kinetext: Concrete-Programming Paradigm for
Animated Typography

by Chloe Ming-shu Chao

B.A., Computer Science and Visual and Environmental Studies
Harvard University, 1996

Submitted to the Program in Media Arts and Sciences

in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences

at the Massachusetts Institute of Technology

June 1998

©1998 Massachusetts Institute of Technology. All rights reserved.

Signature of Author
Program in Media Arts and Sciences
May 8, 1998

M L v l
Certified by

John Maeda

Assistant Professor of Design and Computation
MIT Media Laboratory

Thesis Advisor

N/

Accepté{ by

Stephen A. Benton

Chairperson

Departmental Committee on Graduate Students

Program in Media Arts and Sciences) _—
JUN10108g Fotuk

s o DTS INETITUTE
G 12,ANOLOGY

R =TI

kinetext: Concrete-Programming Paradigm for
Animated Typography

by Chloe Ming-shu Chao

B.A., Computer Science and Visual and Environmental Studies
Harvard University, 1996

Submitted to the Program in Media Arts and Sciences

on May 8, 1998 in partial fulfillment of the requirements for the degree of
Master of Science in Media Arts and Sciences

at the Massachusetts Institute of Technology

ABSTRACT

kinetext is a programming sketchbook environment for animated text design.
Authoring any kind of animation involves a series of smaller decisions on move-
ment, timing, and interplay of visual subject elements throughout the design pro-
cess. While many authoring tools support this process, they fail to document the
design process in such a way for others to easily discern the designer’s decisions.
Frequently the only artifacts are lengthy text programs or similarly oblique scores.
kinetext presents an environment where authoring animation occurs via small
visual programs. Each program illustrates each of the individual transformations
responsible for the motion of each subject element in the animation. Viewed in its
entirety, the environment becomes a sketchbook of the design process involved in
bringing about the final animated piece. The visual nature of the system is inspired
by a spatially structured type of poetry known as "concrete poetry,” where the
arrangement of words take on form. Hence one can refer to the system as a form of
"concrete-programming.”

Thesis Supervisor: John Maeda
Title: Assistant Professor of Design and Computation

kinetext: Concrete-Programming Paradigm for Animated Typography 2

kinetext: Concrete-Programming Paradigm for

Animated Typography

by Chloe M. Chao

The following people have served as readers for this thesis:

William J. Mitchell
Dean of the School of Architecture and Planning
Massachusetts Institute of Technology

Yin Yin Wong
Principal

Yin Yin Design

ACKNOWLEDGMENTS

I wish to thank my advisor, John Maeda, for all the insight and wisdom he has
instilled in me over these past two years.

I would also like to thank my readers, Yin Yin Wong and Bill Mitchell, for taking
the time to review drafts and offer suggestions over the course of writing this the-
sis. I am especially grateful to Yin Yin for being an exceptionally devoted reviewer
despite the fact we were on opposite coasts.

I am honored to have been a member of the first generation of the Aesthetics and
Computation Group and will sincerely miss everyone. Special thanks go to dsmall,
grenby, pcho, tom, and kram for making these past two years seem fun despite the
hard work and late nights.

I wish to thank Sandy Pentland, for giving me a UROP position here at the lab
three years ago and then becoming my co-advisor when I began my graduate stud-
ies the following year. I will sincerely miss the time I spent in Vismod and all my
friends there.

Other people to thank include Tara Rosenberger, for being a wonderful office-mate
and helping me keep perspective on life, and Ken Russell for kindly taking the
time to proof-read a final draft of this thesis.

I would also like to thank the furry ones in my life for happily distracting me at
times of great stress and worry during the past two years. I wish to thank Poopy the
Hamster, now gone, but who forever will represent the softer side of the Lab. I
would also like to thank Wulfie G., for his tireless rounds of wulfie-bowling.

As always, I wish to thank my family for being who and what they are. I want to
thank my brothers, mom and dad for all the love and support they have given me

and continue to give me in life.

To my grandparents who passed away this last year, I love you and miss you both.

TABLE OF CONTENTS

ABSTRACT 2
ACKNOWLEDGMENTS 4
1 INTRODUCTION 8
1.1 MOtVALION...ccciiereeeeeeecieteneeteiisteie sttt a e saa e s 8
1.2 ODBJECHIVES ...eeveeiiiiiiiieniiiisiir ettt 9
1.3 ResSearch ISSUEScccecervieieerieniiniiiiiciiitcrcc et 9
1.4 AcCOMPUSHIMENLS......cceevirireriirriiiiiirircstee et 10
1.5 Outline of the ThesiS.......ecceeceerniiiviiniiiniiiiniiiiiie et 10
2 RELATED WORK 11
2.1 Digital Typography and User Interfaces...........coceveeeneininnccncnnnnnnnce. 11
2.2 Visual-Programming of GraphiCs...........ccoevvveeieninieiininininiininiincennens 14
2.3 3D Environments for Programmingcccceeeveivuriiieiinreneniennennennnn. 16
3 BACKGROUND 20
3.1 Why Typography Suits COmpPUtationcceeeeveereereiienriieniinennscrenennens 20
3.2 What is Concrete POELIYccoceviiiueiiiniiiiiniciecieniee e 23
3.3 The Concrete-Programming Paradigmccccevinveerieieiinininiinicnnnnne 24
4 DESCRIPTION OF THE SYSTEM 26
4.1 Typographic Operators and CIUSLETScceeuermrienenenieniininineneecinas 26
4.2 Defining New Typographic Operatorsc.cceceeeveverinnenencniccniinnnnn 27
4.3 The Workspace and Timecccceevvmireniniinnieienenieeenceeeeeeenes 28
4.4 The CrosShair........ccceeveemvereeineiiiiniiiniiiiicnieire e te s see s ssneesseesaees 30
4.5 Implementation NOES......cccovverirrerirenterintnirnreetetetse et 30
4.6 Program ArchiteCture..........cocevrveiiuireininieienineiesec e 30
4.7 The OULPULeeeeireeiriricriiitcrit ettt n st 31
5 VISUAL DESIGN OF THE SYSTEM 36
kinetext: Concrete-Programming Paradigm for Animated Typography 5

5.1 The Evolution of a Visual-Programming Environment......................... 36

5.1.1 Visual Machinesccceeeeeeevieeensennenncnecniiicnicnecsesse s 36

5.1.2 Typographic Operatorsc.covrvuerieeviiriiisieeeseneeenieesresnessseens 37

5.2 Analyzing the Final Forms that Define kinetext..........ccccooevvninriniennae. 38
5.2.1 Bowed Planes..........cccccevviiriiiniiniinninniiiniin e 39

5.2.2 Staggering the SPace........cccevvvinriiimiinicininieneee e 39

5.2.3 Webbed CIUSLETScoueeveeeereeecereieerieeseeiesesvesseesseeneenesasseae s 40

5.2.4 Color and CONLIAStcceeereererrrecrrrnreriiseineeiiseesneeiesesereensens 41

5.2.5 Why Grids and Not Solid Planes............cccoevevvevinvnnniinininnnane 42

5.2.6 Animation: Why the Stage Border..........cccocevvivinveinrinnininnnnene. 43

5.2.7 Visual Appearance of Typographic Operatorscccceveueee. 43

6 AUTHORING TEXT ANIMATIONS WITH KINETEXT 46
6.1 Animation 1: The SENtENCEcccevurvvveriiiinriiiiiiicrecreete s 46
6.2 Animation 2: The POEMcccccevurriiiniiiiiiiiiiiiiectcrcr e 48
6.3 Animation 3: RSVP ...ttt 51
6.4 Observations and CritiQUEcoeevereeeeririniisimniininineieeresre e 52
6.4.1 Observations on Menus and Windowsccoccecvvviivinnireennenne. 52

6.4.2 Critique for Movable CIUSLETSccovvviiiiiiniininienieieenieens 53

6.4.3 Critique on Navigating the Spacecccecevvmveenninenieeniennnn. 53
6.4.4 Observations on Typographic Parameters............cccocoevuivrveenennen. 54

7 ANALYSIS OF METHOD AND PROCESS: A COMPARISON AMONG AUTHORING

SYSTEMS 55
7.1 Macromedia Director 6.0.....c.cvcvviiiiiiiiiiiiniiiniineciinnenieieenieeene 55
7.1.1 Observations on Director 6.0.........cccevverveivieniniinnienriniiinennn, 56

7.1.2 Comparing Director 6.0 and Kinetextccoceevvrerereninennnnne 58

7.2 Side Effects Houdini 2.0.......ccccovviiiininiiniiniiiiiieieerereecsieiesennns 59
7.2.1 Observations on Houdini 2.0ccccovveeviiiniinninnniniiniiieens 60

7.2.2 Houdini’s Visual-Programming Paradigmcccccoeveeninnnnenn. 61

7.2.3 Comparing Houdini 2.0 and Kinetext...........coceveevenemniencnininncnen 61

7.3 Results from the Authoring Experience...........cccooevvviiniinininiiiieinnnnnnne, 62

8 CONCLUDING REMARKS 64

kinetext: Concrete-Programming Paradigm for Animated Typography 6

8.1 SUMMALYcoiniiiiiiiiniiitciecie e 64
8.2 TFULUIE WOTK...coueioeeeriereeiieneestese e eesee e sesessnteesatesasessansesbnesna s aanans 65

8.2.1 Legibility and Collaboration..........c..ecereeiniiiniiniiinicnenennnenn 65

8.2.2 Extending the Concrete-Programming Paradigm...................... 66
APPENDIX A - USER MANUAL 68
APPENDIX B - AUTHORING A SIMPLE ANIMATION WITH KINETEXT 70
BIBLIOGRAPHY AND REFERENCES 73
READERS 75

kinetext: Concrete-Programming Paradigm for Animated Typography 7

CHAPTER 1

INTRODUCTION

kinetext introduces a visual-scripting system by embedding typographical elements
with visual characteristics. In this way, the user can observe what visual effect
would take place if they choose to apply the characteristic to other typographic ele-
ments. By removing the layer of abstraction that a separate scripting environment
brings to the conventional scripting systems, it is apparent that animation scripting
itself can become an expressive typographic piece literally illustrating the process
to the final animation. In addition to authoring, editing the animation becomes
much clearer as the user can observe individual text transformations by examining
the members of a clustering structure, as well as the combined effect of all the
members on whatever word the cluster is dragged over.

1.1 Motivation

The motivation behind the concrete-programming paradigm and the workspace in
general, is a desire to create an authoring environment that can both coexist with
the final finished piece, and also serve as a descriptive visual record of the design
process.

kinetext is the result of research into the authoring process for dynamic typography
in conjunction with computational design philosophy. Whereas the philosophy of
conventional tools is to have the designer’s intent, the tool, and the result exist as
separate entities in the design process (Figure 1.1), computational design philoso-
phy creates a place where the tool and the result can coexist in the design process
(Figure 1.2). This coexistence model then fosters an environment where intent can
emerge. In other words, an environment such as kinetext, enables an observer to
see and understand the process from whence the result comes. In contrast, the con-
ventional tool model separates the process from the result in such a way that an
observer cannot necessarily see how the designer arrives at the result.

kinetext: Concrete-Programming Paradigm for Animated Typography 8

Figure 1.1: The conventional tool model.

tool . = intent

Figure 1.2: Computational medium supporting creative thought and observation.

1.2 Objectives

The goal of this system is to introduce a new paradigm to visual-programming that
provides the designer with a typographic authoring environment that is able to
illustrate the design process. Such an environment incorporates typographic opera-
tors with embedded visual characteristics and enables construction of programs
that can visually convey their functionality.

1.3 Research Issues

The research addresses the design of a concrete-programming environment for
authoring typographic animation. Hence the issues raised by the kinetext project
include:

1. Concrete-programming as a visual paradigm for visual-programming

2. The construction of an animation system supported by concrete-programming.

Currently, visual paradigms for visual-programming are largely based on repre-
senting computational elements with geometric shapes or icons. This thesis
explores replacing such abstract, and sometimes arbitrary, forms with the clear let-
ter-forms provided by typography.

In addition, this thesis evaluates kinetext’s viability as a concrete-programming
based animation environment by assessing it alongside two current commercial
animation systems. The evaluation addresses how evolution of such systems has
come to affect the way designers construct and observe the process behind digital
animation.

kinetext: Concrete-Programming Paradigm for Animated Typography 9

1.4 Accomplishments

Results from the kinetext project include:
1. Software implementation of a concrete-programming environment for
authoring animated text.
2. Several sample animations created in the kinetext environment.
3. A secondary scripting language used for saving output from the kinetext
environment and creating optional input.

In addition to these digital artifacts, the kinetext project also promotes the illustra-
tion and subsequent examination of the authoring process for animation. kinetext
advances the concept of software providing a computational medium as opposed to
isolated tools (Figure 1.2).

1.5 Outline of the Thesis

Chapter 2 reviews past and present related work. Chapter 3 reveals the reasoning
behind the use of typography and concrete poetry for a visual-programming para-
digm. Chapter 4 details the organization and implementation of kinetext’s environ-
ment. Chapter 5 recounts the evolution of the visual display and use of space by
the environment. Chapter 6 presents observations from composing three different
types of animated pieces with kinetext, and a resulting critique of the system by the
author. Chapter 7 examines two current animation systems, the authoring styles
supported by each, how each illustrates the design process, and how they compare
to kinetext. Chapter 8 concludes with future ideas and possibilities for the kinetext
project.

kinetext: Concrete-Programming Paradigm for Animated Typography

10

CHAPTER 2

RELATED WORK

Much of the work related to the kinetext project lies within three areas: creation of
animated typography, visual-programming paradigms for graphics, and 3D envi-
ronments for programming.

2.1 Digital Typography and User Interfaces

If typography can be described as the visual treatment of written language [Wong,
1995], then it should follow that digital typography embodies the computer’s rep-
resentation of written language.

For a long time, digital typography largely remained static in its presentation. As
with any new medium, people sought a way to familiarize the new with the old.
Digital typographers drew on the familiarity of the letterpressed word and were
naturally more concerned with perfecting the letterforms and systems of letter
placement than exploring the temporal qualities the digital medium offered. Only
with the advent of digital animation systems has digital typography become tem-
poral. Today, we can find important paradigms in the field of digital typographic
animation in typographic pieces authored by Small and Wong [Minsky Melodies,
1996] and Soo's scripting language for temporal typography [Soo, 1997].

Wong defines a framework for designers to consider when creating temporal
typography [Wong, 1995]. Based on this framework, Soo developed a scripting
system that allowed authors to create complex temporal typographic compositions.
Together, Small and Wong used Soo’s scripting language to generate the digital
typographic animation presented in Minsky Melodies. Minsky Melodies is a typo-
graphic animation designed to accompany a segment of opera music. Words either
directly display the lyrics of the opera or serve as a counterpoint to enhance the
lyrics of the opera (e.g., having letters flying about like scattered bits while the lyr-
ics are “pieces of brain”). According to Small the key to creating such a lengthy
piece of digital typography (~6.5 minutes) without obvious repetition was being

kinetext: Concrete-Programming Paradigm for Animated Typography 11

able to reuse previous scripts by varying a few of the parameters or building upon
them. However, Small and Wong also point out that once the scripts were written,
it was difficult to go back and read through them to recall what visual effects they
produced. kinetext seeks to address this problem by employing a visual-program-

ming paradigm to heighten legibility of the programs responsible for visual effects.

Figure 2.1: Image of dynamic text from Minsky Melodies.

Other examples of noteworthy con- R
temporary animated typographic A
work can be found in movie title :
sequences done by graphic designer % —a
Kyle Cooper. Cooper’s work on Figure 2.2: An image from t,
. . . : sequence of Seven.
opening title sequences in movies
like Seven (1995), with warped images and flickering text, revitalized the use of
text in opening sequences to express the mood and symbolize the theme of the
movie. Other titles Cooper has designed include The Island of Dr. Moreau (1996),
Twister (1996), Mimic (1997) and Lost in Space (1998).

.

he opening title

Cooper’s work is largely influenced by that of graphic designer, Saul Bass. In the
1950s, Bass pioneered the use of animation techniques and animated typography
in movie title sequences. He revolutionized what had up until then been the con-
ventional, straight text, opening credits by introducing broken text and bold
dynamic shapes that summarized and symbolized themes for the movies they rep-
resented. Among the works best known for that style are Vertigo (1958), Psycho
(1960), and North by Northwest (1959).

PSYCHO

Figure 2.3: Series of images from title sequence for Psycho.

kinetext: Concrete-Programming Paradigm for Animated Typography

12

Related work in the field of user interface design for type animation can be found
in commercial tool packages like Macromedia Director [Macromedia Inc., 1996]
and Adobe After Effects [Adobe Systems Incorporated, 1995]. Director and After
Effects offer time-based authoring tools for creating animation. Their systems
involve extensive menus and multiple editing windows: one for timing, one for
holding all the subject elements, and one for placing subject elements for display
in the animation. Through their popularity and widespread use, these software
packages have set certain standards in user interface design for typographic anima-
tion applications that fit into the conventional tool philosophy. kinetext begins to
explore interface possibilities outside of this standard model, with the goal of inte-
grating all aspects of the authoring process in one space so the designer can leave
both artifact and the description of the process behind the artifact for future view-
ers, and future reference.

In addition, the Flying Letters [Maeda, 1996] reactive book is an important work
in addressing typographic user interface. Flying Letters contains a series of inter-
active typographic experiments whose interfaces are simple and intuitive such that
no instructions are required. In one such experiment, the user simply moves the
mouse over a clear, black screen leading a trail of changing white letters that fade
out over time. Such seamlessness of interface and transparency of mapping input
to output is ultimately the aim of any digital environment seeking to support a pro-
cess as fluid as design.

Figure 2.4: Flying Letters.

kinetext; Concrete-Programming Paradigm for Animated Typography 13

let MHome HTutorial EExamples

Write your own wigglet

Figure 2.5: The Wigglet interface.

Among the most recent works in typographic
user interfaces are Wigglet [Ishizaki, 1997],
and Cornix [Tenax Software, 1997] rapid-
serial-visual-presentation (RSVP) system.
Cornix is a simple applet that allows the user
to enter text that can be rapidly displayed one
word at a time. The more extensive of the two
systems, Ishizaki’s Wigglet applet offers a
way to author animated-2D-typographic e-
mail messages. Ishizaki’s system does
employ some visual aids for authoring the
text animation (mainly through the use of
time bars and text placement), but for the
most part Wigglet relies heavily on menus

and windows. Our system differs from Wigglet in that kinetext addresses 3D
authoring issues and employs a visual-programming paradigm without menus and

fixed windows.

2.2 Visual-Programming of Graphics

At present, there are a variety of visual-programming languages or paradigms for
almost every kind of computation and so it should be no different when it comes to
visual-programming of computer graphics. With the advent of 3D graphics librar-
ies and programming software, it was inevitable that visual-programming inter-
faces arose to offer new ways of programming for 3D.

Figure 2.6: Screen-shot of Alice.

Alice [UVA User Interface Group, 1995] is a
visual-programming environment aimed
toward enabling novice programmers to rapidly
create 3D interactive graphics. The scene graph
appears as a series of nodes (as 2D icons) in a
window that can be arranged and reconnected.
The viewport allows for direct manipulation of
camera and objects.

kinetext: Concrete-Programming Paradigm for Animated Typography

14

AAL-VL [Duecker, et.
al., 1997] is a diagram-
matic visual language for
programming the Ani-
mated Agent Layer
(AAL). The AAL enables
animated objects to
become intelligent
objects, aware of their
surroundings and able to
autonomously determine
their course of action in
the environment. AAL-

Figure 2.7: The left figure
shows the icons used for visual
programming of AAL. The fig-
 ure above shows a 3D anima-
- tion produced by AAL-VL.

VL employs an icon- L P
based representation of |

data and allows the user to create program/flow diagrams. Currently, kinefext’s
intelligence is largely based on the parsing and collision detection capabilities of
the environment; the animated text clusters themselves have little to no sensing
capabilities (Section 4.6). If kinetext were to adopt the idea behind AAL-VL, and
have typographic operators and clustering structures become autonomous, the
environment can become potentially much more flexible.

The LaHave House Project [Rau-Chaplin and Smedley, 1997], is a visual-pro-
gramming language composed of iconographic rules for architecture. The gram-
mar of icons they have developed are based on a particular style of architecture
and can be used to construct a large variety of different sequences to generate dif-
ferent models within the same style (Figure 2.8). This concept of having a gram-
mar for a particular style of design is a definitive step in addressing the role of
automation in design. The architect still plays a large role in the design process, but
the computer now can offer extensive possibilities and combinations of the struc-
ture models for the architect to consider during the design process, instead of
merely serving as an implementation tool.

kinetext: Concrete-Programming Paradigm for Animated Typography

15

i Any iengeh ar width. >< Deuhic height raur & Any sabid 6

;
:
i

ARGTNNTNG snd spec- =
o 75 | Publicend Lo
sl @, Dersc hodyrone
i@ Mimeed o
TR
- O Cesa hall 170 Open bodymor:
1 [

Figuie 6 — Graphical Vocabalary

e e o ol M o b gy Masches umys of any widkh wivh enuper
r'a widths are specibed, wl thrve soncs machin and bay uone, 3nd 30 opcn.
etk are desighated Smy valid A, and. public nd, dauble hreighe, great hall,
| e are o specfies e heighs, * body e of amy depeh.

N it ol

-

12 Minches sy 17 wide tray wich 3 dense. E
‘machine 1one of say deprh. » dense %
m oy soi of any depeh, snd s ¥ decp
open bay . b‘

I Masches 4" wide sray. with denee

Fse 7 — Exsmple ey specis i - Figure 4 — Phases of Generation

Figure 2.8: The figure on the left shows the icons used to describe the grammar developed for
the architectural style of the LaHave House project, The diagrams on the right show a sample
flow model of the phases of generation from a sequence constructed with the grammar and the
resulting geometries produced.

The Houdini 3D animation system [Side Effects
Software Inc., 1997] is one of the more powerful
animation systems currently available. Although
it employs what is easily recognizable as a
visual-programming paradigm, Houdini repre-
sents a new way of authoring for much of the
commercial animation community. It adopts a 2D
procedural flowchart-like approach to animation —
and allows for non-linear authoring of 3D anima- Figure 2.9: Screen-shot of Houdini.
tion. Houdini successfully integrates a directed-

graph paradigm where procedures and modeling objects alike are linked together
and are directly editable. Further discussion of this system and how it relates to
kinetext can be found in Chapter 7.

G

2.3 3D Environments for Programming

While current research and development has produced many applications and
environments supporting 3D graphics and animation, the great bulk of program-
ming for such environments and applications is still done in 2D. More recently,

kinetext: Concrete-Programming Paradigm for Animated Typography 16

there has been increased interest in programming environments that explore a 3D
interface for manipulating geometries and program components.

Inventor GraphViewer [Open Inventor, 1994]
visualizes the nodes and corresponding hierarchies
of a 3D scene-graph as spheres, cubes and other 3D
shapes. The user can click on a node and have a win-
dow pop up allowing properties of that node to be
changed. Animation is created through engine nodes
that accept time arguments and in turn affect proper-
ties of attached nodes. Despite the 3D nature of node
representation, the organization of the nodes (on the
right side of the figure above) are in 2D and hence,
the programming structures really only require a 2D

i3 S

Figure 2.10: The right window
shows the programming-nodes
arranged in a tree-like format.
The left window shows the
resulting model in the view-
port.

representation. But even so, this initial mapping of programming structures to 3D
introduced the possibilities of using 3D for programming and not merely viewing.

CAEL-3D, Computer Animation Envi-
ronment Language [Van Reeth et al.,
1995], is a menu-based, 3D graphical pro-
gramming environment. All programming
structures are given a visual representation
within the 3D environment. The figure to
the right displays CAEL-3D’s representa-

tion of the Fibonacci function. CAEL-3D pjgure 2.11: Fibonacci function in CAEL-

explores different aspects of 3D interac- 3D.
tion for a 3D programming space. The

choice to employ menus is based on the desire to take advantage of the tools
readily available to any 3D modeler. Picking and navigation are performed in the
3D viewing window. In addition the user has the option of viewing the environ-
ment with a stereoscopic display to enhance the 3D experience. Despite such
efforts, much like GraphViewer, CAEL-3D’s programming structures and repre-
sentations are largely 2D icons given some depth. There is no real use of depth in

the programming space.

SKETCH [Zeleznik et. al., 1996], is an interface that employs gesture-based input
to rapidly create and edit 3D scenes and geometries. It achieves a pencil-and-paper

kinetext: Concrete-Programming Paradigm for Animated Typography 17

sketching-like interaction that eliminates the overhead that coding such geometries
would require. SKETCH begins to map an analog design process to a digital 3D
canvas, and is successful in doing so. In addition, the crux of the interface para-
digm makes a giant leap from the 2D-ish methods of previous 3D programming
environments. SKETCH best describes one end of the visual-authoring spectrum
that kinetext is striving to move towards. One hopes that the future of 3D environ-
ments for programming will continue to explore such seamlessness of interface.

& &G &

Figure 2.12: Creating a table leg in SKETCH. The user draws 3 defining lines (center picture) and
the system creates the proper form with accompanying shadow so the initial shape looks elevated

from the ground.

To summarize, in this chapter there was a review of three different areas of related
work: animated typography, visual-programming, and 3D environments (Figure
2.13). As different as these fields seem, there is an undeniable crossover occurring
in recent research and development. Any number of the works described here fall
in more than one of these fields as visual-programming progresses to address ani-
mation and use of new interfaces. By addressing such work, the intent here is to
cover work influential to the development of kinetext. The work in the kinetext
project is primarily focused that of typographic interfaces and visual program-
ming, with 3D playing an important visual role.

kinetext: Concrete-Programming Paradigm for Animated Typography

18

Animated Typography

Minsky Melodies
Kyle Cooper

Saul Bass
Macromedia Director
Adobe After Effects
Flying Letters
Wigglet

Cornix

Visual-p .

Alice

AAL-VL

LaHave House Project
Side Effects Houdini

3D Environments

Inventor GraphViewer
CAEL-3D
SKETCH

Figure 2.13: Table of related work.

kinetext: Concrete-Programming Paradigm for Animated Typography

19

CHAPTER 3

BACKGROUND

3.1 Why Typography Suits Computation

In terms of visual-programming, why have I stayed away from the usual picto-
grams or icons commonly employed? My decision to use words as the actual
means of the visual-programming is based on a desire to avoid ambiguity. I sought
to create an interface that would require as little instruction as possible. During my
study of other visual-programming languages, I was always frustrated by the fact
that although visual diagrams were supposed to facilitate my understanding of the
computation they represented, I was still required to read through a “manual” to
understand what exactly the forms in the visual diagrams were representing.

This clearly showed me that icons and other pictorial forms can be read in a variety
of ways; one person’s interpretation can differ from another’s. Often when the
author of such an iconic visual-programming language would try to illustrate a
point on a slide or whiteboard of what was happening on the computer screen, they
would merely compound the confusion of the audience who now had to map the
hand-drawn form to a computer-drawn form to an abstract concept of computation
(Figure 3.1). The conclusions I drew from such lessons lead me to explore the use
of letters, which are different from almost all other forms. Letters are one of the
few forms that actually transcend media.

kinetext: Concrete-Programming Paradigm for Animated Typography

20

Figure 3.1: A screen-shot and a hand-drawn sketch of the visual-programming language for
VisuaLinda, where spheres = processes, cylinders = process’s behavior, hexagons = processors,
lines = communication.

Even prior to the advent of computing, the idea that letters remained a fairly con-
stant and unambiguous set of forms whether set down in stone or wax or on paper
is evident throughout much of history. In An Essay on Typography, Eric Gill dis-
cusses this concept of the letter-form through the eyes of the craftsman:

He did not say: Such & such a tool or material naturally makes or
lends itself to the making of such and such forms. On the contrary, he
said: Letters are such and such forms; therefore whatever tools &
materials we have to use, we must make these forms as well as the
tools and material will allow. This order of procedure has always been
the one followed. The mind is the arbiter in letter forms, not the tool
or the material. This is not to deny that tools and materials have had a
very great influence on letter forms. But that influence has been sec-
ondary, and for the most part it has been exerted without the crafts-
man’s conscious intention. [Gill, 1936]

That philosophy has carried over to the medium of digital letter-forms. Among the
realm of spheres, cubes, and cones, we can still read letters for what they are.

kinetext: Concrete-Programming Paradigm for Animated Typography 21

As an experiment in testing the

legibility of the letterform, I /L 13 C: :) g ::r CW :'[1 ‘J j<

composed a vector-based font j]\j j\l: O 13 Q j? S T U
(line-based letterforms) with 7 Ny
WA 4

the objective of using the fewest
lines I could to define a distin-
guishable letterform (Figure
3.2). As a further study, I went
on to create an interactive application to generate animations that would gradually
remove the heavy serifs from the letterforms to see at which point the forms would
be illegible (Figure 3.3).

Figure 3.2: Vector-based set of minimalist letterforms.

[P ok o Tom s v e f 1
THZ QUICK
OMN FOX JUN?P ; ¢

S OVER THZ 1. Ot N =
A L ped JU M P

B3R T

1 : 1
AZ W iR

Figure 3.3: A series of images from testing the legibility boundaries of the minimalist letterforms.

One simple, user-interface observation from these short, interactive experiments
was that with the use of typography comes the fact that the user actually has to
type in commands. Granted it is a more time-consuming input method, once
entered, there can be no ambiguity for another observer. The first instinct a literate
observer has when seeing letter-forms is to read them. While abstract shapes may
be more time-efficient as input, the respective abstract output may baffle the aver-
age observer, for there are far fewer universal picture-icons in our visual vocabu-
lary than our verbal vocabulary.

kinetext: Concrete-Programming Paradigm for Animated Typography

22

3.2 Whatis Concrete Poetry

Figure 3.4: Some examples of picture poetry: on the left, a Concrete poetry began as a

mouse’s tail from Alice in Wonderland, and on the right, Eas- ~ literary form in the early

ter Wings by George Herbert. 1950s, an outgrowth from
Fory sl t0 the work of concrete paint-
e e ; :
house, L g B ¢ ersinthe 1940s. The
] nwl,ml g 8 g -
e §§ g N E’g g £ i thought was that poetry
Come, T 148, fag 3EE 0 f%g
e f‘g LTS ggg E gg it Eigf;- g‘g could use placement of
e E"sggfiigz s-**igﬁaff‘;i words in the same way
P jiededis hadfa" iy
st : 3 i E § 1 jié 333 painters use the placement
o 10 <5 23 & ;
SR 1 3 #2 $ of representational forms to
g convey meaning.
ﬁf.‘.'n." . i
i What concrete poetry does
P for typography, is introduce

anew level of form that
interacts with the already present letter-forms. There is an interplay of the unam-
biguous letter-forms being arranged into forms that can either enhance or contrast
with or the communication of the letter-forms. On one end of the spectrum of what
has been considered concrete poetry there is an emphasis on form-imagery. By
observing the form of picture poems like Herbert’s Easter Wings, or Lewis Car-
roll’s Mouse’s Tail, we are given some direct context for interpreting the words
that comprise the form. At the other end, however, one of the initial definers of
concrete poetry, Eugene Gomringer, speaks of the use of less pictorial forms
known as constellations.

The constellation, the word-group, replaces the verse. Instead of syn-
tax it is sufficient to allow two, three or more words to achieve their
full effect. They seem on the surface without interrelation and sprin-
kled at random by careless hand, but looked at more closely, they
become the center of a field of force and define a certain scope. In
finding, selecting and putting down these words (the poet) creates
“thought-objects” and leave the task of association to the reader, who
becomes a collaborator and, in a sense, the completer of the poem.
[Gomringer, 1951]

In a way, Gomringer’s constellations refer back to the celestial definition of find-
ing associations between the stars in the night sky. Concrete poets provide the

kinetext: Concrete-Programming Paradigm for Animated Typography

23

mist
mountain
butterfly

i bau d bin dis b W
e e
u i u a u ich nu
butterfly i
meets
mountain s du baum w b wind band
= i . .
Figure 3.5: Examples j
. in a n d 'S m 1
of constellations by
Eugene Gomringer. bm oW

The left one is from
1955. The one on the -
right is from 1960 and ~ * *
is an “analysis ofthe
words baum (tree) and

wind [which] yields a field of sixty-five one-, two-, three- and four-letter
groups, which in turn yield many other words and associations. [Williams,

placement and choice of words, but it is left to the reader to connect these words
into forms they can readily accept, much like astronomy’s constellations.

3.3 The Concrete-Programming Paradigm

The decision to pursue a concrete poetry approach toward visual-programming
was made with the hopes that by arranging function words (typographic operators)
into forms akin to picture poems or constellations, these forms could further com-
municate the function of the programs the words described.

When first designing the environment for kinetext it was decided that the visual
representation of the programs created within should follow the concrete model of
form helping to convey meaning. However, as the system developed, it was found
that legibility increased when kinetext also affected the forms of the words in addi-
tion to arranging the words into forms. A simple example of this is comparing

“scale = 2" to Scale — 2 By changing the actual form of the instruction,

one can imbue the operator with visual information in addition to its contextual
information. In addition to visual information, one can also add temporal informa-
tion. For example, when the user is setting time duration for sprites, it is difficult to

kinetext: Concrete-Programming Paradigm for Animated Typography 24

get a feel for how the timing is working until they actually play out the final ani-
mation. kinetext affects the form of the words in the time operator by fading out the
words over the time period they are describing while the user is still within the
workspace. Such visual and temporal cues are simple enough that their actions are
fairly unambiguous when seen in conjunction with the function words.

While it is eminently useful to explore these different uses of form in conjunction
with typography, one must also keep in mind never to emphasize form at the
expense of content. One example of such can be found in “ASCII art.” In these
pictures composed of letters and punctuation, there is often no lexical meaning to
the letter combinations and the letterforms themselves becomes little more than a
pixels for the form they depict.

888888
88.. | | = 1 == = = === 0
» 34 ¥ 1] sl

. | . i
88 | -1,] Ca2b . PN L |
Tt [I | In."

I
") i_aeaooeaaaeed] | '] _!-

I . I I
88 | 17 ==l 1 7 P11 MMoMMMMoMM 1] . '] I_--1='1 | 88
88 | | I 1= 0_1_naase neeed]_||.1-;' | I I 88
a8___ | | ool ot 0]d|MMMo * loMMp|,F,.0.,.0.._ | I a8
88 I I 11 _aeeed, aeed) J] 1 | I I | 88
88] I]..0-;'i]r|MPYMoMMMMoM] | -..| | 1 | 88
88] e R B PR) oo VR | i-t.._ | | 88
88 _L.=' I _-"1 1 Mbanoeeen 1] .| "-._| I""-.._ | 88
88..-i' .t =) 1 _eaoMemoMM]_|.|"-. | _ | 1" 88
88 | 1.1 1.1 {1 juMoMMMMoMMMMIn]| . | ! I .] 88
a8 I -1 . I.* 1/ 1_eontoeaoM| ! |7 L. 1-._1 a8
88 _1"'] .Y) L [eneaeeenneeme] N\l . 1 C._ | Y. a8
88~ | I [VAN LY T Il |"-88
1] _-'1 U (Y) LU W R | -Lee| 88
a8 - I 7/ VTt 1.1 - | 88
88 _. 1] L ¥ 2 Al | 1'.1 88
88 vanishing point 88888 868688 (FL) 888

Figure 3.6: An example of form overwhelming content. Vanishing
Point, by Felix Lee. ASCII art.

In summary, the decision to use typography as a basis for a visual-programming
language is largely based on a desire for the clarity of form letters represent. The
progression to pursue a concrete poetry paradigm for a visual-programming envi-

ronment is based on the objective to use word arrangement to convey added mean-

ing beyond the letterforms.

kinetext: Concrete-Programming Paradigm for Animated Typography

25

CHAPTER 4

DESCRIPTION OF THE SYSTEM

4.1 Typographic Operators and Clusters

Typographic operators serve
as the basic building blocks
for the system. They convey
their function by changing
their individual forms. For
example, when the user
size x is (types the color word "pur-
size x is (20) ple," the text immediately

| | changes its material prop-
S]Ze y IS (25, 3) erty to reflect the color pur-
ple. Similar visual cues are
embedded for function
words such as "rotate" or
"size" or "time" where the

rotate y: degrees |

time duration in secs is (3.2)
time duration in secs is (

user is prompted for numeri-

cal arguments.
Figure 4.1: Examples of kinetext’s typographic operators.

These typographic operators then are used to create programming clusters. The
cluster serves as one type of form words can assume through the concrete-pro-
gramming paradigm. It arranges the words into visually webbed-like form that
assumes its members’ characteristics, or in the case of multiple operators control-
ling the same characteristic (e.g., color), averages its members' characteristics
(Figure 4.3). Through these clusters, the user authors different animated effects for
the subject text of the final animation.

kinetext: Concrete-Programming Paradigm for Animated Typography 26

kinetext also allows for an
interesting duality to take
place between subject text
and typographic operator.
Once the user has created
a cluster and applied it to
& / a piece of subject text,
that newly animated sub-
ject text can then become
a typographic operator for
another cluster. This dual-
ity serves to expedite the
creation of new, higher-

il

smoaosh is not an operator

Figure 4.2: An example of a piece of subject text, ‘smoosh’
becoming a typographic operator for a new cluster. level typographic opera-

tors, Oor macros.

4.2 Defining New Typographic Operators

If a particular effect will be appearing frequently in a final animation, the user can
choose to formally define a new typographic operator such that when the string is
next typed, it will automatically assume its assigned characteristics. The way mac-
ros are formally defined is by surrounding the word to be defined with braces. For
example, to define a new typographic operator "bigIndigo” the user would type
"{bigIndigo}" and create a cluster of characteristics to drag over the word. The act
of dragging the cluster over the word transfers the combined characteristics of the
cluster over to the word. From then on when the user next types "biglndigo" the
word will immediately assume the characteristics now bound to it (Figure 4.3).

In this way, users can define their own libraries of higher-level typographic opera-
tors. The libraries can be reused in future animations since the definitions are
saved out in script form and can be reloaded into new animations. The importance
of this arises when designers create effects they wish to reuse in later animations.
This feature allows the designers to personalize kinetext with their own keywords.

kinetext: Concrete-Programming Paradigm for Animated Typography 27

Figure 4.3: Every word that is not a typographic
element begins with default characteristics.
Hence an empty cluster is:

=

scale{ 10,10, 1}

color{ 1.0, 1.0, 1.0 }

How the characteristics of the cluster change as
each child node is added:

ADD: size y is (30) = scale{ 10, 30, 1}
? —

scale{ 10, 30, 1}

ADD: purple = color{ 0.3, 0.1, 0.3 }
? =

color{ 0.3, 0.1, 0.3 }

ADD: blue = color{ 0.3, 0.3, 0.8 }
? =

color{ 0.3, 0.2, 0.55 }

ADD: purple = color{ 0.3, 0.1, 0.3 }
? =

color{ 0.3, 0.17, 0.47 }

ADD: size x is (30) = scale{ 30, 10, 1}
?=

scale{ 30, 30, 1}

4.3 The Workspace and Time

The workspace of the 3D environment is composed of a series of workplanes
where each plane represents a different point in time, much like a key frame. The
default setting of the system is to create workplanes at every half-second interval,
so there is a key frame every 15th frame when the animation is to run at 30 frames
per second.

When the user first drags a cluster with a time characteristic over another word,
copies of the word will appear on all the workplanes it traverses over time. For
example, if a cluster containing “time in seconds is (2.1)” is dragged over the word
“hello” at workplane “0.0 secs,” copies of “hello” will appear on workplanes at

kinetext: Concrete-Programming Paradigm for Animated Typography 28

0.5, 1.0, 1.5, and 2.0 seconds. In addition, the workplane on which that word now
ends (2.0 secs) will rise up to the same height as the current workplane in order to
give the user a sense of the time distance the word covers (For another example,
see the word "head" in Figure 4.4).

If the user changes any characteristics of the word (color, squash, stretch, rotation,
or translation) on the last plane the word resides on, the system interpolates
between workplanes and visually reflects the changes (See the word "sleepy" in
(Figure 4.4)).

Figure 4.4: The workspace from kinetext.

One of the advantages of this workspace model that a 3D work area offers many
viewpoints for observation of 3D structures. For although an application like
Director [Macromedia Inc., 1996] provides for a similar time-organized authoring
process, the process is absolutely flat in that the user can only ever see one frame at
a time and all animation is restricted to that plane of that one frame. In contrast,
kinetext allows the user to actually view and manipulate an animation in 3D, as
well as the ability to view more than one frame at a time. The user can even flatten
planes together to be able to see exactly where objects in one frame are in position
with respect to another frame. This is exceptionally useful when the user wishes to
align certain elements over time (Figure 6.1) or align sprites appearing at different
times in the animation.

kinetext: Concrete-Programming Paradigm for Animated Typography

Viewed in its entirety, the workspace becomes a sketchbook of the process
involved in bringing about the final animated piece. The clusters responsible for
each transformation can be viewed at the corresponding workplanes. Complex
transformations are discerned from simpler ones by merely viewing the clusters
from afar. The environment becomes one large space of concrete poetry giving
insight to the design of the final animation.

4.4 'The Crosshair

Given the complexity of interface 3D introduces, there arises a need to provide the
author with a constant reference point at all times. To address this, there is a 2D
crosshair that constantly lies parallel to the XY plane. See Figure 4.4. The mouse
controls the crosshair when kinetext is in editing mode. When the author toggles
the mouse to move the camera around the workspace, the crosshair remains where
the author last left it during editing, to offer a reference point when the author
wishes to return to editing mode.

4.5 Implementation Notes

kinetext is written in C++ using the Inventor 3D-graphics library and runs in Irix
6.1. The typographic forms are derived from the texture-mapped, anti-aliased font
library developed at the MIT Media Laboratory.

4.6 Program Architecture

All typographic elements are of the class ccElement. ccElement holds information
for the geometries, location, orientation, and appearance of the letters. ccElements
are arranged in a series of lists according to their function. kinetext keeps track of
one such list, which is the dictionary of macros. All other lists are maintained by
the individual workplanes.

All workplanes are of the class zPlane. Each zPlane holds a two lists. One is the
list of the sprite ccElements and the other is the list of the clusters living on the
workplane. Each cluster contains a list of operator ccElements (see Figure 4.5).
The only thing differentiating whether a ccElement is a sprite or an operator is
which list it is living in. All ccElements begin as sprites until attached to clusters.
This flexibility allows the typography in kinetext to have the adaptable duality

kinetext: Concrete-Programming Paradigm for Animated Typography

described in Section 4.1.

CcElewatrts

current workplane : Hime =05

elemlist : | hello

Cﬁfr ites)
[purete |

=r

cluskerList:
ﬂ 4ime duration in sees is (2.1)

Ceblemants too!

Figure 4.5: Diagram describing the software structure of a sample work-
plane.

ccElements themselves have no sensing capabilities of other elements around
them, hence the system itself handles all collision-detection and characteristics-
transferal between ccElements.

When the user toggles to play the animation, the system methodically goes through
each zPlane at every half-second and accesses the list of sprite ccElements, execut-
ing the characteristic transitions as specified by each ccElement at the rate of 30
frames per second. The clusters are ignored during animation play.

4.7 The Output

Currently, animations produced in kinetext can only be viewed within the system.
However, kinetext does have the ability to output a text file that serves as a script

of all the ccElement structures and workplanes. Since it is not meant for the user to
edit the scripts in a text editor, the organization of the output script is done in such
a way for the system to quickly load up the structures when given the file as input.

The output script is organized according to workplane. Therefore it follows that if
a sprite lives on more than one workplane, it has copies that live on other work-

kinetext: Concrete-Programming Paradigm for Animated Typography 31

planes. The script details all the interpolation values for each of the copies since
each ccElement is largely unaware of its siblings (Figure 4.6).

Figure 4.6: This is an excerpt from an output script produced by kinetext.

time 0.000

<word>

string words

time_label time_650_start

total_duration 650

color 1.000 0.500 0.000

translation 145.550 99.190 0.000

scale 70.000 70.000 1.000
size_orig_interpolation_vals 70.000 70.000 1.000
size_start_interpolation_vals 70.000 70.000 1.000
size_end_interpolation_vals 70.000 70.000 1.000
size_term_interpolation_vals 70.000 70.000 1.000
size_delta_interpolation_vals 0.000 0.000 0.000
transl_orig_interpolation_vals 145.550 99.190 0.000
transl_start_interpolation_vals 145.550 99.190 0.000
transl_end_interpolation_vals 145.550 99.190 0.000
transl_term_interpolation_vals 145.550 99.190 0.000
transl_delta_interpolation_vals 0.000 0.000 0.000
colr_orig_interpolation_vals 1.000 0.500 0.000
colr_start_interpolation_vals 1.000 0.500 0.000
colr_end_interpolation_vals 1.000 0.500 0.000
colr_term_interpolation_vals 1.000 0.500 0.000
colr_delta_interpolation_vals 0.000 0.000 0.000

<clusterword>

string size x is (70)

time_label time_650_start_compressed
color 1.000 1.000 1.000

translation -13.742 131.671 0.000
scale 70.000 10.000 1.000

<clusterword>

string orange

time_label time_650_start_compressed
color 1.000 0.500 0.000

translation -74.037 89.985 0.000
scale 10.000 10.000 1.000

<cluster>
<clusterword>

kinetext: Concrete-Programming Paradigm for Animated Typography

If a user wishes to edit a script or write a short script by hand, the syntax is very
simple:

time 0.0 /* first workplane */

<word > /* sprite word */

string hello world /* sprite reads ‘hello world’ */
<clusterword> /* cluster word */

string myRed /* cluster word reads ‘myRed’ */
color 1.0 0.0 0.0 /* RGB values for color */

time 0.5 /* empty workplane */

time 1.0 ' /* empty workplane */

time 0.0 /* the last workplane referenced will

be the active plane on start-up */

Why such incongruity between the two scripts? kinetext has default values for all
* objects in the system, so the user can set as little or as many characteristics they
wish. For the sake of completeness, the system will list all characteristic values
when called upon to generate a script for output. A complete listing of possible
characteristics generated for the script can be found described on the table in Fig-
ure 4.7 on the next page.

kinetext: Concrete-Programming Paradigm for Animated Typography

Figure 4.7: Table describing the scripting language for kinetext’s output/input.

time /* creates a new workplane at the appropriate time in seconds */

<word> /* creates new word sprite */

<cluster> /* creates a new cluster; all workplanes start with one empty
cluster already made */

<clusterword> /* creates new word to be attached to current cluster */

Characteristics for <word>:

string

time_label

total_duration /* in milliseconds, how long this sprite will be playing */
color

translation

scale

For the next series of instructions, there are five types of interpolation values:
orig = beginning value of the original sprite

start = value at the start of the workplane

end = value at the end of the workplane

term = ending value of the last copy of the sprite

delta = increment value per frame if 30fm/s

size_orig_interpolation_vals
size_start_interpolation_vals
size_end_interpolation_vals
size_term_interpolation_vals
size_delta_interpolation_vals
transl_orig_interpolation_vals ...
colr_orig_interpolation_vals ...
rot_orig_interpolation_vals ...

Characteristics for <clusterword>:

string
time_label
color
translation
scale

The time_label argument has several different attachments:
_start = this is the original sprite

_middle = this is a copy of a sprite

_start_compressed = this is a sprite that should have copies made

kinetext: Concrete-Programming Paradigm for Animated Typography

To summarize, this chapter covered the basic organization of the kinetext system,
describing the various components used for authoring. In addition, a cursory
description of the underlying software organization was discussed, concluding
with a demonstration of the scripting language kinetext uses for output and subse-
quent input.

kinetext: Concrete-Programming Paradigm for Animated Typography

CHAPTER 5

VISUAL DESIGN OF THE SYSTEM

Beyond the mechanical workings of the environment, it is also important to dis-
cuss the visual layout of the system. This is how kinetext uses the 3D environment,
this is what affects how users perceive interacting with the system. In the begin-
ning, kinetext was an experiment in 2D visual-programming, with the intent of

being able to compose a field of computation that could stay in perpetual motion.

The move to 3D came with a desire to have both more space for a programming-
environment, and a perceptible goal for the computation: typographic animation.

5.1 The Evolution of a Visual-Programming Environment

5.1.1 Visual Machines

Initially, when I began with the
idea of creating a visual-pro-
gramming language based on
concrete-poetry, [sought to cre-
ate an environment that offered
a graphical representation of
algorithms and other computa-
tion the user would create in the
space. Function words would be
arranged in box-like forms sur-
rounding smaller box-like forms
of internal computation (Figure
5.1). The idea was to create
visual-machines built of words

S LEat v

¥ T
+ L4
> 235«
ey B
+ L
P ok e

e "i.:‘ lasse for :
3 : “Gield” sulotrackon % division

2-3 = 73,21.....,

Z9} bether
3

32« 'f.‘?_ netter

T i s £ o =

Ll 0T

Figure 5.1: Initial sketched ideas for a visual-pro-
gramming environment.

kinetext: Concrete-Programming Paradigm for Animated Typography

36

that also showed the flow of data (more numbers and words) through its internals.

Figure 5.2: In this early prototype, inner words describe
a simple program, while outer words define the motion
of that program across the screen. Data, in the form of
other words and numbers would be swept into the open
top of the visual machine, be affected by the inner pro-
gram and be pushed out of the machine.

] 1

= COLOR=green =

The first typographic operators I
sketched out were all mathemati-
cal. Sometimes proximity would
dictate when operators would
affect data. As I progressed I also
began incorporating operators that
adjusted alignment and size of
appearance of text. These operators
could then be dispersed alongside
the visual machines. The intention

L sele
222 o e

L vacuum
A Ly was to use these operators and

Figure 5.3: Initial sketched ideas for behaviors of maChmeS' to generatea fjleld Of_

typographic operators. computation constantly in motion
where operators and machines

alike would output data which would then become new input for the other opera-

tors. The user served as both initiator and mediator of data and operation.

kinetext: Concrete-Programming Paradigm for Animated Typography 37

Figure 5.4: In this early prototype of a program
cluster, an amorphous blob containing instructions
passes over some text and the number 8. The end
results are aligned text and the numbers 3, 13, and
40, corresponding to the numbers one would
obtain from subtraction, addition, and multiplica-
tion accordingly.

5.2 Analyzing the Final Forms that Define kinetext

After spending a few months experimenting with various ideas for a compelling
concrete-programming environment, I decided to shift the focus of the typographic
output. Rather than having a user fill an arbitrary space with computational struc-
tures, set these in motion and observe the intriguing, yet seemingly unpredictable
output (much like cellular automata), I chose to explore the challenge of integrat-
ing design process with typographic output such that the two were interchange-
able. In essence, I now sought to make concrete-programming be both result and
record of the design process.

Naturally, it followed that this endeavor would be treading very closely to current
commercial animation packages and would undoubtedly be measured against such
systems. One effort to place a distancing factor between those systems and kine-
text, was to pursue this experiment in the realm of 3D.

kinetext: Concrete-Programming Paradigm for Animated Typography

5.2.1 Bowed Planes

When [initially chose to address the time
dimension, I knew I wanted to use depth as a
scale of time. I began with square grids lined
up much like a filing-cabinet metaphor, but
almost immediately I saw how both flat and
confusing this looked. The ambiguity arose
in distinguishing one plane from another.
When planes are lined up one directly after
another, there is no opacity to show which
are the front-most.

The next idea was the treat the time labels
for the planes as distinguishing tabs, but this
alone was not enough. The space still looked

Figure 5.5: An early vision for)
the kinetext environment. flat. So the next idea was to actually bow the

planes to give a sense that each keyframe
was almost like a box holding the geome-
tries that were moving in each frame.

5.2.2 Staggering the Space

ToP VIEW OoF SPACE

So now kinetext had bowed planes,

i i o g .
but there was still the occlusion I e S
confusion to address. The obvious /e /-:""'\\\ o —~
- NEENTRL v \RCASE
solution would be to stagger the e i =

planes in a staircase configuration,

but this is inherently an inefficient :
use of space requiring panning of \ @‘ﬁj:l \; \

the space in order to see all the TUening wiwew
workplanes (see Figure 5.6).
Instead, I decided to arrange the Figure 5.6: Sketches of different possible workspace

planes in a horizontal sine wave
configuration (see Figure 5.7). This
works well in that the environment
can have the differentiating factor

kinetext: Concrete-Programming Paradigm for Animated Typography 39

of staggering the planes within a relatively small window of horizontal space.

Figure 5.7: Top and front views of the stagger configuration (horizontal sine wave) used in the

final configuration of kinetext.

5.2.3 Webbed Clusters

Originally, the clusters appeared as a static
spoked structure with a center connecting all the
typographic operators together. This worked
well for showing connectedness, but wrongly
encouraged the impression of a tree-like organi-
zation. Since the members of the cluster did not
follow any kind of hierarchy, I sought to arrange
them in a more amorphous form to show a loose
grouping. The result was a webbed-like struc-
ture which connected all the members, and per-
petually undulated in such a way so that it never
seemed that any one member carried more
importance than another.

scale: stert size (§)
end size (12,

The quick brown fox
jumped over the

'azy dog.

brgwn

P

— "~

rotite 1 :;F‘g er

Figure 5.8: An early cluster
structure.

Figure 5.9: Another early cluster
Structure.

kinetext: Concrete-Programming Paradigm for Animated Typography 40

Figure 5.10: The final webbed look for the clustering
structures.

5.2.4 Color and Contrast

For the background of the space, I chose to use black as it lent the greatest sense of
depth to the space and encouraged the illusion of 3D. I experimented with using
white, but found it to flatten the space somewhat, and in the case of animating text,
encouraged a disconcerting comparison to printing the text on paper. However,
interestingly enough, when it came to actually printing out illustrations of the
space, the white background carries the opposite effect (Figure 5.12). This contrast
is likely due to the different ways color is processed on paper versus the screen. On
the screen, color is an additive process such that mixing the three primaries (red,
green, blue) results in white, whereas on paper, color is a subtractive process
where mixing the three primaries results in black.

[wanted the colors in the space to be subtle and not distract from the work being
done within and so chose to use cooler colors (blues, greens) for representing the
workplanes.

[added the illusion of depth to the inactive workplanes by altering the transpar-
ency levels of the planes such that planes closer to the front were brighter and suc-
cessively darkened the further back they were. The brightness value of each
workplane was determined by dividing how close to 0.0 seconds the plane was by
the total number of workplanes.

For the active workplane, it was decided that the color should be different instead
of the same color to better differentiate from the inactive workplanes. In addition,
since the active plane also gets larger, it was thought that it would be less confus-
ing if a different color was used. But the different color used had to be not too con-
trasting to the other workplanes, or it would distract or confuse the environment. In
terms for the brightness of the color for the active workplane, it had to be visible
but not too bright as to again distract the user as he or she is busy composing and

kinetext: Concrete-Programming Paradigm for Animated Typography 41

arranging typographic elements to be animated. Hence a green, close in saturation
to the blue that is used for the inactive workplanes, was chosen.

In contrast, for the programming clusters, I sought to make it contrast with the
cooler colors of the workplanes by making it reddish, but not a bright red which
would seem to “pop” and distract from the sprites being animated (Figure 5.12).
Initially the clusters had been the same color as the workplanes (Figure 5.9)but I
found they blended in too well with the planes.

5.2.5 Why Grids and Not Solid Planes

Why is the workplane a finite grid if the space is really infinite? The purpose of the
grids are to make the user feel comfortably grounded and not “lost in space.” It
offers a reference point because when you actually do play the animation you will
notice the faint gray frame showing the borders the workplane would have defined,
but as the user you are still free to go outside these bounds in your animation. In
addition, the freedom you gain from having an “official” space and an unofficial
one is that you have the sketching area where you can test out animation ideas that
don’t necessarily have to appear in the final animation. These can be bits and
pieces that you use eventually for future animations but for the time being have
them stored inside the workspace where you have created this animation.

Figure 5.11: An example of opaque planes What about the grid itself? Why not use

in 3D. An empty set of CAEL’s 3D control solid or translucent planes? The problem
structures. with solid or translucent planes is that more
often than not, the effect one gets is that of
having windows, much like a 2D desktop
environment (see Figure 5.6). As absurd as
that may seem, one has to realize that this
phenomenon does not occur through any
fault of 3D itself. Instead, the reason for
this perception is due to the fact that almost
every windowing system (e.g., Win95,
MacOS, XWindows) available today
“fakes” 3D with subtle drop-shadows and color changes for their windows that
create the illusion of depth. One might add that the illusion is so effective as to be
in some cases, more visually-pleasing than the real 3D-plane geometries. When
forced to make this comparison, I realized that simple wire-grids were all the refer-

kinetext: Concrete-Programming Paradigm for Animated Typography 42

ence the user would need. The motion of traversing the wire-grids was enough to
communicate a sense that each represented a separate plane. The motion also
helped to clarify what sprites were anchored to which planes.

Seeing through keyframes also allowed for better observation of sprite-interpola-
tion occurring on the in-between keyframes.

5.2.6 Animation: Why the Stage Border

During animation mode, there is a light gray border to offer the designer a refer-
ence point. Since kinetext allows the user to move the camera around in 3D, the
border helps to define when the user has the camera pointed perpendicular to the
animation (the border will be squared up as opposed to distorted by perspective).
In addition, the border shows a 300:400 (worldspace coordinates) ratio for design-
ers to have a concept of how large their animation is spatially. This is especially
important, since the power of zooming quickly distorts one sense of scale in a 3D
space. The border does not cut off any parts of the animation if sprites go beyond
the lines defining the border.

5.2.7 Visual Appearance of Typographic Operators

The emphasis was to avoid ambiguity with the typographic operators. Initially, the
typographic operators would try to show start-to-end transformations (See the
scale operator in (Figure 5.9)). Having a rapid motion continually loop distracted
the user, so eventually it was decided that motion should be avoided in the opera-
tors. However, if the operators and clusters were absolutely static, then they started
to be confused with the sprites. It was clear that there should be some ambient
motion for the clusters to differentiate from the background, but not be distracting
for the user. Eventually I settled on a slow, fluid rotating motion for the clusters.
The x and y values each correspond to different circle paths that are out of sync
with one another. The resulting effect is a web that looks like each one of its tips is
slowly growing then receding in turn, giving an organic, almost ambulatory
motion to the program clusters. '

kinetext: Concrete-Programming Paradigm for Animated Typography

Figure 5.1
A2: A whit
e back
ground and then black back,
ground to offe
er contrast.

kinetex! is

and Dh“”uﬁuno 5C1

The visoal instruchio®
ch os lor,

kinetext: C
: Concrete-Pro i
gramming Paradigm for Anim
ated Typo
graphy

44

Figure 5.13: Code segment for the cluster motion in kinetext.

void clustermotion(double &locx, double &locy, int breakcycle) {
locx+=(RADIUS*cos(breakcycle+(frame*(P1/90.0))));
locy+=(RADIUS*sin(breakcycle+(frame*(P1/180.0))));

}// clustermotion

Figure 5.14: Series of images showing the changing form of a 3-member cluster due 1o its
ambient motion.

[n summary, the visual components of the kinetext system were all carefully
designed with respect to one another and the interaction and visual presentation of
the overall environment. If I made changes to one component, I would have to go
back to examine how those changes would affect all the other components sur-
rounding that one component. In a way, the visual design of the system begins to
have as much, if not greater, importance than the underlying software design. The
purpose of any visual design is to enhance the communication of what it depicts. In
the case of kinetext, the visual design is meant to enhance the communication of
the relations between the different software elements and the computation
involved in animating type. If the visual design failed, it would be highly difficult
to illustrate the quality and depth of the software. One can even generalize to say
that user studies are truly experiments examining how successful the visual design
of an application is in communicating the purpose of its software.

Even now, it is evident that further visual design is needed for the definition of
macros in kinetext. Because of time constraints, a visual dictionary in which to ref-
erence all the macros was never designed. As a result, the full potential of the mac-
ros still lies hidden in the software, lacking a human interface.

kinetext: Concrete-Programming Paradigm for Animated Typography 45

CHAPTER 6

AUTHORING TEXT ANIMATIONS WITH

KINETEXT

To best explore how kinetext affects the authoring process, a series of three differ-
ent animations were created:

1. a short animation of one sentence

2. a longer animation of a poem

3. a short rapid-serial-visual-presentation (RSVP) animation

For a step-by-step process of authoring an animation in kinetext, please see Appen-
dix C. This chapter assumes a rudimentary familiarity with using the system and
will focus on overall observations of the experience. The concluding sections of
this chapter present reflections on lessons learned from creating and using the sys-
tem for kinetext.

6.1 Animation 1: The sentence

This was the first and simplest animation of the series. Given the short sentence, “I
am tired.” the goal here was to animate this one idea. To achieve the expression, I
decided to make the sentence appear to drowsily slump over time and have the
word ‘tired’ change from a bright white to a muted blue.

For the short animation of one sentence, there was no need to create macros so I
just made clusters for each of the different effects. Having the ability to compress
the planes was useful in that I could position the end state to move vertically down,
to maintain illusion of the word “tired” stretching and getting sluggish. In addition,
I also added a series of “yawns” that get progressively larger and brighter as the
sentence completes its slump.

kinetext: Concrete-Programming Paradigm for Animated Typography 46

Figure 6.2: The column on the left shows a series of images from Animation I. The column on
the right is a simple, yet dramatic animation of two words sized proportionately to one another.

| am

& -
= -

kinetext: Concrete-Programming Paradigm for Animated Typography

47

Figure 6.1: A view of Animation 1 with all the workplanes compressed. This
allows the user to ensure the vertical descent of the sentence with no horizontal

shift.

Overall, this animation was quickly implemented and made good use of the clus-
tering structures and the capability of manipulating the workplanes.

6.2 Animation 2: The poem

For the animation of the poem, I ran into a few problems. Among other consider-
ations, kinetext forces a very linear authoring process by virtue of the workspace
being organized by time. Add this element to the fact that kinetext currently does
not support “drag and dropping” of different segments of an animation and a large
problem arises. For lengthy animations one has to know almost exactly how they
want the animation to proceed before laying it out in kinetext. Ironically, I found
myself sketching out how the timing of my sprites should be on paper before sit-
ting down in front of the computer.

kinetext: Concrete-Programming Paradigm for Animated Typography

The futurist poets have created:

verse

free words

and imagination

unconventional logic
typography

long words

short words

vertical words
horizontal words
oblique words

words that flutter lightly like butterflies

words that tumble and scatter like snowflakes
words that crowd together like rain

words placed upright
words made to recline
words turned upside down

words in spirals like the smoke of a cigar
words in motion like a train
words that explode like a revolver shot

torn words

dismembered words

repeated words

elongated words

modified to express the emotion

Figure 6.3: Excerpt from “The ABC of Ital-
ian Futurism” from “Futurism and Advertis-
ing” by Fortunato Depero.

Because the animation grew so
large, the ability to compress the
planes became useless as having
all the planes flattened on one
another presents something illeg-
ible. Having the ability to create
macros was useful, but not help-
ful enough because I still had to
orchestrate all sprite movement
by hand as there was no feature
to automate this.

Figure 6.4: A view of the workspace for Animation 2.

kinetext: Concrete-Programming Paradigm for Animated Typography

49

For this line of the poem, I chose to make “WORDS”
move across the screen like a train, seeming to speed
up when “in motion” and “like a train” move in the
opposite direction like passing trains.

Figure 6.5: A series of frames taken from Animation 2.

kinetext: Concrete-Programming Paradigm for Animated Typography

50

On the whole, this second animation presented an excellent challenge to kinetext.
Authoring an animation longer than a few seconds introduced many scalability
issues. In addition, complex animation also raised questions of whether greater
automation will aid the expediency of authoring at the price of legibility.

6.3 Animation 3: RSVP

This animation does not explore the cluster
features, but instead experiments with differ-
ent views of the animation in 3D. The
premise of this animation was that given a
short paragraph of text, animate it legibly in
under 10 seconds. Using kinetext, I decided to
try for the effect one gets when driving over Figure 6.6: A view of Animation 3.
words painted on the street.

The workplanes were made to appear at every
0.3 seconds as opposed to 0.5 seconds in
order to increase the rate at which words
could appear. For the sake of legibility of the
words rapidly flashing by, the same visual
effect was used for all the words, so that once
the reader’s eyes were trained on the pattern,
they could read faster. Using only one effect
streamlined the authoring process greatly.
After establishing a macro for the effect, all I
did was enter words two or three at a time per workplane, and then went into play
mode to adjust the camera viewing angle.

Figure 6.7: A different view of Anima-
tion 3.

I think we ought to read only the kind of Figure 6.8: The text animated for RSVP. A
books that wound and stab us . . . We need Letter to Oskar Pollak, by Franz Kafka.
the books that affect us like a disaster, that

grieve us deeply, like the death of someone

we loved more than ourselves, like being ban-

ished into forests far from everyone, like a

suicide. A book must be the axe for the frozen

sea inside us.

This experiment in RSVP differed from both of the previous animations in that it

kinetext: Concrete-Programming Paradigm for Animated Typography 51

took a simple approach to the authoring process and much of what affected what
the final animation looked like was really just taking advantage of the 3D space the
system lives in. Given the exact same composition, a small change to the camera
viewing angle could give the finished piece an entirely different quality (Figure
6.6)(Figure 6.7). I had always considered the use of 3D camera movement as an
excellent way to view the workspace, but had never really considered how it would
affect the viewing of the final animated piece. Hence, it was an unexpected boon to
find that the 3D camera movement could also add its own design element to the
animated pieces.

6.4 Observations and Critique

Through these series of animations, I drew several conclusions and observations
about kinetext and the animation authoring process. Because kinetext is not a com-
mercial authoring system, it lacks the flexibility of the average commercial author-
ing systems. kinetext is best suited for the design of short animated text pieces or
simple, repetitive text pieces. The reason for this is because of the nature of the
authoring process. For every animated effect, the user is required to type in the
appropriate effect, be it a predefined macro or a new program cluster. This can
become very time-consuming, but if one recalls the goals of the concrete-program-
ming paradigm, the authoring process fostered by kinetext can be viewed as being
analogous to writing well-commented program code. The focus here is to create
animation pieces that have routines that can be easily be reused for future anima-
tions since the "documentation,” in the form of visual representation, lives within
.the routines themselves.

6.4.1 Observations on Menus and Windows

kinetext employs no menus or windowing, although arguably the workplanes can
be viewed as windows of sorts. The experiment here is to see how successful an
interface can be without the ubiquitous menus and windows. So without menus,
among the other recourses is to map functions to key presses. This becomes an
issue because it requires remembering what certain keystrokes mean, but at least
the environment space is not cluttered.

One problem with working in 3 dimensions is that a good fraction of screen space
must be used to create the illusion of 3D. With 2D, every pixel of the screen can be
filled with information, whereas with 3D, some fraction of the 2D screen must be

kinetext: Concrete-Programming Paradigm for Animated Typography 52

utilized to give the illusion of depth, whether it be with shadows or the tops and
sides of shapes, e.g., square vs. cube.

The inverse argument to this problem of screen real estate is that 3D provides rela-
tively infinite space with the power of zooming and panning. Instead of having a
single workspace, the user can have multiple workareas that can be viewed simul-
taneously and also share macros across the environment. Level of detail in a 3D
digital environment can be near infinite with the power of zoom and pan. So why
has the popularity of 3D environments not yet overtaken 2D environments? I think
the real hurdle to the commercial 3D environment is physical interface tools. The
mouse is simply not an intuitive navigation device when it comes to 3D space. As
aresult, menus and windows will continue to dominate until new interface devices
and paradigms can present a new standard to challenge the desktop mouse.

6.4.2 Critique for Movable Clusters

Even though I could create macros to use on other workplanes, sometimes I found
myself wanting to merely be able to move clusters from one plane to the next to
avoid having to re-type commands. But the point of anchoring clusters to work-
planes is to keep a record of the designer’s design decisions. One compromise I
considered is being able to make copies of clusters which you could then paste on
another workplane. This could ease the tedium of re-typing while still maintaining
a record.

-6.4.3 Critique on Navigating the Space

One of the difficulties I discovered while working on longer animations was that in
order to say go from time 0.0 to time 10.0, one had to traverse all the keyframes in
between. Ideally, I should have built a picking mechanism whereby one could
jump from one workplane to another instead of having to scroll through.

kinetext uses Inventor’s built-in 3D navigation controls. As with many of the 2D
controls mapped to navigate through 3D space, the interface is not always clear. As
a result kinetext’s workspace is not the easiest to zoom or pan through. This
becomes an issue because the nature of how kinetext utilizes space requires that the
user zoom and pan. For instance, suppose one is working at time 0.0 and then
moves to time 3.5. First of all, time 3.5 is further back in space, requiring the user
to zoom in order to get the same level of detail they had while working on time 0.0.

kinetext: Concrete-Programming Paradigm for Animated Typography 53

In addition, time 3.5 will reside shifted to the left of where time 0.0 is due to the
horizontal sine-wave staggering of the workplanes. If the user wishes to have the
time 3.5 workplane centered in their window after working at time 0.0, they will
have to pan a little over to the left. Ideally, to correct this, I should automatically
move the camera to center on the active workplane after the user has stopped
scrolling through the planes.

6.4.4 Observations on Typographic Parameters

One seeming anomaly in kinetext’s development is the fact that the system does
not have operators to change fonts or spacing of letterforms. The reason for this is
because when kinetext was first designed, its primary focus was on providing a
illustrative visual-programming environment using typography. The emphasis was
not on building this system so I could compose a specific typographic animation
with it. Hence, because the actual compositions produced by the system were con-
sidered secondary to the system itself, certain features I never gave much focus to
during the design of the system were suddenly brought to the forefront once I actu-
ally sat down with my ideas for animated pieces to be implemented. By losing
sight of the eventuality of authoring with the system and getting absorbed in trying
to fully-realize the concrete-programming paradigm, I think a certain imbalance
occurred and certain basic principles of typography were temporarily dismissed. It
is my hope that in future work the balance can be restored.

In summary, the three animations offered me an excellent opportunity to test my
system. The concrete-programming aspect of the system was all I could hope for,
but I quickly realized I had not considered possible problems of scalability when I
first designed the system. In retrospect, I should have designed with both the con-
crete-programming paradigm and a vision of a specific animated piece I wished to
produce in mind. I believe that if each bore equal-weight in determining some of
the system design decisions I made, kinetext would have been more flexible in
accommodating variable length, complex animations.

kinetext: Concrete-Programming Paradigm for Animated Typography 54

CHAPTER 7

ANALYSIS OF METHOD AND PROCESS:
A COMPARISON AMONG AUTHORING

SYSTEMS

Granted, the engineer of one animation system is not the most objective judge of
other systems, it is still an interesting and useful exercise to compare the authoring
experiences in each. In this chapter, two systems (Macromedia Director 6.0 and
Side Effects Houdini 2.0) will be examined and compared to kinetext. The organi-
zation of each experiment is as follows:

1. Give a general overview of the purpose and primary toolset of the system.

2. List observations on the system and discuss its approach to the authoring
process.

3. Compare how the system relates to kinetext based on the preceding
observations.

7.1 Macromedia Director 6.0

Macromedia Director 6.0 is an application for creating 2D animations and interac-
tive presentations. Director’s origins hail back to an early multimedia application
called VideoWorks that was written for the Apple Macintosh. VideoWorks was
aimed at the business presentations market as a more powerful tool than Power-
point in allowing incorporation of sound and animations in presentations [Phillips,
1994). Director today has kept some of the initial elements that made VideoWorks
successful. Those elements were the ability to manipulate pieces on a “stage” by
means of a “score,” offering one of the first direct visual representations of the
constructed piece and the construction process together. In addition, Director sup-
ports programming via an object-oriented scripting language called Lingo. Today,
when viewed among competing animation products like Adobe Premiere and

kinetext: Concrete-Programming Paradigm for Animated Typography 55

After Effects, Director is seen as a heavily time-based application where the final
piece is viewable and editable on a frame-by-frame basis. The feature that distin-
guishes it from the Adobe products is its support of interactive presentations. This
makes it a widely used tool for creating many of the interactive CD-ROM titles
available today.

The authoring process here is focused around 3 windows: the Cast, the Score, and
the Presentation window. The Cast window holds all the elements to be animated,
otherwise known as sprites, the Score window displays all the frames for the entire
animation, and the Presentation window (originally the Stage) displays whichever
frame is currently selected in the score.

_Fjresentation

Figure 7.1: The layout of Director 6.0.

7.1.1 Observations on Director 6.0

The areas which I found myself spending the most time during the authoring pro-
cess were almost equally divided between the Presentation and Score.

kinetext: Concrete-Programming Paradigm for Animated Typography 56

During the authoring process the user must continually scrolls back and forth
across the score to properly time and layer sprites. While this affords the user a
great deal of control, it becomes inconvenient when putting together an animation
to run at 30 frames per second. Given the screen space, the window can never
show more than two seconds (60 frames) at a time.

5 To resize text or perform other
*F sprite appearance effects, one
cannot directly manipulate
these characteristics in the pre-
sentation window, but instead
must pop up a separate editor
I window, be it either the text
= editor window or the paint
] g = window. As a result, there are
Figure 7.2: The three different editors which can create ~ 'WO Ways [0 create text sprites.
text sprites in Director 6.0 - the Animation Wizard, the The method available in the
Text Editor and the Paint Editor. active toolbox only allows for
black word-processor text. In
order to create colored text of any sort, one has to create text in the paint window
instead. Ideally, Director should have integrated the two such that there is only a
single editor for the sprite to avoid confusion.

What the user can do directly in the Presentation window is create paths for the
sprites to follow via dragging. This is convenient, and one can easily compare the
path of multiple sprites in the same frame. Director also allows for direct editing of
the text contents within the Presentation window.

What is inconvenient for text animations is how the background of the text is not
transparent by default. This makes for awkward layering. However, Director has
an “Animation Wizard” which consists solely of text effects. But again, it is a sep-
arate window and yet another editor in which to create text sprites, and the menu
description of “Animation Wizard” would do better to be called “Text Effects Wiz-

ard” instead.

kinetext: Concrete-Programming Paradigm for Animated Typography 57

One of the clever features of Director is hav-
ing a “details” box pop up when the sprite is
selected. In addition, when you go to reposi-
tion the sprite, the details box does not inter-
fere as it becomes semi-transparent when
passed over other sprites. Figure 7.3: The Presentation window
of Director. The paths of two sprites

. . . are shown (‘is’ and orange ‘This’).
Overall, while Director is an excellent tool for j, addition, the Details boxes of the

putting together interactive graphic presenta- sprites are visible and partially trans-
tions quickly, its strength is not in integrating P

its tools together well. It uses familiar conven-

tions of word processors and paint programs but fails to merge the separate tool
sets very well, offering multiple ways to author sprites instead of unifying them
into one tool.

7.1.2 Comparing Director 6.0 and kinetext

Director is similar to kinetext in that there is an inherent emphasis on working with
time during the authoring process. The Score is the equivalent of kinetext’s key-
frame workplanes, and the Presentation window is the equivalent of a single work-
plane. Whereas Director maintains separate areas to work in, kinetext integrates all
areas. However, Director enjoys more scalability in terms of project sizes because
by maintaining separate window areas, the user can focus on the Score to quickly
layout a rough version of an animation and then at a later time go back to the Pre-
sentation window to tweak. By integrating score and presentation, kinetext loses
the abstraction layer needed to simplify the authoring process for large animations.

Inherently, there is a trade-off in what abstraction can bring. Generalization adds a
layer of abstraction that enables more complicated things to be simplified and
grasped more easily. However, generalization essentially masks details and specif-
ics, and if there is not an easy way for the user to map back to this detailed infor-
mation, this becomes an issue. With the case of Director, the generalization of
having a score and being able to quickly organize cast objects simplifies the
authoring process, but obscures later legibility of the composition of the anima-
tion. The user is required to browse through multiple windows in order to unravel
the composition, and even then can only really view around two seconds at a time.
Alternately, with the case of kinetext, there is no generalization such that the com-
position contains every bit of information the author put into the animation. Unfor-

kinetext: Concrete-Programming Paradigm for Animated Typography 58

tunately, this makes the process very labor intensive for the author the lengthier an
animation grows.

7.2 Side Effects Houdini 2.0

Side Effects Houdini 2.0 is a system for creating sophisticated 3D animations.
Houdini’s origins lie in Side Effects PRISMS, a 3D animation system that uses a
procedural authoring process. The emphasis of PRISMS was to give the user
expert control in by providing many options, parameters, controls, an extensive
scripting language, etc., sometimes at the expense of efficiency. As its successor,
Houdini both streamlined PRISMS with tighter integration of features and placed
more emphasis on making the user interface easy to use so that complex animated
effects could be achieved by users relatively new to the environment.

The authoring process here is based primarily on a set of 3 areas: the Layout Area,
the Viewport, and the Parameter Area.

Menu bar

Mode Icons

Figure 7.4: The layout of Houdini 2.0.

kinetext: Concrete-Programming Paradigm for Animated Typography

59

7.2.1 Observations on Houdini 2.0

The areas where I found myself spending the most time during the authoring pro-
cess were the Layout Area and the Viewport.

There is not much emphasis on “seeing time” in Houdini. Time consists of a play-
bar with a thumb. The thumb indicates what frame in the animation is currently
being viewed. The user drags the thumb along the playbar to move across frames
through time. To animate, one goes to a frame, changes the scene, verifies the
changes, and the system the interpolates between positions. In addition, the user is
able to set the kinds of interpolation whether linear or periodic with growth or
decay.

iThumb

Figure 7.5: The playbar of Houdini

Because Houdini supports such a large host of tools for modeling, animation, and
rendering, there is an increased start-up time where many more controls have to be
learned before the user can get started. In addition, the user also has to become
accustomed to the visual-programming paradigm for authoring. This may some-
times prove difficult, especially if a person is acclimated to time-organized anima-
tion authoring. But once the user learns the primary set of controls, Houdini
becomes a lot easier to use in that all the tools are integrated in such a way that the
designer can easily use the other toolsets without having to learn a new set of con-
trols. After going through the tutorial for performing a simple animation via object
tiles and manipulation of objects in the 3D viewport, it is relatively easy to extrap-
olate these techniques when using the other capabilities of the system. Of course,
the user still has to rely on manuals to implement more complicated effects and
learn how to access the other capabilities of the system, but the basic structure and
organization of the authoring process remains fairly uniform, even when scaling
up the complexity of the animation.

kinetext: Concrete-Programming Paradigm for Animated Typography 60

7.2.2 Houdini’s Visual-Programming Paradigm

Houdini introduces “OPerator tiles” which
Figure 7.6: A view of Houdini’s Layout

are the geometric components, actions, and Ayeq, Viewport, and Parameter Area.

procedures that are used to compose scene Noze the connected object tiles present in
the Layout Area.

graphs. These tiles can then be arranged in
the Layout Area to form graphic representa- |
tions of the dataflow between operators.

This paradigm is useful because the user
can work in general terms and set up an
entire scene graph before tweaking parame-
ters. In addition, with the workflow model,
there is a concept of multiple, non-sequen-
tial “undo” since all the operations are tiles
that can easily be connected and discon-
nected, and re-attached later.

Text animation is treated much like animating any other 3D geometric form. In
effect, any visual effect a user creates for a shape can easily be applied to a piece of
text, be it a bouncing ball or fluttering leaves. In the case of a bouncing ball, the
user literally exchanges the Sphere OPerator (SOP) Tile with a Font OPerator
(FOP) Tile in the Layout and a piece of text is now bouncing.

7.2.3 Comparing Houdini 2.0 and kinetext

kinetext is different in that its layout area is integrated with the animation display
area. Houdini keeps the layout area distinctly separate from the animation area.
But this paradigm works well for Houdini as it provides a way to generalize the
complex scene graphs being constructed. kinetext is not targeting animation of
large, complex 3D geometries as Houdini is, and instead chose to study the possi-
bilities of doing all authoring in a single space.

Houdini’s approach to visual-programming is very different from the paradigm
that kinetext follows. Houdini’s visual OPerators are more focused on directing the
flow of operation than offering direct visualization of sprite components. Again, it
is an issue of abstraction layers and generalized complexity. Houdini’s separate
authoring areas allow the user to work simultaneously with different levels of

kinetext: Concrete-Programming Paradigm for Animated Typography

detail visible at once. For example, the Layout Area packages all the information
of different scene objects into small, square tiles, and the information that pertains
to the actual scene object receives a kind of magnifying glass effect when the user
clicks on a tile and looks over into the Parameter Area. On the whole, Houdini is
an excellent example of how a different kind of visual-programming paradigm can
be employed in a complex animation application.

7.3 Results from the Authoring Experience

Both Director and Houdini use 2D paradigms for authoring animations. There are
multiple windows, extensive menus, and plenty of boxes for tweaking numbers for
position and appearance. Houdini does have a 3D Viewport which conveniently
allows for direct manipulation of scene objects in 3D, but the bulk of the authoring
takes place in the 2D Layout Area.

Upon examination, kinetext’s workspace can be viewed as a hybrid of Director’s
Score and Houdini’s Layout Area. The workspace is organized by time, like the
Score, but also supports the construction of small visual programs, like the Layout
Area. At the time of kinetext’s development, Houdini had not been available for
study, otherwise I believe kinetext could have used Houdini’s programming para-
digm as a quality benchmark.

In terms of legibility of the authoring process, Director presents a somewhat
oblique set of data. In order to understand the Score, the user has to cross-reference
ID numbers of the sprites in the Cast. Houdini fares better with the use of Object
Tiles, allowing the user to have both a general idea of the layout of the system and
a detailed view by clicking on any of the Object Tiles. Houdini is well on its way
towards proving that a visual-programming paradigm offers an excellent record of
the authoring process.

Houdini does generalization well, as opposed to Director. Critics have even said
that Houdini streamlines the authoring process and avoids the bottlenecks of more
traditional computer animation tools. Such bottlenecks usually arise from poor
integration of the multiple toolsets required for animation.

Director and Houdini represent two different ends of the animation authoring para-

kinetext: Concrete-Programming Paradigm for Animated Typography 62

digm. One carries traditional 2D animation into the digital arena, and built its tools
according the what the physical 2D authoring process demanded. As a result,
Director is highly time-based and sprite-based. On the other end of the spectrum
there is Houdini, which moves outside of current authoring paradigms and instead
introduces a new archetype. This new visual-programming model streamlines the
authoring process and is flexible enough to apply to all aspects of digital 3D ani-
mation. kinetext lies somewhere in between these two systems, combining some of
the old paradigms (time-based organization) with some of the new (visual-pro-
gramming of sprite behavior).

Authoring Paradigm = Workspace Layout

Director: Time-based authoring A Score depicting all the frames of the
animation, a Presentation window show-
ing the current frame of the animation, a
Cast cataloging all sprites.

Houdini: OPerator-tile A Viewport showing the scene, a Layout
visual-programming Area for arranging OPerator tiles, a
Parameter Area for viewing details of the
OP tiles.

kinetext: Concrete-programming A single workarea with keyframes orga-
nized by time.

Figure 7.7: Table depicting the three systems.

To summarize, the preceding examinations of Macromedia Director 6.0 and Side
Effects Houdini 2.0 coupled with the preceding chapter on kinetext animations
offer a framework of reference in which to compare kinetext to current animation
systems capable of typographic animation. It is apparent that each system has dif-
ferent goals for what kind of paradigm the authoring process should follow. Direc-
tor favors an emphasis on time, Houdini favors an emphasis on a flow organization
of sprites and operations, and kinetext favors a legibility of design decisions over
time. Each system pursues its own paradigm sometimes at the expense of other
aspects of their system. Director loses legibility, Houdini loses ease of use in
requiring a steeper initial learning curve of authors, and kinetext loses scalability.

kinetext: Concrete-Programming Paradigm for Animated Typography 63

CHAPTER 8

CONCLUDING REMARKS

8.1 Summary

kinetext introduces a user-interface environment that allows for the authoring of
text animation through the construction of visual programs. These programs are
composed of words arranged in forms designed to reflect their function, in this
case it is simple loose averaging in the form of clusters. This emphasis on words
arranged in forms defines the concrete-programming paradigm.

As an interface, kinetext is not meant to be a novice’s tool, but nevertheless it
explores certain visual cues that are more intuitive than their 2D counterparts. For
instance, time becomes a simple matter of depth. If the workplanes seem to be dis-
appearing over the horizon, it indicates a fairly long animation. In 2D systems,
time frequently is represented via a score that can only be seen in small chunks,
giving no real indication to overall length.

The authoring process fostered by kinetext can be viewed as being analogous to
writing well-commented program code. The focus here is to create animation
pieces that have routines that can be easily be reused for future animations since
the "documentation,” in the form of visual representation, lives within the routines
themselves.

This thesis has covered the many aspects of kinetext, beginning with the reasons
behind the initial drive to use typography for visual-programming and describing
the different iterations involved in the evolution of the visual design of the system.
The system itself was described, along with a series of animations constructed with
the system, allowing the author to critique aspects of the system with regard to the
authoring process and legibility of design. Finally, an analysis of two other current
authoring systems was performed in order to gain a sense of where the kinetext
system stands with regards to peers in related work.

kinetext: Concrete-Programming Paradigm for Animated Typography 64

8.2 Future Work

kinetext represents the beginning of a whole new generation of elegant visual-pro-
gramming environments, moving beyond the traditional 2D flow-chart styles to
adopt more expressive and legible forms.

8.2.1 Legibility and Collaboration

The success of kinetext as a readable 3D environment is clear in that casual observ-
ers immediately grasped how the space is being used and could easily envision
mapping the environment to different controls. Having staggered planes in space
and the ability to compress these planes easily can translate to represent different
information.

Future work can capitalize on this readability. For instance, a similar model can be
used to show a representation of one plane per sprite instead of time. Each plane
could illustrate the full animation of one sprite and the user could select which
planes to compress and see the resulting animation of a few select sprites or all
active sprites.

One can also imagine kinetext being able to support collaborative animated pieces,
since this idea of documenting the process through visual programs is immensely
useful for cooperative work between multiple authors. Designers could either con-
fer simultaneously sharing a single workspace, or merely have the system keep
track of each designer’s additions to a shared piece. The additions would be differ-
entiated by displaying multiple copies of the same workplane sequence, where
each designer would be responsible for one of the series, and the collaborators
could then examine each others’ workplane sketches as they work on their own.
Designers could leave the equivalent of post-it notes to one another by simply typ-
ing on whichever workplane they wish to refer to, and the system could then assign
a blinking characteristic to the note so it can draw the other designers’ attention
when they next come to visit the environment.

kinetext: Concrete-Programming Paradigm for Animated Typography 65

Figure 8.1: Sketch of idea for kinetext to support collaboration. Both designers
have identical series of workplanes describing the same animation. Designerl
can work at 5.5 secs while Designer2 works at 7.5 secs. Changes made in one
series will propagate to the other, except for post-it notes. Post-it notes signallers
match the visual appearance of the respective designer’s color scheme.

8.2.2 Extending the Concrete-Programming Paradigm

Another venue to pursue in future research is
to further build on the concrete-program-
ming paradigm by introducing additional
forms words can assume besides the cluster.
One such idea is to have a scaffolding struc-
ture that allows for more complex animation Figure 8.2: An idea for chaining clus-
transformations by allowing individual ;}‘; ’za’;g: f‘m Hiore Complex aimaton
transformations for each letter of a word via

a chain of clusters (Figure 8.2).

Another idea is to introduce the concept of having a visual dictionary living within
the environment that depicts the visual definitions of all the macros the user has
created or imported.

Other ideas for future development can stem from the results of the animation
experiments in kinetext. One key problem was the need for additional features to
allow for expedient authoring of lengthier animations (lasting beyond 15 seconds).

kinetext: Concrete-Programming Paradigm for Animated Typography 66

Among the other features that seem needed are ways to allow motion of sprites to
be programmed into clusters. Other features regarding better navigation of the
workspace could also be designed to make the system more efficient.

Another venue to explore would be to adapt successful paradigms from Houdini

_ into the concrete-programming framework. The ability to have procedural flow
diagrams appears to be a very powerful way to author animation. Perhaps the scaf-
folding-structure could be based on that analogy of flow.

The Aesthetics and Computation Group at the MIT Media Laboratory is currently
in the process of developing a 3D environment for prototyping computational
design ideas. The project is informally called acWindows and shares some of kine-
text’s principles regarding the computational medium. The aim of this windowing
system is to create a platform that provides a general framework for rapidly gener-
ating a variety 3D applications. By having this common foundation, 3D applica-
tions that would otherwise be stand-alone units, would instead now be able to
communicate and pass messages between one another through the environment.
By way of such a system, one can imagine the concrete-programming paradigm of
kinetext eventually branching out to be used by other systems for purposes beyond
typographic animation.

kinetext: Concrete-Programming Paradigm for Animated Typography 67

APPENDIX A - USER MANUAL

¢ The executable is
/mas/acg/u/cchao/demos/kineText

« When you run it, after the window comes up, hit Esc to get the crosshair.

e Type away. Colors and keywords are:

red
yellow
green
blue
purple
orange
brown
white
size x
size y
time
rotate x
rotate y
rotate z

keywords should then prompt you for a numeric value. Type it in and close
parentheses.

e To attach words to clusters, select the word with the left mouse button, and
then click and drag the right mouse button.

» Clusters combine word properties so when you drag clusters over other words,
the effects should occur.

Up arrow and down arrow scroll through the time planes.

Fl1 - creates a new cluster

F2 - compresses all the planes together

F3 - expands plane out again

F5 - animation play mode

F6 - return to workspace mode

Fll - return camera to home position

Fl2 - save workspace out to file output.kT

Esc - toggles between typing mode and camera movement mode

 To upload a workspace, you can copy output . kT to something like input .kT
and type: kineText input.kT

kinetext: Concrete-Programming Paradigm for Animated Typography

» To create a macro called dog type: {dog}

e The {} should vanish and the word should look like: dog

o Create a cluster with brown and size x is (30)

¢ Drag cluster over dog

¢ Now the next time dog is typed it will immediately assume the given character-
istics.

kinetext: Concrete-Programming Paradigm for Animated Typography 69

APPENDIX B - AUTHORING A SIMPLE ANIMATION
WITH KINETEXT

Type hello.

Create a cluster with red and size
x is (50) and time in seconds is

(2.1).

time duration in secs is |

hello

kinetext: Concrete-Programming Paradigm for Animated Typography 70

Drag cluster over hello. Another
workplane ~2 secs further back
will pop up.

Arrow up to the popped-up work-
plane.

Create a cluster with blue and size
y is (60).

kinetext: Concrete-Programming Paradigm for Animated Typography

71

Drag cluster over hello.

Move hello over to a different spot
in the workplane.

Play the animation.

kinetext: Concrete-Programming Paradigm for Animated Typography 72

BIBLIOGRAPHY AND REFERENCES

Adobe Systems Incorporated. Adobe After Effects, 1995.
Eric Gill. An Essay on Typography, Godine, Boston, 1936.
Berjouhi Bowler. The word as image, Studio Vista, London, 1970.

Lewis Carroll. Alice’s Adventures in Wonderland and Through the Looking-Glass,
Oxford University Press, London, page 28, 1971.

Chloe Chao and John Maeda. Concrete Programming Paradigm for Kinetic Typog-
raphy. 1997 IEEE Symposium on Visual Languages Proceedings, pages 450-451,
1997.

Marita Duecker, et. al. Visual-Textual Prototyping of 4D Scenes. 1997 IEEE Sym-
posium on Visual Languages Proceedings, pages 332-339, 1997.

Eugene Gomringer. konstellationen, Spiral Press, Berne, 1953.
Suguru Ishizaki. Wigglet. http://www.wigglet.com, 1997.

Hideki Koike, Tetsuji Takada, and Toshiyuki Masui. VisuaLinda: A Framework
for Visualizing Parallel Linda Programs. 1997 IEEE Symposium on Visual Lan-
guages Proceedings, pages 176-182, 1997.

Richard Kostelanetz. Imaged Words & Worded Images, Outerbridge & Dienstfrey,
New York, 1970.

Macromedia Inc. Macromedia Director, 1996.
John Maeda. Flying Letters, Digitalogue, Japan, 1996.

Mihai Nadin. Design in the Age of a Knowledge Society. formdiskurs: Journal of
Design and Design Theory, pages 41-59, 1997.

Ian Phillips. A comparative review of HyperCard and Director as tools for time-
based expressive work, Technical Report, Coventry University, 1994.

Andrew Rau-Chaplin and Trevor J. Smedley. A Graphical Language for Generat-
ing Architectural Forms. 1997 IEEE Symposium on Visual Languages Proceed-
ings, pages 264-271, 1997.

Side Effects Software Inc. Houdini, 1997.

kinetext: Concrete-Programming Paradigm for Animated Typography 73

David Small. Expressive Typography: High Quality Dynamic and Responsive
Typography in the Electronic Environment, Masters Thesis, MIT, 1987.

David Small and Yin Yin Wong. Minsky Melodies, http://www.media.mit.edu/
~dsmall/brainop, 1996.

Douglas Soo. Implementation of a temporal typography system, Masters Thesis,
MIT, 1997.

Tenax Software. Cornix, 1997.

UVA User Interface Group. Rapid prototyping for virtual reality. VR Blackboard,
IEEE Computer Graphics and Applications, 1993.

Josie Wernecke. The Inventor Mentor, Addison-Wesley, 1994,

Yin Yin Wong. Temporal Typography: Characterization of time-varying typo-
graphic forms, Masters Thesis, MIT, 1995.

R. Zeleznik, K. Herndon, and J. Hughes. SKETCH: An Interface for Sketching 3D
Scenes. Computer Graphics (SIGGRAPH 96 Proceedings), pages 163-169, 1996.

Frank Van Reeth, Karin Coninx, Sam De Backer and Eddy Flerackers. Realizing
3D Visual Programming Environments within a Virtual Environment. EURO-
GRAPHICS ‘95, pages 361-370, 1995.

Fugene Wildman. Anthology of Concretism, Swallow Press, Chicago, 1967.

Emmett Williams. An Anthology of Concrete Poetry, Something Else Press, Inc.,
New York, 1967.

kinetext: Concrete-Programming Paradigm for Animated Typography 74

READERS

John Maeda is Interval Assistant Professor of Design and Computation at the MIT
Media Laboratory, where he also directs the Aesthetics & Computation Group
(ACG). His mission at MIT is to foster the development of individuals who can
find the natural intersection between the disciplines of computer science and
graphic design.

William J. Mitchell is Professor of Architecture and Media Arts and Sciences and
Dean of the School of Architecture and Planning at the Massachusetts Institute of
Technology. He teaches courses and conducts research in design theory, computer
applications in architecture and urban design, and imaging and image synthesis.
He consults extensively in the field of computer-aided design and was the co-
founder of a California software company.

Yin Yin Wong is an interaction design consultant working on projects in the area of
kinetic typography and tools for designers. She holds a MS in Media Arts and Sci-
ences from MIT, and a BFA in Graphic Design from Carnegie Mellon University.
She has worked as a print designer and as a user interface researcher with Apple
Computer’s Advanced Technology Group. Yin Yin’s work has been exhibited at
SFMOMA and appeared in publications including ID Magazine, the Computer
Human Interaction Proceedings, and the Atlantic Monthly.

kinetext: Concrete-Programming Paradigm for Animated Typography 75

