Product Development Process Design:
Improving Development Response to Market, Technical, and Regulatory Risks

By:
Darian W. Unger
B.S., Engineering B.A,, Political Science,
Swarthmore College, 1995 Swarthmore College, 1995
S.M., Technology and Policy S.M., Civil & Environmental Engineering
MIT, 1999 MIT, 1999

Submitted to the Engineering Systems Division in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering Systems Management and Policy
at the
Massachusetts Institute of Technology
June, 2003.

© 2003 Darian W. Unger
The author hereby grants to MIT permission to reproduce and to distribute publicly paper

and electronic copies of this thesis document in whole or in part.-Adtether rights resepved.

Signature of

e T —
' ~MIT Engineerifig Systems Division
Technology Management and Policy Program
May 2, 2003
Certified
by ... e e e T g e T .

Prof. Steven Eppinger

General Motors LFM Professor of Management and Engineering Systems

Co-Director, MIT Leaders for Manufacturing Program and System Design and Management Program
Advisor and Chairman of Doctoral Committee

’ - 7
Certified
by .. WA S R e e T T T
/ 7 P{(;/f.i hrigtopher Magee
Professor of the Practice of Mechanical Engineering and fngineering Systems
Director, MIT Center for Innovation in Product Development
Committee Member
~
Certified v
S 2SR R BB S SR A NG

Senior Research Scientist, MIT Center for Technology Policy and Industrial Development
Committee Member
Certified and accepted

by ... ST ST R e e e A TP T v e e s s ana e
Prof. ganiel Hastings
Professor of Engineering Systems and Aeronautics and Astronautics
MASS%%I-{%E<OS INSTITUTE Pirectdr of the MIT Technology Management and Policy Program
LOGY Chair, Committee on Graduate Studies and Committee Member

JUL 01 2003

LIBRARIES ARCHLVES

Product Development Process Design:
Improving Development Response to Market, Technical, and Regulatory Risks

By: Darian W. Unger

Submitted to the Engineering Systems Division in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Engineering Systems Management and Policy
: May 2003

ABSTRACT

Engineering companies frequently face product development challenges. Competitive
pressures, industrial or societal innovations, and government regulations are some of the
many factors that drive the need for new or better products. Companies respond to these
drivers and changing needs by developing new products and employing product
development processes (PDPs) to coherently manage the risks inherent in their
development. Well-designed PDPs reduce development time, create better products,
generate profit, and increase market share. In contrast, poorly-designed PDPs can
severely harm both product lines and the companies that manufacture them. Many
companies seek guidance in making important PDP design decisions.

This thesis introduces PDPs as risk management frameworks. The research investigates
the relationship between PDPs and risk management and seeks to help companies
improve PDP design. It begins by discussing the drivers and risks of product
development and then describes different PDPs. The traditional stage gate process is
compared with the modified waterfall process, evolutionary prototyping, evolutionary
delivery, design to schedule/budget process, the spiral process, and several other PDP
variations. The research then proposes several iteration- and review-based metrics by
which PDPs can be more effectively identified and compared.

Ten company case studies exemplify a wide variety of actual PDPs, demonstrate the
utility of iteration and review metrics in distinguishing PDPs, and illustrate how different
processes manage different risks. Case study findings indicate that software development
companies face rapidly-changing markets, generally perform quick integrations and tests,
and are likely to employ flexible PDPs. In contrast, manufacturing companies that face
greater integration difficulties and technical risks are likely to employ more rigid PDPs.
Integration and risk are both instrumental in determining the applicability of different
PDPs. The research employs case study lessons to propose a method for improved PDP
design based on risk and integration. To demonstrate the method, it is applied to one
company.

The thesis concludes that PDPs vary more than previously documented; that the proposed
metrics are useful in distinguishing PDPs, their different integrations, and their different
risk management methods; and that companies facing different risks can more
thoughtfully tailor their PDP designs to suit their own unique circumstances.

Thesis Supervisor:

Doctoral Committee:

Steven Eppinger, Ph.D.

General Motors LFM Professor of Management and Engineering
Systems

MIT Sloan School of Management and School of Engineering
Co-Director, MIT System Design and Manufacturing Program and
Leaders for Manufacturing Program

Steven Eppinger, Ph.D.

Professor of Management and Engineering Systems

MIT Sloan School of Management and School of Engineering
Director, MIT System Design and Manufacturing Program and
Leaders for Manufacturing Program

Daniel Hastings, Ph.D.

Professor of Engineering Systems and Aeronautics & Astronautics
MIT School of Engineering

Director, Technology Management and Policy Program

Christopher Magee, Ph.D.

Professor of the Practice of Mechanical Engineering and
Engineering Systems

MIT School of Engineering

Director, Center for Innovation in Product Development

Daniel Whitney, Ph.D.
Senior Research Scientist
MIT Center for Technology Policy and Industrial Development

ACKNOWLEDGMENTS

I would like to thank the many people who helped me during my time at MIT. In
particular, I would like to thank Steve Eppinger for being not just my advisor, but my
mentor as well. I have been grateful for his support, guidance, and friendship ever since
he brought me on board at the MIT Center for Innovation in Product Development. I also
thank Daniel Whitney for his helpful and sharpening suggestions, Daniel Hastings for his
assistance and confidence, and Chris Magee for his excellent guidance and conversation.

I also offer thanks to my previous advisors and professors at MIT who helped me along
my way, including Howard Herzog, Elisabeth Drake, John Heywood, Richard Tabors,
Richard de Neufville, Maurice Holmes, Malcolm Weiss, and Arnoldo Hax. I gratefully
acknowledge the support of the MIT Energy Laboratory/Laboratory for Energy and the
Environment, the MIT Center for Innovation in Product Development, and the
Singapore-MIT Alliance. I also met with, questioned, and interviewed many people
during this study and thank them all for sharing information, data, their opinions and their
time.

Many thanks and love also go to

* My wonderful parents, of whom I'm so proud and who simultaneously
encouraged and delayed this dissertation with their many loving phone calls.

& Felek and Vera, who are my second loving and amazingly supportive family in
Boston.

¢ Noam, who joined us in Boston to my delight and made me realize how much fun
it 1s to live in the same town as my brother.

e My friends and roommates, Scott, Mike, and Sylvia, for providing laughs and
often quizzical looks during stressed days — and for making academia seem like
paradise by demonstrating the horrors of early-morning hours in the working
world.

e Jill, for being amazingly cute and for loving me back.

I am grateful to the MIT Sloan School of Management for providing free food in times of
adversity. It was tasty. Finally, I acknowledge the support of the American beef industry
in providing me with the many pounds of meat I used to host barbecues during my years
at MIT. :

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION. . .« ettt et et e e e e e, 7

CHAPTER 2: THE CONTEXT OF PRODUCT DEVELOPMENT: INDUSTRY,

POLICY AND THE SOURCES OF INNOVATION........c.ccvvvivviuinnnn.. 11
2.1 INtrodUCION. ... et e, 11
2.2 Forces driving technological innovation.....................cooeeuivinin. .. 12
2.2.1 Profit potential from innovative rent
2.2.2 Government influence
2.3 Innovation Management.c.uuiueeranetiiraranearanenririnsineananennn. 16
2.3.1 Organizational capacity
2.3.2 Understanding and mapping innovation
2.3.3 Creating and capturing value
2.4 Development risSKS.........ouiriiiiariiiiieeii e 21
2.5 Gas turbine contextual case study............oooeiiiiiiiiiiii 25
2.5.1 Introduction
2.5.2 Factors in technological innovation
2.5.3 Innovation management and development risks
2.5.4 Case study conclusion
2.6 From innovation to product development.............................oo.e.e. 38
2.6.1 Literature review
2.6.2 Product development steps ,
2.6.3 Product development problem definition
277 Chapter SUMMATY.uutetntntnit ittt et e e eeen, 43
CHAPTER 3: PRODUCT DEVELOPMENT PROCESSES..........ceoviiviniiiennnn.. 45
3.1 StAZE GALE PIOCESS. ... eut et ettt et et 45
3.1.1 Modified stage gates
3.2 SPIral PrOCESS. . ..ttt 50
3.3 Evolutionary prototyping and delivery....................ccoooeiviini i, 52
3.4 Design to schedule/budget..............ooooiiiiiiiiii 54
3.5 Other approaches and tools................cooiiiiiiiiiiii i 55
3.6 Chapter discussion and SUMMArY................ocoeeinieinieniniieiaeinns, 56
CHAPTER 4: CHARACTERISTICS FOR PDP COMPARISONc.cuvun... 57
4.1 Design iterations and integrations....................ooeiiiiiiiiiiiiinn... 58
4.2 DESIZN TEVIEWS. .. .tuet ittt et e 62
4.3 Risk management through iteration and review combinations............. 64
4.3.1 Fingerprinting and identifying PDPs
4.3.2 Tlteration/review combinations manage risk differently
4.3.3 Parameterization of PDPs
4.4 Chapter SUMMATY.........ouuiuiretitaiiiee et e, 69

- CHAPTER 5: RESEARCH METHODOLOGY ...ttt ettt 70

5.1 CaSe StUAILS ...t 70
5.2 Company approaches and data collectiono...... 72
CHAPTER 6: CASE STUDIES.0uttutiteuttatttaat et eatatee et ereeiineeneens 75
6.1 Siemens-Westinghouse Power Generation 77
6.2 Integrated Development Enterprise.............ocooeiiiiniiiiiininnninn.... 84
6.3 ITT INAUSHIIES.....oneii i e e 92
0.4 X OTOX ettt 101
6.5 PrINtCO......eii L 113
6.6 Secondary case StUdIeS...........cooiueniiiiiiiii i 123
6.6.1 United Technologies Corporation......................o.oooeeeee.... 123
6.6.2 Ford Motor COMPany...........ccoueieeiineeiiniiieeaeneenennn, 128
6.6.3 DeskArtes/Arabiacooeiiiiiiiiiii i 131
6.6.4 AT S . 134
6.6.5 MICIOSOft. .. uuieit i 137
6.7 Comparative Case Study Findings.............c.c.oooiiiiiiiiii, 143
CHAPTER 7: DISCUSSION OF RESULTS AND CASE STUDY LESSONS............... 150
7.1 Linking PDPs and risKs...........oooiiiiiiiiii i 150
7.1.1 Risks and integrations: Results from alternative
categorizations of case studies...................cooiiiiiial, 153
7.2 Secondary reSultS.........oviuiuiiie e e 157
7.2.1 Establishment of useful PDP metrics................................ 157
7.2.2 Applicability of the spiral process................oooeiiiiiiinnnn.n. 158
7.2.3 PDP design and implementation difficulties....................... 159
7.3 Threats to validity and other cOnCerns.oooeueienennnen... 159
7.4 Other obsServations...........cccovoiiiiiiiii i, 164
7.4.1 PDcycle iMeS.......c.oiuiuiiiiii e 164
7.4.2 Evolutionary delivery in another perspective....................... 165
7.5 Chapter SUMMATY.oiiiiiiii et e e - 166
CHAPTER 8: APPLYING CASE STUDY LESSONS: DESIGNING PDPs
TOMANAGE RISK ..ttt e e as 167
8.1 PDP design method proposal...............ccoveuiiiiiiiiiiiiiniiani, 167
8.2 Method demonstration: Printco revisited.................................... 170
CHAPTER 9: CONCLUSIONS ...ttt et e e e e e e 175
9.1 Future 1€Search..........coeveiiiiiiiiii e 177
9.2 Finalthoughts 179
REFERENCES.ttt e e e e 181
APPENDIX A: SAMPLE INTERVIEW GUIDE AND QUESTIONNAIRES 191
APPENDIX B: LIST OF PEOPLE INTERVIEWED...........o0vviiiiinianinanennnn.. 200
APPENDIX C: SAMPLE INTERVIEW TRANSCRIPT eeeeeteeeseeannsinnins 201
APPENDIX D: TERMS, ACRONYMS AND ABBREVIATIONSvvvreeeeeeennnnn, 205

1. INTRODUCTION

“It is not the employer who pays wages — he only handles the money.
It is the product that pays wages.” — Henry Ford
Successful product development is critical to industrial performance. Rapid and
innovative product development (PD) can provide critical competitive advantages to
firms. (Rosenau & Moran, 1993; Ulrich & Eppinger, 2000) The pressure to improve
products and PD processes is evident in the words of the Vice President of R&D of Grace

Performance Chemicals:

Today, more than ever, the only way for any...industrial organization to stay competitive is to be more
creative, more innovative, and faster than the competition. We need to continuously introduce better
and less expensive products and technologies. (Jachimowicz, 2000)

Despite the importance of PD, technology management in this field leaves considerable
room for improvement. Companies currently have difficulty choosing from a long and
complex menu of PD processes; if they design a process poorly, they may endanger the
success of their products, their competitiveness, and possibly their survival. There are
currently no established criteria for comparing, selecting or designing ideal PD processes;

nor is any single process ideal for all circumstances and companies.

This thesis exhibits and explains various PD processes (PDPs) and aims to help
companies better design their own processes. Using existing literature and research, this
thesis proposes risk management characteristics to describe and compare different PDPs.
It then uses ten case studies to examine the variation among PDPs and to demonstrate the
usefulness of the proposed metrics. Finally, it uses the lessons of the case studies to

suggest a framework for improved PDP design and selection based on risk.

This research introduces PDPs as risk management structures. Although PD is valuable
as a source of competitive advantage, it is risky. PD processes must address different
kinds of risk: they must overcome various technical challenges, meet changing market
needs and keep on time and on budget. PDPs manage risk, but this thesis demonstrates

that they do so in dramatically different fashions.

The study is divided into three parts. Part I (Chapters 2, 3, and 4) explains the context
and drivers of PD, displays a menu of PDPs that companies use in developing new
products, and defines key risk management characteristics that all PDPs share. Part I is
based mainly on previous research and field assessments, but also includes several new
metrics for defining PDPs. Part IT (Chapters 5, 6 and 7) explains the conduct; resuits, and
findings of ten company case studies. The empirical case studies showcase a wide
variety of actual PDPs and demonstrate that risk management parameters provide a useful
means of comparison among them. Part IIT (Chapters 8 and 9) extrapolates from the case
study lessons to propose a framework for improved PDP design and selection. The
framework is applied at one company to demonstrate its potential usefulness. The study
concludes that PDPs vary more than previously documented, that risk management
metrics are useful in distinguishing PDPs, and that PDP design and selection can be more

thoughtfully tailored for companies facing different risks.

The study begins with Chapter 2, which examines the context and drivers of PD.
Existing literature demonstrates that driving forces behind innovation and PD can include
customers, competitors, and government action. Customers can change market demand,
forcing companies to improve or change their products. Competitors can prompt the
need for PD by developing lower-cost or better-selling alternatives. Government
agencies can set new technology requirements or use other regulatory tools to prompt
companies to incorporate changes into their products, especially in the energy and
manufacturing arenas where product externalities are common. Together, these upstream
drivers create a series of risks which companies must face while developing new
products. Product integrations, models, tests or prototypes help some companies to
address development risks early in development. A contextual case study of gas turbine
development history demonstrates many of the drivers cited earlier in the chapter while
simultaneously providing the context for the PDP analysis of turbine development in
Chapter 6. The chapter concludes by linking these upstream drivers to PD risks and

concepts and defining the problem of PDP comparison.

Chapter 3 showcases a variety of common PDPs. The traditional stage gate process is
compared and contrasted with the modified waterfall process, evolutionary prototyping,
evolutionary delivery, design to schedule/budget process, the spiral process, and several
other PD variations. Although the processes have several steps in common, they progress
through those steps in very different ways. The advantages and disadvantages of each

process are described; no single process is suitable for all PD circumstances.

Chapter 4 proposes metrics by which the potential of different PDPs to manage risk can
be compared and contrasted. Development risks can include technical, market, budget,
and schedule risks. To manage these risks, PDPs employ design reviews, which uphold
standards or mark milestones, and iterations, which are changes and feedback loops
between design groups or project phases. All PDPs use reviews and iterations, but the
manner of reviews and iterations varies dramatically. They may differ in frequency,
rigidity, and several other characteristics. Thus, reviews and iterations — incorporating
specifications, milestones, integrations, and tests — are advanced as useful metrics for

distinguishing PDPs.

In Part II, Chapter 5 details the methodology of the empirical research in this study.
Elements of reverse case study analysis (RSCA) and grounded theory building (GTB)
methodologies were used to develop a series of company case studies. Interviews and
questionnaires were designed to gather both qualitative and quantitative PDP data. The
groundwork is laid for empirical case studies representing an array of industries and

different environments.

Chapter 6 includes ten company case studies and comparative findings. Interviews,
questionnaire responses, and process document excerpts are used as evidence in the
description and categorization of each company’s PDP. The metrics discussed in Chapter
4 are used to describe and distinguish the different company PDPs. All of the companies
face unique risk profiles but use at least one form of iteration or design review to manage

their risks. The PDPs of most companies match one of the previously-described

theoretical processes closely. For example, some companies are found to follow stage

gate processes, while another uses an evolutionary delivery approach.

Chapter 7 draws lessons from the case studies and demonstrates that the metrics proposed
earlier are indeed useful descriptive tools for PDP analysis. The lessons also illustrate
how effectively different companies’ processes manage various types of risk. Threats to
research validity are addressed, and potential alternative criteria in describing .or
designing PDPs are discussed. The results suggest that there is more to PDP description
than mere risks and metrics. Integrations or prototypes play an important role in

determining the effectiveness and applicability of different processes

Chapter 8 uses the case study results and lessons to propose a framework for improved
PDP design and selection. Using risk management concepts and the parameters
supportéd by the case studies, a PDP design rpethod is suggested. This PDP design
method is applied at a company seeking to improve its PDP. The method’s application

and ease of understanding within the company supports its utility.

The study concludes that for a PDP to be effective, it should be designed to manage
company-specific development risks and include integrations to provide early feedback
whenever practical. Current PDP selection is inconsistent and PD literature — if it even
recognizes a variety of choices — offers only limited guidance regarding the strengths and
weaknesses of different PDPs. This research improves the understanding and
implementation of PD in three ways. First, it demonstrates how PDPs differ by defining
and comparing key characteristics. Second, it offers lessons on how PDP iterations and
reviews manage risks differently. Finally, it proposes a PDP design method that
companies can use to improve their management of development risks. Together, these
contributions aim to improve the academic understanding of management processes and
to improve business response to the changing regulations and market needs that drive

product development.

10

2. THE CONTEXT OF PRODUCT DEVELOPMENT: INDUSTRY,
POLICY, AND SOURCES OF INNOVATION

God has made man upright, but they have sought out many inventions.
— Ecclesiastes, 7:29

2.1 Introduction

Product development is both a cause and effect of industrial and social progress. This
section explains the context and drivers of product development because of their
importance in shaping development risks and the ability of companies to build prototypes -
or integrated models of their products. These risks, in turn, influence the product

development processes that companies employ.

Figure 2.1 shows a technology strategy chain linking drivers of innovation to actual
product development. The chain places PD in the context of overall technology strategy,
where PD is the last and often most critical part. Drivers of innovation include profit
potential and spurs external to market forces, such as government action. Companies
respond to the innovation challenges in a variety of ways, depending on their
organizations, the type of innovation necessary, and their ability to create and capture

value from the innovation. The resulting risks feed into the product development cycle.

Figure 2.1: The technology strategy chain includes PD and its upstream drivers

11

Understanding PD in the context of general technology strategy is important because PD
does not occur in vacuum. This chapter provides the context and background necessary
to understand what shapes development risks and how PDPs then address those risks.
Section 2.2 introduces the forces driving innovation. Section 2.3 explains key areas of
innovation management, providing the link between innovation and PD. Section 2.4
describes a case study of the gas turbine industry to illustrate how these upstream factors
shape PD risks. Finally, Section 2.5 introduces basic PD concepts, provides a literature
review of the field, and defines the problem of PDP comparison and design that this

thesis addresses.

2.2 Forces driving technological innovation

Previous research and literature suggest that a variety of forces drive technological
innovation. Here, innovation is defined as the application of an invention, though not
necessarily in the form of a final product. This section examines the two categories of
drivers shown in Figure 2.1 — profit potential and government actions. Together, they

provide companies with the basic incentives to innovate and develop products.

2.2.1 Profit potential from innovative rent

In most cases, market dynamics and profit potential are the root causes of PD. If a
potential product will have market value, the company that develops it can reasonably
hope to create it and capture some of the value as profit, which spurs development

efforts. (Henderson, 1994)

An excellent way to pinpoint the sources of innovation is to follow profit potential and
the trail of “innovative rent” to see who profits most from an innovation. The profit
motive for innovation frequently affects product manufacturers. Von Hippel (1988)
demonstrates that lead users and suppliers can also play a large role in innovation and PD
because they are frequently familiar with either the applicable technologies or acutely
tuned to market needs. Furthermore, the development of a new product can sometimes

mean increased profits for the user or supplier as well as (or instead of) the original

12

manufacturer. A variety of actors inay innovate and develop new products, but this

fundamental economic incentive drives them all. (Wheelwright & Clark, 1992)

2.2.2 Government influence

Government actions also influence innovation and PD, usually when a product exhibits
market externalities, is subject to standards, or is likely to lead to a question of legal
liability. This occurs frequently, as in the case of power plant emission regulations or
automobile safety standards. Whenever these regulations change, manufacturers must
develop new products to meet the new standards. (McGrath, 2001) This section briefly
describes three major ways in which government can impact PD: technology-forcing

regulations, direct R&D spending, and judicial imposition of liability.

Technology-forcing regulations
Regulation is by far the most powerful government impact on innovation and PD.
Regulations can be helpful or burdensome, and may either induce or stifle innovation.

(Nelson, 1995)

Environmental regulation is a common driver of innovation. For example, air quality
laws may prompt the innovation, development and use of catalysts to reduce power plant
emissions. However, different types of regulation may produce drastically different PD
results. One type of clean air standard could force an industry to develop a new product
as part of a long-term cleanup process. Another standard could instead stress feasibility
by forcing immediate compliance based on the Best Available Control Technology
(BACT). The first standard prompts immediate innovation and PD in the longer run.
The BACT standards, on the other hand, promote the diffusion and adoption of current
technologies, leading to less innovation but more immediate product output based on
existing technology. The regulators must decide for each circumstance whether diffusion
or development of technology is the worthier goal. (Ashford & Caldart, 1996) This is
analogous to the natural tension inherent in patents, where the promise of a patent grant
may serve as an incentive to innovate in the beginning. Once an invention is patented,

however, the one-time inducement can sometimes become a barrier to further

13

development, especially if it creates a safe monopoly for the patent holder or licensee,

thus reducing the need to update or respond to a competitive threat.

Product development may also be influenced by whether regulations are performance-
based or technology-based. Returning to the same example of an environmental
regulation, an agency can opt either to require a specific device — such as a specific
catalyst — or to promulgate a performance standard defining the parts-per-million
allowances at the end of a pipe or stack. Both may require the development of new
products, but the latter method may be a greater spur to innovation and allow for more

variety in product development. (Porter & Van der Linde, 1997)

These regulatory issues are universal and manifest themselves across companies,
industries, technologies, and agencies. They may affect products as diverse as
computers, dolls, cars and power plants. For example, the Department of Energy
regulates an incentive program called “Energy Star,” which allows computer
manufacturers to place a prestigious (and market share gaining) emblem on their products
if they meet threshold energy efficiencies. This is an incentive for improved hardware
and power-saving screens. The Consumer Products Safety Commission regulates the
safety of children’s toys so that some dolls must attain a certain level of fire resistance.
How manufacturers and toy developers attain that resistance is up to them, leading to the
development and adoption of fire-retardant materials. The Environmental Protection
Agency sets both technology and performance regulations regarding automobiles and
fuels. For example, a technology standard forced the development and adoption of
catalytic converters in the 1970s and 1980s, while performance-based fuel economy
standards allow manufacturers to develop their own means for achieving required auto
efficiencies. Similar performance-based regulations are established indirectly by the
Clean Air Act of 1973 (and its 1991 amendments) to limit particulates, carbon monoxide,
SOy and NOy emissions from electric power plants. In response, power generators can
switch fuels, limit production, improve machinery, or change operations. Some of these
actions lead to new product development by either the generators or their suppliers.

(Unger, 2001)

14

Direct research and development

Government may also spur innovation by directly funding R&D. The US federal
government is not only the nation’s largest consumer and employer; it is also the largest
single investor in R&D. (Haggerty, 1973; Nelson, 1995) Most government R&D funding
is devoted to basic research to fund pre-commercial science and technology. Sometimes,
these projects succeed through the efforts of national laboratories or subsidized

companies and become commercially viable technologies or products.

There are many examples of products stemming from both internal and external
government R&D. In one instance of internal development, NASA engineers
independently designed and developed a probe for Martian soil. The probe, with an array
of sensors at the tip, was later licensed to the Bioluminate company for commercial use
as a noninvasive detector for cancer in human tissue.! Earlier NASA development
programs led to the creation of finite element analysis codes, such as Ansys and
computation fluid dynamics tools. These tools became products because they filled the
needs of companies that had to design a variety of complex parts and flows, ranging from
turbomachinery to automobiles.’ Externally, NASA operates several industrial
partnership plans that provide seed money to US companies developing concepts and
products for potential NASA missions. One example of this government funding is a
grant distributed to Osmoteck Inc., a company that developed a direct osmosis water
treatment system for purifying space station wastewater. A spinoff product extracts
water from leachate in landfills to prevent soil and river contamination. (NASA, 2000)
Partnerships are not restricted to any one government agency or to only small businesses.
For example, the US Partnership for a New Generation of Vehicles coupled Department

of Commerce funding with the big 3 US automakers. (National Research Council, 1998)

! From interview with David Lackner, Technology Commercialization Manager , NASA Ames Research
Center.

? From interview with Lee McLurin, Combustion Turbine Development Manager, Siemens-Westinghouse
Power Generation.

15

Judicial imposition of liability

While the legislative and executive branches regulate safety and environmental standards,
the judicial branch of government may also influence innovation and PD. Even without
legislative safety standards, companies must reckon with potential lawsuits on the
judicially-imposed basis of strict liability. Even if a company is not negligent in
developing and manufacturing a product (i.e. even if regulation-required fire retardant
material is used on a doll, or even if Coca-Cola prints all its ingredients on a bottle as
required) it may be held liable for certain damages. Exposure to such lawsuits can
sometimes prompt companies to develop their products to increase safety or quality

assurance even in the absence of regulation. (Ashford & Caldart, 1996)

The law can also force the diffusion of new technologies. A landmark case in this field
was the TJ Hooper decision of 1932. (2nd Circuit Court of Appeals, 60 F.2d 737; 1932)
In that case, a barge company hired a tugboat company to bring a cargo ship from one
port to another. A storm hit during the transfer and the cargo ship was lost. In the
ensuing lawsuit, the tugboat company claimed that the storm was “an act of God” and
that it was therefore not negligent or liable for the losses. There was no radio (a
relatively new invention) on the tugboat, so there was no way for the ship’s captain to
know about the storm in advance. The decision, written by Judge Learned Hand,
revolutionized the shipping and radio industries. The ruling stated that the tugboat should

have had a radio on board, even though there was no law specifically requiring it:

A whole calling may have unduly lagged in the adoption of new and available
devices...Courts must in the end say what is required.”

Even without any related laws or regulations, the US shipping industry quickly adopted
on-board radio. The liability ruling galvanized an industry and created a need that
could only be addressed by a newly developed product. This remarkable decision is a

salient example of courts mandating the diffusion of new technologies.

2.3 Innovation management

Once prompted to innovate by market forces or government actions, companies face a

broad array of innovation management issues. As companies move from basic research

16

and innovation to actual PD, prior research suggests that companies must address their
own organizational capacity, assess the new innovation on a technology map, and add
customer value while capturing some of that same value for themselves. Each of these

issues is discussed individually in this section.

2.3.1 Organizational capacity

Organizational capacity is critical for any company endeavoring to develop new products.
(Cusumano & Nobeoka, 1999) The ability of the organization may be limited by its
human resources, the skills and knowledge of its employees, its absorptive capacity, its
output or manufacturing capability, and its internal control and communication. The
number and skills of a company’s employees can of course determine the level and type
of effort that a company can invest in new PD. If internal knowledge or capacity is
limited, a company can expand either physically (by growing or acquiring) or by
improving absorptive capacity, which is the ability to recognize and assimilate
new/external information that is critical to innovative capabilities. (Fine & Whitney,
1997, Cohen & Levinthal, 1990) Finally, companies must address their own
communications and control mechanisms. For example, engineering groups within a
company may be organized either along functional or product lines. The differences
between how workers are organized, or “siloed,” may distinguish who communicates
most often with whom. If one group makes a change to a plan or product, they usually
must provide notice to and receive feedback from other affected groups as part of any
development process. Difficulties in this organizational necessity can lead to trouble,

while smooth internal communication can lead to innovation and development success.

2.3.2 Understanding and mapping innovation

A company’s view of a technological innovation may profoundly affect how it develops
the technology into a product. PD risks may be entirely different depending on whether
an innovation is considered to be either a significant leap or an ordinary next step.
Understanding and mapping where an innovation stands in the context of others is
important to any development strategy. Previous literature suggests several relevant

theories on mapping innovation and development.

17

A common mapping device is the S-curve, similar to a learning curve, typified in Fig.
2.2, which demonstrates how a generic new technology may develop or enter a market.
As engineering development continues, a new technology improves and then matures.
Previous work divides the curve into three distinct stages and also distinguishes between
development that rises on an S-curve and development that moves to an altogether new

and higher S-curve. (Foster, 1986)

/} Curve 2
Technical
Metric Curve 1
(i.e. efficiency,
speed, etc.)

Engineering develogment effort
Fig 2.2: A typical technology S-curve

The S-curve is only one of many possible innovation maps. Other authors have mapped
innovation and new product development in different ways. For example, Figure 2.3
categorizes types of innovations and demonstrates Henderson’s case for why sometimes
even minor innovations can have enormous competitive consequences. If a new product
has the same basic physical components but a different linkage between those
components — a seemingly minor difference — the result may be a surprisingly major
change in product architecture, as shown in the bottom left quadrant. For example, a
minor change in an automobile motor’s calibration may cause an unexpected vibration in
the hood metal — an altogether different product component. However, because neither
the motor nor the hood are new, the true challenges of this seemingly minor innovation
are not noticed as readily as radical innovations and developments. (Henderson and
Clark, 1990) It is further argued that these architectural and radical innovations are two
of several reasons why incumbent firms sometimes fail and lose their dominance with the

introduction of new technologies and products. (Christensen, 1997)

18

Core Competencies

Reinforced Overturned

Linkages
between Unchanged Incremental Modular
concepts &

components

Changed| Architectural Radical

Figure 2.3: A Map of Innovation (Henderson & Clark, 1990)"

The main commonality among these various mapping schemes is that they all attempt to
place new innovations and developments in context. The context is important to
technology and development managers because it helps them determine both threats and
opportunities in new PD. A manager may treat a development project very differently
depending on, for example, whether the product is likely to be a platform for future
generations of products. Alternatively, a development manager would find it useful to
know the likely trajectory of the product (and similar products) in the industry in order to
determine how much effort to devote to additional features versus early delivery. These
categorizing schemes for innovations and developments are useful PD tools if they are

accurate.

2.3.3 Creating and capturing value

Creating value is another fundamental component of innovation management and PD.
Value is measured in a product’s ability to address customer needs. Consumers are
willing to pay more for products that are of good quality, save them time and money, or

provide more features. (Soho, 1993; Griffin & Hauser, 1993; Ulrich & Eppinger, 2000)

* There are several other variations on these themes. Other systems map development projects into the
following categories:
e Niche creation, Architectural, Regular, and Revolutionary. (Abernathy & Clark, 1985)
e Research and development, Breakthrough, Platform, Derivative, and Alliance/Partner
(Wheelwright & Clark, 1992)

19

Products can have many benefits; each benefit provided by a product fills a customer
need, and thus has worth. Developing a product that increases benefits to customers

increases the worth and thus creates value.

Methods for creating value vary widely by product and industry. The vice president of
R&D at ABB uses the motto “creating value through new technology,” yet advanced
technology is only one means of adding value. (Bayegan, 2002) Tool companies may
add value by improving the industrial design of their screwdrivers to fit more
comfortably in peoples’ hands. Light bulb manufacturers may add value by increasing
the shock resistance or longevity of their bulbs. Software developers may add value by
eliminating bugs or expanding an application feature. A dictionary website developer

may add value by allowing a viewer to avoid the cost of purchasing a physical dictionary.

To be successful, companies must also capture some of the value created by a new
innovation. Far from the aphorism about the world beating a path to the door of a
successful innovator/mousetrap-maker, the innovators themselves must make great
efforts to reap the rewards of successful product introduction. Otherwise, consumers or
competitors may gain the benefits instead. There are several corporate examples of
successful and unsuccessful efforts to capture the value of innovation and product
development. For example, Xerox developed graphical user interfaces (GUISs) but then
allowed rival companies to introduce the developments in computer products. Instead of
Xerox gaining, companies such as Apple, IBM, and Microsoft were able reap the benefits
of GUISs in the computer market. (Cringely, 1992) On the other hand, some companies
have displayed remarkable success in locking in value from their own product
development. Searle succeeded in developing and marketing Nutrasweet exclusively,
while Microsoft was able to set an operating system standard and profit handsomely from
its dominant position. (Cusumano & Selby, 1995) The reasons for these disparate
results stem from the varying abilities of companies to capture the value of innovation

and development.

20

There are several tools for capturing the value of innovation and product development.
Patents are one key to appropriability, however they are insecure because they are not
always granted and because competitors can frequently circumvent them. Companies
may instead guard themselves by maintaining trade secrets, but this tends to work better
for processes rather than products, since processes are internal and products are usually
available for all to see. Companies can also appropriate the value of new products by
controlling complementary assets. These complementary assets can include
manufacturing facilities, industrial partnerships, marketing contacts, internal technical
knowledge, or a variety of other factors whose absence would serve as a barrier to entry
to other firms. (Teece, 1987) Finally, companies may consider standards as part of their
plan to profit from innovation. It generally behooves a company to control, set, or be a
standard in an industry, whether that standard is an operating system in computers, a
paper size for printers, a format for audio-visual recording, a mechanical alignment for
turbines, or a keyboard arrangement for writing equipment. Once such standards are set,
it becomes more difficult to force a change, introduce an improved design, or gain market
share as an outsider. (Cusumano and Selby, 1995; David, 1995) Companies, as part of
their innovation and product development, may aim to set such a dominant design or

create an industrial platform as part of an effort to capture a market.

Thus, innovation management may include organizational capacity, mapping
innovations, and creating and capturing value. Companies’ innovation management
decisions set the stage for PD and determine which risks will have to be managed by

PDPs.

2.4 Development risks

“Nothing in the universe can be the same if somewhere, we do not know
where, a sheep that we never saw has — yes or no? — eaten a rose.”
— Antoine de Saint-Exupéry in The Little Prince

The upstream drivers of the previous sections set the stage for product development by
establishing a context for company actions and risks. Risk is defined as exposure to

danger or loss. The word’s roots, the Latin and Spanish sailors’ terms for “steep rock”

21

and “to go against the rocks,” suggest that risk has long been considered ominously.
Although rarely considered pleasant in business, taking risks is frequently necessary for
success. Balancing risks and potential rewards is one of the most enduring themes of
economic and developmental decisionmaking. (Foster, 2001; MacCrimmon & Wehrung;

1986; Nichols, 1994; Ansell, 1992)

Development risk is closely tied to uncertainty. Uncertainty is a prerequisite to risk, and
is frequently viewed as a natural background or context over which action may be taken.
(Ben-Haim, 2001) Risk usually applies to the critical action rather than the context, tends
to be more quantifiable, and is something to which one exposes oneself. For example,
when a sailor goes out to sea, the possibility of an ocean storm is an uncertainty, but the
resultant risk is that the sailor’s boat will sink in that storm. If the sailor chooses not to
sail, the uncertainty of the storm remains, but the potential impact, and thus the risk,
disappears. In this case, uncertainty is a natural phenomenon but risk is the function of

exposure to that uncertainty. (Young & Tippins, 2001)

In the field of product development, levels of uncertainty are so variable that uncertainty
and risk are frequently used interchangeably. Common parlance also frequently merges
the terms “risk” and “uncertainty” because of changing circumstances. For the purposes
of this research, uncertainties are the “unknowns” which are usually the context for PD
action and beyond the control of developers. Risks, on the other hand, are the resultant
ambiguities — usually multiplicative products of uncertainties and impacts — that
companies can quantify and reduce to simple probabilities or potential costs. Although
risk is a matter of choice rather than fate, the choice to expose oneself to risk is inherent
with beginning a PD program. (Bernstein, 1996) Thus, risk and uncertainty remain
distinct concepts only when uncertainty percentages and impact values are specifically

named.

Many PD uncertainties lead to different risks of development failure: a slow or late
product may miss a market opportunity and incur too many development costs; a

technically challenging product might be impossible to design, may lack the expected

22

features, or be of poor quality; and a product with misguided specifications may not

fulfill customer needs and completely miss a market niche.

Existing literature suggests several ways of categorizing PD risks and uncertainties.
Some sources simply list every possible risk, ranging from schedule slip to staff turnover.
(Beck, 2000) Others categorize risk in particularly overlapping and interdependent
terms, such as market, market introduction, technical, manufacturing, and managerial
risk. (McGrath, 2001) This research uses a traditional categorization of risk by source.

A successful PD process should be able to manage or mitigate the following four major

types of risk:

Technical — Risk regarding whether a new product is technologically feasible and will
perform as expected. This has been colloquially termed “difficulty
building to a specification” because the design specifications are clear and
valid but difficult to achieve.

Schedule - Risk regarding whether a new product can be developed in the time
allowed or available.

Budget - Risk regarding whether a new product can be developed with the financial
resources available.

Market - Risk regarding whether a new product accurately addresses changing

customer needs and product positioning with respect to dynamic
competition. Unlike difficulty building “to a specification,” this concern
arises when an achievable specification ends up bringing the wrong

product to market.

These four major risks are neither comprehensive nor entirely independent of each other.
Many other factors may also present uncertainty, but they can be subsumed by the larger
risks detailed above. For example, quality assurance or integration risk may sometimes
be subsets of technical risk. The risks are also occasionally interdependent and
overlapping. For example, “scope creep,” a common problem involving feature addition

during development, frequently occurs in an attempt to address market risk, but it may

23

increase technical, schedule, and budget risks. In another example, technical uncertainty
may give rise to a lag in schedule. Alternatively, market or technical uncertainty may
influence the budget by requiring additional prototypes. It is therefore impossible to
completely separate the types of risks faced in PD, although the categorizations are useful

in planning and assessing PDPs.

Given these four categorizations, companies can identify risk or uncertainty profiles for
particular projects. For each of the four types of risk, we can rate the level of uncertainty,
ranging from slight coordination issues to major unknowns (De Meyer, 2002) A sample
risk profile might appear as in Figure 2.4. Risk profiles allow for a reasonable
comparison among different companies’ development risks. Those risks are exactly what

the PDPs in the following menu attempt to manage.

(9]
o]
—~
®
«Q
[e]
]
<
o]
-
=.
7]
=
1 2 3 4 5
Low High

Level of risk
Fig. 2.4: A sample risk profile

One of the major tools for risk management includes product integration, often in the
form of early prototypes, tests, simulations, or models. An integration is usually part of a
planned iteration and provides information or feedback for improved design. As later
sections show, the cost, time and fidelity or quality of these integrations vary widely
across industries. For example, some prototypes are difficult or expensive to build
because they require dyes, machining, or complex mechanical integrations. Other
integrations may be easier if they are computer-based, but do not provide as much quality
information or feedback if the computer models do not capture all the real-world aspects
of future products. Companies must weigh the benefits and costs of integrations to

ensure that they reduce more risks than they create; early integrations or prototypes are

24

not always practical or possible. However, information gained from integrations, tests,

and feedback often improves companies’ PD efforts.

2.5 A contextual case study — industrial combustion turbine PD

This section describes a case study of comparative combustion turbine development at
Siemens-Westinghouse Power Generation (SWPG), General Electric (GE) Power
Systems and ABB. It demonstrates important precursors to PD, including the drivers of
innovation and innovation management that shaped the development risks and processes
that companies use today. In doing so, it sets the stage for a further case studies (see

sections 6.1 and 6.6) by providing a retrospective analysis of a power generation success

story.

This case study is divided into three sections. First, a brief introduction provides the
context of the combustion turbine story, explaining what the product is and why it is
important. Combustion turbines are complex products that have revolutionized the power
generation sector and society in general. Second, the technical drivers and enablers are
explained. As families of commercial product platforms emerged from their military
origins, improvements were not measured in terms of added features, but rather in terms
of increasing efficiency. These improvements were achieved through a com‘bination of
material and cooling innovations, and were heavily influenced by government actions.
Finally, the industry’s innovation management — the step immediately preceding PD — is
reviewed. It is found that S-curves are only a conditionally useful tool for understanding

PD risks and that standard-setting and organizational capacity help define PD challenges.

2.5.1 Case study introduction

Industrial combustion turbines are part of a power generation success story. These
relatively new and environmentally-friendly turbines are in high demand for electric
generation and are experiencing a surge of market growth as they supplant coal-fired
power plants. These turbines usually run on natural gas (they are sometimes called gas
turbines) and are among the most important pieces of hardware in the $220 billion US

power industry.

25

Combustion turbines hold a dominant position in new orders from turbine customers,
who are generally either utility companies or independent power producers. Fig. 2.5.1
demonstrates how combustion and combined cycle turbines dominate over two-thirds of
the over 21.8 gigawatts of recent US electric capacity purchases. They are rapidly
penetrating the established base of coal/steam electricity generation. This section
examines the path to this dominance. Although originally developed in the 1940s as
military spinoffs of jet engines, they did not emerge in force until massive blackouts and

shortages during the 1960s led to the demand for the provision of peak power.

Combined Cycle
12%

Combustion turbine
56%

Fossil Steam
16%

Total = 21.8 GW

Nuclear
6%

Other
10%

Figure 2.5.1: Combustion and combined cycle turbines dominated US capacity additions
for 1996-2000 (US DOE, 1995 & 2000)

2.5.2 Factors in technical development

Combustion turbines for power generation have improved greatly from their early
predecessors, as can be seen in their rising efficiencies over time in Figure 2.5.2. A
doubling in efficiency has occurred for simple cycles, with the introduction of combined
cycles causing a tripling in efficiency. Turbine efficiencies, along with cost and
reliability, are among the most important criteria considered when power producers
(customers) place orders for new plants. Therefore, the development gains in efficiency

are crucial for the success of combustion turbines.

26

70%

®* Combined Cycle
60% [® Simple Cycle .

* (Projected)

'y
3
o
q
|

Efficiency (LHV)
w a
o o
53 2

L

20% .,..,

10% I ! 1 L !
1945 1955 1965 1975 1985 1995 2005

Year

Figure 2.5.2: General efficiency increases for representative combustion turbines.

To increase efficiencies, turbine designers have worked to increase firing temperatures
without damaging the turbines themselves. The advantage of high firing and rotor inlet
temperatures (RITs) is that they nudge combustion turbine cycles closer to ideal Carnot
thermodynamic cycles. However, firing turbines beyond the threshold temperatures of
their components threatens their integrity and reliability. R&D addressing this concern
has progressed along two major avenues of development: material and cooling

innovations.

Material innovations

Materials used in combustion turbines have gone through many incremental
improvements since the first practical turbines were developed in the 1940s. Most R&D
efforts led to improved steel alloys for use in turbine vanes, blades, and inlet blocks. This
R&D in turbine materials and coatings led to two important effects. First, combustion
turbines were better able to withstand high temperatures. These more rugged materials
allowed for hotter inlet gas to enter the turbine’s first stage blades, leading to higher
efficiencies. Second, material improvements led to an increase in rotor life and
reliability. Gas and combined cycle plants could not have achieved popularity and larger
market shares without solving problems such as premature blade cracking or component

deformations. Together, the higher temperatures, higher efficiencies, and improved

27

reliabilities have advanced the deployment of combustion turbines in the power

generation market.

Progress in combustion turbine material development often came in the form of
alternative stainless steel or metal alloys that had improved heat characteristics. Different
parts of combustion turbines use a variety of alloy metals, including varying quantities of
cobalt, nickel, and chromium. For example, some early stationary turbine blade designs
used welded structures in AISI 310, a 25-20 austenitic stainless steel that had excellent
resistance to both corrosion and to oxidation at elevated temperatures, but had limited
strength capabilities. Some turbojets then switched to higher strength, nickel-based
alloys, but this proved unsuitable for industrial combustion turbines because they either
lacked corrosion and oxidation resistance or they were too difficult to weld with enough
integrity. (Bannister, 1996) In the 1960s, engineers began to design these vanes with
cobalt alloys for two reasons. First, cobalt alloys have high heat tolerances and can
withstand high firing temperatures and corrosion with less cracking or warping. Second,
cobalt alloys tend to have favorable welding characteristics. The welding ease of this
metal can be extremely important in repairing turbine vanes that crack with time and use.
Thus, material improvements in blades and vanes have improved heat characteristics and
increased rotor life by reducing turbine damage and allowing easier maintenance.
Improved cobalt alloys are still used today to increase creep and oxidation resistance.
Some turbine manufacturers have also increased their use of titanium, a stronger but

expensive metal, in their combustion turbine components.’

Future combustion turbines may be able to make better use of ceramic materials. The
introduction of heat and corrosion resistant ceramics may become possible if their
brittleness can be circumvented. Advocates of ceramics hope that these advanced
materials can be the next big breakthrough in combustion turbines, succeeding another

major breakthrough that occurred in the 1960s in the area of turbine cooling.

3 From interview with Lee McLurin, Combustion Turbine Development Manager, Siemens-Westinghouse
Power Generation.

28

Cooling innovations

The introduction of cooling to combustion turbines was the most important technological
breakthrough in combustion turbine development since the end of World War I
Improvements in turbine cooling also helped to advance the penetration of combustion
turbines in today’s power generation market. Like material advancements, cooling
innovations allowed power producers to feed higher-temperature inlet gases into the
turbine blade-path. Combustion turbine operation at these higher temperatures leads to

higher efficiencies and makes these turbines more viable sources of electric power.

Cooling helps to increase rotor inlet temperatures by circulating air or steam through hot
turbine components. This includes extremely intricate pathways, tunnels, and holes to
allow for maximum heat transfer to the cooling fluid. Without this critical innovation,
turbine designers would have been limited to the ordinary heat tolerances of metal alloys
and coatings. As Figure 2.5.3 demonstrates, firing temperatures would have leveled off
after the 1960s at their threshold levels of about 1800°F (1000°C). Instead, rotor inlet
temperatures were able to increase and improve turbine efficiencies while minimizing
thermal damage. These trends helped combustion turbines break into the power

generation market.

Cooling was originally introduced into military turbojet engines in the early 1960s. The
advance followed a relatively common trend in combustion turbine technology transfer:
new developments in the turbines of military turbojets would become available to civilian
aircraft about two or three years later, followed by diffusion to the power generation
combustion turbine industry after about five years. (Hammond, 1973) Cooling
techniques became more intricate and effective with the advance of computer codes and
modeling. An example of the evolution of cooling technology can be seen in Figure
2.5.4, which shows how Westinghouse has improved its 1*' row combustion turbine blade

through the years.

29

. TEMPERATURE °F
WS01A
(1068) = TURBINE INLET 1830
2400 - AND AVERAGE METAL 1013
W501AA MAXIMUM SURFACE 1700

(1970) COOLING aT 17

W501B ,4 . === TURBINE INLET 1819

AVERAGE METAL 1452

}
E
3

ROTOR INLET TEMPERATURE, RIT, °F
i i
1
]
A ‘
i
[“
U

TURBINES MAXIMUM SURFACE 1650
COOLING AT a7
TURBINE INLET 2026

AVERAGE METAL 1200
MAXIMUM SURFACE 1615

COOLING AT 635
1400 UNCOOLED

TURBINES S01F TURBINE INLET 2300
(19%0) AVERAGE METAL 1400
200 MAXIMUM SURFACE 1600

COOLING AT 900

T140 1960 1980 1970 10 1m0 2000
YEAR

Fig. 2.5.3 (left): The introduction of cooling led to a breakthrough in inlet temperatures
Fig. 2.5.4. (right): The evolution and complexity of component cooling. (Bannister, 1996)

The role of government in innovation

In analyzing the technological development of combustion turbines, it is important to
note how government involvement has contributed to R&D. The clearest involvement
took place in the beginning of the combustion turbine era, when defense programs poured
money into basic turbojet research. Major turbine manufacturers such as GE and
Westinghouse got their start in the combustion turbine industry by then developing
combustion turbines for applications in military aviation. As noted above, these turbojets
became the first crude models for power generation combustion turbines and much of

their technologies were transferred to industrial turbine use.

Government involvement through aviation R&D continues to this day. The US
government alone has spent over $13 billion since 1940 on military jet engine
development and still spends about $400 million per year on R&D efforts through
companies such as GE and Pratt & Whitney. As a result of these efforts, there is a
“supermarket of technology” created by the jet engine programs that is slowly utilized by
power equipment companies. As noted above, this supermarket contains everything from
new alloys that can withstand higher temperatures to computer codes for advanced

turbine blade profiles and cooling. (Watson, 1996)

30

Governments have also devoted some attention to the power generation uses for
combustion turbines. The 1970s saw the US Department of Energy (DOE) sponsorship
of the High Temperature Turbine Technology program and the Japanese Government
sponsorship of its national Moonlight project with Mitsubishi to improve turbines. A
more recent initiative is the US Advanced Turbine Systems (ATS) program, which is
spearheaded by Federal Energy Technology Center that includes six US turbine
manufacturers, 83 universities and multiple DOE research centers. The goal is to
subsidize and coordinate R&D that will lead to the next generation of efficient gas and

combined cycle turbines.

In summary, technological innovation has played an important role in the advancement of
combustion and combined cycle turbines. Material improvements and cooling advances
have helped to increase RITs and efficiencies. Throughout this process, government

purchases and sponsored R&D have spurred innovation alongside market forces.

2.5.3 Innovation management and development risks in combustion turbines

This analysis examines several aspects of innovation and development strategy, including
1) Mapping innovation: S-curve modeling of models turbine innovation

2) Creating and capturing value: Standards

3) Developmental organization

It concludes by observing how companies in this industry followed the technology

strategy chain to arrive at today’s PD risks and environment.

Mapping Innovation: The triumphs and pitfalls of S-curve analysis

The traditional technology S-curve provides some insights into the emergence of
combustion turbine technologies, but is severely limited as an analytical product
development tool. A modified S-curve is a useful descriptive tool to view the
development of combustion turbine technology in retrospect; however, it is difficult to
utilize the curve as a forecasting mechanism. Two charts display how S-curves can be

useful but still problematic in mapping innovation and planning PD.

31

A capacity diagram of combustion turbine generation in the US can be seen in Fig. 2.5.5.
It can be viewed either as a combination of two S-curves, with the latter beginning where
the first ends, or as a single S-curve with a flattening abnormality in the middle. For
reasons discussed in detail later, we assume for now that it is one curve with an

abnormality imposed by external forces.

Gas

Deregulation Energy

~ Ends Policy Act
70 TAY
Great Northeast Deregulation Starts Fuel Use
60 Blackout Fuel Use Act Begins | Act Ends
50
E 40 ~
c
2
s 30 /
20 /
10
0 i] 1 |
1950 1960 1970 1980 1990 2000

Year

Fig. 2.5.5: The expansion of electric utility combustion turbine capability (US DOE,
1998).

Fig. 2.5.5 shows how combustion turbines gained entry into the power generation market,
replacing traditional steam turbines along the way. The process began in the mid 1960s
after a major blackout, after which combustion turbines served a niche market for peak or
emergency power generation because of purely technical reasons: combustion turbines
start up faster than steam turbines by avoiding the need to start a large boiler for steam
production. The versatility and speed of combustion turbines made them popular, which
in turn led design engineers and manufacturers to seek improved designs for the
relatively new products. Efficiencies improved with additional R&D, spurring additional
sales until an energy crisis and major changes occurred in the US fuel system. These
exterior forces essentially shut down the combustion turbine industry for a decade. Later,
policy decisions would eventually re-create the market for combustion turbines and once
again promote new development and innovations. These external forces are discussed

subsequently in this section, but the focus here is to show how the adoption of

32

combustion turbines can indeed resemble the S-curve, with the number of adopters

growing dramatically before leveling off.

A different S-curve can be seen in Figure 2.5.6, which shows how operating temperatures
increased with time for one manufacturer’s specific family of turbines, in this case the
Westinghouse 501 series. This figure shows how temperatures increased with the use of
cooling in the early 1970s, stalled during a period of slow development during the 1980s,
then increased when demand surged and development resumed using advanced computer
codes in the 1990s. The curve does display S-type characteristics, but if effort replaced
time as the unit of measure, the plateau and inflection points would disappear, we would
appear to be in the middle of the slope, and innovations and improvements would not yet

appear to be leveling off. This displays the sensitivity of this type of analysis to varying

assumptions.
1500
501G
L]
1400
~ 1300
Q .
2 501F
5 1200 proyse "
5
H 501D . 501D5
e 1100 1
E
©
1000 v
501B
900 —
501 A 501 AA
800 ! 1 | [I 1

1965

1970

1975

1980

1985

1990

1995

2000

Year

Fig. 2.5.6: Operating Temperatures of the Westinghouse 501 Combustion Turbine Family
(Bannister, 1996)

As these examples demonstrate, the S-curve can act as a rough descriptive tool for
managers mapping innovation, although different curves could lead to differing

conclusions on where a technology stands on the S-curve.

Several other factors complicate the task of mapping innovations accurately. For
example, three areas of changing government policy severely altered the S-curves above.
The dates of some of their highlights can be seen on Fig. 2.5.5. First, fuel polices

alternately deregulated and restricted natural gas, retarding gas turbine sales,

33

development, and innovation. Second, environmental regulations complicated S-curves
by heaping new costs (of externalities) on coal-fired power plants and suddenly
promoting new demand for cleaner combustion turbines. Finally, electric industry
restructuring, marked by the Energy Policy Act, also skewed the S-curves by spurring
renewed interest in and sales of combustion turbines in the 1990s. This is because
combustion turbines are smaller and more modular than traditional steam turbines, thus
representing smaller capital investments and quicker rates of return in a power industry

that suddenly must care about its profitability in a new, competitive age.

In conclusion, S-curve analysis and innovation mapping is difficult in the power industry.
As a descriptive tool, the S-curve adequately characterizes historical and technical data.
However, as a prescriptive tool, different metrics and other “exterior” or policy factors
skew the curves enough to hide the points of inflection. Understanding those inflection
points is critical to managers’ abilities to map innovations successfully, understand likely

risks, and make appropriate PD decisions.

Creating and capturing value: Standards

Combustion turbines are somewhat standardized, but still vary widely by manufacturer
and model. Despite some profound technical differences, major similarities exist which
could identify a sort of dominant design. The dominant design is a series of burners in an
annular ring around the turbine itself. American firms were able to set the dominant
design standard because they had benefited from government-sponsored military research
funding. GE and Westinghouse turbines therefore contained aero-derived concepts such
as the “combustor-ringed” turbine. (Watson, 1996) In contrast, European manufacturers
initially followed a Josing route. Because they had not benefited as much from jet-related
subsidized research, they viewed combustion turbines as a modification of older power
generation methods that used large burners and boilers rather than series of small
combustors. These companies failed to recognize a break in the S-curve. Rather than
considering radical new annular designs like their American counterparts, they merely
put forth designs that were much closer to traditional generation technology. Their initial

turbines and combustors were essentially bolted together, with only one or two large

34

combustors resembling a conventional steam boiler. This branch of combustion turbine
evolution withered and died, leaving the American companies to set the dominant design
standard and earn consumer trust. The American methods were later adopted by other

companies.

After the initial "standard" of many combustors was established, the turbine industry was
able to grow independently. Standardization is not critical to the turbine industry as a
whole. The only attribute which all turbines must share is the ability to turn generators at
an established, synchronized speed, but this 60-hertz’ power standard became
established long before the advent of combustion turbines. Despite the lack of strong
industry-wide turbine standards, individual companies try to follow their own
construction and operating standards for purposes of modularity, reduced cost, ease of

manufacturing, and sales.

Developmental organization
Different companies in the power turbine manufacturing industry, including GE,
Westinghouse/SWPG and ABB, choose varying methods for managing and organizing

their innovative workforce.

Market leader GE clearly views functional engineering organization as important for
success, as can be seen in its statement:
For us, the development of combustion turbine technology has been evolutionary, and based on
teamwork. We've incorporated technology advances from our own Power Generation technology

development programs, our own GE aircraft engine business, and our Corporate Research and
Development Center.’

This demonstrates how, as part of innovation management, GE aligns its efforts by
function as opposed to by product. In this case, GE combines its aircraft and power
generation turbine efforts because of similar functionality, defying a product “silo.” This
organizational method has pitfalls as well as advantages. In the mid 1990s, GE retired

many of its turbine designers at its power generation headquarters in Schenectedy, New

450 Hz in Europe, Asia, and Africa
5 GE Website: http://www.ge.com/powergeneration/pg6.htm, 1999.

35

York. GE intended to “fill the gap” by transferring expertise from its aircraft engine
headquarters in Cincinnati. The imperfect match resulted in a loss of organizational and
institutional design knowledge, leading to a series of design difficulties and a less
successful turbine model year.6 Figure 2.5.7 demonstrates the problem. This figure is a
fine example of the “swimsuit” effect: what it reveals is interesting, but what it obscures
is even more interesting. The figure physically shows technical developments in
successive “families” (platforms) of turbines by demonstrating how their efficiencies
increase. However, the figure does not show a “G” family; it skips directly from F to H.
The “G” family is subtly missing because it was an example of a product development
failure. This figure shows how GE's attempt to reorganize interfered with its previous

pattern of successful product development.

“H” Technology|
0% Firing Temnp
©
T——--ﬂdn
T on “F” Technology
i 1300
£ .
% ""“r “E” Technology B B
! //—_
e = 1100
“ T
. + 1ooe
e s prm s o e

Year of Shipmant
’ CC ENicancy
Fining Temp

Fig. 2.5.7: GE Power Systems chart of technical product advances skips the “G” family
harmed by engineering reorganization’

Westinghouse also tried to transfer knowledge between its aircraft engine and turbine
businesses, but was less successful. Like GE, it formed power generation design groups
independent of their aircraft engine designers in the 1950s. However, unlike its main
rival, Westinghouse was not able to take advantage of aero-engine knowledge because it
exited the jet engine business in 1960 while keeping its stationary combustion turbine
division. The company has found success in organizing most of its development teams

by product, and it is fostering stronger links between design and manufacturing groups.

Information from an interview with Mr. L. McLurin, Combustion Turbine Development Manager , Siemens-Westinghouse Power
Generation.

7 Chart provided by Dr. J. Haynes, GE Combustion Research

36

ABB had a different engineering development and organization strategy. Brown Boveri
closed its own combustion turbine business in the mid-1980s because of the
aforementioned slump in the combustion turbine market (see Fig. 2.5.5). When it merged
with ASEA in 1988 to become ABB, it gained some aircraft engine expertise, but this
advantage was negligible relative to the developmental losses it incurred while
withdrawn from the business for several years. As the combustion turbine slump ended
and the market surged, ABB realized that it was at a competitive and technological
disadvantage compared to Westinghouse and GE, so it embarked on a brand new
development program. The company hired key engineering and management personnel
who had previously worked for GE and integrated them into its existing development
team in Zurich. It then isolated the design group and even gave the group a separate
facility outside the city so that it could design a “fresh” turbine, unencumbered by past
designs and traditional biases. This was a successful attempt to force a “leap” in
technology by discouraging the evolutionary development that would have come with
steady contact between design engineers and the manufacturing division. The result was
its novel sequential combustor that was unusual and successful enough for ABB to

differentiate itself and earn customers in the power turbine market.®

It is difficult to discern which of the above examples of managing innovation is best. All
of the examples of the above companies have been successful; reasons for their
organizational differences could be due to a variety of external factors, local or cultural
concerns, or managerial choice. A next logical step would be to try to find larger
examples of corporate engineering failure in order to see why certain (presumably other)

engineering management choices were unsuccessful.

Development risks ‘

In all cases, companies were faced with a business environment shaped by technological
and market history. Given the maturity of both the gas turbine and electricity generation
industry, most competition is based on technical factors: usually a combination of turbine

efficiency and reliability. High efficiencies allow generation companies to reduce their

$ Information from an interview with Dr. C. Tedmon, Former Director of ABB R&D.

37

operation costs by requiring less fuel per GW of electricity generated, while
simultaneously offering environmental incentives by burning less fuel. High reliability
allows generation companies to avoid the costly repairs and lost generation time resulting
from blade and vane cracking or misalignment. Thus, companies are faced with
significant technical risk in developing turbomachinery for sale to generators. Also,
market risk is muted in the industry because of the common practice of offering contracts
with guaranteed payments, or “liquidated damages,” from manufacturers if a turbine does
not reach a promised efficiency once installed. As discussed later in section 6.1, these
liquidated damages translate market risk into technical risk, increasing technical risk by

increasing the impacts (potential costs) of technical uncertainties.

2.5.4 Case study conclusions

This case study serves two purposes. First, it provides an example of the technology
strategy chain issues presented in this chapter. Understanding the chain, including the
drivers of innovation and innovation management, are critical to understanding the risks
that companies face when they begin PD. The case study also provides background to

the PDP case studies in Sections 6.1 and 6.6.1, which continue where this story ends.

Government and market forces were both drivers of combustion turbine innovations in
both material and cooling technologies. Techniques for managing innovation, including
S-curve mapping, new company organizational structures, and value capturing through
standardization, all had varying degrees of success and failure, and together with policy
forces shaped the development risks that companies face today. After half a century of
turbine innovation, the combustion turbine market is relatively mature, leading

developers to compete based on turbine price and efficiency.

2.6 From innovation to product development

The upstream innovation management decisions described and illustrated in the previous
sections set the stage for product development and determine which risks will have to be
managed by product development processes. Product development is where innovation

management meets market reality. Successful PD that addresses development risks can

38

increase sales, reduce time to market, create better products and reduce expenses, but
poor PD can be harmful to both a product line and the company that manufactures it. The
key to this high-stakes game is successful PD process selection, yet companies face a

daunting array of choices.

2.6.1 PD Literature review

PD literature may be broadly divided into several categories. Sources include general
guides, discussions of architectural or modular PD, descriptions of PD tools, works on
risk analysis and reduction, advocacy for specific PDPs, case studies, and limited

comparisons among PDPs.

Some sources describe engineering design and PD in a broad and systematic way as a
guide for improved implementation. (Cleland, 1994; Otto & Wood 2001; Pahl & Beitz,
1996; Rosenau & Moran, 1993; Ulrich & Eppinger, 2000) They give examples of many
product development experiences and advocate use of a structured, multi-stage PDP to

manage the competing technical or market risks.

Many authors already presented in this chapter write about technology strategy issues
upstream of most PD. Others, such as Hax & Wilde (2001), Craig (2001), and Crawley
(2001), combine PD with either architectural or corporate strategy. These sources
explore the importance of the link between company direction, product modularity, and

system architecture.

A considerable body of work has developed improved PD tools. Work stemming from
the MIT Center for Innovation in Product Development extended the design structure
matrix (DSM) as a useful tool for defining interactions among product parts, groups, or
development organizations. (Dong, 2002; Eppinger & Whitney, 1990, Yassine &
Whitney, 2000, Eppinger, 2001; Helo, 2001) The DSM tool helps identify and organize

tasks and feedback loops in complex development programs.

39

Other applicable research explores the roles, categorizations, and management of risk.
De Meyer, et. al. (2002), Hartman & Myers (2001), and Jootar (2002) organize risk by
type and warn of the need to observe these risks carefully in order to improve project and
development management. More general risk literature stresses the importance of
maximizing expected values (Ansell & Warton, 1992), hedging and parallel
development. (de Neufville, 1990)

Some authors are champions of certain PDPs. Cooper (2001) argues persuasively for the
effectiveness of the stage gate PDP. Other sources, including those general sources
mentioned in the beginning of this section, (Pahl & Beitz, 1996; Ulrich & Eppinger,
2000) take more tacit approaches but implicitly endorse this point of view. Boehm (1994)
advocates the use of the spiral process in software development. He is joined by
Hekmatpour & Ince (1988) and Gilb (1988), who similarly denounce the deficiencies of
rigid waterfall processes in favor of flexible prototyping. Beck (2000) explains and
makes the case for extreme programming. Smith & Reinertsen (1992) urge stepping
away from phased development in favor of increased flexibility, and do not limit their
recommendations to only the software industry. Many of these conflicting views are

further presented and compared in Chapter 3.

Product development literature is strengthened by many studies of individual companies’
PD efforts. Cusumano & Selby (1995) and MacCormack (2000A) closely examined the
Microsoft Corporation’s process of frequent “builds.” Several authors investigated
automobile manufacturers processes in both the US and J apan. (Cusumano, 1991;
Ward,1995; Womack, 1991) Most made comparisons between management methods on

different sides of the Pacific.

Finally, some sources begin to compare different PDPs. Krubasik (1998) argues for the
need to customize PD, suggesting that “product development is not monochromatic. ..not
all product development is alike. Each situation has a different context...[implying]
different managerial actions.” Other authors, such as McConnell (1996) offer brief and

balanced comparisons of different PDPs, but limit the scope to theoretical examples.

40

MacCormack (2000B & 2000C) suggests a method of matching PDPs and context,
supporting his conclusions with a comparative empirical study, but is stymied by the

challenge of effectively measuring process success.

2.6.2 Commeon product development actions
Most product development efforts include a series of common actions, steps or stages.
Enacting these tasks in an organized manner constitutes a product development process.

These steps, according to prevailing literature, include:’

¢ Product planning — This introductory step includes market surveying, concept
selection, and concept design. Rough budgeting may also begin in this step.

* Process design and selection — Companies must then design or choose how they
will proceed with the PD process. This involves choosing from an array or menu
of PD processes with different types of schedules, patterns, feedback loops, and
likely results. This step frequently is the result of momentum because companies
have set policies or procedures which must be followed regardless of
circumstances.

¢ Specification creétion — Having defined customer needs, this step involves the’
initial setting of product specifications. Depending on the process selection, these
specifications may be either flexible or frozen.

¢ System-level design — Upper-level design of overall product and system

architecture without great attention spent on individual modules or features

® The names of these steps are adapted from and consistent with several sources and are relatively common
and accepted. (Ulrich & Eppinger, 2000) The exception is “process selection,” which is the exclusive
domain of this research and, as the thesis will demonstrate, a necessary addition to effective PD. Other
sources include variants of the same major steps, such as:
* (1) Preliminary investigation (2) Detailed investigation — Build business case (3) Development
(4) Testing and validation (5) Product and market launch. (Cooper, 2001)
® (1) Requirements analysis (2) Requirements specification (3) Design (4) Implementation
(5) Validation (6) Verification. (Hekmatpour & Ince, 1988)
or alternatively, in the specific case of software development:
* (1) Systems analysis (2) Design (3) Plan and budget (4) Build (5) Test (6) Run (7) Maintain.
(Gilb, 1988)
Many of the basic steps are similar and, for the point of discussion here, virtually identical. As future
chapters will demonstrate, the key differences are not so much in the names of the similar steps, but rather
in the order, length, repetition of, reviews, and information exchanges between the steps.

41

* Detailed design — The “guts” of any development process, this step includes the
mathematical/engineering design of mechanical components or the actual coding
of software.

e Testing/prototyping — The validation and verification of both detailed and
system-level design, this step goes beyond mere simulation to confirm that
behavior of the product (or its components). Depending on the PD process used,
this can be a penultimate step in which success is common or a regular part of a
frequently-occurring cycle, in which case the information from both successful
and unsuccessful tests are used as feedback for product refinement.

¢ Release — This includes marketing, production ramp-up, and the myriad of other
issues (financing, maintenance contracts or guarantees, etc.) during which
customers use the product. The company has no expectation of further testing or
feedback regarding the product released. Any feedback from the product goes
towards either future products/versions or towards fixes or maintenance in case of

trouble or recalls.

These steps are not all-inclusive. Many companies, especially in the biotechnology and
pharmaceutical industries, have additional steps and requirements regarding clinical tests
and pretrial approvals. Other companies must consider field service and recycling or
manufacturer take-back as part of their product development. However, most companies

use at least some form of the above actions.

The purpose of PDPs that include these actions is to provide a structure for managing the
many uncertainties and risks that companies face. Breaking up the process into smaller
actions is one way of reducing risks. Most actions in the process involve some form of
risk — such as system-level design decisions that may only possibly be technically
feasible, or which may only possibly meet customer demands. Literature sources
recognize PDPs as risk management structures, but they do not all acknowledge a
multiplicity of processes. Those that do recognize multiple processes still face difficulty
in comparing PDPs because they have no common language in which to compare them.

Comparisons are frequently either partisan in view or industry, limited in scope, or based

42

on process steps, when it is in fact relations between these common steps that set many
processes apart from each other. Steps and actions can be arranged in different ways:
they can be extended or shortened, checked, repeated, skipped, reordered, or reorganized
depending on reviews and information feedbacks within companies. These distinctions
are more difficult to categorize and make PDP design and selection difficult. Companies
frequently face the difficult challenge of designing or choosing a PDP that best addresses

their risks; only some of them are successful.

2.6.3 Product development problem definition

Companies have difficulty designing or selecting PDPs because process differences are
poorly understood. To overcome the gap in existing literature and industrial
decisionmaking, this research has three goals. First it seeks to identify distinctly different
PDPs and establish that variety exists. Second, the research demonstrates how PDPs can
address different recognized classes of risks. To do so, it defines parameters that allow
observers to distinguish risk management differences between processes. Finally, the
research uses lessons from observation and comparison to propose a method for
improved PDP design and selection based on risk. The overall research goal is to help
academics and business managers with the difficult task of identifying, comparing and

successfully designing or choosing PDPs for risk management.

2.7 Chapter summary

This chapter provided the context for understanding product development challenges.
Past' literature suggests that market forces, societal change, and government action drive
the need for technological innovation. Companies manage that innovation by mobilizing
their organizational capacities, understanding and mapping innovations in their
technological contexts, creating value and then capturing some of that value in order to
profit. These upstream actions lay the groundwork for PD work, determine the risks
facing companies at the beginning of their product development processes, and influence
the ability of companies to build prototypes or integrated models of their products.
Literature in the field agrees on many phases of PD, but fails to identify and compare

PDPs in a manner that allows companies to successfully design or choose PDPs for risk

43

management. This research attempts to fill the academic gap and improve PDP design

and selection.

44

3. PRODUCT DEVELOPMENT PROCESSES

“Work once, work twice.”
— Benjamin Franklin, Poor Richard’s Almanac

Product development literature provides many examples of how companies manage
development risks. This chapter presents an array of canonical PDPs and describes some
of their basic tenets, advantages, and disadvantages. The stage gate process is the
traditional and dominant PDP in American industry. The spiral process, a more flexible
process that incorporates cross-phase iteration, is gaining popularity in the software
industry. Evolutionary prototyping and delivery processes involve customers and
incorporate aspects of both the stage gate and the spiral processes. The design-to-
schedule and design-to budget processes place explicit limits on themselves. Although
the PDPs are not explicitly compared to each other, the advantages and disadvantages of
different processes illustrate important commonalities and differences in terms of how
they manage risk. The literature-based descriptions of all these model processes serve as

useful bases of reference for the actual PDP case studies presented later in Chapter 6.

3.1 The waterfall/stage gate process

“Every step of progress the world has made has been from scaffold
to scaffold and from stake to stake”
— Wendell Phillips in a speech for women’s rights, 1851
The most widely-used type of product development process, and the standard for
comparison in this research, is the traditional stage gate process shown in Figure 3.1.
(Cooper, 2001; McConnell, 1996; Smith & Reinertsen, 1992; Ulrich & Eppinger 2000)
This process, also called waterfall, phase-gate, or life-cycle by various authors and

practitioners, has been dominant in US industry for almost 30 years.

45

Reviews (Stage Gates)

Cross-Phase
Iterations
(unplanned)

Within-Phase
Iterations
(planned)

Figure 3.1: The traditional stage gate, or waterfall, product development process

This ideal waterfall process proceeds in discrete stages, or phases, from product planning
to product release. The intermediate phases include concept design and specification
analysis, system-level design, detailed design, and testing or prototyping. At the end of
each phase is a stage gate, which consists of a phase review to evaluate whether the
previous phase was successfully completed. If the project is reviewed positively, work
proceeds to the next phase. If not, then work continues or iterates within that phase until

it can successfully pass the hurdle.

The reverse arrows, or cross-phase iterations, in Figure 3.1 indicate that it is possible to
reverse course and make changes in earlier phases, but such iterations are difficult and
often costly. The purpose of the phase gates is to confirm that a phase is complete; going
back to revisit a supposedly completed phase defeats that purpose, is usually not part of
the original plan, and may indicate substantial rework. These major, and generally
unexpected, feedback loops are accepted if necessary, but are difficult and generally
confined to adjacent stages to minimize the expensive rework involved in feedback

across many stages.

46

Stage gates and the difficulties of revisiting earlier phases lead to fixed outcomes at the
end of each stage. Iterations occur within each stage, but are not planned across phases
because cross-phase action would defeat the purpose of phase-gates, which exist to close
one chapter of development and open the next. The resulting narrowness of iteration has

both advantages and disadvantages.

One major advantage of waterfall processes is the structure that they impose on
development by reaching sharp product definitions and specifications early in PD.
Technical risk is reduced because narrow iterations and phase gates lead traditional
waterfall processes to freeze specifications early. Rigid specifications help design teams
by giving them clear goals towards which to work. The stable product definition also
helps to avoid errors because midstream corrections are infrequent. Furthermore, the

inherent clarity of the process allows early forecasting and minimal planning overhead.

The stage gate process performs well in cases when product cycles have stable product
definitions and when the product uses well understood technologies (as in the case of
upgrades or maintenance improvements to existing products.) In these cases, the
waterfall process helps to find errors in the early stages of a project, when costs of
changes are low. The waterfall process also works well for projects that are dominated
by quality requirements rather than cost or schedule requirements. In these cases, where
quality and error-avoidance are high priorities, the most attractive path is a direct one
with early specifications and no subsequent changes that increase the likelihood of

mistakes.

The main disadvantage of narrow iterations and stage gates is inflexibility. Because they
do not cross phase boundaries, narrow iterations cannot incorporate feedback from later
phases. This makes it difficult to fully specify requirements in the beginning of a project,
especially in a dynamic market. Poor or misleading specifications can lead to great
market risk. Failure may result if early specs and assumptions are proven wrong by

subsequent market research, detailed design, or prototyping. The waterfall process does

47

not handle these midstream changes well and can be ill-suited for projects in which

requirements are poorly understood in the beginning.

Stage gate processes are also sometimes poor matches for companies when speed and
time-to-market are more important than extra functionality or total quality.
Documentation of stage gates processes can be burdensome. In addition, traditional stage
gate processes have difficulty incorporating cross-phase processes that do not fit neatly
into individual process stages. The stage gate process also has difficulty handling parallel
tasks within stages. As a result, the length of each stage may be associated with the
slowest field within that stage, thus lengthening the development process. (Smith &

Reinertsen, 1992)

3.1.1 Modified stage gates
If the basic stage gate process is too rigid and unchanging for some circumstances, then
looser, modified stage gate processes may help PD efforts. This section examines two

such modifications: stage gates with subprojects and overlapping stage gates

One of the problems with the classic waterfall is that progress can be retarded by one step
of many within any given phase. For example, although there are many small steps in
individual design, one component of the detailed design might take significantly longer
than the others. Rather than letting this become a rate-determining step and thus delaying

the entire process, the process can be improved as shown in Figure 3.3.

Figure 3.2 shows a waterfall with subprojects. If a system can be decomposed into
logical and quasi-separable components, then it may make sense to do some of the work
in parallel and let each subproject proceed at its own pace. This way, resources are not
wasted by forcing each subproject to finish simultaneously when some may be completed

earlier.

48

Product

planning
) Concept |
design

Detailed

design A
System-level aich
design design A’
Detailed syfstem
design B lesting
Detailed
design B’

Subsystem
testing

Detailed
euled
.D

design C’
Subsystem

testing

System
testing

Figure 3.2: A stage gate process with subprojects

Another modification can be seen in Figure 3.3, which demonstrates the “overlap”
waterfall process; in this process, phases intersect prior to the passage of stage gates.
One of the problems with the classic waterfall process is the silo or “throw it over the
wall” mentality associated with strict divisions between phases. The lack of continuity
can lead to difficulty if different personnel are involved in each step, which remains a
problem in some companies. The lack of continuity can also be problematic if an
unforeseen difficulty becomes manifest one stage too late, forcing a potentially

unfortunate or expensive reversal of course. (McConnell, 1996)

Hidden “phase gate”
/

Product planning

Concept design

Figure 3.3: The overlapping waterfall product development process

49

The process in Figure 3.3 can help overcome some of these problems. By allowing
stages to overlap, some knowledge — and perhaps feedback — from one stage can allow
for more effective work on the next. Other benefits are improved teamwork and a more

project- (rather than function-) oriented environment.

A problem common to both of the modified waterfalls is that they lead to parallel work.
As noted above in Figure 3.3, parallel work may be fine if there are no interdependencies.
However, if there are unforeseen interdependencies, a company with too many tasks in
parallel risks technical failures (if the interdependencies are never resolved) or
inefficiency (if the interdependencies lead to endless cycles of unplanned, cross-phase
iterations). In addition, some milestones may be more ambiguous and difficult to track.

(McConnell, 1996)

3.2 The spiral process

“The shortest distance between two points may be a ‘great circle route.””
— Repogle Globe Manual

The spiral PDP differs from the stage gate process because of its emphasis on
comprehensive iteration. Unlike the stage gate process, it includes a series of planned
iterations that span- several phases of development. It is a relatively recent product
development process that has been adopted by many in the software industry. Spiral
process proponents assert that it reduces burdensome and expensive rework in software,

thus lowering development time and cost. (Boehm, 1988, Gilb, 1988; McConnell, 1996)

The spiral PDP can lead to the development of a competitive product on schedule and
within budget by managing risks early. Despite its circular form, it repeats regular steps,
including concept development, system level design, detailed design, and integration and
testing. The radial dimension in Figure 3.4 represents the remaining costs to be incurred
in accomplishing the steps, while the angular dimension represents the progress made
completing each cycle of the Spiral. As a project spirals outwards, each loop brings it

closer to completion, while each movement away from the center reflects additional cost.

50

Detailed
desig

Integration
& testing

Reviews
(Stage
Gates)

System-lovel

design

Cost

Release

Planning

Congept
design

Figure 3.4: The spiral product development process

The spiral process requires managers to evaluate risk early in the project, when costs are
still relatively low. “Risk” in this context entails all four major areas of risk described
earlier, including poorly understood requirements and architecture, performance
problems, market changes, and potential problems in developing specific technologies.
These risks can all threaten a project, but the spiral process helps to screen them early,
before major costs are incurred. The spiral process can be desirable in rapid product
development because, as costs increase later in the project, the risks decrease. (Boehm,

1988)

A simple spiral process with minimal uncertainty and only one loop would closely
resemble a stage gate process. However, most projects entail uncertainty; companies that
evaluate and manage their risks with multiple cross-phase iterations choose a
significantly different path. By going through many stages with the full expectation of
returning to them later, the spiral process allows a brief glimpse into the future which is
not allowed by the stage gate process. This glimpse yields information from later stages
that can be incorporated in early concepts, requirement specifications, and architectures,
thus reducing risk. The risk reduction comes at the cost of more flexible product

specifications, but this flexibility can be advantageous in dynamic environments. In this

51

way, the spiral process overcomes difficulties presented by unclear initial product

requirements, a challenge which is poorly handled by the classic waterfall process.

The spiral process has several disadvantages. First, it is more sophisticated and complex
than other processes, and thus requires more management attention. Managers must
define verifiable milestones to detefmine whether the project is ready for the next round
or spiral; this shadows the phase gates that this process purports to avoid. Second, the
lack of rigid specifications can potentially lead to delays in manufacturing long lead-time
items. Third, the spiral process may appear to be overkill for simple projects since it
could fold into a simpler waterfall process. Finally, Barry Boehm of TRW, the author
and a major proponent of the spiral process, himself acknowledges difficulties in the first
spiral step of determining objectives, alternatives, and constraints. Later scholarly work
expands the spiral process by suggesting a split of this first step into several others.

(Boehm & Bose, 1995)

A key distinguishing feature of the spiral process is the planned, large-scale nature of
iterations. Risks are assessed in each iteration, allowing managers to plan an effective
approach for the next iteration. Unlike the expected small iterations which occur within
individual stages of stage gate processes, and unlike the large but unplanned and
unwanted feedback loops which can occur in less successful stage gate processes,
iterations in the spiral process are planned and span several phases of the development
process. Despite this distinction, critics may consider it similar to a stage gate process if
the milestones and deliverables between each spiral round act merely as simple phase

gates.

3.3 Evolutionary prototyping and delivery

Learning is not attained by chance, it must be sought for with ardor and
attended to with diligence. — Abigail Adams

The evolutionary prototyping PD process differs from the stage gate and spiral processes

because it concentrates on learning and gaining feedback from visible prototypes of a

52

product. As with the other processes, iteration is common, but here the iterations focus

on prototyping and refining prototypes until release. Figure 3.5 illustrates the process.

Refine
Design and prototype until
implement acceptable Complete
Initial initial and release
concept prototype prototype

>

Figure 3.5: The evolutionary prototyping product development process
(adapted from McConnell, 1996)

The evolutionary prototyping process allows a team to change requirements between
prototype builds, and is therefore useful when the application area is poorly understood
and initial specs are unclear. Unfortunately, the process does not have a clearly defined
end; prototype iterations must continue until an ambiguous acceptable outcome is
reached. Because it is not possible to know how long each project will take and because
building an unspecified number of prototypes can be expensive, the schedule and budget

risks can be high.

- Evolutionary delivery, as pictured in Figure 3.6, is similar to evolutionary prototyping,

but has added emphasis on the core design.

Concept <
<

»| Requirements
analysis

Architectural

>
and core
system design _\

Develop Deliver a

/’ a version ‘\ final version

Incorporate Deliver the
customer

feedback

\ Elicit /
customer

feedback

version

Figure 3.6: The evolutionary delivery product development process (McConnell, 1996)

53

This method includes a series of iterations in the latter half of the process, but does not
mix design and prototyping as thoroughly as the evolutionary prototyping process. The
evolutionary delivery process attempts to be flexible by including customer feedback in
the iterative loop. However, if a company is prone to accommodate most customer
requests or changes, it might as well use evolutionary prototyping. Evolutionary delivery
merely structures the beginning of the process more formally, so that core detailed design

is more insulated from prototyping and changes due to customer suggestions.

3.4 Design to schedule/budget

“You may delay, but time will not.”
— Benjamin Franklin

A final PD process involves yet another type of iteration designed to limit time and
budget risk. A design-to-schedule or design-to-budget process can begin as a waterfall,
but then intentionally switches to cross-phase iterations during the second half of the

process. This is demonstrated in Figure 3.7.

Concept ¢

» Requirements |
analysis
N Architectural

design [«

High Priority: Detailed design, test

| Medium High Priority: Detailed design, test _]

L Medium Prority: Detailed design, test Release
Run out of time or budget here ;

L Medium Low Priority: Detailed design, test I

| Low Priority: Petailed design, fest

Figure 3.7: Design to schedule or budget

In this case, the later steps of detailed design and testing are merged so that developers
can more easily iterate between the two. In this way, the design to budget and design to

schedule methods do away with the rigidity of waterfall-style gates between phases and

54

add flexibility. The difficulty encountered, however, is that disposing of phase gates can
lead to wider, less controlled iterations. To compensate for this, iterations are limited by

quality, schedule, and budget considerations.

The iteration limitations begin when quality and functionality concerns are prioritized.
Once tasks are organized by importance, product iterations — each new, would-be release
is an improvement over an earlier prototype — may occur until a budget or schedule limit
is reached. If regular integrations are part of the process, the product can be released
whenever that limit is reached. The external limit provides the discipline foregone in the

merging of process phases.

By having strict budget and schedule limits, this process minimizes related risks because
their favorable outcomes are virtually assured. In this process, the risk left unchecked is
technical. Functions and tasks may be misprioritized or the budget/time deadline may
arrive while some high priority items still require improved design and testing. The
results can be a low quality product or, in the case of a platform with plug-ins, a product

without all of the expected features.

3.5 Other approaches and tools

There are several other methods that companies may employ as part of PD. These
peripheral methods include broad scale approaches, specific tools, and acquisitions.
Although they do not constitute defined PD plans, they are important to many companies’
PD efforts.

Broad scale approaches are general strategies that companies can adopt as part of their
PDPs. Examples include set-based concurrent engineering and extreme programming.
Set-based concurrent engineering is a method of designing several alternative designs in
parallel. This method delays major design decisions in order to gather more data. The
delays and discarded efforts come at a cost, but the method can save time and prevent
rework if it avoids the problem of poor product design followed by a series of changes

and fixes. (Ward, 1995) Extreme programming (XP) is a flexible and fast-changing

55

software-specific PD method based on a collection of perceived best practices.
Companies engaged in XP employ pair programming, continuous testing, and continuous
feedback from small releases and short cycles. XP is geared towards small teams of
programmers, although it has been adopted by some large companies as a component of

their PDPs (Beck, 2000)

Companies may also pursue PD by purchasing off-the-shelf tools and sometimes even
“off-the-shelf” products themselves. Although they are not the focus of this research,
there are many examples of PD management software which developers can purchase in
order to streamline their concept development, automate their change notices, or share
design information between groups. These are used as part of companies’ broader PDPs.
Finally, some companies supplement their own PD efforts by buying the development
efforts of others, although this is not a substitute for actual product development. If a
company can afford to engage in such leapfrogging, it may either acquire rivals and the
rights to their products or else license the commercial rights of another company’s

technologies and products.

3.6 Chapter summary and discussion
This chapter demonstrates how companies face different risks and employ a variety of

PDPs to manage those risks. The PDP models differ in appearance, organization, and risk
management. The unique advantages and disadvantages of each PDP suggest that no
single PDP is suitable for all circumstances. Companies can choose to follow any of

several process variations, but knowing which one to adopt remains a problem.

The following chapter provides an improved means for describing and comparing PDPs
so that managers can evaluate them based on criteria other than mere process shapes or
lists of general advantages and disadvantages. Once these metrics are defined, actual

PDPs are introduced as data to support the validity and utility of the proposed parameters.

56

4. CHARACTERISTICS FOR PDP COMPARISION

“I do not distinguish by the eye, but by the mind,
which is the proper judge.” — Seneca

This chapter proposes characteristics by which different PDPs can be defined, compared,
and contrasted. It begins by reiterating the academic and industry need for these
characteristics. Companies try to balance structure and flexibility in their PDPs, but have
difficulty measuring degrees of either structure or flexibility. Characterizing PDPs
requires identifying basic traits that are shared by all processes: all PDPs employ design
reviews, which uphold standards and or mark milestones; and all PDPs include iterations,
which incorporate changes and feedback loops between design groups or project phases.
Characterizing PDPs also requires tenets that set PDPs apart: although all PDPs use
reviews and iterations, the manner of reviews and iterations varies dramatically. They
may vary in rigidity, frequency, scope, or several other parameters that affect risk
management. Thus, reviews and iterations — incorporating specifications, milestones,

integrations, and tests — are advanced as useful characteristics for distinguishing PDPs.

As PDPs manage risk, they must balance structure, or predictability, and flexibility, as
Figure 4.0 shows. Many managers recognize this balance as a common and inherent

trade-off between order and creativity.

Predictability Flexibility
Figure 4.0: The continuum of PDP emphasis

PDPs must fall somewhere along the arrow in Figure 4.0, but the continuum is
unfortunately so broad that it offers little insight as to where a PDP should be placed for
maximum effectiveness. This figure of a trade-off is not helpful until it is deconstructed,
as the following pages will demonstrate. The need for greater specificity requires the
segmentation and quantification of important PDP characteristics so that processes can be

compared. The characteristics must be traits shared by all PDPs.

57

All PDPs iterate and review; their ubiquity makes these two characteristics the ideal
metrics for PDP comparison. The types of iteration and review and the relationships

between them may be different, but all PDPs have at least some form of both.

4.1 Design iterations and integrations

“Oh, thou hast a damnable iteration, and art indeed able to corrupt a saint.”
— William Shakespeare, King Henry IV

Given the uncertainties inherent in PD, iteration is inevitable and must be managed
effectively. Iteration is technically defined as the repetition of an action or process. This
meaning is laden with value judgments and can be perceived positively (as in renewal) or
negatively (as in continual repetition.) The word stems from a more neutral word, the
Latin itarare, meaning to repeat or rehearse. This research defines iterations broadly to
include almost any kind of stepwise work that involves correction or feedback between
interdependent parts, people, or processes. Integrations and tests are one form of iteration

that allow feedback from early versions of products.

Effective PD efforts attempt to anticipate the future, but such prognostications can be
dangerous business because, as the old adage goes, “the forecast is always wrong,”
especially in an era of rapidly emerging and immature technologies. (de Neufville, 1990)
Intentional iterations for the purposes of feedback may allow some “future” knowledge to

be learned earlier, thus reducing development risk. (Ward, 1995)

Iteration is implicit in much PD and quality management literature. For example, the
PDCA (Plan, Do, Check, Act) process shown in Figure 4.2 has four key steps: (1)
planning an improvement, (2) making the improvement, (3) checking the improvement
results, (4) acting and replanning if necessary. PDCA is considered a cycle because
successive rotations (analogous to iterations) make progress possible. Similarly, the WV
framework, which is named after the zigzag pattern that models it, alternates between
thought and data as it moves forward to solve a problem. (Kleim & Ludin, 1997; Shiba
et. al., 1993) Both PDCA and WV are predicated on the idea of testing, assessing, or

gaining knowledge and then using that information in a later repetition of the same

58

process. Both iterate in order to make use of feedback. Other, more sophisticated
frameworks and tools also consider iterations and feedback loops to be key components

of PD. (Eppinger, 1994 & 2001; Eppinger & Whitney, 1996)

Inductive

Explore
situation

,4— Control
Reactive ———»
Proactive — >

Deductive

Figure 4.1: The PDCA cycle (left) and WV framework (right) are both based on iteration

Interdependent and complex tasks that require feedback introduce the potential of
burdensome and expensive rework if poorly managed. Rework, a combination of
feedback and corrective action, is also a type of iteration but is generally wasteful
because it is a response to avoidable mistakes. Although rework can be considered a
specific and unfortunate type of iteration, iteration is not synonymous with rework.
Instead, well-managed design iteration can prevent rework and therefore reduce
technical, schedule and budget risks. Other types of iteration, such as presenting a
customer with a prototype to gauge consumer demands, can also alleviate market risk.
Effective iteration can prevent waste and overcome the uncertainties inherent in

interdependent tasks.

How can iteration prevent rework when it involves doing something over again? The
answer lies in the type of work done in each iteration. Iteration is more than merely trial,
error, and rework of previous wasted effort. Effective iteration provides feedback with

each round, thus increasing the likelihood of success in the next round. An analogy can

59

be seen in the simple “higher/lower” child’s game that involves guessing a number from
1 to 100. The guesser states a number and then learns if the correct answer is higher or
lower. The guesser proceeds to iterate logically, narrowing down the choices and margin
of error until finally the correct answer is reached. The first few iterations narrow down
the most, while later iterations pinpoint the final solution. Although early guesses are

frequently wrong, they do not waste effort if they are chosen strategically.

The iterations in this simple example of a game are analogous to well-managed iterations
in product development. There are many types of iterations in product development.
Iterations can vary in three main ways. First, they can vary in breadth or scope of
iteration. Second, they can vary in the number of inter-phase loops they entail. Finally,
iterations can vary in degree of planning. Each of these three parameters can be seen in

Figure 4.2.

Breadth of iterations
1

Narrow oprehensive
(Within 1 phase) (Across 3 or more phases)

Number of inter-phase loops
0 1 2 3 4

No iteration Multiple iterations

Degree of planning

None Anticipated Planned &
(Unexpected) Scheduled

Figure 4.2: Parameters for measuring PDP iterations

The first parameter, the breadth or scope of iteration, is a critical descriptor of a
company’s PD process. Breadth can range from narrow to comprehensive. Narrow
iteration is intra-phase, exemplified by several rounds of interdependent detailed design

tasks. Comprehensive iteration is cross-phase, exemplified by processes that cycle not

60

just around a specific stage, but rather over a range of process stages from concept to
prototyping. Both narrow and comprehensive iterations are shown in Figure 4.3. There
is a continuum between these two types of iteration, and processes vary in their iteration

breadth.

Figure 4.3: Narrow iterations (left) and comprehensive iterations (right) in a PDP

The number of iterations can also greatly affect the nature of a PDP and its success in
managing risks. Whether a design is considered several times or just once is a major
distinguishing feature between processes. Only the inter-phase loops are of importance
to this part of the study because intra-phase loops are so common (and often automated in

CAD programs) that they can barely be distinguished from one another.

Finally, the degree to which iterations are planned also varies. Companies may have
unplanned, anticipated, or scheduled iterations. Unplanned iterations occur when
mistakes or feedback loops unexpectedly require a step backward, often in the form of
regrettable rework. Anticipated iterations are iterations that are planned or expected, but
that do not have specific schedules and which may not happen at all. For example, a
manager who expects several rounds of detailed design on a specific component may be

familiar with the design process and expect to succeed on the third try. A fourth try is not

61

out of the question, and a lucky estimation might allow for success on the first try. Here,
the iteration is anticipated — it is tacitly expected and the routine is known — but the
number and time of iterations is not planned. Finally, scheduled iterations are both
anticipated and planned. The number of cycles may be planned, may be subject to time
and budget constraints, or may be dependent on customer satisfaction and quality
assurance. In cases of product or process failure, the number of iterations may expand

unpredictably.

4.2 Design reviews

“Be sure you are right, then go ahead.”

—Frontiersman and future congressman David (Davy) Crockett during the war of 1812
Design reviews are critical to product development. Like iterations, they are present but
different in all PDPs. Design reviews are sometimes called gates, checkpoints, or
milestones, but always involve a decision or assessment of progress. As demonstrated in
Figure 4.4, reviews examine the deliverable of previous action and decide whether to

continue on to the next step, stage, or series of stages.

Cancel

Review
/0OK?

Deliverables

Figure 4.4: The format of a design review

Companies developing products handle reviews in different ways. The goal of some
reviews is to assess completion, while the role of others is to ensure that there are no
technical design problems. Sometimes the reviews are internal and performed by the
design groups themselves, while other times reviews are performed by upper
management or by a disinterested group of peers from another project. The level of

formality of the reviews also varies dramatically. Some companies treat reviews

62

casually, while others have strict qualifications and training requirements for anyone who

1s to be a review leader.

Figure 4.5 shows how two main factors, rigidity and frequency, serve as metrics to
characterize reviews. Rigidity of review is defined by the degree to which deliverables
are held to previously-established criteria. In a rigid scenario, a project is probed for
problems and not allowed to continue until a deliverable exactly matches or exceeds the
criteria. Failure to do so impedes the entire development process. In more flexible
situations, projects or designs may conditionally pass reviews, subject to assurances of
future change. In the most flexible cases, reviews can be mere checks, design

assessments or mere status reports of developments or problems.

Rigidity

More rigid Less rigid
(Final standard) (Phase check)

Frequency

More frequent Less frequent
(After each phase) (After 3 or more phases)

Figure 4.5: Parameters for measuring PDP reviews

Frequency also affects the character and impact of reviews on PD. Some companies have
reviews at regular time intervals, thus forcing the completion of activities or integrations
on a regular schedule. However, most companies schedule design reviews at the planned
completion of a deliverable. Deliverable-based reviews have the advantage of always
having deliverables in existence to judge, but may occur at irregular intervals. Irregular
timing can be due to schedule delays, to variation in the amount of time it takes to

complete different phases, or to variation in whether the deliverables are the result of

63

either one or several phases. For example, in stage gate PDP, reviews occur after each

stage. In spiral PDPs, reviews may occur after each spiral, or series of stages.

4.3 Risk management through iteration and review combinations

PDPs include many possible types and combinations of iterations and reviews. Each
combination can act as a fingerprint that identifies or defines a PDP. Each

iteration/review combination also manages risk differently.

4.3.1 Fingerprinting and identifying PDPs

Iteration and review combinations can act as fingerprints by uniquely identifying or
defining PDPs. For example, stage gate processes entail narrow iterations and rigid
reviews after each stage. Conversely, spiral processes employ more comprehensive
iterations and flexible reviews after several stages. To illustrate how an iteration/review
combination can define a PDP, the spiral PDP of Figure 3.4 is redrawn in Figure 4.6.
The figure shows the same process with the same number of iterations and reviews,
except Figure 4.5 more clearly displays the breadth and number of cross phase iterations.
This sample process has two cross-phase iterations that span five stages of development,
one iteration that spans four stages of development, and several smaller iterations that
span only two phases. Since this process was presented earlier as a model spiral process,
most of these iterations are planned. This information, when combined with knowledge
about the type of design reviews the process employs, allows an observer to set it apart
from others. Other PDPs, such as the design-to-budget process or evolutionary
prototyping process, can also be defined and identified by their distinct iteration and

review characteristics.

64

Integration &
Test

Time

Figure 4.6: The spiral process defined with specific iterations and review characteristics

Measures of iteration and review allow PDPs to be compared more precisely than was
possible with subjective descriptions of advantages and disadvantages or informal
assessments of process structure or flexibility. Earlier investigations of PDPs either
identified only one main process or identified a few and distinguished them only with
descriptions of their diagrammed shapes or broad generalizations of their perceived
strengths and weaknesses. Now, the characterizations of iterations and reviews become a
basis, or language of sorts, by which all PDPs can be distinguished and compared

regardless of shape or industry.

4.3.2 Iteration/review combinations manage risk differently

Specific iteration/review combinations manage risk differently. Chapter 3 observes how
companies face different uncertainties and risks. That chapter also implies that no single
PDP is suitable for all risk circumstances. The characteristics of review and iteration
introduced in this chapter help to understand why some PDPs manage certain risks better

than others.

A product with many interfaces and interdependencies between hardware and software
may face a high degree of technical uncertainty. That technical uncertainty might be best
addressed with predictable, early iterations that test the technological feasibility of the

concept design and early specifications. Tt might also attempt to gain feedback from an

65

early integration as part of one of those iterations. This need to emphasize predictability
can also lead a company to use strict, frequent reviews to avoid the need for later

changes.

In contrast, a product in an immature industry may face entirely different risks if
specifications are defined and frozen early. A company in this situation may opt to
employ early market tests to make sure that the specs accurately reflect fast-changing
customer needs. The early market tests lend themselves to an emphasis on flexibility and
the use of several cross-phase iterations so that information learned from prototyping can

be easily fed back to earlier design stages.

Thus, companies should differ in their iterations because of the different risks that they
face. Sometimes, the iterations are valued, as in cases when a prototyping iteration
identifies a problem that can be corrected easily before a final product release. This is a
favorable cost-for-information trade, where a company sacrifices both time and
manufacturing cost to build a test model in exchange for knowledge that will allow the
company to make corrections, thus reducing technical and market risk. In a particularly
fortuitous situation, a helpful iteration may even reduce overall cycle time by identifying
“showstopper” problems earlier, thus preventing the PD process from being delayed later.

(Boehm, 1988)

Sometimes, however, iterations are frowned upon because they increase schedule risk.
Some companies fear a culture of endless iterations and instead emphasize “speeding up
the iterative loop” and “doing it right the first time.” (Ward, 1995) Others argue that
new product contributions in a serial fashion are both “inefficient and ineffective.”

(Heany, 1989)

Iterating over different sets of PDP stages can have a wide range of effects. Not all
iterations address each type of risk perfectly. For example, building a prototype near the
end of a development project may mitigate technical risk by determining if the product

performs to the level of quality promised by design. It may also address market risk by

66

providing information on whether the product will satisfy customer needs. However, the
iteration may contribute less to mitigating schedule risk because if the prototype is built
only late in the process, then acing on the information feedback would force a delay in
release schedule. In contrast, an early cross-phase iteration to determine if a potential
architecture is reasonable may help managers estimate schedules accurately but will not

necessarily mitigate specific market risk.

4.3.3 Parameterization of PDPs

As this chapter proposes, and as will be shown by data and discussions in Chapters 6 and
7, PDPs can be described by their different review and iteration characteristics. Those
same variations make certain PDPs better at addressing some development risks than
others. The benefits of these categorizations can be seen in Figure 4.7, which
summarizes major characteristics of some of the common PDPs described earlier. The
variations in the chart’s column values demonstrate how the different PDPs are distinct.
The differences in risk management suggest a correspondence between the types of

iterations and reviews and the kinds of risks addressed.

Unspecified Unspecified,
ified but many
3 2 3 5
2 3 3 5
2 2 1 Unspecified
Manages tech Manages Manages Manages
risk well sched./budget | market risk market risk
risk well well well

Figure 4.7: Parameterized common PDPs

Figure 4.7 uses only a few simple parameters to characterize different processes. These
overarching merics of iteration and review are not the only characteristics relevant to
PDPs, but they are the only ones universal across all PDPs. If decomposed, some tenets

of iteration would appear in only some industries. We could potentially enrich our PDP

67

descriptions by considering other factors such as degree of integration within iterations,
lead times, or degrees of modularity, but the added depth would come at the cost of

reducing the scope of comparison to individual industries.

Further decomposition of iteration characteristics highlights how some categorizations
can be local to certain industries. Cross-phase iterations often include some aspect of
integration when different detailed design components are assembled as part of a
prototype (or “build” or “digital buck,” depending on company jargon). The degree of
integration could potentially serve as another distinguishing characteristic between PDPs.
However, the fidelity of those prototypes and assemblies varies dramatically across
industries. It is relatively easy to gain feedback from software or digital integrations
because no physical components have to be built or assembled. Manufactured products,
on the other hand, may gain the ability to perform frequent or rapid integrations with
digital modeling, but the models are only models; they do not provide the same fidelity of
feedback as software integrations. ~Among manufactured products that must be
physically integrated and tested, the ease of prototyping and integration may rest on the
types of materials used. For example, metal parts that can be cast quickly are more likely
to lead to fast lead times than components that must be more painstakingly forged and
machined. As a result, analysis that dealt with more specific characteristics such as
degree of integration within iterations would find itself analyzing mainly software
companies while most manufacturing companies’ PDPs would be grouped together with

little to distinguish them.

In addition to being decomposed, the iteration and review characteristics can be
aggregated and averaged to provide a general measure of PDP flexibility. In general,
higher values in any of the categories defined above imply a more flexible process. Thus,
a process with comprehensive iterations (maximum score=3), four reviews (score=4),
high degree of planning (score=5), less rigid reviews (score=5), and infrequent reviews
(score=5) would be the most flexible process. Normalized to a common scale, a

weighted average of these measures can provide a rough measure of process flexibility.

68

4.4 Chapter discussion and summary

This section explains how PDPs can be distinguished by the types of iterations and
reviews they employ. These proposed characteristics not only create a fingerprint by
which PDPs can be identified, but provide a means of PDP comparison based on risk
management ability. The segmented characteristics can help determine where PDPs lie
on the scale of structure and flexibility. Further segmentation or decomposition of the
characteristics is possible and can be descriptive, but is only helpful in describing certain

industries because the decomposed characteristics are not universal across all PD.

The proposed descriptive characteristics are an improvement over the descriptions in
Chapter 3 and allow for a common framework in which all PDPs can be compared. The
next three chapters introduce and discuss actual data and case studies to support the

utility of these characteristics.

69

5. METHODOLOGY

“It is a capital mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.”
— Arthur Conan Doyle’s Sherlock Holmes in A Scandal in Bohemia

5.1 Case studies

This chapter explains the methodology of the ten company case studies that form the
basis of the research findings. Case study methodology suits the goals of this research for
three reasons. First, it provides empirical data to help build theory about the subjective
relationship between PDPs and risk. Second, it demonstrates the utility of using
quantitative iteration and review metrics to characterize PDPs and distinguish them from
each other. Finally, the resulting understanding of some companies’ PDPs provides

counterexamples to conventional wisdom regarding the applicability of certain processes.

Case study research is a well-established social science research method. Tt is an
effective practice for understanding phenomena in depth, especially while building
theories in an immature or subjective field of study. (Judd, 1991) Case studies can also
help build grounded theory in areas where initial ideas or hypotheses may change over
the course of the study. (Cressy, 1953; Dougherty, 2002) These traits make case studies
appropriate to this research, which investigates the relationship between different PDPs

and development risks.

Case studies also support the second goal of this research, which is to propose
characteristics that describe and distinguish different PDPs more effectively than before.
There are no currently established quantitative measures for PDP comparison. In
proposing such metrics, they must be compared to qualitative process descriptions; case
study methodology is particularly useful for gathering this qualitative information. (Judd,
1991)

Finally, case analyses can effectively provide counterexamples to existing theory and
conventional wisdom. If conventional wisdom or existing literature suggests that certain

PDPs only apply in certain cases, a single example of an exception may suffice to

70

successfully challenge the idea. Although discovering such exceptions was not the main
goal of this research, some findings did in fact counter the presumptions of prior

literature in the field.

The limitations of case study research were of limited consequence to this research. Case
study research has inherent limitations in proving causality because cases demonstrate
only their own existence. (Ward, et. al., 1995) However, this research does not attempt
to prove causality between development risks and PDP design. Rather, its main goal is to
build grounded theory explaining the important but non-causal relationship so that it can

be considered in future decisions.

Other limitations of case study methodology include its labor intensity, which is
generally excessive and cumbersome if quantitative data can instead be gathered quickly
from a larger population. However, although this research lays the groundwork for
quantitative comparison of PDPs in the future, the current infancy of the field forces it to
compare any quantitative findings to the qualitative data from which they derive. This
qualitative data is effectively gathered through interviews, discussion, immersion, and
other case study techniques that increase depth of understanding. Limited quantitative
data — in this case the iteration and review metrics proposed in the previous chapter — are
determined in two ways. Some measures, such as the number of iterations, can be
directly ascertained from both interview and questionnaire responses and from
observation of the number of cycles in a development process. Other measures, such as
the rigidity of review, are gauged based on an pre-established rubric that allows for an
objective comparison of different interviews with subjective responses of how “tough”
reviews are. These standardizations of subjective responses can be reinforced by
documentation, such as company procedures that define design review scorecards or

passing criteria.
Most of the case studies in this research were specifically selected to represent different

data points in disparate industries and circumstances. For example, companies can

develop either manufactured goods or software, or could face primarily technical or

71

market risk. Thus, IDe was selected because it develops software, while SWPG and UTC
were selected because they develop turbomachinery. Xerox was included in part because
its products included both large software and hardware (manufactured) components. ITT
Industries was included because it was anticipated that its role as a defense contractor
would lead it to have a uniquely different risk profile from most other companies in this

study.

Several case studies were selected either because of opportunism or because they were
based on companies with public PDP information. Opportunistic case studies occurred
when some companies were included because of professional contacts or CIPD
sponsorship. Care was taken to reduce any possible bias in these cases, and the validity
of this practice is supported by Buchanan et. al. (1988) who advocate balancing what is
theoretically desirable with what is practically possible. Case studies of companies using
public data provide other researchers or reviewers with the means of independently
examining source data. It also allows readers who are familiar with some companies’
PDPs — such as those of Microsoft and Ford, which have been extensively investigated by
many researchers — to compare these research findings to their own knowledge énd

interpretations.

5.2 Company approaches and data collection

The goal of each case study was to gain a rich understanding of the company’s risks and
PDP. The challenges were to identify what type of subjective risks were greatest and to
learn of any differences between official company PDPs and the processes that were
actually implemented. Meeting those challenges required conducting interviews,
administering questionnaires, reviewing public company literature, and studying private

company PDP documentation.

In most cases, one company manager served as a lead contact and provided process
documents and lists of employees working on specific product development teams. In
some cases, the lead contact would also recommend studying certain product lines in

response to the request to examine both “new” and “variant” products. When available,

72

official process documents were always read first. Later, project team members were
interviewed or given questionnaires about their PDPs. A sample interview guide and

questionnaire are included in Appendix A.

Interviews followed the procedures for semi-structured “interview-conversations”
described by Blum (1952), Burgess (1984), and Buchanan (1988). Some common PDP
questions were asked consistently in all interviews, but in most interviews the latter half
was conversational and varied according the person interviewed. Areas of questioning
included both the PDP and development context. PDP questions dealt with review and
iteration characteristics, implementation of the official PDP, and perceived problems and
advantages of the PDP. Contextual questions probed the types and timing of prototypes,

tests and validations, program schedules, budgets, and major risks.

Most interviews were one-on-one discussions with employee expectations of anonymity.
Anonymity remains important because of the sensitivity of some questions about PDP
implementation. In some cases, official PDPs were not followed faithfully or were
criticized by interviewees, who were more at ease making admissions or accusations
because they were assured that they would not be personally identified. Some interviews
were recorded on cassette tape when allowed, but only for purposes of later transcription.
In addition to private interviews, case studies at two companies (ITT and Printco) also
included public group discussions of the companies’ PDPs, prompting open and lively

debate on the implementation, merits and disadvantages of their development processes.

Some companies required non-disclosure agreements prior to the interviews. In these
cases, descriptive summaries and interview quotes were submitted to the companies
before the public distribution of the research. Companies were invited to make limited
editorial changes to “sanitize” the results and protect confidential information. In all
cases, these editorial changes were cosmetic and had no discernable effect on the overall

results. (Burgess, 1984)

73

As discussed earlier, some companies were investigated with the help of public data,
either instead of or in addition to interviews. The purpose of including such examples is
to allow other researchers to either repeat the exercise or compare results to their own
knowledge of the same public information. In these cases, such as Microsoft and Ford,

existing literature was considered first, followed by any data from interviews.

74

6. CASE STUDIES AND RESULTS

“...We can pursue all these studies until we see their common ground and
relationship, and can work out how they are akin” — Plato’s Republic

This chapter presents case studies of ten companies and their PDPs. Each case study
begins with a qualitative description of a company’s development context, products, and
major risks. Next, each study describes how the company employs reviews and iteration,
including integration and testing, in its PDP. The final section of this chapter presents
comparative findings from all ten case studies and shows how their processes differ

according to quantified metrics.

The cases include five primary case studies and five secondary studies. The primary
studies examine Siemens Westinghouse Power Generation (SWPG), Integrated
Development Enterprise (IDe), ITT Industries, Xerox, and Printco. In these cases,
observations about PDP implementation are supported by representative and illustrative
quotes from interviews or questionnaires. These quotes are usually attributed to people
by title. Interviewee names are included in Appendix B. The secondary studies include
Aviation Technology Systems (ATS), Ford Motor Company, United Technologies
Corporation (UTC), DeskArtes, and Microsoft. These case studies are shorter and are
used to sﬁpport and extend theories derived from the core case studies. The secondary
case studies use information that was collected primarily from public sources instead of
through company interviews or questionnaires, although several employees were

interviewed when public data was scant. These employees are also listed in the appendix.

These case study companies represent several different industries and operating
environments. Four of the case study companies produce mostly software. Six of the
case study companies produce mostly manufacturing goods, although several of them
have important software components in their products. Most cases study subjects are
large corporations, although three of them are smaller or startup companies that number

(or numbered) their employees in the hundreds rather than in the tens of thousands.

75

Some of the companies almost served as two case studies in one. ITT and UTC, for
example, are both large conglomerates whose different divisions or units sometimes
follow different processes. In each of those cases, two different products were

investigated. Printco also provided multiple product and process examples.

Because the case studies attempt to paint a realistic, “as-is” portrait of the PDPs, they do
not simply repeat official company process documentation. What companies say they do
is not always what they actually do. The case studies in this chapter reach beyond formal
company descriptions to include individual engineers’ and managers’ assessments of how
the PDPs are actually implemented. This research focuses on the elusive PDPs as
implemented, because otherwise its findings on iterations and reviews would be based on

fictional processes.

Each case study description begins with a summary outline box explaining key points and
traits about the company and its PDP. The metrics are based on the parameters defined in
Chapter 4. After the summary box, each section briefly describes the company and the
product whose development was investigated. The studies then describe the official

company PDPs before discussing how the PDPs actually function.

76

6.1 Siemens Westinghouse Power Generation

Company and product description

Siemens Westinghouse Power Generation (SWPG) designs and manufactures equipment
that generates electricity in power plants. The company has nearly 26,000 employees and
net sales of over $8 billion per year. This case study focuses on the development of gas,
or combustion, turbines that are used in single or combined cycle power plants. The
market for these products consists mainly of utility companies and independent power
producers who choose between Siemens-Westinghouse, GE, and only a few other

companies in an oligopolistic market.

Siemens and Westinghouse are former rivals, and the long-term innovation and
technology strategies of the entire turbine industry are described earlier in section 24.
Fifty years of competition and innovation resulted in a mature market and an industry-
wide development emphasis on raising efficiencies. The two companies merged when
Siemens acquired Westinghouse Power Generation from its parent company (CBS) in
1998.

77

Combustion turbines are large machines that must be designed to precise measurements
as small as thousandths of an inch because of the narrow clearance of their many turning
blades and vanes. Gas turbines are supplied as parts of various packages, ranging from
“econopacs” to “power islands” to ‘étumkey plants.” Econopacs include only the turbine-
generator units with their fuel and control systems. The intermediate power islands
include heat recovery steam generators and additional power generation equipment to
capture waste heat from the gas turbine. Finally, turnkey plants include full balance-of-

plant piping, pumps, water towers, transformers, and switchgears.

In contrast to turbine packages, individual turbines are generally not modular despite
some attempts by the company to modularize some components for common use between
different turbine families. Most turbines are sold as packages and most turbine

components are unique to a single turbine product.

One example of an individual combustion turbine, the 501G, can be seen in Figure 6.1.1.
The 501G is the largest turbine in the 501 family of turbines and can generate 253 MW at
a maximum efficiency of 39% as a single cycle turbine. When combined with a
downstream steam turbine as part of a combined-cycle power plant, overall thermal

efficiencies can reach almost 60%.

Figure 6.1.1 The Siemens-Westinghouse 501G combustion turbine
The most prominent risk in turbine development is the technical risk, in part because -

market risk is reduced by early contracts and a system of liquidated damages. As

described in section 2.4, the market for turbomachinery is relatively mature and well-

78

understood. Competition between manufacturers is tremendous (since a ring of collusion
was broken by government regulators in the 1970s) but occurs primarily on the basis of
efficiency (turbine heat rate) and price. As a result, marketing and sales divisions
contract to sell, design and install power plants and guarantee the heat rate of the product

in the form of contractual liquidated damages.

A guarantee of liquidated damages is different from a standard warrantee. Warrantees
are guarantees of repair or replacement of damaged or inadequate parts for a specified
period of time. However, entire turbines are too large, too rare, and too expensive to be
replaced entirely in case of systemic underperformance such as a “missed” heat rate.
Guarantees of liquidated damages are actual cash payments to compensate a customer for

any loss suffered by low efficiencies.

The result of this contract system is an early freezing of customer specifications. Sales
and marketing departments promise low heat rates (high efficiencies) to customers and
these aggressive targets are assigned to engineering early in the development process.
The “frozen” requirement specifications lead to limited market risk but high technical
risk. Budget risk is relatively low because there is little expectation of profit in the initial
turbine sale. Most company profits are made in service fees and replacement parts.
Technical risk is the preeminent development risk, which explains why SWPG uses a

waterfall PDP.

PD process description

The current Siemens-Westinghouse PDP was installed shortly after Westinghouse was
acquired by Siemens. Until then, the company used a less formal stage gate process and
frequently engaged in one-time products and customer-order engineering. The merger
led to the six-month launch of a new, more formal PDP and an increased emphasis on

product families and platforms.

79

The SWPG process is a strict stage gate process, as demonstrated in Figure 6.1.2. The
PDP has a series of gates and reviews that are absolutely sequential and rigid. The five

gates (G) and eleven major reviews (R) include:

G1 Program initiation RO Review of Product Strategy

R1 Review of Product Requirements Specification
G2 Design R2 Review of Product Design Specification

R3 Design Review
G3 Product release R4 Commercialization Plan Review

R5 Final Design Review
R6 Procurement Review
R7 Product Review

G4 Series release R8 Commissioning Review
R9 Product Monitoring Review
G5 Program closure R10 Performance & Reliability Review

Gates are controlled exclusively by managers and are decision points where managers
determine if an entire program will continue or be terminated. Reviews include larger

meetings, engineers’ presentations, and technical questions and evaluations.

Sales &
Proposals

Prodi Regq. Prod Des.
Spec Spec

Figure 6.1.2: The SWPG product development process

80

Of particular interest is the great rigidity of the reviews. Each review committee includes
peers and managers assigned by position and training. The PDP even assigns
qualifications to design review leaders, who must have experienced a minimum number
of reviews previously and who must have completed internal company training on
leading design reviews. The review criteria are equally rigid. Criteria, in the form of a
checklist, are assigned before the review takes place. With rare exception, each criterion
must be fulfilled for work to continue. On some occasions designers may receive a
“conditional release” at a review, meaning that work is allowed to continue while a
design is changed or corrected. In these cases the PDP specifically defines who may
waive the normal rule and also assigns a maximum length of time allowed for the

corrections to occur.

Cross phase iteration is almost nonexistent. Only intraphase design iteration is common.
These narrow iterations sometimes limit the ability of designers to respond to market
needs that change during product development. As a result, the company attempts to add
some flexibility by dividing specifications into product requirement specifications and
product design specifications. Both types of specifications are frozen relatively early in
the process, but the time lag between them allows for some specifications to be frozen

later than others.

In practice, there are some exceptions to the official PDP. These unofficial events,
reviews or changes are very much part of the overall company PDP, although their
existence would be considered failures according to the written process. One instance is

the existence of unofficial reviews. In the words of one design engineer,

Every once in a while a program just stops. Somebody from above kills it, but not at a review and
not at a gate. Those sorts of decisions are only supposed to happen at set times, but sometimes
we’re just told not to work on a project anymore...it’s like a phantom review.

Such phantom reviews do occur and reflect the ability of upper management to overrule
the company PDP in extreme cases. Sudden cancellation of a development program (in
favor of others) usually occurs if a market change creates the potential for a particularly

dire financial situation if work on a certain program continues. Since such cancellations

81

are not addressed — or technically allowed — by the official PDP, there are no set financial
criteria for these decisions. Rather, such cancellations are left to the discretion of senior

management.

Another break from formality in the PDP implementation is the inequality of complexity
between reviews. Although the PDP does not state this explicitly, some reviews are more
important than others. This does not diminish the rigidity of the less important reviews,
but rather emphasizes the difficulty of passing some of the major reviews that involve
large numbers of groups or components. In the words of another engineer,

It all revolves around RS [the final design review, number 6 of 11 reviews in the process] because

that’s where it all comes to a head. They’re big because there are so many people and components
involved.

Such reviews stand in sharp contrast to other reviews, such at the R6 procurement review,

for which only one group (supply management) is responsible.

Despite the “phantom” reviews and different emphases placed on different gates, the
SWPG PDP is a strict stage gate process with an emphasis on frequent, rigid reviews and

narrow iterations.

Case study conclusions

SWPG employs a strict stage gate process to manage almost exclusively technical risk in
gas turbine development. The technical risk is high because of the quality requirements
of small-clearance parts and the manufacturing requirements of large-scale, complex
product platforms. The SWPG PDP allows for few mid-project design changes because
specifications are frozen early and cross-phase iterations and design work are rarely
allowed. Exceptions to the ordered process occur exclusively in the negative, such as

when a project is delayed or killed by senior management.

Other divisions of the company, such as the fuel cell division, must deal with more
market uncertainty because immature markets make it difficult to predict which future
products might be in demand. In contrast, the maturity of the gas turbine market leads to

an emphasis on design for thermal efficiency. The system of liquidated damages

82

contracts ensures that market variability is translated into a specific cost that can be

avoided exclusively through technical success.

83

6.2 Integrated Development Enterprise (IDe) case study

Company and product description
Integrated Development Enterprise (IDe) is a privately-held company that develops and
markets internet-based development chain management software. The start-up company,
located in Concord, Massachusetts, was incorporated in 1998 with 12 employees. The
company has since grown to over 100 employees and now markets four software product
lines:
1) IDweb™ — development chain management software that also serves as a database
to integrate, manage, automate, and reconcile development chain information,
This product can include several integrated modules (IDpipeline™, IDresources™,
etc.)
2) IDpartner™- software used to integrate and coordinate partners as members in a
development chain

3) IDfinancials™ — PD financial management software

84

4) IDreportview™ — software used to create customized reports and charts from

IDweb

The company’s products all consist of software that helps other companies manage their
product development. As the company itself advertises, the products provide “integrated
solutions for development chain management.” Its main products are IDweb and
IDpartner, which are both platform software packages. A sample view from the

IDpartner application is shown in Figure 6.2.1

Fig. 6.2.1. The Partner Center screen view of IDpartner application. The Partner Center
allows the lead developer to consolidate all the shared project information onto one page.

IDe serves a broad market, and its customers range from toy manufacturers to
telecommunications suppliers. Although its customers span several industries, all share a
need to engage in large-scale product development. IDe software is sometimes
customized to users and often requires training and support. The field is still relatively
new and customers have unique needs and processes, so the operating environment is
fiercely competitive and based on the features and availability (release date) of the

software products.

85

The primary risk that IDe faces is market risk. Market risk is preeminent in part because
of the fast-paced nature of the software industry, which demands frequent changes,
updates, user comfort, and customization. IDe also faces market risk because it is a new
and small company trying to establish itself and build a successful base of major

customers.

PD process description

IDe currently follows an evolutionary delivery process, but has changed processes several
times during its first few years of existence. When the company first started, IDe began
with an admittedly “ad hoc, loosely defined” PD process. An ad-hoc process may have
been adequate for a small team working on the initial components of its first product, but
by early 2000, IDe had increased in size to 61 employees who were working on 4 or 5
projects concurrently. ~ The company began using a more “reactive planning”
development process by using its own IDweb software (de facto using and testing its own
product) to pinpoint and correct bottlenecks. Changing processes was a balancing act;
the company first had a “very detailed” process that one manager asserted was “too rigid”

and then overcompensated by introducing a process that was “too generic.”

Less than a year later, once the company had grown to over 100 employees working on
up to 15 projects, IDe moved from “reactive” to “balanced” planning with improvements
in its own planning software and more careful resource distribution among its multiple

projects.'°

IDe’s current PD process has four phases which are so broad in scope that, although they
appear linear, many nonlinearities and loops occur within them. The four main phases,

concept, planning, implementation and launch are demonstrated in Figure 6.2.2

' From interview with and information from Ms. Eileen Blanchette, IDe Program Manager.

86

Phase 0 Phase 1 Phase 2 Phase 3

Figure 6.2.2: The IDe PDP Phases

The first three phases each mark their completion with phase reviews, usually by the
Product Approval Committee (PAC), a committee of four senior managers who give
“g0,” “no-go,” or “redirect” verdicts at each review. The concept phase (Phase 0)
includes the definition of the business opportunity and scope, risk assessment, and
preliminary resource loading. The planning stage (Phase 1) calls for understanding
project completion requirements, identifying project milestones, and forming and
engaging the core development team. The core team is a cross-disciplinary team of
members from different functions of the organization, (sales, services, development,
finance, management, sales) each of whom contributes about 20% of their time to that
development program. Implementation (Phase 2) begins with coding and ends with

QA/integration testing. Launch includes marketing and training roll-out, but involves

few activities for the product developers.

Project timing varies, but an ideal product release takes a relatively short 115 days.
Phase O takes 7 days, followed by a 21-day planning process, 70 days of implementation,
and a 7-day launch period. In calendar time, the company usually takes about 5 months

to complete a variant version of a platform product.

Two subprocesses are nestled within the four main phases. The first is the broad product ‘
release process, which is performed by the core team and includes all steps from concept
generation to training, marketing, and sales. The second is the narrower feature
development process, which was the focus of this case study. Both subprocesses include
distinct steps, milestones, and deliverables, but the feature team development process
focuses only on phases 1 and 2. It is more engineering-intensive and, because the
products are so feature driven (in the view of several, products are really “collections of

features,”) it is the process that actually develops the software product.

87

The feature team development process combines serial and parallel activities. Figure
6.2.3 demonstrates how this occurs at IDe. The planning phase includes two steps that
occur in series. First, a feature team details feature requirements, then it details the
Jfunctional specifications. In contrast, once the team moves into the implementation
phase, series often occur in parallel. For example, the team will begin by laying out
technical specifications, but will begin coding before all the technical specifications are
complete. Meanwhile, QA test planning occurs almost completely in parallel with
coding, beginning just slightly after coding begins. Once the coding and QA test

planning are complete, shakedown testing begins prior to the launch gate.

Phase 1: Planning (21 days) Phase 2: Implementation (70 days)
Detail feature Detail functional Detail technical
requirements specifications specifications
OO
JAVATAY
<> l Gat
Codi
Gate WA ocing
AVATARR | Shakedown
U l QA test planning U +
Time >

Figure 6.2.3: The IDe feature team process steps (not to scale)

As shown in Figure 6.2.3, IDe divides its requirements and specifications into three
different parts: feature requirements, functional specifications, and technical
specifications. This three-part compartmentalization allows for high-level requirements
and specifications to be frozen early and before coding begins. Technical specifications,
however, are considered more flexible, and changes may occur with iterations and

feedback loops between coding, testing, and the technical specifications.

88

PDP implementation
IDe claims to have a special spiral process because of the great flexibility that it expects
in its own product development efforts. Several engineers and managers suggested that

flexible development was part of the IDe PDP:

[Our] process really spiral-plus. We use a modified spiral...we always have a release date.
If you’re not ready to change the roadmap, it’s not a spiral [and] we can change to suit customers.

I plan the number of spirals, but I don’t know what [features] I put into each release.

However, the actual IDe PDP reveals that the process iterations are not implemented as
broadly as claimed. Three aspects of the IDe PDP demonstrate that the first part of the
process is serial, while the latter half the process spirals among the design and testing

stages.

The first instance of serial behavior is inclusion of parallel testing and quality assurance
only after coding begins. In the words of one software manager, “QA was not involved
early on...not until the coding process.” As in several other software products, quality
need not be of the highest priority because IDe products are rarely mission-critical to
their purchasers. Further, QA need not intensively span system level design because
most of the bugs are buried in “plug and play” features and are too local to affect system

architecture.

The second aspect of mixed serial and spiral behavior is the feedback among successive
releases in product families. IDe makes many changes to its products based on customer
testing, but often these feedback loops are used in the next generation of product instead
of in the immediate product release. As a result, the spiral aspect of the PDP appears
only when examining several generations of a product rather than any single product
release. Within one product release, the iterations in the process are more indicative of
evolutionary delivery because prototypes and customer testing feed back to feature teams
that may change product feature offerings, but not system design, based on feedback.

Thus, the process’ cross-phase iterations only span testing and detailed design.

89

A third and final demonstration of the quasi-serial nature of IDe development is the
freezing of specifications. The freezing of specifications, or at least those that are
established during Phase 1 (feature requirements and functional specifications) indicate
that although cross-phase iteration occurs in the IDe PDP, iterations and feedback loops
are not allowed to reach far back. One manager confirmed the limits of specification
change at IDe while giving credit for this control to strong interfaces between feature

teams:

Halfway through the cycle and the specs don’t change anymore....cross-functional teams allow
you to get to this [point].

Cross-functional core teams are important to IDe because its products are highly feature-
driven and feature decisions require inputs from several areas. Feature prioritization and
selection process is a critical, though unwritten, part of the company’s PDP because the
product market is new and because the company lacks market power and is extremely
sensitive to customer demands. As a small start-up company, IDe will change its
products dramatically in order to keep potential customers, so product customization is a
fact of life in the company. One manager gave an example of having to choose 20 of 200
features for the next product release. To rank the features and decide which ones to

include, the company divides features into three categories:

A — High priority features that must be included in a product version

B — Medium priority features that should be included but may not

C — Low priority features that are desirable but that may have to wait for the next release
The core team leader ranks the features with the input of the core team and with approval

from upper management. Feature prioritization is heavily swayed by customer

involvement and beta testing.

Case study conclusions
IDe is a software company that uses an evolutionary delivery PDP to provide fast releases
of its product families. The company has evolved to its current PDP after a history of

growth but has difficulty characterizing its own process. The PDP includes several

90

planned cross-phase iterations to incorporate market feedback on product features, but

only in the latter part of each development effort.

The cycle times in IDe’s market are so fast that the company misleadingly considers itself
to be using a spiral process. This is true only if the observer considers an entire product
family, with all of its revisions, to be one product. In this sense, the process is spiral
because it goes through all the PD phases during each new release. However, according
to the more common definition of a product used in this research, the PDP uses

evolutionary delivery for each release.

As a company, IDe devotes considerable attention to its PDP, which is especially
desirable given that its products are designed to help other companies implement their
own PDPs, which are usually stage gate. Many of IDe’s unique characteristics, including
its size, its rapid product cycle times, its quality requirements and its need to cater to
customers, factor into its PDP decisions and have allowed the company to grow
significantly since its founding. The company relies heavily on market feedback and
iteration, although the decision between whether that feedback and iteration occurs within
a product or within a product family is sometimes clouded by the importance of a

customer order.

91

6.3 ITT Industries

Company and product description

ITT Industries is a large engineering, manufacturing, and military contracting company
based in White Plains, New York. It employs approximately 38,000 people worldwide
and generated sales of $4.7 billion in 2001. One of ITT’s four main segments, the
Defense Electronics and Services segment, is the focus of this case study. The Defense
Electronics and Services segment generates slightly more than a quarter of the company’s
sales by designing and producing air traffic control systems, jamming devices that protect
military aircraft from radar guided weapons, night vision devices, satellite instruments,

and tactical radios and communication equipment.

Two ITT products were examined as part of the case study. The first product, a radio and
communications system called SUO, is a new military product whose development poses
high technical risk. It is being developed by engineers organized on one program team

rather than individually by function. The second product, software and equipment for an

92

updated transmitter on global positioning satellites, is a modification to an existing
military product and has high schedule risk. It is being developed by engineers organized
in functional teams rather than in one product group. The differences in product type,

risk and organization suggest that ITT faces diverse development challenges.

The SUO radio system is being developed as part of the Defense Advanced Research
Planning Agency (DARPA) program on military situational awareness. The situational
awareness system is exclusively for military use and thus the only market for this product
is the US Department of Defense (DOD). The product is still an experimental system
with significant technical risk. Major development challenges on this project include

technical design work on hardware and network scalablilty.

Fig. 6.3.1: SUO sensor communication module and schematic for battlefield transmission

The second ITT product examined was an update to the Global Positioning Satellite
(GPS) system. The product will modernize transmitter bands, and add new signals on
satellites awaiting launch. Although the GPS system has both military and civilian uses,
the contract is exclusively with the DOD. There are no plans for large-scale production
of this update because it is likely to be used on only about 12 satellites. The major
challenge on this projéct is the schedule, which is inflexible because of the satellite

launch timing.

PD process description
The ITT integrated product development (IPD) process employs stage gates with
“progressive freezes.” Figure 6.4.2 demonstrates the overall process, which is marked by

clear phases and reviews after each phase. Progressive freezes mean that specifications

93

can be set in a piecewise fashion without delaying the entire program. Subsequent work
can start on those requirements or design aspects that are known to be solidly defined and
unlikely to change. Progressive freezes resemble the kinds of reviews seen in the

overlapping waterfall process shown earlier in Figure 3.4.

Proposal

start Reviews

Project
start
“Progressive |- r
Freeze” —¥ = i
Deve
Product development callout i . _
- __ | “Progressive

Freeze” >

“Progressive
Freeze” >

Figure 6.3.2: The ITT IPD process

The ITT PDP is rigidly defined and highly segmented. Each one of the stages in Figure
6.3.2 is itself subdivided into many sub-stages with their own smaller reviews. Iterations
are common within each phase or subphase, but cross-phase iterations that span reviews
are rare and unplanned. The inclusion of progressive freeze into the PDP is a direct result
of the desire to avoid some iterations, especially those that span earlier product

specifications, while still allowing some parallel work.

There are several substages within the product development stage, including parallel

development of software and hardware for the same product. A separate track is

94

established for special software used for hardware testing; this separation protects the
core software development from being distracted or derailed by the need to write code for
testing other components. Integration and testing occurs near the end of the PD stage and

culminates with a review and progression to product validation.

The segmented step structure is matched by the rigidity of reviews. Reviews are rigid
and have predefined checklists and personnel assignments. For example, preliminary
design reviews (PDRs) are divided into separate software PDRs and hardware PDRs.
Each review has a list of required attendees, including both internal and independent
reviewers. Specific project metrics, such as whether a design may be reused, are required
at this review and there is a detailed scoring system for exit criteria. Answers to specific
review questions are tallied as

Yes — all cases (3 points)
Yes — partial (2 points)
Yes — minimal (1 point)
No (explanation required)

It is acknowledged that material presented at reviews may come from documents required

earlier, and by previous intra-phase peer reviews.

Risk assessment is a required part the first major stage (box 1 in Figure 6.3.2) and occurs
alongside concept selection and definition stage. Each development project must have a
“risk register,” which is a chart that identifies project risks and categorizes each as
technical, cost, or schedule risk. In a reminder of the frequently military nature of ITT’s
work, market risk is notably not included. For each risk, the register lists:

The probability of occurrence

The cost if the risk occurs

The impact of risk occurrence — both qualitative and quantitative
The risk mitigation plan

The risk plan leader

All ITT development programs are defined by individual Integrated Management Plans

(IMPs) which serve as PDP roadmaps that a program follows until product launch,

95

abandonment, or completion. Any variation from the overall company PDP must be
defined in the IMP.

PDP implementation in different programs

Despite the appearance of rigidity, the ITT PDP allows for flexible implementation.
Most IMPs follow the task flows and sequences suggested by the PDP. However, the
PDP itself says process may be tailored to the particular needs of each project” so long as
these changes are documented and approved by management in the IMP. As a result,
there are some deviations from the official process, such as when a small project
involving a minor enhancement skips some tasks and design reviews. Process flexibility
is necessary at ITT because the company’s numerous product development programs face

different challenges.

Small Unit Operations (S Uo)
The SUO program is unique in ways that affect PDP application. The SUO program is
part of an ITT organizational experiment to move from functional teams to project-
oriented teams. Traditionally, ITT employees have been divided into functional groups,
which has led to occasional difficulty when one group had little incentive to support
another. However, on the SUO development program, the project manager does not need
to request time or manpower from a software development manager; rather, he has his
own software engineers exclusively assigned to the SUO program and under his
direction. As two managers said,
We want more collaboration between different functions: hardware, software, and systems. We
don’t want to build walls between them...When the work wasn’t ‘projectized’ we had trouble
getting support. It’s a lot more civil now. We would have worried more in the old,
organizational system.
This organizational difference impacts the PDP because of greater fluidity between
disciplines. As a result, the SUO program can more easily iterate between groups of

engineers who otherwise would not work together.

* Within defined limits. For example, tasks may only be deleted if they are not germane to the project and
are not required by contract, or if they were already accomplished on another task or project and the results
are pertinent. Only sequential reviews can be combined. Peer reviews may not be eliminated.

96

Another unique aspect of the SUO program is that the product is itself experimental.
Programs supported by DARPA are often in the infant stages of development because of
its emphasis on advanced — and thus early — research. As a military contractor, ITT
considers the program to be development rather than simply research, because the
company has already beat several competitors out of the market during earlier bidding
and prototype cycles with DARPA. Nevertheless, the experimental nature of the
development work makes a marked difference in tailoring the PDP for the SUO. As the
SUO project lead explained,

This is a learning technology, not a product. Because of that, we could have a lot more flexibility
in the hardware.

Thus, physical builds are less important. This is unusual in military contracting, where
the customer usually has very specific and rigid requirements. The advanced nature and
novelty of this product also leads to greater challenges in setting specifications because,
as a PD manager said,
The biggest challenge is that people expect to be told what to do. They want a high degree of
solidity. But here we’ve got to take functional needs — without requirements — and translate them
into engineering terms.
This gives ITT an unusually high (at least in the defense industry) level of discretion in
determining customer needs setting its functional and technical specifications. The result
is a push to adapt the PDP to be more flexible to account for this high level of
uncertainty. Although the market uncertainty is high, the market risk is only average
because the market is monopolistic, monopsonistic, and thus relatively uncompetitive and
safe. As a result, the major risk on the project comes from the many electronic

challenges that ITT faces in developing the ambitious SUO radio.

GPS Satellite

The GPS program contrasts with the SUO effort in three major ways that affect PDP fit.
First, like most of the company, the GPS teams are organized by function rather than by
project. This restricts early integration — and thus iteration — between different product

components.

97

The second way that GPS program differs from the SUO effort is in the level of risk and
product definition. The GPS specifications are based on both a previously existing
product and well-established Air Force needs. As a modification of an earlier product,
the product specifications were clear and frozen early. Also, the specifications were
made easier by the fact that there is no large product line or series of product lines for

GPS components. Rather, there will only be 12 units made in the foreseeable future.

Finally, the preeminent GPS risk was schedule risk. Although both the GPS and SUO
programs had reduced market risk because of the monopsonistic military customer and
post-bidding monopolistic environment, GPS had a more difficult schedule challenge.
The GPS space vehicles would only be available for modification until the life of earlier
satellites, already in orbit, expired. Any schedule delay that extended the (quite literal)
launch date would jeopardize constellation sustainment, so the PDP would have to

emphasize schedule when applied to the GPS program.

Common development problems
Despite the differences between SUO and GPS, both programs followed the same PDP
with only minor variations. ~ Also, both programs suffered some rework during

development.

Both programs applied the PDP through their own IMPs. Program and project managers
did not follow every aspect of the PDP (“We don’t even read that book” joked one
project engineer’) in ways that were both helpful and harmful. Helpful examples of
personal discretion occurred when unnecessary documentation was circumvented.
Potentially harmful changes from the PDP included the lack of categorization of risks in
the IMP risk registers. Also, different sites held to PDP documentation with varying

degrees of fidelity, leading to some geographic tension.

" The joke is not as ominous as would appear because the PDP is entrenched whether employees read the
“IPD book” or not. Put another way, the documentation and work commonly required of employees
constitute many of the criteria expected of them in PDP reviews anyway.

98

Both programs also had to deal with rework stemming from difficulty in planning
iterations, including integrations and prototypes. Sometimes — and ideally — the ITT
process generates a prototype near the end of development that requires only a few
detailed changes and no system-level changes. However, ITT still faces several examples
of iteration and integration problems. The first type is when a prototype does not provide
the information necessary to either check functionality or feed back into the process. One
GPS manager bemoaned this problem:

We wasted time on iterations that didn’t help. There are big holes in integration. We called [had

to cancel] a test of prototype that didn’t test what we should be doing.
A second problem is when prototypes are not built because of time or expense. An SUO

manager suggested that this occurred on some hardware components:

We [prototype] for software but not hardware. For hardware it takes a long time to get a
breadboard. Building up a board that has enough of the final components...takes a long time.
Software you can build up on PCs and other evaluation tools and simulations are available. You
can build a skeleton and add things. For hardware, form is a factor. You’re putting stuff in and
could do it faster, but that would a throw-away effort.

The “throw-away” aspect of physical prototyping apparently sometimes acts as a
deterrent to some tests and integrations. This also suggests a schism between hardware

and software development.

Finally, at least one experiment in more frequent integrations and the spiral process
failed. One manager recalled from another product development attempt,

We're not extremely successful at using the spiral process. We tried to do things that way and we

got an end-to-end flow, but we took so many shortcuts that we had to throw it away...it was a

waste of time. To look like we accomplished things, we did simple stuff and didn’t retire all of the
risks early, but that may have been a matter of experience.

The same manager suggested that this failure may have been a matter of experience
rather than process fundamentals; but regardless of cause, ITT does not follow this

process and instead pursues less frequent prototypes.

99

Process experimentation is accepted practice at ITT. The PDP includes a section
describing process change, maturation, and evaluation that suggests the use of small pilot

projects to test proposed process improvements.

Case study conclusions

ITT uses its “progressive freeze” stage gate process across a wide array of products. The
process uses rigid reviews, many narrow iterations, and only a few cross-phase iterations
in which lessons from integration and prototyping are applied to early development
phases. The progressive freeze allows the process to be slightly more flexible than other

stage gate processes.

The ITT PDP exhibits itself differently when used on different projects. On the
exploratory SUO program, the process is used to build a technically challenging product
for which the customer has only loosely defined and exploratory needs. On the GPS
program, the process is used to develop technical modifications on a product with a
critically limited timeline. Both projects are military products, so traditional market risks

are skewed by the unique aspects of the military contracting.

100

6.4 Xerox Corporation case study

Company and product description

Company and market overview

The Xerox Corporation is a leading hardware, software, and service company that
produces document systems, including copiers, printers, scanners and fax machines. The
company is based in Stamford, CT, has major campuses in Webster, NY and Palo Alto,
CA, and employs approximately 80,000 people worldwide.!' Xerox has been struggling
financially in recent years. Annual revenues — and costs — have hovered around $18-19
billion over the last three years, although only $10 billion of the annual revenues are from
actual sales, as opposed to services. Stock prices dropped while the company made an
uncertain shift towards developing digital products. During this industry transition,

Xerox started changing from “light lens” copying technology to digital copying and

" Xerox employed 92,500 peopie at the end of 2000, but has cut almost 12,000 employees in the past year
and a half. (Xerox 2001 Annual Report and New York Times, 1/24/02) Actual Xerox earnings are in
question pending an SEC lawsuit against the company over accounting practices.

101

printing as it tried to weather a potentially disruptive wave of innovation. More recently,
the company has created two business models. One focuses on “providing replicable
end-to-end document solutions for global customers by industry,” while the second
“focused on broadening...networks of indirect channels to reach more customers with

more plug-and-play products.” (Xerox, 2000)

Xerox estimates that the global document market that it serves is nearly $200 billion.
This market, in which Xerox holds a dominant share, is segmented into several parts,
including a general office market of almost $70 billion and a SOHO (Small office/home
office) market of over $40 billion. Xerox operates in a self-described “environment of
significant competition, driven by rapid technological advances and the demands of
customers to become more efficient.” (Xerox 10-K reports, 2000 & 2001). In addition,
the company must develop its products in response to government regulations regarding
environment, safety, and health, ranging from the Americans with Disability Act to the

EPA Energy Star program. (Xerox Newsroom 2001, Xerox CEHSS 2001)

The document market is changing. Customers have been demanding more color and
more digital functions. Today, black and white light-lens copiers represent only 30% of
company revenues. Xerox is responding to the market changes by developing new
products both internally and externally. Internally, Xerox has been developing new series
of multipurpose office machines based on its own R&D. Xerox spends almost $1 billion
annually on R&D, or about 5.5% of total revenue (or of expenses, which have been
nearly equal to revenue).'” Externally, Xerox has acquired several companies to obtain
both products and know-how. An example of this is Xerox’ $925 million acquisition of
the Color Printing and Imaging Division (CPID) of Tektronix and its solid ink and laser

color printers.

"> The given annual levels of R&D expenses do not include the additional annual investment of nearly $700
million by Fuji Xerox.

102

Product description

Product development is crucial to Xerox. Its products include several systems and
hundreds of parts, including both software and mechanical components. (Otto & Wood,
2001) The development process examined in this case study is that of a Xerox Document
Center with a quasi-embedded Endeavor software package. One version of a Document
Center, the 460-ST, is shown below in Figure 6.4.1. This digital combination black-and-
white printer, copier, scanner, and fax machine retails for $32,420 in 2002 and is one of

several “ST” models ranging from the 220-ST to the 480-ST.

Key technical specifications for such Xerox document centers include performance
(including print speed, copy speed, and warm up time), document handling (including
standard input sheet capacity, maximum monthly volume, and inclusion of features such
as collators or staplers), and other capabilities (including type of print technology and

subsequent image resolution, reduction/enlargement features, and energy use).

ket Services:
iDocumenr Centre ColarSeries 50

3 AT g

Printer Defaults
Pl Detahy.

Fig. 6.4.1: A Xerox Document Center 460-ST and a sample user interface screen.
This product serves as a copier, printer, fax and scanner. It includes both fully embedded
and partially embedded Endeavor software for user control.

The mechanical part of a document center includes its body, engine, document handler,
and other physical components. The software part is equally complex and is divided into
two sections: control software for the mechanical components and the network software
for user control. Of these two, the network software is more critical because it allows the
document center to perform multiple office functions. This software includes an

interface at the machine itself (control panel), as well as features for communicating with

103

computers and faxes on both internal and external networks. The network software
package that handles connections between users and the product is called Endeavor.
Endeavor is platform software that transforms a stand-alone copier into a connected
multifunction product, or Document Center. Although Endeavor is partially-embedded
software in a final product, it can be considered in many ways to be an independent
product within the company. It is not an independent commercial product only because,

for strategic purposes, Xerox has not tried to market it this way.

Product development process description

Process overview

Earlier literature and discussions suggested that Xerox subscribed to a relatively linear
waterfall process. Indeed, Xerox was chosen as a case study in part because it was
assumed that the company would be a good representative of a “pure” waterfall process
in action. Reality proved otherwise. Although the Xerox PDP is generally characterized
as an effective, stage gate process, it is not a pure waterfall process. The case study
supported conventional wisdom on the effectiveness of stage gate processes, but also
added depth by uncovering several subprocess layers, finding some hidden surprises and

even exploring internal process experiments.

The official Xerox product development process is called the company Time-To-Market

(TTM) process, part of which is illustrated by Figure 6.4.2.

R

Phase 3.1 Phase 3.2 Phase 3.3 Phase 3.4 Phase 3.5 Phrase 3.6

Fig. 6.4.2: Portion of the Xerox TTM process showing phases and gates

TTM is a strikingly linear stage gate process; each phase includes specifically-prescribed
inputs, steps, milestones, outputs and mandatory reviews. However, the TTM process is
broad and encompasses everything from basic research to post-delivery customer service.

TTM’s wide span exceeds the scope of this product development research, which focuses

104

on the center of this process (mainly Phases 3.3-3.5). Nevertheless, a contextual analysis

requires a brief explanation of both ends of this process before delving into the center.

Xerox differs on the two extreme ends of its own TTM process. On the far upstream
side, Xerox has displayed a string of notorious failures in identifying, funneling, and
commercializing promising technologies. Indeed Xerox PARC (Palo Alto Research
Center) was an incubator of several ingenious ideas that went unnoticed and were left
unpursued by faraway East Coast managers, much to the detriment of the corporation.
The most famous of these upstream failures was LISA, the unguarded, Xerox-developed
graphical user interface that was functionally appropriated by the Apple Macintosh in the
1980s. On the other hand, the far downstream side, Xerox has made a concerted and
successful effort to satisfy its customers and has a broad array of warranties, service

programs, and customer support mechanisms.

The focus of this research begins after research concepts have been narrowed or selected
for development and ends with product delivery. This core process in Figure 6.4.2 is
handled in a rigid stage gate fashion. Each phase in the figure includes specific guiding
principles, clear delineations of responsibility, phase transfer criteria or tests, expected
input/output lists, and documentation requirements. Phase 3.1 may occur in parallel with
other market strategy activities, and Phase 3.6 is considered a “continuous” process, but
phases 3.2-3.5 are defined by Xerox as asynchronous processes. For example, Phase 3.3,
“Design Product,” may not begin until technological readiness is demonstrated and
product specifications are defined in phase 3.2. Phase 3.3 includes design and review
activities, as well as building, testing, and integration. To pass to the next phase, the
project must demonstrate design stability and readiness for production start-up. Once a
phase is completed, it is expected that there will be no return. The expectation is that any
future changes or features will be introduced into the next version or product. Therefore,

design iterations are strictly intra-phase.

Responsibilities within phases are divided between several teams (design, subsystem

design, marketing, launch, etc.) and their respective managers. The TTM “decision

105

team” is a segregated group of people who serve as external reviewers and make go/no-
go decisions at phase review meetings. TTM decision teams generally consist of peers
who are working on other projects, meet only as necessary, and are kept insulated from

other responsibilities regarding the specific product being developed.

Risk management is specifically addressed in Xerox processes and is defined as “a set of
continuous activities that identify, track, and control the risks” in a process. Xerox PD
process texts usually emphasize technology risks and devote a great deal of attention to
technical reviews to ensure the deployability of technologies and the early assessment of
risks by design groups. More specific process steps include the categorization of risks

into four levels:

1)Very high 1)Project size

2)High based on three elements 2)Project volatility
3)Medium 3)Development environment
4)Low volatility

Other types of risks, such as schedule slip, market fit, and even exposure to financial risk
from changes in foreign currency exchange rates, are discussed more extensively in other

Xerox documents.

The software subprocess

TTM contains several subproccesses, including one for software. The software
subprocess is notable for two reasons. First, it marks a recognized difference between
hardware and software development. Second, it makes a slight break from the standard
waterfall process prescribed by TTM. The software subprocess (first developed in 1998
with the help of Barry Boehm, and still bearing marks of his influence) appears at first to

follow a stage gate pattern:

1) Inception 2) Elaboration 3) Construction 4) Transition 5) Delivery & Maintenance

The software subprocess is also marked with “anchor points,” or milestones, so that the
software can remain matched to other parts of the product being developed via the regular
TTM process.

106

Despite the initial stage-like appearance of the software subprocess, a diagram of the
steps indicates that major cross-functional iterations occur, in contrast to the standard
TTM process. An example of this can be seen in Figure 6.4.3, which reflects the spiral

process.

Stages

ELABORATION

suonoung

3

Figure 6.4.3: Iterations in the Xerox software subprocess\

As prescribed the spiral process, this software subprocess includes planned, cross-phase
iterations — if the functions along the vertical axis are considered phases instead of
functions. These frequent iterations help to avert “silo” or “throw it over the wall”
organizational difficulties, and also prevent the early freezing of specifications.
However, Figure 6.4.3 does not represent a pure spiral process, as defined in Chapter 4.
The software subprocess is not as flexible as a complete spiral process because it must
still conform to the more regimented TTM process. Every stage has a series of

prescribed transfer criteria even though rigid transfers preclude truly simultaneous work.

PDP implementation

The TTM process and software subprocess described above reflect official Xerox policy,
but do not comprehensively describe what actually happens in Xerox PD. Although the
processes are usually followed diligently, there are some exceptions and surprises in the

actual working environment.

107

The most notable difference between prescribed and practiced policy is that Xerox allows
for process experimentation. For example, one group of software engineers received a
waiver and is being allowed to develop their code by using extreme programming (XP),
an entirely different process described earlier in Chapter 3. It is evident that Xerox is
having difficulty forcing these experimental processes to conform to TTM. As one of the

XP practitioners states:

“There’s idealistic XP and there’s what we do here. Generally XP is done with small groups of
people, maybe 10 people. If you did true XP fashion, you [couldn’t] fit XP under the [TTM]
hood. The problem with XP in this environment is traceablity. TMM compliance requires a lot of
traceability. ..traditionally XP doesn’t have that. So we’re working on making XP traceable.”

This is one of several examples of internal process tensions. Another case in point gets to

the root of the tension:

“Management tends to like to have all their planning up front, all...which is very anti-XP. XP
says just figure out enough and get going...and we’ll figure out the rest later. Management freaks
out about this. They want everything up front. They want to know when the schedule is going to
be ready. So traditionally management gets this but they tend to get...all the schedules wrong,
they tend to not be correct and tend to have a lot more features and functionality in there.”

Mismatches of this kind are not indicative of process failure; it is too early to tell whether
the XP experiment will work. Nor are process mismatches unique to experimental

processes.

Another prevalent mismatch is that of different “natural” cycle times between software
and hardware components of the same final product. Some of these alignment issues are
not specifically addressed in TTM, but make their presence felt in almost every product.

In the words of one senior hardware manager,

“[The software schedule] contrasts with the engine. We may not be able to do it...the cadence is
different.”

This issue of cadence was noted with concern among software managers as well. The
difference in timing may also be due to asymmetrical quality standards for hardware and

software. As one manager stated:

“We have different criteria for hardware and software problems in our quality assurance cycle.
Hardware problems, when they exist, usually exhibit themselves in a more critical way to enabling
a product launch. The criteria would be its usability...having [the hardware] jamming all the

108

time...would be a bigger problem than having a software-related [glitch, or a local user interface]
that just says the wrong thing. “

Another software manager expressed her frustration with the hardware-oriented, TTM

quality requirements being foisted upon the non-critical software:

“They try to make [our software] perfect and that’s why it takes them so long to get things out the
door...they over-engineer, over-think, and pay too much attention to quality.”

Another important discrepancy between official process and actual occurrence is the
prevalence of testing. Although TTM distinguishes between “designing” and
“demonstrating” a product, testing occurs much earlier in software design than would be
expected from the prescribed process alone. Unit and software testers frequently become
involved as early as stage 3.2. As one testing engineer pointed out, the early involvement

exists,

“not to test, but to develop a good test...[and plan] what a good testing strategy would be.”

Later, the more common beta-testing is nearly universal. Receiving feedback is such an
important component of marketing that nearly everything is tested for 6-8 weeks.
Usually companies receive a preliminary version of a product for free during that time in

exchange for feedback regarding the product’s use and performance.

Another hidden tenet of Xerox product development — one that would not be discernable
from the company TTM alone - is a strong emphasis on schedule. There is a corporate
culture of on-schedule delivery, at the expense of almost anything else if necessary. This
stems directly from a perception that market risk must be the most controlled of all risks.
The unity of this sentiment is remarkable, as can be seen from the unusually strong
chorus of reinforcing statements from a software engineering manager, a marketing

manager, and a hardware engineering manager:

“You won’t be able to talk me into adding [any features if it will push out the schedule.] Even if
my boss asks for a change, if we say no because we can’t move the schedule, that’s it. Nobody
argues. That’s the extent of the culture because it’s clearly schedule-driven.”

“It’s important at Xerox if you control the schedule. Being in this market, it’s a commodity and
you’ve got to be on time or you lose the market.”

“Most of our incentives are to launch on time, so the whole culture is that way.”

109

“[Changing] a schedule...ugh.. .there really has to be a shift in the marketplace to do that...like
someone has leapfrogged you and you would be at such a disadvantage that it wouldn’t be viable
from a business standpoint to launch a product. It would have to be pretty severe to [delay a
schedule just to] get a feature.”

“Schedule is king.”

Indeed, in almost any contest between extra features (technical) or on-time delivery
(schedule/market), the schedule will almost invariably win at Xerox. Although not
explicitly emphasized in the TTM process, managing schedule risk becomes functionally

unnecessary because schedule risk is not accepted.

A final important aspect of Xerox PD is the difference between “variant” and “clean
sheet” products. Most Xerox products are contain less than 75% newly-designed parts
and are therefore classified as variants. The company only develops clean sheet products

with the expectation that they will become platforms for future variants.

The TTM process does allow some flexibility in developing variant products because the

‘core components of variant products are relatively well-known. Technically, Xerox goes

through the same process for both variant and clean sheet projects, but variant projects
have considerably shorter cycle times than clean sheet projects (one year instead of up to
4-7 years) because some TTM steps can be skipped for variant projects. Variants,
especially those with simple “plug and play” feature additions or enhancements, have
other advantages as well. They tend to require only half the number of prototypes as
clean sheets. Additionally, the prototypes that are built tend to cost just 25% to 33% of
the cost of clean sheet prototypes. The incentives to develop a variant product remain
strong. As one marketer put it:
“In past years we’d try to clean sheet everything...now we’re cleansheeting one component at a

time. So when you ask about variants, I could make the case that almost everything we do from
now on is a variant.”

Case study conclusions
Xerox follows a rigid, stage gate PD process and defines specifications early. However,

the company makes several exceptions to its stage gate Time to Market (TTM) process.
First, product testing sometimes overlaps with other functions earlier than officially

prescribed. Second, software development is permitted a more cross-functional and

110

iterative subprocess. Finally, process experimentation occurs, as in the case of control
software programmers who received a waiver from the ordinary PD methods in order to
prototype Extreme Programming (XP) within the company. Xerox has some difficulty
integrating these three iterative and experimental subprocesses into TTM. The company
recognizes that some external software development processes may be effective, but
Xerox is no Microsoft and adopting more flexible development processes into its

hardware-oriented TTM remains a challenge.

The company’s imperfect inclusion of flexible processes means that Xerox still
consciously emphasizes predictability over flexibility. The mere hint of variable
specifications leads to instant skepticism and managerial fear of “doom loops,” a cleverly
derogatory reference to iterations between design and specifications that threaten to never

end.

The stage gate TTM process appears to be effective for Xerox, so why does the company
struggle so painfully to integrate less rigid subprocesses? After all, the Xerox corporate
emphasis on-schedule delivery mitigates the threat of slow development, an otherwise
common problem in stage gate processes. Also, Xerox has adopted a product line of
several modular platforms and many “featured” variants, a system which favors stage
gate processes. Finally, the company’s on-time delivery and intensive customer feedback

ensures that any necessary changes can be included in the next version of a product.

Xerox tries to infuse more iterative and flexible subprocesses into TTM because it still
faces challenges despite the advantages and seemingly good “fit” of the stage gate
process. In the digital age, Xerox recognized that its new software components
sometimes had faster development cadences and lower quality requirements than its
hardware components. The TTM process had — and still has — difficulty managing these
differences. Also, Xerox’ immunity to late delivery is not absolute. Even with cultural
forces outside the PD process urging timeliness, market uncertainty creates
overwhelming pressure for more rapid development. Finally, even Xerox sometimes

requires development flexibility in a product rather than in a product line. What the

111

company sometimes calls “iteration” is in fact a series of alternations or additions that

occur so slowly that changes are allowed to wait until the next version of a product.

Xerox’s unique risk profile and mix of processes provide some interesting insights into
the application and selection of PD processes. In this case, industry context led to an
array of development risks that the company attempts to manage with different PDPs.
Xerox manages schedule risk wéll and keeps development programs on time, but is still

struggling with its hybrid process.

112

6.5 Printco

Company and product description
Printco Inc, a medium-sized company of 1500 employees, develops and produces coding,

labels, and markers for shipping and inventory. Printco is a pseudonym for a US-based
company that provided data and interviews for this study, but which chooses to remain
anonymous out of concern for trade secrets. The name of the company and the trade

name of its products have been changed in this report.

Most Printco products are used in the food packaging industry. Although its products are
capable of marking and labeling many varieties of plastic and paper substrates, the most
common are bags and boxes used to ship food. In some cases, products are sold directly
to end user food companies such as Frito Lay. In other cases, products are sold to
integrator companies that build packaging equipment for others. The company is

expanding to other, non-food industries.
This case study examined the development processes of two Printco products that have

recently been introduced to market: the 26K Series Ink Jet Marker and the Model
P220/440 Case Coder. The first product, the 26K Series Marker, is a digital marker

113

designed to mark printed circuit boards (PCBs) with white ink. This was a new product
for Printco; there was no previous incarnation of the product. The major risks in product
development were technical because of the challenge of ensuring precise line definition
and permanency. The 26K Series includes high-resolution Drop on Demand (DOD)
jetting assemblies, robust printhead and controls architecture, specially formulated inks,

and designer software.

The second product, the P220/440 Case Coder, prints scannable bar codes, detailed logos,
or product information on various cases, as shown in Figure 6.5.1. It can print on most
substrates commonly used in case and carton packaging, including coated and uncoated
cardboard, rigid plastics, and shrink wrap. The P220 has two print heads, while the P440
includes four print heads for printing on both sides of a box. Both are variants based on
Printco’s older Model 200 product family, which served the same market but printed at

slower speeds.

Figure 6.5.1: A universal product code printed on a carton with a P220 Case Coder

PD process description

Process overview -

Printco is currently revamping its PDP, continuing its evolution. As recently as the early
1990s, Printco’s process was relatively unstructured and typical of the company’s
smaller, entrepreneurial status. During the past decade, the company nearly doubled in

size and launched a formal PDP to ensure ISO certification. It also introduced standard

114

financial measures and additional reliability testing to avoid relying on end users (and

warranties) to validate product quality.

Printco’s personnel organization is key to understanding its product development. Most
development programs include about 10 engineers from three technical teams: chemical,
mechanical, and electronic/software. The chemical team is primarily responsible for
designing the inks to be used in the printers, and must address such issues as drop size,
resolution, adherence to substrates, and drying speed. The mechanical team is
responsible for designing the printheads and mechanical body of the machines. The
electronic/software team designs the software necessary for customers to control printing.
Teams must work together in overlapping areas, such as avoiding potential trouble when
ink jams a printhead. The joint efforts of chemical and mechanical engineers are needed
to correct such problems. One project manager is responsible for the technical
development of the product, including coordinating the technical teams. A separate
program manager has overall responsibility for the product, including control over the

relationship between the project engineering and marketing.

Printco’s official process employs a series of phases, stages, and reviews, as shown in
Figure 6.5.2. The first phase, sanctioning, includes concept design and endorsement of
the development effort by senior management. The second phase, design, incorporates
occasional reviews, although the design reviews are described loosely and with no set
schedules. Individual program and product managers may also freely interpret Printco’s
flexible provisions for controlling design changes and determining which proposed
changes are accepted into a final product. Integration and prototyping occurs near the
end of the design phase, and products are tested both internally and at customer sites.
The final phase, production, occurs after most design and development work, and

includes manufacturing and installation of final products.

115

Phase Stage

(S1 ID Market opportunity, Prepare business plan, Begin project
notebook

S2 Develop product specification, Develop launch plan

S3 Develop project plan including test plan

S4 Conduct Sanctioning Phase Review

D1 Design product, beginning with a specification compliance
document

D2 Review design

D3 Build, test or modify prototype

D4 Verify design

D5 Perform design maturity test/reliability qualification

D6 Validate design
D7 Perform final design review

P1 Perform production readiness review
Production P2 Produce pilot batch of product
P3 Install customer machines

P4 Validate product

Figure 6.5.2: A diagram of the Printco product development process

The company’s recent products have been deemed successful by both Printco and its
customers, yet their development schedules and budgets have regularly exceeded

projections. The company is working to improve both process and implementation.

PDP implementation

The actual Printco PDP is not as well-defined or implemented as Figure 6.5.3 might
suggest. The process may have been rigidly followed at first, but implementation has
drifted and evolved informally over the years. Sometimes straying from the process was
advantageous, as when people used an informal process to circumvent a flaw in the
official PDP. In these cases, the written processes merely were not updated to reflect the
effective practices already undertaken by the company. Other times, straying from the
process was harmful, as in the case of one recent product that took nearly double the
predicted development time (at an extra expense of almost $1 million) because of design

changes throughout development.

116

Interviews with a series of Printco engineers and managers (see interview guide in
Appendix A) revealed two interesting points about how the company actually
implemented its own PDPs. First, the case study demonstrated that the process did not
work equally‘well for different product portfolios, at least in part because those products
faced different risks. Second, neither iterations nor reviews were well controlled, leading

to difficulty in meeting development goals.

The two products examined, the Model P220/440 Case Coder and 26K Series Marker,
were specifically selected in order to compare disparate development efforts. The Case
Coder was a derivative product for which market risk dominated over technical risk. The
Case Coder market was thought to be well understood, but the process did not
incorporate market feedback early into the process and market risks dominated because
of this process failure. In the typical sentiments of one engineer,

We should have had more steps earlier on...we needed to get the information earlier. Marketing

first said we don’t need [a feature] anymore, so we didn’t design them in. One year later, and two
months before release, it changed to “Yes, we want [the feature]!’

In this specific case, some market feedback was incorporated late in development
because the PDP did not mandate engineering inclusion of marketing input during early
stages. The company was lulled into thinking that it understood customer needs, which
resulted in abrupt scope expansion when added features became necessary late in the
development effort, increasing expenses and delaying overall development. This was not
the gradual scope creep found in other case studies, but rather a more sudden realization

of market-driven additions necessary in the latter stages of development.

This example also challenged conventional wisdom because the primary risk was market
risk and not technical risk. Risk is usually low in derivative development projects, and
whatever risk exists is usually dominated by technical risk because of the incremental
nature of development. Past experience in a known market usually prevents market risk
from dominating, but in this case past experience led to false assurance, which combined

with process failure to result in a poor assessment of market needs.

117

In contrast, the 26K Series Marker was a riskier program with both more market and
technical risk. The 26K Series Marker faced great technical risk because it was an
entirely new technology (the printhead, ink, and intended substrates were all new). It
also faced significant market risk because the printed circuit board market was new to
Printco, which was trying to expand to areas besides food and case printing. Despite
these differences in risk profile, the same PDP was used, although it was implemented

with more structure than in the Case Coder.

The result of the 26K Series Marker development effort was a technical success, but the
product is still so new that it has yet to prove itself in the market. Development went
over time and over budget, but for different reasons than the Case Coder. As
implemented, the PDP led to several late market adjustments for the Marker, but none of
the market-induced changes were as surprising as those that were initially neglected on
the Case Coder. Iterations between customer needs and engineering designs were not
abrasive, although it is unclear whether this is due to PDP guidelines or due to good
personal interaction among project and program managers. Most delay was due to
technical, rather than market-driven, difficulties in designing an ink-printhead

combination that could achieve the necessary quality specifications.

The Printco PDP did not lend company-wide uniformity to these two separate PD efforts,
which faced significantly different risk profiles. One of the reasons for this discrepancy
is that the PDP does not adequately assign or control reviews or iterations, including

integrations and prototypes.

Design reviews are only loosely defined in the Printco PDP, so they vary dramatically
between projects. Although reviews were casually described as “not rigid at all” and “ad
hoc,” reviews occur frequently. The most important gates are the sanctioning review and
final design review, but even these formal gates are implemented loosely. As one

manager stated,

118

You don’t stop the work waiting for the sanctioning. That’s not the hard gate one might expect.
Not all things are reviewed in same way. It’s not random, but the process doesn’t clearly define
what review should be.

The standards are more stringent in final design reviews, but the tension is absent because
of several informal design reviews that have already occurred. This reduces some formal
design reviews to mere formalities. As one engineer claimed, “by the time you have a
final design review, the designs are clean.” In such a case, a review is reduced to a
formality, while informal reviews gain in importance. Engineers themselves determine
when informal reviews occur and who is on their own review committee. Conditional
reviews, where some parts of a design are provisionally vetted despite the need to make

additional changes, occur frequently.

Iterations, design changes, and prototypes are also considered but not controlled by the
Printco PDP. This leads to inconsistent standards for determining when design changes
or specification changes should be approved. The following three examples demonstrate
how changes may be either accepted or rejected: a specification can change, a design can
change, or a change may be rejected. In the first example (specification change), one
aspect of a printhead design did not meet a temperature specification. An internal review
determined redesign was unnecessary because the specification had been too stringent.
The specification was changed to correspond to the design with no quality penalty. In the
second example (design change), a specification changed and engineers had to scramble

— unhappily - to redesign because of this “scope creep”:

As we investigated this brand new marketplace we discovered a new thing or feature to be added.
Each would cost a week or calendar month. Initially we planned to include one of those features
only in a later release, but we had to do it immediately. That was a two week hit.

Keeping designs open tends to frustrate everyone. The definition of the product has a tendency to
stay liquid too long. The design isn’t fixed and changes happen that cause us to go longer than the

planned schedule. We need more voice of the customer earlier and we need the description to
freeze design. Everyone wants the spec harder and earlier.”

In a third example (rejected change), a market-driven change proposal threatened, but did

not change, the software system architecture. As two employees described,

When [a manager] proposed a change [that would affect system architecture], we demanded a
majorly good reason to do so. We pounded on the table and used harsh language. I told them that

119

you’ll have to kill me and get a new team leader to make this change...changing a spec is
something you don’t want to do very late unless you have a compelling reason to do so.

The proposed change was dropped to avoid the major rework that would be required
otherwise. These preceding three examples show how different situations can lead to
different decisions on change control, but all three of these decisions were made without
specific guidance from the PDP. Decisions were made on a case-by-case basis by the

individuals working on each project.

This section and series of observations demonstrated that the actual Printco PDP is a
conglomeration of both official process and unofficial implementation. These
inconsistencies between official and actual PDPs are not necessarily helpful or harmful.
Sometimes the unofficial process is an improvement over the written PDP, while other

times it creates delays and rework.

Printco PDP challenges

In revamping its PDP, Printco faces a major challenge in controlling its development
iterations, including the information flows, integration of different teams’ work, and
prototyping. As in other case studies, hardware and software groups sometimes develop
their product components at different cadences. Mechanical engineers frequently require
bits of code simply to be able to test mechanical components. Software engineers then
design test code that is later discarded

Sometimes a design without code can’t be tested, so the mechanical folks need some quick control

software. So [the software engineers] do some garbage code so you can try out the design...we’re
always waiting for the software guys to finish the design. (Mechanical engineer)

We would write some junk code or stubby tool to check out mechanics components. ..especially
fluidics. Some stubby thing would fire off the solenoids and record results or troubleshoot timing,
but the impact of this development jitter on mechanical design was minimal. (Software engineer)

There is a natural tension between teams regarding whether the software lags are in fact
minimal or whether the development “jitter” leads to significant delay, but the example
demonstrates the existence of interactions between groups that require management

throughout development. Not all interaction and information flows are “jitters.” Some

120

cross-phase iterations involve late feedback from prototypes and integration in the latter

part of the development process.

One example of large-scale iterations are design changes that result from prototype
testing. Printco develops its prototypes relatively late in the development process. As

one manager described the history of prototyping in the company:

In the long term less prototyping won. Our prototypes are closer to what the final product will be.
It used to be easy to make a prototype, but with electronics it’s more costly, so we try to do more
first.

This late prototyping sometimes leads to unintended iterations in the form of rework and
schedule delays. In one example, a manager lamented the late discovery of a technical
problem that only arose during the integration of parts and testing of a prototype:

We found [the problem] late. The signs of [the problem] — a major ‘gotcha’ — were there, but they

were isolated and random. We needed a bigger population to find it [prior to the prototype
revelation.] We scrambled to redesign because of that.

The current Printco PDP does not advance the cause of early prototyping because of the
perceived complexity of design. Future versions of the PDP may either freeze
specifications earlier, and thus disallow late changes, or may allow more flexible

specifications to allow for improved feedback from later stages of development.

Printco PDP conclusions

The Printco PDP is a combination of official process and broad individual discretion by
individual managers and engineers. This combination of official and informal PDPs
resembles a waterfall process with frequent and flexible reviews, moderately-controlled
intra-phase iterations and poorly controlled cross-phase iterations that result in occasional
rework and delay. The company has thus far maintained a strong product line, but seeks

to continue improving its PDP.

Printco’s PDP developed from less official processes to incorporate common milestones
and improved quality control, but struggles to control products facing different levels and
types of risk. The PDP does not work equally well for different projects, partially

because of the different risks faced by those products and partially because of the team

121

dynamics among those working on each product. A common frustration throughout the
company is the tendency for redesign when early specifications are considered frozen,
but then change with some late-entering market data. A lesser frustration is redesign

stemming from technical problems that are revealed only in late tests and prototypes.

Lessons from Printco include the need for a PDP to incorporate market and technical
feedback earlier. Uncontrolled changes — from the “jitter” of software and mechanical
cadences to the “last-minute” inclusion of market data and major design revisions —
evidently leads to rework, added costs and extended schedules. Specifically, the Printco
case study illustrates that a process of frequent but loose reviews is not conducive to
design change control unless it is supported by a system of controlling cross-phase
iterations that allows designers to incorporate information gained from the traditionally
late stages of testing, integration and prototyping. The case study also demonstrates that,
as in other companies, variant projects may be less risky and less expensive than new
platform projects, but that even “derivative” markets that are thought to be well-

understood can be risky.

122

6.6 Secondary case studies

6.6.1 United Technologies Corporation (Pratt & Whitney and Sikorsky)

Company and product description

United Technologies Cdrporation (UTC) is a large and diverse manufacturing company.
Its businesses include Pratt & Whitney (P&W), a turbine manufacturer, Sikorsky
helicopters, Otis elevators and escalators, Carrier heating and ventilation, and several
other units. The Connecticut-based company employs over 30,000 people worldwide and
generates revenues of almost $28 billion per year. This investigation uses Pratt &

Whitney and Sikorsky as PDP examples.

Pratt & Whitney (P&W) designs and manufactures gas turbines, mainly for commercial

and military aviation, but also for power generation. P&W generated sales of almost $8

123

billion in 2001, slightly over one quarter of UTC’s overall sales. The company’s engines
are similar to the turbomachinery designed and manufactured by SWPG described in
Chapters 2 and 6.1. Figure 6.6.1 shows a sample P&W engine, a 112-inch-fan PW4000.
This engine is an ultra-high-thrust model covering the 74,000 to 98,000-pound-thrust
class to meet the current requirements for the Boeing 777 twinjet. Like SWPG turbines,

the machines are large but include thousands of components with precise and small

clearances.

Figure 6.6.1: (left) The PW4000 engine
Figure 6.6.2: (right) Sikorsky S-76 commercial helicopter

Sikorsky Aircraft Corporation is a smaller subsidiary of UTC, generating $1.8 billion in
revenue in 2001. The company designs and manufactures military and civilian
helicopters. One example can be seen in Figure 6.6.2, which shows a $7 million S-76

commercial helicopter that can transport 12 people.

PD process summaries

P&W and Sikorsky each have their own PDPs. Each is a different version of the stage-
gate process. The Sikorsky PDP is the more traditional stage gate process, as can be seen
in Figure 6.6.3. Development progresses through a regular series of concept, system
design, detailed design, and system testing stages. Many specifications and reviews are
required by either military or FAA standards. These standards lead to a series of rigid

reviews that occur at the ends of stages rather than at regular intervals. Stages are

124

sequential, although there are some minor iterations that occur between detailed design

and testing/refinement.

Mission Concept - @
Statement Development|™ :

..................... .
System- Detail
Level Design " ;
Design 9

v : : Coupon tests

Full part tests

Subsystem tests e
icati System Avionics tests Life limited
Fal}')gg:;lon Testing & Tie-down tests components

Refinement | Flight tests
Certification tests

Purch Comp's

In-house Product
Feedback/ Product
Production Launch

GaA cord Rame-U

\4

Product Product
Support Retirement

Overhauls/spares Sell rights
Accident investig. Liability mgt.

Figure 6.6.3: The Sikorsky PDP includes unused loops

The official Sikorsky process cites iterations that are rarely enacted, thus remaining a
strict stage gate process in practice. Figure 6.6.3 reflects the official PDP, which
misleads by showing so many feedbacks. In practice, the process is more sequential. For
example, the feedback loop that occurs after the FAA certification is rarely used. The
feedback and knowledge from the total product most goes towards improving future
products, but rarely the product being developed at the time. Feedback to the same

product would force the need to repeat certification procedures.

In contrast, the P&W process includes several uncited iterations. The P&W process is
also a stage gate process, although not as rigid as that of either Sikorsky or SWPG. In
most ways, the P&W process is sequential because the product must also meet rigid FAA
criteria. However, CAD prototyping has reached a level of fidelity that allows the
company to reach forward and make several early digital prototypes that provide

feedback to the system-level design phase. These prototyping iterations, although not

125

officially included in high-level P&W process descriptions, make the P&W stage gate

more flexible.

Before explaining the iterations of the P&W process, which are not core to the process
but remain important exceptions, it is helpful to explain how FAA requirements reinforce
both Sikorsky and P&W’s use of stage gate processes. FAA criteria are often not merely
standards applied to the end result or final product. Rather, some requirements-based
criteria are actually entire production life-cycle frameworks, requiring companies to
undergo a series of stages and reviews. For example, one FAA certification framework
(DO178B for certifying safety-critical and embedded engine controller systems used on
P&W 6000 engines) describes a software life cycle that includes system definition,
software planning, software requirements, software design, code, integration, verification,
configuration management, and quality control. This rigidity can be even more intense
on physical, rather than software, designs. Such criteria limit the flexibility of PDPs in

order to ensure predictable and reliable safety systems.

P&W employs some cross-phase iteration across its stages. Figure 6.6.4 shows the P&W
integrated product development (IPD) phases as officially defined by the official process,
followed by stages as actually used and defined by Hague (2000). Hague describes how
the company cycles through several simulation and modeling iterations as it designs
aircraft engines, even though these iterations are not recognized by most of the PD
organization. Using a parameter-based DSM, he shows how requirements are revisited
and simulations are included during each of four PDP stages: concept design, preliminary
design, detailed design, and validation. The figure shows these iterations as a broad

spiral with one cycle in each phase.

126

IPD
stages

Actual
stages &
Hague
construct

Figure 6.6.4: P&W Integrated Product Development (IPD) process and
an interpretation of how it is implemented

The iterations shown in Figure 6.6.4 are idealistic and not as comprehensive as they
appear. Some requirement “cycles,” for example, are merely based on the assumptions of
the previous stage and do not constitute actual feedbacks. Further, most specifications
are frozen during the later phases, so some revisitations of requirements are merely
cursory checks. Finally, the Hague interpretation of the spiral process is broad; iterations
are allowed to entire products, with subsequent loops being the next generation in a
product family. Thus, although the DSM data does support the finding of some cross-
phase iteration in the form of simulations and modeling cycles, they do not overwhelm

the overall stage-gate nature of the P&W process.

Both P&W and Sikorsky design detailed components in parallel, thus forming multiple
branches within each of their stage gate processes. Although true integration and tésting
must often wait until near the end of processes, improved computer simulations are
allowing for some improved early testing of both components and integrated product

modules.

127

UTC Case study conclusions

Both of the UTC divisions that were studied, Sikorsky and P&W, employ stage gate
processes and face high technical and quality control risks. Both develop products where
many requirements are frozen early, in part because of FAA regulations and military
specifications, and in which most integration and testing is limited to computer
simulations. The Sikorsky process is a strict stage gate. Although its plans include some
inter-phase iterations, such iterations are rarely used. The P&W process does not
officially acknowledge significant inter-phase iterations, although earlier DSM analysis
shows some feedback — and thus iterations — between parts, requirements, and groups
from different development stages. Although the process remains a stage-gate, the

introduction of interphase iterations makes the P&W process more flexible.

6.6.2 Ford Motor Company

Company and product description
The Ford Motor Company is the largest of the case study companies. It employs almost
165,000 people in the US alone, generates annual sales of approximately $135 billion,

and spends about $7 billion per year on R&D. The primary products are automobiles and

128

trucks, which are possibly the most complex products that most people individually own.
Ford automobiles have hundreds of subsystems and over 20,000 parts, many of which are

made by a complex network of suppliers.

Ford vehicles are complex and design must be partitioned many times. The vehicle is
constituted of five main systems: body, electrical, powertrain, chassis, and climate
control. Each of these systems is divided into subsystems, which are themselves divided
into second level subsystems and end items or components. There are frequent tradeoffs
between the many systems, components, and product targets. For example, a body
designed for increased safety may increase vehicle weight and reduce fuel economy.
Alternatively, reducing weight may increase the use of material that is lighter, but not as
recyclable as steel. Managing these tradeoffs involves balancing market, technical, and
budget risks. Market risk is often the most pressing of Ford’s development risks because
of the fickle nature of consumers. Although the company faces technical design risk as
well as pressing schedule risk due to the need to release new products annually, market
risk is the only risk to which the company devotes an entire section in its annual report.
The company makes enormous efforts to gage customer needs, and products are offered

with varieties of options and option packages that customers can select themselves.

PD process summary

The Ford Product Development System (FPDS) is a well-documented process that
includes major actions linked by reviews and iterations. The overall FPDS process is
diagrammed in Figure 6.6.5, which shows how the architecture (system level design) is
broken down (or cascades) to the system, subsystem and component level detailed design
before later integration. The process takes almost four years for a new design, although
the process is scalable to different projects. Vehicles are divided into six levels of
novelty. The most complex level includes both an entirely new platform (S6) and new
powertrain or engine (P6) and can take 41 months to develop. The simplest level is
mainly a carryover vehicle (S1) with only peripheral new parts and designs, such as door
trim or seats, and no engine or powertrain change (P1). These types of products take 18

months to develop.

129

Stralegic Program Appearance Product Confirmation Change

Intent Approval Approval Readiness Prototype Cut-Off Job 1

Months from
finish

Vehicle

System

Subsystem

Component

Optimize'

Figure 6.6.5: The Ford Product Development System

The process begins by defining requirements for a new product, incorporating customer
needs, and engineering specifications. Specifications are defined and frozen in order,
with vehicle design specifications defined first and component design specifications
defined later. Milestones, shown at the top of Figure 6.6.5, mark progress. Each
milestone includes a review and has defined deliverables. For example, to pass the
product readiness milestone at month 19, a program must have a full vehicle analytical
sign-off, a confirmed and issued launch plan, CAD files reflecting verification changes,
and several other key deliverables. Reviews alternate between “hard” reviews that serve

as engineering tests and softer ones that serve as assessments of progress.

Process iterations are usually one of two varieties. The first common iterations are intra-
phase iterations between engineers working on detailed design functions. The other
kinds of iterations are medium-breadth cross-phase iterations that include prototypes.
The prototypes are of various quality at different points of the process, and vary
depending on what aspect of design needs to be tested. Ford does produce some solid
prototypes but the cost and time of these are usually prohibitive for complex integrations.
Instead, the stated FPDS goal of creating “first time right” designs leads to a series of
digital models of vehicles or components. The verification stage of FPDS focuses on

analytical engineering and the results of computer aided engineering or prototyping.

130

Together, the review and iteration combination at Ford indicates a process with rigid
reviews and mild cross-phase iteration to better address market risk. Ford tries to manage
market risk by emphasizing instead better initial understanding of customer needs in the
beginning of a program, rather than tracking changing customer needs and applying those

changes to an ongoing project.

6.6.3 Arabia/DeskArtes

Company and product description

DeskArtes is a small software company that.was formed during a 1985-1989 joint
research project between Arabia, a Finnish manufacturer of ceramic tableware, and the
Helsinki University of Technology. DeskArtes now develops industrial design software
emphasizing aesthetic features. One of its products, the Render Expert software tool,
uses ray-tracing methods to generate photo realistic images from 3D geometry for
presentation and marketing. Features include specialized shadows, highlights, and the
ability to show various textures. Arabia, a Helsinki-based company of 300 people, uses

this software to prototype its designs for ceramic tableware. These ceramic products are

131

the focus of the case study. Most Arabia products are made of vitro porcelain and must
be at least partly hand-crafted. The 3D simulation in Figure 6.6.6 shows how the
company can use the software tool to avoid some of the expensive manual prototyping

work.

Figure 6.6.6: A computer image showing texturing on ceramic tableware

PD process summary

Product development in the aesthetics-sensitive ceramic tableware manufacturing
industry has traditionally been slow because of time necessary to make ceramic
prototypes. First, an artisan or designer must sculpt or form the clay. Several models
may have to fired, depending on the level of deformation that occurs while the model is
heated in a kiln. As Figure 6.6.7 shows, making even a single physical prototype can
take weeks. Designing, prototyping, refining, and manufacturing entire multi-piece

settings can take years.

132

i COMMISSION i

v
N PRODUCT DESIGN T APPROX. % YEAR
>
h 4
I MRKING OF PROTOTYPE i
12
TIMES v
i PROJECT DECISION i
I 6 WEEKS PER MODEL

MAKING OF MODEL
MAKING OF PLASTER CASE MOULDS (20 PIECE-SETTINGS:
MAKING OF MOULD FOR SAMPLE APPROXIMATELY 2-3 YEARS)
24 MAKING OF FIRED SAMPLE
TIMES v
i MODEL DECISION |
+ 1 % MONTHS -1/2 YEAR PER MODEL
MANUF ACTURING OF TOOLS:
RES:‘S‘;“si“gﬂf'dgs (ACTIVE MANUFACTURING TIME LESS
M"ELT ALLEIE ROLLERs WHEN NOT REG ARDING DRYING TIME
- FOR PLASTER MOULDS)
{ TESTPRODUCTION | 4.6 WEEKS

{FINAL PRODUCT DECISION |

[PRODUCTION }

Figure 6.6.7: The traditional Arabia PDP plans iterations starting at the prototype stage
(From Arabia & DeskArtes, Woodward, 2002)

The introduction of DeskArtes software allowed Arabia to save several weeks and
usually even months in production time by enabling designers to visualize ideas more
quickly and by allowing customers to provide immediate market feedback on aesthetic
features. CAD models do not entirely eliminate the need for physical models, but can

usually replace several formerly physical iterations with digital iterations.

The most telling part of Figure 6.6.7 is the degree of planning of each iteration. Arabia
uses several cross-phase iterations in its PDP, and specifically plans the number of cycles
(in this case, prototypes) that it will include before final production. The planned, cross
phase iterations that are usually evident in software companies are used here by a
manufacturing company instead. The process typifies evolutionary prototyping because

of its iterations between individual design and prototyping.

133

6.6.4 Aviation Technology Systems

Aviation Technology Systems (ATS) was a small, 100-130 person company in Arlington,
Virginia. It produced air traffic control software as an independent company until it was
acquired by a division of Hughes Electronics Corporation that was subsequently acquired

by Boeing.

ATS developed software and telecommunications processors for air traffic control, as
illustrated in Figure 6.6.8. The work was performed mainly under contract for
government agencies such as the Federal Aviation Administration (FAA) and Department
of Defense. The system in which ATS played a part was the Future Air Navigation
System (FANS-1), which aids in oceanic data links and traffic control between airplanes.
The system enables oceanic, pilot-controlled free flight with frequent relaying of aircraft

positions.

134

Figure 6.6.8: The FANS-1 system is used for oceanic data linking and traffic control

ATS faced many risks in its communication system development. As a developer of
software, it faced great market risk because the overall FANS-1 system was itself
immature. Market needs were uncertain because the government effort that initiated it
was itself experimental. However, this market uncertainty was mitigated by the fact that,
as a government contractor, ATS could be assured of receiving clear requirement
specifications from its customer, even if those specifications dealt with the broader
FANS-1 system instead of just the ATS components. Further, the FAA was a very
involved customer. It kept close tabs on the company and frequently involved at least

one of its own people in ATS’ product development efforts.

Technical risk was extremely high because of the necessary product quality. Air traffic
control software is a mission-critical product with low tolerance for error. This set ATS
apart from many other software companies that can frequently release software with non-

critical bugs.

Precise levels of budget and schedule risk for ATS remain unclear because of the lack of
existing data, but managing budgets was evidently a problem for the company. The
company did receive some slight bidding advantages for government contracts as a
minority-owned business, but this did not compensate for the company’s tendency to

overspend its projected development costs.
The ATS PDP most closely resembled a spiral software development process. It cycled

through a regular series of phases ranging from concept design to prototyping. In the

words of one former software development manager,

135

[The ATS PDP was] pure spiral model. We would go around the cycle three or four times
depending on the effort, and testing was part of each round.

ATS had highly variable product development times, ranging from 9-36 months, so
although the cycles would occur several times, the duration of each cycle could vary

widely.

The most unusual aspect of the ATS PDP was the emphasis on quality assurance (QA).
The company maintained a QA-to-developer ratio of 1/3, an unusually high ratio for a
software company. In the words of one former worker, “QA was involved the whole
time” (emphasis original). This was understandable given the technical quality concerns
of the FANS-1 system, but nevertheless marks an unusual departure from conventional

wisdom on the use of spiral processes.

PD literature that mentions the spiral process (McConnell, 1996; Boehm, 1988 & 1994)
suggests that its weakness may be quality control. Its emphasis on flexibility allows it to
adapt to changing markets, but the frequent design changes and lack of design continuity
may lead to bugs. The ATS case study challenges the assertion that the spiral process
only works in cases where quality control is relatively unimportant. The ATS product
was mission-critical and had high quality requirements, yet used a spiral process with
cross-phase iterations that led to major redesign so that information from prototypes
could be included in later cycles. In this case, a spiral process was conducive to high-

quality product.

136

6.6.5 Microsoft

Company description
Microsoft Corporation is the world’s dominant software company. The Redmond, WA

company employs almost 50,000 people and has annual revenue approaching $30 billion.
Microsoft products include several large product families, including Windows, Office,

games, network and server software.

Microsoft’s dominance places it in a unique market and development situation.
Microsoft Windows has become the standard PC operating software, and Microsoft
applications, including Word, Excel, Powerpoint, and Explorer, have become standard on
most PCs. Producing standard operating packages helped Microsoft edge out competitors
because only it could make series of products compatible with both the standard
operating system and each other. Customers were quick to discover the benefit of these
network effects in the information industry, so Microsoft quickly benefited and gained
market share, even if its products were not technically better than competitors’ offerings.
The company’s policy of making software products that were merely “good enough” —
instead of perfect or top-of-the-line — was more than good enough to generate profit

margins of almost 80% and 90% market share.

137

Microsoft is more famous for its stunning success and its corporate strategy than for its
product development process, but PD plays an enormous role in the company. Almost
42% of its entire work force is devoted to R&D. Many previous studies have examined
Microsoft’s success. (Cringely, 1992; Cusumano and Selby, 1995; McConnell, 1996;
MacCormack, 2000) This section describing Microsoft is based primarily on the works of
others, although one interview was independently conducted specifically for this study.
The goal of this case study is to demonstrate the ability to analyze and describe a

company’s PDP using primarily public information.

Product development process description

The Microsoft “synch and stabilize” PDP of frequent “builds” is well documented in
several sources. (Cusumano and Selby, 1995; MacCormack, 2000) The process consists
of three main stages: planning, development, and stabilization. The planning phase
includes writing a functional specification document, defining feature functionality,
assigning priorities to features, and setting a product development schedule. The
development stage includes several iterations of

- evolving specifications

- designing and coding

- continuous “local” stabilizations, testing and debugging.

Each of these iterations concludes with a milestone marking the completion of a group of
features. The stabilization stage begins after the last iteration, when the features are
finished and a “code complete” version of the product is released. Stabilization includes
comprehensive internal and external testing of the entire software product. The process

ends with product release to manufacturing.

Cusumano suggests six important tenets of the Microsoft process:

- Development and testing occur in parallel.

- Specifications are allowed to evolve.

- Not all features are developed in parallel. Iterations divide development efforts into

clusters of features with the most important features in the first iteration.

138

- Integration does not occur in one fell swoop near the end of the process. Instead,
frequent and highly-structured “builds” stabilize the product by continuously (often
daily) integrating components. The company’s process focuses on managing this
integration risk.

- The company does not try to be perfect. A non-critical fix may have to wait until a
later release before being corrected.

- The company incorporates customer feedback continuously through process

Some of these observations are also visible in the graphical adaptation of Figure 6.6.9,
which uses the same terminology and divisions defined by Cusumano. This figure
illustrates a spiral process as company iterates through its three PDP phases. Planning
and development appear to occur serially, except that part of what is traditionally called
planning, including defining functional specifications, is revisited during the
development stage. The frequent builds and parallel testing are visible in the three loops
spanning development, component integration and testing/debugging. Stage and
milestone reviews are at the end of each stage or loop, although “code complete” is
difficult for even Microsoft employees to define clearly. Three planned, cross-phase

iterations are bounded by early planning and final stabilization.

Code complete

—_—

ime
Figure 6.6.9: The Microsoft PDP (adapted from Cusumano & Shelby, 1995)

These findings were supported by other sources, which also observed several other key

aspects of Microsoft PD. MacCormack (2000) demonstrate how the Microsoft process

139

places an emphasis on schedule by assigning 20-30 exit criteria at major milestones. He
also pointed to some of the multiple ways in which developers receive feedback after
making design changes. Design feedback may return from a build, from testers testing a
private release, or from a formal code review by senior development team members.

McConnell (1996) also confirms the use of broad iterations in software design.

An interview with a former software testing engineer supported the Cusumano finding of
rapid code redesign, or “churn,” by demonstrating how frequent changes prevented the
design and testing cycles from being perfectly synchronized. Microsoft has a database in
which software testing engineers post bugs to be corrected (or “killed,” because the
database is amusingly named “Raid” after the pesticide). However, the Raid database is
not always updated with the latest daily build, in part because sometimes design outpaced
testing. As the engineer pointed out,
In some cases, the code changed so frequently that chances are that any bug [a software tester]

found would be from 3 versions back. Bugs were often not fixed because the code that the bug
was found in was already gone and replaced.

Together, the various sources help paint a detailed picture of the Microsoft process with
its advantages and disadvantages. Microsoft attempts to balance structure and flexibility
by using a spiral “synch and stabilize” process. Broad iterations address market risk
when features are added or changed based on customer input. Iterations also address
technical risks when frequent integrations and tests identify bugs that are subsequently

corrected.

The process used to be even more flexible, but has been reined in slightly by the
perceived need for additional PDP structure. The system had problems, as witnessed by
late schedules and persistent quality issues; so Microsoft has moved to increase structure
in its process by disallowing specification changes after reaching a schedule threshold.
As Cusumano and Selby note, these limits to changing specifications are easier to
accomplish on products that have fast cycle times, because then any changes pushed off

until the next product release do not have to wait long.

140

The primary advantage of this PDP is that it helps Microsoft manage its technical
integration risk. Without frequent builds and tests, integration near the end of a complex
program would become overwhelming, and the inevitably necessary corrections would
severely delay schedules and release times. The same iterations allow customer
involvement feedback to affect feature development. Disadvantages of the system

include schedule difficulties and quality problems in the form of bugs.

Microsoft case study conclusions

Microsoft practices a large company’s version of the spiral process. Its PDP includes
planned, cross-phase iterations and frequent but only moderately rigid reviews. The
scope of some of the Microsoft’s iterations narrowed slightly as the company
incorporated more structure into its process, but the PDP still includes nearly continuous

feedback for most of the development time.

The frequent builds and “synch and stabilize” processes are methods for rapid-fire
integration and testing of product components and features. They serve as a mechanism
for code control, debugging, and most importantly in terms of PDP analysis, feedback.
The entire product still requires a major stabilization stage following code completion. It
is therefore not a pure spiral process, although Microsoft incorporates most aspects of
spiral development such as comprehensive iteration that entails integration and testing of

subprojects.

Microsoft’s PDP helps it address some of its technical and market risk. The
correspondence between PDP and risk is difficult to ascertain with confidence because
the company’s main risks are not as clear as the risks of other companies. For example,
quality problems continue, but are allowed to remain because of Microsoft’s dominant
design and because corporate strategy of standard-setting outweighs quality problems and
renders product quality relatively unimportant. Time to market is reduced (or at least
lateness is reduced) by increased rigidity and a large investment of human resources that

most other companies would find difficult to emulate.

141

Even though many companies with fewer resources might not be able to sustain a PDP
like Microsoft’s, the PDP can still be described and understood effectively in terms of the
parameters used to describe other PDPs. Iterations and reviews play strongly in
Microsoft’s process. The reviews and iterations used correspond to the types seen in
other companies facing short product life cycles and rapid market and technological

change.

142

6.7 Comparative case study findings

This section makes qualitative comparisons between individual case studies and
quantifies some of these comparisons. Qualitatively, the case studies show that
companies face different risks and employ different PDPs. Correlations between
company risks and PDPs are reserved for the discussion of results in Chapter 7. The case
studies also reveal discrepancies between companies’ written policies and how they
implement them. The cases further demonstrate that companies have no clear method for
designing PDPs and have inconsistent reasons for making PDP decisions. Quantification
of PDP characteristics allows further findings, including reinforced displays of PDP

variance and visible application of the PDP metrics proposed in Chapter 4.

Different risks, different processes

Each case study company faces different risks. Technical risks are overriding concerns
for some companies. The preeminent risk for SWPG is technical risk in areas of thermal
stress and efficiency, at least in part because the industry market conditions translate
many other risks into technical risk. ATS also faced technical risks, although its
technical risk stemmed from high software quality requirements. ITT’s overriding risk in
the SUO program is technical by default because market risk is limited by the company’s
status as a monopolistic defense contractor. Other companies, such as IDe, Ford, and
Printco, are more deeply concerned by market risks. IDe customizes its development to
suit customers. Ford products must be offered in many modular packages in order to
meet customer expectations. Printco is introducing a PCB marker into an untested
market with unfamiliar customers. A third set of PD programs, such as the ITT GPS and
Xerox Document Center efforts, are most severely limited by time constraints and

schedule risks.

These findings that certain risks are preeminent do not preclude the existence of other
risks. As discussed in Chapter 3, most companies face several interdependent categories
of development risks. These case study findings demonstrate such overlapping risks. For
example, although Printco faces market risk in developing its new PCB marker for

unfamiliar customers, its chemical and mechanical engineers also face technical risk in

143

developing an ink that prints with adequate quality without clogging printheads. This
technical risk sometimes leads to extra work (impacting budget), delays (impacting
schedule) and later release dates, which impacts market acceptance. Similarly, SWPG’s
technical risks overshadow but do not obscure other company risks, including schedule
concerns or budget risk stemming from the expensive machining of some turbine
components. Despite these overlaps, qualitative evaluations and interview results with
each company often identify either a preeminent risk or a category of outstanding risks.

These are the most pressing challenges that, if unmet, would likely doom a PD program.

Just as risks differ between companies, each case study company also employs a different
PDP. Most of the companies, including SWPG, ITT, Ford, Sikorsky, and Printco, use
stage gate processes, although the forms of these stage gate processes differ. For
example, SWPG employs the most rigid stage gate process, while ITT uses progressive
freezes to lend flexibility to its process. Several other companies instead use spiral
processes as either their primary PDP or as one of their development subprocesses. For
example, Microsoft and ATS employ “cycling” PDPs, and Xerox uses the spiral process
for some of its software development. Meanwhile, IDe and DeskArtes customers use
evolutionary delivery processes that emphasize prototype development and customer
testing. Finally, several companies combine processes. For example, ITT uses a more
flexible process in its SUO development than in its GPS development. Similarly, UTC
employs different PDPs for its Sikorsky and Pratt & Whitney companies. Also, both
Microsoft and IDe combine their processes (spiral and evolutionary delivery,
respectively) with the design-to-schedule process whenever they are forced to prioritize
and cut product features. This qualitative survey of PDPs shows that they vary

tremendously between companies.

Thus, both development risks and PDPs differ among companies, although these
qualitative observations alone do not yet confirm a correlation between risks and PDPs.
Additional observations and quantifications — both included in subsequent sections — are
still necessary to be able to better compare and define the risk management roles of

PDPs.

144

Designing and implementing PDPs

The case studies also reveal management difficulty in designing and implementing PDPs.
First, the cases demonstrate various reasons and inconsistent methods for choosing PDPs.
Second, the cases display frequent discrepancies between companies’ written and

implemented processes

There is no consistent method by which companies design or select their PDPs.
Although the case studies did not examine the underlying philosophy of management
decisions that led to PDP definitions, several disparate paths were evident. First, some
companies changed their PDPs due to organizational shifts. For example, SWPG
formalized and added rigidity to its process after Siemens purchased Westinghouse and
chose to impose Siemens’ more ordered processes on its new acquisition. Second, some
companies redesigned their processes when leading individuals perceived and wanted to
address specific problems. For example, IDe progressed slowly from a loosely-designed
and flexible process to a more rigid evolutionary development decision as its four lead
managers determined that the company’s rapidly-growing workforce required more
order. Similarly, the Xerox process was reformed with the lead of the company’s chief
engineer in part to overcome persistent PD lateness. Finally, some companies had their
own idiosyncratic reasons for PDP designs. Several of these companies hired consultants
to help them design or redesign their PD efforts; one of them specifically adopted a
process as “a management fad” that was advertised by a consultant as having worked
elsewhere. In another example, some of Printco’s PDP changes were driven by a
manager who had read a good book.!® On the other hand, Microsoft modeled its PDP
after the culture of its developers by retaining “hacker” traits of frequent changes in
development code. Meanwhile, another company showed inertial resistance to modifying
its PDPs, so it used the same PDP for all products even when the company entered new
markets with new types of products. In summary, some companies carefully consider the

PDPs they would implement, but others employ PDPs with little regard for the “fit,” or

" The company president was personally convinced of the need to change his PDP after readingWinning at
New Products, by Robert Cooper (2™, edition, 1993) This research uses the 3" edition (2001) of the same
book as one of its sources.

145

suitability, of those processes to company-specific risks or challenges. Companies based
their PDP decisions on many different factors, but none had an analytical process to

follow.

Companies also have difficulty implementing the official processes they design. The
case studies investigate and probe actual, implemented PDPs because they frequently
differ from companies’ written processes. One of the few commonalities among all case
studies is that every one reveals discrepancies between written and implemented
processes. Sometimes, those differences are minor, as in the case of SWPG’s “phantom”
reviews that are never supposed to occur according to the written PDP. Other times, the
differences are due to informal improvements to the written PDP, such as when ITT
informally allows program managers to omit sections of integrated management plans
that they deem extraneous. Finally, some differences between written and actual PDPs
are harmful and the result of poor implementation of good ideas. An example of this
occurs at Printco, which does not implement the rigid review after its sanctioning phase,
as specifically prescribed by the company PDP. Thus, discrepancies between written and
actual processes are frequent, although those differences can be helpful, harmful, or
innocuous depending on the circumstances. These discrepancies must be taken into

account in order to gain accurate understanding of companies’ PDPs.

Quantified findings
Some case study findings are quantifiable according to the metrics proposed in Chapter 4.
Design iterations and reviews for each company are rated on their own multiple scales
according to the information gathered from interviews, questionnaires, comp'any
documentation, or literature. These data suggest three immediate findings.
® Each company does indeed iterate and review, although the characteristics of
those iterations and reviews are different.
* The differences reaffirm the earlier qualitative finding that different companies
employ genuinely different PDPs.

* The data show a trend towards more flexible PDPs among software developers.

146

Chapter 4 reasoned that all companies use iterations and reviews, and these findings
confirm that this true for each of the case study companies. Although there is significant
variation in the breadth or number of iterations, some form of iteration is common to all
companies, as can be seen in the charts included in each case study synopsis. Some
companies, such as SWPG, include mainly intra-phase iterations, while others, such as
Ford and DeskArtes, include more cross-phase iterations with prototyping. Similarly, all

companies employ design reviews, although the characteristics of reviews vary. For |
example, Xerox design reviews are rigid while ITT design reviews are sometimes less

rigid and based on peer reviews and evaluations.

The differences in the iteration and review characteristics reaffirm the earlier qualitative
finding that PDPs differ across companies. The quantitative differences can be seen more
clearly in Figure 6.7.1, which displays the iteration and review characteristics for each of
the studied processes. As described in Chapter 4, higher values imply a more flexible
process and lower values tend toward processes that emphasize predictability. Just as
Figure 4.7 displayed theoretical processes in terms iteration and review, this figure

compares actual processes.

Strict stage Evol Progressive Hybrid Spiral Aspiring Stage

vl Evol. ;
gate delivenr freeze delivery Spirel

1 2 1-2 1-3 3 12 2 2 1-2 23

0 3 1-2 0-3 3-4 1-2 2 3 34 5

1 4 34 3-4 4 1 3 3 4 4

2 4 3-4 1-4 4 4 1 1 3 3

1 5 1-2 13 3 1.2 1 1 4 3

. Major risks . .
Tech risks i Major All risks
dominate — Majorsisk | are tech & risks are [Mg risk muted by

is market schedule, Market Major Ikt on one .
Chest rate new depending sisk sisks are | project, tech tech— | greatest, but | Martket risks |dominance;

j’ﬁCimW) company on procuct translates tech, on another Fah complex dominde - t:e?mﬁ“
iy 251‘ ishighly | Marketrisk | tosghed | primarily from late ’f‘?ﬁ;"" tech & customer | deiven by
muted by customer | limited by concerns QA integration quality | “budget ,“Sk aesthetics 93&1n§ k,
oonttact | ensitive | mitit teourire | also high tech risk
structure ary menls dominates

contracti

Figure 6.7.1: Comparative chart of PDPs and major parameters

Key:

Breadth of iterations: Narrow 14— 3 Comprehensive
Number of interphase loops: None 0€———» 4 Multiple

Degree of iteration planning: Unexpected | €——»5 Planned & scheduled
Review rigidity: More rigid 14— 5 Less rigid

Review frequency: Frequency 14— »5 Less frequent

147

No two columns of defining characteristics are identical in Figure 6.7.1, suggesting that

the corresponding PDPs are also different.

Each column represents a PDP’s

“fingerprint.” Although not as uniquely different as actual human fingerprints, each

column’s values can identify a different PDP.

Finally, the data suggest a trend towards more flexible PDPs among software developers,

as suggested by McConnell [1996] and Gilb [1988]. As described in section 4.3, the

individual metrics can be normalized and aggregated to create composite iteration and

review values. Together, these values can provide an overall image of process flexibility,

as show in Figure 6.7.2

Less rigid &
frequent

A

Composite review

v
More rigid &
frequent

5
4.5
4
3.5 6
ITT SUO Xerox SW
8 ,) srabia/
o5 PrmgL DeskArtes
Microsoft
2)
15
15 ITT GPS
1 @
Xerox HW UTC Ford
0.5
0+ T T T T — T T
0 15 2 25 3 3.5 4 45 5
Composite iteration
Few, less Many, more
planned & < planned &
comprehensive

@ Manufacturing company
Software company

O Mixed manufacturing and software

Figure 6.7.2: Overall PDP flexibility by iteration and review

148

Figure 6.7.2 shows the composite metrics with a plot of PDPs in terms of aggregate
iterations and reviews. High iteration and review values indicate a process favoring
flexibility while low iteration and review values indicate a process favoring
predictability. Companies are plotted individually, except for Xerox and ITT, which are
included both in total and by their two divisions. In the figure, manufacturing companies
tend toward the lower left of the chart because they employ more rigid reviews and have
fewer cross-phase iterations. Arabia and ITT SUO are notable exceptions, and
demonstrate the use of flexible processes in the development of manufactured products.
Software companies tend toward the upper right of the chart, while companies with
mixed manufacturing and software components are shown in the middle. This trend
suggests that software developers are more likely to favor flexibility in their PDPs. The
reasons for this apparent trend — the different risks the companies must address through
their iterations and reviews — are not shown on the chart but are discussed in Chapter 7.
Hardware/manufacturing discrepancies alone do not predict PDP flexibility. Finally, the
chart shows most PDPs underneath the diagonal, suggesting that the case study

companies are more flexible with their iterations than they are with their reviews.

In conclusion, the case studies provide several findings, both individually and
collectively. Individually, each case study provides a rich story of companies’ risks, PDP
design, and PDP implementation. Collectively, qualitative findings include the presence
of different risks, the use of several PDP variations, and frequent difficulty in designing
and implementing PDPs. The quantification of key iteration and review characteristics
reinforce the finding of differences between companies’ PDPs, demonstrates the
applicability of metrics to PDP analysis, and reveals that software companies tend to use

more flexible processes.

149

7. DISCUSSION OF RESULTS

There's a world of difference between truth and facts.
Facts can obscure the truth.
— Maya Angelou

This chapter discusses PDP results and draws lessons from the case studies. The most
important research result is the establishment of a relationship of PDPs, risk and
integrations. Risk and integration are instrumental in determining the applicability of
PDPs. This relation is supported by case study findings on PDPs, risk variety, and the
role of iterations, reviews and integrations in risk management. Secondary results
include the establishment of metrics for identifying and comparing PDPs, the discovery
that the spiral process may be more broadly applicable than expected, and the recognition

that companies’ PDP design and implementation can be improved.

7.1 Linking PDPs and risk

The clearest research finding is that companies use substantively different PDPs. These
differences are evident both qualitatively and quantitatively. Qualitatively, each case
study describes a different process with unique PDP diagrams, individual prototype
schedules, varied levels of customer involvement, and distinctive employee process
descriptions. Although there are many similarities among processes, including frequent
use of the major PD actions described in Chapter 2 (planning, concept design, detailed
design, integration and test, and release) the processes themselves vary in the order of,
repetition of, and thresholds between these actions. Quantitatively, these differences
become clearer. The differences in iterations (including integrations) and reviews that
are shown in Figure 6.7.1 reflect actual variations between processes. These findings
suggest that PDP differences are substantive. Most PD literature assumes a basic process
— suggesting that all PD efforts should or do follow one major process — and focuses on
how to implement that PDP effectively by describing the individual actions in great
detail. The results of these case studies indicate that such an assumption of a single or

basic PDP is unwarranted because of the variety of different PDPs. The collection of

150

case studies exhibits several PDPs and suggest many more permutations, which is enough

to indicate variety among PDPs.

A second research finding is the variety of risks faced by different companies. This result
was entirely expected because development risks have been well-documented in previous
literature and remain a pressing challenge for most businesses. However, it is necessary
for the case studies to clearly identify these different risks because one of the goals of this
research was to link PDPs and risk management. The case study companies face a
representative variety of PD risks, ranging from the design of challenging technical
components to market uncertainty about whether a product feature is actually demanded
by customers. It is helpful, although not necessary, to categorize these risks as
technology risk, market risk, schedule risk, and budget risk. These categorizations are
not always possible because some risks may be both causes and effects of other risks
(technology challenges can lead to schedule delays, and budget limitations can lead to
fewer technical resources or lower product quality) while other risks, such as budget and
schedule risks, are sometimes entirely interchangeable. When accurate categorization is

impossible, then individual risks can simply be identified instead.

Identification of different PDPs and different risks invites exploration of potential
correlation between PDPs and risk management. The research findings indicate that
different PDPs and risk profiles are not random phenomena; rather, different PDPs
manage different risks. Given that companies face different risks and employ different
PDPs, the findings further indicate that:

1) Design iterations and reviews manage certain risks.

2) All PDPs include design iterations and reviews.

3) Each PDP therefore manages certain risks.

The case studies, existing literature, and common business experience all support the first
~contention that both iterations and reviews manage certain risks. Iterations can manage
risk by providing information feedback. Different types of iterations help manage

different risks. As IDe and Microsoft exemplify, cross-phase iterations that encompass

151

prototyping may provide customer feedback and thereby reduce market risk. The same
iterations could reduce technical risk if integrations yield useful feedback to design
groups, and could reduce schedule or budget risk if they avert major redesigns near the
program delivery date. As Xerox and ITT demonstrate, narrower iterations may allow
for clear engineering requirements or good communication between detailed engineering
groups and thereby reduce technical risk. The same iterations could reduce schedule or

budget risk if they prevent rework due to specification changes.

Case studies and literature suggest that reviews also manage risk in several ways. By
dividing a development program into separate and discrete actions, reviews segment
complex design problems. Some reviews, such as the Printco reviews, tend to be
frequent but not rigid, and therefore serve as assessments. These may help reduce
schedule or market risk by providing updates on program progress and improving
planning accuracy. Other reviews, such as ITT peer reviews, tend to seek out design
difficulties while the goal of the gate reviews is to ensure that there are no technical

design problems. These help to improve product quality and reduce technical risk.

The second contention, that all PDPs include design reviews and iterations, is also
supported by the research findings. The case study descriptions indicate that reviews and
iterations are important parts of all PDPs. They are, in fact, so common that this research
proposed metrics based on the kinds of iterations and reviews used. Figure 6.7.1 shows

that different iteration and review combinations can actually help define company PDPs.

The third contention, which frames PDPs as risk management frameworks, is not only the
logical conclusion of the first two contentions, but is supported by the case studies as
well. Figure 6.7.2 uses a measure of PDP flexibility based on reviews and iterations, and
finds that software-oriented companies or groups are more likely than manufacturing
companies to have flexible PDPs. Software developers have significantly different risk
profiles than do their manufacturing counterparts: software product lifetimes are shorter,
development cycles are more rapid and frequent, manufacturing lead time is less of an

issue, and prototyping costs are usually less. It is thus not surprising that, given the

152

different risks among industries, companies within an industry or general risk profile tend
to employ PDPs with similar strengths. The correlation may be due to the role of PDPs
in risk management and the ability of companies to build prototypes or perform

integrations and tests. The following subsection further explores these explanations.

The case study findings lead to the conclusion that PDP design choices are numerous and
that they have major risk management consequences. PDPs are not monolithic or
singular entities that can be applied equivalently to all companies with just slight
modifications. PDPs must not be merely tweaked or customized to suit the needs of
innovating companies; they must be consciously selected or designed to match company

risks and attributes.

7.1.1 Risks and integrations: Results from alternative categorization of case studies

Although risk is an important factor distinguishing companies and affecting PD, it is not
the only — or perhaps even the most telling — factor. As has been suggested earlier in
Chapter 2, a company’s ability to integrate and test products can also be a critical

descriptor and determinant of PDPs.

Product integration often includes an early model, test, simulation, or prototype involving
interdependent components or modules. A key question for companies is whether the
value of the information they gain from such a test or feedback loop is worth the cost and
time of the integration. The value of perfect information can sometimes be calculated
analytically [de Neufville, 1990] but often the information received in imperfect and the
value is difficult to predict in advance. Further, sometimes the information cannot be
practically gained at all until an initial product is actually produced. Such difficulties are
common in industries that produce complex mechanical products that cannot be
prototyped without great expense or without significant lead time. One example of
integration difficulty can be seen in the SWPG case study, where the company often sells
its first “prototype” to a customer willing to take a risk on buying an untested product in
exchange for a reduced price or guarantees of SWPG servicing in case of failure. Of

course the company uses computer simulations to model overall systems, but the fidelity

153

and quality of these simulations are not as good as the first actual prototype. Other
companies such as DeskArtes, Microsoft, or ATS, can test their products more easily
because integrations of their software products require no physical construction or major
production expense. Their simulations are not merely models of reality; they are actual

parts of the code that later become the final product.

The importance of both risk and integration differences among companies can be seen
respectively in the following two charts, Figures 7.1 and 7.2. These charts are similar to
Figure 6.7.2, but views companies through the lens of different categories to draw greater
insight into why companies use certain PDPs. Figure 7.1 shows the same companies on
identical axes to those shown in Figure 6.7.2, but differs in two respects. First, it
excludes Printco, the one case study company that also serves as a test application for the
PDP design method described in Chapter 8. Printco was dissatisfied with its PDP in part
because it recognized that the process did not adequately manage several company risks.
The company is redisplayed (in its new location on the locus of reviews and iteration) in
Figure 8.3. The remaining case studies are categorized by the preeminent risks faced by

the different companies.

Figure 7.1 suggests that two different companies can share the same category of major
risks, yet employ different PDPs to manage those risks. For example, both SWPG and
ITT (on its SUO program) face primarily technical development risks, yet the companies
use significantly different processes. This suggests two major lessons. The first lesson is
that different PDPs can manage the same categories of risk. While it is true that
“schedule risk” companies tend toward less flexible processes and “market risk”
companies tend toward more flexible processes, there is significant scatter among
companies facing technical risk. The iteration and review combinations among these
companies — and thus emphasis on either flexibility or predictability — are different, so
although there is no one-to-one correlation between risk type and PDP, the results show
that PDPs manage risks in different ways. The second lesson is that knowledge of the
category of major risks faced is not enough to preséribe or predict which kind of PDP a

company employs. Additional knowledge about the specific risks, rather than broad

154

categories, may provide greater insight. This suggests, as Chapter 2 implied, that

individual risks must be considered as well categories of risks.

5
Lessrigid & 45
frequent
A 4
ATS
3.5 ——{
z ITT SUO Xerox SW
Q = -
N Arabia/
2 o5 DeskArtes
'g_ Microsoft
E ° —9
(8]
15 ITT GPS
v —© ® ©
More rigid & Xerox HW UTC Ford
frequent 0.5 -
0 B : : : r : : : .
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Composite iteration
Few, less Many, more
planned & @ planned &
narrow comprehensive

Preeminent risk
@ Technical @ Market
© Technical and Market Schedule

Figure 7.1: Case studies charted by preeminent risk

Since Figure 7.1 shows that different PDPs can manage similar risks, it can be surmised

that risk may not be the most telling factor in PDP decisions. Knowledge of risk alone

does not resolve the scatter of Figure 7.1, however Figure 7.2 shows a different

categorization of companies that resolves the case studies into clear groups or clusters.

This Jatter figure shows the same companies categorized by the ease with which they can

integrate sample or test products. The ease of integration is rough measure of the cost

and time required for an integration relative to the value gained from the test. Some

companies call these integrations “prototypes,” while others call them “builds” or

it e g e L e

155

“stubs,” but they all represent a form of iteration and attempted risk reduction. Such
integrations not only address certain risks by providing information feedback from
prototypes, but also represent risks of their own by potentially costing a company time,
funds, and effort. As such, these integrations become particularly useful lenses by which
to view and categorize companies. Figure 7.2 shows distinct clusters of companies in the
two corners of the chart, each grouped with other companies in the same category. This
suggests that integration is a powerful determinant of the process type that companies
may employ. Ease of integration, among the case study companies, suggests an ability

and desire to be more flexible.

5
Lessrigid & 4.5
frequent
4
35
2
.g 3
g
2 25 .
= Arabia/ -
= .
o Microsoft
g ° ® DeskArtes
o
15 ® ITT GPS
SWPG
v 1 @ o
More rigid & Xerox HW UTC Ford
frequent 0.5 4
0 T : T - T T T T 1
0 0.5 1 1.5 2 2.5 3 3.5 4 45 5
Composite iteration
Few, less Many, more
planned & < > planned &
narrow comprehensive
Ease of integration
@ Difficult @ Moderate Easy

Figure 7.2: Case studies charted by ability to perform integrations and test

Overall, these comparative charts lead to several important results. Most important is the
revelation that although risk is a distinctive component of PD, it is not currently a

predictively telling characteristic because different PDPs can manage similar risks. Ease

156

(or difficulty) of integration, on the other hand, is a decisive quality of PD that may help
predict the applicability of different PDPs to address risks. Further, most company PDPs
cluster towards two corners of Figures 6.7.2, 7.1, and 7.2. Exceptibns tend to occupy the
lower right hand quadrant of the same charts, suggesting that companies are more flexible
with their iterations than their reviews. It may be possible in the future to find companies
that would occupy the upper left corner of the charts, but such companies are likely rare
because of the difficulty of maintaining rigid iterations while simultaneously loosening

reviews.

7.2 Secondary results

7.2.1 The establishment of useful PDP metrics

The establishment of iteration and review as metrics for identifying and comparing PDPs
is a fortuitous secondary result of this research. These metrics were initially proposed
only as a means to an end: as a tool that could help distinguish PDPs. The tool itself was
not assumed to be particularly important except in its assistance in demonstrating how

different PDPs could address different risks.

The metrics gained in importance for two reasons. First, they filled a gap in PDP practice
in literature. The metrics were necessary because previous literature provided no
equitable way of comparing or contrasting PDPs on a common scale. Indeed, most
previous literature made no attempt to contrast PDPs at all because many sources
considered just one process. Those sources that did acknowledge the existence of PDP
choices frequently compared PDPs based on either diagram shape or subjective
advantages and disadvantages. These proved to be difficult criteria by which to compare
the initial case studies. The iteration and review metrics provided a much-needed

common language in which different PDPs could be identified.

The second reason why the metrics became important was because they proved to be
practical and useful. Because they were based on key traits shared by all PDPs, they
were able to capture basic PDP facts about every case study company. Each PDP

encountered could be described in terms of risk or iteration metrics. Once described

157

quantitatively, the PDPs could be uniquely identified, compared, and contrasted.
Moreover, these metrics were both understandable to and welcomed by practitioners,
who enthusiastically greeted the metrics as a way to better understand their own
processes. The metrics are easy to communicate and access in case studies: managers are
frequently able to describe major iterations (often because of the changes they entail) and
engineers are intimately familiar with the character of design and development reviews.
Together, the conceptual ease of communication and general applicability of the metrics

made them useful.

As suggested in Chapter 4, the iteration and review metrics are still of limited use for
three reasons. First, PDP descriptions lack fidelity when analyzed in terms of these
metrics alone because the characteristics are general. For example, the metric for
iteration breadth only indicates how many stages are spanned by an iteration; it does not
indicate which stages are included. Thus, when measured by this metric alone, an
iteration spanning the front end of a process (including specifications through design)
could look identical to an iteration spanning the back end of the same process (including
design through integration). A second limitation of the metrics is that, although they
could be potentially decomposed in many ways, any decomposition would lead to
industry specificity and a lack of general applicability. For example, if metrics were
deconstructed to include daily builds or tests, those deconstructed metrics would only be
of use in software or related industries where frequent tests and prototypes are possible.
A final caveat to these metrics is that there is no guérantee that the metrics can continue
to describe every company’s process. However, the repeated successes in capturing each

of the case study PDPs is a promising sign.

7.2.2 The applicability of the spiral process

Several case studies show that the spiral process is more broadly applicable than earlier
thought. Several sources tout the spiral process as effective in software development
where quality requirements are only moderate or low. Among the case studies, Microsoft
fits this mold because it employs a spiral process to develop software that is “good

enough” but invariably released with bugs. However, the spiral process appeared in other

158

companies as well, where it was less expected. ATS, for example, used the spiral process
for mission critical flight control software with high quality requirements. Xerox uses a
spiral subprocess for its network (although not control) software requirements as part of a
hybrid PDP. ITT is experimenting with spiral-style flexibility in some of its development
programs, and one source describes P&W engine product development as following a
spiral process. These examples demonstrate that the spiral process is more widespread
than anticipated. The repeated instances are unlikely to all be anomalies, and may
represent a business trend of introducing greater flexibility to PD.

7.2.3 PDP design and implementation difficulties

The study also confirms the need for better PDP decisionmaking. It was hypothesized
earlier that companies have no clear method for designing and steering their PDP efforts.
Case studies confirmed that companies were inconsistent in their reasons for selecting or
designing PDPs. Some companies designed their PDPs to meet company-specific risks,
but the case study histories indicate that several companies made their PDP decisions
haphazardly, as a result of management trends, corporate momentum, or company

mimicry.

A related discovery is the common gap between official PDP processes and the processes
that companies actually implement. One research objective was to overcome this gap and
describe the “true” processes; in doing so, the discrepancies between actual and
prescribed processes became abundantly clear. Although time-consuming for a case
study researcher, the incongruities can be revealing. As exemplified in section 6.7,
developers sometimes break from official company policy because the official process
does not address actual development needs. These cases of “ground level” and
sometimes surreptitious corrections reflect a failure in PDP design and the difficulty

inherent in selecting a PDP suitable to each company.

7.3 Threats to validity and other concerns
The PDP comparisons and research results are based on both qualitative findings and

quantitative metrics, so both of these bases must withstand scrutiny. This section

159

addresses questions about and challenges to the research methodology and interpretation
of results. First, it addresses the validity and utility of the iteration and review metrics.
Second, the section reinforces the importance of case study analysis in this subjective

field of research. Finally, it discusses the sensitivity of findings to research assumptions.

7.3.1 Value of metrics

Although the iteration and review metrics are a useful means of identifying, comparing,
and contrasting PDPs, they have two major flaws. First, they do not capture the full
range of PDP differences and must demonstrate their worth relative to other potential
PDP metrics. Second, there is no statistical analysis of how well iterations and review

characterize PDPs, so the metrics are not fully validated.

Iteration and review are only two of many potential PDP metrics. The most obvious
alternative metric is an outcome-based measure of PD success. However, defining and
rating product development success is difficult, and translating a measure of product
development success to PDP success is even more problematic. One other researcher
tries to compare PDPs by their success, but to limited avail because of the difficulty of
this problem. (MacCormack, 2000) Product sales, payback period, profit, time-to-
market, and customer satisfaction are all poor ways of rating PDP success because they
may be affected by many external variables. By these measures, a successful Ford small
vehicle development program with high levels of customer satisfaction may falsely
appear to be a failure because of the low profit margins of the product. However, from a
strategic view, the company still has an interest in building market share among young
consufners in the hopes that they will become repeat customers and buy other Ford
products later. The low profit margin would be a poor measure of PD success and an
even poorer measure of PDP success, since many other variables — including
competitors’ products, economic trends, and several other external factors — can lead a
good PDP to develop an unsuccessful product or a poor PDP to develop successful
products. Alternatively, Microsoft may produce an extraordinarily successful and
profitable product because of market conditions, even though the process that developed

it may be flawed. Defining and rating PDP success based on outcome remains

160

problematic and would be a poor substitute for the operation-based metrics of iteration

and review.

Other alternative metrics could include fully decomposed PDP factors, such as the
number of prototypes and manufacturing lead times. Companies could also be
segmented by market and explicitly categorized as start-up or established firms, software
or manufacturing companies, and government contractors or commodity developers.
Such factors are extremely important, as acknowledged in Chapter 4, because they
profoundly affect companies’ risk profiles. However, many of these factors are local to
certain environments or business areas and lack the universality necessary to compare
PDPs from different industries. This approach of this thesis is to consider these factors in

risk assessment, but not to use them as metrics for comparing PDPs.

A second shortcoming is that there is no statistical analysis demonstrating how well
iteration and review metrics define PDPs. Such analysis would be ineffectual with the
small sample size of the case study population, although a future, larger-scale study could
test the statistical significance of these variables with respect to different company PDPs.
This research builds grounded theory — namely that risk and integration factors are
instrumental in determining the applicability of PDPs — and suggests that these iteration
and review characteristics would be promising test variables. The grounded theory is
based on earlier reasoning that iterations and reviews are common to all PDPs. Each case
study supports this theory; all PDPs include iterations and reviews, and all PDPs have
different kinds and combinations of iteration breadth, numbers of iteration, level of
iteration planning, review rigidity and review frequency. The utility and importance of
these variables is further buttressed by the fluidity with which these variables could be
discussed during interviews. Thus, this research suggests that iteration and review
characteristics are important and telling variables in PDPs. Case studies support the
metrics as useful PDP descriptors, but additional and larger-scale research is necessary to

prove their significance.

161

Finally, the weighting of iteration and review characteristics was subjective and could
have led to different results if evaluated differently. For example, in creating the
composite index of PDP flexibility shown in Figure 6.7.2, iteration breadth and review
rigidity were considered equally. It is possible that another researcher would weigh one
of these factors more heavily than the other and therefore arrive at different values of
overall PDP flexibility. Because these metrics are new quantifications of formerly
qualitative data, they may fall victim to subjective interpretations until a large-scale study
is able to assign levels of importance to each of the variables. Until then, personal
judgment is the only guide to the relative weighting of different iteration and review

characteristics.

7.3.2 Value of case study research

As discussed in the Chapter 5 description of methodology, case study research has both
strengths and limitations. The strengths of case study methodology correspond well to
the needs of this research. Case studies are useful for demonstrating facts, collecting
qualitative data, assimilating and balancing subjective views, and building theory that can
eventually be tested quantitatively. This research demonstrates facts by displaying
several companies’ different PDPs and risks. The research also collects qualitative and
subjective data in the form of interviews and process documentation and assimilates it
from a neutral viewpoint of a disinterested party. Finally, the research builds a grounded
theory of PDP risk management and proposes metrics by which large populations can be
studied in the future. Case study research and methodologies, including interview

technique and observations, are useful in achieving research goals.

Conversely, this research is restricted by the limits of case study methods. The research
builds and supports convincing theory and sets the stage for future work, but technically
proves little. It demonstrates several different PDPs, which may be regarded as proof of
existence and a refutation of the argument that all PDPs are fundamentally the same
process, but even this “proof” is open to interpretation. The similarities and differences
between PDPs can still be a matter of perspective. Just as all people can be lumped

together as one because all humans have hearts and lungs, all PDPs could be classified as

162

one because they all include basic development actions. However, such a narrow view
would miss many important distinctions. This research demonstrates critical differences
between PDPs and makes the case that the PDPs themselves vary tremendously. The
proof of differences between PDPs is accomplished, in case study format, entirely
negatively by showing that PDPs are not the same. Similarly, the case study of ATS
demonstrates (negatively) that the spiral process need not be restricted to non-mission
critical or low quality products. Except for these two proofs of existence, the results are
mostly limited to support of the theory that different PDPs manage different risks. The
case studies provide qualitative support for the theory, and the findings indicate the

usefulness of new proposed metrics for PDP identification and comparison.

7.3.3 Assumptions of risk and match between PDPs and companies

This research assumes that the case study companies employ at least competent PDPs
that do not cause a history of major PD mismatches or failures. This assumption is
necessary because otherwise the link between PDP and risk management would be
spurious. For example, if all of the case study companies employed PDPs that did not
suit their needs, as in the case of Printco, this research might misidentify the companies’
major risks and jeopardize the research finding of a link between risks and PDPs.
However, the assumption invites the challenge that the research is either tautological or
circular: PDPs are discovered to manage company risks, and company risks are
discovered based on PDPs. Further, the assumption itself is challenged by the finding
that many companies have difficulty designing PDPs and therefore make suboptimal

choices.

The research findings withstand these challenges for two main reasons. First, the
assumption of PDP competence is acceptable because, as discussed earlier, PDP success
is difficult to define or rate. There are many internal and external variables and
subjective criteria that can mask the effectiveness of PDPs. However, repeated and
sustained PDP failure is more obvious; it would almost certainly lead to major losses or a
company’s downfall. Research results would be in serious doubt if findings were based

on such failing companies. Second, an assumption of competence does not imply

163

optimality. Current case studies can illustrate important risk management concepts while

still leaving room for improvement in the future.

7.4 Other observations
In addition to the results and rebuttals above, there are several other interesting .-
observations stemming from the case studies. These observations are tangential to the
main research goals but are still worthy of note. They include the unusual role of cycle

time, and a new view of the evolutionary prototyping process.

7.4.1 PD cycle times

PD cycle times can be counterintuitive and misleading. One might assume that
companies with long cycle times would be particularly attuned to market risk because
market needs are more likely to change over a long time period than over a short period.
Thus, companies with long cycle times would emphasize prototyping and customer
involvement. Conversely, companies with short cycle times — often software companies
— could afford to ignore these market feedback efforts because customer testing would
take valuable time and any potential improvements could be included in the next product

version, usually already in the pipeline.

Reality proves otherwise. Although many companies face the common difficulty of
writing specifications, fast-paced companies tend to favor flexible processes, such as the
spiral process or evolutionary delivery process, that incorporate frequent customer
interaction or testing. This preference may be because the benefits of market feedback
outweigh the relatively slight costs of prototyping a “virtual” product. Meanwhile,
manufacturing companies that release products less frequently tend to use fewer planned,
cross-phase iterations and therefore build fewer integrated prototypes. This occurs
because of product complexity and the steep costs and lead times necessary to build
physical models. Both kinds of companies may face difficulties in writing their

specifications, but the companies

164

The counterintuitive result of this mismatch is that companies with the greatest need for
market flexibility are sometimes the least likely to generate customer feedback during a
PD cycle. Companies that are most impervious to market changes because of short cycle

times frequently incorporate market feedback anyway.

7.4.2 Evolutionary delivery in another perspective

The evolutionary delivery process can be viewed as a technical equivalent of the design-
to-schedule and design-to-budget processes. (See sections 3.4 and 3.5) Although much
of this thesis is devoted to distinguishing between PDPs, in this case the similarities
between evolutionary delivery and the “design-to” processes are more interesting than the

differences.

The process description in section 3.5 groups the design-to-schedule and design-to-
budget processes together because they both work incrementally until a deadline is
reached. From a process perspective, it does not matter whether the deadline is temporal
or monetary. However, the case studies included evolutionary delivery process examples
that operate in much the same way. “Completed” products are introduced, but if they do
not reach a certain technical standard of acceptance (i.e. quality issues or a lack of
enough features), then they are merely called prototypes and another iteration is included
until the product meets the technical standard of customer acceptance. From a process
perspective, the difference between a deadline and meeting a standard of acceptability is
minimal. If the deadline is a time deadline, then a PD effort will likely not go beyond
schedule, but may exceed budget and not include every desired technical feature. If the
deadline is a budget deadline, then a PD effort will likely be within budget, but at
technical and monetary cost. Similarly, if a “deadline” is a technical standard, then a PD
effort will likely meet that standard, but at the cost of budget and schedule. Although
there are differences between standards and deadlines, the iteration pattern of
evolutionary design processes are similar to those of the design-to-schedule/budget

Processes.

165

7.5 Chapter summary

One of the major goals of this theory-building research is to describe how different PDPs
manage risk. The case study results show that iterations and reviews serve not only as
successful process metrics, but as links between PDPs and risk management. Examples
demonstrate how certain iterations manage market risk, how certain reviews manage
schedule risk, and several other correlations. The most distinct predictor of PDP
selection is the ability of a company to perform integrations. The importance of these
integrations is identified thanks to the ubiquity of iteration and reviews characteristics

which can be used as PDP metrics.

The establishment of PDP metrics is an important collateral result because, although the
purpose of the metrics are to allows for the PDP comparisons necessary to establish their
risk management characteristics, the metrics themselves are a significant contributions to
the field of research. Other secondary results suggest that successful PDP design and
application is not fully understood by either researchers or practitioners, and that these

actions might be improved.

Caveats to the results include the limitations of the metrics, subjectivity in the case
studies, and sensitivity to assumptions. However, the impacts of these threats are limited
and do not invalidate the case study results, which are descriptive and which provide
lessons on the advantages of using certain PDPs. The next chapter further describes these

lessons and applies them to provide a prescriptive PDP design tool.

166

8. APPLYING CASE STUDY LESSONS: DESIGNING PDPS TO
MANAGE RISK "

‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to.’
— Lewis Carroll’s Alice in Wonderland

The case studies demonstrate that companies implement different PDPs, but are
inconsistent in designing or selecting their processes. Adopting a process that works for
another company or following a management fad is not likely to lead to success. PDPs
should be customized to different companies or programs; but PDPs should be
methodically customized to different companies or programs. The need for an improved
PDP design method is real and immediate. This chapter applies lessons from the case
studies to propose and apply a helpful tool: a PDP design method that can assist
companies in planning or selecting their PDPs. The PDP design method matches risks to
specific iterations and reviews of processes, thus helping companies design processes that
suit their own risk profiles. Printco, one of the earlier case study companies, serves as an

example of how the PDP design method works.

8.1 PDP design method proposal

In proposing a new PDP design method, relevant lessons from Chapter 7 results include:

- There is a need to improve the way companies design their PDPs.

- Companies face unique sets of individual development risks that should be the basis
for PDP design.

- PDPs are amalgamations of iterations and reviews; these are the relevant
characteristics that should be analyzed in PDP design.

- Iterations can help manage several risks; the type of risk managed depends on how
frequently the iterations occur and what actions the iterations span. For example,
technical and market risk can both be handled by several iterations spanning design
prototyping stages.

- Design reviews may also manage risks, both in conjunction with and independently

of iterations. The types of risks managed depends on the characteristics of the design

167

reviews. For example, frequent reviews can provide the control necessary to handle

schedule and budget risk.

To translate these descriptive lessons into prescriptive actions, four key steps can help

companies better design PDPs. Of course, not every PDP needs to be designed from

scratch. The same steps can be used to help select which of many existing PDPs may

best fit a company, or can be used to modify a process already in use. The steps are:

Identify and prioritize project risks
Assign each risk to a specific phase or cycle

Plan the necessary iteration cycles to address the assigned risks

AR b=

Schedule reviews at the completion of key stages, times, or cycles

These steps are illustrated in Figure 8.1, which diagrams how the proposed PDP design

method helps to match companies with PDPs.

Company | uu i c's u PD Process
and product

ID and : Schedule key
prioritize risks reviews

Assign risks to Plan iteration
iteration cycles, cycles to address
reviews, or stages risks

Figure 8.1: PDP design method

168

A company begins by identifying and prioritizing the risks that it faces in a development
program. The risk identification is frequently based on either past experience or
recognized uncertainties. Past experiences, such as a history of lateness or product
quality issues, are a relatively easy way for companies to estimate which risks are
greatest in a current development program. Uncertainties that are recognized, such as the
ambiguous customer focus group results or the knowledge that a company is introducing
a new product to an untested customer base, can also help identify risks once potential
impact costs are assigned to those uncertainties. The company should be able to
categorize most risks as technical, market, schedule, or budget risks, although some risks
will defy classification. For example, specification definition often falls in the category
of market risk, but a hardware/software interface issue that could arise during integration
might result in both technical and schedule risk. Risks are then prioritized. There are
often one or two “showstoppers,” or high-probability risks that are likely to ensure failure

if they are not addressed. The resulting risk profile becomes the focus of PDP attention.

Case studies have shown how iterations and reviews can address risks, After risks have
been identified and prioritized, the risks are assigned to specific iteration cycles, stages,
or reviews for them to manage. The most isolated risks can be simply be assigned to
stages rather than to an iteration and review combination. For example, technical risk
regarding the design of an isolated product component can be assigned to a detailed
design stage with only minor, intra-phase iterations among design engineers. More
complicated risks are assigned to iteration cycles and reviews instead. For example, high
customer uncertainty and the resulting market risk may be assigned to two planned,
cross-phase iterations that incorporate one prototype or customer test per cycle. Each
iteration provides feedback that reduces risk in the next round. Schedule risk, which is so
often linked to budget risk because of the frequently linear relationship between schedule
and the cost of labor, may prompt a company to include reviews at regular time

increments rather than at the end of a phase.

Once risks are assigned to iteration cycles and reviews, the iterations and reviews are

planned, as shown in Figure 8.2. The figure, which can apply to either a company

169

process or program-specific process, shows three labeled iteration/review combinations,
each of which would have had a particular risk or set of risks assigned to it. Depending
on the risk(s) addressed, the iterations may span different phases or include reviews at

different times, but the result is that risk is reduced with each stage or cycle.

lteration and
review

v combination 2
Planned cross-phase iteration for risk B

Iteration and lteration and
review review
combination 1 combination 3
forrisk A forrisk C

Figure 8.2: Planning iterations and reviews to address risks

Together, the stages linked by a unique combination of iterations and reviews constitute a
PDP, reaching the goal of the PDP design method. The method links companies’
development programs with ideal PDPs by using risk, iterations, and reviews as
intermediaries. The result is a PDP prescription that addresses a company’s major

development risks.

8.2 Method demonstration: Printco revisited

In order to demonstrate the use of the PDP design method, one company was chosen to
serve as an example. Printco, one of the case study companies (see section 6.5),
expressed interest in using the lessons of this research immediately because it was in the
early stages of reorganizing its own PDP. This section discusses how the method was
used to prescribe process improvements for Printco, which is currently making changes

based in part on these suggestions.

170

Printco has earned its reputation for developing good products in the marking and coding
industry, but the company has outgrown its PDP. The company acknowledged its need to
improve its PDP, and was leaning toward formalizing and enforcing a series of existing
stage gates. Several in the company also recognized Printco’s need to improve “up front” |
work so that marketing information can be incorporated early for a well-specified

product.

When applied to Printco, the PDP design method identified the same risks described
earlier in section 6.5. Printco’s various PD efforts face very different — and sometimes
unusual — risk profiles. Derivative products like the Model P220/440, which might be
expected to face just minor technical risk, faced surprising amounts of market risk. The
new 26K Series faces both market and technical risk, and but fell victim to delay because
of technical challenges that expanded late in the program. Both have gone over time and
over budget. The risk profiles were determined with the help of several employees
because of the great sensitivity of the PDP design method to risk identification. If risks
are misidentified, the method will prescribe a process that addresses the wrong

development risks.

Printco’s risk did not match with its existing iteration and review scheme. According to
the PDP parameters (the design iteration and reviews metrics seen in Figure 6.7.1)
established earlier, the current Printco PDP incorporates design iterations of medium
breadth. Most iterations are intraphase with usually only one or two interphase loops
which are visible as rework. The degree of planning of these iterations is low because
they are neither encouraged nor overtly expected. Printco reviews are more frequent than

its iterations but lack rigidity.

The next step in the PDP method called for reassigning Printco’s risks to iterations and
reviews that would correct the problems of the old process. It was recommended that
Printco make some of its reviews more rigid, especially in the first part of the process,

after sanctioning, and during early design to establish greater control over market and

171

schedule risk. It was also suggested that, rather than eliminating the rework-filled, cross
phase iterations that currently delay the company’s development efforts, the company
should acknowledge the need for such iterations and plan market prototypes in them.
Other companies have seen success in incorporating both the rigid reviews of stage gate
processes and the planned iterations of early prototyping. Printco, on the other hand, has
had difficulty in building prototypes early enough to garner the information necessary to
substantively change design. Information from “late stages” arrives so late that change is

costly and difficult.

Part of the PD problem might be solved by resolving to freeze specifications earlier and
to maintain rigid reviews, but this places great faith in the company’s marketing abilities.
It also suggests an expectation that technical uncertainty will lead to the greatest risks,
which is not always true. In fact, the company appears to overestimate the importance of

technical risk at the expense of the market risk that it faces. For this reason, the double
approach of rigid iteration and modestly planned prototyping iterations may help the
company in the likely event that its specifications will not be able to be capably frozen as
early as engineers would like. Simultaneously increasing rigidity of early reviews and
flexibility of prototyping iterations would help the company deal more effectively with its
several risks. Described in terms of the metrics defined in Chapter 4 and used in Figure
6.7.2, the recommended process changes would appear as shown below in Figure 8.3.
This would “move” Printco from the upper left quadrant of Figure 6.7.2 to the lower right

quadrant, reflecting increased flexibility in iterations and more restrictive reviews.

172

5
Lessrigid & 45
frequent
4
ATS
35 S
2 ITT SUO Xerox SW
2 3) -
3 . < W Arabia/
'é o5 Printco DeskArtes o
2 Microsoft
o
g 2
3 ITT GPS
1.5
v 1 o
More rigid & Xerox HW UTC Ford
frequent 0.5 +
o T T T) T T T
0 0.5 15 2 25 3 3.5 4 4.5 5
Few, less Composite iteration Many, more
planned & < planned &
narrow comprehensive
@ Manufacturing company
¢ Software company
O Mixed manufacturing and software
Iteration Review
of inter- Level of .
Scope . Rigidity Frequency
phase loops | planning
Current PDP 1-2 1-2 1 4 1-2
Suggested PDP 2-3 2-3 3 2 1
. R ~
YT
Suggested PDP incorporates Suggested PDP incorporates
more flexible iterations for greater market more rigid reviews for improved
feedback and reduced market risk scheduling and reduced tech risk
Key:

Review rigidity:
Review frequency:

Breadth of iterations:
Number of interphase loops:
Degree of iteration planning: Unexpected | ——5 Planned & scheduled
More rigid 14— 5 Less rigid
Frequency 14— 5 Less frequent

Narrow 14— 3 Comprehensive
None 04— 4 Multiple

Figure 8.3: The current and suggested Printco PDPs in terms

of the metrics described in Chapter 4.

173

These recommendations based on the PDP design method were presented first to
Printco’s PD manager and then to an assembly of engineers, marketers, and managers.
The recommendations generated discussion, because it had been Printco’s earlier
inclination to move towards a traditional stage gate process. However, these
recommendations suggested that, although a stage gate PDP could help Printco if its
marketing organization is able to garner the information necessary to define both
requirement and design specifications early, this may not always be possible. Further,

Printco could not reduce its risks simply by adding stage gates.

Printco is making PDP changes based in part on the PDP design method
recommendations. The changes include more rigid reviews in the beginning of product
development cycles and the planned incorporation of at least one cross-phase prototyping
iteration for customer feedback. The recommendations were well-received by
management and by most engineers; however, results of the resulting process changes
will not be known until at least the end of the product development cycle in which they
are implemented. The Printco demonstration does not yet validate the PDP design
method, but the positive reaction and reception to the recommendations suggest that the
method is a reasoned application of the iteration and review lessons learned earlier. On a
personal level, the application of the method and metrics helped engineers and managers

make sense of what they were doing.

174

9. CONCLUSIONS

The products of the Sirius Cybernetics Corporation have fundamental design
flaws that are completely hidden by their superficial design flaws. It is easy to be
blinded by the essential uselessness of them by the sense of achievement you
get from getting them to work at all.

— The Hitchhiker’s Guide to the Galaxy, as written by Douglas Adams

Product development is a risky necessity for many innovating companies. Although it
holds the promise of increased sales, market share and profits, it can fail in whirlpools of
technical difficulties, cost overruns, and missed market opportunities. PDPs must
therefore not only focus on the final outcome — a new product — but also on mitigating the
many development risks. This research exhibits and explains PDPs as risk management
structures. In exploring the relationships between risk management and PDP design, this

research makes four key contributions.

First, the research analyzes several PDPs both theoretically and empirically to
demonstrate how PDPs differ substantively. It builds upon previous literature that either
does not adequately distinguish between different processes or otherwise makes
comparisons based on varying or subjective criteria. This research makes a secondary
contribution to the field by proposing and supporting new metrics with which PDPs can
be identified, compared and contrasted. The metrics are based on design reviews and

iterations, which are characteristics shared by all PDPs.

Second, the thesis describes how iterations and reviews, and thus PDPs, manage different
development risks. Planned iterations can generate valuable information that feeds back
to early process stages and reduce risk. Reviews further contribute to risk reduction by
providing controls over changes, schedules, and information flows. The research also
reveals that, although PDPs manage risk differently, companies do not always design or

select them based on these characteristics.

Third, the research identifies integrations and tests as telling and predictive components

of PDPs. Risk identification remains important, as suggested above, but integrations and

175

tests help to address risks by providing information feedbacks. Integrations may also

generate risks if their costs and time outweigh the value of the information gained.

The fourth major contribution is the proposal and ongoing application of a PDP design
method based on risk, iteration, and review. This tool is the most easily applicable
contribution of this research, and can provide companies with a framework or path by
which they can intelligently design PDPs that suit their needs. The method is simple to
follow and allows companies to evaluate their own risks and then deal with those risks
with specific parts their PDPs. Just as segmentation is a valuable tool in marketing
products, dividing PDPs into reviews and iterations, as well as into their traditional

stages, can be helpful to product development.

Case study data strongly support the first three contributions. The PDP design method,
although unproven, is exemplified and is being applied at one company. Together, the
contributions link PDP and risk management and can improve understanding and

implementation of product development.

The research also provides several secondary findings, including the identification of
trends in PDP use among several companies. Software companies are more likely to
employ PDPs that emphasize flexibility, while manufacturing companies are more likely
to use PDPs that emphasize predictability. However, spiral and other iteration-intensive
prdcesses are applied more broadly than earlier expected; several companies employ

flexible PDPs for either mission-critical or manufactured products.

The secondary findings illustrate the value of considering PDPs with evenhanded metrics
and in terms of the risks they address. Alternative explanations for PDP differences
would not support the findings of this research. For example, both software and
manufactured products can be complex, so complexity alone does not account for PDP
differences. Cycle times are also an initially tempting explanation for the differences in
PDP preference, but this factor is also misleading because the fast cycle times of software

products could imply a need for less, rather than more, flexibility. However, by

176

examining PDPs in terms of iteration, review, and risks addressed, we can gain a better

understanding of which PDPs might apply in different situations.

9.1 Future research

This theory-building research leads to many potential research avenues. The resulting
theory and lessons on the relationship between PDPs and risk can be further tested and
expanded. Additionally, the proposed tool for improved PDP design should be further

evaluated and improved. This section outlines four promising areas of future research.

The most helpful continuation of this research would refine and reinforce the PDP
metrics by surveying a large population of companies about their PDPs. This study
identified and supported the use of key variables, such as iteration breadth and review
frequency, but was based only on several cases and could not assess the statistical
significance of each variable. A useful next step would be to test these variables already
shown to be promising. This could be accomplished by studying a large sample of
companies to assess the five proposed key variables and test if they are significant
descriptors and differentiators of PDPs. Additionally, any DSM models of companies’
processes might illustrate precisely which types of information flow to expect, and could

clarify the stages spanned by key iterations.

A second avenue of further investigation would further decompose variables that this
research recommends for distinguishing PDPs. Such a study could focus on some of the
alternative variables and factors considered in Chapter 4, including the breakup of
iterations according to the included stages, or the use of industry-specific criteria such as
prototyping lead time. Such a study would likely have to limit its scope to certain
industries, for example either heavy manufacturing or software, to avoid the problem of

classifying companies with dissimilar and incomparable characteristics.
A third research option would attempt to rate the relative success of the PDPs defined

here. As discussed in Chapter 7, rating the overall success of PDPs is an extraordinarily

difficult challenge, in part because of the lack of convincing metrics. Effective PDPs can

177

sometimes generate failed product offerings due to exogenous variables, and poor PDPs
can sometimes succeed despite themselves. Profit, time to market, customer satisfaction,
and several other common metrics are of extremely limited use in determining the
“success” of PDPs. However, the relative success of managing risk may be easier to
measure. Future research could identify critical success factors by comparing matched
pairs of companies with similar products and similar risks but different PDPs. These
variables could be instrumental in helping companies determine if process changes are

actually beneficial.

Finally, further research could improve the classification and transferability of
development risks. The current research uses four risk categories whenever possible, but
is weakened by risks that defy categorization, at which point it resorts to the more
cumbersome approach of individual risk management. Some of those risks, such as
manufacturing or labor relations risk, are outside the scope of this research. Other risks
are simply difficult to categorize because they span categories or are easily transferable,
such as when a particular technical risk is addressed by assigning more engineers to a
task and thus threatening a project budget. Research to date has difficulty separating

endogenous from exogenous risks and cause-based risks from effect-based risks.

9.2 Final thoughts

Improving product development remains an important goal from an academic, business
management, and social perspective. From an academic perspective, the complexity of
product development is a fascinating engineering systems challenge. Product
development entails multiple actors, numerous designs, potentially millions of
components, countless interactions, many possible solutions, and even more possible
failures. While individuals and companies may want to design products for profit or use,
product development and processes are important scholastic subjects because academia
plays an important role in developing analytical tools, understanding the variables, and

increasing the comprehension and control of such complex and interactive systems.

178

From a business management perspective, product development can be gateway to
success or failure. Many aspects of management — ranging from corporate strategy to
finance and marketing — can impact profit or shareholder value, but product development
is among the most important. Product development efforts generate what companies sell,
are the basis of marketing, are the end goal of innovation management, are the object of
finance, and can help shape corporate direction. Product development poses many
challenges: a cynical business saying is “Good...Fast...Cheap. Pick any two,” but
product development managers must balance all three goals. Understanding and

improving product development is a major component of business success.

Finally, improved product development is an important social goal. Development,
improvement, and innovation are among the most inspiring parts of human nature. It was
once believed that the ability to make tools — the most rudimentary and singular form of
product development — was a trait that separated humans from all other creatures. Now
we know that some other animals also develop tools by experimenting with and crafting
elementary tools, usually to help them eat. Humans have long progressed beyond food-
tool making (although forks, and chopsticks are still painstakingly designed and crafted
or manufactured around the world) and now make screwdrivers, light bulbs, cars, drugs,
computer programs, child safety seats, weapons systems, and duct tape. Many — although
certainly not all — of these products are socially beneficial, both intrinsically because of
what they do and economically because of the jobs that they indirectly create. Most
products also have the potential to create negative externalities in the form of pollution,
traffic, or other natural and social costs. It is thus no surprise that society is deeply
interested in both encouraging and managing product development. This societal interest
manifests itself whenever people read shopping catalogs to learn about the latest gadget,
engineers engage in research, or governments enact environmental policies, cloning

restrictions, and consumer safety standards.
It is the hope of the author that this research may also be applied to improving the often-

strained relationship between regulated businesses and government agencies. Companies

frequently bemoan costs imposed by regulations, such as environmental laws designed to

179

reduce air pollution or spur development of more fuel-efficient designs. It is unfortunate
when laws and regulations are onerous to businesses, but the burdens of such laws cannot
be entirely eliminated without sacrificing societal interests. However, improved product
development may be a partial solution to this problem. More effective development
processes is one way in which companies may reduce costs and respond more robustly to
both government regulations and competitive challenges. Improved product development

should always be viewed as an opportunity.

180

REFERENCES

Abernathy, W. and Utterback, J. “Patterns of Industrial Innovation,” Innovation/
Technology Review, 1978, pp. 40-47.

Abernathy, W. and Clark, K. “Innovation: Mapping the Winds of Creative Destruction,”
Research Policy, Vol. 14, North-Holland: Elsevier Science Publishers, 1985 pp. 3-22.

Alic, John; Branscomb, Lewis; Brooks, Harvey; Carter, Ashton; Epstein, Gerald, Beyond
Spinoff: Military and Commercial Technologies in a Changing World, Boston: Harvard
Business School Press, 1992.

Ansell, Jake and Wharton, Frank (ed.) Risk: Analysis, Assessment and Management, New
York: John Wiley & Sons, 1992.

Appelbaum, Alec, “Europe Cracks Down on E-Waste,” IEEE Spectrum, May 2002, Vol.
39, No. 5, pp. 46-51.

Ashford, N. and Caldart, C. Technology, Law, and the Working Environment,
Washington DC: Island Press, 1996.

Bannister et. al. "Evolution of Westinghouse Heavy-Duty Power Generation and
Industrial Combustion Turbines," Transactions of the ASME, Journal of Engineering for
Gas Turbines and Power, Vol. 118. No. 2, April 1996, p. 325.

Bayegan, Markus, “Doing R&D Smarter: A More Effective Approach to Industrial
R&D,” MIT Lecture by the CTO and Head of Group R&D of ABB, Ltd. March 18, 2002.

Beck, Kent, Extreme Programming Explained, Boston: Addison-Wesley, 2000.

Ben-Haim, Yakov, Information-Gap Decisions Under Sever Uncertainty, Haifa, Israel:
Technion, Academic Press, 2001.

Bernstein, Peter L. Against the Gods: The Remarkable Story of Risk, New York: John
Wiley and Sons, Inc., 1996.

Blum, B. I. “The Life Cycle — A Debate Over Alternate Models,” ACM SIGSOFT
Software Engineering Notes, Vol. 12, No. 8, 1982, pp. 988-993.

Blum, Fred H. “Getting Individuals to Give Information to the Outsider,” Journal of
Social Issues, Vol. 8, No. 3, 1952 pp. 34-52.

Boehm, Barry, Software Engineering Economics, Englewood Cliffs, NJ: Prentice Hall,
1981.

181

Boehm, Barry, “A Spiral Model of Software Development and Enhancement,” IEEE
Computer, 1988, pp. 61-72

Boehm, Barry and Bose, Prasanta, “A Collaborative Spiral Software Process Model
Based on Theory W,” IEEE, 1994.

Bohn, Roger E. “Measuring and Managing Technological Knowledge,” Sloan
Management Review, Fall 1994, pp. 61-73.

Bower, J. and Christensen, C. “Disruptive Technologies: Catching the Wave, ” Harvard
Business Review, January-February 1995.

Buchanan, David, et al. “Getting In, Getting On, Getting Out, and Getting Back,” Ch. 3,
pp. 53-67, in Doing Research in Organizations, Alan Bryman ed., New York: Routledge,
1988.

Burgess, Robert G, In the Field: An Introduction to Field Research, Boston: George
Allen and Unwin, 1984.

Christensen, “The Limits of the Technology S Curve,” Parts I and I, Production and
Operations Management, Vol. 1, No. 4, Fall 1992. Part 2 on pp. 358-366

Christensen, Clayton, The Innovator’s Dilemma: When New Technologies Cause Great
Firms to Fail, Boston: Harvard Business School Press, 1997.

Christensen, C. M. and Bower, J. L. “Customer Power, Strategic Investment, and the
Failure of Leading Firms, Strategic Management Journal, Vol 17, 1994, pp. 197-218.

Clark, K. and Fujimoto, T. Product Development Performance, Boston: Harvard
Business School Press, 1991.

Cleland, David, Project Management, Strategic Design and Implementation, 2™ ed. New
York: McGraw-Hill, 1994.

Cohen, Wesley and Levinthal, Daniel, “Absorbtive Capacity: A New Perspective on
Learning and Innovation,” Administrative Science Quarterly, Vol. 35, 1990, pp. 128-152.

Cooper, Robert G. Winning at New Products, 3" ed. Cambridge: Perseus Publishing,
2001.

Crawley, E., “System Architecture” Lecture notes, Cambridge: Massachusetts Institute
of Technology, 2001.

Cringely, Robert X. Accidental Empires: How the Boys of Silicon Valley Make Their

Millions, Battle Foreign Competition, and Still Can’t Get a Date, Reading, Mass.:
Addison-Wesley, 1992.

182

Craig, David C. Promises and Pitfalls of Architectural Strategy in the Printer Industry,
Cambridge, MA: Massachusetts Institute of Technology Master’s Thesis, 2001.

Cressy, Donald R. Other People’s Money, Glencoe Iilinois: The Free Press, 1953.

Cusumano, Michael A. The Japanese Automobile Industry, Cambridge: Harvard
University Press, 1991.

Cusumano, Michael and Selby, Richard, Microsoft Secrets, New York: The Free Press,
1995.

Cusumano, Michael, Mylonadis, Y. and Rosenbloom R. “Strategic Maneuvering and
Market Dynamics: The Triumph of VHS over Beta,” Business History Review, 1992.

Cusumano, Michael and Nobeoka, “Organizational Requirements for Multi-Project
Management,” Ch. 7 in Thinking Beyond Lean, New York: The Free Press, 1999.

Cusumano, M. A. and Smith, S. A., “Beyond the Waterfall: Software Development at
Microsoft, in D. B. Yoffie (ed.) Competing in an Age of Digital Convergence, Boston:
Harvard Business School Press, 1997.

David, P. “The Dynamo and the Computer: A Historical Perspective on the Modern
Productivity Paradox,” American Economic Review, Vol. 80(2), 1990, pp- 355-361.

David, Paul A. “Clio and the Economics of QWERTY,” American Economic Review -
AEA Papers and Proceedings: Economic History, Vol. 75, No. 2, May 1995, pp. 332-
337.

Davis, Craig R. “Calculated Risk: A Framework for Evaluating Product Development,”
Sloan Management Review, Summer 2002, Vol. 43, No. 4, pp- 71-77.

Dawkins, Richard, The Blind Watchmaker, New York: W.W. Norton & Company, 1996.
De Meyer, Amoud; Loch, Christoph; and Pich, Michael, “Managing Project Uncertainty:
From Variation to Chaos,” MIT Sloan Management Review, Winter 2002, Vol. 43, No.
2, pp. 60-67

De Neufville, Richard, Applied Systems Analysis, New York: McGraw Hill, 1990.

Dong, Qi, Predicting and Managing System Interactions at Early Phase of the Product
Development Process, MIT Doctoral Thesis, Cambridge: Massachusetts Institute of

Technology, 2002.

Dougherty, Deborah, “Grounded Theory Research Methods,” in Blackwell Companion to
Organizations, Joel Baum, ed., Medford, MA: Blackwell Publishers, 2002.

183

Eppinger, Steven; Whitney, Daniel, et. al. Organizing the Tasks in Complex Design
Projects, ASME 2™ International Conference3 on Design Theory and Methodology,
1990.

Eppinger, Steven, et. al. “A Model-Based Method for Organizing Tasks in Product
Development,” Research in Engineering Design, 6:1-13, 1994.

Eppinger, Whitney, et. al. Generalized Models of Design Iteration Using Signal Flow
Graphs, MIT Sloan Working Paper #3866, 1996.

Eppinger, Steven D. “Innovation at the Speed of Information,” Harvard Business Review,
January 2001, Vol. 79, No. 1, pp. 149-158.

Eppinger, Steven D. and Salminen, V.K. Patterns of Product Development Interactions,
International Conference on Engineering Design 2001, Glasgow, August 21-23, 2001.

Experian Information Solutions, Aviation Technology Systems Corporation, Experian
Business Reports E02461812 (1991) and E03802655 (1997)

Fine, Charles and Whitney, Daniel, “Is the Make-Buy Decision Process a Core
Competence?” Sloan School of Management Working Papers, 1-38, 1996-97. Presented
at the MIT Symposium on Technology Supply Chains, May 10-11, 1995.

Ford website A:
ford.com/en/ourcompany/communityandculture/connectingwithsociety/todayschoicesfortomorrow.htm

Foster, R. and Kaplan, S. Creative Destruction, “Control, Permission, and Risk,” New
York: Currency, Ch. 4, 2001.

Foster, R. “The S-Curve: A New Forecasting Tool, ” Innovation, The Attacker’s
Advantage, Summit Books, Simon and Schuster, New York. Pp. 88-111. (Ch. 4), 1986.

Foster, “Timing Technological Transitions,” in Horwitch, Mel (Ed.), Technology in the
Modern Corporation, a Strategic Perspective, NY: Pergamon Press,1986.

Freedman, David H. “Fuel Cells Vs. The Grid,” Technology Review, January/February
2002, Vol. 105, No. 1, pp.40-47.

Gilb, Tom, Principles of Software Engineering Management, Reading, Mass: Addison-
Wesley Publishing Company, 1988.

Gilmour, Peter and Hunt, Robert, The Management of Technology, Melbourne: Longman
Cheshire Pty Ltd. 1993.

Gordon, Marcy, “SEC head met with Xerox Chief,” The Boston Globe, May 19, 2002, p.
Al5.

184

Griffin, Abbie and Hauser, John, “The Voice of the Customer,” Marketing Science, Vol.
12, No.1, Winter 1993.

Haveman, Heather, “Between a Rock and a Hard Place: Organizational Change and
Performance Under Conditions of Fundamental Environmental Transformation,”
Administrative Science Quarterly, Vol. 37(1), 1992, pp. 48-69.

Haggerty, Patrick E. “ Industrial Research and Development, ” Chapter 10 in Science and
the Evolution of Public Policy, Shannon, James (ed.) New York: Rockefeller University
Press, 1973.

Hague, Doug, Description of a Turbofan Engine Product Development Process, MIT
Master’s Thesis, Cambridge: Massachusetts Institute of Technology, 2000.

Hartmann, George and Myers, Mark B. “Technical Risk, Product Specifications, and
Market Risk,” in Taking Technical Risk, by Branscomb, Lewis and Auerswald, Philip,
Cambridge; The MIT Press, 2001, pp. 30-43.

Hax, Arnoldo C. and Wilde, Dean, The Delta Project, New York: Palgrave, 2001.

Hax, Arnoldo C. and Majluf, Nicolas S. The Strategy Concept and Process: A Pragmatic
Approach, New Jersey: Prentice Hall, 1991.

Heany, Donald, Cutthroat Teammates, Homewood, lllinois: Dow Jones-Irwin, 1989.

Hekmatpour, Sharam and Ince, Darrel, Software Prototyping, Formal Methods and VDM,
Reading, Mass: Addison-Wesley Publishing Company, 1988.

Helo, Petri, et. al. “Software Process Structures, A System Dynamics Analysis,”
Presented at the Third MIT Design Structure Matrix Workshop, Massachusetts Institute
of Technology Center for Innovation in Product Development, Oct. 29, 2001.

Henderson, R. “Managing Innovation in the Information Age,” Harvard Business
Review, January-February, 1994, pp. 100-105.

Henderson, R. and Clark, K. “Architectural Innovation: The Reconfiguration of Existing
Product Technologies and the Failure of Established Firms,” Administrative Science
Quarterly, Vol. 35, 1990, pp. 9-30

High, Jack, Regulation: Economic Theory and History, Ann Arbor: University of
Michigan Press, 1991.

Herbsleb, James D. and Moitra, Deependra, “Global Software Development,” IEEE
Software, March/April 2001, pp 16-20

185

Iansiti and MacCormack, “Developing Products on Internet Time,” Harvard Business
Review, September-October 1997, pp. 108-117.

Jachimowicz, Felek, et. al., “Industrial-academic Partnerships in Research,” Chemical
Innovation, Sept. 2000, pp. 17-20.

Jootar, Jay, “A System Architecture-based Model for Planning Iterative Development
Processes” Singapore-MIT Alliance Paper, Center for Innovation in Product
Development, January 2002.

Jootar, Jay, A Risk Dynamics Model of Complex System Development, MIT Doctoral
Thesis, Cambridge: Massachusetts Institute of Technology, 2002

Judd, C.M,, et. al. Research Methods in Social Relations, 6" ed. Fort Worth: Harcourt
Brace Jovanovich, 1991.

Kleim, Ralph and Ludin, Irwin, Reducing Project Risk, Gower: Brookfield, Vermont,
1997.

Krubasik, Edward G. “Customize Your Product Development,” Harvard Business
Review, November-December, 1998, pp. 4-9.

Loch, Christoph, “On Uncertainty, Ambiguity and Complexity in Project Management,”
MIT Operations Management Seminar, Cambridge, Massachusetts, May 20, 2002.

MacCormack, Alan, HBS Multimedia Case Studies: Microsoft Office 2000, Boston:
Harvard Business School Press, Case 600-023, 2000.

MacCormack, Alan, “Managing the Sources of Uncertainty: Matching Process and
Context in New Product Development”, Harvard Business School Working Paper 00-
078. (Forthcoming in JPIM) http://www.hbs.edu/dor/abstracts/9900/00-078.html

MacCormack, A., Verganti R., and Iansiti, M., "Developing Products on Internet Time:
The Anatomy of a Flexible Development Process." Management Science 47, No. 1
(January 2001)

MacCormack, Alan. "Towards a Contingent Model of the New Product Development
Process: A Comparative Empirical Study." Harvard Business School Working Paper
Series, No. 00-077, 2000.

MacCrimmon, Kenneth R. and Wehrung, Donald A. Taking Risks: The Management of
Uncertainty, New York: The Free Press, 1986.

Maier, Mark W. & Rechtin, Eberhardt, The Art of System Architecting, 2" Ed. CRC
Press, 2000.

186

Management Roundtable, Product Development Best Practices Report, “Pratt and
Whitney Moves from In-House Software Solutions to an Integrated, Vendor-Developed
Approach to PDM,” Waltham MA: Management Roundtable Inc. 1999. (Online version,
2002)

Mann, Charles C. “Getting Over Oil,” Technology Review, January/February 2002, Vol.
105, No. 1, pp.33-38

McConnell, Steve, Rapid Development: Taming Wild Software Schedules, Ch. 7:
Lifecycle Planning, Redmond: Microsoft Press, 1996.

McGrath, Michael E. Product Strategy for High-Technology Companies, 2™ Ed. New
York: McGraw-Hill, 2001.

Meade, Laura and Presley, Adrien, “R&D Project Selection Using the Analytic Network
Process,” IEEE Transactions on Engineering Management, Vol. 49, No. 1, February
2002, pp. 59-66. ‘

NASA, National Aeronautics and Space Administration, Ames Commercial Technology
Office, Spinoff 2000, 2000.

NASA, National Aeronautics and Space Administration, Ames Commercial Technology
Office, Partnership Options for NASA and Industry, Handbook, 2003.

National Research Council (Standing Committee to Review the Research Program of the
Partnership for a New Generation of Vehicles, Board on Energy and Environmental
Systems, Commission on Engineering and Technical Systems, Transportation Research
Board), Review of the Research Program of the Partnership for a New Generation of
Vehicles. Fourth Report, ISBN: 0-309-06087-7, National Academy Press, 1998.

Nelson, Richard, National Innovation Systems: A Comparative Analysis, New York:
Oxford University Press, 1993.

Nelson, R. “Why should managers be thinking about technology policy?” Strategic
Management Journal, Vol. 16, 1995, pp. 581-588.

Nevins, James L. et. al. Ford Motor Company’s Investment Efficiency Initiative: A Case
Study, Alexandria, Virginia: Institute for Defense Analysis, IDA Paper P-3311, April
1999.

New York Times, “Company News: Xerox to Eliminate about 530 jobs in Rochester
Area,” Section C, Page 4, Column 1, January 24, 2002,

Nichols, Nancy A. “Scientific Management at Merck: An Interview with CFO Judy
Lewant,” Harvard Business Review, January-February, 1994, pp. 88-99.

187

Ort, Robert; Kelly, Colleen, and Hotchkiss, Marlow, Lakes, A Journey of Heroes, (The
Human Side of Xerox Product Development), Webster and Santa Fe: Xerox Corporation
and LivingSystems, Ltd. 1997.

Osbourne, Sean M. Product Development Cycle Time Characterization Through
Modeling of Process Iteration, MIT Masters Thesis, Cambridge: Massachusetts Institute
of Technology, 1993.

Otto, Kevin and Wood, Kristin, Product Design, New Jersey: Prentice Hall, 2001.

Pahl, G. and Beitz, W. Engineering Design, A Systematic Approach, 2" Ed. London:
Springer, 1996.

Pindyck, Robert; Rubinfeld, Daniel L. Microeconomics, 4™ ed. New Jersey: Prentice
Hall, 1998.

Porter, Michael, “Towards a Dynamic Theory of Strategy, Strategic Management
Journal, 1991, Vol 12, pp. 95-117.

Porter, M. “From Competitive Advantage to Corporate Strategy,” Harvard Business
Review, 1987, pp. 43-59.

Porter, Michael and van der Linde, Claas, “Toward a New Conception of the
Environment-Competitiveness Relationship,” in Jasanoff, Shiela (ed.) Comparative
Science and Technology Policy, Lyme, NH: Edward Elgar Publishing, 1997, pp. 513-534.

Pepin, Ronald, Application of Critical Chain to Stages Software Development, MIT
Master’s Thesis, 1999.

Rosenau, Milton D. and Moran, John J. Managing the Development of New Products,
Achieving Speed and Quality Simultaneously Through Multifunctional Teamwork, New
York: Van Nostrand Reinhold, 1993.

Rosenbloom, Richard and Cusumano, Michael, “Technological Pioneering and
Competitive Advantage: The Birth of the VCR Industry,” California Management
Review, Vol. 29, No. 4, Summer 1987, pp. 51-76.”

Schumpeter, Joseph, Capitalism, Socialism, and Democracy, New York: Harper and
Brothers, 1942, p.83.

Siegel, Donald; Waldman, David; Silberman, Jonathan, and Link, Albert, Assessing the
Impact of Organizational Practices on the Performance of University Technology
Transfer Offices: Quantitative and Qualitative Evidence, National Bureau of Economic
Research (NBER) Conference on Organizational Change and Performance Improvement,
Santa Rosa, CA, April 23, 1999. (Also NBER Working Paper 7256)

188

Swanekamp, Robert, “Raising the reliability of advanced gas turbines,” Power, Vol. 146,
No. 2, March/April 2002, pp. 24-34.

Shiba, Graham and Walden, A New American TQM, Cambridge: Productivity Press,
1993.

Smith, Preston G. and Reinertsen, Donald G. “Shortening the Product Development
Cycle,” Research-Technology Management, May-June, 1992, pp. 44-49

Solo, Sally, “How to Listen to Consumers,” Fortune, January 11, 1993, pp. 77-78.

Stein, Hank, “Deregulation and Its Effect on Gas Turbines, Turbomachinery
International, Vol. 38, No. 7, November/December 1997, pp. 32-35

Teece, D.J. (1987) “Profiting from Technological Innovation: Implications for
Integration, Collaboration, Licensing, and Public Policy, ” The Competitive Challenge,
ed. D. Teece, Ballinger Publishing, Cambridge, Ch. 9, pp. 185-219.

Teece, D. “Capturing value form knowledge assets: the new economy, markets for know-
how, and intangible assets,” California Management Review, 1998.

Trumbull, J. Gunnar, The Politics of Product Market Regulation and its Impact on
Product Innovation, Doctoral Disseration, Cambridge: Massachusetts Institute of
Technology, 1998.

Ulrich, Karl T. and Eppinger, Steven D. Product Design and Development, 2™ ed.
Boston: McGraw Hill, 2000.

Usher, Abbott P. A History of Mechanical Inventions, Revised Edition, New York: Dover
Publications, Inc., 1954.

US DOE/Department of Energy, “Advanced Turbine Systems: The Next Generation of
Gas Turbines” Federal Energy Technology Center, http://www.fetc.doe.gov. Also,
published document by same title through US DOE, Federal Energy Technology Center.

US DOE/Department of Energy, Energy Information Administration, 1995
Utility Data: Form EIA-860, “Annual Electric Generator Report,”
Nonutility Data: Form EIA-867, "Annual Nonutility Power Producer Report,"

US DOE/ Department of Energy, Energy Information Administration:
ftp://ftp.eia.doe.gov/pub/energy.overview/aer/aer8-8.txt Table 8.8. (1998)

US DOE/Department of Energy, Energy Information Administration, Inventory of

Electric Utility Power Plants in the United States 2000, March 2002 DDOE/EIA-0095
(2000), http://www.eia.doe.gov/cneaf/electricity/ipp/ipp_sum.html

189

US FAA/Federal Aviation Administration, Press Release 10/7/1995, “New Oceanic Air
Traffic Control Technology Becomes Operational”
http://www .faa.gov/and/and300/datalink/news/press3.htm (2002)

Unger, Darian, Energy Policy and Environmental Technology: The Development of
Natural Gas Turbine Technology in Power Generation, Cambridge: Massachusetts
Institute of Technology Master’s Thesis, 1999.

Unger, Darian, Management of Engineering Innovation in the Power Turbine Industry,
2000 North American Power Symposium, Waterloo, Canada, IEEE Power Engineering
Society, 2000. Vol. 1, Ch. 3, pp. 20-27.

Unger, Darian, “Information Technology Impacts on the US Energy Demand Profile,” E-
Vision 2000 — Electronics and Energy Use, US Department of Energy, October 2000.

Unger, Darian, Energy policy and Envzronmental Technology: The Development of
Turbine Technology in Power Generation, 5™ Annual Conference on Technology Policy
and Innovation, Innovation and Environment Section, Delft, The Netherlands, June 2001.

Van Haste, Clara, “What’s Happening to the Gas Turbine Market?” Electrical World,
Vol. 210, No. 11, November 1996, pp. 61-64.

Von Hippel, Eric, The Sources of Innovation, New York: Oxford University Press, 1988.

Ward, Allen, et. al. “The Second Toyota Paradox: How Delaying Decisions Can Make
Better Cars Faster,” Sloan Management Review, Vol 36, Issue 3, Spring, 1995, pp.43-61.

Watson, W. J. “The ‘Success’ of the Combined Cycle Gas Turbine” Opportunities and
Advances in International Power Generation, University of Durham Conference
Publication, March 18-20, 1996, London: Institution of Electrical Engineers, 1996.

Weston, Kenneth C., Energy Conversion, New York: West Publishing Company, 1992.

Wheelwright, S. and Clark, K. “Creating Project Plans to Focus Product Development,”
Harvard Business Review, March-April, 1992, pp. 70-82.

Whitney, Daniel E. Physical Limits to Modularity, MIT Engineering Systems Division
Internal Symposium, Massachusetts Institute of Technology, May 29-30, 2002, pp. 527-
543.

Womack, James P. et. al. The Machine That Changed the World, How Japan's secret

weapon in the global auto wars will revolutionize Western industry, New York: Harper
Perennial, 1991

190

Woodward, Charles, “Computer Aided Industrial Design for Ceramics and Glass
Industries,” Deskartes website, www.deskartes.com, 2003.

Xerox Corporation, Xerox Corporation Annual Report and SEC Forms 10-K for 2000
and 2001, Stamford: Xerox.

Xerox Corporation — Newsroom, “Xerox Leverages History of Adapting Products for
Disabled to Meet New Federal Requirements, ” News Release, Stamford: Xerox, June 25,
2001.

Xerox Corporation CEHSS (Xerox Customer Environment, Health and Safety Support),
2001 Environment Health and Safety Highlights Report, Webster NY: Xerox, 2001

Yassine, Ali, and Whitney, Daniel, Do-It-Right-First-Time Approach to Design Structure
Matrix Restructuring, Proceedings of DETC *00: ASME 2000 International Design
Engineering Technical Conferences, Sept. 2000, DETC2000/DTM-14547

Yassine, Alj, et. al. “A Decision Analytic Framework for Evaluating Concurrent
Engineering, ” IEEE Transactions on Engineering Management, Vol 46, No. 2. May
1999.

Yoffie, David and Cusumano, Michael, “Judo Strategy: The Competitive Dynamics of
Internet Time,” Harvard Business Review, 1999.

Young, Peter C. and Tippins, Steven C. Managing Business Risk, An Organization-Wide

Approach to Risk Management, Boston: AMACOM/American Management Association,
2001.

191

APPENDIX A: QUESTIONNAIRE AND INTERVIEW EXAMPLES

192

Printco interview guide:
November/December 2002

(Interviewed 14 engineers and managers)
What was the budget and schedule of this development effort?
Who is on the core design team? How are they organized?
What were the major technical risks for this product?
What were the major market risks for this product?
How dependent is this product on earlier Printco products, components, or knowledge?
How much design work occurred before sanctioning is complete?

Can you describe in detail a big design problem or change in the product during
development? Which problem or challenge was the biggest?

How do the reviews work? Does process control reviews?
What is the success rate at design reviews?
Who constitutes design review team?

How effective is your change control process? How much feedback do you get from
customers? How early/late do integration efforts occur?

When and where are the prototypes evaluated?

Does one design group usually have to wait for another? Where do the schedule delays
occur?

How has your PDP changed over time? (Over the last 5-10 years?)
What are you trying to improve in your process?

How has quality control and MTBF improved?

How successful is the final product? Technically? In the market?
Are there specific design for manufacturing or design for cost efforts?

Compare this project to another project...how much do the people matter? Does the PDP
make different projects more alike or consistent with each other?

193

Center for Innovation in Product Development
April, 2001

PRODUCT DEVELOPMENT PROCESS SURVEY FOR XEROX —
“CLEAN SHEET” PROJECT WITH SOFTWARE ORIENTATION

Background: This research is being conducted by the Center for Innovation in Product
Development (CIPD), a research center at the Massachusetts Institute of Technology in
Cambridge, Massachusetts. CIPD is sponsored by Xerox and has a nondisclosure
agreement regarding the information acquired here. The goal of this study is a
comparison of product development processes between different parts of Xerox and
between Xerox and other companies. For any questions or comments, please contact
Darian Unger at Unger @mit.edu or (617)-253-4735. Thank you for your prompt
attention and assistance.

Please send response to Unger@mit.edu or to
Darian Unger

Center for Innovation in Product Development
Office E60-246

Massachusetts Institute of Technology
Cambridge, MA 02139

Name(s) of person/people completing this survey

Email address(es)

Phone number(s)

Basic description of project:
1. Please outline the main function of the product (i.e. Endeavor controller for use in
document center)

2. Please list the major features that make this a “clean sheet” product.

3. Please list any major architectures or features retained from earlier products.

194

4. Were the architectural specifications for this product significantly different than for
previous versions?
Please explain.

5. Approximately when was the product or system delivered? (approximate month and
year)

Size of project:
6. What is the total time required for project (in weeks)?

7. What are the total person-hours required for project?
8. What was the development budget? ($)

9. What was the approximate size of the completed software product (in lines of code)?
9a. If this figure includes comments, what was the percentage of comments?

10. What was the division of labor and resources among development team? (Please fill
out your choice of column — only one column is necessary.)

Staff Budget ($) %
resources
(person-years)

Project management

Architectural and high-level
design

Detailed design/programming

Testing, QA, and integration

Other (please explain)

Total Should total
100%

Design reviews:

195

11. What were the dates of the design reviews?

12. Did any reviews lead to rejection or rework? If so, please explain briefly.

13. Please provide copies of review documentation (Transfer Advisory Team
assessments) for the 3.1, 3.2, 3.3, and 3.4 reviews. (Please send with this completed
survey to Unger@mit.edu. If your response is not electronic, please mail it to:
Darian Unger
Center for Innovation in Product Development
Office E60-246
Massachusetts Institute of Technology
Cambridge, MA 02139

Design changes, prototypes, and testing:
14. What was the origin of the software code in the finished release?

Y
Off-the-shelf code retained from previous version of the
same product.
Off-the-shelf code from other sources
New code developed for this product
Other (please explain)
Total Total should be
100%

15. Were any major features included in the product that were not originally planned for?

15a. If yes, at what cost did those additional improvements come? (i.e. schedule
lag, increased budget, reduction of pad-time)

15b. If yes, at what point in the development process did those changes or feature
additions become necessary? (i.e. middle of time-to-market phase 3.3, etc.)

196

16. What percentage of the features that were implemented in the final product

were contained in the original functional specification?

17. What percentage of features in the final product are new features that were not on
the original features list or that were changed due to market or technical feedback?

18. During the design stage, how frequently was the system "built?" (i.e. how often were

design changes, including bug fixes, integrated into the code base and recompiled, e.g.
twice per week, once per month, once prior to 3.3 review, etc.)

19. How many cycles were there in phase 3.3?

20. What was the relative emphasis on different types of testing during the project?

% of total testing time

Focus on testing

Component testing

Integration testing

System testing (complete product)

Other (please explain)

Total

Total should be 100%

21. How many prototypes were made?

197

22. How many prototypes were tested with customers? If prototype was partial, please
explain.

23. For the following question, please use a 5-point scale where 1= poor, 2=worse than
expectations, 3=met expectations, 4=exceeded expectations, S=excellent
Please indicate the extent to which you perceive the project met expectations in terms of:
Schedule performance
Budget performance
Customer satisfaction with end product
Financial returns from product as a whole

24. If rework occurred, what percentage was due to:

Rework due to changes in architecture

Rework due to changes in specifications

Rework due to technical feedback or technological changes

Rework due to customer feedback

Other (please explain)
(Total should
be 100%)

25. What was the “cost” of any rework in the project?
In calendar time?
Invperson—time?
In budget?

On morale?

Opinion:
26. Is the architecture modular or monolithic?

27. Using the following 5-point scale, what is the flexibility of the design team in

198

incorporating feedback from prototypes or market surveys once design begins?

(1=poor, 2=low, 3=acceptable, 4=good, 5= excellent)

28. What are the major risks in software development at Xerox? Does the Time-To-
Market process adequately manage those risks?

28. Please write any additional comments you wish or list any concerns you have about
this survey.

Thank you very much for your time and response.
Please send to Unger@MIT.edu or Darian Unger
617-253-4735 Center for Innovation in Product Development
Office E60-246
Massachusetts Institute of Technology
Cambridge, MA 02139

199

APPENDIX B: LIST OF PEOPLE INTERVIEWED

Dick Arra (ITT)

Mike Barrett (Xerox)
David Benjamin (Printco)
Frank Bevc (SWPG)
Eileen Blanchette (IDE)
Ralph Brown (IDE)

John C. (Printco)

Daniel Caprioni (ITT)

Jim C. (Printco)
Randall.Cole (Xerox)
Jason D. (Printco)

Rodrigo Dobry (Microsoft)
Anne Donelan (ATS & IDE)
Ed F. (Printco)

Charles G. (Printco)
Jeffrey Gramowski (Xerox)
Doug Hague (UTC)

Rachel Happe (IDE)

Shelly Hayes (Xerox)

Joel Haynes (GE)

Qi Van Eikema Hommes (Ford)
Jim Irvine (ITT)

Chris Kagic (ITT)

Brian Kalita (IDE)

Johanne Korrie (Xerox)
Walt Kreucher (Ford)
David Lackner (NASA)
Dave L. (Printco)

Bob Martino (ITT)

Lee McLurin (SWPGQG)

David Miller (SWPG)
Richard Moore (IDE)

Ray Narramore (Xerox)
Jonathan Niemeyer (UTC)
Jennie N. (Printco)

Scott P. (Printco)

Dawn Paluszny (Ford)

- Joseph P. (Printco)

Patrick Pendell (Xerox)
John Penny (Ford)

Bill Phillips (Ford)

Mike Policano (ITT)
Mike P. (Printco)

John Rajan (ITT)
Elenora Rakover (Xerox)
Michael Ray (Xerox)
George Roller (Xerox)
Tony Russo (ITT)

Neal Salante (ITT)

Joe Schlepko (SWPGQG)
Anne.Schneider (SWPG)
Mike Simco (ITT)

Bob Smit (ITT)

Kirk Speer (SWPGQG)
Mike S. (Printco)

Craig Tedmon (GE & ABB)
Graham W. (Printco)
Jim Weisheit (UTC)
Donald Wegeng (Xerox)
Kelly Zechel (Ford)

200

APPENDIX C: SAMPLE TRANSCRIPT EXCERPT

Below is a sample excerpt from an April, 2001 interview with a Xerox marketing
manager. Included are the middle 4 of the 12 transcript pages from one 45 minute
interview. Questions are in italics, responses are in block print. For references to the
Xerox TTM process steps, see Figure 6.4.2.

So marketing and strategy get together to decide what’s going to go into the next product,
and that happens for both variant and clean sheet products?
Yes exactly.

What if something is important enough to not wait for the next generation...the next
variant...but either it’s worth paying extra money to get an extra feature in a current
product or possibly in some extreme cases, pushing out a schedule going late just to get a
feature in. Does that happen?

That does happen.

How often does that happen?
Not too often

Like 1 in a 100? A couple of times a year?

It depends. Moving up a schedule is like,...there really has to be a shift in the
marketplace to do that...like someone has leapfrogged you and you would be at such a
disadvantage that it wouldn’t be viable from a business standpoint to launch a product. It
would have to be pretty severe to get a new feature, something you didn’t commit to...if
it’s a big feature. Now if it’s a small feature that the engineering teams believe they can
get it in time or if it’s a small change in the schedule, I'm talking the difference between
a week or a month, it really depends on what the cost/benefit tradeoff is. And there are
things, for example, we have in the past and what we do do is where something might not
be going to schedule...so that we try to keep the products so that they launch when
they’re supposed to, especially the variants when were at a little faster pace. What we’ve
done is we launch the product and then come out with what we call a Service
Maintenance Pack, and that’s kind of a misnomer, because we also put, have in the past
put features in it...where a feature is not...when 99% of the things are on schedule,
there’s this one 1% that’s not getting on schedule. It’s still very important, but in most
cases you don’t have a business case to justify slipping the program to get this one feature
but its still worth a significant amount of money so you release it in a later release.

Let me ask about the worst case scenario...lets say the specs have been laid out...you're
in the [Xerox Time-To-Market Procedure] 3.2-3.3 area...and then you in marketing is the
first to discover that there’s a significant shift in the market...probably because of
competition?

Usually it’s competition

201

So which would be worse...having to add features or having to change features?

Having to add features, usually. Because one of the things we’ve done is that we’ve
made tradeoffs between features when we defined the spec one way and we’ve made
tradeoffs to still meet the schedule but to limit the amount of changes or amount of
(unintelligible) that the marketplace would have and what I mean by that you could make
some changes to a feature but still get 95% of that feature and still hit the sweet spot by
doing some different things that might save engineering or our supply chain a significant
amount of resources. And that’s quite common, actually. That’s a big part of what I do.
Well, not common, but...well,...the devil is the details, right.

You told me with no hesitation that adding features is more problematic than changing
features. Why is that?...In some other circumstances, changes create more trouble
because of unexpected interactions between components, but that’s not what came to
your mind...

No...most changes are to simplify something, not to make it more complex...and that’s
what my thing is about hitting the sweet spot. We could have, performance engineers

and systems engineers could have defined something that we’d love to have as a
marketing team, but there could be some things on that that we took because we thought
there would be no cost or because we can spin something out of it...but there is some
give there and that’s what I'm saying about changing. We really not adding new

features, but we do, we do. And if we do add a feature, I call a systems engineer and they
do a change request that you were speaking about. And we make sure that the rest of
the...they have a requirements review board, engineering team do...and when I ask for a
change, I'm going to ask for a change in the software release that we have in July
because I strongly believe we need it...and they’re doing an analysis to see if it’s indeed
possible and if we can still meet July. So that does happen, but that goes though the
engineering team process, change request, the system engineer analyzes it to get an idea
how much its going to impact everybody. Everybody’s included in the RMB, the system
engineers, the engineers who are doing the work, the testers, the people in

documentation. There’s a whole bunch of checkoffs. In that respect, we have a pretty
well-defined process.

Yeah...they have a little leeway but not much. Most of our incentives are to launch on

Do you find yourself on program teams that are not your own projects?

Yeah, we have...there is an external team that reviews each of the phase gates to make
sure that we do things consistently with Xerox’s TTM process. So I would have a
counterpart, a marketing manager in a different group who would review my outputs.

I'd like to ask about prototyping and how you view from marketing...Do you do Beta

testing with customers?
Yes we do.

202

Does everything get beta tested with customers?

Pretty much. At least 6-8 weeks...getting feedback is part of marketing. I spend a lot of
time trying to recruit customers and then I get the feedback too. I'm not the only one

You have a sales force to do that?

Yeah, the sales force makes the initial customers and they know who the customers are
and what they’re doing and I go in and communicate what i1s new and why they want it
and what we do for them and what they’ve got to do. It’s a customer engagement/test
arrangement? There’s a manager that I interface directly with who basically does it. I'm
accountable...I sign off on who ends up getting to be a tester.

When you beta test with prototypes in these companies, are they the same prototypes?
Are they different levels of prototypes?

They have the same the same prototypes but they have different environments and they
use it in different ways.

Let me switch to your opinion on the flexibility of the TTM process. You always get these
tradeoffs of flexibility vs. hardening....when you decide to go through on schedule
regardless of the changes or features that you want to edit. Do you think that Xerox has
it right? Based on most of the projects that you’re working on, are comfortable with the
way it is?

Yeah, I guess I can’t complain. You always want more, but you have to realize or
understand that we do have a limited amount of resource. As long as we’re doing the
things that are the most important and with the highest priority I can live with the ones
that are lower down that might not make it.

When you want something in there, you rank this as a very high priority. It goes if
necessary to the core group and they weigh you weighting this as a 10 and engineering
weighting this as an 8 difficulty, and hopefully it works out in your favor because it’s
more important to you than it is to them. Is that a fair assessment?

Yes. That’s a fair assessment

They’re going to weigh your interest against theirs. Do you lobby hard on that front?

Oh for sure. If I really believe that we’re either missing out on something and missing
out on an opportunity significantly or we’re going to be at a significant competitive
advantage, it’s basically what I call laying on the tracks. I’ll lay out on the tracks for that.
And one of the things....we are a team.. all the team has to agree to pass or reach the
phase gates. I can theoretically, and I could, say “we can’t go and here is the reason why.
You’ve got to do this and this. You can’t launch because of this.” That’s when you get a
lot of exposure. There might be decision probably with a (garbled) manager saying that
they thought that my call was correct or not.

At what stage to these prototypes happen? For example, it would be easier if the

feedback that you get from prototypes or beta test...if that happened earlier.
Yes..it’s never early enough.

203

So the earlier a prototype, the earlier a beta test from your perspective, the better. Has
there been improvement in doing that or has that been pretty much been the same for the
past few years. Better or worse, is there trend?

I think all of the above. There are certain things that are done better and getting out there
earlier and getting feedback early. And there are other things that we’ve in the last few
years let slip a bit.

Let me get more specific with prototyping and numbers. Does it happen between 2.2 and
2.3. Where is the first time that you'll get a prototype that you can give to a customer.
Usually it’s past 3.3. Passing 3.3 means that it really has all the features/functions that
we expect to launch with. Usually that’s the case. I have seen cases where we’ve gone
out to customers with a product at 3.2...very friendly customers. But typically not...

But all these prototypes and beta test are with entire machines. You don’t take, say, code,
and put that into the existing machine of a customer and say ‘we’re beta-testing on the
machine that you've already got’?

Oh yes we do.

Oh, you do that? And that doesn’t happen any earlier, though? You’d think that would
ease things up, that you could get more prototypes in faster?

Well, since we have our defined process, that code has a TTM process just like a product
so we try to get it past 3.3 -2 before we get it the customer. Because basically a 3.3 says
that you’ve done some testing on it, you have all the features in it and its reasonably
reliable...reliable enough so that you feel customers could really like it.

On certain products we have...done 3.2. It really depends what the software is. With
print drivers, they go out fairly quickly, there’s not really an issue there. It depends on
the complexity of it...whether a prototype goes out early or not. And what I mean by
complexity is not only the complexity of the software , but how complex is it to be
supported in our value chain, within our field organization, our technicians, our analysts.
Because we have 15,000 technicians out in the field and 5000 sales people and 4000
analyst and you have to communicate to anyone who’s going to be in touch with that
product (garbled) be sure that they know how to handle it. But it depends on the
complexity. We have a customer that requires a certain driver in a certain print
environment we push that out relatively quickly...very quickly.

204

APPENDIX D: TERMS, ACRONYMS AND ABBREVIATIONS

AA
ABB
ATS

BACT
Btu
CAD

Appearance Approval

Asea Brown Boveri

Aviation Technology Systems or
Advanced Turbine System

Best Available Control Technology
British Thermal Unit

Computer Aided Design

DARPA Defense Advanced Research Planning Agency

DOD

DOE
CIPD

CcC
CDR
CP
CPID
CT
DOE
EC
EIA
EPA
FAA

Drop on Demand or

Department of Defense

Department of Energy

Center for Innovation in Product
Development

Combined Cycle or Change Cut-off
Critical Design Review
Confirmation Prototype

Color Printing and Imaging Division
Combustion Turbine (simple cycle)
Department of Energy

European Community

Energy Information Administration
Environmental Protection Agency
Federal Aviation Administration

FANS-1 Future Air Navigation System

FBN
Fig.
FPDS
G#
GE
GPS
GT
GTB
GUI
GW
HRSG
HW
IDe
IEEE
IGCC
IMP
IPD
IPP
I1SO
ITT
I1

Fuel Bound Nitrogen

Figure

Ford Product Development System
Gate number

General Electric

Global Positioning Satellite

Gas Turbine

Grounded Theory Building .

Graphical User Interface

Gigawatt

Heat Recovery Steam Generator
Hardware (including all non-electronics)
Integrated Development Enterprise
Institute of Electric and Electronic Engineers
Integrated Gasification Combined Cycle
Integrated Management Plan

Integrated Product Development
Independent Power Producer
Independent System Operator

ITT Industries, Inc.

Job 1

kW
kWh
LAER
LHV
MHI
MS
MW
MWh
NASA

NGPA
NO,
OECD

O&M
P&W
PA
PC
PCB
PD
PDCA
PDP
PDR
TRR
PR

Kilowatt

Kilowatt-hour

Lowest Achievable Emissions Rate
Lower Heating Value

Mitsubishi Heavy Industries
Microsoft

Megawatt

Megawatt-hour

National Aeronautics & Space
Administration

Natural Gas Policy Act

Oxides of Nitrogen

Organization for Economic Cooperation &
Development (Industrialized nations)
Operation and Maintenance

Pratt and Whitney

Program Approval

Personal Computer

Printed Circuit Board

Product Development

Plan, Do, Check, Act

Product Development Process
Preliminary Design Review

Test Readiness Review

Product readiness

PUHCA Public Utilities Holding Company Act
PURPA Public Utilities Regulatory Policy Act

QA
R#
R&D
RIT
RCSA
SECD
SI
SO
Spec
SUO
SW
SWPG
TQM
™
UTC

Quality Assurance

Review number

Research and Development

Rotor Inlet Temperature

Reverse Case Study Analysis
Securities and Exchange Commission
Strategic Intent

Oxides of Sulfur, often SO,
Specification

Small Unit Operations

Software

Siemens Westinghouse Power Generation
Total Quality Management

Time to Market

United Technologies Corporation

205

