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Abstract

A system architecture was developed and analyzed for a basic elevator system using a limited
number of system level components. A Design Structure Matrix was created which represented
the complex interactions of the system components. These components were derived from a
decomposition of system requirements, code and safety requirements, and evaluation of scenario
operational requirements. Clustering routines using cost assignment of interactions aided in
optimizing the cluster assignment of components. These cost assignments reflect cost and time
associated with managing interactions inside and outside of subsystems. Management and
optimization of the interfaces between the clustered components leads to an architecture that
minimizes complexity and will hopefully lead to quicker and less costly product development
cycles.

Using this approach, near-optimal architectures can be analyzed and alternatives can be
evaluated for system level impact. As was observed with this test case, highly complex or
integrative systems are difficult to analyze, even with the tools utilized. These tools provided a
structured approach that utilizes an objective process. This approach provides documentation
and analysis of the architecture that is normally managed on the fly as product development
progresses. The results of the analysis can provide a framework for an organizational structure
of the product development process, provide an avenue for dialogue between design teams
responsible for different subsystems, provide a process for evaluation of architecture alternatives,
and identify the interactions between subsystems that must be managed carefully.

Thesis Supervisor: Dr. Daniel E. Whitney
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Chapter 1 Introduction

Motivation

Product development of today's complex systems often requires managing large numbers of

interfaces, both physical and organizational. Physical systems and their architecture continue to

become more complex as the number of interfaces grows and "increasing complexity is at the

heart of the most difficult problems" (Rechtin & Maier 8). To reduce complexity, it is often

desirable to minimize the number of actual interfaces close to what may be considered an

optimal or essential number of interfaces that produce the desired functionality and meet product

requirements. Managing these interfaces requires an understanding of functional requirements,

system interactions, and the system implications of local design changes. Engineers and product

development managers usually have a good understanding of local design requirements, but may

frequently under-estimate the system effect of interface architecture or the effect of local design

changes.

It is believed that insufficient knowledge management of system interfaces may result in an

excess number of interfaces, design induced rework, or insufficient knowledge of implications of

design changes. A knowledge management tool to document, track, and analyze system,

subsystem, and component interactions may minimize the number of interfaces, reduce cycle-

time by minimizing rework, and provide an essential systems understanding for engineers and

managers. Efficient interface design will also allow for technology and design updates of

product components while minimizing the impact on other components and the system level

architecture. Ideally, the objective is to define proper interfaces that allow efficient
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upgrades/changes to product components without causing rework that is not functionally

required by the upgrade/change. It is highly desirable to have a process for developing an

optimized interface architecture that is independent of current technology, company history and

organizational structure, and one that is able to support efficient field service.

The management of complexity related to interactions is equally important to product

development organizations. As the number of interactions between development teams

increases, delays are incurred from waiting for information and errors are more likely as designs

are more reliant on information from other teams. Therefore it is equally important to optimize

team interactions as it is for a system's physical interactions.

Organization of the Thesis

To create a process and method for evaluating interface architectures, a test case will be

developed for a roped elevator system. The test case will be somewhat generic but will carry

enough detail to evaluate the requirements across different engineering disciplines, interface

types, and functional requirements. This test case will also demonstrate the potential for using

this method on actual products.

There are several stages of this work. The first set of activities will be focused around the

creation of a Design Structure Matrix (DSM) and will be covered in Chapter 3. The DSM will

represent the interactions between the elements and will be used to document and evaluate the

interface architecture. The DSM will be created through a functional decomposition of system

level requirements. These functional requirements will then be used to develop the physical
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system that will represent the functional requirements. The physical elements will be mapped to

the functional requirements through a matrix implementation. Then finally, the DSM will be

extracted from the functional to physical mapping.

The second set of activities will be focused on evaluating the example DSM with a clustering

algorithm. The "first step in structuring is usually aggregating - collecting or clustering closely

related functions or requirements together" (Rechtin 39). The clustering algorithm will be used

to optimize the architecture by grouping like elements. The objective will be to contain the

majority of element-to-element interactions within clusters and minimize the interactions outside

of the clusters while keeping the size each cluster reasonable. "Choosing the appropriate

aggregation of functions is critical in the design of systems." (Rechtin 39) The implementation

and evaluation of a foundation clustering algorithm will be covered in Chapter 4. The

foundation clustering algorithm is based on work by Carlos Iaki Gutierrez Fernandez in his

thesis "Integration Analysis of Product Architecture to Support Effective Team Co-location".

This initial algorithm will be used to evaluate clustering, its application to the elevator problem,

and initially get appropriate clustering parameters. This algorithm will also be used to get an

understanding of the clustering procedure.

The objective is to produce a system architecture, and possibly an organizational structure, by

assigning system elements to groups. With this, we can learn more about the elevator system

and how its components can be optimally clustered to minimize unnecessary interfaces. The end

result provides some innovative ways to cluster the elements to produce an architecture and it

confirms some of the design choices for the current architecture. Th results will show that some
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elements produce well-defined clusters while other elements hinder optimal clustering. When

the elements hindering effective clustering are removed from the clustering calculations, they

provide valuable information if redefined as a system element that is managed differently than

the clustered elements.

The example problems in Fernadez's work were much simpler than the elevator problem, and

were mainly focused on effective co-location of team members. The clustering algorithm in

Fernandez's thesis will be extended to make it more applicable to the elevator problem. The

changes will reflect the needs of complex real-world problems where there is a large number of

elements. Several modifications to the algorithm will be evaluated. The final clustering

algorithm and parameters will be documented in Chapter 5.

All findings of the clustering routines, including how well it evaluated and proposed interface

architectures, will be discussed in Chapter 6. The results and their implications on architecture

and product development organizations will be covered in Chapter 7. Finally, conclusions and

proposed future work will be covered in Chapter 8.
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Chapter 2 Background

Elevators

The interface issues and clustering algorithms for this work have been applied to a basic roped

elevator system. The elevator system presents some issues that make clustering and interface

design nontrivial. The elevator system does not provide any natural grouping that spans the

system. Instead the elevator is made up of many subsystems that represent different types of

interfaces. These interfaces may not always be spatially close and can be highly integrative.

There are control, communication, power, structural, and safety functions that are all integrated

into an automated system that must communicate and take commands from the lay person, meet

performance requirements, and maintain safe operating conditions for the passengers and service

personnel.

Brief History'

Prior to 1852 elevators had largely been used as a hoisting device for freight with the largest

advances coming from steam and hydraulic power. In 1852, Elisha Graves Otis introduced the

world's first safety system that would protect the passenger in case of a breakage in the ropes. In

1857 the first passenger elevators were installed in New York and by 1873 over 2,000 elevators

were installed across America. In 1903 Otis Elevator introduced the first elevators that were

driven directly by an electric motor, without a gearbox, and it cleared the way for the era of the

Dates and statistics obtained from Otis Elevator Company public web page at
http://www.otis.com/aboutotis/elevatorsinfo/
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skyscrapers. Since then improvements and innovations have included automatic controls,

microprocessor based controls, improved ride quality, and improved performance times.

How elevators work

The basic roped elevator (Figure 1) consists of a cab or containment to hold the passenger or

load, a counterweight to balance the weight of the cab and an electric motor to provide the

motion. Hoist ropes (usually steel cables) connect the cab and counterweight and are wrapped

over a rotating sheave that is connected to the motor to provide motion. Compensation ropes are

connected to the bottom of the cab and bottom of the counterweight to counterbalance the weight

of the hoist ropes as the cab and counterweight travel up and down.

The cab and counterweight travel in a shaft called the hoistway that runs the length of the travel

distance for the system. Steel rails are located on the side of the hoistway for guidance of the cab

up and down the hoistway. The guidance system maintains the orientation of the cab with

respect to the building. A similar set of rails guide the counterweight. The motor and control

systems are usually located in a room at the top of the hoistway called the machine room. The

combined hanging weight of the cab and counterweight provide the necessary traction for the

ropes so that they don't slip on the motor sheave.

The control system is usually located in the machine room and receives signals from different

sensors and systems located on the motor, in the building hallway, within the hoistway, in the

machine room, and in the cab. Motion commands and requests can originate from the hallway,

the cab, or other systems (group control, building systems control, etc.). A multiple wire cable
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(travel cable) that connects the machine room to the cab supplies power and communication

signals for the cab. One end of the travel cable is anchored at the machine room and the other

travels with the cab.

The mechanical safety system consists of mechanical jaws located beneath the cab to stop it in

case of rope breakage or an uncontrolled falling motion in excess of maximum speed. The

mechanical jaws (called safeties) are activated by a mechanical governor system located at the

top of the hoistway. The governor is connected to the safeties by a rope and when the cab speed

exceeds the maximum, the governor system clamps the governor rope and pulls on the safeties,

causing them to drop and lock onto the steel rails. There is also a buffer, usually a hydraulic

piston, located at the bottom of the hoistway, to cushion the landing of the car in case it travels

below the bottom floor.

Ronnie E. Thebeau 13
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Figure 1: Elevator System Diagram"



The Elevator System Design Process

The design process for an elevator system typically takes 2-5 years for new product development

and 1-2 years for product modification. The process usually begins with a marketing request to

meet some new market requirements for product performance, price, or features. When the

market requirements have been defined, engineering must evaluate the request for feasibility and

resource availability. This part of the process usually includes discussions with manufacturing,

field service, and product strategy experts. After negotiations, a document is produced to define

the system requirements. Sometimes this takes the form of a modification to an existing product

or it can initiate a new product development.

During the development phase that defines the system requirements, there are often many

requirements that must be traded off. Product performance usually comes at a price, and the end

user of an elevator system (riding passenger) is usually not the purchaser of the product (building

owner, construction company). Therefore performance for the passenger must be weighed

against the cost requirements of the purchaser. Every installation of an elevator is a unique

system as all buildings vary in height, number of floors, floor height, number of door openings,

etc. The performance parameters such as maximum load weight, maximum velocity, maximum

acceleration also varies from building to building. Even the system inertia (total mass) varies

with the height of the building and the purchaser's decisions on the style and features of the

passenger cab. Because it is impractical to design a system for each building, the system design

must be able to operate in a range of conditions, as each installation is custom built. It is also

impractical to design many different systems because of the relatively small volume and high

cost of engineering and manufacturing for each system. This usually results in some type of

Ronnie E. Thebeau 15



platform for a range of products. These platforms cover a range of duties. The platforms usually

fall into one of three categories- hydraulic systems, geared systems (systems using a gearbox),

and gearless systems (system whiteout a gearbox).

One of the difficulties with the platforms is they usually address very different segments of the

market (performance, price, and options) and can create very different architectures. The

architectures are not usually interchangeable between platforms. This can cause significant price

or performance variations between market segments and can force a customer into a platform

that does not meet their particular needs. This can be especially true if a customer has a need

that borders two platforms and all decisions and concessions can make one of the available

products infeasible. It can be very difficult to define the design parameters, as the exact

operational requirements will vary from building to building.

The design decisions must also consider the many systems and people for which it interacts.

This can include the riding passengers, freight, traveling robots (common in hospitals), other

elevators (group control), building system managers (software/hardware systems to monitor &

control building systems), service personnel, the building, power supplies, emergency

equipment, emergency personnel (firefighters, medical, etc.), and others, as well as the interfaces

that occur with the elevator system itself. Each of these brings separate requirements and

additional considerations for the system architect

Therefore, it is highly desirable to create a system architecture that meets system performance

requirements, but for which the interfaces are standard and optimal. This can create a more

Ronnie E. Thebeau 16



versatile architecture for which components of platforms are interchangeable as the needs arise.

It can also create a situation where the design groups can design sub-systems that, if they

maintain the interface architecture, can be designed to replace or update technology without

having to make changes to other parts of the system.

The Design Structure Matrix

The Design Structure Matrix is a useful tool for representing the interactions between different

elements. These elements can take the form of physical components, design teams, systems,

design parameters or any other items where an interaction or interface occurs. The interaction

typically takes the form of energy, spatial, material, or information (Pimmler 7). The DSM also

shows direction of flow. Interactions below the diagonal indicate feed-forward interactions and

above the diagonal interactions indicate feedback. Feedback and feed-forward are especially

important for time or decisions based sequences. For more detailed information on the DSM see

the Pimmler and Eppinger paper or go to the Massachusetts Institute of Technology (MIT) DSM

web page1 .

As an example DSM is shown in Table 1. This example will discuss sequencing but it is not

used in this research project. If the DSM contained design parameters then sequencing would be

important, as the order of completion would be important. For the purposes of this paper

sequencing is not considered as crucial as is the knowledge of where the interfaces should be

optimally designed. The locations of interfaces are the primary parameters regardless of the

direction of the interaction at the interface.

Ronnie E. Thebeau 17
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There are several types of interactions shown in this example. The diagonals do not have any

significance, except that an element interacts with itself. All diagonals usually have an entry.

Interaction BC represents an interaction where Element-B provides something to Element-C. If

sequencing were being considered, Interaction-BC would be feed-forward. Interaction-DB

represents an interaction where Element-D provides something to Element-B and Interaction-BA

represents an interaction where Element-B provides something to Element A. If sequencing

were being considered, Interaction-DB and Interaction-BA would represent feedback.

Interaction EA represents the condition where Element-E passes something to Element-A and

interaction AE represents the condition where Element-A passes something to Element-E. If

sequencing were considered, they represent feedback and feed-forward respectively. Together

they may represent a coupled interaction where the two elements are dependent on or interact

with each other.

From
A B C D E

A X BA EA
B X DB

To C BC X
D
E AE X

Table 1: Example DSM Interactions

The entries of the DSM can represent the strength of the interaction. For example, for each of

the interactions in Table 1 (AE, BC, DB, EA), the value placed in the DSM could be 1 if we

. http://web.mit.edu/dsm/
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want to weight each interaction equally. An option to vary the interaction strength could

possibly use 0.5 for a weak interaction, 1 for a normal interaction, and 2 for a strong interaction.

The choice depends on what will be done with the DSM and how it affects the analysis. The

DSM created for the elevator system started with 1's for all interactions, but later the interaction

strengths were modified to represent weak and strong interactions. The details for the elevator

DSM will be discussed later.

Previous Work

The methodology of creating a DSM is based on an explanations published on MIT's DSM web

page and a MIT Master of Science Thesis by Qi Dong, "Representing Information Flow and

Knowledge Management in Product Design Using the Design Structure Matrix". The method

for creating a DSM from a functional-to-physical mapping is based on an idea generated by Qi

Dong. The base mathematical clustering algorithm is developed from the clustering algorithm in

the Fernandez thesis. Pimmler and Eppinger have suggested some additional ideas for clustering

and varying interaction strengths in their paper. These previous works developed the foundation

for the process that was followed to analyze system interface architecture and product

development process.

Ronnie E. Thebeau 19
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Chapter 3 Creation of the DSM

Introduction

This chapter will cover the creation of the Design Structure Matrix from listing the elements to

be included to entering the DSM interactions. It will include the different methodologies used to

list the elements; a functional decomposition of the system, a check of the list of elements using

scenarios, and a functional requirements to physical elements mapping. It will also cover the

method for identifying the DSM interactions and then entering them into the DSM.

To create the DSM that was used in this process, an example system was chosen that represented

a basic roped elevator system. This particular system was chosen because is was basically

generic and was most representative of any elevator system. The DSM that was created is not

complete, nor is it completely correct. Instead, this is an example DSM with an understanding

that more work can be done to complete the DSM or make it more representative of an actual or

desired system. This author took some liberty in creating the entries. Some functional

requirements and physical implementations are generic and not representative of any particular

system while other entries are representative of an actual elevator system. The idea was to create

an example DSM that could represent all of the problems that we would look to analyze with the

clustering routines. Because of this, some of the DSM entries are high-level system

requirements and others are more detailed. If an actual system was being analyzed or developed

it is expected that much more work would be dedicated to the creation of the DSM and its

entries.
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To create the DSM, a 5-step process was followed as listed below.

1. Functional Decomposition of high-level elevator requirements.

2. Scenario Analysis to verify and complete the functional requirements listing.

3. Functional-to-Physical Mapping

4. DSM Extraction from Functional-to-Physical Mapping

5. Enter the DSM Entries representing the interactions

Functional Decomposition

Assembling functional requirements through a basic decomposition of the high-level system

requirements started the process of creating the data for the DSM. Due to time constraints not all

requirements have been captured, but instead, an important subset was developed for the

purposes of testing the feasibility of using clustering algorithms to aid in interface design. The

process yielded the basic and most important functional requirements as observed in the outline

presented in Appendix A. Other functional requirements were derived from analyzing possible

operational scenarios. Existing architecture was also examined in an effort to capture some of

the current interface designs.

Scenario Analysis

Examining operational scenarios is one approach for ensuring that all functional requirements

have been captured. This approach was used to supplement the functional requirements listed

through functional decomposition of the high-level system requirements. Several scenarios for

Ronnie E. Thebeau 21
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normal operating modes and abnormal or failure modes were listed. Then the functional

requirements that were obtained through functional decomposition were mapped to the

operational scenarios. If the functional requirements did not adequately address the operational

scenario, additional functional requirements were added so that it adequately covered the

operational mode. Many of the additional functional requirements that were found through this

process mainly dealt with code issues, failure issues, and some requirements that were derived

from design decisions. A complete listing of the functional requirements and the scenario

mapping can be found in Appendix B.

Another motivation behind the mapping of the scenarios was the possibility of examining how

the clusters address the different scenarios. For example, it may not be optimal for a cluster to be

built if only one element of the cluster was needed to address any scenario. If that were to occur

there may be some cost associated with applying a cluster to an operating condition when the

cluster did not efficiently address the scenario. Using the scenario to functional mapping and the

functional to physical mapping, we may have been able to extract clusters for each of the

scenarios. Therefore there may be some additional procedures or algorithms that could be

developed to address clustering to meet operational scenarios. Unfortunately, there wasn't

enough time to complete this part of the analysis. This may be something to consider for future

research.

Functional to Physical Mapping

The next step in the process was to create a mapping of the functional requirements to their

physical implementation. This process closely followed research work by Qi Dong and she was

22
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consulted as this work progressed. The main idea behind this process is that every functional

requirement is answered by some physical implementation. Therefore, for each functional

requirement a single physical element was listed. Sometimes this was difficult, as it appeared

that there might be several physical elements that implement the functional requirement. Upon

closer examination, it was found that the functional requirements that appeared to have more

than one physical element to implement it, was actually made up of more than one functional

requirement. In other words, the functional requirement could be broken down into several

functional requirements so that there was a one to one mapping of functional requirements to

physical elements. Because of this, this process also uncovered other functional requirements.

Usually these additional functional requirements were derived requirements from the physical

implementation that was being modeled in the mapping. The additional functional requirements

are second and third tier functional requirements that result from a zigzag process of defining

functional requirements, mapping the functional requirements to physical elements, which then

get mapped to additional functional requirements, that get mapped down to more functional

requirements, etc. The functional requirements listed in Appendix B contain all functional

requirements that were listed either through functional decomposition, scenario analysis, or

function to physical mapping.

Once the functional to physical mapping had been completed, it was time to place the entry

marks into the matrix to represent the interactions. Although it should have been possible to

enter the interactions in a functional-to-functional mapping or a functional-to-physical mapping,

I found it very difficult to correctly identify all of the interactions. Instead, I moved directly to

the next step of creating the physical-to-physical mapping (physical DSM) and then entered the
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interactions. The mapping of the functional requirements to physical elements can be found in

Appendix C. Although this mapping was created, there was not sufficient time to use the

functional-to-physical mapping to evaluate the clustering or the resulting architecture. The

entries developed in the physical-to-physical mapping were transferred to the functional-to-

physical mapping since this process assumed that every functional requirement could be replaced

by its physical implementation. If time had allowed, additional analysis of the clusters using the

functional-to-physical mapping could have been observed.

The next step in this process was to replace all of the functional entries on the matrix with their

corresponding physical element. This resulted in a matrix with the physical elements on both

axes of the matrix. This then represented the DSM that was going to be used. After creating the

DSM axes, the physical interactions were documented. A generic mapping of the DSM without

interaction strengths can be found in Appendix D. This base DSM served as the foundation for

entering the interaction strengths.

Enter the DSM Interactions

Initially in this process, all types and strengths of interactions were entered into the DSM with

equal weight. The DSM interactions included power, communications, control, safety, and a

category called other. These do not match the classical categories of energy, material exchange,

and informationv. In any case, the DSM treated all interactions the same. The reasoning behind

this is that an interface must be managed without much regard for the type of interaction that is

iv As specified in the Pimmiler and Eppinger paper
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taking place. A design team or a subsystem must manage all interactions regardless of the type.

All interactions have cost associated with them.

To simplify the process, all interaction strengths were initially weighted equally. For example,

all X's in the DSM in Appendix D were initially replaced with I's. This allowed the analysis of

the clustering algorithm and a check of the results without complicating the process because of

varying interaction strengths. Once the process and algorithm had been completed, the

interaction values were then modified to acknowledge the different strengths of the interactions.

A strong interaction received a 2 and a weak interaction received a 0.5. For the purposes of this

research, a strong interaction was defined as an interaction that was highly important, critical to

operation, or was not optional. Weak interactions were defined as interactions that were not

important to the design of the system, interactions that were a result of design choices but may be

modified, or interactions that were not critical to the operation of the system. As will be

discussed in Chapter 6, the clustering algorithm yielded better results when the strength of the

interaction was accounted for in the analysis.

As previously discussed, all types of interactions were treated the same. An energy interaction

was treated the same as a communication interaction. If time had allowed, further analysis may

have included clustering on different types of interactions or some type of combined clustering.

The combined clustering would take into account all types of interactions and would recognize

that an element could interact with another element in different ways. The cost of an interaction

between two elements would be higher if they shared more than one interaction type rather than

the current method of equal interaction weights regardless of the number of interactions taking
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place between the two elements. For this research project, all interaction types were treated

equally.
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Chapter 4 Original Clustering Algorithm

Original Algorithm Background

This analysis was begun with the basic clustering algorithm developed in the Fernandez thesis.

For a detailed explanation of the algorithm, see the thesis by Fernandez. Developing co-located

design teams was the primary purpose for the clustering algorithm developed in Fernandez's

research. That is slightly different than the intent of this research, but the concepts are the same.

The algorithm by Fernandez will be modified in Chapter 5 for real-world complex problems as

applied to this elevator example.

The original algorithm was written in C code, compiled and linked to Microsoft® Excel. The

original algorithm consisted of several steps.

1. Each element is initially placed in its own cluster
2. Calculate the Coordination Cost" of the Cluster Matrix
3. Randomly choose an element
4. Calculate bid from all clusters for the selected element
5. Randomly choose a number between 1 and randbid (algorithm parameter)
6. Calculate the total Coordination Cost if the selected element becomes a member of the

cluster with highest bid (use second highest bid if step 5 is equal to rand-bid)
7. Randomly choose a number between 1 and randaccept (algorithm parameter)
8. If new Coordination Cost is lower than the old coordination cost or the number chosen in

step 7 is equal to rand-accept, make the change permanent otherwise make no changes
9. Go back to Step 3 until repeated a set number of times

There was also simulated annealing in the algorithm to avoid getting stuck in a local optimum

when there may have been a better global optimum. The simulated annealing worked by making

a change without using data to determine of the change is beneficial or not. This was
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accomplished in step 6 by randomly (1 out of N times"i) taking the second highest bid rather than

the highest bid. The second part of the simulated annealing was to randomly (1 out of Mii

times) accept the change even if the coordination cost was not improved in step 8. N and M

were parameters of the clustering algorithm.

The bid was calculated with the following formula. Note that the bid is calculated for the

randomly chosen element in step 3.

For the element chosen in step 3, get a bid from each cluster j such that

ClusterBid - (inout powdep

(ClusterSize owbid

where: j = cluster number
ClusterBidj = Bid from Cluster j for the chosen element
inout = sum of DSM interactions of the chosen element with

each of the elements in cluster j
powdep = exponential to emphasize interactions
powbid =exponential to penalize size of the cluster

The Coordination cost was calculated with the following formula. The Coordination Cost is

calculated using the DSM matrix and the Cluster matrix that defines which elements are in each

of the clusters.

For an interaction between element j & k that occur within a cluster

IntraClusterCost = (DSM(j, k) + DSM(k, j)) * ClusterSize(y)Powcc

' Coordination Cost is the calculated value of the objective function of the optimization routine
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For and interaction between element j & k that occurs outside of a cluster

ExtraClusterCost = (DSM(j, k) + DSM(k, j)) * DSMSizepowcc

TotalCost = Z IntraClusterCost + Z ExtraClusterCost

where:
TotalCost
IntraClusterCost =

ExtraClusterCost =
DSM(j,k),DSM(k,j) =

ClusterSize(y) =

DSMSize
powcc

These equations served as the basis

elevator DSM.

Coordination Cost
Cost of interaction occurring within a cluster
Cost of interaction occurring outside of any clusters
DSM interaction between element j & k
Number of elements in the cluster y
Number of elements in the DSM
penalizes the size of clusters

and starting point for the analysis and clustering of the

Matlab@ Tools

As previously discussed, the clustering algorithms had been written in C-code, compiled and

linked to Microsoft Excel. I have instead chosen to implement the algorithms in the

mathematical package Matlab. I have chosen this package for several reasons. I have extensive

experience with using Matlab and writing routines and analysis packages within the Matlab

environment. There is no compilation of code; therefore changes to the algorithms could be

made without having to recompile. Matlab is also designed to work with and manipulate

matrices very easily. Matlab routines can work on any computing platform that has Matlab

installed. Matlab also has capabilities to link with Microsoft Excel and it is possible to design

" N was a settable parameter
Vii M was a settable parameter in the algorithm
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graphical user interfaces. Matlab also has extensive graphical capabilities that could be used in

the analysis. For these reasons, all manipulation, calculations, and analysis have been

implemented in the Matlab package.

In addition to the implementation of the clustering algorithms in Matlab, several Matlab routines

were created that would graphically represent the data. This eased the task of analyzing and

reporting the results.

Parameter Application to Elevator DSM

The clustering algorithm was then applied to the elevator DSM that had all interactions valued at

1. The initial run had the parameters set at their default values and then they were adjusted to get

an appropriate level of clustering. The process of getting suitable parameters was done on a trial

and error basis. This process of trial and error allowed the user to get a better understanding of

the clustering parameters but it became frustrating as each run could take approximately 5-10

minutes" to complete.

The parameters' default values and final values are shown in Table 2. The default values are

those suggested by the Fernandez thesis. The final values are the parameters that appeared to

give the best results for the elevator DSM. The final parameters were also used for the modified

algorithm in Chapter 5.

i Calculations performed on a Laptop with a 233MHz processor & 64M RAM
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Parameter Default Final
pow-cc 1 1
pow-bid 0 1
pow-dep 1 4

max cluster size 61 61
rand accept 30 122

rand bid 30 122
times 2 2

stable limit 2 2

Table 2: Clustering Parameter Values

The parameter pow-cc penalized the size of the cluster in the cost calculation. When the value

was increased from the default level of 1, it had a minimal effect on reducing the maximum

cluster size. Therefore the best results were obtained with pow-cc set at 1.

The parameter pow-bid was initially set at zero, which resulted in the size of the cluster not

being penalized during the bidding process. Therefore a large cluster has as much weight during

the bidding process as a small cluster if the interaction values were equal. Because of the

exponential nature of the bidding algorithm, if pow-bid was set higher than 1, the clustering

algorithm produced many small clusters because the larger clusters were penalized so high. The

best results were obtained with powbid set at 1.

The parameter powdep emphasized high interactions during the bidding process. When

powjdep was set at the default value of 1, there was marginal emphasis placed on the

interactions. This became important as the size penalty (pow-bid) was increased. When

pow-dep was set at lower values, the cluster algorithm was more likely to produce results with

many small clusters (especially when the size of the cluster was penalized). The best results
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were produced when pow-dep was set to 4. For the elevator DSM, there didn't appear to be

much of a difference in the results if the value was set higher than 4, but lower numbers

produced small clusters when the size penalty was used. Therefore, the final value for pow-dep

was set at 4.

The simulated annealing part of the algorithm used parameters (rand-bid, randaccept) that

specified how often the algorithm would make a less than optimal change. The parameter

rand-bid specified how often to accept the bid from the second highest bidder instead of the

highest bidder. The algorithm worked by randomly (approximately 1 out of randbid times)

accepting the bid of the second highest bidder instead of the highest bidder. The parameter

rand-accept worked similarly. The algorithm randomly (1 out of approximately rand-accept

times) would make a change by making an element a member of the highest bidding cluster even

if the change did not improve the calculated objective cost. I started the evaluation with the

parameters set at of the DSM size. This setting would cause the algorithm to make less than

optimal changes after choosing approximately half of the elements in the DSM. After several

runs it became apparent that such frequent changes resulted in the algorithm taking a long time to

run and the final result was rarely better than when the changes were made less often. Because

of the nature of this algorithm, it was possible for the simulated annealing changes to result in

final solutions that were not as optimal as a solution that may have been found prior to the

change. This problem will be discussed further in the next section, but the final outcome was

that the clustering algorithm worked better if the simulated annealing occurred less often.

Therefore, the final parameters were set to twice the size of the DSM.



Times and Stablelimit were set at 2. These parameters specified how long the algorithm would

run before it reported the results. Times specified the number of times (times*DSM Size) the

algorithm will pick a new element before checking for stability. Stablelimit specifies the

number of times it must loop though the process without making a change. Therefore the

algorithm will have to loop through the process at least Times*DSMsize*Stablelimit without

making a change before it finishes. The value of 2 appeared to be sufficient to find an optimal

solution. Setting these parameters higher than the default level caused the algorithm to take

longer to run and didn't appear to produce better results. Therefore, the values were finally set at

two.

To illustrate some of the problems, an intermediate trial run is contained in Figure 2 through

Figure 6. The parameters for this run were as follows:

pow-cc 1
pow-bid 0
pow-dep 1
maxclustersize 61
randaccept 30
randbid 30
times 2
stablelimit 2

Figure 2 contains a graphical representation of the original DSM before clustering. Figure 3

contains a graphical representation of the cluster matrix after clustering. Figure 4 contains a

graphical representation of the DSM after clustering has been applied. Figure 5 contains a

textual list of the physical elements that are members of each of the clusters as well as

information pertaining to their location in the original DSM and whether or not they members
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are members of more than one cluster. Figure 6 shows a graphical representation of the

calculated coordination cost as the algorithm progressed to find an optimal clustering solution.

As can be seen by the run in Figure 4 there is a cluster that contains about a third of the DSM

elements. For the elevator DSM, I was looking for cluster sizes that contained about 6-10 items.

The desire is based on the size of the cluster versus the DSM size, knowledge of the system and

its elements, and the desire to keep the number of elements to something that would be easy to

understand. A cluster with 20 or more elements is difficult to manage and will contain elements

that are not highly integrated but are only indirectly connected through other elements.
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Figure 2: Design Structure Matrix Interactions
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Results of Original Algorithm

This initial clustering algorithm appeared to have clustered like elements. The size of the

clusters and the number of clusters depended largely on the values of the algorithm parameters.

To get clustering appropriate to the system being analyzed, a lengthy trial and error process of

changing parameters and running the algorithm had to be undertaken. Although the effect of the

parameters is predefined, it is probable that the size of the DSM and how integrative the

elements of the DSM are affect the results. Although time consuming, the process requires that

the user become familiar with the clustering algorithm and the DSM under consideration.

There were some concerns with the results of the clustering algorithm and the fixes to these

problems will be addressed in Chapter 5. Two major problems were observed at this point in the

process: 1) many of DSM elements belonged to more than one cluster, 2) simulated annealing

caused the final solution to be worse than a previously found solution.

When the clustering algorithm places many of the elements in multiple clusters, the meaning and

usefulness of the cluster is diminished. If the element is in more than one cluster, it forces

interfaces between all of these clusters on multiple levels. We would like an element to be

placed only with other elements that it is most like. This is desirable for two reasons. First, by

minimizing cluster membership, we minimize the interfaces between clusters in the physical

context. Secondly we minimize the information flow between teams in the organizational

context. Therefore it is highly desirable to minimize multiple cluster membership.
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Multiple memberships also resulted in clusters that contained elements with very different needs

and interface requirements. To evaluate the feasibility of a cluster, I made an attempt to name

each cluster based on the members of the cluster. This became very difficult, as cluster members

did not directly interface with each other. There were many cluster members that were from

very different parts of the system with weak interconnectivity. Although it was possible to see

the link between the members of a cluster, the identity of the cluster was weak. For example, a

cluster may contain the power supply, the building structure, safety system and the hallway

fixtures. The building structure and the power supply were linked to the hallway fixture even

though they do not interface with each other. The safety system was only linked to the power

supply and to no other member of this particular cluster. This made this cluster very difficult to

manage as it had very different requirements and the cluster was sparsely connected between all

of its members. In addition to this cluster, the power supply, the building structure, the safety

system, and the hallway fixtures were all members of other clusters where their interface

requirements were much stronger. This type of clustering result was significantly improved in

the modified clustering algorithm. The modified algorithm forces clusters to contain members

with a high degree of connectivity and it significantly reduces or eliminates multiple cluster

membership.

The second significant problem was related to the simulated annealing. The simulated annealing

caused the clustering algorithm to make less than optimal changes. In the bidding part of the

algorithm, the routine would randomly select the second highest bid instead of the highest

bidder. This would result in less than optimal changes if the second highest bid also improved

the coordination cost.
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The problem related to the simulated annealing actually resulted from the part of the algorithm

that decides whether or not to make a change. In this part of the algorithm, a change would be

made (1 out of randaccept times) even if the change did not result in an improvement in the

coordination cost. The purpose of this part of the algorithm was to prevent the algorithm from

getting stuck in a local optimum. Unfortunately, the when the change was made, the algorithm

did not check that the change finished at a coordination cost that was better than anything that

had already been found. Therefore, the majority of the runs resulted in a final configuration that

had a higher total coordination cost than a solution previously found.

Chapter Summary

The initial clustering algorithm developed in the Fernandez thesis was evaluated for use in

developing the elevator system architecture. First, the algorithm was coded into the Matlab

environment because of Matlab's capabilities of working with matrices and its significant data

analysis capabilities. Then the algorithm parameters were developed to obtain clustering results

that were appropriate for the elevator problem. The algorithm results were promising but did not

provide consistent clusters. There were two significant problems. First, the DSM elements were

often members of more than one cluster, which made it difficult to understand how the element

could be managed or designed appropriately if it was a member of more than one cluster.

Second, the final solution that was reported by the clustering algorithm was not usually the best

solution that had been found by the algorithm. These two problems will be addressed and

corrected in the next chapter.
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Chapter 5 Modified Clustering Algorithm

Introduction

The results of the initial clustering algorithm developed in Chapter 4 did not provide an adequate

answer for developing a system architecture. There were two main problems. First, the

clustering results often assigned elements to more than one cluster. This can be confusing when

developing the system architecture or assigning the element to a design group. This will be

addressed by adding a cost penalty to the assignment of an element to more than one cluster.

The second problem to be addressed is with the solution that is reported by the clustering

algorithm. The algorithm would often report a solution that was not the most optimal solution

that had been found. This is caused by the simulated annealing portion of the algorithm and will

be address by forcing the algorithm to save the best solution that it has found at any time.

Penalize Cost of Multiple Cluster Memberships

The first modification to the clustering algorithm was to prevent the algorithm from placing a

large number of elements in multiple clusters. A few different schemes were evaluated for

modification of the algorithm. The first scheme was to force an element to be a member of only

one cluster. In this scheme, after the bids had been made and calculated, the coordination cost

would be calculated for two different configurations. In the first configuration, the coordination

cost would be calculated for the configuration where the element was a member of its current

cluster. Then the coordination cost would be calculated for the configuration where the element

was a member of only the new high bidder. The two coordination costs would be compared and

the lowest cost configuration would be chosen. In this scheme the element is only a member of
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its current cluster or the new cluster. This would ensure single membership in the clusters. After

reviewing the alternatives, the first scheme was not implemented in order to pursue the following

scheme.

The second scheme, which has been implemented, was to develop a modification that would

remain consistent with how the algorithm evaluates changes and clusters. The modification

would penalize, or add cost, to a solution that made an element a member of more than one

cluster. This was accomplished by recreating the DSM after every modification. The DSM

would have en entry for an element every time the element showed up in a cluster. This

modification was also consistent with the method chosen to graphically represent the clustered

DSM. For example, the DSM in Figure 2 is the original DSM. The clustered DSM in Figure 4

appears to be much more cluttered because every element has an entry for each cluster of which

it is a member. If an element were a member of 3 clusters, the element would be represented in

the new DSM 3 times, once for each cluster. Therefore, each additional entry of the element

increases the size of the DSM and the number of entries within the DSM is increased. This

increase in the DSM size, and the additional DSM entries, increase the cost calculation. With

this new approach for costing multiple cluster memberships, it is still possible for an element to

be a member of multiple clusters, but it does so with a cost penalty if it is not an optimal

solution. With this modification to the algorithm, the routine is still trying to minimize the

objective function but because we believe the multiple memberships is more costly to implement

or manage, it has been represented as such in the cost calculations.
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This change immediately improved the results of the clustering algorithm. The results shown in

Figure 7 through Figure 9 have been run with the same DSM and with the parameters previously

listed as the final parameters in Table 2. Notice that this has significantly reduced the number of

multiple cluster memberships. In Figure 7, only one element is a member of multiple clusters.

In Figure 8, we can notice that the clustered DSM is much cleaner than what was observed in

Figure 4 before the modification. The cluster sizes are also closer to what was desired. This

change was a significant improvement, but as can be seen in Figure 9, the final solution was not

the run's best solution due to the simulated annealing. The simulated annealing caused the final

solution to be less optimal than one of the intermediate solutions. This will be addressed in the

next section.
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Figure 7: Cluster Matrix with Multiple Membership Penalties
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Figure 8: Clustered DSM with Multiple Cluster Membership Penalty
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Save the Best Solution

As observed with the prior examples, the final clustering solution may not be the best solution.

In both of the previous examples (Figure 6 & Figure 9), the final solution had a higher

coordination cost than some other solution found during the run. The simulated annealing

algorithm attempts to ensure that a solution has not gotten stuck in a local optimum by randomly

making changes even if there is no improvement in the solution. It is ironic that because of the

simulated annealing, the final solution is actually a solution that gets stuck at a local optimum

that is worse than a solution that it has previously found.

Once the algorithm made the change that resulted in increasing the total cost, the information

about that lower cost was lost and basically forgotten. This was a basic flaw in the flow of the

algorithm. To solve this problem, the algorithm can save information about any best solution

that has been found. Then, before any change is made, if the change is going to increase our

total coordination cost, the algorithm saves two pieces of information. The first piece of

information is the value of the lowest cost solution that has been discovered. The second piece

of information is the cluster matrix that produced the best solution. When the algorithm thinks

that a solution has been found, it then compares the cost of the current solution with the cost of

the best solution. If the current solution cost is equal to or lower than the best solution cost then

the run is over and it reports the current solution. If the current solution is greater than the best

solution, then the algorithm replaces the current solution with the best solution and continues to

try to optimize the clusters (beginning with the best solution). The reason for continuing is that

the simulated annealing process may have interrupted the best solution before the optimization
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process had finished. Once the solution has a final solution that is less than or equal to any best

solution, the run stops and reports the results.

Also, because of the simulated annealing it may be possible to get into a loop where the

algorithm goes back to the best solution and then jumps to a high cost solution, thinks it is done

but has to return to the best solution again. Because of this possibility, the algorithm has a

parameter to set how many times it can think it is done but have to loop back. If the algorithm

reaches this limit, then the reported solution is the best solution that had been found up to that

point.

This change did result in reporting the best solution that the algorithm was able to find. It also,

however, increased the time to run the algorithm because it sometimes had to go back to an

intermediate solution and continue the optimization process. The typical run time increased from

5-10 minutesix per run to 10-30 minutes per run. Figure 13 contains an example that shows the

cost history jumping up and then jumping back down because it did not find a better solution.

Once all the changes were made, the new clustering routine was run on the DSM with the varied

interaction strengths (see Chapter 3, section on "Enter the DSM Interactions" for explanation of

varied interaction strengths). The added value of the varied interaction strengths is that the

clustering algorithm will weigh strong interactions significantly more than standard or weak

interactions because of the exponential nature of the equations. Because the bidding and costing

algorithms (discussed in Chapter 4) use the DSM entries (interactions strengths) in their

i Calculations performed on a laptop with 233MHz processor
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calculations, the interaction strengths affect the final cost totals calculated in these algorithms.

As will be discussed in the next Chapter on the cluster analysis, the results of the clustering

algorithm are better and more consistent with the varied interaction strengths. An example

clustering result using the new algorithm is shown in Figure 10 to Figure 13.
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Figure 10: Elevator DSM with Varied Interaction Strengths
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ClustrMakix; h119-Dec-2000 21 5101
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Figure 11: Cluster Matrix of DSM with Varied Interaction Strengths
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Chapter Summary

The problems encountered in Chapter 4 included the assignment of elements to multiple clusters

and the reporting of a solution that was not the best solution found by the algorithm. Two

changes were made to the algorithm to correct the problem. The first change added a cost

penalty to elements that are members of more than one cluster. This significantly reduced or

eliminated the multiple cluster assignment of elements. This also resulted in clusters that were

much easier to recognize and analyze. The results greatly improved the possibility of creating a

system architecture from the cluster elements. The second change forced the algorithm to keep

track of the best solution found so that any non-optimal change resulting from the simulated

annealing could be reversed if the final solution was not as good as any previous solution. This

did cause the algorithm to always report the best solution that it was able to find. These two

improvements significantly improved the results of the clustering algorithm. The next chapter

will analyze the results of the clustering algorithm and its implications for the elevator problem.
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Chapter 6 Cluster Analysis

The clustering algorithm randomly selects elements for bidding by clusters for membership. Due

to this randomness, every run of the algorithm is slightly different as elements are selected in a

different order and the clusters are built up differently. Therefore one run of the algorithm is not

sufficient to provide an answer to the optimal clustering configuration. Several runs are

required, and these runs will produce slightly different answers. Several steps have been taken to

analyze the consistency of the answers produced by the algorithm. The clusters were also

inspected for feasibility of implementation in design and management.

Multiple Runs

To analyze the consistency of the answers produced by the clustering algorithm, several runs

were completed under identical conditions. The data including the DSM, the cluster matrix, cost

history, and final coordination cost was stored from each of the 10 runs. Then each of the 10

runs was individually compared to the other 9 runs and scored for how well the cluster matched

up with the clusters of the other runs. This provided analysis of the clustering algorithm under

identical conditions. Then parameters or conditions could be changed and the consistency

analysis completed again. This allowed for observation of what different parameters or

algorithms produced more consistent answers. For the elevator DSM, the 10 run set took

approximately 2 hours to complete.
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Finding like Clusters

In order to measure the consistency of the answers, like clusters between runs had to be found.

To get the like clusters, the clusters of one run were measured against the clusters of another run.

The like elements between any two clusters were obtained by taking the dot product of the two

cluster matrices. To measure the likeness of two clusters, twice sum of the like elements was

divided by the sum of the total number of elements in the two clusters. The likeness

measurement used two times the number of like elements because the like elements are members

of both clusters.

XinY +YinX
Likeness(X,Y) =

TotalXY
0 Likeness 1

X = Cluster X of Run 1

Y = Cluster Yof Run 2

XinY = Number of elements in Cluster X that can be found in Cluster Y

YinX = Number of Elements in Cluster Y that cab be found in Cluster X

XinY = YinX

TotalXY = Total number of elements in Cluster X and Cluster Y

for all X and Y of both Runs

For example take the two clusters in Figure 14. The cluster from Run-I has 5 elements, the

cluster from Run-2 has 4 elements. The have 3 elements in common. Therefore the likeness

3+3 3 *2 6
measure is = = -= 0.66. Therefore, the likeness score for these two clusters

4+5 4+5 9

would be 0.66. This measure is done for every combination of clusters and runs.
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Cluster 1 2 3 4 5 6 7 8 9 Total in
Cluster

1 1 0 0 1 1 0 1 0 1 5
2 1 0 0 0 0 0 1 0 1 4

Dot Product 1 0 0 0 0 0 1 0 1 3
Likeness 0.66

Figure 14: Cluster Likeness Example

Once this likeness number has been attained for every combination of clusters, then we can get

the average likeness for a cluster of one run against all runs. To get the number we compile a list

for each cluster of a run. The list includes which cluster it was most like in the other runs and

what the likeness scores were for those clusters. Then these numbers can be averaged to get an

average likeness for the cluster. An example will make this more clear. Let's say we are

compiling the list for Cluster-2 of Run-3. In the example in Figure 15, the average likeness was

calculated to be 0.7455. This average is calculated for each of the clusters in every run. These

averages were then graphed in a bar chart as shown in the example in Figure 16. Once the score

for each cluster had been calculated, the average for the run and the average over all 10 runs

were calculated. This represented how well a run matched other runs and how well the

clustering algorithm did over-all. In the example plot (Figure 16), average for each cluster of a

run is represented by the bar, the average for the run is listed below the subplot, and the average

for all 10 runs is listed at the top of the sheet.
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1 2 1 0.8
2 3 0.75
3 not compared to clusters in same run
4 5 0.9
5 6 0.4
6 7 1.0 Best Match = 1.0
7 2 0.86
8 4 1.0
9 5 0.7
10 3 0.3

Average 0.74555 Average score for
Cluster-2 of Run-3

Figure 15: Example of Cluster Average Likeness Calculation

For the rest of the analysis all cluster parameters were held constant with the following values.

pow-cc = 1
pow-bid = 1
powdep = 4
maxclustersize = 61
randaccept = 122
randbid = 122
times = 2
stablelimit = 2

For the elevator DSM with all interaction strengths set at 1 (will be referred to as the standard

interaction strength), the cluster comparison is shown in Figure 16. This figure also explains the

different values that have been calculated. According to the calculations, Cluster-4 of Run- 1 has

an average likeness value of approximately 0.8. This means that according to the formula

presented, there is an average of an 80% match between this cluster and its best match on the

other runs. The graph also shows that this cluster has at least one exact match in the other runs.
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Run-I has an average likeness value of 0.70363. Therefore, the clusters of Run-I have an

average match of approximately 70% with all other runs. This value is important because it

shows how well a run matched up with all other runs. If this number is lower than the averages

for the other runs, then it may have been a bad run. This allows for removal of runs that may

have resulted in significantly different results.

In the same manner, the likeness for all 10 runs is the average of the runs. In the example, the

average for the standard interactions is 0.60649. This means that the average match across all

clusters of all runs is approximately 60%. This number is important as changes are made to the

clustering parameters, clustering algorithm, or DSM data. This number can be used to compare

how consistent clusters were developing across multiple runs. The confidence in the results

increases as this number increases, because it reflects how repeatable the outcomes are even with

the randomness of the algorithm.
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Varied Interaction Levels

After reviewing the make up of the clusters that were being developed, it became apparent that

the members of the clusters were not always highly similar nor did they always exhibit high

interaction levels. Some cluster members appear to be connected to other members either

through interactions that should not have been driving the design, or they were driven together

through indirect connections.

In order to help the clustering algorithm identify which elements had a higher necessity of

interconnectivity, the interaction levels in the DSM were modified. As previously discussed,

weak interactions were represented with a value of 0.5 while strong interactions were represented

with a 2. A strong interaction was defined as an interaction that was highly important, critical to

operation, or was not optional. Weak interactions were defined as those that were not critical to

the design of the system, that were a result of design choices but may be modified, or

interactions that were not critical to the operation of the system. When these interactions were

raised to a power in the clustering and bidding calculations, it gave strong interactions much

more weight.

This change produced a more consistent clustering result. The strong interactions drive the

clustering and the weak interactions have little value unless no strong interactions are present.

By valuing the interactions in this manner, the clustering algorithm was able to understand the

importance of an interaction and value it accordingly in the optimization calculations. This is

especially important because there is no way to represent the interfaces or interactions that are

prohibited or not desired.
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Extraction of Integrative Elements

Another observation of the clustering results is that the DSM elements that were integrative

across the DSM drove integration of some of the clusters. These elements either had a large

number of interactions across the row, column, or both. A few of these elements were in the

DSM for documentation purposes. For example, the service person and the load do not need to

be considered for the clustering purpose, but they do need to be represented to show the

interactions that they may have with the design. If we re-examine the clusters that were

produced at the end of Chapter 5, there were two clusters that were driven by elements with

many interactions. The cluster results have been reproduced in Figure 17 with the two

integrative clusters circled. Upon closer examination of the clusters, it becomes clear that the

clusters formed around the element with many interactions. The other elements within these

clusters do not have many, if any, interactions with each other. In the large cluster, it can be

noticed that several of these elements are highly integrative with the elements of the cluster.

These results produced clusters that were mostly related through the integrative element. Once

again, if the cluster was evaluated by attempting to give it a name based on the cluster members,

it was difficult to do for these clusters because most of the elements appeared to be unrelated.
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Figure 17: Clusters driven by Integrative Elements

To alleviate the problems caused by these elements, the algorithm was modified to allow

removal of them. They were removed for clustering purposes only, but were re-introduced into

the clustered DSM on the outside edges. This process also improved the results. The

improvement can be shown in several areas. First the likeness measurement showed remarkable

improvement in the scoring as these integrative elements were removed for clustering. This

meant that the clustering results were becoming more repeatable with the removal of the

integrative elements. Secondly, the graphical view of the clustered DSM (Figure 18, page 67)

showed most interactions were residing within the clusters with the exception of the elements

that had been removed. And lastly, it became much easier to name the cluster elements.
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Some conclusions can be made about the elements that were removed. For instance, the travel

cable is actually the physical implementation of the interface between the cab and controller. At

this point, it's the knowledge that the cab and controller require an interface that is important, not

the implementation of the interface. Also, by representing the interface between the components

of the cab and the controller, while including the traveling cable in the DSM, the interface has

essentially been represented twice. Therefore the travel cables were removed for clustering

purposes.

The service person and passenger load elements were included in the DSM mainly for

documentation purposes. It is important to know what elements these two will interface with,

but because of the number of elements that they interface with, they do not add much

information to the clustering routine. Once clustering has been completed it is actually more

important to identify what clusters the passenger load and the service personal will have to

interface with.

The cab already represents a cluster. The cab is made of individual components that interface

with other components. Without decomposing the cab another level, we have forced the cab to

interface with many items. This situation results in clusters that would cluster with the cab but

wouldn't necessarily cluster with each other. If time allowed, it would be better to decompose

the cab even further and run the clustering algorithm again.

The power supplies were represented as a single element with reason. In reality, most

components or subsystems have their own power supplies or share a power supply with a few
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other items. By implementing the power supply as a single item, we can reconfigure the power

supply to meet the clustering architecture. Therefore, once the clustering algorithm is completed

the power supplies could be broken down to fit neatly within each of the clusters, or each cluster

can have responsibility for a section of the power supply that interfaces with their cluster.

Important information may be extracted by representing the power supply as a single element so

it may be better that the power supply is not included in the clustering algorithm. The power

supply was a frequent cause of clusters that didn't contain elements that were directly related.

The motion controller and safety system also caused some of these problems. In the last stage of

removing elements before clustering, these components were also removed. These components

interface with many of the elements in the group and they represented several functions. Again,

they were removed for the purpose of analyzing how well the clustering performed in the

absence of their influence. These components and their interfaces are important in the

architecture of the system and management of the organization. If time allowed, the elements

should have been decomposed even further to get at the functions that make up the motion

controller and safety system.
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Figure 18: Cluster DSM with System Parameters on the Outside

The extraction of system or integrative parameters is not a new idea. It is common practice to

move DSM elements that have many entries along a row, column or both to the outside of the

DSM, while keeping the clustered elements in the middle. A discussion of this in the context of

design parameters is discussed in detail in a thesis on the application of the DSM on Jet Engines

(Bartkowski)x and the process is shown in Figure 19.

x Includes discussion on the importance of sequencing and knowledge management for System Level parameters
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Non-Local Knowledge: System-to-Component (Distributed)

V
System Requirements/Stakeholder Needs

Non-Local Knowledge: System -to-Component (Modular)

Component
(Modular)
Parameters

Local Knowledge: Component (Modular)

Component (Distributed) Parameters
Local Knowledge: Component (Distributed) I

Figure 19: P&W Distributed and Modular Parametersxl

The system elements are generally elements that have interactions throughout the system. In

many cases, the system elements cannot be decomposed further and therefore they have a

significant influence on the system and its components. Since their influence in the system is so

great, it is desirable to have the elements managed by a systems organization that maintains

contacts with all of the design groups and has no stake in any of the components (modules). It

I
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would be difficult for any group or component to own the system elements since they require so

much information and require interactions with so many other parts of the system and

development organization. This idea holds for both the design parameters as discussed in the

Bartkowski thesis and the physical elements in this elevator problem. The system elements

require special attention and are usually managed by a group that is void of component design

responsibilities.

Chapter Summary

As previously discussed, the clustering algorithm randomly selects elements for bidding by

clusters for membership. Due to this randomness, every run of the algorithm will produce

slightly different answers as elements are selected in a different order and the clusters are formed

differently. Therefore one run of the algorithm was not sufficient to provide an answer to the

optimal clustering configuration. Several runs were made and the results were analyzed for

consistency. A few measurements of consistency were developed and the likeness measurement

was used to evaluate different clustering options and DSM configurations. The results showed

that clustering is significantly improved if the DSM interaction strengths are varied according

their importance in the creation of the architecture. Also, the elements with many interactions

were removed as system elements because they would cause creation of sparsely populated

clusters that were related only by the system element. These changes significantly improved the

results of the algorithm and resulted in clusters that could be used to define an optimally

configured interface architecture.

X Bartkowski Thesis, pg 47
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Chapter 7 Results Summary

Cluster Analysis

As outlined in the preceding chapter, the enhancements to the algorithm greatly improved the

consistency of the results. The enhancements included adding the varied interaction strengths,

and the removal of the integrative elements. As shown in Table 3, the results improved when the

standard interaction strengths (all interactions valued at 1) were changed to represent their

perceived strengths. The greatest improvement resulted from extracting the system parameters

before performing the clustering routine. These system parameters interfaced with many of the

elements within the DSM and confused the algorithm when it was looking at the interaction

strengths. Trial #5 resulted in very consistent clusters throughout the 10 runs and an example of

the clustering results are contained in Appendix E.

Table 3: Clustering Analysis Results

1 Standard 0.60234
2 Varied Interaction 0.62796

Strengths
3 Extracted elements to Travel cable comm. 0.72789

System Parameters Travel cable power
Service Personnel
Pass. Load

4 Extracted elements to Trial 3 removed elements plus 0.7781
System Parameters Power Supplies

Cab
5 Extracted elements to Trial 3 & 4 removed elements plus 0.84319

System Parameters Motion Controller
Safety System
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System Elements

The extracted elements represent system parameters, already clustered elements, or design

decisions. These will be discussed with an example from this analysis. The safety system is an

example of a system element, the cab is an example of an already clustered element, and the

power supply is an example of an element requiring further design decisions.

The Safety System parameter was extracted to the outside edges of the DSM and not considered

for the clustering routine, it is an example of a system parameter. Many of the systems,

components, and development teams must include some part of the safety system. The

extraction says that the safety system should either be managed by a systems organization, or

carefully decomposed to the interfaces that each of the clusters must interact with. This

represents important information in the design of the architecture and management of the product

development teams. The process of deciding to extract the parameter as a system parameter

provides information itself. To extract the information, the user must understand that the

parameter has many interfaces that can cause the erratic clustering. This understanding will

force the user to make one of three decisions. The parameter can continue to be treated as a

system parameter and it can be managed by a systems organization. Secondly, the parameter can

be managed by a systems organization, but be will be broken down into the parts that each

cluster will interface with and that part of the system parameter will be delegated to the cluster.

The third alternative is to further decompose the parameter into its sub-elements and then attempt

to re-cluster if the number of interfaces per element has been reduced.
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The cab is an example of an element that already represents a cluster. The walls, frame, floor,

aesthetics, and structural parts of the cab are all represented by the cab element. Therefore many

elements interface with the cab. Again, the extraction of the element represents important

information. Once it is recognized that the cab has many interactions that interfere with the

clustering algorithm, some design decisions can be made. The cab can be further decomposed

and then the clustering algorithm can be used again. This will allow the cab elements to either

be clustered back together or it may be redistributed into different clusters if that produces a

more optimal solution. This has the potential to reconfigure the architecture or create alternate

thinking about how the cab should be developed. If the cab element remains integrated as a

single unit, it may be useful to segregate cab design management into a cab manager and cab

interface manager. In any instance, recognizing the cab as a system element provides valuable

information.

The power supply was purposely represented as a single element in the DSM to understand how

it would be treated in the clustering algorithm. As with the other system parameters, the power

supply weakened the clustering results and needed to be extracted as a system parameter. This

system parameter was valuable after the clustering had been performed. Now that the clusters

have been developed, the clustered DSM can illustrate two pieces of information: 1) it identifies

the clusters that the power supply interfaces with and 2) identifies the elements of the cluster that

cause the interface. With this information there are several options to consider. The power

supply can be separated and distributed to the clusters that interface with it. This can provide a

design for the power supply system architecture. The power supply can also remain a system
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element and the architecture could be developed so that the new DSM has defined the interfaces

between the power supply and the clusters.

Although the system elements have not been included in the clustering algorithm, they do

provide valuable information. The process of extracting the elements causes the user to identify

the elements as system parameters and understand the implications of the extraction. The system

parameters also represent design decisions that can be evaluated once the clustering is complete.

Clustered Elements

The clusters represent groups of elements that should have a relatively high level of interactivity.

The objective is to maintain interconnections within clusters so as to minimize the cross talk

between clusters and between development groups. In the case of the elevator DSM, the clusters

did represent recognizable groups. At this time, neither the DSM nor the results are at a stage

where concrete architecture or organizations can be developed, but it is starting to show some

results.

For instance, using the new algorithm, varied interaction strengths, and removal of system

elements, the clustering produced 10 main clusters of elements and 15 clusters with only one

element(which included the eight removed elements). An initial attempt to recognize the clusters

and develop a system from the clusters is shown in Table 4. Highly interactive elements are

contained within each cluster. The clusters can then be grouped together to represent groups that

have similar functionality or requirements. This can be useful for system architecture or

organization of product development teams.
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The clustered elements in Table 4 create a system architecture that is similar to the current

system architecture with a couple of exceptions. For example, the clustering produced a cluster

that contained the operational controller, hallway fixtures, and car fixtures. At Otis Elevator

Company, a group responsible for fixtures typically designs the fixtures and a separate design

group designs the operational controller. The clustering algorithm recognized that there are

significant amounts of information that must flow between the fixtures and the operational

controller and it has grouped them together. By keeping these design tasks and systems separate,

the teams must communicate often and efficiently. Any miscommunication could result in

design errors or delays. This result does not mandate that the system and development teams

become organized this way, but it does allow the systems architect, engineers and managers to

make an objective analysis and informed choices. Once again, the elevator system DSM must be

much more complete before concrete conclusions can be made about the architecture and results,

but this process is providing promising information. Also, it is apparent that the clustering

results are affected by the input, therefore careful consideration should be made about the DSM

entries, the interaction strengths, and their meaning.
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Grouped Sub-systems
to createte system.

Elevator System Electrical Systems

Hoistway Systems

Human/ passenger
Interface

Motion Sensing Hallway Fixtures *
Building Structure
Learn Function
Terminal Sensing
ETSD Sensor
Door Zone Sensors
Terminal Buffer
NTSD Sensor

Motion Control Motion Controller
Mode Limiting Emerg. Gen Signal
Sensors Building Sway Ser

Earthquake Sensor
Top of car Insp. Panel

Power Supply Power Supply Power Supplies
Operations Operational Hall Request Indicator

Control Car Request Indicator
Car Fixtures
Hall Buttons
Car Buttons
Fireman's Service Key
Operation Controller

Electrical Power Electrical Drive Drive Power Section
Building Power
Brake System
Electrical Drive Control
Primary Velocity Meas.
Construction Ctl Panel

Health

Mechanical Power
Control

Load Containment
System

Human/ passenger
Interface

System Health

Safety System
Mechanical
Motion

Guidance

Load Support

Service Tool
Secondary Vel. Check
Diagnostics
Remote Monitor System
Safety System
Ropes
Motor
Counterweight
Compensation System
Brake System
Primary Position System
Ropes/Hitch Springs
Cab Guidance System
Guide Rails
Guide Sprines/Alienment
Cab Floor/Plank
Load Weighing System
Mechanical Safeties Sys.
Governor System *

Load Contain. Cab
Doors Cab Doors

Door Controller
Hoistway Doors
Access Keying on Doors
Door Obstruction Sensor

Cab originated Door Close Signal
commands Remote Insp. panel
Emergency Emerg. Intercom-Phone
Comm./Power Power Storage
Traveling Cable travel Cable Power

travel Cable Comm.
Passenger
Comfort
Human Interface

Vent & Lighting System
Cab Insulation
Service Personnel
Passenger Load
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Grouped modules to
make sub-systems~ Grouped clusters to

Name given cluster based
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Each luster
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shows a cluster.
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Interactions Outside the Clusters

The interactions outside of the clusters, as shown in Figure 20, represent interactions between

clusters and interactions between system elements and they should get careful attention. These

interactions represent possible architecture decisions where standard interfaces could be

developed. Also, no one cluster owns these interactions. The interactions represent interfaces

between two clusters or system elements. It is highly probable that the interactions can cause

conflicts between clusters and should be managed by a systems organization that does not have a

stake in the interface. The purpose of the clustering process was to minimize or eliminate the

external interactions. Therefore, once the clustering has been completed, a careful analysis

should be performed in order to understand the interactions and decide if further design

improvements can be made to eliminate or move the interface within a cluster. Moving the

interface inside a cluster essentially assigns ownership of the interface to that cluster. Because

each situation can be different, each interaction outside of clusters should receive careful analysis

and understanding.
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New DSMMarix;At2-Dec-2000 18:19:56km; Total Cost18595.5
Element

0 15244344454748 1 3 4 7 8 2721262933101920553557582223561128375354495941423946 5 1813321217 2 6 6160525150403836343130251614 9 0

Interactions between the
8twn indicated c.1iitter,,

between the
ed clusters +

*+

Interactions between a system
element and a cluster

Figure 20: Interactions outside of the Cluster

Chapter Summary

The analysis showed that varying the strengths of the interactions within the DSM produced

more consistent results. The results were further improved by removing system elements from

the clustering process. The systems elements that were removed from the clustering process do

provide valuable information and must reviewed and managed carefully. A review of the results

of the clustering showed that interactions within clusters belong to the cluster and interactions

outside of the cluster should be managed by a systems engineering effort since they cannot be

effectively assigned to any single cluster because of the exchange with other clusters.
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Chapter 8 Conclusions

Research Conclusions

In today's environment of changing product requirements, rapidly advancing technology, and

decreasing product development times, products are becoming more complex to meet the

requirements. As the complexity increases it becomes more difficult to understand all of the

interactions and interfaces that develop within the product and product development teams.

Minimizing the interfaces between systems, components and development teams can help reduce

rework caused by misinformation, reduce complexity by minimizing the amount of information

exchanged and decrease the product development cycle time by standardizing interfaces.

To reduce interfaces and interactions, a clustering algorithm was developed and evaluated for its

effectiveness at organizing the interactions of a complex system. A process was created whereby

the system and interactions are represented in a matrix format called the Design Structure

Matrix. The Design Structure Matrix was created from functional requirements derived from a

decomposition of system requirements. The mapping of the functional requirements to physical

elements provided information of how the physical elements were derived. Once the mapping

was developed, and the DSM was created, the DSM was reorganized by clustering elements with

a high degree of interactions.

The developed clustering algorithm provided valuable information that can be used to develop,

evaluate, and manage the system architecture. Although the algorithm produced satisfactory

results, it cannot be used without an understanding of the algorithm, the desired results, and the

system being evaluated. Use of the clustering algorithm requires proper setup of the parameters
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that control it. To get the proper parameters, the algorithm is run on the intended DSM and the

parameters are adjusted until the results produce the desired cluster size and number of clusters.

Therefore, the user must understand the algorithm well enough to be able to adjust the proper

parameters to get the desired results. The user must also understand the system well enough to

know the number of clusters that are desired. Although it would be relatively easy to modify the

algorithm to produce the exact number of clusters that are desired, it is much more informative to

let the algorithm produce the optimal configuration and analyze it from that point. This process

allows the user to gain an understanding of the system, understand how the algorithm wants to

cluster elements, and what drives the clustering. This learning process can provide valuable

knowledge about the system.

To get consistent and meaningful clusters, some elements of the DSM had to be excluded from

the clustering algorithm. These elements represent system elements or elements that should be

decomposed further. These elements have interactions with many of the other elements within

the DSM. They can be recognized by the large number of entries that appear along their row or

column of the DSM. Exclusion of these parameters from the clustering algorithm produces more

consistent and meaningful clusters, but the exclusion itself provides valuable information. The

system architect or manager should understand why the parameters have a high number of

interactions. Then decisions can be made about whether or not to further decompose the element

and re-cluster, assign parts of the element to the clusters with which it interacts, or manage the

element from the systems level of the organization. These considerations provide valuable

information about the system architecture and allow for informed choices.
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Finally the clusters themselves represent a way to organize the DSM elements or information in

a way to minimize the amount of information exchanged. Information flow within a cluster

provides an efficient way to transfer information within a subsystem or within a design team.

This is usually the least costly option. Interactions outside of the clusters represent information

or interactions that are not owned by any of the clusters. The clustering algorithm should have

minimized the number of these that occur. These interactions can be costly and time consuming.

Conflicts may occur and design parameters can be unclear if no strong decisions are made.

Therefore, the interactions outside of the clusters should be managed or assigned by a systems

level organization.

This process requires a significant knowledge of the system and its interactions. It is difficult to

produce and manage unless the user has a clear understanding of the process and the system.

Therefore it would be highly advantageous for this to be completed by a team of experts or

systems people that have knowledge of the entire system and can solicit information from

required experts. In this simplified elevator example, the process forced the questioning of many

of the design decisions as the DSM was created and the interactions were entered in. It also led

to a new understanding of the elements, their interactions with each other and conditions for

which some elements may not provide easy clustering solutions. The process provided possible

future direction for system development and architecture changes. It will be highly

advantageous to reapply this process to a complete representation of the elevator system.
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Future Work

This research provided valuable information with a limited set of data. Although the DSM

represented the entire elevator system, it did so with a subset of the available items that could

have been used. It would be extremely valuable to continue or recreate this process on a more

complete representation of the system

Some conclusions were reached about what can be done with the system parameters that were

excluded from the clustering algorithm. It would be interesting to continue the process by

making some of the changes in the system elements and analyzing the results that are produced.

Can system elements be decomposed and successfully re-entered into the clustering algorithm?

In the power supply example, can a true power supply architecture be developed by distributing

the architecture to the clusters? These and other questions about the system parameters would be

important considerations in future analysis.

When this research began, it was the intention to analyze the clusters in the context of the

scenarios that were produced. Because scenarios were mapped to functional requirements, and

functional requirements were mapped to physical elements, the clusters can be mapped back to

the scenarios through these matrices. How well do the clusters address the needs of the

scenarios? Can alternate clustering based on scenarios be accomplished? This type of clustering

would be useful so that the architecture neatly addresses different scenarios. The hypothesis is

that it may be desirable to have clusters match scenario needs so that pieces of clusters are not

used when a small subset of requirements are needed for a scenario.
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This process created a one-to-one mapping of functional requirements to physical elements.

Most of the analysis was done using the physical elements as test data. It would be interesting to

know if the same conclusions can be made if we applied the clusters to the functional

requirements. It should be similar, but what conclusions can be drawn from the clustering of

functional requirements?

It would also be interesting to cluster on different types of interactions or on multiple types of

interactions. For example, several matrices could be developed to represent the communication

or power interfaces. Then clustering could be performed to produce architectures that represent

the electrical system or the mechanical system. It is also possible that one type of interaction

may be more important than another type. For example, a process may value electrical

interactions much higher than mechanical interactions. Therefore the algorithm could be

modified to cluster based on a combination of interaction types or set to value some type

differently than others. There are many possibilities if the needs exist.
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Chapter 9 Appendix

Appendix A Functional Decomposition Example

Provide Safe Vertical Transportation for Passengers and Freight

I Communications
1.1 Accept user requests

1.1.1 Input Car Passenger Destination Request
1.1.2 Input Hall Service Request

1.2 Provide Status to user
1.2.1 Communicate Hall Passenger

1.2.1.1 Communicate Elevator Status
1.2.1.2 Acknowledge Hall Service request

1.2.2 Communicate Car Passenger
1.2.2.1 Communicate Elevator Status
1.2.2.2 Acknowledge Car Destination Request
1.2.2.3 Provide communication link to cab

2 Move the Load
2.1 Energy Conversion

2.1.1 Provide Energy for Motion
2.1.2 Energy Transformation to Force
2.1.3 Transmit force to containment

2.2 Guidance
2.2.1 Provide Path for Motion in Hoistway
2.2.2 Maintain Cab Guidance in Hoistway

2.3 Support
2.3.1 Support Load for movement

2.4 Hold the Load at Destination
3 Control

3.1 Control trajectory
3.1.1 Compute Trajectory
3.1.2 Control Motion to Trajectory

3.2 Measure Motion Parameters
3.2.1 Measure Trajectory (velocity)
3.2.2 Measure Position

3.3 Input Destination Target
3.3.1 Process Service Request

4 Load Containment
4.1 Support the Load

5 Maintain Safe Environment
5.1 Isolate User from Hazards of Elevator motion
5.2 Protect User/Load
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5.2.1 Determine if safe to move
5.3 Prevent uncontrolled motion

5.3.1 Detect uncontrolled motion
5.3.2 Protect from freefall condition

5.3.2.1 Detect freefall condition
5.3.2.2 Stop freefall condition

5.3.3
6 Service

6.1

Hall passenger: Passenger/Load in Building hallway waiting for service

Car passenger: Passenger in Elevator Car
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Appendix B Scenario to Functional Mapping Matrix

A B C D E F G HI J K L M N| P Q R S T U V W X Y
'D a
0 0)
E 0 ~

2 A w HE .2rviE -6 X

4 Co ot w/ HaPas.XXXo L .2 2.0 C, -o 0 0 )
(n 0 0 C > 0Cm uwC Ps X XC

o.meg.Com w pss X X X X X)) X

-pase rC qsX X X X a
0 EE r- *

o0 o) 0 w O E > 0 3l 0) 
0 - a E O1 a or oba L 00w0 0L a > < LOU M wl

2 Acknowledge Hall Service Request X X _ X
3 Acknowledge Car Service Request X X _ X
4 Comm. Status w/ Hall Pass. X X X X
5 Comm. Status w/ Cab Pass. X X X_____ X X_ X X X
6 Emerg. Comm. w/ pass. X X X X X X X

8 Input Passenger Cr mrequest X X X X4 input Passenger Car Request X XX X X X XX X XXXXX9 Input Fireman's Service Request XXXXXXX X
10 Provide comm.link to containment X X X X X X X X X X X X X X X X X X
11 Xmit oe to Cmovecontainment XX X X X X X X X X XX X X X X X X X
12 EnergyTransormation totorce X X X X X X X X XXXX X X X X X X X X X
13 ProvideEnergy for motion XXXXXXX _ _ X XXXXXX X
14 Support Loadforbmovement X X X X X X X X X X X X X X X X X X X X X X X X
15 Transmit powertoncomponents X X X X X X X X X X X X X X X X X X X X X
16 Provide structuret containnsys. X X X X X X X X X X X X X X X X X X X X X X X X
17 Provide Powerto Containment X X X X X XXXXXXX X XXXX X X
18 Provide Power to System X X X X X X X X X X X X X X X X X X X X X
19 Temporary Power for Memory X
20 Provide Counterbalancing ofContainmen X X X X X X X X X X X X X X X X X X X X X X
21 ProvideCounterballancinof Roes X XX XXXXXXX _X XXXX
22 Hold Containment atDestination X X X X X X X X X X X X X X X X X X X X X X X
23 Maintain Cont. Guidance in pathway X X X X X X X X X X X X X X X X X X X X X X X X
24 Provide pathfor motioninHwy X X X X X X X X X X X X X X X X X X X X X
25 Calibration (Learn?) X
26 Compute Trajectory XX XmXsX XX _ X X X X X X X
27 ControlMotion toTrajectory X X X X X X X X X X X X X X X X X
28 Process Service Request X X n XX
29 ProvideCurrentPosition X XXX XXX X X X X X XXX XX X
30, Provide Trajectory Feedback X X X X X X X X X X XXXXXXXX X X
31 Top-of-car control (inspection) X
32 Remote Control (inspection) X
33 Detect if Load iswithinlimits X X X X X X X
34 Contruction Control - X X X XXXXXX_ X
35 Passenger Door Control X X X X X
36, Access to view/change sys. info. X tX X
37 Determine if on Emerg Power X
38 Detect Uncontrolled Motion X X _ XXX _ X
39 Determineifsafe tomove XXX X X XXX XXXXXX X X X X X X X
40 Stop freefall motion X X1
41 ProtectLoadfromHoistway X X X X X X X X X X X X X X X X X X X X X X X
42. Provide Safe Load Transfer X XXXXXX X X X X X X X X X X
431 Control Access to Containment X X X X X X X X X X X
44 indepen ent end of Hwy sensor X X X X X
45 Emerc terminal Stoin Dev. X
46 Indep. Door Zone Sensing X XX X X X X X X X X X X
47 Mechanical Overspeed detection X X X
48 Provide end of hwy cushion (bff r) X _____

49, Detect failure: Slow for last landing-NTSD X X_____
501 Deny access to hoistway X XX X XX XXX X XX XX XX X XX XXX X

54 Maintain safe/comf. load env. X X X X X X X X X X X X X X X X X X X- X
55 ManaeNoise X X X X X XX X X XX X
56, Manage Vertical Vibration X _____X X X X X__X X X X X X
57 Manage Horizontal Vibration X X X X X X X X X X X X
58 Determine cause of malfunction X X X
59 Monitor System Health ::]- X
60 provide Service Access to Hoistway X X X
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Appendix E Final Clustering Results

N wDSMMatbx;#21-Dec--2000 19:22:48km; TotlCst 14940
Elem-n

0 5 8 9 13141617182024283032333435373840414243454858 2 3 4 6 2760 1 7 1544464725365051521019555761 5354 495923391226 225611293121 0
05 ..... . . . I I I I I I i r i 'm i i i

8-
13
1 4-

20 Clustered DSM using
304 all elements.32-

33 -34 (:
35 a37-
38 4
41-
42-
43-
45-
48-

2
3 -
4 --6 --

S 27-6--

44 -

50 --5 1-52
55 --
57 -

53 --
54 --
49 --

39 --
12

22 --

3 1-
21-

New DSMk~strix;21-Dwc-20W0 19:25V1km; TotmlCost 16273.5
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4-

Clustered DSM.
Varied Interaction Levels
4 System parameters
excluded from cluster
algorithm.
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Now OSMMatrix;At21- -D-2000 1929091m; ToalCost185955
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Appendix F Matlab Modified Clustering Routines

FileName Page Descriptions
Cluster Algorithm Functions and Scripts

runclusterA 93 Master file to load DSM variables and run
the clustering algorithm and graph results

ElevatorDSM 97 file to define the DSM with all interactions
valued at 1

ElevatorDSMvaried 108 File to define the DSM with varied
interaction strengths

bid 119 calculates bid for from each of the clusters
for the chosen element

cluster 121 Clustering Algorithm that uses the costing
routine to penalize multiple cluster
membership

coordcost 127 Calculates the coordination cost using the
penalty for multiple cluster memberships

delete clusters 133 deletes duplicate clusters
Cluster Graphing Functions

reorder-dsm bycluster 130 reorders the DSM according to the cluster
matrix - also renters elements for every
cluster that they are a member of

Reorder cluster 132 Sort the clusters by cluster size
dsmautolabel 135 assign numbers to the DSM entries for the

graphing routines
place-diag 136 place 1's along the diagonals of the matrix
graph matrix 137 graph the DSM matrix or cluster matrix
linemultcluster 139 place lines for duplicate clusters in the

cluster matrix graph
plot cluster list 140 print list of cluster members

Cluster Analysis Calculations and Graphing
likenesscalc 143 Script file to get the average match

between clusters of several runs of the
clustering algorithm.

findclustermatches 144 Function to find matching clusters from
different runs of the clustering algorithm

get-match-avg 146 Function calculate the average of cluster
matches between two runs of cluster
calculations

92Ronnie E. Thebeau
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run_cluster_A

%**************************************

% **************************************************************************

%**************************************

%**************************************

% **************************************************************************
*

% files: runclusterA.m

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *

% *

% Date: December 2000 *
% *

%6 *

% Script file to load in the DSM for analysis, run the *
% clustering algorithm and graph the results *

% *

% **************************************************************************

% **************************************************************************

% **************************************************************************

% **************************************************************************

SPECIFY & GET DSM MATRIX

name of script file containing the DSM matrix and DSM labels *

must contain to variables *
*

% DSM

DSMLABEL

matrix defining the DSM interaction values

cell array containing strings for the labels
of the DSM elements

DSMFuncLABEL cell array containg the strings which label
the functional requirements that are mapped
to the DSM elements

ElevatorDSM varied; % enter name of DSM script file

% ********************* END GET DSM MATRIX ********************************

% USER PARAMETERS *

% print flag set to 1 to print the plotted figures *
% *

*

*

%6

%

*

*

*

*

*

*

*

*
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% extractelements defines which elements will be considered *
% as system elements and will not be used *
% for the clustering purposes *
% The system parameters generally contain *
% many entries along the row, column, or both *

% *

% Cluster-param structure containing the parameters which *
% control the clustering algorithm *
% **************************************************************************

print-flag = 0;
extractelements = [9,16,60,61,40,14,38,25];

Cluster param.powcc = 1; % penalty assigned to cluster size(2)
Cluster param.pow bid = 1; % high value penalizes large clusters (0-3,
2)
Cluster param.powdep = 4; % high value emphasizes high interactions (0-
2, 2)
Cluster param.max clustersize= 61; % max size of cluster (DSM size)
Cluster-param.rand accept = 122; % proceed w/ 1 of N changes even if no
imp. (0.5-2 *DSM)
Cluster-param.rand-bid = 122; % take second highest bid 1 out of N times
(0.5-2 * DSM)
Cluster param.times = 2; % attept time*size before check sys.
stability (2)
Cluster param.stable limit = 2; % loop at least stablelimit*times*size
(2)

% **************************************************************************

% ************** END USER PARAMETERS *
% **************************************************************************

% **************************************************************************

% EXTRACT SPECIFIED SYSTEM PARAMETERS *

%********* ***** ****** *** ********************* ********* *** ********

DSM matrix = DSM;
DSMmatrix original = DSMmatrix; % save a copy of the original DSM

% set system parameters to zero to remove their influence during clustering
for i = 1: length(extractelements)

DSMmatrix(extract elements(i),:) = 0;
DSMmatrix(:,extract elements(i)) = 0;

end
% * END EXTRACT SYSTEM PARAMETERS *

% RUN CLUSTERING *

[Cluster_matrix, total coord cost, cost_history, old-data] =

Cluster(DSM matrix, Cluster-param);

% ***************** END RUN CLUSTERING ******************************
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% **************************************************************************

% **************************************************************************

% *

% GRAPHING *
% *

% sort the cluster matrix by cluster size
[Clustermatrix] = reordercluster(Clustermatrix); % sort cluster by cluster

size

% Get label of axes for DSM and cluster graphs
[Clusterlabel] = DSMautolabel(Clustermatrix);

% create generic number labels that correspond to the location
% in the original DSM
[DSMlabels] = DSM autolabel(DSMmatrix);

% re-order the DSM matrix and labels according to the results of the cluster
matrix
[NewDSMmatrix, NewDSM labels] = reorderDSM-byCluster(DSMtmatrix-original,
Clustermatrix, DSM labels);

% Place the value 1 along the diagonal of the DSM
[graphDSM matrix] = place-diag(DSM matrixoriginal, 1);

[graphNewDSMmatrix] = place diag(NewDSMmatrix, 1);

% GRAPH THE MATRICES

getdate = now; % get date and time for graphing

currentdate = datestr(get-date,O);

% Create titles for the graphs
DSMtitle = ['DSM Matrix; ' currentdate];

Clustertitle = ['Cluster Matrix; ' current-date];

NewDSMtitle = ['New DSM Matrix; ' currentdate '; Total Cost:

num2str(totalcoord_cost)];

% graph the original DSM Matrix
graph matrix(graph DSM matrix,'Element','Element',DSMtitle, DSM-labels,

DSM labels, print-flag);

% graph the Cluster Matrix
graph-matrix(Cluster matrix,'Element','Cluster',Cluster title, DSM_labels,

Cluster-label, 0);

% add lines on the cluster matrix to identify elements that belong
% to more than one cluster
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linemult cluster(Clustermatrix,gcf, gca);
if print-flag==1

print;
end

% graph the new DSM matrix reodered by the cluster assignments
graph-matrix(graphNew_DSMmatrix,'Element','Element',NewDSMtitle,
New_DSMlabels, New_DSMlabels, print flag, Clustermatrix);

% create a text list of the elements of each cluster
plot-cluster list(Cluster-matrix, DSM matrix, DSMLABEL, current-date,
print-flag);
plot-cluster list(Clustermatrix, DSMmatrix, DSMFuncLABEL, currentdate,
print-flag);

% get only the nonzero value in the cost history
% cutoff the end of the history array which was not filled in
[cost_g_zero, cg] = find(costhistory);
maxrun = max(cost-g-zero);

% plot the cost history
plot(cost history(1:maxrun));
title(['Clustering Cost History; ' currentdate]);
xlabel('Change #');
ylabel('Cost');
orient landscape;
if print-flag ==1

print;
end
% **************************************************************************
%6 END GRAPHING *
% *************************************

96
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ElevatorDSM

% D*

% Files: Elevator_DSM.m *
% T*

%Created by: Ronnie E. Thebeau *

%System Design and Management Program *
%Massacusetts Institute of Technology *

% *

%Date: December 2000 *
% *

SEntries indicate an interaction between two elements and the value *

%6 represents the interaction strength *
% **
%This DSM represents a subset of elements and interactions within a *

%generic elevator system *
%6 *

% **************************************************************************

% **************************************************************************

% **************************************************************************

DSM TEMPLATE *

DSM_size = 61; %number of elements in the DSM

DSM = zeros(DSM4 size);

***** DSM ENTRIES *****

DSM(l,1) = 1;

DSM(15,l) = 1;
DSM(60,l) 1;

DSM(2,2) = 1;

DSM(40,2) = 1;
DSM(60,2) = 1;

DSM(3,3) = 1;
DSM(15,3) 1;
DSM(60,3) = 1;

DSM(4,4) = 1;
DSM(40,4) = 1;
DSM(60,4) = 1;

DSM(5,5) = 1;
DSM(9,5) = 1;

DSM(40,5) = 1;

DSM(60,5) = 1;

DSM(2,6) = 1;
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DSM(6,6)

DSM(9,6)

DSM(27, 6
DSM(40, 6

DSM(1, 7)
DSM(7,7)
DSM(15, 7)
DSM(27, 7)

DSM(8,8)
DSM(9,8)
DSM(27, 8)
DSM(40, 8)

DSM(2,9)
DSM(4, 9)
DSM(5,9)
DSM(9,9)
DSM(15, 9)
DSM(20, 9)
DSM(25,9)
DSM(27,9)
DSM(32, 9)
DSM(34,9)
DSM(35, 9)
DSM(40, 9)

DSM(10,10)
DSM(11, 10)
DSM(19,10)
DSM(40, 10)
DSM(55,10)

DSM(10,11)
DSM(11, 11)
DSM(12, 11)
DSM(15,11)
DSM(21, 11)
DSM(25, 11)
DSM(26, 11)
DSM(28, 11)
DSM(29, 11)
DSM(37,11)
DSM(57,11)
DSM(58, 11)

DSM(11,12)
DSM(12, 12)
DSM(19,12)
DSM(26,12)

DSM(13,13)
DSM(32,13)
DSM(33,13)
DSM(39, 13)
DSM(40, 13)
DSM(41, 13)
DSM(55,13)
DSMI(56,13)
DSM(60,13)

)

)

DSM(1,14) = 1;

98

= 1;
= 1;

= 1;

= 1;

= 1;
= 1;

= 1;
= 1;

= 1;
= 1;

= 1;

= 1;

= 1;

-l1
=1;

=1;
=1;
=1;
=1;

=1;
=1;
=1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 1;
=1;

=1;
= 1;
= 1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 1;

= 1;
=1;

= 1;

= 1;

= 1;

=1;

= 1;

=1;

= 1;

= 1;

= 1;

=1;

= 1;

= 1;

= 1;

= 1;
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DSM(2,14) = 1;

DSM(3,14) = 1;

DSM(5,14) = 1;

DSM(6,14) = 1;

DSM(7,14) = 1;

DSM(9,14) = 1;

DSM(14,14) = 1;

DSM(16,14) = 1;
DSM(18,14) = 1;

DSM(21,14) = 1;
DSM(25,14) = 1;
DSM(26,14) = 1;
DSM(27,14) = 1;
DSM(28,14) = 1;

DSM(29,14) = 1;
DSM(30,14) = 1;
DSM(31,14) = 1;
DSM(32,14) = 1;
DSM(33,14) = 1;
DSM(34,14) = 1;
DSM(37,14) = 1;

DSM(42,14) = 1;
DSM(43,14) = 1;

DSM(44,14) = 1;

DSM(45,14) = 1;

DSM(48,14) = 1;
DSM(50,14) = 1;

DSM(51,14) = 1;
DSM(52,14) = 1;

DSM(53,14) = 1;

DSM(1,15) = 1;
DSM(3,15) = 1;
DSM(7,15) = 1;

DSM(9,15) = 1;

DSM(11,15) = 1;
DSM(15,15) = 1;

DSM(16,15) = 1;
DSM(23,15) = 1;

DSM(43,15) = 1;
DSM(44,15) = 1;

DSM(45,15) = 1;

DSM(46,15) = 1;

DSM(47,15) = 1;
DSM(48,15) = 1;

DSM(49,15) = 1;
DSM(60,15) = 1;

DSM(1,16) = 1;

DSM(2,16) = 1;

DSM(3,16) = 1;

DSM(4,16) = 1;

DSM(5,16) = 1;

DSM(15,16) = 1;
DSM(16,16) = 1;
DSM(20,16) = 1;
DSM(30,16) = 1;
DSM(32,16) = 1;
DSM(33,16) = 1;
DSM(34,16) = 1;
DSM(40,16) = 1;
DSM(42,16) = 1;
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DSM(12,17) = 1;
DSM(14,17) = 1;
DSM(17,17) = 1;
DSM(38,17) = 1;

DSM(41,17) = 1;

DSM(5,18) = 1;
DSM(18,18) = 1;
DSM(28,18) = 1;
DSM(29,18) = 1;
DSM(38,18) = 1;
DSM(42,18) = 1;

DSM(19,19) = 1;
DSM(20,19) = 1;
DSM(22,19) = 1;
DSM(40,19) = 1;
DSM(55,19) = 1;

DSM(20,20) = 1;
DSM(40,20) = 1;

DSM(11,21) = 1;

DSM(21,21) = 1;

DSM(26,21) = 1;
DSM(38,21) = 1;
DSM(57,21) = 1;

DSM(58,21) = 1;

DSM(22,22) = 1;
DSM(23,22) = 1;
DSM(40,22) = 1;

DSM(56,22) = 1;

DSM(15,23) = 1;
DSM(22,23) = 1;

DSM(23,23) = 1;
DSM(39,23) = 1;

DSM(24,24) = 1;
DSM(25,24) = 1;
DSM(26,24) = 1;

DSM(57,24) = 1;

DSM(24,25) = 1;
DSM(25,25) = 1;

DSM(26,25) = 1;
DSM(27,25) = 1;
DSM(35,25) = 1;
DSM(37,25) = 1;
DSM(38,25) = 1;
DSM(42,25) = 1;
DSM(57,25) = 1;
DSM(58,25) = 1;

DSM(12,26) = 1;
DSM(21,26) = 1;
DSM(25,26) = 1;

DSM(26,26) = 1;

DSM(35,26) = 1;
DSM(38,26) = 1;
DSM(57,26) = 1;
DSM(58,26) = 1;
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DSM(1,27) = 1;

DSM(2,27) = 1;

DSM(3,27) = 1;

DSM(4,27) = 1;

DSM(5,27) = 1;

DSM(9,27) = 1;

DSM(25,27) = 1;

DSM(27,27) = 1;
DSM(35,27) = 1;

DSM(58,27) = 1;

DSM(11,28) = 1;

DSM(24,28) = 1;
DSM(25,28) = 1;
DSM(27,28) = 1;

DSM(28,28) = 1;
DSM(35,28) = 1;

DSM(58,28) = 1;

DSM(11,29) = 1;

DSM(25,29) = 1;
DSM(26,29) = 1;
DSM(29,29) = 1;
DSM(35,29) = 1;
DSM(58,29) = 1;

DSM(9,30) = 1;

DSM(25,30) = 1;

DSM(30,30) = 1;
DSM(38,30) = 1;

DSM(40,30) = 1;

DSM(25,31) = 1;

DSM(31,31) = 1;
DSM(38,31) = 1;

DSM(9,32) = 1;

DSM(13,32) = 1;
DSM(25,32) = 1;

DSM(26,32) = 1;

DSM(32,32) = 1;

DSM(35,32) = 1;

DSM(38,32) = 1;
DSM(40,32) = 1;
DSM(58,32) = 1;

DSM(9,33) = 1;
DSM(26,33) = 1;

DSM(33,33) = 1;
DSM(38,33) = 1;

DSM(40,33) = 1;

DSM(9,34) = 1;

DSM(25,34) = 1;
DSM(34,34) = 1;
DSM(40,34) = 1;

DSM(9,35) = 1;

DSM(35,35) = 1;
DSM(58,35) = 1;

DSM(25,36) = 1;
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DSM(36,36) = 1;

DSM(37,37) = 1;

DSM(38,37) = 1;
DSM(57,37) = 1;
DSM(58,37) = 1;

DSM(9,38) = 1;
DSM(25,38) = 1;

DSM(26,38) = 1;

DSM(27,38) = 1;

DSM(35,38) = 1;
DSM(38,38) = 1;
DSM(57,38) = 1;
DSM(58,38) = 1;

DSM(9,39) = 1;
DSM(13,39) = 1;

DSM(23,39) = 1;

DSM(38,39) = 1;
DSM(39,39) = 1;
DSM(40,39) = 1;

DSM(2,40) = 1;
DSM(4,40) = 1;

DSM(5,40) = 1;
DSM(6,40) = 1;
DSM(8,40) = 1;
DSM(9,40) = 1;

DSM(10,40) = 1;
DSM(13,40) = 1;
DSM(16,40) = 1;
DSM(20,40) = 1;
DSM(22,40) = 1;
DSM(30,40) = 1;
DSM(32,40) = 1;
DSM(34,40) = 1;

DSM(39,40) = 1;
DSM(40,40) = 1;
DSM(41,40) = 1;
DSM(42,40) = 1;
DSM(43,40) = 1;
DSM(44,40) = 1;
DSM(45,40) = 1;
DSM(46,40) = 1;

DSM(47,40) = 1;
DSM(48,40) = 1;
DSM(53,40) = 1;
DSM(54,40) = 1;
DSM(55,40) = 1;
DSM(56,40) = 1;
DSM(60,40) = 1;

DSM(13,41) = 1;
DSM(38,41) = 1;

DSM(40,41) = 1;
DSM(41,41) = 1;
DSM(42,41) = 1;

DSM(49,41) = 1;
DSM(58,41) = 1;

DSM(59,41) = 1;

DSM(60,41) = 1;
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DSM(9,42) = 1;

DSM(25,42) = 1;
DSM(35,42) = 1;
DSM(38,42) = 1;
DSM(40,42) = 1;

DSM(41,42) = 1;

DSM(42,42) = 1;
DSM(57,42) = 1;
DSM(58,42) = 1;

DSM(9,43) = 1;

DSM(15,43) = 1;
DSM(24,43) = 1;
DSM(25,43) = 1;

DSM(38,43) = 1;
DSM(40,43) = 1;

DSM(43,43) = 1;

DSM(9,44) = 1;

DSM(15,44) = 1;
DSM(24,44) = 1;

DSM(25,44) = 1;
DSM(38,44) = 1;

DSM(40,44) = 1;
DSM(44,44) = 1;

DSM(9,45) = 1;
DSM(15,45) = 1;
DSM(24,45) = 1;

DSM(25,45) = 1;
DSM(28,45) = 1;

DSM(37,45) = 1;
DSM(38,45) = 1;

DSM(40,45) = 1;
DSM(45,45) = 1;

DSM(58,45) = 1;

DSM(15,46) = 1;

DSM(38,46) = 1;

DSM(39,46) = 1;
DSM(46,46) = 1;

DSM(15,47) = 1;

DSM(38,47) = 1;
DSM(40,47) = 1;

DSM(47,47) = 1;

DSM(15,48) = 1;

DSM(24,48) = 1;

DSM(25,48) = 1;
DSM(38,48) = 1;

DSM(40,48) = 1;
DSM(48,48) = 1;

DSM(13,49) = 1;
DSM(15,49) = 1;
DSM(38,49) = 1;
DSM(41,49) = 1;
DSM(49,49) = 1;
DSM(59,49) = 1;
DSM(60,49) = 1;

DSM(25,50) = 1;
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DSM(50,50) = 1;

DSM(25,51) = 1;
DSM(51,51) = 1;

DSM(25,52) = 1;
DSM(52,52) = 1;

DSM(40,53) = 1;
DSM(53,53) = 1;
DSM(54,53) = 1;

DSM(60,53) = 1;

DSM(40,54) = 1;
DSM(53,54) = 1;
DSM(54,54) = 1;

DSM(10,55) = 1;

DSM(40,55) = 1;
DSM(55,55) = 1;

DSM(22,56) = 1;
DSM(40,56) = 1;

DSM(56,56) = 1;

DSM(35,57) = 1;
DSM(57,57) = 1;

DSM(58,57) = 1;
DSM(61,57) = 1;

DSM(9,58) = 1;

DSM(35,58) = 1;

DSM(58,58) = 1;

DSM(49,59) = 1;

DSM(59,59) = 1;

DSM(1,60) = 1;
DSM(2,60) = 1;

DSM(3,60) = 1;

DSM(4,60) = 1;
DSM(5,60) = 1;

DSM(6,60) = 1;
DSM(7,60) = 1;
DSM(8,60) = 1;
DSM(13,60) = 1;
DSM(32,60) = 1;
DSM(34,60) = 1;
DSM(40,60) 1;
DSM(41,60) = 1;
DSM(49,60) = 1;
DSM(53,60) = 1;
DSM(55,60) = 1;
DSM(56,60) = 1;
DSM(60,60) = 1;
DSM(61,60) = 1;

DSM(13,61) = 1;
DSM(30,61) = 1;
DSM(31,61) = 1;

DSM(33,61) = 1;

DSM(34,61) = 1;

DSM(35,61) = 1;
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DSM(40, 61)
DSM(41, 61)
DSM(49, 61)
DSM(53,61)
DSM(57,61)
DSM(58,61)
DSM(59,61)
DSM(60, 61)
DSM(61,61)

1;
1;
1;
1;
1;
1;
1;
1;
1;

%**************************************

DSM Elements Labels *
%****** *

DSMLABEL = cell(DSM-size,l);

DSMLABEL{1,
DSMLABEL{2,
DSMLABEL{3,
DSMLABEL{4,
DSMLABEL{5,
DSMLABEL{6,
DSMLABEL17,
DSMLABEL{8,
DSMLABEL{9,

1})
1})
1}1
1}
1})
1}1
1}
1})
1})

DSMLABEL110,1)

DSMLABEL{11,11

DSMLABEL{12,1}
DSMLABEL{13,1}
DSMLABEL{14,1}
DSMLABEL115,1}
DSMLABEL{16,1}
DSMLABEL{17,1}
DSMLABEL{18,1)
DSMLABEL{19,1}

DSMLABEL{20,1}
DSMLABEL{21,11
DSMLABEL{22,1)
DSMLABEL{23,1)
DSMLABEL{24,1)
DSMLABEL{25,11
DSMLABEL{26,1)
DSMLABEL{27,1}
DSMLABEL{28,1}
DSMLABEL{29,1)

DSMLABEL{30,1)
DSMLABEL{31,1}
DSMLABEL{32,1)
DSMLABEL{33,1)
DSMLABEL{34,1}
DSMLABEL{35,1)
DSMLABEL{36,1)
DSMLABEL{37,1}
DSMLABEL{38,1)
DSMLABEL{39,1)

DSMLABEL{40,1)
DSMLABEL{41,1)

'Hall Request Indicator';
'Car Request Indicator';
'Hallway Fixtures';
'Car Fixtures';
'Emerg. Intercom-Phone';
'Car Buttons';
'Hall Buttons';
'Firemans Service key';
'Travelling Comm. Cable';

= 'Ropes';
= 'Motor';
= 'Drive Power Section';
= 'Cab Floor/Plank';
= 'Power Supplies';
= 'Building Structure';
= 'Travel Cable Power';
= 'Building Power';
= 'Power Storage';
= 'Counterweight';

= 'Compensation System';
= 'Brake System';
= 'Cab Guidance System';
= 'Guide Rails';
= 'Learn Function';
= 'Motion Controller';
= 'Electrical Drive Control';
= 'Operational Controller';
= 'Primary Position System';
= 'Primary Velcotiy Measement';

= 'Top-of-Car Insp. Ctl Panel';

= 'Remote Insp. Ctl. Panel';

= 'Load Weighing System';
= 'Construction Control Panel';

= 'Door Close Button';
= 'Service Tool';
= 'Emerg. Gen. Signal';

= 'Secondary Veloc. Check';
= 'Safety System';
= 'Mechanical Safeties System';

= 'Cab';

= 'Cab Doors';
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DSMLABEL{42,11
DSMLABEL{43,1}
DSMLABEL{44,1 1
DSMLABEL{45, 11
DSMLABEL{46,1}
DSMLABEL{47, 11
DSMLABEL{48,1}
DSMLABEL{49,1}

DSMLABEL{50,1}
DSMLABEL{51,1}
DSMLABEL{52,1}
DSMLABEL{53,11
DSMLABELf54,1}
DSMLABEL{55,1}
DSMLABEL{56,11
DSMLABEL{57,1}
DSMLABEL{58,1}
DSMLABEL{59,11

= 'Door Controller';
= 'Terminal Sensing System';
= 'ETSD Sensor';
= 'Door Zone Sensors';
= 'Governor System';
= 'Terminal Buffer';
= 'NTSD Sensor';
= 'Hoistway Doors';

'Door Obstruction Sensor';
= 'Earthquake Sensor';
= 'Building Sway Sensor';
= 'Vent & Lighting System';
= 'Cab Insullation';
= 'Ropes/Hitch Springs';
= 'Guide Springs/ Rail Align';
= 'Diagnostics';
= 'Remote Monitoring System';
= 'Acces keying on Hstway Doors';

DSMLABEL{60,1} = 'Passenger Load';
DSMLABEL{61,11 = 'Service Guy';

% *********** *** ** ********** ******************** * *********** ****** *****

% Functional Mapping to Physical Elements *

% Each of the functional labels represents the functional
% requirement for which the physcial DSM element represents
% Used to cross-reference the physical elemnts and
% functional requiremnts

DSMFuncLABEL = cell(DSM-size,1);

DSMFuncLABEL{1,1} = 'Acknowledge Hall Svc Rqst';
DSMFuncLABEL{2,11 = 'Acknowledge Car Service Rqst';
DSMFuncLABEL{3,1} = 'Comm. Status w/ Hall Pass.';
DSMFuncLABEL{4,1} = 'Comm. Status w/ Car Pass.';
DSMFuncLABEL{5,11 = 'Emerg. Comm. w/ car pass.';
DSMFuncLABEL{6,1} = 'Input Car Rqst';
DSMFuncLABEL{7,1} = 'Input Hall Rqst';
DSMFuncLABEL{8,1} = 'Input Firemans Svc Rqst';
DSMFuncLABEL{9,11 = 'Provide Comm. Link to Pass';

DSMFuncLABEL{10,1} = 'Xmit force to containment';
DSMFuncLABEL{11,1} = 'Energy Transformation to Force';
DSMFuncLABEL{12,1} = 'Provide Energy for Motion';
DSMFuncLABEL[l3,1} = 'Support load for movement';
DSMFuncLABEL{14,1} = 'Provide power to comp.';
DSMFuncLABEL{15,1} = 'Provide structure to contain Sys.';
DSMFuncLABELtl6,l1 = 'Provide power to containment';
DSMFunc_LABEL{17,l1 = 'Provide power for system';
DSMFuncLABEL{18,1} = 'Temporary power for memory';
DSMFunc_LABEL{19,l1 = 'Provide Counterbalancing to contain.';

DSMFuncLABEL{20,11 = 'Provide coubterbalancing of ropes';
DSMFuncLABEL{21,11 = 'Hold containment at destination';
DSMFuncLABEL{22,1} = 'Maintain guidance in pathway';
DSMFuncLABEL{23,1} = 'Provide path for motion in Hwy';
DSMFuncLABEL{24,11 = 'System Calibration';
DSMFuncLABEL{25,1} = 'Compute Trajectory';
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DSMFuncLABEL{27,1}

DSMFuncLABEL{28,1}

DSMFuncLABELt29,1}

DSMFunc_LABELt30,1}

DSMFuncLABEL{31,1}

DSMFuncLABEL{32,1}

DSMFuncLABELt33,1}

DSMFuncLABEL{34,11

DSMFuncLABELt35,1}

DSMFuncLABEL{36,1}

DSMFuncLABEL{37,1}

DSMFunc LABELt38,1}

DSMFuncLABELt39,1}

DSMFunc LABEL{40,1}

DSMFuncLABELt4l,l}

DSMFuncLABEL{42,1}

DSMFuncLABELt43,1}

DSMFuncLABEL{44,1}

DSMFunc LABELI45,1}

DSMFuncLABEL{46, 11
DSMFuncLABELt47,1)

DSMFuncLABEL{48,1}

DSMFuncLABEL{49,1}

DSMFuncLABELI50,1}

DSMFuncLABEL{51,1}

DSMFuncLABEL{52,1}

DSMFuncLABELt53,l}

DSMFuncLABEL{54,1}

DSMFuncLABEL{55,1}

DSMFuncLABEL{56,1}

DSMFuncLABEL{57,1}
DSMFuncLABELt58,1}

DSMFuncLABEL{59,1}

= 'Process Service Request';
= 'Provide current position';
= 'Provide Trajectory feedback';

= 'Top-of-car control (inspection)';
= 'Remote Control (inspection)';
= 'Detect if load is within limits';
= 'Contruction Control';
= 'Passenger Door control';
= 'Provide access to view/change sys. info.';

= 'Determine if on Emerg. Power';
= 'Detect Uncontrolled motion';
= 'Determine if safe to move';
= 'Stop free-fall motion';

= 'Protect load from hwy';
= 'Provide safe load transfer';
= 'Control acces to containment';
= 'independent end of hwy sensor';
= 'Emerg. Terminal Stopiing device';
= 'Indep. Door zone sensing';
= 'Mechanical Overspeed detection';
= 'Provide end of Hwy cushion (bffr)';
= 'Detect failure slow for last landing -NTSD';

= 'Deny access to hwy';

= 'Detect obstructed access';
= 'Respond to Earthquake';
= 'Detect Building sway';
= 'Maintainsafe/comf load env.';

= 'Manage noise';
= 'Manage vertical vibration';
= 'Manage horizontal vibration';
= 'Determine cause of malfunction';
= 'Monitor system health';
= 'provide service access to hwy';

DSMFuncLABEL{60,1} = 'Passenger Load';
DSMFuncLABEL{61,1} = 'Service Guy';
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ElevatorDSMvaried

% **************************************************************************

% *

% Files: ElevatorDSM varied.m *
% *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *

% *

% Date: December 2000 *
% *

% Script file to create the Design Structure Matrix *
% *

% Entries indicate an interaction between two elements and the value *
% represents the interaction strength *
%- *

% This DSM represents a subset of elements and interactions within a *
% generic elevator system *

% *

% **************************************************************************

%6 **************************************************************************

DSM size = 61; % number of elements in the DSM
DSM = zeros(DSM size);

% ***** DSM ENTRIES *****

% interactions between the elements of the DSM

DSM(1,1) = 1;

DSM(15,1) = 0.5;
DSM(60,1) 0.5;

DSM(2,2) = 1;
DSM(40,2) 1;
DSM(60,2) = 0.5;

DSM(3,3) = 1;
DSM(15,3) = 0.5;
DSM(60,3) 0.5;

DSM(4,4) = 1;
DSM(40,4) 1;
DSM(60,4) = 0.5;

DSM(5,5) 1;
DSM(9,5) 0.5;
DSM(40,5) 1;
DSM(60,5) 0.5;

DSM(2,6) 1;
DSM(6,6) 1;
DSM(9,6) 0.5;
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DSM(27,6) = 2;
DSM(40,6) = 1;

DSM(1, 7)
DSM(7,7)
DSM(15, 7)
DSM(27,7)

DSM(8, 8)
DSM(9,8)
DSM(27, 8)
DSM(40, 8)

DSM(2,9)
DSM(4, 9)
DSM(5,9)
DSM(9,9)
DSM(15,9)
DSM(20,9)
DSM(25,9)
DSM(27,9)
DSM(32,9)
DSM(34,9)
DSM(35,9)
DSM(40, 9)

DSM(10, 10)
DSM(11, 10)
DSM(19, 10)
DSM(40, 10)
DSM(55,10)

DSM(10,11) =
DSM(11,11) =
DSM(12,11) =
DSM(15,11) =
DSM(21,11) =
DSM(25,11) =
DSM(26,11) =
DSM(28,11) =
DSM(29,11) =
DSM(37,11) =
DSM(57,11) =
DSM(58,11) =

DSM(11,12) =
DSM(12,12) =
DSM(19,12) =
DSM(26,12) =

DSM(13,
DSM(32,
DSM(33,
DSM(39,
DSM(40,
DSM(41,
DSM(55,
DSM(56,
DSM(60,

13)
13)
13)
13)
13)
13)
13)
13)
13)

DSM(1,14)
DSM(2,14)
DSM(3,14)

= 1;

= 1;

= 0.5;
= 2;

= 1;

= 0.5;
= 2;
= 1;

= 1;

= 1;

= 1;

= 1;
= 0.5;
= 0.5;
= 2;
= 2;
= 2;
= 1;

= 0.5;
= 2;

= 1;

= 2;
2;

= 2;
= 2;

2;
1;
2;

1;
1;
1;
1;
1;
1;
1;
0.
0.

5;
5;

2;
1;
0.5;
2;

1;
1;
0.5;
2;
2;
1;
1;
1;
1;

1;
1;
1;
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DSM(5,14) = 1;

DSM(6,14) = 1;

DSM(7,14) = 1;

DSM(9,14) = 1;

DSM(14,14) = 1;

DSM(16,14) = 1;

DSM(18,14) = 1;
DSM(21,14) = 1;
DSM(25,14) = 1;
DSM(26,14) = 1;
DSM(27,14) = 1;
DSM(28,14) = 1;
DSM(29,14) = 1;
DSM(30,14) = 1;
DSM(31,14) = 1;
DSM(32,14) = 1;
DSM(33,14) = 1;
DSM(34,14) = 1;
DSM(37,14) = 1;
DSM(42,14) = 1;
DSM(43,14) = 1;
DSM(44,14) = 1;

DSM(45,14) = 1;
DSM(48,14) = 1;
DSM(50,14) = 1;
DSM(51,14) = 1;
DSM(52,14) = 1;
DSM(53,14) = 1;

DSM(1,15) = 0.5;
DSM(3,15) = 0.5;
DSM(7,15) = 0.5;
DSM(9,15) = 0.5;
DSM(11,15) = 1;
DSM(15,15) = 1;
DSM(16,15) = 0.5;
DSM(23,15) = 1;
DSM(43,15) = 1;
DSM(44,15) = 1;

DSM(45,15) = 1;
DSM(46,15) = 1;
DSM(47,15) = 1;
DSM(48,15) = 1;
DSM(49,15) = 2;
DSM(60,15) = 0.5;

DSM(1,16) = 1;
DSM(2,16) = 1;
DSM(3,16) = 1;
DSM(4,16) = 1;
DSM(5,16) = 1;
DSM(15,16) = 0.5;
DSM(16,16) = 1;
DSM(20,16) = 0.5;
DSM(30,16) = 1;
DSM(32,16) = 1;
DSM(33,16) = 0.5;
DSM(34,16) = 1;

DSM(40,16) = 2;
DSM(42,16) = 1;

DSM(12,17) = 2;
DSM(14,17) = 2;
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DSM(17,17) = 1;

DSM(38,17) = 0.5;
DSM(41,17) = 1;

DSM(5,18) = 1;

DSM(18,18) = 1;
DSM(28,18) = 1;

DSM(29,18) = 1;
DSM(38,18) = 1;
DSM(42,18) = 0.5;

DSM(19,19) = 1;

DSM(20,19) = 1;
DSM(22,19) = 0.5;
DSM(40,19) = 1;

DSM(55,19) = 2;

DSM(20,20) = 1;
DSM(40,20) = 1;

DSM(11,21) = 1;
DSM(21,21) = 1;

DSM(26,21) = 1;

DSM(38,21) = 1;

DSM(57,21) = 0.5;
DSM(58,21) = 0.5;

DSM(22,22) = 1;

DSM(23,22) = 2;
DSM(40,22) = 2;
DSM(56,22) = 1;

DSM(15,23) = 1;
DSM(22,23) = 2;
DSM(23,23) = 1;

DSM(39,23) = 2;

DSM(24,24) = 1;

DSM(25,24) = 2;
DSM(26,24) = 0.5;
DSM(57,24) = 0.5;

DSM(24,25) = 1;

DSM(25,25) = 1;

DSM(26,25) = 2;
DSM(27,25) = 2;
DSM(35,25) = 0.5;
DSM(37,25) = 1;
DSM(38,25) = 1;

DSM(42,25) = 1;

DSM(57,25) = 0.5;
DSM(58,25) = 0.5;

DSM(12,26) = 2;
DSM(21,26) = 1;

DSM(25,26) = 2;

DSM(26,26) = 1;

DSM(35,26) = 0.5;
DSM(38,26) = 1;

DSM(57,26) = 0.5;
DSM(58,26) = 0.5;

DSM(1,27) = 1;
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DSM(2,27) = 1;

DSM(3,27) = 1;
DSM(4,27) = 1;
DSM(5,27) = 0.5;
DSM(9,27) = 1;

DSM(25,27) = 2;
DSM(27,27) = 1;
DSM(35,27) = 0.5;
DSM(58,27) = 0.5;

DSM(11,28) = 1;
DSM(24,28) = 1;
DSM(25,28) = 2;
DSM(27,28) = 1;

DSM(28,28) = 1;

DSM(35,28) = 0.5;
DSM(58,28) = 0.5;

DSM(11,29) = 1;
DSM(25,29) = 2;
DSM(26,29) = 2;

DSM(29,29) = 1;
DSM(35,29) = 0.5;
DSM(58,29) = 0.5;

DSM(9,30) = 1;

DSM(25,30) = 1;

DSM(30,30) = 1;
DSM(38,30) = 1;
DSM(40,30) = 1;

DSM(25,31) = 1;
DSM(31,31) = 1;
DSM(38,31) = 1;

DSM(9,32) = 0.5;
DSM(13,32) = 1;
DSM(25,32) = 2;
DSM(26,32) = 1;
DSM(32,32) = 1;
DSM(35,32) = 0.5;
DSM(38,32) = 0.5;
DSM(40,32) = 1;
DSM(58,32) = 0.5;

DSM(9,33) = 1;

DSM(26,33) = 1;

DSM(33,33) = 1;
DSM(38,33) = 1;

DSM(40,33) = 1;

DSM(9,34) = 1;
DSM(25,34) = 1;

DSM(34,34) = 1;

DSM(40,34) = 1;

DSM(9,35) = 1;

DSM(35,35) = 1;
DSM(58,35) = 1;

DSM(25,36) = 1;
DSM(36,36) = 1;
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DSM(37,37) = 1;

DSM(38,37) = 1;
DSM(57,37) = 0.5;
DSM(58,37) = 0.5;

DSM(9,38) = 0.5;
DSM(25,38) = 1;

DSM(26,38) = 1;

DSM(27,38) = 1;
DSM(35,38) = 0.5;
DSM(38,38) = 1;

DSM(57,38) = 1;
DSM(58,38) = 1;

DSM(9,39) = 0.5;
DSM(13,39) = 1;

DSM(23,39) = 2;

DSM(38,39) = 1;
DSM(39,39) = 1;

DSM(40,39) = 2;

DSM(2,40) = 1;
DSM(4,40) = 1;
DSM(5,40) = 1;

DSM(6,40) = 1;
DSM(8,40) = 1;

DSM(9,40) = 2;
DSM(10,40) = 2;
DSM(13,40) = 1;
DSM(16,40) = 2;

DSM(20,40) = 2;
DSM(22,40) = 2;

DSM(30,40) = 1;
DSM(32,40) = 1;
DSM(34,40) = 1;

DSM(39,40) = 2;

DSM(40,40) = 1;
DSM(41,40) = 2;
DSM(42,40) = 1;
DSM(43,40) = 1;
DSM(44,40) = 1;
DSM(45,40) = 1;
DSM(46,40) = 1;
DSM(47,40) = 1;
DSM(48,40) = 1;
DSM(53,40) = 2;
DSM(54,40) = 1;
DSM(55,40) = 2;
DSM(56,40) = 1;
DSM(60,40) = 0.5;

DSM(13,41) = 1;
DSM(38,41) = 1;

DSM(40,41) = 2;
DSM(41,41) = 1;
DSM(42,41) = 2;
DSM(49,41) = 2;
DSM(58,41) = 0.5;
DSM(59,41) = 1;
DSM(60,41) = 0.5;

DSM(9,42) = 1;
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DSM(25,42) = 2;
DSM(35,42) = 1;
DSM(38,42) = 1;

DSM(40,42) = 1;

DSM(41,42) = 2;
DSM(42,42) = 1;
DSM(57,42) = 0.5;
DSM(58,42) = 0.5;

DSM(9,43) = 1;
DSM(15,43) = 1;
DSM(24,43) = 1;
DSM(25,43) = 1;

DSM(38,43) = 2;
DSM(40,43) = 1;
DSM(43,43) = 1;

DSM(9,44) = 1;
DSM(15,44) = 1;
DSM(24,44) = 1;

DSM(25,44) = 1;
DSM(38,44) = 2;

DSM(40,44) = 1;
DSM(44,44) = 1;

DSM(9,45) = 1;

DSM(15,45) = 1;
DSM(24,45) = 1;

DSM(25,45) = 2;

DSM(28,45) = 1;
DSM(37,45) = 1;
DSM(38,45) = 1;
DSM(40,45) = 2;
DSM(45,45) = 1;
DSM(58,45) = 0.5;

DSM(15,46) = 1;
DSM(38,46) = 1;

DSM(39,46) = 2;

DSM(46,46) = 1;

DSM(15,47) = 1;

DSM(38,47) = 1;
DSM(40,47) = 1;
DSM(47,47) = 1;

DSM(15,48) = 1;
DSM(24,48) = 1;
DSM(25,48) = 1;

DSM(38,48) = 1;
DSM(40,48) = 1;
DSM(48,48) = 1;

DSM(13,49) = 1;

DSM(15,49) = 2;
DSM(38,49) = 1;
DSM(41,49) = 2;

DSM(49,49) = 1;
DSM(59,49) = 0.5;
DSM(60,49) = 0.5;

DSM(25,50) = 1;
DSM(50,50) = 1;



Ronnie E. Thebeau 115

DSM(25,51) = 1;

DSM(51,51) = 1;

DSM(25,52) = 1;
DSM(52,52) = 1;

DSM(40,53) = 2;
DSM(53,53) = 1;
DSM(54,53) = 1;
DSM(60,53) = 0.5;

DSM(40,54) = 2;

DSM(53,54) = 1;

DSM(54,54) = 1;

DSM(10,55) = 1;
DSM(40,55) = 1;
DSM(55,55) = 1;

DSM(22,56) = 1;
DSM(40,56) = 1;

DSM(56,56) = 1;

DSM(35,57) = 0.5;
DSM(57,57) = 1;
DSM(58,57) = 1;

DSM(61,57) = 0.5;

DSM(9,58) = 0.5;
DSM(35,58) = 0.5;
DSM(58,58) = 1;

DSM(49,59) = 1;

DSM(59,59) = 1;

DSM(1,60) = 0.5;
DSM(2,60) = 0.5;
DSM(3,60) = 0.5;
DSM(4,60) = 0.5;
DSM(5,60) = 0.5;
DSM(6,60) = 0.5;
DSM(7,60) = 0.5;
DSM(8,60) = 0.5;
DSM(13,60) = 1;
DSM(32,60) = 1;

DSM(34,60) = 0.5;
DSM(40,60) = 1;
DSM(41,60) = 0.5;
DSM(49,60) = 0.5;
DSM(53,60) = 0.5;
DSM(55,60) = 0.5;
DSM(56,60) = 0.5;
DSM(60,60) = 1;
DSM(61,60) = 0.5;

DSM(13,61) = 0.5;
DSM(30,61) = 0.5;
DSM(31,61) = 0.5;
DSM(33,61) = 0.5;
DSM(34,61) = 0.5;
DSM(35,61) = 0.5;
DSM(40,61) = 0.5;
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DSM(41, 61)
DSM(49, 61)
DSM(53, 61)
DSM(57, 61)
DSM(58, 61)
DSM(59,61)
DSM(60, 61)
DSM(61, 61)

- 0.5;
0.5;
0.5;
0.5;
0.5;
0.5;
0.5;
0.5;

% DSM Elements Labels *

DSMLABEL = cell(DSM-size,l);

DSMLABEL{1,

DSMLABEL{2,

DSMLABEL{3,

DSMLABEL{4,

DSMLABEL{5,

DSMLABEL{6,

DSMLABEL{7,

DSMLABEL{8,

DSMLABEL{9,

1})
1})
1})
1})
1})
1})
1})
1})

1}

DSMLABEL{10,1}
DSMLABEL{11, 1)

DSMLABEL{12,11
DSMLABEL{13,1}
DSMLABEL{14,1)
DSMLABEL{15,1)
DSMLABEL{16,1}
DSMLABEL{17,1)
DSMLABEL{18,1}
DSMLABEL{19,1}

DSMLABEL{20,1}
DSMLABEL{21,1}
DSMLABEL{22,1)
DSMLABEL{23,1)
DSMLABEL{24,1)
DSMLABEL{25,1}
DSMLABEL{26, 1)
DSMLABEL{27,1}
DSMLABEL{28,1}
DSMLABEL{29,1)

DSMLABEL{30,1}
DSMLABEL{31, 1)
DSMLABEL{32,1}
DSMLABEL{33,1)
DSMLABEL{34,1)
DSMLABEL{35,1)
DSMLABEL{36,1}
DSMLABEL{37,1)

'Hall Request Indicator';
'Car Request Indicator';
'Hallway Fixtures';
'Car Fixtures';
'Emerg. Intercom-Phone';
'Car Buttons';
'Hall Buttons';
'Firemans Service key';
'Travelling Comm. Cable';

'Ropes';
'Motor';
'Drive Power Section';
'Cab Floor/Plank';
'Power Supplies';
'Building Structure';
'Travel Cable Power';
'Building Power';
'Power Storage';
'Counterweight';

'Compensation System';
'Brake System';
'Cab Guidance System';
'Guide Rails';
'Learn Function';
'Motion Controller';
'Electrical Drive Control';
'Operational Controller';
'Primary Position System';
'Primary Velcotiy Measement';

'Top-of-Car Insp. Ctl Panel';
'Remote Insp. Ctl. Panel';
'Load Weighing System';
'Construction Control Panel';
'Door Close Button';
'Service Tool';
'Emerg. Gen. Signal';
'Secondary Veloc. Check';
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DSMLABEL{38,11
DSMLABEL{39,1}

DSMLABEL{40, 11
DSMLABEL{41,1}1
DSMLABEL{42,1}
DSMLABEL{43,1}
DSMLABEL{44, 11
DSMLABEL{45,11
DSMLABEL{46,1}
DSMLABEL{47,11
DSMLABEL{48,1}
DSMLABEL{49,11

DSMLABEL{50,1}
DSMLABEL{51,11
DSMLABEL{52,1}
DSMLABELI53,1}
DSMLABEL{54,11
DSMLABEL[55, 11
DSMLABEL{56,11
DSMLABEL{57,11
DSMLABEL{58,11
DSMLABEL{59,11

DSMLABEL{60,1}
DSMLABEL{61,1}

%6

%6

%6

%

%

%6

= 'Safety System';

= 'Mechanical Safeties System';

= 'Cab';
= 'Cab Doors';
= 'Door Controller';
= 'Terminal Sensing System';
= 'ETSD Sensor';
= 'Door Zone Sensors';

= 'Governor System';
= 'Terminal Buffer';
= 'NTSD Sensor';
= 'Hoistway Doors';

= 'Door Obstruction Sensor';
= 'Earthquake Sensor';

= 'Building Sway Sensor';
= 'Vent & Lighting System';
= 'Cab Insullation';
= 'Ropes/Hitch Springs';
= 'Guide Springs/ Rail Align';

= 'Diagnostics';
= 'Remote Monitoring System';

= 'Acces keying on Hstway Doors';

= 'Passenger Load';
= 'Service Guy';

********* ****** *********************** **** **** ****** ** **********

Functional Mapping to Physical Elements *
**** *** *** ** *** ************* ********** ********** ***** *********************

Each of the functional labels represents the functional

requirement for which the physcial DSM element represents

Used to cross-reference the physical elemnts and

functional requiremnts

DSMFuncLABEL = cell(DSM-size,l);

DSMFunc LABEL{1,1}

DSMFuncLABELt2,1}

DSMFuncLABEL{3,1}

DSMFuncLABEL{4,1}

DSMFuncLABEL{5,1}
DSMFuncLABEL{6,11
DSMFuncLABEL{7,11

DSMFuncLABEL{8,1}1

DSMFuncLABEL{9, 11

= 'Acknowledge Hall Svc Rqst';

= 'Acknowledge Car Service Rqst';

= 'Comm. Status w/ Hall Pass.';

= 'Comm. Status w/ Car Pass.';

= 'Emerg. Comm. w/ car pass.';

= 'Input Car Rqst';
= 'Input Hall Rqst';

= 'Input Firemans Svc Rqst';

= 'Provide Comm. Link to Pass';

DSMFunc LABEL{10,1} = 'Xmit force to containment';
DSMFuncLABEL{1l,l1 = 'Energy Transformation to Force';

DSMFuncLABEL{12,1} = 'Provide Energy for Motion';
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DSMFuncLABEL{13,1}
DSMFuncLABEL{14,1}

DSMFuncLABEL{15,1}
DSMFuncLABEL{16,1}
DSMFuncLABEL[l7,1}

DSMFuncLABEL{18,1}

DSMFuncLABEL{19,1}

DSMFuncLABEL{20,l}

DSMFuncLABEL{2l,l}

DSMFuncLABEL{22,14

DSMFuncLABEL{23,1}

DSMFuncLABEL{24,1}

DSMFuncLABEL{25,1}

DSMFunc_LABEL{26,l}

DSMFuncLABEL{27,1}

DSMFuncLABEL{28,1}

DSMFuncLABEL{29,1}

DSMFuncLABELI

DSMFuncLABEL{
DSMFuncLABEL{

DSMFuncLABEL{

DSMFuncLABEL{

DSMFuncLABEL{

DSMFuncLABEL{

DSMFuncLABEL{

DSMFuncLABEL{

DSMFuncLABEL{

30,1}
31,1}
32,11
33,1}
34,1}
35,11
36,11
37,1}
38,1}
39,1}

DSMFuncLABEL{40,1}

DSMFuncLABEL{41,1}

DSMFuncLABEL{42,1}

DSMFuncLABEL{43,1}

DSMFuncLABEL{44,1}

DSMFuncLABEL{45,1}

DSMFuncLABEL{46,1}

DSMFuncLABEL{47,1}

DSMFuncLABEL{48,1}

DSMFuncLABEL{49,1}

DSMFuncLABEL{50,1}

DSMFuncLABEL{51,1}

DSMFuncLABEL{52,1}

DSMFuncLABEL{53,1}
DSMFuncLABEL{54,1}

DSMFuncLABEL{55,1}

DSMFuncLABEL{56,1}

DSMFuncLABEL{57,1}

DSMFuncLABELI58,1}

DSMFuncLABEL{59,1}

= 'Support load for movement';
= 'Provide power to comp.';
= 'Provide structure to contain Sys.';

= 'Provide power to containment';
= 'Provide power for system';
= 'Temporary power for memory';
= 'Provide Counterbalancing to contain.';

= 'Provide coubterbalancing of ropes';
= 'Hold containment at destination';
= 'Maintain guidance in pathway';
= 'Provide path for motion in Hwy';
= 'System Calibration';
= 'Compute Trajectory';
= 'Control Motion to trajectory';
= 'Process Service Request';
= 'Provide current position';
= 'Provide Trajectory feedback';

= 'Top-of-car control (inspection)';
= 'Remote Control (inspection)';
= 'Detect if load is within limits';
= 'Contruction Control';
= 'Passenger Door control';
= 'Provide access to view/change sys. info.';
= 'Determine if on Emerg. Power';
= 'Detect Uncontrolled motion';
= 'Determine if safe to move';
= 'Stop free-fall motion';

= 'Protect load from hwy';
= 'Provide safe load transfer';
= 'Control acces to containment';
= 'independent end of hwy sensor';
= 'Emerg. Terminal Stopiing device';
= 'Indep. Door zone sensing';
= 'Mechanical Overspeed detection';
= 'Provide end of Hwy cushion (bffr)';
= 'Detect failure slow for last landing -NTSD';
= 'Deny access to hwy';

= 'Detect obstructed access';
= 'Respond to Earthquake';
= 'Detect Building sway';
= 'Maintainsafe/comf load env.';
= 'Manage noise';

= 'Manage vertical vibration';
= 'Manage horizontal vibration';
= 'Determine cause of malfunction';
= 'Monitor system health';
= 'provide service access to hwy';

DSMFuncLABEL{60,1} = 'Passenger Load';
DSMFuncLABEL{61,1} = 'Service Guy';
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Bid

function [cluster bid]=bid(elmt, DSM matrix, cluster_matrix, maxclustersize,

pow-dep, pow-bid, cluster size);

%[clusterbid]=bid(elmt, DSMmatrix, cluster_matrix, max_cluster size, pow dep,

powbid, clustersize);

% Function to calculate the bids from an element to each cluster of elements

% Inputs:
% elmt The DSM element number to receive bids from clusters

% DSMmatrix The DSM matrix

% Clustermatrix The Cluster Matrix (cluster,element)

% 1 = element in cluster, 0 = not in cluster

% max cluster-size maximum cluster size

% pow dep parameter for weighting interactions between elements

% powbid parameter for penalizing cluster sizes

% cluster-size array of cluster sizes

% Outputs:
% clusterbid array of the cluster bids

% **************************************************************************

% **************************************************************************

% **************************************************************************

% **************************************************************************

% *

% File: bid.m
%6 *

% Created by: Ronnie E. Thebeau *

% System Design and Management Program *

% Massacusetts Institute of Technology *
% *

% Date: December 2000
% *

% Function to calculate the bids from clusters for the selected element. *

% Each cluster makes a bid for the selected element based on the *

% bidding parameters. *
%6 *

% This algorithm is based on work by Carlos Fernandez. *

%6 *

% **************************************************************************

% **************************************************************************

% **************************************************************************

% **************************************************************************

% get the number of clusters and number of elements

[n clusters, DSM_size] = size(clustermatrix);

% intialize the bidding array
clusterbid = zeros(nclusters,l);

% For each Cluster, if any element in the cluster has an interaction with

% the selected element then add the number of interactions with the selected
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% element. Then use the number of interactions to calculate the bid.

for i=1:n-clusters
in=O;
out=O;
for j=l:DSM size

% if element J is in Cluster i, need j not equal to element to avoid
diagnal

if((cluster matrix(i,j)==1)&(j~=elmt))
if (DSM-matrix(j,elmt)>O)

in = in + DSM matrix(j,elmt);
end
if (DSM-matrix(elmt,j) > 0)

out = out + DSM matrix(elmt,j);
end

end
end
% if there were any interactions with members of the clusters, make a bid
if ( (in>0) I (out>0))

if (cluster-size(i) == maxclustersize)
clusterbid(i) = 0;

else
% calculate the cluster bid
clusterbid(i)=((in+out)^pow-dep)/((cluster-size(i)^pow bid));

end
end

end
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Cluster

function [Cluster-matrix, totalcoord_cost, cost-history, olddata] =

Cluster(DSM matrix, Cluster-param);
% [Cluster_matrix, total-coord-cost, costhistory, old-data] =

Cluster(DSM matrix, Cluster param);

% Inputs:
% DSMmatrix the DSM matrix

% Cluster-param structure containing the clustering control

parameters

% Outputs:
% Clustermatrix cluster matrix based on the clustering algorithm

% totalcoordcost calculated cost of the cluster matrix solution

% costhistory record of the coordination cost as the algorith

% searched for a solution
% olddata intermediate solutions to the clustering routine

% Parameters of the structure "Clusterparam" include:
% Cluster-param.powcc penalty assigned to cluster size during

costing
% Cluster-param.powbid penalty assigned to cluster size during

bidding
% Cluster-param.pow dep emphasizes high interactions

% Cluster-param.maxcluster-size max size of cluster

% Cluster-param.rand accept randomly asccep change 1 of N times w/

no improvement
% Cluster-param.randbid randomly accept second highest bid 1 of

N times
% Cluster-param.times attept "times" changes before checking

for stability
% Cluster-param.stablelimit loop at least stablelimit*times*size

before ending

% **************************************************************************

% **************************************************************************

% **************************************************************************

% **************************************************************************

%6 *

% File: Cluster.m
% *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *

% Massacusetts Institute of Technology *
%6 *

% Date: December 2000
% *

% Function to cluster the elements of a matrix *

% Algorithm based on work developed by Carlos Fernandez *
% *

% This function runs a clustering algorithm then calculates the cost of *

% the proposed solution. The objective is to find the solution that *

% in the lowest cost solution.
% *

% There is a higher cost for interactions that occur outside of clusters *

% and lower costs for interactions within clusters. There are also *
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% penalties assigned to the size of clusters to avoid a solution where *
% all elements are members of a single cluster. *

% *

% There results are highly dependant on the parameters passed to the *
% algoreithm. *
% C*

% **************************************************************************

% **************************************************************************

% **************************************************************************

%Clustering Control Parameters *

% Extract clustering control parameters
pow-cc = Cluster-param.powcc;
pow-bid = Cluster-param.pow bid;
pow-dep = Cluster-param.pow-dep;
max clustersize = Cluster-param.max cluster size;
randaccept = Cluster param.rand accept;
rand-bid = Cluster-param.rand bid;
times = Cluster-param.times;
stablelimit = Cluster-param.stable limit;
% * END GETTING CLUSTERING PARAMETERS *

% **************************************************************************

% Initialize Matices and arrays *

DSM size = size(DSM matrix,2); % number of elements in the DSM
n_clusters = DSMsize; % initial # clusters = # elements
max-repeat = 10; % maximum # of times to run through calc

coordinationcost = zeros(DSM-size,l);
cluster-size = zeros(DSM size,l);
newclustermatrix = zeros(DSM size,DSM-size);
new-cluster size = zeros(DSM size,l);
clusterbid = zeros(DSM-size,l);
newclusterbid = zeros(DSM size,l);
newcoordination cost= zeros(DSM size,l);
rnd_elmtarr = zeros(DSM size,l);
clusterlist = zeros(DSM size,l);
% ******************* END INTIALIZE MATRICES *******************************

% Initialize Clustering *
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% **** initialize the cluster matrix along the diagonals****

% Initial clustering: nth cluster contains the nth element

clusterdiagonals = ones(l,nclusters);
Clustermatrix = diag(cluster-diagonals);
clustersize = ones(n-clusters,l);

% calculate the initial starting coordination cost of the clustering
[totalcoord cost] = CoordCost(DSMmatrix, Clustermatrix, cluster size,

pow-cc);
bestcoordcost = totalcoordcost;

% create an empty array to hold the cost history
costhistory = zeros(10e3,l);
history-index = 0;

% create matrices to store the best cost and the corrresponding
% cluster size and clustrix that have been found so far
bestcurrcost = totalcoord_cost;
best currClustmat = Cluster matrix;
best clustersize = cluster_size;
% * END INITIALIZE CLUSTERING **************************

% Clustering Routine *
% ************* *** ******* **************** ******* *** **** *** **********

% Initialize parameters
stable = 0; % toggle to indicate if the algorithm has met the stability

criteria
change = 0; % toggle to indicate if a change should be made

acceptl= 0; % toggle to indicate if the solution should be acccepted

firstrun = 1; % toggle to indicate if it is the first run through

pass 1; % index to count the number of passes through the algorithm

% store best cost solution and data found up to this point
old-data(pass).Clustermatrix = Clustermatrix;
old-data(pass).cluster size = cluster size;

old-data(pass).totalcoordcost = totalcoordcost;

% **** start the clustering routine ****
% continue until the results have met the stability criteria
% AND the final solution is the same or better than any intermediate solution

that may
% have been found. Due to simulated annealing, a final solution may be worse

than an
% intermediate solution that had been found before making the random change

% If the final solution is not equal to or less than any best solution, then

% return to the best solution and continue to search for a better solution.

% Do this until a better solution is found or we have looped back maxrepeat

times.
% If we reach maxrepeat, then report the best solution thathad been found.

while ( ((total_coord cost > bestcoord-cost) & (pass <= max-repeat))l
(first-run == 1))

if first-run == 0 % only if not first pass through clustering routine
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pass = pass+l; % increment # passes
% store the current data
old-data(pass).Cluster matrix = Cluster matrix;
old data(pass).clustersize = clustersize;
old-data(pass).total coord cost = total coordcost;
totalcoord cost = bestcurrcost;
Cluster-matrix = bestcurrClust mat;
clustersize = best cluster size;
history-index = history index+1;
cost history(history-index,l) = totalcoord_cost;

end
% reset the toggles back to zero
firstrun = 0;
stable = 0;
acceptl = 0;
change = 0;

while (stable -= stablelimit)
for k=l:DSMsize*times;

% (1) pick an element in a random location in the DSM
elmt = ceil(DSM size*rand(1,l));% random number between 1 and DSMsize

% (2) Accept bids for the elemement from all clusters
% cluster bid(i) holds the bid for cluster i in

clustermatatrix
[cluster bid]=bid(elmt, DSM matrix, Cluster-matrix, maxcluster size,

pow-dep, powbid, clustersize);

% (3) Determine the best bid & second best bid
bestcluster bid = max(cluster bid);
secondbest clusterbid =

max((bestclusterbid-=cluster bid).*clusterbid);

% simulated annealing
if (floor(rand-bid*rand(l,l)) == 0) % pick second best bid 1 out

of randbid times
bestclusterbid = secondbestcluster bid;

end

if (best clusterbid>0)

% (3a) Determine if the BID is acceptable
% Initialize
clusterlist(:,l) = 0;

% Determine the list of clusters affected
cluster-list(l:n-clusters,l) = ((clusterbid(:)==best cluster bid)

& (Cluster matrix(:,elmt)==0));

% copy the cluster matrix into new matrices
new clustermatrix = Cluster_matrix;
new cluster size = clustersize;

% proceed with cluster changes in the new cluster
new cluster matrix(l:n clusters,elmt) =

newcluster matrix(l:n-clusters,elmt) I cluster list;
new clustersize(l:n-clusters) = newcluster size(l:n-clusters) +

(clusterlist==)*l;
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% delete any duplicate or empty clusters
[new clustermatrix, new cluster_size]=

DeleteClusters(new-cluster_size, new clustermatrix);

% determine the change in the coordination costs
[newtotalcoord_cost] = CoordCost(DSM matrix, new clustermatrix,

newclustersize, pow-cc);
if (new totalcoordcost <= total coordcost)

acceptl = 1;
else

if (floor(rand-accept*rand(l,1)) == 0)% still accept 1 out of
approx random-accept times

acceptl = 1;
% if we are going to accept a total cost that is not less

than our current cost
% then
% save the current cost as the best current cost found so far

(only if the current cost
% is lower than any best current cost previously saved)

because we may not find
% a cost that is better than the current cost

% When we think we are finished we will check the final cost
against any best cost

% if the final cost is not better than the lowest cost found,
then we will move back to that best cost

if totalcoordcost < bestcurrcost
bestcurrcost = totalcoord cost;
bestcurrClustmat = Clustermatrix;
bestclustersize = cluster-size;

end
else

acceptl = 0;
end

end
end

if (acceptl)
acceptl=0;

% (4) UPDATE the clusters
total coordcost = newtotal coord-cost;
Cluster-matrix = newcluster matrix;
clustersize = newcluster-size;
history-index = history-index+l;
costhistory(historyindex,l) = totalcoord cost;

if (bestcoordcost > totalcoordcost)
bestcoordcost = totalcoord_cost;

change = change + 1; % improvement in coord.cost

end
end

end

% (5) Test the system for stability

if (change >0)
stable = 0;
change = 0;

else
stable = stable + 1;

end
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end
end
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Coordcost

function [total coordcost] = CoordCost(DSM matrix, Clustermatrix,
clustersize, powcc);
%[totalcoord cost] = Coord_Cost(DSM matrix, Clustermatrix, cluster-size,

pow-cc);

% Function to calculate the coordination cost of the cluster matrix

% Inputs:
% DSM matrix The DSM matrix

% Clustermatrix The cluster matrix (Cluster,Element)
% cluster-size(n) array specifying the number of elements in cluster

n
% pow-cc value for the exponential weighting of the cost

function

% Outputs:
% totalcoordcost total coordination cost

% This routine checks all DSM Interactions. If a DSM interaction is contained

in
% in one or more clusters, we add the cost of all intra-cluster interactions.
% If the interaction is not contained within any clusters, then a higher cost

is
% assigned to the out-of-cluster interaction.

% Looking at all DSM interactions i and j,
% Are DSM(i) and DSM(j) both contained in any clusters
% if yes: coordination cost is the sum of (DSM(i) +
DSM(j))*clustersize(cluster n)^pow cc
% across all clusters
% if no: coordination cost is (DSM(i) + DSM(j))*DSM-size^pow-cc

% Total coordination cost is equal to the sum of all coordination costs

% *
% File: Coord_Cost.m *
%6 *

% Created by: Ronnie E. Thebeau *

%6 System Design and Management Program *

%6 Massacusetts Institute of Technology *
%6 *

% Date: December 2000*
%6 *

-% Function to cluster the elements of a matrix *
%6 Algorithm based on work developed by Carlos Fernandez *

% *

% This function calculates the "coordination cost" of the clustering *

% solution. Higher values are assigned to interactions outside of *

% than those occuring inside of clusters. *
% *

%-*************************************

%6*************************************
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% get the number of clusters and the size of the DSM
[neclusters, DSMsize] = size(Cluster matrix);

% intialize coordination costs
totalcoordcost = 0;
coordinationcost= zeros(l,DSMsize);

DSMlabels = cell(DSM-size,l); % dummy variable for reorder function

% reorder the DSM acording to the cluster matrix
% NOTE: this re-ordering will duplicate entries for elements that show up
% in more than one cluster. If an element is in three clusters, the new
% DSM matrix will have three seperate entries for the element.
% Therefore this new DSM matrix may be much larger than the original DSM
% This essentially assigns a higher cost if the element is a memeber of
% more than one cluster
[NewDSM-matrix, NewDSMlabels] = reorderDSM-byCluster(DSM matrix,
Clustermatrix, DSM labels);
NewDSMsize = size(NewDSM-matrix,l);

% get the number of elements in each cluster
Numcluster elements = sum(Clustermatrix,2);

n=1;

NewClustermatrix = zeros(NewDSMsize, NewDSM size);

% Create a new cluster matrix that matches the new reordered DSM matrix
% Because the DSM was reordered, columns of the cluster matrix must be re-
ordered
% to match the order of the new DSM Matrix. This is done for cost calculation
% purposes only.
for i =1:nclusters

NewClustermatrix(i,n:n+Num clusterelements(i)-l) =

ones(1,Num clusterelements(i));
n= n+Numclusterelements(i);

end

% get new cluster size array that matches the new cluster matrix
NewClustersize = sum(NewClustermatrix,2);

% replace the old data with the new data for the cost calculation
DSM size = NewDSM-size;
DSM matrix = NewDSMmatrix;
Cluster-matrix = New Cluster matrix;
cluster-size = NewCluster size;

[n_clusters, DSM size] = size(Cluster matrix);
total coord cost = 0;
coordination-cost= zeros(l,DSMsize);
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% CALCULATE THE COST OF THE SOLUTION *

for i=l:DSM size
for j=i+l:DSMsize % j=i+l to skip the diagonals

if (DSMmatrix(i,j)>O I DSMmatrix(j,i)>O)% if a dependancy exists

between i & j
costtotal = 0;

% check if any clusters contain the both elements
for (cluster index=l:nclusters)

if
(Clustermatrix(clusterindex, i)+Cluster-matrix(cluster-index,j )==2) % ie both
i & j belong to the same cluster

costtotal = cost-total + (DSM matrix(i,j) + DSMmatrix(j,i)) *
cluster size(cluster-index)^pow-cc;

end
end

if (cost-total>0)
costc = costtotal;

else
costc = (DSMmatrix(i,j) + DSMmatrix(j,i))*DSM-size^pow-cc;

end
coordination-cost(i) = coordinationcost(i) + cost-c;

end
end

end

totalcoordcost = sum(coordination-cost);
% **************************************************************************

% ********** END COST CALCULATION *****************
%**************************************
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reorderdsm-bycluster

function [NewDSMmatrix, New_DSM_labels] = reorderDSM byCluster(DSMmatrix,
Cluster-matrix, DSM label);
%[NewDSM matrix, NewDSMlabels] = reorderDSMlbyCluster(DSM matrix,
Clustermatrix, DSM label);

% Inputs:
% DSMmatrix DSM Matrix to be re-ordered
% Clustermatrix Cluster Matrix to control the re-ordering
% DSMlabel labels of the DSM elements (lebels need to be re-
ordered also)

% Output:
% NewDSMmatrix reordered DSM matrix
% NewDSM labels reordered label array

%- **************** ********** ******************************

% **************************************************************************

% **************************************************************************

% **************************************************************************

% *

% File: reorderDSM-byCluster.m *
% *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *
%- *

% Date: December 2000 *
% *

% Function to reorder the DSM Matrix accroding the the Cluster matrix. *
% Place all elements in the same cluster next to each other. If an *
% an element is a member of more than one cluster, duplicate that element *
% in the DSM for each time it appears in a cluster *

% *

% The new DSM will have all elments in a cluster next to each other *
% *

%6 **************************************************************************

-6 **************************************************************************

-6 **************************************************************************

% place zeros along the diagonals of the DSM matrix
DSM matrix = tril(DSM_matrix, -1) + triu(DSM-matrix,l) +
diag(zeros(length(DSM_matrix),l));

% get the size of the DSM matrix
DSM size = size(DSM-matrix,2);

% find all element-to-cluster assignments
[Clusternumber,Element] = find(Clustermatrix);

%sort the element-to-cluster list in ascending order of clusters
[orderedcluster number, ClusterList index] = sort(Cluster-number);
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new-numberelmts = length(ClusterListindex);

% Get the new rows of the DSM matrix
for i = 1:new numberelmts

temp-DSM-matrix(i,:) = DSM matrix(Element(ClusterList index(i)),:);

NewDSMlabelsti,l} = DSMlabel{Element(ClusterListindex(i)),l};
end

% Now add the new columns of the DSM matrix

for i= 1:newnumberelmts
NewDSMmatrix(:,i) = tempDSMmatrix(:,Element(ClusterList index(i)));

end
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reordercluster

function [NewClustermatrix] = reorder cluster(Clustermatrix);
%[NewClustermatrix] = reordercluster(Cluster matrix);

% Function sort and reorder the cluster matrix by size
% Small cluster will be at the bottom of the list and large cluster
% will be moved to the top of the list

% Inputs:
% Clustermatrix The Cluster matrix

% Outputs:
% Newclustermatrix The new sorted Cluster Matrix

% ************************* ***************** **

% **************************************************************************

% **************************************************************************

% **************************************************************************

% *

% File: reordercluster.m *
%6 *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *

% *

% Date: December 2000 *
% *

% Function sort and reorder the cluster matrix by size *
% Small cluster will be at the bottom of the list and large cluster *
% will be moved to the top of the list *
%6 *

%6 *

% ************ ********* ** ********************** * ****** ******* *******

%6 **************************************************************************

%6 **************************************************************************

Num-clstelm = sum(Clustermatrix,2);

[Y,I] = sort(Num clstelm,l);
flippedI = flipud(I);
NewClustermatrix(:,:) = Clustermatrix(flippedI,:);
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deleteclusters

function [newcluster matrix, newcluster size]= DeleteClusters(cluster size,
clustermatrix);
%[new clustermatrix, new cluster size]= DeleteClusters(cluster size,

clustermatrix);

% Function to delete duplicate clusters or cluster that are within clusters

% Inputs:
% cluster size Array of containing size of each cluster
% clustermatrix The cluster matrix

% Outputs:
% newclustermatrix Cluster Matrix after duplicates have been removed
% newclustersize New array of cluster sizes

*

% **************************************************************************

% **************************************************************************

% **************************************************************************

% *

% File: DeleteClusters.m *
% *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *
%6 *

% Date: December 2000 *
% *

% Function to calculate the bids from clusters for the selected element. *

% Each cluster makes a bid for the selected element based on the *

% bidding parameters. *
%6 *

% This algorithm is based on work by Carlos Fernandez. *
%6 *

[n clusters, nelements] = size(cluster matrix);
newclustermatrix = zeros(size(cluster matrix));
newclustersize = zeros(size(cluster size));

% if the clusters are equal or cluster j is completely contained in cluster i

% delete cluster j
for i=l:nclusters

for j=i+l:nclusters

if (clustersize(i) >= clustersize(j) & cluster size(j)>0)
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if all(((cluster-matrix(i,:) & cluster-matrix(j,:))
cluster matrix(j,:)))

cluster matrix(j,:)=0;
cluster-size(j) = 0;

end
end

end
end

% if cluster i is completely contained in cluster j, delete cluster i
for i=l:nclusters

for j= i+l:n clusters
if (cluster-size(i) < clustersize(j) & cluster size(i)>0)

if all(((clustermatrix(i,:) & cluster matrix(j,:)) ==

cluster matrix(i,:))) % cluster i is contained in j
cluster matrix(i,:)=0;
cluster-size(i)=0;

end
end

end
end

% delete clusters with no tasks

non-emptyclusterindx = find(cluster size);

new clustermatrix(l:length(non-empty-cluster indx),:)
cluster matrix(nonempty cluster_indx,:);
newcluster-size(l:length(non-empty-clusterindx)) =

clustersize(non-empty-cluster indx);
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dsmautolabel

function [numericDSM labels] = DSMautolabel(DSMmatrix);
%[numericDSMlabels] = DSM autolabel(DSMmatrix);

% Function to create numeric text labels that correspond the the index
% in the DSM matrix. Element 1 gets a text lebel of "l", etc.

Inputs:
DSM_matrix

Outputs:

The DSM matrix

% mumeric_DSMlabels Cell array of numeric text labels

- *
%6 File: DEN_autolabel.m *

o. *

% Created by: Ronnie E. Thebeau
% System Design and Management Program
% Massacusetts Institute of Technology

% Date: December 2000

% Function to create a cell array of labels that correspond to each
% entry in the DSM

** ******** **** ** ********************* ** ** *** *********** **** ****** * ********

*** *********** * *** **** *************** **** ** ************ *** ***** ****** *****

***** ****** ** * **** ***** ** ************ *** ** *************** *** ******** ** ****

******* ************************ ***** *************** ** ******** *****

% get labels from the rows (will work for cluster matrix also)

numlabels = size(DSM-matrix,l); % get the number of labels needed

numericDSMlabels = cell(num-labels,l); % create empty cell array

for i = 1:numlabels
numeric_DSMlabelsfi,l} = num2str(i);

end

%6

%6

%

*

*

*

*

*

*

*

*
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place diag

function [new-matrix] = place-diag(oldmatrix, diagonalelement);
%[newmatrix] = place-diag(oldmatrix, diagonalelement);

% Function function to place the desired number along the diagonal of a matrix

Inputs:

oldmatrix
diaganolelement

Outputs:
new-matrix

matrix to be manipulated
element to be place along the diagonal

matrix witrh the desired element along the diag.

** ** ** ************* ** ********* *********** ******** *** * ************* ** * *****

************ ** ****************** *************** ************** ******

*

% File: place-diag.m
%

% Created by: Ronnie E. Thebeau
% System Design and Management Program
% Massacusetts Institute of Technology

% Date: December 2000

% Function to place a desired number along the diagonal of a matrix.

%6

%6

diag-matrix = diag(diagonal element*ones(length(old matrix), l));

newmatrix = tril(oldmatrix,-l) + triu(old matrix,l) + diag-matrix;

136
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graphmatrix

function []=graphmatrix(matrix, x-title, y-title, graphtitle, x_tcklabel,

y-tcklabel, print flag, Clustermatrix);
% []=graph-matrix(matrix, x_title, y-title, graph-title);

% Function to graph the DSM or cluster matrix.
% The data is plotted as a scatter graph and the size and color

% of the marks are conrtrolled according to the value of the input

% Inputs:
6

%6

%6

%6

clusterd DSM

matrix matrix to be plotted on scatter graph

x_title string containing label for x-axis

y title string containing label for y-axis

graphtitle title for the graph

x_tcklabel labels to be placed along the x-axis

y tcklabel labels to be placed along the y-axis

print-flag flag to toggle printing 1=print, else no print

Clustermatrix Optional Clustermatrix of plotting the

Outputs:

%6

**** ******* ** ** ********************** ** ** ********** ***** *** ***** ** *** *****

**** * **** ***** ** ** * ******************** ** ** ******* *** ************ ******* **

* ****** * ** ********* ********************* ** ********************* ****** *****

*

% File: graphtmatrix.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

% Date: December 2000

*

*

*

*

*

% Function to graph the DSM matrix or cluster matrix. If the DSM matrix *

% is to plotted in clustered form, the cluster matrix must also be provided.

%6 *

% Are we plotting cluster boxes?
if nargin < 8

Clusterplot = 0;
else

Cluster_plot = 1;
end

[rowinput, column_out, mvalue] = find(matrix); % find nonzero entries
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maxrow = max(row-input);
max col = max(columnout);
ax = [0 maxcol+1i 0 max row+l];
max-value = max(m-value);
datascale = ceil(500/max-value)/20;

x tcklabel_g{l,l} = '0';
y_tcklabelg{l,l} = '0';

for i = 1:size(x tcklabel,l)
x_tcklabel_gii+1,1} = x-tcklabelfi,l};

end

for i = 1:size(y tcklabel,l)
y-tcklabel-g{i+1,1} = ytcklabel{i,l};

end

figure;
clf;
scatter(columnout, row input, m-value*datascale, mvalue,'filled','d');
axis(ax);
cur ax = gca;
axesscale = get(cur-ax,'Position');
set(curax,'Position',[axes scale(l) axesscale(2) axes-scale(3)
axesscale(4)*0.9]);
set(curax,'XTick',(0:1:max col+l));
set(curax,'YTick',(0:l:max-row+l));
set(curax,'XAxisLocation','top','YDir','Reverse');
set(curax,'XTickLabelMode','manual');
set(curax,'YTickLabelMode','manual');
set(curax,'XTickLabel',x-tcklabelg);
set(curax,'YTickLabel',y tcklabelg);
set(curax,'FontSize',4);
set(curax,'Box','On');

xlabel(x-title);
ylabel(ytitle);
title(graph-title);
orient('landscape');

% draw squares around the clustered elements in the DSM
if Cluster-plot ==I

Number-clusters = size(Clustermatrix,l);

sq-s = 0.5; %Start of the square
for cluster indx = 1:Number clusters

n_el = sum(Clustermatrix(cluster indx,:),2);
cluster

% number of elements in

line([sq-s (sqs + n-el) (sq-s + n-el) sq-s sq-s], [sqs sq-s (sqs +
n-el) (sq-s + nel) sq-s]);

sq-s = sq-s + n-el;
end

end

if print-flag ==1
print

end
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linemultcluster

function [] = linemult cluster(Cluster matrix, fig handle, ax_handle);

= linemult cluster(Clustermatrix, fig handle, axhandle);

% Function add vertical lines to the cluster matrix graph to indicate

% which elements are members of more than one cluster

Clustermatrix
fig-handle
ax handle

The Cluster matrix
Figure Handle to add the lines

Figure Axes handles

% Outputs:

% **************************************************************************
% *

%File: line_mult cluster.m

Created by: Ronnie E. Thebeau
System Design and Management Program
Massacusetts Institute of Technology

*

*

*

% Date: December 2000 *
% *

% Function to add lines to the Cluster Matrix plot. The vertical lines *

% will be placed along the elements that are members of more than one
% cluster. *

% *

% *

% **************************************************************************

% **************************************************************************

% **************************************************************************

[numclusters, num elmts] = size(Cluster-matrix);

X_lims = get(ax-handle, 'XLim');
Y_lims = get(ax-handle, 'YLim');

num-el-clusters = sum(Cluster matrix,1);

for i = 1:num elmts
if numelclusters(l,i) > 1

line([i i], [0 Ylims(2)],'LineStyle',':','MarkerSize',0.5,'Color', [0.5

0.5 0.5]);
end

end

Inputs:
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plotclusterlist

function [] = plotclusterlist(Clustermatrix, DSM matrix, Enamelist,
currentdate, plotflag);
%[] = plotclusterlist(Clustermatrix, DSM matrix, E_name_list, current-date,
plot-flag);

% Function to calculate the bids from an element to each cluster of elements

% Inputs:
% Clustermatrix The Cluster Mtrix
% DSMmatrix The DSM Matrix
% E_namelist Array of strings that list the elements in the
cluster
% currentdate Date string
% plot-flag toggle for printing; 1=print, else don't print

% Outputs:

% **************************************************************************

%6 *

% File: plot cluster list.m
%6 *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *
%6 *

% Date: December 2000 *
% *

% Function to plot a text list of the clusters and the elements contained *
% in the clusters. *

% S*

%6 *

-% **************************************************************************

%6 **************************************************************************

% ***************************************************************

% Simulation Data
% ***************************************************************

% scaling factors for the plotting area
top of list = 0.92;
stepsizel = 0.025;
ttl offset = 0.05;
n=0;

[nonzero clusters, nzel] = find(Cluster matrix);
numclusters = max(non zeroclusters);
numelements = size(Clustermatrix,2);
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elnum clusters = sum(Clustermatrix,l);

fig row = 1;

fig_base = set-plot-props(currentdate);

for i=l:num clusters
num_entries = sum(Cluster matrix(i,:) > 0);

if numentries+n> 25
figrow = fig-row+l;
n = 0;

end

if fig-row>2
if plot-flag==l

print;
end
fig-base = set-plot props(currentdate);
figrow = 1;

end

if fig-row ==l
xposl = 0;

else
xposl = 0.6;

end

[clusteryes,Element-yes] = find(Cluster-matrix(i,:));
n=n+2;
text(xposl+ttl-offset,top-of-list-stepsizel*n, ['\bf Cluster #'

num2str(i)],...
'HorizontalAlignment','Center');

n = n+l;
text(xposl-0.05,topofjlist-

stepsizel*n+0.02,' ',...
'HorizontalAlignment','Left',...
'interpreter','none');

n=n+1-1;

for z=l:numentries

n=n+l;
elDSMnum = Element-yes(z);
listentry [EnamejlisttelDSM-num,l} ' (' num2str(elDSM-num) ')'];

if elnumclusters(Element-yes(z)) > 1

text(xposl,top oflist-stepsizel*n,listentry,...
'HorizontalAlignment','Left',...
'interpreter','none',...
'FontAngle','normal');

text(xposl-0.03,topof-list-stepsize*n,'*');
else

text(xposl,top oflist-stepsizel*n,listentry,...
'HorizontalAlignment','Left',...
'interpreter','none');

end
end

end

if plotflag == 1
print;
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end

function [fignumber] = set-plot-props(current date);

fignumber = figure;
orient tall;
ResultDatawindow = figure(fignumber);
clf reset;
set(ResultData window,'Name','Cluster List');
ax handle = axes;
set(axhandle,'Visible','Off');

wdunits = get(Result Datawindow,'Units');
set(ResultData window,'Units','normalized');
wd-position = get(ResultDatawindow,'Position');
wdleft = wd-position(l);
wd-bottom = wdposition(2);
wdwidth = wd position(3);
wd-height = wdposition(4);
wdleftnew = 0.1;
wd-heightnew = 0.75;
wd-bottomnew = 0.1;
wd-widthnew = 0.5;
wd newposition = [wd leftnew wdbottomnew wdwidthnew wd-height new];
set(ResultData window,'Position',wd-new position);
set(ResultData window,'Units',wdunits);
% ***************************************************************

% Title & Header Data
% ***************************************************************

text(0.5,1,'\bf\fontsizetl4} Cluster Member List',..
'HorizontalAlignment','Center');

text(0.5,0.97,['\it ' currentdate],...
'HorizontalAlignment','Center');
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likenesscalc

% likenesscalc

% *

% File: likenesscalc.m *
% *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *

% *

% Date: December 2000 *
%6 *

% Script file to get the average match between clusters of several runs *
% of the clustering algorithm. Must change the master file below *
% to run the proper DSm calculations *

% *

% *

% **************************************************************************

% **************************************************************************

print-flag = 0; % to toggle printing; 1=print, else no print

plot-flag = 1; % toggle plotting of the likeness averages for all of the
runs
printplot-flag 0; % toggle to print the plots of the likeness averages
numruns = 10;

for get-data = 1:numruns
get-data
runclusterA % ******** name of master cluster DSM file to complete the 10

runs ********
close all;
% Extract some of the clustering results for analysis
Results(get-data) Clustermatrix = Clustermatrix;
Results(get-data).totalcoordcost = totalcoordcost;
Results(get-data).costhistory = costhistory(l:maxrun);
Results(get-data) .NewDSMmatrix = NewDSMmatrix;
Results(get-data) .NewDSMlabels = NewDSM_labels;
Results(get-data).params = Clusterparam;
Results(get-data).DSMmatrix = DSM matrix;

end

getdate = now;

currentdate = datestr(get-date,0);

% now plot the average matches
[Unionmatch] = findclustermatches(Results);
[Bestmatch, Average match, Max match, BclI,totalmean] =

getmatchavg(Union match,Results, plot-flag, printplot-flag);
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findclustermatches

function [Union-match] = findclustermatches(Results);
%[Unionmatch] = find clustermatches(Results);

% Function to find matching clusters from different runs of the clustering
algorithm

% Inputs:
% Results Structure containing the results of multiple
% runs of the clustering algorithm

% Outputs:
% Union-match Cell array of the match between every cluster
% of a run with every cluster of all other runs
% {MatrixA,MatrixB,Matrix A_Clusterx,
Matrix_B_Clustery} = match measurement

% **************************************************************************

% **************************************************************************

% **************************************************************************

% **************************************************************************

% *

% File: find cluster matches.m *
% *

% Created by: Ronnie E. Thebeau *
% System Design and Management Program *
% Massacusetts Institute of Technology *

% *

% Date: December 2000 *
% *

% Function to find matching clusters from different runs of the *
% clustering algorithm *
%6 *

% This algorithm is based on work by Carlos Fernandez. *
% *

% **************************************************************************

% **************************************************************************

% **************************** ******************************

% match or likeness is calculated as follows

% [2*sum(#elements in both clusters)]/[Sum(# of elements in Cluster A) + Sum(#
of elements in Cluster B)]

nummat = length(Results);

testdata = Results(l:num mat);

for testa = l:num mat
[row a, cola] = find(test data(test-a).Cluster-matrix);
testdata(test-a).nclusters = max(row a);

end
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for aa = 1:num-mat
for bb = aa+l:nummat

for cc = 1:test-data(aa).nclusters
for dd = 1:test-data(bb).n-clusters

Clusterunion{aa,bb,cc,dd} = ...
(test-data(aa).Cluster_matrix(cc,:) .*

test-data(bb).Clustermatrix(dd,:));
Unionsumfaa,bb,cc,dd} = sum(Clusterunionaa,bb,cc,ddl);
Union-totalelmtsfaa,bb,cc,dd} = ...

(sum(test data(aa).Clustermatrix(cc,:) +
test-data(bb).Clustermatrix(dd,:)));

if Uniontotalelmtstaa,bb,cc,dd} > 0
Unionmatch(aa,bb,cc,dd) =

2*Union_sum{aa,bb,cc,dd}/Union_total_elmtsfaa,bb,cc,dd};
else

Union match(aa,bb,cc,dd) = 0;

end
end

end
end

end
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get_ match avg

function [Best match, Average match, Maxmatch, BclI, totalmean] =

get-match-avg(Union match,Results, plot-flag, printplot-flag);
%[Best match, Averagematch, Maxmatch, BclI] =

get-matchavg(Union match,Results);%

% Function averagve of matches between two runs of cluster calculations

% Inputs:
% t

clusters
%

Unionmatch

Results

% plot flag
results (1=plot, 0=no plot)
% printplot-flag

% Outputs:
% Bestmatch
any cluster

% Averagematch
other best matched

s

best matchi
Max match

% BclI
% totalmean
clusters of a run

Cell array of likeness calculations between the

Structure of Results from running the clustering
algorithm multiple times
toggle the plotting of figures summarizing the

toggle printing of the plots

the best match average for a cluster of run x to

in run y
the average match for a cluster of run x to all

clusters in other runs
in run y
the best match for a cluster of run x to all other

clusters in other runs
in run y
the index of best matches between clusters
mean of the likeness averages for all of the

%- *************************************

%- **************6**********************

-6 **************************************************************************

%- *************************************

%6 **************************************************************************

% *

% File: get match avg.m *
% *

% Created by: Ronnie E. Thebeau
% System Design and Management Program
% Massacusetts Institute of Technology
%6

% Date: December 2000

% Function to calculate the bids from clusters for the selected element.
% Each cluster makes a bid for the selected element based on the
% bidding parameters. An plot the results.
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testdata = Results; % get the clustering results
[num-runs] = size(Union match,2);

for testa = 1:numruns
[rowa, cola] = find(test-data(testa).Clustermatrix);
testdata(test-a).nclusters = max(row-a);

end

for Runl = 1:numruns
for Run2 = 1:numruns

if Runl ~ Run2
for Cluster_R1 = l:test data(Runl).n-clusters

if Runl< Run2
[Best-match(Runl,Run2,Cluster_R),BclI(Runl,Run2,Cluster_R)] =

max((Union-match(Run1,Run2,ClusterR1, :)),[,4);
else

[Bestmatch(Runl,Run2,Cluster_R),BclI(Runl,Run2,Cluster_R)] =
max((Union-match(Run2,Runl,:, Cluster_Rl)),[],3);

end
end

end
end

end

c_run = [];
for Run= 1:numruns

for j=l:num-runs
if j -= Runi

c_run = [c-run, j];
end

end

for Cluster_rl = 1:testdata(Runl).nclusters
Average-match(Runl,Cluster rl) = mean(Best match(Runl,c run,Cluster rl));
Maxmatch(Runl,Cluster-rl) = max(Best-match(Runl,crun,Clusterrl));

end
end

if plot-flag == 1

plots-per page = 5;

[numruns, num clusters] = size(Average-match);

plot num = 0;
figure;
for i=l:num runs

n_cluster = nnz(Average match(i,:));
totalmean(i) = mean(Average-match(i,1:ncluster));

end

Totalrun mean = num2str(mean(totalmean));
Totalrun median = num2str(median(totalmean));

for i=l:num runs
plot-num = plot num+1;
if plot num > plots-per page

if printplot-flag ==1
print

end
figure;
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plot num = 1;
end
subplot(plots-per-page,l,plot-num);
n_cluster = nnz(Average-match(i,:));
bar(Average-match(i,:),'k');
ylabel(['Run ' num2str(i) ' Avg']);
Tcost = Results(i).totalcoord cost;
xlabel(['Clusters (total Avg: ' num2str(totalmean(i)) ' ); Coord Cost:

num2str(Tcost)]);
if (i == 1) 1 (mod(i,(plots-per-page+1))==O)

title(['Mean: ' Totalrunmean ' Median: ' Total runmedian]);
end
grid;
orient tall;
hold on;
plot(Max-match(i,:),'rx');

end

if printplot-flag ==1
print

end
end
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