient. There is no rigid, fixed knowledge

representation language design that limits the expressivity of code-people extend

the "language" as they wish.

In this thesis, I replace Sponge Tags with their actual names to make the text

more readable. The program sponge-show makes these substitutions.

Here's part of my model:

(object orwant

(object biographicaldata

(string-_ binding ''true name'' ''Jon Orwant'')

(string-binding ''e-mail address'' ''orwant~media.mit.edu'')

(object control

(int.binding ''doppelganger ID'' 4))

This is excerpted from my primary model, which is very large and doesn't change

often. The primary model is one of several files that comprise the entire user model.

This is elaborated in section 3.6.



The "doppelganger ID"" parameter in the control object indicates that this model

is maintained by Doppelginger number four, which is at a user's home. Geographi-

cally remote Doppelgingers communicate about people and communities.

2.7.2 Barrier Reef

DOPPELGANGER sometimes needs to know things that aren't particular to a person

or community. Knowing how to manipulate information about a user's schedule re-

quires knowledge about time zones. Knowing how to choose a topic for a personalized

newspaper might require knowing what keywords comprise a boolean query represent-

ing that topic, if that were how topics were being stored. In DOPPELGANGER, this

information is stored in a centralized knowledge base called BARRIER REEF. The

information stored in BARRIER REEF is, like the user models themselves, encoded in

SPONGE.

One BARRIER REEF convention is the use of a units slot to indicate how a mea-

surement is being measured. Sometimes there is no units slot: (integer-binding

''age'' 35). Age is so often expressed in years that the units slot is left out. More

precisely, I expect that applications will assume that the default slot for age units

is years. People do the same thing when they say that someone "is 35" rather than

saying "35 years old." This is part of a loosely defined default unit set for BARRIER

REEF. Ages are measured in years, time is measured in seconds since January 1,

1970,' and probabilities are taken to range between 0 and 1. It's BARRIER REEF's

place to contain the knowledge that will allow programs to convert between units. At

the moment, this knowledge is not in the knowledge base.

8 Sadly, there can be no umlaut above the 'a' in doppelgsnger. It will be a long while before my

dream of umlauts in UNIX/C names will arrive. POSIX (the portable operating system specification)

dictates that only 7 bit printable characters need be standard across platforms, which makes it

difficult to have umlauts everywhere I'd like them in my project. However, progress is being made,
thanks to GNU Emacs' support of the ISO-Latin1 standard.

9Because that's how UNIX does it, and you can find the difference between two time periods

easily.



Information stored in BARRIER REEF need not even be written in SPONGE.

There are some instances where SPONGE is too expressive (and thus too slow), or

where there is another, more agreed upon format for representing data. For instance,

Michelle McDonald's Adpaper stores lez'" scripts in BARRIER REEF for parsing clas-

sified advertisements-given an advertisement, these scripts determine e.g. what is

being sold, as well as characteristics of the item that might influence a potential

buyer's decision. The better this understanding, the better the selection of advertise-

ments in your personalized newspaper. Klee Dienes' NEWSKIT[Die93] stores gdbm

database files in BARRIER REEF to record which articles people have read. It's fu-

tile for a knowledge base to only have one representation. It's not the way the brain

works [Min86], nor is it practically efficient. Different applications will have their own

ways of storing information that is best for its own use; it's arrogant of knowledge

representation to purport to have a better answer. There are many good programs

out there. Rather than try to develop systems that supersede them, why not make

use of them instead?

Knowledge representation is an integral part of many user modeling research

projects. For a better understanding of knowledge representation in user modeling,

see [Kob9lb].

2.8 Privacy

User modeling goes on all the time, even though it's rarely labelled as such. Credit

agencies, banks, magazines, and the government all engage in user modeling to some

extent. The difference in DOPPELGXNGER is that you can see what the system knows

about you, and change it."

ioLezical analyzers read and convert input into a stream of tokens suitable for parsing.
"Sometimes people won't be able to change their models; for instance, people shouldn't be able

to give themselves good credit ratings.



There are two types of privacy maintained in DOPPELGXNGER: model privacy

and transaction privacy. Model privacy means that other people should not be

able to see your model if you don't want them to. More granularity here is better:

you should also be able to selectively control who can see which parts of your model.

Transaction privacy assumes agents that make use of your user model to act on

your behalf. These agents might make purchases for you, or sell your products or

information, or filter a stream of data for you. When you make these transactions,

you may not want others to know their content-other people shouldn't be able to

see what movies you've requested from Blockbuster.

Model privacy (data security) is part of DOPPELGXNGER. Application privacy

is supported by DOPPELGXNGER but needs cooperation from other agents to assure

people of confidentiality when agents correspond with one another.

2.8.1 Model Privacy

This is an issue of data security: how can DOPPELGXNGER ensure that only appropri-

ate people and applications can access information in a user's model? The first task

is to figure out what constitutes "appropriate use." Users can explicitly designate

who is to have access to their model, but if they do not, DOPPELGXNGER has some

default choices to fall back upon. Currently, these are liberal: let other people see the

information unless the owner requests otherwise. However, in a real-world setting,

the opposite would be preferable. For any part of the user model, users can choose

one of four types of privacy: 1) let everyone access the data, 2) let no one access the

data, 3) let only selected people access the data, and 4) let all but selected people

access the data.

Imagine if Blockbuster Video stores made use of a user modeling system. This

might not seem so dire; perhaps they just want to compare the number of romance

rentals between June and December. But they could keep track of which movies



you're seeing, and sell that information to direct marketing firms. Or to reporters, if

you're a public figure.12

DOPPELGANGER is making two changes to facilitate model privacy: it is changing

filesystems, and it is adopting an authentication scheme. These are discussed in the

next two sections.

Filesystems

Most UNIX systems use NFS,13 to maintain access control over files. Unfortunately,

the NFS protections are rather simple: each file or directory has an owner and a

group. The owner of the file can set read, write, and execute privileges separately for

all people, members of the group, and himself.

AFS14 provides a better granularity of protections than UNIX: Access Control

Lists. ACLs let individual users construct their own groups, and maintain greater

control over what file operations each group may perform. This is precisely what

DOPPELGANGER's model privacy needs.

AFS has other advantages: it allows transparent file access across other AFS

cells, so I can change directories to, for instance, /af s/andrew. cmu. edu/usr without

having to explicitly mount that filesystem. AFS also caches frequently accessed files

to minimize network traffic, and supports backup servers, so that if one AFS server

fails, another can transparently take its place.

Authentication

In an open network computing environment where many workstations are making use

of network services, there is a danger that users and applications on a local machine

will be able to falsify their identity to a remote service. There are three approaches one

12Whenever you give your name to some service that you suspect will place it on a mailing list,

use a different middle initial. Then you can watch your name propagate from list to list...

13 the Sun Microsystems Network File System.
'4 the Transarc Andrew File System.



can take to access control in such an environment: one can assume the local machine

will prevent unauthorized access; one can require the host to prove its identity and

then trust the host to authenticate the user; and one can require the user to prove

his identity for each required service.

The Kerberos system [SNS88] takes the third approach. Kerberos is a trusted

third-party authentication service that keeps a database of its clients (these can be

either users or network services) and their private keys (e.g. encrypted passwords).

Kerberos' function is to create messages which convince one client that another is

really who it claims to be. Kerberos also generates temporary session keys that are

given to two clients and no one else, for encrypting messages between the two clients.

When a user logs in, the authentication server uses his password, which is con-

verted to a DES15 key and is used to decrypt the Kerberos ticket, which contains

identifiers for the user, server, the user's network address, a timestamp, a ticket life-

time, and a session key for the server-user pair. When the user logs out, or when the

lifetime of a ticket has expired, the ticket is destroyed. As long as the software on

the workstation has not been tampered with, no information exists that will allow

someone else to impersonate the user beyond the lifetime of the ticket.

In the eyes of Kerberos, DOPPELGXNGER is a network service. A server (described

below) will handle all connections to DOPPELGXNGER, whether from sensors or appli-

cations. However, in the current Kerberos system, tickets have a maximum lifetime,

and the DOPPELGXNGER server requires tickets that do not expire. Kerberos 5.0,

which will be released shortly, supports infinite-duration tickets, which is what the

server will use.

Doppelserve

All communication with DOPPELGXNGER takes place through a server called Dop-

pelserve. When Kerberos 5.0 is installed, the server will only provide information to

15Data Encryption Standard, a private-key cryptographic standard developed by the U.S.

Government.



authenticated clients (which might be sensors, applications, or users running a pro-

gram): those with the appropriate Kerberos tickets. The Media Lab Doppelgiinger

server is on monk.media.mit.edu, port 10890.

DOPPELGANGER is research in progress, and there is an unfortunate tradeoff

between privacy enforcement and allowing DOPPELGANGER researchers to get their

work done. Most of the code written for DOPPELGXNGER affects not just one model,

but many models, and may be dependent on the contents of the model, and even

how the model changes from minute to minute. If the researcher wants to see the

effects of his code, he has to be able to see the user models, which can be viewed as

an invasion of privacy.

2.8.2 Transaction Privacy

It's fairly easy to ensure that reasonable safeguards protect the contents of your

model. What's a bit more difficult is ensuring that actions based on your model

remain private as well. One could even say that "Your phone bill will be inversely

proportional to your privacy." Picture your typical user modeling application: an

electronic newspaper that retrieves text, audio, and video from a central distribu-

tion site. If your computer/television/newspaper requests exactly the information it

thinks you want to see, the amount of data transferred between the central distribu-

tion site and your home will be minimized. This will keep costs to a minimum as

well, presuming a telecommunications infrastructure (whether cable, twisted-pair, or

broadcast) that charges based on amount of usage. The other end of the spectrum

maximizes privacy: your computer/television/newspaper requests a huge collection

of information, possibly all that's available, and makes the selection decisions itself.

Ideally, all sales should use anonymous transactions.16 In an anonymous transac-

tion, the seller cannot identify the buyer other than to verify his ability to pay the

selling price.

1"The word all is arguable. What about guns? Drugs? Literature?



Digital signatures provide a well-established method of secure (but not anony-

mous) transactions [Cha92]. If I want to withdraw some money from the bank to pay

for a shop purchase, I generate a large number at random and encrypt it with my

private key. The bank can authenticate that I am who I say by verifying the message

with my public key. Then the bank removes my signature, signs the note number

with a "voucher" encrypted by its private key, and returns the note to me. Then,

when I want to pay for a purchase, I transfer the note to the shop, which signs the

note and forwards the note to its bank. I can't deny withdrawing the note from my

account (nor spend it twice), the shop cannot deny that it received payment, and the

banks cannot deny that they issued the notes or that they accepted them from the

shop for deposit.

This digital signature system is secure, but it has no privacy. If the bank keeps

track of note numbers, it can link each shop's deposit to the corresponding with-

drawal and so determine where and when you spend your money. A good system for

anonymous transactions using blind signatures is described in [Cha92], and these

will ensure transaction privacy. The system is simple: before you send your note

number to the bank for signing, you multiply it by a random factor, so that the bank

doesn't know what it's signing. After receiving the blinded note signed by the bank,

you divide out the blinding factor and use the note as before.

Blinded electronic bank notes protect privacy, but because each note is simply a

number, it must be checked against a central list when it is spent. This is too much

overhead when considered for a large number of small transactions, such as buying a

newspaper. Chaum proposes a method for generating blinded notes that requires the

payer to answer a random numeric query about each note when making a payment.

Chaum's system will be implemented in DOPPELGXNGER on portable user models,

discussed further in section 3.4.2.

There's an interesting quandary here, because DOPPELGXNGER bases so much

of its decisions upon communities. Since the characteristics of the communities are



determined by their members, it's possible to deduce characteristics of a community's

members given some knowledge of the community. To prevent this "indirect" privacy

intrusion, community memberships are kept private, unless the user explicitly requests

otherwise.

2.9 Talking to Doppelgiinger

A subsystem for parsing electronic mail called dopmail allows DOPPELGXNGER to

act upon messages from either users or applications. Sleator and Temperley's Link

Grammar Parser[ST91] is used to parse the input syntax. The result is that you

can send mail to DOPPELGXNGER containing sentences such as "I like technology"

or "I am working at home," and your user model will be affected accordingly. The

"Subject:" line of the mail message helps dopmail disambiguate the appropriate

context for interpreting the message. For instance, a subject line of "News" tells

dopmail that the message is feedback about the user's news environment, a subject

line of "Location" tells dopmail that the message is information about the user's

whereabouts, and a subject line of "Interdoppel communication" tells dopmail that

the message is communication from one Doppelgiinger to another.

Simple English has its advantages as a protocol for communicating with a Dop-

pelginger. People don't have to remember some awkward syntax or program name,

and the language is guaranteed to be expressive enough for anything a sensor might

want to say to a Doppelginger. The drawback is that you have to parse it. Commu-

nication between DOPPELGXNGER modules is required to be a "subset" of English:

only certain sentence forms are recognized. Using English means that there's a guar-

antee of extensibility: as the messages between sensors and DOPPELGXNGER, and

DOPPELGXNGER and applications, grow in complexity, more complex sentences will

be required. The structure for those sentences already exists; we use it every day

when we talk. Furthermore, different Doppelgingers might maintain different levels



of parsing ability. A future enhancement might allow Doppelgingers to trade in-

formation about how to parse English. When full natural language parsers become

available, it will be a small step for DOPPELGXNGER to make use of them.

User modeling researchers are well aware of the strong connections between the

field of natural language processing and user modeling. In the next chapter, I explore

some other connections inspired by the field of machine learning.



Chapter 3

New Ideas for User Modeling

The ideas I've mentioned already are by no means widespread among

user modeling systems. In this chapter, I go further and make some broad

observations about how machine learning can help user modeling.

Much of user modeling is concerned with ensuring that the requisite structures

for modeling cognition are in place, revealing the field's roots in AL. This has hap-

pened to such a degree that new creative directions have been stifled. User modeling

is a young field, and can benefit from some rethinking. In addition to the recom-

mendations I made in the previous chapter, there are a body of techniques (methods

and algorithms) and ideas (approaches to thinking about problems) from machine

learning that benefit user modeling.

The field of machine learning concerns itself with how computers can be made

to exhibit adaptive behvaior in an unknown environment. Machine learning can

certainly be used to improve the performance of sensors. This is more common sense

than anything else: sensors, like most anything else, benefit when they adapt to

their environment. Speeter's smart floor system [Spe90] is an example: floor tiles

containing piezoelectric sheets rapidly sample the location and amount of pressure

upon them. Then time series analysis is used to identify people by their weight/time



profiles. On my home workstation, I have a neural net that decides when to call in

and retrieve my electronic mail: it adapts to my behavior (working hours, amount of

mail, phone line usage) over time. Besides making sensors more accurate, learning

techniques can also be used to help sensors become more passive. A sensor might

estimate how much it distracts the user, or its noise level, or how much of the user's

time it's taking, and adapt to minimize the burden on the user.

3.1 How Machines Learn

3.1.1 Formal Models of Machine Learning

Why should machine learning models be useful to user modeling?1 Because user

modeling tries to make computers understand and react toward a very complex

phenomenon-the user.

An overly rigorous tack comes from behaviorism: treat the user as a complex

system, for which the computer must learn to predict the output given the input. Such

an approach would employ control theory and signal processing exclusively [Lju87].

A better approach is to treat the user as a set of hundreds of complex systems, each

of which can be modeled to varying degrees.

Machine learning consists of a body of techniques for making adaptive changes to

a computer's representation of some domain. There are four broad types of machine

learning: rote learning, in which presented information needs to be memorized; learn-

ing by being told, in which information is given to the learner in the form of abstract

'The dual use of the word "model" to mean both a template for theoretical work and to mean a

collection of data about a person is unfortunate; if the context in my text is ambiguous, I probably

intend the first meaning, as I use "user model" for the second. Cheeseman [Che90] defines a model

as "any formal description (mathematical or logical) that assigns probabilities (including 1 or 0) to

experimental observable outcomes. The term... can be interchanged with assumptions, hypotheses,

concept, or theory; the important property these terms share is the ability to make (probabilistic)

predictions about possible observations."



advice, which needs to be integrated with the learner's current knowledge and spe-

cialized for particular situations; learning from examples, in which an environment

contains specific examples which must be generalized to form more abstract concepts

or rules; and learning by analogy, in which the learner must discover the similarity

between trial situations and future situations [MCM86], [Car89].

There is a need not only for having machine learning strategies available but for

guidelines deciding which ones to use and when to use them. Machine learning tech-

niques are developed without regard to their eventual use, because the techniques are

general enough to be applicable to innumerable tasks. The job of the user modeling

researcher should be to identify new tasks make possible by machine learning that

will aid in modeling the user.

User modeling, as a discipline, has not matured enough for a more rigorous treat-

ment. In part, I hold this belief because my philosophy of user modeling is somewhat

at odds with most researchers in the field. User modeling research rarely users ma-

chine learning. A counterexample is Webb's intelligent tutoring system, described in

[Web91], which uses feature extraction for student modeling.

Machine learning develops results that tell us what can and can't be learned,

how well, and what methods are appropriate. Research targeted toward specific

applications is not generally considered part of the primary body of literature.

3.1.2 Components of Machine Learning Paradigms

A machine learning paradigm2 has five components: a learner, a domain, a source of

information about the domain, some prior knowledge, and a performance criterion.

2The phrase is mine, but machine learning researchers would figure it out by context. As far as

I can tell, that's all the word paradigm really means-"there's no good word for this thing, so you

figure it out by context."



Learner

Our learner is the user modeling system. It is usually an actual software system;

in Doppelginger's case, it consists of approximately 20,000 lines of C code. It runs

continuously, adding data to the population of users that it models, and occasionally

"forgetting" data that hasn't proven useful enough.

Domain

The domain, framed in the broadest possible terms, is the cognitive and physical

state of people. This includes both the states of individuals and of larger groupings

of these individuals.

To make this more tractable, we can take the following steps:

9 Break the problem into smaller domains, and deal with the specific rather than

the theoretical. If this step isn't taken we run the risk of being overly abstract.

It's much easier to address the problem of "Here is a source of information,

and here is our interface to it. What can we learn from it?" than to address

properties common to all interfaces and all information sources. Otherwise, user

modeling becomes system theory3 [Wei72] with a touch of behaviorism thrown

in.

Once this is done, the usefulness of machine learning becomes more apparent.

There are many sources of information that could constitute input to a user

modeling system. Most of these involve trying to induce rules given some sample

data collected from a user, and hence are good candidates for machine learning.

(A notable exception is natural language processing, which might have been

considered part of machine learning had it not been so complex in its own

right.)

3 Weinberg, in Trends in General Systems Theory, wrote: "Writing about general systems theory

is like writing about unicorns. Even after you eliminate all the people who have never heard of them

and all the people who have heard of them but are not interested in the subject, you have to contend
with the people who do not believe that they exist."



* Model a small subset of all people.

e Allow for some "slop" by ignoring data that will not foreseeably be used by

applications making use of the user modeling system.

DOPPELGANGER's user modeling data can be divided into three granularities of

data. In order of refinement, they are: the raw data, the model, and the entire

population modeled by the system. Raw data is an anonymous series of observations,

which are then incorporated into the second domain, user models, which are then

used to establish the third domain, communities of models within a population. The

data in each of these domains is refined over time as more data is gathered. Thus,

these tasks are good candidates for machine learning.

Source of Information

Like the robot-in-an-environment paradigm, the user modeling system has various

sensors that gather information about the world. There is no one source of informa-

tion; instead, there are a multitude of sensors, which might be hardware or software,

or gather time-dependent information, or perform arbitrarily sophisticated processing

on its data before relaying it to the user modeling system, or gather ordinal, cardinal,

or qualitative information.

In A Wattled Theory of System [Wym72], Wymore introduces the concept of

a wattled system. A wattled system is one that consists of qualitatively different

subsystems; most notably, a system that contains both data that is best modeled

by a discrete finite automaton and other data that is best modeled by a differential

equation. People are clearly wattled systems: a person's address, or how he voted

in the last election, are undeniably discrete quantities; his trajectory as he runs

his errands or makes a gesture, are continuous functions. This poses problems for

algorithms that expect data of the same type. DOPPELGXNGER's resolution to this

dilemma is in section 4.4.1.



Prior Knowledge

Making generalizations about subsets of people, communities, is an invaluable com-

putational aid for filling in holes in user models. Indeed, many user modeling systems

have hardcoded stereotypes that consist of rules of the form, "Professors do not make

much money." The authors of these systems make no claims that these stereotypes

are always correct; however, criticism is inevitable. Prior knowledge, when applied to

people, is usually termed "prejudice."

The Guides project [OSKD90] at Apple Computer attempted some simple user

modeling. Its goal was laudable: to enable a user to explore the topic of 19th century

American westward expansion from multiple perspectives, such as a pioneer's wife or

an Indian. However, the Guides project has been criticized by some because it claims

(though only in the loosest possible sense) to capture a broader perspective that it

cannot hope to do justice to.

Doppelgiinger's "start state" is tabula rasa-it begins operation with no previous

knowledge of anyone. However, it is always running, and thus experiences the igno-

rance of its start state only once. Over time, as it gathers more and more knowledge,

those rules it infers that have been successful predictors become prior knowledge of

sorts.

Performance Criteria

In the domain of user modeling, it will often be difficult to assign performance criteria.

This might be because it will be hard to tell what the target concept is, but it is also

because it is impossible to say when the system has stopped learning, since it never

stops learning. In any event, most user modeling has no performance criteria because

it is concerned with such tasks as determining when some set of beliefs logically yields

another belief. It's hard to assign performance criteria to such an abstract task.

Typically, work in machine learning assumes a domain much more carefully defined

than the domain for user modeling described above. Two common formal models of



machine learning with different performance criteria are mistake bound and PA C

learning [Blu90]. Both of these models address learning some concept from a set of

concepts.

The mistake bound model is the simpler of the two: examples are presented to the

learner, which classifies each example as it is presented, and then is told whether its

classification was correct. The success of the algorithm is measured by the number

of classification mistakes.

The PAC4 model of machine learning assumes the existence of an oracle which

will produce a classified example on demand. PAC learning algorithms use the oracle

to hypothesize a target concept. The concept so chosen is guaranteed with some

probability 1 - 8 to be accurate to some degree e, where 8 and e are parameters of

the algorithm. PAC learning is distribution-free-the results proved are independent

of the input probability distributions [KV93].

What criteria are appropriate for user modeling? Suppose the user modeling

system, in conjunction with a personalized newspaper application, decides that a

person will like a certain article, and presents it to him. However, the user reads only

the headline and moves on-he has decided the article is uninteresting. Clearly, the

system has failed, but why? Perhaps the article was chosen because it mentions the

user's hometown, but was skipped because the user was more interested in something

else, or in a hurry, or was simply experimenting with this new-fangled personalized

newspaper. In these cases, the system's reasoning about the user's hometown was

not incorrect; it merely failed to model the user thoroughly enough to account for the

vagaries in his reading style. Predictive success is the only available means by which

the system can evaluate itself, which is unfortunate because this analysis is ill-formed.

In the following sections, I describe ideas prompted by my thinking about machine

learning paradigms.

'Probably Approximately Correct



3.2 If You Don't Know, Ask

Query-based learning is a machine learning paradigm that assumes an oracle to which

the learner can direct occasional questions. The application to user modeling seems

obvious: if DOPPELGANGER needs to know something about a user, it asks him, by

sending him mail. Strangely, this has not been used in user modeling systems to date.

When applications request information from DOPPELGXNGER, they should do

so with an importance value. The higher the importance value, the more likely

DOPPELGXNGER will directly go and ask the user. This is another advantage to

having a natural language protocol-not only is it good for programs talking to

DOPPELGXNGER, it also works well when DOPPELGXNGER needs to communicate

with its users.

The most common means of communication between DOPPELGXNGER and users

is simple English through electronic mail. How often it does this depends on the

annoyance parameter in the user model.

3.3 Sensor Arbitration

Sometimes DOPPELGXNGER's sensors will disagree with one another. The badge

sensor might disagree with the login sensor. Chances are that the badge sensor is

right; it's more accurate than the login sensor. DOPPELGXNGER could encode this

into a heuristic: "if the badge sensor and the login sensor conflict, favor the badge

sensor." But this is only a temporary solution. DOPPELGXNGER potentially has a

huge number of sensors. More are added all the time, and the sensors will get better

over time as their developers add features and fix bugs. Applications can provide

feedback not just about the user, but about the quality of the information provided by

DOPPELGXNGER, which DOPPELGXNGER can then use to maintain its own estimates



Courageous 73-year-old woman thwairts carjackers
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"I was determmned I was not going to get killed," Stern told
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Man, cat and bird found decapitated in Midtown
i building

Figure 3.1: FeedbackPaper: A newspaper application using DOPPELGANGER.

of sensor accuracy. These change over time as feedback from applications agrees or

disagrees with the sensor.

Sometimes a sensor will disagree with itself. A personalized newspaper application

written by Doug Koen called FeedbackPaper[CK93] (see Figure 3.1) presents two icons

with every article. If the reader clicks on the thumbs-up icon, it extracts keywords

and sends a message to DOPPELGANGER, saying "I like <keyword>" with a subject

line of "News." DOPPELGANGER then modifies the reader's model accordingly. If the

person clicks on the thumbs-down icon, the same actions are taken, but with "like"

replaced by "hate." DOPPELGANGER now has the problem of trying to estimate how

much a user likes the "technology" topic based on conflicting input: the user will like

some articles and dislike others.

Consider a coin that has some bias p (If p = 1, the coin always comes up heads,

p = 0, tails, and p = .6 means that the coin comes up heads six times out of ten). You



wish to determine the bias of the coin. How do you do it? I have DOPPELGXNGER

use the Beta distribution for problems like these. The Beta distribution [Dra67]

allows one to model the mean and variance of a random variable from a sequence

of one-bit inputs, e.g. a series of heads and tails. If the number of heads is h, the

number of tails is t, then our estimate of the bias of the coin is simply i, and

the variance of the distribution is: a = (h+t)2-+t+1). The higher the variance, the

lower the confidence of DOPPELGANGER in the assertion. An estimate of the amount

of information is 2'(P, where I define mazvar(p) as 4(h+t+1). mazvar(p) is the

maximum variance that p could have given the number of observations. This will
(+ M-)2

occur when h = t = T, so the maximum variance is: (h+tt)2(h+t+1) 4(h+t+1)'2~~~~~~ (hth2(htl (~±

Input to dopmail can conceivably get much more complicated than simple barrages

of "I like ... " or "I hate ... " dopmail can also parse sentences of the form "I like

sports more than finance in my newspaper." This is tricky, because the sentence is

a statement about the relation of one mean-variance estimate to another. This is

more difficult than it might seem: there might be multiple comparators (e.g. "I like

sports more than finance" and "I like sports more than environmental issues"). There

might be a sequence of comparators that violate transitivity: "I like sports more than

finance," "I like finance more than environmental issues," "I like environmental issues

more than sports." And what should DOPPELGXNGER do if it has a weak estimate

for the finance topic, but a strong estimate for the belief that the user likes sports

more than finance?

This is where the information estimate of " comes in handy. "Like more"

and "like less" are preset to mean ten percent more and ten percent less. This is

an arbitrary value that might change over time, although DOPPELGXNGER does not

currently support this adaptation. The variance of the left side of the comparator is

then set to be 1.1 "" p.
mazvar(p)

These intermediate calculations are not stored, because each new bit of informa-

tion can affect all the others in the group. Instead, they are computed on the fly. This



highlights an important point in client-server architectures like DOPPELGXNGER: the

speed of the reply. On occasion, answers from DOPPELGXNGER that can't be calcu-

lated beforehand will need to returned quickly. Ideally, requests by applications will

include an urgency value that fixes a compromise between the accuracy and speed

of the answer.

3.4 Distributed User Modeling

It would be nice if there were no centralized user model-when an application wanted

information about the user, it would broadcast its request to the "ether", and an-

swers would come pouring in from the multitude of sensors in the environment. The

broadcasts described would happen thousands of times per second. Furthermore, so-

phisticated reasoning upon sensor data, as well as computation based on a history

of behavior, both require mass storage, and therefore centralization as well. Dop-

PELGANGER is centralized. To be precise, it consists of independent Doppelgingers,

each centralized. It has to be, because it collects a lot of information about a lot

of people from a lot of sources, supports multiple inheritance based on communities,

and makes its conclusions available for a lot of applications.

Centralization has to end somewhere, though-you can't have one Doppelgiinger

spanning the globe, modeling all people. That would be risky (the Doppelginger

might break), awkward (there would be a message bottleneck), and totalitarian (if

you control that Doppelginger, you control everything). These deficits manifest them-

selves less and less as the scope of each Doppelgiinger shrinks, culminating in the other

extreme: a maximally wired world where everything has its own Doppelginger, and

they all communicate with each other all the time.

Many Doppelgingers will remain private, because their users will choose to com-

promise the power of the system so that their privacy will remain uncompromised.



From: doppel~home.media.mit.edu <Doppelganger at Orwant's home>

To: doppelemedia.mit.edu <Doppelganger at the MIT Media Lab>

Subject: Interdoppel communication

Partial Schedule Model for Jon Orwant:

(object orwant
(object schedule

(object alarm-clock

(time ''6 August 1993 830'')

(action ''turned off''))

(object state

(descriptor ''late'')

(reasoning alarmclock))))

Figure 3.2: Interdoppel communication: a partial schedule model.

A recent topic of interest among machine learning researchers is distributed ma-

chine learning [The89], in which sources of information about a phenomenon are

distributed, meaning that there is some significant cost involved in sharing informa-

tion about the phenomenon. Weather prediction involves making decisions (e.g. cold

air mass from the east) based on information from distributed locations. Surveillance

schemes might use spatially separated sensors to observe a common object.

The medium for communication between Doppelgiingers is electronic mail, and

the language is English and SPONGE. A sample message from one Doppelginger to

another is shown in Figure 3.2. My Doppelginger at home initiates this mail and

sends it to the doppel account at the Media Lab. The Media Lab Doppelgiinger

then assimilates this information into its user model for Orwant. It might choose to

disregard parts of the message, or to ignore the message entirely, because of what

it already knows about Orwant, or because my Doppelginger at home has provided

consistently incorrect information.



3.4.1 Synchronizing Home and Work Environments

One of the best reasons to employ communication between distributed Doppelgiingers

is to ensure that when you move from place to place, your computational environment

moves with you.

I've written some Elisp code' that sends whatever files I'm editing at home to

work, and vice versa, because often I'll wish to view or edit the same files at home as

at work, but don't want to take the trouble to log in, download the files, and so on.6

I'm using the application, which I call dopsync, to write this thesis. It ensures that

when I edit a file at home, the corresponding file at work is updated, and vice versa.

dopsync maintains security by verifying the mail author, 7 only updating portions of

the filesystem that will not damage system operations, and saving backups just to be

sure. DOPPELGXNGER stores information about the address of my home and work

machines. BARRIER REEF will store information helping applications guess what I

want transferred; right now this is stored in the application.

In essence, this is a crude virtual filesystem, suitable for very low bandwidth

communication, and illustrates yet another example of the benefits of integrating the

user modeling system with the operating system.

3.4.2 The Portable User Model

There will be times when a user will want to have manual control over his user model.

Ideally, he should be able to carry his user model with him. He might want to bring

his user model to a newspaper machine so that it can print out his newspaper, or

bring it along when he travels so his computational environment can be customized,

or as a carrier for his medical records should he become injured.

"Elisp is a dialect of Lisp bundled with the text editor Emacs.

6I have a UUCP (Unix to Unix CoPy) link between my home computer and the Media Lab,
which transfers mail every twenty minutes.

7 This is futile, since it's easy to flawlessly forge electronic mail.



Two classes of portable user models will be considered here. The first is just a

copy of the user model: these could in theory be stored on magnetic strips, like credit

cards. The second contains an onboard processor in addition to the storage.

Dumb Smart Cards

Portable user modeling devices could be stored on magnetic strips, like credit cards.

These would allow you to swipe your card through a card reader to log in and have

the computer set up your environment.

The PCMCIA' standard is an emerging design standard for credit card-sized

adapters [Int93]. PCMCIA smart cards are small, thin, flash memory cards that can

store up to forty megabytes. They're about the size of a thick credit card, and can

be used to transfer data between any two computers that have PCMCIA interfaces.

Gillian Lee is working on storing DOPPELGANGER user models on PCMCIA cards.

Carrying your user model in your pocket affords both psychological comfort and ease

of use. The MIT Media Lab Electronic Publishing Group has a newspaper "point-

of-sale" box (one of the metal boxes on street corners that dispenses newspapers).

There are some crucial differences between this box and its urban cousins, however:

it has a printer inside, and a PCMCIA interface on top attached to an IBM RISC

System/6000 workstation. When the user slips his smart card into the PCMCIA

interface, his personal newspaper is printed for him on the spot.

Smart Smart Cards

As memory, storage, and CPUs get smaller and faster, the feasibility of a computation

on smart cards in general will increase. A smart card with an onboard processor would

be even better. Portable computers like the Apple Newton is almost small enough,

and certainly possesses the necessary computational power for limited user modeling

8 Personal Computer Memory Card International Association, an association of over 300 compa-

nies created in 1989 to set standards for mobile computers.



as well as a PCMCIA interface. The Digicash card [Cha92] fulfills the transaction

aspects, but that's all: there's no way to extend its capabilities to deal with a user

model.

In the Digicash system, and in the plans for DOPPELGXNGER, each card contains

an embedded observer in addition to its own microprocessor. The representative and

the observer generate numbers that the observer uses to produce a set of blinded dig-

ital pseudonyms. The observer signs the pseudonyms with a special built-in key. The

representative checks the pseudonyms to make sure they do not disclose any illicit in-

formation and passes them to a validating authority. The validating authority checks

the observer's special key, removes it and attaches its own unforgeable signature. The

representative removes the blinding from the validated pseudonyms and stores them

for future use by the observer. By requiring a PIN, the smart card could safeguard

itself from abuse by thieves.

Chaum observes that this system can also be used for not just money, but cre-

dentials as well: a job applicant could authorize a university to verify his degree (but

not his field); potential employers could send requests to validate his r6sum6, and the

university would verify only what the applicant allowed.

3.5 Computational Bigotry, or Prior Knowledge

is Prejudice

If a flying saucer landed in Times Square, and green-skinned octopeds emerged, you'd

probably assume that this alien race consists of green-skinned octopeds, and not blue-

skinned octopeds that spent too much time beneath their planet's thinning methane

layer. When the blue-skinned octopeds arrived, one by one, you might assume that

they were the anomalies, until you saw enough of them. If you were stupid, you might

cling to your outdated belief for longer than logic would dictate, because beliefs have



persistency. And with DOPPELGXNGER, the first people to influence a community

can have a marked effect on what the community becomes.

This is a good example of why people should be able to interact directly with their

user models. When they do so, all of a sudden DOPPELGXNGER has a sensor that's

guaranteed to be correct (presuming people know themselves well), which can help

to accelerate recovery from mistaken assumptions that have outlived their usefulness.

3.6 Conditional Models

A user model in DOPPELGXNGER is an NFS (soon to be AFS) directory, consisting

of a primary model, submodels, and backup models. All are encoded in SPONGE.

I recognized that keeping all of the information in one file is awkward, because

many processes will want to access any given user model at the same time. The large

primary model contains biographical information; it is often read by applications,

but is rarely modified. The directory also contains submodels, which can be either

domain models or conditional models. Each domain model contains information

about a certain aspect of a person's life, such as his location. Conditional models

are "special case" models that are only true when some condition is satisfied in the

outside world. People who want a different newspaper in the morning than in the

evening might have a conditional model for each: in the morning I'm interested in

hard news, while in the evening I like to read more about recreation.

The domain submodels are listed in Figure 3.6. I've chosen them based on how

often the data will be modified and how much data will need to be accessed by sensors

and applications. But DOPPELGXNGER could just as well figure this information out

for itself, if I were to encode some rules for determining when a submodel should be

split off. Doppelginger automatically generates conditional models for users based

on templates contained in BARRIER REEF.



* primary: biographical data, and other data that does not change often. This

file is large; file writes take a long time, which is why data that does not change

very often is stored here.

* location: where the user is.

e schedule: events in the user's life.

* newspaper: what the user wants to see in his newspaper.

e login: past and predicted future login times.

* commands: UNIX commands that have been executed.

* ads: purchases that user might make.

* questionnaire: information that the user has explicitly provided for Dop-

PELGANGER.

* message: new messages from DOPPELGXNGER to the user.

* message-archive: old messages from DOPPELGXNGER to the user.

Figure 3.3: Domain submodels.



Communities can also possess domain and conditional models. DOPPELGXNGER

maintains news submodels, so one can request the Media Lab Community newspa-

per. Some domain submodels have a drastically altered meaning when applied to a

community rather than an individual. For instance, an individual's location model

is straightforward: where the person is, and predictions about where the person is

going. But a community might be defined by a particular location (e.g. residents of

Louisville, KY). Or the community might be a business group that has meetings in

certain rooms-at those times, the community has a location, but at other times the

community will have no location at all.

In the next chapter, I'll move from the broad to the specific, and describe three

specific learning methods that I've used for user modeling tasks.



Chapter 4

Three Techniques and Four Tasks

While the previous chapter made general arguments for new approaches

to user modeling, this section explores three specific applications of ma-

chine learning techniques for particular user modeling tasks.

Evaluation for user modeling tasks is often difficult, because of the nature of the

phenomena: users change. And they change over many time scales: minutes, days,

months, and years.

I've chosen my tasks to span the three different granularities of data in Dop-

PELGANGER-the raw data, the model, and the community. The tasks and their

domains are depicted in Figure 4.1.

4.1 Location Prediction

DOPPELGXNGER has three ways of sensing user locations: a sensor that keeps track

of which computer consoles someone is using (this provides information about his

physical location), a schedule sensor that given a calendar file deduces the locales to

which a user has flown, and Active Badges. These are badges that emit infrared bit

patterns, which are used to track people as they walk around the Media Lab. In the



Figure 4.1: Four applications of machine learning to user modeling

future DOPPELGXNGER may be using the smart floors described in [Spe90] to track

people. I used Hidden Markov Models to predict where people would walk, given

their location data.

Part of Walter Bender's location submodel, using data gathered from the badge

sensor, is shown in Figure 4.2. The rooms Walter was sighted in during the sample

period of an hour are listed on the next page.

"E15 3" is the Media Lab, third floor. Rooms with a 'c' as the middle character

are actually corridors. Here is the sequence of observations:

12233333333333333333333333333333333331111413333333333333333333333333111

11155555111 1111111111111111111114222226111111111111111111222111111111111

111111111111777 777777711111111 1444411

The table transition probabilities generated by DOPPELGXNGERare shown on the

next page.



(object walter

(object location

(time-binding ''E15 3 344''

(time 746346881))

(time-binding ''E15 3 3c2''

(time 746346888))

... ))

Figure 4.2: Part of a location submodel.

Room 1:
Room 2:
Room 3:
Room 4:
Room 5:
Room 6:
Room 7:

E15
E15
E15
E15
E15
E15
E15

344
3c2
356
3d1

343
3c3
350

0.909091 0.022727

0.100000 0.700000

0.033898 0.000000

0.333333 0.166667
0.200000 0.000000

1.000000 0.000000

0.100000 0.000000

0.011364 0.034091 0.011364 0.000000
0.100000 0.000000 0.000000 0.100000

0.966102 0.000000 0.000000 0.000000

0.000000 0.500000 0.000000 0.000000

0.000000 0.000000 0.800000 0.000000

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.011364
0.000000
0.000000
0.000000
0.000000

0.000000

0.900000



Given what room a person is in, the Markov Model generated by DOPPELGXNGER

makes it easy to predict what room he'll enter next, as well as the accuracy of that

estimate.

The algorithm used to generate these transition probabilites is very simple: there

is a one-to-one correspondence between rooms and states, which means the output

probability matrix will be the identity matrix-state i has probability 1.0 of producing

output symbol (i.e. room observation) i and probability 0.0 of producing any other

output symbol. In a sequence of n observations, there are n - 1 transitions between

states. The algorithm sets the transition probability between state i and state j to

number of transitions between i and j
number of transitions between i and any other state*

How accurate was location-observer? This depends on the amount of data gath-

ered. Clearly, with only one data point, location-observer has too little information

with which to accurately predict the next value. If the data points span a week,

they'll pick up daily cycles but not weekly patterns. And if the data points span only

a year, they'll fail to pick up yearly cycles.

This could be used for more than just user modeling. Imagine a Global Positioning

System.1 The information relayed by a GPS (presumably by broadcast) could be

analyzed by DOPPELGXNGER; the results would indicate which areas connect, as

well as which are corridors and which are rooms. DOPPELGXNGER could perform

simplistic mapping of a remote site in this way.

Unfortunately, DOPPELGXNGER's badge sensor needs work. It spawns a process

every minute to check the Badgeserver, which is too CPU-intensive, slowing down

its workstation too much. It needs to be made event-driven: integrated into the

Badgeserver code so that it doesn't take so many CPU cycles. Also beneficial would

be a visual interface to DOPPELGXNGER's results: I'm writing a system for generating

pictures of the Markov Model describing user location behavior.

1These are small devices that can determine their location (represented as latitude and longitude)
through a system of twenty-four triangulating geosynchronous satellites.



Spectral analysis on the data showed up some simple daily and weekly patterns:

people don't work on weekends. As the data-gathering continues, I suspect further

patterns will reveal themselves.

Because the Markov Model states are fixed, DOPPELGXNGER's task is simplified

considerably-it doesn't have to figure out what the states are. If it did, it would use

a more sophisticated approach: the Baum-Welch reestimation procedure [The89]. By

removing the restriction that each state is a room, DOPPELGXNGER could postulate

its own states. One state might be "working in the Media Lab Garden," which would

consist of probabilities of being sighted at the different sensors around the Garden.

Sensors closer to the Garden center would have higher output probabilities in that

state, and the probabilities would fall off (perhaps according to an inverse square law)

as distance from the Garden center increased. Another inferred state might be "going

to the bathroom," which would be a pattern of states leading down the appropriate

corridors. Luckily, there are no Badger sensors in the bathrooms themselves.

4.2 Environment Analysis

The location prediction task generates Markov Models. It does not attempt to pick

one of many "Hidden" Markov Models that best describes some observed behavior.

This is how many important problems in speech recognition (and many other fields)

are framed: choosing a model (e.g. the speaker said "cat") that maximizes the

probability that the observed sequence of output symbols would be generated. A well

known algorithm for efficiently solving this problem is the Viterbe algorithm [Rab89].

I implemented the Viterbe algorithm for the task of environment analysis: identifying

what state a person is on based on his interactions with a computer.

Figure 4.3 shows the hacking Hidden Markov Model. Each model consists of states

(the compile state is listed in figure 4.4) and probabilistic transitions between them.

The eight models are listed in Figure 4.5.



Figure 4.3: Hidden Markov Models for environment analysis: the hacking model.

cc

g++

.~coxpile ~ - gake

misimiremacs
x'c
make
sabre

Figure 4.4: Hidden Markov Models for environment analysis: the compile state.

9 hacking

* idle

* frustrated

* writing

9 information and entertainment i.e. news and games

* concentrating

* image processing (a common task among the people modeled by Doppelgdnger

#/1.)

e connection (i.e. using the computer as a gateway to another.)

Figure 4.5: Hidden Markov Models for environment analysis: models.



* compile

* edit

e mail

* shell

* window manager

e text format

* games

e image processing

* user modeling

e connection

e news

* view

9 learn

Figure 4.6: Hidden Markov Models for environment analysis: states.

The fourteen states out of which the models are constructed are listed in Figure

4.6.

4.3 Login Prediction

One of DOPPELGXNGER's sensors relays information about logins to DOPPELGXNGER-

when people log in to a computer, and the duration of the session. These are time-

based, sequential observations of real values-a natural candidate for time series

analysis [And71], which means using a sequence of observations to predict future ob-

servations. I used linear predictive coding [PTVF92] to predict the time and duration

of the next login. The reason for using linear predictive coding rather than some other
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Figure 4.7: DOPPELGANGER's interarrival predictions

method of regression analysis is because of its utility for predicting cyclical behavior,

as opposed to smooth movement increasing or decreasing with time. Linear predic-

tive coding uses spectral analysis, which identifies periodicities. One would expect

periodicities to occur on daily and weekly scales; they do.

I analyzed the times between logins, or interarrival times, rather than the actual

times of occurrence, because interarrival times remove drifts in the data. Using

interarrival times, If the person starts his day half an hour later, then only one data

point is affected, rather than all the points for the day.

In addition to predicting the interarrival times for logins, the same method can be

used to predict login durations: how long a user stays logged in. Only login durations

greater than four minutes were included, on the basis that this was a good threshold

for "meaningful" logins: logins for a shorter duration might be FTP transfers, or

accidental logins. Each login duration is rounded to the next lower minute.

4.4 Cluster Analysis for Community Inference

User modeling stereotypes have come under fire for reflecting the bias of the user

modeling system designer. Ideally, the user modeling system should generate its own

communities. Then, any claims of bias are weakened, because the designer's influence



Figure 4.8: DOPPELGANGER's duration predictions

has been pushed back from choosing the communities to merely choosing the rules

that choose the communities. Eventually, systems will proceed to the next level,

choosing the rules that choose the rules that choose the communities.

The ISODATA clustering algorithm is a method of unsupervised pattern recog-

nition, helpful for identifying classes in multidimensional data [The89], [TG74]. I

implemented the ISODATA algorithm, to help DOPPELGANGER automatically iden-

tify interesting communities in the user modeling population.

However, what is to be clustered? User models consist of disparate types of data:

proper names, preferences, ages, heights, colors. How can an algorithm compare these

different types of values? My solution to this is discussed in the next section.



4.4.1 Knowledge Handlers and the Credit Assignment Prob-

lem

Fisher's COBWEB system [Fis90] proposes a good system for identifying salient fea-

tures in a collection of traits. This seems like it would be good for identifying com-

munities. COBWEB uses a heuristic evaluation measure of category utility to classify

data points. It's an advanced, well-known system, but it is of limited usefulness to

DOPPELGXNGER because it only deals with nominal attribute-value pairs. CLAS-

SIT, a sequel to COBWEB, partitions numeric attributes. But neither handles both

symbolic and numeric attributes simultaneously. Similar systems are described in

[SD90].

It's easy to see why this is. Imagine trying to develop some algorithm that can

handle with equanimity data triplets of 1) miles per hour, 2) nationality, and 3)

color. There are two choices: you can first classify the numeric attributes to make

them nominal, or you can discretize the nominal attributes to make them numeric.

The system described in [SM86] converts attribute domains into ranges based on how

well they contribute to higher-order conceptual descriptions. A range of values can

then be treated like a nominal value.

I developed a different approach to this problem for the community clustering task

posed by DOPPELGXNGER. I wrote several handlers for different types of data:

Each of these handlers transforms data in a user model into bitstrings that can

all be treated alike: the leftmost bit is the most significant, and every bit is more

significant than its right-hand neighbor. The linearly scaled integers handler would be

used for age; logarithmically scaled integers would be used for income; linearly scaled

real numbers would be used for height; logarithmically scaled real numbers would be

used for amount of time spent talking on the phone; proper names would be used

for names of people that the user associates with; boolean queries would be used for

boolean expressions about news topics, and the arbitrary string handler would be used



* linearly scaled integers

e logarithmically scaled integers

* linearly scaled real numbers

* logarithmically scaled real numbers

e proper names

e boolean queries

* arbitrary strings (these include nominal and unordered attributes)

for data that can't be ordered in any other way. The effect of each of these handlers

is to take a class of inputs and reduce each input to a bitstring such that if you

interpret each bitstring as a binary integer, their numeric difference is proportional

to their perceptual difference, or at least as good an approximation as possible. This

list of handlers is all DOPPELGXNGER currently supports; there should in principle

be many more, but these suffice for all the data DOPPELGXNGER currently gathers.

Within each class, all bitstrings will be the same length, but the length will differ

from class to class. The ISODATA algorithm uses an absolute distance metric, so if

the bitstrings are kept the same length, the classes with longer bitstrings will have

disproportionate influence over the results. To avoid this, each class is scaled up so

that its bitstring length is equal to the maximum bitstring length. Then the resulting

bitstrings, each comprising one component of a vector are clustered by ISODATA;

the top five communities thus generated are shown in Figure 4.9.

These same handlers can be used for more than just community inference through

cluster analysis. They can also be used to perform credit assignment. Let's say

you have a mail application that prioritizes its mail based on a collection of rules

personalized to each individual. These rules are imperfect, and the mail application

uses feedback from the user to determine the efficacy of each. The rules operate

upon disparate data types: some operate on names (who it's from), some operate



1. threshold on number of children: 0

2. threshold on annoyance parameter: 3.7

3. knowledge of the command bash

4. has bike

5. privacy of biographical information

Figure 4.9: DOPPELGXNGER's suggested communities.

on boolean queries (used to determine the content of the message), some operate on

numeric quantities (the message length). The bitstrings could be computed as for

cluster analysis, but then the results could be then input into a neural net. Standard

neural net adaptive weighting techniques such as backpropagation would determine

the appropriate weights for each rule. The questions of how many hidden layers,

input nodes, and what threshold functions to use are interesting. A simple design

would have a hidden layer with one node for each rule; more complex designs would

match the complexity of each class handler to the complexity of its architecture in

its part of the neural net. Perhaps the system should grow over time, adding nodes

as more categories of information are acquired. The Cascade Correlation algorithm

[FL90] would be good for this. An entropy measure can be used to identify the best

predictors.

The disparate data problem is a good argument for needing knowledge represen-

tation in a sophisticated user modeling system.

4.5 Computer Aided Introspection

What has DOPPELGXNGER taught me about myself? Not very much, yet. But that's

okay-I already know a lot about myself, and DOPPELGXNGER's most important task

is helping other applications to learn about me. But it has shown me patterns in my

behavior. I used its results to program the neural net that decided when to call up



and retrieve my electronic mail from the Media Lab. It wasn't sophisticated enough

to tell me what the patterns were, but it showed me the data, which helped me deduce

that there were patterns. In time, DOPPELGXNGER will become sophisticated enough

to tell me a lot more about myself, and others.



Chapter 5

What's Next?

5.1 The Twelve Ideas

I've made many prescriptions for user modeling systems in this thesis. Here they are

in an easy-to-digest package:

1. Tolerance: Prefer many
conflicting sensors.

imperfect sensors to a single sensor. Arbitrate between

2. Cooperation: Applications employing user information should speak to each
other.

3. Autonomy: Distributed user modeling systems should talk to one another. They
should be on your desktop, in your home, and in your shirt pocket.

4. Privacy: User modeling systems should contain safeguards for model privacy
and transaction privacy.

5. Curiousity: User modeling systems should ask the user questions every now and
then.

6. Hints: Clues to "deep" mental states can be obtained from easily-sensed, "shal-
low" data.

7. Patterns: As user modeling systems track behavior, they should periodically
apply regression analysis to see what patterns emerge.



8. Community: user modeling systems should attempt to identify interesting com-
munities within a population, and use them as a source of educated guesses for
questions about users.

9. Passivity: Don't bother the user. Otherwise he'll find another way to occupy
his time.

10. Peaks: When there are many data points for some phenomenon, the user mod-

eling system should use spectral analysis and note peaks or troughs in the spec-

trum, either using the information for itself, or telling people and communities

what it has discovered.

11. Slack: Use a laissez-faire approach to knowledge representation. Otherwise your

system will be too abstract or too general to be useful.

12. Pragmatism: The system should work, and be portable. The best way to

propagate ideas is to demonstrate them firsthand.

5.2 The Four Tasks

The tasks were all successful: they are all being currently used by DOPPELGXNGER,

and they will be improved upon. The actual utility of each has been limited more by

the sensors than by the techniques themselves. The biggest problem for all of them

was sensor overhead. More rigorous evaluation should wait for two things: better

sensors and better techniques. My point in this thesis was merely to show that they

should be done, not how to do them best.

The most important use of machine learning for user modeling isn't these four

tasks. Those would have been stumbled upon eventually. More important is the con-

tribution of ideas to user modeling that changed the architecture of DOPPELGXNGER.



5.3 What's Next

5.3.1 New Sensors

In general, user modeling needs better techniques of gathering knowledge about peo-

ple in their information environment. In addition to the broad problems of voice

recognition, machine vision, tactile sensing, there are once again "little things" that

can be used to infer "big things."

We need lots of sensors everywhere. A Global Positioning System would be a

good sensor if combined with maps in BARRIER REEF, but the system provides no

interface to the output other than its LCD screen. It's also too bulky, and the cost,

at approximately $1200, is prohibitive. Those can be forgiven, but how hard would

it have been to provide a digital output jack so that its information could eventually

have found its way into a computer? Sensor designers too often see no use for tying

their devices into the world of other devices. There's no monetary incentive for them

to do so, because the applications made possible by the user modeling that requires

multiple sensors doesn't yet exist-a chicken-and-egg phenomenon.

Pascal Chesnais' CANARD is a palm-size news presentation device. It can receive

news via packet radio, but the real reason CANARD is of interest to user modeling is

because of its mercury tilt sensor. When CANARD is pointed down, as it would be in

a belt holster, a blob of mercury slides down, letting the computer would know that

the user is not reading news. It can then concentrate on retrieving news rather than

displaying news. When CANARD is held up, the blob of mercury slides the other way,

letting the computer know it should change its behavior. And when the user walks,

the blob of mercury slides back and forth, so the computer would know to make the

text larger.

Perfect speech recognition eludes us, but there is some useful information we can

deduce from audio. A system for detecting emphasis in speech is described in [Hu88],



and a system for continuously recording a user's speech all day (for easy selection,

marking, and retrieval later) is in [Hin9l]. Sensors that record ambient noise would

also be useful-they might identify characteristic subway noises, or computer hums,

and in so doing be able to tell if someone is outside, at work, on a plane, and so on.

The same is true for video: object recognition is a long way away, face recognition

is so-so, and merely telling when someone is present is easy. A simple photosensitive

sensor could tell the portable user model whether the person is inside or outside

during the day.

Sometime I'll build a chair sensor that can tell when someone is sitting in it. This

might be a simple piezoelectric device that registers pressure and (hopefully through

wireless communication) updates location submodels.

5.3.2 The Architecture

User modeling needs better interfaces. It's ironic that while much of user modeling is

designed to aid the man-machine interface, I've never seen a good interface to a user

modeling system. This is understandable; designing an interface to such a large and

complex system is a monumental task.

There's more work to be done on enhancing both model privacy and transaction

privacy. The underlying architecture of DOPPELGXNGER has been solidified; the next

level includes better privacy safeguards. Privacy makes DOPPELGXNGER research

more difficult.

The stability of DOPPELGXNGER has increased almost to the point where auto-

matic installation can occur: installation scripts could facilitate compilation of the

DOPPELGXNGER binaries, libraries, sensors, and databases, and copy BARRIER REEF

(or perhaps even assist in managing a distributed knowledge base).



5.3.3 New Applications

DOPPELGANGER opens up new possibilities for thousands of applications. Many of

these are current applications that can be made better through user modeling. Others

are applications that are made possible by user modeling.

One application made possible through DOPPELGXNGER is a simple modeler of

"who knows what" that expedites communication by connecting people that have

something to say to one another. Such a system might be used to send questions

to people best qualified and most likely to answer. Another class of applications in

which user modeling often occurs is dating services. Video games could benefit from

user modeling components, and I'm still waiting for the chess program that watches

my eyes move.

In addition to this augmentation of today's applications, entirely new applications

will be made possible by user modeling. These will be systems that depend on the

reasoning ability of the user modeling system, that can identify patterns or anomalies,

and deal with them: perhaps by bringing them to your attention, perhaps by invoking

special behaviors tailored to deal with abnormalities in your schedule or the actions

you take on a computer. For instance, imagine a system that makes predictions about

you. Given some knowledge of what books or songs you like, it could search for other

people who like the same selections you do, and make new recommendations for you.

User modeling systems can help make computers into intelligent conversational

partners. Along the way, they'll figure out the right questions to ask.



Appendix A

What User Modeling Promises for

the Newspaper of the Future

The motivation for the DOPPELGXNGER user modeling system arose

from my work in the MIT Media Laboratory Electronic Publishing Group.
DOPPELGXNGER has used news as a complex domain in which to address
topics common to all of user modeling.

Over the past year, the architecture of the DOPPELGANGER user modeling sys-

tem has been recast toward a prototype information marketplace. The four ma-

jor developments during this time have been a knowledge representation language

called SPONGE, a knowledge base called BARRIER REEF, protocols for communica-

tion between distributed Doppelgingers, and a framework for privacy safeguards and

anonymous transactions. These are all critical components of a network in which

your location, your (inferred) reading preferences, your grocery bills, your datebook,

and many other sources of personal information all contribute to applications that

unify this data into the most effective presentation possible, making use of news,

entertainment, and advertisements.



DOPPELGXNGER is part of an effort to develop an architecture [Die93], [Blo9l]

that facilitates the creation of electronic newspapers: their distribution, personaliza-

tion, assembly, and presentation.

A.1 Choosing News

There's more to a personalized newspaper than filtering. Information retrieval sys-

tems take an overly narrow view of news selection: given a topic, find the articles

inside a huge database that best fit the topic. It's old hat. But personalizing an

electronic newspaper can be broken into three more adventurous problems: under-

standing the news, understanding the user, and presenting the news effectively. DOP-

PELGANGER helps all of these problems, and attempts to provide a "best available"

solution for the second problem.

The role of DOPPELGXNGER in each person's newspaper depends on that person.

For some, it will mean that they won't have to fill out a questionnaire to tell the

newspapers what their interests are, because DOPPELGXNGER will learn about them

over time. For others, it will mean that they will be notified just as soon as possible

(through either paper or portable news devices) about certain topics-stock quotes,

or sports scores. For still others, it will mean that new services will become available

to them through their newspaper. And for everyone, it will mean that they'll be able

to treat their newspaper as having the abilities of a computer without any of the

frustrations.

One advantage of a generalized user modeling system, as opposed to a user model-

ing component that resides inside some application, is that it forms the backbone for

an integrated computational environment, one in which your newspaper, your date-

book program, your electronic mail program, and your car can all coordinate their



actions by sharing information about you. For those leaving their computational en-

vironment (which includes both home and work), their user model can be carried on

a portable user modeling card, for services that require "user modeling on demand."

Information retrieval systems don't learn over time; news systems that focus on

incrementally adapting to the user are rare. [JHL91] and [Bac9l] use neural nets to

choose appropriate news, and [SM93] uses genetic algorithms for information retrieval.

But in addition to learning how to better search for news, DOPPELGANGER learns

more about you. This modeling has to occur if the system is to grow with the needs

of the user.

Credit card companies, magazines, and governments all model their users. What

they don't do is let the user see how he is being modeled, and allow the user to make

his own adjustments. In the future, as DOPPELGANGER's architecture is fleshed out,

there will be an emphasis on the user modeling interface: viewing sensor input, DOP-

PELGANGER's inferences upon that data, and the reasoning behind DOPPELGANGER's

newspaper decisions.

A.2 Advertisements

Electronic newspapers will be paid for by two sources: the reader and advertisers. Ad-

vertisers will have a special interest in user modeling; not only do individual user mod-

els contain a consumer profile, but the communities maintained by DOPPELGANGER

perform demographic modeling for free.

Reebok will want to know who bought Nikes six months ago, newspapers will

want to know what parts of the paper people really read, and McDonald's will want

to know what you had for dinner last night and how much you paid. Your computer

at home can make all this information available to them-for a price.

Americans' fear of unwanted junk mail underscores the need for privacy in DOP-

PELGANGER. There are two types of privacy involved in user modeling: privacy of



the user model itself, and privacy of the transactions made on behalf of your user

model. The former is a data security issue; the latter is an underlying issue of the

nature of transactions in an electronic marketplace.

Of course, there will be less unwanted junk mail with more accurate user modeling.

The direct marketing industry will be better able to target their advertisements when

they have an idea of the consumer habits of each household. The result will be that

you'll see fewer ads, and the ones you do see will be of greater interest to you.

A.3 Communities

When you say, "I'd like to see Walter's newspaper," DOPPELGXNGER remembers

that. If you're happy with what you read, DOPPELGXNGER might nudge your news-

paper in his direction. Or it might make construct a section for future newspapers

with a sampling from Walter's newspaper, or refrain altogether, depending on what

it knew about you. I can choose to view my newspaper, Walter's newspaper, or a

newspaper anywhere in between.

Everyone is a member of many different, loosely defined, communities. I'm a

member of the student community, the MIT community, the Cambridge community,

the US community, and the coin-collecting community. DOPPELGANGER assumes

that news that interests one of my communities will be likely to interest me as well,

and that if Walter and I are in many of the same communities, then we will share

many interests.

DOPPELGXNGER allows for treating communities as individual user models, so

that the system can build a news environment for a community: not only can I see

Walter's paper (if he lets me), but I can see a newspaper constructed for the entire

Media Lab, or one that is 20% me, and 80% Media Lab. I can even "caricature"

my user model, and get a newspaper that's 120% me and -20% the Media Lab: in

essence, removing the Media Lab influences from my user model.



Electronic communication will also create (and recently has created) new com-

munication flows. Instead of the classic mass media, in which a few produce articles

for many, we'll see newspapers in which readers can jot off an electronic letter to an

author, and get a response back within minutes or hours, in time for the reader to

write again. And as it happens, other readers could tune in, or even join in.

A.4 Predictions

Ideally, each newspaper reader would have his own editor. And that's where Dop-

PELGANGER comes in handy. Applications making use of DOPPELGXNGER can em-

body some of an editor's knowledge to help a local computer make decisions about

each issue of an electronic newspaper. DOPPELGXNGER isn't going to replace an

editor. This would be bad for two reasons: first, DOPPELGXNGER just plain isn't

smart enough to always tell what's important and what's not. Second, there needs

to be some standardization, so people have some common topics of conversation at

cocktail parties.

The traditional newspaper isn't going to disappear. It has too much in its favor:

familiarity, intuitiveness, and most of all, it's made of paper. Electronic newspapers

will supplement, not supplant, the newspaper. There are currently hundreds, and

probably thousands, of channels by which people can receive news electronically. The

opportunities for enhancing the selection, manipulation, and presentation of the news

environment with user modeling are immense.



Appendix B

Barrier Reef

This is a brief synopsis of the information stored in the BARRIER
REEF knowledge base.

Each entry described below (save the first) is a directory. Most of the knowledge

in BARRIER REEF has either been entered by hand or obtained from other struc-

tured knowledge sources. It is hoped that BARRIER REEF may one day be able to

glean its own information from news articles automatically, like the CYC knowledge

base[GL93].

Index.dtbin

A single file (the ".dtbin" extension indicates Dtype binary format) providing infor-

mation about other entries at this level (the top level) of BARRIER REEF. Most

directiories inside BARRIER REEF contain an Index.dtbin file.

Relations

A collection of SPONGE assertions about facts that are used for personalized news-

paper selection, e.g. "baseball is-a sport."



Names

A collection of names that DOPPELGXNGER uses to distinguish names of people from

other proper names.

Places

A collection of names that DOPPELGXNGER uses to distinguish names of places from

other proper names.

Lexicon

BARRIER REEF's most ambitious attempt at a general knowledge base: its directory

structure reflects an attempt to classify knowledge into fifteen subdivisions:

* Abstract

* Body

e Commerce

e Domestic

e Entertainment

* Food

* Industry

e Life

* Measurement

e People

e Sensations

e SpaceTime

e Substances

e Thought



* Transport

I came upon these categories while reading a lexicon [McA81], which is like a

dictionary sorted by topics (e.g. there is a section with all of the verbs and nouns

related to "hitting things"). This inspired the observation that I should duplicate its

structure in BARRIER REEF-with the justification that "if there are enough words

in English to justify a subdivision in the lexicon, it merits a category of its own in

BARRIER REEF." That's why these fifteen top-level subdivisions look unusual for a

knowledge base, with "Body" meriting a spot equal to "Life" and "Substances", both

of which are more general categories.

In some sense, this division of BARRIER REEF (in contrast to other knowledge

bases) strives not for an organization of knowledge that is logically or philosophi-

cally "correct", but rather attempts to divide knowledge based on utility-measuring

how we have chosen to assign importance to concepts through the evolution of our

language.

Commands

Knowledge about UNIX: what the different commands mean, and the Hidden Markov

Models and states used for state analysis (described in section 4.2).

Applications

Knowledge particular to an application: either information describing how to access

the application (e.g. this application can be reached at this machine with this port

number) or other information (not necessarily SPONGE code) for use by the applica-

tion.



Appendix C

Sponge Tags

This is the listing of the English names for the Sponge Tags, which are simply integers

used in the C programs that comprise DOPPELGXNGER and BARRIER REEF. Each

datum in SPONGE is a Dtype list, and the first element of the list is the Sponge Tag,

which says what information will follow in the rest of the list. An explanation of the

tag is given in italics after the name. In the descriptions below, reference is often

made to the "surrounding datum." This means that the Sponge Tag is part of a

datum that is within some other datum. For instance, some assertions contain three

parts: the title of the assertion, the assertor, and an opinion, which is itself a sponge

datum.

The Sponge Tags illustrate my laissez-faire approach to knowledge representation.

1. object The most "generic" sponge type-anything may follow the tag.

2. intbinding A string is bound to the following integer.

3. string-binding A string is bound to the following string.

4. real-binding A string is bound to the following real number.

5. time-binding A time value follows.



6. assertion An assertor-assertion pair: the person or sensor who is making a

claim, followed by the claim.

7. distribution The name of a probability distribution, followed by its parameters

in this instance, e.g. mean and variance.

8. confidence The confidence in the preceding statement. Assertions often contain

a confidence. They range between 0 and 1.

9. accuracy An estimate of the accuracy of a statement. Also ranges between 0 and

1. How does this differ from confidence? Here's an example: "I am confident

(confidence .8) that answer is very accurate (accuracy .99)." as opposed to "I

am confident (confidence .8) that answer is very inaccurate (accuracy .2)." As-

sertors will have different confidences about different accuracies of a statement.

10. condition A prepositional phrase or a confidence judgement.

11. VO A verb-object pair.

12. SVO A subject-verb-object triple.

13. domain A domain submodel.

14. address Information for finding something in either the DOPPELGXNGER database

or BARRIER REEF.

15. ptr A pointer to a SPONGE address.

16. backptr The inverse of a pointer: an indication that something is pointed to.

17. and Boolean AND.

18. or Boolean OR.

19. not Boolean NOT.

20. implies A condition followed by another condition; the first implies the second.

21. equation The name of an equation, followed by the equation itself.

22. variable A free variable, used in equations and distributions.

23. application The name of an application, followed by information describing it.

24. pathname A string containing a UNIX pathname.

25. map Where to find information in BARRIER REEF.



26. file Indicates a file. The value will usually be of sponge-type PATHNAME.

27. time UNIX time: number of seconds since January 1, 1970.

28. future These three tags are used to indicate the tense of a SPONGE datum.

29. present

30. past

31. attributes What follows is a list of attributes that are taken to modify the sur-

rounding condition.

32. word A word, plain and simple. This is usually used for talking about the text

of a news article.

33. exec A tag used by doppelserve indicating that the following C function should

be executed.

34. rule A sequence of actions to be followed when the preceding conditions are

fulfilled. One or more of these actions will often be an exec.

35. degree Anything that varies between 0 and 1.

36. units What the surrounding datum is measured in, e.g. inches.

37. privacy A privacy category (see Section 2.8.1) followed by an optional list of

people who are permitted/denied access to the data.

38. opinion A belief about something. If someone says he doesn't like firearms, he

is making an assertion about an opinion.

39. relation A verb and one or more nouns follows.

40. is These are particular relations.

41. contains

42. is-described-by

43. is-defined-by

44. describes

45. like These six tags are particular relations used by dopmail: they contain the

number of times an application has said that the user likes/hates/... something.

The beta distribution is then used to estimate the user's true preference for

something given this possibly conflicting information. See section 3.3.



46. hate

47. like-more

48. hate-more

49. likeless

50. hate-less

51. markovmodel The name of a Markov Model, followed by a matrix of transition
probabilities, a matrix of output probabilities, and lists of the states and output
symbols.

52. matrix The name of the matrix, followed by its dimensions, followed by its
values.
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