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ABSTRACT

We derive a multiperipheral integral equation with
continued crossed channel unitarity for the absorptive part
for pion nucleon scattering from a Bethe-Salpeter equation
describing composite particle scattering. At high energy the
equation becomes homogeneous and we solve it via a variational
principle to obtain the behavior of the output trajectory
which falls with energy. We indicate the effect of turning
on and off the coupling constant in the strength function
resulting from the kernel of the equation. We indicate how
"one may now use the composite particle amplitude resulting
from this equation to construct production and three body
amplitudes which may be used to investigate Toller angle
dependence and single particle inclusive distribution,
respectively.
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I. INTRODUCTION

In recent years there has been much interest in ways of
looking at multiparticle production phenomena and in models
which attempt to set forth the basic dynamical mechanisms
which give rise to such production. With regard to the first
consideration, many physicists have come to study what are
known as inclusive reactions. They study processes like
a+b—=>c+c,+ ...+ g(+§( , where X denotes an unknown
system of particles. Experimentally such a process is realized
by having a detection apparatus measure the momenta and types

of the particles ¢, to Cg 7 i.e., the distribution of one (or

/
a few) final particle(s) is analyzed, everything else being
summed over. The main pieces of information are single parti-
cle spectra, e.g. the spectrum of the W—fproduced in p-p colli-
sions. Next are correlations among secondaries or the analysis
of the discrepancies between two particle inclusive distribu-
tions and the product of the relevant single particle inclu-
sive distributions.

Mueller(QQ) introduced an approach to discussing inclusive
data. He showed that the single particle inclusive distribu-
tion may be regarded as a certain discontinuity in a three-to-
three (six point) amplitude for forward scattering in analogy
with the connection between the total cross section and the
discontinuity in total energy of a four point function for for-
ward scattering.

If we wish to study a model for a single particle inclu-

sive distribution for a particular final state particle and



compare the predictions of this model with experiment, we have
two choices. First, we can try to directly calculate the
single particle invariant function within the context of some
model (e.g. the multiperipheral model for two-to-two scatter-
ing, which will be mentioned later), or we can construct a
model for a three-to-three scattering process, and using
Mueller's "optical" theorem, construct the relevant single
particle distribution.

This thesis will be concerned with the latter approach.
In particular, we construct what we call a multiperipheral
equation with continued cross channel unitarity which describes
the scattering of a composite particle with an "elementary"
particle. 1In this case the scattering problem is TTA/—?A/F
with the N being a composite of a pion and nucleon. This
equation will yield for us a high energy composite-particle
scattering amplitude. If now there is a mechanism for the
formation of the composite in the initial state and the decay
of the composite in the final state, then we can construct
from the composite-particle scattering amplitude an amplitude
describing three particles scattering into three particles.
We have such a mechanism in the form of vertex functions (form
factors) for the decay and formation of a composite particle
from two "elementary" particles.

We can wse our composite~amplitude scattering amplitude to in-
vestigate the following things. First, for the two-to-two

problem, we extract the leading Regge singularity via a



variational principle. Then, we can do a Fourier-Bessel
analysis of the two-body amplitude to study the small
momentum transfer behavior of the model. Second, we attach
a vertex function for the decay of the final state compos-
ite-particle to construct a scattering amplitude describing
two particles scattering into three particles. Finally,

by attaching a vertex function for the formation of the
initial state composite particle, we construct an amplitude
describing three body scattering. This amplitude can be
used to calculate, via Mueller's Optical Theorem, a parti-
cular single particle inclusive distribution. We are
investigating whether a tripple Regge limit exists for this
problem.

The organization of the thesis is as follows: 1In
Chapter II we discuss single particle inclusive distributions
and the use of Mueller's Optical Theorem to obtain a single
particle distribution from a three-to-three scattering
amplitude. We also define the triple Regge limit. In Chap-
ter III we review the multiperipheral model. In Chapter IV
we discuss final state correlations and the definition of
the Toller angle. In Chapter V we discuss Fourier-Bessel
analysis of scattering amplitudes. In Chapter VI we discuss
the derivation of equations describing composite-particle

(32

scattering as was done by Freedman, Lovelace, and Namyslowsk
160 .

and Aaron, Amado and Young( ), as well as the construction

of two-to-three and three-to-three scattering amplitudes from

the composite-particle amplitude via the attachment of



suitable vertex functions. Chapters VII, VIII, and IX are
the heart of the thesis. Chapter VII deals with the formu-
lation of our multiperipheral equation via a continuation of
the Freedman, Lovelace, and Namyslowski and Aaron, Amado,
and Young results to the cross channel, in particular it
deals with what forms the Born term and the kernel take.
Chapter VIII involves the actual solution of the homogeneous
multiperipheral equation, including the extraction of Regge
behavior and a bound on the Regge trajectory from a varia-
tional calculation. Finally in Chapter IX we indicate how
to perform the investigations mentioned earlier, i.e. the
Fourier-Bessel analysis of the two-to-two amplitude, the
existence of final state correlations in the two-to-three
amplitude and its Toller angle dependence, and the
construction of the single particle inclusive distribution
from the three-to-three amplitude and the triple Regge

limit.
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IT. INCLUSIVE REACTIONS

An inclusive reaction is a process of the form
a+b—>c+c+ ... + Gt X where some of the reaction pro-
ducts are unobserved. This unknown system of particles is de-
noted by){. One measures the distribution of the particles
- Cp and sums over eve;ything else.(qq)][iis characterized

/
by the missing mass squared, M2 = (pL + Pp = Pg "eee” Pe,. )2.
:

(o]

Graphically what one studies is:

figure (2-1)

a b

An inclusive reaction is different from an exclusive re-
action in that an exclusive measures all of the reaction pro-

ducts; namely, it is a process of the form a + b—=>c +..ot C oot G,
¢
¢ a3
' . s 8 cn

figure (2-2)

Inclusive processes can be constructed from exclusive processes
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by simply summing over the guantum numbers of the final state
particles one is not interested in or which are unobserved.

However, given the many-particle reactions resulting from
experiments at present machine energies, it is a bit too ambi-
tious to try to be completely exclusive. What this means is
that given a reaction in which there are more than three final
state particles, there are too many kinematical variables de-
scribing the process to handle comfortably. Therefore, one
resorts to studying an essentially lower multiplicity reaction
by considering one- and two-particle inclusive reactions.

Our focus will be on single particle inclusive reactions.

B. Definition of a Single Particle Inclusive Distribution

and Its Relation to the Mueller Optical Theorem

A single particle inclusive distribution is one descri-
bing the process: a + b—>c + 25., where}( denotes the unob-

served system of particles, characterized by the missing mass

2
squared, M" = (p, + P, ~ P )2.
e X
figure (2-3)
o b
What is measured is the quantity: do~ = a3
3
i Tk

This is a one particle distribution or spectrum. It is easily

3
seen that fjig:- is not Lorentz invariant. Instead we
Pe
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may define the invariant distribution function

= _ Jr .
G T Fane T Fle o Fan ) | )

Let us define some variables by examining the kinematics
in the center of mass (C.M.) system. There the initial four-

momenta are given by

f = (Ea, f,) ?.= (Ep,"R) @-2 )
with 7P chosen to be along the z-direction,
P= (0,0,2) . (2-3)

2.
The total center of mass energy squared is s= W , where

W= [prems  + (Eemp ana

/flz: [5—— (ma.“mb>z_7[5— (ma.'f'mb)zj = )‘(S/M:’ m:) (2-4)

45 (ad
with )\(X,‘*’,'Z’) = x2 r 7}--} 21'___2)('1— - 2.?_2 — 2XZ
We also have:
5+ m"- m;_ E" = S 7 mbz - m:—
é%.= = b ( 2-5
215 2 3 )

The magnitude of the momentum fixes S , for fixed masses.
We make our choice of frame unique by requiring that fz have

no y-component, i.e.
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i}

z
Fe = (FE?) Pex , 0, erv) ) 7Zz m 2-6 )

The momentum transfer is

- Z 2
t= (P-R) = m +/¢z—255x*zfo.',@ (2-7)
In the physical region for the process indicated fis negative.

The dot product is

Gk = JEIIR] cos 8 = JpIR"

A

/ ( 2-8)
R"= |#] cos®
The missing mass is given by
M&=(PA*PI:’P6)1= 5+'mz"— Z-E\"/ ( 2-9)
Often it is more convenient to express the invariant
function c{r/ a’ﬁ/ 2F in terms of # and M~
i dt /4 = d ® z _ _ 2 E
Given that / d cos 8- *2/@//f/an JM/J/%/ - ZW/Zb)
we have
éZE'éV—; = 2£{;i£l_- = 4E a
4 Rl dle| deose dd (27) g1 ] Rl"dcoss
(2-10
= (2) 4WIE] do
(2T) JEtdM”
So
A L (am) F(s 2" R,)
dtdMT 2 W) S
(2-1)

‘—-1—________ F‘(s Pcu F:
'Xk(é'”i;/”Z) ,V.L)
(11)

Mueller's Optical Theorem says that:
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Flo gl )= — g
5 z = 15¢ 412
’ ’%’ﬁ"i (5,m% mi) M (2-12)
73
Pa L
That is: P
:’f,"?z - A
f, 2 f
F = 2 = Z X
x X
A" P,
Pa. Pa PL
y P, Py
= I < dise 2 figure (2-4)
. )z (5: mal m:)
Q P, Pb
So: P“
A b
_{C—- - LA / alléc/‘,}z (2-13
dt dM 2 /1‘:/5/ e, my)
fe Py

C. The Triple Regge Limit

The triple Regge limit is defined as the limiting beha-

vior of the single particle inclusive distribution for t
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fixed, S/ M* large and ﬁ4z' large. From a Regge picture

one expects the distribution to behave like:

R o (t) o
/ s 2\"v
L YW () (M?*) e-14)
2y Ay . .

The factor (/W ) arises from the leading vacuum
exchange in the LI; channel, the relevant large energy

2 S zo((-t)
being M . The factor 7q:> comes from the

traditional two body Regge limit. The factor ¥ (t) will
be explained presently.

We can arrive at the above result and perhaps gain some
intuition by considering the following sequence of limits, in
each instance assuming Regge behavior in the appropriate chan-
nel. First we consider the limit °/M* 1large, t fixed,

M* fixed. 1If M* is fixed, then our single particle inclu-

sive process is essentially like a two body scattering process:

P. B

l ¢ X ) ()
5 large t) S (t)
? <) ~ P 5
@ b
a. FL figure (2-5)
In our case we have:
x Mm*
¢ 4 . I} M* figure (2-6)
5/m2' Iarqc
+'m2 da ACt) T
413_4&2&__9 s 2
X b
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Now ﬁx(mz,t) describes the process @) + b — X
X

figure (2-7)

«(t)
Therefore

2 «(%)

EACINC VR e

o @
¢ ) alt) L @) )
_ c (2-16)
= - ) Isc
= x M ”
¥ o (2) b
0 ) ] ¢ a

figure (2-8)
If now M?* becomes large, with S remaining large and

fixed, this becomes

o
a (1) b
.D/se. e : figure (2-9)
" “«V{vw{b

(3 o

This assumes Regge behavior in the variable [WL ; in

which case the graph behaves like:
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o (¢) =, (9)

¥ (%) (‘,‘fﬁ) (m*) (2-17

Xﬁb contains the Regge couplings at the bb vertex and at the

Reggeon-Reggeon-Vacuum trajectory vertex, and any signature

factors.
40
This means finally that  J¢ JM* behaves as:
_—4_{: __L. __é_ 2."((:&) 2 KV(O) a-1
Fimr ~ VW (FR) (M) (28

The identification of t%v with the leading vacuum exchange in
the bb channel is now clear (for m* being the relevant energy

variable). The leading pole in helicity, i.e. the difference

—

of ac and ac helicities, analytically continued and

viewed from the LE channel, is given by the leading Tt -channel

, L. (121)
Regge singularities.

(101)

De Tar et al discovered these identifications by using

an 0(2,1 ) expansion for the connected Moller amplitude j%?

for the process a + b + ¢c—> a + b + ¢ , where again
P
L4 Const Jise 177 2-19)
dt d M 5+ &
with absqmz_ihz being the appropriate discontinuity.

They write 77 as

o w1,
77t 5 M) Jap it 5 < 4,

2 (,(f) 'q;“, (¢) (2-20)

f
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where éft is the analytic continuation of m (the diffe-
rence of the helicities of states @€ and @€ viewed from

( )The variable A is essentially the

the b—g channel).
analytic continuation of the total angular momentum for the
bzl channel. The relation between the wvariables ; and
N and s , ¢ , M* are as follows, in the indicated
limits: for ¢ fixed, 5/M* large and M® large--the triple
Regge limit, 5//")2' =const- & 'l and M = =const- el il .
If we assume that the high f behavior is given by the lead-

ing Regge singularity ‘{v(o) coupling to the bb channel,

then ’ Y 2/%]

> A, (Y — < $— o°

P it )
The high Q_ behavior is given by the leading helicity

n(e) N 1N 2 A G)
in c/... at n(¥) , then ¢ ~ € as VL——-?:L’OO .
So indeed
o (0) 24t
do R B o~ LM 5)
dt dM*> ~ 5* Jlsc/‘?”% 5"( ) (,—4‘1 X(t> (2-21)

as given before.

It is the existence of the triple Regge limit which we
investigate by computing a three-to-three scattering amplitude
taking the appropriate discontinuity and going to the limit

in the variables ¢ , %/ﬂ\”, and M* .
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IIT. REVIEW OF THE MULTIPERIPHERAL MODEL

A. Basic Assumptions and Mechanisms

The multiperipheral model, as originally formulated,(ma)
is based on a mechanism for multiparticle production which
is a generalization to higher energy of the peripheral model.
The basic idea of the peripheral model is that one-pion ex-
change amplitudes dominate high energy processes (see fig.3—1 ).

”K*\ ”‘*!?
\\V \_V figure (3-1)

e - = 5 = —
1
[A Fi

These amplitudes may be written

Tab (R, Py &) = Tarr (7,9, ®a) Tyr (71,9, 40.) ( 3-1)
740
where 7;r(f71u) is the amplitude describing the

reaction between the A(B) particle and the virtual pion,
giving system A(B) as a final state, with -%a; indica-
ting the momentum of the 1i-th particle in the a4 system. A
further assumption is that the dependence of the amplitudes
7;”.(7Zﬂ> on the mass of the virtual pion is negligible
due to the small range of the interaction.
Multiperipheralism comes about as follows. One assumes

that if the center of mass energies of each of the subsystems
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A and B are sufficiently large, then the one-pion exchange
may be extracted from the amplitudes 7G;r and 7Z%f .

Let us define the variables

S=( R+ Py) = (Rar_hi) Koz Zha, okt 2k,
=(Pa‘g3 - “&a~ (3-2)
= (pp +4)

VZ 7 5. + {8y

The peripheralism of the amplitude 7;m- , say, requires,
from energy conservation, that Eij? F; + r%; where Jg:
and [—: are the energies in the centers of mass of the two
subprocesses into which the system A is split. Therefore any
subdivision of an amplitude degrades the energy of each group
of particles in the final state. If we repeat this procedure
for all high-energy amplitudes, we shall obtain a chain of

low energy amplitudes linked by virtual pions (see fig3- 2 ).

Ko 4 ke

7} \{\ J_- 751“1 \!-\l iia\){ figure (3-2)

f
The amplitude for the n-th order peripheral graph is

R —R R
T(ﬁ“ 9 ')ko‘;) ! (Z,jz,_;fk,,;) ot W?n,?bﬁ‘kn‘-) (3-3)

TR, Poy) =
(g7 N g o) (™)

R
where the 7~ are low energy amplitudes taken for the

gi=
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These results may be used to calculate the total cross
section for the scattering of particles a and b, and to cal-
culate the elastic non-forward amplitude. We consider the
process p, + p_—» p; + p; for spinless particles and
compute the absorptive part of the elastic scattering ampli-
tude by using unitarity and the multiperipheral model for the
process p_+ p,— n systems of particles. We call the in-
variant amplitude describing the elastic scattering process

M(s,t) and its absorptive part A(s,t) . The total cross

section 1s given by

A(s, o)
—_ = ! = 2. I, )
Tor AE(s, Pa, R n (3-4
where )(x.a},a;)=x‘+ 3’#&‘—&)(7,-2}%—2)‘2 and On

is the cross section for a + b — n systems of particles,
which is given by

R R N _,_,JI’ A d s A5,
a’" = / n
n (2 2905 (C?‘IT*)H j (Zz,.‘/f.y_.. (45-4)*

X § (A= 5) 2R TE TUs -+ § (- 50) 2 al(Bn X s0) (372)

/ (3-6)
=1 22‘1—-5" /qn (5)
R
where  07"(s) = Zrpr A'() (37)

K
and A (5:) is the absorptive part of the amplitude -T—R(sa)
_ 2
given in equation (3-3),i.e. /?ﬁ;g::}l %SOJ . The

graphical representation of this is given in fig.3-3 .
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? L o _‘_ P 5:(&_;.}’6)"
‘:}5 Q Q t= 0
Pa. [ figure (3-3)

FL(Q is the absorptive forward amplitude with an n-system
intermediate state. The contribution to the absorptive part
of the non-forward amplitude from an intermediate state with
n systems of particles formed via the multiperipheral mecha-
nism is (fig.3-4 )

Jil 1&,,:150"'454
An (5:t) = (m*) j S(Z' A g-oF ] - (g g afop]

X S (‘k;" 50>AR(Sa,'t) 5("?:1’ 5:) HR(S:_, t) s S(“’?:" S,.) HRCS,,‘ t) (3-8)

where 4 = pa-fi ; A¥= ¢t

P/
9~ A -A %A"A b

ARSI SN P . R

[I figure (3-4)

—— - —_—— Y= - -

Z: z" 3 Pb
Fa.

B. Forward Absorptive Amplitude

Going to equation (35), we can write for the n-th peri-

pheral contribution to the absorptive forward amplitude

n(&)m:fzsoﬂ_’fgi; dty Sler)- o] A (BB (5o
T (p'*= u*)™
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that is, Hn(&,& satisfies a recurrence relation. If we sum
over all peripheral contributions we obtain an integral equa-

tion for the forward absorptive amplitude.

’L)(ﬁ\;?b) = 7—;— An(ﬁ-, Fo)

H(@. Pb): Ja(So /‘)R(So) dqpl )Y [(Pa." F’)t 50] ﬁ(P: Pu) (3-10)
’ 97}"" [P.z_/a_z—‘}l.

Converting to invariant variables by using the Jacobian

Qlsw; 5wy 5,) = S Sn-pI=5] SKp'ep ™ s) SCp> 1 ) (371D

we obtain

R [ /7,1
Alsw = Jaso A1 [asaw Qladisiuss) ALY (5 0,
gt (w + u)*

where

’ / 7/\‘
Q (5' u,s, w, 5") = 2 (J'z' + #Lu)i

(3-13)
x 8w g'*, MJ‘V,%‘.JJ%_ @tau’)&(.f“—d's"ada)
with

2
J=s Ry”
S = sl (3-14)
J; = So * 4+ ("'I

For s large, the integral equation becomes

zJ 55, 5-8

5-
] R , A(S/ ul)
/Q(f,u) = "77_—3 Jélﬁo H(So) , A5 J, Aduw l} .
/6 S imm %(u+ So )(u +/4.)

-3
/=3

/

(3-15)
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Given that the region s’ small and «’ large does not contri-
bute to the asymptotic behavior (i.e. large values of s’ and
small values of «’ dominate), we can write for the integral
equation
R SA / ° / /
/ $ /
Al = s Jdso Ao [ 25 [ aw AlLu) (510
/ 2
° _6_’u+§_e,) (w'+ %)
s -%
We easily see that the kernel is invariant under the transfor-
mation 5—>¢5 and s'—es’ . This implies that the

solution of the equation may be written in the form
¢
A(se) = 5 gé((u) (3-17

where (X:: %;) ?z(u) must satisfy the equation

,? / o , ’
P («)= =5 (45, A (s,)jx“uj Adw j'é_(—“%;, 6-18)
° x(u+75e_x) (@ */’)

This is a homogeneous Fredholm equation which has solutions
only for certain values of  , i.e. this is an eigenvalue
problem which determines <« as a function of .Hg(sq) :
L= £ (A () :
If & ~ -] , the lowest values of x will dominate and
tlrefore we may set the lower value of the u’ integration to

zero and %k(“) is u independent. We obtain

,(: -/ +~ )\ B-19)

where / R
/\ = /L;T}a' j‘{s” A (s0) 68-20)
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The condition « ~ -/ implies A is small which is

known as the weak coupling approximation.

C. Non-Forward Absorptive Amplitude

If we go back to figure3-4 and equation (3-8) for the
n-th peripheral contribution to the non-forward absorptive

amplitude and define

P: Pb"' Pbl Q.—. ?ﬁ-f Pa:
N <
A = PA-"P“I = Pb," Fb Az_-_—.t'
2 2 ) (3-21)
Paz-_: - u, ) ﬁll-:.—b(,__
(@+7F) = (et P)" = (pl #pu) = s

we obtain the recurrence relation

A, 8.9) Ay (&0,P)
L(9"+ 2 -, [(§- 00 x*]

(3-22)

I 4
An(6,8,7) = 777 )49
and the integral equation

Yot ARra 7 /
A8 D)= AlGam) + gy J40 ZHEDAEAD | (o2

/
If we express this in terms of invariants and neglect the W, ,
/7

R
Uz  dependence of A" , we get

/ ’ ’ R
H[Slul/ “,glt)"—" ﬁﬁ(s,t> + Fl77-4 545 d“l xa’. 150 ,C) (50,'6)

X Kt (5} U, U, SJ/”IIJ “2-, 3 5") A(S}' u”/ H;,, t) 3~24
/ ) 2 ( )

() v pu*) (u, .,
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where K, (5, U, us; s, 4’ ui, s)

= SA'/Q' S[(e-6)-5.75 T +ay+ u/] S &) +u.] S[(Q+ P~ s']6-25)

In this problem t is.a fixed parameter. At high energy A

becomes

K= -+ Qulu,us,uijus, x) = < T(1,5.5.) G-26)

where
y = —t( I*X) x= %
§, = w-wuz- %%z
f. = Uy — U = SeX [ %
(5, §, %) = —A(5 ], T

Assuming ﬁk(s,t) decreases sufficiently rapidly with energy,

(3-27)

we obtain the integral equation
/
- L R ds’ Jdu,' dul
/4(5/ u,,U,,,g-) = 247 jé’ﬂﬂ[s,,t) j s ' >

Qf (u‘) U, ulll Ul{) X) A(SII u/’, U:f,t) (3-28)

Luf + ) us + )

X

Again the kernel is invariant under the transformation S—>Cs

and s' _ses’ , implying that Als u, Us, ) may be written

()
Als, w,ust)= et) 5 (e, u.t) (3-29)

where S’S(U.,u,,,t) satisfies the integral equation
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/

r4

¢[a/)a2/t)= jﬁ__(‘i’,ﬁ.t) d'&jdiz’ 1'(“) ia'du.ll (3-30)
g3 o !

v @pluyusul ul x) Blu),us t)
(u/ +/a"') Cud "‘/‘-z)

This is a two-dimensional homogeneous Fredholm equation which

issatisfied only for certain values of a( as a function of the

fixed parameter T . To lowest order the relation between

X and ¢ 1is given by(k3)

/ /
j ﬁﬂ(s,,t) A5, jlﬂf ;(t)J J} (3-31)
-———-"/é 73 A A (/—-Z)/«-"* 5,1(/—1)_5(/—1)%(/—7.) = 1
If ?b(u,, Us, t) is normaliéed by QD(’/J; J/af ¢ ) R
then
A(s,t) = Ct) 5«6) (3-32)

We begin with an assumption about n-particle production
via a multiperipheral mechanism. We can then sum all of the
multiperipheral contributions by means of aﬁ integral equation
for the off-mass shell absorptive amplitude Als,u) (for for-
ward scattering) or /Q(ﬁuoch,g) (for non-forward scattering).
The kernel depends on a low energy amplitude f?ﬂ . In the
limit of 5 large, the dilatation invariance of the kernel

allows us to write
o
H(i“) = 5 ¢or ()
where A= o« (/‘)‘Q(éo)) or

(%
A (s, U,ds,t) = 5 () §D(u.,u,,,é) (3-33)
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where A(¢t) = O((/qﬁ(so,t‘:))

The problem we are then left with is the solution of a homo-
geneous integral equation for $(u) or P(«, 4., &) , which
determines both <« and ¢> . The corresponding on-mass-—
shell absorptive part then appears to be Regge behaved at high
energy.

The assumptions of one-pion exchange dominance and negli-
gible dependence of the low energy amplitudes on off shell
masses neglect the possibilities of the exchange of higher
mass states with spins greater than zero since the model is
completely consistent only when the low energy interaction is

(r03)

in an s-wave state. We will have something to say about

this in our version of the multiperipheral model.
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IV. FINAL STATE CORRELATIONS

Whenever we study a scattering process in which three or
more particles are created, we have to consider the possibili-
ty of correlations between the final state particles. This
is manifest in the degree of factorizability of the relevant
amplitude or distribution describing the scattering. For an
exclusive process, say, one with three reaction products, the
factorizability question is answered by the Toller angle depen-
dence, which will be discussed below. For an inclusive pro-
cess, e.g. a two-particle inclusive process, factorizability is
determined by the correlation function which measures the dis-
crepancy between the two-particle inclusive distribution and

the product of the two relevant single particle distributions.

A. Toller Angle

(22)

Bali, Chew, and Pignotti studied multi-particle pro-
duction via Toller variables. If we consider n-particle pro-
duction, the diagram describing such a scattering process is

below

P poph Pa

- - - figure (4-1)
N "

Following Bali et al we define three sets of variables:

Pa.

N-1 t variables, N-1 § variables and N-2 @ variables.
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Z

The T variables are such that ¢, = f?ﬁ- <o . The

7{[ are conjugate variables to the t{; , with [fb
being the analytic continuation of the angle in the rest sys-
. . —’ __)
tem of CPQ' between the direction of f; and Fﬁ H
the ‘flj are real and range from ¢ to ©?  independently

of the other variables. The {éy are linearly related to

the subenergies S¢j . The

); , usually referred to

as Toller angles, are understood in the following way: go
into the rest frame of Pj where the spatial components of the
two adjacent momentum transfers point in the same direction,
call it =z . If we consider a rigid rotation about the z-axis
of all momenta to the left of the vertex Jj and an indepen-
dent rigid rotation of all momenta to the right of the vertex
j, the difference between these two rotation angles is &y ,
ranging from 0 to 27 . 1In other words, the angle &; des-
cribes a rigid rotation about the z-axis of the left hand side
of the diagram with respect to the right hand side of the dia-
gram. Assuming the multi-Regge hypothesis, we find for the

amplitudes describing the 2 — n process:

M ~ ‘H(tt:,) 'F;_Ctlz’ (x),_,t,__a> T ‘Fn (tn-l,ﬂ>

& (t2) . (4-1)
X (60515 3‘,1) ( Co5h {25 )"‘.zg (t?.)_

The vertex functions 4: and %% describe the coupling of two
physical particles to a Regge trajectory, while the internal
vertex functions %%_ describe the coupling of two Regge tra-

jectories to a physical particle. The ¥; also contain the
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Toller angle dependence which determines the factorizability

of the amplitude.

If we consider a process with three reaction products

S
5 > figure (4-2)

t t
[k
p a3 P,

(fig. 4-2 )

and write everything in terms of invariants, we find for the
amplitude describing this process:

oL(t,5) «(t;3) -
7‘: ~ 'F, (tlz) SI:. ‘F& (tl.{,wz, t)s) 523 "Fj (tzs) (4-2)

for S, S,,, Sz3 large and ¢,,, ¢, small and fixed. It
is this process which we wish to study by taking our composite-
particle scattering amplitude, allowing the final state
composite to decay and going to the limit 5, 5, , 3Saglarge;

Z

2 ! t;,fixed, to extract the Toller angle dependence in

our model.

B. Correlations in Inclusive Reactions

If we consider the inclusive reaction
a+b—>c+... +¢g + p..
and define the associated invariant distribution function J%n

by
dr _ £olp- - Pr) S) (4-3)
ﬁe:l’:l:ﬁ‘k QE, - - RE,
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we find that, in general, a k-particle distribution cannot be
obtained from distributions involving fewer particles due to
correlations between particles. We may analyze this by defi-
ning correlation functions qk(-ﬂ,"'/fk) which vanish when

there are no correlations. We define

‘F; (P,,S)" CI(PI)

'FA(P') FL/ 5)= < [ﬁ; P») + a,(P:) CzCP") tame)
-F3 (P:, Pz.) Ps,s) = C3(PU P")P3> + CZ(P‘/P") C'(Pd>
+ Clp, pa) Culp) T Calpa, Pad e, (p)

+ G (ple,(ps) ¢, (ps)

If there are no correlations (g (p,-- -, Pa Y=0 &% 2and

B, nd = Bne - Ao e

If the Cp #+ O , the existence of correlations is
implied.

Kinematic correlations are always present in particle
reactions due to four-momentum conservation. Their importance
varies from one part of phase space to the other. If in ,
say, a two-particle inclusive reaction the momenta of the two
produced particles are small compared with their maximum values,
kinematic correlations are unimportant since one is far from
the phase space boundary. There is no general way of separa-

ting dynamical and kinematic correlations.



33.

V. FOURIER-BESSEL ANALYSIS OF SCATTERING AMPLITUDES

The general characteristics, in most reactions, of the
scattering of particles at high energies is that scattering
angles are small and that angular distributions take the form
of diffractidn patterns. This suggests the use of an eikonal

(o) investigated

approximation. Blankenbecler and Goldberger
a generalization to the eikonal approximation. Their result
was that the high energy scattering amplitude was given as a
Bessel transform with a T, (2b p sin 9/1.) kernel , b
being the impact parameter and p and & the momentum and
scattering angle in the C.M. Their representation satisfies
unitarity automatically at high energy. They derived their
result on the basis of small angle scattering. Preda221(7/)
demonstrated that the Blankenbecler-Goldberger representation
is valid for all energies and throughout the entire angular
domain ( 8 : oto m ). They express the spectral func-
tion of the representation in terms of the partial waves and
give its inversion. We will now outline this for spinless
particles.

We assume the existence of the usualpartial wave expan-

sion for the scattering amplitude:

F(F,9'> - i. (.?l"' ’) -;‘ ?{(COS&) (5-1)

-“F A=0
AT *
where T = } F(p G)}
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[

_ 28 8, (P
L= <p jld(casw Flpo) Flesed = 7
(5-2)
Partial wave unitarity is:
2 - 4 Im {((P)
Lm 7';(I")/.?z; = [ﬁCF)/.u'J + ‘éZ (/- e )
(5-3)
Given that( )
B (coso) = F, (1+4-L; 15 50784 )
£ . 19
= () LF (1L ] eosey) (5-4)
(04(947)
where 4}7 is the Gauss hypergeometric function and( )

0 ~A
Ja dxX « :};[X%) ;:[;(a.) - jﬂ/'z—/\ /“l[/(.-f“a/zA flj

o F (At Ar AR 4
L7/ 2 J 2 ) J A&

(a> 470 ’Eg(/u'z/)+/ > Ae A 7——/) (5-5)

)
If =0 r /L= 'Z/["—I ’ a=/ r ?.: s/ ﬂ/’?" , then

Flaso) = {7 T (x5i085) Tapyy (0 A2 (5-6)

and

F(,v,ﬁ) = -y J;ooj:(:zéf s/n %) 4:(5//9) db (o26<1) (5-7)
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where

(5-8)

Equation ( 5-7) is the equivalent of the Blankenbecler-Gold-
berger representation for the scattering amplitude valid for
O < 8 <7, for all energies, it being a consequence
of the existence of the usual partial wave expansion; equa-
tion ( 5-8) gives the spectral function in terms of the par-

(74)

tial wave amplitudes. Predazzi showed the domain of con-
vergence of the representation in the Cos & plane to be
an ellipse with foci at + 1, which therefore includes the phy-
sical region. This does not coincide with the Lehman ellipse in
which the original partial wave expansion was known to be
convergent.

If we write 2p S/n%= (’t)-{z‘ ( ? = momentum
transfer), we can express the scattering amplitude as a Bessel

z
transform of zero order with ('tjz being the transform vari-

able. We put
Fips)= F(p ) (5-9)

then

ﬂlo,r) = BLQJ T i) Glpt) (5-10)

where G‘(F,'t) = L'(*t)i F(F,t)

(5-11)
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We used the inversion

F(x)

u

i”d} $(3) Jo (xy) O“;)’1

(5-12)

1]

ap = [Tax 20 T yp®

For 8 — 06 , equation ( 9-!) takes on the eikonal form

Flpe) = -cp j;wl,, 4b F(b,p) J,(bpb) (5-13)

For equation ( 5-8) to be wvalid ;Yhfﬁ must have a finite cir-

cle of analyticity about the origin in the LF plane.

The partial wave amplitudes may be expressed in terms of the

spectral function thus:(&f)

/

S To(ebpsin 98) Bleoso) A(cos) = £ T, (260)

=1

L= 2 8hp) T, (26p) 25 (5-14)

D
Matsumato and Tsujimura formulate the Fourier-Bessel re-

presentation for helicity amplitudes describing the scattering

of particles with arbitrary spin. Impact parameter amplitudes

are expressed in terms of partial wave amplitudes. The par-

tial wave expansion of the s-channel helicity amplitude /b £33

/a

for the scattering a + b — ¢ + d is:
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_ ? +
/9,\/‘(6,t) = ? (244-/) AJ/“ (cos®) a',l/«.(s) (5-15)

where /)’-‘/\a-/ib ; /L=’\c')‘d ;, S and T
are the usual Mandelstam variables and & is the scattering

angle. The rotation matrix dﬂ? is:(af)
4 4

Zf(wéﬁ-)=p£;;(£>= { 4 +d+) [(—pr?) }
(5-16)

7 P00 (M (Geprd
x(wz)&‘f“ (152)% Eliiaeger i, 57)
z Z (1+4-4)

for )+ o0 : A Mo F is the Gauss

hypergeometric function. The impact parameter representation

is introduced as:

<

Iy
2\ £
A (52 = (1£2) JD bab T GbF) a, S0

og |-t & 2p

(5-17)

( P : magnitude of center-of-mass momentum), derived on the

basis of
At
2
A)/u. (5,¢8) ~ (—l——%z:-) o for 2~ -]
(5-18)
The function 4_,"/“(5,5) is the spectral function of the
representation. '

The spectral function is expressed in terms of the par-

tial wave amplitudes as follows:
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(56) = (2] /) C/, (p 2} (z,w) a.T/f’“(s)

iy 1
(5-19)
where | ( AL
+ Atpt! Fl-X+1) T({-p+1) ga‘
= 2 + 1=
C)/‘(‘o) F Zf‘(?',uhl) f‘(,j,-r/au) (5-20)
E?}j;(le)zz é /‘ :r%r+l(—zfé>
£ () e %7 (f+ Atl=m)m
m=0 (5~-21)
X(f=A+0)0m T T o £ Pb)(@b)
(), = [tsm)/ () (5-22)
Equation (5-19 is obtained from equation (5-15 by use of: (Jy)
2/\_*/1 .
+
CHE C“* (0 [db T 6T 2] oh
(5-23)
= ﬂ( (2) o <4 d -1 4 ‘2?
0 J-1 > 29
which itself derives from

A/“' /\ z
/"/1(7+/\+l) F(—J;-M”,’?'H\j’*)?“j%:)
= w*’ M-+ 1) 01 )1 L>a
0 b 2o

For pion-nucleon (/7N ) scattering which is spin 0 -
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spin 1/2 scattering the representation becomes

L 00
Ao ) = (Z2)° ] bae o) a5 (soam

]

/q+_ [S,f) Jo' bdé Ul—(éd‘t ) a-,t_ fS,A) (5-26)

where

. ” ‘
a,, (5,!,) - Z 7{'02_ (J;J“(.zp),) + (,.,)"JL J;(J-Fl’) )a.f:(s)

(5-27)
A+- (S,L) = 2 (’21;“'/) .'ZLﬁ 2 ¢/ (JFL> d.z_(S) (5-28)
N 2} E T (bIF)
a-,\/u_ (s.b) = L Wﬂﬁ{ 2 ) IQA/((s’t') J,\-—/,_
(5-29)

The importance of this representation derives from the
following. The representation satisfies unitarity, the analy-
ticity properties appear easy to impose and finally, signifi-
cant for our purposes, the diffraction character of the scat-
tering amplitude at high energy is a function of the behavior
of the spectral function a (s,b) for small impact parameter, b.
This may be seen with an example. If one assumes the behavior

ar at
= 2 for the differential cross section and

At at/a
correspondingly that the s‘c’:?ttering amplitude AlGE) ~ e '
-0/ 22
one finds a(s,b ) ~ < . So the behavior of a(s,b)

as a function of b determines the extent to which the diffe-

rential cross section may be written in the usual diffractive
at

way, é .
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VI. COMPOSITE-PARTICLE SCATTERING AND THREE BODY UNITARITY

Beginning with the Bethe-Salpeter equation for the three
particle Green's function, Freedman, Lovelace and Namyslowski(g')
derived a set of equations describing composite-particle sys=
tem by assuming that in the interaction of three particles,
any two-particle subsystem is dominated by bound states and

(1o1) in a similar fashion

resonances. Aaron, Amado, and Young
derived a set of linear relativistic three-body equations for
the scattering of a particle froma bound state or correlated
pair of others. Both Freedman, Lovelace and Namyslowski and
Aaron, Amado and Young combined the isobar idea with two- and
three-body unitarity as suggested by Blankenbecler and Sugar.(lq)
The resultant equations obey two- and three-body unitarity
exactly in the interaction channel. The basic mechanisms for
this lie in the potential term (which is chosen to have a par-
ticular three-particle cut) and in the composite particle pro-
pagator (which is chosen to have the appropriate two-particle

and three-particle cuts). Let us now discuss this in more

detail.

A. Two and Three-Body Unitarity---Structure of the Potential

and the Propagator

The composite-particle scattering equations have the

form (fig. -2 )
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27N\
A.A:i-rw
figure (6-1)

=T - T

Ti(s) = B(s) + T(s) T(s) B(s) (6-1)
T(s) = B(s) + B(s) [(s) Tl) (6-2)

where B{(s) is the particle exchange graph, Z?(S) is the com-
posite-particle propagator and T(s) is the amplitude des-
cribing the composite-particle scattering. The variable S 1is
the square of the center-of-mass energy in the reaction chan-

nel. We can write

B(s?) = B(Gs) —B(s™) + T(s*)- B(s)T (s Ts")
(6-3)
R(s* = B(sH - B(s) + T(s) -B(s)T(s)T(s)
(6-4)

Using equations (6-1) and (-4 ) we may write
T(s) = B(s) + Lgesy-B(st)) C(s) T (-5
TN (sH T (5D~ T (DT (st B(sY L(s7)T (s)

From equations (6-2) and (6-3) we may write
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T(s) - B(sD + L[Bs7)- Bst ] T(s)T(sT) (6-6)
b TsT) DTS = TS TSRS TUSIT(S)

We then find . _
T(s?) -T(s) = T(s7) {3(6*)* T(s)f T(s) (6-7)

T Ten e} {Bes) - BT + 1) TE)]
Now terms 1like

[Bish - BsY) + [BGsh-B(s)] T(s) T¢s)

+ T(sH T(sM [BGs" - BGsY)]

correspond to cutting external lines. Since the external

lines are on the mass shell, they vanish. Therefore we obtain

T)-T(s) = TN lsH-Te)) T(s)

(6-8)

+T(s) T(sY ] Bl - Bes) ] £ (s7) Tis)

The composite-particle scattering equations (with momentum

labels as in fig. (62) ) are

U,: (7‘* WEOETTE

figure (6-2)
dp]T(g> = LpI1BE 19> *@my J 4% LpIBE] 4>

X Tla) {2 TE ]| (6-9)
with

< (P-4)
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The discontinuity of 7| satisfies the relation (fig. (6-3 ):

HOREORONARO
EON P RaOn

figure (6-3)

<pl TCsD)]g> — <1 T 9>
= Gy JJI% <PITCOD [T ) -T ()] <AIT(S)]g>
+imy Sl sty SPITGED RS T () [k | BishI£ > k) BE)1A>]
X T )< 1T 9> . (6-10)

We want expressions for the discontinuities in 'Cés) and B(s
such that two-and three-body unitarity is satisfied. Unitarity
says

t . -
7;1_’ Tﬂ_ ¢ % dL2, I Ta:

\l

where

n n 4 + .
d2 = (2"’)45(4)(&—3 7:) Tl"(%‘, 2§ (gf*”’a))

o=t
(6-12)

is n-body phase space. Therefore from two-body and three-body
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unitarity we have ( fig. (64) )

p 7 f_—~ 3 F o~ * TN ]
GG N G I g B

i ZQZAi\—/)_____E\_/QDZZZ
figure (6-4)
LpiT(s*) 4> = <p | TG >

= g % S ST ) <P TEN 1 HRITEN 87 ()
+ ke S Ak, 8%y S(Pa b k) (an) S )

* S @) S - )<l TEH |k, 2o Je >, e es T D

(6-13)
The first term represents the situation where the composite

propagates as a stable particle in the intermediate state
(elastic bound state scattering ); the second term represents
the situation where the composite breaks up in the intermediate

state and the same or a different composite is formed in the

final state. The term (.p| T b, By fogD is the
production (two-body —> three-body) amplitude. It has the
10 )
form( %) (fig. (65) )
10 TN vk

._f N n
= %&;Z ok d)ﬁ,(n, = )
[ " Te,

figure (6-5)
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3
(oI T A s> = Tor =, SPITOMD S@) 7))

(6-14)
<2
where Pl=6kp_/k3) ' etc./ ~— 1is the vertex for the
dissociation of the vertex, and s is a propagator which is
related to T in a way to be demonstrated below. With the
definition for < -pIT(| &, £ £ > given in equation

(6-19, equation (6-13 becomes

L) T(sDIg> — LpIT(s)[9?
= /f;f)‘ Jdn slg—>) 5T~ m?) Lp | TH|4> <k T(sD 15>
* (.?%ff 4 'ﬂe,-&,, Aﬁ@, S ?7’4, -b,-R,) ;’*(,,gj‘_,,,’“) ;’}%:_ mlS'( 2 »>)

3
X5 2 Lpl TGN k>S5, Yor (g3 w(-p2) (0, ) <Ral TEY >

(6-15)

The first term in equation (6-15) obviously contributes to the
A

discontinuity of ¢ . In the second term, m=n contributes to

the discontinuity of r , it is the direct term corresponding

to cutting the propagator bubble ( fig. (@e) ).

"direct term"

=T o

The terms m#n correspond to the exchange of a particle between
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bound states and will contribute to the discontinuity of B(S).
For m#n , the second term in equation (6-15)) may be

written:

‘ ’ ” 4 ! qwu t a2 i +
(;7;')’— jd:& d:ﬁ dré (f (?—rk”&—/&) 5 (—k..m )S'f(.,k‘b_ m“‘) S‘(_&//f_ m&]
x—_—aLTl LplTGN))4%> s(ET) VY- ,,&,’)2] ..’U'L/(«k”—,k)z_]

* S(q”) <41 T gD 16
= 7 SE AN ST ST 5T (Pa- A |
X <pITEO 2> (G [(Pr-24 )] (P2 -]

x Sy ) £RITEN§>

(6-17)
Comparing equation (6-17) with the second term of equation

(6-10), we obtain the relation

P! [ch 1B D~ <kIBEY#] T (%)

= i [(Pk- 240 ] 5B G1) 5 Tem®) ST 2 o) S Tra-kS=m]

X S(ag ) v (P-2k-4)7]

(6-18)

For me=n , writing £, = 4 (R,-R.) ,the second term in

equation (6-15 becomes
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SQ}kf—mf)

(4777, _Saﬁ T Cams <) TsHIE> 5(q)7) s(qy) [ TEHIE>

*Ja%, 1 (2 ) 5T w8

(6-19)

So from equations (6-19), (6-15), and (6-10) we obtain
TOGH - T(g) = LG T ) § (-4
e __‘;_(f:_”_’_) sy s(a) Salp. (f,z) St
(3ﬂj
x S'r(v‘o: -m")

(6-20)
Equations ( 6-18 and (6-20) suggest the identification

Tlag) = (am) ST (A= m*) S(aR) (6-21)

Therefore we finally obtain

24| Bl(sH) 4> — RN IEPIE

= sl (- ,p,,—,zle,')j 2T S+[_'(P_4—}e’)‘— m? | o [(P-ak - 0*]

(6-22)
with the constraints A " , K= m* from
the J1 function which has been factored off. We also

get

m*)
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Stop*)~ s(g) = ali é’+(<f,;-/u“)

P RDSG)  lp w4 )T (0 ™) Sl )
2 (am)”*

(6-23)
The potential term B is obtained from a dispersion relation in

s, assuming no cut contribution from the vertex functions.

We find in the three-body center-of-mass:

4-«'&;} BCS}' %/>= AJ"FCP— &’Jk')&_] {&)JL.,- (,Qk/ #U)**k/ gﬂ)’HP"‘z,k‘_,kl)t]

<
w%+k1 [((,_)*_1— U')vkl +a)_m‘k,) - SJ
2 L (6-24)
2
where abtz (;& *’”1) , it is energy dependent and com-

plex above the three-particle threshhold. The composite-par-
ticle propagator is found with greater difficulty and its cal-
culation as well as the details of the calculation of B(s) is
done in Appendix . What is important about the
composite-particle scattering equations is that they are 1li-
near, relativistically covariant equations which have the form
of two-body equations, but which obey two-body and three-body

unitarity exactly.

B. Form of Two-Body to Three-Body and Three-Body to Three-

Body Amplitudes

The production of two-body ——> three-body amplitude

is as given in equation ( 6-14, namely
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3
! 2
<P TisHl b, &, kD = Tar ni Lp|T@HR> 5(G ) (4,
: =
(6-14)
This also suggests the form of the three-body to three-body
amplitude, which is

3
(48,9 | TO R A k> = 37 2 4 (p) S(G)

mn=

X <4 I TE 2> s (@) 7 (p7)
(6-25)
This means that if we compute the composite-particle amplitude
from the theory, then given the composite-particle propagator
5‘(@;) (which we can calculate) and the vertex func-

tion - , we can calculate two-body to three-body amplitudes
and three-body to three-body amplitudes by a quadrature, i.e.
simply by attaching the relevant composite-particle propaga-

tors and vertex functions.
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VII. MULTIPERIPHERAL MODEL FOR COMPOSITE-PARTICLE SCATTERING

A. Composite-Particle Bethe-Salpeter Equation For Pion-Nucleon

Scattering in the t-Channel

(81)

Freedman, Lovelace, and Namyslowski (FLN) and Aaron,

Amado, and Young(mo) (AAY) wrote down the following equation

for composite-particle scattering:

Tts) = B(s) + BCs) T(9 T(9 (7-1)

which graphically is (fig. (79)):

ﬁim

figure (7 1)

where the Born term is a one particle exchange term (a particle
being exchanged between the two composites X and /3 ).

We specialize to pion-nucleon ( JN) scattering. We ask:
what is the most general form for Z channel scattering (where
now ¢ corresponds to s above) which gives us pion-nucleon .
out, and is such that when we look in the cross channel, we
also get elastic pion-nucleon scattering? The equation we

write down is (graphically):



figure (7-2)

Our equation has the form:

Tk) = By + K T TR (7-2)

The form of our equation is obviously different than the form
written down by FLN and AAY, but it is the minimal form which

expresses the dynamics we feel to be important, namely we want

TN=NIT in both the # and 5 channels. It also gives
the effects of "doorway" states in the t channel as discussed
in nuclear physics by Feshbach et a1511) We believe these

states to be part of the background and as such may contri-
bute to singularities in angular momentum in 7 .

If we analytically continue this equation from the <€ chan-
nel to the 5 channel we obtain:

m o\ m
% U
O=Arzz0- -~ € -
(LB
l J

R N

—
pem——

figure (7-3)

Now we suppose that in Born term the two pions ( 7 ) in
‘the intermediate state are correlated, i.e., the rho meson ( F)
which is exchanged generates enough of a force to correlate

the two pions in the form of a resonance, so that we then have
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for the Born term:

figure (7-4)

Making an assumption about resonance formation in fig. (7-4)

we have to lowest or%gr for the Born term

figure (7-5)

TN N

figure (7-6)

Now both our inhomogeneous term and kernel have the
intermediate state resonance structure. What we are saying
with this is that the scattering must always take place via

(21)

these "doorway" states. From nuclear physics we expect
intermediate state resonances whenever there exist doorway
states whose coupling to thé incident channel in the energy

domain being scrutinized is strong and whose coupling to other channels
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is not. Even though we will go to high energy and these as-
sumptions may not seem valid for the inhomogeneous term, we
nevertheless retain this structure to include possible corre-
lations in 5 in the intermediate state. The possibility of
the exchanges in the kernel are a function of the momentum
transfer variables appropriate to the particles being exchanged.
In the multiperipheral model of Amati, Fubini, and Stang-
hellini, these momentum transfers are small. However, the
exchanges of the composites indicated are necessary given

the structure of the model. The correlations in Z in the
kernel should be reflected in the angular momentum singularity
governing the high energy behavior in S .

.Finally, to obtain a "multiperipheral" equation, following
the analytic continuation from the #channel to the s chan-
nel, we must take the s discontinuity of the terms in the
equation, i.e. the inhomogeneous term and the kernel.

What is important about this equation is that we begin
with a model which obeys exact tWo—body and three-body unita-
rity in #, since our original equation was derived within
the framework of FLN and AAY for ‘ ¥ channel scattering.

Our resultant equation is such that the inhomogeneous term
has two-body and three-body cuts with strengths given by the
FLN and AAY theory since it is constructed as a thrice itera-
ted form of the single particle exchange graph in that theory.
The kernel is more subtle. It is constructed within FLN and

AAY theory in the 7 channel and then analytically continued
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to the S channel. This is described below and worked out
in detail in the Appendix. This is the essence of our label-
ling our model a multiperipheral model with continued cross
channel unitarity, together with a plausibility assumption

(19)

based on work by Bertocchi, Fubini, and Tonin, and

(

Abarbanel and Goldberger 15) demonstrating the equivalence
of the homogeneous multiperipheral integral equation to a
Wick rotated Bethe-Salpeter equation for bound state

scattering.
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B. Analytic Continuation of Kernel from ¢ to S -channel

We begin by considering the term in Figure (7-7 ) in

the ¢ channel.

™ N
Y]

figure (7-7)

First we want to compute the absorptive part of the rho (f)
box after in it analytically continued from the ¢# to the

% channel. Then we attach it to the absorptive part of the
amplitude itself as indicated to obtain the kernel term in
our integral equation. If we consider the rho box (fig. 7-8)

AN o

B\c;)zzz:()“_rmq 7
| |
r v
= %
f. VIN N il

in the ¢ channel with the momenta as indicated, it has spin

- Ps

figure (78)

factors (for nucleon spins).
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u (¥ H +m Y, u(pn) (7-3)
2(5)

= l:{_('ﬂ.z) - P +IV1’ M({F,,} (7-4)
D(R?)

Using the property that the Dirac Gamma matrix 'K5
anticommutes with all other Dirac Gamma matrices. The
quantity standing between the spinors is an invariant.
Since what we wish to focus on are the invariant amplitudes
A and B (in particular A) where the invariant pion-nucleon

amplitude F is

F-==-A+ Pt~ B (7-5)

2

If we take the trace of the expression between the spinors
in equation ( 7-4) we obtain
L)
_M_
D(R)
(7-6)
This represents for us the contribution of the rho box to

the invariant amplitude A. We will study the high energy
behavior of A emerging from this, bearing in mind that we may
determine an expression for the contribution to the B
amplitude by multiplying by an appropriate variable and again
taking the trace. We also have the rho meson spin to take

account of Thiswill be treated below. The contribution of
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the rho box in the ¢ channel is then:

(%sj/% Dpeg *Wp * &y AT e Z_f_f ]?7// Slg=nm"?
wﬂgf@mmﬁg})-tj Lo - m v éFle)]

{
B (7-7)
X 4«74,’*8 + A)f/ * 68
a
wf'f'z Eur/*g ‘f'lc)f' "'-59 - i]
where
£ - - = - jﬁ? in £ center of mass
§ T T T (7-8)
AR SR

We now continue this expression to the $§ channel (figure7-9 )

T

$ "F- Qz@{&mq‘é’/ﬁ
t — /73° N\Z, figure (7-9)
< N
1Fa‘zz/\zz(, 7 QzzFrz
S

First we note that the following
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o9 / L3 2
L [T Sl
Opeg Lloopry 10y 55’4 ] ¢ i

Th
(7-9)

i.e. the one particle exchange term is obtained from a
dispersion integral in ¢ of the discontinuity of the one
particle exchange graph as given in equation (6-23). When

we continue to the 5 -channel center of mass, the delta

function becomes J'(g: f/ua) and we have
t
o / 2 2 2 a e /
5 At’ ;ZZ'D”’F'Z) “/“‘-] — S(Z*-/")j __d_f.__
tn | ¢ -¢ ¢ t-t
mn
(7-10)
Similarly
©o , 2,_ 2
Wy +Ldb,+é% - [éll cf[?ﬁi1,_£2¥//t_]
v [ ¥ ”
/df'i-z [_(”f'fz * w/’,+£‘5)‘z—tj € er -z
(7-11)
continues to
tmax "
5(;‘7u?‘[ __ﬁi_,
min t ”-'t (7_12)

The justification for taking the delta functions outside the

integrals is that, when continued, the delta functions are
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non-vanishing only for the arguments of the delta function
giving the correct mass shell conditions for the intermediate
state pions. When we perform the ¢{' and {" integrals with
upper and lower limits 0 and -—[;._{14w1+wfjj , we obtain

for S large:
L

[y (3 (7-13)
{-t)
We take s large because we are defining an asymptotic kernel.

Let us define the wvariables

Q = i: ;:t/l QI = *’fn. + ‘/Fb N= A o ,I

2 2

! (7-14)

A = %~ ete.

_— /

<

Then we have for the rho box

/ . /
/ 2 Zz /uV 4 1/)
Log. (o VAL, M'LY_(_go_“—/’)f(z.‘—/w) o (@ - EF/,} Ly
(.?ﬂj :D(P:) :D(Pb.z> a
(7-15)
! | | o e
where ( P;) is the analytic continuation of S(g M )
from the ¢ channel ¢.m. to the 5 ¢&.M . Consider the rho

meson spin factors:



/ /ll-'l/ o ;
?}“ (? - @L_f‘) Py (7-16)

P-Z (7"17)
[}

Now:

from mass shell delta function

3 .2 , 2
A - 2F = (7-18)

/(.2* ii.z* .Z/: I‘/i - /u;— (7-19)
' 2
2R A "
, 2
AR A A

~
/’0/‘/9/5. ,z"L {5—-2/'4';} (7-20)

2
The factor }Z_ is a momentum transfer and is assumed

small relative to the total center of mass energy squared,

2
(6'*&') . So we find
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il

! ad A / , .7 2
B/‘” ? ) “?/EL 1% %{(f’ *fz->“’}“’)f7

() . s

(7-21)
.y ‘2

D C%i)is the analytic continuation of J“[—ga"/% ,)
from the €-channel c.m. to the < ~channel c.m. Therefore it

becomes

§(/22~M") — 5(/’521‘ a(,) where Uy = -M =

(7-22)
]
where now M * is negative and can assume a range of values

which we sum over with a suitable weight function. We choose

to sum over the masses with a weight function f%“e)which

satisfies _Sfau)Jub =] . The form for /7(“b> is:

X}
(Y ™+ up)”

2
X being a cut-off parameter.

flus) =

(7-23)

Therefore we finally get

A

Gy J“" (xz uy)* "3 M(PZ})J

I J(g:—/f){(g,‘—/a’)f(tffubl
' j g 2(%%)

(7-24)
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Going to invariant variables we find this expression equal

to
(7-25)

( __?‘éjdub TiaM' dug / &J)
J%?{ 8 (“#X) j Ue + me—;;‘(faﬁ;fa)h. ‘NN

where Jd = 52 H
J= )¢ sL(g-99'*] ST +8)*+ u,]
< S[(g-ar*r ur] SIQ'e M) o4
(7-26)

and the expression for the rho (f5 propagator is taken
from Appendix I

So we get

'i)[’mb ( jﬂu U + m . L;( +u._)/:. J%Q

7-27)
Taking the discontinuity of this with respect to $ , we

Tlealt] s, s " / o(n)
2 Jdab (Uw}r“) ‘ Ua + m“; ¢ A?"(‘ficl:,«u., .z.J—fT

find

(7-28)
The Jacobian is:
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- [_( Up- Us u,-uy.x){
z 2

(7-29)
— 4 (/_Z) ([15 +‘L(4)‘ (u,+u;,)7( - %X _‘f_‘ [/_. z)
2 /=X #
wh - M* - e = -
ere ke, == M | Ua= - M ,  re L (8-30)
This may be rewritten:

//[*;}'51 (f 7—-5+&55+2§§f—zf§)

with (7-31)
§= —tli-%)
§ = Up= ux- pfEL
/-7
(7-32)
§’£= Ug— Uy = ML
/%
For large s
z’=/ﬁ:;— — O (7-33)
and
5, = W U, 70 5,70

§ 70 (1239

Let us consider H as a function of ¥

. (7-35)
He g (-5 + 205 +5)%,- %

z /.— ? - f-?— +‘2'§ gl)
If = , then it can be written
£, =%
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HB = <2 + 2z - ( a parabdfar®
where x =/ /5‘:({*{‘)70 ; o= (§- fn-);’7°

Hi(x) =0 = - 2% + 28

So the parabola is centered at z= (5/0( = (F 4 $4> 7o

and H > 0 at this point as can be seen if we substitute

in this value of x.

Vi
Him = - 24 <9
Therefore the parabola is concave down. The roots of the

equation (7-3) are given by
K= 5 | p- (550
£ (5) - afvs. (7 -[1.) 7o

M
]

(7-37)
ey, < (508w 2 = (T +E) >
(7-38)

The & function in equation ( 72f) says we must integrate in a
region where H is positive. Given that H as a function of f
is concave down,we must integrate in the shaded region in

figure (7-/0) but such that we're in the allowed range for

the variable U, (o0 — )

figure (7-10)
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Since both roots are positive, we integrate from f — {
L

Thus we have

-?{HW@JI&A — !

. R 2, Ua L
e ()
\f,+ y
X 4y
5

Gor)™ [-(6-57)5 -5) ]

(7-39)

- ’ 5 | dua /
= mjzz/"j'?f“ u‘,ml,”?(za,u,,)yz

Ugp

f({—f(? §7)]) 7~

(7-40)

Consider the last integral and write:

(7-41)

Then, §° %+ ]5 (7-42)
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ma(f ey = (e p ¥ e (xeg)]

(7-43)
So we have:
AR )
jla{{ h/ 2 ! = ;X _L:- /
) [ (6-10]% L U - )]
(7-44)

Let ‘J.=‘-—7£—- ' ;(:Aﬁ'.

We then obtain

/

A 2
J Az ¥ _ oy LJ Ly ]
s s Ol L O gl T2

(7-45)

X 4 (7-46)
7,.
2. ) \ / (*‘4)
/‘( S (e J}y[(,_?)(H%J/JZ 7-47
(7-48)
o Y J- A 7. if 5? small, for the inte-
2
[j %)(I+%T)J gration region.
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2
This can be so arranged with the parameter, Y .

Only the term with the constant numerator survives.

fld'?— _;2[/‘[

ra
= L=l ) ] o[(/~7)(/+7)]/"

(7-49)

/ Ay 2 ,
= X /: -/ /a, ¢
L | (=) 1- )

(7-50)

_ .3{;@0[_/2: ((zg’)] A (7-51)

-~

So our original integral ( 7-23) now becomes

2
M 7 m 5}4 / 7/
s Ua — ry = Z
£ o
. (7-52)
Write (-&+UWUat y )’:(ux*b) , so we have

Mﬂff”'ﬁv—f’j due ‘
Ua

Now
(7-53)
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2

/ - U + Mp
Upt 1 o?(‘//«__;:f;) % (kar m;)‘ . g"(‘/A;ﬂ&)

F g’ ['2‘7:&‘)/1
Cornf ) (52)

(7-54)

<
The coupling constant 7_ measures the probability of a rho

+

being formed from or dissociating into two pions. 1In this
sense it measures the coupling of the fﬂﬂchannel to the 7NV
channel, because it gives the breakup and dissociation of

the rho meson which must occur if these channels are to be
coupled. A similar comment could be made about the coupling
constant in the composite nucleon propagator (A!-27), however
we treat the nucleon without this coupling because of the
form of the equations, i.e. in adjoining this rho box to

the absorptive part in our equation, the absorptive part in
the integral equation must have a stable incoming nucleon

leg to correspond to the stable nucleon leg in the full
absorptive amplitude. This is what yields for us an integral
equation. We don't keep the imaginary part since we want a positive

definite absoprtive part.

C. Weak Coupling

2
To treat the weak coupling limit we set ? =0 .

Therefore we must integrate
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J Au, :_’ _ :j dx ‘
0 (uarb)"(ua + "’(’) (x+4) * (¥ ¢ 2)

o

.-__’-J ada 4= o bry=e

a* 2

o (40 2)" (10y) 4= Z

- 7'@ B(a,) .Ff (22, 3; -k)

- / N = .L -
= f(V"'_Z)"‘ using F(2 2 3,2) = (7-55)

Therefore the box becomes
a ’ J
7=y M s —_— 7-506)
N___%,_, /&4—7, (y*_é)z (

Amati, Fubini, Stanghellini(maJ; Bertocchi, Fubini,

r)
Tonin(mz); and Abarbanel, Saxton and Treiman(/s)

all noted
the equivalence between the asymptotic diffraction multiperi-
pheral equation and the Bethe-Salpeter equation (properly
analytically continued). In our model the equivalence
between the composite particle Bethe-Salpeter equation for

¢ channel scattering (figure 7-2 ) and our multiperipheral
absorptive part equation for s channel scattering (figure 7-3)

is explicit because we have explicitly done the analytic

continuation from the ¢+ channel to the s channel.
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7. Strong Coupling Kernel ( Box)

We now calculate the contribution of the rho ( f) box
for strong coupling. Consider the real part. For the real

part we must compute

j * /ﬂa_ Ua( Ua ¥ ”7’;-)

P = (7-57)
o (Uats) [aw(uafm;’) + ?,f(‘}«.“,« a.)_]
= jm Ax f((a’f-a-)
0 (z+b)* ] x(xra)s Alx+e) ] (7-5%)
where
a=m= b= ¥ =2 a= ‘7;4«;"

If c=a, since « is far from threshhold mass, we have
for equation ( 7-5%)

(-

f z (7-59)
o (xb)f (7t + 4]

] « o0
- J Z fftf) dgt - j (x) - 4 __&& (7-00)
o (z+b)* » (xth) o (%¢*b)

We get overall
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Jm ~ A
(2#b)*[(x+a) + 4]

o

il

/ 1, _ 2
’m{@,—»% g (%2 /,)/47/ )f

- L bla-24)

Ls(b-2) + £]* (7-e1)
where
2 o
Q:M/z , b = Y ~¢ , c:ﬁ,._,.—.a_/ﬂé_;
(7-4) - (z ,4) |74
(7-62)
= * o4
(z:-4) = (.%_1,> _ Ja.L
If 4 is large,
7,-b — cq” _ _.a*
/ ‘7 2,~ b "¢9 (7-03)
X ——’—57" r, — L?’

L
If ?, is large, the first term is

L Ly () A (F)f o
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< G L ) = ] o

the second term is

_ L b(x-:é)j
2 { 7 = 60/755. )
j 77 (7-¢¢)

Overall we get

14
C————O”;é.‘ - -;1—? /&”7’/-%;1) (7-6 7)

Const. = (X’lt) (m,) —.?[Xté)) (7-¢%)
{

Then finally we have

(Y"—t)("g:) - a2(yx¢) . / const. ___7
' 3

9 49’ 7"
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VIII. SOLUTION TO THE HOMOGENEOUS EQUATION

A, Analytic Continuation of the Kernel and Homogeneous

Equation

Because the Born term dies out at high energy (see
Appendix III ), our multiperipheral model with continued
cross—-channel unitarity then becomes a homogeneous integral

equation problem (figure (8-1) ).

/Y T
N N ~ 0

\

figure (8-1)

To proceed, we must express the equation in invariant variables

and compute the kernel.

We have the problem of calculating figure (8-2 ) in

invariant variables.

figure (8-2)

If we define



/Pf P'*PL. QI:' f, f$

2 2

N= #+pP A= £ - , etc

2 2

We have for the graph in figure (8-2)

(~’~Jm'j4u; KM A lep,a) Sep=rua;)
“7) (& +H*) Dp'>)

(8-2)
where the~[4U; ;%%—;g?& integral again comes from the continu-
ation of the pion mass shell delta function from the ¢ to
the s channel and picking a weight function which itself
integrates to unity, and the factor M from again taking a
trace of the absorptive off mass shell amplitude before the
continuation is made. IYY’R'1> is the nucleon propagator.

If we convert the integral to invariant variables using

the variables defined in equation ( %-/) and the Jacobian

(226" £ [0 %) S0 Q"0 ] STCgr-y 2]
ST @ eny-5"] = 8(H) .

sIH

/-/—‘Z— {(@%D — (u-us) x} " (/-2

2

o Woru) (uru)r _ s, , 2 (1-%)
2 /-x 7

(8-4)
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we find for the graph in figure ( 8-2)

/
dags St Ay 5[ 4 [t

[4’ min A min

X /4 (57( ) Z, uflz ”J—‘) &i—H—) (8-5)
Dlw) VH

Our homogeneous integral equation then is

Xf/u KT Alsp it wl ) B(H)
(kD" Dew) e

(8-6)
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B. Extraction of Regge Behavior

Due to the dilatation invariance of the kernel under the

transformation s—»cs, s'-—scs, we may write

Als 2, -M; -u?) = 5’{&)99 (t-M* - ) o (2) = 4

The integral equation becomes

/ ©0
2 2 —- _L_— 4l/f ﬁ( /

o [ Taul KT Pl u)  E(H)
u:.’m/n Dl%’)(ai +/{,)L m

Again the Jacobian may be written

o ;/L_(_?:._ ?Iz,f §: +2§'YJ, 4—;:.5{" F -2;?;)

(8-7)
where

2 (8_8)
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or
4 = _";: [— (u,-0)" = 2t (1w +us) ~t7]
22 [0/ - 0 Mumt0) = €)= 4 (i) -25.8 -2
bb [l —un™ = 2t (w et )-27] (8-9)
= - AxT o 267 - A (8-10)
Now
o T # ;[.é +(a,+qp)J‘z b (- ) ‘—(a,,»u,)z}
= f[[t +u, +L¢_.JJ — Yy, u;}
:+§[i~~ (MEeu)]™ - ’7‘/“17:)2
Ny R | RN T B
The coefficient of # <0 since « >0 so the curve

H(x) is concave down. Therefore the region of x integration

is within the shaded region indicated in figure (8-3 ).

//// figure 8-3
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If we define:

a = u, - U,
b= W = U,
(8-12)
Cc = M,’ + M,_l
d= u, + U,

then

Hy = éf{;[zéz FESE ) UT + 2x[et s At rab rast 427

— [ate + ¢* 4 a,‘]f (8-13)

= -—-a(zz'l' -ZFZ"‘Q/

/
We have F always less than K+ e,
-

(8-14)

2
Ll b At +ab 4 25,642 LAt et #ETp 2T ES

2
(8-15)
or 2 2
25,¢ + ab < a _+6
2
(8-16)

~2—
25, ¢ < (2-#¢)

This is certainly true since 7£ <9 and 3%, 20 , and the
term on the right hand side of equation ( 8-1§ is positive.

The roots ¥, of H(x) are given by



The location of these with respect to the interval zero
to one is what sets the x limits. A compilation of the

possibilities is shown below.

Location of Roots Limits of x-integral
(,) K- > +| j/
4
£y £ O £ + 0 4
!
(<) 0 LZ_ 41 %z, > | dx
) 7.
L] ¢+
(cct) o <X | Y <L) j Az
X
g 1+
(cv) A j 4x
[+]

The limits on the x integration which are compatible with the
A+l

requirements « >0 and /5’ 4 —,  are those given in (c'l/).
This means that A’20 . We have then

o= {(u,"-u;f Pt -alu s u;)]g <0

(8-17)
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We define the variables

2z

u

u’ ~u

w' -u, = /’

(3-17)°

/
and thus replace the integrals over U, and U; by ones
over Z and f .
As before the assumption is that the difference term

F of +ol'
(z(ll_ al’) =‘D is small and it has no effect on /B < 2 ,

so we ignore its dependence in the terms of our integral
equation and integrate it over a finite range of the order
of the difference of the nucleon and pion masses squared.

Then equation ( ¥-/7) yields the condition

—¢- a(u’ +u,’) <O
or

2z

u

—4-4d3 20 where u,’ +u,
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C. Homogeneous Equation For Momentum Transfer Dependence

Our integral equation now is:

Pléu, u,) - (Z’Lf??’j‘&” Alsot) [ du,’

%, of (£)

X J‘{ul, c{;tf x ¢[é,“; Ng_l)i‘f'z
/ 7 4 2)*
0 [;{— l(’,“%.;-)(/—,%_) D(lt,)(lx; +/)’)
(8-18)
Consider the integral
X o (¢)
Yo
0 / £ (8-19)
J4 (- £)(-%)
<
Ze o = —
h
where < (8-20)

This equals

y )
—’—J 7 A
‘/;ZT o f(/" % / :’i) (8=21)

¥ I N 2

Let %,’ ?;; , a?l = —72;—;+_ /9 Ve

(8-22)

|
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So the integral becomes

A+ / Y,
¥ Y Ay
I T s
I jo JLC-p o o)

& A A (£)]

S
f

The details of this integration are given below. Consider

(g-223

/ "ie /Af (8-24)
) \/(/-,7,)( /- 1”‘7‘)
Now
Lo —b=t _
)T e e
0
f/ é—/[ >c—‘—/ )..
- /- -
, TP (mgE) Ay
) -
= /1(5/ F(C b) F(ﬂ,b'¢33‘) (3e)
I (c) (g-25)
This is Euler's formula for hypergeometric functions. Let
z = /7 In our case,
V= 46—/ b=A+ a = /2
Yy o a-b-) = c-2- 2 (8-26)

= L * 3/a e-b = /o
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Therefore

V4
¢ 4y = LLed T8 Py ge, 09, p7)
o - ?)(/' fzgj_ ['(4: %

(8-27)

Now we have

,.2 -2
Q(E) ,?é’” T/pf((jj;}'z) Z/lf/ /:(’/.z/+/j ZJIH),[*%/ Z)

!

(8-28)
and

/i -z
{72

(8-29)
This implies that

F (ot 47 shlo+1), 2+ %, 2= Fl40+D s tr1, L+7, z™)

or

/C(%,/v‘/,l*%,/oz) = F(4+1, Y, 14%[(91)

Thus we have
—-l-/ ) Jz
Fllen g, 4+ 2 ) =(1+2)" F [1p0ee1), 10 L 41,4 3/2,(,7;)2]

(8-30)

/
Let — (8-31)
4
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So,

[ (4r1, 7 3, p°)= _! F %(lr), Lo 4L+,
] v Latars, 5t l’(f]

f[/z (£0) L +1 £+ 72, 7 ] (8-32)

—
—

7 /0).4+/

= 277 e G (2

77 72 r(L+1) (“_/0,)4*-/ £

(8-33)

where Z = _/_iﬁ—
2f

Therefore
(Le) P v2) F(Zz,/e”/’hg/",fz)
[ 2+ %)

Lt/ £/
=2z | +Z
(/+a)j*/ Q{ [2 ['-?:—J
~ ’?[7'-/( )
- '—“;::’/f)",’e—,u/ 7 u/ Ql[ (——ﬁ)] (8-34)

We now calculate the argument of the Legendre function.



f x - + [z, x
= 2 [« _ 2 .
. o7 'ﬁ;(_%/ ) (8-35)
AR §
X I S (8-36)

4+
Lt/ h =1 4+) Lt1
X = x"' __%_: -— ) - ( il)
L [ (vf) ] - (7 <

(8-37)

and

(8-38)

3\‘.\
S
™R
NS
~ T
]
f{) -
T
ENEN
SN——

Since f? contains S, which we assume to be much larger

than any momentum transfers in the problem, we have

Q(( ) Q((_g__)p‘“(fzz)‘“

(8-39)
/
G /‘1

7 R R

{:327'(fl

S~

and
17"/ jf—’ __?_.l

- ()

L]

(8-40)
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That is,
_ ~-A4-1 ~L-/
,6 = - k¢35, J (5 - _S (8-41)
L+ /
(-22)

Given that /i(s,,t) behaves for large S. like /4>7.(§é> )
- /

the Ss integral becomes

j /07(%) 5T a4 j ton tog () )Lz,

(8-42)
= al
(ﬁ)”‘/] ) Jﬂ}{ é) 5)
- sy
e ) e rr
= L)
,Z‘(—i){ (8-43)
we then have:
(<) /o (.,/ ){H /
J4 a2 AN COR
Now (8-44)
{( L‘//" a},)" - [_t)[:t — J(L(I’J-U,f}_]} (8-45)

* (<) [ atar ] =(- [ %= (! - )]
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So

At/ At
o’ _ [ (-e)[-2- 4(u,’+t<;)] _ T TN A
(72) = / 4 /} = [ %'{“: *”.z)]

and (8-46)

vy, Y,
(/O{) : z /. f [% ~ (' +4.)]
R G O &5\ wr i R AP )

AN/
- / Et/z—' (u,’+u,_’)]

= (2)*" 7~

]

Lt Y
/ [-th = (¢ +u;)] { ‘ (8-47)
=

-2)

Our integral equation now is:

/,

¢(¢,2) = dé[f)[lﬁ/dzo ;_t/;~ :zoj)b/z
A* -z

Ple, ) (8-48)
(2eM) (204 K%)7

where all constants are absorbed in the factor C? and

we've redefined the integration variables as set forth in

equation (¥-7'), i.e.rin the above equation is f==u{~ u,
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D.. Solution to Homogeneous Equation

Our homogeneous absorptive part equa tion is:

e+
pozy- L2 (4 [ta { ‘Z__i*:.f Pre.2)

6 e 3

(8-48)
Since 2 is essentially equal to M* we symmetrize our

kernel in the following way: we replace ¢?2¢ by (2o.+2)
and set K*=M?% =  under the integral. The equation

now is

; [.t 'Z) = éﬁ) jlao "t/ j 1 /

As it stands, this equation is very difficult to solJ:j49)
Since the kernel is essentially the partial wave projection
of the potential for this problem, we consider the effect
on the output trajectory of taking two forms for the
kernel, i.e. its form for L+ 7£=’/ and L+ Ya=0
This seems reasonable in that we expect /{ to be somewhere
between -1 and 1, but probably not at either extreme. The

,(g-/ would be equivalent to what emerges in most weak
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coupling schemes with elementary exchanges. The Zz/ value

would saturate the Froissant bound.

E. Variational Calculation

If we have a homogeneous Fredholm equation of the

second kind
b (8-50)
Pl2)= )] K(z,2) Pren 4z

with a real positive definite symmetric kernel, there are
non-zero solutions for a sequence of eigenvalues An, with
solutions ¢ZQ) or eigenfunctions. They satisfy the

variational principle that

< Jpa dear 42
S 5(3) Kle2,Zo) J)(eo)yzo YE

(8-51)

The stationary values for this expression are the eigenvalues.

A symmetric kernel is such that

Kl 2,) = K(2,,2) . (8-52)
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Positive definiteness means

f—F{e)Ja _ﬁ<[&2a) ;[aa) dzo 0O for a function

f finite in the range of integration appropriate for the
equation using K.

Our kernel is

]

_t, _
K(z2.) = /o - e AR

(8-53)
ler 2J7 (2+2,)°

We symmetrize it by writing:

A~ - - 2,
Kle, 2) = L2 (8-54)
$ e (‘Zt" ZO)J

The positive definiteness follows from our choice of
f(x) (see below).

This essentially results in a redefinition of‘/“ and
does not change the basic character of the kernel as a
function of 2, (which is being integrated over in the
integral equation).

We then consider

A= min. j ¢[2) ¢l 4= min :1_":'._,

[f G Ktz 2)dem)da, Lo z,

i
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to determine A , hence L since [', as seen in
equation (#-98) is contained in A .

We pick a trial function

K2
b-e

and vary with respect to &« . The lower limits on the

= -t _—
integrals are both = 2= AL. When we calculate I, and L,

we find
! - Jo<§
—_ c
Lis (8-56)
, ~ A Z
L, e {—E ca-At(, L £, (-ad2){ 2-at+ 242 %2
43 2y A
(8-57)
I . , /
- 22 2
T -at +2°<-°ﬁié 2+ e £ (_,242')!-?(«-(% +4°<2~°(3152}
> 42 > ) ¢
(8-58)
= N
D

Thus we have



so we are left with

NED =0 §D=o
But
2D § o
§D= el for arbitrary variation &

So our condition is :;Q =0
DA
This yields the following transcendental equation which we
solve numerically.
o2

J —
/‘f— — AL+ dx2 - '2,( t e £ (--?45);:—?./3&2‘4 Lol 2
2 A

£ Fof 2 - 34722 -2 f =0
—- - -5
We call &2 = 7, and remembering 2 = - 2/s , our (8-59)

equation to solve is
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6}4[—%) [‘%3+ _‘;ZL %,_ r;;~,z_7=[3/-2'3?]

cte.tph= RHS

In Table I we plot the left hand side of this equation
versus the right hand side for various values of y. The
curves represented by the two sides of the equation

intersect at ‘J;‘: Jd.t or <% 0.6
£-t]
We substitute this value for X into our eigenvalue

equation (7-%%) and find

5 c -]

and
e const. Flt, g2
-¢)
e __kltg%)
)

This says for finite (negative t) /Z'has a finite value
which falls off as we go to larger and larger negative

t values. If g% is large enough, the factor hi(t, 92)

(see Chapter VII-D) falls off with a power of(4*). There-
fore, the height of the trajectory for a given value of ¢t

can be lowered by increasing 9 .

(8-60)

(8-61)
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IX. CONSTRUCTING AMPLITUDES

A. The Two Body Amplitude from a Dispersion Relation

Following the discussion in BFT(/aﬂ

, we obtain the
real part of our amplitude from the imaginary part

A(s,t) by using a fixed ¥ dispersion relation. If the
asymptotic form of A(s,t) is given by¢?(t)s4a% write for
A(s,t) a dispersion relation with m subtractions mbeing

the minimum integer greater than « (t).

m o0 4 /
D(S;‘t) = = 'ID 5 ACsie) 4ds + polynomial in §.
T Ayt 559
(9-1)
The maximum power of s in the polynomial is m-1 ., We find

asymptotic behavior of D(s,t) from that of A(s,t) with the
‘following approximations. 1) We argue that terms whose
asymptotic behavior is smaller than the asymptotic form
of A(s,t) cannot contribute to asymptotic form of D(s,t).
2) We extend integration range from 0 to e , with the
contribution of the integration between ¢ and (ﬁ4iwﬂb
negligible due to the fact that the integral contains no
infrared divergence (as s'» © ). 3) Since the asymptotic

o &) .
behavior of integrals is s , we neglect subtraction
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polynomials ( max. power m-! ). Therefore

1

D(stys S BB PJ“ 4s
" s

Vs ~of 1]
0o m (5~5
d(t) o-m o(T)
= - P 5 Pj Az % - - Prt) s ot fe)
/8 » /-2
(9-2)

So our fgll amplitude is

Mis.z) = D(s.t) + A(5.2)

)
= P s [/_ cot m(a)]

- Pk 5“’“'3 S T - CLos TA(E)
) Srn 7 ()

Q=
This obviously will not yield the correct signature éor3

)

the trajectory since we did not take proper account of the
cross channel effects or of the full spin treatment since
our output trajectory is only for the A amplitude in the
general form F= A *,4{+<B for pion nucleon scattering.
But the dispersion relation is done merely to indicate the

method.
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B. Constructing Production and Three Body Amplitudes

To construct a production amplitude from our cal-
culated absorptive part, we disperse the absorptive part
in s (as discussed above) to construct the full composite
particle scattering amplitude. We then perform a quadra-
ture and attach the unstable nucleon propagator and the
vertex function for the decay of the final state nucleon.

We have as shown in figure (9-1)

4 TCS) [AS Sﬂ(r,)m(r') (¢ 9-4),
"\’ft' 5.

Sk

figure (9-1)

where <4l T(s) &'> is the composite particle

(47
amplitude we have constructed and has the form f?[t)s )

~

The unstable nucleon propagator as given in Appendix
is

2

- T - M N WMP(&)
S5 D@) Gyl 1 (et LA

(9-4),
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And the vertex function for composite particle dissociation
as given in Appendix II is the vertex function calculated

from the Omnes equation, i.e. it is
(9-5)

te By (E-m)(Wtm)

N.(,Pi—) - /11"'(5.‘-) = [-877}\/(”"’((,633 F (E_m)( W*MM(S»)#-(]

This is then an explicit expression for the production
amplitude. If we wanted to consider the Toller angle
dependence we would have to rewrite (9-4 ), in terms of the

appropriate invariants .ils,,é,,ﬁL_ and take the limit

5,52—
S
have next done this but the point is that once we have the

fixed, 35.,52,5 large and %,, % fixed. We

composite particle amplitude, we may (with some labor)
construct the production (two body —» three body) amplitude.
Similarly to construct a complete three body amplitude

we would perform the quadrature indicated in figure

V(p?) S () <k T() e > 5, (05) /U‘(f:) (9-6)

figure (9-2)
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We now have a three body amplitude whose analytic properties
we know (because we know everything going into the quad-
rature) which we can use to study the existence of a triple
Regge limit after using Mueller's Optical Theorem discussed
in Chapter II. We can use in inclusive sum rules to study
the triple Regge vertex. Work in this direction is now

being done.
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X. CONCLUSIONS

We began with a Bethe-Salpeter equation describing
composite particle scattering in the # channel. By
analytically continuing this equation to the J§ channel
and taking the s-discontinuity, we obtain a multiperipheral
model for composite particle scattering. The essential
differences between our multiperipheral model with continued
cross channel unitarity and the regular multiperipheral
models are the extra momentum transfer dependence due to
the use of a weight function in continuing the unstable
particle propagators from the f’channel to the s channel,
and the effect of the mass renormalization implied in
keeping the principal value part (real part) of the rho box
in the kernel of our equation. This equation at high
energy becomes a homogeneous equation for the momentum
transfer dependence.

We find that if we approximate the £ dependence of the
kernel and symmetrize it, then we have an eigenvalue problem
which we can solve by a variational technique. We do this
and find that we get an output Regge trajectory which is
real and falls off with increasing negative 4  1f equal
mass (since T < O is region of validity of the calculation).
We interpret this as follows. We assume that for large
negative t-, we are far away from any resonance (or bound

state) region in the problem. For potential models,
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which this is, we expect only a finite number of resonances
to be formed, i.e. the potential can bind only a finite
number of partial waves and therefore the trajectory
describing the resonance behavior must eventually turn over
and go to zero. We may contrast this with the Veneziano
model which has linear trajectories, hence continual
resonance formation, which suggests a bootstrap mechanism,
i.e. every time one potential exhausts itself, there is
another to continue to bind particles into bound states or
resonances. Therefore, it is probably unrealistic to
expect linear trajectories from multiperipheral or any
potential models. The interesting feature about this is
that trajectories must turn over if the model is unitary.
This, perhaps, is why the Veneziano model (as originally
proposed) is not unitary.

With regard to our retaining the principal value
part of the rho box, two things must be said:
we want an absorptive part which is a positive definite
quantity, which it would not be if we kept the imaginary
part of the rho box. Further, since the imaginary part
comes from a threshhold factor atjyb’.&ﬁ“uQ pion mass
squared) , when we are far below threshhold factor to dis-
appear or have no effect except for a possible renormali-
zation of the mass of the originally unstable particle,

which we feel is provided for as the principal value part.
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Also the mass renormalization of the rho meson is obviously
related to its lifetime and as such is related to the coupling
of the ﬂM' intermediate state to other channels, in this
instance 7V . 1If we take the basic interaction given by the
Bethe-Salpeter equation for Z2O and continue it to Z<p
there still exists the possibility of scattering through the
'fN' channel virtually although we are far away from the
21 threshhold. In this sense our principal value part gives
partly the probability of the transition occurring when we
are off the energy shell for that occurring. What we find
is that if we retain the mass renormalization in the form
of the coupling constant of the lﬂ to two pions (see
Chapter YL ) we find that as ??‘9°°, our amplitude falls
off, which is saying that when we're far from threshhold we
don't expect the coupling to be strong and the model forces
us to this by having the amplitude fall off rapidly as ;Zz
gets large. Stated another way, continued cross channel
unitarity keeps us from violating the Froissart bound.

Our treatment of the model has several shortcomings.
We do not treat isospin correctly except in the calculation
of the vertex functions. We don't treat spin. fully except
in the calculation of the Born term which does not enter
our final equation. When we perform the dispersion
relation in s to form the full amplitude, we don't take
proper account of crossing. However, the virtue of this

work is that it does demonstrate the possibility of continu-
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ing a Bethe-Salpeter equation to obtain a multiperipheral
model. It shows the possible utility of variational
techniques in tackling problems of this kind, for all
values of the coupling constant including not approximat-
ing the kernel. Finally, and importantly it shows that
minimal unitarization in z keeps us from violating the
Froissart bound.

What is left to be done in this model is the
investigation of the Toller angle dependence in production
amplitudes, investigation of the triple Regge limit in the
three to three amplitudes and an investigation of the analy-
tic properties in order to use this amplitude in inclusive

sum rules.
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APPENDIX I: PROPAGATOR CALCULATIONS

Beginning with the expression in equation (6-23) for the
unstable particle propagator, S(f) , Aaron, Amado and Young
derive the following equation for the inverse propagator

R A
S = - 5 (Al-1)

D(r) (0'7“‘)[/ (0 B R 2 &J

it

@M ) wy (= ENT-K)

2 2 (A1-2
a = 6‘(ié Fom*) = 4wy )

a
for a composite, of mass /a , formed from equal mass spinless

particles of mass m, (rho meson ( f) formed from two pions
in this casel/, and

1 2 , 00
D) = % e (MY 4a fra)
i

2 2o (=) (M2

where (A1-3)
X = (f.b*w,,g)b
4 2
f[*’é): AW ﬁ. and . Xz, (A1-4)
E.k WJ!.(E,&"M) N = N/V,ﬂ—

for a composite nucleon formed from a pion and a nucleon.

These expressions yield the unstable particle propagators in
the bubble approximations.

A. Rho Meson Propagator

We have
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(Al-5)
() = (o= m) =m) (4% Verr
2(2m) 7 wp =N T4
where we have replaced the (ﬁTT vertex function with
the €Trﬂ' coupling constant. Let us concentrate on the
integral
2
Ak X,«)Trfr
u(r-5) (7= ) (21-6)
= (4% 44l 22 Yprr
& A &‘z
(7= 4e0*) w(mf - Hw®) (A1-7)
Now 2= ,éz t/zl , /“- = pion mass
2w dew = 24 //’é
A w
LIk = L2
4/ 1%/ , (A1-8)
ko= (o k)T
The integral becomes
o0 V-L
Y'l 4T j /w()u)"—’/“) o (A1-9)
TT 2 Wt (Ml w?
frr it S & (zg
where
ﬂl = % 7//(1'
L2 . mp - (A1-10)
7

The integrand is an even function of & and it has branch
points at = %y“ .

Therefore we can perform the integral
by integrating around the contour given in figure (#1-).
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figure (Al-1)

4 has a small positive imaginary part since it is above

threshhold. We then pick up residue

At W= a , we get

(a* u*) "~

contributions at w= £&,

. - (Al1-11)
(2a) (™= a*)
At W=-a. , we get
7
la®- ") (A1-12)
(24) (L“—a,")&
The net residue contribution then is
472 (% *) = AR/ ,,>/:.
2(a* w2 R _ A
2. 212 - Y/ 2 I} <
(24) (6= a”) g_"‘(ﬂ“—/’:’ﬁ) a‘/z[d‘~mf")
. . (A1-13)
The net result we get for the integral is
/2
27 Z‘ Tes. - b4/ % (Of’ 1/74-‘) _
d~2i(¢z.nﬁf)
(A1-14)

Finally we obtain

]>(¢? = U‘—'Yng t élTTa

(6’"—'7‘5’)'!5 (- m(,*)’z'

b/ (o rr":)L

(A1-15)
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4

I~ Va
D(r) = - m; _‘;‘:”& 7A ) (A1l-16)

B. Nucleon Propagator

We have
= M* 2 M"Y’jud/e (4
= I+ 7= ) ——a z
D(~) 2 M ( /1 27 o(ﬁz) M= x)
(A1-17)

Consider the integral

o0

j Lb Gy s wu) R* (a8
o Fpwal(Eyr M)[— (Berwn)] M= (EA*“’«*Y]

We look at where the denominator of the integrand-can vanish

over the integration region. Since _k>o , none of the terms
=

except [ 7= (Ey +12%) ] can vanish. Let us locate

the zeroes of this function, i.e. the values of‘g where

g — (E't-l- 0)/,)&= o

(A1-19)
They are
A :
_,,@:_- + (”7/"': M = + _},
2( (a1-20)
where )(x,%,‘a) = X4 \}‘4» 2"-—.1)4}—2-1,3—— 2xz
(A1-21)

So we have for the nucleon propagator
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0 Ey Wy (Egt M)[/V]"- (5j,_+wj,)"’]z(,/z°", *)

j« Ah 2% (Egroon) (A1-22)

We let

X=p%= ) (757 M*)

(A1-23)
47—
The integral becomes
/3
/ Ax %
2 E W, (E,+M)
) [/"I“(Ex*“)xﬁ (a-%)
(A1-24)
We can evaluate this using the contour given below (figure (A2) ).

fa.
<

figure (Al-2)
and we have
So we evaluate

i :

£, (e,m)[»q (B ri0y) a2

3

(A1-25)
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We pick up a residue contribution at x=a since 4 has a small

positive imaginary part so it is above the cut. The result is

aT; o (A1-26)
EQ \l‘/ﬂ. (Ea. t M) [Ml—' (Eu"wﬁ);):-

_ M5 M) ] 7 27T (A1-27)
4o &y, Wa, (Ex, +11) [M=q]*

with J&Dgiven in equation (. Therefore, we obtain for the

inverse nucleon propagator

2 3/.2.
D(r) - L'-:_’l |+ (=M MY zm[)(a;,ufm‘) !
o s 0“2 (Ex,* M)
(Al-28)
D(rhz;—, I & Ar/‘M}
‘ s Ey s, (Ek»‘*/"l)

(A1-29)
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For the bare nucleon propagator (for nucleon formed in

direct channel) we would have

2Mc
K M

where K is the nucleon bound state four momentum and M

the bound state mass. Our prescription then is

put in 1¢  for every nucleon line and divide by the
relevant propagator factor. We retain this presciption for

the unstable particle propagator even after we have con-

tinued the propagator to the cross channel. This gives us

the factor aMe in equation (Al-29) for the nucleon
propagator which will remain when we make our cross channel
continuation. So when we calculate the box and attach it to

the absorptive part in our integral equation, we pick up a

Z . ’
product of factors ('ZM‘:)( ami) = ‘ZM.M
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APPENDIX II: FORM FACTOR CALCULATION

A. Unitarity Corrected Partial Wave Amplitudes

We wish to construct vertek functions (form factors)
for the decay of a composite-particle using unitarity correc-
ted partial wave amplitudes and the Omnes equation. This

calculation is based on work by Gheka and Visinescu(3q).

Elastic unitarity for partial wave amplitudes reads

Z
"k s ‘L_-_- -—J-S:— Sin S
T, (s = & | L] ry ‘

(A2-1)
where S} is the partial wave phase shift and is real in
the elastic region. This implies that i;(5) may be
written

. S
J3s © A s
- = s/n (A2-2
L= & € . )
or
/ . — --/k
Tm 2,09 I (A2-3)
, )
We define a function ,fﬁ(s) = 72—'—‘ + /A,(S) , wWhere /A,Cs)
is chosen to cancel the spurious |35 singularity and to

introduce no others. Therefore we write

J\:(S) = ‘/k’—d—;‘—— S;CS_)

(A2-4)
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where 'F(S) has no singularity at s=0 and is an analytic

function of s. We now express 'I;CLS) in an N/D form, i.e.

N (s)
t‘( (s) = D) (A2-5)

where /N(s) has no right hand cut, i.e. no unitarity cut.
We now write D(s)= / + W(s) N(s) and see if W(5) can be
chosen such that tl (s) is unitarity in the elastic re-

gion. We have

/ + W(s) NG

/

— b (AZ"G)

(9 N(s)
so, Lo - . -
° Im .é‘(s) Im W(S) - 7=
This implies that  \f(s) is of the form

ik =

W(s) = -‘-"—v_;_- A = s (32-7)

The function .4 (s) has the form
2 2 Jz + A

A8 = F = An )_’-—F—"’“_] (A2-8)

with of and (5 suitably chosen so that -#,(3) cancels

the spurious |5 singularity in L\j(s) . For equal mass scat-

tering, say pion-pion (7 - ) scattering, _4(s) is

Jm__-zﬁ P S E,t.%]

L]

/s T Vs 2 M .
(A2-9)
That _4(9) cancels the [s  singularity is seen as follows:
2 2 2
5=9‘(1@+/‘-) , /:pionmass
5-%u”
/L"___ g/
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<
If s=0, this implies that &z;-yu. ; SO we have

LR 2
A) = ) + 7;" ’&"'[]

Now  bu[i) = AuLe ’ZJ = "g , SO
A L 2k T _ ik ik
) = o) T T2 T Tty T T °

Therefore, there is no singularity in [J3 at s=0.

For unequal mass scattering:

s, M5 m*) ) 'I_‘s.. (MJ—M);JYS—ZM-M) ]

)’,'%:l = 275 23

2 (A2-11)
EA
where M , M are the masses of the particles in question.

and )(1.7,2) = ;’f ?'} a:’,. ;zxv; - 2 ?3 ~2xe . When s=0
_ 2
A I"\‘f+— m? —am*M = (M‘-—m‘)

This implies that:
2 5=0 *
[s-(Mem] S5 —(mem)

and

T
L‘(Mfm) - © e 2. _ 5I
L {d T, pr— } y /o An =

So

,L.,{G+f5 04%)")31"‘2 == i
(M +m) )

For unequal mass scattering then: (A2-12)
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2 A G+ Ls-(Mem)® 1=
A9 = 7 B_/m'f (M +m) }

(A2-13)
and -;ﬂi
A) = 5t As)
(a2-14)
This procedure then gives us a partial wave amplitude

which obeys elastic unitarity of the form

T
_‘_I A,
(s) = T (A2-15)
£ /K6 A, (s)

with _A(s) given in equation (A2-19) for equal mass and unequal

mass scattering respectively.

B. Omnes Eguation

The Omnes equation which is an integral equation for the

¢ )

form factor embodying elastic unitarity is

Do /
s f F(s') F(s') f(s)ds
[+ T 7 ) \
S, s’ (s’- s)

Fesy =

(A2-16)
wherein §(s) represents our unitarity corrected amplitude

(in the elastic region) and f(;) is a suitable weight func-
tion. This equation supposes that F(s) satisfies a once sub-

tracted dispersion relation given diagramming by

————

figure (A2-1)
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which says that it decreases fairly fast with increasing dis-
tance from the two-particle threshold. The solution to this

equation is

]’:‘(6) - %:’3’) (A2-17)

as can be easily seen by substituting this form into equation

(A2-/). The function {(s) is

5
gy - oz t? (r2-18)

] +-As) };J*'(s)

which is the unitarity corrected particle wave amplitude,
with ;}Jiksj depending on which composite~particle is
dealt with and what its isospin is. This yields a form fac-
tor for the decay of a composite state which takes account of

two-body intermediate states in a dispersion relation for the

form factor.

C. Veneziano Model For Pion--Nucleon (7N) Scattering

In order to solve the Omnes equation, we need an expres-
sion for the kernel F(s) of the integral equation. Since the
composite whose dissociation we wish to describe with a form
factor computed in this way is a nucleon composite made up of
a nucleon and pion, we choose to construct the kernel f(s)
from a Veneziano model for pion-nucleon (7 N) scattering. We
do this because, if we wanted information about all possible
resonances which could be formed with the pion and nucleon
gquantum numbers, the Veneziano model would provide it for us

(within the narrow width approximation) since it can be expres-
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sed as a sum over resonances in the relevant channel.

The Veneziano model we use is essentially the one derived
by K. Igi 92

This is given by

A - - oADM(%-4d5)  Pl-seen (% -AwW)
F ' (%~ dwy - =(5)) (% =d@) - W)

F-4@) TCA-ohE)  Pl-oie) P(F— =24 %)

+
P (%~ 0t) - %u(9) T (% - =fee) - Aal)
PO ) () [h-Aef9) I3 -Ah)
(2= pf8) ~ o(Arcu)) P2 )8 ~otpfw)
(A2-19)
B' _ {S ['(1-et)) ['(4 -2 f5)) L [l-4e) [ (& -~y lw) o = S Pl - M)
T (3= ofw)- oty (s)) (3 - =t )- =ty (u) F1-oy(5)— %, (W)

1 U= [(£-4F) | [(-a@) [(k-~a{w) _ TC-4P ) (&~ 4)
Fs 1 (% - ) _-(Ags)) P(B/J-,((t)—o(AS(u)) F(’-v(‘f:’ - ’(A(S“))

(A2-20)



/9.

+
n_ ’gf FO-40) FG-WE) | T8 T 5 W) (Bl )

I (%= «@- o (s) 7 (3h = «4) = (g (W) Iy = Sw (9)

+ )@5 PU-<)[(E-08) . Tl-<e)rG=od«) _ M 4f) 0 4Y)
| I ARCERAC) M(%A)~ag W) [(a= <)~ 5w)

(A2-21)
5+ _ FO-A) (f=tyf®)  T(1=4e8) T == ()
PL (3 - At te>- Anfs)) 1"(3/1~a((f)—o<,é( w )
Pl-a) (o= “a85)  [O-A) [(A—Aadw)
P (35 -(t) - <a ) (%~ < - o«A;(u))
[(h- ST (5-44%) T (a-<af) T (A= =mdw)
P(i= Ayl - = () F(1-alS) = ()
(A2-22)
(%) (£) _ , ,
where A and R are the usual invariant ampli-

tudes for JJ N scattering. The trajectories are assumed linear.

The trajectories have the following properties:

. . = 4 .
N + positive parity ;Z - oa even signature
« ) J

NA © positive parity , T- 3/, , odd signature
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Let us consider some general features of 7T N scattering.
If we look at the general invariant amplitude which has the

form

+ - )
f;o((ﬁ,t,%) = Sﬂ« F("li,u.) + :’5- Z/C ) L“] F‘(Sl't: b()
(A2-23)

A . .
where LA ' 'U% are isospin operators and

/
F(ﬁ.t,%)f "‘ACS;'b‘M-) + ﬁ/_;J‘ B(S:f‘b()

(A2-24)
with % and g,representing the initial and final momenta of

¢ )

the pions in the problem. It can be shown that the one

. . . fr ~
particle terms are only associated with the;B( ) terms. The

+
F(“) amplitudes are associated with states of definite iso-
spin in the following way:
_ (+) -
ﬁk‘ﬁ, - F + a F
G -) (A2-25)
Fr.s = F F

If we were to express the amplitudes as matrix elements between

helicity states ) J/VH, A,_B and perform the usual
¢ )

partial wave expansion, we would have:

F‘

H

i

S (2040 §], 41,0

J (A2-26)

o7
|
]
—
N
[
+
<
s.h
+
S

(A2-27)
where
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and

F,_ L-Lo | F| L£d>

where ﬁ' and O label the helicities of the particles in

the initial and final states. We have similar expressions

J J
for the partial wave amplitudes ¥;* and -¥+_ . If we

were to form states of definite parity, we would find(gg):

$J+ = ;:1- - $i_
_S:J- _ ;\J + -FJ

J _
The + are matrix elements of the partial wave amplitudes

(A2~28)

between states of definite parity, i.e.

-pJ+=+<-’,:0i$Jl',!I0>+

= ZLo|§7 ko> — <LLo | A) koD

J- (A2-29)

£ <ol §lE0>

J
= <ho| £l go> + <« ho)AT] ko>
with (A2-30)

£0>: = ‘F{_—"E-,ﬁy) T -—';,,o>]

being states of definite parity:

2
PlLoy, = + () | 'y 0D+ (A2-31)

~-L
since Pl 'é',0> = (‘l)(")J * (‘Ji; 6 which
¢ )

derives from

J" —le
Ploma x> = N, 169 ot | JM =) -3 >

(A2-32)
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where Q, , Mo are the intrinsic parities of the parti-
cles in question and ¢ , ¢, their spins.

The amplitudes Fi, and FL_ may be expressed in terms

of the usual spin non-flip and spin flip amplitudes E and

F:.. ( ).
F,, = (.V, + .S:;_) cos b,
Foo = (5 -5f) sm % (A2-33)
( & = scattering angle)
and( ).

E+m - (A2-34)
FoErn Tas (w-m)B
F, - E}YCJ [—,q +(W+M)B] (A2-35)

w is the square root of the center-of-mass energy and £ is
the energy of the nucleon in the center-of-mass and ™M is
its mass. What we finally obtain for the definite parity

partial wave amplitudes is

I ' (A2-36)
f-t f {2 f?ﬁi(a Foe Py (@) F, ]

(z?-: COS@_)

or

—

Jt ;!
fr = ?'TFE/ 35142 {(E+m)fAf+(w_m)BI] 73*-;‘2)

c(Em EA%  (wem) BIR_, )]

(A2-37)
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Returning to the Veneziano model, even parity trajectories

for J= .’z', %, %, "= occur in ‘pJ— since the parity
then is () (-1 Ik o (")J +Ji'= (-1 AL +/ . Even
parity trajectories for J= T, %, %‘I—-- . occur in ¥
since the parity is (+)(‘I)J-J£= 1) & 2 L . 0dd
parity trajectories for J= z.% -‘i—, e ocour in ¥ I+
since the parity is (+)(-1)J z, en” 382 _y . odd
parity trajectories for J= %, % % .. - occur in .FJ'
since the parity is (--)(-;)“"9-= (_,)'“'& = (-,),' 3"'”; - .

A general Venezion amplitude \/:L ('((x) ,’((‘f-)) may
be written;( )

ab M(a -o)) (b= ()
V', (400, atp) = Me- Ao — =t9) ] (2738)
n-a
= z ?;L_)Z)——! ¥ reb-e (e- n- 9((1,)) T

(-'I)n_‘L ( ))
= 5 — _ —_n=-ef(x)) L _—
T 5o (-l Crra-e (¢ n-«l¢)

(A2-39)
where ¥, (x) is the Pochhammer polynomial: (0k)

M(x+n)
Yo () = TRy

= Yy (¥+1) --- la¥rn-1)

men) = 0" (-0 )

(A2-40)
This means that the Veneziano amplitude may be expressed as a

sum over poles in either of the channels of interest. The

residue of \/ (o((x) af(‘t’) at «L()=n is
__(_'_'),T& Vipp-c (e~ e((tj-)) (A2-41)

(n-a)!
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ab
Similarly the residue of V p () ,‘(('*)) at «(g)=n
is
™t ( «(%))
= Mara-c €707 (A2-42)
(n-b)f

The Pochhammer polynomial may also be written(mé)

n n—,k‘
i) = Z (o %

(A2-43)
where
fro = |
= (4]
fan On_l , h?> (A2-44)
for = . “r 427 " la +*%0,n
4.',4. c',"- gy=1

fnk = {3,,_,,1{ + (n-1) (Dn—l,le-l

Finally we need

A+l , -
| . 2 4! (74 r£0)!
42 K= =21 = (24-500(5+41)!

?>/l’ a,—f even

O

(A2-45)
because the residue of a particular partial wave amplitude at

a pole is the partial wave projection of the relevant Poch-

at «(x) =0/
x

+
hammer polynomial. The residue of +_ (s )
is called 'FI (”.J)

, i.e.
e -f-\t(n J)
£ 9y ~ z 0 (1) — N
T n-od(x)

(A2-46)
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Now the Veneziano model for /N scattering given in equa-
tion (A?-23 has the feature of having the correct signatures
for the Regge trajectories indicated. We will illustrate
this in detail below for the nucleon trajectory,cga(s) and
the trajectory °Q§5) . Also by eliminating the isospin
doublet of the nucleon, the A ( /:3¢) and the J P= __f_;:’-
particle on the N* trajectory we can obtain certain rela-
tions between the coefficients of the various terms. To com-
pletely determine the coefficients we would need to work out
further relations and also fit the model to data. However,
we're only interested in thegeneral features of the model and
what form it gives for the vertex function for the composite

()

nucleon. For further details the reader is referred to K. Igi.

C.l. Positive Signature for the 4¢§9Trajectory.

If qﬁés) is positive signature trajectory, then for

the particles on the trajectory J-% = even. Any contribu-
tion from particles with .J—ﬁL = odd must vanish, i.e. the
residue at the pole at 06%55) = J such that J-4 is
odd must vanish. Let's check vanishing for 96%55) = 3, , i.e.

J- %& = odd, calculate residues at poles, look at par-
tial wave of relevance. Since ‘{Nfs) has even parity we
look at -F’L for o(,\/‘fs)'-’ 32 and for T = Y2 .

- !
£ k%) = h ) 42 Ref ¢ R Resh)

—



e

% . B IA+ (U-M)B]

T W
E + (V\/+N\BBJ
+ -
-’CI;_:'. -F + 2'{'\
Rcs A- : (—l) ( ¥y -3, —A@) + ('”) (2- 7 - °(A( u){]
= 3 ol 3/*‘3/ -2 s
et B[ s

- [ 8]
=g, [- Vbt € by

W

J [-¥-§ + o bla rage)-b(c,-ag%)]

- B h-Y-5-blevey —age r29%2 ]

1}

]8, [Cons't_.] - constant

t 3 -3 2-3, -, (u))
Res A" (57, [0/ %Hﬁa Yo -=t)) 4 f") Oy v, (‘2 72 = %W, J
N ) - %2

= @‘f {wns‘}-} = Conslant
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T 'l)‘ (% -3/, - + (- ' (1 -3)y-o¢ 1)
Rcs, B F;[( Y. R - 8)a=(t)) (_‘_’,5_ Y;/l*"/z.“ll )/ Y )]

ol (5) -3 AR
S) = 32. .
N‘(
= ‘BL[CDr\s‘t’.] = constant
‘R T, ! !
s, B : lﬁ(’ ('_l)_ '8 (3/.1—3/_2-0(“7)) + ('l) r ‘(1-3/("4(“))
TR T
dh&(s)’ %2 , '
= lgc f&ons-h_] = constant
The residues of H+ ¥ ,’ZA— and B* + oZB— at
04,\/*(6) = 3/o both equal constants.

¥—(3/3,3/1) A LA%(?. const. + ?1cons+.) = 0

This implies that o//y(s) has even signature.
2]
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C.2. Negative Signature for the A¢ Trajectory

If JAfﬁ) is negative signature trajectory, then for
particles on the trajectory J"%_ = odd. Contribution

from particles with J-% =even must vanish. Check vanishing

= 3 -
for O(As(s) < , 1l.e. J -+ = 0 = even.
Since o(A (s) has even parity,we look at J:' J4 for T=3/
S

and we also look at p*. 4~ and B_- B

/

£ h, h) = h § 42 (P Rsh + BReskh)

-/

We need only look at B terms

+
: )" 3 =LY . (-1)° (1- ot (W
Res BI/ Pa[ oo 787 ) = Gy G )
,(A(,s)a .

S

g, L-1]

Fes Bi—l /3 (-l) F (%a- fa-d®) (-I). ("'/" °9'(u))

-3 - -/
(33 X’ “’J
S: +( Zl’ VJ—) = 0 which implies that '(A (S)

it

has odd signature.
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C.3. Elimination of Isospin Doublet of Nucleon

Consider vanishing of ‘FI ( /“ /") for no iso-
spin doublet of nucleon. We only consider B terms, in par-

ticular B+- B— and evaluate the residue at a(N.{(SJ= a .

L m) - L 42 (7 Rt ¢ B Reb)

= Fnw A f.,,l& {ﬁ(5+m)(W‘m)(5+‘ 8 )+ R(E""Y"/*‘“)(Btg)}

+ o
: 1) 3/y - Vo ~od(4)) é') (1= Yo - ())
‘%f/ fe [7;’ PR - N

s) =7 ‘ ’
oL

= Al ] -2 p

o ) (Fh-tfa-ette) () (1=t u))
S A A A e
0(/\/4(5) = /a

FL[.,H] = .zFa.
B+-—-B- =A3(F{'—_FL)

Contribution from the F( term is equal to zero. Contribu-

tion from the I?, term yields fgb = /8;
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C.4. Elimination of Isospin Doublet of A (1236)

Elimination of isospin doublet of A (1236), i.e.

3, 3 must equal zero.
£ 7/a)

§E %f—ﬂ”_‘—w Hﬁ++ 28 ) t(W-m)( B+ -28->J

i

=3/2
)EI

]

[}

Em o (p*e2f) +(WemXBTr2B)]

Res A™: /35[(_’)_ o (B-ww) (), (*"-%—og(mﬂ

| Tt “htp-a TS
°(A5(5) ) 2 - * 0‘/ ” )
= /55[_ A(E) 4 o(As(tc) - £ _7

- Lrrse been- aphe]
£

= F5 Dﬂ, - 4321:2]

/?65 Iq : ﬁ, _(;Q r (3/1 - 3/::. '0((1‘:))_ (-1 ° r (2’%‘c(”(u)>
o, (s)= T ol Fat1-3, ol  Fat3fima "
2> ' '

- F’ Eo/cﬂ v O(No((u)- y,_]

- 4 | «-y- ,{; ble-c) - 4g%h2 |

= ﬁ/[ﬁz‘ - ‘7L3Lb3J
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/fes ﬂn—a?ﬁ : }{Iﬂf # _QK&%J' — 42163 Fﬁs 1—2/67,]

4A(5>=%

§
Kes 8" " ﬁg Q ro (%A -3h-) (‘/)r; +(// i/l- o(tu))
<, () = %h T A 1%

§ !

= fgL [KB + I;Z-Zbg]

/?cs 5 %.'3/2”9((t ‘
) _ &) 34 =4 (W
/g 3/.1 ti- 3/2 l/ r.!/l + /i_/—-//l' AJ )

B LR, w52 ]

R 822871 g, Ky v as, ty o tyhe L, o s
0{A;s)g3/2 /3(. 3 /5 4 Z Fa /ij

_ {
Fouth) g hfja JRRaf e RRE S
o(Azes_):S/l ,zgs)ﬂ/,_

In Pl term, the constants integrate to zero.

! ! s’
/ Z = / * = —[- 'Z"]
ka2 2 B hferse- £5 )

In the PL term, the constants integrate to zero and the term

proportional to z integrates to zero.
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S0 we have:
T R fda {R [Eem)(w-m)(B"+ 287) + (E*m)(ﬁ++a/-)—)]} -0
5 ié'é [’(I% £ 34) (W-m) (B + aﬁa)] =0
which implies that either

(ﬂa‘ * "?/5/) = (W-m) [[Ba*-’/gs)
or simply /35: -2 /3/ , /8(. = —,?/J’j
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C.5. Elimination of Isospin Doublet of Particle With

P t
J" = ‘5/:2 on the Nd Trajectory

JPS/-}-
Elimination of isospin doublet of particle with =2

J+
on N,L trajectory, we look at ?es -F at .,((55=~‘-7€, i.e.

i

+ ! 7S -3/,
R b ) <o = h]te (RET™. B gl
2 =1

This involves Kes (AT- A7) as well as Kes (B'-B")
Res A~ f GO (% —itn)
« (=% I Rt~
> ,
% (2-%% - (0
,L%//d "5, + ¥2-2 W)

76., frz (-1-4@) + 1 (& - “x/f“’)]

Feot A=+ =B L Gi-a@) + (% "O(AS(“'))_]
IV =2
o

When we write o{(%) , °§V‘“’ , o(A[u) in terms of z plus constant
o §
terms, the constant terms integrate out. We are left with an

integral resulting from the Fa term which implies that

Const (]3.,-’8,)=0 or ﬁ‘f = /g'
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So we have finally the relations

1. b - {8_,
2. (lg54:(g,) =(W’m)[ﬁa +;‘g,)
B fe o= (5,

D. Form Factor Calculation For N — N'T

We will treat the problem where both M and N' have spin /.
Then the nucleon N is i}:gelf cfn the /\/°< trajectory. So
we have to calculate 1; = I=:Q . For IT=4 , the
terms of interest are A*+ 2A ana B+ 2B~ and

F'_I=/a.g ?;—r;/ (5+m)EA+ +-2H‘> N (W—m\(B+ +JB—3]

FE™e gy (B[ (a7 v am) ¢ (Wem) (B 28]

. (£) .
If o(h,(s) = //1 r we only consider the B terms which
ol

contain the nucleon pole

r%*gﬂjdz(ﬁﬁ+z’iﬂ) (A2-47)

-

+
Consider B

near O(N’Ss) = V.z_ , then
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-
B(st,u) = '?/g!' . n=Y2
%thx%a n-d(s)

from evaluating the Pochhammer polynomial numerators (which
+
in this case equal one) for the terms in B (s,t,u) contri-
buting to the nucleon pole. Similarly we obtain
2‘2' n-= :/2—‘

B (5,'(7,14) = I’l“o((s) /
O(N(S) ~ y.b
[

But /5‘ - {ga_, . Therefore, we obtain
CBa
+ - = ,,E/ N = o
( B +ra2 B > 7 - 0/(5) / >

+ - o1
The term B +285 and hence F, and /2 are constants with
respect to z. Therefore only the second term in the integral

in equation (A2-47 contributes. Thus we have

Yo+ (fe (E-m)(Wtm)
és.'; (s) = F, = Nn-A(s gTT W

The unitarized pion nucleon partial wave amplitude 1is

ht
(
SR AL

™ [/ ko £l (2 |

J;m!5° = a number = C

Therefore
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F(s) = Hrn (5) _ écﬁzCE—m)(w+m)
ym\/(so) [Xﬂw(n~9{(s)) *‘CE*m)(W*m)'Afs)F,(S?

This has a behavior given roughly in the figure (4%/) below

F(=)

M,= nucleon mass

— m—

The unitarization weight is

Y T SR - PG R o i
4@ e Zf(fwm)"
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APPENDIX ITII: CONSTRUCTION AND HIGH ENERGY BEHAVIOR OF

INHOMOGENEOUS TERM

The inhomogeneous term in our integral equation is given

by figure (A3-),

T
_/o““ﬁmat — s — 4
A N
)ISC ] \
s N N
2 —O:# l\/

figure (A3-1)
which can be written

Jat, ' (MBI 10,0 ‘L,,(cq;)? “t18 g
B <gl Byl ¥
. Sﬂ‘f J%g L) Bup®) > /(‘,N(ag) }(T) Bﬂf(.s*) }z>
— <y BN((SU Ig); Ef(d”g) <gl %N(S)H?/>

c S2paty <RI BAD P> T (1) <pl ’B,Vf(ﬂlp{'(lr(o;)-f}[dg')f

* <l Bop(S) &>

(A3-1)
We now concentrate on the term with the discontinuity of the

one —particle exchange graph fiq!s) . We do this because

we believe, since this term only contributes to three-body
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phase space, it will give the largest contribution since three-
body phase space is larger than two-body phase space.

In performing the intermediate state integrations, we
take account of the fact that we want the inhomogeneous term
in the high energy limit. Therefore, the states of interest
to us are found near the phase space boundary, i.e., they are
found within a shell in phase space of radius 5= Lgl ~ 1572 ’
where the width of the shell is 13 = JE le — LE at
high energy. If dE ~ "g' , the width of the shell
goes like f%- . Such a behavior could come out of a flat
rapidity distribution as in the multiperipheral model. Other-
wise, we can say that we want the phase space interval of re-
levance to shrink as we go to high energy.

Now to actually carry out the integrations indicated we
do the following: we expand the matrix elements (in the
center-of-mass) in equation (AQ3-1) in terms of spherical har-
monics to integrate out the angular dependence. We are then
left with integrals over~the magnitudes of the momenta of or-
bital angular momentum matrix elements. These can be rewritten
as matrix elements between states of total angular momentum

J , and we finally end up with an equation relating the
matrix element of the inhomogeneous term between states of
definite total angular momentum to an integral over magnitudes
of momenta of matrix elements of one particle exchange graphs
between states of definite total angular momentum.

Let us concretize this by considering the rho ({’) meson

box term, i.e.
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;o A ’
Lol Bog 146> - 2 G SEL <p 4 Bl 1y 20>

X £, D(o',;)

x <g ¢ B‘,N(S)l&llrl> (#3-2)

This is given in figure (#3-3.

[ —/O////////////O\—- — —— #’
/ \ Pig.(A3-2)
/ \
rzrmae Q7777

The labels Vv, r' , ¢ , ¢ label the spin projections of
the nucleons and the rho meson in the diagram. We may write

<p A4 Box, | K> = 15, <, 4, m 4 130)‘]0/ A >

/

f

mm

X Nom (£ Ve (7 (As-3)

< }\Bﬂf[s),z”{;lb') = i J*ﬁfmx‘fB (5)121"”;”25 D

,nm

X %m (1:> \/,g”m"(g)

2

(43-+)

<$,"L"') ’B(’N(s)!f: ,g”;:(g L ﬁ‘“)B(”V(S)H‘:'l'm'r>

nt

m" m'

y “ (Z) >,/l’ /(’ﬁ)

(A 3-5)
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Now
*
\ A \ M
j JE.QZA /,(”‘mm[z) ,‘”ﬁ)”(%> - §:, " g"m"l
(A 36
Performing the sums over 2" ' ”  we obtain )

I T \ ¥ Al
fé L4, m By | A0S Y () Yoy ()

m/»
1 4y ()] q,4%m" 2D
- G S jED@ “phmd B2l el he
Pl PR

¥
o gl | B KL med V) Y (B
(43-)

Call [”:/, ’ m o m, , then we get
<t o] Bory | AL D

ZZZ_ Lptma] BED o g m 4,0

x <g¢,4., m,,ﬁ,l;) BfNCS)I"ft', L mor' >
(A3-2)

If we now use Clebsch-Gordon and Racah coefficients to pro-

ject states of total angular momentum, J , we obtain:
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oo, M1 Boxg 1420 7 M
= ooy 4 o () WK
@ Sy 2:{ JEBD@ P4 1Bl gt 4 00

/ ] L] "
x <5, 4,40 M| B(sy| .40, M
P (A3-7)
If we consider the entire absorptive term (write three-body

cut) we obtain -
LA LI, M VAT L Y M

= [_-Z'TT)gJ’ZJL S e 24,40 M|B, 64,1

!1,!‘— D(r
M, Mﬁ— 1. l‘% P)

X Z"fl ll,J., Ml ’ BN{’CS)) % l[”l'/&; 'J"l MJ’>

(h3-10)
X 43,,(,,,4.J,_,M1[Br,,a)M;x',J', M >
The states of total angular momentum J are formed as fol-
lows: for a pion-nucleon state, we have only the orbital angu-
lar momentum and the spin of the nucleon. The state is la-
belled by |LmrD with { , m being the orbital
angular momentum of the system and its magnetic projection,

Y being the projection of the nucleon spin. Therefore, we

have

IJM_,> ’Zr JdmeD Llor | I M



(A3-11)
For a rho meson-nucleon state, we first combine the spins of
the nucleon and rho meson and then couple this resultant an-
gular momentum to the orbital angular momentum to form total
angular momentum, J . Thus, we have
1% 1} Lo -{ J
IJMJ> = é_i:_ Ij,_m_,,'tl:b>cl; + m, Cm:t i M
Z, -
(A3-17)
We then express the matrix element in equation (A379) in
terms of helicity states, do a helicity expansion to recapture
the inhomogeneous term for high energy and continue it to
the Breit frame ( defined below ).

Our original expression for the inhomogeneous term was
Skl A0 1RS> = SR 2k B0 g0 S(%)

X Z/f' S , Boxr(6)):%"' rf>

(h3-/3)
remembering that T(4) = § (4~ m") 5 (%)

£ 3 + _ . ks F
=L_5P ;igg; 7, {ﬁ@,ﬁ,s) s ke fr(ze,f,s))?abr
©5, ) Hery (£ 288 METBILALALAY

< Xy ﬂﬁ;m‘ e >B~(1'f‘s)wt M3

EA’ +

(p3-1#)
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where
E(dps) = =21 (Eacptarr) [A@AGE + B BG4
z €k+1°[(5e+1a Wy +u)f>-—5]
(p3-15)
r (A(a) B(2) + B@ A.(e))%of]
e ps) - 2Mi (Eaprirny) [A@)B,) - B) A.&2)]
E**“F)_ZEMP* W+ )= S|
(Az-1¢)
%N’p(f,j,S) = é/‘a‘ B/NN'ﬂ’ yfyryr 5[(’121:—3)&-/‘9’:]
= Drse, Bup (f'ils) (A3-17)

( Lgsh' + E; + w—h’)

Lo (0 E »w0,)2
3“"'22 vk 41;) g
B 3 (/rs—/é’)

B(’N (j,ﬁ,ﬁ) = /&I’“ﬁu B B//omr

.k*f
S (A3-/9)
B(2) Earp o1
[ P
= !
A (3) E«k{-f +M
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 The non-spin flip nucleon exchange term becomes:

E[",@-lf;s)
= _14 A +'D2)(E£¢-p+w-b““’z) _ (Ka*L.)(E#u“Dﬁ_“);)_ }
M (A«* g ¥ ) ~ -ﬂf)[:(.k' *”’*"’1'? ]
(A3-20)
where
A=
= K (A3-27)
(E*_"‘M)(E rM)
I M
- -
ﬁ th gE,‘-erl Ef*’” [%+H§(Effng
L = E,,_+M v b.iﬂf-l"i + M j
The spin flip nucleon exchange term becomes:
F(+, p,s)

-2a
jE,,”? +-C!.,2 ] (E,,b.l.? Fllg + (.01;) 643 g )
aMm( E;.,*NXE,PVM) E'*‘*‘d’ [ZE_M,T Hr ) S|

where a=M- E-k, _ E’{’

For the pion exchange term which is cut, we have

g”{ (p.g.5) = é’u'& Yun'r b/rmr 5[(')’— f-z)"—/«.‘]

. (wpt 1y )= Pogo s
= €77 XNNW’WDW sz [ # 27—; j
(P3-23)
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where A3 Pz
and( )
é’“/?u = E°(g. N8 - ¥ (4. P
= €%, VB - (-) e g)) P,
- Aa) A A
L2 - (0, — G
_ gifw g 4 )
=7 (7,7‘? - %@Q (-1) ‘ﬂ)--(/-HBwsﬂ)Z - Py )
= (A Beoss) g2 - p? (-2 )
B- —82 , A= Ye
7, (m +w5) ) " p
For fl" (; , & , 5) we have
%”“6/, = (A’ + B’asﬁ) Z/\ - 7%; (/)3—&5’)
-5t Lol e
B m/,(mf+k75) ) A mp @3‘5%)
For each of the pion exchange terms B;f and Bf/v we have
four parts. For /;;”f we have:
N, N 2’ AS Bayg r(t 1.5) #
(A3-27)
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v, NV 7R, z (4.4 5P

é_fM
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Nty T, 7 T L2 (1g) (ArBess)

- WM N
% ' RS
_/\/Z Nf l/f + f’;f;f Z, wa (I,l,g) (A fBas&)@
here é)\’ ( . ,s) _ S (zuﬂw%-‘/z)*_ (‘P"*ZL"/“L) _ 2]
h Nlof 'Z [ 28 [,93_ ’27}

Similarly for Bf” we have:

(A-I+ B’Co;&’) 2«\ Zf” (’&',J};S)Zﬂ / By oA >,Z N3 N.k’
(A" + B csb’) 7) Z/W (,z%,s))(' (E = >z Ny N/ (B 3-30)

) Zpu (g #0301, ¢ (-g;a—) 1Ny N

. L[ A /
2(/5/ (Z,—&,S)yrl /E:L:f‘M)Zt NZNJ?

Wy
wgmﬁ.’ i 53 R

u‘, [[ Y f—E ch),y - SJ (/)3- 3/)

where

‘27/«(5:4‘,:5) -

If we call each of these terms (( ﬁ‘:’&}ws) we can
project out the orbital angular momentum . with component

/"l by performing the integral
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San; by ), 3 V) k) €k, s, 5)

to obtain
{4 LMnl € LM

We then construct states of definite total angular momentum .J
by multiplying the above by the appropriate Clebsch-Gordon

coefficients and summing over magnetic projections as in

equation (A%/). In carrying out this procedure,we write terms
like ;qu with no spin dependence as
¥
\ 4 (/93—.34)
Z (R, kys) = Tiw 2, Vo (£) Y ()

/

For the nucleon exchange term, we find
ALINECkg ) g LU >
= &y S EL(k ) (9 3-33)
Lb L uM, | ¢ Chxp Fhops) p, L0 MDD

= "é*@f SJJ' SMJMJ' SLLI W(L’L%-{i}‘l\j)

;- LR
D O L VRS A PR

where wWieabed;ef) is a Racah coefficient.

For the product of the pion exchange terms we find
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Partial Wave Projection of the Inhomogeneous Term

In performing the partial wave projection of the spin

independent part of the exchange terms, we use the method of

partial fractions, i.e. we consider a term of the form:

L @
Grp tlut “p A3-35)

£x+79£2;“p*a&é+a%>fifsj

#Lh= gg”%no” , E;**15= kkhff?ﬁ4y

We can re-express the denominator in terms of partial fractions:

/ Il * /? + ¥

é;wzv[kéify’fbﬂhf'hﬁ)"fi] é;*#, 4;*f¥1%%+aﬁf—fg'Ziﬁkﬂwi+u%.+Jg

= dqg /6'25 + 8

where
/

(“e #4)" -5

Y—
25 (wy + w,-J35)

B /
5 4I?T(agb+aﬁ,+J§)

If we take the partial wave projection of the term in (43-ss)’

l E v L, + W ,
/ P S R =+ By +5C
AJ de (2 & [lés cont =S ] Gt p P L
r ¥ (A3-36)

=/
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we obtain:

w L o )
1’ 4[‘%*“’?)”“ ,,/0 (1) @(”Tg) iy F3-37)

where we've written

E,;eff— (4% fz* 4/&12 - Mz)%n (ﬁféz)ﬁ
A= k[T RT
2= ke p* MT 5 b= kp- Iklly)

and

_ s J £70) ¥ "0,
B, - -ple ]G -5 &S L0 2
b 2 fre ¢ £ (A3-38)
= Bwp wf)(w&*wf_d;)(_lb‘> (), 0
where

(e =Y (e e M) ,
A = ot “p ip | (/-)3 39)

, v £ ,
C=51E 7 ]0,0 o5 & 5 "W "G

o

= § (s wpl g +10p+ B[ ) QL)
(h3-#9)
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where

2'= (g« wpr BT (A2 + 7+ M) (A3- A1)
_?,}ép

1)

If we take S large and integrate near the phase space boun-

dary then both £ and 7{9 become large. In fact, for ﬂ'andf

large, Wet Wp v s and (”)‘P i J’s') =0 , except
for a small correction factor (given below). Therefore,
o < 3
é- + ﬁ v A t ﬁ = ol +
+ —
P é;,,«f (“)A*"‘)—p' /3) "Li-kpr gxlu»{a Ektp
(Wo + ) =S (@i +p=J5)(wy + Wpt(S)
Since @y, and cJP represent center-of-mass energies for the

particles with momenta «£ and - (refer to figure A3-7 ).

6()*"-: '5+m/-2" /77,2-
20s
2 -5
h)f: S+ my, —m_?ﬁ
20s
- 777" 2 2 2
w/k+w‘f— 1}-3”'}' ) 777_ /;7’_/;2;2*,?)"2-—”75
/5 2. i
w, =5 = Th*
/(J.k* f s =
Vs
2
&Jé+wf+ J5 = a3 + Y~ 2/
Vs

Therefore, (g,j“ﬂ -f"h]_f-'/;—)({(}’e 7‘-'6()? +/?) ~ 2 %Z.z
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A becomes

/

oA~ T
27
/6 = - ] / ~ _'___ -——l——- = — _I__
25 (gt wp-v8) A5 277
Vs
We see that, in the limit of large s, ,/+/g =0 . This implies
we only need to keep the S term in equation (43-40). In

the denominator of S we have:

So

R
25 275 4s

Effectively, we're left with considering

L é}_éf,p T Wp Wy
4s gé_r? *u).é +wf+[§

Consider § (. :

§C - /-s L Qpx)- §¥'Qex)

g AL (n)
F S A 5 f o /g"(x')q@(x')
b n=o n!

+ 3 (Wpr o) ( log + WP"‘E)i‘ Q,lz')
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Now
Y A
Aé:(/é-f,?*k/ﬁ) ~ (%+%) = %
b= a2 bkp ~ 3
r 2
This implies that
EQZL = L > ~ J=
b CE
2
also (w* +a)1o)~/3 , so that (@; éd,f,* lf's‘) ~2J5
a o - 5
S I U U ey
b b b S/
f A P
b A
/
The argument of the Q( , using the definition (A3.4) for %
becomes 74' Y Ys- 7 —~ s — S ~ 7 = X,
5/,1 S
We obtain
Z 7fcn)[o) " R
—d2,G,0) + 5ix S /J’, (%) Qp(%o) + 3 4G,
n=0 n‘l
Finally we get:
£ J°

n) n .,
A Q) ¢ 5E 2 T A (0G0

n=o0
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4
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we obtain

Vi () n
-1 (Ao X £ (o) n ;
S O_( 2o) + 75 né_:o n! F, Zs Q{(ﬂ)

. J
= _’g_ Q,(Yo) C B/N

S

i
W
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Let us look at nucleon exchange term for non-flip.

(/4 + D z)EE*_rf’l'w_k* wfj

(HEE+I;)[£;+1:;a£hf uxp)

CurpL(Earg +iim g 5]

6€£,? +¢Qb*‘ﬂéri'5

= (4 +b2-)(15“‘(%&",#40,,h +10g) o7 N B

‘éif?,+‘eb +u€F+d;—

‘é;+fﬂ“k%b*‘4%f'fg

o+ +

_ (k= +1) (Covptiont #p) | % ' ¥
| trp Gyt éﬁv{ Gy

In the first expression the dﬂ term dominates, it looks like
)

£ . In this second expression, the A and
St p

ﬁ terms cancel for large S and integration near the

phase space boundary, so we obtain:
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and o‘ = ':%EE
we finally get
4 1Ccn) n
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2441
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The nucleon exchange term for non-spin flip

iiwu becomes 4 A& Aé Ct
Vs

Consider the partial wave projection of the pion exchange term

which is cut:

B,V/o . 7 Al

e

sz

(to4 + wg,ré)’“f (1»7 g‘*/u‘) L =Ta— e

74-:
.Jﬂpg %a
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Z goes to -/—g{_‘—; ~ =/ —-;"’ﬁ s E —5 =/ +,,'f,=2,
5 S

B,y —> ___,P(V)

. 73
The partial wave projection of (A+ Bz) B’Vlg is
(A+ BX) Tt () . Therefore
P
for high s
(A*8F) < p (7)) pecones (A-8) 7 R(3)
2 Py, *FP3
Since
A= ZLe B- Bt _, -
Now A -B ~ ,?’_nf . Therefore
f
2 T p(i) — e R(Z) = Ii& for (A+Be) Byp
e 2419 n?’?

We must multiply this by /%f h% to obtain the full term.
For the uncut pion exchange term, the partial wave projection

by similar analysis can be shown to be

/b)/oﬂ[/"f*g'z') — Al . B

A,-T Dp' B’ = __/k’{a — ":k:_{




/6/.

Looking at the inhomogeneous term (figure )
T _ Ty +’
mxm@ \
—% - 7 o777z

We consider

. J J ,
J%g? [““‘ Bup (7, 3, 5)] 5 (3) BfN (g.4,5)

Since (A + B 2) and (/4' +r B'2) will introduce
extra factors of momentum, then the terms involving both
(A+ B=2) and (A'+ B'2) should be least convergent.

There exist four such terms:
1(4 + B cos®) 2,‘// (A'+ 8 cos8) Z pn
~ (A + Beasd 2y (A" +8 58 2,n
—(A+ Bess) Zpp (A *3’4’05(9)ng

“ﬁ" + 5605!9) Zﬂ/ (A'*B’wsﬂ)zﬂv

which have different L projections -
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So for the integral above, with  3(6x)— é" , we obtain
e 2 pl
§§4g Mpwy IiG g 'F Ny N
4 s
= __f_{y_‘/i‘ f&{z 7e g z‘ ___Z_ F}bl
25* 24"
=
= -Mp My A Fyic 9° 4
4 Mis2 s
= (-2
— a s ——'/‘/:;o/‘/‘,g/ R Fire &
7 4 M's>
we obtain
y J
-‘/’,'/p/‘/L‘/g/FW.O.é'd ‘ = Box
32 Mm's f

Now consider

=y J J
S LT B (%43 S(z) Box, (4, 4:5)

j,b/ab bl‘/aiﬂ/cﬁ /_—_/\/f/‘[‘_' L Frile >
2Vs 3a M s

= _MaMa AT 0T FG dpp Ny
M kT PG [ pdp ny




/63.

Integrating near the phase space boundary

ES

= N—k. N./,j /k/ 77"67' F@' j ‘f; lef
256 M'M 575 _"__5(,--35)
2 S

we get

= Na N, AT EFE
(2s5¢) 4 Y'M 5%

This term goes as & for & large (i.e. 4, &' large,
Ny Moo — T3 + #'—5 ). Therefore it dies out at
high energy.

A similar analysis shows that the spin flip term
dies out even faster at high energy.

Since we merely have to convert this to a helicity
partial wave amplitude (using Clebsch-Gordon Coefficients)
and form the partial wave series to recapture the full
contribution to the inhomogeneous term. We have discovered
that the high energy behavior of the contribution to the
inhomogeneous absorptive part coming from cutting the three
internal lines indicated in figure (A3-1) is such that it
dies out at very large s. When we repeat this procedure
for the terms where the unstable particle propagators are
cut, the contribution is even more convergent. What this
means is that if we go to the high energy limit in our
continued multiperipheral equation, the equation will reduce

to a homogeneous integral equation.
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