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ABSTRACT

The work outlined in this thesis is the exploration, application, and evaluation of
the technique of dispersion compensation to reduce color blurring of reflection
holograms. In particular, the technique of illuminating a hologram with a predispersing
grating is applied to the development of full-color, full-parallax, reflection holographic
stereograms in various display formats, from a large, open-air viewstation to a compact,
light guide-mounted hologram. The effects of wave-front curvature are assessed for
reducing the grating size for more compact displays.

A blur equation is derived and experimentally contrasted with Benton’s blur
equations with the use of spectrophotometer measurements of an experimental grating,
and raytracing computer programs included in the appendices.

Finally, two approaches were developed that provide a consistent means of
designing dispersion-compensation gratings tailored to realizable, desired geometries.
Both approaches are effectively reverse-raytracing methods, beginning from the pupil and
ending at the extended light source. Compensation is optimized for image points along a
prescribed viewing axis, and depending on the geometry, along all lines of sight parallel
to this axis. The first approach solves for a grating design where the grating is
reconstructed with the same angles to which it was exposed. The second, more exact
approach, is an optimization of a matrix expression containing the relevant angular and/or
vertical focus equations, using the Moore-Penrose pseudoinverse function. This latter
method will enable the reader to design a grating that will play out at the desired angles
for component wavelengths at as close to the desired distances as possible.
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Introduction

“True observers of nature, however they may differ in opinion in other respects, will agree that all
which presents itself as appearance, all that we meet with as phenomenon, must either indicate an original
division which is capable of union, or an original unity which admits of division, and that the phenomenon
will present itself accordingly. To divide the united, to unite the divided, is the life of nature; this is the
eternal systole and diastole, the eternal collapsion and expansion, the inspiration and expiration of the world
in which we live and move.”

-- Goethe, Theory of Colours (1810, 293-4)

It is the sincere hope of the author that the following body of work, the result of a
year of study, may serve as a helpful starting point for future researchers interested in the
problems of image blur in holographic displays, and grating design. In order to expedite
the reader’s inquiry, this Introduction will serve as a brief outline of the contents of each
chapter. The “Conclusions and future work” section will parallel this summary.

Chapter 1 consists of two parts: The first is an introduction to holography and
dispersion, or color blur. In the second part, we will estimate the degree to which our
perception of blur affects the resolution of a holographic image.

In Chapter 2, we derive and experimentally test a trigonometric blur equation for
the absolute raytraced size of a blurred image. We then apply the perceived blur size
factor from Chapter 1 to find the perceived size of this image. The author’s blur equation
is compared with Benton’s blur equation.

In Chapter 3, we introduce dispersion compensation, a method to correct for
color blur, and we give a brief history of the application of dispersion compensation to
display holography.

Chapter 4 gives an introduction to full-parallax holographic stereograms, the
particular type of hologram we will be illuminating in Chapter 5’s display.

Chapter 5 is the culmination of the previous chapters’ findings, applied to a
plane-wave viewstation display. Laboratory techniques for forming a dispersion
compensating grating are outlined here.

Chapter 6 compares the effectiveness of compact dispersion-compensation
displays that do and do not use a plane-wave grating. Then, a consistent means for
designing dispersion-compensation gratings is put forward in the chapter and in the
accompanying computer programs of Appendices 3 and 4. It is shown that the method
presented here (the use of the Moore-Penrose pseudoinverse) compares favorably with
the perfect reconstruction geometries implemented in the viewstations of Chapters 5 and
6 and is well-suited to finding optimized angles, and also approximate distances, with less
precision. It therefore is tailored to compensate for lateral and longitudinal dispersion as
a function of eye position and orientation.
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Dispersion compensation flowchart
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Chapter 1
Blur in holographic images

1.1 Blur in holographic images

The primary sources of blur in holographic images are the spectral width and
physical size of the illumination source, as well as non-ideal properties of the exposure
medium and substrate. For full-parallax! holographic displays with controlled lighting
conditions, the spectral width usually constitutes the greatest source of image blur, and as
such will comprise the bulk of our discussions. As most optical aberrations have a
chromatic component, we will refer to the blur due to polychromatic illumination simply
as “color blur.” In this first chapter, we will introduce blur as we cover basic principles
of holography. Then we will determine how our perception of blur affects the resolution
of a holographic image.

Because holograms rely on diffraction, and diffraction is wavelength dependent
(that is, red wavelengths will deflect at greater angles through diffractive media than will
blue wavelengths), a single holographically recorded object replays in a different location
for each component wavelength of the illumination. This separation of component
wavelengths, or dispersion, is analogous to the phenomenon of dispersion in refractive
media, such as a prism. The extent of the spectral width of the source determines the
extent to which light will disperse through a given medium, and therefore a broadband
white light source can render an image an indistinguishable rainbow blur.

One trivial solution to the problem of color smearing of images is to illuminate
the hologram instead with a very narrow spectral band source, such as a laser or an arc
lamp with an interference filter. These are impractical for most viewing situations and,
unless one sets up three such lamps, offer only monochromatic playback. Another
solution is to produce better recording materials or to find better processing methods for
producing more narrow band playout. In either case, whether a hologram is illuminated
by a narrow spectral band source or a hologram with a narrow band playout is illuminated
by an intense broad band source, much of the illumination light is wasted. To produce
brighter, full-color, full-parallax holograms that are sharp and deep, correcting for color
blur in white light illumination displays is vital.

1 «“Fyll-parallax” refers to the change in perspective vertically as well as horizontally. Synthetic full-
parallax holograms are the subject of Chapter 5.
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1.2 Basic principles of holography

To better understand color blur, we will take a brief look at some basic
interference patterns, and then invoke the limiting case of the first type of hologram that
was invented by Dennis Gabor in 1947 (Gabor 1948). If we have a source point acting as
a harmonic oscillator, radiating waves in three dimensions, we can represent the
instantaneous wave fronts emanating from the center as concentric spheres, whose radii
are incremented by one-half of a wavelength (A/2). The direction of travel for any point
on the wave front is simply the direction of expansion, the local normal to the sphere
(Figure 1.1). We will call the path the light’s direction takes a ray, and tracing its path is
called raytracing.

\

Figure 1.1: Successive wave fronts emanating from a point source of light
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The superposition of two such wave fronts results in an interference pattern of
hyperboloidal surfaces:

(a) (b) (c)

Figure 1.2: The Moire fringe pattern is a helpful visual aid to understanding interference effects.
Here we have the oscillating source above in isolation, and interfering with another source.
(a) The spherical wave fronts from a single light source

(b) The superposition of wave fronts from two light sources
(c) The interference pattern created by the two sources (Jeong 1980)

If the two sources are mutually coherent , then this interference
pattern will remain constant over time, a “standing wave.” We may place a
photosensitive recording material anywhere in the volume of space around or between
these two sources to record the interference pattern. If placed between the two sources,
the recording material will subsequently form partially reflective, hyperboloidal surfaces
spaced through its volume:

2 For and in-depth look into the analogy between moire fringe patterns and interference fringes,
Abramson’s book (1981) is an invaluable guide. A summary table may be found on page 9 of the book.
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Figure 1.3: The formation of a reflection hologram (after Jeong 1980)

If the fringe pattern in this recording material retains its structural integrity and is
then re-illuminated by a wave front from one of these two sources, this wave front will be
partially reflected off each hyperboloidal surface and will interfere with itself. The
interference determines the intensity of the light reflected off these surfaces in different
directions. Light will be reinforced more in some directions than in other directions.
Light traveling in directions corresponding to the directions light traveled from the other
source during exposure are constructively interfered, and a reflection holographic image
of the other source position will be formed (Figure 1.4).

Figure 1.4: The reconstruction of a reflection holographic image (Jeong 1980)
The illumination source point is to the right, the reconstructed image to the left.
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1.3 The Gabor zone plate

The particular interference pattern pictured in Figure 1.3, formed by source points
on a line (the optical axis) intersecting the recording material, is called a “Gabor zone
plate,” or “in-line” hologram. If we had set the recording material along the optical axis,
but not in between the two source points, a different form of Gabor zone plate would be
formed, an in-line transmission hologram:

»

Figure 1.5: Interference pattern forming a Gabor zone plate

The interference pattern of the in-line transmission hologram is composed of
concentric circles centered around the axis. Because the angle between the line
containing the source points and the axis is zero, so too is the corresponding fringe
density, or spatial frequency3 of the interference pattern. The angle between these two
points with respect to a point on the hologram off-axis increases toward the edges, and
the corresponding spatial frequency increases (See Figures 1.6 and 1.7).

3 Spatial frequency refers to the reciprocal of the distance between elements of a repeated pattern, such as
_ |Sin(9ref) - sin(Gm)l
l A = wavelength |

holographic fringes: f , in cycles/mm.
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Figure 1.6: As the apparent distance between source points increases, so too
does the spatial frequency of the fringes. In this figure, we are looking at the two
sources from two different points on the recording material, one point close to the
optical (z-) axis (a), another farther off-axis (b).
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Figure 1.7: Formation of a Gabor zone plate, with more closely
spaced fringes toward its periphery (after Greivenkamp 1995)

Because the center of the zone plate has zero spatial frequency#, light illuminating
the hologram on axis will pass through undiffracted. Diffractive, or focusing power
increases with increasing spatial frequency, so the zone plate’s edges deflect incident
light the most, in the direction of the original wave front from the other source point, as
well as toward a focused, real image point in front of the observer. This second image in
line with the first, is sometimes referred to as a “twin image.” In Figure 1.8, the twin
image is a real, focused image.

4 There may or may not be a fringe in the center of a transmission in-line hologram, depending on the
relative phase of the two exposure beams. The reflection in-line hologram has fringes parallel with the
surface. In either case, the center of the zone plate has no diffractive power for on-axis rays.
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wavefront
normals

Gabor zone plate

real image
(order m = -1)

virtual image
(order m = +1)

Figure 1.8: Illumination of a Gabor zone plate with a single wavelength, with resulting
virtual and real image points

Phase-conjugate illumination is essentially a reversal of the directions of the rays
that exposed the hologram. This “time-reversed” illumination results in a real image
point projected where the original object point was located. Here, the twin image is a
virtual image behind the hologram plane from the observer (Figure 1.9).
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real image == virtual image
(order m =-1) (order m = +1)

Figure 1.9: Phase-conjugate illumination of a Gabor zone plate with a single wavelength
1.4 Longitudinal and lateral dispersion

As the spacing of between the fringes determines what wavelengths will
constructively interfere at different angles, it is possible to produce another image point at
a different location by illumination with a different wavelength. The focusing power is
therefore not only a function of spatial frequency, but also of wavelength, and therefore
the wavelengths illuminating a Gabor zone plate focus to different points along the axis.
The color blur of the longitudinally displaced images of the source points is termed
longitudinal color blur and is not noticeable by an observer situated along this axis. If,
however, the observer moves off the axis, the color blur becomes quite apparent.
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Figure 1.10: Illumination of a Gabor zone plate with two wavelengths, red (R) and blue (B),
and the resulting longitudinal dispersion

Likewise, if we take a source point off-axis during recording of the hologram,
white-light illumination of the hologram will result in lateral color blur. This off-axis
hologram, invented by Leith and Upatnieks (1962), can eliminate the twin image so that
the observer sees only one image.

.

Figure 1.11: The formation of an off-axis reflection hologram
(after Jeong 1980)
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Figure 1.12: Reconstruction of an off-axis reflection hologram,
where the twin image is eliminated. The illumination source point
is to the right, and the virtual image is to the left.
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Figure 1.13: Dispersion in an off-axis reflection hologram:
The broad band illumination source point to the right results in
Red and Blue image points to the left.
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The lateral color blur may be explained by the fact that the source points are
laterally displaced, creating a different interference pattern, and therefore the off-axis
white light illumination of the hologram will focus points of different colors so that they
are laterally displaced, as well as longitudinally displaced (as in the in-line case). The
resulting image not only suffers from spherical aberration, but also from coma, and most
significantly from astigmatism (Latta December 1971).

1.5 Overlapping zone plates

An object illuminated by one of these sources may itself be considered a
collection of a vast number of radiating sources, with spherical wave fronts emanating
from each point location on its surface. We may therefore consider a hologram formed
by an illuminated object to be a composite of a vast number of overlapping zone plates, or
gratings. We will assume that diffraction by each of these gratings is independent of
diffraction by the other gratings. As the points on the object’s surface may be in disparate
locations, the resulting fringes formed have different orientations and spacings. The more
extreme the distances between these object points become, the closer their fringe patterns
will resemble those of different hologram geometries (Figure 1.14).

~
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Figure 1.14: Examples of different fringe patterns (Goodman 1996):
(a) plane-wave transmission grating
(b) general transmission grating
(c) plane-wave reflection grating
(d) general reflection grating

)
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1.6 Perception of color blur: acuity and stereoacuity

We will now attempt to quantify the amount of color blur we perceive when we
look at a holographic image. George and McCrickerd (1969) derived the ultimate angular
resolution of a hologram and of a holographic stereogram (to be described in Chapter 4)
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according to depth-of-focus and diffraction blurring considerations, and found the former

to be % (L = length of the hologram) and the latter to be % (1 = length of the exposure

apertureS). As we are concerned with blur of a considerably more insidious nature, due to
a non-ideal illumination source, we will neglect George and McCrickerd’s Gaussian
beam analysis, and instead derive a filter factor that will determine the perceived image
point size from an absolute raytraced size. The result of this analysis could have a
significant effect on the raytraced blur equation derived in the following chapter.

For this analysis, it would be helpful to introduce some basic concepts and data
from the psychophysics literature. In particular, data® on measurements of resolution,
visual acuity and stereoacuity, will provide us with ideal quantities with which we may
compare the resolution of dispersed holographic images. We will refer to visual acuity as
a measurement of one eye’s ability to just resolve two laterally spaced points, whereas
stereoacuity will be a measurement of both eyes’ ability to just resolve two longitudinally
spaced points. Both measurements will be in terms of the reciprocal of the minimum
angle of resolution, so a high visual acuity means that the minimum angle of resolution is
small. The measurements will rely to some degree on parameters such as stimuli
luminance and choice of stimuli (Figure 1.15).

In the case of acuity under ideal conditions, the average threshold for resolution in
the grating task (resolving closely spaced lines) is considered to be about one arc minute’

(1 arc minute = _616 ©), and under optimal conditions, the Landolt ring and letter acuity

tasks result in an average threshold of about 30 arc seconds® (1 arc sec = —613 arc minute).

For high intensities of light (above 4000 meter-candles), acuity scores as low as 24 arc
seconds have been measured. For vernier acuity, a hyperacuity task (where resolution of
the image projected on the retina exceeds the intercone spacing), resolution can be as low
as 2 arc seconds.

5 The exposure aperture is an aperture in a mask through which a small area of a hologram may be
exposed. The significance of the exposing small adjacent areas of a holographic recording material will
become apparent in Chapter 4.
6 Unless footnoted, the psychophysics data presented here is repeated from Riggs (1965)
7 Grating task data is taken from Riggs (1965, 326)

64 arc sec (Lister)

50 arc sec (Hirschmann)

52 arc sec (Bergmann)

64 arc sec (Helmholtz)

56 arc sec (Uhtoff)

64 arc sec (Kobb)

35 to 40 arc sec (Shlaer (1937), Keesey (1960))

8 Handbook of Optics, vol. I, pp. 25.36-7 (1995)
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Figure 1.15: Different acuity tests
(Geisler and Banks, fig. 7.25.36-19)

Stereoacuity can vary depending on interpupillary and fixation distances. For an
average interpupillary distance of 65 mm, the mean retinal disparity threshold has been
found to be approximately 20 to 40 arc seconds for shorter distances (40 cm)?, and 4 to 10
arc seconds for longer distances (65 to 130 cm).10-11

mean retinal
disparity threshold

Figure 1.16: stereoacuity

As we will be calculating resolution of image points subjected to color blur
primarily in the vertical direction due to a vertically offset illumination source, the value
of one arc minute of lateral resolution will be sufficient for much of our work. Also
important to note is that acuity depends on wavelength for low to moderate levels of
illumination. Acuity is best for the middle of the visual spectrum (yellow-green) and
degrades toward the longer (red), and is worst for the shorter (blue) wavelengths. Our
prototype viewstation at the time of writing displays holograms exposed and
reconstructed with a central wavelength of 514.5 nm. This wavelength is roughly in the
central region of the visible spectrum, and therefore our ability to resolve image points for
such an image should be better than for a full-color image in such a display.

1.7 Resolution vs. detection / perceived vs. absolute color blur

9 G. Heron, et.al (1985), repeated in Charman (1995)
10 McFadden paper: 2-12 arc sec range amongst his six subjects
11 Repeated from Graham (Chapter 18, 1966) in Charman (1995)
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To simply assess the perceived size of a single blurred image point by calculating
the directions of the light rays that we can detect could prove inadequate. The reason for
this is that our ability to detect a stimulus is dependent on many factors, including not
only properties of the stimulus itself such as contrast and luminance, but also the state of
the observer. The threshold for perceiving light ranges across a logarithmic scale
depending on our level of light adaptation, and under optimal conditions, we can detect a
light source when only a few photons impinge on our photoreceptor cells. Also, because
the diffracted image of a point source is a set of concentric rings like those of the Gabor
zone plate about an “Airy disk,” very small stimuli (critical widths less than ten seconds
of arc!?) appear to be the same size.

Figure 1.17: Airy disk diffraction pattern. The lines merely ascribe areas of the diffracted pattern
to points on the corresponding intensity curve (Riggs 1965, fig. 11.10).

We will therefore rely not on absolute detectability or brightness discrimination of
a single blurred image point to calculate its apparent size. Instead, we will calculate the
resolvability of two closely situated points by defining a maximum overlap. One model
to help us better understand resolvability is Rayleigh’s criterion. Rayleigh’s criterion
states that the images of two points are considered just resolvable if the distance between
them is at least the distance from the center of one Airy disk to its first minimum.

|

j
Figure 1.18: Rayleigh’s criterion for just resolvable points. Here are two overlapping Airy disk patterns,

the images of two closely spaced points. As in Figure 1.17, the lines merely ascribe areas of the diffracted
pattern to points on corresponding intensity curves (Riggs 1965, fig. 11.11).

!
N

Equation (1.1): Rayleigh’s criterion is given by the relation (Riggs 1965)° & = 1-?1

s

12(Riggs 1965, 322)
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where o is equal to the minimum resolvable angular separation between the two centers,
A is the wavelength, and d is the diameter of the lens, in this case the pupil diameter.
Although we could predict from this expression that an increase in pupil diameter should
result in a corresponding linear decrease in the minimum angle of resolution, when the
aperture size gets larger than 2 mm or so, resultant optical aberrations compromise the

linear relation. Experimentally, the Dawe’s Limit, @ = g seems to be corroborated for

pupil diameters of less than 1 mm. A maximum acuity is attained for pupil sizes of 2.5
to 4 mm, although the value does not increase dramatically from 2 to 5 mm. As we are
interested in an average pupil size of 3 mm or so, it would be most appropriate to use
Rayleigh’s Limit with d = 2.5 mm.

We will apply the concept underlying Rayleigh’s Limit equation not to Airy disks
of concentric rings of diffracted maxima and minima, but instead to blurred points of
decreasing intensity toward their peripheries. The minimum resolvable distance between
two points will then be from the point’s center of maximum intensity to its periphery of
submaximal intensity, to be defined by a contrast specification below.

The primary confounding factor in defining resolution is, of course, noise in the
image. We will assume a background noise that negligibly affects the relative intensity
across blurred images, and is sufficient to preclude the possibility of “super resolution,”
where the resolving power exceeds Rayleigh’s, Sparrow’s (Smith 1990, 152), and Dawe’s
criteria. The holographic image contrast suffers from ambient illumination, scattering
and dispersion of light in the recording material and substrate, intermodulation noise
(“cross-talk” between component gratings), and other artifacts that compromise the
observer’s ability to discriminate intensity differences in an image.

If were interested in radiometric image brightness (Caulfield 1979, 235-6), then
we would need to include factors such as the relative size of the image to the object, or in
the case of the stereogram (Chapter 4), the magnification of the viewzone, as this will
affect how spread out the light from the hologram becomes!3. However, as we have ruled
out the consideration of absolute intensity thresholds of the eye for blur size
determination, we will instead make a photometric estimation of relative intensities based
on the three wavelength-dependent intensity filters

The perceived intensity dropoff determining the boundaries of the blurred images
will be calculated using three filters: (1) the spectral luminous efficiency curve of the eye,

1314 actuality, the image size is dependent on wavelength, and the viewzone will be magnified for longer
wavelengths. We will assume that this has a negligible effect on the relative intensities for different
wavelengths of the blurred image. The topic of a hologram’s viewzone will be taken up in Chapter 3 (“Full-
parallax reflection holographic stereograms”) and in Chapter 6 (“Wavefront shapes and compact displays™).
It will prematurely be stated that this magnification is equal to the ratio of the area of the viewzone to the
area of the master hologram. For the collimated grating in the viewstation of Chapter 5 (“Design of a full-
parallax holographic viewstation™), this magnification is unity. For a diverging illumination geometry, this
value drops below one as the image of the master hologram, and therefore the viewzone, becomes
magnified.
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(2) the diffraction efficiency curve of the hologram, and (3) the relative intensity curve for
the illumination source.

minimum resolvable
distance

Figure 1.19: Two blurred points that are just resolvable

1.8 Spectral intensity filter #1: The retina

The ultimate filter for these color-blurred images will be the eye, so it would be
appropriate to first outline the sensitivity of the eye to different wavelengths. The CIE
graph usually used to demonstrate the relative response of the eye is termed the spectral
luminous efficiency curve. There are actually two curves, one for the light-adapted eye,
the “photopic curve,” and one for the dark-adapted eye, the “scotopic curve.” The
photopic curve peaks at about 550 nm, attributable to the yellow-green sensitivity of the
cone photoreceptors, whereas the scotopic curve peaks at 507 nm, the “Purkinje shift”
toward the blue, attributable to the blue-sensitive rods. We will use the data from the
photopic curve, as it is our aim to produce displays that are viewable in even brightly lit
surrounds.

Spectral Luminous Efficiency of the Retina (Photopic Curve)
1 5

S o o
N » ©

o
[=2]

Normalized Retinal Sensitivity
o © o o
N w = [4,]

o
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Figure 1.20: Photopic curve data from Wyszecki and Stiles (1967, table 4.2)
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1.9 Spectral intensity filter #2: Diffraction efficiency of the hologram(s)

The eye will only receive the wavelengths at the intensities the hologram can
deliver to it, so the next filter we will apply will be that of the hologram as an
interference filter. The filter limits the diffraction efficiency of different output
wavelengths, and may be calculated using Kogelnik’s coupled wave equations (Kogelnik
1967, 1969).

For our analysis, we will assume that the diffraction efficiency distribution of the
spectral components, and therefore the intensity distribution of a blurred image point
composed of these spectral components, is gaussian and centered at the playout
wavelength of maximum diffraction efficiency. The intensity distribution of a gaussian

beam is described by

-2r2

Equation (1.2) (Smith 1990, 155-6): I(r) = Ie ¥

where L, is the intensity on axis (the playout angle at the central wavelength),
e is 2.17..., r is the radial distance (distance from the center of the blurred image),
and w is the beam width. Beam width is defined as the radial distance at which the

I
intensity is ;‘2’— (13.5% of the central value). If the intensity distribution is then

normalized, with the peak intensity equaling one, then fractional values would be
ascribed to the relative visibility along r in Equation (1.2). This fractional value would
need to be raised to the power of the number of holograms in the system, assuming there
is no wasted light and each hologram reconstructs with the same bandwidth.
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1.10 Spectral intensity filter #3: The illuminant

There is one final factor affecting the relative intensity of different wavelengths in
our consideration. Just as we needed to know what light intensities the hologram
imparted to the retina, we need to specify the relative intensities of the different
wavelengths illuminating the hologram. For an example of such data, we will use the
International Commission on Illumination’s choice source for a colorimetry standard:
“Illuminant A,” a tungsten lamp at a temperature of 2848K (MIT 1936). The choice of a
tungsten filament is appropriate, as one of the viewstations of Chapter 5 is illuminated by
one. However, the modern standard color temperature for quartz-halogen lamps,
including those of Chapter 5, is either 3200 or 3400K. If we were to choose a higher
color temperature, we will find that this choice further substantiates the final filter factor
we are deriving.

Relative Spectral Intensities for the
CIE Standard llluminant A (Tungsten)

Normalized Intensity

§8§§g3g83gaegeggege g
Wavelength (nm, Visible Region of the Spectrum)

Figure 1.21 (Wyszecki and Stiles 1967; MIT 1936)

The relative intensities of the wavelengths have been normalized in Table 1.1
below. Each Illuminant A normalized value may be multiplied by the values for the
corresponding wavelengths from the spectral luminous efficiency and diffraction
efficiency curves. The resulting product of the corresponding Illuminant A and retinal
efficiency data are listed in the rightmost column and represent what fraction of the light
of that wavelength is delivered from the tungsten source to the hologram, and from the
hologram to the eye, neglecting diffraction efficiencies.
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Retinal efficiency, Illuminant A Product of the
normalized (CIE tungsten, retinal efficiency &
normalized) Illuminant A
380 0 0.04051 0
390 0.0001 0.050027 5E-06
400 0.0004 0.060868 2.43E-05
410 0.0012 0.073158 8.78E-05
420 0.004 0.086895 0.000348
430 0.0116 0.102081 0.001184
440 0.023 0.118757 0.002731
450 0.038 0.136922 0.005203
460 0.06 0.156494 0.00939
470 0.091 0.177391 0.016143
480 0.139 0.199652 0.027752
490 0.208 0.223073 0.046399
500 0.323 0.247693 0.080005
510 0.503 0.273348 0.137494
520 0.71 0.299996 0.212997
530 0.862 0.32743 0.282245
540 0.954 0.35565 0.33929
550 0.995 0.38445 0.382528
560 0.995 0.413787 0.411718
570 0.952 0.443497 0.422209
580 0.87 0.473538 0.411978
590 0.757 0.503703 0.381303
600 0.631 0.533951 0.336923
610 0.503 0.564158 0.283771
620 0.381 0.594281 0.226421
630 0.265 0.624116 0.165391
640 0.175 0.653701 0.114398
650 0.107 0.682873 0.073067
660 0.061 0.711549 0.043404
670 0.032 0.739728 0.023671
680 0.017 0.767286 0.013044
690 0.0082 0.794182 0.006512
700 0.0041 0.820375 0.003364
710 0.0021 0.845823 0.001776
720 0.001 0.870443 0.00087
730 0.0005 0.894277 0.000447
740 0.0003 0.917201 0.000275
750 0.0001 0.939297 9.39E-05
760 0.0001 0.960442 9.6E-05
770 0 0.980718 0
780 0 1 0

Table 1.1: Data from the spectral luminous efficiency (Wyszecki and Stiles 1936) and Illuminant A relative
intensity (MIT 1936) curves, and their corresponding products
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Superposition of the two spectral component intensity filters: the
retina and the illumination source

12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Wavelength (380-780nm)

Figure 1.22: Intensity filters: the retina and illuminant

1.11 Resolution of color-blurred reflection holographic images

The data used to make Figure 1.22 could have been multiplied by their
corresponding diffraction efficiency values for a complete determination of the relative
intensities of the spectral components. However, the above analysis is only reasonable
for application to transmission holograms with a wide spectral bandwidth (on the order of
200 to 300 nm), and is more extensive than it needs to be for thicker, reflection
holograms having a narrow spectral band (of about 20 to 30 nm).

For a narrow segment of the visual spectrum, the spectral luminous efficiency and
relative illumination intensity curves are approximately linear and of small slope for the
illumination source that was chosen. The diffraction efficiency curve, on the other hand,
is very narrow about the central wavelength, and therefore of very steep slope. We will
therefore consider the retinal and illuminant distributions to have a negligible effect on
the perceived size of blurred image points. Instead, we will consider the perceived size to
be wholly dependent on the diffraction efficiency distribution. First, we will define the
resolvability of two blurred images, and then we will define the perceived size of a single
blurred image point.

To define the resolvability of two blurred images, we will overlap the intensity

distributions of two very closely situated images (as in section 1.7). A correspondence
exists between distance from the center of a blurred image and playout wavelength, so the
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spectral intensity distribution will enable us to determine the size of the image above a
specified cutoff intensity. The distance from the center to the “boundary” of a blurred
image is simply the length along the blur from the focused wavelength of highest
diffraction efficiency to the focused wavelengths of some cutoff diffraction efficiency.
We will define the minimum resolvable distance between two images as half of the
distribution width at 50 percent intensity, the point on the Gaussian profile without
curvature (Figure 1.23). We will further define the absolute bandwidth, AA, as those
wavelengths contributing 95 percent of the intensity, from Equation (1.2):

I 1
£3) — =095, with ra equal to half the absolute image size

Equation (1.3): -

For a 50 percent spectral intensity cutoff, the minimum resolvable distance may
be calculated from the absolute size of the blurred image, using the total calculated
bandwidth.

minimum resolvable distance

: 50% intensity
e I(r) = 0.5
\ Ik i (r)

e

I
Figure 1.23: Just resolvable points defined by the diffraction efficiency curve. Here are two
overlapping blurred images. As in Figure 1.18, the lines merely ascribe areas of the blurred image
to points on corresponding intensity curves.

min

First, the bandwidth of the hologram may be defined using Equation (1.4)
(Syms1990, 7)4:

A-A . . ) . . o
AL = t_ cot(6ill), where A is the fringe spacing, A is the illumination wavelength,
2

t2is the thickness of the grating, and 8ill is the illumination angle.

141 eith (1992) uses a completely different method for deriving the bandwidth, and defines the bandwidth
to equal the illumination wavelength divided by the number of fringes, N:

Ad = % Ths is equivalent to Sym's ATA'- for the conformal (untilted) fringe case with 6ill = 45 degrees.
2
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For most of the thesis, we will use a geometry with 6ill = 45°, and A = 514.5 nm.
For t2 = 10um:

A
From Benton (1994, 1996), we have Equation (1.5): A= ] (9 out — 0 illj
-sin| ———

2
Therefore, AA = 34.59 nm.

The extreme wavelengths of this bandwidth may then be used in the calculations of
Chapter 2 as the extreme raytracing wavelengths. For consistency, however, we will
assume from this point forward a bandwidth of 20 nm for the different recording
mediums we will be using.

Now we will calculate a “resolution factor,” R, to determine the minimum
resolvable distance between two points from the absolute blurred image height, hyjy,
(Chapter 2):

Mimimum resolvable distance = absolute image size X resolution factor (R),

Equation (1.6): R= =
AL

_ - w?In(0.5)
From Equation (1.2): 150% = — = 0.5887w,
2

and beam width w = |——2< = 0.8165r1,,

Therefore, R = 0.4807

An ideal quantity to which resulting minimum resolvable distance calculations

may be compared may be obtained from Equation (1.2), Rayleigh’s criterion:

© = % . With a pupil diameter d=2.5mm and wavelength A=514.5 nm, the ideal

theoretical resolution is then 2.51X 10~ radians, about 5.2 arc seconds.
howmin X 0.4807
Deye ’
the minimum absolute blur height, howmin, is equal to 0.261 mm at a viewing distance

With a mimimum resolvable angle of 2.51x10* =

of 500 mm, or about 1.8 arc minutes.

For the rest of the thesis, we will be concerned primarily with determining the
extent of the blur in holographic images, not with their resolution. Therefore, we need to
perform a similar calculation as Equation (1.6) to find the perceived blur size.
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1.12 Factor for perceived blur size

The perceived size of a blurred image is the absolute blurred image size, hyj,,
(Chapter 2), multiplied by some perceived blur size factor, B. We will estimate this
perceived blur size factor to be the ratio of the perceived height, hperceivedbiur to the total
height, hyj,. Just as the total width of the gaussian distribution was marked by a cutoff

1
intensity [6—3] that also determined the boundary of the blurred image point, the distance

from the center to the perceived boundary of a blurred image is the radial distance from
the center to a perceived cutoff intensity. As the beam width, defined above in section
1.9, contains 86.5 percent of the beam power, we will define our perceived bandwidth as
the wavelengths playing out within the beam width. Now we are prepared to define a the
perceived blur factor, B:

Perceived image size = absolute image size X perceived blur factor (B),

Equation (1.7): R= 2
rai

O

From Equation (1.2), beam width w = =0.8165r1,,

1
a8

\ln
e

Therefore, B=0.8165

1
1
1
-« ]
1/e2=86.5%

)

-
1/e’=95%

I
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I
]
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1
]
Figure 1.24: Perceived blur factor, B=0.8165
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This perceived blur factor should be a reasonable approximation, considering the
multiple sources of contrast degradation and noise mentioned above in section 1.7. In the
next chapter, we will derive the absolute blur extent in terms of height, as well as angle
subtended from the eye. The perceived blur factor may be applied to this absolute blur
extent as an estimate of the perceived extent of a blurred image.
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Chapter 2
Trigonometric derivation of a single-plane blur equation

In the previous chapter, we first looked at color blur from a qualitative standpoint,
and applied successive intensity filters to determine the apparent size of a blurred image
point as perceived by an observer. We found that we could define the extent of the
perceived blur as well as resolution of blurred image points by simply approximating the
diffraction efficiency of the recording material as a normal distribution about a mean
wavelength, and defining the wavelengths at two standard deviations as the cutoff
perceived wavelengths. In this chapter, we will take a more mathematical approach to
define the absolute extent of this blur. We will then experimentally test the results with
spectrophotometer measurements. Finally, we will apply last chapter’s perceived blur
factor to the forthcoming derived blur equation.

The trigonometric derivation below gives us a formula for determining
hologram color and source-size blur. We will compare the resulting formula with
Benton's blur equations. A vector blur equation is derived in Appendix 2, and reduces to
the trigonometric form developed here.

2.1 Derivation of a color blur equation
Figure 2.1 will provide us with the physical model we will be using in the
derivation and future discussions. Spectral components of the illuminant reconstructing

displaced images produce the blur. These components diffract at the hologram and create
a “dispersed focus” at the pupil of the eye:

white light illumination

order m = +1 (virtual image)

&7
A

Gl
YR -

Y,

order m = -1 (real image)

Figure 2.1: Spectral components from different points on the hologram contributing to blur
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We will start our derivation with the "X-equation" of Appendix 1. The
X-equation is a raytracing equation that describes the relationship between the exposure
and reconstruction geometries at some position (1) on the hologram.

The method we will use for the derivation of a blur equation is to substitute
unknown angles at some position (2) with known position (1) angles. Position (1) is the
point on the hologram in direct line of sight of the viewer and reconstructs at the central
("green") wavelength. Position (2) is another point on the hologram that will reconstruct
at another wavelength. In the following figures, this is a longer ("red") wavelength. The
key to this technique is that position (1) variables are in terms of the central wavelength,
denoted by "A,," whereas position (2) variables are in terms of an extreme wavelength for
a given spectral bandwidth illuminating the hologram. Although these extreme
wavelengths will be denoted by "A, " and "A,, " the color names merely describe their
wavelengths relative to the central wavelength. For reflection holograms with very

narrow spectral bandwidths, these wavelengths may all appear, for example, to be red or
blue.

blur angle

5

Figure 2.2: Dispersed focus at the pupil, perceived as color blur, from Appendix 2

The angles in the text are denoted with the same subscripts as the vector magnitudes. For example, Robj2
corresponds to an object distance of Robj2 exposing the holographic recording material at the angle 8obj2.
For clarity, only Bout 2 of the longer playout wavelength is included in the right diagram.

A
Equation (2.1): sin (Bout 2) = ml ? (sin (Bobj 2) - sin (Bref 2)) 4 sin(Billz)
Rysin(84)+h

For small h, R | is approximately R ,: Equation (2.2): sin(B 2) ;
R
1

For a proof of the validity of the above approximations, please refer to Appendix 2.
The resulting sine values to be substituted into the above equation follow.
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Robj ¢-sin <Gobj 1) +h

Equation (2.3): sin<90bj 2) =

Equation (2.4):  sin <9re f2> - Rref |-sin <9ref 1) +h

Rref 1

Rilly-sin(8ill ) + h
Rill;

Equation (2.5): sin<6i112> =

Regardless of the reconstruction geometry (reflection or transmission, order
m = + 1), the difference between the sines of the output angles from the viewer's eye to
positions (1) and (2) on the hologram (sin(Bout,)-sin(Bout,)) is opposite that of the
difference between the sines of the other angles from their respective source positions to
the same two positions on the hologram. In other words, notice that h is not added with
the other term in the numerator, as is the case in the other sine variables listed above.

Equation (2.6):  sin (Bout ,) = D gy sin(Bout 1)~ h

D eyel

When we substitute the four sine equations into the modified X-equation, we
obtain a value for h, the length of the hologram contributing to color blur for a particular
eye position and spectral bandwidth:

Ah sin <90bj 1) - sin(Bref 1)
Equation (2.7): h = '
q 2.7) SURLY 1 1 1 1
4.m — +
Al Robj; Rrefy| Rill] Dgye

This may be simplified to the following expression, with either a long (red) or
short (blue) peripheral A, resulting in either a red or blue horizontal focus (denoted by the

subscript “HORIZ”) and associated height h_, or h, along the hologram in question:

Equation (2.8): h

'7 Mored— M 2green | sin <Gobj 1) — sin <9ref 1)
red A . 1 1

+
Rout 11edHORIZ D eyel

The final color blur height, as seen by a viewer at a given distance Deye along the

0
out
(D ey ~FRout o verT where D, is taken to be positive and the latter term is the vertical

angle, is then scaled by the distance of the blurred point from the hologram

focus at the central wavelength) and by the output angle from position (1):
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D eyeq + Rout greenVERT

Equation (2.9): h Colorblur = cos (eout 1>' (h red T 1 blue)

D eyel

When expanded, the final expression for color blur is the sum of the following
with its blue counterpart (or simply twice the following as an approximation):
Equation (2.10):

D eye1 + ROUL {greenVERT

D eyel T Rout ;e dHORZ

Rout 1redHORZ €O8 (eout 1>~ N
1

(M)- (sin ((-)obj 1> — sin ((-)ref 1))

From this form, it is more apparent that for this perceived blur function there is a
nonlinear effect for small viewer distances. There is also a discontinuity when the
chromatically dispersed focus D, coincides with either Rout e, Or Rout, oo o, that

is, when the pupil is situated at one of the horizontal foci. This discontinuity makes
physical sense, as a pupil situated at these foci will have light filling the retina; the image
should appear to be very large.
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2.2 Inclusion of source-size blur into a final blur equation

To include the effect of source size on the vertical blur of an image point, a new

h_, and b, _are found from the effective translation of the illumination source by half of

red
the height of the source, ®,, in opposite directions for the two extreme wavelengths. The
longer, "red" wavelength determines the maximum h_ o and the shorter, "blue"
wavelength determines the maximum h,; . The final blur equation follows the inclusion

of the change in illumination angle from the extreme ends of the source into the original
equation. The central illumination angle, 6ill,, is that from the center of the source to

position (1) on the hologram.

Dill/)2 o -

Figure 2.3: Perceived color blur and source-size blur height
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Equation (2.11):

N @ i .
Rill{-sin (9111 1) +h+ T-cos (91111)

sin ((-)i112> =

2 2

¢

. . i ®,
Rill{-cos <9111 1> + T-sm ((-)111 1)

+ |Rill -sin 6ill ) + h - T‘“-cos (6i )

Rill ;-sin (ein 1> +hy (DTi“-cos (ein 1)

2
(Rilly +h)?+ Eii' - h® jypcos (Bill )

For illumination angles that are not too obtuse, the new Rill, (the denominator in

the above expression) is assumed to remain unchanged (Again, please refer to the proof
of the validity of this assumption in A2.2).

|
. Rill;-sin{@ill{] + h + ——-cos (6ill
Equation (2.12): ! ( 1> 2 ( 1>

sin (6ill ) = il

The final blur equation is composed of two components: the color blur term and
the source-size term. Here we have the height of the hologram contributing to blur with
the portion of the spectrum from the central wavelength to the longest wavelength
("red"): Equation (2.13):

® jproos (6ill

Mﬂ)-(sin (Bobj 1) - sin ("ref 1>> TR
‘Ri 1

Ay

h = |Rout D
red redHORIZ ™~ eyel
Rout o qHORIZ ' D eyel

D + Rout
._“eyel 1greenVERT
N plur = D "€0s8 <Oout 1>' <h red t I blue)
eyel

The perceived blur angle, ®,

v is simply the angle subtended by the blur height

from the pupil:

© _ h blur _ cos <90ut 1) ' <h red + h blue>
tion (2.14):  Ceve T B
Equa O (2 14) D eyel + Rout 1greenVERT D eyel
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2.3 Approximation to the final blur equation

and that
this central wavelength's playout distance is the average playout distance, a reasonable

Assuming a uniform spectral bandwidth about central wavelength ngmn,

approximation of the above equations follows, with Rieg = Routl _,op-and R, =

Routl,, .oriz+ Equation (2.15):

hiedt Dplue =
(0] ijrcos <9i111>
2Rilly

2
Deyer™ <R blue * Rred) + 2R red'Rplue P eyel

2 .
R red'Rblue + Deyel’ <Rred +Rppye + D eyel)

{ﬂ.(sm(eobj) — sin(6ref)) +
2:a1

T 2 2
@ jjcos <elll 1) . Deye1 " 2Rgreen + 2R green ‘Deyel
Rill; | g

= %-(sin(eobj) — sin(@ref)) +
1

(2-R

2
green T Deyel’ green + D eyc1>

@ jjreos <9illl> . R oreen’Deyel
Rill;

= ﬁ;&-(sin( Oobj) — sin(Bref) ) +
1

] Rgreen + Deyel
Resuming our extended subscripts, we have the blur length, Equation (2.16):

D eye1 + ROUt joreenVERT

h blur —

D eye1 +RoUt joreenHORIZ

® ;jrcos <0illl> ”

Rout 1 greenHORIZ €08 (E)out 1) [% <sin <eobj 1> — sin <6ref 1)) + Rill,

Above, it was mentioned that there is a nonlinear effect in perceived blur for small
viewer distances. In this approximated form of the blur equation, it may now be seen that
this nonlinearity is controlled by astigmatic aberration, reflected in the vertical and
horizontal focus distances of the first factor.

2.4 Benton’s color blur equation derivation

In order to compare these equations with Benton's, I will follow his derivations,
without making on-axis object and image assumptions. The following derivations
assume that, for a given spectral bandwidth, the cone of light dispersed from a single
point on the hologam, position(1) (Figure 2.4 below), subtends the same solid angle as
the cone of light composed of wavelengths dispersed from different points of the
hologram and entering the pupil (Figure 2.1).
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white light illumination

order m = +1 (virtual image)

=

--—--

order m = -1 (real image)

Figure 2.4: Dispersion for the cases of m = +1 or m = -1 order image points combined in
one diagram. (The hologram would in reality have to be rotated 180° about the normal to the page
to see the opposite order.)

Benton's color blur derivation:

Ao

Equation (2.17): sin <Gout ) = m—=-(sin(Bobj) — sin(Oref)) + sin(Bill)
Ay

- . d . _ d oy
Equation (2.18): £ sin(@out) :=cos(Bout)-|——Bout = m—"-(sin(@obj) — sin(Href))

. AL ~+(sin(Bout) — sin(6ill))
Equation (2.19): Adout o1op = 2

A 2green"cOS (Bout)
Equation (2.20): h Bentoncolorblur -~ Rout greenVERTAe out color
AL »-(sin(Bout) — sin(6ill))
= Rout
greenVERT N 2green ©0 (Bout)
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2.5 Benton’s achromatic angle derivation

Before we follow with Benton's source-size blur derivation, and his resulting blur
equation, we will include Benton's derivation of the "achromatic angle," as this will play
an important role in our discussions of Chapter 6 ("Wave-front shapes and compact
displays"). This angle is the space along which image points reconstructed in different
wavelengths will focus.

white light illumination

777777 7 A

order m = +1 (virtual image) achromatic
angle
B
e
—— ® - KK >

————-——

order m = -1 (real image)

Figure 2.5: The achromatic angle for the cases of m = +1 or m = -1 order image points
combined in one diagram. (The hologram would in reality have to be rotated 180°
about the normal to the page to see the opposite order.)

The angle, 0, is given by Equation (2.21):

_ Rout-A8 out
ARout

tan ol

Rout is the vertical focus of the central wavelength, ABout is the angular spread of
the output wavelengths from above, and ARout is the difference in focus lengths for the
two extreme wavelengths.
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ARout may be found by taking the derivative of the vertical focus equation:

(cos (eobj ))2 ) <cos (eref>>2

Equation (2.22):
9—( ! ) = ! 2' d——(Rout) = m 1 2. :
[ 2 VN2
2 cos (fout cos (0ill
g—(Rout)=7m~ Rout . < ( )) _ < ( >> }
dhy A 5:(cos (Bout) )2 L Rout Rill
AL 2-Rout2

Equation (2.23): ARout= -m

' <COS (90ut > >2 _ (cos(ill) )2}
Rout Rill

A 2-(cos(90ut))2

Rout-

A 5-cos(Bout )

. (sin(Bout ) - sin (‘W)]

Equation (2.24): tano =

AL 2-Rout2 ' (cos <eout >>2 - (cos (6ill) )2

Rout Rill

-m

A 5 (cos (Bout))”

The final form of Benton’s achromatic angle can be expressed as

sin(Qout ) — sin(6ill)

. . tana =
Equation (2.25): Rout (cos( 6ill))?

cos(fout) —
cos <90ut ) Rill

Or, for paraxial object and output angles,
Equation (2.26): tarn = sin@ill)

Hy
45°
L —S3 360
%%\ a=35
§Q
~ \Rld
/k Green
//// Blue
—_
=7
g

Figure 2.6: Wavelength-dependent focusing power of a
hologram, and the achromatic angle (Saxby 1992)
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2.6 Benton’s source-size blur equation derivation

Benton’s derivation of source-size blur:

d— 1 = 1 . d Rout VERT
. T e green
2
deill} Rout greenVERT Rout greenVERT deill
= ——1——-{d—.—(cos(9ill))2}
Rilt(cos (Bout))* L d8ill
Rout T2
Equation (2.27):  ARout yyee vERT —gre—enVE—R;-sin(Z 6il)-AQill
Rill(cos(Bout))

Benton also considers this change in the vertical focus to be negligible.
(Please refer to the proof in A2.2). Therefore:

4 sin(Bout) =cos(Bout) S gout = I sin(aill) = cos (il
deill doill deill
Equation (2.28):  afout . . = _cos(Bil) o
cos (fout )

h Bentonsourcesizeblur = ROUt greenVERT AB OVt gource

_ Rout cos(8il) P il
Equation (2.29): greenVERT _ " (Bout) Rill

As the primary assumption made in these trigonometric derivations is that all of
the angles comprising the exposure and reconstruction geometry are all coplanar, there
was no horizontal component to the color blur. There is a non-negligible source width
effect, however, that is simply the same as the effect of the height without the vertical
slant angle factor:
2 i

Equation (2.30): W Bentonsourcesizeblur ~ ROUL greenVERT Rill
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2.7 Benton’s final blur equation

In the author's derivations, the source size was explicitly incorporated in the
reformulation of color blur, as it determined the two new distances from position (1), h_,

and h,,_, that would contribute the extreme wavelengths of a given spectral band to the

perceived blur angle. From the Chapter 1’s final discussion, there is a perceived blur
factor (= 0.8165) that would be applied to the final blur equation to give a perceived blur
size of an image.

In Benton's final equation, on the other hand, the color blur and source-size
components are considered independent, and are therefore treated as two different
distributions. Assuming that these distributions do not deviate significantly from
Gaussian distributions, the convolution of one by the other results in a Gaussian
distribution as well. The sum of the two distributions' variances therefore equals the
variance of the convolved distribution, and likewise, the sum of the square of the two blur
terms closely approximates the square of the final blur term:

2 2 2
Equation (2.31): 0 Bentonblur = 0 Bentoncolorblur + 8 Bentonsourcesizeblur

2
AN -(sin(Bout ) — sin(6ill)) a1\ 2
. . 1 2 . @ill
Equation (2.32): 92Bent0nblur _ ; . " + (Cos(elll)-ﬁ)
cos (Bout ) 2green i
The perceived blur angle is therefore:
Equation (2'33) O)eye, Bentonblur =
. . . 2
Rout greenVERT 1 Al o-(sin(Bout) — sin(6il)) . (cos (sl El_l) 2
D eye + ROUL greenVERT cos (Bout) A 2green Rill

white light illumination

order m = +1 (virtual image)
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Figure 2.7: The perceived blur angle according to Benton (1994)

60 Chapter 2: Trigonometric derivation of a single-plane blur equation



2.8 Summary and comparison of the blur equations
To summarize, the final angular blur equations are as follows (angles are in

radians). To obtain the height of the blurred image point, simply multiply the angle by
the output distance (RoutGvert).

The unapproximated form of the author's equation, from Equations (2.13) and (2.14):

® B blur __ cos(8out)- <h red + 0 blue)
eye - -
D eye + Rout greenyERT Deve » where h g +hpye =
A - A ® .jrcos | 6ill
2red ~ ** 2green (sin(Bobj)  sin(8ref)) + ilf ( 1>
A 2Rill
Rout ‘D oa’
redHORIZ ™ eye
Rout (4HORIZT D eye
A - A ® :yrcos (6ill
2blue 7 2green | in(gobj)  sin(Bref)) + — 1/ i)
A 2-Rill
+ 1 1
Rout e HORIZ P eye R D
OUt bjyeHORIZ P eye

An approximation of the author's equation, after some cosmetic steps to

better compare it with Benton's equation, takes the following form (Equation (2.16)). For
perceived, as opposed to absolute blur extent, the author’s equations would be multiplied
by Chapter 1’s blur factor of 0.8165:

AL 2(81]1( eout) — sin( 9111) ) dill
-cos (Bout )-.8165 + cos (0ill)-——
A2green Rill

Rout oreenHORIZ

meye =

Deye + Rout greenHORIZ

Benton's equation differs slightly, Equation (2.33):

(’)Bentoneye

D eye Rout greenVERT €05 ( Bout) Rill

o Rout greenVERT 1 AA, 2( sin ( 90ut) — Sin( elll) ) 2 [0} ill 2
+ | cos (Bill)——
A 2green

If we discount the different methods that Benton and the author choose to
combine the effects of color blur and source-size blur (convolution versus filtering), there
is still one subtle difference between the two, dependent on astigmatism.
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2.9 Blur measurements using a spectrophotometer

To experimentally compare the blur height with calculations using the author’s
and Benton’s equations, a grating was exposed to an on-axis object source (Robj = 125
mm) and a reference source at 225° (Rref = 1200 mm) with a Krypton-ion laser (647 nm).
It was then illuminated with an imperfect phase-conjugate white-light source at 45° at a
distance of 600 mm. The author then took three types of blur measurements:

e Measurement 1: A measurement of the distance along the achromatic angle between
the vertical focus points at two spectral lines, that of a Helium-Neon laser (632.8 nm)
and a Gre-Ne laser (543.1 nm);

e Measurement 2: An interpolated distance along the achromatic angle corresponding
to the above bandwidth from the broadband data of Appendix 1 (Figure 2.8), and

e Measurement 3: A similar setup as that of Appendix 1, with the spectrophotometer
rotating 300 mm in front of the 591.1 nm focus!5, and the exposed fiber tip on the
axis of rotation (Figure 2.9). This final setup was an attempt to mimic the field of
view through the pupil.

Measurement 1
For all of the measurements, an opaque mask with a vertical aperture was affixed
to the grating so that astigmatism would not confound the data. A diffuser was placed at

the illumination distance of 600 mm. The resulting distance was measured to be 32 mm.

Measurement 2

white light
source

illumination = 600mm, 225 degrees
( reference source = 1200mm, 45 degrees)

Oriel spectrophotometer,
with its exposed fiber translated
along the blurred image points

grating
output focus(m = -1) = -159mm, 0 degrees
(object source distance = 125mm, 180 degrees)

Figure 2.8 (from Appendix 1)

15 The grating played out at 591.1 nm, 159mm along the normal to the hologram.
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When illuminated with a white-light source (with and without a diffuser at the
focused source distance), the resulting spectrally dispersed image points were indeed
found to lie on the calculated achromatic angle, 31°. An Oriel spectrophotometer was
mounted on a translator such that its exposed fiber end would ride along this angle of
vertically focused spectral points, oriented orthogonal to the hologram surface.
Interpolated from Table Al.1 of Appendix 1, the 543.1 to 632.8 distance was found to be
30.5 mm.

Measurement 3

Figure 2.9: Measurement 3 setup

As the spectrophotometer fiber tip was rotated to couple light of different
wavelengths, protractor readings were taken at the wavelength intervals of Table Al.1.
These readings could not be made with the same degree of precision as were those taken
with the translating stage of the previous run. The interpolated distance was found to be
27.4 mm!6. The corresponding calculations are included in Table 2.1:

Measurement 1 32 mm

Measurement 2 30.5 mm

Measurement 3 27.4 mm (Oriel = 300 mm; See footnote)
The author’s equation 27.2 mm (Deye = 300 mm)

Benton’s blur equation 17.5 mm

Table 2.1: Blur length data for the vertical focus of 543.1 and 632.8 nm wavelengths in the geometry
described in the text

Although the author’s equation gives a blur length very close to the measured
quantities, we must realize that this value is a function of the distance of the pupil to the

16 In a private communication with Professor Fantone, the author was informed that the intensity profile of
an optical fiber is angle- and wavelength-dependent. For the limited range of acceptance angles here, this
should not pose a significant problem.
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hologram, unlike in Benton’s equation. If the pupil is situated at one of the dispersed
foci, the blur height is infinitely large. For all practical distances greater than the
nearpoint of the human eye, 250 mm!7, however, this value levels off.

The results of the author’s derivations have been used in Matlab!8 programs to
compare their output with that of the corresponding equations derived by Benton, given
input data representing different exposure and reconstruction scenarios. A list of the
equations used for these calculations have been converted from Matlab to the TK Solver+
program!® of Appendix 3. For ordinary scenarios close to perfect reconstruction (where
the illumination geometry equals exposure geometry) or perfect phase-conjugation and no
shrinkage, the author’s blur equation outputs data almost identical to Benton’s blur
equation. However, as the geometry/illumination source changes significantly, the two
equations give different answers. Although the above grating shrank and was illuminated
with different wavelengths, it was exposed and illuminated with the most common
geometry (on-axis image and 45° illumination). Still, the results are different in the
different blur calculations. It is hoped that further measurements may be taken with
different gratings and geometries to probe the degree of deviation between the two
formulas.

The author’s blur equation matched spectrophotometer measurements taken in the
above experiments closely enough that it seems to characterize the physical nature of blur
rather well. The perceived blur factor of Chapter 1 would then be included to estimate
the perceived extent of the blur.

Now that we have characterized and quantified the extent of perceived blur,
it is time for us to review the different techniques that have been implemented to
compensate for this blur. The subject of the next chapter is to introduce the concept of
dispersion compensation and to recount a brief history of the application of dispersion
compensation to display holograms.

17 The nearpoint is the closest an object can approach one’s pupil and still be in focus. This distance
increases with age, and is about 250 mm for normal individuals in their early 20’s.

18 Matlab®, The Math Works, Inc., Natick, MA

19 Universal Technical Systems, Inc., Rockford, IL;
Universal Technical Software (UK) Ltd., Witham, Essex
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Chapter 3
Introduction to dispersion compensation
and a brief review of its application to holographic displays

3.1 The first dispersion-compensation displays:
single view angle transmission hologram / grating

The theoretical notion of applying dispersion-compensation methods in
holography is almost as old as holography itself20 (Leith 1956). In 1966, however, three
researchers, Paques, Burckhardt (Burckhardt 1966), and DeBitetto (DeBitetto 1966)
independently published papers outlining an approach in which a post-compensating
grating is placed after a transmission hologram to minimize color blur of the holographic
image.

HOLOGRAM

~| REAL,DISPERSED

0-ORDER

/ PRIMARY
+1 +1,-1  (VIEW)
WHITE LIGHT VIRTUAL VIRTUAL,
SOURCE DISPERSE UNDISPERSED

D
PLANE TRANSMISSION }j
DIFFRACTION GRATING

+1,0
+14| DISPERSED
DOUBLY DISPERSED
Figure 3.1: DeBitetto’s original diagram discriminating
the effects of diffraction orders on relative dispersion

Although all three of these displays feature a broadband transmission hologram
illuminating a plane-wave grating, the following discussion applies to the case of
reflection holograms as well. In fact, DeBitetto also used a blazed reflective grating in
essentially the same setup. The angles for an “equivalent™! reflection hologram are also
the same (Appendix 1).

In the above diagrams, the hologram illuminating the grating disperses the light
from an illumination source, producing a color-blurred image off axis. Longer (“red”)
component wavelengths are diffracted at more oblique angles than the shorter (“blue™)
wavelengths, so for a hologram with a wide spectral band, blurred virtual image points
appear behind the hologram (order m = +1), with a red edge lying toward the illumination
source and a blue edge lying at the farther periphery (See Figure 2.5). For the case when
the hologram is illuminated from the opposite side as the reference source (order m = -1),

20 In a memorandum written by Leith in 1956 while at Willow Run Laboratories, he describes a theoretical
basis for dispersion compensation of a point imaged through a lens on and off axis.

21 An equivalent reflection hologram is exposed with its reference source on the opposite side of, and
symmetric about, the recording material.
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real image points are focused in front of the hologram, so the colors are reversed with
respect to the viewer.

If we reverse raytrace the red and blue light from the dispersed image to the
hologram, these rays impinge on a point of the hologram and leave the grating
superimposed, as undispersed light.

white light illumination
oW

Figure 3.2: Forward and reverse raytracing the spectral components through a transmission hologram

The grating of the above scenario post-compensates for dispersion by performing
effectively this reverse raytrace. If we forward raytrace the dispersed light from the
hologram through the grating, the grating deflects light in the opposite direction as the
hologram. That is, red light diffracted from the normal to the hologram at an oblique
angle is taken in by the grating at an oblique angle. The grating structure then diffracts the
red toward its normal. Blue is diffracted less by both diffractive structures, so the spectral
components all play out superimposed, in a single direction.

undispersed image

Figure 3.3: Raytracing the dispersed rays from the hologram through a transmission grating

At least this is superposition is the ideal case where the image wave front from the
hologram corresponds to the reference wave front that exposed the grating. In reality,
each object point during exposure of the hologram subtends a different angle as any other
(noncollinear) object point to every point on the hologram. Therefore, a representative
object point must be chosen to design the grating so that its compensating power matches
the average dispersing power of the hologram. As focusing or dispersing power in a
diffractive medium is directly proportional to the spatial frequency of its constituent
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diffracting elements (Chapter 1), researchers have universally chosen to match the
average spatial frequencies of the hologram and grating, and usually to simply orient one
parallel to the other. For matched spatial frequencies, the dispersed angles illuminating
the grating are considered the primary concern, not the distances between the focused
image points and the grating. The grating illumination distance is therefore taken to be
infinity, that is, the reference and illumination beams are collimated.22 This universally
accepted approach is suitable for ideal reconstruction?? of both the hologram and grating,
but is inadequate for some compact display geometries to be discussed in Chapter 6.

The grating is made by exposing the recording material to two sources (from the
same laser): the reference and object sources. The reference beam is collimated, and is
set at the angle the grating will be illuminated from, that is, the average playout angle of
the hologram. If the hologram and grating exposure setups are identical for average
source point positions, then both the grating and the hologram have equal average spatial
frequencies. This again means that they both are of equal power and disperse white light
to an equal degree. However, the grating is flipped with respect to the hologram, as in
Figure 3.3, so that it disperses light in the opposite direction as the hologram (so long as
the exposure and reconstruction angles are coplanar). The dispersed beam from the white-
light reconstructed hologram (order m = *1) serves as the grating’s illumination beam (m
=0 order). The grating then reconstructs the dispersion compensated image in front of
the viewer (Figure 3.1).

22 A collimated wave front is a planar wavefront, usually created by a collimating lens placed its focal
distance from a beam expander in an optical setup.

23 perfect reconstruction is the case such that the fringe spacing is the same when illuminated as when
recorded, and the central wavelength and position of the illumination source/focus is equal to that of the
reference source when recorded.
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Alternatively, the hologram and grating positions may be switched, and a
predispersing grating may compensate for a hologram that receives its m = +1 order beam
for a geometry analogous to the one above:

Figure 3.4: A schematic representing the original

geometry of the three researchers in reverse (Latta 1972)

(1) is an off-axis plane-wave grating, and

(2) is a hologram to be illuminated at the output angle of (1).

For the present discussion, we will refer to the hologram and grating as
“diffracting structures,” and will be more specific when referring to a particular geometry.
We will find below that all subsequent work has the grating as the first diffracting
structure and the hologram as the second diffracting structure. Consequently, all further
discussions will assume this arrangement, unless specific reference is made to the three
researchers’ work.

The diffracting structures are set at some distance from one another so that the
illumination beam for the first does not also strike the second. As stated above, the
second diffracting structure’s reference source is at the same angle but not necessarily at
the same distance it is to be illuminated from (the average focus of the first diffracting
structure’s image), so the resulting image is not dispersion-compensated for that
particular point, but instead for a point at infinity, that is, for the viewing angle matching
the average exposure angle (See Figures 3.5, 3.12, and 3.15 in particular).
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For example, if a hologram’s average object point lay on the normal, then the
corresponding grating will match that exposure geometry so that it compensates for
dispersion along the normal. A viewer looking along the normal to the hologram will see
no color blur for all the image points exposed along that axis, but will see color blur
exhibited to an increasing degree for image points farther off of the viewing axis and
toward the periphery of the field of view. Image points on the axis will also appear
blurred when the viewer moves off axis.

If the reference and illumination beams of the second diffractive structure are
collimated, then this compensation holds for all local normals. We will refer to this
technique as “single view angle dispersion compensation.” As it is usually preferable
to allow a reasonable field of view of sharp image points in depth as opposed to
dispersion-compensating for one image points position, almost all of the literature cited
and research work done use the single view angle dispersion-compensation method.

illumination
source

N

7% % &

Y

Figure 3.5: Single view angle dispersion compensation
This schematic represents the blurring of red (R) and blue (B) image points off
of the local normal for a collimated reference /collimated illumination geometry.

Burckhardt also includes a diagram (Figure 3.6) picturing the grating and the
transmission hologram sandwiched together, again with the transmission hologram
illuminating the transmission grating. It is possible to make such a compact display and
avoid having to look into the zero order illumination beam of the hologram if a venetian
blind type structure (louver film)24 is placed between the hologram and grating.

24 “Light control film” is produced by 3M.
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Figure 3.6: Burckhardt’s (1966) use of a louver
film to block the zero order of the hologram in a
single view angle dispersion-compensation display

3.2 Single viewpoint dispersion compensation: Burckhardt

In one special variant of Burckhardt’s approach, the hologram’s illumination
beam blocked by the louver film would otherwise converge behind the viewer’s eye, to
where the original reference source lay (Figure 3.7). Because the convergence of the
illumination source corresponds to the divergence of the original reference source, the
viewer near that focus is in effect looking through the centers of “in-line” zone plates
toward the illumination source, thus eliminating color blur of all image points, as in the
case of the Gabor in-line hologram (Chapter 1). Burckhardt refers to this point as the
“quasi-achromatic” (QA) point. Assuming complete zero order absorption, and no
diffraction by the louver film, all of the image points should appear perfectly sharp to the
viewer near the QA point, and blur as the viewer deviates from this position. We will
refer to this technique as “single viewpoint dispersion compensation”.

white light
illumination  Hologram Grating
\1 ‘/

—\ /'
Image /7~ A viewer
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original
subject

Figure 3.7: Burckhardt’s single viewpoint dispersion
compensation technique (Collier, Burckhardt, and Lin 1971)
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3.3 Diffractive and refractive media

In his paper, DeBitetto also describes the use of prisms for dispersion
compensation, opening up from the outset the possibility of combining diffractive and
refractive media to produce the complementary effects. Three years later, Katyl (1972)
outlined three dispersion-compensation geometries (two in-line, and one slightly off-axis)
that involve multiple refractive and/or diffractive lenses, one of the components of which
is placed at the QA point in Burckhardt’s geometry. An appropriately dispersing element
placed at the QA point can compensate for longitudinal dispersion and magnification
variation. In the same year, the problem of longitudinal dispersion compensation for in-
line geometries was also addressed by Latta (1972). In this paper, Latta simultaneously
evaluates lateral and longitudinal dispersion in addition to aberrations for in-line and off-
axis holograms, and is only able to compensate for longitudinal dispersion in off-axis
holograms by placing them in in-line reconstruction geometries. The topic of achromatic
imaging in broad band light is later addressed by Faklis and Morris (1988) and is the
subject of many patents, particularly for head-up displays.

Figure 3.8: Example of the complexity of
modern head-up displays incorporating dispersion
compensation gratings (Roberts, et al. 1995)

3.4 Compact single view angle displays: Burckhardt

In 1985, Bazargan (1986) described how there is greater color smearing of a
holographic image that is in turn imaged through a post-compensating grating than there
would be if the hologram were illuminated by a predispersing, precompensating grating
(See Figures 3.4 and 3.5 above). However, his analysis is based on the on-axis
illumination of the grating by a dispersed holographic image, and he compares this with
the off-axis illumination of a hologram. For thin diffractive elements, the difference
between the two off-axis arrangements (grating, then a hologram, and vice versa) is
simply the effect of Bragg selectivity on the achromaticity of the resulting image. For
instance, in Burckhardt’s geometry, the grating is illuminated by all of the image points
from the hologram at many different angles, most of which are off of the Bragg angle.
These off-Bragg angles are diffracted with less intensity. Bazargan’s grating, on the other
hand, introduces a single illumination angle to the hologram. Otherwise, the order of the
two diffractive structures should not have a significant effect on image quality.

Bazargan chose in the early 1980’s to switch the position of the two diffracting
structures in Burckhardt’s single viewpoint dispersion-compensation display, and to have
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the grating illuminate the hologram with a predispersed, collimated beam through louver
film (See Figure 3.9). This approach suggested by Bazargan allows for an even more
compact display than Burckhardt’s single viewpoint dispersion compensation, as the
illumination geometry of the grating is quite flexible compared with the strictly
converging illumination of the Burckhardt hologram. However, Bazargan’s single view
angle dispersion-compensation display does not take advantage of Burckhardt’s “in-line”
viewing. Bazargan showed a prototype display at the SPIE Conference in Geneva in
1983, and the display has been manufactured by Icon Holographics, Ltd., England.

Figure 3.9: Bazargan’s display (Syms 1990, fig. 10.5-2)
3.5 Other transmission displays: Boj, et al., and Benton

Boj, Pardo, and Quintana (1986) were able to achieve a 30 cm image depth for a
dispersion compensated transmission hologram in 1986, limited primarily by the size of
their illumination source. Their grating is a cylindrical holographic optical element
(HOE) that disperses in only one direction. By changing the illumination distance to the
grating, they show that it is possible to alter its precompensating ability to suit holograms
of different average spatial frequencies and orientations.

Benton (1985) furthered attempts to produce an achromatic white-light
transmission hologram not through dispersion compensation in its illumination, but by
exposing the transfer hologram (Chapter 4) with a special grating exposed to multiple
reference sources set along a calculated achromatic angle (Chapter 2). The resulting
effect simulates the effect of illuminating the transfer hologram with a linear white light
source oriented along the same angle: a superposition of the spectral components of the
source in the center of the viewing zone.
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Figure 3.10: Benton’s patent drawing of the
white-light transmission hologram transfer step (1972)

Figure 3.11: Benton’s patent drawing of the special
achromatizing grating used in an exposure step (1985)

3.6 Reflection displays: Bazargan, Kubota

For the remaining portion of our brief history, we will review work that has been
done to dispersion compensate reflection holograms. Bazargan was the first person (as
far as the author is aware) to publish anything regarding the theoretical use of a
predispersing reflection grating for the dispersion compensation of a reflection hologram
(Bazargan 1986). Bazargan used a vector approach with Ewald sphere diagrams? to
ascertain the viability of generalized setup geometries, and suggested dispersion
compensation as a means of reducing residual chromatic blurring in reflection holograms.

25 For a clear introduction to Ewald sphere diagrams representing reflection hologram reconstruction, see
Benton (1988)
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Figure 3.12: (a) Distortions of a square image across the visible spectrum (400-700 nm)
(b) Single view angle dispersion compensation for reducing lateral chromatic aberration
(Bazargan 1986, fig. 7.20)

(b)

Bazargan also suggested the use of dispersion compensation in multicolor
reflection holograms by superimposing several monochromatic holograms (Figure 3.13).

multicolour image G Hg Hg Hg

Figure 3.13: Bazargan’s suggested approach for making a full-color,
dispersion-compensated display

At this time, Ward, et al. (1985, 1986) published two rather comprehensive
articles on the subject of image blurring in display holograms. It is Ward’s diagram
portraying the focus of multiple wavelengths from a small area of hologram to a viewer’s
eye that is the basis for the derivations in the previous chapter. However, his equations
ignore the effect of astigmatism that plays a vital role in the author’s blur equation
derivations.

In 1989, Kubota published a paper on an experimental reflection grating/reflection
hologram display, the first actual construction of such a display known to the author. In
the tradition of the work of his predecessors, Kubota uses a plane-wave grating, and does
not consider the effect of astigmatic aberration in his analysis. However, Kubota uses
Ward’s approach for portraying the manner in which we see color blur (Ward, Newell,
and Solymar 1985). We will describe in detail the building of a similar
reflection/reflection plane-wave grating display when we outline the design
considerations of Chapter 5’s viewstation.
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Figure 3.14: Kubota’s reflection /reflection dispersion-
compensated display

Figure 3.15: Intensity profile of the reconstructed image points
in Kubota’s single view angle dispersion-compensation display

Birner’s (1989) dispersion-compensation steep angle display is effectively the
equivalent of Kubota’s, except that the reflection grating and hologram facing each other
are sandwiched about an optical light guide for a much more compact display. Upatnieks
uses basically the same approach, but also includes folding geometries with optics such as
a reflective collimator. Upatnieks’ and Birner’s displays will be described in the final
chapter: “Compact dispersion-compensation displays.”

It is in this historical context that we are able to better understand where
dispersion compensated displays are headed, and what improvements need to be made.
Many of the references made in the latter half of this section include a mention of the
prospect of having full-color, dispersion compensated displays. What seems to have been
left unmentioned is the adverse effect of dispersion on vertical parallax, a potential barrier
to using this technique for very deep, full-parallax displays. Also not dealt with explicitly
is the effect of exposure and illumination wave-front curvatures on dispersion
compensation. The viewstation of Chapter 5 addresses the former concern, and the
compact displays described in Chapter 6 address the latter.
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Chapter 4
Full-parallax
reflection holographic stereograms

So that we may appreciate the benefits of the application of dispersion
compensation in displays such as the full-parallax viewstation of the next chapter, we will
first describe the procedure for making a horizontal-parallax-only holographic
stereogram (HPO HS). The case of the full-parallax holographic stereogram will
arise naturally from our description. Then we will consider the particular merits of
predispersed illumination for this type of stereogram.

4.1 Making horizontal-parallax-only holographic stereograms

An HPO HS is a hologram composed of multiple images of a scene taken from
different angles. The images can be captured by a regular camera translated in front of
the scene, or by the equivalent in computer graphics: a “synthetic camera.” Each image
represents a different perspective view of the same scene. There are various ways we can
record multiple images in a hologram. We can record the images at different
wavelengths, different angles, or in different positions on the recording material. Figure
4.1 has two of Redman’s original drawings introducing an angular multiplexing
technique:

Figure 4.1: Sequential images are taken, and later projected to expose
a hologram with an appropriately scaled geometry (Redman 1968).

The method for storing images of highest diffraction efficiency is to spatially
multiplex them, that is, to record them in adjacent regions. Each region then acts as a
window through which we can view one of the images. This method was introduced by
McCrickerd and George in 1968 and took the form still commonly used today in
DeBitetto’s process (DeBitetto 1968).

In the actual recording setup of a DeBitetto HPO HS, a mask with a vertical slit
the width of a pupil is translated across a master hologram (H1)(Figures 4.2, 4.4).
Successive adjacent vertical strips of the H1 are exposed to different horizontal
perspective views of the image projected in front of the hologram. As these are usually
exposed with the holographic recording film held flat, a “toe-in” geometry like that
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pictured above in Figure 4.1 results in distortion of the image (Ferwerda 1982).
Therefore, the capture geometry must be one of strictly orthogonal orientation with
respect to a straight translation of the camera.

STATIONARY
PHOTOGRAFHIC
PLATE
FILM OF SERIES OF
20 TRANSPARENCIES

STEPPING

ARRANGEMENT HORIZONTALLY

MOVEABLE
VERTICAL SLIT
Figure 4.2: DeBitetto’s original drawing of the spatial multiplexi-ng technique
most commonly used in display holographic stereograms today (DeBitetto 1968)

H1 + slit aperture diffuser + LCD

N

Figure 4.3: A horizontal-parallax-only holographic stereogram (HPO HS, or H1) is
exposed to sequential perspective views taken from a translating camera and projected in
front the H1. Here, the slit is translated in front of a stationary H1.

image point:
last position on the diffuser screen;
last exposure f

square aperture

1 LCD display with last of the
apparent a diffuser screen perspective images
: (composite) displayed
3 image H1
Hl position
B
Ist of the
perspective images
image point: i displayed
Ist position on the diffuser screen;
1st exposure
(a) (b)

Figure 4.4: The first (a) and last (b) vertical strip exposures of a holographic
stereogram (top view)
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If we were to look through this illuminated H1, we would see an image of each of
the projected views through different exposed strips. If the exposure geometry is scaled
appropriately from the camera capture geometry, then with both of our eyes looking
through the H1, each eye through a different strip, we should see a stereoscopic pair of
images, giving us the illusion of perceiving the static scene in three dimensions. As we
move in front of the H1, we should then see different stereoscopic pairs of images, as if
we were moving in front of the original scene.

4.2 The transfer hologram

However, we do not want to have to place our face against the H1 in order to look
through the vertical strips, so a second hologram, the transfer hologram (H2), is placed in
the position where the original images were projected, and the H1 is illuminated in a
phase-conjugate fashion (King, Noll, Berry 1970). As described in Chapter 1, phase-
conjugate illumination is essentially a reversal of the directions of the rays that exposed
the hologram. This “time-reversed” illumination results in a real image projected where
the original object was. The H2, if placed in this position, is exposed to all of the H1’s
images simultaneously from their respective strip exposures. The images are therefore
vertically focused on the H2 plane, as is the case with the white light transmission, or
“rainbow” hologram.

H2 object wavefront =
H1 image wavefront

collimated
reference
beam

Figure 4.5: Transfer setup: The H1 is illuminated with a phase-
conjugate beam, reconstructing a pseudoscopic image (inverted depth),
whose wave front exposes the H2.

When the H2 is now illuminated in a phase-conjugate manner, the image of the
H1 is projected to its original position with respect to the H2. When we approach the
final H2 to view the image that usually straddles the plane, we are actually looking
through the real images of the H1’s vertical windows. The size of the projected H1 image
is therefore the viewzone at the front of the viewing frustum.

Chapter 4: Full-parallax reflection holographic stereograms 79



illumination
beam

H1 image
(viewzone)

2727222

22222,

viewer’s eye

Figure 4.6: Phase-conjugate illumination of the HPO HS H2, and
reconstruction of an orthoscopic, real image

As holograms are usually illuminated by a vertically displaced light source,
dispersion will fan out red, green, and blue components vertically. The image of the H1
is then spectrally spread just as the image points are. Anticipating this dispersion, if we
tip the H1 at the achromatic angle (Chapter 2) during exposure and transfer stages, then
we may be able to reduce color blurring on playback. This technique can be used to
produce less saturated, nearly achromatic images (Benton 1983, 1985, 1988). Or, if three
strip holograms are made of three sets of perspective views, each set constituting one
color separation, then a full-color image may be realized, in transmission or reflection
format.
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Figure 4.7: Benton’s pseudocolor technique for producing achromatic or full-color images (1983,
1988) Three successive exposures are made at the same wavelength at different positions, so that
they will all play out superimposed.
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When we view the H2 from some distance not equal to the H1 image distance,
however, the lines of sight from our eyes are no longer directed through the vertical view
windows they were intended to look through. Instead, we see perspective views that are
taken from lateral displacements that do not properly scale with the viewing geometry, so
the image may have reduced depth (hypostereoscopic case) or exaggerated depth
(hyperstereoscopic case). As there is perspective sampling information only in the
horizontal direction (the original images were taken with a translating camera), the
astigmatism we see manifests itself in an apparent vertical lengthening of images as we
step backwards from the HPO HS, and a horizontal expansion of images as we step too
close.

4.3 Full-parallax holographic stereograms

The full-parallax holographic stereogram (Nicholas George and J.T. McCrickerd
1969) is made in precisely the same way as the HPO HS except that, instead of a mask
with a vertical slit translating in front of the H1, there is a small square aperture
translating vertically as well as horizontally. The phase-conjugate illuminated transfer
image projects a grid of real-image square windows, enabling us to see a parallax shift in
the vertical as well as the horizontal direction. Unlike in the above HPO case, where the
vertical focus is restricted to the image plane while the horizontal foci extend off the
plane, in a full-parallax system, the vertical and horizontal foci may both lie off the plane.
Therefore, the astigmatism inherent in the HPO case may be reduced or eliminated in the
full-parallax case. What this means is that the hologram is viewer distance independent.
The viewer’s pupils do not have to be restricted to movement along the H1 image of
pupil-width windows for undistorted views of the 2-D images, but instead can look
through the square aperture windows from any distance.

Figure 4.8: An example of different perspective views
of a full-parallax hologram (image care of Michael Klug)

26 For an excellent description of astigmatism in HPO HS’s, please refer to Halle (1991).
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The difficulty that then arises in the construction of such an HS is the number of
exposures necessary to provide an acceptable level of resolution of image points at a
range of distances about the H2 plane (Halle 1991). In addition, the number of
perspective views increases to an almost unwieldy level as the H1 size (and the viewzone
size) increases, although deviance from the phase-conjugate illumination geometry can
magnify this viewzone and reduce the number of necessary exposures (Chapter 6).

A couple of examples?’ should help us better understand what kind of (non-
resolution) sampling issues arise when making a full-parallax HS. One of the full-
parallax H2’s used in Chapter 5’s viewstation projects an image of its H1 consisting of
about 6,600 3 mm by 8 mm exposures arranged in 133 columns by 50 rows. Because the
viewzone is discretized differently in the horizontal and vertical directions, and is more
coarsely sampled in the latter, the resulting laser-illuminated image exhibits relatively
smooth motion parallax for a viewer moving to the side, but less continuous motion
parallax when the viewer’s head bobs up and down, like looking at a jerky animation.

This H2 was soon replaced with one exposed to an H1 composed of 3 mm’
apertures. The result is significantly improved over that of the previous rectangular
aperture trial. As another experiment, the H1 was exposed through square apertures in its
central region, and with vertical strip apertures in the regions above and below. The
resulting H2 exhibits a full-parallax image in the central portion of the viewzone, and the
same image with only horizontal parallax when the viewer looks through the upper or
lower portions of the viewzone. When the viewer moves vertically across the viewzone,
the transition from HPO to full-parallax is quite interesting: the image suddenly appears
to move as one would expect, and it becomes noticeably brighter, as the light is focused
through the pupil-sized apertures in the vertical as well as horizontal directions.

Although the first chapter was dedicated to issues of characterizing and measuring
the extent of color blur in terms of resolution, our aim in using dispersion compensation
is not merely to sharpen image points for increased resolution at greater depths. If this
were the case, we might just as well have turned to the white light transmission format
(Benton 1977) that sacrifices vertical parallax and consequently does not suffer
significantly from color blur. The primary reason why we are applying dispersion
compensation to holographic stereograms is to improve the quality of full-parallax
images. The need for color correction for full-parallax images may be more easily
understood if we contrast the effect of dispersion in a full-parallax HS with an HPO HS.

We noted earlier that for the HPO HS case, the vertical focus is in the plane of the
H2. Therefore, any dispersion in the vertical direction will merely result in a color
change of the focused images as the viewer height changes. Even in the case of a full-
color HPO HS above, dispersion in the vertical direction merely displaces the images of
the H1 color separations. A full-color (or achromatic) image is still visible over some
range of viewer heights.

27 The full-parallax stereograms were all shot by Research Specialist Michael Klug.
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With a full-parallax display, on the other hand, dispersion in the vertical direction
will blur the vertically-sampled perspective views, just as it would for a full-aperture
hologram of a real object. Each illuminating wavelength will reconstruct a different
vertical perspective of the image, and together, the band of wavelengths will reconstruct
many staggered images that we perceive as a blurry image. The author’s work is aimed at
reducing this blurring of vertical perspectives.

Another focus of this thesis is the application of dispersion compensation to
reflection holograms. Although dispersion compensation has been successfully applied to
transmission type holograms, little work has been done to improve the image quality and
depth of reflection holograms with predispersing gratings. The primary reason why
dispersion compensation has been relegated to one display format and not commonly
extended to the other is one of relative necessity. Transmission holograms transmit
effectively all the component wavelengths of the illumination source, each of which
reconstructs an image displaced from the others along the achromatic angle. The
holographer relies on reflection holograms to act like interference filters, on the other
hand, taking in white light and returning to the viewer a very narrow band of the visible
spectrum, essentially one color that produces a single, sharp image, seemingly obviating
the need for color blur correction.

If reflection holograms were to truly reconstruct with a very narrow spectral band,
the resulting images would be very dim indeed. The spectral band for most materials is
actually rather wide -- about 20 nm for silver halide and photopolymer materials used for
the work described in the following chapters. Such a spectral bandwidth is sufficient to
produce a noticeable discrepancy between the points focused off of the hologram plane by
the short and long wavelengths of that band. As the distance of the image point from the
hologram plane increases, this discrepancy also increases. Therefore, the depth of a white
light illuminated holographic image is severely restricted by a “spreading focus” of points
distant from the hologram.

To demonstrate the distinct advantage of dispersion compensation to aid in the
blur correction of full parallax, reflection holographic stereograms, comparisons will be
made between the resolutions of points at different depths in uncompensated and
compensated displays in the final chapter. In the next chapter, the plane-wave grating
display will be detailed. The final chapter deals in part with different reference and
illumination wave-front shapes and their effects on dispersion.
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Chapter 5
Example design of a full-parallax holographic viewstation

In this chapter, we will take what we have learned from all of the preceding
chapters to design a dispersion-compensated, full-parallax, reflection holographic
viewstation of the single view angle (plane-wave grating) type. We will approach the
design of the grating in this chapter from a practical, laboratory setup and display oriented
perspective.

The chapters have been organized so that we may follow from general discussions
about dispersion in a hologram to its specific exploitation in the displays of the present
and succeeding chapter. In Chapter 4, we outlined how a full-parallax holographic
stereogram is made, and discussed the desirability of dispersion compensation for the
illumination of such a hologram. We contrasted different dispersion-compensation
techniques, such as single view angle and single viewpoint dispersion compensation in
Chapter 3. We derived a blur equation in Chapter 2 so that we can calculate the blur
required of the predispersing grating to precompensate for the calculated blur of the
uncompensated hologram. Finally, we defined resolvability for a blurred holographic
image in Chapter 1, so that we may evaluate the effectiveness of the technique.

The purpose of the viewstation is to present a large (at least 210 mm by 300 mm),
full-parallax reflection holographic stereogram with appreciable image depth and minimal
color blur. The making of the hologram and grating involve a choice of exposure
wavelength, holographic recording material, determination of a suitable exposure and
reconstruction geometry, and appropriate selection of illumination source. We will
address each of these points in the above order through the course of this chapter. One of
our primary concerns is to deliver light of sufficient intensity to the display hologram, so
all of our choices will reflect this concern.

hologram hologram

collimating
mirror -- no
grating

(a) uncompensated (b) compensated

Figure 5.1: Uncompensated and compensated dispersion of a holographic image illuminated with a white
light source. The images produced by three wavelengths are shown. In the uncompensated case (a), these
images would appear as a continuous blur for broadband illumination. In the compensated case (b), these
images are superimposed to form one sharp image.
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5.1 The exposure wavelength

The choice of an exposure wavelength is actually an arbitrary one, so long as it is
a wavelength the recording material (and our eye) is sensitive to, and one that the grating
and hologram can reconstruct with high diffraction efficiency. Our initial experiments
were performed with red, Helium-Neon lasers (632.8 nm) and a red, Krypton ion laser
(647 nm, Coherent Innova 300). Final experiments and display holograms and gratings
were exposed with a blue-green, Argon ion laser (514.5 nm, Coherent Innova 300). We
chose the Argon ion laser because it could deliver sufficient power to relatively
insensitive photopolymer materials and because its wavelength is close to the middle of
the spectral luminous efficiency curve of the human eye (Chapter 1). Our display can be
designed so that, for a single reconstruction geometry, it is suitable for playout at any
visible wavelength. This allows us to overlap red, green, and blue color separations of
the stereogram image for a full-color display.

Coupling of the different wavelengths through layers of recording materials and
substrates of different indices of refraction may prove very difficult when the illumination
angle is very steep (Please see the edgelit section at the beginning of the next chapter),
but in general this should not pose a problem. The effects of scattering and absorption at
the playout wavelength are sufficient to warrant care in choosing the recording material,
however.

5.2 The holographic recording material

The two primary factors that influenced our choice of recording material are its
thickness and diffraction efficiency. The number of fringes that may form through the
volume of a recording material is proportional to the thickness of the recording material.
As a reflection hologram is, in essence, a multitude of overlapping gratings in the form of
interference filters, the thickness determines the degree to which wavelengths will be

filtered, according to Equation (5.1): Ad= % (Leith 1992)28, where N is equal to the

number of fringe planes. A very thick recording material that gives us a very restricted
bandwidth enables the reconstruction of a very deep image, as the maximum acceptable
image depth is dependent on the degree of dispersion, which is in turn dependent on the
bandwidth. A broader bandwidth reflection hologram, on the other hand, offers the
prospect of a brighter image. We have chosen a compromise of a reasonably broad
bandwidth of 20 to 30 nm for the materials in our studies.

For the initial experiments and for the dispersion-compensated edgelit displays of
the next chapter, red-sensitive silver halide emulsions (Agfa-Gevaert 8E75 HD NAH
plates) were used. So that shrinkage of the emulsion would not introduce aberrations in
the reconstruction geometry not in accordance with the viewstation design, the holograms
and gratings were processed with minimum-shrinkage Ilford (Wood) developer and
EDTA bleach (Bjelkhagen 1993). We found that a ratio of 75% to 25% for solutions A

28 Please refer to the section concerning bandwidth in Chapter 1.
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and B was preferable to the traditional 50%/50% ratio in minimizing shrinkage,
attributable to increased tanning of the emulsion by pyrogallol in solution A:

Iiford Developer:
Solution A:
pyrogallol (C6H3(0OH)3) 12.6g
ascorbic acid (C6H806) 18g
distilled water 1 liter
Solution B:
sodium carbonate (anhydrous Na2CO3) 60g
distilled water 1 liter

EDTA rehalogenating bleach:

ferric sodium EDTA (C10H12N208FeNa) 100g
potassium bromide (KBr) 30g
distilled water 1 liter

The above processing was also used for blue/green-sensitive silver halide
emulsions (Agfa-Gevaert 8E56 HD NAH and Ilford? plates) exposed with the Argon ion
laser. After prototype displays were made using the silver halide plates, we used
experimental DuPont photopolymer materials to attain higher diffraction efficiency for
brighter images. These materials are rather insensitive, so exposures of about a minute or
two were sometimes required at energies of about 50mJ at 514.5 nm. Use of these
photopolymers has resulted in noticeably brighter gratings and holograms. More specific
information about the photopolymers used will come in relevant sections of the chapter.

5.3 The exposure and reconstruction geometries

The geometry of the viewstation of this chapter, to be contrasted with those of the
final chapter, is the traditional, plane-wave grating geometry for single view angle
reconstruction. The only published account (as far as the author is aware) of the
technique’s use for the construction of a reflection grating/reflection hologram display is
by Kubota (1989), although it is perfectly analogous to its transmission counterparts
(Chapter 3). The author’s display accommodates shrinkage of the recording material by
allowing the grating to rotate orthogonal to the incident plane. Those wavelengths that
play out off the Bragg angle do so with less efficiency. Although it is undesirable for a
hologram to play out with lower efficiency, it is sometimes impossible to anticipate the
reconstruction behavior of experimental materials such as photopolymers. If the grating
or hologram is subjected to unanticipated shrinkage, the edge of the grating closer to the
hologram is simply rotated toward the hologram until the new playout wavelengths
illuminate it.

29 No longer manufactured
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Figure 5.2: Schematic of the final viewstation with tipped grating
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Figure 5.3: Schematic of the exposure (225°) and illumination (45°) geometries of the dispersion-
compensated H2 (from Chapter 4)

To obtain the desired central wavelength output angle of 45° and on-axis
illumination of 180°, the mastering holographic recording film (HRF) we used3? required
the exposure geometry pictured in Figures 5.5, table setup of Figure 5.63!, with a
corresponding contact copy exposure geometry of Figure 5.7 and table setup of

30 The mastering holographic recording film we used was HRF750-1x-179 on PVA (with the mylar
removed). This film changes refractive index from 1.487 to 1.521. The 750 series film was chosen because
it is not hazy after baking, it is on mylar (trirefringent) or PVA, and is of relatively narrow bandwidth (20
nm). The beams were approximately matched in intensity, and after an hour of settling time, the master
grating was exposed for 100 seconds (50mJ, .5mW/cm?), until the HRF contrast flicker spreads to its edges.
Norland epoxy was used to index-match the master film (PVA side) to glass after exposure, UV-curing, and
baking.

31 The master and some of the transfer gratings were shot at E.I. du Pont de Nemours & Co.’s laboratories
in Delaware by Steve Mackara. The laboratory had positive air flow with plastic wall curtains and a 10° x
16’ x 2’ pneumatically-supported, Newport table with plexiglas enclosure.
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Figure 5.8.

The primary goal in making a bright grating is that it should play out with a
uniform, maximal diffraction efficiency at the desired wavelength and angle. Chapter 5
employs a perfect reconstruction geometry to approach a maximum attainable diffraction
efficiency. Aside from the geometry and chemistry, obtaining high diffraction efficiency
in a grating usually entails exposing the grating to object and reference beams with a
one-to-one beam intensity ratio across the recording plate. The gaussian profile of the
exposing beams makes uniform illumination from the center to the periphery of the plate
rather difficult. To approach uniform light intensity across the plate, the beams are spread
significantly by lenses with very short focal lengths. We used a highly diverging, 100X
microscope objective3? and ball lens33.

The calculations for the geometries were made using an iterative TK Solver
program34 that takes into account the calculated shrinkage and index changes of the
mastering and copying photopolymer films33:

collimated
output

illumination source

grating

Figure 5.4: The desired grating playout (45°)

32 Mitutoyo (Japan), ULWD Mplan Apo 100X, f=200pm (#378-806-1)

33 Edmund Scientific (Barrington, NJ) BK-7 glass ball lenses with 2 mm focal length (#E32,744)

34 Steve Mackara used a TK Solver program very much like the one in Appendix 4 to find this solution.
35 The contact-copy transfer holographic recording film we used was HRF750-1x-193, on mylar. The
exposure time for each copy was 60 to 90 seconds (0.8mW/cm?, 20 mJ). This photopolymer film changes
refractive index from 1.487 to 1.511. This type has a UV stabilizer to absorb ultra-violet wavelengths that
would otherwise render the photopolymer chemically reactive, so it is cured at a higher wavelength (405
nm). UV curing also increases the bandwidth (and decreases the optical density) of these materials. After
curing, it is baked for 2hours at 120°F for 99% efficiency.
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The program uses the X - equation (Appendix 2):

sin(Bout) = m%(sin(@obj) — sin(Bref )) + sin(6ill)
1

Contact - copied grating:
Desired reconstruction geometry: Gout =45; 6ill =180
2

A2=2A1=5145nm; n1=1487; m2=1.511; -t—=3.9%
1

0.7071 = (sin(Bobj) — sin(Oref )

One possible geometry, the result of inputting the above data
into the top (isolated) section of Appendix 4's program:

6obj = 53.434; Oref = 174.488

Master grating:
Desired reconstruction geometry: Oout =53.434; Gill =174.488
©2

A2=A1=514.5nm; ni=1.487;, n2=1.521; t_ =34%
1

0.7071 = (sin(Bobj) — sin(Bref ))
Again, one possible geometry is: obj = 56.32; Oref = 172.817
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172.81 degrees

reference source

collimated

\
object source master grating

Figure 5.5: The required master grating exposure geometry (56.32° degrees,
514.5 nm), taking into account shrinkage of the photopolymer
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Figure 5.6: The master grating exposure holographic table setup
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The contact-copying setup involves the use of multiple layers of anti-reflection
glass, index-matching oil and epoxy, as well as the layers composing the holographic
recording films36:

~
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/7 v N
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Figure 5.7: The transfer grating exposure holographic table setup

36 The anti-reflection glass is used because light from the master grating would otherwise reflect at the
mylar/air interface. Cargille/isopar oil is pressed between the plates and allowed to settle for at least an
hour because the pressure deforms the photopolymer. The mylar is trirefringent. The Norland epoxy has
an index of 1.51. The master grating had to be set slightly off the calculated Bragg angle.
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5.4 Selecting an illumination source

In the viewstation, the hologram is illuminated from below at 45° by a plane-
wave, dispersion-compensation grating that is itself illuminated by a powerful light
source set at a distance of 300 mm or so from the grating. This light has to be very
intense, as it is passing light through the three successive “filters” of Chapter 1: (1)
interference filters (the grating and hologram, with associated diffraction efficiency
curves); (2) spread of the output wave front (viewzone magnification), and (3) the
spectral luminous efficiency filter of the retina. In addition, the light source must also be
extremely small to minimize source-size blur, particularly for small light source/grating
distances.

Of the light sources we have evaluated so far, the best two were a Xenon arc
lamp37 coupled into multiple optical fibers, and a high wattage, bare tungsten-halogen
bulb with a small filament. Both are broad band sources (good for later work in
illuminating a full-color viewstation), and have very high lumen outputs. The arc lamp is
significantly more expensive, but provides a very small source size, as its arc gap can be
as small as a millimeter or so. Optional optical fibers, with their exposed ends placed at
the focus of concave mirrors to couple in the arc lamp’s light, and used to guide the light
to multiple displays, may be of equally narrow width.

The tungsten-halogen bulb is a far less expensive option, and can deliver a
significant amount of light to the grating if it is of high wattage and large size. As we
hope to minimize the source size, an ideal tungsten source of a given size would consist
of a solid piece of the material instead of a filament, for the highest possible luminous
flux. Therefore, a small, coiled filament should be oriented with its most dense luminous
area facing the grating.

For one of the viewstations, a 150W bulb38 with a vertical coil is oriented with its
tip facing the grating, at a slight angle. In this way, the center of the grating receives light
from effectively a small, solid luminous area. Because tungsten-halogen bulbs are
usually sealed at the tip, the uniformity of the beam is adversely affected in this
orientation. Dense, “double filament (round core)39” bulbs with the filament oriented
orthogonally to the tip are preferable:

Figure 5.8: filament orientation

37 Manufactured by Color Ray, distributed by Laser Media, CA

38 €D 120V 150WB with a TT61 socket
39 Osram Sylvania (1995)
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A common misconception is that we could place multiple filaments adjacent to
one another and collinear to the line of sight to a detector to deliver a higher lumen count
than a single filament could provide. As each filament is a blackbody radiator, it will
absorb frequencies that it emits, so such a scenario would not help matters unless the
filaments have gaps through which otherwise occluded filaments may pass their light.

Another thing to be careful of when searching for a small, intense light source is
the promise of a tight focus of high optical quality by the presence of a non-faceted,
dichroic, ellipsoidal mirror behind the bulb. We evaluated several such mirrors only to
find that the bare bulb was far preferable. The structure of the bulb and filament itself
degrade the uniformity of the output, and the luminous area of the side of the bulb facing
the mirror surface is usually considerably larger than the area from the top end of the
bulb.

Figure 5.9: Bulb with an ellipsoidal, dichroic reflector

Two additional concerns arise when using a blackbody source such as a tungsten-
halogen bulb: extraneous light and heat. The bulb is facing not only the grating in this
geometry, but is also facing the viewer, so sufficient shielding of extraneous light must be
taken into account when constructing the housing for the light. Shielding means added
surface area collecting heat radiated by the bulb and restricted ventilation. For the
viewstations with 150W bulbs, we installed a small fan, and sprayed close surfaces with
flat matt black, high heat spray paint*’. For a reflection grating/transmission hologram
dispersion-compensated viewstation, we placed a heat mirror*! in front of an interference
filter used to restrict the bandwidth, resulting in a sharp image 300 mm in front of the
hologram.

40 Krylon BBQ and Stove Paint

41 Edmund Scientific (Barrington, NJ) hot mirror to reflect infrared light and transmit visible light
(#E43,452)
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5.5 The resulting displa

Figure 5.10: Plane-wave grating dispersion-compensation display (photos care of Michael Klug)

The results so far have been very promising. The dispersion compensation of one
H242, made from an H1 of about 6,600 3 mm by 8 mm exposures, is so effective that the
low perspective sampling in the vertical direction is all too apparent. When this H2 was
replaced by another made with a 3 mm? aperture, astigmatism of the hologram became
noticeable. If the viewer stands well in front of the H2, the horizontal and vertical lines
comprising the grid of exposures focus to different depths. In fact, when illuminated with
a small source like a fiber from the Xenon arc lamp, one can see images of scratches,
bubbles in the xylene#3, and other blemishes on the H1, 300 mm in front of the H2. This
was our first confirmation that we could compensate for the dispersion of image points at
least that far in front of the hologram.

As gratifying as it is to find that the image depth can be sharp as far forward as the
viewzone (300 mm), the dispersion-compensated image of the H1 grid is a distraction
from the H2 image. In order to rid the viewstation of this artifact, we placed a diffuser in
front of the Xenon arc lamp’s fiber end to increase the apparent source size. The

42 Repeated from Chapter 4.

43 Excepting the edgelit holographic work of Chapter 6, all H1’s, H2’s, and transfer gratings shot at MIT
were index-matched with xylene (n = 1.49).
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resulting blur was sufficient to eradicate the grid image while retaining the image
sharpness of image points closer to the H2 plane. By varying the size of the source in a
continuous fashion, we are able to witness a slow degradation of image quality closer and
closer to the H2 plane. The diffuser sacrifices light intensity considerably, however, so
we turned to the range of filament sizes and shapes available in tungsten-halogen bulbs to
provide sufficient blur. Increasing the filament size has the added advantage of providing
more light.

The primary disadvantage of the viewstation design above is its size. If we
attempt to take the present design and make it more compact while retaining the same
hologram size, we encounter two limitations. First, if we try to simply place the grating
at a closer distance to the hologram, at some proximity, the required output angle from
the grating is not realizable, due to the high disparity between the indices of refraction of
the recording material or substrate and air. The light will simply be subject to total
internal reflection and not even escape the grating substrate. Second, it must be realized
that to provide sufficient light coverage of the hologram, a plane-wave grating must be
the same size as the hologram. Both of these problems are solved in the next and final
chapter.
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Chapter 6
Wave-front shapes, compact displays
and designing gratings

As stated at the end of the previous chapter, the primary disadvantage of the
Chapter 5’s viewstation is its size. Although the viewstation displays holograms in a
smaller space than would be required by an uncompensated hologram illuminated by a
distant source, the uncompensated hologram still has the advantage that there is nothing
lying between the light and hologram. It could be rationalized that for kiosk or showroom
displays and table-top imaging systems, a single viewstation can display many alternate
holograms, and is more compact than a designer’s models or the objects themselves.
However, because a plane-wave grating must be the same size as the display hologram,
scaling up such a display significantly would result in a system not unlike a large-mirror,
projection television.

To avoid this unsavory prospect, we will adopt two strategies for making a more
compact display. The first will be to move the grating and hologram closer together and
make a dispersion-compensated system in a variant of the edgelit format. The second
will be to reduce the grating size and illuminate the hologram with a diverging wave
front. This will carry us into an evaluation of wave front and field curvatures, and then
development of an optimization program to compensate for dispersion in compact
displays.

6.1 Sources of blur in edgelit holograms

The compact, self-illuminated edgelit display (Upatnieks 1992, Birner 1989,
Henrion 1995) is a format where a hologram is exposed and illuminated from the edge of
a glass block at a very steep angle. This steep angle ensures bright reconstruction by
guiding the coupled light to the hologram with total internal reflection, and eliminates the
source-size blurring effect of ambient light during reconstruction. However, source-size
blur is instead exacerbated by multimodal reflections within the light guide from the
widely diverging source. That is, light rays reflecting at different angles along the inside
surface of the glass strike the hologram from many angles, although the hologram was
exposed with a single reference wave front. Having the light situated so close to the
hologram also introduces significant horizontal dispersion.
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O

illumination
Figure 6.1: Non-chromatic blurring of the edgelit hologram. On the left is a diagram depicting mulitmodal
reflections, and the dotted lines represent the angle subtended by the source. The diagram on the right
shows the horizontal spread of light that creates horizontal dispersion.

To avoid these two sources of blur, the hologram could be illuminated through the
glass from an apparent distance greater than the actual distance between the light source
and the hologram. This is possible with two methods. One method is to illuminate the
edgelit with a narrowly diverging illumination source and fold the beam path, to
effectively increase the apparent distance of the source from the grating, as in Figure 6.2:

MIRROR
OBJECT 1
COVER
PLATE
4
\— HOLOGRAM
LASER e

Figure 6.2: Exposure of an edgelit hologram illuminated
with the same source distance and folded beam path
(Upatnieks 1992)

A second method for increasing the apparent distance of the light source is not to
illuminate the hologram from the edge of the glass block. To do this, an HOE
(holographic optical element) grating could be placed on one side of the glass, and the
hologram on the other (Figure 6.3). Illuminating a wave-front-reshaping grating along its
normal, as opposed to illuminating the glass block from its edge, can eliminate not only
multimodal reflections, but horizontal dispersion as well. Such a system is better termed
a “steep angle” hologram (Birner 1989) rather than an “edgelit” hologram.
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Figure 6.3: Reduction of chromatic and non-chromatic
blurring of the edgelit hologram using a wave-front-shaping
steep angle HOE

6.2 Pulling the grating and hologram closer together
by using a light guide: the steep angle format

This HOE not only reduces the nonchromatic sources of blur mentioned above,
but can also compensate for dispersion of the hologram (Birner 1989). This
compensation is critical to obtain reasonable image depth. The bandwidth of a reflection
steep angle hologram is quite high compared with a conventional reflection hologram,
and with its high dispersive power, makes uncompensated chromatic aberration in this

format a more formidable problem than in the conventional in-air geometries (Henrion
1995).
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Figure 6.4: Upatnieks’ achromatic
edgelit hologram (1992)

Application of the dispersion-compensation technique to further reduce blur of
deep image steep angle holograms is conceptually straightforward. The intervening air
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between the grating and hologram of Chapter 5°s viewstation is replaced with a thin light
guide of higher refractive index, such as glass or plastic, as in Figure 6.3 (or Kubota’s
Figure 3.14 (b) may be compared with Figure 6.4). This light guide prevents light from
being trapped in the grating due to total internal reflection for very steep angles at the
interface between the recording material substrate and air.

Birner’s display (Figures 6.3, 6.5), however, did not take best advantage of the
potential compactness of the steep angle format, for the illumination source was quite
distant (60 cm) from the (2 inch) thick glass block. The author has produced several
steep angle reflection gratings and H2s with the grating illuminated from as little as
2 mm away from the Plexiglas block face. This was made possible by using a ball lens#*
of very short focal length for the grating reference beam. Unfortunately, however,
Norland index-matching epoxy was used to mount one of the displays, and it was found
to swell the grating and hologram. The expanded fringe structures play out at a slightly
less obtuse angle, and as a result, the illumination source has to be placed farther from the
grating (13 mm) and at an angle to reconstruct brightly and minimize distortion.

H1 transmission reflection
image H2 H2

- -
- -

illumination
reflection
HOE

Figure 6.5: A comparison of Birner’s reflection HOE/transmission steep angle H2 with the author’s
reflection/reflection displays. Birner’s illumination distance is 60cm from a 2-inch thick block (Birner
1989), the author’s, 1.2cm from a 1-inch thick block (after swelling due to epoxy).

The author also attempted to create steep angle gratings and H2s that reconstruct
well using thinner (1/2 inch) light guides. Proper index matching becomes a barrier even
with special index-matching oils*> when one tries to illuminate through the block at an
angle from the normal much greater than 80°. Other obstacles to dispersion
compensation in the steep angle format are the high vertical dispersion and curved
achromatic curves of edgelits (Henrion 1995). The latter problem may be circumvented
in a full-color, steep angle display by having three narrow band reflection gratings. Each

44 Edmund Scientific (Barrington, NJ) BK-7 glass ball lenses with 2 mm focal length (#E32,744)
45 Cargille Series A: n = 1.510+ 0.0002, produced by Cargille Laboratories, Inc. (NJ)
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grating could provide dispersion compensation for its narrow band of the spectrum, and
each could provide an ideal source angle and distance independent of the other colors, so
that all three color separations of the hologram reconstruct corresponding average points
in a superimposed fashion.

6.3 Compensation gratings with diverging wave fronts

The steep angle strategy for compressing the display’s volume still does not take
into account the grating’s size as the display is scaled up. If the grating area is to be
reduced in either the steep angle format above or in a revised viewstation, the hologram
illumination distance for the central wavelength has to be closer than infinity. The
smaller grating then acts as an aperture through which light illuminating the hologram
diverges from a closely-spaced, blurred source reconstructed by the grating itself. The
minimum size that this (tilted or untilted) grating can be, and still allow for light of the
central wavelength to illuminate all parts of the hologram, is calculated in the program of
Appendix 3. The grating height would of course have to be greater if every wavelength
of a specified spectral band is to illuminate every part of the hologram. One advantage of
using a diverging illumination source is that not only could the grating size be reduced in
Chapter 5’s viewstation, but the grating and light source could be placed relatively far
from the hologram, taking advantage of dispersion compensation without having to
construct a viewstation. The limitations of such a method will be described below.

The reason the hologram illumination source is situated (reconstructed with order
m = +1) behind our grating, as opposed to being focused as a real image in front of the
grating (m = -1), comes from our introductory discussion of dispersion in the first
chapter. If a predispersing grating could play out a blurred real image of a point source
with its dispersed wavelengths of the right orientation with respect to the hologram, then
the grating could be placed farther from the hologram than would its m = +1 counterpart
of equal size. However, the m = -1 image is blurred in the opposite sense as the m = +1
order image because the wavelengths are focused in front of the hologram, crossing
through the focus point and appearing reversed in direction as a consequence (Figures
1.10 for the in-line geometry, 2.4 for the off-axis geometry). The author had therefore
determined at the outset that an order m = -1 reconstruction from a predispersing grating
would be unsuitable for most practical geometries and that we would reconstruct the m =
+1 order instead for our displays.
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6.4 Grating playout distances

Orientation of the grating’s output blur involves not simply angles, as was
assumed for the viewstation of Chapter 5, and is indeed universally assumed, but
distances as well. Otherwise, red, green and blue wavelengths will reconstruct collinearly
along the dispersion-compensated view angle, but will be staggered along that line of
sight. A viewer looking off axis perceives this discrepancy as blur.

A viewer centered on axis has eyes straddling the axis, so the maximum
acceptable perceived longitudinal blur length within the stereoacuity of the eye
(Chapter 1) at the nearpoint distance from the image (250 mm) may be derived as
follows:

blurred image point

— " (length Iblur)

mean retinal
disparity threshold

o
250mm

;’:

/
Q 65mm @

Figure 6.6: Maximum acceptable perceived longitudinal blur length
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. Iblurl = 4231.81sin(x /2)
For a stereoacuity of 30 arc seconds, the maximum acceptable perceived longitudinal blur would be:
Iblurl = 0.31mm

In order to superimpose these collinear points, the grating must reconstruct output
points at appropriate distances. Along the achromatic angle of Equation (2.25), a space
defining where the different wavelengths focus vertically:

sin(Bout ) - sin(8ill)

tano = )
Rout  (cos( 6ill))

cos (Bout) — -
cos <90ut > Rill

102 Chapter 6: Wave-front shapes, compact displays, and designing gratings



With the vertical focus Equation (5.2), we have an alternative expression:
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Equation ( 6.1): tano =
)
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-Rout

We can see from this expression that the angle is inversely proportional to Rout, so we
should expect that as the playout distance increases to infinity, the achromatic angle
approaches the hologram normal. Now, if we want to see how this angle is affected by
wavelength spread, we will take the derivative of the tangent of this angle with respect to
the spread in output angles at the extreme wavelengths:
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Equation (6.2):
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Now it becomes apparent that a change in the spread of the output angles has a nonlinear
effect on the achromatic angle. As it turns out, the achromatic angle, usually
approximated as a line, is a curved surface (a surface if horizontal dispersion is also taken
into account). For extreme angles, such as in the edgelit and steep angle holograms
above, the dispersion is very high, and the achromatic surface is a curve curling back
toward the hologram for extreme wavelengths and small output distances (Henrion 1995).

6.5 Dispersion compensation and grating output wave-front shapes

Although the edgelit hologram presents an extreme case of dispersion and
corresponding distortion of output wave fronts, wave fronts distortion is not an unusual
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occurrence. If the grating is not illuminated appropriately to present the appropriate blur
orientation and length to the hologram, one should expect distortion and dispersion in the
resulting holographic image. For any one-step hologram illuminated from the prescribed
illumination source position, this does not pose a problem. However, when an H2 is to be
illuminated to project an m = -1 image of its H1, it should be illuminated in a reverse-
direction, phase-conjugate fashion. Illuminating an H2 with converging beam from a
grating would defeat the purpose of the non-collimated technique, as the grating would
then have to be larger than the hologram itself.

Indeed, there are distinct advantages to illuminating a stereogram transfer with an
imperfect phase-conjugation beam, usually a diverging beam. We will refer to the
imperfect phase-conjugate case where the reference and illumination sources are both
diverging as a “diverging/diverging” geometry. The primary advantage to
diverging/diverging reconstruction is ease of illumination: it is far easier to illuminate a
large reflection hologram with a diverging source from the front than it is to illuminate
the hologram with a large converging optic from behind. Diverging/diverging
reconstruction is also a common technique for producing wide view zones when making
an HPO HS; the diverging illumination wave front laterally and longitudinally magnifies
the image of its master (H1) aperture plane. Of course, the component aperture windows
are magnified as well, so sampling considerations have to be reevaluated in such an
approach.

The author explored the effects of wave-front curvature on dispersion and made
extensive calculations to compare the color blur of an H2 reconstructed in a phase-
conjugate diverging or collimated fashion with the above-mentioned diverging/diverging
geometry. If the H2 is illuminated with a grating that reconstructs at the ideal angles and
distances for single view angle dispersion compensation for both geometries, a distinct
advantage may be seen with the phase-conjugate case as expected, but there is also a
compensation advantage conferred by the diverging/diverging geometry as well due to the
asymmetry of the illumination angles across the recording material. We will treat both
cases below.
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6.6 The planar wave front case

The perfect phase-conjugate case is relatively straightforward. Assuming perfect
reconstruction,?6 all the points reconstructed by the exposure wavelength will image
where the original object points were. Image points lying along a preselected view
direction will be color corrected (the single view angle dispersion compensation of
Chapter 3). If the reference and illumination beams are collimated, then this
compensation holds for every part of the plate, so that if the viewer looks directly ahead
at any portion of the plate, points along this line of view and points within a small field of
view about this line of view will appear sharp. As the view direction changes with
respect to the plate normal, the central wavelength still forms an image in the right place,
but shorter and longer wavelengths diffract at slightly different angles, so from these new
view directions image points appear color-blurred if projected beyond a certain maximum
acceptable image depth, marked along the lines of sight to the hologram in the following

figures. 1

We will define maximum image depth in this paper to be the maximum depth at
which the color blur of a point reconstructed by a given spectral band equals the acuity of
the human eye (1°) at a given viewing distance in front of the hologram (500 mm). Using
Benton’s method (Figure 2.6), whose difference from the author’s method is negligible
for perfect reconstruction in the on-axis object/image geometries here, we have:

Deyctan( 9acuity )
2

Equation (6.3): Maximum forward depth =
[ AGO ) ( eacuity )
tan| — |+ tan

Deyetan( 9acuity )
2

Equation (6.4): Maximum depth in back of the hologram = ) -~
tan(—) - tan( culty)

2

46 Again, perfect reconstruction is the case such that the fringe spacing is the same when illuminated as
when recorded, and the wavelength and position of the illumination source/focus is equal to that of the
reference source when recorded.
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Figure 6.7: Collimated, phase-conjugate, single view angle dispersion-compensated hologram
The numbers in the balloons are maximum depths (3 arc minutes of resolution); the numbers are ordered

as in the balloon above this caption.

106 Chapter 6: Wave-front shapes, compact displays, and designing gratings



6.7 The diverging wave front case (phase-conjugate)

In the uncollimated, phase-conjugate case, it was found that the field of view from
the central view direction containing relatively sharp image points is wider than in the
collimated case, and its off-axis points may be much deeper, but that compensation
degrades severely as the viewer moves away from this central position.

hologram 500

<

210

Figure 6.8: Uncollimated, phase-conjugate, single view angle dispersion-compensated hologram
Maximum forward compensated depths (1 arc minute of resolution): top, middle, and bottom views
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6.8 The diverging wave front case (non-phase-conjugate)

The diverging/diverging case in some ways presents a less desirable dispersion-
compensation method than the above perfect phase-conjugate approach. In addition to
astigmatism and serious image warping, it was found that the maximum acceptable image
depth is inversely proportional to the holographic plate size. In addition, there is a more
pronounced asymmetry in the maximum volume than in the perfect phase-conjugate cases
above.

Both of these characteristics may be explained intuitively by the wave-front
curvature difference between the diverging reference and diverging illumination beams
striking opposite sides of the plate. In diverging/diverging illumination, ray bundles other
than the central ray bundle composing these wave fronts strike the plate at angles non-
supplementary to their reference counterparts. The reference and illumination angles on
the side of the hologram farther from the predispersed illumination are closer to being
supplementary than the corresponding angles on the side of the hologram closer to the
illumination, so the side farther has a higher spatial frequency than the side closer to the
illumination. There will likewise be greater color blurring on the side of the hologram
farther away from the illumination. This increase in color blur is reflected in the figures
by a lower maximum depth value.

It was noted in the comparison between the collimated and non-collimated perfect
phase-conjugate cases above that the non-collimated case provided a central view with
deeper maximum image points. Indeed, as the maximum depth from different viewpoints
is further compromised in the present case of non-phase-conjugate illumination, there is
also a further increase in the maximum depths of points viewed from the central
viewpoint.
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forward compensated
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Figure 6.9: Uncollimated, non-phase-conjugate, single view angle
dispersion-compensated hologram (diverging/diverging geometry) with extreme field curvature:

The numbers in the figure represent the forward and backward maximum compensated depths (1 arc
minute of resolution) for top, bottom, and middle views (the balloon above presents the order in which the
maximum depths appear in the figure).
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6.9 Consistent method for designing gratings

To outline a consistent technique for designing dispersion-compensation gratings,
we need to work backwards from the illumination blur required of the hologram, to the
appropriate output angles of the grating, and finally to the exposure geometry that would
result in such playout angles.

N\

>

Ideal predispersed hologram illumination angles
for single view angle dispersion compensation

7

Ideal dispersed grating (virtual) output angles
and distances, calculated from the ideal
hologram illumination angles and distances
and the hologram/grating separation,

using basic trigonometry and geometry

AUAAANARAANAUARREAREURANUNUNUR AN RN A AR NN AN NN NN

B

Figure 6.10: Ideal predispersed hologram illumination angles and
distances should be equivalent to the ideal predispersed grating output angles.

For the plane-wave grating case, the playout distances for the extreme
wavelengths are usually so large that compromising attainable ideal angular output for
ideal output distances is unreasonable. However, as the output distance for the central
wavelength nears the grating (and the hologram), taking into account the distances
becomes more and more important. The author’s attempt at optimizing the grating for
ideal distances and angles has been implemented by computer programs written in C and
Matlab (Appendix 4). The technique involves taking the pseudoinverse of two matrix
equations (6.5 and 6.6), each composed of three linear equations to be outlined below.

The geometry and trigonometry for determining where the grating’s output points
should ideally be relative to the hologram is straightforward for single view angle
dispersion compensation. In the diverging case, the ideal angles for individual
wavelengths are not always attainable across the bandwidth. A compromise must be
made between the ideal angular differences between the central wavelength and longer
wavelength playout angles and between the central wavelength and shorter wavelength
playout angles. A second compromise needs to be made between the ideal predispersed
output angles and ideal output distances at different wavelengths (equal to the ideal
illumination angles and distances for the hologram).
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output angles and ideal output distances at different wavelengths (equal to the ideal
illumination angles and distances for the hologram).

First, we will develop a technique to optimize grating playout angles by affecting

the exposure and illumination geometries, and then we will apply this technique to

optimize grating playout distances.

6.10 Solving for optimized angles

In order to solve for optimized angles, the X-equation*? (for exposure and
reconstruction angles) is solved for three different wavelengths and three ideal output

angles:

1« re
sin(Gbutred) = m -;—d (sin(Govy) - sin( Ger)) + sin(Gn)
1

sin( eoutgreen) =m
Sin(eoutblue) =m

If a vector is made of the sines of the desired output angles, a matrix is made of
the coefficients, and a vector is made of the sines of the unknown exposure angles, an

/1 2green

1

ﬂ2blue
A

expression can be formed, Equation (6.5):

—Sil’l(eoutred) i

Sin( Houtgreen)

LSin(goutblue)

[ Aared A2red
A A
lzgreen ﬂ2green
A A
A 2blue A2blue
A A

(sin(6bv;) - sin( Ger)) + sin(Gn)

(sin(Bovj) - sin( Gef)) + sin(Gn)

[sin(Gby)) |

sin(Gkef)

i sin(Gn) ]

However, because the first and second columns of the coefficient (middle) matrix
are multiples of one another, a simple matrix equation with an inverse function will not

work to solve for the unknown (object, reference, and illumination) angles. Instead, to

simultaneously solve for an optimized solution for the three unknowns, we will perform a

Moore-Penrose pseudoinverse*® operation, Equation (6.6):

47 The angle and distance equations are presented in Appendix 1.

48 X = pinv(A) gives the Moore-Penrose pseudoinverse, a matrix of the same dimensions as A’ satisfying

the following four conditions:
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If a range of central wavelength output angles are substituted into the above
expression, a set of different optimized solutions for the unknowns may be found. These
solutions correspond to different potential exposure and illumination geometries that
provide the desired (ideal) blur from the predispersing grating.

Unfortunately, we can not obtain an exact solution for our matrix expression
Ax=b representing [coefficients][sin(exposure angles)] = [sin(output angles)]. This may
be proven by taking the original expression Ax = b and performing Gaussian elimination
to form a zero submatrix in the modified A", and determining that A"x can not equal b".

However, the pseudoinverse technique does provide an optimal solution x™ to the
least squares problem of Ax=b. This is verified by x™ meeting the two conditions:
(1) x™ is in the row space of A, and (2) Ax™ must be a projection of b onto the column
space of A. We will use this pseudoinverse technique to find optimized grating output
distances and will work through several geometries to assess the degree of error in the
optimization of both output angles and distances.

6.11 Solving for optimized distances

Solving for optimized distances requires the inclusion of a second set of three
vertical focusing equations:

(c0S(Bourred))2 Larea [ (c0S(Oo6))2  (cos(Be))?)  (cos(Bin))?
- o = — +
Routred m )pl Robj Reref Rin

(c05(Boutgreen))2 Az ((cos(aobj))z ) (cos(eref))zJ . (cos(Gin))?

Roulgreen Zl Robj Rref Rill

(cos(Bourine))®  Azoiue [ (cOS(Gori))?  (coS(rer))? +(cos(0m))2
Routblue -=m /11 Robj Rret Rin

After we have substituted the most practical angles from the set of angle vector
solutions into the distance matrix expression above, the remaining three unknowns are the
object, reference, and illumination distances.
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Equation (6.7) is a pseudoinverse expression solving for optimal exposure distances,
given ideal output distances:

—ﬂZred /12red i r . T
- o 27 P - P) (cos(Boutred))
(COSI({—M’J)) 1 1 Routred
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Rref
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(COS(giII))z ue ) ue 1 (cos(Boutblue))
T i /’h /1] . |_ Routblue ]

6.12 Designing a diverging wave-front grating for a compact display

Figure 6.9 is the model of the prototype diverging/diverging viewstation we made
to evaluate the ease and effectiveness of non-phase-conjugate geometries for future
reduced-size gratings. The standard procedure for the making of an HPO HS with a wide
field of view was used for the first full-parallax trials. This procedure involves a 300 mm
H1/H2 transfer separation and a 500 mm H1 image playout distance. The only
compromise that the H2 underwent was to have a matching short reference and
illumination distance of 750 mm, to limit warping of the H1 aperture image as well as
satisfy the vertical focus equation. The vertical focus formula is much more sensitive to
changes in distance than is the more familiar horizontal focus equation: a slight change
in one distance could significantly alter the other distances used to expose and reconstruct
the image.

reference

beam: 225 degrees;
Rref = 750mm

Figure 6.11: Exposure of the transfer (H2) hologram with a diverging
reference source
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H1 image

(distorted illumination
viewzone) beam: 45 degrees;
Rill = 750mm

Figure 6.12: Reconstruction of the H2 with a diverging illumination source

The TK Solver+ program of Appendix 3 calculates with basic trigonometry that
for a grating arbitrarily set 450 mm from the given 750 mm/750 mm 300 mm-high H2, its
size may be reduced from the 300 mm required for a plane-wave grating to 130 mm.

This reduced size is sufficient to illuminate all parts of the hologram with at least the
central wavelength playing out of the grating. The size of the grating may be further
reduced if its playout distance is smaller.

6.13 Designing a perfectly reconstructing diverging grating

The TK program also solves for an equivalent exposure and reconstruction
geometry that will compensate for a given hologram’s dispersion, based on a reverse
raytrace of the blur extent required by the hologram, to the blur extent provided by the
grating. This program has the constraint that the exposure and reconstruction angles are
identical for the purpose of minimizing distortion. The grating and H2 were made without
regard for the astigmatism that one obtains in such a diverging/diverging procedure,
however. The resulting H2 in the present display has a vertical focus at the intended 500
mm, whereas its horizontal focus is thrown out to 1500 mm.

In the first step, the hologram’s predispersed illumination angles had to be
determined. These are the angles for their respective wavelengths (in nanometers) that all
play out on the normal for single view angle dispersion compensation:

Riired =43.874

ABillHredgreen = 1.126°
atlgreen =45

ABillHbluegreen = 1.104°
Gillblue = 46.104
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The second step is to determine the playout angles of the grating. As mentioned
earlier, the ideal angles for individual wavelengths are not always attainable across the
bandwidth, and a compromise must be made between the ideal angular differences
between the central wavelength and longer wavelength playout angles and between the
central wavelength and shorter wavelength playout angles. The ABoutIDEAL’s are found
through basic trigonometric calculations. In order to illuminate the grating close to the
normal (an arbitrary choice), a tip angle is necessary during exposure if the same
geometry is to be used during reconstruction. Following are three possible geometries,
none of which are ideal:

ABoutGredgreenIDEAL = 3.5 °
ABoutGbluegreenIDEAL = 2.4°

Boutgreen = Bobj = 65°  Bobj = 66° fobj = 67°

ABoutGredgreen = 2.51° ABoutGredgreen = 2.64° ABoutGredgreen = 2.79°
ABoutGbluegreen = 2.29° ABoutGbluegreen = 2.39° ABoutGbluegreen = 2.5°

The exposure and central reconstruction wavelength is 514.5, a blue-green, so the
center geometry was chosen as the closest approximation.

Please refer to Appendix 3; the TK Solver+ Variables menu contains the data
derived here, as it was computed. With a grating/hologram separation of 450 mm, the
grating perfectly reconstructs an image point 300 mm from its center, at an angle of 66°
to its normal. The grating is therefore tipped 24° toward the H2 to illuminate the H2 at its
45° jllumination angle. The tilt angle is simply to increase the blur of the grating required
by the hologram at the close distance chosen. If the grating’s playout distance were to be
increased, then the grating would not have to be tipped as much and horizontal dispersion
would be negligible. This would also, however, create a severe mismatch between the H2
reference and illumination distances and require a very short H2 reference beam, 375 mm
in the limiting case of collimated illumination with the above procedure.

Of course, the tilt angle of the grating may be reduced, or sometimes eliminated, if
it is illuminated for imperfect reconstruction (exposure angles different from the
reconstruction angles), although this will lead to some distortion of the input blur to the
hologram and will usually require an off-axis illumination source.

We made an exposure with the above geometry, and the final table setup is
diagrammed below in Figure 6.13. The primary difficulty in the shooting of the grating
was obtaining uniform intensities across its area. For the scale of the display, the
proximity of the exposure sources were very small, and widely diverging lenses were
required. A 100X objective (focal length of about 5 mm) and a ball lens of roughly the
same focal length were used in the setup. To further increase the uniformity of the spread
of the beams, meniscus lenses were placed in the object and reference beam paths to
shorten the diverging optics’ apparent focal lengths.

Chapter 6: Wave-front shapes, compact displays, and designing gratings 115



180 degrees &

100X objective
(f ~=5mm)

B grey glass

600mm

silver-halide plate
(emulsion toward ball lens)

reference beam

* meniscus lens (f = 500mm)

object beam

E A 50/50 beamsplitter
y Y

silvered

attenuator Argon-ion laser (514.5nm)

Figure 6.13: The final table setup for the 750/750 diverging/diverging geometry

6.14 Designing a diverging grating that plays out ideal angles
and optimized distances

We used the resulting 24° tip angle in a prototype display to good effect.
However, we were intent upon obtaining grating angles as close to the ideal angles as
possible. If we follow the above pseudoinverse procedure, and input the desired grating
output angles and distances into the Matlab program of Appendix 4, then we receive a list

of potential geometries.
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First, here is the list of input variables (Actually, the Matlab program of Appendix 4
calculates the grating's output angles and distances from hologram input variables.):

%%%%%%6%%6%6%%6%%6%6% %% %% %%6%:%6%%6%%%%%%%%%%%%%

%

INPUT VARIABLES: %

R L L R 8 O Y O O L 2

deltaGR = 62.909265 - 60;
deltaGB = -57.326903 + 60;

lambdal = 514.5

lambdaR = 524.5;
lambdaG = 514.5;
lambdaB = 504.5;

outGmin = 0;
outGmax = 70;

RoutRideal = 218.7;
RoutGideal = 300;
RoutBideal = 395;
Rillmax = 1000;

% angular spread of output wavelengths (green-red)
% angular spread of output wavelengths (green-blue)

% exposure wavelength

% output long wavelength -- "Red"
% output central wavelength -- "Green"
% output short wavelength -- "Blue"

% output angle range minimum (Green)
% output angle range minimum (Green)

% ideal grating output distance -- Red

% ideal grating output distance -- Green
% ideal grating output distance -- Blue

% maximum grating illumination distance

R e B L B B S S S B )

so the tip angle for the grating is almost 0°. The middle geometry (2) was chosen

The output file consists of a long list of potential geometries. The following three
were selected each for a different reason. The first grating's playout angle is almost 45°,

because the illumination and central output angles match; this means that the grating can
be tipped with respect to the light source the same degree as to the hologram (as in Figure

5.2). Also, the illumination distance is not too large. The third geometry was also
selected as an example because its playout distances are closest to the ideal distances.

M

@

(©))

outR =49.909,

obj =58.377,

Robj =2094.202,
RoutRideal =218.700,
RoutR = 257.400,

outR = 64.909,

obj =35.830,

Robj =-1160.218,
RoutRideal = 218.700,
RoutR =217.400,

outR = 72.909,

obj =25.204,

Robj =-1303.140,
RoutRideal =218.700,
RoutR = 237.400,

outG = 47.000,

ref =238.377,
Rref = -2094.202,
RoutGideal = 300.000,
RoutG = 300.000,

outG = 62.000,

ref =215.830,

Rref =1160.218,
RoutGideal = 300.000,
RoutG = 300.000,

outG = 70.000,

ref =205.204,

Rref = 1303.140,
RoutGideal = 300.000,
RoutG = 300.000,

outB = 44.327

ill =255.981

Rill = 44.304
RoutBideal = 395.000
RoutB = 320.000

outB = 59.327

ill =196.685

Rill = 472.451
RoutBideal = 395.000
RoutB = 300.000

outB = 67.327

ill =174.935

Rill = 603.367
RoutBideal = 395.000
RoutB = 360.000
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These geometries were then recalculated (by hand and by the program of
Appendix 3, in boldface type) to test the pseudoinverse function's validity as an
optimization procedure. It was found that the output angles are within a tenth of a degree
of those calculated.

5145 11 nm exposure wavelength (vacuum)
514512 nm reconstruction wavelength (vacuum)
51461 m diffraction order: m=+1 for virtual
35.83  @obj degrees between 0&90° object beam angle
215.83 Oref degrees between 90° and 270° reference angle
Bout 62.10 degrees between +90° (for m =+1) output angle
196.68 @ill degrees between 90° and 270° (for m =+1) illum
RoutR 217.400 mm output distance -- Red
RoutG 300.000 mm output distance -- Green
RoutB 300.000 mm output distance -- Blue

The distances, however, are less precise and vary in precision in the Matlab program’s
output. Recalculated quantities are again set in boldface:

outR = 49.909,
49.841
¢y RoutRideal = 218.700,
RoutR = 257.400,
261.256

outR = 64.909,
2) 64.860
RoutRideal = 218.700,
RoutR =217.400,
229.006

outR = 72.909,
3 72.881
RoutRideal = 218.700,
RoutR = 237.400,
235.177

outG = 47.000,

47.123
RoutGideal = 300.000,
RoutG = 300.000,

291.717

outG = 62.000,

62.086
RoutGideal = 300.000,
RoutG = 300.000,

270.884

outG = 70.000,
70.0466
RoutGideal = 300.000,
RoutG = 300.000,

305.546

outB = 44,327
44.271
RoutBideal = 395.000
RoutB = 320.000
324.146

outB = 59.327
59.290
RoutBideal = 395.000
RoutB = 300.000
313.414

outB = 67.327
67.3076
RoutBideal = 395.000
RoutB = 360.000

376.597
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Exposure and illumination angles for the 750/750 grating

300 T T T
250+ * * reference 1
x beam
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Figure 6.14: A graph of the exposure and illumination angles for a range
of central output angles. This graph is the output from the Matlab plot
command in the program of Appendix 4.

These reconstruction geometries ate far closer to the ideal than is the case with the
perfectly reconstructing angles in section 6.13. This improvement would suggest that
perhaps the pseudoinverse function could improve dispersion compensation in the
viewstations of Chapter 5 as well. At first this seems unlikely, because it is usually
assumed that a plane-wave grating provides predispersed light from wavelength
component points infinitely far away. However, this is not the case, as we shall see. We
will follow the same procedure again, first computing the appropriate blur angle to
illuminate the hologram with the TK Solver+ program variables of section 6.13. The
grating/hologram separation will again be 450 mm:
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6illR 46.1247 degrees H ill. angle for long (Red) 12

6iliG 45 degrees H ill. angle for middle (Green) 12
0illB 43.8969 degrees H ill. angle for short (Blue) 12
dobluri 2.2278 degrees blur angle illuminating H

450 sep mm dcGrating/H separation
doblur 5.5658 degrees necessary dcG blur angle

The above hologram illumination angles are used to find the necessary grating output
angles. Below, the exposure and illumination distances are used to find the ideal grating
output distances:

dcG DISTANCES
RobjBen 9E9 mm (ideal: = RoutGvert_dcG)obj distance
300 RrefBen mm (ideal: = Rill_dcG) ref. distance
300 Rill_dc mm dcGrating illumination distance
RoutRBe -9354.555 mm dcG playout distance: Red
RoutGBe 9E9 mm dcG playout distance: Green
RoutBBe 8532.3305 mm dcG playout distance: Blue
RoutRve -4372.711 mm dcG vertical playout distance: Red
RoutGve 9E9 mm (=Rill-sep; ideal output =Robj_dcG)
RoutBve 4560.6652 mm dcG vertical playout distance: Blue

The ideal grating playout distances (Rout’s) are all large compared with the dimensions
of a normal hologram, but are not infinity. Now we will use the Matlab program of
Appendix 4:

%%%%% %% %% %% %0 %% %% %% %% % %% %% %%%%%%% %% %% %%
% INPUT VARIABLES: %
%6%%% %% %% %% %% %% %% %% % %% %%% %% %% %%%%%%%%%

deltaGR = 46.125 - 45; % angular spread of output wavelengths (green-red)
deltaGB =45 - 43.897; % angular spread of output wavelengths (green-blue)
lambdal = 514.5 % exposure wavelength

lambdaR = 524.5; % output long wavelength -- "Red"

lambdaG = 514.5; % output central wavelength -- "Green"

lambdaB = 504.5; % output short wavelength -- "Blue"

outGmin = 0; % output angle range minimum (Green)

outGmax = 70; % output angle range minimum (Green)

RoutRideal = 7414.56 - 450; % ideal grating output distance -- Red

RoutGideal = -9¢9; % ideal grating output distance -- Green

RoutBideal = -8014.58 - 450; % ideal grating output distance -- Blue

Rillmax = 1000; % maximum grating illumination distance

OBYhYa YLV Yo Ye oYY Yo Ye e %% %% %% %Yo Yo Ve Yo Yo Ye 6% %%
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ideal distances perfectly. The same imprecision for distances as above applies, so the the

recalculated values (boldface quantities) are included:

outR = 49.909,
49.746
obj =58.479,

€} Robj = 178.118,
RoutRideal = 6964.560,
RoutR = 6964.560,

7381.409

outR = 49.909,
49.746

obj = 58.479,

) Robj = 177.070,
RoutRideal = 6964.560,
RoutR = 6964.560,

7375.484
outR = 49.909,
49.746
obj = 58.479,

(3)  Robj=176.010,
RoutRideal = 6964.560,
RoutR = 6964.560,
7342.012

outG = 47.000,
47.029
ref =238.479,

Rref = -178.118,
RoutGideal = -9¢9,
RoutG = -9¢9,
-4.6e6

outG = 47.000,
47.029
ref =238.479,
Rref =-177.070,
RoutGideal = -9¢9,
RoutG = -9¢9,
-1.2¢6

outG = 47.000,
47.029
ref =238.479,
Rref =-176.010,
RoutGideal = -9¢9,
RoutG = -9¢9,
-9.7e5

outB = 44.327

44.179
ill =256.704
Rill =-17.233
RoutBideal = -8464.580
RoutB = -8564.580
-8198.115

outB = 44.327

44.179
ill =256.704
Rill =-17.130
RoutBideal = -8464.580
RoutB = -8464.580

-8112.68
outB = 44.327
44.179
ill =256.704
Rill =-17.027

RoutBideal = -8464.580
RoutB = -8364.580
-8053.654

We find that only in the case of a highly converging illumination beam can we
attain the proper distances. However, the angles themselves are quite different from the
simple perfect reconstruction geometry that is universally applied. This discrepancy
suggests that in order to attain the proper distribution of wavelengths within the
predispersed blur illuminating the hologram, a more careful approach such as the
pseudoinverse function might prove advantageous, particularly for very deep images.

6.15 An attempt to design a pre- and post-dispersing compensation grating

The ultimate compact reflection dispersion-compensation display would consist
not even of a small, unobtrusive grating at some distance from the hologram, but would
ideally consist of a single material, or a double-layered film without an intervening wave
guide or louver film of questionable optical quality. We will attempt here (and in the
computer program of Appendix 5) to assess the viability of a pre&post-dispersing,
compensation grating. We will again work backwards from the desired, dispersion-
compensated condition where output angles = 0 through the grating (m = ¥ 1 in the 2n
pass), to the hologram, and back through the grating (m = +1 in the 1% pass). With the

angle matrix above, we have:

Chapter 6: Wave-front shapes, compact displays, and designing gratings 121



Equation (6.8): 2™ pass through the grating (dc): sin(6,,) =0; m = 71

[ -deLL2 1= -dcCOEFF ]
_ A2red + A2red
sin(f2iildcred) e e
T Z,Zgrcen + ZZgreen
—| sin(@2indegreen) | _
= Alde Ade
A 2blue A2blue
sin(@2indcblue) F +
ﬂ'ldc l]dc B

Equation (6.9): hologram: sin(0,,4,) = sin(62;,4.)

[ deLL2 ]=][

[sin(@2ilidered) |

s1n(l92 illdcgreen)

sin(@2illdcblue)

Equation (6.10): 1* pass through the grating (dc): sin(01,,,,) = sin(B;,); m= +1

[ hiLL ]=
[sin(Biiredn) |

Sin(allgreenh)

sin(Bhiibluch)

[ +dcCOEFF +
[ A2red Ared
Avde Alde
A2green A2green
Alde Ade
A2blue A2blue
| Atae Alde

hCOEFF
/12red l2red
m —m
}vlh /11h
lZgreen /){,Zgreen
m —m
A A
A2blue A2blue
m —m
L z«lh ﬂrlh

After substitutions, we have Equation (6.11):
-[-dcCOEFF x dcUK] = [ + dcCOEFF+([dcCOEFF+1] x dcUK)] x [hUK]

122

x [ deUK ]
[ (sin Boidc) |
x
| (sin Ghefic) |
+ hILL] x [ hUK
sin( BRirredn) [ sin(Gbbib) |
sin(Ggreenn) | X sin(Greth)
sin(Guwer) | L]

1] x [ dcUK ]
1| r. A

sin(Bbbjdc)
1| x| sin(Bresuc)

1| | sin(Bng) |

]
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The values for the sines of the object and reference angles were incremented
through a range of values in the example program of Appendix 5. However, it was
consistently found to be the case that a single or double pre&post-dispersing transmission
grating layer set in front of a reflection hologram cannot by itself compensate for its own
dispersion as well as dispersion from the hologram. It has not yet been determined
whether the introduction of very thin refractive optics between the layers could make this
display viable.

In this final chapter, we have explored increasingly compact dispersion-
compensation formats while evaluating their effectiveness. Two methods for HOE
design have been developed here and in the accompanying appendices: (1) calculation of
exposure and reconstruction angles based on a reverse-engineered analysis of perceived
blur used for the grating /hologram dispersed focus, instead of the hologram/pupil
dispersed focus, and (2) the Moore-Penrose pseudoinverse function for solving for a set
of optimized geometries for ideal angles, with the further calculation of optimized
distances as an option.
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Conclusions and future work

“If the reader, in this spirit, recalls what has been stated by us throughout, generally and in detail,
with regard to colour, he will himself pursue and unfold what has been here only lightly hinted at. He will
augur well for science, technical processes, and art, if it should prove possible to rescue the attractive
subject of the doctrine of colours from the atomic restriction and isolation in which it has been banished, in
order to restore it to the general dynamic flow of life and action which the present age loves to recognise in
nature. These considerations will press upon us more strongly when, in the historical portion, we shall have
to speak of many an enterprising and intelligent man who failed to possess his contemporaries with his
convictions.”

-- Goethe, Theory of Colours (1810, 297-8)

This final section of the main body of the text will be kept very succinct to
facilitate the reader’s interpretation of the contents of the thesis. A brief mention will be
made of the highlights and shortcomings of each chapter.

In Chapter 1, we found that for most illumination sources and reflection
holograms with reasonably narrow bandwidth, the diffraction efficiency curve should be
sufficient to determine the extent of blur an observer will perceive. Applying a modified
form of Rayleigh’s criterion, we defined the resolution of a holographic image, assuming
uniform background noise. Both of these determinations rested on an approximation of
the diffraction efficiency curve as a normalized distribution, with the absolute bandwidth
constituting three standard deviations on either side of the curve, and the perceived
bandwidth as two standard deviations on either side. The resulting perceived blur factor
of 0.8165, to be multiplied by an absolute blur extent, needs to be verified with
psychophysics experiments on human subjects.

In Chapter 2, our spectrophotometer data suggest that the absolute blur equation
derived here measures favorably compared with Benton’s blur equation for viewing
distances in front of the image beyond the nearpoint of the eye. The difference between
the two lies in the less mathematically intuitive, but more physically realistic,
interpretation of the perception of blur in the author’s equation. Although for on-axis
object/image geometries the two equations render very close solutions, for less common
geometries, their solutions deviate considerably. This equation gives absolute, raytraced
blur extent, but until the perceived blur factor of Chapter 1 is verified or revised,
perceived blur extent will not be fully characterized.

Chapter 3 is predominantly a brief history of the application of dispersion
compensation to display holography, so some trends may be apparent to the reader.
Certainly, the use of a predispersing, precompensating grating is much preferred over the
original use of a post-compensating grating. An exception to this preference may be
found in the compact geometry and narrow bandwidth conferred by reflection gratings
relaying dispersion-compensated light in head-up displays. The incidence of the
application of the technique to reflection holography has been extremely sparse, but
recent, so its future is uncertain. However, a review of the literature gives one the
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impression that there is a general desire to obtain full-color dispersion-compensated
images. Reflection holography is well-suited to this task, as it provides sufficiently
narrow bandwidth for deeper sharp images of higher hue saturation.

Chapter 4 provides the rationale for designing dispersion-compensation gratings
for full-parallax, reflection holographic stereograms: The degree of improvement in
image sharpness conferred by dispersion compensation relative to an uncompensated
display is greater for full-parallax than for horizontal-parallax-only holographic
stereograms because it can reduce blurring of vertical perspective views in the former.

It is recommended that care be taken when sampling perspective views in the making of a
full-parallax holographic stereogram. Although coarse sampling in the vertical direction
can reduce residual color blurring for a display with a vertically offset illumination
source, the effect may sometimes be likened to a sporadic animation when the observer
moves up and down.

As the device displaying the successive synthetic views is most likely going to
have a resolution much coarser than the spacing of the just-resolvable blurred image
points of Chapter 1, an expression accounting for object resolution should be
incorporated into the perceived blur equation.

Chapter 5 presents an example of a viewstation with a plane-wave grating. Some
of the advantages of a planar wave front for dispersion compensation will be mentioned
in the Chapter 6 summary. The practical advantages in the display of a hologram
illuminated by a plane-wave grating include the fact that the grating and hologram can be
set at any unobtrusive distance from one another, and the resulting image can be made to
exhibit no warping or astigmatism.

The single-most important factor when selecting a recording material, and
deciding on exposure and reconstruction wavelengths and geometries, is how bright the
final image will be. DuPont photopolymers were chosen because they reconstruct with
very high diffraction efficiency. A high-wattage, bare tungsten-halogen lamp with its
small filament oriented to present a solid, radiating area to the grating, can provide just
enough source-size blur to a holographic stereogram so that its image may appear bright
and sharp while the image of its master hologram is rendered an unnoticeable blur.

The grating edge farthest from the light source may be rotated toward the hologram for
increased predispersing capability to compensate for shrinkage of the hologram. The
grating may also be rotated if it itself has shrunk and is playing out at the wrong angles.
The next step in plane-wave dispersion compensation is certainly to produce a bright,
full-color viewstation.

Chapter 6 compares the effectiveness of compact dispersion-compensation
displays that do and do not use a plane-wave grating. Phase-conjugate-illuminated plane-
wave gratings provide the broadest range of viewer positions with perfect dispersion
compensation for a single view angle. Phase-conjugate-illuminated diverging wave-front
gratings present a wider field of view with deeper peripheral points for an observer
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situated at the ideal viewer location and orientation. However, at non-ideal viewer
positions, dispersion compensation degrades and the corresponding maximum image
point distances reduce considerably. Non-phase-conjugate-illuminated diverging wave-
front gratings present a wider field of view of even deeper off-axis image points in front
of and behind the hologram, again when viewed from the ideal location. Maximum
image point distances are more asymmetric about the ideal view axis than in the phase-
conjugate cases above.

Although perfectly reconstructing gratings do not suffer from distortion, they do
not necessarily approximate ideal predispersed angles or distances very closely.
Imperfectly reconstructing gratings can be designed with optimized exposure and
reconstruction angles and distances that are much better approximations of the ideal
quantities.

The procedure the author has adopted to optimize grating playout angles and
distances is a reverse-raytracing method using the Moore-Penrose pseudoinverse function
of a matrix expression containing the grating and vertical focus equations. Appendix 4’s
Matlab program is an implementation of the pseudoinverse method. Although the author
has proven that there is no exact solution to the system of linear angle and distance
equations, the pseudoinverse does provide an optimal solution. It is shown that the
particular viewstation geometries of Chapters S and 6 are better approximated using this
method. However, further experimental testing is required to validate the procedure’s
effectiveness.

A pre-and post-dispersing grating, set flush against the hologram, does not seem
capable of compensating for the hologram’s, in addition to its own, dispersion. (Appendix
5 is a trial Matlab program). It remains to be seen whether or not thin refractive optics
might make such a display possible. The diverging wave-front grating has yet to be
incorporated in the steep angle format; this could produce the next best approach toward
very compact dispersion-compensated displays.

The main body of the thesis is a treatment of vertical dispersion and does not
account for horizontal dispersion, even in the analysis of compact displays. A more
rigorous vector analysis would provide a more complete picture of blur extent in three
dimensions. This would also enable one to model a maximum image envelope,
composed of image points at maximum distances in front of the hologram within the
acuity of the eye, as the eye position and orientation changes.

[ extend my sincere encouragement to my fellow researchers who further the work
outlined in this thesis.
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Appendix 1
Single-plane trigonometric raytracing formulas

A1.1 The X- and Z- raytracing equations

To begin to understand the significance of the complementary roles of the X- and
Z-equations, imagine an infinitely thin recording material set between two sources of
interfering light. The resulting grating would form an equivalent transmission hologram,
and as such, would exhibit the same diffraction characteristics as its transmission
counterpart.

If the recording material is thick, the surface grating structure alone still defines
the diffraction pattern of light leaving the material, in terms of angular playout (not
intensity) of any given wavelength. However, the fringe structure (the tip angle, spacing,
and number of Bragg planes) will effectively act as a tipped interference filter that filters
the diffracted light from the surface grating. The surface grating is governed by the X-
equation, and the interference filter by the Z-equation. A simultaneous solution of the
two equations means that one wavelength will constructively interfere at its primary
output angle (as determined by the surface grating, or X-equation), and will therefore play
out with the highest diffraction efficiency.

Al1l.2 The Welford and X-equations

’

)'211 1

ﬁX(f'om-fﬂl)=m ﬁX(fobj-fmf)

Welford’s Equation (A1.1) (1975) Al n’2
reduces to the trigonometric
: . A2z.m . .
X-Equation (A1.2) (Benton 1994)  sin6bu -sinu=m l (sinBho; - sinBer)
1'm
Al1.3 The Z-equation
h Az Il,l

Z-Equation (A1.3) (Benton 1994)  cos6’ out - 088 = m (cOSO'obj - COSO'ref)

t 2 A‘l I'l’z

This filtering equation will have some degree of uncertainty in its filtering
capability. A final term reflecting this uncertainty in off-Bragg reconstruction may be
added. The following term, Equation (A1.4), is a simplified form of Goodman’s blurred
K- (grating) vector analysis (Goodman 1996) and defines the spread of the angular and
bandwidth playout:
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Grating-vector cloud

\ Kg
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7
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. ogram
Equation (A1.4) e 20’2

Figure A1.1: Grating vector cloud (Goodman, 1996)

For our analyses, however, we will assume, calculate, or measure a spectral bandwidth
and perform calculations for primary (on-Bragg) playout angles.

Al.4 Spectrophotometer data

The author evaluated a grating exposed to two source points with a Krypton laser
at 647 nm on Agfa-Gevaert’s 8E75 silver halide emulsion. The grating was illuminated
with white light focused 600 mm from the film, at 45°, so that it would play out a
chromatically blurred real image of the object point on axis. The exposed fiber end of an
Oriel spectrophotometer was carefully translated along this spectral line, and recordings
were made of the playout wavelengths and corresponding angles.

white light
source

illumination = 600mm, 225 degrees
( reference source = 1200mm, 45 degrees)

Oriel spectrophotometer,
with its exposed fiber translated
along the blurred image points

\

grating

output focus(m = -1) = -159mm, O degrees
(object source distance = 125mm, 180 degrees)

Figure A1.2: Dispersion measurements with an Oriel spectrophotometer translated
along the blur (achromatic) angle while oriented parallel to the hologram normal
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In Table Al.1, the first column lists the recorded wavelengths, and in the adjacent
column, measured angles. From the wavelength measured along the normal, a shrinkage
of 8.66% was calculated (assuming negligible change in index of refraction).

Wavelength Measured £
(nm) (degrees)

Z: X-equation

680.2 186.1 182.1
670 181.4
660 185.1 180.8
650 184.1 180.2
647 183.8 180

640 183.2 179.6
632.8 182.6 179.1
630 182.4 178.9
619.9 181.6 178.3
610 181.1 177.7
599.9 180.2 177.1
590.1 180 176.4
580.1 179.9 175.8
570.1 178.8 175.2
560 178.5 174.6
550 177.5 173.9
543.1 176.3 173.5

Table A1.1: Measurements of dispersion with an Oriel spectrophotometer
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A1.5 The horizontal and vertical focus equations

Two additional equations that we will be using throughout the text are distance, or
focusing equations, the “1/R,” or horizontal focus equation and the “cos’®,” or vertical
focus equation.

1 1 A2 1 1
The horizontal focus Equation (ALS)is: " Ry, =m 21 (Robj L RreﬂJ

We will conclude this appendix with Benton’s trigonometric derivation for the vertical
focus equation. This equation is essentially a derivation for the horizontal focus equation
as well, but takes into account the effect of wave-front curvature on relative phase.

Figure A1.3: (Benton, 1994)

(hcos(61)2

Routl Toutz + ————fout2 = Routifoutl + Ac0s(O1)foutl + 90°
Routi
G T S (Rout1)? foutt + Rout1hcos(81)Toutl + 90°
IR 2 =
VAN NN Tout 2 2
VAN (Rout1)* + (hcos(61))

\“ N
/[\ (Rout1) % sin(6)) Rout1 (h) % cos(61)

B (Routt)? + (hcos(61))2 ’ (Rout1)? + (hcos(61))2

h(cos(Gn))2

= s1n(61) + Routl

(cos(@un)? _ (cos(@mn)? _ Az (cos(@in)* _ (cos(Bem)”
Rout! Rim A Robit Rrefl

Equation (A1.6)
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Appendix 2

Derivation of a vector blur equation
and its reduction to the single-plane,
trigonometric blur equation of Chapter 2

A2.1 Color blur equation derivation

In this appendix, we will raytrace multiple wavelengths about a hologram so as to
derive a vector blur equation. We will compare the result with the trigonometric result of
Chapter 2. The key to the following derivation is the same as that of the trigonometric
analysis: Position (1) values are in terms of the central wavelength, whereas position (2)
values are in terms of an extreme wavelength for a given spectral bandwidth.

. Rilizril2

Rillirill1

Rout2rout2

Rreflrrefl

Deyel Robj1robjl,

Robj2robj2 —

Figure A2.1: Magnitudes and directions for the vector derivation of a blur equation
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We will substitute the following variables into a raytracing equation just as we did
in the trigonometric version in Chapter 2. As we hope to compare the result with the

result from the trigonometric analysis of the x,z-plane geometry, we will begin with
Welford’s Equation (A1.1):

A A A 2 A A A
0 X (Fou - Tir) = M=~ N X (Tobj - Lrer)

Ay

Equations (A2.1):

N ~ A ~ Deyelfoutl + hh
Deye2 Tout2 = Deyel Towl+hh = Towx=—"7T"—""
Deye2
. . N . Riut fimt + h
Rinz tin2 = Riut Tim + £h = Lhip=—""—""
Rinz
. . N R Robj1 Tobj1 + kh ) -
Robj2 Tobjz = Rovji Tobjt +Bh - = Tobp=———— Figure A2.2
Robi2
n n ~ “ Reefi fref1 + £h
Ruret2 Tref2 = Rref1 Tref1 + hh = TenR=""TT—""
RrefZ

The result of the substitutions of Equations (A2.1) into (A1.1) is Equation (A2.2):

Robj2 Rref2

[ Deyetfoutt + kh R Tint + kh A2 [ Robji Tobji + Ah  Rrefi Trefl + hh
nx - =m——nX
Deye2 Rin2 Y
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A2.2 Approximation proof

We will now prove that the denominators with the subscript 2 may be
approximated as their counterparts of subscript 1. Then we will proceed with our
derivation.

Rsin(8 1)+ red

Ry

sin(0 ) :=

Rqsin{6¢)+h
i i < 1 1 Ared
For small h, R | is approximately equal to R 2sm(() Zappmx) = ( R>1

In order to determine how reasonable an approximation the above equation is,
one needs to know the maximum discrepancies between the two angles and the two
hypotenuses.The difference between the angle and its approximation must lie within
the acuity of the eye:

- _ 1
A8 2max =8 2approx by = 60 degree

This difference would then give us a maximum difference between
the two hypotenuses: 4
dmax D2~ D1

The determination is made using trigonometric identities:

9 -8 0 +9
sinf, = 2sin (____Zapprzox 2)‘cos (___Zapprox 2)

$inb 25pprox ™ )
: 20 2+—1—
— QI | —— |+ = . 74. — _4. 1
= 251n(120> cos 5 29110 (cos(92> 1.4510 sm<62>>
Dl-cos<6 1)

cos(02> = D2

D ;-cos (8

. . | ( 1)

sing 2aDPIOX™ s1n92 =29t10 " —i—rr>—~
Pp! D2

Appendix 2 135



Equating this quantity with the difference between the two sines results in:

1 1

D; D,

_ -(D psin(8 1)+h) e 1)+L
Dy+3d D,

sinf 2approx sinf 5 = (D 1-sin(9 1) + h>-

max

29110 D -cos (8 )

IE I ran(os) )

L 3 1
Dy D;+ d na
29110 *D 1-c08 <B 1) D -cos (9 1)
max '~ h =T
;1 + sin<9 1)

An extreme viewing condition testing the approximation is a viewing angle
of 45 degrees and viewing distance at the near point (200 mm):

9

3436sin(0 1)

. 200cos(45)

=220 = 0.0582mm
M 34365in(45)
D j-cos (8 1) 200cos(45)
cos(8) m———— = " = 07060 6, =45017degrees
D{+8 max 200+ 0.0582
D sin(64)+h
nfo ) = DT 1) s h . =0.085 mm
< 2 D max
2
D psin(8 ) +h
. ! 1 max a
sm((') 2approx) = 8 approx =45.034 degrees

D,

The difference is then seen to be within the acuity of the eye for this extreme
viewing condition, so the approximation is a reasonable one to make for the
derivation of the blur equation:

_ 1
8 2approx 92 = <0 degree

136 Appendix 2



To resume the derivation, if we ascribe a central wavelength A 2green to position (1)

different from that of position (2), then we may reduce the vector expression to the
single-plane condition, Equation (A2.3):

o s g Pt (B .aﬂ_@)
Sin(Ghut1(2¢ren) D:yel—sm( m)—le—m—ll— 8111(G>b11)+R0bj1—sm( )" Rt

1 1 Ao 1 1]—'31,1 " ﬂzred(.ab, i)
fred Deyel_Rim_m A1 (Rabjl Reefl = SIn(Bstl(hagem) +SID l”)+m_11— sin(€hei1) —sin(&h)

()LZred -A grem)
m

- (sin(ew)—sin(adl)),
1 1 ’

. Wed=

Deyel " RoutHORZred

The above Equation (A2.3) exactly matches the trigonometric color blur Equation
(2.8) of Chapter 2, with a negative value for RoutlHORIZred. Our final derivation will
add the source-size component to image blur.
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A2.3 Source-size blur derivation

Rillrill hh

Rout2rout2

Figure A2.3: A dispersed focus at the pupil creating the perception of blur height
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D

Rillafill: = - - b + kh + Rillifilli

(® x Fill1)x b = (Fillh x h) x h
(h- & )zills - (gilli - h)® = (b - Filli)h - (b - h)Fill
P (i -zill)h + (B - h)Fill + (B - ®)Fill
- (filli - h)

(E . CB): h %cos(eml)

R W o _. @ -
- (h - rllll)h + (h . h)r1111 + [h '2—cos(6i111)]r1111 [h + —2—cos(9i111)]rilll

o= _
(filll : h) Rillicos(8ir)
@ N
@ h+ Tcos(f)im) rill

Rillarill: = -? -h+ Rillicos(8mn) + kh + RilliTill

I B Y (RN S
N 5 + . ) + ) cos(0iu1) Rillx
rill. =

. Y.
R " *| TRibRibcos@am T Rtk | ~[2R1112 * Rillz)h+ rills

Substituting the revised ryj, again into Equation (Al.1),
A A A _ 2 A A A . .
1 X (Foutt - L) = mrn X (Tobj1 - Trer11) , leads us to our final single-plane vector blur

1
Equation (A2.4):

(ﬁ X (foutlred - foutlgreen))RoutlHORIZredDeyel
hblur =
Rout1HORIZred - Deyel

Dint A
+ (i X Till1) |Rout1HOR1ZredDeyel
2Rim

RoutlHORIZred - Deyel

If Deye1 is made a positive number indicating distance of the viewer from the
hologram position (1), then the form of the Equation (A2.4) closely matches that of the
trigonometric result, Equation (2.13), further demonstrating that the methods are
compatible, and that the vector approach generates a more general form for the
trigonometric expressions commonly used in display holography.
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Appendix 3
TK Solver+ and Matlab programs
applying the derived equations

e solves for blur in uncompensated holograms

« calculates the maximum front and back image depth

« calculates the minimum grating size required

« solves for a dispersion compensation grating whose exposure and
illumination geometries are the same (perfect reconstruction)

St Input Name Output Unit  Comment HOLOGRAM (H) INPUT

7 tl microns emulsion thickness -- exposure

7 t2 microns emulsion thickness -- reconstruction
shrink 0 % percent physical shrinkage

1.63 nl emulsion refr. index -- exposure

1.63 n2 emulsion thickness -- reconstruction

5145 11 nm exposure wavelength (vacuum)

5145 12 nm reconstruction wavelength (vacuum)

-1 m diffraction order: m=+1 for virtual

0 @obj degrees between 0&90° object beam angle

225 Dref degrees between 90° and 270° reference angle
Pout 180 degrees between +£90° (for m =+1) output

45 @ill degrees between 90° and 270° (for m =+1)

UNCOMPENSATED DISPERSION

0 ssize mm illumination source size (diameter)

34.59 bandwid nm spectral bandwidth (min. for H, dcG)

531 I2R nm long (Red) reconstruction wavelength
12G 514.5 nm central (Green) wavelength (= 12)
12B 496.41 nm short (Blue) reconstruction lambda
@outR 181.29 degrees dispersed playout (no dcG) -- Red
@outG 180 degrees dispersed playout (no dcG) -- Blue
@outB 178.57 degrees dispersed playout (no dcG) -- Green
d@out 2.7240 degrees dispersed playout (no dcG)

300 Robj mm H object source distance

9E9 Rref mm H reference distance

9E9 Rill mm H illumination distance
RoutRve -290.5285 mm H vertical output distance -- Red
RoutGve -300 mm H vertical output distance -- Green
RoutBve -310.7403 mm H vertical output distance -- Blue
Lblur 14.358136 mm blur Length
d@blur 1.1752294 degrees blur angle at eye
d@Bento 2.723785 degrees color blur angle -- Benton
d@Bento 0 degrees source size blur angle -- Benton
d@Bento 2.723785 degrees blur angle -- Benton
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1000
.0167

1.63
1.63
5145

450

45
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LblurBe
d@blurB

Deye
d@acuit

Robjmax
Robjmax
Routfro
Routbac

RoutBen-6.080584
RoutBen6.1554416

tl_dcG
t2_dcG
shrink_
nl_dcG
n2_dcG
11_dcG

@illR
@illG
@illB
d@bluri
sep
d@blur_

@objBen
@refBen
@illBen
@outRBe
@outGBe
@outBBe
@tiltBe 0

14.261705
1.1673365

6.0560283
6.1306821
-6.056028
6.1306821

46.868262
45

43.019299
3.8489632

3.8489634

45

179.96792
179.96792
46.866757

43.020841
degrees

mm
mm

mm blur Length -- Benton
degrees blur angle at eye -- Benton
mm viewer distance
degrees (1) Set maximum acceptable blur at
eye (resolving power = 1/60 deg.)
(2) Guess the Robjmax's, and solve
mm max. object distance => plays out w/
mm acceptable blur -- front and back
mm maximum output distance with
mm specified acceptable blur
-- front and back
max. output (front) -- Benton
max. output (back) -- Benton
DISPERSION COMPENSATION
GRATING (dcG) INPUT
(necessary input from above:
everything up through
"bandwidth,"&"Rill"&"Deye")
H
microns Wi I
microns @=gl> <---—-- [
% [ < L
Deye
nm nir.
N l<=mmmmmmmmm *
ni Rill_dcG
deG
* B
* RoutGvert_dcG (m=+1)
* R
degrees H ill. angle for long (Red) 12
degrees H ill. angle for middle (Green) 12
degrees H ill. angle for short (Blue) 12
degrees blur angle illuminating H
mm dcGrating/H separation
degrees necessary dcG blur angle
dcG ANGLES
Perfect reconstruction
Input BoutG_dcG, Guess @ill_dcG
degrees dcG object angle (between +90°)
degrees dcG reference angle (90° to 270°)
degrees dcG illumination angle
degrees dcG output angle
degrees dcG output angle (=@ill if perfect=0)
dcG output angle
dcG tilt angle
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300
300

300

RobjBen9E9 mm
RrefBen

Rill_dc

RoutRBe -9354.555
RoutGBe 9E9
RoutBBe 8532.3305
RoutRve-4372.711 mm
RoutGve 9E9
RoutBve4560.6652 mm
Lholo

LdcGBen 299.99999

mm

mm

mm

dcG DISTANCES
(ideal: = RoutGvert_dcG)obj distance
(ideal: = Rill_dcG) ref. distance
dcGrating illumination distance
dcG playout distance: Red
dcG playout distance: Green
dcG playout distance: Blue
dcG vertical playout distance: Red
(=Rill-sep; ideal output =Robj_dcG)
dcG vertical playout distance: Blue

MINIMUM dcG SIZE
vertical Length of the hologram
min. recom. vertical Length -- Benton
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"dispersion compensation © Amo K

R A T R L R T TR L R L R R LR R R LR L L R L R LR A R A R AT NIRRT R LA T KT A TR LR R R TR )

R R T TR R TN TR LR R L L LR T N R A R R L A A TN T R RN LR R LA AR TR A TR LA LR TR R IR )

" README
" This TK Solver+ program is extracted from MATLAB programs designed to
measure color blur with and without a dispersion-compensated system.

L

First, the amount of uncompensated dispersion from a hologram will be
calculated. Then, a dispersion compensation system will be included.

The technique that will be employed by this program is to solve for the
amount of blur created by a dispersion compensation grating (dcG) that is
required to introduce the extreme wavelengths of the bandwidth to the
hologram (H) at angles that will play out along the normal of H toward the
on-axis viewer. From this calculated blur, the exposure and ideal

and non-ideal reconstruction geometries of the dcG will be determined.”

v

Please take NOTE of the bug report below if you intend to use this
TK Solver program.

R TR R LR L LR R R L AN R LR LR LR R LR A IR R R AR R AR R R AR LR LR R AR AR L)

" SOME ABBREVIATIONS

R TR A L e R R L L LR LR R A A R R R A A L R D R LN A RS N A VLR TR R TR LA AR ]

[

" Unless appended with ' dcG,' all measurements are w/ resp. to H.

" 'Lblur' refers to the length of the blurred image point, and

" 'Lholo' and 'LdcG' refer to the length along the hologram/dcGrating

" contributing to the perceived blur.

" R,G, and B refer to long (Red), central (Green), & short (Blue)

" wavelengths. The color names are merely labels.

" AIllR s are distances from the hologram; Deye = distance of the observer.

R T T R L T LR LR R R LR K R A N LR A TR A T LA AL AL IR AR TR L AR AN AR AR LA L L)

" UNCOMPENSATED DISPERSION

R AR R LR T R R R T R R TR R R AL RN R N E R R RS R AL LR AR I RN IR AR AR RN AR LRI EARA AR AR AR RN AR A

" The playout wavelengths will be determined by the smaller spectral
" bandwidth of H and dcG, assuming equal central playout wavelengths, 12G."

2G=12
2R - 12B = bandwidth
@outG = Qout

" For constant @illG (no dcG), we have the dispersed HOLOGRAM output angles."
sind(90-m*90+m*@outR) = m*[2R/11*(sind(Dobj) - sind(180-Bref))+sind(90+m*90-m*@ill)
sind(90-m*90+m*@outG) = m*12G/11 *(sind(Bobj) - sind(180-Bref))+sind(90+m*90-m*@ill)
sind(90-m*90+m*@outB) = m*12B/11*(sind(Dobj) - sind(180-Bref))+sind(90+m*90-m*Qill)
d@out = abs(@outR - GoutB)

" Vertical focus playout distances -- Rout_vert calculations"

(cosd(@outR))"2/RoutRvert = m*12R/I1*((cosd(Dobj))"2/Robj - (cosd(Dref))"2/Rref+ (cosd(@ill))"2/Rill
(cosd(@outG))*2/RoutGvert = m*12G/I1*((cosd(Dobj))"2/Robj-(cosd(Dref))"2/Rref)+(cosd(Qill))"2/Rill
(cosd(@outB))"2/RoutBvert = m*12B/I1*((cosd(Dobj))"2/Robj -(cosd(@ref))"2/Rref)+ (cosd(Qill)) 2/Rill
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" This block calculates blur according to A.A.Ward's diagram."

"Horizontal focus playout distances -- Rout_ calculations"

1/RoutR = m*12R/11*(1/Robj - 1/Rref) + 1/Rill

1/RoutG = m*[2G/11*(1/Robj - 1/Rref) + 1/Rill

1/RoutB = m*I12B/11*(1/Robj - 1/Rref) + 1/Rill

Lholo_Bcolor = abs((m*12G/I1-m*[2B/I1)*(sind(@obj)-sind(Dref))*
Deye*RoutB/(Deye+RoutB))

Lholo_Rcolor = abs((m*12R/11-m*12G/11)*(sind(Qobj)-sind(Dref))*
Deye*RoutR/(Deye+RoutR))

Lholo_Bssize = abs(ssize*cosd(@ill)* Deye*RoutB/(2*Rill*(Deye+RoutB)))

Lholo_Rssize = abs(ssize*cosd(@ill)* Deye*RoutR/(2*Rill*(Deye+RoutR)))

Lholo_blur = Lholo_Bcolor+Lholo_Bssize+Lholo_Rcolor+Lholo_Rssize

Lblur = Lholo_blur*abs(cosd(@outG))*(Deye+RoutGvert)/Deye

dOblur*pi()/180 = Lblur/(Deye+RoutGvert)

" Maximum depth (front and back): @blur = Qacuity"
" USAGE: Type 'G' for 'Guess' in the 'St' field on the left.
" Then type a small value in the Input field and Solve."
d@acuity*pi()/180 = Lholo_blurmaxfront*abs(cosd(@outG))/Deye
d@acuity*pi()/180 = Lholo_blurmaxback*abs(cosd(@outG))/Deye
Lholo_blurmaxfront =
Lholo_Bcolormaxfront+Lholo_Bssizemaxfront+Lholo_Rcolormaxfront+Lholo_Rssizemaxfront
Lholo_blurmaxback =
Lholo_Bcolormaxback+Lholo_Bssizemaxback+Lholo_Rcolormaxback+Lholo_Rssizemaxback
Lholo_Bcolormaxfront = abs((12G/11-12B/11)*
(sind(Qobj)-sind(Dref))* Deye* RoutBmaxfront/(Deye+RoutBmaxfront))
Lholo_Rcolormaxfront = abs((I2R/11-12G/I1)*
(sind(@obj)-sind(Bref))* Deye* RoutRmaxfront/(Deye+RoutRmaxfront))
Lholo Bcolormaxback = abs((12G/11-12B/11)*
(sind(@obj)-sind(Dref))* Deye* RoutBmaxback/(Deye+RoutBmaxback))
Lholo_Rcolormaxback = abs((12R/11-12G/11)*
(sind(@obj)-sind(QDref))* Deye* RoutRmaxback/(Deye+RoutRmaxback))
Lholo_Bssizemaxfront = abs(ssize*cosd(@ill)* Deye*RoutBmaxfront/(2*Rill*(Deye+RoutBmaxfront)))
Lholo_Rssizemaxfront = abs(ssize*cosd(@ill)* Deye*RoutRmaxfront/(2*Rill*(Deye+RoutRmaxfront)))
Lholo_Bssizemaxback = abs(ssize*cosd(@ill)* Deye* RoutBmaxback/(2*Rill* (Deye+RoutBmaxback)))
Lholo_Rssizemaxback = abs(ssize*cosd(@ill)* Deye*RoutRmaxback/(2*Rill*(Deye+RoutRmaxback)))
1/RoutRmaxfront = -I2R/11*(1/Robjmaxfront - 1/Rref) + 1/Rill
1/RoutBmaxfront = -12B/I1*(1/Robjmaxfront - 1/Rref) + 1/Rill
1/RoutRmaxback = I2R/11*(1/Robjmaxback - 1/Rref) + 1/Rill
1/RoutBmaxback = 12B/11*(1/Robjmaxback - 1/Rref) + 1/Rill
-abs(cosd(@outG))*2/Routfront =
abs(-12G/11*((cosd(@obj))*2/Robjmaxfront - (cosd(Dref))"2/Rref) + abs(cosd(@ill))"2/Rill)
abs(cosd(@outG))"2/Routback =
abs(12G/I1*((cosd(Dobj))*2/Robjmaxback - (cosd(@ref))*2/Rref) + abs(cosd(@ill))"2/Rill)

" This block calculates blur according to S.A.Benton's diagram."

d@Benton_color = 180/pi()*(bandwidth/[2G)*abs((sind(PoutG)-sind(Qill))/cosd(DoutG))
d@Benton_ssize = 180/pi()*ssize*abs(cosd(ill)/(Rill*cosd(DoutG)))

d9Benton”2 = d@Benton_color"2 + d@Benton_ssize"2

LblurBenton = abs(RoutGvert*d@Benton*pi()/180)

d@blurBenton*pi()/180 = LblurBenton/(RoutGvert+Deye)
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" Maximum depth (front and back) -- Benton:"
RoutBentonfront = -Deye*tand(d@acuity/2)/(tand(d@Benton/2)+tand(dDacuity/2))
RoutBentonback = Deye*tand(d@acuity/2)/(tand(d@Benton/2)-tand(d@acuity/2))

o e R TR R R T R L L A T R R AL L R N L R N LA RV TR R LA AT R AR ]

" DISPERSION COMPENSATION
Rratio = 12R/11_dcG
Gratio = 12G/11_dcG
Bratio = 12B/11_dcG

" For sin@out = zero, we first calculate the HOLOGRAM illumination angles."
-sind(90+m*90-m*@ilIR) = m*12R/I1 *(sind(Dobj) - sind(180-Oref))
-sind(90+m*90-m*QillG) = m*12G/11*(sind(Dobj) - sind(180-Bref))
-5ind(90+m*90-m*QilIB) = m*12B/I1*(sind(Dobj) - sind(180-Aref))

" The difference between these angles defines
" the blur illuminating the hologram."
d@blurill = abs(@ilIR - QilIB)

" We can now determine the necessary blur created by the dcG (d@blur_dcG)."
" With the specified grating/hologram separation (sep) and

" the HOLOGRAM illumination distance (Rill) at the central wavelength,
RoutGvert_dcG = Rill - sep

abs(RoutGvert_dcG)*tand(d@blur_dcG/2) = Rill*tand(d@bluriil/2)

" We will work backwards from the desired dcGrating blur to determine

" the output and illumination (as well as tilt) angles of the dcGrating."

113k s sk ok ok 3k 3k 3% 5k % ok sk sk sk sk ok sk ok ok sk ok ok 2k ok % ok ok ok ok ok sk ok ok ok ok 3k 3k sk ok ok ok 3k %k 3K ok K ok ok K ok kK ok ok ok ok Kok k
" NOTE

" The Ward calculations in this section are presently getting stuck in

" some kind of loop in the iterative solver. Although this section is still

" able to provide correct angles and distances for the geometries the author
" has tried, these values disappear from the screen when solving.

" The usual TK solution is to include redundant equations to help the
iterative solver.

" The accompanying Variables section in this appendix, therefore, lists
the blur calculations of Benton's equations. Both Ward's and Benton's
solutions are in very close accordance for this geometry, in any case.

This block calculates angles from blur according to A.A.Ward's diagram."

d@blur_deG*pi()/180 = Lblur_dcG/(sep+RoutGvert_dcG)

Lblur_dcG = LdcG_blur*cosd(@outG_dcG)*(sep+RoutGvert_dcG)/sep

LdcG_blur = LdcG_Bcolor+LdcG_Bssize+LdcG_Rcolor+LdcG_Rssize

LdcG_Bcolor =

abs((Gratio-Bratio)*(sind(@obj_dcG)-sind(@ref_dcG))*sep*RoutB_dcG/(sep+RoutB_dcG))

LdcG_Rcolor =
abs((Rratio-Gratio)*(sind(@obj_dcG)-sind(Qref_dcG))*sep*RoutR_dcG/(sep+RoutR_dcG))

LdcG_Bssize = abs(ssize*cosd(Qill_dcG)*sep*RoutB_dcG/(2*Rill_dcG*(sep+RoutB_dcG)))

LdcG_Rssize = abs(ssize*cosd(Qill_dcG)*sep*RoutR_dcG/(2*Rill_dcG*(sep+RoutR_dcG)))

"Horizontal focus playout distances -- Rout_ calculations"

1/RoutR_dcG = 12R/I1_dcG*(1/Robj_dcG - 1/Rref_dcG) + 1/Rill_dcG

1/RoutG_dcG = 12G/11_dcG*(1/Robj_dcG - 1/Rref_dcG) + 1/Rill_dcG

1/RoutB_dcG = 12B/11_dcG*(1/Robj_dcG - 1/Rref_dcG) + 1/Rill_dcG
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(cosd(@outR_dcG))*2/RoutRvert_dcG = 12R/11_dcG*((cosd(@Dobj_dcG))*2/Robj_dcG -
(cosd(@ref_dcG))*2/Rref_dcG) + (cosd(@ill_dcG))*2/Rill_dcG

(cosd(@outG_dcG))*2/RoutGvert_dcG = 12G/11_dcG*((cosd(Dobj_dcG))*2/Robj_dcG -
(cosd(@ref_dcG))*2/Rref_dcG) + (cosd(@ill_dcG))*2/Rill_dcG

(cosd(@outB_dcG))*2/RoutBvert_dcG = 12B/11_dcG*((cosd(Dobj_dcG))*2/Robj_dcG -
(cosd(@ref_dcG))*2/Rref_dcG) + (cosd(@Bill_dcG))*2/Rill_dcG

" The ANGLES for the different wavelengths playing out of the

" dcG are all the result of a constant illumination angle (@ill_dcG).

sind(@outR_dcG )-sind(180-@ill_dcG ) = Rratio*(sind(@obj_dcG ) - sind(180-Bref_dcG ))
sind(@outG_dcG )-sind(180-@ill_dcG ) = Gratio*(sind(@obj_dcG ) - sind(180-Bref_dcG ))
sind(@outB_dcG )-sind(180-@ill_dcG ) = Bratio*(sind(@obj_dcG ) - sind(180-Bref_dcG ))

" This block calculates angles from blur according to S.A.Benton's diagram."
d@blur_dcGA2 = d@blurBenton_color*2 + d@blurBenton_ssize 2
d@blurBenton_color = 180/pi()*(bandwidth/12G)*abs((sind(@outGBenton_dcG)-
sind(@illBenton_dcG))/cosd(BoutGBenton_dcG))
d@blurBenton_ssize = 180/pi()*ssize*abs(cosd(@illBenton_dcG)/(Rill_dcG*cosd(BoutGBenton_dcG)))
RillBenton_dcG = Rill_dcG
1/RoutRBenton_dcG = 12R/11_dcG*(1/RobjBenton_dcG - 1/RrefBenton_dcG) + 1/Rill_dcG
1/RoutGBenton_dcG = 12G/11_dcG*(1/RobjBenton_dcG - 1/RrefBenton_dcG) + 1/Rill_dcG
1/RoutBBenton_dcG = 12B/11_dcG*(1/RobjBenton_dcG - 1/RrefBenton_dcG) + 1/Rill_dcG
(cosd(@outRBenton_dcG))*2/RoutRvertBenton_dcG =
12R/11_dcG*((cosd(BobjBenton_dcG))*2/RobjBenton_dcG -
(cosd(@refBenton_dcG))*2/RrefBenton_dcG) + (cosd(@illBenton_dcG))*2/Rill_dcG
RoutGvertBenton_dcG = RoutGvert_dcG
(cosd(@outGBenton_dcG))*2/RoutGvertBenton_dcG =
12G/11_dcG*((cosd(@objBenton_dcG))*2/RobjBenton_dcG -
(cosd(@refBenton_dcG))*2/RrefBenton_dcG) + (cosd(@illBenton_dcG))*2/Rill_dcG
(cosd(@outBBenton_dcG))*2/RoutBvertBenton_dcG =
12B/11_dcG*((cosd(@objBenton_dcG))*2/RobjBenton_dcG -
(cosd(@refBenton_dcG))*2/RrefBenton_dcG) + (cosd(@illBenton_dcG))*2/Rill_dcG
sind(@outRBenton_dcG) =
Rratio*(sind(@objBenton_dcG) - sind(180-@refBenton_dcG)) + sind(180-@illBenton_dcG)
sind(@outGBenton_dcG) =
Gratio*(sind(@objBenton_dcG) - sind(@refBenton_dcG)) + sind(@illBenton_dcG)
sind(@outBBenton_dcG) =
Bratio*(sind(@objBenton_dcG) - sind(180-BrefBenton_dcG)) + sind(180-PillBenton_dcG)
" For the case of perfect reconstruction of the dcG (reconstruction angles =
" exposure angles), the dcG will be tilted with respect to H
" so that the dcG creates sufficient blur.
" This tilt angle will be the illumination angle of the dcG, so that the 12G
" output angle of the dcG will equal the central illumination angle of H."
Input Gout_dcG or @ill_dcG, Guess the other.

@tilt_dcG = @ill - (m*90+90) - GoutG_dcG

@ref_deG = @ill_dcG

Bobj_dcG = PoutG_dcG

gtiltBenton_dcG = @ill - (m*90+90) - PoutGBenton_dcG
@refBenton_dcG = @illBenton_dcG

@objBenton_dcG = PoutGBenton_dcG
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" MINIMUM dcG SIZE

" Because the dcG acts as a window through which H is illuminated,

we will determine a reasonable minimum dcG size based on previous
calculations. The size could be smaller, depending on the blur length,

but this calculation assumes that we want the whole H area to be

illuminated by at least the central wavelength.

" Lholo = length of the hologram; LdcG = length of the dcGrating

tand(@low) = (Rill*sind(@illG)-Lholo/2)/(Rill*cosd(BillG))

tand(@high) = (Rill*sind(BillG)+Lholo/2)/(Rill*cosd(BillG))

d@spread = Bhigh-Blow

LdcG = abs(d@spread*pi()/180 * RoutGvert_dcG/(cosd(BillG)*cosd(@tilt_dcG)))
LdcGBenton = abs(d@spread*pi()/180 * RoutGvertBenton_dcG/(cosd(@illG)*cosd(@tiltBenton_dcG)))

"

[l
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Alternative Matlab program

% WARDvsSABblur.m color blur

% MATLAB program to compare color blur values for Benton's and Ward's diagrams

clg
clear

fid = fopen(WARD.dat', 'w');

HBLURWARD = ];
HBLURSAB = |;
DVIEWER = ];
HTOTALWARD = ];
BLURANGLEWARD = ;
BLURANGLESAB = I;
ROBIG=11;
ROUTGVERT =1 J;

objG =68.179171;
refG = 180.02732;
illG =180.02732;
RobjG = 9E9;
RrefG = 9E9;
RillG = 9E9;

ssize = 0;

t1t2 =7/7;

lambdal = 647,
lambdaR = 657;
lambdaG = 647,
lambdaB = 637,
m=1;

ROBIJG = [ROBJG RobjG];

lambdaRratio = m*lambdaR/lambdal;
lambdaGratio = m*lambdaG/lambdal;
lambdaBratio = m*lambdaB/lambdal;

sinobjG = sin(objG*pi/180);
c0s0bjG = cos(objG*pi/180);
sinrefG = sin(refG*pi/180);
cosrefG = cos(refG*pi/180);
sinillG = sin(illG*pi/180);
cosillG = cos(illG*pi/180);

sinoutG = lambdaGratio*(sinobjG - sinrefG) + sinillG;
outG = asin(sinoutG)*180/pi;

if abs(objG) >90 & m>=1

outG = 180 - outG;
end
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cosoutG = cos(outG*pi/180);

RoutRhorz = 1/(lambdaRratio*(1/RobjG - 1/RrefG) + 1/RillG);

RoutGhorz = 1/(lambdaGratio*(1/RobjG - 1/RrefG) + 1/RillG);

RoutBhorz = 1/(lambdaBratio*(1/RobjG - 1/RrefG) + 1/RillG);

RoutGvert = cosoutG*cosoutG/(lambdaGratio*(cosobjG*cosobjG/RobjG - cosrefG*cosrefG/RrefG) +
cosillG*cosillG/RillG);

ROUTGVERT = [ROUTGVERT RoutGvert];

fprintf(fid, 'objG = %4.3f, refG=%4.3f, illG= %4.3f\noutG = %4.3f\nRrefG = %4.3f, RillG=
%4.3f\nRoutRhorz = %4.3f, RoutBhorz = %4.3f\nlambdaGratio = %4.3f/%4.3f\n’,
objG,refG,illG,outG,RrefG,RillG,RoutRhorz,RoutBhorz,lambdaG,lambda1);

DMIN = 200;
ifm==-1

DMIN = -RoutBhorz + 200;
end

for D =DMIN : 10 : 1000;

hRcolorWARD = (lambdaRratio-lambdaGratio)*(sinobjG-sinrefG)*D*RoutRhorz/(D + RoutRhorz);
hBcolorWARD = (lambdaBratio-lambdaGratio)*(sinobjG-sinrefG)*D*RoutBhorz/(D + RoutBhorz);
hRssizeWARD = ssize*cosillG*D*RoutRhorz/(2*RillG*(D + RoutRhorz));

hBssizeWARD = ssize*cosillG*D*RoutBhorz/(2*RillG*(D + RoutBhorz));

htotalWARD = abs(hRcolorWARD+hRssizeWARD) + abs(hBcolorWARD-+hBssizeWARD);
hblurWARD = htotal WARD*abs(D+RoutGvert)*abs(cosoutG)/D;

blurangleWARD = hblurWARD/(D+RoutGvert) * 180/pi;

DVIEWER = [DVIEWER D],

HTOTALWARD = [HTOTALWARD htotalWARD];
HBLURWARD = [HBLURWARD hblurWARD];
BLURANGLEWARD = [BLURANGLEWARD blurangleWARD];

hcolorSAB = ((lambdaR-lambdaB)/lambdaG)*(sinoutG-sinillG)/cosoutG;
hssizeSAB = ssize*cosillG/(RillG*cosoutG);

hblurSAB = abs(RoutGvert*sqrt(hcolorSAB*hcolorSAB + hssizeSAB*hssizeSAB));
blurangleSAB2 = sqrt(hcolorSAB*hcolorSAB + hssizeSAB*hssizeSAB) * 180/pi;
blurangleSAB = hblurSAB/(D+RoutGvert) * 180/pi;

HBLURSAB = [HBLURSAB hblurSAB];
BLURANGLESAB = [BLURANGLESAB blurangleSAB];

fprintf(fid, 'RobjG = %4.3f, RoutGvert = %4.3f, D = %4.3f\nhblurWARD = %4.3f, hblurSAB =
%4.3f\nblurangleWARD = %4.4f, blurangleSAB = %4.4f\n\n’,
RobjG,RoutGvert,D,hblurWARD,hblurSAB blurangleWARD ,blurangleSAB);

end

end

end

fclose(fid)

subplot (3,1,1), plot (ROUTGVERT, HBLURWARD, 'g0’);
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title (‘perceived blur height with image output distance');
hold on

plot (ROUTGVERT, HBLURSAB, 'y*');

xlabel('Image output distance (mm)');

ylabel('perceived blur height (mm)’);

subplot (3,1,2), plot (ROUTGVERT, BLURANGLEWARD, 'go’);
title (‘perceived blur angle with image output distance');

hold on

plot (ROUTGVERT,BLURANGLESARB, 'y*");

xlabel('image output distance (mm)");

ylabel('perceived blur angle (degrees)');

subplot (3,1,3), plot (ROUTGVERT, HTOTALWARD, 'g-');
title (‘Height of hologram region contributing to blur');
xlabel('image output distance (mm)');

ylabel('hologram height -- blurWARD");

hold off
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Appendix 4

A Matlab program for the design of
dispersion-compensation gratings (Chapter 6)

% gratingdesigner.m

% This program first calculates the angles and distances required for three different wavelengths to
% reconstruct a holographic image (H2) along a viewer axis. Illumination of the hologram from these

% calculated positions compensates for chromatic dispersion that would have occurred had a single,

% broadband point source of light illuminated the hologram.

% Then the program takes the specified separation between this hologram and a dispersion

% compensation grating (H1), and calculates what the playout angles and distances for the three different
% wavelengths would have to be from H1 to compensate for dispersion of H2.

% Finally, the program outputs a list of potential exposure and reconstruction geometries into the

% file: "gratingdesigner.dat".

clear

fid = fopen('gratingdesigner.dat', 'w');
OBJ =[];

REF = [];

ILL =[};

OUTG =[];

e Ya e Ye Yoo e e Ye ooV Yo Ve Yoo %Yo YoY% Ye Yo% 6 %% Ve Yo% % Y6 %% %o Yo%

%

INPUT VARIABLES: %

%%%%%0%6% %% %% %% %%0%%6%%0%%%6%%%%6%%6%%%%%:%%%%%%6%%0%%6%%%%%%% %%

lambdal = 514.5;
lambdaR = 524.5;
lambdaG = 514.5;
lambdaB = 504.5;

H2out = 180; % degrees
H2o0bj = 0; % degrees
H2ref = 225; % degrees
mH2 =-1;

H2Rout = -500;

H2Robj = 300;

H2Rref = 750;

mH1 =1;

HIRillmax = inf;
H1H2separation = 450;

HloutGmin = 30;
HloutGmax = 70,
deltaH1Rout = 50;

% exposure wavelength (nm)

% output long wavelength -- "Red"
% output central wavelength -- "Green"
% output short wavelength -- "Blue"

% dispersion-compensated H2 output angle
% H2 object (signal) beam angle

% H2 reference beam angle

% H2 diffractive order

% H2 output distance

% H2 object distance

% H2 reference point distance

% H1 diffractive order
% maximum grating illumination distance
% grating/hologram separation

% output angle range minimum (Green)
% output angle range minimum (Green)
% maximum discrepancy of HI output distances

%%%%%%%6%6%%6%6%%6%%%%%6%6%%%%%6%%%%6%6%%0%%0%%6%%%%6%%%:%% %% % %% %% %%

%

H2 ANGLES %

%0%6%0%%%%%6%6%6%0%%6%%%6%6%%%6%6%%%%6%%%6%6%%%%% %% %% %% %% %%%6%%%%%%%

H2out = H2out*pi/180;
H2obj = H20bj*pi/180;
H2ref = H2ref*pi/180;

H1loutGmin = HloutGmin*pi/180;
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HloutGmax = HloutGmax*pi/180;

lambdaRratio = lambdaR/lambdal;
lambdaGratio = lambdaG/lambdal;
lambdaBratio = lambdaB/lambdal;

H2ilIR = asin(sin(H2out) - lambdaRratio*mH2*(sin(H2obj)-sin(H2ref)));
H2illG = asin(sin(H2out) - lambdaGratio*mH2*(sin(H2obj)-sin(H2ref)));
H2ilIB = asin(sin(H2out) - lambdaBratio*mH2*(sin(H2obj)-sin(H2ref)));

RH2G = abs(H2ilIR - H2illG); % angular H2 illumination (green-red)
BH2G = abs(H2illG - H2ilIB); % angular H2 illumination (green-blue)

2%%%%%6% %6 %% %% %% %% %% %% %% %% % %6%6%6%6%6%0%6%0%0%0%6%6%6%6%0%6%0%0%%%%%6%% %% %%
% H2 DISTANCES %
26%% %% %% %6% %% %% % %% %% % %6%6%6 % %0 %% %6%6%6%0%6%%%6%% %% %% %6%0%6%0%6%%6%%0% %%
% ideal H2 illumination distances -- Red, Green, and Blue

RH2 = cos(H2illR)"*2/(cos(H2out)"2/H2Rout - lambdaRratio*mH2*(cos(H20bj)"2/H2Robj -
cos(H2ref)"2/H2Rref));

GH2 = cos(H2illG)"2/(cos(H2out)*2/H2Rout - lambdaGratio*mH2*(cos(H20bj)"2/H2Robj -
cos(H2ref)"2/H2Rref));

BH2 = cos(H2illB)"2/(cos(H2out)"2/H2Rout - lambdaBratio*mH2*(cos(H20bj)"2/H2Robj -
cos(H2ref)"2/H2Rref));

%6%6%% %% %% %% %% %0%%6%6%6%%6%6%6%0% % % %% % %% % %6 % %% %% %0 %0%0%6 %% %% %% %% %% %% %
% H1 DISTANCES %
26%%%%6%%%6% %% %% %% %% %% %% %% %0 % % %% % %0 %% %% %0 %% %6%6%0% % %% %% %% %% %% %0
% H1 ideal playout (Green)

H1G = GH2 - H1H2separation;

% H1 ideal playout (Blue, Red) (cosine law)

H1Bideal = sqrt(BH2"2 + H1H2separation”2 - 2*BH2*H 1H2separation*cos(BH2G));

H1Rideal = sqrt(RH2"2 + H1H2separation”2 - 2*RH2*H1H2separation*cos(RH2G));

2/6%%%% %% % %% %% % %% %% %% %% % %% % %% %% % %% % %% %% %6%6%%:%%%%:%6%%%%% %%
% H1 EXPOSURE ANGLES %
6% %% %% %% % %% %% %% %0 %% %% %% % %% %% %0 %6 %0 %6 %6 %% %% %0%0%6%6%0%6%%:%6% %% %% %%
coeffl = [lambdaRratio*mH1 -lambdaRratio*mH1 1

lambdaGratio*mH1 -lambdaGratio*mH1 1

lambdaBratio*mH1 -lambdaBratio*mH1 1];

% H1 playout angles: sin(H2H1Bideal)/BH2 = sin(BH2G)/H1Bideal (sine law)
H2H1B = pi - asin(BH2*sin(BH2G)/H1Bideal);

BHIG = pi- H2HI1B;

H2HIR = pi - asin(RH2*sin(RH2G)/H1Rideal);

RH1G = pi- H2HIR;

outG = HloutGmin;
for outG = HloutGmin : 1*pi/180 : HloutGmax
outR = outG + RH1G;
outB = outG - BHIG;
sinoutR = sin(outR);
sinoutG = sin(outG);
sinoutB = sin(outB);
sinout = [sinoutR; sinoutG; sinoutB];
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sinobjrefill = pinv(coeff1)*sinout;
sinobj = sinobjrefill(1);

sinref = sinobjrefill(2);

sinill = sinobjrefill(3);

if sinobj<1 & sinref<1 & sinill<l & sinobj>-1 & sinref>-1 & sinill>-1
obj = asin(sinobj);
ref = pi-asin(sinref);
ill = pi-asin(sinill);
OBJ = [OBJ obj*180/pi];
REF = [REF ref*180/pi];
ILL = [ILL il*180/pi];
OUTG = [OUTG outG*180/pil;

%%%% %% %% %% %0 %% %% %% %%6%6%6%6%%6%%6%6%6%%6%6%0%6%%%%%%%0%%:%0%%:%%%%% %%
% H1 EXPOSURE DISTANCES %
%%%%%%%%% %% %% %% % %% %% %6 %% %%0%%6%6%6% %0 %% %6%6%6%%6%%6%0%%:%%%:%%% %% %%
coeff2 = [lambdaRratio*mH1*cos(obj*pi/180)"2 -lambdaRratio*mH1*cos(ref*pi/180)"2 cos(ill)*2
lambdaGratio*mH 1 *cos(obj*pi/180)"2 -lambdaGratio*mH1*cos(ref*pi/180)"2 cos(ill)*2
lambdaBratio*mH1*cos(obj*pi/180)"2 -lambdaBratio*mH1*cos(ref*pi/180)"2 cos(ill)"2];

% Non-ideal H1 output distances may be required to satisfy the vertical focus equations.
% HIR = HIRideal;
% HI1B = H1Bideal;
for HIR = H1Rideal - deltaH1Rout/2 : 1 : H1Rideal + deltaH1Rout/2
for HIB = H1Bideal - deltaH1Rout/2 : 1 : H1Bideal + deltaH1Rout/2
cossqoverH1R = cos(outR)"2/H1R,;
cossqoverH1G = cos(outG)"2/H1G;
cossqoverH1B = cos(outB)"2/H1B;
cossqoverH1out = [cossqoverH1R; cossqoverH1G; cossqoverH1B];

oneoverRobjrefill = pinv(coeff2)*cossqoverHlout;
Robj = 1/oneoverRobjrefill(1);
Rref = 1/oneoverRobjrefill(2);
Rill = 1/oneoverRobjrefill(3);
% if (Robj<-1000 | Robj>0) & (Rref<-1000 | Rref>0) & Rill>0 & Rill <= H1Rillmax
fprintf(fid, 'outR = %4.3f, outG = %4.3f, outB = %4.3f\nobj = %4.3f, ref = %4.3f,
ill = %4.3f\nRobj = %4.3f, Rref = %4 .3f, Rill = %4.3A\nRH2 = %4.3f, GH2 = %4.3f,
BH2 = %4.3f\nH1Rideal = %4.3f, H1Gideal = %4.3f, H1Bideal = %4.3f\nHIR = %4.3f, HIG =
%4.3f,  HIB = %4.3f\n\n", outR*180/pi, outG*180/pi, outB* 180/pi, obj* 180/pi, ref* 180/pi, ill* 180/pi,
Robj, Rref, Rill, RH2, GH2, BH2, HIRideal, H1G, H1Bideal, HIR, H1G, H1B);
% end
end
end
end
end
plot (OUTG, OBJ, 'go");
hold on;
title (‘'Exposure and Illumination Angles for the Diverging Grating: 750/750");
plot (OUTG, REF, 'g-");
plot (OUTG, ILL, 'y*");
xlabel('central lambda output angle, outG (degrees)');
ylabel('obj(o), ref(-), and ill(*) angles (degrees)");

Appendix4 157



158



Appendix 5

A Matlab program attempting to solve for a pre- and post-
dispersing grating set flush against a hologram (Chapter 6)

% Hologram/grating sandwich
%
% fdcg = abs(sinobjdcg - sinrefdcg)/lambdal;
% fH = abs(sinobjH - sinrefH)/lambdal;

%
% 1st pass through the dcg
%
% sinoutldcg = sinillldcg + m1dcg*lambda2*fdcg;
%
% Reflection hologram
%
% sinoutH = sinoutldcg + mH*lambda2*fH;

% sinoutH = sinillldcg + m1dcg*lambda2*fdcg + mH*lambda2*{H;
%
% 2nd pass through the dcg
%
% sinout2dcg = 0 = sinoutH + m2dcg*lambda2*fdcg;

% 0 = sinillldcg + m1dcg*lambda2*fdcg + mH*lambda2*fH + m2dcg*lambda2*fdcg;
%
% Substitution:
%
% sinillldcg = -m1dcg*lambda2*fdcg - mH*lambda2*fH - m2dcg*lambda2*fdcg;
%

% fdcg = (sinobjdcg - sinrefdcg)/lambdal;

% refdcg = illdcg

% sinillldcg = (-(m1dcg*lambda2 + m2dcg*lambda2)*objdcg-

% mH*lambdal*lambda2*fH)
% /(lambdal - m1dcg*lambda2 - m2dcg*lambda2)
%

fid = fopen('bumsteadDcgH.dat’,'w");
fid2 = fopen('bumsteadDcgH.dat','a’);
fprintf(fid,\n');

lambdalG = .000000514;
lambda2R = .000000524;
lambda2G = .000000514;
lambda2B = .000000504;

formldcg=-1:2:1

form2dcg=-1:2:1

formH =-1:2:1

for objdcg = 110: 10 : 180
for objH =-70: 10 : 250
for refH = -70 : 10 : 250

sinobjdcg = sin(pi/180*objdcg);

fH = abs(sin(objH*pi/180) - sin(refH*pi/180))/lambdalG;
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numG = (-(mldcg*lambda2G + m2dcg*lambda2G)*sinobjdcg - mH*lambdal G*lambda2G*{H);
numR = (-(m1dcg*lambda2R + m2dcg*lambda2R)*sinobjdcg - mH*lambdalG*lambda2R*fH);
numB = (-(m1dcg*lambda2B + m2dcg*lambda2B)*sinobjdcg - mH*lambdal G*lambda2B*fH);
denomG = (lambdalG - m1dcg*lambda2G - m2dcg*lambda2G);

denomR = (lambdalG - m1dcg*lambda2R - m2dcg*lambda2R);

denomB = (lambdalG - m1ldcg*lambda2B - m2dcg*lambda2B);

sinill1dcgG = numG/denomG;

sinillldcgR = numR/denomR;

sinillldcgB = numB/denomB;

illdcg = 180 - 180/pi*asin(sinillldcgG);

% just to make sure that the zero order does not strike the viewer: outH>30 or outH<30deg
fdcg = abs(sinobjdcg - sinill1dcgG)/lambdalG;
sinoutldcg = sinillldcgG + mldcg*lambda2G*fdcg;
sinoutH = sinoutldcg + mH*lambda2G*{H;
outH = 180/pi*asin(sinoutH);
if outH>30 | outH<-30
if sinill1dcgG >-1 & sinill1degG <1
if illdcg>100 & illdcg<260
if sinillldcgR == sinill1dcgG
if sinill1dcgB == sinillidcgG
if (objH>-70 & 0objH<70 & refH>110 & refH<250) | (objH>110 & objH<250 & refH>-70 & refH<70)

fprintf(fid2,'m1dcg = %4.5f, m2dcg = %4.5f, mH = %4.5f\n’, mldcg,m2dcg,mH);
fprintf(fid2,'refdcg = %4.5f, or %4.5f\n’, illdcg, -180 - illdcg);

fprintf(fid2,'objdcg = %4.5f, refdcg = %4.5f, or %4.5f\n’, objdcg,illdcg,-180-illdcg);
fprintf(fid2,'objH = %4.51, refH = %4.5f\n\n’, objH, refH);

end
end
end
end
end
end
end
end
end
end
end
end
fclose(fid)
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