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Abstract

Photomosaics are mosaics composed of photographic images instead of solid colored tiles. A
Photomosaic is a multi-scale image, conveying different information when viewed up close as
when seen from a distance. From a distance, only the global subject of the mosaic should be
visible, appearing without discrete components, thus the photographic images chosen must
be visually similar to the local region of the over-arching image they represent. This seamless-
ness is produced by introducing sub-picture resolution — the consideration of regions within
images. In addition to producing seamlessness, this resolution increases the potency of each
tile, giving it greater global image forming ability. Up close, the Photomosaic should be seen
as a matrix of individual photographs, taking the place of the larger image they collectively
form. These photographs may be semantically related, directly, indirectly, or metaphorically,
to the over-arching image in a global or localized fashion. This thesis presents the concepts,
relevant research, essential technology, and creative applications of photomosaics.
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Chapter 1

Introduction

1.1 The Goal

Mosalc 1s THE ART of decoration: variously colored pieces of material
are closely set to form an image. Traditionally, mosaic is unlike intarsia
or a jigsaw puzzle, for when disassembled, it cannot be simply reassem-
bled by considering each component’s shape. Mosaics have existed for
thousands of years, and have been assembled from materials ranging
from stone, wood, and stained glass, to dabs of paint, pixels of phosphor,
and ink.

I have developed a process to create Photomosaics, new, more com-
plex mosaics composed of digital images instead of solid bits of color. To
make these mosaics, visually similar photographs, photographs that look
alike when viewed from afar, must be located and organized so that one
image may substitute for a region of another. This is the main technical
subject of my thesis. My goal is to create mosaics from carefully selected
and arranged photographs to allow a realistic over-arching image to
emerge when viewed from a distance.

Photomosaics are multi-scale images, which when properly con-
structed, allow only discrete images to be perceived when viewed up close
and only one seamless over-arching image to be discernible from a dis-
tance. This containment of multiple sources of information gives Photo-
mosaics the power to play with the contents’s relations. These relations
may be ironic, metaphoric, surprising, or even inject a message.

To make Photomosaics, thousands of images must first be classified
and stored in a large database. A master image, the global image represent-
ed by the mosaic, is then divided into a grid and analyzed section by sec-
tion. Appropriate images from the database are selected during this
process to become tiles in a particular grid space. These images will have
attributes and features, such as similar colors, textures, or semantics, to
the region being matched. The subject of each tile may also be relevant
in some way to the master image or to the specific localized region of the
master image.

1.2 Why this Project?

Mosaics have a time-tested charm. The digital techniques I have created
attempt to preserve this charm. Photomosaics combine photography
and computer science to create a new visual art form. They invite new
possibilities such as applications in advertising, entertainment, and art
work.

15



1.3 Possible Applications

Image banks may be sorted and shuffled into a pattern that communi-
cates additional information. Important points may be conveyed by cre-
ating a Photomosaic with a relationship between the two scales of
images — whether the connection is a direct, inverse, or a metaphoric
one.

1.3.1 Advertising

Photomosaics are suitable for advertisements because they are novel,
attention getting, and can relate content to the product or message in a
powerful gestalt. Figure 1.1 shows a social statement from a clothing

company, using a similar method by depicting the acronym AIDS made
from human faces.
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Figure 1.1: United Colors of Benetton Poster
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Figure 1.2: Where’s Waldo Example

1.3.2 Entertainment

There is a market for picture puzzles. Wheres Waldo (1], shown in Figure
1.2, is a popular series of books by Martin Handford. Over five million
of these books have been sold in the first two years. One searches for
Waldo in a confusing array of similar looking objects. For example, the
red stripes in Waldo’s shirt may match a table cloth or apron. A Photo-
mosaic could also contain hidden images. For instance, a skull could be
made with tiles from Alfred Hitchcock’s movie Psycho, and the challenge
would be to find the tile containing an image of Hitchcock himself.

18



Figure 1.3: Painted Inlay by Kit Williams

Another visual puzzle is Kit Williams’s 1984 book [2], which has no
title. The title was left for the reader to discover, and express without
words, as part of a contest. The person with the most original entry won
a fabulous prize. Each page in the book is an image of painted and inlaid
wood, and offers a clue (see figure 1.3). Similar mysteries and challenges
could be encoded into Photomosaic art work.
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1.3.3 Art Work

The history of art shows an ongoing interplay between different media.
Mosaic emulated painting by using subtle and realistic hues before tak-
ing on its own unique characteristics, such as the use of bright colors
and absence of middle tones. At this point paintings began to emulate
mosaics. Photography provides a similar example. When photography
was first introduced, it was not considered to be a serious art form like
painting, as the photographer merely captured reality. Only later did
photography become its own art form, with room for individual style
and expression. Computer graphics borrows from painting (automati-
cally generating Mirés, Mondrians, or painterly effects), and painting
occasionally borrows from computer graphics. Figure 2.12, a painting by
Salvador Dali, shows an image of President Abraham Lincoln, based on
the blocky computer graphics image of Lincoln made by researcher
Leon D. Harmon. Photomosaics, in turn, can draw from painting, pho-

tography, mosaic, and computer graphics to develop its own unique
artistic identity.
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Chapter 2

Mosaics, Other Composite Images, and
Computerized Selection Techniques

PHOTOMOSAICS ARE GENERALIZED MOSAICS. If the techniques used in
earlier mosaic forms are sorted in chronological order, their evolution
can be seen as a function of the latest technology enabling new possibili-
ties.

2.1 Conventional Mosaics
2.1.1 Development

Mosaic is the art of using closely set colored materials, such as tile, glass,
or stone, for decorating a surface. Mosaic tiles differ from intarsia (fitted
wooden inlays) in that the shapes do not relate to a large portion of the
image. Through combining many small pieces of various colors, a large
image may be formed. This larger image cannot be assembled like a puz-
zle simply by seeing the individual pieces.

The earliest discovered mosaic art work is from the 8th century Bc,
and mosaic became the leading pictorial art in Byzantium from the 4th
to 14th century. Early mosaics were constructed of pebbles which limited
the range of colors. Larger pebbles often were used as filler in areas of low-
er detail, while smaller ones resolved more critical sections. This tech-
nique was well developed by the sth century Bc. By the 4th century Bc,
pebbles were painted to increase the range of available colors. It was at
this point that mosaic started to compete with painting for its ability to
convey a sense of space and detail. At the beginning of the 3rd century
BC, cut pieces replaced the pebble technique and new materials such as
glass enriched the medium.

21
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Figure 2.1: Early Roman Floor Mosaic

Mosaic moved to Roman soil by a process of diffusion, and devel-
oped into a rich art form in the 3rd century Ap. Figure 2.1 shows a Roman
floor mosaic from 240 AD with color and shading as elaborate as a paint-
ing. Mosaic style, in fact, paralleled that of paintings during the growing
use of mosaic through the 4th century. Mosaic advanced during the Ro-
man imperial times of the 4th through 6th centuries when it took on
unique characteristics. While the first mosaics had gradual painting-like
changes in color made possible by both painted and unpainted pebbles,
the newest designs focused on higher contrast and greater brilliance.
Many of the middle tones were eliminated altogether. Once this new
style was developed and mosaic became popular in church decoration,
painting itself started to be influenced. Byzantine and western European
paintings of the Middle Ages had greater contrast and brilliance, which
may have been influenced by mosaic art.

Mosaic did notsit still. One important advance in mosaic technology
is called ressera. Tesserae are pieces cut into triangular, square, or other
shapes with a size that varied with the level of detail needed in a given re-
gion of the art work. Figure 2.2 is a close-up of the empress Theodora cre-
ated in 548 AD for the church of San Vitale. The bright decoration and
colors are in the Hellenistic Roman tradition yet the tesserae form the
face with a gentle shading more common in an earlier period. Mosaics in
the 1oth century, the height of development, took advantage of the
unique characteristics of the medium, and materials were chosen based
on their level of appropriateness for the task. Glass makers were now pro-
ducing glass in thousands of tones. Mosaic artists, in an effort to compete
with painters of the Renaissance, often duplicated their work and some

22
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Figure 2.2: Empress Theodora
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times went a few steps further. Images were made that produced true
dimensional effects that, when combined with the rich colors and mate-
rials available, went beyond what was possible in paintings.

2.1.2 Materials

Materials used in mosaic art varied through the phases of development.
Stone was one of the first materials because of its availability. Uncut peb-
bles of uniform size became floor decorations in the earliest Greek and
Roman works. The range of tint, of course, was limited to natural hues.
Glass, first used in the 3rd century Bc, could be made rich in color and
brought a wealth of new possibilities to the art. By the sth century,
mosaics were often constructed entirely of glass. Since glass is brittle,
mosaic using these rich color schemes often became wall art, for durabil-
ity. Materials were also used to signify semantic information. Gold leaf,
for example, was chosen not only to enhance the range of colors, but
also to signify light emanating from God. Silver signified light from
Christ, and often was restricted to this use. In the 6th century, these
metallic pieces were being set at an angle to enhance the light reflecting
effects. It was ceramic, however, that became the most popular material
in modern mosaic art due to its versatile nature.

2.1.3 Technique

There are many considerations when planning a mosaic, including the
overall design, materials, lighting, tile size, and shape of cut. This
requirement of a broad range of skills has limited the art to those with a
firm grasp of technology, not unlike computer art today. Mosaics were
made by first drafting a sketch and detailed outline, which often
included the colors desired, on to the surface. When the tiles were set,
their texture and hence their appearance was often defined by the loca-
tion of the mosaic. A floor mosaic, for example, must have more tightly
set pieces for increased durability and perhaps for the comfort of bare
feet. Wall mosaics, therefore, had more room for artistic control because
they could be closely or loosely set, and made from a wider range of
materials. The tiles in any mosaic are placed in one of two ways — either
one by one directly onto the surface, or by an indirect method of build-
ing sections at a time and then placing them into a larger composition.
Most mosaics made today are by the indirect method. It should also be
noted that earlier mosaics were often designed and constructed by the
same artist. Later ones, including most made today, were not set by the
artist or designer — perhaps lowering the overall quality of the finished

art work.
2.2 Image Mosaics

The process for Photomosaics is unique, but this is not the first time
images have been tiled into a mosaic. Following are some examples of
previous work.
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Figure 2.3: Kai Krause, Mona Lisa made from Mona Lisas

2.2.1 Kai Krause - PixnPix

Krause (http://www.metatools.com) has created images made from
smaller, modulated images, and calls the process PixnPix. Figure 2.3
shows one of Krause’s first attempts — a Mona Lisa made from tiny styl-
ized Mona Lisas. It is important to note that each of the smaller images
are identical except that the brightness has been altered.
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Figure 2.4: Mona Lisa made from 10,000 Passport Photos

2.2.2 Mona Lisa made from Passport Photos

Ramén Nifiez Centella had the idea to use ten thousand passport pho-
tos and a computer to render an image of the Mona Lisa (partially seen
in figure 2.4). This image, called Gioconda Sapiens, can be seen at
Domus, The House of Man — an interactive science museum in La
Corufia, Spain. Notice how the color space is very limited because of the
choice of materials (human faces) — a similar problem faced by ancient
mosaics made from pebbles.
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Figure 2.5: Adam Finkelstein, American Gothic, 1995

2.2.3 Adam Finkelstein

Finkelstein  (http://www.cs.washington.edu/homes/adam/)  created
image mosaics as a graduate student at the University of Washington.
Figure 2.5, one of the several images he created, is an adapration of the
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oil painting America Gothic by Grant Wood. Finkelstein made it in early
1995 by collecting images from the Web and arranging them to suggest
the underlying image. The grayscale values of each sub-image were
altered to be more compatible with the main image. The result appears
to be a 50 percent blend of the painting and tiles.

2.2.4 Alain Omer Durangeau

In early November 1995, Durangeau of Canada saw the Photomosaic
cover that I did for WIRED magazine and sent me an earlier mosaic that
was also composed of images. The difference was that he produced his &y
hand, with enormous patience and labor. Mr. Durangeau used a scene
from Georges Mélies’s A Trip to the Moon as his target image.

To achieve such a feat, Durangeau painstakingly digitized scenes
from movies, then carefully processed and hand placed the frames (see
figure 2.6).

Being from movies, the mosaic tiles are related to the theme, and the
contents of each sub-image match the contours of the master image. Du-
rangeau considered shape and color of sub-objects within tiles, not just
the overall color. It was this image that motivated me to create more in-
telligent software. My goal became to produce results that were on par,
while taking advantage of the computer’s ability to thoroughly consider
many more variables than a human artist.
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Figure 2.6: Alain Omer Durangeau, Hand-Created Image
Mosaic, 1995
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Figure 2.7: Giuseppe Arcimboldo, Vertumnus, 1590 or 1591

30



2.3 Other kinds of Composite Images

There are many non-mosaic art forms that achieve similar goals to Pho-
tomosaics. Perhaps they make an image from other objects, or images of
other objects, that have some relationship to the overall theme.

2.3.1 Giuseppe Arcimboldo

Arcimboldo (1527-1593) was an Italian painter who rendered portraits as
a carefully arranged collection of other objects. Images of things such as
fruit, vegetables, flowers, animals, and fish were used in combination to
form something else, perhaps a face, such as in figure 2.7.
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Fgure 2.8: Arthur S. Mole, Living Photogph
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2.3.2 Arthur S. Mole

Mole, born in 1889, composed “living” images by organizing thousands
of people into patterns that form another image. These images are inter-
esting for several reasons: the difficult nature of involving so many peo-
ple, the artistic and creative ideas that they evoke, and because of the
social record that they form. “The Cross and Crown,” Mole’s first image,
was organized in 1913 and included 1500 men and women from the con-
gregation of the Christian Catholic Church [3]. Mole’s first widely pub-
lished image was “The Human American Flag,” made in 1917 for
Memorial Day at the United States Naval Training Center in Great
Lakes, Illinois.

These images were created by Mole standing at the top of a tower
with a megaphone and an 11 x 14 inch view camera. He would have the
shape drawn on the ground glass of the camera, and then direct the men
to stay within the lines. This allowed the perspective of the image to re-
main correct even though the men were not photographed from directly
above. Mole’s most challenging image was the Statue of Liberty made at
Camp Dodge in Des Moines, Iowa (figure 2.8). It contained 18,000 men
(the largest image was of a us shield with 30,000 men), and required
complex detail and control over perspective to render. It is interesting to
note that the final formation used for this image was 1,235 feet long and
12,000 men were required to fill the flame (because of their distance from
the camera) while only 17 were in the bottom line. How did the partici-
pants feel about having to stand for two or more hours to make an image?
They seemed to be excited to become a part of history [4]. In a 1968 in-
terview with Mole, he described how excited he was to first see an image
form right before his eyes [5]. The power to move armies is exciting, I
would imagine.
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Figure 2.9: Charles Close, Roy 11, 1994



2.3.3 Charles Close

Close (1940 - ) is an American artist who gained attention during the
mid to late 1960s as a member of the photorealist movement of painters
who based their work on photographs. Mr. Close creates a grid on a real
photographic image and then copies the value of that area onto canvas
by interpreting it as an abstract shape. Circles, lines, stars, and diamonds
are abstractions that become realism in his work. Figure 2.9, created in
1994, is 102 x 84 inches.
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Figure 2.10: Knowlton and Harmon, Nude, 1967

2.3.4 Knowlton and Harmon

In 1966, while at Bell Laboratories, Ken Knowlton and Leon Harmon
produced grayscale images from binary (pure black and white) symbols
by considering black-dot occupancy on an 11 x 11 matrix [6]. These
images were more interesting than ones which simply used dots because
they contained symbolic patterns on two levels. From up close, only the
pictographic symbols were visible. From a distance, a larger image
formed and the smaller pictograms disappeared. Figure 2.10, one of the
first they produced, was an attempt to bridge the gap with classical art.
Picture processing by computers was so rare at the time, that they used
the term “supernumerical” to mean an application for computers not
directly related to mathematics.

Both Knowlton and Harmon continued with their research and art.
Harmon made the famous blocky image of Lincoln using 14 x 18 pixels
and 16 levels of gray in 1970 for research on face recognition [7]. Knowl-
ton experimented with type to convey imagery and started producing im-
ages such as that in figure 2.11 in 1971 [8]. The actual Liberty image
shown, however, was made in 1986 using an identical technique.
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Figure 2.12: Salvador Dali, Lincoln in Dalivision, 1976
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2.3.5 Salvador Dali

Dali (1904-1989) was a Spanish painter who created classic and surrealis-
tic images. Figure 2.12 shows a particularly relevant 1976 portrait of Lin-
coln made from other objects, including a woman named Gala. In the
lower left quadrant is the 1970 Lincoln image by Leon Harmon that
inspired this painting (causing controversy over intellectual property
because Harmon believed that Dal{ borrowed too much [9]).
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Figure 2.13: Ken Knowlton, Domino Player, 1980
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2.3.6 DominoPix®

Ken Knowlton (1931- ) invented DominoPix,® a process for creating
images from complete sets of Dominos. Figure 2.13 is an image of Joseph
Scala Jr. made in 1980 from 24 sets of double-nine dominos (1320 tiles).
A business was formed to merchandise these designs in which several
sets of Dominos came with plans to assemble various images. Custom
images — perhaps a portrait, could be prepared on demand. This process
is protected under US Patent No. 4,398,890, REPRESENTATIONS OF
DESIGNS — a method for making images from complete sets of physical
objects. It was especially important to Knowlton that the images contain
only complete sets because of the additional challenge this constraint
presented.
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Figure 2.14: Ken Knowlton, Cousteau, 1987




2.3.7 Knowlton Seashell Portraits

Ken Knowlton’s seashell images are not renderings but rather physical
objects glued to a background. Figure 2.14 (36 x 48 inches) shows a por-
trait of Jacques Cousteau that was commissioned in 1987 by the San
Francisco Exploratorium. Figure 2.15 (32 x 26 inches, 1993) is another
example, but with non-grid alignment. It was Knowlton’s work that
inspired me to create Photomosaics. Around 1990 I visited Wang Labo-
ratories where Dr. Knowlton worked and saw one of his creations. It was
a seashell portrait of Dr. Wang — very large and hanging at the end of the
hall. Since I viewed it from a distance, I only saw the face and had no
idea what it was made from. Upon closer examination, the face disap-
peared, and was replaced with hundreds of seashells. This led me to
think about seeing on multiple scales. Since I was a photographer, 1
thought about creating such an image from photographs instead of
physical objects. It would have been an enormous task to scan enough
images at the time, but the idea was forming,

Figure 2.15: Ken Knowlton, Liberty, 1993
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Figure 2.16: Michael Massey, Marvin Minsky, 1995

2.3.8 Salient-Stills

Salient Stills, a process created at the MIT Media Lab by Laura Teo-
dosio, Walter Bender, and later improved by Michael Massey, turns
video into a still image [10]. The process, first presented in 1993, creates
a structured representation of a motion video sequence, such as changes
of camera pan, zoom, or subject movement. This representation is then
used to render a still. The resulting image has increased resolution, lower
noise, and added contextual information. The image in figure 2.16, cre-
ated by Michael Massey, is a high-resolution panorama captured with an
ordinary camcorder that panned across the scene and zoomed in to the
main subject. The resulting image has both the wide field of view of the
short focal length frames and the detail captured by the long focal length
frames combined in harmony.



2.4 Survey of Image Selection Software

The automatic selection of images is often done on boiled down repre-
sentations of the images. This reduction of complexity may either be
pre-computed or done during the search itself. It makes sense to pre-
compute as much as possible without limiting the range of comparisons
because search time will be reduced. Reference [11] proposes semantics-
preserving image compression which reduces an image to a compact repre-
sentation that still preserves similarity of content. This representation is
so perceptually complete that it is possible to reconstruct the image from
its coefficients.

Images may be searched at a high level of abstraction, or on a more
raw image processing level. The difference is not important for Photomo-
saics because of the multi-scale nature, i.e., the match only needs to look
similar from a distance without a need for understanding of what the
contents are. In other words, a match between a pancake and a brown
frisbee of the same size would be better than a match between two frisbees
of different size and color. The technique that produces the most visually
similar (not necessarily semantically similar) results in the shortest
amount of time is best. The matching systems I have considered for the
Photomosaic process include ones that search based on color, texture,
edge, shape, and rMs difference of color values within sub-regions. I use
this last method of RMs error because of its resulting high degree of visual
similarity and low relative computational cost.

2.4.1 Color Histogram

Color histogram matching is one metric to consider when comparing
two images. References [12](13][14] describe methods of using color for
classifying and matching images. A histogram, perhaps with 64 buckets,
could be constructed for an image or sub-region of an image. The gener-
ated histograms would then be compared and the relative error returned.

Matching histograms is relevant in that from a distance, a red colored
image, perhaps of a tongue, would appear visually similar to another red
colored object, such as an apple. That semantic content is not considered
is more of a shortcoming for other applications than for Photomosaics.
This technique is not ideal, however, because it does not consider aligned
areas of light and dark to be significant, and hence it will not find match-
es that are as visually similar as if aligned features were matched.

2.4.2 Texture Matching

Texture is an important characteristic of rapid image understanding
[15], and therefore could be used to rate the similarity of images. For
applications involving finding wvisually similar images, and not just
matches that are similar on a numerical level, it is important that the
results match features that humans consider significant [16]. An exam-
ple of a metric that is not necessarily related to visual similarity is per-
pixel comparisons, so it is important to avoid high resolution matched
filtering because images can differ at every pixel and still be perceptually
similar {17].
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What metrics should be considered for matching images based on
texture? Rao and Lohse [18][19] identify relevant texture features as “re-
petitiveness,” “directionality,” and “granularity and complexity,” while
“periodicity,” “directionality,” and “randomness” were proposed as fea-
tures by Liu and Picard [20]. Repetitiveness is the degree to which fea-
tures are repeated. Directionality is the orientation of features in
magnitude and phase. Granularity and complexity are the size of features,
and the variation of identifiable properties. Periodicity is related to repet-
itiveness, and randomness is related to granularity and complexity. By
quantifying the relative amount of these features and comparing them to
other images in a database, you may be able to find visually similar imag-
es. The degree to which the computer finds images similar should agree
with human perception, so testing with human subjects is important. For
example, texture directionality is an important visual cue [21], and Liu
and Picard [20] find the direction of the lowest fundamental frequency
the most perceptually dominant — not the direction of the frequency with
the greatest computed magnitude. Gorkani [22] notes that contrast com-
pensation may be needed to find the texture orientation in a way that best
agrees with human test subjects. Texture matching will work as a Photo-
mosaic classification system, but is unnecessary as a level of abstraction
because RMs error over sub-regions produces the required level of visual
similarity with more efficiency.

2.4.3 Edge Matching

Edge matching has been used as a way to compare a human made sketch
with images [23]. In this example. the collection of images were first
reduced to edges, and then thinned to produce lines for meaningful
comparison with the sketch. Because there is often a lack of unique fea-
ture information within a small area of interest and since the primary
advantage of this technique is to provide a high-level interface for
humans to describe an image, edge matching is not appropriate for Pho-
tomosaics.

2.4.4 Shape Matching

Shape matching is a good way to uncover visual similarities, but is a dif-
ficult problem [24][25]. If a number of classifications are made, they can
be compared between images. For example, IBM’s paper [26] considers
area, circularity, eccentricity, and major axis orientation. These parame-
ters can be sorted and stored in a table for a high speed (binary) search
algorithm to reference. Pairs of images with features of similar dimen-
sions and position would return a higher score. Shape matching at this
high a level does not seem to offer a large advantage for Photomosaics
(where content of small images does not matter because it would be
obscured by viewing distance) over simply comparing color values
within sub-regions.
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2.4.5 RGB/HSV in Sub-Regions

RGB/HsV matching finds the RMs error between two images within N by
N sub-regions. This efficient technique can be used as the universal
matching routine for producing visually similar images. If, for example,
the number of sub-regions are set to something like eight or more,
object shape and color within images will naturally be considered. An
image that fades from red to blue, for example, would best match
another that fades from red to blue. Reference [11] agrees that Rms error
provides a useful metric for perceptual similarity based on shape or
appearance. While this method does not work well as a way for humans
to provide a high-level description for an image they desire (such as with
a sketch) [23][27], it does result in a close perceptual match when
viewed from a distance, and hence is what is used.
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Chapter 3

The Photomosaic Process

3.1 Introduction

ON APRIL 28, 1995, I digitized 370,000 photographs from National Geo-
graphic’s collection for a class project with Professor V. Michael Bove.
My software cropped each image, scaled it to a small size, and classified
it by average color. Then, for each pixel in a master image, my software
found the image in the 370,000 picture database with the closest average
color to that pixel.

Figure 3.1: Rob Silvers, Julia, 1995

The first successful test image was completed on April 30th, 199s.
The first real image mosaic, as seen in figure 3.1, was a portrait of Julia
Ogrydziak and was created on May 2nd, 1995. This image illustrated the
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possibilities of creating mosaics from photographs. After discussions with
Professor Bove, I decided to address the problems which had emerged in
my initial mosaic process. What should one do when a subimage is not a
perfect fit? In the first version, I shifted the actual average color values of
each subimage to the desired average value. Altering the images, though
acceptable in art, violated my technical inclinations. Another solution
was to apply error-diffusion dither to the process. In this process, if an
image did not match perfectly, the error was stored so the software could
over-compensate with images to the right and below. This enhancement
worked as of May 16th 1995, though it often produced a noticeable check-
erboard effect because of the spatial resolution being sacrificed for im-
proved color resolution. My first published image (also created on May
16th), a portrait of Jerome Wiesner for the Media Lab publication
Frames, used this dithering process with no ill effects. See figure 3.2.

Figure 3.2: Rob Silvers, Jerome Wiesner, 1995

My initial results were promising, but I knew it was possible to do
better by assigning more parameters to an image. I reclassified all of my
database images to include the standard deviation of their pixel’s bright-
ness values (texture contrast). I then modified my matching program to
use a master image with its height and width in pixels equal to the num-
ber of vertical and horizontal mosaic image tiles multiplied by the height
and width in pixels of the database images used for matching. In other
words, the master image now had more horizontal and vertical pixels
than mosaic tiles needed for the final rendering, thus allowing the soft-
ware the opportunity to compute an identical texture contrast coefficient
at each grid-spot for comparison with the database. This enhancement
was first used on May 17th, 1995. For the cover of the November 1995 is-
sue of WIRED magazine, a mosaic was created using “smoother” images
(less deviation of pixels) for smoother areas, such as the face, while
“rougher” ones (greater deviation) fell into noisier places, such as the hair.
The image was finished Aug. 29th. Figure 3.3 shows the master image
next to the final 1,548 tile mosaic.
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Figure 3.3: Rob Silvers, Nicholas Negroponte, 1995

For the Media Laboratory’s 1oth anniversary, I created a poster of
hands (Julia Ogrydziak’s) counting to ten (figure 3.4). This was the larg-
est image yet, containing 5,400 photographs. Texture was considered,
and the images were slightly tinted instead of using dither, avoiding the
checkerboarding visible in the WIRED mosaic.!! A green to blue wash was
selected for the background, as green and blue images were featured
prominently in the database. This increased the quality of matching for
the large area. Toppan, a Media Lab sponsor, generously printed 4,000
copies of the poster, but the poster was never released due to NATIONAL
GEOGRAPHIC’s wishes (see “NATIONAL GEOGRAPHIC,” page 74).

[i] Decision to tint or to look for another solution was made under the pressure
of a production schedule.
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1010 A Day in the Life of Cyberspace
MIT Media Laboratory

Figure 3.4: Rob Silvers, 1010 Poster, 1995

3.2 Basic Process

The Photomosaic process involves three steps: creating the database,
analyzing the master image to find appropriate photographs, and gener-
ating a bitmap suitable for display.

3.2.1 Useful Resources

The following is a list of hardware, software, and other materials useful
for creating Photomosaics.

Hardware:

* One workstation with at least 96 MB RAM, 4GB of disk space, and
video input. This is needed to capture images and run the Photo-
mosaic software. 128 MB of RAM is preferable for making complex
images (i.e. considering 16 x 16 sub-regions of 30,000 images).

* One Macintosh with at least 80 MB raM. While not strictly
required, I found this useful for editing and printing images after
generation. A PC or UNIX system could be substituted if desired.

* One VHS video tape player. Source material is captured from tapes
cither by controlling the player to single-step through the program
or by capturing in real-time during ordinary playback.

* One computer controllable laser disc player. This is very useful for
gathering source material from movies — it is better than using
video tape if the desired content is available from both sources due
to the higher quality and easy random access to stills.

¢ One high-quality output device to print the images.
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Software:

* Photomosaic software (created for this thesis).

* Adobe Photoshop or comparable image editing software.
Other:

* Database of images. 1000 to 10,000 or more images are needed. If
the images are to be published, copyright clearance must be
obtained.

3.2.2 Database Design

The database design is simple. A UNIx file system holds the images in
directories by category and image size. Before creating a database, thou-
sands of images must be obtained. Possible image sources are described
in Chapter 4. Once the images are located, the program make_square,
described in the appendix, crops a square out of each original rectangu-
lar image, resamples that square to a standard size, then moves it to the
proper database location. Image categorization by subject must be done
in advance of this stage.

Animals
People
Places
Original
256x256
64x64
32x32
16x16
8x8
Horses 1x1
Lizards

Figure 3.5: Organization of Database

Figure 3.5 shows the organization of database images. If one wanted
to make a Photomosaic of animals from around the world, one would
start the matching program set for the root node “Animals.” The software
would then use any images contained within the subdirectories under
that specific node. If semantic content, as described later in this docu-
ment, is specified, then image sub-categories will be relegated to specific
regions of the mosaic.

Directly under the root node are sub-directories containing identical
image files at different resolutions. One sub-directory is labeled “origi-
nal,” and contains the uncropped version of each image file at full size.
This is needed because a tile may be recropping during mosaic creation,
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Image Database

if the artist does not like the original (automatic) crop. The next directo-
ries, labeled 256 x 256 and 64 x 64 are large versions of the square tiles
used primarily for outputting the final bitmap. The 32 x 32 directory is
used for viewing the mosaic on the screen during the construction pro-
cess. The smallest sub-directories, 16 x 16, 8 x 8, and 1 x 1, are preloaded
when the mosaic building program starts up and are used to match im-
ages during the selection process.

3.2.3 Generating the Image

The first steps in creating a Photomosaic are selecting a master image, a
database to represent it, and the number of tiles to use. Section 3.3.1
describes in detail some of the finer issues of subject selection and the
corresponding number of tiles. I will describe the details of the process
beginning after these factors are determined. See figure 3.6 for a sche-
matic overview of the system.

When the glmosaic program (see appendix) is run with a database
path specified on the command line, a sub-sampled version of each image
is loaded into a linked list of structures.

Photomosaic Output

Figure 3.6: Diagram of Matching System
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struct an_image {

char *path; /* pathname of file in the database */
char used; * whether or not image has been used in a tile */
unsigned short *r; /* 1, g, and b image data used for rms matching */
unsigned short *g
unsigned short *b;
struct an_image *next; /* pointer to next structure */
struct an_image *previous; /* pointer to previous structure */
} an_image;

A master image is then loaded under operator control. This master
image must be the proper size in pixels, determined by the number of
output tiles desired multiplied by the number of sub-sampled regions one
wishes to consider during the matching process. The number of sub-sam-
pled regions, in turn, must equal the size of the sub-sampled database im-
ages loaded upon startup.

When the matching process begins, the master image is divided into
x by ¥ tiles where (x, y) is:

(master_image_width / width_subsamples,
master_image_height / height_subsamples)

Single tile with 16x16 sub-regions

Master image
with 8x12 rtiles

Figure 3.7: Tiles and Sub-Regions

Figure 3.7 shows a master image with 8 x 12 tiles in which each tile
contains 16 x 16 sub-regions. The tiles are selected one at a time and the
average RMs error of the red, green, and blue channels of each sub-region
is compared to each image in the database. If the computed error (degree
of visual similarity) between the current images being considered is the
lowest thus far, an index to that photograph is stored along with the er-
ror. When all of the database images have been tested, the image with the
least error that has not already been selected for another location is as-
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signed this particular grid-space in the mosaic and marked used. This
process is repeated for all the mosaic tiles. Since this selection works from
top to bottom, the best images are often used up first, which is more no-
ticeable when using smaller databases (see “Error Diffusion,” page 82).
Upon completion, a list of image names is written to a text file which is
used by the final rendering program to construct a bitmap from the full
resolution versions of the images.

Visual similarity, as mentioned, is determined by finding the images
with the least average image value RMS error on comparison. Sub-sampled
RMS was selected as the matching algorithm because it is a simple and ef-
ficient algorithm which results in visually similar matches. The results are
so successful, that Photomosaic tiles in most cases produce more resolu-
tion than solid pixels. This stems from the matching system comparing
many areas within each photograph during the selection process. This ef-
fect, called sub-picture resolution, enhances the ability of a viewer to see an
image formed from a small number of tiles. Fewer photographic tiles are
needed than would be possible with solid colored pixels. Thus, tiles are
more than pixels.

Figure 3.8 is an image designed to test the search algorithm’s degree
of finding visual similarity. Giving this image to the software will return
16 images that can be compared to the results from other algorithms.

Figure 3.8: Test Image

If we run this test on the first version of my software, which only
finds an image whose average color (average of all pixels) is closest to the
average color of the input region, this test pattern would first be reduced
to the one in figure 3.9. Since all the computer can “see” are these solid
blocks, it is not surprising that the output, as seen in figure 3.10, is ap-
proximate in color but not in shape. Figure 3.11 shows what happens
when we consider sub-regions, in this case four by four. Because the com-
puter can now see some amount of light and dark regions within each
tile, it is able to consider them when searching the database. The first out-
put tile in figure 3.11, a jet fighter, is blue at the top and dark green at the
bottom, just like the input test pattern for the same region. Similar ap-
propriate choices can be seen in other tiles.
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Figure 3.9: What Computer “Sees” When it Averages Values

Figure 3.11: Test Image with 4x4 Sub—Regos and Output
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Figure 3.12: Test Image with 16x 16 Sub-Regions and Output

Now, consider that the computer can see the original pattern of fig-
ure 3.8, at full resolution. Figure 3.12 shows that if this amount of detail
is considered during the search, highly appropriate matches are found.
The woman in the upper right is the same shape as the vertical black bar
in the same region of the master image. The lizard in another tile matches
the brown and blue diagonal that it was compared to. This high-degree
of shape matching has a powerful effect on the image-forming ability of
a Photomosaic. Information about the contours and shading in a master
image may transcend the boundaries of each mosaic tile.

Not only do more sub-regions allow for more sub-picture resolution,
they also result in a more uniform distribution of color by selecting lower
contrast images for regions of little high-frequency detail. This can be
seen in the lower eight images of figure 3.12 which are more uniform than
those selected in 3.10. Considering more sub-regions improves visual
quality, but rendering time suffers. This could be fixed by changing the
current N* algorithm to an N/2 algorithm (see “Singular Value Decom-
position,” page 82).

Figure 3.13: Four Abes

Figure 3.13 demonstrates the effects of sub-picture resolution in a real-
world example. The first Abe is composed of 8 x 12 pixels while the sec-
ond is 8 x 12 émages, with 2 x 2 sub-regions within each tile considered
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during the selection process. Notice how the second mosaic is a more
recognizable Lincoln than the first (the 1970 pixelized image by Leon
Harmon had 14 x 18 pixels but was based on a different photograph of
Lincoln, so they cannot be directly compared). The third Lincoln, where
16 X 16 sub-regions were considered, is more recognizable still and has
less noise. The fourth image is the master used to form the mosaics,
shown for comparison.

3.2.4 Rendering a Finished Image

To render a final image, one needs access to the original database and the
Photomosaic description file output from the matching program. The
rendering program reads in a list of the selected tiles, locates the full
sized version of these files in the database, and binds them together to
create a bitmap. The tiles may be separated by a line of any color, help-
ing to discretize them when viewed up close. From a distance, the grid-
lines are thin enough to disappear completely, not interfering with the
seamlessness of the mosaic. The bitmap is saved in a standard format to
be displayed on a monitor or output in printed form.

3.2.5 Hardcopy Output

There are several ways to print a digital image, dependent on quality,
price, and size constraints.

* Film recording and photographic printing is often the best option.
An image can be written to photographic film using a film recorder.
Once the image is on a chrome or negative, it can be printed onto
normal photographic paper. This option is best for a moderate
number of small copies as writing the image onto the film is a one-
time cost,

.

Direct digital printing potentially produces the highest quality, but
each print is expensive, making this the best option for one or two
copies but a poor choice for hundreds of copies. Digital printers
are either continuous-tone or use half-toning. Continuous-tone
printers can place an exact color for each pixel in the image. Half-
toning printers can only put drops of solid colot, and form shades
of color by using dots of different sizes or different spacing. Hence
the print will look less photographic. It is important to notice that
a 300 dpi printer using half-tones actually has less than 300 dpi
resolution because it takes several of these dots to represent a color.
Such a printer is good for less than 100 true pixels per inch (spatial
resolution is traded off for improved color resolution).

* Process color printing is the technique used to reproduce images in
magazines and books, and the best choice for hundreds or thou-
sands of near photographic copies.
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3.3 Refinements

Optimizations are important for allowing one to push the limits of the
medium. The Photomosaic process is not automatic; one does not push
a button for guaranteed optimal quality. Like a paintbrush or camera,
the software is only a tool and must be used with skill. There is room for
increased quality of the results using talent, knowledge, and experience.

3.3.1 Optimizing Choice of Subject and its Representation

In this section I will discuss some of the issues an artist must consider
when representing a subject. Considerations include the choice of sub-
ject, the number of tiles to represent this subject, and the final size of the
display. There are three main issues when choosing a subject:

* Complex detail is difficult to resolve in a Photomosaic.
* The colors of the subject must be common in the database.

* Familiar objects, especially faces, are the easiest to recognize.

Consider the level of detail needed to resolve the essence of the subject.
If the detail of a subject is too complex, consider minimizing detail. For
example, to render a successful Photomosaic of a person, zoom in on
their face as tightly as possible, rather than showing their entire body. If
the colors of a subject are not common in the database (red is often hard
to match if the darabase is composed of natural images), either change
the colors in the subject, or increase the number of similarly colored
images in the database (see “Tuning Color,” page 62). Aside from these
technical considerations, if the goal is an easily recognizable image, a
familiar subject such as a face is the best choice. Our perceptual system
can identify the shape of a face, even when none exists. People have, for
example, seen images of faces on the moon, on mars, and in the bark of
trees. Thus, seeing one in a Photomosaic should prove less challenging
than seeing something obscure like an automobile carburetor.

Another important decision is the total number of tiles used in a
Photomosaic. More tiles will help resolve additional detail, but the aver-
age matching error will often increase as the “best” tiles are used up. This
is a delicate balance. The aspects to consider in selecting the number of
tiles are:

* Desired viewing distance.

* Desired image size.

* Number of images in database.

* Color space of database when compared to master image.

* Detail in master image — a single face needs fewer tiles than two
faces.
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The viewing distance, image size, and number of tiles are inter-relat-
ed, as a larger image size requires either more tiles or larger ones. If a da-
tabase has a lot of images in it, one can often use more tiles before the
matching becomes poor. The maximum number of tiles one can use
should be 1/Nth of the number of tiles in the database. A practical value
for N may be as low as 5, but 10 is more desirable. The better the match
of the color space between master image and database, the smaller N can
be for a given level of perceptible quality. Finally, more detail requires re-
solving with more tiles. Minimize detail in the target image to use fewer
tiles. Using fewer tiles allows one to print the final image at a small size
while still seeing the individual images.

The size of the tiles can be tuned by the quantity of tiles. To select
the number of the tiles to use, decide if the goal is to maximize the dis-
tance between the two levels of images or to minimize it. If one would
like to only see the sub-images when the mosaic is viewed up close, and
only the over-arching image when viewed from a distance, it helps to
make the sub-images large enough so that they are too coarse to be un-
derstood from the viewing distance. Having fewer sub-image tiles facili-
tates this goal. A large amount of tiny sub-images may resolve the larger
image too easily, resulting in less surprise from viewers. In this case, it
looks as though the tiles are simply squashed into pixels. A Photomosaic
displayed on a post card must still have a certain number of tiles in order
to resolve detail, but not too many as the viewer will not be able to see
the smaller scale sub-images clearly at this reproduction size.
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3.3.2 Tuning Color

The colors of a master input image may not fit well into the color space
of the photo database. Poor mosaics then result because there are not
enough images to choose from to provide visually similar matches. One
solution is to analyze the color space of the database and quantize this to
the N most popular colors. The source image is then altered to fit this
space.

A finite color table can be created from a set of raw colors. One way
to accomplish this is to find the average color of each image, then deter-
mine N colors where each color is then the average of a set of the original
colors in the database, and the size of each set is equal. An excellent survey
of color quantization techniques may be found in [28]. Figure 3.14 shows
a three dimensional representation of the colors in one of my databases.
26,000 images are each represented as a single point in space, with the lo-
cation of the point on the X, Y, and z axis equal to the average &, G, and
B color of that image. The cube may be rotated to visualize the clusters of
colors and determine the richness of the color space. Black and white im-
ages will form a line progressing through all three axes. Figure 3.15 shows
the 32 most popular colors in this database from most popular to least
popular.

Once the most popular colors are determined, the quality of matches
can be improved by altering the master image to these colors, creating a
larger selection of images for the matching algorithm. In figure 3.16, 1
rendered a George Washington from both popular and unpopular colors.
The Washingron made from unpopular colors is indeed less recognizable.
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Figure 3.14: Color Cube with 26,000 Images

Figure 3.15: The 32 Most Popular Colors
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3.3.3 Modification of Selected Images

I prefer to not modify the sub-images because constraints can provide a
greater challenge. Ken Knowlton, when making his images from Domi-
nos, decided to only use complete sets, thus heightening the interest of
the resulting images. I have tried modifications in the past. For example,
my first attempts at making mosaics from photographs used colorization
when the images did not match perfectly, but viewers were generally less
impressed when they knew that modifications were done. Nevertheless,
some modifications will create better looking mosaics. These include
altering colors, “noise” filtering, and controlling sub-image cropping.

Altering colors can easily be done because the software knows what
it is looking for during the matching process. It finds the closest match,
then tints the colors of the chosen image to be more similar to the desired
values. Constraints can be imposed for subtlety, such as only allowing
modifications of up to 10 percent, or only modifying single parameters of
hue, value, or saturation.

Another possible modification is filtering the noise which interferes
with perception of the master image from the sub-images (see “Issues Re-
lating to Coarse Pictures,” page 70). Noise comprises anything in a sub-
image that does not match the corresponding region of the master image.
Not all noise is harmful, but the greater the noise amplitude and the clos-
er it is to the signal, the more harmful it is. Noise can be filtered out in
the frequency domain when it is within the same band as the signal. The
filter can be a curve with a weaker effect on noise further from the signal.
The result in the spatial domain is colorization and blurring, but only
within limited bands, thus it is less detrimental to the sub-images than
pure colorization or low-pass filtering (high-frequency detail would re-
main in sub-images).

Finally, images can be cropped, nudged, and zoomed to achieve a
better match. This is a modification that everyone can understand, be-
cause it is commonly done with photographs. One must, however, con-
strain the level of zoom or adjustments to the cropping to keep a very
small portion of a photograph from becoming a tile. If this happened, it
might not contain an identifiable subject. Both cropping and zooming
should be under human control, perhaps with a special program to an-
notate constraint information or to specify a percentage of allowable au-
tomatic change (see “Tweaking to Fit,” page 86).



3.3.4 Artistic Choices During Mosaic Construction

Artistic considerations regarding the selection of the master image have
been discussed. This section describes the refinement of a computed
mosaic to produce a more perfect form. The steps include viewing the
image during the process from various distances, re-cropping image tiles,
replacing image tiles with alternates, and deciding whether grid-lines
should be drawn between tiles.

After the software creates a draft of a Photomosaic, the artist should
study the image from a distance to see if the master image is well repre-
sented. Is the transition from tile to tile smooth? Are there any tiles that
jump out at you because they have the wrong color? If so, enter the edit-
ing mode and have the computer offer alternate images for that grid
space. The system will display many choices, sorted from best to worst
match, with the rMs error for each one. Select the most visually pleasing
tile, and repeat this process until all the tiles are well integrated from a
distance.

Do the tiles look good up close? Do they convey the right subject
matter? If a tile is objectionable because of content, replace it with an al-
ternate. Is a tile appropriate but poorly cropped? All tiles start out as rect-
angles, and a square is automatically cropped from the center. Quite
often, this cropping is not visually pleasing and must be redone by hand.
The original version of a selected tile may be opened for recropping. Key-
board controls pan and zoom a cropping square until the user is satisfied,
at which time the tile is re-integrated into the database. After these pro-
cesses, all tiles should look good from a distance and up close.

Finally, the artist may decide to render the image with or without
grid lines. The grid-lines are so thin that from a distance they do not in-
terfere with the continuous appearance of a well executed Photomosaic.
When viewed up close, it is often desirable for the virtual master image
to vanish and discrete tiles to fill the space. Grid-lines help break the con-
tinuous nature of tile-to-tile transitions, helping to increase the effect of
multi-scale imaging.
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Figure 3.17: Rob Silvers, Liberty made from Americans, 1996



3.3.5 Semantic Map - Another Dimension

Photomosaics may be used to communicate ideas by relating the master
image to the mosaic tiles. This may be seen in its simplest form in figure
3.17. Another dimension to this axis may be added by relating the con-
tent of the tiles to a specific region of the master image. Related semantic
information is not a new concept for artistic expression. In 3rd century
Roman mosaics, gold and silver were used to show light emanating from
God and Christ. The capability to place related content has been imple-
mented in the form of a semantic map.
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Figure 3.18: Rob Silvers, Example Semantic Image, 1996
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Figure 3.19: Red, Green, Blue, and Semantic Channels

A semantic map is a channel associated with a source image expressing
desired content in a given region. Content is “painted” on a layer under
the image pixels. Figure 3.18 shows a scene of a lake, mountain, and sky.
Notice how the image of water, land, and sky is tiled with fish, animals,
and birds/airplanes. Normally, the Photomosaic software would only
consider the sky and water as blue, fitting blue images to those regions.
In this example, there is a semantic layer, with only fish in the water, and
only birds and airplanes in the sky. The images in figure 3.19 show the
red, green, blue, and semantic channels for the master image. The seman-
tic channel has three areas where content was painted using an ordinary
paint program. To do this, colors are first defined in the paint program
and given names such as “fish” and “birds” instead of “purple” and “or-
ange.” The bit patterns for these colors are put into a configuration file
which also contains the image directories to be considered for each “col-
or.” When a Photomosaic is generated, this text file is loaded with the
master image and used to limit the considered images for each region. A
future enhancement would be artificial intelligence and high-level pat-
tern recognition software which automatically “sees” what is in each im-
age and classifies them without human categorization. Finally, the
promise of semantic maps is not fully realized without powerful database
integration (see “Larger and more Sophisticated Databases,” page 81).
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3.3.6 Issues Relating to Coarse Pictures

Leon D. Harmon studied the human perception of minimally repre-
sented faces and uncovered methods to enhance our ability to recognize
such images (7]. Two discoveries are relevant to Photomosaics. The first
is how much information it takes to represent a face, and how to opti-
mize such representations. The second is related to noise, and how it
interferes with our perceptual abilities.

To determine the minimal information needed, Harmon reduced a
number of faces to 16 x 16 pixels and 8 levels of gray (768 bits of informa-
tion), and noted that recognition accuracy (based on testing with a group
of human subjects) was on average 48 percent. Harmon also noted that
the range of recognition accuracy for all of the images was from 10 to 96
percent. In other words, some were more recognizable than others. Was
this because certain facial features were stronger in some images, or some-
thing else? Harmon hypothesized that important features in some of the
images may have fallen on pixel boundaries, reducing recognizability. To
test this theory, he created four images of each face. The first was the im-
age mapped at random, the second was with the source image shifted one
half pixel width to the right, the third with half a pixel width down, and
the fourth to the right and down. These new images were compared and
tested for best recognizability. Harmon noted that if only the number
one choice of the four was chosen and considered again for the original
experiment, the overall rate of recognition rose from 48 percent to 95 per-
cent. These four possibilities should therefore be tried when making a
Photomosaic.

Harmon also questioned why it was easier to recognize a pixelated
image when viewed from a distance, while squinting, or while shaking it.
He believed the reason was noise which obscures the relevant content of
the image. Since the content is at a low spatial frequency of, in this exam-
ple, 8 cycles per picture height (half of the height in pixels), any frequency
higher than this is noise and interferes with the signal. Do we need to re-
move all noise? Harmon found that the noise within about two octaves
of the sampling frequency was the most important because it was in the
same band as the content. This problem is called critical-band masking.
Figure 3.20 illustrates this point. Let us say that we have two signals, A
and B, of differing spatial frequencies. There is also a noise N in the do-
main that visually interferes with our ability to see the signal in direct
proportion to its amplitude and proximity. In our example, the signals
are the same strength so the noise N only interferes more with A than B
because it is closer in the frequency domain. In fact, A is within the criti-
cal-band and overwhelmed, while B, being further away, is still perceived.
Harmon’s specified fixed range of two octaves was an over-simplification
because the further the noise is from the signal, the less effect it will have.
The range and shape of the critical band, therefore, is a curve and should
be based on actual experiments with human subjects.
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Figure 3.20: Critical-Band Masking

AMPLITUDE

To prove this point, Harmon added random noise to an image at
two spatial frequencies. In one image, the noise was added within the
range of the signal frequencies (left image of figure 3.21, from Harmon’s
paper [7]). In the other, it was two octaves away from the signal (right
image). Notice that the image on the right, with the same amount of
noise but with it further from the content, is more recognizable.

Figure 3.21: Random Distributed Noise

These findings are important to Photomosaics because any error be-
tween the photographic tiles and the corresponding region of the master
image is considered to be noise interfering with our ability to perceive the
intended subject. To remedy this, two solutions are proposed: the first in-
volving modifying the sub-images, the second does not need to. After the
matching process, analyze the spatial frequencies of the master image
within a grid-spot and reduce the “noise” in the sub-images within the
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same band (which would have the effect of selective blurring and colori-
zation). If this modification of sub-images is not acceptable, perhaps be-
cause it may destroy the quality of the image or the artistic integrity of
the completed art work, then consider the amount of in-band noise dur-
ing the matching process as another weighted parameter. i

The expected result from either enhancement is a closer range for
discerning the global subject, which reduces the distance between the
two-scales of images. However, these results may be tuned to create the
greatest or least difference between the two-scales. There will be cases
where enhancing a viewer’s ability to perceive the main subject of a Pho-
tomosaic is desirable, especially where the Photomosaics have a smaller
number of tiles, difficult subjects, or a very small image database.

[i1] Suggested by Mike Hawley during personal communication.
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Chapter 4

Copyright and Image Acquisition

4.1 Copyright Issues

ACQUIRING A LARGE COLLECTION of images brings up the issue of per-
mission for use. Who owns the images, and can they just be used or do
you need a license?

4.1.1 Fair Use

Even images that are not in the public domain may sometimes be used
and distributed without permission from the holder of the copyright
under what is called fair use. Fair use is based on case law, meaning that
there are no distinct rules that if you follow you are guaranteed to be
safe. Rather, there are guidelines based on past rulings, and if you stay
within them you increase your chances or winning if you are sued. Fol-
lowing are the four factors that may be used to judge is fair use applies
(from 17 U.s.c. § 107):

* the purpose and character of the use, including whether the use is
of a commercial nature or is for nonprofit educational purposes —
that is, commercial uses are less likely to be fair use; nonprofit edu-
cational uses more likely quality as fair use;

* the nature of the copyrighted work — that is, copying from factual
works is tolerated more than copying from more creative fictional
works;

* the amount and substantiality of the portion used in relation to
the copyrighted work as a whole — that is, the more that is copied,
or the more significant the portion that is copied (regardless of the
quantity), the less likely that fair use will apply;

* the effect of the use upon the potential market for or value of the
copyrighted works — that is, if the use has an adverse impact on
the market for the original work, it will not constitute fair use.

Each of these factors must be considered, although one specific case,
Harper & Row Publishers, Inc. v. Nation Enters, may be used as a prece-
dent to demonstrate that the fourth is the most important.

In addition to educational use, fair use may apply when the material
is used for criticism or reporting (editorial use). Fair use probably would
not apply if the images are used directly for profit. Even though only
small pieces of photographs are needed for a Photomosaic, they might
still be considered valuable and protectible parts — perhaps the “heart” of
each image. It ultimately comes down to good faith and reasonableness.
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4.1.2 NATIONAL GEOGRAPHIC

This thesis would not be complete without telling more of the story
about how Photomosaics came about. In early 1995, NaTIONAL GEO-
GRAPHIC had a research agreement with the Lab to work with large
image collections. They supplied us with laser discs containing almost
400,000 still images stored as NTsC frames. A proposed project was to
convert them into digital form and write software that could index and
search them based on high-level content. I decided instead to make
mosaics out of photographs. After succeeding at this task, I sought per-
mission to publish one in the Media Lab’s newsletter Frames, and per-
mission was granted (see figure 3.2 “Rob Silvers, Jerome Weisner, 1995,”
page 50).

For the Lab’s roth anniversary, I created a poster of hands counting
to ten. Once again, we sought permission to distribute this work. This
time we were refused because they believed the images were too clear and
recognizable. (see figure 3.4 “Rob Silvers, 1010 Poster, 1995,” page 52).
They were only 64 x 64 pixels each — or almost 1/1500 the bits of a stan-
dard Kodak digital image (fair use clause 3). NATIONAL GEOGRAPHIC was
concerned that the relationships with their photographers would be jeop-
ardized. Would these cases fall under fair use? I would think yes because
they were for research (fair use clause 1) and would not reduce the salabil-
ity of the individual images (clause 4). We did, however, have an agree-
ment with them preventing us from distributing the images outside of
the laboratory.

4.1.3 Possible Copyright Solutions

One possible solution to the problem of payment to copyright holders is
to use the radio model.lil In the early days of radio, there was need for a
method to play songs and compensate the owner in a manageable way.
Since it was impossible at the time to track how many times your song
was played, its airtime was estimated and royalties were payed based on
this estimation. Perhaps all photographers that had work shown in a spe-
cific image collection could be payed each time the collection was used,
even if their image did not appear in the Photomosaic? This makes some
sense because images are not chosen based on any type of established
merit system. Still, legislation on some level would need to be agreed
upon. Perhaps when you allow a stock photo agency to carry your work
you agree to the possibility of it showing up in a Photomosaic in
exchange for increased compensation.

4.1.4 Public Domain Images

Images that are in the public domain are of course fair game. The
Library of Congress, for example, has a large collection of public domain
images but few are in digital form and accessible. This becomes the chal-
lenge. Until public domain images are packaged and distributed, they
will be hard to come by in quantity. Still, just as public domain software
is packaged in bulk and sold on cp-roms, this should happen with pho-
tographs.

[iii] Vice President Al Gore suggested this idea during personal communication.
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4.2 Image Acquisition

Images are increasingly digital. In the future, all of our memories will
live in a server ready for access. For now we need to search for Photomo-
saic content, or expend effort to create it. The most practical locations to
search for images are the Internet, stock photo agencies, cp-rRoM collec-
tions, and television.

4.2.1 Internet

There are millions of images on the Internet and it is growing by the
day. Harvesting these images for Photomosaics would keep your collec-
tion growing. One could either acquire a list of image locations from the
database of a Web searching system, or write a special software agent to
move through links and directly fetch image files. The technical chal-
lenge is to filter desirable images from the rest.

Images on the Web are used for photographs, buttons, backgrounds,
textures, and advertising. If you are willing to accept all such images for
an art work, the task is easy. A filter is needed, however, if you only want
photographs. Such a program could be written because photographs do
not have the same large regions of a solid color that buttons do. Still,
there are many images that are photographs but also have solid colored
boarders around them. A segmenting filter is needed to identify such im-
ages and crop the interesting center from the unneeded outer regions.

4.2.2 Stock Photo Agencies

Stock agencies maintain a large collection of images to sell to clients in
need of something specific. There are several issues relevant to stock
photo agencies. They charge for each image based on use, they often do
not own the copyright to the images they sell, and their images may not
be in digital form.

Stock agencies charge money on a per-image basis so being in need
of hundreds or thousands of images would be prohibitively expensive un-
less a special arrangement can be made. Such an arrangement may in-
clude having them agree to send you thousands of images in advance, but
only charge for the ones that end up in a Photomosaic. An even more de-
sirable solution would be to be charged for the composition that you cre-
ate as if you purchased a single image from them. They could then
perhaps divide the payment between many photographers.

This brings up the second, and perhaps most important issue: most
stock agencies do not own their images, but rather resell them for inde-
pendent photographers. Most agencies, therefore, are not free to let you
use images for free even if they want to and must make arrangements that
are agreeable to their photographers. Simply contacting hundreds of pho-
tographers on your behalf is prohibitive.

The ideal agency would own their images outright and would have a
large number of them already in digital form. Unfortunately, a typical
agency may only have part of their collection digitized. The general solu-
tion for them is to digitize the most recent catalog collections and the
newest material as it arrives, but leave most of the older images in file cab-
inets. This problem is fading fast.
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4.2.3 CD-ROM collections

cD-ROM image collection are often provided by stock photo agencies and
have similar restrictions. Typically, you are free to search their collection
of thumbnails and use them in mock-ups of your work, but must pur-
chase the actual image for any real use. There are a few collections that
you may purchase outright, but they are often of lower quality than
those available from a stock agency, and therefore provide weaker com-
ponents from which to construct a composite.

4.2.4 Image Acquisition from Television

One way to collect thousands or millions of images is to collect them
from broadcast television, video disc, or tape. Images are being flung
through the airwaves and published on videos at a blinding rate, why
not capture them? Assuming the copyright issues are satisfied (which
may fall under fair use), only technology can get in the way.

A video frame-grabber can monitor a signal and grab all frames,
frames at regular intervals, or a frame when it significantly differs from
the last one captured. This third method seems preferable because it pro-
duces similar looking frames which may be considered duplicate images
by viewers of the finished art work. Video capture from a stored medium
may be handled by single stepping to ensure that each frame is consid-
ered.

Motion video will have interlace artifacts caused by the way televi-
sion is displayed (first the odd video lines, then the even ones). The indi-
vidual frames will need to be de-interlaced. This can be done in a number
of ways. The simplest is to simply discard one set of lines, called fields,
and replace them with an interpolated version of the lines around it. The
disadvantage is a loss of resolution. A more sophisticated approach is to
interpolate only where there is significant motion (perhaps a person run-
ning), and keep both sets of fields where there is none (the stationary
background).

There is another issue to consider when capturing video sources,
whether from video tape, disc, or broadcast television. This is the prob-
lem of 3:2 pulldown. Whenever film that was shot at 24 frames per second
is transferred to video running at 6o fields per second, there is a conver-
sion process called 3:2 pulldown that can have strange effects in still im-
ages. A single frame of the original film becomes three fields of video. The
next frame in the sequence becomes two fields. This alternates back and
forth and has the following consequence: a still frame of video may have
one frame of film that is the odd field and another non-related film frame
in the even field. If this happens on a transition in the movie, the results
are especially bad. The simple solution is to use only one field all the time
and suffer the loss of resolution. The complex solution is to track the 3:2
pulldown and recover each original frame of film. This does matter even
for Photomosaics because the images are not always printed very small.

The handling of captured images can be treated in several ways. All
images may be grabbed and stored in a database for future use, or they
can be added “live” to an image being worked on. When a frame is
grabbed, it moves to the grid-spot that it most closely matches — displac-
ing any previous image that may have been there if and only if it is a closer
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match. Over time, the final mosaic image will become more and more
complete. One interesting implementation would be for the software to
work on many images simultaneously. It could tune in different pro-
grams when they are broadcast and work on a relevant image at that time.
For example, when David Letterman is on, a portrait made from his show
could be constructed. Every day at the same time, the program will tune
in and work on this image. Over time, it will get better and better, and
will not be done until the artist is happy with it and all tiles are full. If the
artist does not like a tile that the program selected, he could see all of the
tiles previously selected for that grid-spot and use another instead. When
Letterman ends, the software could switch to a different channel and
work on another image for that time period. As months go by, many of
these batch jobs will develop into completed works.
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Figure 4.1: Wireless Netcam
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4.2.5 Your Life as a Mosaic — Filled in Over Time

Steve Mann, at the time of this writing, is a Graduate Student at the
MIT Media Lab, who wears a head-mounted video camera and display
(hup:/iwww-white.media. mit.edu/~steve/netcam.html)  that  provides
him with both augmented and mediated reality. Augmented reality
means that he can see more than is normally available (perhaps name-
tags could be superimposed over people’s heads). Mediated reality means
that the visor provides a visual filter [29] that governs what Steve can see.
Suppose this stream of images — what you see during your lifetime —
were pumped into a Photomosaic? Everything that you see since birth
has the potential to become a tile in the mosaic of your life.
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Chapter 5

Future Possibilities and Conclusion

5.1 Speed and Quality Enhancements

I have made a recognizable Lincoln using 8 x 12 photographs, which is
better than possible with solid pixels. This has led me to set a new goal
of making a recognizable Lincoln from 4 x 6 photographs. There are two
ways to go about this: either consider millions of images during the
selection process, or improve the criteria used for selection. I propose to
use both options.

5.1.1 Larger and more Sophisticated Databases

The Photomosaic system should be integrated with a relational database
that provides for advanced queries on numerous parameters. Images
could then be stored in the database along with these other parameters
as binary large objects (blobs), or simply as pointers to the real image
file. An example query would be “find me an image that contains any
animal or bird and is visually similar to this blob.”

5.1.2 Search Optimizations

Because we are searching a static database, it is possible to sort or catego-
rize the data and reduce the compute time by limiting the search to a
smaller region. If we consider the color cube in figure 3.14, we can see
that database images inhabit a region of space. This space can be segre-
gated into smaller regions. For example, if we are looking for an image
that is mostly green, do we need to search in the red portion of the 3p
representation of the color space?

One possible method is to find the average color of the grid-space of
the master image that we are trying to represent, and only search images
in the database that are within a certain distance of this. If a match is not
found, we can expand the search to a larger region. The problem is that
this only approximates the ideal situation because it is possible that a bet-
ter match was outside of the initial search area. Still, an N-fold increase in
speed may be worth a small reduction in quality.

To implement this technique, it would be worth creating a Photo-
mosaic the traditional way and making a histogram of the distance each
selected tile was away from the estimated starting search region. This will
help decide how much distance much be searched, what parameters
should be used to determine the starting position, and how to best sort
the database.
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5.1.3 Singular Value Decomposition

My current algorithm is N, making it memory inefficient, slow, and
poorly scalable. One possible solution is to break down the image matrix
into its salient components using a singular value decomposition, or
svD. The singular values may be sorted by significance and used for
matching instead of the matrix values themselves. A large array of values
could be pre-computed for all images in the database and sorted in
advance, or they could be computed from images as they are being read
in. The quality and speed trade-off could be adjusted during run-time
by only matching the first N elements of this array.

Because the values are sorted by importance, each would be more im-
portant than the original values in the image matrix. This smaller list of
values will consume less memory, may be matched more quickly, and will
only double in size as the image matrix goes from say 8 x 8 to 16 x 16 in-
stead of being squared.

5.1.4 Error Diffusion

Currently mosaics are made from the top down. The negative conse-
quences of this are that the quality of matches is usually worse at the
bottom of the mosaic than at the top because the best images are used
up first. I have four solutions for this problem. The first is to simply ran-
domize the order in which the tiles are worked on until they are all done.
The second is to start in the center and spiral out.™ The third is to sort
the tiles in their order of importance — perhaps starting with the eyes,
nose, and mouth.[") While these methods will help prevent viewers from
seeing the progression of error in the final piece, they do not solve the
greater problem. What if an image is selected to represent a tile early on,
and is not free to be used later in the mosaic even if it would be a much
more perfect fit in another location? To solve this, I propose the fourth
solution: the matching process could first try each image on every tile
location, while keep a sorted list of errors for these possible locations.
While this is memory intensive, it is not much more work than what is
currently being done (with the exception that images are not eliminated
from the matching test as they get “used up”). Now with everything pre-
computed, optimally place the images until the least overall error is satis-
fied. This technique, unfortunately an N* algorithm, would be especially
valuable when the database is small in relation to the number of mosaic
tiles.

[iv] Suggested by Ken Knowlton during personal communication.
[v] Suggested by Mike Hawley during personal communication.

82



5.1.5 Adjacent Tile Communication

Tiles could “hold-hands” and communicate with each other. Perhaps a
tile would “know” that the left side of itself helped define important
detail in an image and that the tile attached to its left should have an
aligned feature? Maybe the error of a tile could be made up for with the
tiles around it? This comes down to the question of whether or not it is
good to reduce the quality of a match because another tile was a poor
match. I currently do not believe in this for large-tiled Photomosaics
because this “dithering” effect only works well when there are a lot of
tiles to dither. The other issue is that if tiles are dependent on each other,
and you change a tile by hand, the ones around it may change on their
own. If so, it makes hand-tuning more difficult. You could always not
have the others change by themselves after you change one by hand, but
then you are compromising the dithering process.
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Figure 5.1: Rob Silvers, Marilyn, May 14th, 1995




The mosaic in figure 5.1, based on an image that first appeared in Play-
boy magazine, represents an iconic figure from Americana. Because of
the attention-commanding nature of such provocative images, Marilyn
has traveled from centerfold to postage stamp, becoming a symbol of
our collective American culture. Such imagery evokes emotion in tune
with our personal experiences upon viewing. Reactions to this image
have ranged from finding it beautiful to offensive, depending the
viewer’s perspective.

Marilyn was an ambitious image that challenged my early mosaic
constructing technology, and it was a breakthrough to achieve this range
of color and smoothness of color graduation. Over 370,000 images were
considered during the tile selection process, contributing to these prop-
erties. Marilyn is both my favorite and most popular mosaic. Is this be-
cause of the cultural baggage she carries, or because the composition is
visually pleasing? I believe that both of these factors play a role.
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5.1.6 Non-Grid Placement

Tiles could be placed in a non-grid arrangement. Hexagonal (honey-
comb) is just another form of a grid, but what about completely arbi-
trary placement? Take an image in the database — each image — and try
placing it at every possible location with different degrees of scaling. If
there is a lower degree of error than what was underneath, place it and
keep on trying. When all placements of a given image have been tried,
move on to the next image. Any given image should only be placed
once, so earlier matches should be removed.

5.1.7 Considering Noise Band

We may have two database images which the matching algorithm con-
siders approximately equal quality and worthy of selection. One may
contain errors between itself and its relative section of the master image
at different spatial frequencies than the other. If this difference, consid-
ered noise, is within the band of the master image’s salient content, it
will hinder overall perception more than if it is out of band. The pres-
ence of noise should be considered during the matching process (see
“Issues Relating to Coarse Pictures,” page 70).

5.1.8 Tweaking to Fit

Images must currently be cropped from rectangle to square in the Pho-
tomosaic process. This square is chosen from the center, although a
human operator may recrop it by hand later. What if the computer
could crop, wiggle, and tweak the image on demand to optimize the
similarity with the underlying section of the master image?!"! This
would greatly increase the quality of the matches and add additional
diversity between finished mosaics.

If one wanted to make a Lincoln portrait from images of the Civil
War, and only had 1300 such images, dynamic tweaking would help a
great deal. In one possible implementation, a human operator would
mark the range of cropping and tweaking allowed using an automated
tool. The computer would then work within these constraints. Another
method would be to allow automatic changes up to a specified percent.
Perhaps a 10 percent range of automatic variation would result in a sig-
nificant percent improvement of match-quality.

5.1.9 Placing Required Images

What if an artist needs to ensure that an image of Hitchcock appeared in
a mosaic made from his movie frames? The software should take a list of
images that must be placed and put them into their best-fitting location
before starting the rest of the mosaic. The currently implemented soft-
ware only considers placement based on merit and does not affirmatize

tiles with this placing-holding.

[vi] Suggested by Mike Hawley during personal communication.
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5.1.10 Infinite Zoom

Photomosaics are not limited to producing just an image from images.
They may also be used to make an image from images which are in turn
made from more images.

5.2 Conclusion

Photomosaics are mosaics made from images that are selected because
they are visually similar to the region of a larger, master image that they
replace. The method used for finding the visual similarity of two images
was comparing the difference of RMs error within sub-regions.

Photomosaics are multi-scale images in that they take on a different
character when viewed up close than when seen from a distance. Having
fewer image tiles that each convey more information makes for a more
seamless and surprising result. The relevant information content of each
tile and level of seamlessness was increased by sub-picture resolution, or
the consideration of regions within images. Having more sub-regions not
only helped for images containing detail, but also for “empty” images be-
cause the match did not simply have a similar average color but also a
similar color distribution.

Beyond the basics of matching images, several enhancements were
uncovered relating to colors, modifications, and additional search param-
eters.

Images have color and databases provide a color space, or range of
color coverage. If these colors fit or are forced to fit into the space, recog-
nizability is improved.

Tweaking images is a “destructive” (to the images) method of in-
creasing matching ability, and should turn many near misses into better
matches. Images could be twiddled, zoomed, cropped, or wiggled into
place. Handling images in such a way would have the effect of expanding
the searchable space.

Considering noise as a parameter, or the difference between a select-
ed sub-image and the region of the master image within the same grid-
spot, is a non-destructive method of improving the image-forming ability
of a Photomosaic. Noise has the ability to mask a signal in proportion to
its proximity to the relevant information, so considering noise should un-
mask more relevant features.

Finally, semantics can play an important role in the application of
Photomosaics. Enhanced methods of categorizing images by content are
needed.

The results of this thesis provide only a first attempt at creating mo-
saics from photographs. However, the attempt has produced results that
show promise for more optimization and consideration of salient fea-
tures, whether on the low-level of image attributes, or on a higher, se-
mantic plane.
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Appendix

Tools for Creating Photomosaics

The process of creating Photomosaics requires custom software as well as
off-the-shelf image processing, conversion, and paint programs. Follow-
ing is a summary of the most important tools that I created for the Pho-
tomosaics project.

glmosaic images_location

This is the main Photomosaic program and is responsible for reading in
the database, analyzing a master image, and selecting tiles to construct a
mosaic. Glmosaic, when first invoked, reads in a version of the image
database that is subsampled to the same degree as the number of sub-
regions being considered for matching. For example, if 8 x 8 sub-regions
will be considered, then 8 x 8 pixel images are read into memory for use
in the matching process. After startup, a menu gives the operator a num-
ber of choices. These choices include the ability to read in a master
image and start rendering, to read in an output file previously generated
so that the operator can continue to refine a previously computed
mosaic, to write out a darafile, and to hand-edit a computed image. If a
Photomosaic has been computed, the output file (filename.out) saved is
needed for the next step of rendering.

The ability to hand edit a computed Photomosaic is an important
one because it gives the artist control over the final result. If the edit op-
tion is selected, the operator may click on a tile and see many alternatives
— scrolling through a list of other images to not only visually see what
they look like in their grid-space, but also what their numerical error is.
If the artist likes a tile, but not the way it was cropped square from its
original rectangular form, then he may opt to re-crop the image. If the
re-crop key is pressed, the image opens in its raw, rectangular form.
Cropping lines may be moved and zoomed to select a new area of inter-
est, and when done, the new image is reintegrated into the database as the
artist prefers. Over time as the artist fixes more and more problems, the
database becomes ever more refined.

render images_location datafile

Render must be given two parameters: a location where the database
images are stored, and the darafile that is output from glmosaic. This
datafile contains a list of images to use for building a mosaic. Each image
in the list is pulled from the database and rendered into a final bitmap
with the same name as the input datafile, but with a .sgi extension
replacing .out. A grid of colored lines is optionally placed between tiles
to help set them apart.
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makequant image_directories

This program is used to analyze the colorspace of a set of images. It out-
puts an image where each pixel is the average color of an image found in
the directory of images. This new file may then be loaded into an image
processing program and quantized to a color-index image. The palette of
this indexed image may be used to colorize a master image so that the
colors more accurately map into the database.

3Dcube image_directories

This program draws a cube in three-dimensional space where R, ¢, and B
maps into X, Y, and z. Images in the database are read in one at a time
and the image’s average color maps to a related point in space. The use-
fulness of this utility comes from the ability to show the artist clusters of
colors — where the most colors are. If the artist sees a lot of blues, he may
choose to use this specific database for mosaics that are mostly to be
blue. Black and white images, incidentally, may be seen as a line that
moves through all axes uniformly.

make__sqliar € size output_path directories

This program accepts a list of directories, an image size, and an output
path on the command line as input. It then opens each directory and
searches for rectangular images in which to crop the largest possible
square image from. This square image is then resampled down to the
specified size and moved to the output path. If the original image was in
landscape format, the square is cropped from the center. If the original
image was in portrait format, the square is cropped closer to the top so
that if the subject is a person, the face will (hopefully) be included.

resamp size output_path directories

This program will take a list of image directories and search them for
images to convert to a new size, and places the converted images on the
output path. Resamp is useful for converting and storing images at mul-
tiple resolutions.
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