A Physically Based Human Figure Model with a
Complex Foot and Low Level Behavior Control

by
Michael Allen McKenna

B.S., Massachusetts Institute of Technology
(1987)

S.M., Massachusetts Institute of Technology
(1990)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in Partial Fulfillment of the Requirements for the

Degree of
Doctor of Philosophy
at the
Massachusetts Institute of Technology
June 1994
© 1994 Massachusetts Institute of Technology
All rights reserved
Signature of Author ~
‘ Program in Media Arts and Seiences
/ April 29, 1994
Certified by ,) 3l
- Vo A\rg © David Zeltzer
Principal Research Scientist, Reseéarch Laboratory for Electronics
/? Thesis Supervisor
<
Accepted by 7Y '
t - Stephen A. Benton
Chairperson

Departmental Committee on Graduate Students
Program in Media Arts and Sciences

MASSACHUOETTI) INSTITUYE

N Ay

JUL 131994

LIBRARIES

A Physically Based Human Figure Model with a
Complex Foot and Low Level Behavior Control

by
Michael Allen McKenna

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, on April 29,1994
in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

Abstract

Advances in computer hardware and software technology allow the simulation of natural
phenomena in increasing levels of complexity. This thesis is concerned with simulating
the articulated movements of humans using the laws of physical motion, and contributes
to the fields of computer animation and biomechanics. A 90 degree of freedom model of a
human figure is developed, and an efficient dynamic simulator is employed to create and
analyze physically based, computer generated motions. The foot of the simulated human
figure has been modeled with a significant amount of kinematic complexity, with 28
degrees of freedom per foot. A joint-level control layer uses springs and dampers to con-
trol postures and movements. A framework for higher level control is implemented,
although specific tasks require tailored control strategies. Several example tasks are simu-
lated and described, including maintaining stable standing postures, rising on the toes, and
reaching with the arm to designated targets. A simulation of the stepping phase of walking
is developed, using passive dynamic effects to generate much of the motion. Together, the
simulator and biomechanical model create a framework which can be used to address
problems in computer animation and biomechanical research, and eventually, in a clinical
setting, to assist doctors in analyzing the problems of specific patients.

Thesis Supervisor: David Zeltzer, Ph.D.
Title: Principal Research Scientist

This work was supported in part by NHK (Japan Broadcasting Company), and equipment
gifts from Hewlett Packard Co. and Apple Computer, Inc.

A Physically Based Human Figure Model with a
Complex Foot and Low Level Behavior Control

by

Michael Allen McKenna

The following people served on the committee for this Thesis:

N f\ o\

Committee Member N~ | s N

Marc H. Raibert
Professor of Electrical Engineering and Computer Science
MIT Artificial Intelligence Laboratory

Committee Member S /A \ <
Joseph Rosen
A{sociate Professor in Plastic and Reconstructive Surgery
Dartmouth Medical School

Dedication Michael A. McKenna

Dedicated with love to my mother, Lynn S. Evans.

Table of Contents Michael A. McKenna

Table of Contents

ADSITACE ..veiireeirieiceeirtt ettt sttt e st e st e e s ae e e s s b e s aa e e s ta e e s bt e s re e s rae e e raaeenneaes 2
Table Of COMLENLS......cccviirriiriieiiiteeiienieeete et eereeesrteesireesbeesbeeesereeesssbsessssnesssssessssasesnnes 5
LiSt Of FIGUIES ..c..evviiiiiiiiiiiiciiiccictinccr ettt 8
LISt Of TADIESecuveiiiinieiiiinieeieereenie ettt ettt s be e st e st e st esseessseessseeessessseasssesssnenssasnes 12
LSt OF SCIIPLS ..evveeveeuereiriereerieieerteteee et ettt sttt eee st et et eses e sbeteseesbesseesesseeseensessesneans 13
1 INEPOAUCHION...c..tiiieieriieniirtteieectee ettt st e e e st e e e s e s se e ar e e ne e s st e saeesaneesanenanees 14
1.1 General Problemcoviiiiiiiiiiieiiieiiiceniitensieesreessiressreessreeessseessnsessssesssssassnns 14

1.2 Specific Problem..........coviiviiiiniininiiniiniiiicc s 15

1.3 APPIOaCh.....ccoiiieiiiiictctctc e 15

1.4 CONIIDULIONS. ... eeeeeuiireieeieie sttt st sttt s sae st sa s b e sabesaeesneesanenes 16

2 Background.........cccooveviiinininiiniiii e 19
2.1 Motion SimUIALONceviiierieiniieiieeii 19
2.2 MOtiON CONLIOL......coiirieererirerieeienieeirreie et ste st e s erbe s be e e e e s saesemaesseeeanes 24
2.3 Human Biomechanical Parameters..........ccccceerveiiiiiiniieiiiieiniiecceecceeeeecennee 29

2.4 Analyses of Human Movement and Gait.........c.ccovcevvieneriiennienieninnicninnienniennnennne 36

2.5 Machine LoCOMOtIONcceriiriiniiiiiiniiiiiiiiiiniesienre st sreesnaesraesane 43
2.6 Computer Animated Simulations of Human Movementccocooveviniinicnnnnns 45
2.7 Previous Work by the Author: Hexapod Locomotion...........cc.ceeeeeeeienniennneennen. 47

3 APPIOACKH....c. it 54
3.1 The Program COTPUS........ccooeereereeniieeieeeciecitirtcstesnts et sraeeare s 54
3.2 Dynamic STMUIALOTccccovvrivirreririieirieinieieinci et eassaee 55
3.3 Biomechanical MOElcccovuirieiirnieninienieeeccrieeesieeec sttt e 56
3.4 Simulations of Human Posture and Movementcccccocveeivvieiicninicncinecnne 59

3.5 Computer Graphics and ANIMAtioncecceverreviirininininiinen s 65

4 The Program COrpUS ..ottt 67
4.1 OVEIVIEW .cureiiiieiieiieiiitestesrteeiteseeetesteesstesatesseesnreeeeasseessmeesmneesassenatesieessnesssnesanns 67

Table of Contents Michael A. McKenna

4.2 PaISET..ccuutiiiiiirieiiciitieite sttt e st e ettt e e e sttae e s rtte e e senete e e s aar e e e e e sabaaeeeeanbeeeeeaarnsaaeeens 68
4.3 DynamicC SIMUIALOLcoovveriiirrieriiiiieicierteeiee et see e s rae e baeebsesaeeeseeenseeens 70
4.4 GIaPRICS ..uveeuvererieieiereiteneet et stt ettt e e e e sbe st esbe s s e san e seeseesaseseesseesseetsensean 71
4.5 More Corpus InfOrmation........c.ccevvereeeenieeienenieniereerte st csessaesee e e eessaesaeens 72
5 Dynamic SIMUIALOTc.cocuiriveeiinieririieereererre et st ere s saessseesteaseeeessesssnessaesssessnseenns 75
5.1 INrOQUCLION.......coeiiereriiieieieceiete sttt ettt sttt sr et ss st esaesaesbesaesanessasanans 75
5.2 Spatial NOtationccccveviiiiinieieriieniinienesientctireste sttt et et ee s essesaeesaesaesns 76
5.3 Single Body DYNamICSccccecererririeneniieneeiesentesreseeseesreessesnessaessesssesnssssses 81
5.4 Articulated Body Forward Dynamicscccceeveevierieenieniienieeneeeiecsee e 84
5.5 Hybrid DynamicCs........coceoevueivreinieiereniecnieinicierreenenreree st er e 88
5.6 First Order DYNamiCS.cocereeieruinierienierieniteiteniee e seesseeseesetesaeessesaeessaesaeessasnne 90
5.7 EXternal FOTCEScc.cocviiruiiriiiniieniiiinieenitessitesste et eesiee s snreessssessssvaeesnneees 93
GIAVILY 1eveereeieerentetisteeeesresesresse st esaesaeessesaeesaesseessesaessseensesssessesssessaessasnseessenans 93
Ground Reaction FOICEScocoviriiniiniiniininieieiiesicecet et 93

Other EXternal FOICESc.ccivviiiiiiiiiieiciiiciecnte et ste e sane e 98

5.8 Actuator Model and Joint FOICES.........coceeuiivieniiniiininieiieiieccicsceeeeeeee e 99
5.9 MOtOr PrOGIAmSoveereereeeiiiieeeieenieesrenee et ese et e e e s ee s e s r e smeeesneees 102
6 Biomechanical MOdElccccoouieiiiiniieiiiiieieeerree ettt 104
6.1 INtLOQUCHION.....verierierertiirertesiesteetesreset e e siee st st esbesatebesttesseesseessesatesaeensaessaesseens 104
6.2 Kinematic Parametersccvvveveerrererireerennenieniienie et sees 105
Digitized SKeleton.........cccoviiiiiiiiiiiiiiiii 105
Anthropometric MEasures.........covvvviviniiniininiininiiicnic s saens 109
Degrees of Freedom.........ccooivvivinininiininiiiiiniin 110
Anatomical IITUStrations.........ccceeiiieriiieiiiiiieinneee e 115

6.3 DynamicC Parametersccceerereeienrieernrenieieniteiecteerecreet e 121
INEITIA . ..eiiee ettt ettt e e st e e s st e e sate e e e s s nbe e e s seaebae s s e abaeeeeesentae 121
Dynamic Joint Parametersc..ceecerirveriniieiiineniniinieicsieesnesecsnesneens 124

6.4 Visual Model.......cccooiiriiiiinienieeieeeere ettt s 126
7 SIMUIALIONS ...veveevieiiriireeereniesteiet ettt sre et saesesesesaesresse st e eesbesbesbnesssssesbassesanens 128
7.1 General SimUIAtIONS........cc.evvieiiieriirierieiereetese ettt erre e reesreesaeesresseesbessnees 128
7.2 Standing POSLUTEc..o.eeveirveirieeeiireeeieeete et 147
7.3 Reaching TaskK......ccoeeeeiriviiiniiiccii s 153
7.4 Toe Raise SIMUIALIONcccveriieeirieiierteiee et r e sar e sas e 157

Table of Contents Michael A. McKenna

7.5 PaSSIVE SIEP cuviiuiiiiiiiiiiiicnieit e st ns 162
Future Work: Extensions and Issues Concerning Walking Simulation........... 173

8 CONCIUSIONS....cviiuiiniiiiiiiiiiiiitet ettt b bttt s e bessesbesanentan 176
8.1 Human Figure Model..........cccovieviininiiiniinienenieiisieeieseese e seee s sresvesane e 176

8.2 Future DIr€CtIONScovevviuiiiiriiiiiiiiniicienestctese ettt et s eaes 177

9 ACKNOWIEAZIMENLS.ottt s e st esaee s ra e s 180
10 Biographical NOLEcccvviriiiiiniiiiiiiiniiiii et 182
11 BiblIOGIaphycooveriieiericiiiiiiiiiiicent ettt s 183
Appendix A Corpus HEIPc.ocuvivivinieiniiiiiiniiiiniiccicstcscsrte e 195
Appendix B Corpus TUtorialc.occcniniiiniininiiiiiiicctcreresre e 207
"B.1 Starting With Corpuscuovvieirenieicereccsncecenct e 207
B.2 Graphical Operations...........ccocevuiiviiiniiiiiiniiiiicieeeee s 208
B.3 Dynamics it COTPUS........ccccvirviininiiiiniiiiiniciiinicntsne e 210
B.4 Language Features.........cccoovininiiiiiiiiiiiiiiiiicnccnc s 216
Appendix C Dynamics VerifiCation...........ceceverirnieniiniininiiniiiiciiiiincenneneciesvsseens 220
C.1 Constant Linear Force: Gravitational Free Fall Test........c.cccccovcininiiinncnninnenne 220
C.2 Conservation of Momentum: Constant Velocity Tests.......c.ccceveceriienienuennnennn 222
C.3 Oscillatory Motion: Linear Spring Testcccocvviviiiviinniinicninnininnicnninene 223
C.4 Damped Oscillation: Linear Spring and Damper Test..........cccevvvinniiinennnnne. 225
C.5 Exponential Spring Test..........cccouvvieiiiiniinniniiiiniiicens 227
C.6 Double Pendulum: Two Link, TWo JOINt AT .occvvveveeiriiiniriiierereieereninnnerreseee 228
C.7 Self Consistency: Multiple Geometric StruCtures..........ccoovevvineviiniininiinneennes 237
Appendix D Body SCIPES ... 241
Appendix E Body TabIes.......ccceviiiiiniiniiniiniiiiiiiiniiiiic st sins s 252
LASE Of T@IIMNS ...uvtevieeeieeiite ettt s a e s e a e san e n s sas s e b sn b e e eab s 264
General NOLAtiONSccoeeierieiiiiiiiiiniiierc sttt ae e 264
L0053 2110 ¢ OO OO PO OPSO TP 264
TEITIIS 1.vveeieteeie ettt et st ettt sae bbbt et e s b e s ab s as e b e s bt e sh s s b e ra s sab e s an s e b b e abeeae s 264
GLOSSATY ..ttt bbb bbb et 266
IndeX Of REFEIENCES ..veeuveeieeeiieieiiirieiiecreser et s 271
13T (=D OO O SO UIRPPPRRR 274

List of Figures Michael A. McKenna

List of Figures

Figure 1: The human figure model. ..o 17
Figure 2: The shape of the simulated foot model during walking, before toe-off of the
SLANCE 18- ueireerieirinriiiiicicrti e s 18
Figure 3: The cardinal planes of the human body..........c.cccovviviiiniiiniiis 30
Figure 4: Joint motion terminology illustrated on the lower limbs.ccccoceiiinnne 31
Figure 5: Body segment lengths as a function of overall body height, H.......................... 33
Figure 6: The human skeleton model created by Stredney. [Stredney].........ccvevererrevennenene. 34
Figure 7: The skeleton of the human foot. [Goldfinger]covevviiriiriienrineieientineicnennn, 35
Figure 8: A mechanical model of the lower leg, using a simple spring and damper actua-
10 P OO OSSP E OO OISO PO P NP 37
Figure 9: A photographic time sequence of a male subject walking by Muybridge. [Muy-
LS5 =) PO OO RORN 37
Figure 10: The kinematic roach ... 48
Figure 11: A wave gait Stepping PAIEIN......ccoovereiririerininieiiseeei e 48
Figure 12: The tripod ait.coceveviviiriiniiiiiiiiiiei e 49
Figure 13: The hexapod, “Cootie,” from the computer animation Cootie Gets Scared. [McK-
T ENNA 1988 uuveeiieirrreeiirrreeiereeennreeesbareseiaaaaaa e eeaaaaeaenataae e bt as e e e iara s e e s bb s e s s e bbb aeeesseann 50
Figure 14: The parametrized dynamic roach. [McKenna 1990-B]cccovvrerreninieeniencnenenes 50
Figure 15: Block diagram of the dynamic hexapod control and simulation system, imple-
mented in the Program COTPUS.coouvivriviiiiiiiniiieieee e 51
Figure 16: Scene from the animation Grinning Evil Death. [McKenna 1990-D]................... 53
Figure 17: The basic model of the humanoid biped figure.cccocoveveeinnncinnncnn 58
Figure 18: The basic biped figure falls with and without joint imits...........cccceonnnicnnes 60
Figure 19: A balanced, stable posture, using the basic biped model.c.ooveuernicnines 63

Figure 20: Passive stepping motion, using the basic biped model, compared to a Muybridge

SEQUETICE. ...cueevrvereriaisrarseitesstsaese s e s s b e b e b b s s st st sE bbb 64

List of Figures Michael A. McKenna

Figure 21: Block diagram of the program COrpus..........couueviviieriiiinriniiieiniinicnnecnieeenne. 68
Figure 22: The output image generated by corpus, using Script 1.ccocvvvivicivininncnes 73
Figure 23: The velocity of a rigid body. From [Featherstone 1987]........cccccceviirercnunnecnnennne 78
Figure 24: First order simulation of a 3 link pendulum (upper) compared to a second order
SIMUIAION (DEIOW). 1eeueerieiiieeieeeitecitecrre ettt sete et s s e s tr e e saee s ssaeesesseaessaeasssssneasnnes 91
Figure 25: Force response of the friction functions. ..., 96
Figure 26: Force response of the exponential SPring...........ccocoevveviviniiencncninnicinccnnnne, 100
Figure 27: Stredney model of the digitized skeleton overlaid with parametrized model.
Left: “skeletal,” articulated layer. Right: the initial “skin” layer..........ccccccecuerurnnenn. 107
Figure 28: The right foot of the Stredney model overlaid with the parametrized corpus
1101010 L) FO PO O OSSO U 108
Figure 29: The degrees of freedom in the human figure model, above the foot.............. 111
Figure 30: The degrees of freedom in the foot of the human figure model..................... 112
Figure 31: The Tc (talocrural or talar) and Tcn (talocalcaneonavicular or subtalar) joints in
the ANKIE. [PrOCIEI] cvvvreeririeierrereeerrreeerseeeseiseeesessseessesseesssensessssssssessssssaessssnseesssssnnnees 113
Figure 32: A depiction of the action of the subtalar joint and navicular and cuboid joints in
the NUMAN fOOL.coveriiiieeirercec s 114

Figure 33: The final humanoid model, shown with a Goldfinger anatomical diagram, from
8 PEISPECHIVE VIEW. ..eviviimiiiniiitiniiititiis ettt 116
Figure 34: Human figure model, “skeleton” layer, overlaid with anatomical diagram, from
1117500 4 () 11 ST OO PO PPUUPP OO 117
Figure 35: (Left) A side view of the human figure model “skeletal” layer, overlaid with an
illustration of the human SKeleton.c.ccovveereeriniriiiniinininni e 118
Figure 36: (Right) The human figure model with its “skeletal” and “skin” layers superim-

Figure 37: The human figure model “skin” layer with overlaid anatomical diagrams....119
Figure 38: The “foot-box” and the parametrized skeletal model. Anatomical diagrams from

[GOIAMINGET]. cuvevrerveereeneeentesertereetess st e st s s ab e b s st st s b e bs e s et s e b e st e e b e es b e bt e beeseesseenne 120
Figure 39: Skeleton of the right foot: McKenna model compared to Goldfinger illustra-

1570) 1 T OO OO OT ORISR 121
Figure 40: The line formed by the distal heads of the second and fifth metatarsal bones as

measured from humans compared to the human figure model..............coooeeeiiin 122
Figure 41: The centers of mass of the -imbs. ... 125

Figure 42: Computation time for simulation vs. the number of joints included in the artic-

List of Figures Michael A. McKenna

UAtEd FIGUIE. c..eevveriieicciiiceicec ettt e 136
Figure 43: An animation sequence of the human figure “drooping” passively under the in-

flUENCE Of LAVILY. cvveeeeiteriieierieieerteee ettt sttt sae b s 139
Figure 44: The foot shape as the body falls forward.ccooovininns 142
Figure 45: An “exercise” animation sequence using the human figure model................ 144
Figure 46: A motion sequence of “wiggling” the toes of the left foot, driven by motor pro-

e €21 11O OO OO OT OO OROROPEROR 146
Figure 47: Block diagram of dynamic postural control.cccccouveiniininiiiieninnne 147
Figure 48: An animation sequence of the human figure rising to a standing posture from a

KNEE DENM. ..ottt bbb 151
Figure 49: The human figure, in CONtrapoSition.cceceivereveiineninnninieeseesneneenenees 153
Figure 50: The setup for the reaching task...........ccovevniiiiiiinniiii 155
Figure 51: The reaching task simulation, in the performance phase.ccccoceevrinnnnsn. 156
Figure 52: Simulation of rising on the t0€S...........ccoeueiiiiiiiiiiiiiiiees 159
Figure 53: A close-up view of the foot during the toe raise simulation.cccevenee. 160
Figure 54: Rising on the toes, with an everted fOOL.ccooviiiiiiiiniiiniii 161
Figure 55: The model used in “ballistic walking” analyses by Mochon and McMahon. 163
Figure 56: The passive step simulation, using the complex foot model............ccc.ccc.c.c.. 165

Figure 57: A close-up of the complex foot model during the passive step simulation....166
Figure 58: A close-up of the front of the complex feet of the human figure model during

the passive step SIMUIALION. ... s 167
Figure 59: Plot of the joint angles as a function of time calculated by Mochon and McMa-
hon compared to the joint angles from the passive step simulation.c.coeueneven. 168
Figure 60: Joint angles from Mochon and McMahon’s simulations with knee lock, com-
pared to the passive Step EXPEIIMENL.ccuceeririiririeieierieeniestet et 169
Figure 61: Joint angles from the passive step simulations, with the rigid foot (above) and
the complex fOot (DEIOW).ccuiviuiiiiiiiiiiiiiiii e 170
Figure 62: Plots of the ground reaction forces measured from humans compared to those
- computed in the passive Step SIMULAION.ceeirireirireneeeens 172
Figure 63: A preliminary hand model is added to the complex human figure model.179
Figure 64: Results from the constant linear and angular velocity test..........cocccvueuennne. 224
Figure 65: Linear spring 0sCillations.cooviinieieinnieiiniiinicis 226
Figure 66: Damped oscillation simulation reSults.ocoveeeienineninniiiiiiis 227
Figure 67: Exponential spring 0SCIllation.ccccciiiiiinneieniniicicincccnciiis 228

10

List of Figures Michael A. McKenna

Figure 68: A two-link, two-DOF arm.cccccocviviiiinniiniiiiiiinncn 229
Figure 69: Free body diagram for Iink i..........ccccoceviininiiiniiininniiiine, 229

11

List of Tables Michael A. McKenna

List of Tables

Table 1: Link parameters of the basic human figure model. Length values for the thigh,

shank and foot were rounded from measurements by [Dempster].cccceevveeriernnecnane 58
Table 2: Segment (link) lengths, from joint t0 JOINL.ccevivviierineieiniiniieinieieienas 109
Table 3: Segment densities and MASSEScccvviivririiiriiriniiiereeee e 123
Table 4: Centers of mass of different body segments...........c.cocevveviniinieninniininninninn, 124
Table 5: Computation times for basic sImulations.ccoeveviiiiicneniiinneeeen 132

Table 6: Results from Simulation 9. The computation time for increasing number of

Table 7: Results from Simulation 12. The computation time for increasing number of

joints, while drooping passively.cccooimierieiiiinini e 140
Table 8: Free fall test reSults. ...c.eeveviirieiiinieiiiiiiicn e 222
Table 9: Kinematic link and joint parameters of the human figure model. 253
Table 10: Mass parameters of the body parts in the human figure model....................... 256

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to

@ StANAING POSLUTE. ...veviiiririreritiiit et 260

12

List of Scripts Michael A. McKenna

List of Scripts

Script 1: An eXxample COTPUS SCIIPL.......oviviiiiiiiiiniiiiieiiicee e 73
Script 2: An example interactive session With Corpus. ..., 74
Script 3: A corpus script to pose the human figure to the anatomical position................ 131
Script 4: A script to generate motions of the limbs in zero gravity.cccceeveverreennene. 143
Script 5: A corpus script which defines motor programs to “wiggle” the toes. 145
Script 6: Script to control the human figure to rise on the toes.coevevniiiniieninnennen, 158
Script 7: A corpus script to render an image of a graphical object..........cccocvovnvriininnanen. 208
Script 8: A corpus script to create a dynamic object ... 210
Script 9: A script to create a dynamic articulated figure in corpus.cooveiininnenns 212
Script 10: A corpus script to simulate a body in free fall. ... 221
Script 11: A corpus script to simulate a body moving with a constant velocity. 223
Script 12: A corpus script to simulate a linear Spring SySt€m..........cocoveinnienininencnnnnene. 225
Script 13: A corpus script to simulate a linear spring and damper system..................... 227
Script 14: A corpus script to simulate an exponential Spring SyStem.cocovrurervrennnes 228
Script 15: A corpus script to simulate a double pendulum. ..., 230

Script 16: A Mathematica™ script to define the equations of motion for a two link pendu-
100 oo TSSO OO 232
Script 17: A corpus script which creates 4 different articulated bodies which have identical
structures, but different links specified as the root link.cccoevvviinniininninnnnn. 237
Script 18: Corpus script to build the “skeleton” layer of the human figure model, with the
biomechanical joint PAraAmMELETS.ccevviririiriiriiririeienieteese ettt 241

13

1 Introduction Michael A. McKenna

1 Introduction

1.1 General Problem

The synthesis of “natural” and “realistic” motions of human figures has long been a goal
of animation. The design and control of humanoid robots to perform typical human behav-
iors has also been a goal of our society — the idea of a technologically-created artificial
pefson has been with us for centuries. [Heppenheimer] At the root of these problems is the
study of human motions and how they are produced, which has a long history of scholarly
pursuit. In recent years, increases in computer performance have allowed the creation of
representations of the real world, with which one can interact in real-time. These virtual
environments (VEs) allow us to unite the pursuits of animation, robotics, and human
motor performance, by using computational models of physical phenomena and theories

of motion control.

In certain VE systems the representation of natural humanoid movements, generated by
computer, is of prime importance. For example, consider systems designed for investigat-
ing human factors and performance, for training among multiple persons, and for assisting
in clinical (medical) environments. In addition, it is not only the motions or kinematics of
the humans which are of importance, but also the kinetics or dynamics which should be
accounted for. Indeed, simulating the “underlying” dynamics of the system may lead to a

more natural representation of the motions.

The simulation of complex, physically based behaviors is still beyond real-time computa-
tion and interaction, except with limited examples. Although real-time VEs cannot cur-
rently support complex simulations as they are computed, VE frameworks are very well
suited to building a dynamic simulation environment. The general purpose, flexible, 3D
environment and tools provided by VEs facilitate the development and visualization of

dynamics.

14

1 Introduction Michael A. McKenna

1.2 Specific Problem
This thesis is concerned with designing and implementing a computer software system
and biomechanical model for simulating an articulated humanoid figure, using dynamic,

physically based simulation techniques, in a computer animation framework.

The human figure model developed here is fairly complex in its kinematic structure — 90
degrees of freedom are modeled, with 28 degrees of freedom in each foot. In addition,
force generating elements, including dampers, joint limits, and actuators, are present at
each joint. The dynamic simulator system, combined with the biomechanical model of the

human figure, allows us to generate and analyze complex motions.

Increasing the complexity of the kinematics also increases the problems of control, simu-
lation, and analysis, and can obscure mechanical relationships. However, increased com-
plexity also allows for the examination of functions which do not exist without suitable
underlying structural representations. With a complex model subtle effects can be revealed
and studied. For the purposes of animation, the problem is obvious and straightforward —
in order to show a complex or subtle movement, the foundation for such an action must be
present. Although animation has a tradition of “faking it” by presenting images and move-
ments that seem more complex than they really are, without a realistic underlying archi-
tecture, animation systems break down as their artificially imposed limits are exceeded. In
addition, clinical problems demand that details of structure be examined because they can

lead to significant gross effects.

1.3 Approach

A biomechanical model of the articulated human body is developed, based on human
kinematic and dynamic parameters. A number of sources of information are employed to
design the model: literature regarding cadaver and clinical studies, which measure the
properties of limbs and joints; two dimensional anatomical diagrams; and a three dimen-

sional digitized skeleton.

An efficient dynamic simulation computer program, named corpus, is developed to create
and analyze motions of the biomechanical human figure model. Corpus is a general pur-
pose simulation system for articulated, rigid bodies, with a flexible software architecture
that allows for the simulation of a variety of jointed figures and mechanisms. Forward and

15

1 Introduction Michael A. McKenna

inverse dynamics can be simulated, as well as a hybrid mix of the two, based on the Artic-
ulated Body Method, developed by Featherstone. [Featherstone 1987]

The biomechanical model incorporates joint actuators, based on non-linear springs, which
form a low level control layer and supply the forces needed for postural support and for
motion generation. Motions are controlled by manipulating the spring parameters (prima-
rily the spring rest angles) over time. Passive joint forces are supplied by dampers and
elastic joint limits.

In order to simulate the figure, forward dynamics is used to compute the motions of the
parametrized human figure in response to the internal and external forces. Motions and
postures of the human figure can be “calibrated” using inverse dynamics to compute the
required joint forces, and inverse control to compute the required actuator parameters. For
example, standing, balanced postures and their responses to perturbation forces can be

simulated after using such a calibration process.

Through a variety of simulations, the feasibility and utility of the system is demonstrated.
Examples include maintaining a balanced, standing posture, reaching with the arm, and
rising on the toes. The stepping phase of walking is also simulated, using passive dynamic
effects to generate the limb motions and the shape changes of the articulated feet.

1.4 Contributions

This thesis research demonstrates the feasibility of using dynamic simulation to compute
the motions of a complex human figure model for animation and other applications. The
difficulty in computation arises not only because there are many degrees of freedom in the
model, but also because there are very small links in the figure’s feet, placed under large
stress forces. This creates a very “stiff” numerical system, which must be sampled with
very small time steps in order to accurately compute its motion. The rate of simulation
ranges from near real-time to one half hour per frame (where a frame represents 1/30 sec-
ond of real time), depending on the number of degrees of freedom included in the model,

and the type of motion being simulated.

This research contributes a new, complex biomechanical model of the human, with 90
degrees of freedom. The foot of the simulated human figure has been modeled with a sig-

16

1 Introduction Michael A. McKenna

Figure 1: The human figure model.

nificant amount of kinematic complexity, with 28 degrees of freedom per foot, represent-
ing the most complex kinematic model known to the author. The human figure model is

shown in Figure 1.

A method is presented for controlling postures and movements, based on spring actuators
and dampers. The actuators can be adjusted manually by the user, in order to examine
“what would happen” under different conditions, or they can be automatically calibrated

to achieve specified postures. Motion is controlled by using motor programs, which vary

17

1 Introduction Michael A. McKenna

Figure 2: The shape of the simulated foot model during walking, before toe-off of the stance leg.

the actuator parameters over time. The control system architecture borrows from robotic

control techniques, tailored to use biomechanical elements.

An efficient, general purpose dynamic simulator has been implemented. A recursive for-
mulation is used, which has a computation time linear with the number of joints, allowing
complexity to be explored. Together, the dynamic simulator and biomechanical model,
with its low level actuator control, form a powerful system for the generation and analysis
of human motions. Through a number of example simulations, the utility of the system is

verified. Figure 2 shows a still frame from one such simulation.

18

2 Background Michael A. McKenna

2 Background

This chapter will survey background material and related work pertaining to the field of
human motion simulation, and will cover the general topics of:

Motion Simulation

Motion Control

Human Biomechanical Parameters

Analyses of Human Movement and Gait

Machine Locomotion

Computer Animated Simulations of Human Movement

Previous Work by the Author: Hexapod Locomotion

The reader is directed to the Glossary near the close of this document for clarification of

unfamiliar terminology.

2.1 Motion Simulation

This thesis is concerned with the motion of articulated figures, comprised of rigid bodies

or links, connected by joints. A joint allows the two bodies which it connects to move rel-
ative to each other in some manner, such as by translating or rotating. A joint which allows
motion in a single direction only, e.g. in the positive and negative X direction, provides a

single degree of freedom (DOF). Joints can allow for motions in multiple directions, pro-

viding multiple DOFs. A single body, or an articulated figure, free to move in space has 6
intrinsic DOFs — three translating DOFs and three rotary DOFs.

Within an articulated figure, proximal bodies are ones which lie closer to the center of the
figure, compared to distal bodies, which lie further from the center. For example, the fin-
gers are more distal than the forearm, and the upper and lower ends of the forearm are

19

2 Background Michael A. McKenna

labelled proximal and distal, respectively. An end effector is a body which lies at the end

(“peripheral terminus”) of a kinematic chain.

A rigid body has a center of mass (COM), which locates the “average” point of matter in
the body, towards which any external body is attracted by the force of gravity. A linear
force applied at any location other than the COM of a body creates a rotational accelera-
tion in the body (in the absence of a counteracting force or torque). Just as a single body
has a COM, an articulated figure also has an overall COM, which plays an important role
in the dynamics of the figure. Winter points out that the terms “center of mass” and “center
of gravity” (COG) are often used interchangeably, but that COM is the proper term to use
when referring to three dimensions. [Winter 1990] The center of gravity refers to the center
of mass in the vertical, gravity defined direction only.

The motion of articulated figures can be described using kinematics or dynamics. A Kine-
matic description of motion uses only geometry to analyze or control a figure’s move-
ments. A dynamic description also models the forces which lead to the figure’s motions. A
dynamic model essentially includes a kinematic model, as well.

There are two major types of kinematic computations- forward (or direct) and inverse (or
reverse). Forward kinematics describes motion in terms of joint angles and positions.
(Note: the term position will be used in a general sense, to describe either rotational orien-
tations or linear displacements. Similarly, the term force will be used to generally describe
both rotary torques and linear forces. Later in this document, we will discuss spatial nota-
tion, which unifies the rotational and translational aspects of motion.) Using forward kine-
matics, joint positions are specified, and the position of an end effector is then determined
by the positions of the joints which precede it. Inverse kinematics defines motion in terms
of Cartesian coordinates and other kinematic goals. Thus, the position and/or orientation
of an end-effector is specified in space, and the joint positions of the articulated chain are

then computed.

There are also two major types of dynamic simulation: forward (or direct) and inverse (or
reverse). Forward dynamics refers to computing the motion of a figure from applied
forces. Inverse dynamics refers to computing the forces which must be applied to a figure,
to achieve a specified motion. Consider Newton’s second law of motion:

f=ma Eq.1

20

2 'Background Michael A. McKenna

which reads that force equals mass times acceleration. Forward dynamics solves for

acceleration from the specified mass and force, as in:
a= f Eq.2

Inverse dynamics solves for the force, from the known mass and acceleration, as in Eq. 1.
Hybrid methods for dynamics allow a mixture of forward and inverse techniques, so that,
within an articulated figure, the force can be specified for some joints, and the motion
specified for others, and the system then solves for the unknown values. Physically based
simulation or physically based modeling is the use of dynamics, or the laws of physics, to
generate and analyze a motion process.

Forward dynamics is more analogous to the real world, in which forces result in the accel-
erations of bodies. Inverse dynamics allows us to analyze how motions in the real world
are generated, by computing the forces needed to create the observed accelerations.
To further explain forward dynamics, some assumptions and constraints used for forward
simulation are paraphrased from [Winter 1990]:
« There should be no kinematic constraints whatsoever — bodies are free to fall, joints
are free to move under the influence of forces, etc.
* The initial conditions of the simulation include the positions and velocities of all
bodies.
» The only inputs are externally applied forces and internally generated forces and
moments.
» The model must incorporate all important degrees of freedom, including joint limits,
which are modeled as passive internal forces and moments.
* The external reaction forces which occur between the bodies and the ground must be
calculated.
The forward dynamic simulations performed in this research obey these assumptions.
Other simulations use inverse dynamics, and some use a hybrid mix, to kinematically con-

trol some DOFs, while forward simulating the remainder.

For a good introduction to dynamics, Brady, et al., develops the kinematic and dynamic
equations for a two-link robotic arm. [Brady] In Appendix C Dynamics Verification in
this document, the two-link model is briefly presented, and is developed to work with cor-

pus, the dynamic simulation program employed for this thesis.

21

2 Background Michael A. McKenna

The algorithms which incorporate the equations of motion into a dynamic simulator can
be formulated in a number of ways. One of the most direct ways to develop a dynamics
algorithm is to use a matrix solution approach. The equations of motion for each body in
an articulated figure or dynamic system are established, taking into consideration the con-
straint forces need to maintain joint relationships between bodies (and other possible con-
straints). A large array is then created from the undetermined variables (such as
accelerations, for forward dynamics). A matrix inversion is required as part of the solu-
tion, which generates a fairly expensive computational cost: O(n’) where n is the number
of joints or other constraints. Such an approach is well developed in an advanced dynam-
ics system by Isaacs and Cohen, which allows for mixed forward and inverse dynamics,
and forward and inverse kinematics, but at a high computational expense. [Isaacs 1987,
Isaacs 1988]

In many cases, it is possible to take advantage of the constraint relationships, in particular
the joint constraints, to simplify the computation. By carefully examining the equations of
motion, one can discover recursive relationships which relate the motions between the
parent and child links. The solution for the bodies’ motions do not have to be computed
simultaneously, but rather, it is computed a piece a time, using local relationships
(although each body will correctly influence every other body). Recursive solutions typi-
cally have a order of complexity, O(n), that is linear with the number of joints, n, in the
articulated figure. The efficiency provided by the recursive formulations is critical when

complex systems with many degrees of freedom are simulated.

Armstrong developed a recursive algorithm for the forward dynamics of articulated fig-
ures, originally developed for simulation of the US space shuttle’s robotic arm, the Shuttle
Remote Manipulator System. [Armstrong 1979] The algorithm’s computational expense is
linear with the number of joints: O(n). All joints in the figures are required to be 3 DOF,
although an algorithm is outlined to remove this restriction, but with a computational cost
penalty. Armstrong and Green employed the system to investigate the use of dynamics for
animation, [Armstrong 1985] including the simulation of a human figure (discussed later).

[Armstrong 1987]

Featherstone describes an efficient technique, which he terms the Articulated Body
Method (ABM), for the forward and inverse dynamics simulation of branching, articulated

figures. [Featherstone 1983; Featherstone 1987] The method is linear with the number of joints,

22

2 Background Michael A. McKenna

O(n), for forward and inverse computations. In a comparison of different algorithm com-
plexities, Featherstone claims that his method is the most efficient when the number of
joints exceeds nine. Featherstone introduces “spatial notation,” which is used to combine
the translational and rotational aspects of motion into unified 6 dimensional quantities.
This simplifies the complexity of the equations of motion, and can allow for more intuitive
manipulation of motion and force terms. Featherstone’s ABM is the simulation method

used in this research, and it forms the mathematical foundation for the dynamic simulator.

Another efficient simulation method for forward dynamics is presented by Lathrop, using
the spatial notation introduced by Featherstone. [Lathrop] Lathrop’s algorithm is also linear
with the number of joints, but it allows for motion constraints at the end-effectors, and for
the inclusion of kinematic loops in the articulate figure’s structure, although at a moderate
computational expense (no worse than O(n) + O(P), where n is the number of joints, and /
is the number of internal loops). Featherstone’s algorithms can be extended to handle
loops, but at a significant reduction in efficiency. [Featherstone 1987] Lathrop’s algorithm
was used to build a dynamic simulation system, in a computer graphics framework by
Schrioder. [Schroder]

An efficient recursive solution to the inverse dynamics problem, using a Lagrangian for-
mulation, is presented by Hollerbach. The algorithm is linear with the number of joints,
O(n), whereas previous Lagrangian dynamics were of O(n?). [Hollerbach] Through an anal-
ysis of the number of required multiplication and addition steps, Hollerbach shows that his
method is comparable in complexity, although still somewhat more expensive, than recur-

sive newton-euler algorithms for inverse dynamics.

We will conclude this sub-section with a discussion of some of the limits in the rigid-body,
articulated figure simulation systems that we have reviewed thus far. Most articulated fig-
ure dynamic simulators, including the system employed in this thesis, treat the links and
joints as idealized, non-flexible entities. In real mechanisms, joints cannot be created per-
fectly, and usually the link can move small amounts in directions which would not be per-
mitted by an ideal joint. In addition, the link and joint structures can flex by some amount,
determined by their material properties, which may or may not have an important influ-
ence over their overall behavior. In a similar manner, vertebrates have flexible skeletons,
which can play a significant role in the energetics of movements such as galloping. [Alex-

ander 1985] Biological joint structures are quite complex, being formed by the bone surface

23

2 Background Michael A. McKenna

geometry, connective cartilage and ligaments, and the surrounding tissues. These joints
generally allow for very complex motions, in many degrees of freedom, even if the overall
motion is almost entirely limited to one degree of freedom. Dynamic simulators can be
designed to model the flexible properties of joints and linkages, but such systems are com-
plex and computationally expensive. [Pfeiffer; Yang] Nonetheless, taken in the larger view,
these effects ultimately should be present in a complete human model, so that effects such
as energy storage through bone bending, and critical stresses in bones can be examined.

We have not reviewed the dynamics of highly flexible and plastic objects, as we concern
ourselves in this phase of the research with rigid objects only, to simplify the simulation
problem. Computer animated simulation of deformable objects has been demonstrated
with significant success by a number of researchers. These simulation systems employ the
physical laws of motion for continuous, deformable bodies, which have various mechani-
cal properties. The resulting dynamic differential equations are numerically solved to gen-
erate and analyze motion. [Terzopoulos] With respect to this research, simulations of human
tissues are of particular interest. Pieper developed a model of human skin tissue, with an
interactive graphical interface to plan and simulate plastic and reconstructive surgery
operations. [Pieper 1992] Chen has demonstrated a deformable model of human skeletal
muscle, with active and passive internal forces. [Chen] These shape models are all highly
related to the biomechanical and functional models of human organ systems. Future work
would see the unification of these and other functional models and simulation techniques,
which would mutually interact to create a highly complex human body model. The prob-
lem is a difficult one, but the rewards will be similarly considerable. These issues will be

discussed further in the Future Work sub-section in Conclusions (8).

2.2 Motion Control

The control of motion is a complex problem. In the real world, and in dynamic simula-
tions, motions and postures must be controlled through the application of forces and inter-
actions with the environments. The physics involved in the system can complicate the
problem,; links have momentum and inertia, there are powerful interaction forces between

the limbs, and disturbances can impinge from a variety of sources.

In biological systems, motions are the result of complex interactions between the central

nervous system, the skeletal system, and the neuromuscular system, as well as the physics

24

2 Background Michael A. McKenna

of motion and the environment’s properties. [McMahon] The ways in which organisms con-
trol motion is highly related to their biomechanical properties, which are discussed in the
following sub-section. The roles of muscle properties, reflexes and other peripheral feed-
back, central motor patters, learning and adaptation mechanisms, and higher order plan-
ning and coordination are all critical to real world motor tasks. These systems are not fully
understood, especially taken in their entirety. High level learning and behavior selection
remains an open question, with active research to develop hypotheses for biological sys-
tems, [Minsky] and computer algorithms. [Maes; Zeltzer 1991]

Bizzi and his colleagues describe an equilibrium position hypothesis, based on experimen-
tal evidence, which forms a theoretical foundation for posture and movement control.
[Bizzi 1982; Bizzi 1984] In many ways muscle acts mechanically like a spring. Muscle stiff-
ness is a function of its activation level, a signal from the central nervous system (CNS).
The muscle exhibits a length/force relationship like a spring. Given a level of muscle acti-
vation in muscle agonist-antagonist pairs, there is a certain limb posture at which the mus-
cle forces balance out to zero. This is an equilibrium point for the limb, at which it will
remain at rest. Different limb postures form different equilibrium positions, each with its
corresponding set of muscle activation levels. To move from one posture to another the
CNS changes the muscle activations to the appropriate levels for the new equilibrium
position. Motion to the equilibrium position is then generated by the mechanical proper-
ties of the innervated muscle. Their experimental evidence, based on studies of monkey
arm movements, indicate that the CNS does not instantly switch the neural signals to spec-
ify the target equilibrium position when motion is initiated, but rather that a trajectory of
equilibrium positions is specified over time by the CNS. The details of such a trajectory
formulation remains an open issue. Features of the equilibrium position hypothesis are

employed in this thesis for motion and posture control.

The control of robotic motion is, not surprisingly, quite rooted in its engineering founda-
tions. Brady, et al., present the general principals of robotic motion. [Brady] The kinematics
and dynamics of a given robotic system, including its control system, are formulated.
Inverse dynamics can be used to compute the required forces for a specified kinematic
goal. The computed control can be applied using open loop control, in which the control
signals are completely pre-computed and are applied over time to generate the specified
motion. Any inaccuracies in the computation or modeling of the robot, or any disturbances

25

2 Background Michael A. McKenna

will cause the robot to perform the motion incorrectly to some degree. Using feedback
control, the performance of the robot is measured during the motion, and deviations from
the intended path are used by the control system, in real-time, to attempt to compensate.
The feedback can be mapped in a linear fashion, e.g. proportional to the error, yielding lin-
ear control. Non-linear feedback mappings can also be employed, yielding non-linear
control. A complete model of a robot system includes not only the dynamics and kinemat-
ics of the device, but also its control and actuation systems. Model based control takes into

consideration the entire system, or plant. [An]

The planning of trajectories for robot limbs to follow can be approached in several differ-
ent ways. A joint space controller plans a trajectory in terms of the joints angles of the sys-
tem. A trajectory can also be planned in Cartesian space, for example, specifying a path
through 3D space for the end effector of a robot to follow. Inverse kinematics computes
the joint angles associated with that Cartesian trajectory. Compliant motion is used when
part of a robot is in continuous contact with another surface. Rather than controlling posi-
tion in such a situation, it may be more appropriate to control force at the robot manipula-
tor. [Brady] It is also possible to develop hybrid control systems which control

combinations of force and position, or force and acceleration. [An]

The control of motion in computer animation systems began with kinematic techniques.
Using keyframe animation, an animator creates different postures of an articulated figure,
which are stored as “keyframes.” To create motion, the computer interpolates the pose of
the figure from one key frame to another, over time. [Sturman] Different interpolation tech-
niques can be used to make the motions appear more smooth, and to impart certain quali-
ties to the motion. [Kochanek; Steketee] Talented animation artists can make much of this
technique, creating realistic motions, and characters that seems “full of life,” often incor-
porating traditional animation techniques into their work. [Lasseter] However, creating
quality animation usually requires many keyframes, and it remains a time-consuming pro-

cess, restricted to those with the talent.

Kinematic control can be provided through either forward or inverse kinematics, or a
hybrid mix. Using forward kinematics, the joints angles of the figure must be specified by
the animator. Inverse kinematics allows the animator to specify the positions and motion
trajectories of the end effectors in Cartesian space, a very difficult task using forward kine-
matics. [Girard 1987]

26

2 Background Michael A. McKenna

Motions for articulated figures can also be input by performance. “Scripting by enact-
ment” is described by Ginsberg and Maxwell, in which a human performer, wearing three
dimensional trackers, acts out movements which are digitized by computer. The recorded
movements can be “replayed” in an articulated figure, which they term a “graphical mari-
onette.” [Ginsberg] This technique is attractive because complex, realistic movements can
easily be obtained. It is currently used with mechanical “puppets” to produce character
animation. [Walters] Combining such input with real-time graphics output provides power-
ful feedback for the puppeteers, and allows for real-time performance to audiences.

Animation by enactment can also be used to generate facial animation. Williams presents
a system for animating parametrized three dimensional faces driven by video input of
human actors’ faces, which have tracking spots affixed to the skin. [Williams 1990] Recent
work by Pentand, et al., uses video-based input of human actors, which do not require any
spécial tracking markers. The video input is analyzed, and the actors facial movements
trigger simulated muscles in the facial model to generate expressions. [Essa] The overall
body motion and approximate limb motions of performers can also be also be tracked in

real-time using video acquisition and image analysis. [Darrell]

Motions of articulated figures can also be specified using different forms of motion nota-
tion, such as methods used to “transcribe” the major features of dance compositions.
Singh, et al., describe an interactive graphical system used to edit Benesh Movement nota-
tion, a method for describing human body postures and movements on a 2D “score,” anal-
ogous to a musical score. [Singh] The system was used primarily as a tool to assist with the
task of transcribing the score, but did not allow for animation between the different pos-
tures. Keyframe techniques can be used to generate motions from the score data, however.
Such animation is problematic because there is a great deal of ambiguity as to how exactly
the movements are performed. Especially in the case of dance, in which the motions are
highly dynamic and graceful, an underlying model of realistic motion generation is criti-

cal.

Instead of using animator or actor input (guiding control), a programming approach can be
used to control animated movements. [Zeltzer 1990] Reynolds describes a computer anima-
tion system which is based on an animation/graphics programming language. [Reynolds

1982] Using an object-oriented approach, independent control structures, called actors, per-

form graphical operations on objects over time to generate animation. Programming meth-

27

2 Background Michael A. McKenna

ods allow for adaptive animation, in which motion behavior is modified in response to
input, environmental, or internal changes. Animations of bird flocking and fish schooling
behavior have been created by several computer graphics researchers. [Reynolds 1987;
Amkraut] The group behavior of the animals is determined by the aggregate behavior of the

individual animals.

Using a guiding approach, motions are defined explicitly. Using programming control,
animation is described procedurally. Using a task level approach, behavior is implicitly
defined, in terms of events, relationships and goals. [Zeltzer 1990]. Task level systems are
created by appropriately combining guiding and programming control at high levels of
abstraction. Zeltzer’s work with a goal-directed, walking human skeleton is discussed

below in the “Computer Animated Simulations of Human Movement” sub-section.

Badler and his colleagues have worked for a number of years on high-level control of
human figures, using inverse kinematics and other techniques. [Badler 1985; Badler 1987; Phil-
lips; Lee] By using multiple kinematic constraints, or goals, the posing of human figures
can be simplified, while giving more natural appearing results. Complex goals can be
specified, including a “stability” constraint which keeps the figure’s center of mass within
the support region formed by the contact between the figure’s feet and the ground. [Phillips]
They have worked with “strength-guided motion” as well, using a kinematic model with
some dynamic elements to simulate a human executing a lifting task. [Lee] The motion is
based in part on an analysis of the forces involved and a “comfort” and “strength” model

of _the human.

There has been a more recent move in computer animation to incorporate a dynamic basis
for movements, using physics as a means of generating the motion. The use of dynamic
simulation can be considered a form of motion control, even if there are no controlling
forces or constraints. The “passive” motions generated by the physics alone can be very
complex, and, in general, cannot be duplicated by kinematic techniques alone. Dynamic
motor control can be applied atop of physically based simulation to control the behavior of
animated dynamic objects and figures. The previously discussed issues remain important
topics for physically based animation: kinematics remains intrinsic to the motion, and is
inseparable from the dynamics; guiding and programming control are both applicable; and
task level control can be constructed, so that the behavior of a simulated figure is driven

by high level goals.

28

2 Background Michael A. McKenna

A number of researcher have investigated physically based animation as a means of
motion production. Barzel and Barr present a system which kinematic constraints are used
with dynamic simulation to construct and simulate articulated structures. [Barzel] The
structures “self-assemble” as constraint forces pull the bodies together, over time, to form
the joints. Control is provided through use of the kinematic constraints, while the dynam-

ics responds passively.

Isaacs and Cohen developed a powerful dynamic simulation system, named DYNAMO
(for DYN Amic MOtion), for animation. [Isaacs 1987; Isaacs 1988] The system allows for a
very general-purpose mix of kinematic constraints in a dynamic framework. Motion can
be controlled by force functions and kinematic specifications. Inverse dynamics can be
applied as well to determine the forces required to accomplish a specified kinematic

motion.

Witkin and Kass describe spacetime constraints as a means of controlling and producing
physically based animations. [Witkin 1988] Spacetime constraints are a form of optimal con-
trol, in which the goals of the motion are specified, and the system solves for the time-
varying actuator forces which will accomplish the goal, using the minimum energy, or
some other measurable parameter to be optimized. The solution of such a system is typi-
cally very complex, because the solution is obtained for the entire time sequence of the
motion. Other optimization control strategies have been used for animation as well. [Brot-

man]

Systems presented by Wilhelms [Wilhelms 1985; Wilhelms 1987] and Armstrong and Green
[Armstrong 1985; Armstrong 1987] use similar means of motion control for the dynamic simu-
lation of articulated figures. Using forward dynamics, forces are applied at joints to gener-
ate movements. A variety of joint forces can be employed, including dampers, springs,
joint limit springs, and direct specification of forces. Similar methods are used in this

research to apply dynamic motion control, using forward dynamics.

2.3 Human Biomechanical Parameters
This sub-section begins with some basic terminology used to refer to human anatomy.
Three orthogonal planes are used to describe the dimensions of the human body: frontal,

sagittal, and horizontal (refer to Figure 3) .

29

2 Background

Michael A. McKenna

SUPERIOR T

PO =5 FRONTAL

<[%hi0n |

!) : SAG'TTAL
~ A
! I
| 1 ANT
: : ERIOR
I 1
] I
| Al X
N 1]
1
HOR1ZONTAL Y

INFERIOR l

Figure 3: The cardinal planes of the human body.

Adapted slightly from Williams and Lissner. [Will-
iams 1977]

Lateral refers to structures which are situated farther
from the midline of the body. Medial refers to struc-
tures situated towards the midline of the body.

The horizontal plane is also referred to as the trans-
verse plane. The frontal plane is also known as the
Coronal plane. The sagittal plane is also referred to
as the midsagittal or medial plane.

The terminology for different types of joint motions is shown in Figure 4, page 31. A rota-

tion at the hip causes the leg to pivot about its long axis. Flexion (or flection) of the hip

brings the leg forward, while flexion of the knee brings the lower leg backwards. Flexion

generally diminishes the angle formed by the joint, whereas, extension increases the angle

and straightens the limb. Abduction at the hip moves the leg outwards, to the side of the

body, while adduction moves the limb towards the center.

In order to simulate the human body, accurate biomechanical data is required— i.e. kine-

matic and dynamic parameters which capture the pertinent information needed to describe

a humanoid figure. The kinematic parameters include the geometry of the limbs, and the

joint DOFs. The limb geometry primarily describes the length of the limb from joint to

joint, often termed the “link” length. The kinematics of the exterior geometric shapes of

the limbs can also be an important biomechanical parameter, when the shapes are used for

geometric collision detection between different objects and between objects and the

ground. The geometric object data can also be used to define the volume of the limb seg-

30

2 Background Michael A. McKenna

FLEXION

2 ‘
RN .
. N . e
\ S~ . L
. ‘_—_,
AY -
\ .~
T Seo
‘ * il T 18
T EXTENSION
; ~

i \;.: ROTATION

PR

"”’

ABDUCTION

ADDUCTION

Figure 4: Joint motion terminology illustrated on the lower limbs.

From [Huelke].

31

2 Background Michael A. McKenna

ment, in order to automatically calculate the mass and inertia of the segment (dynamic

biomechanical parameters). These shapes can be used for graphical display as well.

The other primary kinematic parameters are the joint DOFs. These includes the number of
DOFs at each joint, and the directions in which the DOFs allow the limbs to move.
Because the kinematic biomechanical parameters primarily describe the potential rigid-
body motions of the figure, they can be termed the skeletal parameters.

The dynamic biomechanical parameters describe the data needed for dynamic simulations
and include the inertia of the limbs and sources of forces within the figure. The total mass,
the mass distribution, and the center of mass of a limb all influence the motion of that
limb. There are several different sources of data to approximate the limb inertias: cadaver
studies, machine measurement in vivo, and computer approximations based on integrating
volumes of different densities for different tissue types. Biomechanical models of internal
forces are divided into passive and active components. Passive components arise from the
structures in the bones, joints, and surrounding tissues which are not under active neuro-
logical control. These forces include velocity-dependent damping, and position-dependent
joint limits. Active forces are supplied by muscles, which have both active and passive

elements, as well.

In classic cadaver studies by Braune and Fisher in the late 1800’s, biomechanical parame-
ters for the major human body parts were measured. [Braune 1988] The kinematic link
length parameters of dissected limbs were measured. The limbs were weighed, and in
addition, the moments of inertia were determined by swinging the limb segments as a pen-
dulum about different axes, and measuring the oscillations.

Dempster directed similar work in more detail in the 1950’s, using human cadavers, aug-
mented with studies of living subjects to measure biomechanical information. [Dempster]
Limb joints were studied to measure types and ranges of motion. Link kinematics were
measured, and limb masses, centers of mass, densities and inertias were measured as well.
The data was used to analyze work space requirements for seated operators, to assist in the
design of aircraft cockpits. Drillis and Contini designed a model which parametrizes body
segment lengths as a function of overall body height, as depicted in Figure 5. [Drillis; Winter
1990]

32

2 Background Michael A. McKenna

—————~——————7- Figure 5: Body seg-
ment lengths as a
function of overall
body height, H.

0.1 0.1 |
onzon | “HT “HJLO.INH
S -0 j - © This model was pre-
260H> 0.520H pared by Drillis and
1! Lo i ¥ Contini. [Drillis]
8 R 0.174H Image from [Winter
o 1990].
4
4
|y Y - ' 9
) D | S, S B B!
s e 0.191H—>
3 4
8| r— 0.720H
c
X ——
8 ‘]' T T 0.530H
o
x
§ 0.285H
| 4t l |
0.055H ’l
Foot breadth 0.152H
Foot length

A three dimensional geometric model of the human skeleton was designed by Stredney to
facilitate animation and to provide a tool for anatomical education. [Stredney] Using three
dimensional modeling techniques such as lofting and solids of revolution, Stredney manu-
ally created polygonal models of skeleton bones using real bones and diagrams as refer-
ences. The skeleton model (also known as “George”) is shown in Figure 6. This model
was used by Zeltzer in his skeletal animation system (discussed below). [Zeltzer 1984] This
model was also used as a preliminary guide in constructing the human figure model
designed in this research (discussed in the section Biomechanical Model (6)).

Medical illustration literature is also a useful source of information regarding human kine-
matics. In particular, the structure of the foot has not been examined to the same extent as
the major limbs of the body. A detailed illustration of the human foot skeleton, by Goldfin-
ger, is presented in Figure 7. [Goldfinger] This diagram, as well as others by Goldfinger and
other medical illustrators, [Gray] were used in this research as another source of kinematic
data.

33

2 Background Michael A. McKenna

Figure 6: The human skeleton model created by Stredney. [Stredney]

An important aspect of biomechanics is the models that have been developed of the inter-
nal forces in humans. The passive elastic forces, which create joint limits, can be mea-
sured from human subjects. Yoon and Mansour measured the passive elastic moments at
the hip, using an apparatus to measure force (from a load cell) as a function of angle (mea-
sured by a goniometer). [Yoon] They determined that the force could be approximated by a
sum of exponentials. Hof and Van den Berg measured the passive elastic force at the
ankle, and observed an exponential relationship between the ankle angle and the resulting
force. [Hof] Similar testing was performed by Hatze, who also modeled the passive elastic
forces in the leg as sums of exponentials. [Hatze] Audu and Davy use a sum of two expo-

34

2 Background

Michael A. McKenna

The Skeleton - RIGHT FOOT

TALUS

TROCHLEA

BODY HELK

NAVICULAR

LATERAL CUNEIFORM
INTERMEDIATE CUNEIFORM

_ \\\SECQND METATARSAL
b % PROXIMAL
. PHALANX
" CALCANEUS FURMROAITY oF .
OUTSIDE VIEW FIFTH METATARSAL
POST. «+ANT.

TALUS
NECK [TROCHLEA

NAVICULAR
INTERMEDIATE CUNEIFORM
MEDIAL CUNEIFORM
FIRST
ME TATARSAL
DISTAL PROXIMAL
PHALANX PHALA
B et -

HEAD
pe

o

” NAVICULAR
’ ; TUBERCLE
INSIDE VIEW

POST ¢—»ANT.

LATERAL CUNEIFORM
NAYICULAR TUBERCLE
TALUS

CALCANEUS -'

INTERMEDIATE CUNEIFORM

i

TOP,;‘:;EW cusoip % ey ;
! Fi
POST % ANT TUBEROSITY OF FIFTH METATARSAL
LAT
TUBEROSITY OF FIF TH METATARSAL
CALCANEUS LATERAL CUNEIFORM
MEDIAL CUBDID e e TouRE 39
LATERAL * RIS
PROCESS PROCESD ; P o—— Ty }:}
i ; o e .. b T
& 3 s B

BOTTOM VIEW
LAT.
POSTw}e ANT.
MED.

. . S S
HEAD INTERMEDIATE CUNEIFORM
OF TALUS MEDIAL CUNEIFORM

NAVICULAR TUBERCLE

Figure 7: The skeleton of the human foot. [Goldfinger]

33

BopY

NAVICULAR
TUBERCLE

g

,MIDDLE
PHALANX

-DISTAL
PHALANX

TALUS
TUBEROSITY
OF FIFTH
\ METATARSAL
NAVICULAR . 7
TUBERCLE /

~=~CALCANEUS

BACK VIEW
MED< LAT.

MEDIAL CUNEIFORM

HEMD BASE SHAFT HEAD
BASE SHAFT >
va N DA

2 Background Michael A. McKenna

nentials to model the passive joint limit forces in the leg, fitted to the more complex model
of Hatze, which resulted in severe numerical problems in their system in its original form.
[Audu] Passive damping, due to viscous drag and friction in the joint and surrounding tis-
sues is usually modeled as a linear element, where the resistive force is directly propor-

tional to the velocity. [Audu; Hatze]

The final biomechanical element to examine is muscle. Human skeletal muscle can be
modeled as combinations of springs, dampers, and force generators. Hill developed a
model of muscle, based on observations of muscle properties. The model included a force
generating contractile element, in parallel with a linear damper and a linear spring, in

series with another linear spring. [McMahon]

As computational models of muscle came into more widespread use, a need developed for
a general purpose skeletal muscle model which could be tailored to match a given mus-
cle’s function. Zajac and his colleagues developed a dimensionless, second order dynamic
model of the skeletal musculotendon actuator. [Zajac 1986; Zajac 1989] The model has four
parameters which are specified to scale it to a specific actuator. These parameters are ten-
don slack length, optimal muscle fiber length, pinnation angle, and muscle strength. This
model has been incorporated into several biomechanical simulation systems. [Chen; Delp]

To analyze running motion, McMahon takes a simplified approach to modeling the prop-
erties of muscle, in the context of the human body. [McMahon] The model incorporates the
mechanical properties of isolated muscle, along with the properties that arise from the
muscle’s feedback and the central nervous system descending commands. His model is
depicted in Figure 8. The stretch reflex in muscle can be shown to act as a stiffness regula-
tor, yielding a simple spring. The spindle organs feed back information regarding the
length and velocity of the muscle, and effectively create a dampening property in muscle.
A similar model is used in this research to lump together the muscle groups at a limb, with
their feedback properties, yielding “tunable” damped spring actuators at the figure’s joints.

2.4 Analyses of Human Movement and Gait

In the late 19th century, Edweard Muybridge conducted some of the first quantitative stud-
ies of gait and other human movements, using time sequence photography [Muybridge].
Figure 9 shows an example photographic sequence by Muybridge.

36

2 Background Michael A. McKenna

Figure 8: A mechanical model of the lower leg, using a simple
spring and damper actuator.

Handle

The central nervous system specifies the rest length for the sys-
tem, adjusting the rack and pinion in the illustration. The muscles,
Rack and with their feedback systems are modeled by the spring and dash-
pot (damper).

Image and model from [McMahon].

ZTTTITTTT 77T F7I rssrrs

AL T AL 7

Figure 9: A photographic time sequence of a male subject walking by Muybridge. [Muybridge]

37

2 Background Michael A. McKenna

Also in the late 19th century, Braune and Fischer performed pioneering work in human
biomechanics, with a focus on a better understanding of walking. [Braune 1987] Through
photographic studies of human walking, they measured approximate joint motions, and by
using manual calculations, computed joint torques and the motion of the body’s center of
mass. Two cameras were used to photographically record the motions of luminous mark-
ers (“Geissler tubes,” employing incandescent nitrogen) attached to the limbs. A subject
walked by the cameras, with illumination only from the markers. Using triangulation on
the recorded motion traces, the 3D displacements of the markers were extracted, and from
that they projected back along the limb to determine joint motions. Combining this infor-
mation with their measurements of the inertias of different body segments, [Braune 1988]
they computed the displacement of the body’s COM over time, and performed biomechan-
ical analyses of the forces involved in the swinging leg during walking. Their conclusions,
however, were that the muscle forces must be acting more strongly than gravity and inertia
in the swinging leg. Although muscles are active, they do not dominate, [Winter 1978], and
it can be shown that successful stepping motions can be generated without any contribut-

ing muscle force, a subject that we will return to. [Mochon 1980-A; Mochon 1980-B].

With the advent of digital computers, the process of acquiring and processing gait data
became much more feasible. Joint motions can be tracked using goniometers, which are
potentiometers connected to a frame which attaches to the two limbs which span a joint.
[Winter 1990] In addition, optical tracking can be used to triangulate the locations of mark-
ers attached to limbs, and automatically extract their three dimensional location. Mann, et
al., describe their TRACK system, which uses two optical cameras and an LED array
attached to each tracked limb. [Mann] The system has an overall accuracy to within one

millimeter in position and 20 milliradians in orientation.

Another important tool in the study of gait is the force plate. As the subject walks across
the plate, it measures the forces being exerted on it by the feet. These forces are known as
the ground reaction forces (GRF). The vertical force, normal to the ground, reveals how
the feet are pressing down on the ground, and the horizontal, tangential forces reveal the
ways that the feet push forwards, backwards and to the sides, against the forces of friction.

By pairing kinematic acquisition with force plate data and a biomechanical model of a
human figure, we can use inverse dynamics to determine the torques which are applied at
the joints. [Winter 1978] In order to determine how the muscles are activated to generate the

38

2 Background Michael A. McKenna

computed forces, an optimization process must be used. [Patriarco] Because more than one
muscle spans each joint, and agonist-antagonist pairs can create the same net torque using
different stiffnesses, there are many more muscle activation parameters than their are
input joint torques. An optimization criteria (such as minimum expended energy) is speci-
fied and knowledge about which muscle groups typically work together, etc. is employed
to determine possible muscle activations and forces. Mann, et al., found that accurate
measurements of the joint motions are important when determining muscle force — more

important than the type of optimization method, or criteria used.

The determinants of gait are a way to describe the motions of the limbs during human
walking, put forth by Saunders, Inman, and Eberhart in 1953 [Saunders; Inman]. There are
six determinants of ‘normal’ gait. In general, each new determinant of gait adds the
requirement for a new degree of freedom in the walking system. [McMahon] It is valuable
to review this work to demonstrate the degree of freedom complexity which should be
included in a system to reproduce the major aspects of human walking.

The first determinant of gait allows for one DOF per leg, at the hip, and results in a “com-
pass gait,” a kind of stiff-legged walk, with no motion of any joints except for flexion at
the hip. During the swing phase the hip flexes, swinging the leg forward, and during
stance the hip extends, moving the leg backwards. Such a gait would not be physically
realizable since there is nothing to prevent the body from falling toward the swing-leg side
of the body. In addition, because there is no flexion and extension of the knee for the
swing leg, the swing foot misses the ground with an infinitesimal clearance. The compass
gait results in a “bouncing” motion of the pelvis and COM. The COM sweeps out a series
of arcs, connected by sharp cusps, due to the inverted pendulum motion of the body and

stance leg.

The second determinant of gait adds rotation of the pelvis, about the vertical axis, to the
compass gait. The magnitude of this rotation is approximately +3° for normal walking,
with a greater magnitude for faster walking speeds. Pelvic rotation serves to extend the
effective length of the legs, increasing the step length, and thus walking speed, and also
somewhat flattening the arcs formed by the motion of the COM. The addition of pelvis
rotation necessitates the addition of rotation at the hip, adding another DOF to the leg.

39

2 Background Michael A. McKenna

The third determinant of gait adds pelvic tilt to the two previous determinants. Just before
toe-off of the swing leg, the pelvis dips down approximately 3° towards the swing leg side,
then rises more slowly, until it is again level, when the swing leg makes heel-strike with
the ground. Pelvic tilt serves to flatten the arcs formed by the motion of the COM, since
the center of the pelvis no longer rises as far as the stance leg side. Pelvic tilt adds the
requirement of hip abduction/adduction, so that the hip now has three DOFs (as is anatom-
ically correct). Pelvis tilt also necessitates the addition of flexion of the swing leg’s knee,
so that the foot clears the ground.

The fourth determinant of gait is flexion of the stance leg knee. The knee bends slightly
during stance, with maximal flexion near the middle of support. This further flattens the
path of the COM, since the pelvis does not rise as far in mid-stance, when knee flexion is
maximal. A new DOF does not need to be added for this determinant, since flexion and
extension of the knee (during swing) was added with the third determinant.

The fifth determinant is plantar flexion of the stance ankle and foot— i.e. bending of the
ankle and sole. During touchdown of the heel, the ankle plantar flexes (while the knee
flexes), absorbing impact energy. During double support, before toe-off of the swing leg,
the foot plantar flexes, smoothing the transition to the swing phase. Plantar flexion of the
foot plays a role in establishing the initial conditions for the swing. The cusps between the
arcs formed by the motion of the COM are smoothed by this determinant. Two DOFs are
added— one flexion/extension DOF at the ankle, and one in the foot to represent the joints
between the metatarsals and phalanges as a group (although using only one DOF in the

foot is a gross simplification of the actual structure).

Lateral displacement of the pelvis is the sixth determinant of gait. The center of mass of
the body moves laterally, moving the COM closer to the supporting foot in mid-stance,

such that the body rocks from side to side somewhat as locomotion progresses.

An additional important factor of gait is the inversion-eversion-inversion sequence at the
subtalar (lower ankle) joint, during the support phase of walking. There is a slight inver-
sion at heel strike, followed by eversion during most of the stance, followed by an inver-
sion at heel-off. The sub-talar joint acts in large part to allow the leg to rotate during
stance, while keeping the foot in non-slipping contact with the ground. [Inman]

40

2 Background Michael A. McKenna

The gait determinants serve in part to flatten the motion of the COM of the whole body.
The motion is not completely flat, but rather, it oscillates in a sinusoidal pattern, vertically
and horizontally. However, the total energy of the entire system is maintained at a nearly
constant level. There is a trade-off between the kinetic and potential energies; the two are
out of phase, and so energy is exchanged between the two. As the COM loses potential
energy— moving to a lower height— the COM accelerates, gaining Kinetic energy. The

opposite occurs as the COM rises.

Mochon and McMabhon studied some of the passive aspects of walking in work they
dubbed “ballistic walking,” since the limb motions they studied were produced by the
forces of inertia and gravity. [Mochon 1980-A; Mochon 1980-B] Using computer simulations of
simplified biomechanical models of the legs and pelvis, in the sagittal plane, they demon-
strated that the swing leg successfully steps without any muscle force, if the correct initial
conditions (joint angles and velocities) are satisfied. A number of simulation were investi-
gated, with an increasing biomechanical complexity (introducing more of the gait determi-
nants). As the model’s complexity increased, a closer correspondence was found between
the computed ground reaction force, and the ground reaction force measured for humans.
Their initial work covered basic limb motions only. [Mochon 1980-A] Later work added
stance leg knee flexion and foot flexion [Mochon 1980-B]. McMahon presents further mate-
rial on ballistic walking, including the addition of pelvic tilt, as well as an excellent review

of muscle and reflex properties. [McMahon]

Alexander examines the mechanics and energetics of locomotion. [Alexander 1976; Alexander
1985; Alexander 1990] He has analyzed different types of bipedal gaits, and computed the

energy required to achieve them. The role of springs in locomotion has figured heavily in
his work. Elastic components are present in flexible bone, in muscle and ligament tissues,
and in feet or animal paw pads. These elements can store energy from one phase of walk-
ing and return it in another. Flexible interactions between the foot and ground create a

more stable foothold by creating a compliant interface and by reducing “chatter,” in which

the foot vibrates off of the ground and slips.

Frank analyzes the stability of an “algorithmic” walking biped at low speeds. [Frank] The
biped’s motions are algorithmic, in that the feet and legs of the system are algebraically
related, like a clockwork system. Analyzing slow walking speeds, in which both feet
remain on the ground for most of the time, Frank shows that such a biped is inherently sta-

41

2 Background Michael A. McKenna

ble, and is able to recover from disturbances within a given range. He describes a potential

energy surface which provides an estimate of the energy required to destabilize the biped.

Gubina, et al., have simulated biped locomotion, including an active control system.
[Gubina] The simulation is greatly simplified compared to a real robotic or biological sys-
tem. Motion is restricted to the sagittal plane, and the legs are treated as massless entities.
The non-linear equations of motion for the system are developed, and a control system is
then designed based on a linearization of the dynamics equations with feedback control.
Body attitude and altitude are controlled, as well as step length and frequency. The system

produces stable results, even in the presence of large disturbances.

Siegler, et al., describe a simple model of the lower body, which they use to simulate the
stance phase of walking. [Siegler] Using straight, telescoping legs, the initial conditions of
the limbs are established just before heel strike, and the system then responds passively,
using gravity and inertia. Because passive dynamics are used, this work is similar to
Mochon and McMahon’s “ballistic walking.” The upper body is modeled as a point mass
at the hips, and the legs have 1 DOF at the hip, and 1 telescoping “knee” joint. In some
simulations, they allowed the body to move laterally, creating a three dimensional simula-
tion for the body movements.

Onyshko and Winter use forward dynamics to generate a simulation of human walking.
[Onyshko] A seven segment, six joint model of the body, limited to the sagittal plane, is
used. Initial conditions for the positions and velocities of the limbs are established, and a
set of joint torque profiles are applied at the joints, in an open-loop manner. The joint
torques were developed through a trial and error process, until one full cycle of walking

was successfully generated.

Amirouche, et al., present a system, DYAMUS, for the simulation of human movements.
[Amirouche] The system is capable of forward and inverse dynamics, with constraints.

Internal joint springs and dampers can be included in the human figure model. A simula-
tion of walking is discussed, based on a five segment, five DOF model, which uses kine-

matic constrains that prescribe the motions of the swing leg’s foot and the body’s COM.

Morlock describes a biomechanical analysis of the foot and ankle, using a six-segment
model. [Morlock] The following segments are represented in the system: the talus; the cal-

42

2 Background Michael A. McKenna

caneus; a link which lumps together the three medial metatarsals and the cuneiforms; a
link for the two lateral metatarsals, the cuboid, and the navicular; a link for the phalanges
in the three medial rays; and a link for the phalanges in the two lateral rays. Ten muscles
from the leg, and five ligament structures were also included in the model. The model was
used to analyze a “lateral side shuffle movement,” which was recorded from a subject
using gait acquisition equipment. Inverse dynamics was employed to determine the joint
forces, from the subjects’s motions. An optimization analysis was then performed to esti-
mate muscle forces.

Simkin created a foot model used to analyze standing posture. [Simkin] The model incorpo-
rated 17 joints, and 14 ligaments, with 6 points for support. The foot-ground pressure dis-
tribution forces and internal forces and torques were computed as the foot model was
incrementally loaded from above, at the ankle joint. The ground reaction force was com-
pared to measured pressure distributions in standing adults and was found to be similar to,

but less uniform than the measured values.

Meglan developed a passive mechanical model of the foot based on a set of viscoelastic
spheres jointed together by a rigid frame. [Meglan] The foot model was included in a full
body model, and was used to analyze the ground reaction forces during walking, and to
simulate simple human motions. The system was capable of reproducing an approxima-
tion of the ground reaction forces recorded during human walking. Forward simulation
was more successful than inverse dynamics at generating realistic ground reaction forces
in his system, due to problems of accurately measuring foot kinematics from human sub-

jects.

2.5 Machine Locomotion
Robots that walk and run will be covered briefly, here. The control of robots presents a
similar problem to the dynamic control of a physically-based simulation of an articulated

figure — forces are used in both types of systems to control motion.

There have been a number of statically-stable machines designed with four or more legs.
Liston and Moser describe a quadruped “truck” which is controlled by a human pilot. [Lis-
ton] Pugh, et al., present the adaptive suspension vehicle, a large (over 19 feet long, 7 feet
wide, and 10 feet high), six-legged, human piloted walking machine. [Pugh]

43

2 Background Michael A. McKenna

Autonomous walking robots include the OSU (Ohio State University) hexapod, [McGhee]
the CMU (Carnegie Melon University) hexapod, [Sutherland], and the ODEX hexapod,
intended as a telerobot for nuclear applications. [Russel] All of these statically stable robots
are designed to keep enough legs on the ground at a time in order maintain stability. The
COM of the machines must always lie within the support region formed by the supporting
legs in order to remain statically stable, and forward speed must be low enough that

momentum effects do not dominate.

Bipedal robots complicate the problem of maintaining balance, especially then the gait is
dynamic, i.e. there are phases of activity during which the system is not statically stable. In
general, bipedal gaits are dynamic, with the exception of very slow, careful gaits. During
walking at normal speeds in humans, the gait is quite dynamic, with few, if any periods
during which the COM of the body falls within the region of the supporting foot. Running
is a highly dynamic activity.

Kato, et al., describe a quasi-dynamic walking biped. [Kato] The robot had a wide foot
base, and, in general, maintained its COM within the region of the supporting foot. How-
ever, when the robot was ready to transfer weight to the other foot, it executed a short,
dynamic “fall” to that foot, using a model of an inverted pendulum to plan the motion. The
robot had 10 DOFs and was hydraulically powered. Later work employed a robot with a
large, 3 DOF upper body, which acted as an inverted pendulum used to stabilize walking.
[Takanishi]

One of the earliest, fully dynamic gaits for a biped robot was demonstrated by Miura and
Shimoyama. [Miura] The robot employed active balance, using straight stilt-like legs with-
out extra foot bases, so that statically stable support could never be provided. The robot
constantly and rapidly stepped from foot to foot, yielding a stable gait, but with a some-
what “twitchy”” look. The motion control was based on utilizing the motion of an inverted
pendulum, which was decomposed into two components: one in the sagittal plane, and one
in the frontal plane. Stepping was planned to retain stability and achieve motion goals,

using a simplified model of the inverted pendulum system, with linear feedback control.

Furusho and Masubuchi present a biped robot capable of steady state walking. [Furusho]
The robot employs a stepping cycle speed of 0.45 sec, with a walking speed of 0.8 m/sec.
A hierarchical control system is used, with lower-level local feedback. A simplified model

44

2 Background Michael A. McKenna

of the robot is employed by the control system to maintain stability. Wide “feet” structures
are used to provide lateral stability, and the motion is thus limited to the sagittal plane.

The work of Raibert has focused on the design and control of running robots. [Raibert 1986]
Raibert has developed a variety of robots, including monoped, biped and quadruped mod-
els, which use a uniform approach to control— de-coupling the control of a set of sub-
goals, such as “hopping” height and running speed. Recently, Raibert has employed his
models of robotic control to simulate dynamic locomotion for the purposes of computer
animation, including non-humanoid bipedal running. [Raibert 1991]

To conclude the discussion of walking mechanisms, we review the work of McGeer, who
examined unpowered, passive bipedal walking machines. He created and analyzed simple
mechanisms which were capable of walking down a shallow incline, without any form of
internal power. Gravity provided the power for the machines, and the mechanical design
created stable walking patterns. One mechanism used a stiff-legged bipedal walk, using
small motors to rotate the foot to the side as it swung forward, so that it would clear the
ground. [McGeer 1990-A] Another mechanism used a mechanical design with bending
“knees,” which allowed the foot to clear the ground as it swung forward, without the use
of any internal power. [McGeer 1990-B] McGeer’s mechanisms were bipedal in form, and
created natural appearing humanoid movements, although they actually employed two
pairs of legs, which provided side to side stability, essentially by-passing the problem of
lateral balance. McGeer has also analyzed bipedal running as a passive activity. [McGeer
1990-C]

2.6 Computer Animated Simulations of Human Movement

In the early 1980’s Zeltzer developed the skeleton animation system which was used to
animate the motions of articulated figures. His primary research concerned task level
interaction with a simulated human capable of walking over moderately uneven terrain,
using a skeletal model. The simulation employed a hierarchy of finite state machines and

kinematic motor programs to control joint motions. [Zeltzer 1982; Zeltzer 1984]

The simulations were kinematic in nature, using geometric rules to create motion. Because
the simulated motions were based on clinical data describing normal human gait, [Inman;

Saunders] the motions appear quite realistic for slow walking over planar terrain. However,

45

2 Background Michael A. McKenna

rapid movements, or motion over uneven terrain, cannot be accurately simulated without
at least accounting for the rigid-body dynamics of jointed figure motion. Thus, the strictly
kinematic nature of the skeleton animation system limits its adaptability and restricts what

can be learned from the simulation.

Sims employed inverse kinematics and dynamic elements to simulate various adaptive
gaits, over uneven terrain [Sims]. Sims’ system allowed for the rapid, interactive creation
of animal (non-human) forms with varying numbers of legs and limb configurations. The
animals could then be automatically controlled to walk, trot, run, hop, etc. Sims designed
and implemented a figure editor, a visual tool for designing jointed figures. The editor pro-
vides a MacDraw-style interface which allows the drawing of 2D schematics of 3D,
jointed figures. These 2D representations are automatically transformed into three dimen-
sional, articulated figures — which can then be made to walk over uneven terrain using
inverse kinematics and a gait sequencer. Once a jointed figure has been created, the user
simply selects the desired gait for the figure to use, and the system automatically generates
the animated motions required to negotiate a given terrain. Different gaits are generated by
specific functions which sequence the stepping of the legs, relative to each other. The leg
mbtions are controlled using inverse kinematics, such that the target positions for the
“feet” are specified, relative to the body, and the system computes the joint angles needed

to reach that target.

Girard developed interactive methods for the specification of animal and human gaits for
computer animation. [Girard 1985; Girard 1987] Limb motions and stepping patterns could be
interactively specified by the user, and the system automatically sequenced the motions to
generate walking and running actions. Girard used kinematic control, but added certain
elements of dynamics, in order to create motions which appeared more realistic. For
example, when all of the legs of a figure left the ground, a ballistic trajectory for the body

would be used, and during turns the body would “bank” to the side.

Bruderlin, et al., developed a model of human walking which used a mixed (or hybrid)
method of kinematic and dynamic control. [Bruderlin 1988; Bruderlin 1989] Simplified models
of the legs were dynamically simulated, and kinematic methods were then used to com-
plete the simulation, adding motions of the foot, leg, pelvis, and upper body. More than 20
locomotion parameters could be specified to tailor the walking characteristics.

46

2 Background Michael A. McKenna

Wilhelms and her colleagues have experimented with animated simulation of human fig-
ures. [Wilhelms 1985; Wilhelms 1987] Using forward dynamics, based on the Gibbs-Appell
formulation (O(n?) where n is the number of DOFs) motions are simulated, based on the
application of forces. Modeled forces include gravity, ground and collision springs, and
joint springs, dampers, joint limit springs, and direct open-loop torques. Few examples are
presented of simulations of human movement, however. Typical simulations include fall-

ing passively to the ground, or applying a joint torque in zero gravity.

Armstrong, et al., present a near-real time forward dynamic simulation of a human figure
model. [Armstrong 1985; Armstrong 1987] Using their recursive dynamics formulation, of
O(n), the motions of a human figure, with approximately 9 spherical joints, is computed in
reSponse to forces. Joint springs and dampers are simulated, and limb motions are con-
trolled by switching the spring rest angles to new positions, and imposing limits on the
maximum forces and the rate of change of the forces. The development of the human fig-

ure model is not presented, and few examples of simulated motions are presented.

2.7 Previous Work by the Author: Hexapod Locomotion

The Background Section ends with the author’s previous work in the field. The roach, a
real-time, kinematic simulation of a hexapod was developed by McKenna, ef al. [McKenna
1990-A] The user interacts with the hexapod in the virtual environment system bolio. [Zelt-
zer 1989] (See Figure 10). Using a gestural interface, the user guides the walking behavior
of the hexapod, issuing commands, specifying walking directions or positions, etc. The
hexapod controls its own low-level behavior, and can act autonomously in response to

environmental “stimuli.”

The coordination mechanism of the roach, which generates the walking gait is based on
neurological features found in the cockroach and other insects. [Wilson; Pearson] Oscilla-
tors, or pacemakers, trigger stepping at each leg. Coupling between the oscillators gener-
ates the coordinated stepping pattern, dependent on the frequency of the oscillators.
Reflexes serve to reinforce the basic stepping pattern, and to provide enhanced stability.
Kinematic motor programs move the positions of the feet and the body, and the leg angles
are calculated by inverse kinematics. The stepping patterns generated by the coupled
oscillators are virtually identical to the real patterns displayed by insects.

47

2 Background

Michael A. McKenna

Figure 10: The kinematic roach
follows a collision-free path in
the bolio virtual environment
system. [McKenna 1990-A; Zelt-
zer 1989]

Different oscillator frequencies create different stepping patterns, and different walking

speeds. The slow gaits are “wave” gaits, in which a wave of steps travels up each side of

the body, from back to front (see Figure 11).The fastest gait generated by the coupled

oscillators is the tripod gait, in which a stable tripod of legs supports the body, while the

FL

BR
computer model stepping pattern
Ll = e s e e ST

MR S—— ——\l
[S ————————— = TN

ant = —— = S =
froe e S S L= ST = BT

BR

= ==
BR cockroach stepping pattern

N4

time S5

7

48

Figure 11: A wave gait stepping pattern
generated by the coupled oscillator mechanism,
compared to a slightly different wave gait step-
ping pattern, exhibited by the cockroach. The
white regions in the patterns denote stepping
activity. The boxes and sine wave segments at
the left depict the computational model of the
oscillators over a short period of time. An oscil-
lator will trigger stepping activity in its leg
when the oscillation reaches its peak. The phase
differences between oscillators can be seen in
the diagram.

2 Background Michael A. McKenna

other three legs step (see Figure 12). The coupled oscillator mechanism generates smooth

gait changes, as the oscillator frequency is smoothly varied.

We have also experimented with reflexive feedback from the environment. A step reflex
triggers stepping when the leg angle, relative to the body, exceeds a specified value. A
simulated “load-bearing” reflex prevents a leg from stepping when an unstable leg config-
uration would result. These reflexes serve to reinforce the basic stepping pattern generated
by the coupled oscillators, while making the system more robust.

The gait controller triggers “step” and “stance” motor programs in the legs. The “step”
program moves the leg up and forward, then down and forward, relative to the body. The
“stance” program keeps the “foot” in place on the ground, as the body moves forward.
Inverse kinematic is used to compute the leg joint angles from the specified foot location.

The roach software was used to create an animated character in the short animation Cootie
Gets Scared, [McKenna 1988] (see Figure 13). The control of the Cootie was “scripted”
using high-level commands to control the walking speed and direction, as well as other
character properties, such as head turning, etc. The leg and body motions were kinemati-
cally-controlled. However, the head and antennae of the Cootie were dynamically-simu-
lated, to realistically respond to the force of gravity, and the accelerations of the body.

The hexapod locomotion research was extended to a incorporate a dynamic model for
motion simulation and control. [McKenna 1990-B; McKenna 1990-C] The kinematic structure
of the dynamic roach, shown in Figure 14, was based on the general biomechanical prop-
erties of insects, in particular, the cockroach. The motions of the roach are forward simu-
lated; acceleration is the result of applied force. Coordinated locomotion is generated by
the gait controller, as described above for the kinematic roach. Motor control for the legs
is provided by dynamic motor programs and spring actuators, which deliver forces to the

computer model stepping pattern

FL
ML
BL

FR
o — e s UL
BR
BRcocﬁoacE stepping pattern
time—y)

49

Figure 12: The tripod gait.

The primary difference between the computer
model and the cockroach stepping pattern is that
the computer model produces longer step and
shorter stance phases. This is due to the ideali-
zation of the kinematic model— a leg can
change from step to stance and take up the load
instantaneously.

2 Background

Michael A. McKenna

Figure 13: The hexapod, “Cootie,” from the
computer animation Cootie Gets Scared.
[McKenna 1988]

The Cootie’s high level actions were ‘scripted’
by the animator. The motions of the legs, body
and antennae were automatically generated by
the software. The Cootie’s movements were
kinematically controlled, in general, with the
exception of the head and antennae, which were
dynamically simulated.

Figure 14: The parametrized dynamic roach.
[McKenna 1990-B]

The figure begins to step with three legs using
the tripod gait in this illustration. It has 5
degrees of freedom (DOFs) per leg, and a head
and abdomen joint. The entire system has 3
translating and 3 rotating DOFs, for a total of
38.

leg joints. Forward body motion is the result of traction at the ground, as the legs “push”

backwards. The simulated roach displays stepping patterns very similar to those of real

insects, as well as realistic walking behaviors.

The program corpus was developed by the author for the simulation and control of

dynamic locomotion. The flow of control in corpus to simulate dynamic hexapod locomo-

50

2 Background Michael A. McKenna

tion proceeds basically as follows (see Figure 15). At the highest level of control the ani-
mator, or another program, sets the desired speed and other parameters. The gait controller
coordinates the stepping pattern based on the specified speed, and sends appropriate step
and stance commands for each leg to the motor programs. The motor programs compute
leg joint forces which are sent to the dynamic simulator. The simulator incorporates these
forces with externally applied forces, such as gravity and contact forces, and computes the
motion of the figure. The graphics system then renders the figure and its environment,
based on the computed positions. Each module has several parameters which can be set in
a scripting language. These parameters include such factors as stepping speed, spring stiff-
nesses, the kinematic structure of the figure, and link size, shape and density. Corpus has
been extended and remains the platform for the current work, and it is discussed in more
detail in Section 4, The Program Corpus.

The dynamic simulator employs the Articulated Body Method (ABM) for dynamic simu-
lation, based on the work of Roy Featherstone. [Featherstone 1983; Featherstone 1987] See Sec-
tion 5, Dynamic Simulator for further discussion of the ABM and dynamic simulation in

the corpus environment.

In order to derive the articulated figure we used in our locomotion experiments, we
referred to diagrams of the insect Blatta and Periplaneta Americana, and descriptions of
insect physiology written by entomologists. [Hughes] We then derived the hexapod shown
in Figure 14. This articulated figure is modeled as being 2.9 cm long, and has a mass of 2.1
gm. There are 38 unconstrained degrees of freedom in the figure.

- Figure 15: Block diagram of the dynamic
High level control: Sej hexapod control and simulation system,
speed, gait parameters . .

implemented in the program corpus.

N

Gait

Controller
-\- Roach Description:

N« gait parameters /
 motor parameters

* kinematic structure
» link mass, inertia ~
« graphical objects =

Dynamic

Programs Simulator

Graphics
System

51

2 Background Michael A. McKenna

The stepping pattern is generated using the coupled oscillator mechanism, described pre-
viously for the kinematic hexapod. The gait controller triggers motor activity, but the
actual motion is controlled in corpus using dynamic motor programs. These functions
operate at each joint at which the motion must be controlled, and can be grouped together

to create more complex motor programs, such as “step” or “stance” for an entire leg.

The motor programs generate forces by modeling the force response of exponential
springs, in combination with linear velocity dampers. As their name implies, exponential
springs have an exponential relationship between the force they generate and the displace-

ment of the joint from the spring rest angle, as in:
f = sign(x,—x) o eBlx-2 _p 5 Eq. 3

where fis the generated force, x is the joint angle, x is the joint velocity, x; is the spring
rest angle, o is the linear spring constant, B is the exponential spring constant, and b is the
damping constant. The “sign()” function returns -1, 0, or 1, depending on the sign of the
argument. In a sense, the exponential spring forces create a steep potential well, such that

the controlled joint will likely stay near the rest angle of the spring.

In order to generate motion, the motor programs move the spring rest angles from their
current angle to a target angle. This moves the potential well and in effect, “drags” the
joint along with spring. In some sense, this method “keyframes” the controlling space of

the springs.

The motor programs were progressively “tuned” by the author, over the course of several
simulations, using a trial and error method. For example, initially the posture was too low
to avoid dragging the abdomen, so the joints were extended further, raising the posture.

Also, the legs did not step high enough initially, so the motor programs were modified to

retract the legs further during stepping.

The “springy” method of motor control, with trial and error calibration, may not be suit-
able for actions which require exact movements, such as grasping and manipulating
objects. However, the fact that the springs create a compliant system can be of great bene-
fit. For example, we have experimented with simulations over uneven terrain, which
employed the level terrain motor programs, and the hexapod conformed to the uneven sur-

face due to the springy compliance at the joints.

52

2 Background Michael A. McKenna

Figure 16: Scene from the
animation Grinning Evil
Death. [McKenna 1990-
D]

As the Roach walks for-
ward, it generates colli-
sion forces against the
wires.

The dynamic roach and other simulated figures played key roles in the award-winning
computer animation, Grinning Evil Death, by McKenna and Sabiston [McKenna 1990-D]
(see Figure 16).

53

3 Approach Michael A. McKenna

3 Approach

This thesis is concerned with the creation of a physically based model of a human figure,
which can be simulated to perform and analyze motion based tasks. One major component
of this work is an efficient simulation system which incorporates the physics of motion.
Another major component is the biomechanical model of the human figure. The final com-
ponent is a dynamic control system used to influence the motions of the figure, resulting in

animated simulations of movement.

In this section we cover these major areas, and in the process, we will develop a basic
human figure model to demonstrate some of the concepts. The following sections present

the complex model development and the results in detail.

3.1 The Program Corpus

Corpus is a computer program, developed by the author, for the simulation and animation
of articulated figures. It is the primary research tool used to investigate this thesis topic.
Corpus includes a 3D computer graphics system integrated with a dynamics simulation
system. Biomechanical models are incorporated in corpus, partly as supporting simulation
software, and partly as the structural definition of the articulated figures and dynamic envi-

ronment.

Corpus is a flexible system, with an interactive, programming-type of interface. This
allows the user to explore different configurations of articulated figures, different simula-

tion parameters, various graphical properties, etc., all in the same environment.

The section The Program Corpus (4) provides an overview of the system.

54

3 Approach Michael A. McKenna

3.2 Dynamic Simulator

The use of the dynamic simulator is central to this thesis. This works focuses primarily on
the forward dynamics of the human figure model — the animated motions (or stationary
postures) of the figure are computed in response to the applied forces. In addition, inverse
dynamics is used to compute what forces are exerted, and what control parameters are

used for different postures or motions.

Dynamic simulation is an excellent tool for the generation of “realistic” movements,
because the motion is physically based. Although dynamic simulation is complex and
compute-intensive, and the dynamic control of multiple DOFs can be a difficult task,
dynamics simplifies other aspects of the control problem. In comparison to manual anima-
tion, in which the animator must specify the motions or key poses for every DOF, the
advantage is significant; dynamics generates the motions of all DOFs automatically,
although the animator loses much of the direct control over those motions. In comparison
to kinematic techniques, dynamics generates realistic motions, without artificial means to
compensate for the lack of physics in the model. With passive dynamics motions in partic-
ular, the dynamic control problem is minimized, yet complex motions are generated in the
figure. Kinematic methods would require very complex control methods to emulate such

passive dynamic movements.

Because the dynamics equations are based on the laws of motion that are experienced in
the real world, a dynamics simulator forms a platform from which we can explore hypoth-
eses of motor control, including biological or robotic control strategies. Just as real ani-
mals and people must supply forces through their muscles, and robots through their
motors, the simulated figures use forces to control motion.

The dynamics simulator also serves as a tool for motion analysis. Using inverse dynamics,
the forces exerted during movements are computed. Using additional techniques, we can
compute the control parameters which are used to drive those motions. When complex
muscles models are incorporated into the simulator and biomechanical model, we can

compute how the muscles might be activated to perform a given movement.

Featherstone’s Articulated Body Method (ABM) [Featherstone 1983; Featherstone 1987] is the
algorithm employed for dynamic simulation. The ABM is an efficient method for forward

and inverse dynamics simulation, due to its recursive nature. The computation time grows

55

3 Approach Michael A. McKenna

linearly with the number of joints: O(r). The mathematics of the ABM are given in Feath-
erstone [Featherstone 1983; Featherstone 1987] including descriptions of spatial algebra and
spatial notation, in which the ABM is written. Spatial notation allows the translational and
rotational aspects of motion to be treated together, uniformly, in six dimensional vector

and matrix quantities.

The ABM, spatial algebra, and other aspects of the simulator in corpus are covered in the
section Dynamic Simulator (5).

3.3 Biomechanical Model

In order to simulate the human body, accurate biomechanical data are required— i.e. kine-
matic and dynamic parameters which capture the pertinent information needed to describe
a humanoid figure. The kinematic parameters include the geometry of the limbs and the
joint degrees of freedom (DOFs). The dynamic biomechanical parameters describe the
data needed for dynamic simulations and include the inertia of the limbs and sources of

forces within the figure.

As it operates within the dynamic simulator, the biomechanical description allows us to
examine function, which arises from the kinematic and dynamic structure. With biome-
chanical data that is tailored to match a given person, we can examine the specific function
of that person’s structure. If “normal” function is disrupted, patient specific data allows a
doctor to examine the problems particular to that patient. Using a simulation system, the
doctor can attempt to determine what can be done to best repair the problems, and restore
maximal function to the patient. Such analyses can be performed today, using systems
such as SIMM, which includes a detailed model of the human legs, with representations
for all of the major muscles. [Delp] This thesis does not deal directly with patient specific
data, but it is an important issue for future research. This thesis lays the groundwork for
such investigations, and advances the complexity of simulated foot models, allowing new

function to be examined.

The mechanical data and models used in this thesis are based on the biomechanics of
humans. A fairly complex 3D model is developed for the kinematic structure of the figure,
based on the sizes and inertias of “typical” human limb segments, which are determined
by cadaver and clinical studies. [Braune 1988; Dempster] The major degrees of freedom in the

56

3 Approach Michael A. McKenna

human body (arms, legs, neck) are defined. A complex spine is not modeled, but a 3 DOF
“waist” is included. The hand is a single object with a 3 DOF connection to the forearm,
but the foot is modeled with a significant complexity — 28 DOFs per foot. The degrees of
freedom used in normal walking, as defined by the determinant of gait [Inman; Saunders), are
all supported. The joint axes are based on anatomical studies of joint motions. [Murphy;

Procter]

For the purposes of illustration, we examine a basic biomechanical model of a human fig-
ure here. The model is very fundamental; simple geometric block objects are used to form
an armless, simplified human figure model. Two very similar basic models were created,
one based on an informal measurement of the author’s limb lengths, and another based on
clinical studies of human anthropometrics. [Dempster] The differences between the two
models are not important for the examples which follow, and in general we will not bother
to make a distinction between the two, referring to both as the “basic human figure.”

The entire articulated figure is free to move and rotate in any direction, with 3 DOFs for
translating motions, and 3 DOFs for rotating motions. There are two legs, each leg being
composed of three links — one object for each thigh, shank, and foot. There is 1 DOF at
the hip, one at the knee, and one at the ankle. All of these DOFs work in the sagittal plane,
providing flexion and extension at those joints. There is no waist or spine model, nor are
there any arms. A head with one neck joint was added, yielding a 13 DOF model. The
masses of the links were not matched directly to values measured from humans, as was
done with the complex model. The masses were determined by the geometric volume of
the graphical link objects, using a density of 800 kg/m3 (which is somewhat low, 1100
would be more appropriate). The values of the link lengths, masses and densities are pre-
sented in Table 1.

The kinematic structure of the basic figure model is shown in Figure 17. This human fig-
ure model is similar in complexity to many dynamic models used in computer graphics
and animation, and in walking biomechanical research. [Mochon 1980-A; McGeer 1990-A; Wil-
helms 1987; Bruderlin 1989; Pai]

The biomechanical model also incorporates a model of passive joint forces. Joint damping
results from the frictional and viscous properties of the joints, muscle, and other surround-

ing tissues. A linear damping model based on joint angular velocity is used to approximate

57

3 Approach Michael A. McKenna

Figure 17: The basic model of the humanoid biped figure.

There are three DOFs per leg— flexion and extension at the hip, knee,
and ankle. There are 3 translating and 3 rotary DOFs for the overall body
motion, and a rotary DOF for the head, for a total of 13 DOFs.

Table 1: Link parameters of the basic human figure model. Length values for the thigh, shank and foot were
rounded from measurements by [Dempster].

thigh 04 53 800
shank 0.4 2.8 800
foot 0.25 0.8 800
head 0.22 6.0 800
total body 1.71 61.7 800

these forces in the simulator. Joint limit forces are due to the passive elastic elements of
the musculotendon organs and surrounding tissue, as well as contact forces between joint
and bone structures. Joint limit forces can be modeled as sums of exponentials as a func-
tion of joint angle. [Audu; Hatze; Yoon]

Controlled, active joint forces are provided by an actuator/muscle model, which is based
on the general features of muscle, modeling its viscoelastic properties. Muscle is consid-
ered as a “tunable” spring, [Bizzi 1982; McMahon] and the force response of the simulated

actuator is modeled as an exponential spring, which provides control by moving the rest

position and modifying the stiffness parameters. This approach is based in part on the gen-

58

3 Approach Michael A. McKenna

eral features of the equilibrium position hypothesis, an attempt to explain biological
motion control. [Bizzi 1982; Bizzi 1984] This hypothesis states that different postures are
formed by different state configurations in the control space of the neuromuscular system.
Motions are controlled by moving the control state from one configuration to another. In
this system, motor programs are used to modify the actuator parameters from one configu-
ration to another, in order to control motion.

The biomechanical properties are very important to the simulation, because they deter-
mine, in part, what motions result. They are especially important to passive motions,
because they are highly governed by the mechanical design. As an example, Figure 18
shows the basic biped figure falling to the ground, with and without joint limit forces.

To create the complex human figure model used in this research, several sources of infor-
mation were employed. To define the kinematic structure, a digitized skeleton model
[Stredney] was used as a 3D geometric reference, the link lengths were established to match
published anthropometrics data [Drillis], and the model was refined using anatomical dia-
grams. [Goldfinger]. Masses of the links were based on human body studies. [Winter 1990]
The complex biomechanical human figure model is described in the section Biomechani-
cal Model (6).

3.4 Simulations of Human Posture and Movement
Using the biomechanical figure model in the dynamic simulator, a number of human
motion simulations were investigated, including simulations of standing posture, a reach-

ing task, and the swing phase of human walking.

The different simulations use the same low-level behavior control provided through the

joint actuators, dampers and joint limits. Higher level control is achieved by manipulating
the parameters of these low-level mechanisms. There is no single high-level control layer
incorporated into the system, to control all actions. Given a particular task, high-level con-
trol is developed, based on the requirements of the action. The high-level control strate-

gies that have been employed in this research share some common aspects, such as: using
joint spring actuators to maintain posture or generate movement, using motor programs to
vary the control state of the actuators over time, using inverse dynamics to calibrate differ-

ent control states for the actuators, and using passive dynamic effects to generate motion.

59

3 Approach

Michael A. McKenna

60

Figure 18: The basic
biped figure falls
with and without
joint limits.

Left: Without limits,
the figure takes on a
very unnatural limb
configuration, as the
knees hyperextend
“backwards.”

Right: With the addi-
tion of passive joint
limits, the figure
responds in a much
more “natural” man-
ner, without active
control.

3 Approach Michael A. McKenna

First, we will examine the simulation of standing. Maintaining a standing posture with a
simulated figure requires that the figure deliver the appropriate forces (torques) at the
joints to resist the forces created by gravity and contact with the ground. The figure must
be posed such that its overall center of mass (COM) lies within the region of support,
formed by the points of contact between the figure and the ground.

The use of inverse kinematics would be an appropriate way to generate such a posture.
This is demonstrated well by the system Jack, by Badler, et al. [Phillips] Because kinemat-
ics were of a lesser importance in the current phase of this research, corpus was not given
facilities for inverse kinematics. In this research, the standing postures were generated
“manually,” by the author using scripts to control the joint angles of the figure. In some
instances, poses were mimicked from drawing and photographs of humans. In other simu-

lations, dynamic methods were used to generate non-standing postures.

Once a given posture has been defined, it must be maintained by the figure. There are a
number of approaches that can be used to achieve this. The most basic (and limited) way
to maintain a posture is to make the figure one rigid object, creating a figure similar to a
stone statue. Because the posture is already stable, and there are no joints to move, the fig-
ure “stands” on its own, but the figure cannot move in any way, except to topple and fall if
the support surface moves or the figure is disturbed by sufficient external forces.

In a similar manner, without transforming the figure into one rigid object, the joints of the
figure can be kinematically locked, so that they cannot move. Now, as the figure stands,
inverse dynamics can be used to compute the torques which are active at the locked joints.
These forces are the ones needed to satisfy the condition that the joints remain motionless,
with no velocities or accelerations introduced, against the externally applied forces of
gravity and ground contact. The figure still behaves as a stone statue, albeit one that incor-

porates accurate strain gauges at its joints.

Now that we know what joint forces are need to maintain the posture, we can employ that
information to simulate the human figure using forward dynamics. The joints of the figure
are “unlocked” and are free to move under the influence of applied forces. To maintain the
posture, the forces computed by inverse dynamics are applied, analogous to the forces
which are generated by the muscles in humans. One method of applying these forces is
through “open loop control,” in which the computed torques are simply applied directly at

61

3 Approach Michael A. McKenna

the joints. The same force is continually applied over time; there is no feedback from the
system to change this force, thus the “open-loop” nature of the control. Because the pos-
ture is intended to be stable and non-moving, it would seem that this approach would be
successful. However, any error or inaccuracy in the computations of the inverse dynamics
or of the forward dynamics over time will allow small amounts of motion to be generated
at the joints, creating a small change in the posture. There is no mechanism to counteract
the motion, and the computed forces are valid for the initial posture only, and so the errors
and motion then build rapidly. In practice, this breakdown occurs almost immediately in
the simulator, resulting in a falling figure. Even without errors, any externally applied per-
turbation to the figure would not be counteracted. In order for this approach to work, the
inverse dynamics analysis would have to continually re-applied to recompute the joint
forces to account for any error or perturbations.

Instead of directly applying the computed forces at the joints, we can use the spring-based
actuators to deliver the forces. After performing inverse dynamics, we need to determine
the control parameters required to deliver the given forces. We can term this process
inverse control, which is analogous to inverse dynamics. We can also define forward con-
trol as the process of specifying control parameters for the actuators, which then compute
the applied forces. Using inverse control, the control parameters of the springs are “cali-
brated” to match their force goal, defining an equilibrium position of the control state. In a
sense, this “pre-loads” the springs so that they are prepared to support the body and coun-
teract gravity. Using inverse control to calibrate forward control is the approach used in
this thesis to control standing and other postural goals.

The control parameters of the springs are their rest angles and stiffnesses. Inverse control
could be used to adjust any combination of these parameters, although when more than

one parameter per joint must be computed, the solution is underconstrained, with multiple
possible solutions from which one solution must be selected. To simplify, inverse control

is used to solve for the rest angles only, with specified stiffnesses.

After performing the inverse dynamics and inverse control analyses, we can successfully
simulate the standing posture of the figure using forward dynamics. The standing figure is
not rigid, and the joints will deviate from their initial positions in response to perturbation
forces. Applied forces which are not too great in magnitude will cause the figure to change

its posture, away from the force, but a stable posture will be maintained as long as the fig-

62

3 Approach Michael A. McKenna

Figure 19: A balanced,
stable posture, using the
basic biped model.

The COM of the body is
indicated by the 3D cross-
bars, which intersect
within the torso.

This posture is main-
tained against the force of
gravity and the reaction
forces at the ground by the
actuators. The dampers
and exponential springs
employ feedback to reject
a range of perturbations
and errors.

ure’s COM remains within the region of support formed by the foot-ground contact.
Larger forces will cause the COM to move too far, and stability will be lost and the figure
will topple. These external forces can also be taken into account by the inverse dynamics
and control analyses to counteract the forces (within limits) with the actuator springs.
Figure 19 depicts a stable posture of the basic human figure, maintained over time by the
joint actuators.

Human walking, using the complex model, is also explored through simulation, although
the model of locomotion is not a complete control system. In the walking simulations, we
attempt to take advantage of passive dynamic effects, where the natural system dynamics,
including the biomechanical model, create the motions. Walking is a complex control
problem — especially in the case of human walking, which is highly optimized. By simu-
lating the passive effects, we can examine the system behavior which arises not from high
level control, but rather from the inherent mechanical design. In some sense, passive
dynamics is a very “pure” form of forward simulation, because the motions which are gen-
erated are based purely on the mechanical properties, without the addition of any poten-
tially “arbitrary” control changes. Under the right conditions, the passive system behavior
can generate very realistic motions when compared to the real motions of humans. Human

walking is, of course, not a purely passive activity. Muscular forces are required to support

63

3 Approach Michael A. McKenna

Figure 20: Passive stepping motion, using the basic biped model, compared to a Muybridge sequence.

the stance leg and upper body. In addition, electromyographic studies and inverse dynamic
simulations [Winter 1978] show that muscles are not completely inactive in the swing leg,
although they are mostly inactive. [McMahon]

The walking simulations investigated in this research are not purely passive either, but
passive effects are employed where possible, and the walking simulation is limited to the
phase of walking during which the passive forces are more significant — during the swing
phase, from the time of toe-off of the swing leg to its heel-strike.

As an example, we will examine the passive stepping activity of the basic human figure
model (see Figure 20). This simulation reproduces some of the results from Mochon and
McMahon’s passive “ballistic walking” experiments. [Mochon 1980-A; Mochon 1980-B] A
hybrid dynamics approach was used for the motion simulation in order to simplify the
problem. The stance knee was kinematically locked, and the stance hip and ankle were
kinematically controlled to undergo a constant angular velocity rotation. Initial conditions
were established for the joint positions and velocities of the step leg and for the initial

64

3 Approach Michael A. McKenna

overall body velocity. The system was then allowed to simulate forward, and a successful
stepping motion resulted. The step leg acts as a passively-swinging double pendulum, and
the stance leg acts as a passive inverted pendulum. The coupling of these two types of
motions results in a natural appearing human step. The feet were made very wide to tem-
porarily bypass the problem of maintaining lateral stability.

The passive effects during stepping are explored further with the complex body model.
Passive effects are added to generate arm swinging motions, lateral body motion, and
most notably, the stance leg foot shape. The results are compared to other simulations and

to human walking.

Other simulations are investigated as well, including a near real-time simulation of a
reaching task using the figure’s arms. The simulation results are presented in the section

Simulations (7).

3.5 Computer Graphics and Animation

The dynamic simulation and control system within corpus is embedded in a graphics and
animation system also part of corpus. Animation aids in the study of the motions, and is
certainly a tool for creative expression and communication. Using interactive graphics, we
can directly observe the results of the simulations and the user inputs. The simulation
results (joint accelerations, velocities, positions, etc.) are shown in context, we do not have
to examine plots of joint angles over time, but instead (or in addition) we can observe the

movements of the limbs of the figure.

The geometric data used to display the body segments shares relationships with the
dynamic properties of those bodies. The graphical objects can be used in the geometric
collision detection between bodies and the ground, and between different bodies. The
mass and inertia can be automatically calculated from the geometric volume, with a speci-
fied density. Each body segment is composed of any number of graphical objects. Each
object is specified as to whether or not it contributes to the body’s inertia, and whether or
not it is a “colliding” object. In this manner, complex body inertias can be created from
multiple objects of different densities, and collision detection can be performed on simpli-

fied objects for increased speed performance.

65

3 Approach Michael A. McKenna

The integration of a rendering and animation system with the dynamic simulator adds
many visual parameters which have no direct effect on the dynamics, such as color, shad-
ing, lighting, etc. These parameters may not influence the realism of the motions, but it
can be used to enhance the realism of the images. Facilities are also supported in corpus
for manipulating 2D elements, allowing for the creation of animated ‘diagrams.’ These 2D

elements include antialiased text and lines, and bitmaps, with matting functions.

66

The Program Corpus Michael A. McKenna

4 The Program Corpus

4.1 Overview

Corpus is a computer program, written by the author in the C language. Corpus provides
functionality for creating dynamic simulations of articulated bodies, which can be ani-
mated over time using computer graphics. The program corpus derives its name from the
Latin word. The definition of “corpus” reads: “the body of a man or animal...” [Webster’s]

Corpus is a system for simulating mechanical, animal and human structures.

Corpus provides a flexible system for generating graphics, animation and dynamic simula-
tion. Corpus is controlled by giving it text commands, which it interprets in real-time.
Thus, the system behaves like an interpreted computer language. This is accomplished by
the parser sub-system in corpus, which converts the input text commands to executed
commands. The graphics sub-system generates rendered images, based on the 3D data-
base. The dynamic simulator subsystem creates and analyzes motion, based on its

dynamic object database (see Figure 21).

These three sub-systems are the primary procedural elements in corpus, providing its
computational functionality. [Zeltzer 1990] The procedural elements perform the simulation,
graphics and other functions, but they require data and instructions in order to implement a
given simulation. The structural elements in corpus define the objects, data, and simula-
tion forms, such as: the articulated body kinematic definitions; body sizes, shapes, and
masses; gravity, ground stiffness, and other environmental parameters; internal actuator

parameters; motor programs; etc.

Because corpus uses an interactive interpreter, command sequences do not have to be
established beforehand. Therefore, it is not necessary to re-compile corpus in order to gen-

erate different simulations. The user can construct a simulation or three dimensional envi-

67

The Program Corpus Michael A. McKenna

i Figure 21: Block dia-
- Interactive |<@— gram of the program
inputs corpus.
Scripts
Datgbase Programs [«
files
A
corpus Yy text
output
Parser P

Graphics
System

Dynamic |
Simulator

output Rendered
- Images

ronment and vary parameters as events progress, using input commands. This allows for
exploration and experimentation, since different commands can be “tried out” very rap-
idly. In addition, external programs can connect to corpus in real-time, either as a control-
ling or controlled process, without “linking” to corpus. Because it is interpreted in real
time, corpus provides some of the advantages of a true interpreted language, such as lisp,
but with the added advantages of higher execution speed and a larger hardware and soft-
ware support base (because it is implemented in C). The disadvantage of a parser
approach, as opposed to an interpreted language, is that internal commands cannot be con-
structed or re-defined in real-time (re-compiling is needed), and the language structure is
less sophisticated.

4.2 Parser

The parser accepts text input, and generates text output in corpus. A number of input
sources can be given to corpus: interactive (typed) text commands, script files, and other
computer programs. The input text is commands and data, which the parser interprets.
Some command examples are “render”, to generate an image of the 3d scene, and “eye

10.2 5.5 1”to set the rendering eyepoint (or viewpoint) to the {x,y,z} coordinate:

68

The Program Corpus Michael A. McKenna

{10.2, 5.5, 1.0}. The text output consists of command feedback, results and requested
data.

This interface to corpus can be considered a programming interface, because corpus acts
as a language, which is programmed via its input. [Zeltzer 1990] However, guiding inter-
faces can be created in corpus, as well, by combining corpus with other I/O programs
which map user inputs to corpus commands and data. For example, corpus has been used
to experiment with viewpoint dependent imaging, in which the graphical display of a three
dimensional environment is updated in real time, based on the position of the viewer’s
head. [McKenna 1992] Tracking devices were used to locate the user’s head and hand, so
that the graphical viewpoint could be adjusted and the user could manipulate objects.

In addition, task level interfaces can be created in corpus, by establishing high-level simu-
lations, which are task, or goal, driven. [Zeltzer 1990] These task level interfaces are created
by using the programming interface to create a simulation environment, possibly in com-
bination with guiding interfaces to manipulate data and controls. For example, the simu-
lated roach, discussed in the Background section, uses high-level parameters, such as
walking speed and direction, to control the task of walking. [McKenna 1990-A; McKenna 1990-
B; McKenna 1990-C}

The basic use of corpus is from a keyboard with a text display. The interactive text input is
typed by the user from the keyboard. Corpus displays an input prompt, (such as “cor-
pus>") after which the user types in command text. Corpus may then display text output,
providing command feedback and results.

Scripts are text files which contain commands. They are read into corpus and executed,
essentially as if a user had typed them. Scripts are useful for storing command sequences
which are used repeatedly, such as a script to construct and initialize an articulated figure,
or a script to vary a set of rendering parameters. Scripts are a key component for corpus,
because they are typically the means of storing articulated body definitions, simulations
and parameters. Corpus alone has no “built-in” simulations or objects, so we use com-
mands and scripts to define them. Thus, scripts store both structural descriptions which are
loaded into the corpus database, as well as commands which control procedural execution.
Scripts do not employ the text output from corpus, although their execution may be condi-

tionally based on parameters within corpus.

69

The Program Corpus Michael A. McKenna

Other programs can function in cooperation with corpus. The output of an external pro-
gram can be used as a substitution for, or an augmentation of, the interactive text input to
corpus, sending commands to corpus for it to execute. The text output from corpus can
then be used as feedback to the external program. In such as situation, the external process
is the “parent” process in relation to corpus, and it acts as the controller, or “master,” while
corpus serves as the “slave” process. For example, a simpler version of corpus was used
as a “child” of the virtual environment program bolio. [Zeltzer 1989] In this example, corpus
computed the motions of a kinematic hexapod, and bolio handled the device 1/0O, the
graphics rendering, other simulations, and the overall virtual environment coordination.
[McKenna 1990-A]

Alternately, an external process can be started as a slave to corpus, with corpus function-
ing as the master. Corpus issues commands to its “child” process and receives feedback
commands and data from it. A simple example of this is the spline program, which per-
forms interpolation computations and returns data for corpus to use. A more complex
example is provided by the following situation: the programs corpus and vestool (another
dynamics simulation program [Schréder]) have been used to cooperate in the simulation of
multiple, interacting dynamic objects. Vestool computed the free motion of the objects,

and corpus computed the impact responses during collisions.

The corpus parser includes some basic language-related commands, including integer
variable manipulation, arbitrary data lists, conditional execution, and simple function def-
initions. A more complex language could be used within the corpus parser. The author cre-
ated the corpus parser as a means to rapidly prototype different situations, with the ability
to add new commands very easily. In recent years, however, standard packages have
become available which provide a similar type of parsing function, but with more sophis-
ticated language capabilities. Notably the Tcl system provides a flexible command inter-

pretation language. [Ousterhout]

4.3 Dynamic Simulator

The dynamic simulator performs the computations required to simulate the dynamic
motion of the articulated figures described within its database. The parser is first used to
define the simulations, setting the parameters and defining the dynamic objects for the
simulator to operate with. The dynamic simulator sub-system is linked to the graphics sub-

70

The Program Corpus Michael A. McKenna

system, and they share some common data. There are also significant regions of the data-
base which are not shared, but which are unique to either the simulator or graphics system.

Parser commands are used to control the dynamic simulator, and to query for simulation
results. After defining a simulation environment, the parser command “go” instructs the
simulator to perform the computations required to simulate forward in time. The simulator
returns, after computing the motions and/or forces of the articulated figure(s). The simula-
tor “moves” forward in discreet steps in simulation time, returning control to the parser

between each “step.” Results can be saved to or loaded from files, via parser commands.

The dynamic simulator is covered in detail in the following section, Dynamic Simulator.

4.4 Graphics

The graphics sub-system in corpus generates the rendered image output. The output can
be in the form of a “bitmap” file, using software rendering, or a screen image using spe-
cial-purpose rendering hardware which greatly accelerates the process. Software render-
ing offers enhanced anti-aliasing and lighting effects, and is compatible with all hardware
platforms which support standard C. Hardware rendering is rapid enough to offer real-
time rendering (depending on the scene complexity). Hardware support for rendering in
corpus is provided on Hewlett Packard and Silicon Graphics workstations.

The graphics system can also optionally output additional data with it’s rendered image
files. “Depth map” files contain a floating point value for each image pixel, which speci-
fies how far (or deep) that image element was from the rendering viewpoint. “Alpha map”
files contain opacity/masking values for each image pixel, and are especially useful for

digital matting.

Commands are provided to load and manipulate graphical objects. A number of com-
mands are used to transform (scale, rotate, translate, and shear) the objects in space. Addi-
tional commands affect the rendering properties of the objects, such as color, transparency,
surface specularity, etc. A set of commands controls the environment lighting. Another
controls the rendering camera parameters (eye position, lookat point, field of view, etc.).
The rendering sub-system is activated to generate the current image with the parsing com-

mand “render.”

71

The Program Corpus Michael A. McKenna

There are a set of additional graphics functions which are not an intrinsic part of the major
graphics sub-system. The functions are provided by smaller-scale sub-systems, which
operate largely independently from the primary graphics system. However, these smaller
systems cooperate with the graphics system, sharing framebuffer resources. One set of
functions perform anti-aliased line drawing. Another renders anti-aliased fonts. Another
set handles bitmap manipulation, including digital matting, and frame-buffer and file I/O.
Although they are not strictly graphical, a video-deck control set is also included.

4.5 More Corpus Information

Corpus is not the sole creation of the author. A number of object libraries by others are
linked with corpus to provide functionality. However, the overall structure of corpus, and
its development are due to the author. The parser and dynamics simulator were written
nearly entirely by the author. The primary graphics system (without its parser interface) is
provided by rendermatic, a rendering package written primarily by David Chen. Please
see the Acknowledgments for other contributors to corpus.

A list of the corpus commands is given in Appendix A, Corpus Help. More detail on the
usage of corpus in provided in Appendix B, Corpus Tutorial. Examples of using corpus
for dynamic simulation are presented in Appendix C, Dynamics Verification.

A simple example script for controlling corpus is shown in Script 1. This sort of instruc-
tion list could be typed in by the user directly to corpus, or, it could be stored in a script
file which is read into corpus, using the “do” command. The image generated by the

example script is shown in Figure 22.

An example session with corpus is shown in Script 2. Both the text inputs to and outputs

from corpus are shown in the script, as a user would interact with the corpus parser.

72

The Program Corpus

Michael A. McKenna

‘ Script 1: An example corpus script.

| This script loads an object, transforms it, sets its properties, and renders an image.

comment lines begins with ‘#°’

| # load the object from a file
| get block from data/unit_cube

[2
transform the object

use post-multiplication order
postmult

scale block 2 2 2

rotate block z 45

move block 10.2 2.5 0

set object graphics properties
color block .5 .2 .2
shadeparam block .8 .4
facet block

30 .5

set camera position, etc.

lookat block
eye 10 10 10
fov 30

set the color of the “background”
backgroundcolor 1 1 1

add a new light

lightmake light.2

lightpos light.2 100 200 100
lightcolor light.2 1 .9 .8
lightdimmer light.2 .7

render the image
render

Figure 22: The output image generated by corpus, using Script 1.

73

The Program Corpus Michael A. McKenna

Script 2: An example interactive session with corpus.
Both the inputs from the user, and the output from corpus are shown. The output is shown in italics, for
illustration purposes.

corpus> get b from ../data/unit_cube
corpus> eye 3 2.5 1
corpus> lookat b
corpus> eye

eye: 1 2 1

corpus> lookat

lookat: 0 0 0

corpus> render
rendering. ..done
corpus> move b .1 .1 0
corpus> render
rendering. ..done
corpus> move b .2 0 .1
corpus> render
rendering. ..done
corpus> whereis b

b: .3 .1 .1

corpus> lookat b
corpus> render
rendering...done
corpus> quit

UNIX>

74

5 Dynamic Simulator Michael A. McKenna

5 Dynamic Simulator

5.1 Introduction

The dynamic simulator is a core element of this research, as it forms the underlying basis
for all movements. Featherstone’s Articulated Body Method (ABM), as introduced in the-
Background (2) and Approach (3) sections, has been implemented and extended as part
of corpus. This section describes the equations which define the simulator system, pro-
vides information on the implementation of the simulator, and explains the ways in which
the simulator system in used to generate and analyze physically-based motion.

The corpus dynamic simulator operates on rigid bodies, and articulated structures com-
prised of rigid bodies connected by joints. The articulated structures must be branching in
nature, i.e. without closed kinematic loops. Loops can be approximated using closure
spring forces, and the algorithm can be extended to handle loops exactly, but with a signif-
icant loss of efficiency. Contact between an articulated figure and the ground can create
closed loops — when more than one part of an articulated figure touches the ground, it can
be said that a closed loop is formed, with the ground itself forming part of the kinematic
loop. These kinds of loops are not treated explicitly as closed loops in corpus, but are han-
dled through contact forces, which simulate the supporting and friction forces at the con-
tact between the figure and the ground.

Corpus simulates forward, inverse and hybrid dynamics on articulated figures. In addition,
corpus provides first order (or “aristotelian”) dynamic simulation, in which velocity is
proportional to force. First order dynamics allows for rapid convergence to final resting

states.

The simulation of articulated figure is performed in the context of applied forces, both

internal, joint forces, and external, environmental forces. Internal forces are those forces

75

5 Dynamic Simulator Michael A. McKenna

generated “within” the figure, and are applied at the joints as torques or forces. These
include elements such as joint dampers and springs. External forces comprise the forces
applied to the figure from sources outside of its own body, from the environment. These

include gravity and contact forces.

The central element of the simulator algorithm is the Articulated Body Method (ABM) for
forward, inverse and hybrid dynamics as described by Featherstone, [Featherstone 1983;
Featherstone 1987] and his original texts should be consulted concerning the derivation of the
algorithm and for additional details. This section provides the final equations required for
implementation of the algorithm, as well as the required background in spatial notation.
The material here is presented from a somewhat different perspective on the issue, focus-
ing more on a complete dynamic simulation environment, which should be complimentary
to Featherstone’s texts. In addition, this section expands on Featherstone’s algorithms, and
covers additional topics required for a complete simulation system, such as internal and

external forces.

The dynamic simulator in corpus is a general purpose system, capable of simulating a
wide variety of articulated structures, over a wide range of conditions. Different figures
and simulations are constructed using different command sets or scripts in corpus. As
described in the previous section, The Program Corpus, the dynamic simulator is linked
to a parsing sub-system, which allows dynamic parameters to be set and queried, and pro-

vides the commands for constructing and controlling articulated figures and simulations.

The simulator in corpus was tested for correct implementation and numerical accuracy
using a variety of test cases. These are discussed in Appendix C, Dynamics Verification.
The tests in the Dynamics Verification appendix are also useful examples of how simula-

tions are constructed using scripts in corpus.
Also, see the List of Terms, page 264, for reminders of the various terms used, and the

Glossary, page 266, for unfamiliar terminology.

5.2 Spatial Notation
Before the dynamics algorithm is presented, we must cover “spatial notation,” the mathe-
matical notation in which the ABM is written. Spatial notation was developed by Feather-

76

5 Dynamic Simulator Michael A. McKenna

stone as a way of combining the linear and angular components involved in rigid body
motion. Spatial vectors are 6 dimensional quantities, which contain both the 3 dimensional
linear, or translating, degrees of freedom (DOFs), and the 3 dimensional angular, or rotary
DOFs. The equations of motion can be expressed in a more compact form using spatial
algebra, than by using traditional 3-dimensional vector math.

Featherstone describes a spatial vector as “a 6-dimensional vector which can be used to
represent the combined linear and angular components of the physical quantities involved
in rigid-body dynamics.” [Featherstone 1987]

Spatial quantities are denoted by a carat (“ ~”’) above them, as in a. Spatial vectors are

6 x 1 column vectors, and spatial matrixes are 6 X 6 matrixes. Column vectors (such as
spatial vectors) are commonly used in robotics research, whereas row vectors have histor-
ically been used in computer graphics literature and software implementations (so that
vectors and matrixes must be transposed to convert from one system to another). It is
important to keep this difference in mind when reviewing simulation and computer graph-
ics publications. Spatial algebra is based on standard matrix arithmetic; however a differ-

ent transpose operation is used (the “spatial transpose”).

We will now discuss some different spatial quantities. Spatial velocity, ¥, defines the 6
dimensional velocity of a body, from the point of reference of the coordinate frame origin.

It is given as:

77

5 Dynamic Simulator Michael A. McKenna

w Figure 23: The velocity of a rigid body. From
[Featherstone 1987].

It is composed of the angular velocity, ®, and the linear velocity of the rigid body at the
origin of the coordinate frame, v,,. See Figure 23. If the linear velocity, v, of another
point P within the body is known, it is transformed to the origin using the following rule:

v0=vP+5f’x0), Eq.5

where OP is the vector from the origin to the point P. There is a similar transformation for
finding the linear velocity at any other point, as in:
vQ=vP+QP><03. Eq. 6

The angular velocity, ®, remains the same at all points.

The spatial acceleration, &, of a rigid body is given as:
a = , Eq.7

where a,, is the linear acceleration of the point in the rigid body which is instantaneously
passing through the origin, and ® is the angular acceleration. If the linear acceleration and

velocity of the body is known at a point P, the linear acceleration at the origin is given as:

a0=aP+vam+OT’x®. Eq. 8

78

5 Dynamic Simulator Michael A. McKenna

Spatial force, f‘ is given as:

f = f , Eq 9
To
where fis the linear component of the force, and T, is the torque at the origin. If the linear
force is applied to the body at a point P, then the torque at the origin is computed as fol-

lows:

t, = T,+OPX [, Eq. 10

(9]

where T, is the torque, if any, at point P. The linear component of the force, f, does not

change with respect to different locations.

Before introducing the next spatial quantity, the spatial inertia tensor, we will introduce a
few operators. The cross operator takes a “standard” (non spatial) 3 dimensional vector
and creates a 3 X 3 matrix, which “encodes” the multiplication products from a standard

cross product operation. The operation is given as follows:

x 0-zy
ax =|ylxX =]z 0 —x|- Eq. 11
4

-y x 0

Thus, the operation (a X) b (matrix times vector) is equivalent to a X b (cross product of
two vectors). This operator is also known as the anti-symmetric matrix, [Featherstone 1987]

or the skew-symmetric matrix, which is often designated with a tilde (“~”), as in a,in

other notations. [Armstrong 1985]

The spatial cross operator, (& X), is the spatial algebra equivalent of a three dimensional

cross operator, and it is defined as:

ax = %% =2 0|, Eq. 12
b bx aXx

79

5 Dynamic Simulator Michael A. McKenna

The spatial transpose operator (denoted by a superscript S, as in a%) is used in place of a
standard transpose operator in spatial algebra. For a spatial vector:

M
S lal _
a _u _[braT]. Eq. 13

For a spatial matrix:
S
A= =P B, Eq. 14

The spatial rigid body inertia tensor, 7, can be constructed from 3 X 3 sub-components, as

follows:
T
1= |H M| Eq. 15
I H
where:
H=mOPx |, Eq. 16

where m is the scalar value of the rigid body’s mass, and the center of mass is located at

point P, with respect to the origin, O. The mass matrix, M, is given as:

100
M=mlg10 - Eq. 17

001
The rotational inertia of the rigid body at the coordinate frame origin, I, is given as:

I=1+OPxmPOx |, Eq. 18

*
where I is the 3 x 3 rigid body inertia tensor, as in:

R Ixx _Ixy _Ixz
I = _[xy]yy _Iyz . Eq. 19
= T B |

80

5 Dynamic Simulator Michael A. McKenna

[Wilhelms 1985; Winter 1990] The moments of inertia are defined as:
I =[0G +Z)dm ,and
xx—j(y +2)dm , and etc., Eq. 20
where dm is the differential mass element. [Marion] The products of inertia are given as:

Ixy = Ixy dm , and etc. Eq. 21

Spatial transformation matrixes convert spatial values from one coordinate frame to
another. The matrix pX, is the spatial transform which transforms values from the coordi-
nate system “O”, to the coordinate system “P”. This spatial matrix can be constructed

from 3 x 3 sub-components:

. E 0 1 0 E 0
oX, = , Eq. 22

s~ T _a T
0 E||OPXx 1 EOPx E

which corresponds to a shift of origin from O to P, followed by a rotation about the point
P. The E matrix is a 3 x 3 rotation matrix. Note the order of multiplication where the rota-
tion and translation spatial matrixes are concatenated. The inverse transformation, repre-

o A 2 A S
sented by ,Xp, is the spatial transpose of pX,, (ie. pXp = pXp).

Multiple spatial transformation matrixes are combined as follows:
oXo = oXp pXo - Eq. 23
A spatial vector is transformed in the following manner:
ap = pXp 4, Eq. 24
A spatial tensor is transformed with the following multiplications:

5.3 Single Body Dynamics

We will now discuss the dynamics of a single rigid body, before proceeding to the algo-
rithms for articulated body motion. In spatial notation, the equations of motion are quite
compact. The equations of motion for a rigid body, free to move in space are given as:

f=Ta+p’, Eq. 26

5 Dynamic Simulator Michael A. McKenna

and

pv =K1V, Eq. 27
where f is the spatial force applied to the body, 1 is the body’s spatial inertia tensor, & is
the spatial acceleration, ¥ is the body’s spatial velocity, and j)v is the bias force, which
accounts for velocity-dependent spatial accelerations. The bias force is required due to
coupling between rotation and linear velocity. Even in the absence of any applied force, a
spatial acceleration can be generated when the body has a non-zero spatial velocity, and
the bias force accounts for this. To paraphrase Featherstone, the bias force is equal to the
force which must be applied to a body in order to give it zero spatial acceleration, in the

absence of any other applied forces.

To solve the forward dynamics problem, we solve for the acceleration, as in:
A % —1 ~ A
a=) ((f-pY) . Eq. 28

To solve the inverse dynamics problem, we solve for the net applied force, from a speci-

fied acceleration, as in Eq. 26.

The dynamics computations give us an instantaneous solution to the problem. The core of
the simulator is formed by these equations, and thus it provides an instantaneous solution.
In order to move forward in time, we must integrate the time-dependent variables. Numer-
ical integration uses discrete, instantaneous samples, such as those computed by the simu-

lator, to approximate the actual integration.

For example, when we solve the forward dynamics problem, the body’s acceleration is
computed, based on the applied forces and current velocity, at a given instance in time (#y).
In order to determine the velocity at a future time (#,) we need to integrate the acceleration

over that period, as in:
b =9 +jadt. Eq. 29

Numerical integration techniques approximate the above, using discrete values of the
acceleration. There are three integration techniques available in corpus: euler, fixed-step
runge-kutta, and adaptive step-size runge-kutta. The euler algorithm is the simplest of the

82

5 Dynamic Simulator Michael A. McKenna

integrators, but it provides the basic concept of the numerical integrator. To update the

value of the spatial velocity:

b, =P +adt, Eq. 30

new

where dt is the amount of time over which to integrate (z, -). We refer to dr as the

timestep, or the amount of simulation time which passes between each simulation step.

The fixed-step runge-kutta algorithm takes four sub-steps for each timestep. [Press] In other
words, the dynamics equations are evaluated four times, at different time points between
t; and t,, each point being a different sub-step. The results from the sub-steps are com-
bined, using weighting factors, in order to obtain a 4th order solution.

The adaptive runge-kutta algorithm takes six sub-steps, and uses two different sets of
weighting coefficients to combine the results into both a 4th order and 5th order solution.
[Forsythe] The difference between the two results is used as an error measure. If the error is
greater than the specified error tolerance, the algorithm discards the results, and sets a
smaller step size, based on the error. The previous state is restored, and the integrator
begins again with the smaller step size. This allows the integrator to return a result with a
certain accuracy, regardless of the complexity, or changing conditions within the simula-

tion.

For most simulations, the best results are obtained with the adaptive integrator, because it
is designed to adjust itself to the “stiffness” of the problem. At times it will take a few
large steps, at other times it will take many small steps, adapting to variations in the sys-
tem which mandate a change in step-size in order to maintain a certain level of accuracy.
The non-adaptive algorithms are appropriate if the computation must be completed at reg-
ular, or very short intervals. However, adaptive algorithms can be instructed to halt further
sub-division after a specified limit. In general, the 4th order, non-adaptive integrator will
compute a more accurate solution than the euler integrator, for the same amount of com-
putation time. The euler integrator’s primary usefulness lies in its simplicity, which can be

of value during the debugging process.

Comparisons of the different integrators are provided in Appendix C, Dynamics Verifi-

cation, along with some examples of single body simulations.

83

5 Dynamic Simulator Michael A. McKenna

5.4 Articulated Body Forward Dynamics

Articulated figures in corpus are collections of rigid bodies, connected together by ideal-
ized joints. The joints constrain the relative motion of the two connected bodies, allowing
the bodies to rotate or translate with respect to each other. Articulated figures in corpus are

defined as branching structures, without closed kinematic loops.

An articulated figure is composed of n bodies. Different bodies within an articulated figure
are referred to by an index, i, which ranges from 1 to n. Quantities which are associated
with a given body carry its index as a subscript after the term. For example, the spatial

velocity for body i is V;.

One body within the articulated, branching structure, is designated as the root or base
body, and it is defined as body 1. The root is proximal to all other bodies. Any body could
be chosen as root, however, it is often logical to choose a central object as the root. “Leaf”

bodies are bodies which lie at the distal end of a kinematic chain.

The joints between connected bodies are defined by the spatial joint axis, §;. In corpus,
every joint has one degree of freedom (DOF). The equations of the ABM can be extended
to handle multiple DOF joints, [Featherstone 1987] and corpus could be extended to handle
these cases as well. The joints can be rotary (1 degree of freedom “hinge” joints), or trans-
lating (“prismatic” or “sliding” joints). Multiple degree of freedom joints are created in

corpus by concatenating bodies, with their joint axes aligned in different directions.

A rotary joint axis is given as follows:

§=|:xyzOOO:|T’ Eq. 31

where {x y z} is the normalized vector which defines the axis about which rotations occur.

A translating joint axis is defined as:

§=|:000xyz]T’ Eq. 32

where {x y z} is the normalized vector which defines the axis along which translations are
allowed. As defined above, these joint axis are positioned to lie at the coordinate frame
origin. The spatial joint axis can be transformed using a spatial transformation matrix.

84

5 Dynamic Simulator Michael A. McKenna

The joint position of body i is given by the scalar g;, in meters or radians. Joint velocity is
4, and joint acceleration is §;. The joint force of body i is given as Q;.

The joint constraint maintains that there can be no transmission of force through the joint,

from one body to another along the direction of the joint, when the joint is un-powered:
S 5
5, fi=0, Eq. 33

where f; ,is the net force transmitted to body i from its parent, body i-1, through joint §,
(recall that the superscript S denotes a spatial transpose). If there is an active force at the
joint, then it is included in the net force applied from one body to another through their

connecting joint. The component of the net force on the joint axis is:
S % :
Qi=s,‘fi9 Eq. 34

Due to the hierarchical structure of the articulated figure and the constraints of the joints,
many relationships exist between parent and child bodies. The spatial velocity of body i is
the sum of its parent body’s spatial velocity and the spatial velocity created by its own
joint velocity:

D=9, +58,d; . Eq. 35

]

The acceleration of body i is the sum of its parent’s spatial acceleration, and the spatial

acceleration generated by the joint velocity and acceleration:

G, = a;_1+V,X5,4,+54; . Eq. 36

1

The central equation of motion in the ABM is:
fi=Tta+p, Eq. 37

where]A‘i is the net spatial force applied to body i, 1 {‘ is the articulated body inertia, a; is
the spatial acceleration, and p ; is the bias force, all of the ith body in the articulated figure.
The articulated body inertia allows us to establish a linear relationship between the applied
force and the acceleration of a rigid body, even though the motion of the body is con-
strained by its connection to other bodies through joints. The bias force incorporates the
velocity dependent bias force, p;, and forces transmitted through the joints.

85

5 Dynamic Simulator Michael A. McKenna

The recursive relationship for the articulated body inertia is derived by Featherstone, and

determined to be:

AR o
A _ % ~A i+19 4 1°%i+1%i+1
IF =L+ - ——— : Egq. 38
Sivilivn8ip
and
A .
I, =1,, Eq. 39

where n = the index of any body which lies at the end of an articulated chain (a leaf link).

The recursive formulation for the bias force is given as:

Aext ~A
A —_ v_ K A A A A .
Pi=p]~fi D+l (Vi1 X801 404 Eq. 40
S sA A n . S,

Qi1 =St Livt Vi1 X801 41 =801 Pi A,

5 A i+1 541>

Sivt LiSig

pr = 9,X1; 9, , Eq. 41

and
. L, next
P,=Db,—fn - Eq. 42

I have included the external force,]A”fxt , explicitly in the bias force, in a slightly different

form than Featherstone.

Starting with the outermost, or “leaf,” bodies in the articulated figure, the articulated body
inertias and bias forces are computed inwards to the base body. The root acceleration is

then computed, using:

~ > ——1 A

a, = (In~ (-pY) - Eq. 43
The joint accelerations are then computed outwards, from the base to the leaf bodies, as
follows:

SAA A S, SAA
_Ql_sl Ii (vixsiqi)_st p;—=s; 4y a;_4 Ea. 44
ql - ,\S AAA q'
5 1; 5,

86

5 Dynamic Simulator Michael A. McKenna

The above equations were derived in a uniform, unchanging coordinate frame. However,
there are advantages to using body-local coordinate frames, in which each body has its
own local coordinate frame, which travels along with the body. Using body-local coordi-
nates, the COM of the body, and thus the spatial inertia tensor, are unchanging. Integration
in a local frame is more efficient, as well.

When using body-local coordinate frames, transformation matrixes are used to translate

the values from one body into the coordinate system of a second body, so that they can be

combined in the equations of motion. The matrix lf(; is the spatial transform which trans-

lates values from the coordinate system of body j, to the coordinate system of body i.

The following is the set of equations for the ABM, written using local coordinate frames:

b= X1 V45,4, Eq. 45
a, = X;_1a;_|+V,X5,4;+5,4;, Eq. 46
pl = VX1, 9,, Eq. 47
~A S A
I...5 ,§. .1
A _ 5 2 ~A i+1%41°%+1%i+1 5
I7 =i+ X L1 - ——5—3 i+1%i > Eq. 48
SivtlistSing
A A
I, =1,, Eq. 49
~ext A ~ ~A ~ A A .
pi=pri-fi X1 Py + L Vi1 X841 9540 Eq. 50
AS 7A A A A N AS A
Qiv1 = Siv1 liv1Vig1 X801 941~ Si41Pis1 7A 5)
+ S A i+19%4+1) >
S;iv1 liv18i 4y
~ Ay ~Aext
Po=Dr—Jn > Eq. 51
and
AS AA ~ A A ASA AS AA s A
L QS L (0 x5,4) -8 P L X1 4y E
1.5

87

5 Dynamic Simulator Michael A. McKenna

Note that there are common sub-expressions in the global and local forms of the ABM
equations (such as ¥; X fvl. q;)- These can be extracted, computed first, and substituted into
the equations to increase computational efficiency. [Featherstone 1987] This is the way that

corpus is implemented.

5.5 Hybrid Dynamics

The forward dynamics computations can be augmented to perform inverse and hybrid
dynamics. [Featherstone 1987] Inverse dynamics is used to compute the force (unknown)
required to accomplish a specified motion (known). Hybrid dynamics allows a mix of for-
ward and inverse dynamics; at every joint, either the applied force or the acceleration is
specified, and the unknown value is then computed during the simulation recursion. Using
hybrid dynamics, part of a figure can be “driven” through a kinematic trajectory, while the
remainder of the body is dynamically simulated, so that it responds to the applied forces,
as well as the motions of the kinematically controlled joints. Hybrid dynamics are imple-
mented in corpus, and will be used in this thesis to perform inverse dynamics on the biped,
as part of the control system computations to automatically derive the control parameters

necessary for standing and other postures.

When the joint between body i and i+1 is kinematically controlled (joint 3, , ,), the fol-

lowing relationship is used (see [Featherstone 1987]):

A

A AA
— ~ /\v A A oA . A . A
fi=Lia+pr+li(a+9, X8 140 #8190) *Pivr Eq. 53

where ¥, , | is the spatial velocity, §, , | is the spatial vector which represents the joint
axis, ¢, , , is the scalar joint velocity, and §; , | is the joint acceleration, all of body i+1,
the distal “child” of body i.

From Eq. 53, we can extract the recursive relationships for 14 and p i

A s aA
I =L+l , Eq. 54

N NV pExt Ao A s A

Pi=bi=fi Py i1 O X801 di 1 #5040 1) Eq. 55

(This is in slightly different form than Featherstone, to incorporate the external force). It
can be seen from Eq. 54 that articulated body inertias essentially sum when the joint

between two bodies is kinematically controlled.

88

5 Dynamic Simulator Michael A. McKenna

When joint i is kinematically controlled, the joint force can computed as:
WS sA N
Q,=35,(;a,+p) . Eq. 56

These inverse calculations (Eq. 54 and Eq. 55) were extended to local frames, by the

author:
~A PN A .
I = Li+Xip1 LivinXs Eq. 57
A AV ~ext A n
Pi=DPi—fi +iXiv1 Py Eq. 58
A

X1 (L1 (D X80 G 4801 450 1)) i1 X

Inverse dynamics can be calculated for the root (most proximal) body, as well, using Eq.

37, so that the overall 6 dimensional body motion is kinematically controlled. In this case,
however, an external force, f 1 » hot a joint force, must be applied to the root body in order
to achieve the specified acceleration, a, . Unless there is a realistic source for their genera-
tion, arbitrary constraint forces should not be used. Using forward dynamics methods, it is
a control problem to generate the desired body motion, using applied joint forces. In some
cases, constraining the root motion is appropriate. For example, when the base is fixed, the

root acceleration can trivially be set to zero.

The joint forces calculated by the inverse dynamics are very susceptible to the stability of
the dynamic system being simulated. Some examples of sources of numerical instability
are given below, in the discussion of contact forces. Because the joint forces computed by
the inverse dynamics can vary widely, even over a short period of time, an average is
made of the joint force. In corpus the numerical integrator, which is typically used to
update velocity and position from acceleration, was augmented to compute an average
joint force, over a range of time, with increased numerical stability, as in:
froa

=1t

0, = Eq. 59

89

5 Dynamic Simulator Michael A. McKenna

5.6 First Order Dynamics

First order dynamics is an implementation of Aristotle’s theory of dynamics, in which
objects have a “preferred rest.” In other words, unless a force is applied to an object, it will
not move; the instantaneous velocity is proportional to the applied force. First order
dynamics have been used in interactive computer graphics systems, in order to ease cer-
tain kinds of interactions. [Witkin 1990]

First order dynamics are very useful for quickly simulating the final rest state of a second
order dynamic system. A first order simulation behaves somewhat like a damped, very low
mass system, since the system has no momentum (using familiar terms from second-order
dynamics). For example, a three-link pendulum, falling under the influence of gravity, is
shown in Figure 24. When first order dynamics are used, the pendulum smoothly “falls”
downward, to its fully vertical, extended position, without any overshoot or oscillations.
But when second order dynamics are used, the pendulum overshoots its final equilibrium
position, and oscillates back and forth. Depending on the damping factor, the pendulum
may continue to move for a very long time. The final resting state of the pendulum is quite
obvious. Other systems may be significantly more complex, however, with non-obvious
final resting states. For example, a postural system may combine internal and external

forces which must be balanced out.

The equations of motion for aristotelian dynamics are a straightforward extension to
Featherstone’s methods. The equations were derived by the author, and implemented in

corpus.

The net applied force is proportional to body’s velocity:
Fi=Tftv+p, . Eq. 60
Solving the forward dynamics problem, for the spatial velocity:
v, = (I7) (fi-py) - Eq. 61

The articulated body inertia computation is the same as before:

M S AA
jA = 7474 Ii+lsi+1si+11i+1
e T Y .

Siv1liv15i41

Eq. 62

90

5 Dynamic Simulator Michael A. McKenna

Figure 24: First order simula-
tion of a 3 link pendulum
(upper) compared to a second
order simulation (below).

In both examples, the pendu-
lum moves from left to right
over time.

Using first order dynamics,
the system has no momen-
tum. The force of gravity
applied to the links creates a
‘downward’ velocity at the
joints. As soon as the pendu-
lum is extended straight
down, the force of gravity
create no torques at the joints,
and thus, there is no resultant
velocity.

91

5 Dynamic Simulator Michael A. McKenna

and

I, =1 . Eq. 63

n n

The bias force now has no velocity-dependent terms:

S
- Qiv178i 1Dy 15a
pi=_fi+pi+l+ S A Ii+lsi+1, Eq64
Siv1 1i8i4
and
P, =~fn- Eq. 65
The joint velocity is computed outwards, from the root body to the leaf bodies, using the
following:
S . SAA
Q.-3. p.—-5. 1, V. _
g = ———F—— Eq. 66
5. 1; 3,
Using body local coordinate frames:
?A . .S jA
SA 4 S a4 i+ 15 418 1 di+1 -
Ir =Lt Xodiv -———3 i+1%i > Eq. 67
Siv1liv18iiy
AA .
=1, , Eq. 68
s .
A & Qi+1_§i+1pi+1~4 o
P, = —fi+t X Pis1t S AL Liv18;01]> Eq. 69
Siv11iSi 4y
P, =~fn, Eq. 70
and
S WSAA e,
QS P LXK b Ea. 71
ql_ = S A g.
Si I,‘ Si

92

5 Dynamic Simulator Michael A. McKenna

As an implementation note, it is not necessary to include a separate set of computations, as
above, to implement first order dynamics in a second order dynamics simulator. Rather,
we can simply zero all of the velocities in the system as we enter the dynamics computa-
tions, and solve for the velocity, rather than acceleration. This eliminates all velocity-
dependent terms automatically. However, this is not as efficient, since the zero accelera-
tions are still integrated, and the velocity-dependent terms are still calculated (to be zero).

Velocity-dependent damping should not be used when simulating first-order dynamics,
since the system would directly oppose its own motion. Velocity-dependent dampers are
automatically eliminated from the system, if the velocities are set to zero before the simu-

lation computations are initiated.

5.7 External Forces

External forces may be applied to any body in an articulated chain, in order to influence its
motion, or simulate an environmental effect. These external forces are “environmental
forces,” because the forces are applied to the articulated figure from influences outside of
itself, in the environment. These sources include: gravity, contact and collision forces,

attachment forces, etc.

Gravity

Gravity is easily incorporated into the simulation system. The “downward” force due to
gravity, m g, is applied to the center of mass (COM) of every rigid body in the simulation
(including each body in an articulated figure). The gravitational constant, g, is a three
dimensional vector, which specifies the strength and direction of gravity, and it is usually
set to the normal value in the MKS system: [0, 0, -9.81] m/sec?. The “Z” axis defines the
vertical in the default corpus environment, with positive values representing the “up”
direction. The g parameter can be set to any value (or direction) in the corpus parser. The

gravitational force has been verified to induce the correct acceleration in several different

simulation tests. (See Appendix C).

Ground Reaction Forces

The ground reaction forces, or, more generally, collision and contact forces, have two
main components: normal and tangential forces. On “level” ground, these elements can be
considered the vertical and horizontal force components. We will discuss the simple case

93

5 Dynamic Simulator Michael A. McKenna

of level ground forces. Contact (or support) and collision (or impact) between the articu-
lated body and the ground are handled uniformly, by applying reaction forces at the point

of contact, based on a spring and damper model.

The vertical reaction force is applied when the 3 dimensional geometric model of the body
passes under the level of the ground. The ground model default in corpus is defined by the
7=0 plane. At all points (vertexes) of ground penetration a force is applied, dependent on
the vertical penetration of the point, and the velocity of the point:

;- { o, (e PH 1)k x,—b %, if x,<0 | Eq. 72

0 if x,>0

where f, is the vertical reaction force, o, and B, are the linear and exponential spring con-
stants for the exponential collision spring, k, is the linear spring constant, and b, is the col-
lision damping constant. Damping is used in the above equation to dissipate energy in the
collision; the percentage of kinetic energy lost depends on the spring constants as well as
the damping constant. Alternately, the loss of energy can be directly parametrized by the

coefficient of restitution, as in:

Xow = Xy Eq. 73
in which x,, is the velocity of the point of contact before the collision, X, , is the velocity
after the collision, and e is the coefficient of restitution. A value of 1.0 for e would repre-
sent a perfectly elastic collision, with no loss of energy. The coefficient can be used to

directly control the elasticity of a collision by modulating the vertical reaction force, as in:

f, if x,<0
f, = . . Eq. 74
ef, ifx,>0

This technique was introduced to the computer graphics community by Moore and Wil-
helms, [Moore] and was used by the author in previous work, with good results. The benefit
of using the coefficient is that energy loss during collision can be directly specified, with-
out matching damper constants to other simulation parameters (particularly, the ground
spring stiffness constants). However, because the reaction force function is no longer con-
tinuous, a numerical instability is introduced, which creates a “microscopic” vertical jitter,
especially during continuous contact (as opposed to collision). The magnitude of the jitter
is dependent on the integrator time step size (and thus, on the adaptive integrator error tol-

erance). Numerical integrators which are dependent on the state history (such as predictor-

94

5 Dynamic Simulator Michael A. McKenna

correctors) would have to initialized when such discontinuities occur (including the
change between contact and non-contact) This greatly reduces the efficiency of such inte-

grators.

The stability problems encountered using the coefficient of restitution (as in Eq. 73) inter-
feres with the stable calculation of the joint force during a hybrid or inverse simulation.
The instability also slows the simulation speed, because the integrator must take more sub-
steps in order to calculate an accurate result. Because of this, the use of the coefficient of
restitution was abandoned, in favor of the continuous vertical damper function, included
in Eq. 72.

A similar vertical reaction force equation is used by Manko as a model of foot-soil interac-
tion, between a robot and the ground. His equation is presented here, in a slightly different

form:
) { a, ("% k% x, — 1) if x, <0

Eq. 75
0 if x,>0

v
where k,, and kg are slope parameters. [Manko] Robot simulations using these functions

have been experimentally confirmed using real robots.

Several different approaches have been used in corpus to model the tangential contact
forces, which are due to friction. The friction models function primarily as velocity-depen-
dent dampers to oppose sliding at the points of contact. Different models were added in
order to reduce stability problems, similar to those encountered using the coefficient of

restitution.

Early work by the author used a model of Coulombic friction in which a horizontal force
is applied at the point of contact, in a direction to oppose the velocity, proportional to the

vertical reaction force, as in:

Xy
fo==Y o Eq.76
x
%4l
where f B is the horizontal friction force, ¥ is the coefficient of friction, and X, is the hor-
izontal velocity of the point of contact. This model was introduced to the graphics commu-

nity by Wilhelms and Barsky. [Wilhelms 1985] The force response of this model is shown in

95

5 Dynamic Simulator

Michael A. McKenna

-0.01 -0.005

-0.

-0.

ooy (m/sec)

-0.01 -0.005

-0.

-0.

oY (n/se)

~0.01 -0.005

-0.

-0.

5.5y (m/eec)

Figure 25: Force response
of the friction functions.

top: Force is constantly
applied, proportional to
the normal force, as in Eq.
76.

The three plots are in terms
of velocity (of the point of
contact) and normalized
force (~F = f,/f,), witha
coefficient of friction, v, of
0.5.

middle: The force
response of the damper
model of friction, with a
clamped maximum/mini-
mum, as in Eq. 77. The
damping constant, by, is
equal to 500 (N sec/m).

bottom: The force response
of the arctangent friction
function, as in Eq. 78. The
damping constant, by, is
equal to 500 (N sec/m).

5 Dynamic Simulator Michael A. McKenna

Figure 25. This friction model has been used with success in previous research. However,
this model creates instabilities due to the discontinuity in the friction force, when the
velocity reverses direction. This disrupts the analysis of joint forces during inverse or

hybrid simulation, and can slow simulation speed by creating a “stiffer” system.

A smoother friction function was implemented, using a clamped linear damping force:
vyf, ifb,i,>Yf,
[= =b, X, if -y f,2b %>V f, | Eq. 77
- f, b, x,<-Yf,
where b, is the horizontal, “friction” damping constant. This increased the stability of the
calculated joint forces, and decreased the number of simulation sub-steps required to inte-

grate over a given time step, for a given error tolerance (decreased the stiffness of the sys-
tem). The force response of this function is shown in the middle plot of Figure 25.

A similar, but smoother, more continuous friction function is used in simulations by

Bogert, et al [Bogert]:

2y f, b,m
fn=- - arctan[m;xv . Eq. 78

This is slightly more complex to compute, but it could lead to lower stiffness in the inte-
grator, saving simulation steps, because the force response has a higher degree of continu-
ity. This function has not, as yet, been implemented in corpus, however. The arctan
friction function is shown in the lower plot of Figure 25.

Corpus also supports collision forces between articulated bodies and an uneven ground
defined by a triangularized height array, similar to that used for uneven terrain in [Zeltzer
1982]. The same normal and tangential friction forces are used, but the direction of the nor-
mal force is no longer necessarily vertical, but is rather in the direction of the normal of

the polygon which is penetrated by the body’s geometry.

Collision forces between different bodies in corpus can also be simulated, using the same
normal and tangential force models. Forces are applied equally and oppositely to the bod-
ies involved. The normal of the penetrated polygon defines the normal and tangential

directions.

97

5 Dynamic Simulator Michael A. McKenna

For non-articulated, single bodies in corpus, a non-spring model can be used to simulate
collisions. Using collision analysis, the momentum exchange of the colliding bodies is
computed, such that their velocities are directly modified based on elastic impact dynam-
ics in a single step. This is typically much more efficient than modifying the velocity of
colliding bodies through the influence of acceleration, over a simulated interval of time.
However, collision analysis responds poorly for situations involving continuous contact

and support. This kind of collision model is discussed in [Moore] and [Hahn].

Other External Forces

Other environmental forces can be simulated in corpus. Attachment forces are linear and
exponential springs, with dampers, which can be used to “attach” two bodies together. A
point is specified on each body, and the distance between those two points is used as the
feedback parameter for the spring. Equal and opposite linear forces are applied by the
attachment spring to each body, at the attachment points. Muscle models which use linear
attachment points can be simulated using these types of models. Attachment forces are
considered external forces when the two bodies that they connect do not lie within the
same articulated figure. If the attachment forces connect two bodies within the same artic-
ulated figure (as a muscle model would), the attachment forces are considered to be inter-

nal forces.

Terrestrial gravity, on a planetary surface, produces a constant acceleration. Corpus also
supports gravitational attraction forces in which each body exerts a force on every other

body, proportional to the two masses, as in:

mM
Fg=G_;2_’ Eq79

where m and M are the masses of the two bodies, G is the universal gravitation constant
(6.673 X 10_11 N m2/kg2), and r is the distance between the two bodies’ COMs. This can

be used to simulate astronomical motions, such as orbital paths.

In addition, corpus commands and scripts can be used to set arbitrary applied forces to any
body. In this manner, external programs can be used to provide force functions, and forces

can be scripted.

98

5 Dynamic Simulator Michael A. McKenna

5.8 Actuator Model and Joint Forces

Internal forces are applied within an articulated figure. These forces are related to the bio-
mechanical model of the figure, since internal forces in real animals and people are gener-
ated by the mechanical properties of muscles and other tissues. Simulations in corpus
typically use internal joint forces to control motion. Joint forces are forces which are
applied directly at a joint location, in the direction of motion allowed by that joint. The
force is applied to the two bodies that the joint connects, equally and oppositely. Corpus
also allows for motion control using linear forces which are applied as internal forces to
articulated bodies (via the attachment forces described above). The use of joint forces in

the human figure model is discussed in the section Biomechanical Model (6).

There are several sources of joint forces available in corpus. Actuators, which deliver
forces for active joint control, are based on spring models. Dampers create forces to
oppose motion, and model the viscous properties of joints. Joint limit forces are created
using springs and dampers which become active when the limb passes beyond a specified
range. Joint limit forces model the ways in which the joints of real mechanisms, animals

and people resist and stop movements beyond their ranges of motion.

For a body i, the total joint force, Q;, is given as the sum of contributing joint forces:
Q,=0s+0p+0; +..., Eq. 80

where Qg is the exponential spring/actuator force, Qp is the damping force, and Qy is the
(exponential) joint limit force. Other joint forces are available in corpus, including linear
springs, linear spring joint limits, joint limit dampers, and bias forces (direct specification
of a contributing joint force). Any number of springs, dampers, etc. can be set to operate at

a joint.

Exponential springs are typically used at joints to control postures and motions of articu-
lated figures in corpus simulations. These springs have an exponential relationship
between the displacement of the joint position from the spring rest position and the result-

ing force. The force response of the springs is given as:

B (Gurger— D) .
o (eP Mg =% — 1) if g< g
Qs _ { target , Eq. 31

—o (eB(‘I“qmrgef) - 1) if q> qmrget

99

5 Dynamic Simulator Michael A. McKenna

Figure 26: Force response
Q (Nm) of the exponential spring.

top: Varying the linear
spring constant o = 5, 10,
15, 20. B=10

grg (e

lower: Varying the exponen-
tial spring constant: B =5,
10, 15, 20. o = 10. The expo-
nential constant has a much
more powerful influence on
the force response, as com-
pared to the linear parameter.

where o is the linear stiffness constant for the spring, B is the exponential stiffness con-
stant, g is the joint position, and gy,,,; is the spring rest position. This model was intro-
duced to the graphics community by Armstrong, et al. [Armstrong 1987] The force response

of the spring, for varying constants if shown in Figure 26.

An inverse model of the exponential springs is used to determine what spring rest angle
corresponds to a specified joint force. When coupled with inverse or hybrid dynamics, this

inverse actuator model provides not only the forces, but also the actuator control parame-

100

5 Dynamic Simulator Michael A. McKenna

ters that are need to execute the specified kinematics. Given the joint force and exponen-

tial spring stiffness parameters, the rest position is given as:

Qs ln(l—i—s—|+ 1)

Drarger = |Qs| _"'B— +q. Eq. 82

Linear springs can be used at joints to generate forces in corpus as well. The force of a lin-

ear spring, Qg , with a stiffness constant, k, is given as:

QSL =k (qtarggt_Q) . Eq. 83

Dampers in corpus provide joint forces which oppose joint velocity. These forces dissipate
kinetic energy, and model the viscous drag which arises from many sources in the real
world. The force is linearly proportional to the velocity, and is applied in the opposite

direction:

Qp = -bq, Eq. 84

where b is the joint damping coefficient.

Joint limits in corpus are springs which become active when the joint position passes
beyond a specified range. These springs approximately model the resistive force in biolog-
ical forms which are due to passive joint structures, including the elastic elements of the
muscles, tendons, and other surrounding tissue. Exponential joint limits employ exponen-

tial springs in a similar form to those discussed above:

{ o (eB(‘Itimirl_q) — 1) if q < qlimitl

Eq. 85
—QL (CB (9~ Dpimira) _ 1) if q> Djimir2

QL=

Linear spring joint limit models can also be employed in corpus, and are given as:
k (iminn =9 K 4<qymin

0, - { . , Eq. 86
~k (4= Gpipmin) 1 9> Qi

101

5 Dynamic Simulator Michael A. McKenna

Joint limit dampers are also available in corpus, such that dissipating forces become active

when the joint position passes into the joint limit region, as in:
{ ~b g i 4<qpp;

. Eq. 87
~b g i 4> 4,1

Qpp =

5.9 Motor Programs

Dynamic motor programs are used to modify the actuator parameters over time in order to
generate actively-controlled movements. A motor program moves a spring’s rest position
from a start to an end position. Both exponential and linear springs can be used with motor
programs in corpus. The spring rest angles are generally used as the means of motion con-
trol in corpus, therefore motor programs allow us to vary the control state from one setting
to another. These control states could potentially have been “calibrated” using inverse/

hybrid dynamics and the inverse actuator model.

Motor programs currently use a linear interpolation method, moving the spring rest posi-
tion with a constant velocity until the goal position is reached. The spring rest position is
set by the motor program as follows:

_ (qend B qstart)

qtarget -

t (t - tstart) + qstart 4 Eq‘ 88
dur

Where g, is the new spring rest position, g, is the spring rest position at the begin-
ning of the motor program g, is the final spring rest position specified for the motor pro-
gram, 1, is the duration specified for the motor program, ¢ is the current time, and £y, is
the motor program starting time. Once the end goal is reached by the spring rest angle, the
motor program terminates. The motor program function must be evaluated within the
dynamics simulation step, not at a reduced sampling rate; because it is time-dependent, it
must be sampled with the integrator’s timestep, as opposed to the overall frame rate.

102

5 Dynamic Simulator Michael A. McKenna

An alternate form of executing the motor program interpolation has also been explored in
corpus, in which the numerical integrator is used to interpolate the spring rest position, as
in:

t

end

qtarget(t) = stare f qtargetdt ’ Eq. 89
t

start

with a one-time calculation of:

. 9end ~ Dstart
qtarget = td g Eq. 90
ur

The numerical integrator then automatically updates the spring rest position over time,
based on the spring rest position’s velocity. Although it is an interesting approach to mod-
ifying the time-dependent rest position, use of the integrator does not offer any real advan-

tage over Eq. 88, and likely runs at a slower execution speed.

New methods of interpolating the actuators via motor programs can be added to the sys-
tem as necessary. Possibilities include smooth “in-out” functions, such as trigonometric
functions or splines, and table-based interpolation, for matching recorded human move-

ments or using pre-computed control trajectories.

Other types of motor programs can also be added to corpus in order to interpolate addi-
tional control values. For example, corpus supports motor programs to vary the linear
stiffness constant (ea) of an exponential spring, from its starting value to a target value

over time, providing a form of stiffness control.

103

6 Biomechanical Model Michael A. McKenna

6 Biomechanical Model

6.1 Introduction

This section describes the development of the human figure model, with all of its biome-
chanical parameters. These include both kinematic and dynamic elements. The kinematic
structure describes how the figure is “put together,” and in general it is defined by the
anthropometrics of the human form. Kinematic parameters include the lengths of the limb
segments (or “links”), the joint motions, and the three dimensional geometries that form
the surfaces of the figure. In order to perform a kinematic simulation, these are the only
parameters needed. To compute dynamic simulations, a number of dynamic parameters
must be specified as well. These include the mass and inertia of the links (including the
locations of their centers of mass) and the parameters for the force generators, such as the

dampers, joint limits, and actuators.

The model developed here is fairly complex in nature, especially with regard to the foot.
By including a higher level of kinematic complexity, the model is brought closer to the
real structure of the human. This allows for the simulation and inspection of more nuances
in motions such as walking, etc. Structure and function that are presently missing from
animations and biomechanical analyses can be explored. Complexity can be a key ingredi-
ent in making animation seem interesting and realistic. In the real world, a physician obvi-
ously cannot ignore complexity and detail in the human body, because each part contrib-

utes to function.

A simplified version of the scripting commands used to “construct” or “build” and initial-
ize the human figure model, with its biomechanical parameters, are given in Appendix D
Body Scripts. Many of the kinematic and dynamic parameters for the model are listed in
Appendix E Body Tables.

104

6 Biomechanical Model Michael A. McKenna

6.2 Kinematic Parameters

The kinematic model of the human was created in multiple steps. First, an intermediate
kinematic model was generated, using a digitized skeleton [Stredney] as a three dimensional
reference. The joints were parametrized from joint insertion to joint insertion, as matched
to the geometric skeleton model, in its default, anatomical position. The kinematic model
parametrized from the skeleton does not encompass the actual human bone shape, but sim-
ply the measurement from joint to joint, or the “link” length. The next step was to refine
the model, using published anthropometric data, including link lengths and inertias. The
joint axes, which specify the degrees of freedom in the figure, were based on the “major”
degrees of freedom in the human body, and the “major” degrees of freedom in the foot.
Finally, the model was completed using a set of scanned, 2D medical illustrations to “fine-

tune” the model, filling in details that were difficult to extract from the literature.

Digitized Skeleton

A three dimensional geometric model of the human skeleton was manually digitized by
Stredney, for the purposes of animation and medical education. [Stredney] This model was
employed by Zeltzer, in his kinematic simulations of human walking. [Zeltzer 1984] The
skeleton model, which we will refer to as the “Stredney” model henceforth, was used as a
reference to assist in the initial design of the human figure model developed with this the-

sis (the “McKenna” model).

The Stredney model was loaded into the 3D corpus environment, and was used as a graph-
ical “template” to construct the hierarchical, kinematic structure of the preliminary human
figure model. Using corpus scripting commands, in an interactive fashion at the keyboard,
the approximate locations of the joints of the skeleton were located. Simple representa-
tions of the body segments were placed along the length of the skeleton bone, from the
proximal joint to the distal joint, adjusting the link length and direction appropriately.
Thus the actual shape of the body is not encompassed in the kinematic description, only
the locations of the joints, relative to one another. The actual bone shape is not important
to the simulation, unless the internal stresses of the bones are of interest, or if detailed ana-

tomical information is required for illustration or medical examination.

Higher level interactive techniques would have been of use during this process, to elimi-
nate the time and tedium of using scripting commands. For example, graphical tools to

automatically “surround” indicated bones would have helped to automatically locate their

105

6 Biomechanical Model Michael A. McKenna

position in 3D. Also, interactive devices which allow for direct control over 3D cursors
would have been of use to locate points of interest such as approximate joint centers of
rotation. Nonetheless, scripting commands were sufficient to build the model, especially
since only one model was being created. Because commands were used to build the
model, this led to the direct building of the corpus scripts which construct and initialize
the model. These scripts could then be edited to further adjust the figure, as was done in

later stages of the modeling.

The human figure model was designed with three different “layers,” such that each body
segment has associated with it three different graphical objects. An internal structure is
named the “skeletal” layer, which is the kinematic description derived from the Stredney
model. In the dynamic simulation environment, these bodies form the articulated structure
of the human figure model, defining the joints and the link lengths. These bodies are
defined as being “non-colliding” such that no collision detection operations are performed
between those bodies and the ground or any other body. Because they are internal and can-

not collide with any objects, collision detection would be a waste of computation.

The skeletal layer is surrounded by two “skin” layers, which are essentially equivalent to
each other. The skin layers approximate the human body’s outer envelope, and serve three
main purposes: they are used as the geometric surfaces for collision detection, the volume
defined by their surfaces is used to compute the bodies’ inertias, and they create a more
realistic appearance for rendering (especially as compared to the skeletal layer). The “sim-
ple skin” layer is composed of objects that are very basic in nature, with few polygons.
This layer is used to compute the bodies’ inertias, for collision detection, and for display
when rapid rendering is desired. The second skin layer is the “display skin” which is com-
posed of graphical objects of the same size as the simple skin, but with rounded, beveled
edges for more appealing visual rendered images. The intermediate model of the human
figure, with its skeletal and skin layers, is shown with the Stredney skeleton in Figure 27.

The Stredney model was particularly useful in modeling the foot structure. Because the
foot is a complex 3D form, difficult to describe and understand from text descriptions, a
3D model allowed for a rapid understanding of the relationships between bones. The
Stredney model for the foot skeleton is shown together with the McKenna foot model in

Figure 28.

106

6 Biomechanical Model Michael A. McKenna

Figure 27: Stredney model of the digitized skeleton overlaid with parametrized model. Left: “skeletal,”
articulated layer. Right: the initial “skin” layer.

The rigid skin layer is used in the inertia computation. (The tapered cylinders in the legs and arm provide
for the correct location of the limb segments’ centers of mass.) The skin layer is also used for geometric
collision detection and for a more realistic surface rendering.

107

6 Biomechanical Model Michael A. McKenna

Figure 28: The right
foot of the Stredney
model overlaid with
the parametrized cor-
pus model.

108

6 Biomechanical Model Michael A. McKenna

Anthropometric Measures
The initial kinematic model was refined using anthropometric measures, published in the
literature. The Stredney model was somewhat anomalous in the relative sizes of the differ-

ent limb segments, in comparison to “average” values.

After considering a number of published studies of human anthropometrics, [Braune 1988;
Dempster; Williams 1977] a model developed by Dirillis and Contini was selected. [Drillis; Win-
ter 1990] They present an averaged set of segment lengths, which are parametrized as a per-
centage of overall body height. A graphical representation of their model is shown in
Figure 5, page 33. The body height was set to match an average male height. [Dempster] A
table of the body segment lengths from different sources, including the final McKenna

human figure model is given in Table 2.

Adjusting the McKenna model to the Drillis and Contini model was quite straightforward,
since the kinematic structure had already been established. The corpus scripts which
“build” the human figure model were easily modified simply by directly changing the nor-
malized scaling factors for the limb segments.

Table 2: Segment (link) lengths, from joint to joint.

total height 1.73 1.77 1.77 1.77
femur link 0.380 0.434 0.432 0.432
tibial link 0.380 0.409 0.434 0.434
foot length 0274 0.267 0.268 0.28
mid-talus to floor 0.057 0.081 0.069 0.063
femur separation at pelvis 0.170 0.337 0.20
shoulder separation 0.350 0.457 0.36
head height 0.247 0.229 0.229
humerus link 0.302 0.328 0.328
radius link 0272 0.258 0.258
hand length 0.191 0.191 0.191
femur to humerus height 0.508 0.498

109

6 Biomechanical Model Michael A. McKenna

Degrees of Freedom

The degrees of freedom in the figure were specified to capture the major ways in which the
overall body moves, and also the major ways in which the foot moves. It is difficult to say
what the “major” degrees of freedom are, but some choices were more clearly defined. For
example, the knee allows primarily for flexion and extension, but small amounts of abduc-
tion/adduction and rotations are possible. In addition, the motion of the knee is not exactly
defined by a hinge joint, but it actually has complex 6 dimensional motion. The knee is
quite well approximated by a hinge joint, however, which is the model used in most ani-
mation and biomechanical models. Similarly, the middle and distal phalanges of the toes
primarily flex and extend, but small amounts of abduction and adduction and rotation can
occur there are well. These joints were also modeled as hinge joints. The other notable
degrees of freedom that were not modeled are a complex spine and neck, and a jointed
hand. A preliminary step was made in modeling the hand, described in the Future Direc-
tions subsection in the Conclusions section (8). Ultimately, all of the degrees of freedom
in the human should be included in the human figure model, including very minor
motjons. Starting from the most sophisticated model, the complexity can be reduced to a
level suitable for a given animation or simulation, and from that point, the complexity

could be increased to observe the effect, if any, of additional DOFs.

A diagram of the degrees of freedom that were modeled in the body, except for the feet, is
given in Figure 29. The DOFs modeled in the feet are shown in Figure 30.

The overall body has six degrees of freedom; it can translate in three directions, and rotate
to any orientation in three dimensions. These six DOFs are associated with the abdomen
(or torso) of the figure, which is the “root” object in the hierarchical kinematic structure.
These degrees of freedom can be “free,” when forward dynamics computes the accelera-
tion of the figure, or they can be constrained to be motionless or to follow a specified

acceleration.

Although a complex spine/neck has not been modeled, a number of degrees of freedom
were included to approximate its motion. Three DOFs are included between the head and
the neck, which allows the head to tilt or rotate in any direction with respect to the neck/
abdomen. Similarly a three DOF “waist” is included, above the pelvis, about the location
of the belly button. These DOFs are required to allow the pelvis and lower body to tilt and

rotate without forcing the upper body to follow.

110

6 Biomechanical Model Michael A. McKenna

- 3 DOF Neck

P 3 DOF Shoulder

| o 1 DOF Elbow
3 DOF Waist

L 3 DOF Hand

3 DOF Hip

S—— 1 DOF Knee

__— 2 DOF Ankle

Figure 29: The degrees of freedom in the human figure model, above the foot.

The entire body also has 6 degrees of freedom, 3 translating and 3 rotating degrees of freedom, which
allow the body to be positioned and oriented anywhere in space.

111

6 Biomechanical Model Michael A. McKenna

/ Calcaneus
1 DOF

1 DOF
Talus

1 DOF | [1DOF
Cuboid —] : s Navicular
\ " 1 DOF
Metatarsals
Proximal
Phalanges
Middle <—2DOF
Phalanges
«<—1 DOF
Distal
Phalanges

Figure 30: The degrees of freedom in the foot of the human figure model.

One of the 1 DOF ankle joints is above the talus, and one is below.

112

6 Biomechanical Model Michael A. McKenna

a) Superior view ~Ten axis Figure 31: The Tc (talocrural or talar) and Tcn (talo-
< calcaneonavicular or subtalar) joints in the ankle.
[Procter]

The shoulders each have three DOFs, allowing the arm to rotate in any direction with
respect to the abdomen. The elbows have one DOF each, allowing flexion and extension.
The wrist, between the forearm and hand provides three DOFs. In the human, the rotation
of the wrist (as opposed to flexion or abduction) occurs along the length of the forearm. In
the human figure model, the wrist rotation is lumped together with the other two DOFs
directly at the connection between the forearm and the hand. The hand itself (the palm,
thumb, and fingers) is modeled as a single object, with no DOFs below the wrist. (How-
ever, a preliminary model of the hand was created, based on the foot’s kinematic structure.
See the Future Directions subsection in the Conclusions section (8)).

The hips, above the thighs are modeled with three DOFs each, like the shoulders. The
knees have one DOF each, allowing flexion and extension. The ankles are modeled with
two DOFs each, placed and aligned according to published biomechanical measurements.
[Procter]. The talocrural (Tc) or upper ankle joint or talar joint allows for flexion and exten-
sion of the foot, and talocalcaneonavicular (Tcn) or lower ankle joint, or subtalar joint
allows the foot to invert and evert. See Figure 31. The talar joint connects the distal end of
the lower leg to the talus. The subtalar joint connects the “bottom” of the talus to the calca-

neus, or hindfoot (the “heel bone”).

The DOFs which articulated off of the hindfoot are based on Inman and Mann’s analysis

of foot movements, which is a simplified model compared to the complex sliding move-

113

6 Biomechanical Model Michael A. McKenna

Figure 32: A depiction of the action of the subtalar joint and navicular and cuboid joints in the human foot.

First, consider the upper left quadrant, labeled “A.” The hinge joint represents the subtalar joint. When the
upper leg rotates, the subtalar joint everts and inverts the forefoot. In the lower left quadrant, labeled “B,” a
pin joint has been added which represents the combined action of the navicular and cuboid joints. Now,
when the upper leg rotates, the hindfoot everts and inverts due to the subtalar joint, yet the forefoot remains
flat and connected to the ground, due to the added pin joint. On the right side, the models include two pin
joints between the hindfoot and forefoot. The medial joint represents the joint between the hindfoot and
navicular. The ray emerging from the navicular represents the three medial rays in the foot (three metatar-
sals and their associated phalanges). The lateral pin joint represents the cuboid, and its single ray represents
the two lateral rays which articulate off of the cuboid.

Image and model from [Inman].

ments which occur between the bones in the tarsal region of the foot (rear foot). The nav-
icular and the cuboid bones articulate from the hindfoot, with one DOF each, using a
rotary joint. The combination of their rotations and the rotations of the subtalar joint allow
the leg to rotate while the forefoot maintains a non-sliding contact with respect to the

ground. See Figure 32.

On each foot, the three medial metatarsals articulate off of the navicular, with one DOF
each, allowing extension/flexion). The two lateral metatarsals articulate off the cuboid.
The three cuneiforms, which lie between the medial metatarsals and the navicular are

114

6 Biomechanical Model Michael A. McKenna

lumped together into the metatarsals. There is very little articulation provided by them,
[Gray] although a more complete model should include the DOFs they provide. The meta-
tarsals do not move very much in the foot, and stiff springs in the model restrict motion.
The flexion and extension that they do provide allows the arches of the foot to change

shape.

The proximal phalanges (singular “phalanx”) articulate off of the metatarsals, with two
DOFs each, allowing flexion/extension, and abduction/adduction. This is the start of toes,
which would remain more flat on the ground, throughout the stance phase of walking. The
middle and distal phalanges articulate with 1 DOF each, allowing flexion/extension. The
big toe does not have a middle phalanx, but the other four toes do.

Anafomical lllustrations

A set of 2D anatomical illustrations were used in the final stages of modeling. Illustrations
from [Gray] and other sources were used for general reference, but the primary source was
[Goldfinger]. The illustrations were “scanned” into the computer, using a flatbed scanner,
and were used as semi-transparent texture maps in the 3D corpus environment. The
human figure model with one such illustration is shown from a perspective view in
Figure 33. When an orthographic view is taken of the front or a side of the human figure
model, and the illustration is appropriately scaled and positioned, the two graphical
images overlap and the illustration can be used as a template for modeling or as a visual

augmentation of the figure.

Illustrations of the skeleton were useful to adjust the kinematic structure of the human fig-
ure model. The illustrations indicated the locations of the attachment points at the head,
shoulders, and hips. They also served as a validation of the established kinematic struc-
ture. Finally, they were used as a postural template, to position the various joint angles into
a more “appealing” and more standardized anatomical position than had been constructed
from the Stredney model. Front and side views of the skeleton structure are shown in

Figure 34 and Figure 35.

Similarly, anatomical illustrations of the skin and musculature by Goldfinger were useful
in refining the model of the skin layer of the human figure model. The final skin and skel-
etal layers are shown together in Figure 36. The Goldfinger musculature diagrams were
used as a template for the specification of the location of the skin objects with respect to

115

6 Biomechanical Model Michael A. McKenna

Figure 33: The final humanoid model, shown
with a Goldfinger anatomical diagram, from a
perspective view.

their internal skeletal objects. In some cases, especially with the torso, hands, neck and
head, the diagrams were used as a visual template to help model the shapes and sizes of
the skin objects. Front and side views of the skin layer, with the overlaid musculature dia-
grams are shown in Figure 37.

The “foot-box” is a set of four texture maps, scanned from [Goldfinger], which shows the
skeleton of the foot from four different views. The maps are arranged in a box, which sur-

rounds the model of the foot in the virtual environment. By viewing the model and the

116

6 Biomechanical Model Michael A. McKenna

Figure 34: Human figure
model, “skeleton” layer,
. overlaid with anatomical

MANDIBLE diagram, from the front.
VERTEBRAL COLUMN

g:ifﬁma Drawing from [Goldfinger].

SKULL

- SCAPULA
i BT A NUM
RIB CAGE

HUMERUS

VERTEBRAL COLUMN

~—— HAND SKELETON

FEMLUR

PATELLA

TIBIA

FIBULA

FOOT SHELETON

semi-transparent foot-box from orthographic views, the two overlap, which allows for
additional “fine-tuning” of the model, and also provides an augmented rendering of the
model, with descriptive labels and detail from the illustrations. The foot-box and the skel-
etal layer of the foot model are shown in perspective views in Figure 38. An orthographic

view, overlaying the illustration and model is shown in Figure 39.

After the Goldfinger diagrams had been scaled appropriately to match the height of the
human figure, the link lengths were not adjusted, yet the diagrams matched very closely to

117

6 Biomechanical Model Michael A. McKenna

SKULL

MANDIBLE
VERTEBRAL COLUMN
HYOID i
CLAVICLE

SCAPULA ———mmmmn
STERNUM ——x
RiB CAGE -ovm

HUMERUS ————————

VERTEBRAL COLUMN
RADIUS
UL NA
SACRUM
COCCYX

HAND SKELETON

FEMUR

PATELLA

TIBIA

FiBULA

FOOT SKELETON

Figure 35: (Left) A side view of the human figure model “skeletal” layer, overlaid with an illustration of
the human skeleton.

Drawings from [Goldfinger].

Figure 36: (Right) The human figure model with its “skeletal” and “skin” layers superimposed

The two layers are graphically “mixed” by making the two layers semi-transparent and rendering them
both together.

118

6 Biomechanical Model Michael A. McKenna

Figure 37: The human figure
model “skin” layer with over-
laid anatomical diagrams.

Drawings from [Goldfinger].

the model. This helps to show that both the illustrations and parametrized model are rea-
sonably accurate.

As a final inspection of the kinematic structure of the human figure model, a comparison
was made of the locations of the metatarsal heads relative to each other in the foot. Inman,
et al., measured the angle formed by the distal heads of the second and fifth metatarsal
heads. [Inman] The third and fourth metatarsal heads also roughly lie on this line. This is
the line along which the toes bend during walking. As shoes are “worn in,” a crease will

form along this line as well. The average angle measured by Inman was 62°, with a range

119

Michael A. McKenna

6 Biomechanical Model

-

o

P

The “foot-box™ and the parametrized skeletal model. Anatomical diagrams from [Goldfinger].

Figure 38

120

6 Biomechanical Model Michael A. McKenna

Figure 39: Skeleton of the
right foot: McKenna model
NAVICULAR compared to Goldfinger

veop/ illustration.
b LATERAL CUNEIFORM

CINTERMEDIATE CUNEIFORM

There are some mis-matches
\MXEELCQND METATARSAL between the illustration and
PROKIMAL the model, as can be seen in
PéﬁA&AN ‘ the diagram. However, the
i ; differences may be within
W CALCAREUS e osiTY oF i AR, the range of variation seen
OUTSIDE VIEW FIFTH METATARSAL DISTAL between different people. A
POST ++ANT PHALAX new posture (not shown
here) was assigned to the
foot, which gives the toes a
more natural bend.

from 52°~74°. The angle formed by the human figure model is 54°, within the range mea-

sured, but near one of the extremes. See Figure 40.

The kinematic structure of the complete figure is provided in tabular form in Appendix E
Body Tables.

6.3 Dynamic Parameters

In order to perform dynamic simulations, there are a number of parameters which must be
specified beyond the kinematic structure. The mass and inertia tensors of the limbs are
required for the equations of motion. The biomechanical models of the actuators, dampers,

and joint limits have their associated parameters which are used in the force computations.

Inertia

The masses and centers of mass of the different body segments were set to match the val-
ues measured from humans. [Braune 1988; Dempster; Williams 1977; Winter 1990] The complex-
ity of the mass distribution in the human figure model is tied to the level of detail present
in its kinematic structure. Each link has its own mass, density and inertia. In corpus, the
mass and inertia of the body segments is automatically defined from the specified density
and the surface geometry of the “skin layer” graphical objects. A method is used to com-
pute the mass, the rotational inertia tensors, and the center of mass, using a summation of

the volume formed by each polygon and a reference point within the body.

121

6 Biomechanical Model Michael A. McKenna

Line connecting heads of
second & fifth metatarsal bones

mean = 62°
range= 53° to 72°

1
Axis of the foot

Figure 40: The line formed by the distal heads of the second and fifth metatarsal bones as measured from
humans compared to the human figure model.

Left: The mean angle of a set of measurements from human subjects. From [Inman]

Right: The angle formed by the computer model. The angle is near the extreme of the range measured by
Inman, et al. The third through fifth metatarsals seem to be somewhat short in the computer model, as
parametrized from the Stredney model.
The densities of the body segments rises as more distal members are examined. [Winter
1990] This is because bone is more dense than other body tissues, and the distal members

are composed of a greater proportion of bone.

For the arm and leg segments, the density of the objects were set to the values measured
from humans. By then scaling the objects’ diameters appropriately, their masses are com-
puted to match the values measured from humans. Similarly, the cylindrical objects that
make up the arms and legs were tapered, using geometric shearing operations, such that
the segments’ centers of mass shifted from the centers of the objects to the more proximal
locations as measured from humans.

122

6 Biomechanical Model Michael A. McKenna

In contrast, the head, neck, abdomen, pelvis and foot objects were first scaled to a size to
form the skin layer matching the Goldfinger illustrations. The density of the objects were
then set so that the masses would result in the measured values.

A listing of the masses of the major body segments, as measured from the human body,
and as modeled in the final human figure (McKenna) model is given in Table 3. The over-
all body weight of the model is 68 kg, or 150 Ibs.

Table 3: Segment densities and masses

total 68.0 68.00 1078 68.01

head 47 - - 4.71 545

neck 0.7 - - 0.70 565

head and neck 54 5.51 1110 541

trunk 34.8 33.80 1030 33.93 780

thigh 6.6 6.80 1050 6.81 1050
shank 3.1 3.16 1090 3.15 1090
foot 1.0 0.99 1100 0.99 1413
upper arm 1.9 1.90 1070 1.90 1070
forearm 1.1 1.09 1130 1.08 1130
hand 04 0.41 1160 0.41 1160

123

6 Biomechanical Model Michael A. McKenna

The centers of mass for the major body segments, as measured from human studies and in
the final human figure model are given in Table 4. A diagram by Dempster shows the
COMs in a graphical form (see Figure 41).

Table 4: Centers of mass of different body segments.

The “COM/seg len” columns define the location of the center of mass, measured from the proximal joint, as
a fraction of the segment length. The “dist from prox joint” columns give the distance of the COM from the
proximal joint, in meters.

Clauser, et al., data is from [Williams 1977].

head 0.466 0.433 0.500 0.124

thigh 0.440 0.433 0.433 0.187 0.433 0.187
shank 0.420 0.371 0.433 0.433 0.188 0.433 0.188
foot 0.444 0.449 0.500 0.429 0.2 0.053
upper arm 0.470 0.513 0.436 0.436 0.143 0.436 0.143
forearm 0.421 0.390 0.430 0.430 0.111 0.434 0.112
hand 0.506 0.506 0.097 0.424 0.081

Information regarding the masses of all of the body parts in the human figure model is

given in Appendix E Body Tables.

Dynamic Joint Parameters

This research uses joint forces to control motion, in order to simplify the problem of mod-
eling muscles. In humans, multiple muscles span each joint, and they attach at various
locations along the limb (not simply at the joint). Although corpus has facilities for simu-
lating multiple actuators, with attachment points onto limbs, the human figure biomechan-
ical model uses actuators and other forces which work directly at the figure’s joints. This
choice was made in order to greatly simplify the modeling and control problem so that

simulation work could begin in a timely manner with the kinematically complex model.

124

6 Biomechanical Model Michael A. McKenna

Figure 41: The centers of mass of the limbs.

Diagram by [Dempster], from Williams and
Lissner. [Williams 1977]

The motivation for using dampers, spring actuators and exponential spring joint limits has
been discussed previously in the Background (2) and Approach (3) sections. Dampers
generate a force proportional to the joint velocity, in the direction to oppose the motion.
The use of the dampers is twofold; they model the passive joint damping properties, and
they model the damping effects generated by active muscle tissue. It might be more appro-
priate to include two dampers at each joint, one which is weaker to model the passive joint
damping, and a stronger one which is activated along with the actuators. The joint limits
are created by using exponential springs, which is a model that approximates the passive
force response of the human limbs. The actuators are modeled as exponential springs as
well, although human skeletal muscle is typically modeled as a linear spring. The author
has had more success with motion and postural control for animation using exponential
rather than linear springs. They have the attractive property that the limb will not stray

125

6 Biomechanical Model Michael A. McKenna

grossly from the spring rest angle, because the force response rises so rapidly at larger dis-
placements. In some simple ways, this approximates the higher level control in humans
that allows us to begin to exert more when we encounter resistance, changing the stiffness
and activation of the muscles to compensate. Also, informal observations have indicated
that there are fewer numerical stiffness problems when exponential, rather than linear

springs are used.

The force models for the dampers, exponential spring actuators, and exponential spring
joint limits were described in the Actuator Model and Joint Forces subsection (5.8,
page 99). The equations which describe the motor programs are discussed there as well.

The default values of the damping and spring constant for all of the joints in the human
figure model are given in Appendix E Body Tables. Examples of using the biomechani-
cal joint force models are given in the Simulations section (7).

The complete system for simulation is a synthesis of the dynamic simulator, the articu-
lated figure, with its inertia and mass, the joint force model, and the environment. It is only
after all of the elements have been combined that we can begin to perform meaningful

simulations.

6.4 Visual Model

Although this work was driven primarily by academic and research goals, some aspects of
the effort were of a visual nature as well. It was intended to design a visual form which
was “appealing,” with a level of detail that engages the eye, without detracting from the
fundamental goals of articulated motion research. Fortunately, these two aspects were not
at odds with one another, but rather, they were complimentary. Through the biomechanical

modeling, form and complexity were “automatically” included in the structure.

Obviously, the modeling effort was directed towards generating an anthropomorphic form,
but the human figure was intentionally designed without visual ‘false detail’ of structure
that was not really present in the underlying biomechanical model. There were a few
minor exceptions to this rule. The torso/abdomen link in the figure is modeled with three
separate sheared cubes, and a cylinder for the neck, even though those separate objects
cannot move with respect to one another, which may make the model appear to have more

126

6 Biomechanical Model Michael A. McKenna

DOFs than it truly has. The other exception was the inclusion of rounded, bevelled objects

to create a more appealing form, with more shading effects.

The three dimensional graphical environment was designed with a number of supplemen-
tal texture maps, to create a stronger sense of space, as opposed to a featureless void, com-
mon in many virtual environments. These elements work well with video displays and
continuous tone outputs, but not as well with dithered print media, such as this document,
because they reduce the foreground-background contrast and can make the image seem
cluttered. Therefore, they have been absent from most of the images in this document.
However, Figure 1, page 17 and Figure 63, page 179 show some of these background ele-
ments. “Walls”” were made to form a 3x3 meter room around the human figure, composed
of texture maps which depict “grid-lines,” spaced every 10 cm, with primary lines every
meter. These elements were inspired by the backgrounds used by Muybridge in his photo-
graphic motion studies. These help give a better sense of scale and three dimensional loca-

tion.

127

7 Simulations Michael A. McKenna

7 Simulations

A number of simulations were generated using the human figure model in the corpus
dynamics simulation system. A set of basic simulations are presented first, including
examples of the body passively falling to the ground, or drooping while the torso is rigidly
held in place. Simple motor program examples are also demonstrated. This is followed by
simulations of balanced standing posture, and its response to external perturbation forces.
Next, an arm reaching task which is simulated in near real-time is described. A simulation
of rising on the toes is then presented. This section closes with simulations of passive step-

ping, or “ballistic walking,” which include passive dynamic motions of the complex foot.

7.1 General Simulations

These first simulations are fairly simple in design. They serve as a general introduction to
the process of simulating the human figure model. Basic tests such as these were useful in
the development of the model, including its biomechanical parameters. They also serve as

a good introduction to creating simulations with the complex model.

Timings were made of many of the following example simulations. The computer plat-
form used for these simulations is a Silicon Graphics Onyx workstation, using a 150 MHz
R4400 processor which performs 128 million instructions per second (MIPS). The system
also has real-time rendering hardware, the Reality Engine2 (RE?). The manufacturer, Sili-
con Graphics, rates the performance of the RE? as being capable of rendering 900 thou-
sand anti-aliased triangle mesh elements per second, and drawing 320 million texture-

mapped pixels per second.

To begin a simulation, the program corpus is started, and the human articulated figure is
created, using a corpus script which defines and initializes the model. Part of this initial-

128 ;

7 . Simulations Michael A. McKenna

ization script is presented in Appendix D Body Scripts. This initialization takes approxi-
mately 6 seconds.

There are a number of global simulation parameters which can be set, including ones to
control integration, and ground and gravity forces. With the human figure model, the adap-
tive step size integrator (runge-kutta “RK 4/5”) should always be used. In all but the most
trivial cases, the varying conditions of the simulation require the integrator to vary the
number of sub-steps it must take in order to maintain a stable solution. Use of the adaptive

integrator is specified with the corpus command: integration rkf.

The timestep size for the simulation is specified to 0.0333333, so that for every second of
simulation time (time “experienced” by the human model), 30 frames of simulation results
are generated. This matches the NTSC video frame rate (30 frames/sec), which allows
simulation results to be animated directly to video. In some instances, the timestep is low-
ered, so that more samples are returned from the simulator, and the motions can be exam-
ined in more detail. In general, there is no extra expense, except for marginal data storage
requirements, involved in using a smaller timestep, because the adaptive step size integra-
tor takes multiple sub-steps per frame to compute the dynamics, in all but the most simple
cases. The timestep is specified with the corpus command: dt 0.0333333.

The adaptive step size integrator has an error tolerance parameter which, in part, controls
how many sub-steps the integrator uses to compute the dynamics. This parameter is typi-
cally set to 0.0001 in the human figure simulations. This specifies that the difference
between the 4th and 5th order solutions for any term in the integrator computations cannot
be greater than 0.0001. This is set in corpus using: eps 0.0001.

Ground collision and contact forces are delivered by the exponential spring and linear
damping models. The ground force parameters which are typically used in the human fig-
ure simulations are set using the following corpus commands (refer to Eq. 72, page 94 and
Eq. 77, page 97):

groundea 100

groundeB 100

groundb 100

groundfricb 100

coefficient of friction: 1
groundfric 1

129

7 Simulations Michael A. McKenna

The gravitational acceleration constant is -9.81 m/sec? in the default corpus environment
matching the real terrestrial value. Corpus uses the MKS (meters-kilograms-seconds) con-
vention, so that length units are in meters, masses are in kilograms, etc. The gravitational
constant can be set to any acceleration using the setgrav command, and the global
application of gravitational forces is controlled with the grav on and grav of f com-

mands.

The simulations that we will examine first are very basic in nature, and are presented pri-
marily to establish baseline computation rates. They should also help the reader become

more familiar with simulation in the corpus environment.

Simulation 1: Basic rigid body

This is the simplest type of simulation, which uses a single rigid body for the human fig-
ure. To reduce the model to a single body, we first pose the figure into the desired configu-
ration, and then “delete” all of the joints, which merges all of the bodies into a single rigid
body. The posture is specified by loading a pre-saved configuration, or by setting it with
joint commands. Interactive techniques could be added to simplify the problem of manu-
ally forming a posture, or inverse kinematics could be used to assist in the problem, as dis-
cussed previously. [Phillips] Programs which interface to knobs or other devices can be
interfaced easily to corpus, via its parsing system, [McKenna 1992] or they could be added
internal to the program itself. A command sequence which poses the figure to the anatom-
ical position, is shown in Script 3. Once we have the desired posture, all of the joints are
deleted, using the deletejoint command in corpus. The system will no longer per-
form any calculations regarding any of the joints, although the complex shape is still used
for collision detection and display.

This rigid body is free to move under the influence of gravity, or any other external force.
For the purposes of this simple simulation, no forces are applied, and thus, no motion is
induced. Running this most basic simulation allows us to measure a baseline for the com-
putation time involved in the dynamics equations. The script to setup this simulation is as
follows:

form anatomical posture, using pre-defined commandlist “anat”
anat

delete all joints from the figure

commandtree deletejoint **

ground off

130

7 Simulations Michael A. McKenna

grav off

This simulation operates very quickly. In this and the following tests, the simulation was
run for 1000 frames, yielding a little more than 33 seconds of simulation time. This simple
simulation took 39 seconds of compute time, slightly slower than real-time. The simula-
tion frame update rate was 25.6 frames/sec. Each timestep was calculated using a single
step of the integrator; no subdivision occurred because of the trivial, unchanging integra-
tion. In fact, because this simulation is so simple, if we specify the timestep to cover the
entire simulation time of 33 seconds (dt 33), the integrator returns after a single step,
computing the solution in a fraction of a second. Nonetheless, this simulation provides us
with our baseline simulation update rate for the complex model, of 25.6 frames/sec.
Table 5 lists the timing results for this and the following simulations.

Note that, although we have reduced the complex model to a single dynamic object, there
is still a significant overhead associated with the complexity of the numerous graphical
objects that comprise that object. In a simulation test run with a single body, the simula-
tion update rate was 143 frames/sec, over five times faster. The system could be optimized
to remove much of the extra overhead associated with a deleted joint, but some flexibility

in the system would be lost. In addition, the issue is not so important, since we are prima-

Script 3: A corpus script to pose the human figure to the anatomical position.

define commandlist “anat”
cl anat joint 1_hand3 g -1
joint 1_humerusl g .05 joint r_hand3 g 1

joint r_humerusl q .05
joint 1_thigh2 g -.05
joint 1_humerus2 q .1 joint r_thigh2 g .05

joint r_humerus2 q -.1
joint 1_thighl g .09
joint 1_humerus3 g 1 joint r_thighl g .09
joint r_humerus3 g -1
joint 1_talus q -.07
joint 1_forearm g -.35 joint r_ talus g -.07
joint r_forearm gq -.35
joint 1_hindfoot q -.04
joint 1_hand2 g -.3 joint r_hindfoot q -.04
joint r_hand2 q .3
update the figure’s posture
joint 1_handl q .2 xform

joint r_handl q .2

131

7 Simulations Michael A. McKenna

Table 5: Computation times for basic simulations.

33.3 seconds of simulation time are generated, from 1000 frames of 0.0333 seconds each.

1 - basic simulation 39 25.6 0.04 1 25.6 1.17
2 - gravity 39 25.6 0.04 1 25.6 1.17
3 - ground detection 55 18.2 0.06 1 18.2 1.65
4 - ground contact 850 1.2 0.85 11 13.2 25.5
5 - basic w/ subdivision 690 1.4 0.69 20 28.0 20.7
6 - fast rendering 28 357 0.03 - - 0.84
7 - slow rendering 69 14.5 0.07 - - 2.07
8 - basic sim w/ fast ren 60 16.7 0.06 1 - 20

rily interested in simulations which do use the joints, and, as we shall see, the computation

time for the joint dynamics dominates when more than a few are included.

Simulation 2: Gravity

The second test is identical to the first, except that the force due to gravity is applied to the
figure. The only change in the simulation script is that the command grav on was spec-
ified. There is no ground or other element to impede the acceleration of the figure. After 33
seconds of simulation time, the body had dropped over 5 kilometers, and was moving

downward with a velocity over 300 meters/sec.

This simulation was also trivial for the integrator to compute, and it took a single step per
frame, without subdividing. The simulation timings were the same as the first basic test of
Simulation 1. The computations required to add in the force due to gravity is trivial in

comparison to the main dynamics equations.

Simulation 3: Ground detection
In this simulation test, the ground detection and forces are activated, using the command
ground on. Gravity is not applied, however, so that the body remains in place, “hover-

ing” over the ground. This test was executed in order to measure the extra computational

132

7 Simulations Michael A. McKenna

expense incurred by the ground collision detection algorithm. The timings are presented in
Table 5.

The computation time slowed somewhat, yielding an update rate of 18.2 frames/sec,
nearly 30% slower than the previous tests. The extra time is due to the ground collision

detection, as each body is tested to check if it is penetrating the ground.

The collision detection algorithm uses a bounding box test, to quickly check if the graphi-
cal objects might be below the ground. If the values of the Z coordinates of an object’s
bounding box are greater than zero, it is not necessary to examine the actual surface geom-
etry of the object. So, in this case, in which the body is completely above the ground, all of
the bodies are trivially rejected. The system could incorporate additional methods to accel-
erate the computations of trivial rejections. A hierarchy of bounding boxes, encompassing
a whole group such as the foot, or the whole body, could be used. In addition, the system
could examine the velocities of the bodies to predict when collision detection will actually
be necessary. [Dworkin] Because the body in this simulation was unmoving (as was the
ground), the system could have bypassed all but the first collision detection pass.

Simulation 4: Ground collision

In this simulation, the ground is “activated” as well as gravity, and the body falls to the
ground as a rigid body. This is the first test in which the integrator sub-divides, as the body
impacts and is then supported by the ground, and the contact springs and dampers are acti-
vated. As a result, a simulation over the same interval takes much longer.

In the simulation, the body falls about 10 cm, starting from an upright, vertical position,
with the anatomical posture “hardened” into one rigid object. This posture happens to be
one which can stably support the body, i.e. when the feet rest flat in the ground, the COM
of the entire body lies between the feet, and it does not topple and fall. After the body is
pulled to the ground, it rocks slightly, because the initial orientation of the body was
slightly tilted back with respect to the final, resting standing posture. After about 4 seconds
of simulation time, the body has stopped rocking (due to damping in the ground). At this

point the simulation timing for this test begins.

In the resting, standing state, the integrator took 11 sub-steps per frame, to maintain a sta-
ble, unchanging system, as the stiff ground springs pushed up on the figure’s feet. For

133

7 Simulations Michael A. McKenna

1000 frames of simulation, corresponding to 33 seconds of simulation time, the computa-
tion time was 850 seconds, yielding a frame update rate of 1.2 frames/sec. However,
because the integrator took 11 steps per frame, the internal update rate for the integrator
was 13.2 steps/sec (1.2 * 11) — much more comparable to the previous test which exe-
cuted 18.2 steps/sec. The extra computation time is required for the extra collision detec-
tion calculations that must be performed on the objects that are penetrating, or are very

close to, the ground. The ground force computations also contribute to the slower rate.

Simulation 5: Basic simulation, with forced infegrator subdivision

In order to verify that using additional integrator steps per frame does not create any addi-
tional overhead, this simple test was executed. The basic example from Simulation 1 was
used, but the integrator was forced to subdivide, and use 20 steps/frame. The overall com-
putation rate slowed, of course, by approximately 20 times. However, the integrator step
frame rate was slightly faster, at 28 integrator steps/sec, compared to 25.6 steps/sec. There
is a slight overhead involved with the internal programming interface to the integrator,
which is reduced when the integrator subdivides internally.

Simulation 6: Rendering time, using simple objects

A simple test (not an actual simulation, however) was run to measure the time required to
render the geometric human figure model, using the real time graphics hardware provided
by the Silicon Graphics Onyx workstation with Reality Engine2 graphics. The scene was
composed so that the entire body model was visible, filling the frame vertically. This first
test timed the rendering speed when the basic objects in the simple “inertial skin” layer
were displayed. There are only eight polygons for most of the objects, and the total poly-
gon count is 1160. The rendering performance is fairly impressive, at 35 frames/sec, yield-

ing 40 thousand anti-aliased polygons/sec.

Simulation 7: Rendering time, using smooth objects

This test is identical to the previous test, except that the smoother, more complex geomet-
ric objects were used for display of the human model (the “display skin”). This model
incorporates a total of 10420 polygons. The update rate was reduced to 14.5 frames/sec,
however the system drew 151 thousand anti-aliased polygons/sec, showing a greater over-
all efficiency, in terms of polygon rendering speed. This is presumably because the render-

ing hardware processing pipelines are used more effectively.

134

7 Simulations Michael A. McKenna

Simulation 8: Basic simulation, with rendering

In this test, each simulation step was accompanied by a rendering step, essentially com-
bining Simulation 1 with Simulation 6. The simple “inertial skin” objects were used for
rendering. The overall update rate was lowered because more work was done. However,
the overall computation time for this simulation was less than the sum of the times for
simulation and rendering performed individually, by approximately 11%. The final stages
of rendering can be completed using the rendering hardware alone, allowing the simula-
tion to begin in parallel. The system could be modified to render completely in parallel
with the simulations, using another CPU in the system. In general, the simulations are too

slow to make this of real benefit.

Simulation 9: Add joints

Simulation 9 actually represents several simulations, in which more and more joints are
successively added to the articulated figure, and the computation time is measured. The
joints are “added” by removing them from a list of joints which are deleted from the
default, fully complex figure. In the final simulation, no joints are deleted. The joints are
completely unpowered, and passive, and no external forces are active. In all simulations,

the integrator took a single step per frame, with no subdivision.

Table 6: Results from Simulation 9. The computation time for increasing number of joints.

0 39 25.6 0.04 1.2
1 46 21.7 0.05 14
2 53 18.9 0.05 1.6
4 55 18.2 0.06 1.7
8 82 12.2 0.08 25
16 146 6.8 0.15 44
32 2717 3.6 0.28 8.3
64 554 1.8 0.56 16.6
84 762 13 0.76 229

135

Michael A. McKenna

7 Simulations

compute time (s)

800 ¢
700 |
600
500 |
400 F

!
'
]
]
!
!
!
1
]
]
1
!
]
!
)
!
[
]
!

300

[}
]
1]
1
]

200 |
]

100
4
ad . L joints
0 20 40 60 80
Figure 42: Computation time for simulation vs. the number of joints included in the articulated figure.

The plotted points, connected by the solid line, show the results of the simulation timings, from Table 6.
The expense is linear with the number of joints, after the first few are included.

The simulations ran for 1000 frames, with a timestep of 0.03333. This yields 33.33 seconds of simulation

time.
The dashed line shows a projection of the computation time for an order O(n’) system, such as the Walker-

Orin method, which is efficient for figures with few joints. [Walker] The projection is based on Feather-
stone’s calculation that the ABM becomes more efficient when more than 9 joints are included. With all 84
joints included, the Walker-Orin method would take nearly 100 times longer than the ABM. This empha-

sizes the importance of using a O(n) simulation method with the complex model.

The timing results of the simulation are given in Table 6. When the first few joints are

added, the computation time increases only marginally, since the equations for the root
motion dominate. After approximately eight joints are added, the computation time of the
joint accelerations dominates. From that point on, the computation time grows linearly
with the number of joints, as is to be expected using Featherstone’s recursive Articulated

Body Method. After all joints are added, a single step of the integrator takes nearly one
second (0.76 sec). The computation time vs. the number of joints is plotted in Figure 42.

Simulation 10: Inverse dynamics
In another simple simulation, inverse dynamics, instead of forward dynamics, was com-

puted at all joints. The joints were kinematically controlled using the jointmotion
command, and since there was no velocity or acceleration at the joints in the default initial

state, a motionless state was maintained. The commands to generate this simulation are

given as:

grav off

136

7 Simulations Michael A. McKenna

ground off
commandtree jointmotion ** kinematic

The compute time for 1000 steps was 714 seconds, slightly faster than the forward dynam-
ics time of 762. The inverse dynamics equations are slightly less complex than the forward

dynamics, yielding approximately a 6% increase in efficiency.

Simulation 11: Control equations

This simulation was used to time the additional overhead which arises from computing the
typical joint forces used to control the figure, using forward dynamics. At all of the joints,
a damper, an exponential spring, and a joint limit exponential spring/damper pair were
activated. The control constants and the timestep size were set very low, to avoid any stiff-
ness issues that would cause the integrator to sub-divide. The script for this simulation is:

grav off

ground off

activate damper (1), exp spring (16) and exp joint limit (32) = 49
for all bodies in the articulated figure
commandtree joint ** Q_type 49

commandtree joint ** b .00001

commandtree joint ** ea .00001

commandtree joint ** eB .00001

commandtree joint ** e_g .001

commandtree joint ** jlim eal .00001
commandtree joint ** jlim _ea2 .00001
commandtree joint ** jlim_eB1l .00001
commandtree joint ** jlim _eB2 .00001
commandtree joint ** jlim_bl .00001
commandtree joint ** jlim bl .00001
commandtree joint ** jlim_gl .001
commandtree joint ** jlim g2 .002

dt 0.0000001

The addition of the three joint force functions at each joint slowed the simulation only
slightly, by approximately 2%, retaining an update rate of 1.3 frames/second. The control
is very fast, computationally; the force calculations are negligible compared to the dynam-
ics equations. The control parameters may need to be calibrated using inverse dynamics
and inverse control (discussed below), which is considerably slower than the forward con-
trol computations (not including the forward dynamics). However, the inverse computa-
tions are still quite fast in comparison to the forward simulation, because the equations are

much less “stiff” and fewer integrator steps are required.

137

7 Simulations Michael A. McKenna

Simulation 12: Droop with joints
At this point we begin to examine more interesting simulations, which involve motion and
control. First we will examine a number of passive simulations, which do not employ

higher level motor control.

A set of simulations were run to examine the general behavior of the human model’s bio-
mechanical parameters, such as the dampers and joint limits. One class of these simula-
tions are termed “drooping” tests, in which the abdomen (the central “root” body in the
figure) is held rigidly in place, and the limbs of the body are allowed to fall passively, or
“droop,” under the influence of gravity. Dampers and joint limit exponential spring/
damper pairs influence the resulting motion. This type of test can reveal much regarding
the properties of the specified parameters. For example, an order of magnitude change in a
parameter such as a joint damping constant almost always creates a gross change in the
motion, which can easily be seen when animated. Direct comparisons to a real human
body “drooping” was not performed. Nonetheless, whole ranges of values for the biome-
chanical parameters can be ruled out through simple simulations. For example, the damp-
ing constant for a limb can be varied, and through animation the changes can be examined,

ruling out most values as far too weak or strong.

A command sequence to set up an example droop simulation, which uses all of the joints
except for the ones in the foot below the ankle, is given as follows:

rotate abdomen y -45

after transforming the graphical object, inform simulator
setrootpos

lock abdomen in place

rootmotion fixed

grav on

ground off

foreach list-of-foot-bodies deletejoint **

By default, the biomechanical model is passive, using dampers and joint limits at the fig-
ure’s joints, so this is not specified in the script. The resulting passive motion is shown in
Figure 43. This simulation is quite rapid, using approximately 6 integrator steps per frame.
With the 32 included joints, the simulation runs at about 0.6 frames/sec.

When the joints in the foot are included, the simulation slows considerably, not only
because more joints need to be computed, but primarily because the stiffness of the system

138

7 Simulations

Michael A. McKenna

139

Figure 43: An animation
sequence of the human
figure “drooping™ pas-
sively under the influ-
ence of gravity.

The torso is held in
place, and the limbs are
pulled down by gravity.
The motion is resisted
by the internal dampers
and joint limits.

7 Simulations Michael A. McKenna

increases, and more sub-steps must be used in the integrator. Adding the five joints at the
proximal end of the metatarsals, for a total of 42 joints in the figure, drives the simulator to
take approximately 27 steps/frame, when their default dampers and springs are included.
The corresponding simulation update rate falls to 0.1 frames/sec (10 sec/frame). Adding
the flexion/extension joints at the proximal heads of the proximal phalanges (upper
“toes”), increases the stiffness of the system again, so that the integrator takes approxi-
mately 56 integrator steps per frame, taking approximately 26 seconds per frame. Adding
the abduction/adduction joints at the proximal heads of the proximal phalanges does not
increase the integrator stiffness, but slows the computation linearly with the 10 added
joints. Adding the medial and distal phalanges (the rest of the toes) slightly increases the
stiffness, so that 61 integrator steps per frame are taken, slowing the computation to about
44 seconds/frame. The final joints are at the proximal ends of the navicular and cuboid in
the foot. These joints increase the stiffness of the system somewhat, causing the integrator
to use 79 steps/frame. The simulation timings are provided in Table 7.

Table 7: Results from Simulation 12. The computation time for increasing number of joints, while drooping
passively.

32- w/ major joints 6 0.60 1.7 3.6 100
42- w/ metatarsals 27 0.10 10 27 300
52- w/ proximal phalanges 56 0.039 26 22 770
62 - w/ proximal phalange 56 0.034 29 1.9 880
abductors

80 - w/ medial and distal 61 0.023 44 1.4 1300
phalanges

84 - w/ navicular and 79 0.018 55 14 1670
cuboid

The small bodies in the foot have much lower mass than the larger bodies in the figure,
and so they are much more sensitive to applied forces. Their associated spring and damper
constants are much lower than those of the larger bodies. Nonetheless, because they have
lower mass, they will oscillate under the influence of the spring, or gravity, with a higher
frequency. Consider a short pendulum which swings rapidly vs. a long pendulum which

140

7 Simulations Michael A. McKenna

swings slowly. The integrator must sample the motion more finely, because they move

more rapidly, and with greater accelerations and changes in accelerations.

Simulation 13: Falling to the ground

Another very basic kind of simulation which can be executed is letting the figure fall pas-
sively to the ground. In a manner similar to the “drooping” experiments, these simple tests
can be very informative regarding the damping, joint limit, actuator, and ground force

parameters, as the model is developed.

In some tests, the figure falls passively, without the actuator springs included as force gen-
erators. In other simulations, the actuators are activated, but they are not calibrated to sup-
port the posture, and the figure topples. These latter experiments allow for a visual
inspection of the effects of given actuator stiffnesses. An image sequence of the foot shape
bending as the body falls to the ground and tips forward, with its actuators active but

uncalibrated, is shown in Figure 44.

Simulation 14: Motor programs in zero gravity

In this example animation, we add active control of the figure’s motion, using the expo-
nential spring joint actuators. The figure hangs in zero gravity, and uses motor programs to
move the spring rest positions to create motions in the figure’s limbs. One motor program
set is designed to draw the limbs inwards, and another extends the limbs outwards.

The joints in the foot, below the ankle are deleted, to simplify the simulation. The integra-
tor took 6 steps per frame, with 26 joints included. The update rate was 0.77 frames per

second.

A script which specifies the motor programs used to generate the limbs motions is pro-
vided in Script 4. An animation sequence of the body motions is shown in Figure 45.

141

7 Simulations

Michael A. McKenna

142

Figure 44: The foot
shape as the body
falls forward.

The joint actuators
are activated, but
their rest angles are
simply set to match
the current joint
angles. Because
the springs are not
“preloaded” to sup-
port the body
weight without
first flexing some-
what, a balanced
posture is not main-
tained, and the
body pitches for-
ward and falls.

7 Simulations

Michael A. McKenna

Script 4: A script to generate motions of the limbs in zero gravity.

add in ex spring (16) to 33
(damper + exp joint limit)
commandtree jointmatchexp **

first raise arms out
motor 1_humerusl etarget 0 1.0
motor 1_humerus2 etarget 1.3 1.0
motor 1_humerus3 etarget 0 1.0
motor 1_forearm etarget 0 1.0

motor r_humerusl etarget 0 1.0
motor r_humerus2 etarget -1.3 1.0
motor r_humerus3 etarget 0 1.0
motor r_forearm etarget 0 1.0

grav off
ground off

cl move-in
motor 1_forearm etarget -2.5 1
- motor r_forearm etarget -2.5 1

motor 1_thighl etarget -2 1
motor r_thighl etarget -2 1

motor
motor

1_shank etarget 2.5 1
r_shank etarget 2.5 1

motor pelvisl etarget -0.5 1

cl move-out
motor 1_forearm etarget 0 1
motor r_forearm etarget 0 1

motor
motor

1_thighl etarget 0.09 1
r_thighl etarget 0.09 1

motor
motor

1_shank etarget 0 1
r_shank etarget 0 1

motor pelvisl etarget 0 1

143

7 Simulations

Michael A. McKenna

@

144

Figure 45: An “exercise”
animation sequence
using the human figure
model.

The figure hangs in zero
gravity, and uses motor
programs to draw the
limbs inwards then
extend them outwards.

7 Simulations Michael A. McKenna

Script 5: A corpus script which defines motor programs to “wiggle” the toes.

cl extend cl flex

motor 1_phall.2 etarget -.9 .5 motor 1_phall.2 etarget .9 .5
motor 1_phal2.2 etarget -.6 .5 motor 1_phal2.2 etarget .9 .5
motor 1_phal3.2 etarget -.5 .5 motor 1_phal3.2 etarget .6 .5
motor 1_phal4.2 etarget -.45 .5 motor 1l_phald.2 etarget .4 .5
motor 1_phal5.2 etarget -.41 .5 motor 1_phal5.2 etarget .4 .5
motor 1_phall.l etarget -.05 .5 motor 1_phall.l etarget .05 .5
motor 1_phal2.l etarget .05 .5 motor 1_phal2.l etarget -.1 .5
motor 1_phal3.l etarget .1 .5 motor 1_phal3.l etarget .0 .5
motor 1_phald.l etarget .15 .5 motor 1_phald.l etarget -.05 .5
motor 1_phal5.l etarget .15 .5 motor 1_phal5.l1 etarget -.075 .5
motor 1_toel etarget .2 .5 motor 1_toel etarget .9 .5
motor 1l_toe2.l1 etarget .2 .5 motor 1_toe2.l etarget .8 .5
motor 1_toe3.1 etarget .2 .5 motor 1_toe3.l etarget .8 .5
motor 1_toe4.l etarget .2 .5 motor 1_toed4.l etarget .8 .5
motor 1_toe5.1 etarget .2 .5 motor 1_toe5.1 etarget .8 .5
motor 1_toe2.2 etarget .2 .5 motor 1_toe2.2 etarget .8 .5
motor 1_toe3.2 etarget .2 .5 motor 1_toe3.2 etarget .8 .5
motor 1_toed.2 etarget .2 .5 motor 1_toed.2 etarget .8 .5
motor 1_toe5.2 etarget .2 .5 motor 1_toe5.2 etarget .8 .5

Simulation 15: Motor program to wiggle the toes

This simulation is similar to the previous. Motor programs are used to move the phalan-
ges, flexing and extending the joints, with small amounts of abduction and adduction. The
resulting motion is similar to “wiggling” the toes. The motor programs and initialization

commands are given in Script 5.

The joints not in the left foot were deleted to simplify. Using the 26 joints in the left foot,
the integrator took 54 steps per frame. The update rate was 0.083 frames per second, or 12

seconds per frame. The animated motions of the toes are shown in Figure 46.

145

7 Simulations Michael A. McKenna

Figure 46: A motion sequence of
@ ® “wiggling” the toes of the left foot,
driven by motor programs.
@ @
®
@ ©)
® ©

146

7 Simulations Michael A. McKenna

Biomechanical Balance F---1

Data :

1

/ \ i

]

\ A4 \ =

pertubation g

Actuator forces I_)ynamic E

Model: Simulator: ;

Motor sprin Forward _M> Forward limb Graphics '

Program })T)Eiti—o?\? Control Dynamics positions’ System E

4 target spring | Inverse < target forces| Inverse target limb E
positions Control Dynamics positions

Figure 47: Block diagram of dynamic postural control.

The dashed lines represent control paths which are traversed less frequently than the solid, forward control

paths. The ‘Balance’ block supplies a definition for a stable kinematic posture, and feeds the target posture

into the dynamics simulator. Inverse (hybrid) dynamics is computed using the limb configuration and envi-
ronmental forces to compute the joint forces required to achieve that posture. Inverse control then computes
the actuator parameters which will deliver those forces. Motor programs mediate between the target actuator
parameters and the current ones. The forward control loop takes the current actuator parameters, computes

the joint forces, forward simulates the figure motion, and feeds the limb configuration back to the actuators
to compute an updated force.

7.2 Standing Posture

The general approach to controlling a stable, balanced posture was covered in the
Approach section (3). There are three main components of the static balance system. The
first part defines a kinematic description for the figure, such that it has a stable posture.
The second part uses hybrid dynamics and inverse control to calibrate the actuators to the
specified posture. The third major component is the actual execution of balance through
force application; the actuators control and maintain the posture by generating force, and
the dynamics simulator generates the motion (or lack of motion). The actuators employ
feedback which allows the system to adapt to and reject errors and perturbations to the
system, to a limited degree. The balancing mechanism is depicted in block-diagram form

in Figure 47.

The first major step in the calibration is to define the kinematic posture, in this case, a
standing posture. This component could use kinematic analyses to determine the joint
angles needed to maximize the stability of the figure, by centering the COM of the entire
body within the support polygon formed by the points of contact with the ground, as the
Jack™ system does. [Phillips] The main goal of this system is to maximize the stability

147

7 Simulations Michael A. McKenna

margin, which is defined as the shortest distance from the projection of the COM onto the
support surface to the boundary of the support polygon.

In this work, stable postures were interactively generated using the scripting language in
corpus to create joint configurations which placed the COM of the figure within the region
of support formed by the feet. To aid in this task, a COM marker was added to the system,
as a visual guide to stability. The COM of the entire body is the average of the COMs of
all the segments, weighted by their mass:

n
zci in mi
1

e=t—— Eq. 91

where c is the three dimensional row vector defining the location of the body COM in
world space, ¢; is the (static) COM of body i in its local space, ;X,, is the 3x3 matrix which
transforms values from the space of body i to world space, and m; is the scalar mass of
body i.

Once a posture has been defined, the second step is to calibrate that posture for the control
system. Hybrid dynamics uses the defined kinematic posture to compute the required joint
forces, and inverse control then uses those forces to compute the required actuator param-
eters. The analysis phase employs the dynamics simulator to perform its calculations.
However, this phase is “outside of”” the normal, forward dynamics simulation which ani-
mates the figure; the simulation time spent in the analysis in not included in the overall
simulation of the biped. The hybrid analysis could be considered a sort of detailed
“thought experiment” performed by the control system.

The calibration process uses hybrid dynamics rather than inverse dynamics, because the
overall body motion is unconstrained, and is forward simulated. The joints however, are
kihematically constrained, and forces are computed using inverse dynamics. Some joints
could be left to be forward simulated as well, with their posture being defined by the actu-

ators at the joints and the other applied forces.

The hybrid analysis operates as follows: the joints are “locked” into the specified kine-
matic posture by setting the joint angles to the given target, and by setting the joint veloci-
ties and accelerations to zero. The figure then becomes essentially one rigid object. The

148

7 Simulations Michael A. McKenna

motion of the entire body remains unconstrained, in 6D, and is simulated using forward
dynamics. Gravity “pulls” the figure downwards, and support and friction forces are gen-
erated at the contact between the body and ground. This figure “settles” to the ground,
coming to rest. Once the figure is unmoving, it is in a static case with respect to the exter-
nal forces. There are small initial settling motions because it is difficult to place the figure
exactly on the ground, in its final resting state, with the correct configuration of the feet
touching the ground surface (and slightly penetrating by specific amounts at different
points on the feet).

If the system is already in an operating state, the system does not have to “settle” before
the hybrid analysis can begin. For example, if a standing posture, with its associated con-
trol state, is already defined, hybrid dynamics could be used to determine the control
parameters to achieve an acceleration goal for a limb. The system does not need to settle

because it is already in the proper starting configuration for the new goal.

During the hybrid simulation, joint forces are computed at the locked joints. These forces
are integrated using the numerical integrator, in order to obtain a more stable “average”
joint force, as described previously, in the sub-section Hybrid Dynamics (5.5) and Eq. 59,
page 89. The forces are integrated over a short period of simulation time (typically one

second).

Once a stable joint force has been computed, inverse control is used to compute the
required “target” actuator parameters, as in Eq. 82, page 101. Motor programs mediate
between the target actuator parameters and the current ones, so that the previous control
state is interpolated to the newly determined state. The new actuator state can also be set

instantaneously, which is the method used if no valid control state existed previously.

After the control system has been calibrated, forward dynamics can be used to simulate
the figure. The actuators employ feedback which allows the system to adapt to and reject
errors and perturbations to the system, to a limited degree. A certain range of error is intro-
duced in the dynamic simulation due to numerical instabilities in the force functions, lim-
ited sampling of the dynamics function by the numerical integrator, and ultimately the
numerical limitations of the machine. The actuators also allow for the adaptation to pertur-
bation forces applied to the biped. When a perturbing force is applied, the figure will devi-
ate from the specified posture. The magnitude of the deviation depends on the stiffness of

149

7 Simulations Michael A. McKenna

the actuators, and the magnitude of the force. Forces above a certain level will cause the
COM to move beyond the support polygon, and the biped will fall. When the force is
removed, the actuators will return the figure to the original posture, assuming it has not
fallen. The actuators are analogous to skeletal muscle with their proprioceptive feedback
allowing for length and stiffness regulation.

In previous work by the author, simulating the locomotion of a hexapod, [McKenna 1990-B;
McKenna 1990-C] a trial and error method was used to determine the actuator control param-
eters. The hybrid analysis system represents a significant advance over that method,
because more control parameters are automatically determined, with much greater accu-
racy. An important issue from the previous work is that forward dynamics, rather than
inverse dynamics, should be the means of motion production in the simulation. The con-
cern is that motions and postures should not be overly constrained or prespecified, or
much of the motivation for performing a detailed dynamic simulation will be lost. If
motions are already kinematically specified, there is little point in dynamically simulating
them for the purposes of animation. This philosophy remains important in this work. An
emphasis is placed on producing motion using forward simulation. Inverse and hybrid
analyses are used in lieu of trial and error methods. It should be noted that in some cases it
is more beneficial to apply kinematic control, and in many case, the control is greatly sim-
plified using kinematic constraints. Inverse dynamic control of some joints can also reduce
the stiffness of the system, decreasing computation time. Because corpus allows for a mix
of dynamic and kinematic control, the flexibility is provided to try different approaches for

control.

The “anatomical position” posture for the human figure model that was set to match the
Goldfinger illustrations turned out to be a stable, balanced posture which placed the COM
of the entire body within the support region. This stable posture, and others, including a
low squat were calibrated in the control system, and were maintained over time by the
joint actuators when forward simulated. In one experiment, motor programs were used to
vary the actuator control parameters from the state for a squatting posture to the state for
the upright standing posture, successfully generating a “standing” motion. The motion
sequence is shown in Figure 48. In general, a more sophisticated mechanism would be
required to ensure that the COM remains within the support region during movements
such as the one described. One solution would involve a subdivision of the movement tra-

150

7 Simulations

Michael A. McKenna

151

Figure 48: An animation
sequence of the human fig-
ure rising to a standing
posture from a knee bend.

7 Simulations Michael A. McKenna

jectory, with the kinematic posture formulation and hybrid analyses performed at several

“points” along the way.

Other experiments dealt with the adaptive properties of the postural system to the applica-
tion of an external force. There were two main types of experiments: ones in which the fig-
ure adapted passively using the actuators, and ones in which the control system actively
adapted to the force. In all of the experiments, a linear external force was applied to the
mid-region of the torso, with magnitudes in the range of 10 N (approximately equivalent
in magnitude to the weight of 1 kg, on earth). The direction of the force was horizontal,

parallel to the ground.

In the passively adaptive experiments, the body posture shifts, as the force is applied, in
the direction of the force. The magnitude of the postural change depends on the stiffness
of the actuators (the o and p parameters, Eq. 81, page 99). Beyond a certain level of
applied force, the body COM shifts beyond the support region, and the figure falls.

When the complex model of the foot is included, the figure becomes much more sensitive
to a perturbation force, and the body moves more. With the foot joints, there are many
more places where the stress can be absorbed by spring deflection. In contrast, the rigid
foot will supply any force needed to prevent bending. Although the complex foot makes

the control task more difficult, the problem is more realistic.

In the actively adaptive experiments, the hybrid analysis takes into account the externally-
applied force, so that, after the inverse control calculations, the actuators counteract the
perturbing force. In these experiments, the body would move only very slightly in
response to the force. It is likely that the small movements that occur are due to the com-
pliant nature of the ground reaction forces. Even with the active control, forces can be
applied which would push the figure over. At its best, the figure can respond only as a rigid
object, and we all know that rigid objects can be toppled over. One potential drawback of
the active adaptation is that it requires knowledge of the specifics of the applied force. In
the real world, this information is not directly available to a robot or human, although the
information is indirectly available though the various sense organs that are stimulated

though the effects of the force (e.g. motion, pressure).

152

7 Simulations Michael A. McKenna

Figure 49: The human figure, in contraposition.

Photo on left from [Goldfinger].

To conclude the discussion on standing postures, the figure in contraposition is presented.
“Contraposition” is a posture of the depicted human body, common in late Renaissance
sculptures and paintings, in which twisting of the vertical axis of the body results in the
head, shoulders, and hips being oriented in different directions. All of the major degrees of
freedom are employed to form the pose, and the toes are bent on the figure’s left foot. See
Figure 49.

7.3 Reaching Task

A simulation, which could be computed in near real-time, was generated of a reaching
task with the arm. The task is to reach out with the left arm to touch, with the tip of the
hand, one of five buttons arranged in a two dimensional array. The head also turns to

“look” towards the indicated button. The approach for the control is similar to that used

153

7 Simulations Michael A. McKenna

for the standing posture simulations. The actuators are first calibrated to a set of key pos-
tures, and during the execution of the task, motor programs are used to modify the actuator
rest angles over time, from one posture setting to another, to generate the reaching
motions.

The kinematic complexity of the model is greatly reduced, for efficiency, by deleting most
of the joints. The overall body motion is fixed in place, and six joints are included: three
DOFs at the shoulder, and one DOF at the elbow of the left arm. Two DOFs are included
in the head/neck joint.

There are two main phases to the overall simulation: a “training” phase and a “perfor-
mance” phase. The training process is used to form and calibrate key postures. Training
occurs only once, before “performance” begins. During performance, forward dynamics is
used to simulate the motion of the figure, as it reaches and looks towards the indicated tar-

gets.

The goal of the training phase is to generate one posture for each of the buttons, with the
tip of the hand touching the given button, and the gaze of the head looking towards that
button. Once the posture is specified, the training process calibrates the actuators for that
posture, as they resist gravity and support the limb. The training calibration process could
use an inverse kinematics technique to form the posture of the limb, as the hand touches a
giVen button. Instead, a dynamic simulation process is used to form these key postures.
This simulation process is part of the calibrating phase for the control system, and it is not
intended to be a simulation of the figure’s motion in the proper sense (for example, there is
no gravity during most of the calibrating process).

The simulation and training start from an initial configuration, such that the figure looks
straight ahead, with the arm held at its side. This initial posture is shown in Figure 50. A
linear spring, in three dimensional space, is used to “pull” the tip of the hand to a given
button. One end of the spring attaches to the button, and the other attaches to the tip of the
hand. First order dynamics (see First Order Dynamics, page 90), rather than standard
second order dynamics, is used to simulate the motion of the hand as it is drawn to the tar-
get button. First order dynamics allows a rapid descent to the solution, without overshoot-

ing the target.

154

7 Simulations Michael A. McKenna

Figure 50: The setup for the reaching task.

This “over the shoulder” shot shows the
initial, starting posture. The left arm is
used to reach forward to press a specified
button from the array of five grey boxes.

During this calibrating simulation, gravity and all internal forces in the arm are inactive.
The limb takes a short path from its starting posture to the final posture, at which point the
tip of the hand has been drawn almost completely to the target by the spring. The orienta-
tion of the head is similarly drawn towards the buttons. A linear spring is attached from
the target button to a point in front of the head, similar to a “gaze” vector. Originally, the
head motion seemed too exaggerated as it turned to orient the head directly at the target;
presumably a person’s head would turn towards the target, but their eyes would rotate fur-
ther to center their gaze on the target. In order to modify the target head postures, springs
were included in the head/neck joints, with the rest angles set to the initial, forward look-
ing posture. The linear spring then pulls the head’s gaze towards the target, but the neck
springs resist, and the head moves until the forces are in equilibrium. The result is that the
head turns towards the target button, but without directing the gaze completely at it. The
neck springs provide a default posture, towards which the head will be biased. In general,
such springs can be used to influence the type of posture that is formed. For example, joint
limits can easily be included to keep movements within valid ranges, actuator springs can
be used to bias towards a default posture, gravity can be included to influence the posture,
and extra external springs (attractors or repulsors) can be used to shape the limb in a

desired manner.

139

7 Simulations Michael A. McKenna

Figure 51:
The reaching
task simula-
tion, in the
performance
phase.

Aseach target
is indicated
(by turning
white), the
figure turns
the head
towards it and
: reaches to
touch it.

156

7 Simulations Michael A. McKenna

After reaching the target, the posture is calibrated for the spring controls, using inverse
dynamics and inverse control. Gravity is activated, so that the springs will incorporate that
force, and counteract it. The posture for touching each button is calibrated, and the initial
posture with the arm at the figure’s side is also calibrated.

In the performance phase, the motions of the figure are computed using forward dynamics,
as different button targets are indicated, and the figure looks towards and reaches to touch
the target. When a button is indicated, the control settings which correspond to the posture
that touches that button are selected. If no target is indicated the control settings for the
initial posture, with the arm at the side, are selected. Motor programs are then activated to
move the spring controls to the selected, pre-calibrated posture. The spring angles move
over time, pulling the limb to the target position, and the dampers dissipate the kinetic

energy and smooth the motion. An animation sequence of the task is given in Figure 51.

The performance simulation runs at approximately 6.8 frames per second, about 1/4 real-
time, including the time for both simulation and rendering. The training process is com-

puted at a similar update rate. The entire training phase lasts approximately 40 seconds.

7.4 Toe Raise Simulation

In this simulation, the human figure is controlled to rise up on its toes, starting from a nor-
mal standing posture. Motor programs are used to vary the actuator parameters to generate
motion. To simplify the balance problem, the figure is first controlled to raise its arms out
in front of the torso, so that it leans against a “wall” in front of it. The proximal phalanges

are then hyper-extended to push the foot and body upwards.

Starting from a calibrated standing posture, motor programs are used at the shoulders,
elbows and wrists to raise the arms. As the arms are raised, the body’s COM shifts for-
wards, the body tilts forward slightly. The hands touch a “wall” object in front of the fig-
ure, and collision and friction forces are exerted at the points of contact, preventing the
figure from falling forward. Motor programs are then used at the proximal joints of the
proximal phalanges, in both feet, to extend the phalanges, which has the effect of pushing
up the hindfoot and the upper body, as the phalanges push down against the ground. There
is a motor program which acts at the talar joint as well, to compensate for the change of

orientation of the hindfoot as it rises, so that the upper body remains upright. The script for

157

7 Simulations

Michael A. McKenna

—

Script 6: Script to control the human figure to rise on the toes.

addcorpus wall
get wall from
facet wall

../data/unit_cube

postmult

move wall .5 0 0

scale wall 100 100 100

addbody wall wall 0 0 1 rotary 1
setroot wall

corpusinit
move wall
setrootpos

.73 0 0

rootmotion fixed
integrate wall off

setcorpus biped

collide 1_hand3 wall
collide r_hand3 wall
collide 1_forearm wall
collide r_forearm wall

collision on
collisionea 100
collisionb 100
collisionfric 1.0
collisionfricb 100
collisioneB 100

cl arms-out

motor 1_humerusl etarget -
motor 1_humerus2 etarget
motor 1_humerus3 etarget -.5 1.5

=R
v »

B

motor r_humerusl etarget -1 1.5
motor r_humerus2 etarget -.4 1.5
motor r_humerus3 etarget .5 1.5

motor
motor

motor
motor
motor

motor
motor
motor

cl flex
move phals up

motor
motor
motor
motor
motor

motor
motor
motor
motor
motor

compensate at ankle too

toe's moved about .8, move the
e_g about .7 on ankle...
motor 1_talus etarget .7 1

and
motor

motor
motor

1_forearm etarget -1 1.5
r_forearm etarget -1 1.5

1_handl etarget -1.5 1.5
1_hand2 etarget 0.8 1.5
1_hand3 etarget -3.2 1.5

r_handl etarget
r_hand2 etarget
r_hand3 etarget 3.2 1.5

-1.5 1.5
-0.8 1.5

1_phall.2 etarget -.8 1
1_phal2.2 etarget -.8 1
1_phal3.2 etarget -.8 1
1_phald.2 etarget -.8 1
1_phal5.2 etarget -.8 1
r_phall.2 etarget -.8 1
r_phal2.2 etarget -.8 1
r_phal3.2 etarget -.8 1
r_phal4.2 etarget -.8 1
r_phal5.2 etarget -.8 1

move hindfoot in a little
1_hindfoot etarget 0 1

r_talus etarget .7 1
r_hindfoot etarget 0 1

the toe raise simulation is given in Script 6. An animation sequence of the body rising is
shown in Figure 52. A close-up of the side and front of the foot is shown in Figure 53.

The first simulation of the toe raise resulted in a final posture which employed mostly the

big toes and the second toes, rather than rising evenly across all of the toes. Although it is

certainly possible to perform a toe raise which places most of the stress on the big toes, it

158

7 Simulations Michael A. McKenna

Figure 52: Simulation of

) ® rising on the toes.
@ @
®
@ ©)
® ©

159

7 Simulations Michael A. McKenna

Figure 53: A close-up
view of the foot during
the toe raise simula-
tion.

160

Simulations Michael A. McKenna

Figure 54: Rising on
the toes, with an
everted foot.

161

7 Simulations Michael A. McKenna

is not as comfortable as rising with the stress divided across the toes, bending evenly
along the line of the distal heads of the second through fifth metatarsals (the “crease” of
the toes).

A second simulation was run to generate this more natural posture. A motor program was
added at the subtalar joint to evert the foot, which modified the posture to bend evenly at
the toes, across the foot. An animation sequence of this second toe raise simulation is

shown in Figure 54.

Informal comparisons were made between the animated simulations and video sequences
that were shot of a human subject performing similar toe raises. The results were quite
comparable, especially in contrast to any previous model of the foot used for animation.
The most notable difference between the real and simulated were visible in the second toe
raise simulation, with the everted foot. In the simulation, the toes rotated along their length
axis, as the foot everted. In reality, this rotation is not seen, either because the toes joints
(or some other parts of the foot) allow for rotational compensation, or because the sur-

rounding tissues “mask” the rotations of the interior bones.

7.5 Passive Step

A set of “passive step” simulations were developed using the complex figure model, simi-
lar to Mochon and McMahon’s passive “ballistic walking” experiments. [Mochon 1980-A;
Mochon 1980-B] An emphasis was placed on using passive dynamic effects to generate the
body motions, but a hybrid dynamics approach was used in order to simplify the problem.
Some degrees of freedom were eliminated entirely, such as the waist and neck joints. The
hips and shoulders were reduced to one DOF, allowing flexion and extension only. Even-
tually, it would be desirable to include all of the DOFs in the model, using either forward
dynamics or kinematic constraints at the joints to make the motions more complete, with
respect to real walking. The stance knee was kinematically locked, and the stance hip was
kinematically controlled to undergo a constant angular velocity rotation, which is an
approximation of the real motion in the human. The joints in the swing leg and the stance
ankle were forward simulated, with no active joint forces, except for very weak dampers.
Initial conditions were established for the joint positions and velocities of the step leg, the
stance ankle, and for the initial overall body velocity. The system was then allowed to sim-

ulate forward, and a successful stepping motion was generated. The step leg acts as a pas-

162

7 Simulations Michael A. McKenna

Figure 55: The model
used in “ballistic walk-
ing” analyses by Mochon
and McMabhon.

Point 2 is the moment of
toe-off for the swing leg.
Point 3 indicates when
heel strike of the swing
leg occurs. The ballistic
walking and passive step
simulations generally run
from point 2 to 3.

From [Mochon 1980-A].

f—d— —d—> |
Su SL

sively-swinging double pendulum, and the stance leg acts as a passive inverted pendulum.

The coupling of these two types of motions results in a natural appearing human step.

The model of the ballistic walking biped used by Mochon and McMabhon is illustrated in
Figure 55. If the joints in the arms and feet are also removed from the complex human fig-
ure, the result is a model that has a complexity similar to that used by Mochon and McMa-
hon, except that their model was also restricted to the sagittal plane.

Because the passive step simulation was three dimensional, the human figure began to tilt
laterally towards the swinging leg, as the center of mass was not above the region of the
supporting foot. To address this, a simple ballistic motion was added to the simulation. As
part of the initial conditions, a lateral velocity of the body was specified, so that the body
moved towards the side of the supporting foot. About mid-stance, the body began to pas-
sively fall back towards the swinging leg. This motion takes advantage of the passive
inverted pendulum formed by the stance leg, adding a new dimension to the one used pre-

viously.

Another problem arose because the simulation performed was not restricted to the sagittal
plane. The momentum of the swing leg caused the body to rotate around its vertical axis,
along with the swinging leg. Passive arm swinging was added to the simulation, which

served to counteract the leg inertia and greatly reduce body rotation. The initial conditions

163

7 Simulations Michael A. McKenna

for the arms to swing as passive double pendulums were established. The elbow of the left
arm was kinematically constrained to maintain the same velocity, flexing the forearm,
because passive motions were not sufficient to carry the arm up and forward.

Simulations of the passive step were executed both with and without the complex foot
model. When the articulations were included in the foot, the foot shape was passively
driven by the other body motions. When the stance leg became vertical, aligned straight
upwards, the actuator spring in the talar (ankle) joint was activated, with its rest angle set
to match the current joint angle. The motion of the ankle continued to bend somewhat,
then stopped, as the spring deflected and took up a force load. As the body continued to
move forward, it caused the angle between the leg and the ground to be reduced, which
forced the foot to flex passively, since the ankle had stopped flexing. The foot flexion
occurred at many DOFs, but primarily at the proximal joint of the proximal phalanges,

bending the “toes.”

An animation sequence of the passive step experiment, which shows the entire body, is
given in Figure 56. A close-up image sequence of the side of the complex foot during the
passive step is shown in Figure 57. A close-up of the front of the foot is shown in

Figure 58. An informal comparison of the animated motions verses a video sequence of a

human subject’s stance foot revealed a reasonable correspondence between the two.

The simulation time varies during different parts of the simulation, depending primarily
on how much stress the toes are placed under. The integrator took from 240 steps per
frame to 2100 steps per frame (1/30 sec). The average time of computation was approxi-
mately ten minutes per frame, with 64 DOFs included in the model.

In addition to visual inspection of the animated results, we can also compare other aspects
of the simulation to other simulations and to values measured from the real-world. A com-
parison between the motions of the joint angles in the legs from the ballistic walking
experiments of Mochon and McMahon and from the passive step experiments with the
complex model is shown in Figure 59. In this example, the ballistic walking simulation
was designed such that the knee of the swing leg comes to full extension exactly at the
time of heel strike. In the passive step simulation, the knee extends before heel strike.
When the knee is nearly extended, its actuator is activated to maintain the knee position,
with some flexion allowed from the spring. Mochon and McMahon also performed simu-

164

7 Simulations Michael A. McKenna

Figure 56: The passive

@ step simulation, using
the complex foot
model.

@

@

@

®

165

7 Simulations Michael A. McKenna

Figure 57: A close-up
of the complex foot
model during the pas-
sive step simulation.

166

7 Simulations Michael A. McKenna

Figure 58: A close-up
of the front of the com-
plex feet of the human
figure model during

the passive step simula-
tion.

167

7 Simulations Michael A. McKenna

60°

40°

20° Mochon and

McMahon

angle

80

McKenna

. —- time (s)
M 0.15 02 025 03 035

Figure 59: Plot of the joint angles as a function of time calculated by Mochon and McMahon com-
pared to the joint angles from the passive step simulation.

In this case, the ballistic walking simulation was designed such that the knee fully extends at the

exact moment of heel strike in the swing leg. The foot in McKenna’s passive step experiment was
simplified to a single rigid body, in this example. Top image from [Mochon 1980-A].

168

7 Simulations Michael A. McKenna

80°

60°

40°

Mochon and
McMahon

20°

angle

80r

¢

-9
) McKenna

time (s)

M 015 02 025 03 035

Figure 60: Joint angles from Mochon and McMahon’s simulations with knee lock, compared to
the passive step experiment.

The swing leg knee comes to full extension before heel strike, and is “locked.” Again, the pas-
sive step simulation used the rigid foot. Top image from [Mochon 1980-A].

169

7 Simulations Michael A. McKenna

angle

80¢

601

8!

40t

20+t

ime) R1g1d Foot

M 015 02 025 03

angle
80t
60t
40
20 ¢
K
-6
. 9 e COmplex Foot
,//M/ 0.2 0.3 .

Figure 61: Joint angles from the passive step simulations, with the rigid foot (above) and the complex
foot (below).

170

7 Simulations Michael A. McKenna

lations in which the swing knee fully extends, and then locks rigidly, before heel strike. A
comparison of the passive step simulation with this type of ballistic walking is given in
Figure 60. The comparison is quite favorable. The deflection of the knee when it “locks”
in the passive step experiment is probably more realistic than the hard, rigid lock in the
ballistic walking simulation. The major difference between the two is that the stance leg
extended further before heel strike in the passive step simulations. This may be due to the
manner in which Mochon and McMahon locked the swing leg. If its momentum was dissi-
pated without being shifted to the thigh and body, the swing leg would extend less.

A comparison of the joint angles between passive step simulations that employ the rigid
foot and the jointed foot is shown in Figure 61. The major difference is in the plot for the
ankle joint. Because the ankle joint is locked with an actuator spring in the middle of the
support phase, when the complex foot is modeled, its angle is not comparable unless the
total deflection of the foot joints are also included.

We can also examine the ground reaction forces. The ground reaction forces (GRFs) as
measured from the human are compared to the GRFs computed during the passive step
experiments, both with and without the complex foot. See Figure 62. The GRFs are quite
similar, and certainly have the same overall characteristics. When the complex foot is
included in the model, more variation is seen in the force plots, in some ways bringing

them closer to the measured GRFs, in other ways making them less similar.

The simulator, with the biomechanical model, can be used to generate “what-if” types of
experiments. As a simple and preliminary example of the kind of clinical application that
could be developed from this work, simulations of the passive step experiment were
developed, in which parts of the big toe of the stance leg were removed, to observe the
effect on the developing motion. It is a fairly common reconstructive surgery practice to
transfer some part of the toes in order to create a replacement for an amputated thumb.
There are several different options regarding how much of a toe to remove, and whether to
use the big toe or the second toe. [Wei] A simulator system, with a biomechanical model
tailored to a given patient could be used to help examine some of the trade-offs between

the different options.

In the first simulation, the distal phalanx of the big toe of the left foot was removed (the

stance leg in the simulation). The same passive step simulation was executed, and the

171

7 Simulations Michael A. McKenna

Cavagna

0.2 0.2
o.1r$ 0.1 {Q

0.1 ; 0.3 01 02 0. 4
0.1 0.1

-0.2 -0.2

Figure 62: Plots of the ground reaction forces measured from humans compared to those computed in the
passive step simulation.

The ground reaction forces during normal human walking, as measured by Cavagna and Margaria are
shown in the upper plots. The solid arrow to the left indicates the time of toe-off for the swing leg. The
dashed arrow to the right indicates when heel strike of the swing leg occurs. Top plot from [Cavagna
1966]

The ground reaction force computed during the passive step experiment are shown in the bottom plots.
The left plots show the forces from the rigid foot, the right ones show the forces from the articulated foot.
The left plots are approximately aligned to the corresponding time below the Cavagna plots. The upper
plot shows the vertical reaction force (Fy) on the supporting foot. The lower plot shows the forward, hor-
izontal reaction force (Fyy).

172

7 Simulations Michael A. McKenna

change in the motion could be observed. In fact, there was not much change in the motion,
except that the body tilted further laterally, towards the swing leg, near the end of the sup-
port phase, because there was less of a support on the medial side of the stance foot. A sec-
ond simulation was run, in which the proximal phalanx of the big toe was also removed. In
this case, the lateral body tilt was greater, but overall, the change in motion was not very
large. With both phalanges missing from the big toe, the relative lateral distance between
the body’s center of mass and the point of heel strike was reduced by 1 cm, in comparison
to the simulation that had an intact foot. In reality, a person would certainly attempt to
compensate for the missing toe, but this type of simulation at least provides a sort of base-
line, to examine the effects of a structural change without any compensation.

Future Work: Extensions and Issues Concerning Walking Simulation

Human walking is certainly not a completely passive activity. The muscles are not inactive
during locomotion — muscles are active to support the stance leg, muscles are used to
accelerate and decelerate the swing leg, [Yoon] and many other muscles are used to support
the upper body, etc. These factors are “designed-around” in McGeer's purely passive
walking mechanisms, and they are ignored in McMahon and Mochon’s Ballistic walking

work.

Active control can be provided through motor programs, by modifying actuator control
parameters over time. Active control can be used, in part, to “guide” the passive control,
establishing initial conditions which allow passive motions to be successfully executed.
Kinematic constraints can also be used to setup initial conditions by accelerating the limbs
to match target velocities. These constrains could also be formulated as a type of motor
program. How can the motor programs for walking be established? By careful examina-
tion of the requirements; trial and error; and hybrid analyses. Hybrid dynamics and inverse
control can be used to calibrate the actuators to target motions, either on the boundary con-
ditions of the motions, or throughout entire motions, using a more continuous method to
calibrate the motor program parameters over a time interval — forming table-based motor
programs. The target motions could be derived from clinical gait studies. However, this
method is less desirable, because the motions become more prescribed. However, it is not
assured that table-based motor programs would completely dictate the motion, because of
the forward nature of the motion simulation, especially in the presence of errors or unex-

pected force or terrain perturbations.

173

7 Simulations Michael A. McKenna

The trade-offs of kinematic versus dynamic control, and the mix of the two, is an interest-
ing issue. Hybrid dynamics can be used as a means of determining control parameters for
forward simulation, and it can also be used as a direct part of the motion simulation. Thus,
certain DOFs can be kinematically controlled at certain times, while others are dynami-
cally simulated. This can greatly increase the computational efficiency of the simulation,
since the inverse dynamics calculations are somewhat more efficient than the forward
dynamics computations, and problems of numerical stiffness are greatly reduced at a kine-
matically-controlled joint. In addition, mixing kinematics and dynamics can provide more
flexibility of control— an important consideration for animation. An example of hybrid
control for walking can be given: before toe-off, the step leg is kinematically accelerated
to the correct initial conditions required for a dynamic, passive step. Dynamics can be
employed where they are most critical to the motions— passive motions being a case in

point.

In previous work by the author, a gait controller, based on coupled oscillators, was used to
coordinate the stepping actions of a simulated hexapod, i.e. designating when each leg
should step and when it should stand. [McKenna 1990-B; McKenna 1990-C] The same mecha-
nisms can be used to control figures with any number of opposing legs, including bipeds.
However, the complexity of this mechanism is not especially required for biped stepping
coordination. In fact, a central pattern generator may not be appropriate for this system.
The biped stepping pattern may result more from the system dynamics than from central
planning, especially when the passive effects dominate. Also, free gaits (non-periodic
gaits, such as those used to walk across stepping stones) would rely far less on a central
stepping pattern. Under highly controlled conditions, such as walking on level ground
without disturbances, a gait controller would be an appropriate means to sequence motor
programs. Otherwise, motor programs could be sequenced by higher order planning con-
trollers, and/or ‘reflexively’ triggered, based on events that occur during the walking cycle

(such as heel strike, etc.).

Another topic of interest is the use of passive “return springs” during walking. These
springs deform during part of the locomotion cycle, and return their energy in another part
of the cycle. Alexander describes the use of return springs in locomoting animals. [Alex-
ander 1985; Alexander 1990] The use of passive joint limit forces, as well as the actuator spring
forces, can be used as return springs. The toes bend significantly during the passive step

174

7 Simulations Michael A. McKenna

simulation, near the end of the stance phase. The springs become compressed and store
energy, which could be used, if properly “channeled,” to launch the leg and push the body

forward, restoring lost energy.

175

8 Conclusions Michael A. McKenna

8 Conclusions

8.1 Human Figure Model

This work has demonstrated that complex human kinematics can be dynamically simu-
lated, including small bones placed under high stress forces. Simulation times can range
from real-time for simplified models, to approximately half an hour per frame (1/30 sec-
ond of simulated time) for complex models involving standing postures, using high-end

computer workstations.

Corpus, a computer program for the simulation and animation of articulated figures has
been developed and implemented by the author. Physically based motions are generated in
corpus by the efficient dynamic simulator sub-system, based on the Articulated Body
Method algorithm by Featherstone. [Featherstone 1987) The system is flexible and general
purpose, allowing for the simulation of any branching articulated figure using forward,
inverse, hybrid, and first order dynamics. Gravity, collision, contact, friction, damping,
joint limit, actuator, and other force models are available in the system. The simulator is
integrated with a graphics sub-system that provides a three dimensional environment for
real-time computer graphics and animation.

A new, complex human biomechanical model has been developed and described. The fig-
ure has 90 degrees of freedom overall, with a foot model that incorporates 28 DOFs each.
The kinematic and dynamic structure of the model has been designed based on anthropo-
metrics and other measures from humans. This model is useful as a structural basis for
physically based computer animation and biomechanical research, and ultimately, with
additional modeling and verification, the system should prove useful as a tool for clinical

analyses.

176

8 Conclusions Michael A. McKenna

A low level control system for movement and posture forms a foundation for a variety of
dynamic tasks. The use of spring actuators and dampers at the joints provides a stable
feedback system capable of generating postural support and motion control. The control
state for the actuators can be calibrated using inverse dynamics and inverse control to

automatically determine the parameters required for a specified postural goal.

The dynamic simulation system and the biomechanical model, with its low level behavior
control for motion have been used to generate a number of animated simulations, demon-
strating their utility. From simple simulations of passively falling under gravity, to com-

plex simulations of rising on the toes and walking, the human figure model has proven to

be a sophisticated tool for the creation of realistic animation.

8.2 Future Directions

The corpus system can be used as a platform for performing simulations for biomechani-
cal studies. For example, recently a dynamic simulation of a frog leg, with a hip, ‘knee’
and ‘ankle’ has been developed to verify a model developed by experimental biologists.
After activating the joint spring actuators in the simulated frog leg, we measure the force-
field that is generated at the end of the foot or at the ankle, as the foot is pulled through a
range of kinematic locations. The results of the simulations are compared to the measured
force fields from in vivo experiments. The simulation model can be used to test and vali-
date the biologists’ hypotheses. The results from the frog simulation also shed some light
on more general motion control issues, which could lead to control techniques for dynam-
ically simulated animation. Using the human figure model, biomechanical analyses of

human motions can also be investigated.

The human figure model developed in this work represents a single human form. In order

to adjust the model to a given person, accurate information regarding their body structure

is required. The technology currently exists to extract bone and tissue geometry from MRI

or CAT scans, and to tailor the kinematic structure and biomechanical function to that per-
son-specific, or “patient-specific,” geometry. The technology also exists to manipulate that
data and biomechanical model in three dimensions, in real-time. [Delp; Pieper 1994] The use

of patient-specific data will be a crucial element in the surgical planning systems of the

near future.

177

8 Conclusions Michael A. McKenna

As our models increase in kinematic and biomechanical complexity, the computational
and organization complexity also grows steeply. However, the number of real problems
and questions that can be addressed also grows with the details from which the models are
formed. In a well designed system, all functionality and complexity need not be employed
simultaneously, in order to simplify computation and control. Localized areas and func-
tions can be simulated, and “multi-resolution” simulations can be run, at different levels of
complexity, to see if and how changes in one system affect another.

With the addition of other kinds of models to the human figure model, we can investigate
new, multi-faceted problems. Three dimensional, biomechanical models of human skeletal
muscle [Chen} and human skin tissue [Pieper 1992] have been demonstrated. There is no
intrinsic barrier to the unification of these finite-element models with the rigid, articulated
body model. With the inclusion of other models, such as organ function, a highly sophisti-
cated human figure model can be developed, creating a computationally based, artificial

physiological person.

It is also desirable to enhance the current biomechanical model of the articulated figure.
The current kinematics could be refined and verified. Additional degrees of freedom, to
make the model more complete, should also be added. In particular, a complex spine,
neck, and hand would be welcome. In addition, more complete biomechanical models of
the many muscles, ligaments, and passive forces should be included, so that their func-

tions can be analyzed as well.

Because the structure of the hand is similar to the structure of the foot, a preliminary
model of the hand was generated, using the structural definition of the foot as a starting
point. The resulting model is shown in Figure 63. The entire human figure, with the newly
modeled hands, includes 136 joints, for a 142 DOF model. Although the kinematic struc-
ture was defined, other biomechanical parameters have not yet been modeled, so simula-

tions have not yet been performed using the hand.

Finally, high level behavior control is required in order to select from and control different

behaviors, based on the stimulus the model receives and its internal goals.

178

8 Conclusions Michael A. McKenna

: s
;;f:%

Figure 63: A preliminary hand model is added to the complex human figure model.

179

9 Acknowledgments Michael A. McKenna

9 Acknowledgments

I would like to thank a number of people who were influential in seeing this project
through.

To my sets of parents: Lynn and Don, Paul and Debbie, and Howard and Phyllis, thanks
for the many years of love and support.

More than thanks go to my academic advisor of seven-plus years, David Zeltzer — this
work would never have happened without his guidance and encouragement. Others on my
thesis committee were Professors Marc Raibert and Joe Rosen. I'd like to thank Marc for
his support and interest in my work — his respect has always meant a lot to me. And to
Joe, many thanks for the boundless enthusiasm and generous friendship.

Thanks to Nicholas Negroponte for creating a remarkable environment for technical and
creative work with media technology. And thanks as well to Steve Benton for advice and

guidance over the years.
Dave Small gets more than my thanks for his many years of standing by me.

A resounding “HOOT” to Stevie Pieper, Dave Chen, Peter Schréder, Steve Drucker, and
Tinsley Galyean — otherwise known as the playpen guys — for all the required diversions
and inspirations, long discussions on dynamics, animation, simulation — the works! And,
of course a “HOOT” to the rest of the Snakepit crew over the years: Michael Johnson,
Paul Dworkin, Karl Sims, Steve Strassmann, Clea Waite, Jim Puccio, Fran Taylor, and
Margaret Minsky. Lots of other Media Lab students, staff and faculty deserve my thanks
and regards as well, so I'd like to offer my thanks to the following friends, in no particular
order: Henry Holtzman, Bob Sabiston, John Underkoffler, Janet Noss, Greg Tucker, Steve
Librande, Chris Schmandt, Michael Halle, Anne Russell, Peg Schafer, Alan Lasky, Walter

180

9 Acknowledgments Michael A. McKenna

Bender, John Wadlington, Toru Nagamachi, Alice Markunas, Patti Maes, Ron MacNeil,
Betsy Connors, Muriel Cooper, Tod Machover, Gayle Sherman, David Berger, Michael
Klug, Anh V. Ho, Lena Davis, Gloriana Davenport, David Blank-Edelman, Laura Robin,
Dave Young, Irfan Essa, Janet Cahn, Barry Arons, Judith Donath, Gilberte Houbart, Robin
Kullberg, Suguru Ishizaki, Michael Travers, Alice Lei, Grace Colby, Mark Lucente,
Wendy Plesniak, Stan Sclaroff, Radhika Nagpal, Jory Bell, Wayne Ross, and Pierre St.
Hilaire. I know I’m bound to leave out people I want to thank, so please forgive me!

Of course, I extend many thanks to the course secretaries, Linda Peterson and Santina
Tonelli. Thanks for the help and friendship.

I would like to thank and acknowledge Simon Giszter, for the collaborative frog simula-

tion work.

A number of individuals contributed their computer software for use in this research, and
so I would like to thank: David Chen, for rendermatic and librobot; Peter Schroder for
retepmatic (enhanced anti-aliasing scan converter) and the inertia computation function;
John Underkoffler for awf (anti-aliased wire-frame rendering) , and David Small and oth-
ers from the Visible Language Workshop, for anti-aliased text and line functions.

I would like to acknowledge Donald Stredney for creating the skelton model “George,”
used as an initial template for the human figure model. He created the model under a grant
from the National Science Foundatation, Project NO. MCS-7923670, titled Complex Ani-
mation and Complex Object Synthesis, at the Advanced Computing Center for the Arts and
Design, The Ohio State University.

I would like to gratefully thank the following organizations for their support of my work at
MIT, through research and equipment grants: NHK (Japan Broadcasting Corp.), the
National Science Foundation (NSF), MIT UROP Program, Hewlett Packard Co., Apple
Computer, Inc., Silicon Graphics, Inc., Bitstream, Inc., Stardent Computer Corp., Symbol-
ics, Inc., Thinking Machine Corp., and Wacom, Inc.

I would also like to thank Medical Media Systems (MMS) for the use of equipment which
greatly facilitated the timely completion of this thesis. I'd also like to thank all of the staff

of MMS for their generous personal support.

181

10 Biographical Note Michael A. McKenna

10 Biographical Note

Michael Allen McKenna was born and raised in southern Florida. He had an early interest
in science and mathematics, and spent a summer with the Florida Foundation for Future
Scientists at the University of Florida, in Gainesville while in high school. He graduated

valedictorian from a small private school.

Mike is a member of the Massachusetts Institute of Technology undergraduate class of
1987. He studied both Computer Science and Visual Arts, and had an undergraduate
research position at the Architecture Machine Group, and then its successor, the Media
Laboratory. Mike received a Bachelor of Science from the Department of Architecture in
1987.

Continuing his education at MIT, Mike attended graduate school at the Computer Graph-
ics and Animation Group in the Media Laboratory. While conducting his research, Mike
created the award winning computer animations Cootie Gets Scared and Grinning Evil
Death (the latter with Bob Sabiston). Mike received a Master of Science in 1990.

Mike has authored and co-authored over a dozen articles in conference proceedings, jour-
nals, and books. He has given numerous presentations on his research, around the world.
Mike’s interests include Lego bricks, visual arts, science fiction, and home repair. Mike

currently lives in Cambridge, Massachusetts with his partner, David Small.

182

11 Bibliography Michael A. McKenna

11 Bibliography

10.

Alexander, R.M. (1976). Mechanics of Bipedal Locomotion. Perspectives in Experi-
mental Biology. Edited by P.S. Davies. Pergamon Press, Oxford.

Alexander, R M., N.J. Dimery and R.E. Ker. (1985). Elastic structures in the back and
their role in galloping in some mammals. J. Zool., Lond. 207:467-482.

Alexander, R.M. (1990). Three Uses for Springs in Legged Locomotion. International
J. Robotics Research. 9(2):53-61.

Amirouche, EM.L., S.K. Ider and J. Trimble. (1990). Analytical Method for the Anal-
ysis and Simulation of Human Locomotion. Journal of Biomedical Engineering. 112
(November):379-386.

Amkraut, S. and M. Girard. (1989). Eurhythmy. Computer animation. ACM SIG-
GRAPH, Film Video Show 1989.

An, C.H., C.G. Atkeson and J.M. Hollerbach. (1988). Model-Based Control of a Robot
Manipulator. MIT Press, Cambridge, MA.

Armstrong, W.W. (1979). Recursive solution to the equations of motion of an n-link
manipulator. Proc. of 5th World Congress Theory Mach. Mechanisms (Montreal).
2:1343-1346.

Armstrong, W.W. and M. Green. (May 1985). The Dynamics of Articulated Rigid Bod-
ies for Purposes of Animation. Proc. Graphics Interface 85 (Montreal, Canada).
pp-407-415.

Armstrong, W.W., M. Green and R. Lake. (June 1987). Near-Real-Time Control of Hu-
man Figure Models. IEEE Computer Graphics and Applications. 7(6):52-61.

Audu, M.L. and D.T. Davy. (1985). The Influence of Muscle Model Complexity in

Musculoskeletal Motion Modeling. Journal of Biomechanical Engineering. 107:147—
157.

183

11

Bibliography Michael A. McKenna

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Badler, N.I, J.K. Korein, J.U. Korein, G.M. Radack and L.S. Brotman. (1985). Posi-
tioning and Animating Human Figures in a Task-Oriented Environment. Visual Com-
puter. 1(4):212-220.

Badler, N.L (June 1987). Articulated Figure Positioning by Multiple constraints. IEEE
Computer Graphics and Applications. 7(6):28-38.

Barzel, R. and A H. Barr. (August 1988). AModeling System Based on Dynamic Con-
straints. Proc. SSIGGRAPH '88 (Atlanta, Georgia), in Computer Graphics 22(4):179-
188.

Bizzi, E., W. Chapple and N. Hogan. (1982). Mechanical Properties of Muscle: Impli-
cations for Motor Control. Trends in Neuroscience. 5(11):395-398.

Bizzi, E., N. Accornero, W. Chapple and N. Hogan. (1984). Posture Control and Tra-
jectory Formation During Arm Movement. Journal of Neuroscience. 4(11):2738-
2744.

Bogert, A.J. von den., H.C. Schamhardt and A. Crowe. (1989). Simulation of Quadru-
pedal Locomotion Using a Rigid Body Model. Journal of Biomechanics. 22(1):33-41.

Brady, M., J.M. Hollerbach, T.L. Johnson, T. Lozano-Pérez and M.T. Mason. (1982).
Robot Motion: Planning and Control. MIT Press, Cambridge, MA.

Braune, W. and O. Fischer. (1987). The Human Gait. Springer-Verlag, Berlin. (Origi-
nally published in German, between 1895 and 1904).

Braune, W. and O. Fischer. (1988). Determination of the Moments of Inertia of the Hu-
man Body and Its Limbs. Springer-Verlag, Berlin. Translators: P Maquet, R. Furlong
(originally published in 1892).

Brotman, L.S. and A. Netravali. (August 1988). Motion Interpolation by Optimal Con-
trol. Computer Graphics. 22(4):309-315.

Bruderlin, A. (1988). Goal-Directed, Dynamic Animation of Bipedal Locomotion.
Master's Thesis, School of Computing Science, Simon Fraser University. CMPT TR
88-10.

Bruderlin, A. and T.W. Calvert. (July 1989). Goal-Directed, Dynamic Animation of
Human Walking. Proc. of SIGGRAPH '89 (Boston, MA), in Computer Graphics
23:233-242.

Cavagna, G.A. and R. Margaria. (1966). Mechanics of walking. Journal of Applied
Physiology. 21:271-278.

184

11

Bibliography Michael A. McKenna

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Cavagna, G.A., N.C. Heglund and C.R. Taylor. (1977). Mechanical Work In Terrestrial
Locomotion: Two Basic Mechanisms For Minimizing Energy Expenditure. Am. J.
Physiology. 233(5):R243-R261.

Cavagna, G.A. (1985). Force Platforms as Ergometers. J. Applied Physiology.
39(1):174-179.

Chen, D.T. (1991). Pump It Up: Computer Animation of a Biomechanically Based
Model of Muscle using the Finite Element Method. Ph.D. Thesis, Massachusetts Insti-
tute of Technology.

Darrell, T., P. Maes, B. Blumberg and A.P. Pentland. (1994). Situated Vision and Be-
havior for Interactive Environments. M.LT. Media Laboratory Perceptual Computing
Technical Note No. 261. Jan. 1994.

Delp, S., P. Loan, M. Hoy, F. Zajac, S. Fisher and J. Rosen. (1990). An Interactive
Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Proce-
dures. IEEE Transactions on Biomedical Engineering. 37. Special issue on interaction
with and visualization of biomedical data.

Dempster, W.T. (1955). Space Requirements of the Seated Operator: Geometric, Ki-
nematic, and Mechanical Aspects of the Body With Special Reference to the Limbs.
Wright-Patterson Air Force Base, Ohio. WADC-TR-55-159.

Drillis, R. and R. Contini. (1966). Body Segment Parameters, Rep. 1163-03. Office of
Vocational Rehabilitation, Department of Heath, Education, and Welfare, New York.

Dworkin, P. and D. Zeltzer. (1993). A New Model for Efficient Dynamic Simulation.
Proc. Fourth Eurographics Workshop on Animation and Simulation. pp.35-147.

Essa, LA. and A. Pentland. (1994). A Vision System for Observing and Extracting Fa-
cial Action Parameters. Proc. 1994 Computer Vision and Pattern Recognition Confer-
ence. IEEE Computer Society. (to appear).

Featherstone, R. (1983). The Calculation of Robot Dynamics Using Articulated-Body
Inertias. Robotics Research. 2(1):13-29.

Featherstone, R. (1987). Robot Dynamics Algorithms. Kluwer Academic Publishers.

Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes. (1990). Computer Graphics:
Principles and Practice. 2nd edition. Addison-Wesley, Reading, MA.

Forsythe, G.E., M.A. Malcolm and C.B. Moler. (1977). Computer Methods for Math-
ematical Computations. Prentice-Hall, Inc., New Jersey.

185

1

Bibliography Michael A. McKenna

37.

38.

39.
40.
41.
42,
43,
44,
45.
46.
47.
48.

49.

50.

Frank, A.A. (1971). On the Stability of an Algorithmic Biped Locomotion Machine.
Journal of Terramechanics. 8(1):41-50.

Freeman, P.S. and D.E. Orin. (1991). Efficient Dynamic Simulation of a Quadruped
Using a Decoupled Tree-Structured Approach. International J. Robotics Research.
10(6):619-627.

Furusho, J. and M. Masubuchi. (1986). Control of a Dynamical Biped Locomotion
System for Steady Walking. ASME J. Dyn. Sys. Meas. Control. 108:111-118.

Ginsberg, C. and D. Maxwell. (April 1983). Graphical Marionette. Proc. ACM SIG-
GRAPH/SIGART Workshop on Motion (Toronto, Canada). pp.172-179.

Girard, M. and A.A. Maciejewski. (July 1985). Computational Modeling for the Com-
puter Animation of Legged Figures. Computer Graphics. 19(3):263-270.

Girard, M. (June 1987). Interactive Design of 3D Computer-Animated Legged Animal
Motion. IEEE Computer Graphics and Applications. 7(6):39-51.

Goldfinger, E. (1991). Human Anatomy for Artists: The Elements of Form. Oxford
University Press, New York.

Gray, H. (1977). Gray's Anatomy. Gramercy Books, New York. (American edition
originally published in 1901).

Gubina, F., H. Hemami and R.B. McGhee. (1974). On the Dynamic Stability of Biped
Locomotion. IEEE Transactions on Biomedical Engineering. BME-21(2):102—-108.

Hahn, J.K. (August 1988). Realistic Animation of Rigid Bodies. Computer Graphics.
22(4):299-308.

Hatze, H. (1976). The Complete Optimization of a Human Motion. Mathematical Bio-
sciences. 28:99-135.

Heppenheimer, T.A. (1985). Man Makes Man, in Robotics. Edited by M. Minsky.
Omni Press (Anchor Press/Doubleday), Garden City, New York. pp.28—69.

Herman, R., T. Cook, B. Cozzens and W. Freeman. (1973). Control of Postural Reac-
tions in Man: The Initiation of Gait. Control of Posture and Locomotion. Edited by
R.B. Stein, K.G. Pearson, R.S. Smith and J.B. Redford. Plenum Press, New York.

Hof, A.L. and Jw. Van den Berg. (1981). EMG to Force Processing II: Estimation of

Parameters of the Hill Muscle Model for the Human Triceps Surae by Means of a Cal-
fergometer. Journal of Biomechanics. 14(11):759-770.

186

11

Bibliography Michael A. McKenna

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Hollerbach, J.M. (1980). A Recursive Lagrangian Formulation of Manipulator Dy-
namics and a Comparative Study of Dynamics Formulation Complexity. IEEE Trans-
actions on Systems, Man, and Cybernetics. SMC-10(11):730-736.

Huelke, D.F. (1986). Anatomy of the Lower Extremity — An Overview. Biomechanics
and Medical Aspects of Lower Limb Injuries (P-186). Society of Automotive Engi-
neers, Warrendale, PA.

Hughes, G.M. and P.J. Mill. (1974). Locomotion: Terrestrial. The Physiology of Insec-
ta. Edited by M. Rockstein. Academic Press, New York and London. pp.335-379.

Inman, V.T., H.J. Ralston and F. Todd. (1981). Human Walking. Williams & Wilkins,
Baltimore.

Isaacs, PM. and M.F. Cohen. (July 1987). Controlling Dynamic Simulation with Ki-
nematic Constraints, Behavior Functions and Inverse Dynamics. Computer Graphics.
21(4):215-224.

Isaacs, PM. and M.F. Cohen. (1988). Mixed Methods for Complex Kinematic Con-
straints in Dynamic Figure Animation. Visual Computer 4(6):296-305.

Kajita, S., K. Tani and A. Kobayashi. (1990). Dynamic Walk Control of a Biped Robot
along the Potential Energy Conserving Orbit. Proc. of IEEE International Workshop
on Intelligent Robots and Systems (Tsuchiura, Ibaraki, Japan). 2:789-794.,

Kato, T., A. Takanishi, H. Jishikawa and 1. Kato. (1983). The Realization of the Quasi-
Dynamic Walking by the Biped Walking Machine. Fourth Symposium on Theory and
Practice of Robots and Manipulators. Edited by A. Morecki, G. Bianchi and K. Kedzi-
or. Polish Scientific Publishers, Warsaw. pp.341-351.

Kochanek, D.H.U. and R.H. Bartels. (July 1984). Interpolating Splines with Local
Tension, Continuity, and Bias Control. Computer Graphics. 18(3):33—41.

Lasseter, J. (1987). Principles of Traditional Animation Applied to 3D Computer Ani-
mation. Computer Graphics. 21(4):35-44.

Lathrop, R.H. (1986). Constrained (Closed-Loop) Robot Simulation By Local Con-
straint Propagation. Proc. 1986 IEEE Int. Conf. on Robotics and Automation (San
Francisco). 2:689-694.

Lee, P, S. Wei, J. Zhao and N.I. Badler. (1990). Strength Guided Motion. Computer
Graphics. 24(4):253-262.

187

11

Bibliography Michael A. McKenna

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Liston, R.A. and R.S. Moser. (1968). A Versatile Walking Truck. Proc. Transportation
Engineering Conf. (Institution of Civil Engineers, London).

Maes, P. (1990). Situated Agents Can Have Goals. Journal of Robotics and Autono-
mous Systems. 6 (1&2).

Manko, D.J. (1992). A General Model of Legged Locomotion on Natural Terrain. Klu-
wer Academic Publishers, Boston.

Mann, R.W. and E.K. Antonsson. (1983). Gait Analysis— Precise, Rapid, Automatic,
3-D Position and Orientation Kinematics and Dynamics. Bulletin of the Hospital for
Joint Diseases Orthopaedic Institute. Vol. XLIII(2):137-146.

Marion, J.B. and W.F. Hornyak. (1982). Physics for Science and Engineering, Part 1.
Saunders College Publishing, Philadelphia.

Marsolais, E.B. and R. Kobetic. (1987). Functional Electrical Stimulation for Walking
in Paraplegia. Journal of Bone and Joint Surgery. 69-A(5):728-733.

McGeer, T. (1990-A). Passive Dynamic Walking. The International Journal of Robot-
ics Research. 9(2):62-82.

McGeer, T. (1990-B). Passive Walking with Knees. Proc. of the 1990 IEEE Robotics
and Automation Conference.

McGeer, T. (1990-C). Passive Bipedal Running. Proc. of the Royal Society of London.
B 240:107-134.

McGhee, R.B. and G.I Iswahdhi. (April 1979). Adaptive Locomotion of a Multi-
legged Robot over Rough Terrain. IEEE Trans. on Systems, Man, and Cybernetics.
SMC-9(4):176-182.

McKenna, M. (1988). Cootie Gets Scared. Computer animation. Produced at the Com-
puter Graphics and Animation Group, Media Laboratory, Massachusetts Institute of
Technology.

McKenna, M.A., S. Pieper and D. Zeltzer. (1990-A). Control of Virtual Actor: The
Roach. Proc. of the 1990 Symposium on Interactive 3D Graphics (Snowbird, Utah). In
Computer Graphics, 24(2):165-174.

McKenna, M.A. (1990-B). A Dynamic Model of Locomotion for Computer Animation.
Master's Thesis, Massachusetts Institute of Technology.

188

11

Bibliography Michael A. McKenna

76.

77.

78.

79.

80.

81.

82.

83.

34.

85.

86.

87.

88.

89.

McKenna, M. and D. Zeltzer. (1990-C). Dynamic Simulation of Autonomous Legged
Locomotion. Proc. of SIGGRAPH '90 (Dallas, TX). In Computer Graphics 24(4):29-
38.

McKenna, M. and B. Sabiston. (1990-D). Grinning Evil Death. Computer animation,
produced at the Massachusetts Institute of Technology’s Media Laboratory.

McKenna, M. (1992). Interactive Viewpoint Control and Three Dimensional Opera-
tions. Proceeding of 1992 Symposium on Interactive 3D Graphics (Cambridge, MA).
Association for Computing Machinery, New York, NY. pp.53-56.

McMahon, T.A. (1984). Muscles, Reflexes, and Locomotion. Princeton University
Press.

Meglan, D.A. (1991). Enhanced Analysis of Human Locomotion. Ph.D. Thesis, The
Ohio State University.

Messuri, D.A. and C.A. Klein. (1985). Automatic Body Regulation for Maintaining
Stability of a Legged Vehicle During Rough-Terrain Locomotion. IEEE Journal of Ro-
botics and Automation. RA-1(3):132-141.

Minsky, M. (1987). The Society of Mind. Simon and Schuster, New York.

Mochon, S. and T.A. McMahon. (1980-A). Ballistic Walking. Journal of Biomechan-
ics. 13:49-57.

Mochon, S. and T.A. McMahon. (1980-B). Ballistic Walking: An Improved Model.
Mathematical Biosciences. 52:241-260.

Moore, M. and J. Wilhelms. (August 1988). Collision Detection and Response for
Computer Animation. Computer Graphics. 22(4):289-288.

Morlock, M. (1989). A Generalized Three-Dimensional Six-Segment Model of the An-
kle and Foot. Ph.D. Thesis, The University of Calgary.

Murphy, M.C. and R.W. Mann. (1988). A Method for Estimating The Total Freedom
of the Knee. Modeling and Control Issues in Biomedical Systems. DSC-Vol 12, BED-
Vol. 11:55-65.

Muybridge, E. (1955). The Human Figure in Motion. Dover, New York.

Nashner, L.M. (1980). Balance Adjustments of Humans Perturbed While Walking. J.
Neurophysiology. 44(4).650-664.

189

1

Bibliography Michael A. McKenna

90.

91.

92.

93.

94,

95.

96.

97.

98.

99.

Onyshko, S. and D.A. Winter. (1980). A Mathematical Model for the Dynamics of Hu-
man Locomotion. Journal of Biomechanics. 13:361-368.

Ousterhout, J.K. (1993). Tcl and the Tk Toolkit. Addison-Wesley Publishing Co., Inc.,
(in press).

Pai, D.K. (1991). Least Constraint: A Framework for the Control of Complex Mechan-
ical Systems. Proc. of 1991 American Control Conference (Boston, MA).

Pandy, M.G. and N. Berme. (1989). Quantitative Assessment of Gait Determinants
During Single Stance Via a Three-dimensional Model— Part 1. Normal Gait. J. Bio-
mechanics. 22(6/7):717-724.

Patriarco, A.G., R.W. Mann, S.R. Simon and J.M. Mansour. (1981). An evaluation of
the approaches of optimization models in the prediction of muscle forces during hu-
man gait. Journal of Biomechanics. 14(8):513-525.

Pearson, K. (December 1976). The Control of Walking. Scientific American.
235(6):72-86.

Pfeiffer, F. and B. Gebler. (1988). A Multistage-Approach to the Dynamics and Con-
trol of Elastic Robots. IEEE International Conf. on Robotics and Automation (Phila-
delphia). 1:2-8.

Phillips, C.B. and N.I. Badler. (1991). Interactive Behaviors for Bipedal Articulated
Figures. Proc. of SIGGRAPH '91 (Las Vegas, Nevada). In Computer Graphics
25(4):359-362.

Pieper, S., J. Rosen and D. Zeltzer. (1992). Interactive Graphics for Plastic Surgery: A
Task-Level Analysis and Implementation. Proc. of 1992 Symposium on Interactive 3D
Graphics (Cambridge, MA).

Pieper, S., M. McKenna, D. Chen and 1. McDowall. (1994). Computer Animation for
Minimally Invasive Surgery: Computer System Requirements and Preferred Imple-
mentations. SPIE '94: The Engineering Reality of Virtual Reality Edited by S. Fisher
and M. Bolas.

100.Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. (1988). Numerical

Recipes in C. Cambridge University Press, Cambridge.

101.Procter, P. and J.P. Paul. (1982). Ankle Joint Biomechanics. J. Biomechanics.

15(9):627-634.

190

11 Bibliography Michael A. McKenna

102.Pugh, D.R., E.A. Ribble, V.J. Vohnout, T.E. Bihari, T.M. Walliser, M.R. Patterson and
K.J. Waldron. (1990). Technical Description of the Adaptive Suspension Vehicle. The
International Journal of Robotics Research. 9(2):24-42.

103.Raibert, M.H. (1986). Legged Robots That Balance. MIT Press, Cambridge, MA.

104.Raibert, M.H. and J.K. Hodgins. (1991). Animation of Dynamic Legged Locomotion.
Proc. of SIGGRAPH '91 (Las Vegas, Nevada). In Computer Graphics 25(4):349-358.

105.Reynolds, C.W. (1982). Computer Animation with Scripts and Actors. Computer
Graphics. 16(3):289-296.

106.Reynolds, C.W. (July 1987). Flocks, Herds and Schools: A Distributed Behavioral
Model. Computer Graphics. 21(4):25-34.

107.Russell, M. (1983). Odex 1: the first functionoid. Robot. Age. 5(5):12-18.

108.Saunders, J.B., V.T. Inman and H.D. Eberhart. (1953). The major determinants in nor-
mal and pathological gait. Journal of Bone and Joint Surgery. 35A:543-558.

109.Schroder, P. and D. Zeltzer. (1990). The Virtual Erector Set: Dynamic Simulation with
Linear Recursive Constraint Propagation. Proc. of the 1990 Symposium on Interactive
3D Graphics (Snowbird, Utah). Association for Computing Machinery, New York,
NY. pp.23-31.

110.Siegler, S., R. Seliktar and W. Hyman. (1982). Simulation of Human Gait with the Aid
of a Simple Mechanical Model. Journal of Biomechanics. 15(6):415-425.

111. Simkin, A. (1982). Structural Analysis of the Human Foot in the Standing Posture.
Ph.D. Thesis, Tel-Aviv University.

112.Sims, K. (June 1987). Locomotion of Jointed Figures over Complex Terrain, M.S.V.S
Thesis. Massachusetts Institute of Technology.

113.Singh, B., J.C. Beatty, K.S. Booth and R. Ryman. (1983). A Graphics Editor for Be-
nesh Movement Notation. Computer Graphics. 17(3):51-62.

114. Steketee, S.N. and N.I. Badler. (1985). Parametric Keyframe Interpolation Incorporat-
ing Kinetic Adjustment and Phrasing Control. Computer Graphics. 19(3):255-262.

115. Stokes, V.P. and C. Anderson. (1989). Rotational and Translational Movement Fea-

tures of the Pelvis and Thorax During Adult Human Locomotion. J. Biomechanics.
22(1):43-50.

191

11 Bibliography Michael A. McKenna

116. Stredney, D. (March 1982). The Representation of Anatomical Structures Through
Computer Animation for Scientific, Educational and Artistic Applications. M.A. The-
sis. The Ohio State University.

117.Sturman, D. (1986). Interactive Keyframe Animation of 3-D Articulated Figures.
Graphics Interface '86, Tutorial on Computer Animation.

118. Sutherland, L.E. (1983). A Walking Robot. Marcian Chronicles, Inc., Pittsburgh, PA.

119. Takanishi, A., H. Lim, M. Tsuda and I. Kato. (July 1990). Realization of Dynamic Bi-
ped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface. Proc. of
IEEE International Workshop on Intelligent Robots and Systems (Tsuchiura, Ibaraki,
Japan). Vol 1:323-330.

120.Terzopoulos, D. and K. Fleischer. (1988). Deformable Models. Visual Computer.
4(6):306-331.

121.Townsend, M.A. (1981). Dynamics and Coordination of Torso Motions in Human Lo-
comotion. J. Biomechanics. 14(11):727-738.

122. Walker, M.W. and D.E. Orin. (1981). Efficient dynamic computer simulation of robot-
ic mechanisms. Proc. Joint Automatic Contr. Conf. (Charlottesville, VA).

123. Walters, G. (August 1989). The Story of Waldo C. Graphic. ACM SIGGRAPH '89
Course Notes, 3D Character Animation by Computer.

124. Webster’s Third New International Dictionary. (1986). Merriam-Webster, Inc., Spring-
field, MA.

125.Wei, F.-C., H.-C. Chen, C.-C. Chuang and S.H. T. Chen. (1994). Microsurgical Thumb
Reconstruction with Teo Transfer: Selection of Various Techniques. Plastic and Re-
constructive Surgery. February 1994:345-357.

126.Wilhelms, J. and B. Barsky. (May 1985). Using Dynamic Analysis to Animate Articu-
lated Bodies Such As Humans and Robots. Proc. of Graphics Interface 85 (Montreal,
Canada). pp.97-115.

127. Wilhelms, J. (June 1987). Using Dynamic Analysis for Realistic Animation of Articu-
" lated Bodies. IEEE Computer Graphics and Applications. 7(6):12-27.

128.Williams, M. and H.R. Lissner. (1977). Biomechanics of Human Motion. B. Le Veau,
Editor. W. B. Saunders Company, Philadelphia.

192

11 Bibliography Michael A. McKenna

129. Williams, L. (1990). Performance-Driven Facial Animation. Computer Graphics.
24(4):235-242.

130. Wilson, D.M. (1966). Insect Walking. Annual Review of Entomology. 11:162—169.

131.Winter, D.A. and D.G.E. Robertson. (1978). Joint Torque and Energy Patterns in Nor-
mal Gait. Biological Cybernetics. 29(3):137-142.

132.Winter, D.A. (1990). Biomechanics and Motor Control of Human Movement. John
Wiley & Sons, Inc., New York.

133. Witkin, A. and M. Kass. (August 1988). Spacetime Constraints. Proc. of SSIGGRAPH
'88 (Atlanta, Georgia). In Computer Graphics 22(4):159-168.

134. Witkin, A., M. Gleicher and W. Welch. (1990). Interactive Dynamics. Proc. of the 1990
Symposium on Interactive 3D Graphics (Snowbird, Utah). In Computer Graphics
24(2):11-21.

135.Wolfram, S. (1988). Mathematica™, A System for Doing Mathematics by Computer.
Addison-Wesley Publishing Co, Inc., Redwood City, CA.

136. Yaeger, L. (1994). Computational Genetics, Physiology, Metabolism, Neural Systems,
Learning, Vision, and Behavior or PolyWorld: Life in a New Context. Artificial Life
I11. Edited by C.G. Langton. Addison-Wesley, Reading, MA. pp.263-298.

137. Yamaguchi, G.T. and FE. Zajac. (1989). Restoring Natural Gait to Paraplegics
Through Functional Neuromuscular Stimulation: A Feasibility Study. Issues in the
Modeling and Control of Biomechanical Systems. DSC-Vol. 17:49-57.

138.Yang, G.-B. and M. Donath. (1988). Dynamic Model of a One-Link Robot Manipula-
tor with Both Structural and Joint Flexibility. IEEE Int. Conf. on Robotics and Auto-
mation (Philadelphia). 1:476-481.

139. Yoon, Y.S. and J.M. Mansour. (1982). The Passive Elastic Moment at the Hip. Journal
of Biomechanics. 15(12):905-910.

140.Zajac, FE., E.L. Topp and P.J. Stevenson. (1986). A Dimensionless Musculotendon
Model. Proc. 8th Annual Conf. of the IEEE Eng. in Med. and Biol.

141.Zajac, FE. (1989). Muscle and Tendon: Properties, Models, Scaling, and Applications

to Biomechanics and Motor Control. Critical Reviews in Biomedical Engineering.
17(4):359-411.

193

11 Bibliography Michael A. McKenna

142.Zeltzer, D. (November 1982). Motor Control Techniques for Figure Animation. IEEE
Computer Graphics and Applications. 2(9):53-59.

143.Zeltzer, D. (August 1984). Representation and Control of Three Dimensional Comput-
er Animated Figures. Ph.D. Thesis., Dept. of Computer and Information Science, Ohio
State University.

144.Zeltzer, D., S. Pieper and D. Sturman. (1989). An Integrated Graphical Simulation
Platform. Proc. of Graphics Interface 89 (London, Ontario). pp.266-274.

145.Zeltzer, D. (1990). Task Level Graphical Simulation: Abstraction, Representation and
Control. Making Them Move: Mechanics, Control and Animation of Articulated Fig-
ures. Edited by N. Badler, B. Barsky and D. Zeltzer. Morgan Kaufmann Publishers,
San Mateo, CA. pp.3-33.

146.Zeltzer, D. and M.B. Johnson. (1991). Motor Planning: An Architecture for Specifying

and Controlling the Behavior of Virtual Actors. Journal of Visualization and Computer
Animation. 2:74-80.

194

Appendix A Corpus Help Michael A. McKenna

Appendix A Corpus Help

The following is the help file available in corpus, by typing “help.”

Parser/Control commands:
quit
version (print executable name)
searchpath path_list
do file name <off> <# of_times> (read in and execute a file script)
dostop (in a script (do) file - terminates execution of script)
toplevel (return to interactive input, from script)
if vall[“=' | <' | *>' |*#' 1val2 command_string(# remainder-see blocksize)
blocksize (denominator for ‘#' remainder function, see “if' above)

(Integer Variable commands)

set var value (eg "set F 10")

%V=value (set integer variable. eg "%F=10")

$V+ (increment variable. eg "%F+")

%V+value (increment variable by value. eg "$F+10")

%V- (decrement)

$V-value (decrement)

%V*value (multiple variable by value. eg "%F*10"

$V/value (divide)

$Vivalue (set variable to variable modulo value. eg "%F#10")

COMMENT (eg "# This is a comment line")
! Printed COMMENT
@ Printed comment w/o '@' - ALWAYS printed

verbose {silent, basic, extra, super or detailed]

(set level of printed information for dynamics statistics)
help (how else did you get here?)
basicin [on|off] (set basic non-line-editiing input)
silent (stop all optional output printing (such as the prompt))
unsilent (restore normal output)

vcommand" > "filename" (write 'printed' result of "command" into file)
vcommand" >> "filename" (append 'printed' result of "command" into file)

write file name {multple lines until ‘newline-.'} (write to a file, like
UNIX 'cat'. e.g.
write /tmp/ba
this is the first line written...

195

Appendix A Corpus Help Michael A. McKenna

this is the second line

)

commandlist | ¢l command-list-name {(multiple lines till newline-.}
The list can then be called using its command-list-name.
Valid calls for a commandlist named "func"
func (execute each command in the list "func")
func 10 (execute "func" 10 times)
func param(execute "func", and replace each "**" with "param")
func param 10(execute "func" 10 times, substituting "**")
(Warning: avoid mixing "**" substitutions with "%" variables)
commandloop | cloop [#_of_times] {multiple lines till newline-.}

savelist | sl save_list_name {multiple lines till newline-.}
playlist | pl save_list_name [command preamble]
(execute next command in save-list with command preamble)
playlistn | pln save_list_name list_index_# [command preamble]
(execute nth command in save-list with command preamble)
playlistfull save_list_name [command preamble]
(execute every command in save-list with command preamble)
foreach save_list_name command-string (command-string is executed, once
for each element in the save_list, replacing "**" with the element)
(Warning: avoid mixing "**" substitutions with "%" variables)

frame [frame#] (set internal frame #)

trackflush (remove all tracks)

track start_frame end_frame command-string (Sets %A to rel frame #- called
only in the start-end interval)

trackf start_frame end_frame command-string (appends rel frame # to command
end- called for all frames, less than start passes 0, greater than
end passes (end-start))

tracka start_frame end_frame command-string (Sets %A to frame number- called
for all frames, less than start %A=0, greater than end %A=(end-start))

trackc start_frame end_frame command-string (Sets %A to frame number-
cycles, called all frames)

frametrack | ft - execute track commands for current frame

system shell-command-string
wait (performs wait() to wait for a vforked process to finish)
vfork shell-command-string (five arg's max, fork off shell command)

ppopen name command-string
ppread name

ppwrite name command-string
ppdo name

Animation control commands:
render <{on|off}>
renderprint {on|off} (toggle whether or not "rendering...done" is printed)
wireframe | wf
retep (render using alternate scan converter)
filtertype val (val: box=0, pyramid=1l, bartlet=2, stochastic=3) RETEP ONLY
dither float_val
renderwindowsize x y [not yet implemented in retepl

196

Appendix A Corpus Help Michael A. McKenna

renderwindow {on|off}
renderpasses #_of_strips
renderdisplay (enable rendering to display)

render2file filename alpha-filename z-filename
autofilename filename (for auto file2render)
autofilenumber #_to_tag_onto_autofilename
incrfilenumber

autorender2file

antialias | aa {on|off}

mssize samples z-buffer-bits stencil-buffer-bits(0) (sgi antialiasing params)
hardware | hw {on|off}

clear {on|off} (clear between renders)

doublebuffer | db {on|off}

doublebufferautoswitch | dbas {on | off} (switch double buffer on render)
doublebufferswitch | dbs (switch double buffer)

fb_open (open the framebuffer)
fb_close (close the framebuffer)

backgroundcolor ¥ g b
setpenwidth #_of_pixels (for wireframe)
setpencolor r g b

(Hardware Drawing Modes)
edgeson r g b

edgesoff

hatch

hollow

outline

point

solid

(Camera commands)

lookat <obj> <x y z>

eye <obj> <x y z>

forward distance (move forward along view normal)
back distance (move back along view normal)

roll angle

up X Vv 2z

uprel [obj] x y z (up direction relative to eye)
perspective field_of_view_degrees aspect_ratio near far
apectratio | ar [screen aspect ratio]

fov [field_of_view_valuel

nearfar | nf [near-dist far-dist]

windowsize center-x center-y half-size-x y
windowcenter center-x center-y

windowhalfsize half-size-x y

viewdistance | vd {val}

screenmix x y z
screenmax X y 2

screensize x y

(special camera commands)

197

Appendix A Corpus Help Michael A. McKenna

holoshear frame_# (0-99, special purpose shearing for stereogram)
dumpcam {file-name} (dump (some) camera information)
dumpcambob {file-name}

(dump camera information in a different aspect ratio format)
vdcam <obj> <x y z> (special view-dependent camera)

(Transformation modes, for "move", "rotate", "scale")
premult

postmult

localxforms

xformcenter x y z

get obj_name [from] instance_file_name
closeobj obj_name
whereis obj_name (dump x y z of centroid of object in world space)
setmatrix obj [next four lines are matrix
dumpmatrix obj <filename>
dumpmatrixa obj <filename>
dumpmatrixwsp obj <filename> (dump world space matrix)
mcopy obj-src obj-dest
mcopywsp obj-src obj-dest
boliodump (dump ascii matrixes of all objects)
countpolys
countpostedpolys
filtermat obj-name filter-obj-name predition_scale(try 1)
(filter an objects motions, based on current and last matrix)

sharememory on|off (duplicate instance point data with share memory off)

(Hierarchy commands)
pushobj obj_name (specify a parent object-

until "popobj" any object which you "get" will be a child)
popobj

(Graphical Object Transformation commands)

init obj

harden obj (harden object points based on xform matrix, then init matrix)

scale obj x vy 2z

transscale obj x v z (scale an objects translationsl values only)

center obj (puts centroid at origin)

placex obj (puts objects centroid at a specific x loc)

placez obj (puts objects centroid at a specific z height)

move obj <obj> <x y z>

movely objl obj2 x y z (move objl by the amount of (x y 2)
transformed from the coordinate frame of obj2)

rotate obj {x|y|z} angle

rotateaxis obj x y z angle

align object object_axis_x y z align _axis x y z

interpolateobj objl obj2 t(0-1) obj_dest (point interpolation)

shear obj axis-x y z scale-initial scale-slope

(shear an object- proportional scale along an axis - hardens object)
shearld obj axis-x y z up-x y z scale-initial scale-slope
(shears along one direction only - 'up' vector is unaffected)

(Graphical Object Shading commands)
color obj r g b (0-1)

198

Appendix A Corpus Help Michael A. McKenna

icolor obj r g b (0-255)

pcl obj pcl-filename (reassign poly colors with pcl file)

joinall .asc-filename (merges all objects into one, in wsp)

defaultcolor obj r g b (0-1, set color for all new objects)

defaulticolor obj r g b (0-255)

defaultdefaultcolor (restores default (1, 1, 1))

specularcolor obj r g b (0-1)

ispecularcolor obj r g b (0-255)

defaultspecularcolor r g b (0-1, set specular color for all new objects)

defaultispecularcolor r g b (0-255, set specular color for all new objects)

defaultdefaultspecularcolor (restores default (1 1 1))

shadeparam obj diffuse% specular% specular-exponent ambient%

defaultshadeparam diffuse% specular% specular-exponent ambient%

defaultdefaultshadeparam (restores to .6 .4 30. .025)

trans obj val (0-1, O=opaque)

pointtrans obj index val (0-1, O=opaque, set transparancy at point)

polycolor obj poly# [r g bl

polyicolor obj poly# [r g bl

shademodel obj {p|g|h} (phone or gouraud or hand-grenade)

defaultshademodel {p|g|h} (phone or gouraud or hand-grenade)

cull obj {on|off} (perform back-face cull)

concave obj {on|off} (set concave polygons for an object, so that it renders
correctly (currently needed on SGI hardware))

facet obj

defaultfacet

smooth obj

defaultsmooth

groupsave filename (?2?)

post obj (show object)
unpost obj (hide object)

(Special Object Commands)
objbound objname x1 yl x2 y2 filename.asc

(write out .asc file, clips object to x-y bounds, obj local space)
objibound objname x1 yl x2 y2 filename.asc

(write out .asc file, clips object outside of x-y bounds, local space)
objzlimit objname z-min z-max filename.asc

(writes out object setting all points to fit into z-min, max in wsp)
objxyuv objname [filename.uv]

(writes out a uv file using the xy bounding box to map flat,

AND sets the object uv)
renderuv objname filename

(writes out uv file using display space as texture coords-

like a slide projector over rendered image, AND sets obj uv)
objuv inst_name file-name(.uv file) (loads uv file for an object)

(Texture and Transparency Map commands)

getmap <mapname> from <fname> x-size y-size x-repeat y-repeat\n");

getmapa <mapname> from <fname> x-size y-size x-repeat y-repeat\n") ;
(get rgba texture map)

getmapbw <mapname> from <fname> x-size y-size x-repeat y-repeat\n");
(get black & white map (one byte))

getmapbwa <mapname> from <fname> x-size y-size x-repeat y-repeat\n");
(get black & white map with an alpha channel)

objmap objname textmap reflmap obj% text% refl%

199

Appendix A Corpus Help Michael A. McKenna

transmap objname map-name (assign transparency map)

pointuv inst_name vertex_ind# texture_u texture_v

mergergba rgb-file alpha-file width height rgba-file-dest
(make rgba file from rgb and alpha file)

makemip rgb-file width height mip-file-dest mip-dimension

makemipa rgba-file width height mip-file-dest mip-dimension

makemipbw a-file width height mip-file-dest mip-dimension

(Light commands)

(default light is light.1)

lightmake light_name (make light in global, default list)
lightmakeone light_name (make light not in default list)
lightclose light_name (kill light)

‘lighton light_name

lightoff light_name

pointlight light_name (make light point source)

lightobj light_name obj_name (light object with light- private list)
defaultlightobj obj_name (lightobject with default lights- private list)
defaultlightallobj (light al objects with default lights- private list)
unlightobj light_name obj_name (remove light from object- private list)

lightcolor light_name [r g b] (0-1)

ilightcolor light_name [r g b] (0-255)

lightwhite light_name b (0-1)

lightdimmer light_name val (0-1, set brightness (not color) of light)
lightlinear light_name (linear falloff)

lightconstant light_name

lightexp light_name

lightexponent light_name exponent (exponent for exponential falloff)
lightpos light_name <obj> <x y z>

lightpoint light_name <obj> <x y z>

lightangle light_name theta

lightdeltaangle light_name theta (falloff angle for cone light)
lightshadow light_name [file-name| NULL]

(Shadow commands)

shadow obj

shadows {on|off}

unshadow obj

shadowbias biasl bias2

shadowres resfactor

shadowminsize val

shadowmapsize width height

shadowlightdensity lightname density(0-1, 1l=fully dark)

hazelevel val
hazediatance val

(Video Deck Control commands)

animate {on|off}

(when "animate off", "vpranimate" and "bvw-animate" will do nothing)
vpranimate #_of_frames (ampex or beta)
bvw-animate #_of_frames (beta)
animateinit (set new animation starting timecode to current value)
bvw-search hh:mm:ss: fr

200

Appendix A Corpus Help Michael A. McKenna

bvw-forward hh:mm:ss: fr
bvw-readtc
eject

(General Bitmap Manipulation commands)

blitread {filename| 'screen'} blitname w h [x-start y-start] [alphafile]
(save bitmap on screen for specified size in memory blit)

blitreadblur {filename|'screen'} blitname width height

(same as blitsave, but with a “blur' style file- argb banks)

blitreadbyte filename blitname x-width y-height

blitwrite filename blitname

blitwritebyte filename blitname - save only red

blitmake new_blitname width height red green blue (ints)

blit blitname x y (put up memore blit starting at x y)

blitlayer blit-background blit-foreground blit-dest

blitlayerb blit-background blit-foreground blit-dest (alpha reduction not
built into blit-foreground-rgb)

blitcopy blit_src blit_dest start_x y width height

blitinsert blit_src blit_dest dest_x y

blitlayertrans blitl blit2 blitdest trans-factor

blitlayerred blit-background blit-foreground blit-dest (uses red as alpha)

blitramp blit blit-dest ramp (brightness scale)

blitscale blit blit-dest int-scale (size scale)

alphablit rgb_file alpha_file (mat in file over saved memorey blit)

glopen width height - special window open for using blits w/ gl on SGI

(Screen Bitmap Manipulation commands)

bitsave x y width height file_name

bitload x y width height file_name

bankload x y width height file_name

bitmove x_src y_src x_len y_len x_dest y_dest

alphaload bit_file alpha_file (mat in 640x512 file over upper left 640x512)

turnover x y width height (mirror bitmap 180 degrees)

turnaround x y width height (mirror bitmap 180 degrees)

bitgamma x y width height gamma (perform hard gamma correct on bitmap-
permanently changes bitmap)

bitramp x y width height val (perform hard brightness scale on bitmap)

bitrotate x y w h

(Save potion of screen, in the old "bob" file format)

bobdump x_src y_src x_len y_len file name (0ld bob-format bitmap save)
bobload x y filename

bobloadb x yv file r g b (0-255, load with transparant background color)
bobloadt x v t file_name (load with transparancy=(255 0 0))

enlarge (pixel duplicate for 4x enlargement)
label (draw fonts to screen. see /cga/bin/label for options)

(Antialiased Line Drawing commands)
lineinit

linecolor r g b (0-255)

linetrans val (0-255)

lineclip x-min y-min x-max y-max
lineclipoff

201

Appendix A Corpus Help Michael A. McKenna

linemove x y thick
linedraw x y thick
linedone

fill color r g b (0-1 doesn't do much)
rectangle x1 yl x2 y2 (doesn't do much)

Dynamics:
addworld world_name (create a dynamic environment for bodies)
setworld world_name

addcorpus corpus_name
(create an articulated body collection, in the current world)
setcorpus corpus_name
corpusinit
addbody body_name instance_name joint_axis_x y z { sliding | rotary }
density [l=inertial 1=colliding l=convex l=colliding vel_normal_test]
(create a rigid body, in the current corpus)
addpart part_name inst_name body_name density
[l=inertial 1l=colliding l=convex l=colliding_vel_normal_test]
‘setroot body_name
setjoint body_name { joint_axis_x vy z joint-type }
setjointp b_name joint_axis_x y z joint-type
(set joint axis direction in parent's frame)
jointalign body object object_axis_x vy z
deletejoint body-name
(removes body as one with a joint- making it a rigid part of parent)
killjoint body-name
(entirely removes body- no more mass or collision detection)
bodygroundstick b_name on|off
bodygroundtest b_name on|off (set individual body ground testing on or off)
maxv body_name max_ linear max_angular
addv body_name linear_x y z angular_x y z (specified in WORLD space)
setv body_name [linear_x y z angular_x y z] (specified in LOCAL space)
rmsv (returns the RMS of all of the joint velocities, for the current corpus)
ifrmsv tolerance command (if the RMS velocity of the joints is below the
given tolerance, then do the command-string)
setrootmatrix [4 lines of 4 floats, the transform matrix for the local space]
setrootpos (harden current position of the corpus)
xform (update the xforms for current corpus)
updatev (update all spatial velocities in the current corpus,
useful after reading in a state file)
scalelengthv scale-val - scale all bodies linear velocities
scaletimev scale-val - scale all bodies velocities by a time factor
linkbodies parent child
integrate corpus_name [on!off]
go { # of frames }
motor body { etarget | ... } valuel value2
motor etarget target-joint-pos motor-time (exp spring)
motor eatarget target-exp-spring-ea motor-time (exp spring ea param)
motor ktarget target-joint-pos motor-time (linear spring)
motorfile motor-state-file etarget duration
jointmatchexp body_name (set exp spring to the current joint angle)
jointmatchqtoexp body_name (set joint angle to the current exp spring)
joint body { g | da | ... } value (set a joint parameter)

202

Appendix A Corpus Help Michael A. McKenna

q, dg, ddg, Q, b, k, k_gq, ea, eB, e_g, e_maxdq,
jlim_qgl, jlim_ g2, jlim k1, jlim_k2, jlim _bl, jlim_b2,
jlim_eal, jlim_e2, jlim_eBl, jlim_eB2,
springtype: constant, mass, distalmass, totalmass
Q type: QOPEN (0), QDAMP (1), QSPRING (2), QDAMPSPRING (3), QBIAS (4),
QJLIM (8), QEXPSPRING (16), QJLIM EXP (32) - "or" these together
jointstatus body_name
jointQsum body [0 | off]
jointQabssum body [0 | off]
jointQsumtoQ body
QtoQbias - copy each body's Q force to the Q bias term
QbiastoQ
QtoE_q - do inv control from Q force to exp spring rest angles

addmuscle muscle-name body-name
muscle muscle-name { k | b | ... } [value]

(set or query a "muscle" force parameter)

Q (bias force),

b (linear damping),

k, k_ag (linear spring stiffness and rest angle),

ea, eB, e_qg, e_maxq (exponential spring stiffness parans, rest angle,
maximum clamping force),

jlim_gl, jlim_qg2, jlim_k1, jlim k2, jlim_bl, jlim b2,

jlim eal, jlim e2, jlim_eBl, jlim eB2 (joint limit angle, stiffnesses,
linear dampers, and exponential springs),

springtype: constant, mass, distalmass, totalmass (scaling factor for
forces),

body2 (name of second body for 2 joint springs, attach forces, etc.),

k2a, k2b, k2a_qg, k2b_q, (2 joint spring stiffness, rest angles)

attach_k, attach_ea, attach_eB, atatch_e, attach_break,
attach_insertl (x y z), attach_insert2 (x y z) (spatially linear
forces- linear and exponential stiffnesses, w/ an
optional break length, and 2 insertion coordinates local
to the 2 bodies)

pulleypos [x v z], pulleyaxis [x y z], pulleybody [body-name],

pulleyr [valuel

Q_type: QOPEN (0), QDAMP (1), QSPRING (2), QODAMPSPRING (3), QBIAS (4),
QJLIM (8), QEXPSPRING (16), QJLIM_EXP (32), Q2LINEAR (64),
QATTACH (128), QPULLEY (256)
(reference # for the "type" of muscle; "or" these together)

extbias body name wsp_linear_force_x y z local_body_point__x y z
(constant external linear bias force applied to body-wsp force,local point)
rootmotion {fixed|free|kinematic|constrained}
jointmotion {free|kinematic)
treepoints body-name local_x y z [file_name]
totaljoints (print total # of DOF's (degree of freedom) of current corpus)
totalmass (print total mass of corpus)
mass bodyname (mass of body, distal mass, total-fraction...)
massonly bodyname (only the mass of the one obj- ok before corpusinit)
partmass partname (mass of a 'part' in a body)
density bodyname (returns d of first part only)
corpuscog marker_obj [NOTE: sets localxforms]

(State Saving and Loading Commands)
dumps file_name (dump main state of corpus)

203

Appendix A Corpus Help Michael A. McKenna

loads file_name

dumpQs file_name (dump joint force values)

dumpas file_name (dump acceleration values)

loadas file_name

dumpmotors file_name (dump motor progams state)
loadmotors file_name

dumpmatcorpus file_name (dump script to position all objects for rendering)
dumpIs (show Inerta tensor)

dumppv (show bias force)

dumpcog body_name (show center of gravity for a body)
listbodies {file-name}

dumpbodyq body-name [file-name]

dumpbodyga body-name file-name (append to file)
dumpbodyX body-name [file-name] (dump body 6x6 Xforms)
dumpcontacts file_name (dump special contact data)
loadcontacts file_name

dumpcontactforces [file_name]

dumpcontactforce body-name [file name]

contactfsum body-name [0 | off]

commandtree command-string-for-each-body (**=body-name)

commandtreeparts command-string-for-each-part(**=part-name)

commandtreein command-string-for-each-body (**=body-name) (leaves-inward)
commandtreeout command-string-for-each-body (**=body-name) (leaves-outward)

addmatlist
‘initmatlist
setmatlist
loadmatlist

(Integrator Commands)

iter int (loop each frame int times)

dt [time] (set time step for frame)

h [time] (set time step for next integration)
eps [val] (set integrator error tolerance)
time [val] (set current time)

inctime (increment time by dt)

pushtime

poptime (one level of push only)

integration [rkfixed | rkvar | rkf | euler]
order newt|arist (set 2nd order (Newtonian) or lst order (Aristotelian)
dynamics solution)

(Constant Acceleration Gravity)
setgrav val (set gravitational acceleration value)
setgvect x y z xr yr zr (set gravitational acceleration value)

grav [on]|off]
("Equal-Attraction" Gravity Commands)

SetG val (set Newtonian gravitational constant)

Gravity [on]|off]
Gattract bodyl body2 (put two bodies on gravity attaction list)

ground [on]|off]

204

Appendix A Corpus Help Michael A. McKenna

groundtype [flat | trigrid]

addtrigrid grid_name instance_name

groundk [val] (set ground linear spring const)

grounde [vall (set ground coefficient of elasticity) NOW INACTIVE
groundfric [val] (set coefficient of sliding friction)

groundfricb [val] (set damping for pseduo-static friction)

groundb [val] (set ground damping const)

groundea [val] (set ground exponential spring linear strength)
groundeB [val] (ground exp rise val)

groundstickea [val] (sticky ground exp spring linear strength)
groundstickeB [val] (sticky ground exp spring rise strength)
groundstickemaxz [val] (maximum force penetration val)
groundsticke [val] (ground stick force coefficient of restitution)
groundz [val] (set world space value for z-ground plane)
groundmassscale [on|off]

(scale all vertical reaction forces by the corpus mass)
collide bodyl body2 (set collision detection between bl and b2)
collision [on|off]
collisionanalysis [on]|off]
collisione [val] (set collision restitution for collision analysis)
collisionfric [val] (sliding friction value for collisions)
collisionfricb [val] (sliding friction damping value for collisions)
collisionb [val] (set collision damping)
collisionea [val] (exp spring linear strength)
collisioneB [val] (exp spring rise)
collisionemaxz ([val] (maximum force depth value)
collisionlog file_name

attach bodyl body2 bodyl _x y z body2_x y z k ea eB e [break_length]
attachb body damping_value

attachf body (prints last attach force vector)

attachfsum body-name [0 | off]

alarm time command_string
timer delta_time command_string
timerflush (activate all timers which are triggered by current time)

Hexapod Gait control commands:
addroach roach_name
setroach roach_name (set current roach for other commands below)
metabolism time (set's protraction, dleg, retraction, cycle time)
speed val (1.0=top speed, 2.0=1/2 speed of 1.0)
deltaspeed val
incrspeed
topspeed val
bottomspeed val
protime time
rettime time
cycletime time
dlegtime time
gaitgo
gaitinit
procom leg_number [list of commands for protraction]
retcom leg_number [list of commands for retraction]
stepreflex {on|off}

205

Appendix A Corpus Help Michael A. McKenna

legstepreflex leg_number body_name trigger_angle trigger_dir(*+' or "-')
loadreflex {on|off}

legloadreflex leg_number body_name joint_force

legstatus leg_number

206

Appendix B Corpus Tutorial Michael A. McKenna

Appendix B Corpus Tutorial

B.1 Starting with Corpus

This appendix is intended to help familiarize the reader with the control of corpus. This
section is not intended to be a complete manual for corpus, but rather, it should serve as a
guide to the basic operations and concepts in corpus. Users of corpus need to be familiar
and comfortable with standard computer graphics concepts such as polygonal graphical
objects, viewing parameters, object transformation, rendering concepts, etc. To fully uti-
lize corpus, users should also be adept with command line interfaces and programming

concepts.

ASCII commands are used to control corpus, either through keyboard input, or through
file scripts. “Keyboard input” actually refers to UNIX stdin, therefore input to corpus
can be redirected from any text source, including files, and the output of other programs.

Cbrpus is invoked at the command line by typing:
corpus

Corpus can be invoked in a “silent” mode in which it prints out information only when
specifically instructed to, using a command. This silent mode can be useful when the input
and output of corpus is linked to another controlling program. To run corpus in the

“silent” mode, type:
corpus -s
The “silent” mode can also be toggled with the corpus command silent, as in:

silent on

207

Appendix B Corpus Tutorial Michael A. McKenna

silent off

Be sure to refer to Appendix A Corpus Help where the full corpus command set is listed.
Not all corpus commands will be discussed here, but Corpus Help should be a useful
guide, once the basic concepts are learned from this Appendix. In addition, Appendix C
Dynamics Verification presents a set of dynamic simulation scripts for corpus, which can
provide additional tutorial material.

B.2 Graphical Operations
This first corpus script performs some basics: loading an object from a file and rendering a

view of it.

Script 7: A corpus script to render an image of a graphical object
any line which begins with a “#” symbol is a comment, in corpus

set a dark blue background color for rendering
backgroundcolor 0 0 .2

load a graphical object in the “osu” format
the object will be named b, the file name is cube.asc
get b from cube.asc

set some object shading parameters: color, etc.

color b .5 00

shadeparam obj diffuse% specular% specular-exponent ambient$%

we want an object which is mostly diffuse, with a little ambient color
shadeparam b .8 0 0 .2

By default objects are smooth shaded, but the cube should appear
faceted
facet b

set some viewing parameters

set the camera or “eyepoint” location in space

eye 551

lookat 0 0 O

alternately, we could look at the object’s centroid, using:
#lookat b

render the scene.
render

by default, rendering will be accomplished using high speed hardware
to turn off hardware rendering, to use software rendering:
hw off

208

Appendix B Corpus Tutorial Michael A. McKenna

set the file to render into
render2file /tmp/frame

set the size of the rending output
screensize 320 256

we will have ‘square’ pixels- set the aspect ratio (320/256=1.25)
ar 1.25

turn on anti-aliasing
aa on

render the scene, using software scan conversion
render

we can execute a shell command or program at any time.
call compress function to reduce the size of the file
which was just rendered
system compress /tmp/frame

Graphical objects can be transformed in a number of ways in corpus. Transformations
effect an object’s transformation matrix, used for display and geometric computations.
The following is a partial list of commands that transform graphical objects:

init obj

scale obj x vy z

move obj <obj> <x y z>

rotate obj {x|y|z} angle

rotateaxis obj x y z angle

These commands create transformation matrixes using the standard computer graphics

forms. [Foley]

The way in which each of the transformation commands affects the object’s matrix
depends on the current transformation mode. The premult command sets the transfor-
mation mode to “pre-multiply,” such that additional transformations to a graphical object
will be pre-multiplied into the objects transformation matrix. The effect is as if the trans-
formation becomes the “first” one performed on the object. In contrast, the postmult
command specifies the “post-multiply” transformation mode, such that an additional
transformation command is the “last” one performed. For example, consider the sequence:

move obj 1 0 O
scale obj 2 2 2

209

Appendix B Corpus Tutorial Michael A. McKenna

In post-multiply mode, the object would first move by 1 in X, and then, when it is scaled, it
will not only double in its linear dimension, but also move an additional 1 in X, because
the previous transformation is taken into consideration and the original offset of 1 is
scaled by 2 as well. In pre-multiple mode, the object moves, and then doubles in size,
without moving again, because the scale is performed “first,” before the move. When mul-
tiple transformations are made on an object, the pre-multiply mode can become difficult to
conceptualize; in post-multiply mode, all new transforms are taken with respect to the pre-

vious ones.

The localxforms command is a post-multiply mode which allows scale and rotate
transforms to occurs with respect to an object’s geometric centroid, so the object scales or
rotates about that point, without regard to the object’s location in worldspace. Similarly,
the xformcenter command allows the user to set the point in worldspace about which

rotations and scales will occur.

B.3 Dynamics in Corpus

The first step to use dynamics in corpus is to create a “world,” or a dynamic environment.
The corpus command addwor1d is used for this purpose. The first addworld com-
mand prepares corpus to begin handling dynamic objects. A “world” hold parameters,
such as the gravitational force vector and ground contact parameters, which are shared
among multiple dynamic objects. Multiple “worlds” can be created in corpus, represent-

ing different environmental conditions.

The next step to using dynamics in corpus is to create a new (potentially articulated) body,
known as a “corpus.” The addcorpus command is used for this purpose. “Bodies” and

“Parts” (discussed below) are then added to the new “corpus.” When the articulated body
(or single rigid body) has been constructed, the new “corpus” is initialized, with the cor-
pusinit command. A new “corpus” could now be defined, or we could begin simula-

tion.

As an example, let us now look at a simple script to construct a single “corpus,” which

consists of a single cube.

Script 8: A corpus script to create a dynamic object

create a default dynamic environment

210

Appendix B Corpus Tutorial Michael A. McKenna

addworld w

create a new dynamic object (a corpus)
addcorpus cube-corpus

load a graphical object
get cube-obj from .cube.asc

addbody body_name inst_name joint_axis_x y z {sliding|rotary} density
Add a dynamic body (body_name), defined from a graphical object

(inst_name) to the current corpus

Bodies in general have a joint axis, for a single body the joint

params do not make a difference

the density is in kg/m"3 . 1000 = water

addbody cube-body cube-obj 0 0 1 rotary 1000

set that body to be the “root” object in the corpus (even though there

is only one body), and initialize
setroot cube-body
corpusinit

We could now simulate the motion of this body. For example, we could simple activate the
gravitational force with the corpus command grav on, and the simulator would generate
a downward acceleration in the body (See Appendix C Dynamics Verification). To com-
pute the simulation, the corpus command go is used, which instructs the system to simu-
late forward in time, for the duration of the current timestep, which is specified by the dt

command. For example:

set the timestep to 1/30 of a second (like video)
dt 0.033333
simulate 1/30 sec ahead

go

look at the results

render

simulate 30 timesteps- 1 second
go 30

There are a number of parameters in corpus used to control the numerical integrator. The
integration command selects the type of integration: euler, rkfixed (the 4th
order fixed step Runge-Kutta), and rkf (the 4-5 order adaptive step size Runge Kutta).
The error tolerance of the rkf method is set with the eps command. For example:

211

Appendix B Corpus Tutorial Michael A. McKenna

integration rkf
if the diff between the 4th and 5th order solution is > 0.0001, subdivide
eps .0001

To construct an articulated figure, multiple links or “bodies” are added to the corpus. First,
their local coordinate frames and joint axes are defined. Then, the parent and child connec-
tions are established. To conclude the initialization process, the rootbody is specified,

and the corpusinit command is entered.

To define the local coordinate frames for the bodies, the first step is to load the graphical
objects which correspond to them. Using the appropriate transformations, the graphical
objects are placed into their local coordinate frame (using the standard corpus transforma-
tion commands, such as scale, move, etc.). During this process the graphical object
must be scaled to the intended size of the dynamic object (corpus uses the MKS system
(Meter-Kilogram-Second), so a distance of 1 in the graphical environment correspond to 1
meter). The root body can be placed anywhere within its own local frame, but every other
body must be positioned (at this stage of the process) such that its joint axis has its origin
at the world-space origin. For example, let’s examine the process of creating a 2-link pen-

dulum with the following script.

Script 9: A script to create a dynamic articulated figure in corpus.

addworld w
addcorpus ¢

get base from ../data/unit_cube

the base will be fixed in place. It serves as the immobile connection
for the top of the pendulum. (it is the root object)

make the base object 1 cm per side

scale base .01 .01 .01

unpost base

get bl from ../data/unit_cube.asc
get b2 from ../data/unit_cube.asc

scale it to be 1 long in Y, w/ a cross-section of .05 m
postmult

scale bl .05 1 .05

scale b2 .05 1 .05

move the joint to the origin

move bl 0 .5 0
move b2 0 .5 0

212

Appendix B Corpus Tutorial Michael A. McKenna

Both of the pendulum body-link segments, bl and b2, have been scaled so that they are 1
meter long in y, and 5 cm wide in x and z. This is their “physical” size, which they will
maintain from this point on. They have both been positioned, currently overlapping in
space, such that one of their long ends lies at the worldspace origin (the point {0, 0, 0} in
the graphical environment). By positioning each body in this manner, we have defined the
location of the body’s joint (at {0, 0, 0}) with respect to its graphical object (at one of its
ends). Now that the local coordinate frames are ready, they are set using the addbody

command.

‘base’ is the rootbody,without a real joint
addbody base base 0 0 1 rotary 1000

addbody body_name inst_name joint_axis_x y z {sliding|rotary} density
Add a dynamic body (body_name), defined from a graphical object

(inst_name) to the current corpus

addbody bl bl 1 0 0 rotary 1000

addbody b2 b2 1 0 0 rotary 1000

We have specified rotary joints, along the X axis, and a density of 1000 kg/m? (like water).

The next step is to define the transformations which are used to place each body into the
coordinate frame of its parent body. In our example, the body “b1” does not need any
additional transformation to connect to its parent, the “base.” This body can now be con-
nected to its parent. We define the parent-child relationship with the 1inkbodies com-
mand:

define transform between parent and child, and define link

linkbodies parent-body-name child-body-name

linkbodies base bl

The joint of body “b2” is located at the distal end of body “b1.” The location of the distal
end of body “b2,” in its initial configuration is {0, 1, 0}. Recall that “b2” is 1 meter long.
We place “b2” in the frame of “b1” by moving it as follows:

move b2 0 1 0

linkbodies bl b2

We can now initialize the articulated corpus:

setroot base

corpusinit

we do not want the base to move.
rootmotion fixed

213

Appendix B Corpus Tutorial Michael A. McKenna

grav on
ground off

integration rkf
dt .03333333
eps .0000001

Additional graphical objects can be added to a link during the corpus building process.
Additional objects are called “parts.” “Bodies” are the main objects associated with a link
and its joint. The joint and link properties are accessed through the “body’s” name. When
a “part” is added to a body, it is attached to it rigidly, as if it were a part of the link. The
part (optionally) contributes mass to the link, and (optionally) its geometric surface is used
for collision detection. The addpart command adds additional objects to a link (body):

addpart part_name inst_name body_ name density

Other options exist for the addbody and addpart commands. Four binary flag terms
may be added to the end of either command:

addpart part_name inst_name body_name density

[l=inertial l=colliding l=convex l=colliding_vel_normal_test]
The first flag (a “1” or “0”) is the “inertial” flag, which sets whether the body or part
should contribute any mass to the articulated figure. Each link should always have some
mass associated with it, whether from its primary body or an added part (or any combina-
tion). The second flag, the “colliding” flag indicates whether the body or part should be
used for collision detection. The final two flags are less important, and are used to assist
the collision analysis (impulse mechanics, for non-articulated bodies only). The third flag
is used to indicate if the part of body is geometrically convex. The fourth flag indicates
whether or not to use a particular test in collision analysis (the “colliding-velocity-normal-
test,” which will cancel an impulse response of the “colliding” bodies if they are moving

apart from each other). Without specifying these flags they are assumed to all be “1.”

Use of these flag allows for special structure to be built into an articulated figure. For
eXamplc, parts could be added to a link which have a great amount of geometric detail, but
which are not considered during collision detection for efficiency. Or, geometrically sim-
plified objects can be added as parts which contribute no mass, but are used for collision

214

Appendix B Cormpus Tutorial Michael A. McKenna

detection to reduce computation time. Different densities can be used with different parts

to encode special geometric mass distribution of a link.

Joint parameters are accessed through the joint command. Values such as the joints
position (q), velocity (dq), and acceleration (ddq) can be set or queried, as follows:
joint body-name g 1
joint body-name dg 10.2
joint body-name dq

10.2
Parameters pertaining to joint spring, dampers, etc. are also set using joint:

set joint damper constant to 10

joint body-name b 10

set joint linear spring constant to 1.2

joint body-name k 1.2

set joint linear spring rest angle to 3.1 (radians)

joint body-name k_g 3.1

The jointstatus command displays the values of the major joint parameters. The
joint parameter, “Q_type,” sets the kind of joint forces which are active at the joint. Each
type of joint force generator (damper, spring, etc.) has a unique value (see Appendix A
Corpus Help), and to combine types, their values are added (or logically ORed) to form

the Q_type. For example:

set active joint forces to damper (1) and linear spring (2).(1 + 2 = 3)
joint body-name Q type 3

Additional force generators can be added to a body, using the addmuscle command. A
“muscle” in corpus contains the same type of force generators that are available via the
joint command (as well as a few additional types). The muscle parameters are accessed

via the muscle command, in the same manner as the joint command.

The root body of a given corpus can be free to move about in space, under the influence of
the applied forces, or it can be constrained to be immobile, with the remainder of the artic-
ulated body behaving appropriately. To allow free motion of the root body of the current

corpus, use:

rootmotion free

To constrain the base to be immobile, use:

215

Appendix B Corpus Tutorial Michael A. McKenna

rootmotion fixed

Similarly, the motion of any joint can be left free, to respond to the forces (forward
dynamics), or constrained to follow a specified joint velocity and acceleration (inverse
dynamics). Free motion is specified with:

jointmotion body-name free

Constrained joint motion is specified with:

jointmotion body-name kinematic

In such a situation, the joint moves according to its kinematic joint parameters, so to gen-
erate a joint acceleration of 1.0 radians/sec?, starting from rest use the following com-

mands:

joint body-name dg 0
joint body-name ddg 1.0

When a joint’s motion is kinematically controlled, the joint force required to maintain the
motion constraint is computed during the dynamics computations. The computed joint
force (Q) can be accessed with the joint or jointstatus commands.

B.4 Language Features

Corpus has rudimentary commands to control execution flow, create loops, etc. Corpus
can be successfully used without knowledge of these language features, however complex
environments are more easily managed when using them. The scripts used to generate the
humanoid figure studied in this thesis, as presented in Appendix D Body Scripts, make
use of these language commands, as do some of the simulations presented in Appendix C

Dynamics Verification.

The text output response from any corpus command can be redirected from the screen out-
put to a file, using the special characters “>” and *“>>”. For example, the command: eye
> /tmp/eyepoint will write the output “eye 0 0 07 in the file:
/tmp/eyepoint. The characters “>>" will append the output to the specified file,

rather than overwrite.

Integer variables may be used with corpus commands. This simple mechanism is typically
used to store and access quantities such as the current “frame number” or status flags. Inte-

216

Appendix B Corpus Tutorial Michael A. McKenna

gér variables are accessed using the special character ‘%’ followed by the variable name,
which is a single ASC-II character. If a line begins with ‘%’, a numerical operation or
assignment is performed on the variable. At any other location on a command line, the ‘%’
character is replaced with the variable’s value, and the command-line is executed. For
example:

$A=10
$F=%A
$F+1
| lines which begin with the ‘!’ character are printed comments.
! lines which begin with the '!’ character are printed
comments.
! The current value of ‘F’ is %F
! The current value of ‘'F’ is 11
load a dynamic state, for the current Frame
loads StateData/StateFile%F

Appendix A Corpus Help lists the operations available for the integers.

The integers can be used to test basic conditionals using the i f command. The tail end of
the i f command line is executed if the testing condition is true. For example:
if $F=10 !this comment will print if F = 10

should we simulate?
if %$s=1 go

should we render?
if %r=1 render

if %a<%g %a=%g

Using a command-list, described below, a sequence of commands can be triggered to exe-

cute after the test.

A “command list” is a sequence of corpus commands which are executed when the com-
mand list’s name is entered (like a simple macro). A command list is defined using the
command]ist command or with the abbreviation c1. For example, the following script
creates a command list named “sim” which would simplify generating a simulated anima-

tion:

% a command list is defined using “cl cl-list-name”, followed by a list
of command lines. The list is terminated with a line starting with “.”
cl sim

217

Appendix B Corpus Tutorial Michael A. McKenna

go
render

We could then simulate a step and render the results by entering sim. Command lists can
be instructed to run multiple times. We could watch 30 sequential simulation steps by
entering sim 30. The following is a more sophisticated simulation command list:

cl sim

go

! done simulating frame %F
render

save the current dynamic state
dumps StateData/StateFile%F

IF+

Note that the integer variables can be used within the command lists. Command lists func-
tion as loops when run multiple times, as described above. (Loops can also be made using
the commandloop or cloop commands, without naming and saving the commands as a

command list.)

Command lists can also accept an input string variable. Each occurrence of the character
sequence ‘**’ is replaced with the input string, which is specified when invoking the com-
mand list. For example:

cl shade-em

facet **

shadeparam ** .8 .1 30 O
color ** .1 .2 .8

shade-em objectl
shade-em object2

A list of arbitrary text lines can be stored using the savelist command. A savelist is
named and entered in the same manner as a command list. For example:

savelist body-list
head

torso

left-arm
right-arm

218

Appendix B Corpus Tutorial Michael A. McKenna

Savelists can be used to execute corpus command, based on their contents. The foreach
command loops over a savelist, and substitutes each element of the savelist into a com-

mand string, which is executed. For example:
color all body parts red

foreach body-list color ** 1 0 0
The playlistn command uses a specific element from a savelist to build a corpus com-

mand. For example:

unpost the 2rd element (left-arm) of body-list (starting from 0).
playlistn body-list 2 unpost

A command can be executed for each body in an articulated figure using the com-

mandtree command. For example:

set the joint velocity of every body in the current corpus to 0
commandtree joint ** dg O

Similarly, a command can be executed for every “part” in an articulated figure (which
includes every “body”) using the commandtreeparts command, as in:

color each part of the current corpus green. (requires the graphical
object and part to share the same name)
commandtreeparts color ** 0 1 0

Rather than improve the computer language facilities built into corpus, effort would be

better directed into replacing the command line parsing interface sub-system with a well-
developed system such as the zcl library. [Ousterhout] Such a task is considerable undertak-
ing, however, due to the large number of corpus parsing commands which would have to

modified to be compatible with a new system.

219

Appendix C Dynamics Verification Michael A. McKenna

Appendix C Dynamics Verification

A suite of test simulations were developed to verify that the dynamics computations per-
formed by corpus were properly implemented, and result in numerically “accurate”
results. Because the computations are numerical, the results will usually not be exact. We
can define an “accurate” result as one in which the errors are insignificant when compared
to the results, and one in which the error does not lead to gross changes in the dynamics of
the system. With each test case, we will discover how accurate the dynamics computations
are with respect to the given conditions.

To solve the forward dynamics problem, there are several key factors which must be cor-
rectly computed: spatial and joint accelerations are solved based on the applied forces, the
accelerations are integrated to velocities and positions, and the forces functions are com-

puted based on their underlying model.

For the inverse dynamics problem, based on specified velocities and accelerations, the
forces are computed, accelerations are integrated to velocities and positions, and accelera-

tion functions are computed.

The most difficult equations to evaluate are the force functions (for forward dynamics)
and acceleration functions (for inverse dynamics). We can verify that the functions create
the appropriate accelerations or forces. However, it is more difficult to evaluate their cor-

respondence to real world phenomena.

C.1 Constant Linear Force: Gravitational Free Fall Test

The most basic test verifies that bodies accelerate correctly under the influence of a linear
force. To test this, simulated gravitational forces are applied to a single dynamic body
(non-articulated). The gravitational force applies a constant linear force of -9.81, in the z

direction, to the body’s center of mass. After one simulated second of free fall, the body’s

220

Appendix C Dynamics Verification

Michael A. McKenna

position and velocity are queried, and the results are compared to the analytic result. For

one second of free fall, an analytic solution gives us:

1
y = j -9.81 m/sec2dt =
0

1
p = [[-9.81 misec?ds
0

-9.81 t = —-9.81 m/sec

-21-(—9.81) 2 = —-4.905 m

Eq. 92

Eq. 93

A corpus script to simulate a falling body is shown in Script 10. Because the acceleration

is unchanging, the simulation is trivial to solve accurately. In fact, euler integration is

implemented using equations similar to those given in equations Eq. 92 and Eq. 93, and

the exact solution can be computed using a single euler step. The more advanced integra-

tion methods — the fixed-step, fourth-order runge-kutta (RK4), and variable step-size

runge-kutta (RK4/5) — also give exact solutions in one step.

Script 10: A corpus script to simulate a body in free fall.

create a default dynamic
environment
addworld w

create a new dynamic object
(a corpus)
addcorpus c

load a graphical object
get b from ../data/unit_cubeb.asc

add the graphical object (a body)
to the current corpus
addbody b b 0 0 1 rotary 1000

set that body to be the root
object in the corpus, and

initialize

setroot b

corpusinit

set some world properties
grav on
ground off

pick integration type
#integration euler
#integration rkfixed
integration rkf

set simulation timestep
dt .03333333333333333333333

set the rkf error tolerance
eps .0000001

print more dynamics status
during simulation
verbose extra

simulate 30 steps (1 sec)
go 30

print out information on the

body. It should be at 0 0 -4.905,
#v: 00 -9.81

whereis b

setv b

221

Appendix C Dynamics Verification Michael A. McKenna

In a typical simulation, using a smaller simulation step-size will generally result in a more
accurate result, because the integrator samples the changing state variables more fre-
quently. In this simple test case, however, the result becomes slightly less accurate with a
smaller time step, presumably because the numerical limits of the computer allow more
errors to accumulate when more mathematical operations are executed (See Table 8).

Table 8: Free fall test results.

Analytic Solution | 1 -4.905 -9.81
Euler 1 -4.905 -9.81
Euler 30 -4.905 -9.81
Euler 300 -4.90498 -9.80993
Euler 3000 -4.90496 -9.80989
RK4 1 -4.905 -9.81
RK4 300 -4.90495 -9.80987
RK4 3000 -4.90496 -9.80989
RK4/5 1 -4.905 -9.81
RK4/5 300 -4.90499 -9.80998
RK4/5 3000 -4.90496 -9.80988

No rotational accelerations were inadvertently introduced when simulating a gravitational
acceleration. In addition, no rotations, or joint accelerations, were introduced when simu-
lating a falling articulated body. Bodies which have their center of mass offset from the
coordinate frame origin also simulate correctly, even though technically the gravitational
force creates a torque at the coordinate frame origin, where the computations occur. No

rotational acceleration is created because the spatial inertia tensor also encodes the offset
of the COM.

C.2 Conservation of Momentum: Constant Velocity Tests
Another set of basic tests validates that, in the absence of applied forces, a body moves
with a constant velocity. The first test simulates a body moving with a constant linear
velocity. The second tests a body with a constant angular velocity. The third tests the

222

Appendix C Dynamics Verification Michael A. McKenna

Script 11: A corpus script to simulate a body moving with a constant velocity.

addworld w # set the linear velocity of the
addcorpus c # body. Set angular v to 0
get b from ../data/unit_cubeb.asc setv b 1.1 2.2 4.432 0 0 O
addbody b b 0 0 1 rotary 1000

setroot b # set angular velocity:
corpusinit #setv b 0 0 0 1.1 2.2 4.432
grav off

ground off # set both linear and angular v:

#setv b 1.1 2.2 4.432 1.1 2.2 4.432
integration rkf

dt .0333333333333333333333 # simulate 30 steps (1 second)
eps .0000001 go 30

whereis b

setv b

motion of a body with a constant linear and angular velocity. The computations involved
in the third test are more complex than they might seem upon first examination. Because
local coordinate frames are used in corpus, a motion involving rotations and translations
requires that the body move in a locally rotating space. Although the motion is straight-
line in world space, an examination of the linear velocities in local space reveals a curving
path. This curve must be accurately integrated, or errors in the motion will result.

The corpus script to simulate a body moving with a constant linear velocity, in the absence
of external forces, is given in Script 11. This test is even more basic than the gravitational
test above, and it is not surprising that exact results are computed by the three different
integrators, at a variety of simulation step sizes. Similarly, for the second test, which
examines constant angular velocities, exact results can be obtained from any of the inte-

grators.

The third test verifies that bodies with both a constant linear and angular velocity continue
to move with that same velocity along a straight line. This test reveals some differences in
the accuracy of the integrators; the euler integrator introduced errors which built up over
time, while the other integrators created an accurate, stable result. See Figure 64.

C.3 Oscillatory Motion: Linear Spring Test
The following experiment/test simulates a simple translating joint with a linear spring. An
oscillatory movement is created when the joint position is offset from the spring rest

223

Appendix C Dynamics Verification Michael A. McKenna

pos (m) Figure 64: Results from the con-
, stant linear and angular velocity
14} ot test.
12t o The plots to the left show the x
ol e position for the dynamic body
et over time, using the script given
8t g in Script 10. After 10 seconds of
L simulation time, the Euler plot
d P (dashed) begins to deviate from a
al > straight line, gaining energy. The
lower, solid-line plots shows the
2f RK4, RK4/5, and analytic solu-
. tions (which co-exists on the
2 5 6 8 o Sme©® ight Ii
same straight line).

angle. The simulation progresses forward in time, simulating accelerations from the
applied spring forces. A feedback system is created, as the acceleration integrates to veloc-
ity and position, and the spring changes its force, based on the changing joint position.
Without any damping in the system, the oscillation continues indefinitely.

The analytic solution to this spring/body system is:

F, = -k Ax , Eq. 94

where k is the sprint constant, F} is the spring force, and x is the joint position. The natural

k
®, = J’;l , Eq. 95

where m is the body mass. The amplitude of the oscillation is given as:

A= [x2+ v02/(1)02 , Eq. 96

where vy is the starting joint velocity, and x is the starting joint position. The phase of the

frequency, @, is given as:

oscillation is defined using:

@, X

anQ, Ve q
The value of the joint position at a time, ¢, is then:
x(t) = A sin (®yf + @) . Eq. 98

224

Appendix C Dynamics Verification Michael A. McKenna

Script 12: A corpus script to simulate a linear spring system.

addworld w verbose extra
addcorpus c joint b2 g 4

get b from ../data/unit_cubeb.asc joint b2 Q type 2

get b2 from ../data/unit_cubeb.asc # equal to mass of b2

addbody b b 0 0 1 rotary 1000 joint b2 k 984.857

addbody b2 b2 1 0 0 sliding 1000 joint b2 k_g 3

linkbodies b b2 rootmotion fixed

setroot b

corpusinit # for 3 integrator steps/frame
grav off eps .000000000001

ground off # for 1 step/frame

integration rkf #eps .1

dt .03333333

The corpus script to simulate such a system is given in Script 12. The RK4/5 integrator
provided excellent results, matching the analytic solution with great accuracy. Even after
100 seconds of simulation time, the simulated solution remained in step with the analytic,
and there was no net energy gain or dissipation. A plot of the simulation results, vs. the

analytic solution is shown in Figure 65.

C.4 Damped Oscillation: Linear Spring and Damper Test

The following test compares the analytic solution to the simulated corpus solution for a
body moving under the influence of a spring and damper combination. The resulting
mbtion, when the body is released from a position offset from the spring rest position is an

oscillatory movement, which reduces its amplitude over time.

The differential equation describing the body’s motion is given as:

d’x dx
mﬁ+b-d;+kx—0, Eq99

where b is the damping constant (other terms carry over from previous examples).

The position of the body, as a function of time then is given as:

x(t) = A ePisin (wyt +9p) Eq. 100

225

Appendix C Dynamics Verification Michael A. McKenna

. pos (m) pos (m)
4 4
35 35
3 3
25 25
i L
2 4 6 8 10 tme) 102 104 106 108 1ig e ®
pos (m) pos (m)
4 4
35 35
3 3
25 25
. .
) 4 6 8 1p ime ®) 102 104 106 108 Tip time ®

Figure 65: Linear spring oscillations.
The plots show the motion of the body over time, as it is driven by the spring force.

Two different simulations are shown, at two different times ranges. The upper row shows a simulation
which took one integrator step per frame (using the RK 4/5 integrator). The bottom row shows a simula-
tion which took three integrator steps per frame for increased accuracy. On the left, the plots show the
results from time 0—10 seconds. The simulation results match the analytic very closely; on the plots, the
two curves overlap and cannot be distinguished. The right plots show the results for simulation time 100-
110 seconds. Here, the top plot shows that the simulation has lost approximately 30° of phase with the
analytic solution, which is shown as the dashed line. Note, however, that the simulation has remained sta-
ble, with a constant net amplitude. The lower plot shows that the simulation which took three times more
integrator time steps remains exactly in sync with the analytic solution.

226

Appendix C Dynamics Verification

Michael A. McKenna

Script 13: A corpus script to simulate a linear spring and damper system.

addworld w integration rkf
addcorpus ¢ dt .03333333

get b from ../data/unit_cubeb.asc eps .1

get b2 from ../data/unit_cubeb.asc joint b2 q 4

addbody b b 0 0 1 rotary 1000 joint b2 Q_type 3
addbody b2 b2 1 0 0 sliding 1000 # equal to mass of b2
linkbodies b b2 joint b2 k 984.857
setroot b joint b2 k_qg 3
corpusinit joint b2 b 100

grav off rootmotion fixed
ground off

pos (m) Figure 66: Damped oscillation

4

351

251

simulation results.

The solid line on the plot shows
the motion of the body over
time, in response to the applied
spring and damper forces. The
outer dashed lines show the ana-
lytic solution for the envelope
of the damped oscillation. The
analytic solution and simula-
tion results for the body motion
are extremely similar; another
dashed line is plotted for the
analytic solution, but it is very
difficult to discern from the sim-
ulation plot (solid line).

The corpus script to simulate this spring and damper system is given in Script 13. A plot
of the analytic and simulated solutions is given in Figure 66. The results agree with great

accuracy.

C.5 Exponential Spring Test

The next test examines the motion of a body which is influenced by an exponential spring.
The equation of motion for the body, derived from the exponential spring equations

described in Dynamic Simulator (5), is given as:

&x

m
dr?

+ sign(x-x,) aeflrxl = 0

227

Eq. 101

Appendix C Dynamics Verification Michael A. McKenna

Script 14: A corpus script to simulate an exponential spring system.

addworld w eps .000000000001
addcorpus ¢ verbose extra

get b from ../data/unit_cubeb.asc
get b2 from ../data/unit_cubeb.asc joint b2 q 4

joint b2 Q_type 16
addbody b b 0 0 1 rotary 1000

addbody b2 b2 1 0 0 sliding 1000 # b2 mass: 984.857
linkbodies b b2

setroot b joint b2 ea 1
corpusinit joint b2 eB 10
grav off joint b2 e_qg 3
ground off

rootmotion fixed

integration rkf
dt .03333333

pos (m) Figure 67: Exponential
4 spring oscillation.

The plot shows the position

of the body over time, in

response to the applied forces

from an exponential spring.

35¢

Again, the plots of the simu-
lation results and analytic
solution overlap.

25}

time (s)

1 2 3
The script to simulate a body moving under the influence of an exponential spring in cor-
pus is given in Script 14. The motion of the body was first simulated in corpus, and then
computed in the math analysis program Mathematica™, [Wolfram] which was used to
numerically integrate Eq. 101. The results, once again, were in very close agreement. A

plot of the simulation results is shown in Figure 67.

C.6 Double Pendulum: Two Link, Two Joint Arm

The following test creates a simulation of a two link arm. The equations of motion for
such a system are developed in Brady, et al. [Brady] Part of that work is reviewed here. The

introduction of joints greatly complicates the equations of motion, even in such a simple

228

Appendix C Dynamics Vetification Michael A. McKenna

Figure 68: A two-link, two-DOF arm.

A Figure 69: Free body diagram for link i.

system. Construction of the simulation in corpus, however, remains a simple matter. The
equations of motion for the two link arm were entered into Mathematica™, to allow com-

parison to the results of the corpus computations.

For reference, a diagram of the two link arm system is shown in Figure 68. A free body
diagram for one of the links in the arm is shown in Figure 69. A corpus script used to con-

struct such a system for simulation is given in Script 15.

The arm kinematics are defined in terms of the link lengths and the joint angles. The cen-

ters of mass of the two links are given as:

,, = l1jcos®, Eq. 102
! 2 sin6, ’

[0,+051 0,+0
ry= | 1900 2005 (0 +9,)1 Eq. 103
I, sin®, +0.5 [,sin (0,+6,)

The velocity of the body i’s center of mass, 7;, and acceleration, 7;, are found by differen-

tiating the position vector, r,, yielding fairly complex terms (not given here).

229

Appendix C Dynamics Verification Michael A. McKenna

Script 15: A corpus script to simulate a double pendulum.

postmult addbody bl bl 1 0 0 rotary 1000
addbody b2 b2 1 0 0 rotary 1000

addworld w

addcorpus c¢ # define transform between parent
and child, and define link

get base from ../data/unit_cubeb linkbodies base bl

uhpost base
move b2 0 1 0

cyl: aligned w/ Y axis- linkbodies bl b2
{-10 10, -5 5, -10 10}

get bl from ../data/cylinder.asc setroot base

get b2 from ../data/cylinder.asc corpusinit

scale it to be 1 long in Y, w/ rootmotion fixed
a radius of .05 m

scale bl .005 .1 .005 grav on

scale b2 .005 .1 .005 ground off

move the joint to the origin integration rkf
move bl 0 .5 0 dt .03333333
move b2 0 .5 0 eps .0000001

verbose extra
addbody base base 0 0 1 rotary 1000

L

The vector p; defines the location of the center of mass of body i, taken from the body’s

proximal joint, and d; defines the center of mass taken from the body’s distal joint:

p, = 3|8 Eq. 104
: 2 sinf, ’
l 0, +06
P, = = €03 (9;+9,) Eq. 105
2|sin (8, +6,)
d,=-p,. Eq. 106

230

Appendix C Dynamics Verification Michael A. McKenna

The dynamics equations relate the applied force (f;) and torque (n;) to the linear and rota-

tional accelerations:
fi=mi;, Eq. 107
n=10,+0,xI[;0,. Eq. 108
In our two dimensional case, we can simplify:
(DiXIiO‘),'=O’ Eq. 109
and, in terms of the joint angles in our 2-link arm case:

n, =186, Egq. 110

ny, =1,(8;+86,) . Eq. 111
The net forces and torques are computed by the statics equations, given as:
fi=fioyi~fiitm & Eq. 112

n;=n noiv1— PiXFio it di X S Eq. 113

i i-1,i

In our example, there are no external forces applied except for gravity, thus no forces are
applied at the arm’s tip, so that f, ; = 0,and n, ; = 0. The gravitational vector is given

as:

g=| 2 1. Eq. 114
—9.81

We can now solve the inverse dynamics equations, by substituting the dynamics equations
(Eq. 107 — Eq. 111) into the statics equations (Eq. 112 — Eq. 114), and extracting the
applied joint torques, given joint positions, velocities, and accelerations:

o1 = 1191+”1,2+P1X (m, ¥y +my Fy—m, g—m, g) Eq. 115

—d; X (my Fy—m, g) .,

Rio = I,(8;+8y) +p,x (my F—my g) . Eq. 116

231

Appendix C Dynamics Verification Michael A. McKenna

We next insert our kinematics equations (Eq. 102-Eq. 106), and simplify and collect
terms. The inverse dynamics solution for the joint torques can then be given as:

5 mylyl, mzli mzli
ny, =0 L +—F— > cos(-)+4 +62I+4 Eq. 117

mzlll

Glsme +4.905 m,l,cos (0, +6,) ,

2
m 2 +m,l
i1 22 2) Eq. 118

ng i = 9‘1[11 I+ mylylycos8, + ————+m,l)

m 2 omll m,l, 1,
2t Mhat1h
+92(1 t— t— 00592] > 92s1n0

m,
-myl, 1, ¢} 62s1n6 +4.905m,l,cos (6, +90,) +9.81 1 (5 +m2)cose

To solve for the forward dynamics, we apply a torque function, and solve for the joint
accelerations. For our test, we allow the arm to passively fall, as a double pendulum, under

the force of gravity, so that:

g, =mn ,=0 Eq. 119

The rather lengthy solution for the forward dynamics to compute joint accelerations is
given below in the Mathematica™ script, Script 16. These equations are too complex for
Mathematica to integrate, and since we have already verified the accuracy of the integrator
in corpus, we compare instantaneous solutions for the joint accelerations. Examining
these instantaneous solutions (given joint angles and velocities) shows that the Mathemat-

ica™ and corpus equations of motion yield exactly the same results.

Script 16: A Mathematica™ script to define the equations of motion for a two link pendulum.

(* 2- link arm- statics (net force) *)

fO1([t_]:=f1[t] + £12[t] -~ ml g
f12[t_1:=f2[t] - m2 g

232

Appendix C Dynamics Verification Michael A. McKenna

Cross|a

—

b_l:= a[[1]] b[[2]] - al[2]] bI[I[1]]

nl{t] + nl2[t] + Cross[(pll[t] + r11[t]), £01[t] 1 -\
Cross([rll[t], £fl12[t]]
nl2[t_]:= n2[t] + Cross[(pl2[t] + rl2([t]), £12[t]]

n0l[t_]:

(* 2 link dynamics *)

filt_]:
f2[tc_1:

ml rl''[t]
m2 r2''[t}]

g:= {0, -9.81}

il thl''[t]
i2 (thl''[t] + th2''[t])

ni[t_1:
n2[t_1:

(* Kinematics *)
(* pl is the 'local' vector- from proximal to distal *)

pli[t_]l:= { 11 Cos[thl{t]], 11 Sin[thl[t]] }
pl2[t_]:= { 12 Cos[thl[t] + th2([t]], 12 Sin[thl[t] + th2[t]]}

(* r1l is 'local' vector - from distal to COM *)

rllft_]:
rl2[t_1:

-0.5 pll(t]
-0.5 pl2[t]

(* p - vector from base to distal end *)

pll[t]
pllit] + pl2[t]

pllt_]:
p2[t_1:

(* r- vector from base to COM - rl also equals pl + rl *)

ri(t_]:
r2[t_J:

0.5 plitl]
p2[t] + rl2[t]

(* Define derivatives *)

rl'[t_]:= Dlrl(t], t]
rl''[t_]:= D[rl'[t], t]
r2'[t_1:= D[r2([t], t]
r2''[t_]:= D[r2'[t], t]

(* Simplify and Collect terms for the joint torques: n0l, nl2 *)

Simplify[n0l([t]]
Simplify[nl2[t]]

nnOl[t_1:
nnl2[t_]:

nnN12[t_]:=Collect[nnl2([t]l, thl''[t]]

233

Appendix C Dynamics Verification Michael A. McKenna

nnnl2[t_]:=Collect[nnN12[t], th2''[t]]

nnNO1l{t_]:=Collect[nn0l{t], thl''[t]]
nnn0l[t_]:=Collect[nnN01([t], th2''[t]]

(* Make a 2D array,solving for joint accelerations when torques are zero *)

th'':= Solve[{nnn01l[t]==0, nnnl2[t]==0},
{thl''[t], th2''[t]}]

(* aalt] is the joint acceleration of the 1lst joint *)

aalt_]l:= thl''{t] /. th''[[1,1]]

(* bb[t] is the joint acceleration of the 2nd joint *)

bblt_]:= th2''[t] /. th''[[1,2]]

nnn01[t]

4.905 11 ml Cos[thl[t]] + 9.81 11 m2 Cos[thl([t]] +
4.905 12 m2 Cos[thl[t] + th2([t]] -

1. 11 12 m2 Sin[th2[t]] thl'[t] th2'[t] -

2
0.5 11 12 m2 Sin[th2[t]] th2'[t] +

2 2 2
(i1 + 12 + 0.25 11 ml + 1. 11 m2 + 0.25 12 m2 +

1. 11 12 m2 Cos[th2{t]]) thl''[t] +
2
(12 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2[t]]) th2''[t]
nnnl2{t]

4.905 12 m2 Cos([thl[t] + th2[t]] +

2
0.5 11 12 m2 Sin[th2[t]] thl'[t] +

2
(i2 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2[t]]) thi''[t] +

2
(i2 + 0.25 12 m2) th2''[t]

Simplifylaalt]]

234

Appendix C Dynamics Verification Michael A. McKenna

2
-(((1. i2 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2[t]])

(4.905 12 m2 Cos[thl[t] + th2[t]] +

2
0.5 11 12 m2 Sin[th2[t]] thl'[t])) /

2 2
(-1. i1 i2 - 0.25 i2 11 ml - 1. i2 11 m2 -

2 2 2
0.25 11 12 m2 - 0.0625 11 12 ml m2 -

2 2 2 2 2 2 2
0.25 11 12 m2 + 0.25 11 12 m2 Cosfth2[t]])) -

2
((-1. i2 - 0.25 12 m2)

(4.905 11 ml Cos[thl[t]] + 9.81 11 m2 Cos[thl[t]] +
4.905 12 m2 Cos[thl([t] + th2[t]] -
1. 11 12 m2 Sin[th2[t]] thl'[t] th2'[t] -

2
0.5 11 12 m2 Sin[th2(t]] th2'[t])) /

2 2
(-1. i1 i2 - 0.25 i2 11 ml - 1. i2 11 m2 -

2 2 2
0.25 i1 12 m2 - 0.0625 11 12 ml m2 -

2 2 2 2 2 2 2
0.25 11 12 m2 + 0.25 11 12 m2 Cos{[th2([t]])

Simplify([bb(t]]

2 2 2
-(((-1. i1 - 1. i2 - 0.25 11 ml - 1. 11 m2 - 0.25 12 m2 -

1. 11 12 m2 Cos[th2[t]])

(4.905 12 m2 Cos([thl[t] + th2[t]] +

2
0.5 11 12 m2 Sin[th2[t]] thl'[t])) /

235

Appendix C Dynamics Verification Michael A. McKenna

2 2
(-1. i1 12 - 0.25 i2 11 ml - 1. i2 11 m2 -

2 2 2
0.25 i1 12 m2 - 0.0625 11 12 ml m2 -

2 2 2 2 2 2 2
0.25 11 12 m2 + 0.25 11 12 m2 Cos[th2[t]])) -

2
((1. i2 + 0.25 12 m2 + 0.5 11 12 m2 Cos[th2{t]])

(4.905 11 ml Cos[thl[t]] + 9.81 11 m2 Cos[thl[t]] +
4.905 12 m2 Cos[thl[t] + th2[t]] -
1. 11 12 m2 Sin[th2[t]] thl'[t] th2'[t] -

2
0.5 11 12 m2 sin[th2[t]] th2'[t] }) /

2 2
(-1. i1 i2 - 0.25 i2 11 ml - 1. i2 11 m2 -

2 2 2
0.25 i1 12 m2 - 0.0625 11 12 ml m2 -

2 2 2 2 2 2 2
0.25 11 12 m2 + 0.25 11 12 m2 Cos[th2[t]])

236

Appendix C Dynamics Verification Michael A. McKenna

C.7 Self Consistency: Multiple Geometric Structures

Four different articulated bodies were created in a corpus simulation. The four structures
were identical in their overall geometric structures, however, each articulated figure was
specifically created in a different manner. Each 4-link articulated body had a different link
specified as its root object. The root object is the only object whose spatial acceleration is
directly calculated; otherwise joint accelerations are computed. Therefore, very different

root motions must be calculated for the different structures.

The structures are given energy by the constant application of a torque at a single joint in
each structure. The different structures undergo very similar simulated motion. They do
begin to drift apart slightly in their solutions after simulating for some time. After approx-
imately 5 seconds of simulation time, a very large amount of energy had been entered into
the systems, through the constant application of the joint torques. Each powered joint had
been accelerated to a velocity of over 18 radians/sec, within a structure 4 meters in length.

The joint parameters between different structures were still within 99% agreement.

The following, Script 17, creates the multiple articulated body test.

Script 17: A corpus script which creates 4 different articulated bodies which have identical structures, but
different links specified as the root link.

postmult
addworld w

define the first of 4 corpora (“corpus”es)
addcorpus cl

4 Define a "commandlist” (cl), like a simple procedure, to load and
initialize bodies.

The “%” symbols indicate an integer variable.

This list is names ‘loadl’.

Lists are terminated by “.” as the first character of a line.

cl loadl

get b.%c.%b from ../data unit_cubeb.asc
scale b.%c.%b 1 .1 .1

move b.%c.%b .5 0 0

addbody b.%c.%b b.%c.%b 0 0 1 rotary 1000

237

Appendix C Dynamics Verification Michael A. McKenna

Sh+

set the corpus number to 1

%c=1

set the body number to 1

$b=1

call the load command list, 4 times, to load 4 bodies into the corpus, cl
loadl 4

define the transformations between parent and child links, and specify
the hierarchy

move b.1.2 1 0 0
linkbodies b.1.1 b.1.2
move b.1.3 1 0 0
linkbodies b.1.2 b.1.3
move b.1.4 1 0 0
linkbodies b.1.3 b.1.4

setroot b.1.1
corpusinit

define the second corpus, with a different root body, and different
local connections, but the same overall geometry

Subsequent operations are performed on the new, current corpus

(see “setcorpus”)

addcorpus c2

%c=2

gb=1

loadl 4

move b.2.2 1 0 0
linkbodies b.2.1 b.2.2
move b.2.3 1 0 0
linkbodies b.2.2 b.2.3
rotate b.2.4 z 180
linkbodies b.2.1 b.2.4

setroot b.2.1
corpusinit

move the entire articulated corpus by moving the root body and
dynamically setting the new position with “setrootpos”
setrootpos

addcorpus c3
%c=3

%b=1

loadl 4

move b.3.2 1 0 0

238

Appendix C Dynamics Verification Michael A. McKenna

linkbodies b.3.1 b.3.2
rotate b.3.3 z 180
linkbodies b.3.1 b.3.3
#rotate b.3.4 z 180
move b.3.4 1 0 0
linkbodies b.3.3 b.3.4
setroot b.3.1
corpusinit

move b.3.1 2 0 -.6
setrootpos

addcorpus c4
$c=4

$b=1

loadl 4

rotate b.4.2
linkbodies b
move b.4.3 1
linkbodies b.
1
b

o o
=
N

o
IS
w

move b.4.4
linkbodies

> O i O BN
WoNhNOoPRFRR

o
=
I

setroot b.4.1
corpusinit

move b.4.1 3 0 -.9
setrootpos

grav off
ground off

integration rkf
dt .03333333
eps .000000001
verbose extra

set the joint force type to be a “bias force” (type 4)

the bias force value is set by specifying the “Q”.

In this manner, a constant torque of 10 is set for the joints below.
The remaining joints are unpowered, with zero applied force.

joint b.1.2 Q_type 4

joint b.1.2 Q 10

joint b.2.4 Q_type 4
joint b.2.4 Q -10

joint b.3.4 Q type 4

239

Abpendix C Dynamics Vetification Michael A. McKenna

joint b.3.4 Q -10

Q_type 4

joint b.4.4
.4.4 9 -10

joint b

color the root objects

color b.1.1 1 0 0
color b.2.11 0 0
color b.3.1 1 0 0
color b.4.1 1 0 0

for convenience, define a command list to simulate one step, then render
cl s

go
render

set some viewing parameters
backgroundcolor 0 0 .3

eye 2 -10 3

lookat 2 0 O

fov 30

run the simulation, and display the animated results,

for 5 simulation second
s 150

240

Appendix D Body Scripts

Michael A. McKenna

Appendix D Body
Scripts

The following is a simplified corpus script,
used to assemble the articulated biped used
in this research, and to initialize its
dynamic parameters. In the interest of sav-
ing space, only the “skeletal” kinematic-
definition layer of the humanoid model is
described here. The “skin” layer definitions
are not included.

Script 18: Corpus script to build the “skeleton”
layer of the human figure model, with the biome-
chanical joint parameters.

DEFINE WORLD, AND SET GLOBAL PARAMETERS
addworld w

ground on
groundtype flat
grounde 0
groundk 0
groundb 100
groundfric 1.0
groundfricb 100
groundea 100
grbundeB 100

eps .0001

grav on

BODY DEFINITION
addcorpus biped

241

SKEL OBJECTS

defaultshadeparam ** .8 0 0 O
defaultshademodel p
defaulticolor ** 162 162 162
sharememory off

get headl from ../data/unit_cubeb
get head2 from ../data/unit_cubeb
unpost headl
unpost head2
get head3 from ../data/unit_cubeb
pushobj head3

abdomen the root object- main dyn body
is a small, internal body

the abd skin will have the tapered
body, w/ inertia

get abdomen from ../data/unit_cubeb

parts for abdomen skel

get abdomenl from ../data/unit_cubeb
get abdomen2 from ../data/unit_cubeb
get abdomen3 from ../data/unit_cubeb

get neck from ../data/unit_cyl.asc

get pelvisl from ../data/unit_cubeb
get pelvis2 from ../data/unit_cubeb
get pelvis3 from ../data/unit_cubeb

get 1_humerusl from ../data/unit_cubeb
get 1_humerus2 from ../data/unit_cubeb
get 1_humerus3 from ../data/unit_cubeb
get r_humerusl from ../data/unit_cubeb
get r_humerus2 from ../data/unit_cubeb
get r_humerus3 from ../data/unit_cubeb

get 1_forearm from ../data/unit_cubeb
get r_forearm from ../data/unit_cubeb

get 1_handl from ../data/unit_cubeb
get 1_hand2 from ../data/unit_cubeb
get r_handl from ../data/unit_cubeb
get r_hand2 from ../data/unit_cubeb

get 1_hand3 from /u/mikey/ribconv/hand2/
Hand.asc

get r_hand3 from /u/mikey/ribconv/hand2/
Hand.asc

facet 1_hand3

facet r_hand3

concave 1_hand3 on

concave r_hand3 on

get 1_thighl from ../data/unit_cubeb
get 1_thigh2 from ../data/unit_cubeb
get 1_thigh3 from ../data/unit_cubeb
get r_thighl from ../data/unit_cubeb
get r_thigh2 from ../data/unit_cubeb
get r_thigh3 from ../data/unit_cubeb

Appendix D Body Scripts Michael A. McKenna

get 1_shank from ../data/unit_cubeb get r_toe2.1 from ../data/unit_cubeb
get r_shank from ../data/unit_cubeb get r_toe3.l from ../data/unit_cubeb
get r_toe4.l from ../data/unit_cubeb
talus = upper ankle, hindfoot- lower get r_toe5.1 from ../data/unit_cubeb
ankle get 1_toe2.2 from ../data/unit_cubeb
get 1_talus from ../data/unit_cubeb get 1_toe3.2 from ../data/unit_cubeb
get 1_hindfoot from ../data/unit_cubeb get 1_toed4.2 from ../data/unit_cubeb
get r_talus from ../data/unit_cubeb get 1_toe5.2 from ../data/unit_cubeb
hindfoot- like "os calcis" get r_toe2.2 from ../data/unit_cubeb
get r_hindfoot from ../data/unit_cubeb get r_toe3.2 from ../data/unit_cubeb
get r_toe4.2 from ../data/unit_cubeb
get 1_nav from ../data/unit_cubeb get r_toe5.2 from ../data/unit_cubeb
get 1_cuboid from ../data/unit_cubeb
get r_nav from ../data/unit_cubeb # abductor mini-links- do not display
get r_cuboid from ../data/unit_cubeb unpost 1_phall.l
unpost r_phall.l
get 1_metatl from ../data/unit_cubeb unpost 1_phal2.l
get 1_metat2 from ../data/unit_cubeb unpost r_phal2.1l
get 1_metat3 from ../data/unit_cubeb unpost 1_phal3.1l
get 1_metatd4 from ../data/unit_cubeb unpost r_phal3.1l
get 1l_metat5 from ../data/unit_cubeb unpost 1_phaléd.l
get r_metatl from ../data/unit_cubeb unpost r_phald.l
get r_metat2 from ../data/unit_cubeb unpost 1_phal5.1
get r_metat3 from ../data/unit_cubeb unpost r_phal5.1
get r_metatd from ../data/unit_cubeb
get r_metat5 from ../data/unit_cubeb defaultdefaultcolor

defaultdefaultshadeparam
phal#.1 = abd/add joint
phal#.2 = flex/ext joint

get 1_phall.l from ../data/unit_cubeb # DEFINE OBJECTS IN THEIR LOCAL FRAMES
get 1_phall.2 from ../data/unit_cubeb
get 1_phal2.l from ../data/unit_cubeb postmult
get 1_phal2.2 from ../data/unit_cubeb
get 1_phal3.l from ../data/unit_cubeb # main root object abdomen is a small,
get 1_phal3.2 from ../data/unit_cubeb dummy body
get 1_phal4.l from ../data/unit_cubeb # its has 3 torso parts
get 1_phal4.2 from ../data/unit_cubeb scale abdomen .01 .01 .01
get 1_phal5.1 from ../data/unit_cubeb
get 1_phal5.2 from ../data/unit_cubeb postmult
scale headl .01 .01 .01
get r_phall.l from ../data/unit_cubeb scale head2 .01 .01 .01
get r_phall.2 from ../data/unit_cubeb
get r_phal2.l1 from ../data/unit_cubeb move head3 0 0 .5
get r_phal2.2 from ../data/unit_cubeb # match Drillis and Contini for height:
get r_phal3.l from ../data/unit_cubeb 0.229
get r_phal3.2 from ../data/unit_cubeb scale head3 0.21 0.167 0.229
get r_phald.l from ../data/unit_cubeb # move to match anat illustation
get r_phal4.2 from ../data/unit_cubeb move head3 .02 0 0
get r_phal5.1 from ../data/unit_cubeb
get r_phal5.2 from ../data/unit_cubeb move neck 0 0 .5

scale neck 0.05 0.07 0.11
rotate neck y 15

toe#.l = mid phalange (big toe (#1) # move up above of abdomen
doesn't have the third phalange) move neck 0 0 .22

toe#.2 = distal phalange # matched to skel illustation

get 1_toel from ../data/unit_cubeb move neck -.025 0 O

get 1_toe2.1 from ../data/unit_cubeb

get 1_toe3.l from ../data/unit_cubeb scale pelvisl .01 .01 .01

get 1_toe4.l from ../data/unit_cubeb scale pelvis2 .01 .01 .01

get 1_toe5.1 from ../data/unit_cubeb

get r_toel from ../data/unit_cubeb cl pelvis3-make

242

Appendix D Body Scripts Michael A. McKenna

move ** 0 0 -.5 unpost r_thighl
scale ** .18 .29 .2 unpost r_thigh2
rotate ** y 18
move ** 0.026 0 -.1 move 1l_shank 0 0 -.5
move ** 0 0 0.016 # match Drillis & Contini : 0.434
move ** 0 0 0.06 scale 1_shank .03 .03 .434
move ** 0.02 0 -.022 move r_shank 0 0 -.5
move ** .02 0 O scale r_shank .03 .03 .434
pelvis3-make pelvis3 # upper ankle - move down so axis is on
top of talus
move 1_humerus3 0 0 -.5 move 1_talus 0 0 -.5
scale 1_humerusl .05 .05 .05 scale 1_talus .045 .035 .022
scale 1_humerus2 .05 .05 .05 move r_talus 0 0 -.5
match Drillis & Contini: 0.328 scale r_talus .045 .035 .022
scale 1_humerus3 .03 .03 .328
rotate 1_humerus3 x 2 # offset hindfoot, to simplify scales &
moves
unpost 1_humerusl move 1_hindfoot 0 0 -.5
unpost 1_humerus2 scale 1_hindfoot .04 .04 .055
move r_hindfoot 0 0 -.5
move r_humerus3 0 0 -.5 scale r_hindfoot .04 .04 .055
scale r_humerusl .05 .05 .05 rotate 1_hindfoot y 60
scale r_humerus2 .05 .05 .05 rotate 1_hindfoot z 5
scale r_humerus3 .03 .03 .328 move 1_hindfoot 0 .007 O
rotate r_humerus3 x -2 rotate r_hindfoot y 60
unpost r_humerusl rotate r_hindfoot z -5
unpost r_humerus2 move r_hindfoot 0 -.007 O
move 1_forearm 0 0 -.5 # move points to "low" part of hindfoot-
scale 1_forearm .03 .03 .258 the part that hits the ground
move r_forearm 0 0 -.5 # points run along x axis- rotate to y
scale r_forearm .03 .03 .258 rotate 1_hindfoot.points z 90
move 1_hindfoot.points .5 0 -.5
scale 1_handl .01 .01 .01 move 1_hindfoot.points 0 0 -.5
scale 1_hand2 .01 .01 .01 scale 1_hindfoot.points .05 .05 .065
scale r_handl .01 .01 .01 rotate 1_hindfoot.points y 60
'scale r_hand2 .01 .01 .01 rotate 1_hindfoot.points z 5
scale 1 _hand3 1 1 2 move 1_hindfoot.points 0 .007 0
scale r_hand3 1 1 2 rotate r_hindfoot.points z 90
rotate 1_hand3 x 90 move r_hindfoot.points .5 0 -.5
rotate 1_hand3 z 90 move r_hindfoot.points 0 0 -.5
taper hand distally, but not in y scale r_hindfoot.points .05 .05 .065
(width) direction rotate r_hindfoot.points y 60
shearld 1_hand3 0 0 -1 0 1 0 1 -2 rotate r_hindfoot.points z -5
move 1_hand3 0 0.01 O move r_hindfoot.points 0 -.007 0O
rotate r_hand3 x 90
rotate r_hand3 z -90 # navicular & cuboid ‘'bones’
shearld r_hand3 0 0 -1 0 1 0 1 -2 move 1l _nav .5 0 0
move r_hand3 0 -0.01 O move r_nav .5 0 0
move 1_cuboid .5 0 0
scale 1_thighl .1 .1 .1 move r_cuboid .5 0 O
scale 1_thigh2 .1 .1 .1 # these scales do not include the
move 1_thigh3 0 0 -.5 cuniforms !
scale 1_thigh3 .03 .03 .432 scale 1 nav 0.022 0.031 0.022
unpost 1_thighl scale r_nav 0.022 0.031 0.022
unpost 1_thigh2 scale 1_cuboid 0.026 0.028 0.022
move r_thigh3 0 0 -.5 scale r_cuboid 0.026 0.028 0.022
scale r_thighl .1 .1 .1 rotate 1l_nav y 15
scale r_thigh2 .1 .1 .1 rotate r_nav y 15

scale r_thigh3 .03 .03 .432 rotate 1_cuboid y 15

243

Appendix D Body Scripts

Michael A. McKenna

rotate r_cuboid y 15

move
move
move
move
move
move
move
move
move
move

scale
scale
scale
scale
scale
scale
scale
scale
scale
scale
rotat
rotat

1_metatl
1_metat2
1_metat3
1_metat4
1_metath
r_metatl
r_metat2
r_metat3
r_metatd
r_metath

1_metatl
r_metatl
1_metat2
r_metat?2
1 _metat3
r_metat3
1_metatd
r_metatd
1_metath
r_metath
e 1_metatl
e r_metatl

rotate 1_metat2
rotate r_metat2
rotate 1_metat3
rotate r_metat3
rotate 1l_metat4
rotate r_metat4
rotate 1l_metat5
rotate r_metath

rotate 1_metatl

rotat
rotat
rotat
rotat
rotat
rotat
rotat
rotat

e r_metatl
e 1_metat2
e r_metat2
e 1l_metat3
e r_metat3
e 1_metat4d
e r_metatd
e 1_metath

rotate r_metat5

move
move
move
move
move
move
move
move
move
move
move
move
move
move
move
move

1_phall.
1 _phal2.
1_phal3.
1_phald.
1_phals.
1_phall.
1_phal2.
1_phal3.
1_phal4.
1_phal5.
r_phall.
r_phal2.
r_phal3.
r_phald.
r_phal5.
r_phall.

NERHERPPOMNNDMNNERRRRR

(SIS RS, RS RO, R G R G) S S,

OO 0O 00000 OO0
OO OO0 000 O oo

.091
.091
.098
.098
.088
.088
.070
.070
.063
.063
z -1

N
[y

N NNNNNRNN
=
S

KK KKK KRR
N
w

(S0 C, IS, I, RGBT, NG, B, RS, G R C RO, R G R, B O, B 6
[eNeNeoNoNoNeolNololNolNoleNolelNeNe o)

.02 .02
.02 .02

.0089
.0089
.0089
.0089
.0089
.0089
.0089
.0089

leNeoNeNolNeNeolNoNelNelNoleolNolNolo e o)

.0089
.0089
.0089
.0089
.0089
.0089
.0089
.0089

move r_phal2.2
move r_phal3.2
move r_phald.2
move r_phalS5.2

(S, S, IS |
© O OO
(ool ol e]

scale 1_phall.l 0.016 0.016 0.016
scale r_phall.l 0.016 0.016 0.016
rotate 1_phall.l z 7

rotate r_phall.l z -7

scale 1_phall.2 0.048 0.016 0.016
scale r_phall.2 0.048 0.016 0.016
rotate 1_phall.2 z 7

rotate r_phall.2 z -7

scale 1_phal2.1 0.0089 0.0089 0.0089
scale r_phal2.1 0.0089 0.0089 0.0089
rotate 1l_phal2.1 z 7

rotate r_phal2.1 z -7

scale 1_phal2.2 0.042 0.0089 0.0089
scale r_phal2.2 0.042 0.0089 0.0089
rotate 1_phal2.2 y 5

rotate r_phal2.2 y 5

rotate 1_phal2.2 z 7

rotate r_phal2.2 z -7

scale 1_phal3.1 0.0067 0.0067 0.0067
scale r_phal3.1 0.0067 0.0067 0.0067
rotate 1_phal3.l z 7

rotate r_phal3.1 z -7

scale 1_phal3.2 0.04 0.0067 0.0067
scale r_phal3.2 0.04 0.0067 0.0067
rotate 1_phal3.2 y 5

rotate r_phal3.2 y 5

rotate 1_phal3.2 z 7

rotate r_phal3.2 z -7

scale 1_phald.l 0.0067 0.0067 0.0067
scale r_phald.l 0.0067 0.0067 0.0067
rotate 1_phald.l z 7

rotate r_phald4.l z -7

scale 1_phald4.2 0.037 0.0067 0.0067
scale r_phald.2 0.037 0.0067 0.0067
rotate 1_phald.2 y 10

rotate r_phal4.2 y 10

rotate 1_phald.2 z 7

rotate r_phald.2 z -7

scale 1_phal5.1 0.0067 0.0067 0.0067
scale r_phal5.1 0.0067 0.0067 0.0067
rotate 1l_phal5.1 z 6

rotate r_phal5.1 z -6

scale 1_phal5.2 0.038 0.0067 0.0067
scale r_phal5.2 0.038 0.0067 0.0067
rotate 1_phal5. 10

rotate r_phal5. 10

rotate 1_phal5. 6

rotate r_phal5. -6

NN NN
N N KK

move 1_toel .5
move 1_toe2.
move 1_toe3.
move 1_toed.
move 1_toe5.
move 1_toeZ2.
move 1_toe3.

I e
moou ;U o
co o0 o0oooo
oo oooo

244

Appendix D Body Scripts

Michael A. McKenna

move 1_toed.2
move 1_toe5.
move r_toel .5
move r_toe2.
move r_toe3.
move r_toed.
move r_toe5.
move r_toe2.
move r_toe3.
move r_toe4d.
move r_toe5.

\S]
o

U UL o umu;
=l eloBeNeBeo e N No Noj

NN R
oo ooo oo o

scale 1_toel 0.027 .013 .013
scale r_toel 0.027 .013 .013
rotate 1l_toel z 6

rotate r_toel z -6

scale 1_toe2.1 .017 .0067 .0067
scale r_toe2.1 .017 .0067 .0067
rotate 1_toe2.1 z 7

rotate r_toe2.1 z -7

scale 1_toe3.1 .013 .0067 .0067
scale r_toe3.1 .013 .0067 .0067
rotate 1_toe3.1 z 7

rotate r_toe3.1l z -7

scale 1_toe4.1 .011 .0067 .0067
scale r_toe4.1l .011 .0067 .0067
rotate 1_toed.l z 7

rotate r_toed4.1l z -7

scale 1_toe5.1 .0089 .0067 .0067
scale r_toe5.1 .0089 .0067 .0067
rotate 1_toe5.1 z 5

rotate r_toe5.1 z -5

scale 1_toe2.2 .013 .0067 .0067
scale r_toe2.2 .013 .0067 .0067
rotate 1_toe2.2 z 5

rotate r_toe2.2 z -5

scale 1_toe3.2 .013 .0067 .0067
scale r_toe3.2 .013 .0067 .0067
rotate 1_toe3.2 z 5

rotate r_toe3.2 z -5

scale 1_toe4.2 .011 .0067 .0067
scale r_toed4.2 .011 .0067 .0067
rotate 1_toed4.2 z 5

rotate r_toed4.2 z -5

scale 1_toe5.2 .0089 .0067 .0067
scale r_toeS5.2 .0089 .0067 .0067
rotate 1_toe5.2 z 5

rotate r_toe5.2 z -5

abdomenl is the upper, double sheared
object

move abdomenl 0 0 -.5

scale abdomenl 0.255 0.40 0.16

shearld abdomenl 0 0 -1 1 0 0 1 -1.8

add 2nd shear, in 1 direction only

move up (by its height), so bottom stays
the same

move abdomenl 0 0 .16

move, so one side is more affected than
the other

move abdomenl .06 0 O

Taper the thickness down, upwards
direction

shearld abdomenl 0 0 1 0 1 0 1.0 -3

move back to center

move abdomenl -.06 0 0

#move back down

move abdomenl 0 0 -.16

move to place in abdomen frame (about 1/
2 of the total abdomen height)

move abdomenl 0.01 0 .225

abdomen2 is the middle part of the chest
move abdomen2 0 0 -.5

scale abdomen2 0.255 0.40 0.05

move abdomen2 0 0 -.16

shearld abdomen2 0 0 -1 1 0 0 1 -1.8
scale abdomen2 .9 1 1

move abdomen2 0 0 .16

shearld abdomen2 0 0 -1 1 0 0 1 4.5
move abdomen2 .3 0 0

shearld abdomen2 0 0 -1 0 1 0 1 .5
move abdomen2 -.3 0 0

move abdomen2 .008 0 O

move abdomen2 0 0 -.16

move abdomen2 0.01 0 .225

move abdomen3 0 0 -.5

scale abdomen3 0.2352378 0.30478 0.17
move abdomen3 0.0255 0 0

shearld abdomen3 0 0 -1 1 0 0 1 -1.1
move abdomen3 -.05 0 0

shearld abdomen3 0 0 -1 01 0 1 -2.6
move abdomen3 .05 0 O

move abdomen3 0 0 .015

make into bodies

density: 0.8 water
addbody abdomen abdomen 0 0 1 rotary 10 1

011

addpart abdomenl abdomenl abdomen 0.0 0 0
11

addpart abdomen2 abdomen2 abdomen 0.0 0 0
11

addpart abdomen3 abdomen3 abdomen 0.0 0 O
11

addbody pelvisl pelvisl 0 1 0 rotary 10 1
011

addbody pelvis2 pelvis2 1 0 0 rotary 10 1
011

addbody pelvis3 pelvis3 0 0 1 rotary 0.0 0
011

% head joints: y, x, then z: nodding,
tilting (abd, add), rotation

addbody headl headl 0 1 0 rotary 10 1 0 1
1

addbody head2 head2
1

100 rotary 10 1 0 1

245

Appendix D Body Scripts Michael A. McKenna

addbody head3 head3 0 0 1 rotary 0.0 0 0 0.390731 0.828826 rotary 10 1 0 1 1
11 :
addpart neck neck abdomen 0.0 0 0 1 1 addbody 1_nav 1. nav 1 0 0 rotary 101 0 1 1
: addbody 1_cuboid 1_cuboid 1 0 0 rotary 10
addbody 1_humerusl 1_humerusl 0 1 0 rotary 1011
101 011 addbody r_nav r_nav 1 0 0 rotary 10 1 0 1 1
addbody 1_humerus2 1_humerus2 1 0 0 rotary addbody r_cuboid r_cuboid 1 0 0 rotary 10
101011 1011
addbody 1_humerus3 1_humerus3 0 0 1 rotary
101011 addbody 1_metatl 1l_metatl 0 1 0O rotary 10
addbody r_humerusl r_humerusl 0 1 0 rotary 1011
101011 addbody 1_metat2 1_metat2 0 1 0 rotary 10
addbody r_humerus2 r_humerus2 1 0 0 rotary 1011
101011 addbody 1_metat3 1l_metat3 0 1 0 rotary 10
addbody r_humerus3 r_humerus3 0 0 1 rotary 1011
101 011 addbody 1_metat4 1_metat4 0 1 0 rotary 10
1011
addbody 1_forearm 1_forearm 0 1 0 rotary addbody 1_metat5 1_metat5 0 1 0 rotary 10
101011 1011
addbody r_forearm r_forearm 0 1 0 rotary addbody r_metatl r_metatl 0 1 0 rotary 10
101011 1011
addbody r_metat2 r_metat2 0 1 0 rotary 10
addbody 1_handl 1_handl 0 1 0 rotary 10 1 1011
011 addbody r_metat3 r_metat3 0 1 0 rotary 10
addbody 1_hand2 1_hand2 1 0 0 rotary 10 1 1011
011 addbody r_metat4 r_metat4 0 1 0 rotary 10
addbody 1_hand3 1 _hand3 0 0 1 rotary 0.0 O 1011
011 addbody r_metat5 r_metat5 0 1 0 rotary 10
addbody r_handl r_handl 0 1 0 rotary 10 1 1011
011
addbody r_hand2 r_hand2 1 0 0 rotary 10 1 addbody 1_phall.l 1_phall.l 0 0 1 rotary
011 101011
addbody r_hand3 r_hand3 0 0 1 rotary 0.0 0 addbody 1_phal2.1 1_phal2.1 0 0 1 rotary
011 101 011
addbody 1_phal3.l 1_phal3.1 0 0 1 rotary
addbody 1_thighl 1_thighl 0 1 0 rotary 10 101011
1011 addbody 1_phal4.l 1_phal4.1l 0 0 1 rotary
addbody 1_thigh2 1_thigh2 1 0 0 rotary 10 101011
1011 addbody 1_phal5.1 1_phal5.1 0 0 1 rotary
addbody 1_thigh3 1_thigh3 0 0 1 rotary 10 101011
1011 addbody 1_phall.2 1_phall.2 0 1 0 rotary
addbody r_thighl r_thighl 0 1 0 rotary 10 101 011
1011 addbody 1_phal2.2 1_phal2.2 0 1 0 rotary
addbody r_thigh2 r_thigh2 1 0 0 rotary 10 101011
1011 addbody 1_phal3.2 1 _phal3.2 0 1 0 rotary
addbody r_thigh3 r_thigh3 0 0 1 rotary 10 101011
1011 addbody 1_phald4.2 1_phal4.2 0 1 0 rotary
addbody 1_shank 1_shank 0 1 0 rotary 10 1 101 011
011 addbody 1_phal5.2 1_phal5.2 0 1 0 rotary
addbody r_shank r_shank 0 1 0 rotary 10 1 101 011
011 addbody r_phall.l r_phall.l 0 0 1 rotary
101011
see Procter and Paul- Ankle Joint addbody r_phal2.l r_phal2.1 0 0 1 rotary
Biomech paper for joint angles 101011
addbody 1_talus 1_talus -0.104528 0.994522 addbody r_phal3.l r_phal3.l 0 0 1 rotary
-0.018431106 rotary 10 1 0 1 1 101011
addbody r_talus r_talus 0.104528 0.994522 addbody r_phal4.l r_phal4.l 0 0 1 rotary
0.018431106 rotary 10 1 0 1 1 101 011
addbody 1_hindfoot 1_hindfoot -0.920505 addbody r_phal5.1 r_phal5.1 0 0 1 rotary
0.390731 -0.828826 rotary 10 1 0 1 1 101011
addbody r_hindfoot r_hindfoot 0.920505 addbody r_phall.2 r_phali.2 0 1 0 rotary

246

Appendix D Body Scripis Michael A. McKenna

101 011 movely 1_toel 1_phall.2 .5 0 O
addbody r_phal2.2 r_phal2.2 0 1 0 rotary movely r_toel r_phall.2 .5 0 0
101 011 movely 1_toe2.1 1_phal2.2 .50 0
addbody r_phal3.2 r_phal3.2 0 1 0 rotary movely r_toe2.1 r_phal2.2 .5 0 0
101011 movely 1_toe3.1 1_phal3.2 .5 0 0
addbody r_phald.2 r_phald4.2 0 1 0 rotary movely r_toe3.l1l r_phal3.2 .5 0 0
101011 movely 1_toed4.l 1_phald4.2 .5 0 0
addbody r_phal5.2 r_phal5.2 0 1 0 rotary movely r_toed4.l r_phal4.2 .5 0 0
101011 movely 1_toe5.1 1 _phal5.2 .5 0 0
movely r_toe5.1 r_phal5.2 .5 0 0
addbody 1_toel 1_toel 0 1 0 rotary 10 1 O
11 # move phalanges down the metatarsal
addbody 1_toe2.1 1_toe2.1 0 1 0 rotary 10 lengths
1011 movely 1_phall.l 1_metatl .5 0 O
addbody 1_toe3.1 1_toe3.1 0 1 0 rotary 10 movely r_phall.l r_metatl .5 0 O
1011 movely 1 _phal2.1 1_metat2 .5 0 O
addbody 1_toe4.l1 1_toe4.1 0 1 0 rotary 10 movely r_phal2.1l r_metat2 .5 0 0O
1011 movely 1_phal3.l 1_metat3 .5 0 O
addbody 1_toe5.1 1_toe5.1 0 1 0 rotary 10 movely r_phal3.l r_metat3 .5 0 0
1011 movely 1_phald.l 1_metat4d .5 0 O
addbody 1_toe2.2 1_toe2.2 0 1 0 rotary 10 movely r_phald.l r_metat4d .5 0 O
1011 movely 1_phal5.1 1_metat5 .5 0 0
addbody 1_toe3.2 1_toe3.2 0 1 0 rotary 10 movely r_phal5.1 r_metat5 .5 0 0
1011
addbody 1_toed4.2 1_toe4.2 0 1 0 rotary 10 # move metatarsals down the nav/cuboid
1011 lengths + the cuniform size
addbody 1_toe5.2 1_toe5.2 0 1 0 rotary 10 # measurements from Gray
1011 move 1_metatl 0.025 0 O
addbody r_toel r_toel 0 1 0 rotary 10 1 0 move r_metatl 0.025 0 O
11 move 1_metat2 0.022 0 O
addbody r_toe2.1l r_toe2.1 0 1 0 rotary 10 move r_metat2 0.022 0 O
1011 move 1_metat3 0.016 0 O
addbody r_toe3.l r_toe3.1 0 1 0 rotary 10 move r_metat3 0.016 0 O
1011 move 1l_metatd 0.027 0 O
addbody r_toed4.l r_toed4.1 0 1 0 rotary 10 move r_metat4 0.027 0 0O
1011 move 1l_metat5 0.022 0 0
addbody r_toe5.1 r_toe5.1 0 1 0 rotary 10 move r_metat5 0.022 0 O
1011 # move metat's off to side, on their nav/
addbody r_toe2.2 r_toe2.2 0 1 0 rotary 10 cuboid
1011 move 1l_metatl 0 -0.003 O
addbody r_toe3.2 r_toe3.2 0 1 0 rotary 10 move r_metatl 0 0.003 O
1011 move 1l_metatl 0 O -.005
addbody r_toe4.2 r_toe4.2 0 1 0 rotary 10 move r_metatl O 0 -.005
1011 move 1l_metat2 0 0.014 O
addbody r_toe5.2 r_toe5.2 0 1 0 rotary 10 move r_metat2 0 -0.014 0
1011 move l_metat2 0 O .005
move r_metat2 0 0 .005
move 1_metat3 0 0.024 0
move to parent positions move r_metat3 0 -0.024 0
move 1_metat3 O O .003
movely 1_toe2.2 1_toe2.1 .5 00 move r_metat3 0 0 .003
movely 1_toe3.2 1_toe3.1 .50 0 move l_metat4 O .005 O
movely 1_toed4.2 1_toe4.1 .5 00 move r_metatd 0 -.005 O
movely 1_toe5.2 1_toe5.1 .5 00 move 1_metat4d 0 O .003
movely r_toe2.2 r_toe2.1 .5 00 move r_metatd 0 0 .003
movely r_toe3.2 r_toe3.1 .5 00 move 1_metat5 0 .014 0
movely r_toed.2 r_toe4.1 .5 00 move r_metat5 0 -.014 0
movely r_toe5.2 r_toe5.1 .5 00 move 1_metat5 0 0 -.005
move r_metat5 0 0 -.005
move toes (also phalanges, actually)
down the full proximal phalange lengths movely 1l_nav 1_hindfoot 0 0 .5

247

Appendix D Body Scripts

Michael A. McKenna

movely r_nav r_hindfoot 0 0 .5
move 1l_nav .016 0 O

move r_nav .016 0 O

movely 1_cuboid 1_hindfoot 0 0 .5
movely r_cuboid r_hindfoot 0 0 .5
move 1_cuboid .007 0 O

move r_cuboid .007 0 O

move pelvisl -0.02 0 -.06

move headl 0 0 .295

create tree structure

move
move
move
move
move
move

1l _nav 0 -.020 0
r_nav 0 .020 0O
1_cuboid 0 .016 0
r_cuboid 0 -.016 0
1_cuboid 0 0 -.01
r_cuboid 0 0 -.01

down
movely
movely
movely
movely

full talus height
1_hindfoot 1_talus 0 0 -.5
r_hindfoot r_talus 0 0 -.5
1_talus 1l_shank 0 0 -.5
r_talus r_shank 0 0 -.5

move
move
move
move

move
move
move
move
move
move
move
move
move
move
move
move
move
move

1_talus
r_talus
1_talus
r_talus

0 -.010
0 .01 0

.0075 0 0
.0075 0 0

1_thighl 0
1_thighl 0
1_thighl 0
1_thighl .0
1_thighl
1_thighl
1_thighl

r_thighl
r_thighl
r_thighl
r_thighl
r_thighl
r_thighl
r_thighl

00 -.24
0 0 0.016
0 -0.10
.0300
00 -.01
00 .06
.02 00

movely
movely

movely
movely
move
movely
movely

half

1_shank 1_thigh3 0 0 -.5
r_shank r_thigh3 0 0 -.5

1_handl 1_forearm 0 0 -.5
r_handl r_forearm 0 0 -.5
down humerus length
1_forearm 1_humerus3 0 0 -.5
r_forearm r_humerus3 0 0 -.5

abdomen = .225

move 1_humerusl 0 0 .195

move 1_humerusl 0 0 -.01

move 1_humerusl 0 0.18 0

matched to skel illustration
move 1_humerusl -0.01 0 0

move r_humerusl 0 0 .195

move r_humerusl 0 0 -.01

move r_humerusl 0 -0.18 0

matched to skel illustration
move r_humerusl -0.01 0 0

move pelvisl 0 0 -.105
move pelvisl 0 0 0.016

linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies
linkbodies

248

abdomen headl
headl head2

head2 head3
abdomen pelvisl
pelvisl pelvis2
pelvis2 pelvis3
abdomen 1_humerusl
abdomen r_humerusl

1_humerusl
1_humerus2
r_humerusl
r_humerus?2
1_humerus3
r_humerus3

1_humerus2
1_humerus3
r_humerus?2
r_humerus3
1 _forearm
r_forearm

1_forearm 1_handl
r_forearm r_handl

1_handl
r_handl
1_hand2
r_hand2
pelvis3
pelvis3
1_thighl
1_thigh2
r_thighl
r_thigh2
1_thigh3

1_hand2
r_hand?2
1_hand3
r_hand3
1_thighl
r_thighl
1_thigh2
1_thigh3

r_thigh2
r_thigh3
1_shank

1_shank 1_talus
r_thigh3 r_shank
r_shank r_talus
1_talus 1_hindfoot
r_talus r_hindfoot
1_hindfoot 1_nav
r_hindfoot r_nav
1_hindfoot 1_cuboid
r_hindfoot r_cuboid
1l_nav 1_metatl
1_nav 1l_metat2

1l _nav 1_metat3
r_nav r_metatl
r_nav r_metat2
r_nav r_metat3

1_cuboid
1_cuboid
r_cuboid
r_cuboid
1_metatl
1_metat2
1_metat3
1_metat4
1_metat5
r_metatl
r_metat2
r_metat3

1_metatd
1_metat5
r_metatéd
r_metat5
1_phall.
1_phal2.
1_phal3.
1_phald.
1_phal5s.
r_phall.
r_phal2.
r_phal3.

e e

Appendix D Body Scripts Michael A. McKenna

linkbodies r_metat4 r_phal4.l joint ** jlim_ea2 6.2
linkbodies r_metat5 r_phalS5.1 joint ** jlim_eBl 1

linkbodies 1_phall.l 1_phall. joint ** jlim_eB2 1

linkbodies 1_phal2.l 1_phal2. joint ** jlim_bl .62
linkbodies 1_phal3.1 1_phal3. joint ** jlim_b2 .62
linkbodies 1_phal4.l 1_phal4.
linkbodies 1_phal5.1 1_phals.
linkbodies r_phall.l r_phall.
linkbodies r_phal2.l r_phal2.
linkbodies r_phal3.l r_phal3.
linkbodies r_phal4.l r_phald. # joint limits:

1
1
1
1 .
1 head-params headl
1
1
1
1
linkbodies r_phal5.1 r_phals. # tilt back a fair amount
2
2
2
2
2
2
2
2
2
2

head-params head2
head-params head3

BN NN NN N NN

linkbodies 1_phall.2 1_toel joint headl jlim_qgl -0.8

linkbodies r_phall.2 r_toel # bend forward- chin to chest (penetrates
linkbodies 1_phal2.2 1_toe2. a little)

linkbodies 1_phal3.2 1_toe3. joint headl jlim_g2 0.9

linkbodies 1_phald.2 1_toed. # tilt to the side some - symmetrical
linkbodies 1_phal5.2 1_toe5. joint head2 jlim_gl -0.8

linkbodies r_phal2. joint head2 jlim_g2 0.8

linkbodies r_phal3. # rotate to the side somewhat less than 90
linkbodies r_phald. degrees: 1.571 rad

joint head3 jlim_gl -1.3

B R R R R R

linkbodies r_phal5s.

linkbodies 1_toe2.l1 1_toe2.2 joint head3 jlim_qg2 1.3

linkbodies 1_toe3.1l 1_toe3.2

linkbodies 1_toed4.l 1_toe4.2 cl leg-params

linkbodies 1_toe5.1 1_toe5.2 joint ** ea 62

linkbodies r_toe2.1 r_toe2.2 joint ** eB 10

linkbodies r_toe3.1 r_toe3.2 joint ** e g 0

linkbodies r_toed4.l r_toed.2 joint ** b 10

linkbodies r_toe5.1 r_toe5.2 joint ** jlim_eal 6.2
joint ** jlim_ea2 6.2
joint ** jlim_eBl 10

initialize the articulated figure joint ** jlim_eB2 10
joint ** jlim_bl .62

setroot abdomen joint ** jlim_b2 .62

corpusinit leg-params 1_thighl

rootmotion free leg-params r_thighl
leg-params 1_thigh2

move abdomen 0 0 1.4 leg-params r_thigh2

setrootpos leg-params 1_thigh3
leg-params r_thigh3
leg-params 1_shank

JOINT BIOMECHANICAL PARAMETERS leg-params r_shank
leg-params 1_talus

initial setting for all leg-params r_talus

commandtree joint ** springtype constant leg-params 1_hindfoot

commandtree joint ** dg 0 leg-params r_hindfoot

commandtree joint ** ddg 0 # use same values for pelvis

commandtree joint ** Q type 33 leg-params pelvisl
leg-params pelvis2

setting for abdomen dummy ‘'joint' to leg-params pelvis3

avoid error during inverse control

joint abdomen ea 1 # joint limits
bend forward quite a bit

cl head-params joint 1_thighl jlim gl -2.2

joint ** ea 62 # bend back somewhat

joint ** eB 1 joint 1_thighl jlim q2 1

joint ** e_qg 0 joint r_thighl jlim_qgl -2.2

joint ** b 1 joint r_thighl jlim_q2 1

joint ** jlim _eal 6.2 # don't bend in too much

249

Appendix D Body Scripts

Michael A. McKenna

joint 1_thigh2 jlim_qgl -.3
bend out somewhat

joint 1_thigh2 jlim_g2 0.7
joint r_thigh2 jlim gl -.7
joint r_thigh2 jlim_q2 .3

foot rotates in some
joint 1_thigh3 jlim gl -0.7

foot rotates out a fair amount- about 90
degrees
joint 1_thigh3
joint r_thigh3

joint r_thigh3

jlim_q2 1.4
jlim_qgl -1.4
jlim_g2 0.7

knee bends forward just a little
joint 1_shank jlim_ql O

knee bends back quite a bit -
joint 1_shank jlim_g2 2.5

joint r_shank jlim_qgl 0

joint r_shank jlim_qg2 2.5

foot bends forward some
joint 1_talus jlim_gl -0.8
joint 1_talus jlim_g2 0.8
joint r_talus jlim_gl -0.8
joint r_talus jlim_g2 0.8
allow only a little motion
joint 1_hindfoot jlim_gl -0.5
joint 1_hindfoot jlim g2 0.5
joint r_hindfoot jlim gl -0.5
joint r_hindfoot jlim_qg2 0.5

bend forward a fair amount

joint pelvisl jlim_gl -1.5

bend back a little

joint pelvisl jlim_qg2 0.5

bend from side to side somewhat
joint pelvis2 jlim_ql -1

joint pelvis2 jlim_qg2 1.0

twist (rotate) about a fair amount
joint pelvis3 jlim_gl -1.2

joint pelvis3 jlim_qg2 1.2

cl arm-params

joint ** ea 1.0

joint ** eB 10

joint ** e_gq O

joint ** b 5

joint ** jlim eal 1.0
joint ** jlim ea2 1.0
joint ** jlim_eBl 10
joint ** jlim _eB2 10
joint ** jlim_bl .1
joint ** jlim b2 .1

1_humerusl
1_humerus2
1_humerus3
r_humerusl
r_humerus?2
r_humerus3
1_forearm

arm-params
arm-params
arm-params
arm-params
arm-params
arm-params
arm-params

arm-params r_forearm

joint limits

bend forward and up quite a bit

joint 1_humerusl jlim_gl -3.0

bend back a little

joint 1_humerusl jlim_g2 0.5

joint r_humerusl jlim gl -3.0

joint r_humerusl jlim g2 0.5

although the arm can bend in, I will
restict it away from the body

joint 1_humerus2 jlim_gl 0.1

bend out quite a bit

joint 1_humerus2 jlim g2 2.5
joint r_humerus2 jlim_gl -2.5
joint r_humerus2 jlim_q2 -0.1

staring at default, w/ thumbs pointed
outwards
rotate inwards
joint 1_humerus3
bend backwards
joint 1_humerus3
joint r_humerus3 jlim gl -1.2
joint r_humerus3 jlim g2 1.7
bend up a fair amount
joint 1_forearm jlim_gl -2.5
bend back none
joint 1_forearm jlim_qg2 0
joint r_forearm jlim_gl -2.5
joint r_forearm jlim_q2 0

a fair amount
jlim_ql -1.7

just a little more
jlim g2 1.2

cl hand-params
joint ** Q_type 17
joint ** b 1

joint ** ea 1
joint ** eB 10

1_handl
1_hand2
1_hand3
r_handl
r_hand2
r_hand3

hand-param
hand-param
hand-param
hand-param
hand-param
hand-param

cl nav-params
joint ** Q_type 17
joint ** b 0.5
joint ** ea 5
joint ** eB 10

nav-params l_nav
nav-params 1l_cuboid
nav-params r_nav
nav-params r_cuboid

cl metat-params

joint ** Q type 17
joint ** b 0.2
joint ** ea 5
joint ** eB 10

250

Appendix D Body Scripts Michael A. McKenna

metat-params 1_metatl joint ** ea 0.005
metat-params 1_metat2 joint ** eB 10
metat-params 1_metat3 .
metat-params 1_metatd toe-param 1_toel
metat-params 1_metath toe-param 1_toe2.1
metat-params r_metatl toe-param 1_toe2.2
metat-params r_metat2 toe-param 1_toe3.1
metat-params r_metat3 toe-param 1_toe3.2
metat-params r_metat4d toe-param 1_toed.1l
metat-params r_metat5 toe-param 1_toed.2
bigger toe gets more toe-param 1_toe5.1
joint 1_metatl b 0.4 toe-param 1_toe5.2
joint r_metatl b 0.4 # big toe more
joint 1_toel b .000333
cl phal-param joint 1_toel ea 0.015
joint ** Q_type 17
joint ** b .003 toe-param r_toel
joint ** ea .25 toe-param r_toe2.1
joint ** eB 10 toe-param r_toe2.2
. toe-param r_toe3.1
cl phal-param.1l toe-param r_toe3.2
joint ** Q_type 17 toe-param r_toed.l
joint ** b .003 toe-param r_toe4.2
joint ** ea .05 toe-param r_toe5.1
joint ** eB 10 toe-param r_toe5.2

big toe more
joint r_toel b .000333
joint r_toel ea 0.15

phal-param.l 1_phall.
phal-param.l 1_phal2.
phal-param.l 1_phal3.
phal-param.l 1_phal4.
phal-param.l 1_phalS5.
phal-param 1_phall.2
phal-param 1_phal2.2
phal-param 1_phal3.2
phal-param 1_phal4d.2
phal-param 1_phal5.2
bigger toe gets more
joint 1_phall.l b .01
joint 1_phall.2 b .01
big phals stiffer
joint 1_phall.2 ea .75
joint 1_phall.2 eB 10

s

phal-param.l r_phal2.1l
phal-param.l r_phal3.1l
phal-param.l r_phal4d.l
phal-param.l r_phal5.1
phal-param r_phal2.2
phal-param r_phal3.2
phal-param r_phald.2
phal-param r_phal5.2

bigger toe gets more
joint r_phall.l b .01
joint r_phall.2 b .01
big phals stiffer
joint r_phall.2 ea .75
joint r_phall.2 eB 10

cl toe-param

joint ** Q_type 17
joint ** b .0001

251

Appendix E Body Tables Michael A. McKenna

Appendix E Body Tables

This appendix provides extra details on the structure of the humanoid model.

Table 9 provides a list of the kinematic parameters (excluding the geometric surfaces) for
the complex human figure model. The “Parent” body name is the name of the body seg-
ment to which the body connects with its proximal joint. The three “Joint Axis” columns
give the 3D orientation of the rotary joint axis of the body’s proximal joint, in world-
space. The three “Joint Offset” columns give the translational offset of the body’s proxi-
mal joint, from the proximal joint of its parent.

Table 10 lists some of the mass parameters of the different body segments in the human
figure model. The mass of each body segment is listed, as well as the fractional weight of
each body part with respect to the whole body weight (68 kg). The weight of all of the
body segments distal to a given body, including its own weight is also listed. Finally, the
translational distance of a body’s center of mass, from its proximal joint is provided.

Table 11 gives the joint parameters for the dampers and exponential springs, for all of the
joints. The joint position (angle) and spring rest position for each joint is listed, as cali-
brated to a standing posture, in the anatomical position. The b, o, B, g, and g4, parame-
ters are those used in Eq. 81, page 99 and Eq. 84, page 101.

252

Appendix E Body Tables

Michael A. McKenna

Table 9: Kinematic link and joint parameters of the human figure model.

r_hand3 r_hand2 0 0 1 0 0 0
r_hand2 r_handl 1 0 0 0 0 0
r_hand1 r_forearm 0 1 0 0 0 -0.258
r_forearm r_humerus3 0 1 0 0 -0.0114 -0.328
r_humerus3 r_humerus2 0 0 1 0 0 0
r_humerus2 | r_humerusl 1 0 0 0 0 0
r_humerusl abdomen 0 1 0 -0.01 -0.18 0.185
1_hand3 1_hand2 0 0 1 0 0 0
1_hand2 1_hand1 1 0 0 0 0 0
1_hand1 1_forearm 0 1 0 0 0 -0.258
1. forearm 1_humerus3 0 1 0 0 0.0114 -0.328
1_humerus3 1_humerus2 0 0 1 0 0 0
1_humerus2 1_humerusl1 1 0 0 0 0 0
1_humerusl | abdomen 0 1 0 -0.01 0.18 0.185
r_toe5.2 r_toe5.1 0 1 0 0.00887 | -0.00078 0
r_toe5.1 r_phal5.2 0 1 0 0.0372 | -0.00391 | -0.0066
r_phal5.2 r_phal5.1 0 1 0 0 0 0
r_phal5.1 r_metat5 0 0 1 0.0593 -0.0142 -0.0159
r_metat5 r_cuboid 0 1 0 0.022 -0.014 -0.005
r_toe4.2 r_toed.1 0 1 0 0.0109 | -0.00134 0
r_toe4.1 r_phal4.2 0 1 0 0.0362 | -0.00444 | -0.00642
r_phal4.2 r_phal4.1 0 1 0 0 0 0
r_phal4.1 r_metat4 0 0 1 0.0648 -0.0122 -0.0236
r_metat4 r_cuboid 0 1 0 0.027 -0.005 0.003
r_cuboid r_hindfoot 1 0 0 0.007 -0.023 -0.01
r_toe3.2 r_toe3.1 0 1 0 0.0129 | -0.00158 0
r_toe3.1 r_phal3.2 0 1 0 0.0396 | -0.00486 | -0.00349
r_phal3.2 r_phal3.1 0 1 0 0 0 0

253

Appendix E Body Tables

Michael A. McKenna

Table 9: Kinematic link and joint parameters of the human figure model.

r_phal3.1 r_metat3 0 0 1 0.0788 -0.0138 -0.0367
r_metat3 r_nav 0 1 0 0.016 -0.024 0.003
r_toe2.2 r_toe2.1 0 1 0 0.0169 -0.00207 0
r_toe2.1 r_phal2.2 0 1 0 0.0415 -0.0051 -0.00366
r_phal2.2 r_phal2.1 0 1 0 0 0 0
r_phal2.1 r_metat2 0 0 1 0.089 -0.0102 -0.0396
r_metat2 r_nav 0 1 0 0.022 -0.014 0.005
r_toel r_phall.2 0 1 0 0.0476 | -0.00585 0
r_phall.2 r_phall.l 0 1 0 0 0 0
r_phall.1 r_metat1l 0 0 1 0.0865 0.00159 | -0.0281
r_metat] r_nav 0 1 0 0.025 0.003 -0.005
r_nav r_hindfoot 1 0 0 0.016 0.013 0
r_hindfoot r_talus 0.70872 | 0.300834 | 0.638134 0 0 -0.022
r_talus r_shank 0.10451 | 0.994353 | 0.018428 | 0.0075 0.01 -0.434
r_shank r_thigh3 0 1 0 0 0 -0.432
r_thigh3 r_thigh2 0 0 1 0 0 0
r_thigh2 r_thighl 1 0 0 0 0 0
r_thighl pelvis3 0 1 0 0.05 -0.1 -0.174
1_toe5.2 1_toe5.1 0 1 0 0.00887 | 0.000776 0
1_toe5.1 1_phal5.2 0 1 0 0.0372 0.00391 -0.0066
1_phal5.2 I_phal5.1 0 1 0 0 0 0
1_phal5.1 1_metat5 0 0 1 0.0593 0.0142 -0.0159
1_metat5 1_cuboid 0 1 0 0.022 0.014 -0.005
1_toe4.2 1_toe4.1 0 1 0 0.0109 0.00134 0
1_toed.1 1_phal4.2 0 1 0 0.0362 0.00444 | -0.00642
1_phal4.2 1_phal4.1 0 1 0 0 0 0
1_phal4.1 1_metat4 0 0 1 0.0648 0.0122 -0.0236
1_metat4 1_cuboid 0 1 0 0.027 0.005 0.003

254

Appendix E Body Tables

Michael A. McKenna

Table 9: Kinematic link and joint parameters of the human figure model.

lf_cuboid 1_hindfoot 1 0 0 0.007 0.023 -0.01
1_toe3.2 I_toe3.1 0 1 0 0.0129 0.00158 0
1_toe3.1 1_phal3.2 0 1 0 0.0396 0.00486 | -0.00349
1_phal3.2 1_phal3.1 0 1 0 0 0 0
1_phal3.1 1_metat3 0 0 1 0.0788 0.0138 -0.0367
1_metat3 I_nav 0 1 0 0.016 0.024 0.003
1_toe2.2 1_toe2.1 0 1 0 0.0169 0.00207 0
1_toe2.1 1_phal2.2 0 1 0 0.0415 0.0051 -0.00366
1_phal2.2 1_phal2.1 0 1 0 0 0 0
1_phal2.1 _metat2 0 0 1 0.089 0.0102 -0.0396
1_metat2 1_nav 0 1 0 0.022 0.014 0.005
1_toel 1_phall.2 0 1 0 0.0476 0.00585 0
1_phall.2 1_phall.1 0 1 0 0 0 0
1_phall.1 1_metatl 0 0 1 0.0865 | -0.00159 | -0.0281
1_metatl I_nav 0 1 0 0.025 -0.003 -0.005
1_nav 1_hindfoot 1 0 0 0.016 -0.013 0
1_hindfoot 1_talus -0.70872 | 0.300834 | -0.63813 0 0 -0.022
1_talus 1_shank -0.10451 | 0.994353 | -0.01843 | 0.0075 -0.01 -0.434
1_shank 1_thigh3 0 1 0 0 0 -0.432
1_thigh3 1_thigh2 0 0 1 0 0 0
1_thigh2 1_thighl 1 0 0 0 0 0
1_thighl pelvis3 0 1 0 0.05 0.1 -0.174
pelvis3 pelvis2 0 0 1 0 0 0
pelvis2 pelvisl 1 0 0 0 0 0
pelvisl abdomen 0 1 0 -0.02 0 -0.149
head3 head2 0 0 1 0 0 0
head2 headl 1 0 0 0 0 0
headl abdomen 0 1 0 0 0 0.295

255

Michael A. McKenna

Appendix E Body Tables

Table 10: Mass parameters of the body parts in the human figure model.

r_hand3 0.408 0.006 0.408 0.0824
r_hand2 9.85e-06 1.45e-07 0.408 0
r_hand1 9.85e-06 1.45e-07 0.408 0
r_forearm 1.08 0.0159 1.49 0.112
r_humerus3 1.9 0.0279 3.39 0.143
r_humerus2 0.00123 1.81e-05 3.39 0
r_humerusl 0.00123 1.81e-05 3.39 0
1_hand3 0.408 0.006 0.408 0.0824
1_hand2 9.85¢-06 1.45e-07 0.408 0
1_hand1 9.85e-06 1.45e-07 0.408 0
I_forearm 1.08 0.0159 1.49 0.112
1_humerus3 1.9 0.0279 3.39 0.143
1_humerus2 0.00123 1.81e-05 3.39 0
|_humerus1 0.00123 1.81e-05 3.39 0
r_toe5.2 0.00283 4.17e-05 0.00283 0.007
r_toe5.1 0.00153 2.24e-05 0.00436 0.00445
r_phal5.2 0.0116 0.000171 0.016 0.0185
r_phal5.1 2.96e-06 4.36e-08 0.016 0.00335
r_metat5 0.0239 0.000352 0.0399 0.0304
r_toe4.2 0.00324 4.76e-05 0.00324 0.008
r_toed.1 0.00189 2.77e-05 0.00512 0.0055
r_phal4.2 0.0133 0.000196 0.0184 0.0179
r_phal4.1 2.96e-06 4.36e-08 0.0184 0.00335
r_metat4 0.0338 0.000497 0.0522 0.0334
r_cuboid 0.0564 0.000829 0.149 0.013
r_toe3.2 0.00392 5.77e-05 0.00392 0.009
r_toe3.1 0.00243 3.57e-05 0.00635 0.0065
r_phal3.2 0.0133 0.000195 0.0196 0.0185

256

Appendix E Body Tables

Michael A. McKenna

Table 10: Mass parameters of the body parts in the human figure model.

r_phal3.1 2.96e-06 4.36e-08 0.0196 0.00335
r_metat3 0.0472 0.000694 0.0668 0.0414
r_toe2.2 0.00392 5.77e-05 0.00392 0.009
r_toe2.1 0.00318 4.67e-05 0.0071 0.0085
r_phal2.2 0.0216 0.000317 0.0287 0.0188
r;pha12.l 6.94e-06 1.02e-07 0.0287 0.00445
r_metat2 0.0794 0.00117 0.108 0.0485
1_toel 0.0212 0.000312 0.0212 0.016
r_phall.2 0.0427 0.000628 0.0639 0.0218
r_phall.1 4.03e-05 5.93e-07 0.064 0.008
r_metatl 0.113 0.00166 0.177 0.0456
r_nav 0.0505 0.000743 0.402 0.011
r_hindfoot 0.23 0.00339 0.781 0.0327
r_talus 0.204 0.003 0.985 0.0234
r_shank 3.15 0.0463 4.13 0.188
r_thigh3 6.79 0.0999 10.9 0.187
r_thigh2 0.00985 0.000145 10.9 0
r_thighl 0.00985 0.000145 109 0
1._toe5.2 0.00283 4.17e-05 0.00283 0.007
1_toe5.1 0.00153 2.24e-05 0.00436 0.00445
1_phal5.2 0.0116 0.000171 0.016 0.0185
1_phal5.1 2.96e-06 4.36e-08 0.016 0.00335
I_metat5 0.0239 0.000352 0.0399 0.0304
1_toe4.2 0.00324 4.76e-05 0.00324 0.008
1_toe4d.1 0.00189 2.77e-05 0.00512 0.0055
1_phal4.2 0.0133 0.000196 0.0184 0.0179
1_phal4.1 2.96e-06 4.36e-08 0.0184 0.00335
1_metat4 0.0338 0.000497 0.0522 0.0334

257

Appendix E Body Tables

Michael A. McKenna

Table 10: Mass parameters of the body parts in the human figure model.

1_cuboid 0.0564 0.000829 0.149 0.013
1_toe3.2 0.00392 5.77e-05 0.00392 0.009
1_toe3.1 0.00243 3.57e-05 0.00635 0.0065
1_phal3.2 0.0133 0.000195 0.0196 0.0185
1_phal3.1 2.96e-06 4.36e-08 0.0196 0.00335
1_metat3 0.0472 0.000694 0.0668 0.0414
1_toe2.2 0.00392 5.77e-05 0.00392 0.009
1_toe2.1 0.00318 4.67e-05 0.0071 0.0085
1_phal2.2 0.0216 0.000317 0.0287 0.0188
1_phal2.1 6.94e-06 1.02e-07 0.0287 0.00445
1_metat2 0.0794 0.00117 0.108 0.0485
1_toel 0.0212 0.000312 0.0212 0.016
1_phall.2 0.0427 0.000628 0.0639 0.0218
1_phall.1 4.03e-05 5.93e-07 0.064 0.008
1_metatl 0.113 0.00166 0.177 0.0456
|_nav 0.0505 0.000743 0.402 0.011
1_hindfoot 0.23 0.00339 0.781 0.0327
1_talus 0.204 0.003 0.985 0.0234
1_shank 3.15 0.0463 4.13 0.188
1_thigh3 6.79 0.0999 10.9 0.187
1_thigh2 0.00985 0.000145 10.9 0
1_thighl 0.00985 0.000145 10.9 0
pelvis3 11.1 0.163 33 0.145
pelvis2 9.85e-06 1.45e-07 33 0
pelvisl 9.85e-06 1.45e-07 33 0
head3 4.71 0.0692 4.71 0.116
head2 9.85e-06 1.45e-07 4.71 0
headl 9.85e-06 1.45e-07 471 0

258

Abpendix E Body Tables

Michael A. McKenna

Table 10: Mass parameters of the body parts in the human figure model.

abdomen

23.5

0.346

68

0.0372

259

Appendix E Body Tables Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing
posture.

r_hand3 1 0.1 1 10 1
r_hand2 0.3 0.1 1 10 0.303
r_handl 0.2 0.1 1 10 0.19
r_forearm -0.35 1 1 10 -0.417
r_humerus3 -1 1 1 10 -1.01
r_humerus2 -0.1 1 1 10 -0.203
r_humerusl 0.05 1 1 10 0.0882
1_hand3 -1 0.1 1 10 -1
1_hand2 -0.3 0.1 1 10 -0.303
1_hand1 0.2 0.1 1 10 0.19
1_forearm -0.35 1 1 10 -0.417
|_humerus3 1 1 1 10 1.01
1_humerus2 0.1 1 1 10 0.203
1_humerus1 0.05 1 1 10 0.0882
r_toeS5.2 0.3 0.0001 0.005 10 0.491
r_toe5.1 0.3 0.0001 0.005 10 0.541
r_phal5.2 -04 0.003 0.25 10 -0.355
r_phal5.1 0 0.003 0.05 10 -0.00255
r_metat5 0.14 0.2 5 10 0.146
r_toe4.2 0.3 0.0001 0.005 10 0.63
r_toe4.1 0.3 0.0001 0.005 10 0.689
r_phal4.2 -0.38 0.003 0.25 10 -0.257
r_phal4.1 0 0.003 0.05 10 0.0118
r_metat4 0.12 0.2 5 10 0.149
r_cuboid 0 0.5 5 10 0.0087
r_toe3.2 0.3 0.0001 0.005 10 0.761
r_toe3.1 03 0.0001 0.005 10 0.826

260

Appendix E Body Tables

Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing
posture.

r_phal3.2 027 0.003 0.25 10 -0.0358
r_phal3.1 0 0.003 0.05 10 -0.0101
r_metat3 0.06 0.2 5 10 0.135
r_toe2.2 03 0.0001 0.005 10 0.788
r_toe2.1 0.3 0.0001 0.005 10 0.866
r_phal2.2 -0.23 0.003 0.25 10 0.0372
r_phal2.1 0 0.003 0.05 10 -0.0223
r_metat2 0.03 02 5 10 0.144
r_toel 0.4 0.000333 0.015 10 0.834
r_phall.2 0.1 0.01 0.75 10 0.0635
r_phall.1 0 0.01 0.15 10 -0.0176
r_metat1 0 0.4 5 10 0.0838
r_nav 0 0.5 5 10 0.0619
r_hindfoot -0.04 1 62 10 -0.0246
r_talus -0.07 1 62 10 -0.0361
r_shank 0 10 62 10 0.0166
r_thigh3 0 10 62 10 -0.00193
r_thigh2 0.05 10 62 10 0.0335
r_thighl 0.09 10 62 10 0.0864
1_toe5.2 03 0.0001 0.005 10 0.491
1_toe5.1 03 0.0001 0.005 10 0.541
1_phal5.2 -0.4 0.003 0.25 10 -0.355
1_phal5.1 0 0.003 0.05 10 0.00255
1_metat5 0.14 0.2 5 10 0.146
1_toed.2 03 0.0001 0.005 10 0.63
1_toed.1 0.3 0.0001 0.005 10 0.689
1_phal4.2 -0.38 0.003 0.25 10 -0.257

261

Appendix E Body Tables Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing
posture.

1_phal4.1 0 0.003 0.05 10 -0.0118
1_metat4 0.12 0.2 5 10 0.149
1_cuboid 0 0.5 5 10 -0.0087
1_toe3.2 03 0.0001 0.005 10 0.761
1_toe3.1 0.3 0.0001 0.005 10 0.826
1_phal3.2 -0.27 0.003 0.25 10 -0.0358
1_phal3.1 0 0.003 0.05 10 0.0101
_metat3 0.06 0.2 5 10 0.135
1_toe2.2 0.3 0.0001 0.005 10 0.788
1_toe2.1 0.3 0.0001 0.005 10 0.866
1_phal2.2 -0.23 0.003 0.25 10 0.0372
1_phal2.1 0 0.003 0.05 10 0.0223
I_metat2 0.03 0.2 5 10 0.144
1_toel 0.4 0.000333 0.015 10 0.834
1_phall.2 -0.1 0.01 0.75 10 0.0635
1_phall.1 0 0.01 0.15 10 0.0176
1_metatl 0 0.4 5 10 0.0838
1_nav 0 0.5 5 10 -0.0619
1_hindfoot -0.04 1 62 10 -0.0246
1_talus -0.07 1 62 10 -0.0361
1_shank 0 10 62 10 0.0166
1._thigh3 0 10 62 10 0.00193
1_thigh2 -0.05 10 62 10 -0.0335
1_thighl 0.09 10 62 10 0.0864
pelvis3 0 10 62 10 0
pelvis2 0 10 62 10 0
pelvisl 0 10 62 10 0.0183

262

Appendix E Body Tables

Michael A. McKenna

Table 11: Joint angles, damping constants, and exponential spring parameters, calibrated to a standing

posture.

62

head3
head2 62 0
headl 62 -0.0172

263

List of Terms Michael A. McKenna

List of Terms

General Notations

a, A the carat (“* ”)above a quantity denotes that it is in spatial notation. [Featherstone
1983; Featherstone 1987] Lowercase letters in spatial notation (&) refer to a six dimen-
sional spatial vector. Capital letters with a carat above them (A) refer to 6 x 6 spatial
matrixes.

a,, Ai : a spatial quantity associated with body i.

Operators

a X : cross operator, see Eq. 11, page 79. froma 3x 1 toa 3 X3.

ax : spatial cross operator, Eq. 12, page 79. From 6 x 1 to 6 X 6.

&f , Af: spatial transpose of a spatial vector or matrix, see Eq. 13 and Eq. 14, page 80.

Terms

a: spatial acceleration, see Eq. 7, page 78.

b: generally used as a damping constant, a scalar.

e: generally used as a coefficient of restitution, a scalar.

f: 3 dimensional linear force vector, see Eq. 9, page 79.

f: spatial force.

g: gravitational constant: -9.81 meters/second?.

i: the index number of a body within an articulated figure, from 1 to .
1: spatial inertia tensor, a 6 X 6 spatial matrix, see Eq. 15, page 80.
7A : articulated body inertia, a 6 X 6 spatial matrix.

m: mass, a scalar.

n: the number of bodies in an articulated figure.

pY: bias force.

264

List of Terms Michael A. McKenna

p;: the bias force of body i. This includes the p, bias force, as well as other components.

q : joint position, in meters or radians, a scalar.

4 : joint velocity, in meters/second or radians/second, a scalar.

g : joint acceleration, in meters/second? or radians/secondz, a scalar.

Q' joint force, a scalar, either a linear force or torque, depending on the joint type.

§,: the spatial joint axis for body i.

t: time.

: spatial velocity, see Eq. 4, page 77.

vp: the linear velocity at the origin of the coordinate frame.

,X ;+ the spatial transformation, which transforms values from the coordinate system of
body j, to the coordinate system of body i (or, more generally, from coordinate frame j
to frame i).

o : the stiffness constant which multiplies linearly with an exponential term. See Eq. 81,
page 99.

B : the stiffness constant in the exponential term of an exponential spring. See Eq. 81,
page 99.

v: the coefficient of friction, a scalar.

7: 3 dimensional torque vector.

®: 3 dimensional angular velocity.

®: 3 dimensional angular acceleration.

265

Glossary Michael A. McKenna

Glossary

abduct: to move a limb in a direction away from the median axis of the body (“outwards”
to the side); to separate. See adduct.

ABM: see Articulated Body Method.

adduct: to move a limb towards the median axis of the body (“inwards” from the side); to
bring together. See abduct.

active control: a mechanism used to regulate or guide the operation of a machine, appara-
tus, or system. In this context active control refers more specifically to the variation of

- the actuator parameters in order to control motion.

actuator: a mechanism, such as a muscle or motor, used for moving or controlling a sys-
tem. In this context: a force-producing agent which operates at the joint of an articu-
lated figure to control motion.

Articulated Body Method (ABM): an efficient dynamic simulation method, developed by
Roy Featherstone, for branching articulated figures, comprised of rigid bodies. This
recursive algorithm has a computational expense of O(n) where n is the number of
joints (a linear computational expense). The algorithm is developed in [Featherstone
1983; Featherstone 1987].

articulated body: see articulated figure.

articulated figure: A set of bodies, connected by joints, which creates an overall bodily
shape or form, such as a person or mechanism.

articulated structure: see articulated figure.

biomechanics: the study of biological motions, and the forces and energies which create
them.

body: in this context: an individual rigid object, which can be free to move independently,
or can be connected to other bodies via joints to form an articulated figure. “Body” is
usually used in this context to refer to a simulated body, as part of a dynamic simula-

tion system. Bodies have properties such as shape, mass, density, center of mass, etc.

266

Glossary Michael A. McKenna

center of gravity (COG): See center of mass.

center of mass (COM): The center of mass of a body (or a set of bodies considered as a
whole) is the mean point of the collective mass. A linear force applied at this point will
induce no rotational acceleration. In order to remain statically stable, an articulated
figure must keep its body’s center of mass within the region formed by its supporting
feet. The terms “center of gravity” and “center of mass” are often used interchange-
ably, although a distinction exists. “Center of gravity” refers to a body’s center of mass
in one dimension only, in the vertical, gravity-defined direction. [Winter 1990]

COG: see center of gravity.

COM: see center of mass.

corpus: a computer program developed by the author for the dynamic simulation and con-
trol of articulated figures.

degree of freedom (DOF): “one of a limited number of ways in which a point or a body
may move or in which a dynamic system may change, each way being expressed by an
independent variable and all requiring to be specified if the physical state of the body
or system is to be completely defined.” [Webster’s] A DOF is an unrestricted or uncon-
strained direction in which motion (as in a joint) is possible. An unconstrained body,
free to move in space, has 6 DOFs, 3 translating and 3 rotating. A joint can provide
from 1 to 6 DOFs, depending on its nature. A single joint in corpus provides 1 DOF.
Simply because a DOF is present does not mean that movement is completely uncon-
strained in that direction, as there may be forces inhibiting such movement, just as the
human elbow has a limited range of motion.

determinants of gait: a set of motion characteristics of human walking put forth by Saun-
ders, Inman, and Eberhart, 1953. These six determinants describe the motions of the

~ limbs, and together, they capture the major types of motions of the lower body which

occur during walking.

distal: located away from the center of the body. The forearm is more distal than the upper
arm. See proximal. [Webster’s]

DOF: see degree of freedom.
dynamics: the study of forces and their relationship to the motions of bodies of matter.

end effector: a body which lies at a peripheral terminus of an articulated figure.
equilibrium position hypothesis: a theory of biological motion control, which states that
controlled movements are the result of shifts of the equilibrium, or postural, state of

267

Glossary Michael A. McKenna

the motor system, developing a relationship between posture and movement. [Bizzi
1982; Bizzi 1984]

extension: the bending of a joint, such that the angle between the two adjacent limbs is
increased, in order to straighten out a flexed limb.

figure: see articulated figure.

flexion: the bending of a joint, such that the angle between the two adjacent limbs is
diminished.

force: a strength or energy brought to bear; an agency or influence that results in the accel-
eration of a free body. [Webster’s] Used in this text in a general sense, to include both
linear forces and rotational forces, or torques.

forward control: the calculation of an output force from specified actuator control parame-
ters.

forward dynamics: the calculation of the motion (acceleration) of a body (or articulated
figure), based on the applied force.

forward kinematics: the calculation of the positions and orientations of the bodies in an
articulated figure, based on the joint positions and/or angles.

gait: a manner of walking or moving on foot. [Webster’s]

hybrid dynamics: a combination of forward and inverse dynamics; the calculation of the
unresolved accelerations and forces within an articulated figure, based on a comple-
mentary set of specified forces and accelerations.

inverse control: the calculation of the control parameters required to achieve a specified
force.

inverse dynamics: the calculation of the force required to achieve a specified acceleration
of a body (or articulated figure).

inverse kinematics: the calculation of the joint positions and/or angles within an articu-
lated figure in order to achieve specified kinematic goals, such as the cartesian position
of an end effector.

kinematics: the study of motions, apart from considerations of mass or force. [Webster’s]

kinetics: the study of the forces which give rise to motions, and their resulting energetics.

medial: of or relating to the plane which divides a bilateral animal into left and right
halves. [Webster’s]

motor program: a theorized underlying representation for the production of movements in

biological systems, based largely on centrally “stored” sequences of muscular activa-

268

Glossary Michael A. McKenna

tion. In this context: a mechanism which varies actuator control parameters in order to
achieve a specific motion.

passive control: a means of producing motion which does not employ active control— the
motions are accomplished without variation of the control parameters. Gravity, inertia,
and the mechanical properties of the system govern the motion.

parser: in corpus, the program sub-system which takes text input and converts, or
“parses,” it into functions which are then executed.

physically based model: a computational model of a natural phenomena, using the laws of
physics as the basis of the simulation.

posture: a Kinematic configuration of an articulated figure; the relative positions of the
limbs with respect to each other.

proximal: located toward the center of the body. [Webster’s] The upper arm is more proxi-
mal than the forearm. See distal.

rigid body: A rigid body is a body which does not undergo any internal deformations. The

- shape of the body is constant, and it perfectly transmits forces through itself. No real-

world objects are completely rigid, and simulations which use See body.

rotation: 1) an angular displacement about an axis 2) the turning of a limb about its long
axis, as if on a pivot. [Webster’s]

rotoscoping: the technique of mimicking the real-world motions of humans, animals or
some other moving system, through film or a similar imaging medium. When
rotoscoping, artists design their animated drawings, copying from the recorded mov-
ing image. Rotoscoping techniques are also used with computer models, as artists cre-
ate motions for their articulated figures, “copying” from real-world moving images.

sagittal: of, relating to, or situated in the median plane, or any plane parallel thereto. [Web-
ster’s]

script: in corpus, a script is an ACSII text file, which contains functions and commands
which are interpreted and executed by the corpus parser. Scripts (and typed input) are
the means by which corpus is controlled.

spatial algebra: the algebra of spatial notation, using the standard operations of matrix

- arithmetic, with the primary exception of a unique transposition operator.

spatial notation: a mathematical representation which combines the linear and angular
components of physical quantities into 6 dimensional vectors and 6x6 matrixes, which
allows for fewer and simpler quantities and equations. Quantities in spatial notation

are denoted with a carat (‘\’), asin a.

269

Glossary Michael A. McKenna

stability margin: (or static stability margin) the distance from the vertical projection of the
center of gravity onto the support surface to the closest point of the boundary of sup-
port polygon. [Messuri; McGhee]

stiff, stiffness: there are several related meanings for “stiff.” A “stiff” spring is one that
strongly resists deviating from its rest position. During integration, “stiff” refers to the
“difficulty” in getting accurate results. The stiffer the system, the smaller the integrator
time-steps must be, which means more computation must be taken to cover the same
time interval. Stiff springs will lead to a stiff system (with stiff equations of motion)
because the springs’ feedback loops (from position to force to acceleration and back to
velocity and position) becomes tighter, and typically more integrator samples are
needed to accurately follow the variations in spring force.

support region: the convex hull area formed by the points of contact between a figure and
the support surface.

support polygon: (or support pattern) the boundary of the support region.

timestep: the amount of simulation time, in seconds, which passes between each call to the

dynamics simulator. Acceleration, velocity, and other values in the simulator are inte-
grated over this discrete time period, dt.

torque: a rotational force; an unopposed torque applied to a body will induce a rotational
acceleration (or “angular acceleration™). The term force is used in this text in a general

sense, including torques as well as linear forces.
virtual environment: an interactive computer model which represents an “environment,”
which is based on a set of rules, and typically represents some aspect(s) of the real-

world.

270

Index of References

Michael A. McKenna

Index of
References

A

Alexander 1976.....uuuveeveevicieeeciiireeeenene 41
Alexander 1985........ccocvvvveeeenne. 23,41, 174
Alexander 1990........cccocvvvvervennee 41, 174
AMIrOUCHE......coovvvrirrieeee e e rerereeenne 42
P-N 211 ¢ 1 0L AR TRRURURINE 28
2N « VOO PUUORRR PP 26
Armstrong 1979cccevvviviniinininnnnn 22
Armstrong 1985 ..o 22,29, 47,79
Armstrong 1987 22,29, 47,100
AUAU.cocieeceeerece e 36, 58
B

Badler 1985....cciviiiuereeereecrieerecnrereeeens 28
Badler 1987covveeeveeereeeiieeeeivenieens 28
Barzel ..ouuveeeeeiiiicireeeee e seierenee s 29
Bizzi 1982....uvvviieieivrennen. 25, 58, 59, 268
Bizzi 1984oveevieeiiereeeine 25,59, 268
BOZETt.....orviviieniireieinieieeie e 97
Brady......cocoevniininicnininnns 21, 25, 26, 228
Braune 1987riririereeneireeeeeenenns 38
Braune 1988............... 32, 38, 56, 109, 121
BIOtMAN. .. .ueeeerriinnreeeeenecereneeenes 29
Bruderlin 1988ooocevvvveeeierierennnneene 46
Bruderlin 1989cccovieievrirreenins 46, 57
C

Cavagna 1966..........cccovvvverevennreeinnnens 172
ChenN ..o 24,36, 178

271

D

Darrellcccovvveeiieeeeeirerrreee e 27
Delp..cccrieieniinieieiiiceeee 36, 56, 177
Dempster...... 32, 56, 57, 58, 109, 121, 125
DrilliS cvvveeereeeeveeeereeeeveeenne 32, 33, 59, 109
DwWorkinccovvvvvereeiiiireiinnrrreeeeeeereeeenns 133
E

ESSQ ..uuuviiiiiiiiiiiiniireieeesenieinnreerreeeseesneeenns 27
F

Featherstone 1983. 22, 51, 55, 56, 76, 264,

266
Featherstone 1987 ... 16, 22, 23, 51, 55, 56,
76, 78,79, 84, 88, 176, 264, 266

| 310) () 2RO 209
Forsythe.......ccccovvevviercininiiniinicniicnine 83
Frankccocoveevieeninineiniecnccneccneenns 41
Furushocccoveiivnniiciiiiiicceccnien 44
G

GINSberg.....cccvveevereininiiinicnenieiieenen 27
Girard 1985ccceeviiiiiiiniin, 46
Girard 1987cccevevcrevcniiniiniinens 26, 46

Goldfinger. 33, 35, 59, 115, 116, 117, 118,
119, 120, 153

(€] ¢ | 2SRRI 33,115
GUDINA....ccovieeeeirree ettt eeesaeereee s 42
H

Hahn.ooooveeieeeeeeeeecceeceeeee e 98
Hatze .oooooeeveeeeeeeeeeeeeeeeeieeeeeeeeeeeen, 34, 36, 58
Heppenheimerccoovevieniiniiininnicnnnen. 14
HOL ottt 34
Hollerbach.....vvvveveeriiiiciierrreeneninicinnns 23
HUEIKE ..cooiierivveereeeeeeeeccineeeeeeee s ecesinanns 31
HUGhES ..ot 51
I

Inman........... 39, 40, 45, 57,114, 119, 122
1S2aCS 1987 ..eeeeerivieieeeereecccireeeeeeneenas 22,29
I52aCS 1988....ccvviieieeiieeerieeeeeeenne 22,29

Index of References

Michael A. McKenna

K

KatO.oooooeiiiiiiieieeereieeeeeeeeeeceesecieenreveeeeees 44
Kochanekcovevveveeieevreiinrieeeeccineeeneennns 26
L

LaSSELET ..uvvveiiiereeeeeenrrereecnresireeeesennnesenne 26
Lathrop......ccocevevinicninininincienieenenns 23
| TSP PUUPPRRON 28
LiStON weveeneniniiiniiirnreeeeeenenesesesenes 43
M

MAES ...eeieetiiieieeieiieirereererererteeeeesrrnraeeeass 25
MaANKO .vvvveiieivereereee e svre e s 95
MAND eiivierireeenierrereee e ssneeeesesesereresenas 38
MATION ... eveereereeerieeereeeiree et eereeeeeesreens 81
McGeer 1990-Aovvvvvvveveeeieeereeeinns 45, 57
McGeer 1990-Boovveviiicieieeeciiiicnnn 45
McGeer 1990-Couvvvvreerereeiereeeeicieeen 45
MCGHhEE.....ovvveeieeeeeeiieeeiereerereeeene 44,270
McKenna 1988.......cccccveevvvveenincecnnne 49, 50
McKenna 1990-A.......ccceueene 47,48, 69,70
McKenna 1990-B....... 49, 50, 69, 150, 174
McKenna 1990-C............. 49, 69, 150, 174
McKenna 1990-D.......cocoveivrieineicineennne 53
McKenna 1992.......eeveveeeicvevereennnns 69, 130
McMabhon........... 25, 36, 37, 39, 41, 58, 64
Meglan ... 43
MESSUTL.evveieiiiiiinirrereeeenerenreesssnneneesess 270
MINSKY ..coveevveereniiiiiiiniinieeieeeeneenes 25
MIUTA.ceiiiiiieerieeieieieiticreeeeeseeseeseneessnsnane 44
Mochon 1980-A.. 38,41, 57, 64, 162, 168,

169

Mochon 1980-B 38,41, 64, 162
MOOTE cueuneeetirnreeeeeeeeeees 94, 98
MOTIOCK ..evvvviieeieeeerirreeeeeeeree e 42
MUIPhY...coiiriiiiiiiiieeeneseeee 57
Muybridge......ccooovvnvererinieinniiceenn 36, 37
(0]

ONYShKO ...covvvviniiniiinrieeiieiecniecnes 42
OUSLErNOUL...vvveeereeeeeireee e 70, 219
P

Pal oo 57

Patriarcoooooeevieiiiiiiiiineeeeeeeeeeeeeeeeeeeneens 39
Pearson.....ccccccevveeveiiieiireeeeeeee 47
Pfeifferoovvveeeiinreeeieieeeeeeeee e, 24
Phillips ..o.cevernereerniiniininens 28,61, 130, 147
Pieper 1992 ..o, 24,178
Pieper 1994 ... 177
| (L SRR 83
| 10103 1~ PR RRO 57,113
Pugh ..o, 43
R

Raibert 1986......ccvvvervverrireeeiireeeesrnenee 45
Raibert 1991oooeeeeiiiicreenieceneeeae 45
Reynolds 1982 ..., 27
Reynolds 1987ccoovvvviiviniivininnennen 28
RUSSEL...oooiiiiiiiiireeeieeeeerecirerreeeeeeeee e 44
S

SaAUNAETLS...uuverenieneeieeens 39, 45, 57
Schroder.....uvvveeviiiiiviniciiereereeee e, 23,70
SIEEIET c.vviinriiiiieiritii e 42
SIMKIN .coiviiviiiiiiiieieecerre e e e e cvaneees 43
SIMS v sraree e s esenaeees 46
SINGN et 27
SEEKELEE ..evvvrrrreeiereerrirrrieeeeeeeresrsnnrnneenes 26
Stredneyccocveviineeiiennene 33, 34, 59, 105
STUMMANvvvvieereereerreeeirerreeeessesessneenee 26
Sutherlandooooovveviivevrereneiieeeceiennne 44
T

TakaniShi......ccoovvvvimirereerreiirrreeeeereeennenne 44
Terzopoulos........cvveeviiniiienieenreenennenn 24
w

WaAlKEr..ooviiiiiieee e eeirrcee s 136
WALETS vevieierieeeeerrreeeernreeessenneessssannaes 27
WebSter’s c...ovevvevvevvernne 67,267, 268, 269
WL eiiieeeeeiierrrieeeeiveeseeerrrteseessnsaneessns 171
Wilhelms 1985.....cccveenvennne 29, 47, 81,95
Wilhelms 1987covvvvevvvvvrcnnennns 29, 47,57
Williams 1977........ 30, 109, 121, 124, 125
Williams 1990.....cccoeiviverrccereenineccnniienne 27
WLSOMN ceeeieiieeiieiirrieeree s e e reenrennreeeesssenas 47
Winter 1978 ...vireeereeeeierenreeeeeeeen 38, 64

272

Index of References

Michael A. McKenna

Winter 1990 20, 21, 32, 33, 38, 59, 81, 109,
121, 122,267

Witkin 1988cvveeeveeerieeciecieccveesieens 29
Witkin 1990oevvveivreeeeieecreeeeeieeee 90
A 20) 5 21 1 1 U 228
Y

Yang...coooemmenniininineeen 24
€T+) | DO OO 34,58
Y/

Zajac 1986.......ccccoviiiiiiiiiiinieirirennns 36
Zajac 1989......coecvvveneiiiiiiiercieneaen 36
Zeltzer 1982eueeeeveieiiiiiieeiiieieeeeenens 45,97
Zeltzer 1984ooevvvvvveernene 33, 45, 105
Zeltzer 1989ovvevcvvivveeenneenne 47, 48,70
Zeltzer 1990ooveveccvveeeennnn. 27,28, 67, 69
Zeltzer 1991ooovvveevreeeecreeeeeerreeene 25

273

Index

Michael A. McKenna

Index

Note

Page numbers in italics refer to illustra-
tions.

A

abductioncccoevevveieenenenn. 30, 31, 40, 266
ABM, see Articulated Body Method
aCCElEratioNccevvvvevreerneereieerreeeennns 78, 85
active control, see control, active

actuator16, 29, 36, 37, 63, 99, 102, 125,
141, 147, 149, 154, 266

adaptive ..., 28, 83, 152
adductioncceceeveveeerinenene 30, 31, 40, 266
anatomical illustration .115, 116,117,119,
120
animationecceeevveeennee 15, 26, 45, 65,71
ankle 113, 113,157,162, 164,171
ANLETIOL ..evvvvrrrreererreriirrereesercneenreresassrsneens 30
anthropometricscocvveveiineenineens 57, 109
AT cevveeeveireeiesennnnneereesseennnraneeseannenssessons 163
articulated body inertiaccccevvierenen. 85

Articulated Body Method ...16,22, 51, 55,
76, 136, 266
articulated figure 15, 19,46, 57,75, 84,266

B

DALANCE .eevenreeeerrereeeeeee 44,147
ballistic walking 41,42, 64, 162, 163
bias force, see force, bias

biomechanics 15, 30, 41, 56, 99, 266
body ...oceeviviiniininnn 19, 23, 81, 84, 130, 266
DOLIO ecneeviveeceeeeeree e 47,70

C
calibrationccceeenene 16, 52, 148, 154
center of gravityccccceveenvinncnnnen 20, 267
center of mass ...20, 39, 93, 124, 125, 147,
163, 267
central nervous Systemccoueeunee. 24, 36
[0 7014 (0: 16) ¢ LSRR 49
cockroach, also see roach
coefficient of frictioncccceeun.... 95, 129
coefficient of restitutionc........ 94, 95
COG, see center of gravity
collisioncccceeveveen. 93,94, 97, 129, 133
collision detection 65, 106, 133
COM, see center of mass
COMPASS ZAIL ..ocvervirriiniiiiiiiiieiiieeieneens 39
COMPIEXILY ..ovvenereirriiiiiiiiieiiiecieine 104
COmMPlianceccceeeeercerinirnininenn 26, 52
computer animation, see animation
CONSLIAINE ..oeovvrirereeeeniieieieeeeneereereenennee 22,28
COMLACE covvvvieieiiiieiirinieieeeieieeenes 94, 129, 147
CONtTAPOSItION ...ccvevuviriiriiriiniiiniiieniiinnns 153
1767111 4o U RPOPRRUUPP 15
F:16) 007 - 42, 152, 173, 266
feedbackcoovveviivvieeieeeeere e 26
forwardcooovvvvvviiviiiiiiiinnns 62,137, 268
INVEISE ..voevevvrenes 16, 62, 147, 157, 268
1107015 10) 1 RRUUREUUUUORUR 24-29
INOLOT wvvvveerreerrernnrerreeeeseesaansessasnns 16, 49
open loopoovvvvniiiineiiiiniiiniens 25, 61
PASSIVE .o 269
Cootie Gets Scaredcuuvveenen.. 49, 50
[@7071s) 1 V-1 L OPP 30
corpus 15, 50, 54, 65, 67, 89, 99, 105, 128,
148, 267, 269
Coulombic frictionccceevvvveeeeereerreeeecnns 95
CIOSS OPEIALOL ...cveeveirririirieiriereeieereereesnes 79
CUDOLA ..ooviirieeieeee e 114
CUNEIOIM ..vvverrrrireereecereieeeneeeeeee s 114
D
damper 29,36,52,57,94,99,101, 125,138,
157
deformableoevvivieeiiiinieeieee e 24

274

Index

Michael A. McKenna

degree of freedom ...15, 19, 30, 56, 58, 84,
110, 111, 112, 135, 267

delete ...oovveeeeeriiieeier 130

denSity ..cocovereniiiiniiii e 122

determinants of gait 3941, 267

DOF, see degree of freedom

double SUppOrtcccoiriiniriieninienine 40

dynamics14, 20, 55, 67, 70, 75, 81, 267
first Ordercoovveeeververeesiveeecnnnenns 90, 154

forward 20,29, 42,47,49,150, 157,268
hybrid21, 46, 88-89, 147, 150, 162,

174,268
inverse ...20, 38, 88-89, 136, 150, 157,
268
E
elDOW ...oovvrieieen 113, 154, 157
end effectorvvvieieverveeenieeeenennens 20, 267
ENETZELICS ..ovvvviveriirirviniirireee e 23
energy
KINELIC eeveeeeeeeeeeeeiereceverrannnees 41, 157
potentialoooinieiiiinineiens 41
equilibrium position hypothesis 25, 59,267
error tOlerancecoevceeeeveencveneeernnne 83, 129
CUIET ..vveerreirecreere et 82
SN/ | AR PR 113, 161, 162
exponential spring, see spring, exponential
EXtENSION evvvereereeeverirrrnereanes 30, 31, 39, 268
F
feedbackccccoeenennnns 36,42, 44, 147, 149

feedback control, see control, feedback
flection, see flexion

1115, € 10) (=T PUPTOPOUPRPRRN: 24,41
flexionccceeevvveeeenrnnee 30, 31, 39, 40, 268
plantar ... 40
foot ..35,42,108, 112,116, 120,121, 142,
161, 166, 167
force ...oovveeevveeennee 20, 79, 93, 98, 100, 268
DIAS coveeveiiririeee e e eeerrrerer e e sesinne 82
ground reaction 38, 41,43,93, 171, 172
jointeeee. 16, 57, 99-102, 124, 137
force plateocoveevieiineiiiieene 38
{00 =T:V v ¢ NETTEOR U UUTPPR 113

forward control, see control, forward
forward dynamics, see dynamics, forward
forward kinematics, see kinematics, for-

ward
fTAIME .oveiveeireeiieiiee et 129
fHACHION .vveevveeeeeceecreeereeereeereeeerre s 95, 96
frontalcoovvvvveeeereeieeeeee e 29
G
o 11 ARUUOUIURUPRRO 36, 44, 46, 47, 268
COMMPASS ..cvvevrerecmesriesiissuessueessresseens 39
determinants ofccccevvvveeeecnens 3941
gait controllercoveviviiiinninniininien, 49
gravity 41, 45, 49, 93, 98, 130, 132

center of, see center of gravity
GREF, see force, ground reaction

Grinning Evil Deathcun... 53
ground reaction force, see force, ground re-
action

gUIdING vovvviiiiiii e 27, 69
H

hand ..ooooeeeeeeeeeeeee e 113, 157
head ...ccovvverieieec 110, 153
hexapodc.cccvvviiniinnnn. 47,49, 150, 174
hindfootccccevvevereniiiiii 113
RIP v 113
horizontalcccccviiiiiiniiniiniininiin, 29

hybrid dynamics, see dynamics, hybrid

I
illustration, see anatomical illustration
inertiaoeceeevveenne 32,41, 65,79, 106, 121
articulated body, see articulated body
inertia
1111575 (o) SRR OO PP ORIROPPPPR 30
integrator 82, 103, 129, 134, 140
inverse control, see control, inverse
inverse dynamics, see dynamics, inverse
inverse kinematics, see kinematics, inverse
IMVELT ooviiiiviiireeeeeeeeeierrennnrrrereneeessessssssssas 113
inverted pendulum, see pendulum, inverted

275

Index

Michael A. McKenna

J
JOINE et 19, 23, 135
JOINE AXIS coverviriniieiirenieriieieere et 84

joint force, see force, joint
joint limit 29, 34, 58, 60, 99, 101, 125, 138

K

keyframecoceviveninneennns 26,27, 154

kinematic motor program, see motor pro-
gram, kinematic

kinematics 14, 20, 28, 45, 47, 268
forwardcoceevvvveecirereniennne 20, 26, 268
INVEISE .ouuveeeee. 20, 26, 47, 61, 154, 268

kinetic energy, see energy, kinetic

KINELICS ovvvvvveerreeeeirrnnerreeeeescrersenseens 14, 268

KDNEE oovvieeeeiieerrereeerireeeeereeieeeceinaeeeans 113

L

JALETAL ..eeevveeeeeeeveeeirrreee e ceerreee e eeeeneees 30

TNK v 30, 105

M

TILASS vevvvenrurnrnrersssrsesssssennnnes 32,80, 121, 123
center of, see center of mass

MEdIal ..ovveviiiriieeeee e 30, 268

metatarsalcoceevveeeen. 114, 119, 122, 162

motor control, see control, motor
motor program17,49, 52, 59, 102-103,
141, 145, 149, 154, 157, 173, 268

Kinematicc.ceeeverercuiniiieninnnnns 45, 47
MUSCleoooveeiiiniiiiiin 24,32,36,37
Muybridgecccoovvverininieniinneneniens 37,64
N
NAVICULAL ..ecvveeeiieeiciiccieniic e 114
NECK wovvvereeerenreneenavessrsnnrsrnsnrereeneeness 110, 154
numerical instability 89,94, 149
(0]

ONYX oo 128, 134
open loop control, see control, open loop

OPtiMIZationcceceinieeeesennennns 29, 39, 43
OSCILALOL .vvveeeenrenrinrrnrrererrreenereeeceenens 47,174

P

121 1) G UURRTPN 67, 68, 269
passive 28, 32, 34,41, 45,55, 138, 139, 141
passive control, see control, passive

passive Stepcoceeeennee 162, 165, 166, 167
PELVIS oottt 110
pendulumcceveviiinins 90, 91, 140, 163
invertedcccceerivveennnne 39, 44, 65, 163
phalanx 115, 145, 157, 164, 173
physically based modeling ..14,21, 28, 55,
269
Plant ... 26
plantar flexion, see flexion, plantar
POSILION ..cooviviniiriiiiirieiietei et 20
POSLELIOL ...oovivirviniiiniinieiirentesre e eieaene 30

posture ...16, 25, 61, 63, 63, 130, 147, 147,
150, 153, 154, 269
potential energy, see energy, potential ...41

R
TEACH .eoviiiiiiiirreeeee s 153, 155, 156
reaction force, see ground reaction force
Reality Engineccccoovevveeneennnns 128, 134
FEFIEX wviviriiieierereenec e 36,47
renderingoceeeeiinineinieniennn, 128, 134
FENAErMALIC ...vvveveevveeeeeeiiiiiniieciieieinnnes 72
RK, see runge-kutta
FOACH voveeeeeeeeiiiieiiieeeieeeeeeeeere e 47, 48, 50
TOOL 1ovieereeiieenneessreenressnresteesseesseeesseneans 110
rotationceeeeeveereeneeennes 30, 31, 39, 269
LOLOSCOPING .eeovvirviiirreinierieieeesnessensennes 269
runge-kuttaccoeeviieienienieninnn. 82,129
S
SAZIttal ..cvovvvirriieiieee 29, 163, 269
SCIIPL wovverveneeveeerierneiiieneas 69, 106, 128, 269
shoulderccoevvvveevevvvirenenne 113, 154, 157
Silicon Graphicscccoevveeeennnns 128, 134
skeleton .32, 34, 35, 45,59, 105, 107, 117,
121
SKII crveereveeeeieeeeenenceeienne 24,119,121
spatial algebraccceveviiiiiinennene 56, 269
spatial notation 20, 23, 56, 76, 269
SPINE .vveveerirnieniinretenres et 110

276

Michael A. McKenna

Index
£]0] 0111~ 20RO 25,29, 58, 155, 174
exponential34, 52, 94, 99, 100, 125
SADILILY vovvevereiecrecne e 41
stability margincccoceeeenneennn 147, 270
SEE Lo 16,97, 270
stiffness 25, 62, 83, 97, 126, 140, 149, 270
SUBLAAL .oeeereeieeiiiieeiiiieee e 113,162
3110134 (1) SO OUORPOTOIOTPIOIO 30
£1170] 0102 AN OOOUOTRTUOTRPPRIPIN 147
support polygoncceeereeennnne 147,270
support region 28, 44,61, 152,270
T
171 F:1 SO 113,157, 164, 171

talocalcaneonavicular, see subtalar
talocrural, see talar

task 1evel ovevevveveiviiiiiiiiiiiiiiiiins 28, 45, 69
Tc, see talar

Tcn, see subtalar

172, C111TS 11F:1 o RO 115, 116, 127
thigh oo 113
1810811151 o OO ORO 83, 129, 270
toe 115, 146, 157, 160, 161, 164, 171
LOTQUE ..eveverniiniirieiierineeine st 270
tranSformooevvvveeiriveeerrieenireeeeenees 81, 87
tLANSPOSE ..eveuvemirreiirisieinreniasesssseessasenes 80
\'%

VEIOCILY evveeieniininiiiieiniciienieneienas 77, 85,90
virtual environment ..14, 47, 116, 127, 270
w

WWAIST veeeeeneeereereesrssirrerresesresnnesssssenmsenes 110
TWIISE vevvevvrieeeererrernnnnrereeeseeesesenenanes 113, 157

2717

