
A Framework for the Assessment of Knowledge Transfer
in Software Development Organizations

by

John P. Woods

B.A. Computer Science, State University of New York, College at Oswego, 1980

Submitted to the System Design and Management Program
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Engineering and Management
at the

Massachusetts Institute of Technology

May 2001
John P. Woods, All Rights Reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in part.

Signature of Author
John P. Woods

System Design and Management Fellow

Certified by
V-

Assistant Professor of

Accepted by.

Accepted by

t Paul R. Carlile
Management, Sloan School of Management

Thesis Supervisor

Stephen C. Graves
Abraham Siegel Professor of Management

LFM/SDM Co-Director

Paul A. Lagace
Professor of Aeronautics & Astronautics and Engineering Systems

LFM/SDM Co-Director
MASSACHUSETTS INSTITUTE-

OF TECHNQLOY

AUG 0 1 200?.

LIBRARIES

BARKER

2

Abstract
Knowledge Transfer is a generic term that is applicable to many domains. This

thesis will analyze the specific issues required to develop a comprehensive

framework for the assessment of knowledge transfer in the software

development environment. Knowledge transfer is an essential component of all

business processes in software development. The framework in this thesis was

developed at a level of sufficient abstraction to be applicable to all software

development activities. However, the research interviews focused on two

scenarios in software development recognized as requiring effective knowledge

transfer in order to achieve successful results:

+ Porting: A Porting project is an effort to enable a program to run on a

different hardware or software platform. To port an application, you need to

rewrite sections that are machine dependent, and then recompile the program

on the new computer. The resultant code is then tested, often by some type

of compliance suite, to insure that the ported product is operationally

equivalent to the original product.

When there is a market or business need, software products may be "ported"

to new hardware/software platforms. A new team, with expertise in the new

platform architecture, is usually called upon to do the porting. In order to

optimize the port, knowledge from the original development team must be

effectively transferred to the new organization.

Service Transfer (maintenance) - Similar to the above, an software

development organization will often transfer or assign responsibility for product

service/maintenance to a separate service/support team. The ability to insure

high-quality customer support requires a successful transfer of knowledge from

the development group to the service/support group.

3

This thesis provides a comprehensive framework for assessing a software

development organization's knowledge transfer efforts and requirements. The

framework presents a balanced approach introducing three columns of support

for knowledge management activities in a software development organization.

The three columns of support for knowledge transfer are:

* Organizational Structures

* Operational Process and Procedures

* Technical Expertise and Infrastructure

Using the three columns of software support as an analytical tool provides a

holistic, end to end view of an organization's support for knowledge transfer.

4

Acknowledgements
I would like to thank my thesis advisor, Paul Carlile, for his support and valuable
insights into the complex world of knowledge management in product
development settings. Professor Carlile is a gifted teacher. Some of my most
valued learning experiences during my studies at MIT have resulted from his
perspectives and insights on knowledge management and organizational
behavior. He has been an essential contributor to the overall academic
enrichment of many SDM fellows. The SDM program as a whole has benefited
tremendously from his teaching. I have returned to Paul's office many times for a
"drink from the fire hose".

I would also like to thank my classmates in the SDM program for their friendship,
perspectives, insights and their ability to laugh in the face adversity. The
interaction with all my SDM classmates has been critical in forming the basis of
my educational experience at MIT.

I would particularly like to thank Benjamin Koo and Pete Panetta for their
friendship, teamwork and pursuit of academic excellence throughout the
program. We did some great work together and it was always a pleasure to work
with you both. In addition, my thanks to Ray Ro and Tim Flores for their
friendship, support and willingness to share an idea or a laugh, regardless of the
hour.

I am extremely grateful to the IBM Corporation for sponsoring my participation in
the program. The company has provided me a unique opportunity for personal
and intellectual growth at this mid-point in my career.

Most importantly, I would like to thank my family for their patience and support
throughout this intense and demanding program.

5

Dedication

I dedicate this thesis to my wife and daughters....

To Shannon and Cailyn

You go girls!!!
May you always follow your dreams.

To Cindy Lynn

If the sky that we look upon
Should tumble and fall,
Or the mountains should
crumble to the sea,

I won't cry, I won't cry,
No, I won't shed a tear,
Just as long as you stand,
Stand by Me... 1

6

Table of Contents

ABSTRA CT .. 3

ACKNOW LEDGEM ENTS ... 5

DEDICATIO N .. 6

TABLE O F CONTENTS ... 7

LIST OF FIGURES .. 10

INTRODUCTION .. 11

PROBLEM STATEMENT/M OTIVATION .. I I
THESIS GOALS .. 12

THESIS STRUCTURE .. 12

O VERVIEW OF RESEARCH APPROACH .. 14

OVERVIEW .. 14

ORGANIZATIONAL .. 15
Strategic Lens: .. 15
Political Lens: ... 18
Cultural Lens: ... 22

OPERATIONAL .. 24
G o a ls ... 2 5
Process .. 25
M etrics .. 26
Rewards and Incentives ... 26

TECHNOLOGICAL .. 26
Core KnowledgelExpertise. :""*,*,*"*,*,,****'**""**"*, ... ** ... * ... ** ... **'**'*"'*** ... ****"* ... -- '--'- ** ... *"**** 27
Domain KnowledgelExpertise ... 27
Process Support Tools and Control M echanisms ... 27
Collaboration .. 28
Complexity .. 28

PO RTING PROJECT BACKGROUND .. 30

OVERVIEW : ... 30

PO RTING PROJECT RESEARCH SUM M A RY ... 31

OVERVIEW .. 31
LARGE SCALE SoFrw ARE SERVER PROJECT .. 32

Organizational Data ... 32
Operational Data .. 33
Technical Data .. 34
Key Insights ... 35

M ID-SIZE SOFIV ARE SERVER PROJECT ... 37
Organizational Data ... 37
Operational Data .. 38
Technical Data .. 39
Key Insights ... 39

PC BASED PROJECT .. 40
Organizational Data ... 40
Operational Data .. 42
Technical Data .. 42

Key Insights... 42
OVERALL PORTING SUMMARY: .. 44

SERVICE/SUPPO RT PROJECT AU .. 46

OVERVIEW .. 46

SERV ICE/SUPPO RT RESEA RCH SUM M ARY ... 49

OVERVIEW .. 49
CORE SUPPORT TEAM ... 50

Organizational D ata ... 50
Operationa l Data .. 53
Technological Data... 54
Key Insights... 55

BRAND SUPPORT TEAM .. 56
Organizational Data... 56
Operational Data.. 59
Technological Data... 60
Key Insights... 61

REMOTE OPERATING SYSTEM SPECIFIC SUPPORT TEAM ... 62
Organizationa l D ata ... 62
Operationa l Data .. 63
Technological Data... 64
Key Insights... 66

OVERALL SERVICE/SUPPORT SUMMARY: ... 67

CO N CLUSIO N AND N EX T STEPS ... 69

PORTING PROJECTS: ... 69
Stakeholders.. 69
Goals... 69
M etrics .. 69
Source Code as a Boundary Object ... 70
Technical expertise on target operating system expertise... 71
Cross-Boundary Personal Interactions... 72

SOFTW ARE SUPPORT PROJECT .. 72
Stakeholders.. 72
Goals... 72
M etrics .. 73
Source Code is not an Effective Boundary Object .. 73
Technical expertise on target operating system expertise... 74
Personal Characteristics and specialized skills... 74
Cross-Boundary Personal Interactions... 74

BEYO ND TH E CO D E ... 75

SOFTWARE DEVELOPMENT KNOWLEDGE TRANSFER ASSESSMENT FRAMEWORK.....78

OVERVIEW .. 78

KNOW LEDGE TRANSFER ASSESSMENT PROCESS .. 80
Organizational:... 80
Operational:.. 80
Technical: ... 81
Overall Analysis:... 81

APPENDIX A : EX ECUTIVE SUM M ARY.. 82

A . PROBLEM STATEMENT ... 82

B. O RIGINALITY REQUIREMENT ... 82
C. CONTENT AND CONCLUSIONS .. 82

8

D. SYSTEM DESIGN AND M ANAGEMENT PRINCIPLES .. 84

E. ENGINEERING AND M ANAGEMENT CONTENT... 84

F. STATEMENT OF AUTHORSHIP AND ORIGINALITY ... 84

BIBLIOGRAPHY... 85

9

List of Figures

FIGURE 1: TYPICAL STAKEHOLDER MAP OF A SOFTWARE DEVELOPMENT ORGANIZATION....................... 19

FIGURE 2: UPSTREAM INFLUENCES ON SOFTWARE PRODUCT DEVELOPMENT.. 20
FIGURE 3: DOWNSTREAM INFLUENCES OF SOFTWARE PRODUCT DEVELOPMENT 21
FIGURE 4: L EVEL OF C ULTURE .. 23
FIGURE 5: HIGH LEVEL CUSTOMER SUPPORT PROBLEM FLOW ... 50
FIGURE 6 : A FRAMEWORK FOR THE ASSESSMENT OF KNOWLEDGE TRANSFER IN SOFTWARE DEVELOPMENT

.. 7 9

10

Introduction

Problem Statement/Motivation

Knowledge Management (KM) has been one of the most important topics of

research for decades in the management literature. Beginning in the mid-1 990's

Knowledge Management (KM) came to the forefront of software development

and became one of the hottest topics in information technology. The business

press began heralding Knowledge Management as the next Silver Bullet2 of the

software development industry. However, like all silver bullets that proceed it,

the term Knowledge Management is beginning to evoke more skepticism than

excitement in the minds of technical and business leaders. Much of the

disappointment can be attributed to the fact that the predominant approach to

knowledge management has been information technically based. The common

view being marketed in the business work is that with the installation of a

corporate portal, search engine, data repository and collaboration tools,

knowledge will begin flowing in the organization. Larry Prusak, executive

director of IBM's Institute for Knowledge Management, states that he has

observed hundreds KM implementations, a majority of which are sub-optimal.

Prusak states that the primary reason for the problem is that it is easier and

faster to just buy the technology than to think through the strategic issues.3 It is

with the problem in mind that this research began with the goal of developing a

framework for the analysis of knowledge management in the software

development organization.

A comprehensive framework is required in order to understand the essential

inhibitors, enablers and components of a successful knowledge transfer in

software development. Software development is a highly complex and

technically challenging undertaking. This complexity extends well beyond the

actual source code of a single application. Most assessments in the field today

focus primarily on the technical expertise associated with product development.

However, this approach fails to capture the full extent of project complexity.

11

The technological component itself requires understanding in terms that extend

well beyond the subject software. One must also understand the associated

operating systems, companion products, and system standards. There is also a

strong set of technological functionality that supports the organizational structure

and operational process of the two groups, which must be understood as well.

In order to perform a realistic assessment of knowledge management in a

software development organization, a framework that allows holistic assessment

of organizational, operations and technological perspectives is required. This

thesis defines such a framework.

Thesis Goals

The goal of this thesis is to develop a framework that will enable managers and

technical leaders in a software development organization to analyze the current

state and needs for knowledge management in the organization. The framework

defines a pattern inquiry to provide a comprehensive analysis of the knowledge

transfer requirements and practices of the organization. The output of the

analysis is descriptive in nature. This descriptive analysis can be used for two

purposes. First, it allows management to judge the overall readiness of the

groups to successfully transfer of knowledge across the organizational

boundaries. Second, it provides managers and technical leaders within an

organization with a foundation on which to build prescriptive knowledge

management plans in order to take appropriate actions to bridge the gaps in

knowledge transfer activities.

Thesis Structure

This remainder of this thesis is divided into eight sections:

The Overview of Research Approach section describes the foundation for the

inquiry approach taken during the interviews of technologists, managers,

12

technical leaders and individual contributors for this research effort. The

research approach addresses the essential elements of knowledge transfer in

software development from the organizational, technical and operational

perspectives.

The Porting Project Background section provides basic background and

context for the porting projects used in this research effort. The section which

follows, Porting Project Research Summary, provides a description of the

interview results and highlights the key insights from each of the projects

Similar to the above two sections, the Service/Support Project Background

section provides basic background and context to the service transfer project

research interviews for this thesis. The Service/Support Research Summary

provides a description of the interview results and highlights the key insights from

each of the projects

The next chapter, Conclusion and Next Steps, compares and contrasts the

insights from the two major thrusts of the thesis and provides an overall summary

of the key insights of this research.

This thesis concludes with two additional chapters. The first, Beyond the Code,

provides a boundary for the overall scope of this research and frames a

discussion for additional research in the future. The final chapter, Software

Development Knowledge Transfer Assessment Framework, lays the

groundwork for a new framework, which could be used to address issues

regarding knowledge management in software development organizations that

extend "Beyond the Code".

13

Overview of Research Approach

Overview
It is the premise of this thesis that a comprehensive framework is required to

address knowledge transfer in a software development organization. Three

columns of inquiry; organizational, operational and technological provide the

support of the framework. Each column offers a different perspective on

knowledge transfer in software development. However, like the strands of a

rope, the three columns are tightly intertwined in the development organization.

This results in some overlap in the specific elements of the columns. This

overlap is positive and warranted as it allows the analyst to view the essential

elements of knowledge transfer activities from a number of valuable

perspectives. Typically, management and technical leaders have a bias to one

of these perspectives. The use of this framework allows for a more holistic

approach to the analysis.

The purpose of this section is to outline the research approach used to structure

interviews with management, technical leaders and individual contributors across

several software development and service teams. It is best to view this section

as a starting point of the analysis used to gain insights into the scope and

essential characteristics of effective knowledge transfer in software development.

The interviews attempt to uncover the organizational structure and operational

environment of the software development/support groups involved in the transfer.

It also assesses the requirements for technical expertise and the technological

infrastructure in place to support the transfer. The focus of the research

interviews is not on the solely the structure of each of the organizations. The

research also attempts to discover the essential flows knowledge to and from the

team, and to identify critical gaps in the transfer of knowledge.

As stated above, this is a starting point of inquiry for this thesis. The author

recognizes that the research approach outlined below is expansive and complex.

14

However, utilizing this approach as a starting point for interviews with executives,

technical leaders and individual contributors, the goal is to develop a much more

concise, yet comprehensive framework for the assessment of knowledge

management in the software development organization.

Organizational

The first column of support in the analysis framework is organizational. This

research uses the three-lens approach as a starting point to organizational

analysis in order to maximize the overall understanding of the organizational

structures involved. A brief overview of the three-lens approach is provided here.

However, as we move into the analysis and conclusion sections of the thesis, the

organizational framework used for analysis moves towards a more domain

specific taxonomy that is more useful in the context of software development.

Strategic Lens:
The strategic lens focuses on several essential organizational factors in the

software development team and the teams with which they interact:

+ Strategic Intent embodies the overall strategy and goal of the organization.

For software organizations involved in knowledge transfer, this question

addresses topics such as:

+ What is the purpose of the organization?

* Is this a development group, service group or both?

* Is this a revenue generation group or cost center?

+ How does the organization's goals/focus balance the development of new

and leading edge technology with insuring enterprise level of software

reliability?

+ Strategic Grouping - How activities are distributed into jobs, roles,

departments, etc... At the department level, this includes software

15

development, quality assurance, software service and support, etc.... As the

focus moves downward, to an individual team, you begin to see grouping in

terms of generalists vs. specialists, operating system affinity, major software

component focus, etc... How a team cleaves responsibility among individual

members provides interesting insights into the success of knowledge transfer.

Some typical groupings in software development teams include:

+ Grouping by product function (client, server, etc...)

* Grouping by component function - Database, network, languages, etc..

* Business Process - development, support, test

In most development organizations, there is a combination or hierarchy of

various groupings. When analyzing the strategic grouping of a software

development team it is useful to understand to understand the grouping in

terms of size, level of specialization and degree of interaction between the

teams.

+ Strategic Linking addresses how groups interface across the boundaries

within their own organizational structure and/or other partner organizations.

During this analysis, the strategic linking can be viewed at the micro level for

linking within the organization. More important is the strategic linking at the

macro level between organizations or team involved in the knowledge

transfer. Analysis of both the existence and robustness of the interfaces is

required. Common examples of strategic linking mechanisms include:

+ Formal hierarchy of reporting structure and information flow. What is the

hierarchical structure of the owning and receiving organizations? At what

level do the groups meet in the hierarchy?

+ Liaison Roles - Are there formal boundary managers within each

organization? Across the organizations? How effective are these

boundary mangers in facilitating the transfer of knowledge?

16

* Cross-Unit groups - To what extent are cross-unit groups used between

the organizations. What is the purpose, time frame and level of

commitment for these groups? (e.g. Problem focused v. function focused,

permanent v. temporary, full-time v. part-time)

+ Information Technology Systems - To what extend are Information

Technology systems used to support knowledge transfer efforts between

the organizations? Are they effective? Are the systems customizable?

+ Planning process - What are the mechanics of the planning process

between the organization. Is there cross boundary representation and/or

participation? Do all organizational entities have input into the process? In

terms of involvement in the planning process, many times membership is

more important than overall effect on the process output.

+ Strategic Alignment - What are the alignment elements within the groups

(e.g. incentives). Does alignment exist across the organizations? Some

typical examples of strategic alignment elements include:

+ Rewards and Incentives

* Team and Organizational Metrics

+ Resource allocation/staffing

+ Resource development and training

+ Political and Cultural Influences

James Thompson's typology of task interdependence4 is a critical component of

strategic analysis in the software development field. Task interdependence can

take the form of:

+ Sequential Interdependence - In software development the movement

between major milestone builds or the relationship between one release and

the next typify sequential task interdependence. However, sequential

interdependence is applicable when viewing task interdependence from the

highest level of abstraction. Certainly the code of a of a prior release of

17

software forms the foundation for the current release, however, the

challenges of knowledge transfer in software development rarely follows such

a linear transformation.

+ Pooled interdependence - In software development different groups and

individuals typically contribute to the final product. This is the general model

of the product build cycle. Each component team contributes code changes

that are combined by the release engineering team during the product build

cycle.

+ Reciprocal interdependence - This is the most complex form of task

interdependence and quite common in software development organizations.

Reciprocal interdependence is characterized by complex, dense interactions

between tasks across team and organizational boundaries. In software,

development it is quite common that a code change made by one developer

has dependencies or effects on code changes made by other developers.

Reciprocal interdependence is one of the primary drivers of complexity in

software development today. In fact, much of the research in software design

and modularity is based on ways to reduce reciprocal interdependence by

creating clear defined interfaces between components.

This typology of task interdependence is critical in the analysis of the teams and

organizations involved in the software development knowledge transfer. In many

ways, interdependence is the foundation for the need of knowledge transfer

activities between organizations.

Political Lens:

The core of the political lens on an organization begins with a "stakeholder"

analysis. A sample stakeholder map of a software development organization is

shown in Figure 1: Typical Stakeholder Map of a Software Development

18

Organization. Depending on the specific team under analysis (e.g. development,

porting team, service team, etc...) the orientation and central focus of the map

will change.

External
Standards Development

Boards Executives Teams Professional
Community

Development I

Information Development

IT Staff
Release Engineering

Organization
Administrative

Support

Service and Support
Quality Assurance

External Sales and
ExternalMarketing

Service/Support Parent Organization Teams
Teams

Figure 1: Typical Stakeholder Map of a Software Development Organization

The following groups categorize Stakeholders:

+ Groups and/or individuals that contribute to the creation and development of

the organization's output. (e.g. product or support) In a typical software

development organization, this would primarily include the core development

team, the service/support team, quality assurance, release engineering,

information development, IT Staff and any other groups would make a direct

contribution to the product.

+ Groups and/or individuals that provide input to the function or organization's

development process. The groups that provide input to the product

development process can be viewed as the broad set of upstream influences

19

Local
Community

and G'ovt

Business
Partners

rCustomers

on product development as illustrated in Figure 2: Upstream Influences on

Software Product Development.

Industry
Standards

Corporate
sirategy

Market Data/.- * 3needs- goals - .-Competition

Customer
Requirements

Market
Strategy

Product Line
Interoperability

Technology -

Software Product
Architecture

product %

features release

I

' ~ -

Operations
Strategy

Figure 2: Upstream Influences on Software Product Development

+ Groups and/or individuals who have dependencies on the output of the

organization. In software development, this may include the customers, the

sales and marketing teams, service and support, manufacturing, distribution,

competitors as illustrated in Figure 3: Downstream Influences of Software

Product Development.

20

>1

Competitors

Manufacturing,
Distribution

Business

product
P

features release I timing +Build/test/ First Customer
Release Ship (FCS)

Customers

Outbound
- -marketing

strategy, Sales,

Service and
3 Support

Figure 3: Downstream Influences of Software Product Development

The key analytical building blocks of a political perspective are quite simple. To

use a political perspective you must:

1. Identify and map the relationships among the different stakeholders involved.

2. Uncover the most salient interests and goals the different stakeholders bring

to the interaction and the extent to which the conflict or are congruent.

3. Assess the amount and sources of power of the different stakeholders5 .

The key to the political lens begins with the recognition and acknowledgement

differences between organizations. The differences may be expressed in terms

of motivation, interests and goals. It is critical that these differences be

acknowledged in a non-judgmental fashion as valid and legitimate perspectives

within the organization.

It is equally important to understand individuals and groups can have multiple

interests and differences. The nature of the interests and differences is also

quite dynamic, changing over time and circumstances. 6

21

p

The categorization of organizational influences as upstream and downstream is a

useful abstraction during organizational analysis. However, it is critical to

recognize the temporal nature of upstream and downstream influences as they

related to the system as a whole. The grouping of upstream and downstream

influences typically represent the snapshot of the state of an organization at a

specific instance in time. We must be aware that many of the downstream

influences can and do provide feedback within the system to the upstream

influences in another period of time. As Peter Senge points out, "Out there" and

"in here" are usually part of a single system.7 When doing a boundary analysis of

knowledge transfer, it is important to recognize the system as a holistic entity.

The downstream influences on the process today typically have a direct impact

on upstream influences as the system moves through time.

The political lens is particularly useful in the analysis of the knowledge transfer in

software development. In software development, knowledge such as software

engineering, operating system, tools, domain specific, etc... has traditionally

been a leading source of power. It is also critical to understanding the power and

influences from up and down stream. The use of the political lens aids the ability

to identify the sources of power and a starting point on how they influence

effective knowledge transfer.

Cultural Lens:
In its broadest anthropological sense, culture refers to the way of life shared by

members of a given society and includes knowledge, belief, art, morals, law,

customs, an any other abilities and habits acquired by members of that society. 8

However, from an organizational perspective, Schein summed up culture with the

statement that "Culture is the residue of success"9 . As shown in Figure 4: Level

of Culture, Schein states there are three levels of culture within organizations.

An in depth cultural assessment of an organization is a complex and time-

consuming endeavor that is well beyond the scope of this framework. However,

22

a basic awareness of the cultural perspective of the organizational model has

proved to be useful tool during the interview process.

Artifacts

Espoused
values

Basic underlying
assumptions

Visible organizational structures
and processes
(hard to decipher)

Strategies, goals, philosophies
(espoused justifications)

Unconscious, taken-for-granted beliefs
perceptions, thoughts, and feelings
(ultimate source of values and actions)

Figure 4: Level of Culture 0

The highest level of organization culture is the Artifacts. This is the easiest level

to observe when doing a cultural analysis of an organization. The artifact level is

comprised of the environmental factors that you encounter when you enter the

organizational setting. These are the things you see, hear and feel as you

interact within the work area. This includes items such as.

* Type of business attire

* Closed offices vs. Open landscape

* Pace of activity and employee behaviors

This level provides an immediate emotional response and/or reaction. However,

there is little understanding of organizational culture at this level.

23

Level two, Espoused Values, begins to get below the surface of the

organizational culture. Analysis at this level usually requires inquiry with

veterans of the organization as informants. The espoused values may include

items such as:

* Corporate Values (Quality, Teamwork, Customer Service, Respect for the

individual, Integrity, etc...)

* Corporate Principles

* Goals and Vision Statements.

Level three, Basic Underlying Assumptions, is where the real grist of corporate

culture has its roots. It is at this level that you begin to uncover the shared tacit

assumptions that underpin the corporate culture. Many times these assumptions

have their roots in the minds, actions and beliefs of the corporate founders. The

founders are likely to impose their values and beliefs on those that they initially

hire. Over time, these values and beliefs are ingrained as tacit knowledge that is

taken for granted by employees of the firm.

Operational

The second column of support in the framework is operational. One of the

essential elements of organizational analysis is the operational environment in

place to support the software development activities of the organization. What

are the operational tools in place to support the development activities? This

includes change management tools, problem management tools, knowledge

capture and dissemination tools. What operational process and procedures are

in place to address the boundaries of knowledge transfer? In addition, the tacit

operational characteristics and interactions of an organization that are not

explicitly captured in a particular process must be recognized and understood.

24

The purpose of the operational analysis is not merely to ascertain the existence

of the operational tools and processes. More important to understanding the flow

of knowledge transfer is to gain understanding of the differences or gaps

between the operational environment of the two organizations and what

processes are in place to work across that boundary.

Goals
Understanding the business and operational goals of group is essential in any

organizational assessment. However, in this framework, the goals of the

organization must also be viewed in terms of the requirements they drive on

knowledge transfer activities. The assessment also interprets how are the

development goals of an organization supported via the operational

infrastructure?

Process
How well is the formal processes (documentation, change management, problem

reports, requirements, specifications, etc) defined and understood by the partner

organizations? What processes are in place to manage the interface between

the two organizations? The operational characteristics of the informal processes

must also be examined. Some examples of analysis in this area include:

* Are specific boundary managers defined to work between organizations?

* What is the basis and support for these individuals?

* How do the processes of the organizations relate?

* Are they shared across boundaries?

* Are the processes duplicated and run in parallel? If so, is the interface

well defined and robust?

* Are they disparate processes? If so, is the bridging mechanism defined

and robust?

25

Metrics

Metrics are important tools in the software development arena. However, as

James Bach points out "In order to use metrics wisely ... you need the added

ingredients of humility and inquiry. If you have an inquiring attitude, then metrics

join all your other observations to help make sense of your situation." 12

What metrics are used by the organization to measure success? How do these

metrics support the development organizational goals? Are metrics in place to

support the knowledge transfer activities between organizations? Are the metrics

and the intent of the metrics understood? Are they closed loop systems or open

loop systems?

Rewards and Incentives
Discussion of rewards and incentives are typically considered an organizational

issue. However, I have also grouped them under operations in this framework.

The focus here is on whether behavior that supports the operational

characteristics of knowledge transfer is valued and rewarded by the organization.

Technological

The third and most fundamental column of support in the framework is

technological perspective. Technology is at the heart of the software product

development and software development knowledge transfer activity. After all, it

is the technological expertise that must be successfully transferred in the subject

development and support efforts. However, the technological characteristics of

an organization also provide a broad layer of information that spans and supports

the organizational structure and the operational goals the development team.

Technology must be viewed from the following perspectives in order to

adequately assess an organization's knowledge management activities in the

software development environment.

26

Core Knowledge/Expertise
The technological thrust begins at the individual/team level of core expertise in

the product domain. These are the core skills that allow an individual to work

productively in the development environment. These skills include:

* Operating System

+ As an execution environment

+ Compiler and Linker

+ Debugger

+ Make Facility

+ Editors

* Programming Languages

* Standards and Protocols

Domain Knowledge/Expertise

The next level of technical knowledge is the application specific, domain layer.

Given the prerequisite core knowledge as a foundation, this layer addresses the

knowledge surrounding the specific application under development or support.

These skills include:

+ Code Access and Understanding

* Understanding of the component definitions and interfaces

* Module/Data Flows

* Coding Standards

+ Development Intent - Specifications, history, change control

+ Debugging Aids

+ Development Hints and Tips

+ Ancillary Products

Process Support Tools and Control Mechanisms
The next layer of technology concerns the process support environment for

development activities. Technical analysis at this level addresses process

support tools and procedures including:

27

* Development change management process/tools

* problem reporting process/tools (internal, field, escalation, ...)

* build tools and procedures

+ required hardware/software/machine time

It is also helpful to ascertain the level of understanding of the written and non-

written development processes. During analysis, special attention should be

given to the technological gaps/differences between the two parties of the

knowledge flow. Are the processes and tools shared, duplicated, bridged or

disjoint?

Collaboration
From the technological perspective, the focus on collaboration is aimed at the

technological infrastructure to support collaborative efforts. This includes:

* Formal Databases, tools, web sites

* Communications vehicles

+ Peer-To-Peer technical relationships

* Across the organizational boundaries

* To operating system, companion product expertise

Complexity

Complexity is at the core of all significant product development efforts. Joel

Moses, stated that "Complexity is neither 'good' nor 'bad', but it is something

that one 'spends' to achieve the end goal." With that context in mind, this

framework includes an analysis to understand the important drivers of technical

complexity in areas such as:

* Product Architecture

+ Requisite Operating system(s)

+ Development Environment

+ Process

+ Tools

28

* Flexible interfaces within and between the partner organization

* Linking vs. Duplication

It is a cross-domain architectural axiom that systems typically fail at the

interfaces. Therefore, the analysis of complexity is particularly applicable to the

knowledge transfer boundaries between the teams and organizations. The study

of complexity naturally contains a strong bias towards definition and robustness

of interfaces. Analysis should also distinguish between essential and gratuitous

complexity. Essential complexity is driven by the core requirements of robust

functionality.14 Gratuitous complexity typically arises as a result of poor

architectural constructs and/or poorly defined interfaces. The analyst should be

constantly aware of the sources of complexity within the environment.

29

Porting Project Background

Overview:
In the most generic terms, porting is an operation to convert software to run in a

different computer environment. The new computer environment can be a new

hardware platform and/or a new operating system. The phrase "to port the

program to UNIX" means to make the necessary changes in the application to

enable it to run under a specific UNIX operating system.

In general, I have encountered two types of ports during my research. With the

first type a development group obtains source code for an application in order to

be "ported" to a new operating system or hardware platform. After the initial port,

the new product than takes on a life cycle of its own, independent of the original

version. There are business circumstances when this is an appropriate approach

as a means of jump starting a development effort. However, these efforts are not

successful "ports" of a product because the bridge to the original team (and code

base) is broken.

With the second type of "port" the development group obtains source code for an

application in order to be "ported" to a new operating system or hardware

platform. When the changes are made, they are then merged back into the

original source code base of the owning development team. This second type of

port, when done well, allows for single source stream to be "portable" across

several operating systems and hardware platforms. The product can then

maintain consistency in schedules, feature sets, service, support and general

development. This second, narrower definition of porting, is what this thesis

defines as a successful porting strategy. This second approach is obviously

more interesting from a knowledge transfer and operational logistics perspective

as well.

30

Porting Project Research Summary

Overview
Interviews for this research where conducted with several different porting teams

over a range of products as outlined below:

+ Large Scale Software Server Project

I conducted several interviews with a porting team responsible for the port of

a large scale, extremely sophisticated enterprise server product. The

product architecture was developed with portability as a primary design goal.

The teams were responsible for porting the product to a new variation of

UNIX. The size of the project was extremely large with the source base

exceeding a million lines of code.

+ Mid-Size Software Server Project

The Mid-Sized software server project was an effort to port and external

company's product to a UNIX environment to enable printer and file sharing

between platforms. The code base was approximately 1000 source parts and

was developed for a non-UNIX operating system without clear architectural

attention to portability.

+ PC Based Project

The third project analyzed was a PC based project which ported a mid-sized,

single-user, business application program for the Windows operating system

being ported to the OS/2 platform.

- 31 -

Large Scale Software Server Project

Organizational Data
This is a long-term project, which has been in operation for approximately five

years. In that period, the team has ported four major feature releases and over

two dozen maintenance releases. As expected, there have been numerous

transitions within the project over time moving the product from to a "yes it runs"

version in the initial release to achieving dominance in industry standard

benchmarks in later releases of the product. In fact, the porting team's

performance maps very well to Tuckman's' 5 model of small-group development

following the path through Forming, Storming, Norming and Performing.

The initial porting team, responsible for the proof of concept port, was a small,

highly motivated team of 8-10 developers given the task of porting the large scale

(>1 million lines of code) server software product. The team was located in a

different state than the core development team. However, the team was co-

located with the target platform operating system development team.

There was strong management support for the initial team, both in terms of

developing an independent, skunk-works mentally and in terms of providing

strong financial support for capital equipment purchases. Initially, there was very

little interaction with the core development team other than periodic snapshots of

new code and 2-3 project reviews with the core team per year.

As the project matured and moved into a steady-state mode, the size of the

porting team grew to approximately 25 developers and 25 additional people in

quality assurance engineers and technical support roles. This drove a greater

need for interaction with the core development team. Consequently, a small

subset of the team was co-located with the core development team.

After the sub-team was co-located with the core development team, the

frequency with which code drops moved between the core and porting team

- 32 -

increased significantly. This allowed the porting team to keep in closer synch

with the core team development resulting in a decrease in lag time for product

availability from +/- 250 days down to 40 days. The co-location of the sub-team

dramatically increased the level of informal knowledge transfer. The co-located

team members gained a great deal of information via informal hallway

conversations and had full access and participation in the core development

team meetings. The co-located members were also given access to all core

development resources (e.g. discussion databases, source trees, specifications,

team meetings, etc...). This level of access was not granted to the remote team

members, therefore, the co-located members of the team became gatekeepers

of the knowledge transfer flow.

Finally, the core development team as owners and developers of the product

source code held the ultimate power in the relationship. Source code is the

physical representation of the product, and the source/result of knowledge in the

software development community. .

Operational Data
The target operating system for the port offered an extremely immature

development environment. The team was forced to make a significant

investment in the development of homegrown tools to simulate commercial

shared source code development environments. They also needed to create

custom tools to migrate source code to and from the development platform of the

core team.

The process for problem reporting was informal or non-existent in the early

stages of the project. However, over time, a formal method of routing base

product defects to the core team was established. Even at this point, there was

no formal metric to measure the success/response to the routed problem.

- 33 -

The porting team had little input into the base product requirement process.

Efforts by the porting team to implements specific features outside the process

resulted in wasted effort and obsolete code due to parallel updates made by the

core team.

There was a rigorous code review process in place to inspect all changes made

by the porting team before integrating the changes back into the core source

team. This process provided an important opportunity for knowledge transfer. It

allowed members of the core development team to gain an understanding of the

type and nature of changes required by the porting team. It also allowed the

porting team to gain a greater understanding of the core platform architecture

and coding standards. These meetings where viewed as very positive learning

experiences by the porting team.

In terms of motivation, there were no explicit rewards and/or incentives in place

to encourage the core development team to transfer knowledge to the porting

team.

Technical Data
This product has an extremely strong and robust cross-platform architecture that

defines portability as a fundamental design goal. This goal is evident in the low-

level architecture of the product and the internally developed make/build tools

used to compile and link the product.

From a technical perspective, the team possessed a strong set of language and

operating system skills. Early in the project, the porting team discovered a key

architectural interface of the product which was incompatible with the target

operating system. A major portion of the initial porting work was devoted to

understanding this technical boundary and creating an architecturally sound

solution. It was a 2-3 month effort to understand the nature of the issue. An

-34 -

effective solution was developed that minimized the code updates to the base

stream yet provided a clean interface to the operating system.

There was a heavy reliance on knowledge from operating system, file system

and compiler/debugger development teams for the target platform, especially in

the early stages of the port. This was attributed to the fact that this was the by

far the largest porting project undertaken by the target platform. Consequently,

many previously undiscovered boundaries and limitations where encountered.

The porting team worked directly with the operating system and

compiler/debugger team to resolve these problems.

As knowledge of the code and development environment increased over time,

the team was able to automate much of the code rebase process. This reduced

the time required to migrate new source trees from the core team to the porting

team. ("rebase time)" The rebase time was reduced from 4-weeks to 2-3 days

over the course of the project.

Another key technical insight recognized by the porting team was the importance

of minimizing code changes. The team adopted a philosophy that measured

success based on minimizing the number and scope of code changes required

for the port. Open team inspections of all source code changes supported this

philosophy. The goal was to limit changes to architecturally acceptable areas

whenever possible. Also, when changes where required outside these areas,

there was an attempt to make changes in such a way that a single set of source

code would operate on all platforms.

Key Insights

Overall, both the development team responsible for the port and the

management teams from both organizations viewed this effort as a success.

- 35 -

The resulting product drove significant revenue for the corporation and was

recognized in the target market as a superior-performing product.

The key enablers of knowledge transfer for this port where:

+ The co-location of the porting team with the operating system team in early

stages of the port. This allowed frequent face to face communication and

assistance concerning the development environment of the platform. This

was especially important due to the immaturity of the platform development

environment.

+ Task interdependence between the two teams driven by periodic merges of

the source code base. The code review/merge process was a major source

of insights for the porting team.

+ Strong knowledge of the operating system and development environment of

the target platform of the port and close ties with key operating system

personnel. These ties where supported by both personal relationships and

formal management direction.

+ The enhancement or created of development tools in order to increase

programmer efficiency.

+ The long-term duration and multiple release effort of the project allowed the

team to achieve higher level of expertise and resulted in better team

performance.

+ Co-location of the sub-team with the core porting team dramatically increased

the level of knowledge flow due to face to face interactions and full access to

development data. These team members acted as gatekeepers or boundary

managers for the remainder of the remote porting team.

+ The focus of experienced porting team members on making cross platform,

compatible changes or localizing and minimizing the required code changes

when ever possible.

+ Occasional face-to-face interaction by key technical members of the porting

team with their counterparts in the core development team. This interaction

increased the technical creditability of the porting team, greatly improving the

- 36 -

relationship, and the willingness of the core team to engage in additional

interactions.

The key barriers of knowledge transfer for this port where:

+ Immaturity of the operating system development environment.

+ Lack of access to full development resources of the core development team

by the remote porting team members.

+ Little initial motivation for the core team to transfer knowledge to the porting

team. There was some improvement seen in this regard as the changes

made by the porting team appeared in the core development tree after code

merges.

+ Lack on input on the planning process for maintenance and feature releases

cause porting team frustration and wasted effort resulting from attempts to

implement core features outside of the process.

+ Finally, the core development team, as owners of the product and the source

code held the ultimate power in the relationship. Ownership of source code

is the most fundamental source of power in the software development

community.

Mid-Size Software Server Project

Organizational Data

This was a mid-size software porting project to move an external company's

product to a UNIX environment enabling printer and file sharing between

platforms. In the judgement of the 8-10 person team and cursory analysis of

business results, this project ended in failure. A separate company located in

another state owned the original source code base used in this porting effort.

The owning company contracted with a firm in India to produce a portable

version of the product. The team responsible for this porting effort received their

- 37 -

code base from the India group. The porting team and the owning company had

little direct interaction. There was a single interface into the owning company

who was generally characterized as non-responsive.

Although there was little management support available from the India group,

there was executive support from the owning product group and strong executive

and local management support for the porting team. The porting team's home

organization had a strong desire for a functional version of the product on their

operating system platform. The owning product viewed the expansion of the

platform base as a competitive asset.

The porting team consisted of highly skilled engineers with expertise on the

target platform. This team had strong personal relationships with operating

system personnel, and other experts from the community of practice in the

porting to the target platform.

Operational Data

The target operating system for the port offered an extremely immature

development environment. The team was forced to use homegrown tools,

obtained from other porting projects, that simulated commercial shared source

code development environments. They also needed to generate custom tools to

migrate source code to and from the development platform of the core team.

The porting team had no structured process for problem reporting with the

product owners and no input to the product requirements process. The porting

team largely maintained the ported source code as a separate source tree with

no formal review by the product owners. There was very infrequent transfer of

source code changes back to the product owners. This changes were not feed

back to the porting team in future code drops.

- 38 -

There was no sharing of development data repositories between the owning

group and the porting group. The only shared communication vehicles between

the teams were electronic mail and occasional conference calls.

Technical Data

From a technical perspective, this team possessed a strong set of language and

operating system skills. The team had several members with extensive

experience in the application porting domain.

The code base was approximately 1000 source parts developed for a non-UNIX

operating system. The architecture and design of the product was not effective

in terms of supporting cross platform development. There were large portions

of the code which used #ifdef pre-processor statements to accommodate various

platforms. Although, these pre-processor statements are found in all products, a

well designed cross-platform product attempts to localize and/or minimize this

type of coding approach. A more robust approach is to design and structure the

source code so that a single set of source code statements will perform the

required function for all platforms.

Due to many of the organizational and operational issues mentioned above, the

source code of the porting team diverged significantly from the source code of

the original product. As the product was put into production, significant scaling

and performance problems where uncovered. Due to the diverged source base

and architectural constraints of the product, there was no cost-effective technical

solution. Consequently, the ported version of the product was put into "end-of-

life" mode meaning development, enhancements and future porting activities

were terminated.

Key Insights
Overall, this project was viewed as a failure by the technical team members and

management involved in the project. Although there were several enablers to

knowledge transfer, the barriers to the knowledge transfer effort prevented the

- 39 -

ultimate success of the project. Some of the key factors which contributed to this

result are as follows:

The key enablers to knowledge transfer were:

* Strong knowledge of operating system and development environment of the

target platform of the port.

* Strong technical knowledge of porting project discipline

The key barriers to knowledge transfer where numerous, including:

+ Lack of cross platform architecture of the product

+ Lack of technical commitment from the product owners to the porting effort

+ No sharing of design, specifications or other internal development data

+ Little support for problem reporting/resolution from the product owners

+ No merging of changed code back to the owning product team resulting in

major source code divergence.

+ Lack of input to owning product planning/requirements process.

+ Immaturity of operating system development environment.

+ Very little task interdependence between the owning product group and the

porting team. Again, the core team, as owners of the product source code,

held the strong source of power leverage.

PC Based Project

Organizational Data
The team charged with the port of this program was a small, 3-4 person team of

highly skilled contractors engaged specifically to work on the project. The

execution of the project took slightly over two years. The project was moderate

in size consisting of approximately 1500 source parts. However, it was an

aggressive effort for such a small team. The technical lead of the contract team

- 40 -

had previously worked in the organization. He was well know and highly

respected for his technical acumen. There was strong political pressure for a

timely completion of the project. Consequently, there was strong management

support for the contract team. The contract team was co-located with the core

development team.

From a political perspective, there was little initial support for collaboration with

the core team. As the original developers of the product, the core team was

heavily invested in the code base as a fundamental source of power. There was

little motivation to help the contract team port the code to a new platform. The

typical attitude was to characterize the new platform as a distraction and that

"contractors are getting the big bucks, so let them figure it out...."

There was strong task interdependence between code changes made by the two

teams due to a common, shared source code base. However, as the "new

guys", the contract team was largely responsible for management of the

interdependence. The core team changes frequently "broke" to contract team

build. The contract team was then responsible to correct the problems.

However, it was viewed as unacceptable for the contract team to break the core

team build. On the rare occasions on which breakage to the core occurred, the

contract team was then responsible to correct the problems.

As the teams were co-located, there was a strong bias to face-to-face

interactions as opposed to structured communications channels or reliance on

management hierarchy.

Training was very much a hands-on, on the job effort. There was very little

internal documentation or specifications available. Interview subjects attributed

this to that fact that development team was rewarded on the output working

code. The production of specifications where not part of the reward system.

-41 -

Operational Data

Operationally, as mentioned above, there was a shared code base for

development of the OS/2 and Windows version of the product. There was a

shared problem reporting system as well. The porting team had full access to all

repositories within the development organization. Upon completion of the 2 year

porting effort, the source code ownership transferred to the core development

team for future enhancement and support.

The goal of the project was to have full compatibility of results at the application

level between the Windows and OS/2 versions of the product. The metrics used

running side-by-side tests and insuring identical operational results between the

core Windows product and the OS/2 port. In other words, the Windows version

of the product provided the reference mode upon with which to measure the

success of the OS/2 port.

Technical Data

From the technical perspective, the key technical expertise required was a strong

knowledge of the OS/2 development environment. The basis of many of the

porting problems was the coding standards used in the base product. The OS/2

compiler was much stricter in enforcement of ANSI standards, resulting in many

coding constructs, which worked well on Windows, not compiling in the OS/2

environment.

The OS/2 porting effort also helped to undercover many base product defects.

Correcting these bugs in the source tree was a strong factor in building

creditability to of the porting team in the eyes of the base development team.

Key Insights
Overall, this effort was viewed as a success by both the development team

responsible for the port and the management who engaged contractors. The

resulting product drove significant revenue for the company.

- 42 -

The key enablers of knowledge transfer for this port where:

+ Co-location of the development and porting team allowing for frequent face to

face communication

+ Shared source code base driving strong task interdependence between the

two teams. Although the porting team bore much of the responsibility for

conflicts that arose at the source code level, the shared tree did provide

fundamental interlock between the teams.

+ Strong knowledge of the operating system and development environment of

the target platform of the port.

+ Two year duration of the co-located team project allowed the team to reach a

productive level of performance.

+ Strong skills and overall creditability of the porting team members in the eyes

of the development team.

The key barriers of knowledge transfer for this port where:

+ Lack of formal specifications and documentation

+ Little motivation for the core team to transfer knowledge to the porting team.

The core team had little stake in the OS/2 version. Their focus was solely on

the Windows product.

+ Lack of architectural attention to portability in the base code tree caused an

increase in the number of code changes required thereby increasing the

overall complexity of the porting effort.

+ Again the issue of code ownership as a power source of the core

development team appears as a barrier to knowledge transfer which the

porting team was required to overcome.

+ Successful completion of the porting effort satisfied the porting contract

resulting in the transfer ownership of the OS/2 of source code to the core

development team. This eliminated the need for further collaboration.

-43 -

Overall Porting Summary:
Overall, across both successful and failing software porting efforts, there are

some key themes that where uncovered which effect knowledge transfer

activities and the success of the software porting effort as a whole.

+ Strong affinity to Operating System specific skills - across all the projects

interviewed, the most important skill highlighted was operating system skills

on the target operating system of the port. This includes knowledge of the

runtime application programming interface (API), Graphical User Interface

(GUI) API's, memory management, multi-tasking support, etc...

* Strong affinity to development environment and language expertise -

Similar to the above, there is also a strong requirement for base skills in the

programming language(s) used in the source code. More importantly,

knowledge concerning the development environment on the target platform is

key to the success of the team. A strong understanding and access to

expertise concerning compilers, debuggers, make facilities, library

management systems and other development environment tools is required.

In general, the teams had this knowledge on entry to the project and/or relied

heavily on others in the community of practice who had this knowledge.

+ Interactions with the Core Development Team - Personal interactions with

members of the core development team where highlighted as key to

knowledge transfer throughout the interviews. In the case of the failing

porting project, lack of direct interaction with the core development team was

highlighted as an important barrier to knowledge transfer.

+ Task Interdependence - The type and level of task interdependence

between the core and porting team was key. Teams that had reciprocal

interdependence via shared source trees or formal merges of source code

changes where significantly more successful. The source code merge

processes and/or a shared source code base were viewed as significant

opportunities for learning and knowledge transfer. The knowledge transfer in

- 44 -

the case of shared source code was a two-way transfer. The both teams

learned about the important differences and similarities in the coding

practices and requirements of each other's platforms.

When there was no sharing or merging of source code a divergence of the

code bases occurred. This resulted in a major barrier to knowledge transfer

between the teams. The core team felt less knowledgeable about the newly

created code base and felt it was not in a position to help when issue arose.

The porting team also experienced a decrease in the need and/or desire for

interaction with the core team.

Another key element of task interdependence is the level of shared processes

between the porting team and the core team. This includes a wide range of

items such as make facility, build scripts, library systems, problem reporting

and requirements process. There was a direct relationship between the

mapping of these operational processes and the success of knowledge

transfer efforts. In the some cases where these processes did not correlate

well, additional tools/processes where created as bridges. This appeared to

be a successful approach as well. Lack of mapping and/or bridging was

found to result in code divergence as indicated above.

+ Code is power - All projects recognized that the core development team, as

owners of the product source code, where in the ultimate position of power in

the relationship. The teams were required to recognize and accept this fact

in order to proceed with the porting effort.

-45 -

Service/Support Project Background

Overview
As a development organization develops new products and/or new releases of
existing products, they are marketed, sold and deployed by customers in the

field. In the enterprise-computing environment, a key to a successful product

launch is the level customer support for the product. In a support organization,
there are typically three levels of customer support.

Level 1 is the initial point of customer contact. Level 1 is responsibility for

authenticating the customer and insuring entitlement for support structure

access. After verifying customer entitlement, the Level 1 representative will do

in Problem Determination (PD) and may begin the Problem Source Identification

(PSI) process. A general definition of these terms may be helpful at this point:

+ Problem Determination (PD) - begins with the assumption that what the

program action expected by the customer differed from the results that where

seen. Problem Determination continues with the following steps:

1. Identify the Environment - This includes the identification of both the

hardware and software environment under which the problem occurs.

2. Identify the Problem Type - which may include installation, setup, operation,
performance, etc...

3. Identify Problem Area - This steps attempts to identify the failing component.

(E.g. Installation/Configuration, Communications, Program API or other

specific component of the product.

4. Problem Recreation - As the final step of the problem determination process,

there is typically an attempt to try to re-create the problem. The problem

recreation procedure and the probability of the recurrence of the problem are

key factors in isolating it. If the problem is intermittent, any factors that the

users feels are related to it becomes important information

-46 -

+ Problem Source Identification (PSI) - The first stage of the process (Problem

Determination) deals primarily with an external view of the problem. The

second stage of the process (PSI) is an attempt to try to identify the real

cause of the problem. This step is largely dependent of the specifics of the

problem encountered.

The PSI phase begins to dig deeper into the problem systems and my include

viewing of log files, trace data sets, return code, network data, messages,

system dumps, etc...

Level 1 representatives are typically generalists, covering a wide range of

components and/or products. The primary roles of the Level 1 service

representative is to do an initial pass at the PD/PSI process in order to search a

database of know problems to see a fix currently exists for the problem. If a fix

for the problem exists, it is provided to the customer and the call can be closed

pending feedback. If not, all the PD/PSI data available is collected and the call is

passed on to a Level 2 service representative.

Level 2 as the name indicates, is the second level of contact for the customer

experiencing a problem. Level 2 will continue the PD/PSI process initiated by the

Level 1 representative. The Level 2 representatives are typically more

specialized in a particular product or component than their Level 1 counterparts.

As a result, they have the technical ability to dig deeper into the PD/PSI process

doing an in depth analysis on all information available concerning the program

fault and providing direction for additional information gathering at the customer

site. Depending on the organization, the Level 2 representatives may or may

not have access to the source code of the product. This additional analysis may

lead to the discovery of a fix or other resolution of the customer problem.

However, it may also reveal that the customer has encountered a new,

previously undiscovered problem. In the case of a new problem, the Level 2

-47 -

representative to gathers all the information available to date and passes the

problem on to the Level 3 representative.

Level 3 representatives ideally work on new, unique problems reported by the

field. Depending on the organization, the level 3 team members either work

closely with development or in some cases are actually part of the development

team. In the case of code defects, the Level 3 representatives are ultimately

responsible for providing the source code changes required to correct the

customer's problem.

The level 3 team will also collect groups of fixes together into a periodic

maintenance release (MR) for the product. Some customers then use these

maintenance releases as a preventive action. Also, service/support teams may

suggest the installation of an MR as a corrective measure for a specific customer

problem.

-48 -

Service/Support Research Summary

Overview

For the Service Transfer portion of this analysis I interviewed key management

personnel, technical leaders and individual contributors involved in the service

and support roles for their organizations. The greatest insights for the purposes

of this framework were gained by analysis of the three different organizations

involved in the service support a single product. The three organizations

perform level 2 and level 3 support for same large-scale Enterprise Server

product. The first organization, Core Support Team, is a level 3 team that is

part of the core development organization and co-located in the same office

space. The second, the Brand Support Team, is a level 2 team that resides

outside the development organization and is located in a separate building within

the same campus. The third organization, Remote Operating System Specific

Team, is a level 2/3 team located in a different state and focuses on problems

for a single operating system. Figure 5: High Level Customer Support Problem

Flow shows the relationship between these organizations for the typical support

problem flow.

- 49 -

Available Product Fix

Brand Support

Ad' D Info available for Development
Product Problem n ssRstna fo Team
NonrOS Specific

Customer Customer Customer
Reported Level 1 Core Support Created Receives
Problem Service Team Team Problem Fix

pacific to Operating Addi PD Data for Core Platform

Probtem Fixm& eust o S eii

assistnace Development
Platfrom Specific Team

Support Team

Platform Specific

Already Available

Figure 5: High Level Customer Support Problem Flow

It is important to note that there is a significant difference, at the technical level,

between the knowledge transferred in a porting environment compared to the

knowledge transferred in a service/support environment. In the porting

environment, the goal of the team is to replicate the behavior of the application.

This can (and does) include the porting of software defects to the new platform.

In the service support environment, the goal of the effort is to diagnosis failures

found by customers in the field. Therefore, the knowledge transfer effort is

focused on gaining insights into functional decomposition, operating system

environment, diagnostic tools and techniques.

Core Support Team

Organizational Data

The Core Support Team is a 14-person team that is co-located with

approximately 160 core product development personnel. The group typically

handles 75% of the problems reported to the team. Requests are made to

- 50 -

members of the product development team for assistance in addressing the

remaining 25% of the calls. This is a technically diverse team that views

themselves as generalists, although deeper analysis reveals that the support

representatives do tend to a cleave themselves along operating system lines

and/or functionally along major component lines. Generally, members of the

team are capable of addressing a wide range of the problems reported.

The interviews conducted revealed a common theme of personality and learning

traits displayed by individuals in the service/support role. Generally, members of

the these teams are not as motivated by the monumental task of product

development. These individuals are:

* Strong in diagnostic and debugging skills

* Strong in customer facing skills

* Interrupt driven

* Multi-tasking

Most of the team members where former members of other support teams

outside of the core. These individuals bring their background in basic

service/support skills and view the move into the Core Support Team as a step

up given the close proximately of the development team.

Organizationally, there is a very loose hierarchy within the Core Development

organization. Technical leaders within the Core Support Team consult with

individual developers directly with management intervention used on an

exceptional basis. There are no formal cross-unit work groups, however,

informal networks and working relationships are strong in their usage. For

example, one member of the support team is also a part-time member of a

functional development team. In additional, there is job movement between the

core development and support teams as well.

- 51 -

In terms of Information Technologies, the Core support team has total access to

all development information technology resources. The team also has access to

additional to sources of information externals to the development team. The

access includes read/write access to source code within the development

organization including the source pack for all Maintenance Releases (MR) of the

product.

The strongest source of political influence is technical knowledge and expertise.

This is the basis of individual credibility for team members. Overall, the

relationship between the support and development teams is viewed as good.

However, informants discussed the existence of an "air or superiority" among

developers which is worthy of worthy of note. In the engineering pecking order,

support personnel, responsible for service field releases, are often viewed as

doing less creative or important work as compared to the development team, the

creators of the product. This perception existed to some extent in all interviews

conducted.

Culturally the service support team is a sub-culture within the main development

organization. The core artifacts espoused values and underlying assumptions

are well aligned due to the co-location of the support and development teams

within a single organization. The customer focus (as opposed to development

focus) of the support team forms the basis for the sub-culture in this environment.

An additional item of note is that although the interviews focus on knowledge

transfer activities between the core development team and the core support

team, the customer is a key stakeholder in the overall success of the support

team. If knowledge transfer is viewed is a broader scope, the complexity of the

analysis increases dramatically as the number of stakeholders increases.

- 52 -

Operational Data

As highlighted above, the operational alignment of the Core Support Team maps

very closely to the Core development team. The support team has full access to

all internal development education programs. All members of the Core Support

Team have strong programming knowledge, technical capabilities and a solid

understanding of the module level and data flows of the product. There is

constant interaction and a strong awareness of the current operations within the

development team.

In addition to participating in the internal development education, there is a heavy

reliance on On-The-Job (OJT) training for support personnel. There is a strong,

yet informal, mentoring program between senior and newer member of the Core

Support Team.

Metrics used by the Core Support Team are currently under development. This

is the result of senior management changes within the organization. At this

point, analysis is beginning to look at:

* Total Calls Open by Platform

* Calls by Severity and Number of Days Open

* Total Calls by Severity

The current focus on metrics is on information gathering in order to understand

the current state of the group in addition to what information is needed to run the

business and make decisions.

From a change management perspective, the Core Support Team utilizes the

same change management process as the development team. In addition,

before submission, the development component owner reviews all code changes

made by members of the service team.

- 53 -

From a requirements perspective, the Core Support Team owns the content of

the Maintenance Releases (MR). However, the team has little influence of the

content of new product releases. They have little input in terms of product quality

and product RAS (Reliability, Availability and Serviceability) line items.

The goals of Maintenance Releases (MRs) is the timely injection of product fixes

in order to improve the overall stability of the product operations in the field. The

measure of success of the MR is judged by the results of customer installations

in the field. When working on customer problems, there are typically many

interactions between the customer and the support representative every day.

Technological Data
As addressed above, the Core Support Team has full access to all technologies

used by the development team. However, one of the important differences

uncovered between development and support is the environment for problem

diagnosis. In the development environment, problem diagnosis allows for a

strong hands-on approach including:

* Problem recreation

* Code stepping with debugger

* Re-compiled code with DEBUG flags turned on

On the other hand, debugging field problems does not afford such a pragmatic

approach. Field debugging is typically done via post-failure data analysis. The

customer's primary goal after a failure is restoring the system to a working state;

thus allowing continued operations at the customer location. Problem diagnosis

typically begins after restoring the customer's system to a working state. In the

interest of high availability and continued operations, customers are reluctant to

allow problem recreation and/or in depth analysis of the system in a failed state.

Consequently, the support team must develop additional tools and techniques to

analyze problems in this environment. The general feeling among team

- 54 -

members was that the product was lacking in the tools required for the type of

'post-mortem' analysis.

As highlighted above, the core development and core support teams shared all

development tools and process openly. This included:

* Code Repository Library

* Change Management System

+ Development Tools

* Databases (discussion, specifications, documentation, etc...)

Key Insights

In summary, the core support team is extremely effective in terms of their

knowledge transfer activities with the core development team. The key enablers

of their knowledge transfer efforts are:

* Co-location within the core development team location and a shared cultural

environment.

+ Strong personal relationships between members of the core support and their

development counterparts.

+ Full access to all internal databases and repositories of the core development

team.

+ Write access to the source code providing 75% of the fixes in a maintenance

release

+ Strong knowledge of the product as well as specific operating systems.

+ Core development team code reviews of all changes submitted in a MR. In

addition to improving the quality of the release, this activity supports

knowledge transfer as it provides a physical representation (i.e. source code)

of knowledge as a discussion vehicle with the core development team.

The key barriers to knowledge transfer are:

+ No input into the core development requirement process, which limits specific

reliability, availability, serviceability (RAS) content of new product releases.

- 55 -

+ Lack of service tools in the product.

+ The difference in diagnostic technique used for remote diagnosis of customer

problems, as compared to the hands-on methods used by development

teams members, creates a barrier in terms of common ground and shared

technical experiences.

Brand Support Team

Organizational Data
The Brand Support Team consists of 20+ people who reside in a different

building within the same office complex as the Core Support and Development

team. Approximately half the team is "code aware" meaning they have

development level skills in programming in addition to some understanding of the

product module and data flows. The other half of the team is comprised of senior

support specialists with strong general analytical skills and good customer

orientated communications skills. This team views themselves as generalists,

however, there is some cleavage of the team along operating system lines and/or

major product component area.

Interviews among this team again pointed to the specific personality and learning

traits of many of the team members. Generally, the team members enjoy the

challenge of multi-tasking and interacting with numerous customer IT

representatives. It was highlighted that the time demands on support personnel

are much more customer driven than their development counterparts. Where

developers are faced with deadlines, the hours they commit to meeting those

deadlines are usually within the control of the individual. However, in a support

role, individuals must be available as the customer demand dictates, during the

customers working hours. In fact, two members of the development team are on

call (24x7) every five weeks to handle high-severity customer problems. The

time demands required by the position are viewed as a barrier in attracting more

highly qualified engineers to the job. There has been some success in attracting

- 56 -

former developer to the position. The financial rewards and incentives of the

support personnel are on par with those of their development counterparts.

Organizationally, the Brand Support Team is contained in a separate company

than the Core Support Team/Core Development Team. As would be expected,

the interviews pointed to a somewhat stronger reliance on formal management

hierarchy in dealing with the Core Support team. Although formal management

interfaces were categorized as sometimes helpful and sometimes not, the

interfaces where generally viewed as positive paths for problem resolution and

problem assistance. Management interfaces were viewed as improving and

becoming more focused on the end-to-end product support environment.

The nature of the call flow, as shown in Figure 5: High Level Customer Support

Problem Flow, requires communications and information flow between the Brand

Support Team and the Core Support Teams. However, there are very few formal

cross-unit work groups currently in place. The management and members of the

Brand Support Team desire more formal and frequent interaction in order to build

personnel networks with the development team. The boundary crossing

relationships to the Core Support and Development teams are considered as one

of the essential enablers toward the success of the Brand Support Team. The

building of these relationships is strongly perched on the shoulders of the

individual engineers, many of whom invest a lot of personal energy into the

relationship. In the opinion of informants, the essential elements in building

these relationships is individual technical credibility which is generated the

following approaches:

+ "Do your homework" by performing detailed problem analysis prior

to contacting the core teams

+ Be able to justify the importance of the problem in terms of

business impact to the customer

+ Have a positive attitude and confident approach when contacting

development. View yourself as an equal.

-57 -

* The more specific, code level analysis and discussion the better.

A second tier of boundary crossing individuals exists in the form of the Product

Line Consultants. This is a formal group of individuals, which report in through

the Brand Support Organization, and are responsible for interfacing with the

development organization before new product releases. The goal of this group

is to gain technical information about upcoming product content and features and

work with Brand Support management to:

+ Insure the required technical infrastructure (network, hardware, etc...)

exists to provide diagnosis and support for new releases

+ Define key technical development contacts for new features

* Define the formal problem escalation process for the new product

Currently, this information flows from development to the Brand Support team

through the Product Line Consultants. The Brand Team has expresses a strong

desire to influence the development direction based on support experience, but

there is little evidence to support any occurrences of this type of influence. The

Product Line Consultants are also working to create a consistent service strategy

across releases and products supported by the Brand.

Effective negotiation skills where identified as an essential asset for members of

the Brand Support Team. Negotiation skills are applied in the management of

relationships with customers, field representatives, the Core Support Team and

the Core Development organization. However, negotiation skills aside, technical

expertise was consistently identified as the fundamental source of credibility

when interacting with the development team.

Another key source of power within the Brand Support Team was unofficial

contacts and personal relationships with the development team. The ability to

quickly and informally contact development resources for assistance was viewed

as one strongest assets of team members. Team members perceived a strong

- 58 -

increase in overall effectiveness as the quantity and quality of the personal

relationships with development increased.

Culturally, the gap between the Core team and the Brand team is narrowing.

This is primarily attributed to a cultural change in the Core team due to recent

explosion of growth in that organization. There has also been more movement

of personnel into the core development organization from the brand organization.

However, from the Brand organization's perspective, there is an essential

difference in the espoused cultural values of the two organizations. The view is

that the core team is driven by the development of cool, new technologies, while

the Brand team espouses values of customer support and satisfaction. Although

this is an obvious oversimplification, additional analysis on the cultural gaps is

justified.

Operational Data
There is no formal training or education available for the Brand Support Team.

Education from the Core Development team is considered as an after thought

and is ad-hoc at best. Some training is available from development on a sub-

component level, but this is not a formal requirement of service transfer. The

Brand Support Team attempts to develop its own training programs, enlisting

support from development where feasible. The support team is beginning to

deploy training programs to assist the service representatives with their customer

communication skills. This training includes telephone etiquette, verbal and

written communications skills, reflecting skills, etc...

Operationally, there are several key metrics currently deployed by the Brand

Support team including:

* Customer Satisfaction - goal of 85% of customers surveyed are satisfied

* Initial response time for call - Manually monitored by management

* Severity 1 time to resolution - goal of 7 days (resolution can be a Software

Fix, work around or Hot Fix/Temporary Patch)

- 59 -

The support team does not have complete control of these metrics. Many

exogenous factors affect time to resolution and customer satisfaction. Also, this

metrics do not address the knowledge transfer between development and the

service team or the quality of the work flowing across that boundary.

In terms of the product planning operations, the Brand Support team has little or

no influence on the product plan or requirement process. There is a strong

interest in obtaining membership in the product planning process in order to

obtain information on future development and have influence on the content and

direction of currently released and future products. The team would especially

like to influence requirements in the area of reliability and serviceability. The

Brand Support Team is also interested in details of future product direction in

order to respond to customer inquiries and inform customer of committed

features.

There are a number of process and procedures put in place to manage the

relationships between the Brand Support Organization and the customers. The

Critical Situation Team and Software Account Managers where viewed as having

a positive effect on the both flow of information and the quality of the relationship

between the support team and external customers.

The problem reporting process involved several disconnected systems. This

anomaly required duplications of information when transferring data from the

Brand Support Team to the Core Support Team. This disconnect was also

attributed to an open loop problem systems which hindered tracking individual

customer problems to a specific code change.

Technological Data
From the technical perspective, the Brand Support Team has a broad mix of

skills on the team. As mentioned in the organizational data, approximately half of

the team is code aware. The remaining team members draw from technical

diagnostic skills and customer relationship skills. The team does have read-

- 60 -

access to the code. The team uses the source code for informational purposes

in order to gain insights into specific customer issues. This access was viewed

as a major source of technical insights for the team. The support team also

expressed a strong interested in abstractions of the code such a problem

diagnosis approaches, dump reading maps, etc... Development provided little

of this type of information and attempts where made to generate it in house.

The Brand Support Team does not make actual source code modifications.

Therefore knowledge of the development environment among the team members

was viewed as coincidental and not required.

The team relies heavily on diagnostic skills and operating system knowledge as

discussed above.

Key Insights
The knowledge transfer activities in regards to the Brand Support team have a

more complex nature due primarily to the increase in the number of stakeholders,

the nature of the knowledge transfer requirements and the organizational

boundaries involved.

Some key enablers effecting knowledge transfer in this environment include:

* Large investment in personal relationships with Core support team and Core

development team, which form the foundation of knowledge flow between the

groups.

+ Product line consultants who "have a seat at the table" during the

development of new product versions. This provides early insights to key

training and hardware requirements.

+ Strong diagnostic skills of support team members.

+ Access to source code and some development data

Some key barriers to knowledge transfer include:

-61 -

+ Organizational and cultural barrier between the Brand support team and Core

support team preventing a more free flow of knowledge.

+ Limited understanding of product source code and lack of source code

modifications by the brand team. In software development, the source code

is the physical representation of the product. Without a complete

understanding of the product source code, the representation of the

knowledge during transfer becomes much more challenging. The knowledge

sought is an abstraction of the source code into module flows, control block

linkages, diagnostic techniques. In most cases, the knowledge has not been

synthesized into this form.

+ The metrics for success are not reflective of knowledge transfer activities and

are heavily influenced by factors outside the control of the Brand Support

team. For example, there are many exogenous influences on customer

satisfaction and severity 1 time to resolution.

Remote Operating System Specific Support Team

Organizational Data
The Remote Operating System Specific Team is a separate service/support team

that is located in a different state and different organization than the Core Service

Team. However, the team is co-located with the development team responsible

for the Operating Specific Port of the application. All members of the team have

strong knowledge of the under-lying operating system environment. All

members of the team have strong programming language skills and full access to

the source code.

The relationship with the local development team is characterized as extremely

good. Generally, local development doors are open to members of the support

team. There is long-standing cultural support within the organization for this open

door policy. Management principles within the organization dictate that if there

- 62 -

is a direct conflict requiring a choice of supporting a customer in the field and

working on new development, the customer will always receive the higher

priority. In fact, members of the local development team are routinely called

upon for assistance in customer problems. Members of the development team

also take rotating assignments as members of the support team.

The relationship with the local team is quite helpful. However, when difficult

problems arise, it is the Core Support Team that is approached for assistance.

The Core Support Team has significantly more experience and technical

knowledge about the product. The Core Support Team was also sought after for

cross-unit work groups, primarily internships and temporary assignments.

From a product requirement perspective, the team has little input into the

process. This is the source of much frustration for the team. There have been

efforts to add reliability features to the product outside of the process. However,

these efforts have been largely unsuccessful due to the dependence on the Core

Source code base. Changes made outside of the process can become obsolete

or be invalidated because of changes made to the source base within the owning

development organization. The service team requirements primarily concern

serviceability aids in the product.

The culture in the Remote Operating System Specific Team is significantly

different from that of the Core Development Team. The Remote Operating

System Specific Team is part of a large, hierarchical, process oriented

organization. The Core Development Team is less formal and with a bias

towards technological drivers over process.

Operational Data

One of the principle operational issues concerns the use of several different

problem reporting systems by the various support teams. There were actually

- 63 -

three different systems involved. There was not clear, automated, closed loop

process to tie these systems together. This was viewed as a problem due to

data and information loss when moving diagnostic data between the systems.

Customer satisfaction was negatively affected by the discontinuity among

problem reporting systems.

The support team did not have full access to the core development resources.

This was seen as a major barrier to effective knowledge transfer. This was a

particularly sensitive issue for the team, since support teams for most other

products at this location did have full access to information from their

development counterparts. In terms of access to information from the local,

platform specific development team, full access was available.

The informants commented on the importance of on-the-job training. Temporary

assignments and/or internships with the core support team were viewed as the

most effective means of knowledge transfer. Again, the importance of the

assignment as a vehicle for developing creditability and personal relationship

between the core and remote support teams was viewed as a critical aspects of

knowledge transfer. The lack of detailed documentation of module flows and

control block structure increase the importance of these assignments.

Technological Data

A particularly striking statement from one of the team members was "Source

code is knowledge". This was an extremely insightful statement, since the

product source code is the most fundamental, physical representation of the

development teams' knowledge in software development. Manuals,

specifications, module flows and other documentation are higher level

abstractions of the source code.

- 64 -

The support personnel stressed the importance of platform specific knowledge as

a key to addressing customer problems. Understanding the operating system

and operating system specific diagnostic tools was viewed as a fundamental

requirement followed closely by understanding of the application. There was

further specialization of expertise below the operating system level. For

example, there are recognized experts on dump reading, locking, memory

management, communication and other platform specific diagnostic techniques.

As read only users of the source code, there was a stronger need expressed for

module flows and control block documentation. These are the abstractions of

the source code mentioned above. The need for these items was attributed to

the breath of responsibility of support personnel. Development personnel

typically work in depth on a single component. Support personnel are

responsible for a much broader view of the product. Using the source code as

the primary method of internal documentation for the product caused team

members to have information overload. Although there were many repositories

of information available, there was no clear map of the resource layout or

understanding of where to look for specific information. This was a contributor to

the information overload as well.

Another important technical issue uncovered was that much of the synthesized

knowledge that was available was contained in private repositories such as an

individual's e-mail folder. One informant suggested that having a person

assigned to gather the data in a sharable spot would be of tremendous value.

He viewed this person as a "knowledge manager". I suspect that this is a

simplistic answer to the problem. The capture and sharing of technical

knowledge is more an organizational construct than a task that can be assigned

to an individual.

- 65 -

Key Insights

Overall, the Remote Support Team was effective in their knowledge transfer

efforts by leveraging their relationship with the local development team and the

Core support team well.

Some key enablers to knowledge transfer include:

* Positive and open relationship with the local development team, which had a

strong code, level knowledge of the product internals.

+ Temporary assignments and internships with the Core support team as

essential element of hands-on knowledge transfer and relationship building

across organizational boundaries.

+ Access to source code. As one informant put it "Source code is

knowledge" in terms of being the lowest level, physical representation of a

developers knowledge.

Some key barriers to knowledge transfer include:

+ Operationally disconnected problem-reporting systems, which lead to a loss

of customer problem data and information.

+ Lack of complete access to core development internal information. This was

both a technical problem and a cultural issue since historically, the groups in

the Remote Support Team had full and complete access to such information.

+ Lack of synthesized information concerning product internals (e.g. module

flows, control block structures, error codes, diagnostic procedures, etc...)

+ Lack of a defined resource for collecting and disseminating synthesized

knowledge to the team.

- 66 -

Overall Service/Support Summary:
Overall, this research uncovered a number of important themes that applied

across the range of service support teams interviewed. These included:

+ Affinity to operating system knowledge - similar to the porting projects,

there was a strong prerequisite of operating specific knowledge on the part of

service/support team members. The focus of the knowledge was on problem

diagnosis techniques applicable to the platform, including dump reading skills,

communication trace information, operating system memory management,

multi-tasking management, etc... This affinity was most apparent in the

tendency of teams to cleave specialization along operation system

boundaries.

+ Personality and learning styles - The interviews conducted revealed a

common theme of personality and learning traits displayed by individuals in

the service/support role. Generally, members of these teams do not have a

strong attraction to the monumental task of product development. These

individuals have a strong affinity towards diagnostic and debugging skills and

strong customer communication skills. Support team members are generally

interrupt driven and enjoy multi-tasking.

+ Interactions with core support and/or development - Similar to the porting

teams, service/support personnel noted these interactions as critical

opportunities for knowledge transfer. These interactions were also viewed as

a important opportunity to build credibility with core development personnel,

resulting in a more positive working relationship and an increase in the

frequency of interactions. Short term internships and temporary assignments

were viewed as the most successful path for knowledge transfer interactions.

+ Source code abstractions - Teams that did not make source code changes

directly expressed a strong need for abstractions of the source code in terms

- 67 -

of module flows, control block documentation, error flows, diagnostic

"cookbooks", etc... This was the also case for groups that had read access

to the code. This is attributed to the core knowledge transfer requirements of

the service/support teams. For teams not making code updates, the

knowledge sought was heavily weighted towards diagnostic as opposed to

operational. Although the source code represents all the information

required, and was helpful to the support teams, there was a generally feeling

of information overload due to the wide breath of coverage expected by

typical support representatives.

+ Stakeholders & Metrics - Although the focus of this research was on

knowledge transfer between the development and service teams, one of the

key insights was the fact that there were other essential stakeholders

involved. The most powerful stakeholder is the customer. The customer

makes the ultimate determination of the success of the support team and

therefore, indirectly, an assessment of the success the support team's

knowledge transfer efforts.

In a similar relationship, the metrics for success are not reflective of

knowledge transfer activities. There are many exogenous influences outside

the control of the service/support teams which effect measures such as

customer satisfaction and overall response time.

- 68 -

Conclusion and Next Steps

Porting Projects:
The analysis of the porting projects focused on the assessment of knowledge

transfer in regarding to the requisite knowledge required to move (port) the

software code from one platform to another. Viewing the analysis of the three

porting projects together, the following themes are paramount in the assessment

of knowledge transfer efforts within the organizations.

Stakeholders
There two primary stakeholders in the porting projects in each of the successful

porting projects; the core development team and the new platform porting team.

As owners of the software product source code, the core development was

consistently in the more powerful position.

It is useful to note that in the case of the failed porting effort; an intermediary

group was placed between the core development team and the porting team.

The porting team felt the intermediary group provided little value and attempted

to bypass this group in favor of the core development team.

Goals
In a porting effort, the goals of the porting team are usually clear, and well

aligned with the core development team. At the most basic level, the goal of the

porting team is to duplicate the functionality of the product on a new target

platform while minimizing the number of code changes.

Metrics
The metric used for success is duplication of operation between the core and

ported project. In fact, the most common first step a developer on the porting

team takes when debugging a problem is to attempt to duplicate the problem on

- 69 -

the core platform. If the problem is reproduced on the core platform, it is not a

porting problem, but a core defect. In most cases, ownership of the problem is

passed onto the core development team for resolution.

Source Code as a Boundary Object
In porting projects, the source code is at the heart of the effort. As one porting

team member put it, "Code is knowledge". Although this may be an

overstatement, source code is an extremely effective boundary object as defined

by Carlile. 16 As Carlile states, the critical elements of an effective boundary

object are:

+ A shared method for individuals to represent their knowledge. In software

development projects, source code is the lowest level representation of

the knowledge of a developer.

+ Provides a concrete means for individuals to specify their differences and

dependencies. Again, in software development, differences and

dependencies are represented via source code updates. In fact, in

software porting projects, differences and dependencies are explicitly

enumerated via #ifdef pre-processor statements in the source code; or

ideally the code is modified in to be appropriate for both platforms.

+ Facilitates a process for individuals to transform knowledge. As

highlighted in the interviews, the changed source code is typically input to

the source code merge process. After the merge process completes, the

core source code is modified (transformed) to include the changes of the

porting team.

During the code merge, the reviewers and core developers gain insights into the

nature of the new target platform. In the large-scale server port, evidence

indicated that the initial merge of platform specific code into the core source tree

- 70 -

gave core developers developed an awareness of the type and nature of issues

encountered by the porting team. Consequently, some core developers

attempted to avoid these issues in future versions of the product. This made

future porting efforts more straightforward, since the knowledge of porting teams'

prior work was now imbedded in the core development source code.

Viewing the results of projects without shared source code access provides

additional support for the importance of the shared source code. In this

environment, there was little knowledge transfer. Typically, without a shared

code base, the source streams diverged resulting in project failure due to lack of

compatibility or increased costs of development. Without the shared source

code base, the best that can be said is that there is a one-time knowledge

transfer which can be used to jump start a development team.

One final note on the product source code. Informants consistently pointed out

that the core team draws significant power as the owner of the source tree. Even

when the tree is shared, in cases of inconsistencies or conflicts concerning code

modifications, the porting team bore the responsibility of resolving the conflict.

The core team's response in conflict situations is the removal of the offending

code. This allows the core team to continue as normal, but has a direct impact

on the porting team.

Technical expertise on target operating system expertise
All porting teams interviewed stressed the importance of target operating system

knowledge. This includes operating systems, compilers, debuggers, build

environment, etc... In fact, knowledge of the target operating system was

consistently viewed as more critical than knowledge of the product. Lack of

maturity and compatibility of target platform development environment was also

consistently identified as a key concern for the porting teams.

-71 -

Cross-Boundary Personal Interactions
Personal interactions with members of the core development team where

highlighted as key to the success of the porting efforts throughout the interviews.

Members of the porting team viewed face to face communications as key to the

knowledge transfer process. These interactions allowed team members to gain

insights into product design and learn new features and/or changes planned

early in the process. The interactions where also viewed as opportunities to

build personal and team credibility with the core development team. Personal

credibility was identified as reinforcing a feedback loop which increased the core

development teams willingness to engage in additional personal interactions. As

personal interactions increased, there was an increase knowledge transferred.

As knowledge transfer increased, this had a positive effect on the individual's

personal credibility continuing the reinforcing loop.

Software Support Project
The assessment of knowledge transfer between the core development team and

the service/support teams interviewed proved to be significantly more complex

than similar efforts between the core development team and the porting teams.

The following sections summarize the important insights.

Stakeholders
In the software support projects, there were at least three primary stakeholders;

the core development team, the software support team and the customer. The

service team appeared to be the least powerful of the stakeholder given that the

core development team position as the owners of the source code and

customers roles as the arbiters of success for the service team.

Goals
The goals of the core development team and the service team are not well

aligned. The goal of the service team is to provide customer support and/or

correct defects in existing products. The goal of the core development team is

- 72 -

the creation of new software functionality. Of course, the development team

recognizes the importance of customer support and correcting field defects,

however it is not a primary goal of a development organization.

Metrics
No specific measures are in place to judge the success of knowledge transfer

between the core development team and the service support team. The support

teams' success is measured on their effectiveness on from the customer

perspective. This significantly increases the complexity of the assessment.

Source Code is not an Effective Boundary Object
All of the service and support teams referenced the source code as an essential

element in knowledge transfer. In the past, some of the team did not have

access to the source code. The team escalated this issue through management

channels to obtain access.

The Core Support team is the only support team with the ability to make updates

to the source tree, the other support teams have read only access. The Core

support team is viewed by the other support teams has an important knowledge

source. In many instances they are sighted as equals to core development in

terms of knowledge and assistance.

The teams with read access use the source code a vehicle for gaining knowledge

and insights while debugging customer problems. However, the source code is

no longer an effective boundary object in this situation. For the service/support

teams, the code is a static representation of knowledge. The service support

teams do not use the source code to represent their knowledge, specify their

differences and no transformation occurs. This lack of a boundary object drives

a strong need in the service/support teams for abstractions of the source code

such as module flows, control block descriptions and diagnostic path maps.

- 73 -

Technical expertise on target operating system expertise
Although the members of the service and support teams viewed themselves as

generalist, deeper inquiry consistently highlighted a bias to operating system

specialization within members of the team. An understanding of the operating

system environment and specific platform debugging approaches where

essential elements of the overall team member's effectiveness.

Personal Characteristics and specialized skills
One of the key insights uncovered during the assessment was the identification

of key differences in the motivation of service and support team members

compared to their development counterparts. Informants consistently pointed

out that strong diagnostic skills and customer facing skills are essential skills of

service team members. The nature of diagnosis for customer related problems

require a much heavier reliance on post failure data. Service and support

personnel also appear to be more motivated by the frequent, short-term

successes of resolving specific customer problems, where developers are more

motivated by the longer term satisfaction of product feature generation.

Cross-Boundary Personal Interactions
Personal interactions with members of the core development team and/or core

support team where highlighted as key to knowledge transfer throughout the

interviews. Members of the service team who obtained internships or temporary

assignments with the core support team viewed these as outstanding learning

experiences. The benefits where expressed in terms of knowledge gained

while on assignment and the development of a personal network of contacts for

future assistance.

Similar to the porting team, the interactions where also viewed as opportunities to

build personal and team credibility.

- 74 -

Beyond the Code

The research approach applied in this thesis has provided some useful and

interesting insights concerning knowledge transfer in software development

organizations. However, these insights are focused on the very narrow

perspective of technical knowledge transfer between engineering professionals.

During the interview process I could not ignore that fact that the knowledge

transfer needs of these groups extend well beyond the technical exchanges

outlined above. A short vignette, synthesized from discussions with several of

the service/support managers may be helpful in illustrating this point.

Jesse and I discussed the organizational, operational and technical
aspects required to for his team to adequately address customer-reported
problems in the code. Jesse said, "You know, we control the content of
the maintenance releases. We have many good fixes available and we
put out a new release every quarter. The thing is, the customers don't
install the maintenance releases as they become available." Although,
this was not specifically relevant to the discussion of knowledge transfer
between the development and service teams, curiosity got the better of
me and I asked, "What do you mean?" Jesse replied, "Well the
customers treat each maintenance release like a major product release.
They run it on a test installation first, and then it takes up to 6-months
before it is propagated throughout their system. Meanwhile, they are
calling us to report problems on production systems that are already fixed
on the maintenance release they are testing in house." Having gained
an understanding of the volume of fixes (sometimes several hundred) that
are included in a maintenance release, I asked if it was due to the
magnitude of change the maintenance introduces. Jesse responded, "To
some extent that might be the case, but it is mainly that some customers
have been burned in the past and they just don't trust the quality of the
maintenance. They are also concemed about how the new version of our
product will interact with other products they run in production. They
purchase these products from our company and our competitors. It is a
tough perception to overcome. The customers just want the individual
fixes for the problems they encounter, but they don't seem to understand
the complexity of managing a system in that fashion. We can use testing
to gauge the stability of a maintenance release, but the complexity
generated by long term support of individual fixes becomes astronomical
just due to the shear number of combinations. When you throw the other
products into the mix, things really get crazy... "

- 75 -

This short story raises some interesting issues. The customer IT personal, field

support teams, business partners, competitors are now very powerful

stakeholders. In addition, the operational and technical processes that generate

the maintenance need to be understood in terms of how they support the goals of

the stakeholders. When looking at the upstream and downstream influences on

the process, it becomes apparent that there are some powerful feedback loops

that effect the issues of trust and the customers' perception of product quality.

There are essential needs for knowledge transfer within and outside the

organizational boundary to support these efforts.

In general, as these teams are viewed in their overall business contexts, the

number of stakeholders increases and the requirements of knowledge transfer

explodes. A valuable insight uncovered during this research is the recognition

that of several layers of knowledge transfer occur within the successful software

development organization. Knowledge transfer requirements for the software

development team exist between marketing, sales, competitive organizations,

corporate strategy organizations, customer enterprises and many other

stakeholders.

The first layer knowledge transfer is the fundamental transfer of core technical

knowledge. This is the basic information required to perform quality development,

service, support and/or porting of a software product and was the primary focus

of this thesis.

The second layer, also addressed in this thesis, addresses the knowledge

transfer interaction at the product and process level. This information flow

contains domain specific information regarding product functionality (e.g. source

code, specifications, architectural information, standards, etc...). In addition, this

knowledge flow contains processed-based information regarding build

procedures, internal problem reporting and requirements process, internal

development information, training options, etc...

- 76 -

The third and most complex layer addresses the knowledge flow at the business

process level. This includes such items as customer problem reporting and

requirements processes, marketing and sales support, competitive influences,

corporate strategy, etc...

Depending on the view within the organization, the key stakeholders change.

However, a requirement for effective knowledge transfer between these

stakeholders consistently exists. It is with this larger organizational context in

mind that I offer the Software Development Knowledge Transfer Assessment

Framework in the following chapter as a starting point for this analysis.

-77 -

Software Development Knowledge Transfer Assessment
Framework

Overview

The standard view is that knowledge transfer in software development is that it is

fundamentally a measure of technical knowledge transfer. However, by applying

the analysis framework within this thesis, it becomes apparent that a more

holistic approach to viewing knowledge transfer is required to measure the true

level success of knowledge transfer efforts within a software development

environment. During the development of the research approach for this

framework, it was simple (albeit artificial) to segregate the organizational,

operational and technological trusts of the research methodology. This proved to

be a very useful and productive path of inquiry and understanding. However,

during the analysis of the data it becomes apparent that the three columns of this

framework are tightly interwoven entities that form the basis of a holistic

assessment for knowledge transfer in software development.

The results of interview experiences, applying the research approach outlined in

Chapter 1, have generated a much more concise, yet still comprehensive

framework. The three columns of support for the framework remain in tact.

However, the breath of inquiry within each column has been greatly simplified.

In addition to the simplification, a suggested sequence of inquiry is suggested.

-78 -

Figure 6: A Framework for the Assessment of Knowledge Transfer in Software Development

Per etive,

A Framework f or
e Assessment of Knowledge Trons

ad in Sof tware Development

Technological
Per sCtive

-79-

Knowledge Transfer Assessment Process

Organizational.
The inquiry begins with the organizational perspective. The first step in the

process the development of a stakeholder map. Although stakeholders have a

varied set of goals and interests, the focus of this assessment is on nature of the

knowledge transfer flow of between the stakeholder and the organization under

assessment. An individual stakeholder can play multiple roles over time. For

critical knowledge flows, the stakeholder typically has upstream, downstream and

feedback influences on the product or process. These influences must be

specified. In addition to the nature of the knowledge transfer flow, the source

and level of power for each stakeholder and the importance of the flow to the

business operations must be captured. The result of this effort is a list of

essential input, output and feedback knowledge flows for the specific product or

process. Individual analysis of each knowledge flow occurs at the assessment

proceeds.

Operational:
Using the output of the organization perspective, the focus of inquiry changes to

the operational column of the framework. For each of the essential knowledge

transfer flows, state the intent of the flow in terms of goals of the transfer. Next,

identify the supporting processes and/or procedures for the flow and any metrics

that can be used to gauge its status or success. When analyzing the supporting

processes, it is important to map the processes to the upstream/downstream

influence and feedback loops isolated in the organization phase of the

assessment. Are all segments of the flow addressed? Are the metrics

sufficient to gain an understanding of effectiveness of the flow?

- 80 -

Technical:
The Technical column of the framework has two major components. The first

component is technical expertise. This includes the core skills in software

product development and domain specific knowledge about the product under

development. The second component of the technical perspective is information

technology in place to support the knowledge transfer flow. The includes shared

product build procedures, shared code and data repositories, collaboration tools,

etc...

Overall Analysis:
At this point in the analysis, having drilled down on an individual knowledge

transfer flow, it is useful to step back and view the components of organizational

support for the specific flow. What strengths and weaknesses have been

identified? In the broad sense, what organizational mechanisms are in place to

support the transfer? These include:

+ Management support

+ Informal support networks

+ Technical interchange and training

+ Business intelligence data

+ Boundary objects

The framework described above outlines three columns of support for knowledge

transfer efforts in a software development organization. I believe that this

framework is flexible and comprehensive in nature and applicable at all layers of

knowledge transfer within an organization. As the number of stakeholders

increases, so does the complexity of the knowledge transfer efforts. As the

complexity and number of knowledge flows increase, a structured approach for

inquiry becomes critical in order to gain a comprehensive understanding of the

knowledge transfer issues facing the organization. As a result, this structured

framework is proposed as a starting point for this effort.

-81 -

Appendix A: Executive Summary

A. Problem Statement

Knowledge Management (KM) has been one of the most important topics of
research for decades in management literature. Beginning in the mid-1 990's
Knowledge Management came to the forefront of software development and
became one of the hottest topics in information technology. However, like all
silver bullets that proceed it, the term Knowledge Management is beginning to
evoke more skepticism than excitement in the minds of technical and business
leaders. Larry Prusak, executive director of IBM's Institute for Knowledge
Management, states that the primary reason for KM failures is that it is easier
and faster to just buy the technology than to think through the strategic issues. It
is the author's belief that understanding the strategic issues begins with
knowledge transfer assessment of the organization.

In order to perform a realistic assessment of knowledge transfer in a software
development organization, a framework that allows a holistic assessment of
organizational, operations and technological perspectives is required. This thesis
defines such a framework and applies it to two specific scenarios in software
development; porting projects and software service/support operations.

B. Originality Requirement

This thesis develops a unique framework of inquiry for the analysis of knowledge
transfer in software development organizations. This work leveraged nineteen
years of personal experience as a technical leader in the software industry
combined with interviews of executives, managers, technical leaders and
individual contributors in the software development community. The result of the
research is the creation a holistic methodology for the assessment of knowledge
transfer in software development organizations. The assessment framework is
comprehensive and applicable at multiple levels within the organization.

C. Content and Conclusions

In software development organizations, individuals at various levels tend to view
knowledge transfer activities in a very narrow perspective based on position
within the firm or personal bias. For example, engineers may view knowledge
transfer primarily from the source code level. IT personnel view success based
on the installation of Knowledge Management portals or other KM information
technology tools. Managers may view the transfer in terms of organizational
interfaces and/or formal escalation paths. Operationally focused individuals may
base their opinions on the state of the process artifacts and the success or

- 82 -

failures of IS09000 audits. Each of these perspectives is valuable. However,
none can present a complete picture of the state of knowledge transfer activities
of the organization. It is necessary to perform a comprehensive inquiry that
includes all of these perspectives in order to have a system level view of
knowledge transfer within the organization. The result of failing to view these
efforts at the system level range from sub-optimal knowledge transfer practices
to dysfunctional software projects.

The common theme discovered during the interview process was the lack of a
comprehensive approach to organizational analysis. The primary barrier
preventing leaders from performing a comprehensive assessment of the
organization's knowledge transfer efforts is the lack of structured inquiry tools.
The development of a comprehensive framework of inquiry tools that provides a
system assessment of the knowledge transfer in the organization was the goal of
this thesis.

The framework for assessment of knowledge transfer begins with the
organizational perspective using a stakeholder analysis to ascertain the
upstream/downstream influences and feedback loops for essential knowledge
transfer activities. The operational perspective views the intent, goals and
metrics that support the identified knowledge transfer flows. The technical
perspective in the framework assesses both the information technology
infrastructure supporting knowledge transfer and the fundamental technical
expertise required by team members to achieve adequate performance.

At the lowest technical level of the assessment, there a number of common
issues that where uncovered including:
* complexity of knowledge transfer based on the number of stakehoders
* the alignment of goals and metrics within the organization
* the use of software source code as an effective boundary object
+ an affinity for operating system expertise as a core requirement of effective

knowledge transfer
* the value of personal interactions in knowledge transfer efforts and the

feedback loop supported by these interactions.

Using interview data from executives, managers, technical leaders and individual
contributors across a number of software porting and service teams, this thesis
demonstrates the application of this framework for structured assessment of
knowledge transfer in software development organizations. This thesis asserts
that the assessment output provides managers and technical leaders with a
system view of barriers and enablers to effective knowledge transfer. This
information is then available to form the basis of prescriptive action plans.

- 83 -

D. System Design and Management Principles

The generation of the research approach applied for this thesis, coupled with the
development of the framework for knowledge transfer assessment, has provided
a unique opportunity to apply the core teaching concepts of the SDM program.
This research effort draws heavily on system architectural principles for the
development of the framework. System engineering principles where combined
with the three lens analysis used to understand organizational processes and
behavior to develop the research approach and the assessment framework. This
combined effort was essential in developing the comprehensive nature of the
assessment framework.

E. Engineering and Management Content

The research approach applied in this thesis drew heavily on over 19 years of
personal experience in the software development industry. The thesis
framework addresses a broad scope of engineering content spanning the range
from software operating system development environments to system
architecture axioms.

The research required a strong knowledge of hands-on software development
tools (compilers, debuggers, library systems, optimizers, etc...) across a wide
range of software operating systems and hardware platforms. In addition, the
research draws heavily on knowledge of software engineering techniques
required for effective development of cross-platforms software applications.

F. Statement of Authorship and Originality

The work contained in the thesis is the author's and original.

- 84 -

Bibliography

1 Noel Gallagher, Stand By Me, recorded by Ben E. King. 1961.
2 Brooks, Fredrick P., Silver Bullet - Essence and Accident of Software
Engineering, Information Processing 1986, the Proceedings of the IFIP Tenth
World Computing Conference, Elsevier Science B.V., Amsterdam, The
Netherlands, 1986
3 Berkman, Eric, When Bad Things Happen to Good Ideas, Darwin, April 2000.
4 Thompson, James D. 1967 Organizations in Action, New York: McGraw-Hill
s Carlile, Paul , Managing for the Future: Organizational Behavior & Process,
South Western College Publishing, 1999
6 Ibid.
7 Senge, Peter, The Fifth Discipline, Currency Doubleday, New York, 1990
8 Anacona, Kochan, Scully, Van Maanen, Wstney, et.al. Managing for the Future:
Organizational Behavior & Process, South Western College Publishing, 1999
9 Schein, Edgar, The Corporate Culture: A Survival Guide, Josey-Bass Inc, 1999
10 Schein, E.H., Organizational Culture and Leadership. (1st ed.). San Fransisco:
Jossey-Bass, 1985
1 Schein, Edgar, The Corporate Culture: A Survival Guide, Josey-Bass Inc, 1999
12 Bach, James, Satisfice, What Software Reality is Really About, Computer,
December 1999
13 Joel Moses is a computer scientist and Institute Professor at MIT.
" Crawley, Ed, MIT System Architecture Class notes, September 2001
15 Tuchman, Bruce W. "Developmental Sequences in SmallGroups"
,Psychological Bulletin 63,1965
16 Carlile, Paul R.,A Pragmatic View of Knowledge and Boundaries: Boundary
Objects in New Product Development, MIT Sloan School of Management,
Auguest 15, 2000.

- 85 -

