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Abstract 
Silicon, the material of choice of the first (demonstration) microengine, exhibits strong thermal softening 
behavior at temperatures above 900 K.  This thermal softening behavior limits the turbine inlet temperature, 
which in turn significantly degrades the overall engine efficiency.  Previous studies have shown that hybrid 
structures of silicon and silicon carbide have good potential for improved engine performance.  Detailed 
design of Si/SiC hybrid structures for high temperature micro-turbomachinery, however, has been 
hampered by the relatively poor performance of single crystal Si at elevated temperatures and high stresses 
and by the unavailability of accurate material properties data for both Si and SiC at the temperatures of 
interest.  From previous work, the critical structures and materials issues to be resolved, in order to proceed 
with the design of high temperature Si/SiC hybrid structures, were identified as follows: 

1. the safety margin of the Si/SiC hybrid structures based on the upper yield strength of Si 
2. reliable estimation of the service life of the Si/SiC hybrid structures 
3. structural instabilities caused by the combination of stress concentrations and strain softening. 

In the course of this thesis, these issues provided the key motivations of the work, and have been 
substantially resolved. 
 
As a first step, it is critical to obtain a better understanding of the mechanical behavior of this material at 
elevated temperatures in order to properly exploit its capabilities as a structural material.  Creep tests in 
simple compression with n-type single crystal silicon, with low initial dislocation density, were conducted 
over a temperature range of 900 K to 1200 K and a stress range of 10 MPa to 120 MPa.  The compression 
specimens were machined such that the multi-slip <100> or <111> orientations were coincident with the 
compression axis.  The creep tests reveal that the response can be delineated into two broad regimes: (a) in 
the first regime rapid dislocation multiplication is responsible for accelerating creep rates, and (b) in the 
second regime an increasing resistance to dislocation motion is responsible for the decelerating creep rates, 
as is typically observed for creep in metals. An isotropic elasto-viscoplastic constitutive model that 
accounts for these two mechanisms has been developed in support of the design of the high temperature 
turbine structure of the MIT microengine. 
 
From the experimental observations and model validation, basic guidelines for the design of Si/SiC hot 
structures have been provided.  First, the use of the upper yield strength of single crystal Si for design 
purpose is non-conservative.  Also from the perspective of the design of Si hot structures, the lower yield 
strength is insufficient, particularly for micro-turbomachinery operating at elevated temperatures and high 
stresses.  The recommended approach to the design of Si hot structures is to use the Si model for extracting 
appropriate operating conditions, and to reinforce the Si structures with SiC in strategic locations.  Second, 
at high temperatures, the effect of stress concentrations is not crucial.  Unlike the low temperature Si 
structures, the plasticity present adjacent to the sharp corners reduces the effect of stress concentrations.  
Third, the Si/SiC hybrid structures concept was verified.  The considerable increase in the load carrying 
capability of the Si/SiC hybrid specimens encourages the development of Si/SiC hybrid structures for 
elevated temperature micro-turbomachinery in order to extend the available design space.  Finally, the FE 
results for the creep life estimation of the Si/SiC hybrid turbine rotor identified the limit of the all-Si 
turbine rotor of the current microengine as well as the superior performance of the Si/SiC hybrid rotor in 
terms of creep life. 
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Chapter 1 
 

1 Introduction 
 

 

1.1 Overview 
 

Microelectromechanical systems (MEMS)-based engines are under development at the 

Gas Turbine Lab (GTL) and the Microsystems Technology Laboratory (MTL) at the 

Massachusetts Institute of Technology (MIT).  Preliminary design studies have shown 

that such devices for use in Micro Aerial Vehicles (MAV) or portable power applications 

could produce 50 W of electric power or 0.2 N of thrust [1].  Initial efforts have focused 

on developing all-silicon engines fueled by hydrogen to demonstrate the overall concept.  

This all-silicon demonstration microengine is made out of six silicon layers to yield a 

device 21 mm in diameter and 3.7 mm in thickness.  A cross-sectional diagram of the 

microengine is shown in Figure 1.1. 

 

The current design of the all-silicon engine fueled by hydrogen does not have a sufficient 

power density to achieve the desired power or thrust levels because the engine design is 

driven by the limitations of current fabrication technology.  Silicon, the material selected 

for the entire engine structure, exhibits strong thermal softening behavior at temperatures 

above 900K, as shown in Figure 1.2.  The strategy employed in the all-silicon engine is to 

design the rotor so that there is a high heat flux from the turbine rotor to the compressor 

to keep the wall temperature of the turbine rotor below 950K.  This strategy, while 

yielding a workable demonstration device, has a severe negative impact on the engine 

efficiency and power output. 

 

In order to increase the turbine inlet temperature to improve the overall engine efficiency, 

high temperature materials for turbine blades and blade cooling methods have been 

developed in parallel in macroscale gas turbine engines.  Figure 1.3 demonstrates how 

developments in high temperature materials and blade cooling methods have increased 
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the maximum temperature limit in conventional macroscale turbine blades over the past 

five decades and indicates anticipated future trends.  The same strategies employed in the 

macroscale need to be conducted in parallel for micro-turbomachinery to increase the 

maximum turbine inlet temperature from the current baseline design. 

 

 

 

 

 

 

 

 

(a) 

 

 
(b) 

 

Figure 1.1 (a) Cross-sectional diagram of the demonstration microengine turbojet. The 
device is axisymmetric about the centerline, (b) Micro-fabricated turbocharger die [J. 
Protz, Ph. D. Thesis, Dept. of Aero & Astro, MIT, 2000] 
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The strategy of developing elevated temperature structures strongly depends on 

developing appropriate fabrication technologies.  SiC in single crystal form is a very 

attractive material for MEMS applications because of its high stiffness, hardness, 

toughness, and strength at elevated temperatures.  However, the use of SiC in single 

crystal form is unlikely to be feasible because the low chemical reactivity and the 

extremely high melting temperature of SiC hamper the development of the necessary 

micro-fabrication processes, particularly etching and bonding. Instead, this material could 

be placed in strategic locations to reinforce locally the structure by means of chemical 

vapor deposition (CVD) of SiC into silicon molds.  This hybrid structure concept has 

been explored in various ways, as illustrated in Figure 1.4.  Previous studies have 

concluded that considering the micro-fabrication difficulties Si/SiC hybrid structures are 

more feasible than monolithic SiC structures, and that the design of high temperature 

structures and the development of micro-fabrication processes should be conducted 

simultaneously [2, 3]. 

 

This thesis focuses on the design of Si/SiC hybrid structures for elevated temperature 

micro-turbomachinery which exploit the superior properties of SiC at high temperatures, 

but which are also feasible to micro-fabricate, given the constraints imposed by the 

microfabrication processes.  Section 1.2 briefly reviews the status of the development of 

the high temperature Si/SiC hybrid structures in terms of the design requirements and 

constraints associated with the materials and hybrid structures.  In Section 1.3, the thesis 

objectives are given along with a list of key tasks to perform.  Finally, Section 1.4 

outlines the overall structure of this thesis. 
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Figure 1.2 Strength of silicon and silicon carbide vs. temperature (Trends based on 
literature data from Pearson 1957, Mura 1996, Castaing 1981, Patel 1963, Huff 1993, 
Pickering 1990, Hirai & Sasaki 1991, Chen 1999, Reprinted from B. Miller, S. M Thesis, 
MIT, 2000) 
 

 
Figure 1.3 Temperature evolution and future materials trends in turbine blades [M. F. 
Ashby and D. R. H. Jones, Engineering Materials 1--An introduction to their properties & 
application, 2nd ed, Butterworth Heinmann, 1996] 
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Figure 1.4 Si/SiC hybrid concepts [K. Lohner, S. M. Thesis, Dept. of Aero & Astro, MIT, 
1999] 

 

 

1.2 Background 
 

The overall microengine development requires a multi-disciplinary approach.  Thus, it is 

important to understand the requirements and constraints of the engine before 

undertaking any redesign of a particular component or inserting a new technology.  

Before discussing the specific tasks to be performed in the course of this research, it is 

worth reviewing the status of the development of the microengine rotor in terms of high 

temperature materials and Si/SiC hybrid structures. 
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1.2.1 Background of Materials 
 

1.2.1.1 Silicon 
 

In the first generation microengine, silicon is the material of choice for the overall engine 

structure in order to ensure compatibility with currently available micro-fabrication 

technology.  Obviously, the pronounced thermal softening material behavior of silicon, as 

shown in Figure 1.2, makes silicon a sub-optimal material for high temperature 

structures.   The turbine rotor of the microengine is exposed to a severe operating 

environment with peak gas temperatures around 1600 K for hydrogen and 2500 K for 

hydrocarbon fuels.  A high centrifugal loading results from the high rotational speed (1.2 

million rpm), which leads to primary stress levels in the range of 250 to 400 MPa. 

 

1.2.1.2 Silicon Carbide 
 

In general, conventional turbine blade materials should satisfy the following criteria: 

resistance to creep, resistance to high-temperature oxidation, toughness, thermal fatigue 

resistance, thermal stability, and low density.  This is also true for the turbine materials in 

microengines.  Covalently-bonded SiC is a potential material candidate for high 

temperature MEMS structural applications which satisfies the above criteria.  Its creep 

resistance is outstanding up to 1600 K. Its low expansion and high thermal conductivity 

also allow it to resist thermal shock well in spite of its relatively low toughness.  

However, viable micro-fabrication processes for SiC in single crystal form that are as 

precise as those for silicon have not yet been established.  Instead, chemical vapor 

deposition (CVD) of SiC into silicon molds has been identified as a viable option, 

together with post-processing steps such as planarization and bonding.  Hyper-Therm, 

Inc., a partner in the MIT microengine project, has explored CVD SiC process 

technology to assess the viability in terms of material properties and compatibility with 

microelectronics fabrication processes necessary for MEMS device fabrication [4]. 
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1.2.2 Design constraints of the Microengine Rotor 
 

The extreme operating conditions of the microengine rotor create major design problems.  

The rotor design requires the following structural considerations: deflection-limited 

design, fracture design, strength-limited design, and temperature limits. 

 

1.2.2.1 Deflection-limited Design and Brittle Fracture Design 
 

The geometric integrity imposed by the tight tolerance of a few microns requires 

structures with high specific stiffness.  For instance, the journal bearing gap is only a few 

microns in its designed operating condition.  High centrifugal stress and the asymmetric 

geometrical shape of the blades and rotor induce axial deflection and blade distortion as 

well as radial expansion, which may deteriorate the bearing operation.  Room 

temperature material characterization has been performed, and probabilistic stress 

analysis using the resulting material properties reveals that the blade root regions are the 

locations with the highest probability of failure.  The effect of fillet radii determined from 

the fabrication routes on the stress field has also been accounted for.  Weibull statistics 

has been used to predict the failure probability of the silicon turbomachinery structures 

using NASA CARES/LIFE [5, 6]. 

 

1.2.2.2 Strength-limited Design and Temperature Limits 
 

As the temperature rises from 900 K to 1000 K, the yield strength of silicon drastically 

decreases from approximately 1 GPa to 100 MPa.  This thermal softening behavior has to 

be taken into consideration in the design stage.  As a result, the wall temperature of the 

all-silicon engine must be kept below 950 K.  This temperature limit, however, may not 

be sufficient because the creep behavior of silicon at temperatures above 900 K may 

cause a catastrophic failure once yield begins under constant loading.  As the temperature 

is raised, loads that give no permanent deformation at room temperature cause creep.  In 

the case of ceramics, creep starts when the temperature is greater than approximately 40 

% of the homologous melting temperature [7].  Preliminary creep characterization of 

single crystal silicon has been performed by Walters [8].  In Figure 1.5(a), a silicon 
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specimen after a four-point bend test at high temperature clearly indicates localized 

deformation resulting from creep and plasticity.  The density of active slip bands shown 

in Figure 1.5(b) is far greater at the loading point than anywhere else in the specimen, 

consistent with the macroscopic observations of localized deformation. 

 

 
(a) 

 
 

(b) 

Figure 1.5 (a) Silicon incremental test specimens sideviews
prior to unload are a) -0.50mm, b) -0.70mm, c) -1.21mm, an
view of the specimen cross-section [D. S. Walters, S. M. Th

 
1.2.3 Si/SiC Mirco-fabrication Processes 
 

The use of SiC in single crystal form is not possible bec
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1.2.3.1 Planarization 
 

The planarization of surfaces plays a key role in the fabrication of Si/SiC hybrid 

structures.  Surface roughness of less than 20 nm with good surface flatness is required 

for a reliable bond [9].  In order to create the sufficiently flat surfaces required for high 

reliability bonding, chemical-mechanical polishing (CMP), in which the wafer is polished 

in an abrasive slurry on a polishing pad, may be used.  However, due to the chemical 

inertness of SiC, the current planarization process relies only on mechanical polishing 

(lapping), which is a tedious process and currently suffers from low yields. 

 

1.2.3.2 Bonding 
 

Wafer bonding techniques rely on achieving sufficiently flat, planar surfaces (wafer bow 

on the order of a few micrometers) and carefully controlling the surface chemistry.  

Initial efforts to bond silicon and SiC at the die level have been made under elevated 

temperatures and pressures in order to utilize the plasticity and diffusional flow of the 

silicon [9].  The bond strength of tested samples has yet to be measured, and the physics 

controlling the bond strength is not clearly understood.  Developments of techniques for 

bonding dissimilar materials at the wafer level and controlling the residual stresses that 

can arise in these structures are under way [10]. 

 

1.2.4 Preliminary FE Analysis of Si/SiC Hybrid Structure 
 

In order to improve the microengine's performance, the heat flux from the turbine into the 

compressor must be reduced by introducing a thermal barrier structure between the two 

rotors.  Decreasing the heat flux, however, implies that the turbine wall temperature may 

increase higher than the silicon can withstand.  Thus, it is critical for the development of 

the next generation engine that a high temperature structure with a thermal barrier be 

built.  The structural analysis has focused on predicting the maximum operating 

temperature that the proposed hybrid structures can withstand and assessing the benefits 

from the spool design from the point of view of the overall engine efficiency.  Miller 
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demonstrated the potential of Si/SiC hybrid structures for increasing the operating 

temperature of the microengine spool by a series of finite element (FE) analyses [3].  

 

Two design candidates were compared with the baseline engine and a breakeven case in 

terms of the overall engine efficiency: first, a combination of a disc with 30 % SiC 

reinforcement and blades with 60 % SiC core and second, a combination of a disc with 

30 % SiC reinforcement and all-silicon blades with 60 % core together with a thermal 

barrier.  The engine performance and the corresponding configuration of the thermal 

barrier were estimated by a 1-D cycle analysis [11].  The comparison among these cases 

is summarized in Table 1.1.  Considering the complications such as filling SiC into a 

narrow channel, the second design candidate is the preferred one. Thus, the second 

candidate was proposed as a baseline design for the next generation engine.  Figure 1.6 

illustrates the proposed conceptual design. 

 

Table 1.1  Contribution of a Si/SiC hybrid spool  to the engine performance [B. Miller, 
MS Thesis, Dept. of Aero & Astro, MIT, 2000] 
 

Configuration Max. 
Temp. [K] A/A* Cycle Press. 

Ratio 
Compressor 
Efficiency 

Shaft 
Power (W) 

Engine 
Efficiency 

Baseline : all Si 950 100 % 1.7 0.36 - - 

0 Net power 960 25 % 1.7 0.38 0 0 % 

30% SiC disc 
300um SiC core 1200 2.5 % 2.125 0.53 16.8 3.1 % 

30% SiC disc 
300um Si core 1160 3.0 % 1.93 0.52 13.6 2.5 % 

 
 

 

 

 

 

 
Figure 1.6 Proposed conceptual design of a Si/SiC hybrid rotor [B. Miller, MS Thesis, 
Dept. of Aero & Astro, MIT, 2000] 

ξ=A/A* 

L s
ha

ft 

t di
sc

 



 

 22 

1.3 Objectives 
 

As a part of the MIT microengine project, the primary goal of this research is to design a 

high temperature Si/SiC hybrid rotor that improves the overall engine efficiency while 

maintaining structural integrity.  While successful in yielding the proposed Si/SiC hybrid 

rotor from the previous work [2, 3, 5, 8], the detailed design of the hybrid rotor has been 

limited by the lack of understanding of the mechanical behavior of Si and Si/SiC hybrid 

structures at elevated temperatures.  The materials and structures issues associated with 

the microengine rotor and the overall system considerations result in two main objectives 

for this thesis, namely: 

 

1) To develop a self-consistent design for Si/SiC hybrid structures for elevated 

temperature micro-turbomachinery, power MEMS, given the constraints imposed 

by the micro-fabrication processes and system considerations. 

2) To obtain elevated temperature mechanical property data for Si and Si/SiC 

structures and to extract constitutive models to support the design process. 

 

In order to achieve these objectives, tasks to be performed include mechanical testing at 

elevated temperatures, mathematical modeling of silicon and SiC constitutive behavior 

revealed by the experiments, and implementation of the constitutive model in a finite 

element code. With this material model implemented, the FE analysis will enable design 

iterations of Si/SiC hybrid structures for elevated temperature operation.  The 

development of the micro-fabrication processes required to create Si/SiC hybrid 

structures is under way in a parallel effort.  Figure 1.7 describes the flow chart for the 

design of high temperature Si/SiC hybrid micro-turbomachinery, where the required tasks 

are organized toward the overall goal of this work. 
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Figure 1.7 Flow chart for the design of high temperature Si/SiC hybrid micro-
turbomachinery 

 

 

1.4 Thesis Outline 
 

The chapters of this thesis are arranged as a series of coherent steps towards achieving 

the objectives stated in Section 1.3. 

 

Chapter 2 describes the initial structural design of the Si/SiC hybrid turbine rotor.  This 

chapter presents the initial design efforts made in parallel with the overall microengine 

development, given the constraints imposed by the micro-fabrication and system 

considerations.  The initial structural design includes a series of thermo-mechanical FE 

analyses to obtain temperature and stress fields of Si/SiC hybrid structures to assess the 

advantage of the hybrid structure, and to provide structural design criteria and fabrication 

requirements.  However, limitations due to the unavailability of an accurate material 

model that accounts for creep and strain softening behavior of single crystal silicon call 

for a better material model for Si based on more rigorous mechanical testing at high 

temperatures.  Chapter 3 provides a review of the material characterization of single 

crystal silicon at high temperatures.  A general description of creep and creep 

Si uniaxial compression test 
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mechanisms for various classes of materials is given, followed by a review of previous 

work pertaining to the experimental studies on Si creep.  A brief review on various types 

of constitutive models and material testing methods suggests the appropriate direction to 

take for the development of a new constitutive model for single crystal silicon at elevated 

temperature.  In Chapter 4, the experimental methods are proposed to investigate the 

mechanical behavior of Si at the temperatures and stresses of interest and to assess the 

feasibility of Si/SiC hybrid structures.  Separate subsets of the experimental methods are 

designed to allow for both the calibration and validation of the Si material model.  

Further, a Si/SiC hybrid flexural specimen is also described as a simple means to verify 

the hybrid structural concept for the microengine.  Details are given  with regard to 

specimen fabrication, test methods, and test apparatus.  Chapter 5 presents the efforts 

carried out to understand the mechanisms active in the mechanical behavior of single 

crystal silicon at high temperatures and high stresses and to model its constitutive 

behavior at the macro scale.  This chapter describes a constitutive model for silicon, 

necessary to predict accurately the deformation of Si/SiC hybrid structures, that accounts 

for its creep and strain softening as well as the micro mechanisms governing the elevated 

temperature mechanical behavior.  This constitutive model for silicon implemented in the 

ABAQUSTM user subroutine, VUMAT [12], is calibrated and then validated against the 

various experimental results.  In Chapter 6, the structural design of the Si/SiC hybrid 

rotor is revisited with the advanced design tool, a constitutive model for Si at elevated 

temperature.  The appropriate design guidelines are extracted based on the better 

knowledge and the experimental observations of the deformation mechanisms of Si and 

Si/SiC hybrid structures, together with the advanced constitutive model for Si.  Finally, 

Chapter 7 gives overall recommendations and conclusions regarding the design of high 

temperature Si/SiC hybrid micro-turbomachinery. 
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Chapter 2 
 

Initial Structural Design of Si/SiC Hybrid Rotor 
 

 

2.1 Overview 
 

Silicon, the material of choice for the first (demonstration) microengine, exhibits strong 

thermal softening behavior at temperatures above 900 K.  This thermal softening 

behavior limits the turbine inlet temperature, which in turn significantly degrades the 

overall engine efficiency.  Thus, the strategy employed in the all-silicon demonstration 

engine was to design the rotor so that there is a high heat flux from the turbine rotor to 

the compressor to keep the wall temperature of the turbine rotor below 950 K, at which 

temperature the Si yield strength is on the order of 250 MPa.  This strategy, while 

permitting a workable demonstration device, has a severe negative impact on the engine 

efficiency and power output. 

 

In order to improve the microengine's performance, the heat flux from the turbine into the 

compressor must be reduced by introducing a thermal barrier structure between the 

turbine and compressor.  Decreasing the heat flux, however, implies that the turbine wall 

temperature may increase higher than the silicon can withstand.  Thus, it is critical for the 

development of the next generation engine that a high temperature structure with a 

thermal barrier be built allowing for the micro-fabrication constraints.  The proposed 

conceptual design of a Si/SiC hybrid rotor structure, which exploits the superior 

mechanical properties of SiC at high temperatures, but is feasible to micro-fabricate, is 

shown schematically in Figure 2.1.  The rationale that led to this structural design has 

been discussed in more detail together with preliminary structural analyses and its 

contributions to the overall engine performance in reference [1]. 
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Figure 2.1 Proposed conceptual design of a Si/SiC hybrid rotor 

 

In this chapter, the structural analysis for the microengine rotor is focused on predicting 

the maximum operating temperature that the proposed hybrid structures can withstand 

and assessing the benefits from the spool design from the point of view of the overall 

engine efficiency.  A full 3-D thermo-mechanical FE analysis enabled the identification 

of hot spots that may cause a catastrophic failure when combined with high stress 

concentrations.  Structural concerns that arise from the thermal barrier/insulation between 

the turbine and compressor rotors have also been accounted for using axisymmetric 

thermo-mechanical FE analysis with a simplified blade shape.  The following results 

demonstrate the potential of Si/SiC hybrid structures to improve the engine performance.  

This chapter concludes with an assessment of the conceivable problems associated with 

the mechanical behavior of Si at elevated temperatures which have not previously been 

considered in detail. 

 

2.2 Material Properties 
 

This section summarizes the values of the material properties of Si and CVD SiC 

necessary for the following structural analysis to be performed.  While most of the values 

of the material parameters used in the previous studies by Chen [2] and Miller [1] were 

adopted in the current work, additional comprehensive material data for Si are available 

in reference [3].  By comparison, material data for CVD SiC are rather limited.  Recently 

Lshaft 
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the elastic material properties of the CVD SiC were reported by Jackson [4] and Hyper-

Therm, Inc. [5].  These values will be used in the following analysis. 

 
2.2.1 Mechanical properties 
 

2.2.1.1 Single crystal silicon 
 
As the melting temperature of Si is relatively low (Tmelt Si = 1396-1444 °C, ASTM), most 

of the mechanical material properties of Si are temperature-dependent at the temperatures 

of interest.  Furthermore, the anisotropic material parameters associated with the cubic 

symmetry of single crystal silicon also add more complexity to the structural analysis.  

Table 2.1 summarizes the elastic material properties of Si.  In view of the difficulties of 

performing exact calculations in anisotropic media, the isotropic approximation is often 

preferred.  From the comparison of the isotropic 2-D FE results and 3-D FE results with 

cubic material parameters for the biaxial fracture strength testing, Chen justified the use 

of isotropic approximation of the material parameters in the subsequent analyses [2].  In 

the current study, the isotropic approximation of the elastic material properties were used 

together with the linear temperature-dependence.  The density of 2330 kg/m3 was used 

for silicon throughout. 

 
Table 2.1 Elastic material properties of silicon 

 
Elastic material properties Values 

Elastic stiffness at room temperature and atmospheric 
pressure1 

C11 = 165.6 GPa 
C12 = 63.9 GPa 
C44 = 79.5 GPa 

Temperature-dependence of the elastic stiffness2 
(1/C11)dC11/dT = -9.4E-5 K-1 
(1/C12)dC12/dT = -9.8E-5 K-1 
(1/C44)dC44/dT = -8.3E-5 K-1 

Average Young’s modulus3 E ave = 165.6 GPa 
Poisson’s ratio3 ν = 0.218 

1. The values were reported by Hall [6]. 
2. The temperature-dependence of Cij was investigated by Hall [6] in the range 4.2-

310 K, and Burenkov and Nikanorov [7] up to 1273 K.  In the temperature range 
of 150 to 1000 K, the decrease rate of the Cij with increasing temperature is fairly 
linear. 

3. The isotropic approximation was obtained by Voigt averaging [3]. 
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The softening behavior of Si at elevated temperatures was accounted for by using the 

yield strength of Si at the given temperatures in the following analyses.  To be consistent 

with Miller in the previous work [1], the same linear fit of the Si yield strength against 

Chen’s experiments [2] in the temperature range of 600 to 1220 K was used.  The 

structural analysis presented in this chapter does not take the post-yielding behavior of Si 

(softening or hardening) into consideration.  ABAQUSTM PLASTICITY [8] was used, in 

which silicon was defined as an elastic-perfectly plastic material in the simulations.  

Section 2.5 further discusses the yield strength of Si. 

 

2.2.1.2 CVD SiC 
 
The preliminary study on the Si/SiC hybrid turbine rotor used bulk material properties of 

SiC.  Recently the elastic material properties of CVD SiC processed at Hyper-Therm 

were measured by Jackson at room temperature [4].  The high melting temperature of SiC 

(3110 K in a bulk form) justifies the use of the material properties of CVD SiC measured 

at room temperature for the structural analysis at the temperatures of interest.  The 

material data for SiC are summarized in Table 2.2. 

 
Table 2.2 Material properties of SiC 

 
Material properties Values 

Young’s modulus 470 GPa in a bulk form 
430 GPa, CVD SiC film 

Poisson’s ratio 0.21 
Density 3200 kg/m3 

 
 
2.2.2 Thermal properties 
 
The analysis presented in this chapter considered only the thermal steady-states.  The 

temperature field calculated by the heat transfer analysis was then taken as a boundary 

condition for the stress analysis (sequentially coupled thermal-stress analysis).  This 

sequentially coupled thermal-stress analysis requires two thermal properties: thermal 

conductivity and thermal expansion coefficient.  At the temperatures of interest, these 

parameters are temperature-dependent as shown in Figure 2.2 and Figure 2.3.  The 
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thermal properties of CVD SiC were taken from the MortonTM CVD SiC data sheet [9].  

As the temperature gradient within the SiC layer is negligibly small, the average thermal 

conductivity of 80 W/mK was used for SiC in the heat transfer analysis. 
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Figure 2.2 Thermal Conductivity of Si and CVD SiC [3, 9]. 
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Figure 2.3 Thermal Expansion Coefficient of Si and CVD SiC [3, 9] 
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2.3 Structural Analysis of Hybrid Turbine Rotor 
 

2.3.1 Preliminary FE analysis of Hybrid Turbine Rotor 
 
3-D FE simulations for a hybrid turbine rotor have been performed with a refined model 

combining the turbine disc and blade as shown in Figure 2.4 in order to verify the 

previous structural analysis by Miller [1], where the hybrid turbine blade and disc were 

considered as separate bodies.  The FE mesh was created using a commercial pre-/ post-

processing package, MSC/NASTRANTM [10], and analyzed using ABAQUSTM 

STANDARD [8], a commercially available finite element package.  A relative SiC 

thickness of 30 % was incorporated in the turbine rotor disc in between Si disc layers.  

While SiC, whose melting point is 3300 K, was assumed to behave elastically throughout 

the temperature range (up to 1200 K), the material model for Si was assumed to be 

elasto-plastic as modeled by ABAQUSTM STANDARD PLASTICITY with no strain-

hardening/softening behavior.  The thermal softening behavior of Si was described with 

the yield strength decreasing with increasing wall temperature according to: 

σY = -A*T + B,      (1) 

where A and B are the linear fit coefficients.  Assuming that the periodic boundary 

condition has little influence on the overall deformation and stress fields of the rotor, only 

one twentieth of the turbine rotor is modeled.  For simplicity, the thermal barrier (hollow 

shaft) is modeled as a linear spring. 
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(a) 

 
(b) 

 
(c) 

Figure 2.4 Refined FE model for blade and disc (a) total FE mesh, (b) FE mesh for the 
silicon, and (c) FE mesh for the SiC 
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As illustrated in Figure 2.5, the geometrical configurations considered here are as 

follows: 

(1) Solid silicon blade and disc reinforcement with 30% SiC 

(2) All-silicon hollow blade with a half-height inner core and disc reinforcement with 

30% SiC 

(3) Hybrid Si/SiC hollow blade with a half-height SiC inner core and disc 

reinforcement with 30% SiC 

(4) All-silicon hollow blade with a half-height inner core and SiC post up to blade 

roots and disc reinforcement with 30% SiC 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Geometrical configurations considered in the analysis 

 
Figure 2.6 shows how the maximum stresses and deflections for each case vary as the 

temperature increases.  The results are summarized in Table 2.3.  This refined 3-D FE 

simulation correlates well with the previous hybrid disc and blade analysis in terms of the 

prediction of the maximum turbine wall temperature that the hybrid structure can 

withstand.  In conclusion, the FE simulation results confirm the potential of the hybrid 

structure concept for improving engine efficiency, and although there is little difference 

in achievable maximum operating temperature among the four cases, Case 2 (all-silicon 

hollow blade and disc reinforced with SiC) stands out as a prospective candidate for the 

hybrid turbine rotor when micro-fabrication difficulties are taken into account. 

CL 

Case 1 

Case 2 

Case 3 

Case 4 
Silicon 
Silicon carbide 
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Figure 2.6 Key maximum stresses and deflections in the Si/SiC hybrid turbine rotor of 
four design configurations (a) Maximum stress in silicon and silicon carbide (b) 
Maximum radial expansion (c) Maximum tangential deflection (d) Maximum vertical 
deflection 
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Figure 2.6 (continued) Key maximum stresses and deflections in the Si/SiC hybrid 
turbine rotor of four design configurations (a) Maximum stress in silicon and silicon 
carbide (b) Maximum radial expansion (c) Maximum tangential deflection (d) Maximum 
vertical deflection 
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Table 2.3 Summary of FE calculations of the Si/SiC hybrid turbine rotor 
 

Case 
Max. 
Temp. 

[K] 

Max. 
stress in 

SiC [MPa] 

Max. 
radial 

expansion 
[µm] 

Max. 
tangential 
deflection 

[µm] 

Max. 
vertical 

deflection 
[µm] 

Solid Si blade + 30% 
SiC disc 1160 514 2.2 1.8 4.6 

All Si hollow blade + 
30% SiC disc 1175 509 2.1 2.0 4.0 

Hollow Si blade w/ 
50% SiC core + 30% 
SiC disc 

1190 644 2.4 1.6 5.8 

All Si hollow blade w/  
SiC post up to blade 
root + 30% SiC disc 

1175 510 2.0 1.7 3.9 

* Stress and deflection values are obtained at the corresponding maximum temperature. 

 

 

2.3.2 Thermo-mechanical FE Analysis of Turbine Rotor 
 

The structural analysis results in the previous section were obtained assuming uniform 

temperature in the turbine rotor, which is a reasonable assumption, given the Biot number 

of approximately 0.02.  The isothermal assumption, however, may not be valid when 

there is a heat sink (i.e., the compressor) that gives rise to a high thermal gradient.  Thus, 

in order to identify any hot spots in the structure that may cause a catastrophic failure 

when combined with high local stresses, a 3-D thermo-mechanical FE analysis has been 

performed using the same FE mesh.  It is critical that accurate thermal boundary 

conditions, which are not always readily available, be applied in the analysis.  The 

thermal boundary conditions shown in Figure 2.7 were based on the previous analysis [2] 

and the CFD results [11].  For simplicity, the thermal barrier structure (hollow shaft) is 

again modeled structurally as a linear spring. 
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Figure 2.7 Thermal boundary condition for the turbine rotor 

s is clear in Figure 2.8(a), the temperature distribution of the turbine rotor with a 

haft/ring of 1.5 mm inner radius, 100 µm wall thickness, and 600 µm shaft length, 

hows a considerable temperature gradient.  The highest temperature occurs at the tip of 

e blade and the lowest at the area adjacent to the shaft end.  The lower temperature is 

wer than that predicted by the 1-D thermal cycle analysis [12].  Similarly the 

mperature of the compressor side, the shaft heat flux is expected to be less than the 

rediction of the 1-D cycle analysis by approximately 20 %, which in turn implies that 

e thermal barrier structures may be more effective than indicated by the preliminary 

nalysis.  Figure 2.8(b) and (c) show the effective stress and effective plastic strain, 

spectively, corresponding to the temperature field.  While the high stress state of the 

iC in the center indicates that the centrifugal inertial load is carried mostly by the SiC 

inforcement, the high stress in the SiC reinforcement below the blade trailing edge is 

aused by the bending moment due to the blades.  The plastic strain developed on the 

urface of the turbine rotor disk shown in Figure 2.8(c) implies that the elastic material 

round the deformed zone is still sufficient to support the centrifugal loading, but it may 

ubject to a catastrophic failure owing to the strain softening behavior of Si. 

Conduction through Si shaft/ring shape 
structure defined by convection heat 
transfer coeff. and compressor wall 
temperature obtained using 1-D thermal 
analysis 

Adiabatic 
condition 



 

 38 

TEMP VALUE
+9.70E+02

+1.00E+03

+1.03E+03

+1.06E+03

+1.09E+03

+1.12E+03

+1.15E+03

+1.18E+03

+1.20E+03

+1.23E+03

 
(a) 

MISES VALUE
+1.93E+06

+4.57E+07

+8.96E+07

+1.33E+08

+1.77E+08

+2.21E+08

+2.65E+08

+3.09E+08

+3.52E+08

+3.96E+08

 
(b) 

PEEQ VALUE
+0.00E+00

+1.49E-04

+2.98E-04

+4.47E-04

+5.96E-04

+7.45E-04

+8.94E-04

+1.04E-03

+1.19E-03

+1.34E-03

 
(c) 

 
Figure 2.8 Thermo-mechanical FE analysis results of a turbine rotor when Ri = 1.5 mm, 
twall = 100 µm, Lshaft = 600 µm, (a) temperature distribution, (b) effective stress 
distribution, and (c) effective plastic strain 
 

 



 

 39 

2.3.3 Structural Analysis of Thermal Barrier 
 
The small Biot number of the rotor implies that in order to improve the engine efficiency 

a significantly low thermal conductance (1/Rth = kth A*/L, where Kth is the thermal 

conductance of Si, A* the area that contacts with the rotor, and L the length of the shaft) 

is required.  This in turn may compromise the overall strength of the structure.  In 

addition the difficulties associated with the deep etching process for the journal bearing 

face and wafer bonding process impose severe geometrical constraints on the achievable 

wall thickness and shaft length.  For simplicity, the turbine blades and compressor blades 

were modified so as to apply the equivalent bending moment to the shaft so that an 

axisymmetric FE model can be used.  The thermal boundary conditions were again based 

on the previous analysis [2].  Figure 2.9 shows the FE results of the thermal insulation 

structure between the turbine and compressor rotors in the case where A/A* = 0.2 (Ri = 

1.5 mm, twall = 0.4 µm, and Lshaft = 0.4 µm).  Figure 2.9(b) and (c) represent the shear and 

normal stress in the axial direction, respectively, corresponding to the temperature field 

shown in Figure 2.9(a).  Both the shear stress and normal stress were significant due to 

the bending moment from the blades and the discrepancies in the radial expansion of the 

turbine and compressor rotors. 

 

The temperatures at both ends of the shaft are plotted on Figure 2.10(a) together with 

predictions using the 1-D thermal cycle analysis.  Given the temperatures and the thermal 

conductance as a function of temperature, the shaft heat flux was calculated and 

compared with the thermal cycle analysis prediction in Figure 2.10(b).  In Figure 2.10(c), 

the stress states as a function of normalized thermal conductance are shown.  From the 

FE results, it is concluded that given the micro-fabrication limits, a thermal barrier 

structure is feasible, satisfying both thermal and structural requirements. 
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(c) 

Figure 2.9 FE results for the thermal insulation structure between the turbine and 
compressor disks in the case where A/A* = 0.2 (Ri = 1.5 mm, twall = 0.4 µm, and Lshaft = 
0.4 µm), (a) temperature distribution, (b) σ22, and (c) σ12 
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(b) 

Figure 2.10 Comparison of FE results for the thermal insulation structure with a 1-D 
cycle analysis, (a) temperatures of the both ends of the shaft, (b) shaft heat flux, and (c) 
stresses on the corner of the shaft. 
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(c) 

Figure 2.10 (continued) Comparison for the FE results of thermal insulation structure 
with a 1-D cycle analysis, (a) temperatures of the both ends of the shaft, (b) shaft heat 
flux, and (c) stresses on the corner of the shaft. 
 

2.4 Discussion 
 
While the structural analysis presented so far verified the potential of Si/SiC hybrid 

structures as a medium term approach to improving the overall engine efficiency, the 

primary concerns associated with the mechanical behavior of Si at elevated temperatures 

(pronounced strain-softening of Si) remained unresolved.  At the temperatures higher 

than the design temperature for the all-silicon microengine, the design of the turbine 

structure is likely to be limited by creep.  This section assesses the structural and material 

issues in the design of high temperature Si/SiC hybrid structures that have not been taken 

into considerations in the structural analysis to date. 

 

First, it is unclear whether the structural design based on the values for the yield strength 

of Si used in the analysis is a conservative one.  Figure 2.11 shows stress-strain curves for 

Si at various levels of initial dislocation density.  It is apparent that the upper yield 

strength of Si is determined by the initial density of dislocations.  Some measurements of 
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the upper yield strength are also plotted in Figure 2.12.  Note that the upper yield strength 

of Si is a function of temperature, strain rate, and initial density of dislocations.  Figure 

2.13 compares the lower yield strength of Si and the values of the Si yield strength used 

in the analysis of the Si/SiC hybrid structures.  The upper yield strength of Si has been 

adopted for the allowable stress in the analysis so far.  Therefore, the key question is 

whether or not the structural design of Si/SiC hybrid structures can rely on the upper 

yield strength of Si.  Some of the micro-fabrication processes such as the CVD process 

and thermal cycling may induce an increase of dislocation density within the Si crystal, 

which in turn may reduce the usable upper yield strength.  Second, it is desirable that the 

service life of the Si/SiC hybrid turbine rotor be reliably estimated.  At the temperatures 

of interest, the Si/SiC hybrid turbine rotor is susceptible to the radial growth and blade 

distortion due to the creep of Si, effects which have not been accounted for in the 

previous FE analysis.  While Walters performed a preliminary study of the Si creep and 

observed the localized deformation (an unexpected failure mechanism of single crystal Si 

consisting of slip bands), the creep parameters do not seem to be sufficiently accurate 

[13].  Finally, sharp corners such as the blade root or hub root, sites for high stress 

concentration, may cause structural instabilities when combined with the creep and strain 

softening of Si. 

 

In order to design a structure safe from these concerns, it is imperative to develop a better 

material model for single crystal Si based on more rigorous mechanical testing at high 

temperatures.  In addition to the advanced Si material model, it is also crucial to assess 

the integrity of the interface between the Si and CVD SiC films (both the deposition and 

bonding interfaces) under the stresses and temperatures expected in service. 
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Figure 2.11 Stress-strain curves of high-purity FZ-Si crystals in tensile deformation along 
the [123] direction as dependent on the initial density of dislocations. [K. Sumino, 
Deformation behavior of silicon, Metallurgical and Materials Transactions A, Vol. 30A, 
pp1465-1479, 1999] 
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Figure 2.12 Upper yield strength as a function of temperature, strain rate, and grown-in 
dislocation density [H. Alexander, Ch. 35 Dislocations in Covalent Crystals, ed. F. R. N. 
Nabarro, Elsevier Science Publishers, 1986]. 
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Figure 2.13 Lower yield strength of Si compared with the values in Miller’s [1] analysis 
[H. Alexander, Ch. 35 Dislocations in Covalent Crystals, ed. F. R. N. Nabarro, Elsevier 
Science Publishers, 1986] 
 
 
2.5 Summary 
 
The thermo-mechanical FE analysis results presented in this chapter verified the potential 

of Si/SiC hybrid structures as a medium term approach to improve the overall engine 

efficiency.  However, several key concerns associated with the mechanical behavior of Si 

at elevated temperatures have not yet been addressed.  The detailed discussion of the Si 

yield strength identified the following three issues: (i) the safety margin of the structural 

design of Si/SiC hybrid structures based on the upper yield strength of Si, (ii) reliable 

estimation of the sevice life of the Si/SiC hybrid turbine rotor, and (iii) structural 

instabilities caused by the combination of high stress concentration, creep, and strain 

softening.  This chapter concluded with an assessment of the need for the development of 

a better material model for single crystal Si based on more rigorous mechanical testing at 

high temperatures. 
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The next chapter reviews the previous work on the characterization of the Si mechnical 

behavior at elevated temperatures.  Chapters 4 and 5 are devoted to the development of a 

constitutive model for single crystal silicon at elevated temperature and providing the 

answers to the questions raised in this chapter. 
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Chapter 3 
 

Literature Review on the Material 
Characterization of Single Crystal Silicon at High 
Temperature 
 
 

3.1 Overview 
 
The design of the MIT microengine is limited in part by the material capability of Si, 

specifically, the pronounced thermal-softening and strain-softening at temperatures 

higher than the brittle-to-ductile transition temperature (BDT), approximately 850 K, as 

discussed in Chapter 1 and Chapter 2.  In order to circumvent this limitation, it has been 

proposed to reinforce the Si with CVD SiC in strategic locations to create a Si/SiC hybrid 

microengine turbine spool.  The feasibility of this hybrid turbine spool design has been 

investigated by a series of finite element analyses involving primitive material models 

(ABAQUSTM STANDARD Elasticity and Plasticity [1]) by Chen [2] and Miller [3] and 

also in Chapter 2.  While this previous work has assessed the potential of the Si/SiC 

hybrid microturbine structure for improving engine efficiency, as well as maintaining 

structural integrity, a structural design based on the deflection- and strength-limited 

design is likely to fail to answer the questions involving deformation with time [4].  

Furthermore, the stress concentration within a part made of single crystal Si exhibiting 

the strain-softening behavior may accelerate and propagate the localized deformation, 

which in turn results in a failure of the part in service.  The thermo-mechanical structural 

analysis and experimental study conducted thus far led to the following specific questions 

associated with the structures and materials in the design of elevated temperature Si/SiC 

hybrid structures: 

(1) Can we rely on the upper yield strength of Si in designing a part that is to be in 

service at temperatures higher than the BDT? 

(2) Can we estimate the admissible operating conditions and service life of a part? 

(3) Will stress concentrations, such as fillet radii, be susceptible to localized 

creep/plasticity deformation? 
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These three questions provide the key motivations of the work, and the entire thesis is 

devoted to seeking the answers.  As a first step to obtaining a more reliable design for the 

Si/SiC hybrid structures, it is imperative that the mechanical behavior of Si at the high 

temperatures and stresses of interest be better understood and a more accurate 

constitutive model for Si be developed. 

 

In Section 2, a general description of creep is given, and the creep mechanisms primarily 

responsible for the steady-state creep regime are described in detail.  Section 3 focuses on 

the experimental studies that have been conducted to characterize the creep of single 

crystal Si at various temperature and stress ranges.  In Section 4, various constitutive 

equations describing materials at elevated temperatures, although developed mostly for 

metals, are also discussed.  They should be easily modified for single crystal silicon at 

elevated temperature.  This chapter concludes with comparisons of various creep testing 

methods for ceramics or brittle materials and suggestions for the subsequent work. 

 

3.2 Creep mechanisms 
 
As temperature is raised, loads that give no permanent deformation at room temperature 

cause materials to creep.  Creep, slow and continuous deformation with time, depends on 

temperature and time as well as the applied stress [5-9]: 

),,( Ttf σε =       (3.1) 

In general, creep effects start when T > 0.3 to 0.4TM for metals and T > 0.4 to 0.5 TM for 

ceramics, where TM is the melting temperature in Kelvin. The representative creep curves 

illustrated in Figure 3.1 can often be conveniently divided into three stages.  In Stage I, 

termed the primary or transient creep regime, the creep strain ε&  decreases continuously 

with time and strain.  This is somewhat analogous to the behavior observed during work-

hardening in the sense that the micro-structure changes with increasing strain; for 

example, the dislocation density increase and subgrain structure formation that is 

observed in many materials.  During Stage II creep, termed the secondary or steady-state 

creep, a steady-state invariant microstructure is formed, which implies that recovery 

effects are concurrent with deformation during Stage II.  In other words, Stage II creep 
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can be considered as a deformation regime in which the intrinsic work-hardening of the 

material is balanced by recovery effects due to the increased thermal activation energy.  

Subsequent to Stage II creep, tertiary or Stage III creep is observed, in which the 

accelerating creep deformation leads to eventual material fracture.  Often microscopic 

examination reveals the onset of recrystallization, the coarsening of second-phase 

particles and/or the formation of internal cracks or voids, which are the precursors to 

fracture. 

 

 
Figure 3.1 Schematic of a general creep curve 

 

For many materials, the steady-state creep rate, which in practice is a design criterion for 

long-term elevated temperature use, can be correlated with both stress and temperature by 

an equation of the form 

)/exp( RTQA c
n −= σε& ,    (3.2) 

where A and n are material constants, Qc is the creep activation, R is the gas constant 

(8.31 Jmol-1K-1), and T is the absolute temperature in Kelvin.  At elevated temperatures 

at which creep processes are the rate-controlling mechanisms, the activation energy Qc is 

independent of stress and temperature and nearly equal to the activation energy for self-

diffusion.  This empirical creep equation can be correlated with the microstructure and 

the applied external temperature and stress by the descriptions of rate-controlling 
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mechanisms such as dislocation glide, dislocation recovery, or other diffusional-flow.  

Several mechanisms, however, are speculative in that they cannot be verified by direct 

microstructural examination.  For the remaining part of this section, the creep 

mechanisms primarily developed for the secondary creep regime are explained in detail 

[5, 10, 11]. 

 

3.2.1 Dislocation glide creep 
 

Even at relatively low temperatures, given a sufficient level of applied stress, thermal 

activation affects lattice resistance so that dislocation glide can take place while 

overcoming obstacles lying on the dislocation glide plane [12].  The work required to 

overcome the barrier is provided in part by the applied stress and the remainder by 

thermal energy.  In this dislocation glide creep, overcoming such obstacles is not 

associated with diffusional flow mechanisms.  The dislocation glide creep rate can be 

modeled using kinetic principles as follows: 

( ) ( )kTbakTU s /exp/exp 00 τεε −= && ,    (3.3) 

where 0ε&  is a material constant, U0 is the work required to overcome the obstacle, τ is the 

applied stress, b is Burgers vector, as is the slip plane area, and k is Boltzmann’s constant. 

 

3.2.2 Diffusional flow creep 
 

Diffusional flow creep is also termed grain boundary creep because this deformation 

process involves the grain boundaries. It can be subdivided into two separate 

mechanisms: Nabarro-Herring creep [13, 14] and Coble creep [15].  A consequence of all 

grain boundary mechanisms is that adjacent grains become displaced with respect to each 

other, with the displacement occurring at or close to the grain boundary plane.  Both of 

the creep mechanisms are operative in regimes of low stress and high temperature. 

 

If the vacancies flow through the grains, the process is termed Nabarro-Herring creep, 

and the steady state creep rate is given by 

( )( )kTdDA LNHNH // 2 Ω= σε& ,    (3.4) 
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where ANH is a geometrical factor, DL is the coefficient for lattice self-diffusion, d is 

grain size, and Ω is the atomic volume. 

 

If the vacancies flow along the grain boundaries, the process is termed Coble creep and 

the steady state creep rate is given by 

( )( )kTdDA GBCC //' 3 Ω= σδε& ,    (3.5) 

where AC is a geometrical factor, δ' is an effective width of the grain boundary for 

vacancy diffusion, and DGB is the grain boundary diffusivity.  Coble creep is favored over 

Nabarro-Herring creep when the grain size is very small and at lower temperatures 

because QGB < QL, where QGB and QL are the activation energies for grain boundary and 

lattice diffusion, respectively.  In practice, the Nabarro-Herring and Coble creep 

processes operate independently, so that the rates are additive and the total creep rate can 

be expressed as 

)/'1)(/)(/( 2 dDDkTdDA LGBLNHCNHDIFF δσεεε +Ω=+= &&& . (3.6) 

 

3.2.3 Nabarro-Herring creep of subgrains 
 

Nabarro-Herring creep of subgrains [16] can take place when a subgrain structure, an 

ideal source and sink for vacancies, is formed during creep as if the grain size d in 

Equation 4 is replaced with d'.  Experimentally, d' is found to be inversely proportional to 

applied stress, that is, d'~ K/σ, where K is a material constant.  Thus, the subgrain creep 

rate can be given as 

( )( )kTKDA LSGSG // 22 Ω= σσε& .    (3.7) 

 

3.2.4 Dislocation glide-climb creep 
 

Many materials exhibit stress exponents of ~3 to 7 and creep rates that are independent of 

the grain size over a broad range of moderate stresses and temperatures.  This behavior is 

usually interpreted in terms of the glide and climb of intragranular dislocations, where the 

dislocations pile-up and the climb processes are rate-controlling mechanisms [17, 18].  

This creep mechanism can conveniently be considered as a competitive process between 
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work-hardening and recovery by thermal activation.  Recovery processes are related to 

non-conservative dislocation motions such as dislocation climb, in which obstacles to 

dislocation motion are overcome, or by which dislocations are removed from the 

structure.  Various mechanisms to explain this type of creep have been postulated, but 

they are mostly speculative with little experimental evidence.  The steady state creep rate 

for this mechanism is often assumed to be the power law creep equation, Equation 2, for 

which parameters can be determined by fitting experimental data. 

 

3.2.5 Summary of creep mechanisms 
 

Although many theoretical mechanisms have been developed for intragranular and 

intergranular deformation with various formulations as presented so far, all of them can 

be expressed in a similar form as 

( ) ( )( )pn
iii dbkTGDA /// ' Ω= σσε& .    (3.8) 

The values of the parameters n and p as well as the type of activation energy are listed in 

Table 3.1 for the mechanisms described. 

 

For single crystals, lattice mechanisms should be the rate-controlling processes because 

there are no grain boundaries, thus grain boundary mechanisms can be neglected. 

Nevertheless, subgrain creep may be involved in single crystals with a high dislocation 

density.  The most likely mechanisms involved in the creep process of single crystals are 

lattice diffusion mechanisms such as dislocation glide-climb and subgrain creep. 
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Table 3.1 Values of the parameters n’, p, and the type of activation energy associated 
with the mechanisms expressed in Equation 7 for the steady-state creep rate 
 
Mechanisms Favored by n’ p Q 
Nabarro-
Herring creep 

High temperature, low stress and large 
grain sizes 

0 2 QL 

Coble creep Low stress, fine grain sizes, and 
temperatures less than those for which 
N-H creep dominates 

0 3 QGB 

Nabarro-
Herring creep 
of subgrains 

High temperature and stresses such that 
the subgrain size is less than the grain 
size 

2 0 QL 

Generalized 
power law 
creep 

High stress, lower temperatures in 
comparison to Coble creep and large 
grain size 

2~6 0 QL or 
QCI

* 

*QCI is the chemical interdiffusion of solute atoms and pipe diffusion along the 
dislocation cores.  (Data in table adapted from references [5, 10, 11]) 
 

3.3 Single crystal silicon creep characterization 
 

The body of literature describing the creep behavior of single crystals is significantly 

smaller than the available data for polycrystalline materials because single crystal studies 

have tended to focus primarily either on a determination of the critical resolved shear 

stress as a function of temperature for a selected slip system or on a detailed investigation 

of the dislocation configurations and interactions.  Creep data for various crystalline 

ceramics are summarized by Cannon and Langdon in their reviews [10, 11].  A review of 

steady-state creep in single-phase crystalline materials by Takeuchi and Argon [19] 

includes primarily metals with only limited data on non-metallic systems.  High 

temperature creep behaviors of single crystal oxides also have been compared by Deng 

[20] in order to find potential candidates as reinforcements for high temperature structural 

applications. 

 

Silicon creep data is limited to date as are the creep stress and temperature ranges for 

which it has been obtained.  Most of the creep experiments for silicon were performed in 

the late 60’s and 70’s, notably by Alexander and Haasen [21, 22], Myshlyaev and co-

workers [23, 24], and Taylor and Barrett [25].  Recently, Walters [4] performed a series 

of flexural creep tests in support of the MIT microengine project.  Creep stress and 
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temperature ranges at which those experiments were performed are shown in Figure 3.2 

while the microengine operating zone is designated with an ellipse.  Silicon deforming as 

a plastic material under monotonic loading has been identified and modeled in a series of 

experiments performed by Patel and Chaudhuri [26], Yonenaga and Sumino [27, 28], and 

Fruhauf et al [29].  In this section, the previous work by Alexander and Haasen [21, 22], 

Myshlyaev and co-workers [23, 24], and Taylor and Barrett [25] as well as Walters [4] is 

discussed in more detail. 
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Figure 3.2 Temperature and stress ranges at which a series of silicon creep tests were 
performed (Data in the plot adapted from references [4, 21-25]) 
 

Alexander and Haasen [21, 22] investigated the role of dislocations in plastic flow of 

diamond structure materials (Si, Ge, …) for the purpose of the derivation of macroscopic 

plastic properties from measured dislocation mobilities and densities.  They performed 

creep testing with silicon in compression over a temperature range of 800 to 940 °C and a 

resolved shear stress range of 2 to 7 MPa.  As shown in Figure 3.3, an S-shaped strain-

time relation for constant stress was observed in diamond structure crystals consisting of 

an incubation stage, stationary creep, and a work-hardening stage.  Initially, there is 

µ-engine 

operating 
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exponential dislocation multiplication and an associated accelerating creep response. 

Then the internal shear stress produced by the dislocations becomes noticeable and slows 

down dislocation motion and multiplication, where the curvature of the strain versus time 

plot changes from positive to negative.  Finally, the slope tends to zero as internal stress 

compensates for the applied stress.  Moreover, the functional dependence of the strain 

rate at the stationary stage (inflection point) on stress and temperature can be expressed in 

a power law form.  The activation energy extracted from their experiments has been 

estimated as 232 kJ/mol, in accordance with the activation energy of the dislocation 

velocity, and the stress exponent was found to be 3.  A creep model was suggested based 

on the dislocation density evolution. 

 

 

 

 

 

 

 

 

Figure 3.3 A typical creep curve of diamond structure crystals 

 

Myshlyaev et al. [23, 24] performed creep tests with silicon single crystals under uniaxial 

compression over a stress range of 20 to 150 MPa and a temperature range of 900 to 1300 

°C.  In contrast to Alexander and Haasen’s results, they observed that, at relatively high 

stresses and temperatures, the initial stages disappeared and the creep curves of silicon 

became similar to those of metals. That is, the instantaneous initial deformation was 

followed by transient, steady, and accelerating creep stages resulting in a rupture failure.  

A further increase in temperature led to the accelerating creep stage immediately 

followed by the transient creep stage.  Thus, they concluded that in this high stress and 

temperature range silicon deforms much like metals with an activation energy about 

equal to that for self-diffusion and a high stress dependence.  Based on the experimental 
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data, they suggested a kinetic equation that governs the steady creep rate of silicon 

crystals within the tested temperature and stress ranges as follows: 

)/)(exp( 00 RTVU σεε −−= && ,     (3.9) 

where the energy barrier, U0, is 5.6eV (540kJ/mol) and the activation volume, V, is 

2.7×10-21 cm3. 

 

In order to characterize the kinetics of high temperature creep for a covalent crystal 

oriented for single slip, Taylor and Barrett [25] conducted creep testing with silicon 

crystals oriented such that the ]101)[111(  slip system experienced the maximum shear 

stress for uniaxial compressive loading.  This contrasts with the work of Myshlyaev et al., 

who oriented their crystals along the <111> direction, which activates multiple slip 

systems, as is the case for most of the work done on polycrystalline metallic materials.  

Creep experiments were carried out at temperatures above 0.6Tm.  They concluded that 

below about 1000 °C, the creep strain can be represented by the equation 

γ = α ln(νt+1),      (3.10) 

where typical values for α and ν are 10-3 and 2.5 min-1 respectively, whereas above 

approximately 1000 °C steady state creep is observed.  The activation energies for creep 

in the temperature range of 900 to 1300 °C are consistent with a glide controlled 

mechanism.  These activation energies are summarized in Table 3.2, together with 

experimental activation energies for glide and self-diffusion and the calculated activation 

energies.  They also observed the evolution of subgrain structures, the partitioning of the 

crystal into cells of relatively low dislocation density and dislocation walls of high 

density. 

 
Table 3.2 Summary of creep activation energies along with measured and predicted 
activation energies for dislocation motion (Adapted from Reference [25]) 
 

Type of activation energy Q [kJ/mol) 
Logarithmic creep (~900°C) 184.0 
High temperature steady state creep 163.8 
Dislocation velocity activation energy 166.3 ~ 218.4 
Self-diffusion activation energy 497.7 
Predicted activation energy for glide 205.8 
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Recently, Walters [4] performed four-point bend creep testing to investigate the 

mechanical behavior of silicon in the stress and temperature ranges at which the MIT 

microengine operates.  While the localized deformation at the inner loading points due to 

the high stress concentration hampered extraction of accurate creep data, a high density 

of slip bands, revealed after slight etching as shown in Figure 3.4, confirmed the role of 

dislocation glide in determining the macroscopic deformation at elevated temperature. 

 

  
(a)      (b) 

Figure 3.4 (a) Si sample after a 4-point bend test at high temperature, (b) active slip bands 
revealed by dilute etching [D. Walters, MS Thesis, MIT, 1999] 
 

Discussions of the creep experiments for Si in this section have provided clues as to the 

controlling mechanisms of the mechanical behavior of single crystal Si at elevated 

temperatures, and the key ingredients required for constitutive modeling.  In particular, it 

is believed that the experimental results and proposed equations by Alexander and 

Haasen [21, 22] and Myshlyaev and co-workers [23, 24] can be combined to yield a 

description of the deformation of Si over the ranges of interest.  The next section provides 

a short review on the constitutive equations for creep. 

 

3.4 Constitutive equations for creep 
 

Most of the discussion in this section is based on a review of constitutive equations for 

creep by White and Goodman [30].  Although the constitutive laws described here have 

been developed mostly for metals, they should be easily modified for the high 

temperature behavior of ceramics materials, particularly single crystal silicon.   

0.2 mm ( 101 ) 
<110> 
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3.4.1 General classification of constitutive equations 
 
Inelastic strains are usually considered as volume-conserving and are traditionally 

modeled as plasticity (strains subject to a yield condition and time-independent) and/or 

creep (strains with no particular stress threshold and exhibiting a time-dependence).  In 

classical ‘superposition models’, it is assumed that the total stain tensor εεεε may be 

composed of a thermoelastic strain εe and an inelastic strain εin which, in turn, may be 

divided into a plastic strain εεεεp and a creep strain εc 

ε  =  εe  + εin  =  εe +  εp +  εc.      (3.11) 

Further assumptions are normally made for a conventional plasticity theory lead to the 

formal constitutive equation structure.  Interactions between creep and plasticity are 

modeled using internal variables that do not solely apply to either the plasticity or creep 

terms. 

 
However, the classical constitutive formulation has been criticized because all the 

inelastic strain is fundamentally time-dependent.  This in turn calls for a ‘unified 

formulation’ that assumes a single measure of inelastic strain inε  given by a time-

dependent law of the form: 

,...),,,(ˆ 21 aaTinin σεε =     (3.12a) 

,...),,,(ˆ 21 aaTaa ii σ=      (3.12b) 

where T is temperature, ai’s are internal variables.  Thus, the difficulties of interaction are 

avoided in principle, but this approach has some disadvantages.  First, data-fitting may be 

difficult since many material properties having different time scales tend to be introduced, 

and second, it is often numerically expensive due to the high stress sensitivity of the 

strain rate function.  Nevertheless, the dislocation mechanics in combination with a 

“unified formulation” will form a potential candidate for a constitutive model of Si at 

elevated temperatures and high stresses. 

 
3.4.2 Creep laws for isotropic materials 
 
Often a set of data for creep strain εc at different tensile stresses σ, temperature T, and 

time t may be expressed as 
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),,,( tTgc σε =      (3.13a) 

),,( tTg
t

c σε
∂
∂=& .     (3.13b) 

Specific forms of this representation include: 

(a) ‘theta representation’ [31] 

{ } { })exp(1)exp(1 4321 ttc θθθθε −−+−−=    (3.14) 

(b) a form termed de Lamcombe [32] 
21

21
ppc tCtC +=ε   (0<p1<1,p2>1)    (3.15) 

(c) and that of Graham and Walles [33] 
3

32
3/1

1 tCtCtCc ++=ε ,     (3.16) 

where θ1, …, θ4, C1, …, C4 are fitted positive functions of σ and T. 

 

Equation 3.13 is the basis of ‘time-hardening’ and ‘strain-hardening’ constitutive laws 

that are used to extend test data to general variations of σ and T.  In time-hardening, 

Equation 3.13b is assumed to apply with instantaneous values of σ, T, and t so that t is 

employed as an internal variable.  In principle, this rule is incorrect, but reasonable 

results may often be obtained if σ varies slowly.  In strain-hardening, t is eliminated from 

Equation 3.13 to yield 

),,( cc Th εσε =&      (3.17) 

and this relation is assumed to apply with instantaneous values of σ, T, and t so that εc is 

employed as an internal variable measuring hardening and/or softening. 

 

These uniaxial constitutive laws can be generalized to multiaxial states by assuming that 

the relation between the Mises equivalent values cc εσε ,,&  is as in the uniaxial case and 

that cε& has the direction of the deviatoric stress σ’.  That is 

σσσε /'),,(
2
3 tTg

t
c

∂
∂=&     (3.18a) 

or 

σσεσε /'),,(
2
3 cc Th=& .    (3.18b) 
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It should, however, be noted that this single internal variable formulation would not be 

valid where tertiary creep is concerned since the hardening in primary creep and 

softening in tertiary creep are evidently different physical mechanisms. 

 

This generalized formulation can be further extended to single crystal constitutive models 

by considering the dislocation mechanics or hardening evolutions on each slip system of 

a crystal.  Anand and Balsubramanian [34] developed an elasto-viscoplastic constitutive 

model for polycrystalline face-centered-cubic (FCC) crystals at low homologous 

temperatures where the major mechanism of plastic deformation in ductile single crystals 

is dislocation glide on well-defined crystallographic slip systems in the crystal.  Single 

crystal Si, having a diamond structure, in which two superimposed FCC lattices are 

displaced by one quarter of the atomic spacing, can be modeled using the same process 

developed for the FCC materials because it shares the same slip systems in the crystal. 

 

3.5 Ceramics or Brittle materials creep testing 
 

Four-point bending testing has been extensively conducted for ceramic materials because 

of its relatively easy experimental setup and simple specimen preparation [35-37].  The 

four-point bending fixture is shown in Figure 3.5(a).  However, this method is not 

adequate to extract post-yielding mechanical properties, particularly for materials with 

asymmetric (between tension and compression) mechanical properties due to a time-

dependent redistribution of the stresses within the flexure specimen as it deforms further.  

When uniaxial tensile and compressive creep measurements are made, the forms of the 

constitutive equations are determined directly and the stress distribution in a specimen 

can be analyzed with ease.  The reverse process, however, is not straightforward, as the 

forms of the constitutive equations in tension and compression have to be assumed for the 

analysis [38]. 

 

Uniaxial compression testing, often performed when the tension test specimen may not 

be available due to the potential for brittle fracture, is straightforward in terms of test 

interpretation.  The compression creep testing setup is shown in Figure 3.5(b).  The most 
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critical aspect of the compression test is the need to make accurate measurements of the 

specimen deformation.  The simplest method is to measure the displacement of the 

loading rams after a long thermal settling, while feeler gauges or a long range optical 

telescope (utilizing SiC fiber attached on the platen of the compression creep testing 

fixture) can be successfully employed with ±1 µm and ±4 µm resolution, respectively.  

Friction between the load pad and specimen is also a critical concern, together with 

alignment issues associated with elastic/plastic buckling and the introduction of an 

undesirable bending moment.  Debschutz [39] determined the difference in behavior 

between frictionless creep and fully constrained creep, and claimed that the additional 

stress required to maintain a given creep rate, ranged from 6 to 10 % of the average creep 

stress for an aspect ratio of specimen base, 2a, to height, h, ranging from 1/3 to 1/1.5.  

High temperature solid lubricants, such as BN powder, can be applied on the interfaces to 

minimize the friction at elevated temperatures. 

 

In tensile testing, a uniform tensile stress is applied along the longitudinal axis of the 

specimen.  A key factor in this test is the specimen grip design.  In order to apply the load 

uniformly, the grips must not only hold the specimen without slippage, but also must 

prevent detrimental concentrated stress distributions from developing around the grip 

area.  Some examples of tensile specimens with various grip designs used for advanced 

ceramics are illustrated in Figure 3.6. 

These three different types of creep testing methods for advanced ceramics or particularly 

brittle materials are summarized in Table 3.3.  
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(a)      (b) 

.5 (a) Four-point bending fixture for high temperature ceramics testing [G. 
hl, Current testing methods—A critical assessment, Int. J. High. Techn. Ceram., 

o. 4, p211-225, 1988], (b) Compression creep testing fixture with SiC fibers 
on the platens to be used with an optical telescope measurement [S. M. 

orn, et al., Damage-enhanced creep in siliconized silicon carbide: 
nology, J. Amer. Ceram. Soc., Vol. 71, No. 7, p602-608, 1988] 

 
.6  Examples of tensile specimens used for advanced ceramics [G. D. Quinn, 
 and proof testing, in Engineered materials Handbook, Vol. 4, Ceramics and 
S. J. Schneider, Jr., Volume Chairman, ASM International, Metals Park, OH, 
, 1991] 
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Table 3.3  Comparison of flexure, tension, and compression creep testing 

Flexural 
testing 

Advantages: 
Low specimen cost 
Ease of experimental design 
Minimum of specimen material and preparation 

Disadvantages: 
Non-uniform stress distribution over the specimen cross-section 
Small volume under maximum stress 
Surface phenomena dominate 
Indirect determination of stress and strain 

Typical sources of error: 
Friction between specimen and loading points 
Twisting due to improper loading 
Assumption of linear elastic behavior 
Enhanced deformation under loading points 

Tensile 
testing 

Advantages: 
Uniform stress distribution 
Straight-forward calculation of stress and strain 
Simple load application and measurement 

Disadvantages: 
Difficult and complex experimental design such as gripping 
Expensive test equipment 
Specimen design and manufacture costly and time consuming 

Typical sources of error: 
Failure in gripped region 
Inaccurate accounting of temperature and stress gradient in 
specimen 
Unquantified bending stress 

Compressive 
Testing 

Advantages: 
Cost saving in material preparation 
Use of small specimens 

Disadvantages: 
Limited data on effects of porosity and cavitation 
Specimen alignment more difficult than with flexure and tension 

Typical sources of error: 
Failure to account for barreling 
Inaccurate accounting of temperature and stress gradient in 
specimen 
Stress distribution related to buckling 
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3.6 Summary 
 

This chapter has discussed creep, the slow continuous deformation of a material with 

time.  Discussions of creep mechanisms primarily developed for the steady-state creep 

regime lead to a conclusion that the creep process of single crystals most likely involves 

lattice diffusion mechanisms such as dislocation glide-climb and subgrain creep.  Si 

behaves similarly.  The creep experiments for silicon, notably by Alexander and Haasen, 

Myshlyaev et al., and Taylor and Barrett, and recently, Walters in support of the MIT 

microengine project, also provide clues on the controlling mechanisms of mechanical 

behavior of Si at high temperature and the key ingredients required for constitutive 

modeling of Si.  The dislocation mechanics in combination with a “unified formulation”, 

which assumes a single measure of inelastic strain instead of an inelastic strain as the sum 

of a plastic and a creep strain, will form a potential candidate for a constitutive model of 

Si at the temperatures and stresses of interest.  Finally, the brief comparisons of the 

ceramic testing methods pointed out that, in case of uniaxial tensile or compression creep 

testing, the forms of the constitutive equations are determined directly and the stress 

distribution in a specimen can be analyzed with ease.  This is far less straightforward for 

flexural testing.  In the experimental work, compression creep testing will be used to 

identify the uniaxial characteristics of silicon’s mechanical response to various 

temperature and stress levels, while flexural testing with or without notches will provide 

the response to multiaxial stress states.  The uniaxial test data will be used to calibrate the 

constitutive model and the flexural data will be used to validate/interrogate the model. 
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Chapter 4 
 

Experimental methodology 
 

 

4.1 Overview 
 

This chapter discusses the experimental methods proposed to investigate the mechanical 

behavior of Si at the temperatures and stresses of interest and to assess the feasibility of 

Si/SiC hybrid structures.  Separate subsets of the experimental results in turn will allow 

for both the calibration and validation of the Si constitutive model. 

 

As discussed in the previous chapter, a more reliable design for the Si/SiC hybrid 

structures requires better understanding of the mechanical behavior of Si and a more 

accurate constitutive model for Si.  In order to achieve these objectives, two types of 

testing methods were proposed: a uniaxial compression test and a four-point bend test.  Si 

uniaxial compression creep testing was designed to characterize the basic mechanical 

behavior of Si at high temperatures and stresses and to be used for the calibration of the 

Si constitutive model.  The four-point bend tests were conducted using three kinds of 

specimens to validate the responses of the Si material model to multi-axial stress states: a 

uniform Si specimen, a notched Si specimen, and a Si/SiC specimen.  Also, testing with 

each of these flexural specimens focused on tackling the three questions posed in the 

previous chapter associated with the pronounced thermal softening and strain-softening 

of Si in designing hybrid Si/SiC microturbine structures.  The Si/SiC hybrid flexural 

specimen was designed as a simple means to verify the utility of the hybrid structure 

concept for the MIT microengine. 

 

In Section 4.2, the high temperature material testing system is described in brief.  The 

next section discusses the equipment utilized for the Si uniaxial compression test and the 

testing procedure.  Si 4-point bend testing is discussed focusing on the strain-softening of 

Si and the effect of dislocation density on the peak load.  The experimental design of the 
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notched Si 4-point bend test is presented in Section 4.4 with the details of the stress 

concentration calculation and specimen preparation.  Also, a short description of 

Chemical Vapor Deposition (CVD) of SiC is given, as it is the key process for the 

preparation of Si/SiC hybrid flexural specimens.  The SiC film thickness variation within 

a wafer is discussed based on direct measurements. 

 

4.2 Test equipment 
 
The material testing system installed at the MIT Technology Laboratory for Advanced 

Composites (TELAC) is composed of four sub-systems:  an MTSTM 810 Load Frame, an 

InstronTM 8500 controller, an InstronTM 3118 ceramics testing system, and a data 

acquisition system with LabviewTM 5.0.  The ceramics testing system comprises a split 

furnace with electrical heating elements and an associated control console, alumina push 

rods with water-cooled adapters, and SiC testing fixtures.  Figure 4.1 shows the overall 

system configuration.  This system uses a 50 kN InstronTM load cell for both the 

measurement and control of the load.  The Linear Variable Differential Transducer 

(LVDT) embedded in the testing machine measures the absolute position of the actuator 

ram. 

 

Figure 4.2 and 4.3 show the compression anvils and the 4-point bend fixture made of SiC, 

respectively.  By adopting hemispherical and semi-circular supports, the fully-articulated 

compression anvils and 4-point bend fixture minimize any unwanted bending or torsional 

moments due to any misalignment in the load train or distortion of the specimen.  The 

spans between the inner rollers and the outer rollers of the 4-point bend fixture are 20 and 

40 mm, respectively.  The LVDT installed in the lower water-cooled adapter measures 

the deflection of the flexural specimen transmitted through an alumina internal rod 

housed inside the lower push rod. 

 

Analog signals from the load cell and LVDT are transmitted to an A/D converter 

(National InstrumentsTM GPIB interface) via the InstronTM 8500 controller, and then to a 

personal computer.  A LabviewTM 5.0 interface was used to display the output data in 

real-time on the computer screen and to store the data in the data storage device. 
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Details of the test equipment specifications can be found in Appendix A. 

 

 
Figure 4.1 Material testing system overall configuration 

 

 
Figure 4.2 Uniaxial compression test setup 
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Figure 4.3 Four-point bend test setup 

 compression creep test 

l design 

nd the mechanical behavior of Si over the temperature and stress 

r the MIT microengine and to calibrate the Si constitutive model, a 

 compression creep tests were performed for the temperatures and 

ble 4.1.  As was discussed in the previous chapter, friction between 

 specimen is a critical concern in compression testing, together with 

that might cause elastic/plastic buckling and undesirable stress 

els allowed by the machine and the resolution in the displacement 

o key factors in determining the specimen dimensions. 
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Table 4.1 Si <100> and <111> compression creep test map 
 

Normal Stress (MPa) 
 

10 20 40 60 80 100 120 

600    O O O O 

700   O O O O  

800  O O O O   Te
m

p.
 

(°
C

) 

900 O O O     

 

Considering these issues, the aspect ratio of specimen height to base diameter was chosen 

to be 2.5.  The specimen dimensions are 5 mm in base diameter and 12.5 mm in height.  

The computed load levels for these specimen dimensions are 2356.2 N for 120 MPa 

normal stress, which is somewhat higher than the recommended load capacity of the load 

train, specifically that of the alumina push rods (1 kN at 1500 °C, data not available at 

lower temperatures from the manufacturer).  The compression specimens were machined  

and provided by Lattice Materials, Inc. such that the multi-slip <100> or <111> 

orientations of single crystal Si grown by the Czochralski (CZ) method were coincident 

with the compression axis.  With no further processing, as-cut specimens were used for 

compression testing.  A representative creep curve is shown in Figure 4.4.  The loading 

rate of the current material testing system is limited due to problems such as chattering.  

In the current work, the testing machine was operated at a loading rate of 60 N/s.  The 

inelastic deformation present during the initial ramp loading is negligibly small and 

ignored from the creep data (See Appendix H).    Note that the amount of creep 

displacement is large enough to measure at the temperatures, load levels, and time frame 

of interest. 

 

While a creep test can be performed with reasonable accuracy, the high stiffness of the 

compression specimen prevents the determination of an accurate stress-strain curve using 

a constant-strain compression test.  Appendix C illustrates how the machine compliance 

affects the load-displacement measurement (in cases where an extensometer cannot be 

attached).  This problem is particularly severe for a material having a nonlinear response.  
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A 4-point bend test, in which the specimen is usually more compliant, can more easily 

identify the strain-softening behavior of Si at high temperatures, as evident in Chen’s 

experiments [1]. 
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Figure 4.4 Raw creep experimental data at 600 °C and 2356.2 N (120 MPa). 

 

4.3.2 Procedure of uniaxial compression creep test 
 

After assuring that the testing machine is in full working order, BN (Boron Nitride) 

powder is applied uniformly on the interface of the SiC load pad and the specimen to 

reduce the effect of friction during testing.  With the help of the Load Protect feature of 

the InstronTM controller, a slight compressive load is applied to hold the assembly of the 

specimen, load pads, and compression anvils in place as shown in Figure 4.2.  Sacrificial 

blocks can be placed around the specimen to prevent unexpected damage to the testing 

machine from the misuse of Load Control mode.  While the compressive load (usually 1 

% of the desired creep load) remains constant under the Load Control mode, the furnace 

is closed and heated to the desired temperature.  To avoid any interference due to 

thermally-induced strain, the entire apparatus is left to reach equilibrium for 1.5 hours 

after the target temperature is obtained.  A waveform of loading and unloading of an 
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additional compressive load (5 % of the desired creep load or 50 N, whichever is smaller) 

is repeated several times to improve the seating of the load train including the specimen 

and fixture.  At this point, a waveform is commanded to increase load to the desired value 

at a rate of 60 N/s.  After the test is completed, the specimen is unloaded.  Data is stored, 

and the apparatus is allowed to cool in an unloaded state until the specimen can be 

removed and analyzed.  Details of the test procedure can be found in Appendix B. 

 
4.4 Four-point bend tests 
 

4.4.1 Experimental design 
 

Four-point bend testing provides not only a simple means to validate the responses of the 

Si material model to multi-axial stress states as will be described in the following chapter, 

but also permits the investigation of the feasibility of Si/SiC hybrid structures.  Also a 

notched Si 4-point bend test was designed to assess the effect of stress concentration on 

the localized deformation. 

 
4.4.1.1 Si 4-point bend test 
 

The earlier work by Chen [1] identified the strain softening behavior of Si at high 

temperatures through a series of 4-point bend tests.  Figure 4.5 shows a Si 4-point bend 

load-displacement curve at 800 °C and 0.001 mm/s ram speed.  According to Sumino and 

his co-workers [2], it appears that the peak load in the Si 4-point bend test is a function of 

temperature, strain rate, and grown-in dislocation density.  While the effects of the 

temperature and strain rate on the peak load were considered, the effect of grown-in 

dislocation density was not explicitly studied in Chen’s experiments.  The experimental 

method chosen to further investigate the effect of the dislocation density in the crystal 

consisted of three steps: 

Step 1. Load or position of the actuator ram will be held at a load between the peak 

and plateau until static relaxation of the specimen occurs. 

Step 2. The peak load measured during the reload at a monotonic rate will be 

compared to the case without the static-relaxation step. 

Step 3. The above steps will be repeated for various load levels. 
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The dislocation density increased at the first loading step may be regarded as the starting 

dislocation density in the crystal for the second step, which in turn determines the peak 

load at the reloading step.  This experiment will also address how the static load 

combined with creep affects the overall load-displacement response.  Moreover, the 

discussion will extend to whether or not the structural design can rely on the upper yield 

strength of the material. 
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Figure 4.5 Si 4-point bend load-deflection curv
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Figure 4.6 Si flexural specimen with the nominal dimensions and material orientation 

 

4.4.1.2 Notched Si 4-point bend test 
 

In order to investigate the effect of stress concentration on the localized deformation 

when combined with the strain-softening characteristics of Si, a series of 4-point bend 

tests were performed with the notched specimens.  With the aid of linear elastic FE 

analysis, notch dimensions were determined to provide a range of stress concentration 

factors.  The fillet radii measured from the actual specimens were used.  Figure 4.7 shows 

the FE predictions of the effective stress distribution around the notches.  The stress 

concentration factors, defined by the ratio of the highest stress around the notch and the 

stress on the outer-most chord of the beam, are tabulated for the proposed notch 

dimensions in Table 4.2.  Note that the stress concentration factor is most sensitive to the 

fillet radii and notch depth, but relatively insensitive to the notch width.  In order to keep 

the nominal stress the same, the notch depth is controlled to be constant while the stress 

concentration factor is determined by the fillet radii.  Also, a deeper notch is preferred in 

order to isolate the effect of the notch from that of the load point. 
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Figure 4.7 FE predictions on the effective stress distribution around the notches.  (a) 25 
Width x 180 Depth, 7.5 Fillet Radius (b) 450 W x 180 D, 150 R (dimensions in µm) 
 

Table 4.2 Stress concentration factors corresponding to the proposed notch dimensions. 
 

Dimensions of notches (µm) Stress concentration factor, Kt 

250 (Width) x 200 (Depth), 7.5 (Fillet Radius) 6.4 

25 (W) x 180 (D), 7.5 (R ) 7.3 

25 (W) x 280 (D), 7.5 (R) 9.7 

450 (W) x 180 (D), 150 (R) 2.3 
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The notches were created by a Deep Reactive Ion Etching (DRIE) process, Recipe 

MIT69 and SF6, developed at the MIT Microsystems Technology Laboratory (MTL).  

Recipe MIT69 was designed for a high aspect ratio etch while Recipe SF6 was for an 

isotropic etch.  Details of the recipe can be found in Ref. [3].  The etched Si wafers were 

cut into the flexural specimens using a diesaw such that the prime cut <110> direction is 

coincident with the long axis of the specimen.  Figure 4.8 shows the microphotos of the 

notches of the flexural specimens.  Note the presence of fillet radii around the corners of 

the notches due to the characteristics of the DRIE process [4].  It is also worth noting that 

the etch depth varies depending on the size of the Photo Resist (PR) mask openings in 

this DRIE process as well as the duration of the etch. 

 

 

(a) 

Figure 4.8 Micrographs of the notches of the Si flex

 
200 µm
  

ural specimens. 
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(b) 

Figure 4.8 (continued) Micrographs of the notches of the Si flexural specimens. 

 

4.4.1.3 Si/SiC 4-point bend test 
 

Chemical Vapor Deposition (CVD) of SiC is the preferred approach to create SiC 

reinforcements for the Si/SiC hybrid structures [5].  Hyper-Therm, Inc., a partner of the 

MIT microengine project and a provider of CVD SiC/Si wafers, focused on the CVD SiC 

process development ensuring high-strength SiC with a low level of residual stress.  The 

CVD process for SiC is illustrated in Figure 4.9.  The recent CVD SiC films processed by 

Hyper-Therm, Inc. are shown to satisfy most of our specifications such as conformality, 

low surface roughness, high strength, and low levels of residual stress [6]. 
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Figure 4.9 CVD SiC processing (Courtesy of Hyper-Therm, Inc. and D. Choi, MIT, 

2002) 

 

Four-point bend testing with Si/SiC hybrid specimens as shown in Figure 4.10 was 

chosen to be a simple means to characterize the mechanical behavior of Hyper-Therm 

CVD SiC films at elevated temperatures and to prove the concept of Si/SiC hybrid 

microturbine structures.  In terms of loading similarity, the CVD SiC films on the outer-

most Si/SiC flexural specimen play a role of the reinforcement that is expected in the 

Si/SiC hybrid microturine rotor under centrifugal loading.  The overall dimensions and 

material orientations of the Si/SiC specimens are approximately the same as those of the 

Si flexural specimens.   

 

The thickness measurements of the Si/SiC wafers provided by Hyper-Therm, Inc. are 

listed in Table 4.3 with the SiC film thickness being a nominal one.  The nominal film 

thickness was obtained by measuring the weight increase during the CVD process 

divided by the wafer surface area and the SiC density. 

 

HCl 

MTS H2 

Si wafers 
CVD Reaction 

Vessel 

CH3SiCl3 + αH2 → SiC + 3HCl + αH2 

where α is the molar ratio of H2 to CH3SiCl3. 

CH3SiCl3: Methyltrichlorosilane (MTS) 
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Figure 4.10 Cross-section of a Si/SiC 4-point bend specimen
thickness is 15 µm.  The Si substrate was single-polished. 
 

Table 4.3 Thickness measurements of Si substrates and SiC
measurements are the nominal thickness. 
 

Batch number Si thickness (µm) SiC thick

2-336-2 1061.2 21

2-337-2 1059.4 42

2-338-2 1067.8 31

2-339-2 1069.9 10

2-340-2 1067.0 49

 

Figure 4.11 shows the thickness variation of a SiC film 

different batches.  These were deposited during the early CV

It is evident that the thickness of SiC film varies within a

which is due to the gas diffusion characteristics of the SiC
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performing numerical predictions. 
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Figure 4.11 Thickness variation of a SiC film within a wafer (Courtesy of Hyper-Therm, 
Inc. and D. Choi, MIT, 2002).  The numbers refer to wafers from the same process batch. 
 

4.4.2 Procedure of 4-point bend test 
 

After assuring that the testing machine is in full working order, the SiC 4-point bend 

fixture is assembled such that the specimen is centered and sandwiched between the two 

sets of rollers.  The entire fixture is transferred to the lower push rod, where the LVDT is 

raised to contact the center of the specimen through the opening in the bottom of the 

fixture.  With approximately 1 cm of clearance between the fixture and the top-most push 

rod, the furnace is closed and heated to the desired temperature.  To avoid any 

interference due to thermally induced strain, the entire apparatus is left to reach 

equilibrium for 1.5 hours after the target temperature is obtained.  At this point, the 

fixture is carefully brought up to make a contact with the top-most push rod.  For a 

monotonic loading experiment, a waveform is commanded to move the actuator ram to 

the desired value at the rate of interest.  After the test is completed (fracture or maximum 

displacement achieved), the specimen is unloaded.  For a creep test, the control mode is 

switched from position to load control, and a waveform is commanded to increase the 

load to the desired value at a rate of 1 N/s.  After the test is completed (fracture or desired 
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creep time achieved), the specimen is unloaded.  Data is stored and the apparatus is 

allowed to cool in an unloaded state until the specimen can be removed and analyzed. 

(See Appendix B for details of the test procedure.) 

 

4.5 summary 
 

This chapter has described the experimental methods used to investigate the mechanical 

behavior of Si as a function of temperature and stress and to assess the feasibility of 

Si/SiC hybrid structures.  Si uniaxial compression creep testing was chosen to 

characterize the mechanical behavior of Si at high temperatures and stresses and to 

calibrate the Si constitutive model.  A 4-point bend test provides not only a simple means 

to validate the responses of the Si material model to multi-axial stress states, but a simple 

way to investigate the feasibility of Si/SiC hybrid structures.  Once completed, these 

experiments will answer the three questions posed in the previous chapter associated with 

the pronounced thermal softening and strain-softening of Si in designing hybrid Si/SiC 

microturbine structures. 

 

The next chapter presents the development of a constitutive model for Si at high 

temperatures and stresses based on the mechanisms discussed in the previous chapter.  

The Si compression creep testing will be fed into the calibration process of the Si model.  

Experimental results as well as model validation will also be discussed. 
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Chapter 5 
 

A constitutive Model for Single Crystal Si at 
Elevated Temperature 
 

 

5.1 Overview 
 

For homologous temperatures in the range of 0.5 to 0.8, single crystal Si, with an initially 

small grown-in dislocation density on the order of 106 to 107 #/m2, deforms with a 

behavior characterized by a peak in the stress-strain response.  This softening is caused 

by the rapid increase in the number of dislocations by multiplication mechanisms such as 

Frank-Read sources [1].  In other words, the plastic shearing rate at the macroscale 

increases with the increase in the dislocation density.  In creep experiments, the rapidly 

multiplying dislocations are responsible for the initial accelerating primary or incubation 

creep stage observed in single crystal Si.  The infrared photomicrographs shown in Figure 

5.1 illustrate the formation of dislocations within a Si crystal in its early creep stages due 

to a Frank-Read source.  The plastic flow favored by the fast dislocation multiplication in 

diamond-structured materials was investigated by many researchers, including Haasen 

and co-workers [2, 3].  The initial stages of deformation  where the dislocation density is 

rapidly multiplying will be termed ‘Regime 1’ from this point on in the present work.  As 

the Si crystal deforms further, the influence of interactions of dislocations becomes 

important.  The increase in the dislocation density, to the extent of forming subgrain 

structures, leads to a deformation regime where the material history cannot be described 

by a single measure of the dislocation density but also requires description of the high 

degrees of interactions among dislocations.  Myshlyaev and co-workers estimated the 

activation energy as being about equal to that for self-diffusion and observed a high stress 

dependence for Si in this deformation regime [4, 5].  The TEM micrographs in Figure 5.2 

show subgrain structures formed within Si, which in turn implies a high degree of 

interactions between dislocations during the deformation.  For simplicity, the deformation 



 

 

regime characterized by the complicated interactions of dislocations will be termed 

‘Regime 2’ from this point onward. 

 

         
(a) (b) 

Figure 5.1 (a) Infrared photomicrograph of deformed Si. Dislocations and trails decorated 
with Cu.  [W. C. Dash, J. Appl. Phys. 29, 705 (1985)].  (b) Si.  Infrared photomicrograph 
of a spiral Frank-Read source decorated with Cu in the interior of a twisted specimen.  
Viewed in [111] direction.  [W. C. Dash, in “Dislocations and Mechanical Properties of 
Crystals”, J. C. Fisher et al., eds., p 57 (1957)]. 
 
 

(a)  
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This chapter presents the development of a constitutive model to account for these 

behaviors.  An elasto-viscoplastic constitutive model for the deformation of single crystal 

Si is presented in Section 5.2.  A detailed description of the models for Regimes 1 and 2 

and the transition between these two regimes is given, together with a complete 

framework for the displacement-controlled isotropic rate-dependent plasticity.  Section 

5.3 presents calibration of the model against the compression creep experiments on Si 

performed at MIT in order to determine the values of the material parameters required for 

the model.  In section 5.4, the calibrated model is then used to predict the response of Si 

for a series of four-point bend tests at elevated temperatures.  This chapter concludes with 

remarks on the possible additional improvements to the model, as well as its usefulness 

as a design tool. 

 

5.2 Constitutive equations 
 

In the present work, an elasto-visoplastic constitutive model for the deformation of single 

crystal Si, initially containing a low dislocation density in the multi-slip <100> and 

<111> orientations at homologous temperatures of 0.5 to 0.8, is formulated based on the 

two deformation mechanisms described above.  The constitutive model employs two 

scalar internal variables: a mobile dislocation density ρm, which is assumed to be equal to 

the total dislocation density, ρm = ρ, which governs the magnitude of the plastic shearing 

rate in the initial stages of deformation where the dislocation density is rapidly 

multiplying, and an isotropic resistance to plastic flow, s, which has dimensions of stress, 

and represents (in a collective sense) the resistance to plastic flow offered by the 

dislocation substructures in the later stages of deformation after a sufficiently large 

mobile dislocation density has been generated.  The transition between the two 

deformation regimes takes place at a certain critical dislocation density, above which the 

material history cannot be described by a single measure of the dislocation density but by 

the high degrees of interactions among dislocations.  This critical dislocation density 

appears to be a function of only the effective shear stress. 
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The constitutive model presented here may not be able to represent certain aspects of the 

behavior of single crystal Si.  Currently, this model does not incorporate details of the 

specific active slip systems or their interactions within crystals, which may play an 

important role in the predictions of anisotropy or slip bands formed in the material.  

Instead of a crystal plasticity framework, an isotropic elasto-viscoplastic constitutive 

model will be formulated.  An extension to a crystal plasticity framework will be 

discussed in Section 5.5.  In the following derivations of the model, Gurtin’s notation, 

which is now common in modern continuum mechanics, will be used [6].  The frame-

work of this constitutive model is based on the previous work by Anand and co-workers 

[e.g., 7, 8]. 

 

5.2.1 Governing Variables 
 

The governing variables in this constitutive model are: 

),,,,,( sp ρθFFT ,    (5.1) 

where T is the Cauchy stress, F is the deformation gradient tensor, pF is the plastic 

deformation gradient tensor, θ is the absolute temperature in Kelvin, ρ is the dislocation 

density, and s is the isotropic slip resistance.  The deformation gradient tensor F  is 

defined by a linear operator that relates every material element in the undeformed 

configuration to the corresponding material element in the deformed configuration.  The 

deformation gradient F can be multiplicatively decomposed as 

 peFFF = ,      (5.2) 

where eF  (det eF >0) is the elastic part and pF (det pF =1) the plastic part.  In the elasto-

plasticity theory, an elastically deformed configuration is assumed to exist conceptually 

somewhere between the deformed and undeformed configurations.  While the elastic part 

of the deformation gradient represents the elastic distortion of the material, the plastic 

part corresponds to the cumulative effect of dislocation motion on the active slip systems. 

 

The dislocation density, ρ, and the average slip resistance, s, are the two key scalar 

internal variables in this constitutive model that represent the material history during the 

deformation.  The dislocation density, ρ, and its travel speed, v , determine the internal 



 

 89 

shear resistance of the material and in turn the plastic shear strain rate in the early stages 

of deformation, Regime 1.  The isotropic resistance to plastic flow, s, having the physical 

dimensions of stress, represents the resistance to plastic flow offered by the dislocation 

substructures in the later stages of deformation, Regime 2.  The evolution of the variable, 

s, accounts for the shape of the isotropic hardening or primary creep (decelerating creep 

rate followed by a steady-state secondary creep) of the material. 

 
5.2.2 Equations for Stress 
 
The basic constitutive equation for Si is given by the following linear relation: 

])([ 0 1ET θθα −−= T
eC ,     (5.3) 

where T is the symmetric second Piola-Kirchoff stress tensor, 
Teee −−

≡ TFFFT
1

)(det ,     (5.4) 
eE is the strain tensor defined by the Green elastic strain measure,  

)(2
1 1FFE −= eee T

.      (5.5) 

C is a fourth-order isotropic elasticity tensor given by:   

11⊗−+≡ )(2 3
2 µκµIC ,     (5.6) 

where µ and κ are the shear and bulk modulus, respectively.  1Tα is the second-order 

isotropic thermal expansion tensor, and θ and θ0 are the absolute temperature and a 

reference temperature, respectively.  For simplicity, small changes in temperature are 

assumed in the model so that the material parameters can be considered constant.  The 

constitutive equation given above is nothing more than an extension of the generalized 

Hooke’s law. 

 

5.2.3 Flow Rule 
 
The evolution equation of the plastic deformation is given by 

ppp FLF =& ,       (5.7) 

where  Lp is the plastic velocity gradient, which is additively decomposable into a 

symmetric part, Dp, the plastic stretching, and a skew part, Wp, the plastic spin, i.e.: 
pppp DWDL =+= , 0W =p .    (5.8) 
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It is worth noting that the isotropic constitutive law has no plastic spin.  Thus, the 

evolution equation of the plastic deformation is given by 
ppp FDF =& ,       (5.9) 

with 

τ
γ

2

'TD pp &=
,       (5.10) 

where 'T  is the deviatoric part of T , 

1TTT )(3
1' tr−= ,      (5.11) 

τ  is the equivalent shear stress defined by 

''
2
1 TT ⋅=τ ,      (5.12) 

and 
pγ& is the equivalent plastic shear strain rate given by 

ppp DD ⋅= 2γ& .      (5.13) 

 

5.2.4 Evolution Equations 
 

Now what remains to be determined in the model is the plastic shearing rate, pγ& .  As 

discussed in Section 5.1, the deformation of single crystal Si at elevated temperatures is 

governed by rapidly multiplying dislocations and their complicated interactions.  The 

mobile dislocation density, assumed to be equal to the total dislocation density, ρ = ρm, 

plays an important role in determining the plastic shearing rate in the early stages of 

deformation, Regime 1, and the isotropic shear resistance, s, takes over the role of the 

dislocation density in the later stages of deformation, Regime 2.  Both scalar internal 

variables represent the material history in each deformation regime.  The generic 

functional forms for the two regimes and the transition between the two regimes are: 

 

Regime 1:  )( critρρ ≤  ),,(ˆ ρθτγγ pp && = , ),,(ˆ ρθτρρ && =  (5.14a) 

Regime 2: )( critρρ >   ),,(ˆ spp θτγγ && = , ),,(ˆ sss θτ&& =   (5.14b) 

Transition between two regimes:  )(ˆ τρρ critcrit = .  (5.14c) 
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The current section describes the details of the evolution equations for each deformation 

regime, and the transition between the two models will be discussed in the next section. 

 
5.2.4.1 Regime 1 )( critρρ ≤  
 
From the experimental and theoretical knowledge of the dislocation velocity and 

dislocation density, many researchers, including Haasen and co-workers [2, 3], have tried 

to construct the macroscopic plastic strain rate pγ&  using the general kinematic relation 

for any stress and temperature.  An isotropic constitutive model has also been previously 

summarized by Dillon and co-workers in this deformation regime [9].  The plastic shear 

strain rate produced by a crystal is, in general, determined by the Orowan equation [10], 

vbm
p ργ =& ,       (5.15) 

where ρm is the mobile length of dislocations per cubic centimeter, b is the Burgers 

vector magnitude, and v is the average velocity of these dislocations.  For small 
deformations, the mobile dislocation ρm can be replaced with the total dislocation density 

ρ.  They found that a statistical arrangement of the dislocations produces a mean internal 

stress , 

ραµτ bi = ,       (5.16) 

where µ is a shear modulus and α is a constant.  At certain points in the crystal, τi will 

counteract the applied stress, τ .  They found that it is an effective stress, the difference 

between the internal stress and the applied stress, i.e.: 

ieff τττ −= ,       (5.17) 

that determines the dislocation velocity and the multiplication rate.  Combining the 

Orowan equation and the dislocation multiplication law (which states that the 

multiplication of moving dislocations occurs in proportion to their moving length and the 

distance traveled or dρ = ρ⋅v⋅dt⋅δ, where δ is the multiplication parameter) yields the 

multiplication rate as 

effKτδ = ,       (5.18) 

where K is a multiplication rate constant. 
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Then, in Regime 1, the dislocation velocity and then the plastic shear strain rate are taken 

as 

vbpp ρρθτγγ == ),,(&̂&
, ),,(ˆ ρθτvv =     (5.19a) 

( ) ( ) ( )



−
=

τττθ signkQv
v m

eff
/1

00 //exp
0

 0
0

>
≤

eff

eff

if
if

τ
τ

  (5.19b) 

( ) ( ) ( )



−
=

τττθρ
γ

signkQvb m
eff

p
/1

00 //exp
0

&
0
0

>
≤

eff

eff

if
if

τ
τ

.  (5.19c) 

 

Finally, the evolution equation for the dislocation density in Regime 1 is taken as 

phγρ && = , effb
Kh τ





= .      (5.20) 

 

5.2.4.2 Regime 2 )( critρρ >  

 
In this deformation regime, the previous work of Myshlyaev and his co-workers [4, 5] is 

important.  They showed that over a wide range of temperatures and stresses (900 °C to 

1300 °C and 20 to 150 MPa) the activation energy of Si crystals is temperature-

independent and decreases linearly with increasing stress.  The steady creep rate may be 

represented by the kinetic equation 






 −∆−=




 ∆−=
θ

σγ
θ

γγ
k

VF
k
Gp expexp 0

*

0
&&&

,    (5.21) 

where 0γ&  is a reference shearing rate, ∆G* is the activation free enthalphy or the Gibb’s 

free energy for activation, ∆F is the activation free energy required to overcome the 

obstacles to slip without the aid of an applied shear stress, and V is the activation volume.  

This kinetic equation can be rearranged as 












 −∆−=

sk
Fp τ
θ

γγ 1exp0
&&

     
(5.22) 

with the isotropic shear resistance s = ∆F/V, which is now a specific form of the 

suggestion by Kocks et al. [11], 
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
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
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


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








−∆−=

qp
p

sk
F τ
θ

γγ 1exp0
&&

    (5.23) 

with p = 1 and q = 1. 

 
To allow for both primary and steady-state creep, the isotropic slip resistance, s, is 

allowed to vary, and the following simple evolution equation for s is adopted: 

phs γ&& = , 




 −=

*
10 s

shh
’     (5.24) 

where h0 and s* are additional non-zero positive-valued material parameters that govern 

the primary creep response.  The material parameter s*, which is considered temperature-

dependent, is however shown to be reasonably insensitive to temperature changes over 

the temperature ranges of interest.
 

 
5.2.5 Transition between two models 
 

A simple criterion for the transition between Regimes 1 and 2 is the level of the 

dislocation density within the crystal: as long as the dislocation density is less than a 

critical value, then the flow and evolution equations for Regime 1 are operative, and 

Regime 2 becomes operative as soon as the dislocation density reaches the critical value.   

 
According to the creep experiments performed at MIT, the critical dislocation density 

appears to be nearly insensitive to temperature changes.  Thus, the functional form of the 

critical dislocation density can be given by 

)(ˆ τρρ critcrit = .      (5.14c) 

A simple power law, however, is not appropriate because it breaks down when the 

applied stress is so small such that the computed critical dislocation density is smaller 

than the initial value.  In order to avoid this problem, the critical value ρcrit is taken to be 

a modified power-law function of the equivalent shear stress: 
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Here, the parameter ρcrit0 is set to be somewhat greater than the initial dislocation density 

ρ0 so that the inequality condition does not fail at the first root.  Furthermore, in order to 

guarantee the smooth transition between the two regimes, the plastic shear strain rates for 

each regime should be the same when the transition takes place.  By equating these two 

plastic shear strain rates for each regime at the transition, i.e., 

21 regime
p

regime
p γγ && =  at )( critρρ = ,    (5.26) 

the shear resistance, s, can be initialized for Regime 2 as follows: 

)(ˆ00 critss ρ=        (5.27a) 
1
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.   (5.27b) 

 

5.3 Model Calibration 
 

The constitutive model has been implemented by writing a subroutine VUMAT for a 

commercial finite element program, ABAQUS EXPLICITTM [12] to facilitate simulations 

of Si structures.  The material parameters in the model have been calibrated using the 

compression creep experiments on Si performed at MIT and also those reported in the 

literature [4, 9]. 

 

The material parameters in the model can be classified into three groups based on what 

they do: (i) material parameters for Regime 1, which govern the initial accelerating creep 

and strain softening, (ii) material parameters for Regime 2, which determine the primary 

and secondary creep and strain-hardening, and (iii) the transition parameters.  These three 

material parameter groups are somewhat independent of each other. 
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5.3.1 Material parameters for Regime 1 
 

First, the material parameters for Regime 1 consist of the following: 

(b, v0, τ0, Q, kB, m, ρ0, ρinit, α, K), 

where b is the Burgers vector magnitude, v0 is the reference dislocation velocity, τ0 is the 

reference shear stress, Q is the activation energy, kB is Boltzmann’s constant, m is the 

strain rate sensitivity, ρ0 is the reference dislocation density, ρinit is the initial dislocation 

density in the crystal, α is the coefficient of the internal shear resistance, and K is the 

dislocation multiplication rate constant.  Dillon and co-workers [9] found the values for 

these material parameters to calibrate their model to fit the previous experiments 

performed by Sumino et al [13].  While most of the values suggested by them were 

reused here, α and K were adjusted to fit the incubation creep stage of the compression 

creep experiments performed at MIT by the trial and error method.  α was adjusted from 

0.3 to 2.0, and K from 3.1E-4 m/N to 2.0E-4 m/N.  While K determines the initial slope 

of the creep-time response, a has an effect on the acceleration/deceleration of the 

dislocation multiplication rate and then the creep rate.  Thus, the shape of the incubation 

creep stage is determined by the combination of these two parameters.  These two 

parameters are also critical in determining the upper yield point in the stress-strain 

response.  The material parameters are found to be: 

b = 3.83E-10 m 

v0 = 4.3E-4 m/sec 

τ0 = 5.5 MPa 

Q = 3.47E-19 J 

kB = 1.38E-23 J/K 

m = 0.9091 

ρ0 = 2E7 #/m2 

α = 2.0 

K = 2.0E-4 m/N 

 

Note that the strain sensitivity of 0.9091 (i. e., close to unity) may support the idea of a 

deformation mechanism in which the dislocations glide through the lattice opposed by a 

resistance caused by the Peierl’s stress with less active dislocation interactions. 
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5.3.2 Material parameters for Regime 2 
 

Second, material parameters for Regime 2 are 

( 0γ& , ∆F, h0, s*), 

where 0γ&  is the reference plastic shear strain rate for Regime 1, ∆F is the activation free 

energy, h0 is the initial hardening coefficient, and s* is the saturation value of the shear 

resistance.  For the first two parameters, the values reported by Myshlyaev and co-

workers [4] were further calibrated using the compression creep experiments on Si 

performed at MIT.  Since they, however, focused only on the secondary creep stage, the 

next two parameters (hardening parameters) that determine the primary creep were not 

available in their work.  These parameters were found by fitting the creep experiments at 

MIT by the trial and error method.  The calibration results are as follows: 

0γ&   = 0.5E9 sec-1 

∆F = 6.6E-19 J 

h0 = 12.5 GPa 

s* = 330 MPa 

 

5.3.3 Material parameters for transition between two regimes 
 

Finally, in order to obtain the transition parameters,  

(A, n, ρcrit0), 

where A and n are the constants for the power law equation and ρcrit0 is the initial critical 

dislocation density, the critical dislocation density needs to be found for each temperature 

and stress.  Once a series of the critical dislocation densities for the sets of each 

temperature and stress are obtained by fitting the experimental results, specifically those 

from the compression creep experiments at MIT, the transition parameters can be found 

by constructing the power law equation with a least-square method.  It is worth noting 

that the critical dislocation density, or the internal shear stress at this point, is proven to 

be insensitive to temperature changes as shown in Figure 5.3.  The initial critical 

dislocation density ρcrit0 is chosen to be large enough to prevent the inequality condition 



 

 97 

from Regime 1 from failing due to the first real root.  The transition parameters found are 

as follows: 

A = 208.2 

n = 2.11 

ρcrit0 = 2E8 #/m3 
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Figure 5.3 Construction of a power law equation for the critical dislocation density using 
a least-square method.  Note that the critical dislocation density is shown to be insensitive 
to temperature changes, only dependent on stress. 
 

The stress exponent n in the power law equation is found to be close to 2.0.  Note that the 

internal shear stress in Equation 5.16 in Regime 1 is also proportional to the square root 

of the dislocation density.  This in turn provides a good physical correlation with the 

stress exponent of the power law for the critical dislocation density to be close to 2.0.  In 

this power law equation obtained from the creep experimental data and model calibration, 

the shear resistance is determined by the critical dislocation density at the transition 

between the two defomation regimes and initialized for Regime 2. 

 

In the model calibration, finite element calculations using ABAQUS/EXPLICITTM were 

performed for simple compression with a single ABAQUS-C3D8R element, a reduced 
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order three-dimensional continuum element, subjected to the appropriate load and 

temperature.  The material model implemented in the subroutine VUMAT of 

ABAQUS/EXPLICITTM is compiled at the beginning of each finite element calculation.  

The material parameters were fitted to the experimental results through this finite element 

calculation by the calibration method described in this section.  Although this calculation 

performed on a single element under constant stress or pressure is inappropriate to 

simulate the actual boundary conditions for the uniaxial compression creep testing, where 

in effect the cross sectional area constantly changes with deformation, the error in the 

stress associated with the area change is at most a few percent.  Considering the 

experimental errors inherent in the compression testing, this error can be regarded 

negligible.  Figures 5.4 (a) ~ (d) show the calibration results of the Si model fitted against 

the creep experiments; the fit is reasonably satisfactory.  At relatively low temperatures, 

the model can describe the observed incubation creep stage with good strain sensitivity 

and temperature dependence.  At high temperatures, the incubation creep stage is almost 

negligibly small, and the model can be satisfactorily fit to the primary and secondary 

creep regimes. 

 

In order to validate the calibration of the model using a single element, a fine mesh 

defined by axisymmetric elements, ABAQUS-CAX4R, was considered as shown in 

Figure 5.5  Here the SiC load pad is modeled as a rigid surface on which the constant 

creep loads can be applied.  The friction coefficient of 0.1 was used for the contact 

interface that consists of a pair of SiC load pads, a Si specimen, and BN (Boron Nitride) 

solid lubricant.  The finite element result using this fine mesh was compared with those 

of the model and the experimental results in Figure 5.6.  Although the deformation of the 

specimen is nearly uniform, the overall recorded displacement of the rigid surface in this 

calculation was somewhat smaller than those of the model prediction using the single 

element mesh.  The smaller creep strain results from the frictional dissipation in the 

interface as well as the cross sectional area change of the specimen with the creep strain 

increase.  This leads to an increase in the critical dislocation density ρcrit of a few percent. 
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Figure 5.5 Axisymmetric FE mesh for uniaxial compression (creep) testing. 
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5.4 Model Validation 
 

This section presents more details of the experimental results for the compression creep 

tests and describes the qualitative behavior of the calibrated model for monotonic 

loading.  The predictive capabilities of the model were also verified by comparing the 

load-deflection response of Si in a series of four-point bend tests: notched beams in 

monotonic loading by Chen [14], tests for various loading histories, and tests with 

notched Si specimens and Si/SiC hybrid specimens. 

 

5.4.1 Si uniaxial compression creep test 
 

Creep tests in unaixial compression, with n-type single crystal Si in multi-slip <100> and 

<111> orientations, were conducted over a temperature range of 600 to 900 °C and a 

normal stress range of 10 to 120 MPa.  The test results were used to understand better the 

mechanical behavior of single crystal Si at elevated temperatures and to calibrate the Si 

constitutive model. 

 

5.4.1.1 Experimental results 
 

Formation of slip bands in a compression specimen 

 

A creep specimen loaded in a <100> orientation tested at 700 °C and 80 MPa was 

prepared to investigate the deformation pattern at the microscale.  A nominal strain of 

0.03 was recorded for this specimen after approximately 8 hours of creep.  The specimen 

was mounted in an epoxy molding compound such that the (100) plane of the crystal was 

exposed, and then polished progressively, finishing with 0.3 µm alumina grit.  The 

uniform slip bands shown in Figure 5.7 were revealed after etching in a solution (97 % 

HNO3 + 3% HF (45 % concentration)) for 2 minutes.  The slip bands revealed on the 

(100) plane are aligned in <110> directions.  This is consistent with the active family of 

slip planes being the <111> as expected for diamond (and FCC) structures.  Although the 

micrographs do not allow for the estimation of the dislocation density nor the subgrain 

structures of dislocations in the crystal, the formation of the uniform slip bands shown in 
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the micrographs of the compression specimen indicates the high degree of plasticity as 

well as the homogeneous nature of the deformation. 

 

 
(a) 

 
(b) 

Figure 5.7 Formation of slip bands in a tested compression specimen with the multi-slip 
system <100> orientation coincident with the compression axis at 700 °C and 80 MPa. 
 

<110> (100) 



 

 104 

Effect of crystal orientations on Si creep 

 

Two multi-slip <100> and <111> orientations in the compression axis were considered in 

order to investigate the effect of crystal orientations on Si creep.  Two sets of the creep 

test results for each orientation were compared in Figure 5.8.  Considering the 

experimental errors associated with the compression creep tests, the creep curves for 

single crystal Si in the two multi-slip orientations are indistinguishable in terms of the 

macroscale creep response.  To evaluate the validity of the experimental results, a brief 

analysis is given in this section. 
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Figure 5.8 Comparison of the experimental creep data for multi-slip systems <100> and 
<111> orientations 
 

Diamond structures and FCC crystals have twelve slip systems.  There are eight slip 

systems activated when loaded in the <100> orientation as described in Table 5.1, and the 

slip activity on all the systems is equal.  Using the crystal plasticity relations, an 

equivalent plastic strain rate can be expressed by a slip rate, αγ& , on the active slip 

systems as follows.  The plastic velocity gradient pL  is defined by a flow rule as: 
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∑ ⊗== −

α

αααγ nmFFL && 1ppp ,    (5.28) 

where 
αα nm ⊗ represents the slip systems in the crystals.  By definition, the equivalent 

plastic strain rate is: 

''3/2 ppp DD ⋅=ε& ,      (5.29) 

where 'pD is the deviatoric part of the plastic stretching, pD , 

1DDD )( '
3

1' ppp tr−= ,     (5.30) 

with the plastic stretching, pD , defined by the symmetric part of the plastic velocity 

gradient, pL , 

)(2
1

Tppp LLD += .      (5.31) 
 

By substituting all eight slip systems active in the <100> orientation in Equation 31, the 

expression for the equivalent plastic strain rate for the multi-slip <100> orientation is 

obtained as: 
αγε && 0.2=p .       (5.32) 

 

Similarly, for the multi-slip <111> orientation, where six slip systems are active, the 

equivalent plastic strain rate is: 
αγε && 633.1=p

.       (5.33) 

 

According to the analysis above, ideally the strain rate for compression in the <100> 

orientation is expected to be approximately 18 % more than that for the <111> 

orientation.  However this is less than the experimental scatter present in the test results.  

As was discussed in Chapter 3, the sources for the experimental errors in compression 

creep testing include the friction between the load pad and specimen, seating of the load 

train, and any misalignment that might cause elastic/plastic buckling and undesirable 

stress gradients.  Moreover, misalignment in the machining of specimens may result in 

changes in the active slip systems, and consequently the macroscale deformation. 
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Table 5.1 Active slip systems in the multi-slip <100> and <111> orientations for FCC 
crystals.  Components of mαand  nα are expressed with respect to an orthonormal basis 
associated with the crystal lattice. 
 

Active slip systems in the <100> 
orientation 

mα                           nα 

Active slip systems in the <111> 
orientation 

mα                           nα 
2

1  - 2
1   0     3

1   3
1   3

1  

2
1   0 - 2

1      3
1   3

1   3
1  

2
1   0  2

1     - 3
1   3

1   3
1  

2
1   2

1   0     - 3
1   3

1   3
1  

2
1   0 - 2

1      3
1  - 3

1   3
1  

2
1   2

1   0      3
1  - 3

1   3
1  

2
1  - 2

1   0     3
1   3

1  - 3
1  

2
1   0  2

1       3
1   3

1  - 3
1  

2
1   0  2

1     - 3
1   3

1   3
1  

2
1   2

1   0    - 3
1   3

1   3
1  

0  2
1   2

1      3
1  - 3

1   3
1  

2
1   2

1   0     3
1  - 3

1   3
1  

2
1   0  2

1      3
1   3

1  - 3
1  

0  2
1   2

1      3
1   3

1  - 3
1  

 

 

 

Activation energy and stress exponent 

 

The validity of the creep experiments is again discussed in terms of the activation energy 

and the stress exponent.  Often the steady-state creep rate can be correlated with both 

stress and temperature by a power law of the form: 

)/exp( RTQA c
n −= σε& ,    (5.34) 

where A is a material constant, n is a stress exponent, Qc is the creep activation energy, R 

is the gas constant (8.31 Jmol-1K-1), and T is the absolute temperature in Kelvin.  As 

pointed out by Haasen and co-workers [2, 3], this empirical equation also can be used to 

express the functional dependence of the strain rate at the stationary stage (inflection 

point or point of a maximum strain rate) on stress and temperature.  This stationary point 

in a creep curve and the lower yield point in a monotonic loading share the same strain 

rate, IPε& , and stress, σLY.  In other words, the monotonic loading at a strain rate, IPε& , 

which in a creep test  under stress, σLY, occurs at the stationary stage, yields the same 

lower yield stress, σLY.  A power law equation was obtained using the maximum strain 

rates (at the stationary points) of the creep curves at the creep temperatures and stresses. 
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Figure 5.9 Activation energy and stress exponent for a power law equation to determine 
the functional dependence of the strain rate at the stationary point on temperature and 
stress 
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The activation energy, Qc, of 213.3 kJ/mol and stress exponent, n, of 3.3 were obtained 

using a least-square method, as illustrated in Figure 5.9.  This is in good agreement with 

Haasen and co-worker’s result [2, 3] who obtained an activation energy Q of 231.6 ± 4.8 

kJ/mol and stress exponent of 3. 

 

5.4.1.2 Model response to monotonic loading 
 

The responses of the model to a dynamic loading (constant strain rate or constant ram 

speed) have been investigated further.  Using the same finite element mesh as the one in 

the model calibration, the uniaxial compression testing was simulated for a series of 

loading conditions with various temperatures, strain rates, and grown-in dislocation 

densities.  Figure 5.10 illustrates the qualitative behavior of this model for the response to 

a dynamic loading.  The compression testing of Si, when performed with a constant strain 

rate, is characterized by a pronounced upper yield strength followed by strain-softening, 

an easy glide region, and strain-hardening similar to that for metals [15].  As supported 

by the experimental results in the literature [13, 16], the upper yield strength increases 

with the decrease in temperature, the increase in strain rate, and the decrease in the 

grown-in dislocation density.  Moreover, the strain-hardening curves after an easy glide 

region appear to converge.  With the dislocation density in the crystal increased to a level 

which yields high levels of interaction between dislocations, the deformation mechanism 

becomes less sensitive to the changes in temperatures, strain rate, and rather obviously, 

the dislocation density. 
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(b) 

Figure 5.10 Characteristics of the model in response to a dynamic loading for uniaxial 
compression testing: (a) Temperature dependence, (b) strain rate dependence, and (c) the 
dependence of the grown-in dislocation density in the crystal. 
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(c) 

Figure 5.10 (continued) Characteristics of the model in response to a dynamic loading for 
uniaxial compression testing: (a) Temperature dependence, (b) strain rate dependence, 
and (c) the dependence of the grown-in dislocation density in the crystal. 
 

The quantitative response to dynamic loading will be investigated in the next section.  

The high stiffness of the uniaxial compression specimen usually does not allow us to 

measure strain-softening behavior accurately.  Therefore, instead of compression testing, 

four-point bend testing with a low specimen stiffness will be used to characterize the 

strain-softening behavior. 

 

5.4.2 Si 4-point bend test 
 

5.4.2.1 Model response to monotonic loading 
 

The predictive capabilities of the model were verified by comparing the load deflection 

response of Si in four-point bending at various temperatures and strain rates.  A Si 

flexural specimen with dimensions of 1 mm thick, 8.8mm wide, and 50 mm long was 

modeled with ABAQUS-CPE4R elements (reduced order plain strain continuum 
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element) as shown in Figure 5.11 (a).  Symmetry is assumed, so only a single inner and 

outer rollers are modeled.  Both the inner and the outer roller, modeled with rigid 

surfaces, form a frictional interface with the Si specimen.  The friction coefficient was 

assumed to be 0.1.  While the inner roller is held fixed, the outer roller moves upward at a 

speed of 1 µm/s.  Figure 5.11 (a) shows both the undeformed and the deformed meshes.  

Figure 5.11 (b) and (c) show the dislocation density distribution in the specimen and the 

shear resistance distribution, respectively.  Figure 5.11 (d) illustrates that materials within 

the span of the inner rollers is almost in Deformation Regime 2.  However, although a 

slight concentration both in the dislocation density and the shear resistance can be 

observed under the inner roller, it is not as noticeable as that observed in the actual 

experiment.  This discrepancy becomes obvious when the displacement in the center is 

considered.  In Figure 5.12, the bow in the center predicted by the finite element 

calculation is compared with experimental measurements.  The experimental results by 

Walters show a pronounced localized deformation [17, 18].  Experimentally, as the 

localized deformation proceeds, the span between the inner rollers is flattened out 

because the lowered stress around the inner rollers reduces the bending moment.  In this 

four-point bend test, the discrepancy in the center displacements can be amplified 

significantly through the long span of the flexural specimen between the inner rollers.  

Unlike the experimental result, this isotropic version of the Si constitutive model predicts 

a monotonic increase for the center displacement.  Figure 5.13, a comparison of the load 

predicted by the finite element analysis against the experimental result, explores further 

the issue associated with the localized deformation.  While it satisfactorily predicts the 

peak load followed by softening, the finite element calculation deviates from the 

experiment at larger deflections.  The transition between the two regimes appears to take 

place earlier than is observed experimentally.  However, a careful examination shows that 

this problem may also be related to the progress of the localized deformation that relieves 

the stress in the Si flexural specimen.  This problem may call for a complete crystal 

plasticity formulation for the Si constitutive model that enables the improved prediction 

of localized deformations under the rollers. 
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(b) 

Figure 5.11 (a) Finite element mesh for a 4-point bending test with the undeformed mesh 
shown in dashed lines and the deformed one in solid lines, (b) dislocation density 
distribution, (c) isotropic shear resistance distribution, (d) deformation regime.  Analysis 
performed assuming 800 °C with a ram speed of 1µm/s. 
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Figure 5.11 (continued) (a) Finite element mesh for a 4-point bending test with the 
undeformed mesh shown in dashed lines and the deformed one in solid lines, (b) 
dislocation density distribution, (c) isotropic shear resistance distribution, (d) deformation 
regime.  Analysis performed assuming 800 °C with a ram speed of 1µm/s. 
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Figure 5.12 Comparison of the finite element prediction of the center displacement as a 
function of the crosshead displacement predicted for a 4-point bending test against the 
experimental result. 
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Figure 5.13 Comparison of the finite element prediction of the load as a function of the 
crosshead displacement predicted for a 4-point bending test against the experimental 
result. 
 

Si 4-point bend test at 800 °C, ram speed of 1 µm/s 

Si 4-point bend test at 800 °C, 
ram speed of 1 µm/s 



 

 

Note that the peak load and the softening of the 4-point bend test predicted by the finite 

element calculation are in good agreement with the experimental data as shown in Figure 

5.13.  This result supports the numerical results for the uniaxial compression test under a 

monotonic loading illustrated in Figure 5.10 in terms of the qualitative behavior of the 

model as well as the quantitative model prediction.  The predictive capabilities of the 

model in response to four-point bending were also evaluated with regard to the 

temperature and strain-rate dependences in Figure 5.14 (a) and (b) against the 

experimental results by Chen [14].  The model predictions are in reasonably good 

accordance with the experimental data, capturing the peak loads, plateaus, and the overall 

trend of the temperature and strain rate dependences.  The peak load increases with the 

decrease in temperature and the increase in strain-rate as observed in the model response 

to monotonic loading in the compression testing. 
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Figure 5.14 (continued) Comparison of the finite element prediction of the four-point 
bend tests for (a) various temperatures and (b) strain rates. 
 

5.4.2.2 Effect of load history 

 

In order to investigate the effect of load history, two cases were considered in this study: 

a combination of monotonic load and the static-relaxation and a combination of 

monotonic load and creep. The experimental data for the 4-point bend tests are compared 

in Figure 5.15 with the monotonic load case being the reference.  Case 1 started with a 

monotonic load, stopped at a load in the middle of the peak and the plateau of the 

reference load-deflection curve to allow static relaxation for approximately 20 minutes, 

and then reloaded.  As shown in Figure 5.15, the peak load at the reloading step was 

recorded as being significantly lower than that for the monotonic load case.  The level of 

the plateau is more or less the same as that for the reference curve.  For case 2, the load 

again began increasing monotonically.  Approximately at the same load as Case 1, the 

load was held for 6 minutes to allow creep using the Load Control feature of the testing 
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machine.  From the increased intervals of the data points with time, the increasing creep 

rate can be seen.  When the deflection due to creep reached approximately 0.3 mm 

(where the load-deflection curve meets the strain-softening curve of the reference curve), 

the Position Control feature was turned on, and the reloading step started.  At this point, it 

was observed that the load decreased with the increase in deflection and followed the 

same plateau as the reference curve. 
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Figure 5.15 Load-deflection responses of single crystal Si in four-point bending for 
various load histories. 
 

In Figure 5.16, the experimental data for Case 1 was compared with the model prediction.  

The same FE mesh used in Section 5.4.2.1 was employed in this analysis.  The load-

deflection curves are plotted in Figure 5.16(a) and are redrawn on the load-time plot in 

Figure 5.16(b).  Overall, the basic phenomena were captured by the model.  The model 

captures the static-relaxation part with a good accuracy, but it deviates from the 

experiment from the reloading step.  It is believed that the inaccurate prediction of the 

second peak and plateau may result from the faster dislocation nucleation rate, and then 

the earlier transition between the deformation regimes than is observed experimentally.  

As mentioned earlier, the progress of the localized deformation that relieves the stress in 

the specimen may also contribute to the discrepancy at larger deflections.  
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(b) 

Figure 5.16  Comparison of the finite element prediction of the load-deflection response 
of single crystal Si in 4-point bending for the load history consisting of the monotonic 
loading and static relaxation against the experimental result. (a) load vs. deflection (b) 
load vs. time. 
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As discussed in Section 5.3, the peak load (upper yield stress in monotonic compression 

testing) is a function of temperature, strain-rate, and initial dislocation density.  Figure 

5.10 showed the dependence of the grown-in dislocation density on the upper yield stress; 

the upper yield stress decreases with the increase in the grown-in dislocation density in 

the crystal.  Physically, this material behavior of single crystal Si explains why the 

second peak load recorded at the reloading step of Case 1 is significantly lower than that 

for the monotonic load case.  The dislocation density increased at the initial monotonic 

loading and static-relaxation steps sets the initial state of the crystal at the reloading step.  

This in turn lowers the peak load by approximately a factor of two.  The level of the peak 

load at the reloading step will change depending on the stationary load level and the time 

for static-relaxation.  Moreover, the increased dislocation density in the crystal during the 

monotonic load and creep for Case 2 also explains the load decreasing with the increase 

in the deflection at the reloading step. 

 

As demonstrated by Case 2 in Figure 5.15, any static load causing stresses between the 

peak and the plateau stresses is shown to yield a high creep rate.  In order to illustrate the 

creep rate varying with the load levels with regard to the peak and plateau, Walters’ creep 

experimental data [17] were reconstructed to obtain the times taken for the deflection to 

reach 3 µm at the various static load levels due to creep.  Figure 5.17 shows that the time 

increases exponentially as the static load approaches the plateau. 

 

From the observations in this section, apparently the load-carrying capability of single 

crystal Si at elevated temperatures is limited by creep.  From a microscopic view, the 

evolution of the dislocation density in the crystal governs the deformation mechanisms 

(which were discussed early in this chapter), and then the macroscopic load-deflection 

response.  Thus, the peak load can be considered as nothing more than an artifact of the 

evolution of the dislocation density.  Although there are some complications in 

correlating the 4-point bend test results with the stress-strain curve of single crystal 

silicon, the consequences of the experimental results presented in this section explicitly 
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verify that the upper yield stress of single crystal Si is non-conservative in the design of 

hot Si structures. 

 

As implied in Figure 5.17, the lower yield strength of Si, which should yield a minimal 

creep strain-rate, can be used as an allowable stress at elevated temperatures.  However, 

from the perspective of the design of Si hot structures, the lower yield strength of single 

crystal Si is insufficient, particularly for the need of micro-turbomachinery operating at 

high temperatures and high stresses.  Instead of the over-conservative design using the 

lower yield stress, the recommended approach to the design of Si hot structures will be to 

utilize the Si model, which is reasonably accurate up to moderate strains, for extracting 

appropriate operating conditions given the overall design specifications.  This design 

approach also requires the incorporation of SiC into the strategic locations in order to 

reinforce the Si hot structures. 
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Figure 5.17 Times taken for the Si bend specimen to deflect by 3 µm for various static 
loads reconstructed from Walters’ experimental data [17]. 
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5.4.2.3 Notched Si 4-point bend test 
 

The effect of stress concentrations was considered by comparing the 4-point bend test 

results for various notches, ranging from sharp to round notches.  The notches were 

created by deep reactive ion etching (DRIE), specifically the round notch by the Recipe 

SF6 and the sharp one by Recipe MIT69 [19].  This section is devoted to seeking an 

answer to the question of whether structural instabilities may occur in Si hot structures, 

particularly at stress concentrations. 

 

Four-point bend tests were performed at 900 °C and a ram speed of 0.001 mm/s for the Si 

specimens with various notches.  Figure 5.18 and 5.19 show the surface of the Si notched 

specimens after testing.  For the two notches having different stress concentration factors, 

the slip band patterns were observed to be similar.  Instead of being concentrated around 

the sharp corners and propagating from there, the slip bands are relatively uniform and do 

not correlate with the notch location nor notch shape. 

 

From the macroscopic point of view, the load-deflection curves of the notched Si 4-point 

bend tests were compared in Figure 5.20.  They are virtually indistinguishable, which 

implies that the stress concentration effect on the overall deformation are not significant, 

particularly in four-point bending.  The peak load in these tests appeared to be reduced 

from the unnotched only by the amount of reduced thickness due to the notches.  The 

shape of the notches, sharp or round, did not make any significant difference in 

determining the overall load-deflection responses.  This result is consistent with the 

observations in the slip band patterns in Figure 5.18 and 5.19.  Although the formation of 

the active slip bands around the notches is an indication of the plasticity causing localized 

deformations, at the same time the plasticity reduces the effect of stress concentrations at 

the sharp corners of the notch.  It is worth noting that materials adjacent to the neutral 

plane tend to be stiffer at larger deformations in four-point bending.  This specific 

loading condition is also believed to prevent the notched specimens from collapsing 

plastically. 
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Figure 5.20 Comparison of the experimental data of Si 4-point bend tests with various 
notches. 
 

From these experimental results, it is concluded that the turbine blades on the 

microengine rotor are unlikely to collapse due to the strain softening of Si and stress 

concentrations at the blade roots at the temperatures of interest.  Nevertheless, the 

plasticity of Si hot structures over the service lifetime should be assessed using the Si 

model in order to ensure the structural integrity. 

 

5.4.2.4 Si/SiC 4-point bend test 
 

This section discusses the mechanical testing results of Si/SiC hybrid structures and 

assesses the feasibility of the hybrid structures concept for elevated temperature micro-

turbomachinery. 

 

Sandwich-type specimens with various SiC film thicknesses were used in the 4-point 

bend tests.  Figure 5.21 shows the overall Si/SiC flexural specimen after testing.  The 

specimen dimensions are 0.5 mm thick, 8.8 mm wide, and 60 mm long.  The specimen,  

coated with 15 µm thick CVD SiC films on both sides, was loaded until fracture at 850 
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°C and a ram speed of 0.001 mm/s.  As shown in Figure 5.21, the SiC film delaminated 

from the Si substrate on the tension side during the test.  The SEM pictures in Figure 5.22 

clearly show the delaminated surface of the Si substrate with a high density of striations.  

The counterpart of the ridges on the Si substrate can be found on the delaminated SiC 

film.  This implies the integrity of the Si/SiC interface was maintained during the plastic 

deformation at elevated temperatures. 

 

 
 

Figure 5.21 Si/SiC bend specimen after testing at 850 °C and a ram speed of 0.001 mm/s. 
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(a) 

 

(b) 

 

Figure 5.22 SEM pictures of the Si/SiC flexural specimen after t
ram speed of 0.001 mm/s.  (a) high density of striations left on t
substrate, (b) higher magnification of the boxed area. 
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Four-point bend tests of the Si/SiC hybrid specimens were conducted for various SiC 

film thicknesses ranging from approximately 20 to 50 µm at 850 °C and 0.001 mm/s ram 

speed.  The test results are plotted in Figure 5.23.  The all Si case is also plotted together 

for a comparison.  Each load-deflection curve changes its slope approximately at 10 N 

except for the case where the SiC film thickness is 31.5 µm.  The initial slope can be 

obtained by the addition of the flexural rigidities of the Si substrate and SiC films.  When 

the slope changes (or the Si substrate begins to yield), the maximum stress in the Si 

substrate is calculated to be approximately 20 MPa using composite beam theory, which 

is close to the flow stress of Si at 900 °C (the stress at the peak is approximately 45 MPa 

for the case of the 31.5 µm thick SiC films).  From this point on, the thin CVD SiC films 

carry most of the load until fracture.  Note that the slope after the Si yields increases with 

increasing the SiC film thickness. 

 

From the experimental results, it is clear that the thin CVD SiC films significantly 

increase the load-carrying capability of Si.  While the usable load allowed by the all-Si 

specimen is approximately 10 N (the plateau, as discussed in Section 5.4.2.2), the load 

that can be carried by the Si/SiC hybrid specimens is higher by approximately a factor of 

three.  This considerable increase in the load-carrying capacity of Si/SiC hybrid 

specimens supports the overall concept of Si/SiC hybrid structures for elevated 

temperature micro-turbomachinery. 

 

The fracture strength of CVD SiC films is also a key issue.  The average stress in SiC 

films can be estimated by assuming the Si flow stress of 20 MPa.  From bending moment 

equilibrium, the average stress in SiC at fracture was found to range from 850 to 210 

MPa, with the highest for the case of the 21.8 µm thick SiC film and the lowest for the 

case of the 49.5 µm thick SiC film.  Although the brittle nature of SiC films requires 

Weibull probabilistic analysis to characterize the fracture strength fully, it is believed that 

the thicker SiC films having more surface defects tend to break at a lower stress.  It is 

worth noting that the fracture strength of CVD SiC is size-dependent, which is favorable 

for the small scale devices such as the microengine.  Also, process conditions and stress-



 

 

states within the structures are the key factors determining the fracture strength of brittle 

materials. 

 

The shape of the load-deflection curve for the case of the SiC film thickness of 31.5 µm 

is somewhat different from the others.  If a line is drawn extending from the linear 

portion of the curve for larger deflections with the same slope, this line will meet the 

initial linear-elastic curve as the other curves at a load of approximately 10 N.  The 

difference between this line and the original load-deflection curve is the contribution of 

the peak load of the Si substrate.  As was discussed in Section 5.4.2.1, the peak load is 

dependent on the grown-in dislocation density within the Si crystal.  Therefore, 

dislocations nucleated in the Si substrate due to the CVD SiC film deposition and thermal 

cycling may result in a change in the load-deflection response of the hybrid specimen.  

The CVD SiC process conditions, however, are not always identical from batch to batch , 

and this may explain the discrepancies. 
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bend test results of Si/SiC hybrid specimens with various SiC film 
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Sudden load drops at the failure of the load-deflection curves in Figure 5.23 may imply a 

brittle fracture of the Si/SiC specimens.  Qualitatively, it appears that the Si substrate was 

forced to be under the high strain-rate loading due to the abrupt failure of the SiC film.  

The ductility of the Si substrate, however, does not seem to be sufficient to arrest cracks 

propagating from the SiC film or to sustain the fracture in a stable way.  Initially, no 

visible precracks were found in the SiC films.  The Si/SiC specimens were also 

investigated at the several intermediate deflections to locate any cracks that might have 

developed on the SiC films during the experiment, but no cracks were visible.  Figure 

5.24 shows the load-deflection response of the Si/SiC specimen for multiple reloading 

steps to investigate indirectly the presence of cracks in the SiC film.  The slopes of the 

load-deflection curves remained unchanged between all the reloading steps.  This also 

implies that the SiC film was free from cracks.  This particular specimen was 

subsequently loaded to a considerably higher load than those subjected to monotonic 

loading until fracture. 

 

Figure 5.25 shows the crack propagation in the Si substrate underneath the SiC film on 

the tensile side of a specimen.  The shiny ridges on the Si substrate in Figure 5.21 appear 

to be an artifact of the crack propagation.  Considering that there are no indications of 

any kind of precursor event before fracture, such as sudden changes of the load in the 

load-deflection curves,  the cracks seemed to propagate rapidly at the incident of fracture.  

Figure 5.26 (a) also shows the broken edge of the specimen, whose clean surface implies 

a fracture by cleavage.  The morphology of this fractured edge of the Si substrate is 

shown at a higher resolution in Figure 5.26 (b).  It is interesting to note that the fine 

ridges, clearly visible in the micrograph, were observed to form on the broken face of the 

Si substrate adjacent to the Si/SiC interface on the tensile side, and disappeared at a few 

tens of micrometers from the delaminated edge.  This transition in the fracture 

morphology may suggest the occurrence of a ductile failure over a short period before the 

fracture by cleavage.  Figure 5.26 (c) shows the fracture morphology of the specimen on 

the compression side.  While the Si predominantly shows clean cleavage fracture, the 

SiC, the layer in the middle of the picture, did not break in a straight line, and fractured 

along a tortuous path in the plane perpendicular to the picture. 
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Figure 5.24 Experimental results for the load-deflection response of a Si/SiC specimen in 
four-point bending with the multiple reloading steps. 
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Figure 5.25 Crack propagation in the Si substrate 
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(a) 

 

 
(b) 

 

Figure 5.26 (a) SEM picture of a broken edge of the Si/SiC specimen loaded until 
fracture at 850 °C and a ram speed of 0.001 mm/s, (b) Morphology of the fractured edge 
of the Si substrate (magnification of the boxed area), (c) fractured edge of the specimen 
in compression. 

Si substrate 

Tensile side 
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(c) 

 

Figure 5.26 (continued) (a) SEM picture of a broken edge of the Si/SiC specimen loaded 
until fracture at 850 °C and a ram speed of 0.001 mm/s, (b) Morphology of the fractured 
edge of the Si substrate (magnification of the boxed area), (c) fractured edge of the 
specimen in compression. 
 

Figure 5.27 shows the model prediction of a Si/SiC 4-point bend test, which is in good 

agreement with the experimental results.  The model accurately captures the temperature 

dependence originating from the plasticity of single crystal Si in combination with the 

elastic-brittle response of the SiC.  The experimental data shows the relatively slow 

change in the initial nonlinear behavior compared to the model prediction.  It is 

speculated that the dislocations nucleated in the Si crystal during the CVD process or 

thermal cycling during the specimen preparation may reduce the peak load level, and then 

the shape of the non-linear portion of the curves.  In the analysis, no further assumptions 

were made to adjust the increased dislocation density in the Si crystal.  The model 

prediction of a Si/SiC 4-point bend test could be made more accurate by adopting a better 

assumption for the value of the dislocation density (supposedly inhomogeneous) in the Si 

crystal.  The residual stress present around the Si/SiC interface should also be taken into 

consideration in the FE model in order to achieve a better model prediction.  Study of the 

SiC film in compression side 

Si substrate 
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residual stress induced during the CVD SiC process and thermal cycling is being 

conducted by Choi [20], also as part of the microengine project. 

 

Finally, the elastic properties data for SiC (EsiC = 430 GPa, ν = 0.21) measured by 

Jackson and co-workers [21] were used in the FE simulations.  This agreement with 

experiment substantiates the accuracy of their measurements. 
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Figure 5.27 Comparison of the model prediction against the 4-point bend test results for 
Si/SiC hybrid specimens. 
 

5.5 Summary 
 

An isotropic elasto-viscoplastic constitutive model was developed incorporating the key 

deformation mechanisms that determine the mechanical behavior of single crystal Si with 

a low grown-in dislocation density at elevated temperature.  This model enables a smooth 

transition between the two regimes, Regime 1 and Regime 2, with the change of the 

internal variables representing the material history for each deformation regime.  After 

being implemented in the user subroutine VUMAT of ABAQUS/ EXPLICITTM, this 

0.5 mm thick (Si) x 8.8 mm wide x 60 mm long 
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model was calibrated to fit the creep experimental data.  While it is versatile in predicting 

various aspects of the mechanical behavior of Si at high temperatures, including 

responses to a dynamic loading, this model may not be effective when the localized 

deformation dictates the overall structural response.  A crystal plasticity formulation may 

provide a reliable solution for this problem, but only with the addition of expensive 

computational time.  It is noted that the Si model provided in this chapter can be 

employed with slight modifications in the crystal plasticity formulations.  The skeleton of 

the crystal plasticity version of this Si model can be found in Appendix F. 

 

This Si constitutive model still is a valuable tool for the design of high temperature Si 

structures.  Since the structural design is unlikely to require consideration of deformation 

beyond the post-hardening regime, most design procedures for Si structures at high 

temperature should be able to rely on this model with reasonable confidence.  In the 

following chapter, the design of micro-turbomachinery at elevated temperature will be 

revisited with this advanced design tool.  The appropriate design practice will be shaped 

based on the better knowledge and the experimental observations of the deformation 

mechanisms of Si and Si/SiC, together with the advanced numerical model for Si. 
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Chapter 6 
 

Redesign of Si/SiC hybrid micro-turbomachinery 
 

 

6.1 Overview 
 

In the previous chapter, a constitutive model for single crystal Si at high temperatures and 

high stresses has been developed that is consistent with the microscale deformation 

mechanisms, and calibrated and validated against the experimental results at the 

macroscale.  Also, from the experimental results for the sandwich-type Si/SiC hybrid 

specimens, the feasibility of the Si/SiC hybrid structures concept was successfully 

verified.  This chapter presents further guidelines for the design of Si/SiC hybrid 

structures for high temperature micro-turbomachinery, based on the knowledge derived 

from the experimental observations of the mechanical behavior of Si and Si/SiC hybrid 

structures together with the advanced Si constitutive model. 

 

Miller [1] proposed a design based on a primitive material model for Si plasticity, 

consisting of a time independent elasto-perfectly plastic behavior.  This model and 

resulting design concept were extended to the full rotor geometry in Chapter 2 of this 

thesis, which substantiated the proposed design for the Si/SiC hybrid rotor.  However, at 

the time a more detailed structural design was limited by the unavailability of accurate 

material property data and a constitutive model for the elevated temperature behavior for 

Si.  In the previous analysis for Si/SiC hybrid structures, creep of Si has not been 

accounted for.  In this Chapter, the design of a Si/SiC hybrid rotor is revisited with the Si 

model in order to provide a basis for re-evaluating Miller’s analysis. 

 

Section 6.2 presents FE results for the creep life estimation of the Si/SiC hybrid turbine 

rotor.  Comparison of the model prediction and the previous elasto-plastic analysis by 

Miller [1] demonstrates the refined modeling capability for the design of Si/SiC hybrid 

structures provided by the Si model.  The FE results are also summarized in a single plot, 
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which allows for the estimation of the creep life of the hybrid turbine rotor.  Section 6.3 

summarizes the basic guidelines for the design of Si/SiC hybrid structures for high 

temperature micro-turbomachinery gathered from the experimental observations and 

model predictions to date. 

 

6.2 Creep life estimation of a Si/SiC hybrid turbine rotor 
 

This section provides the FE results for creep life estimation of the Si/SiC hybrid turbine 

rotor at the temperatures of interest using the Si constitutive model developed in Chapter 

5. 

 

6.2.1 FE analysis results for creep life estimation of a Si/SiC hybrid turbine rotor. 
 

An axisymmetric FE analysis was performed to estimate the creep life of the Si/SiC 

hybrid turbine rotor for various SiC relative thicknesses ranging from 0 to 30 % at 

elevated temperatures.  ABAQUSTM EXPLICIT [2], a commercial FE program, was used 

together with the Si constitutive model implemented in a VUMAT user subroutine.  A 

simple sandwich-type hybrid disc model with SiC reinforcement in between flat Si discs 

shown in Figure 6.1 was used in the analysis, as was modeled by Miller [1].  The design 

specifications of the current microengine rotor were considered in this analysis.  The SiC 

reinforcement was described by an elastic material with a Young’s modulus of 430 GPa 

and Poisson’s ratio of 0.21, as reported by Jackson [3].  The Si constitutive model 

developed in this thesis was used for the Si.  The FE model assumes a uniform 

temperature distribution on the hybrid disc and a rotational speed of 1.2 million rpm.  

This assumption of uniform temperature is justified by a small Biot number of 

approximately 0.02.  It was assumed to take 10 seconds for the rotor to reach the design 

rotational speed to ensure a quasi-static analysis.  The turbine rotor radial growth at the 

rim was calculated as a function of time using this axisymmetric FE model.  The 

maximum tensile stress in the SiC reinforcement was also computed.  This occurs at the 

rotational axis. 

 

 



 

 139 

 

 

 

 

 

 
Figure 6.1 Axisymmetric FE mesh to estimate the creep life of a Si/SiC hybrid turbine 
rotor. 
 

The FE simulation results for creep life estimation of a Si/SiC hybrid turbine rotor are 

shown in Figure 6.2.  The turbine rotor radial growth as a function of time is plotted for 

the four relative SiC thicknesses ranging from 0 to 30 % in the temperature range of 600 

to 900 °C.  In Figure 6.3, the FE results are rearranged to illustrate the effect of 

temperature on the creep growth of the hybrid turbine rotor at each relative SiC thickness.  

Two points on the time axis indicating half day and three days were marked together as 

references for the design creep life of the turbine rotor.  The radial growth for 10 seconds 

corresponds to the almost entirely elastic deformation of the turbine rotor while the rotor 

reaches the design rotational speed of 1.2 million rpm. (For the all-Si case at 900 °C, it is, 

however, evident that creep begins even before the rotor reaches the design speed). 

 

As shown in Figure 6.2 and 6.3, the all-Si turbine rotor grows significantly more rapidly 

than the other cases with SiC reinforcements.  Apparently, while the amount of SiC in the 

turbine rotor limits the overall turbine rotor radial growth by creep, the turbine wall 

temperature determines the time taken to reach a certain level of radial growth for a given 

thickness of CVD SiC in the turbine rotor.  To illustrate the usage of the plots in Figure 

6.2 and 6.3, the all-Si current microengine rotor is considered as follows.  Figure 6.3 (a), 

plotted on a different scale from the others, shows the overall radial growth of the all-Si 

Ω = 1.2 Mrpm 

3 mm 

15
0 

µm
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turbine rotor.  At 600 °C, which is the design turbine wall temperature of the all-Si demo 

engine, it takes approximately 3 hours for the radial growth to reach the current bearing 

gap of 15 µm.  Thus, given the allowable turbine radial growth from the system 

considerations, the operating conditions and minimum design requirements for Si/SiC 

hybrid structures can be extracted using these diagrams.  In addition to failure due to 

creep of the Si, fracture of the SiC must be considered. 

 

At the microscale the dislocations nucleated within the Si crystal under the static load 

(centrifugal load) soften the Si structure, and consequently cause macroscale creep radial 

growth.  As the Si creep proceeds, the load carried by the SiC reinforcement gradually 

increases.  At a certain level of the turbine rotor radial growth, the stress in the SiC may 

reach its fracture strength.  This is dependent on the relative thickness of SiC.  This will 

be discussed in more detail in Section 6.2.2. 
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(a) 600 °C 
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(b) 700 °C 

 
Figure 6.2 Turbine rotor radial growth with time for various SiC relative thicknesses at 
temperatures ranging from 600 to 900 °C. 
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(c) 800 °C 
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(d) 900 °C 

 
Figure 6.2 (continued) Turbine rotor radial growth with time for various SiC relative 
thicknesses at temperatures ranging from 600 to 900 °C. 
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(a) All-Si 
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(b) 10 % SiC 

 
Figure 6.3 Rearranged plots for the turbine rotor radial growth with time for various SiC 
relative thicknesses at temperatures ranging from 600 to 900 °C. 
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(c) 20 % SiC 
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(d) 30 % SiC 

Figure 6.3 (continued) Rearranged plots for the turbine rotor radial growth with time for 
various SiC relative thicknesses at temperatures ranging from 600 to 900 °C. 
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6.2.2 Comparison of the model prediction for creep life and elasto-plastic analysis 
 

In Figure 6.4, the maximum stress in the SiC is plotted against the turbine wall 

temperature.  These results can be compared directly to those of Miller [1].  The elasto-

plastic analysis shows the exponential growth of the stress in the SiC reinforcement with 

increasing temperature, but the data points are static at a given temperature.  On the other 

hand, the stress in the SiC varies with time according to the model prediction at a given 

temperature, as the turbine radially grows with time.  For the relative SiC thickness of 10 

%, the stress in the SiC reaches its assumed fracture strength of 700 MPa at the turbine 

radial growth of around 1.7 µm.  According to the experimental results in Chapter 5, the 

SiC fracture strength of 700 MPa is easily achievable.  However, this nominal strength 

represents a reasonably conservative value for design purpose.  At 600 °C it takes 

approximately 2 hours for the stress in the SiC reinforcement to reach the nominal 

fracture strength, and only 10 seconds at 900 °C.  However, for the relative SiC thickness 

of 30 %, the stress in the SiC reinforcement never reaches its fracture stress. 

 

The elasto-plastic analysis by Miller [1] has also predicted a burst-line (temperature) for 

the hybrid turbine disc, beyond which the Si deforms severely and eventually bursts 

(numerically the FEM, ABAQUSTM STANDARD, does not converge to a solution 

because of severe deformation of the Si).  According to the results in Figure 6.4(b), the 

structural integrity of the Si/SiC hybrid turbine, however, is not limited by the SiC 

fracture strength nor by the severe deformation of the Si.  Instead, the structural integrity 

of the hybrid turbine rotor is likely to be limited by a time scale associated with overall 

system considerations.  For example, the turbine rotor with a SiC layer of 10 % relative 

thickness lasts for only 10 seconds at 900 °C.  This rotor is obviously useless.  However, 

depending on the allowable operating time for a device, the turbine rotor with a SiC layer 

of 10 % relative thickness operating at 600 °C, which will eventually fail by fracture after 

3 to 4 hours, may be quite acceptable from a design point of view. 

 

As illustrated in this section, the creep life estimation of the Si/SiC hybrid turbine rotor 

using the Si model provides more comprehensive data for the design of Si/SiC hybrid 
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structures.  Section 6.2.3 further develops a design criterion for a Si/SiC hybrid turbine 

rotor in terms of creep life by integrating the numerical results presented in Section 6.2.1 

and 6.2.2. 
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(a) 10 % SiC 
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(b) 30 % SiC 

Figure 6.4 Model prediction for creep life vs. elasto-plastic analysis (a) relative SiC 
thickness of 10 %, (b) relative SiC thickness of 30 %. 
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6.2.3 Design criterion for the SiC reinforcement of a Si/SiC hybrid turbine rotor 
 

Integrating all the information from the FE results presented in Section 6.2.1 and 6.2.2, a 

criterion for the SiC reinforcement of a Si/SiC hybrid turbine rotor with regard to creep 

life is suggested in Figure 6.5.  The maximum turbine radial growth for the relative 

thickness of SiC was obtained from Figure 6.3.  Note that the relative SiC thickness 

determines the radial growth by creep almost irrespective of the turbine wall temperature.  

Here, 106 seconds was used as a reference time for the turbine service life, and the data 

are based on the analysis over the temperature range of 600 to 900 °C.  Of course, 

depending on the reference time for the desired turbine operation, the whole curve can be 

adjusted, but not significantly.  The dotted horizontal lines correspond to the various 

levels of the SiC fracture strength which given the relative thickness of SiC, correspond 

to the maximum stress in the SiC reinforcement at the reference time.  As discussed in 

Chapter 5, Weibull statistics would be required to characterize fully the appropriate 

fracture strength distribution for SiC.  From system considerations, such as the 

requirement for stable bearing operation, another horizontal line, corresponding to an 

allowable radial growth, can also be drawn as an additional constraint.  This stability 

margin for the bearing operation can be further adjusted as the study progresses. 

 

In order to illustrate the usage of the plot (i.e., Figure 6.5), the following case was 

considered.  Assuming the SiC fracture strength of 700 MPa and the stability margin for 

the bearing operation of 5 µm, the turbine rotor needs a SiC reinforcement with at least a 

relative SiC thickness of 20 %.  This configuration corresponds to a SiC layer of 60 µm 

for the design specifications of the current microengine rotor.  This has been 

demonstrated in deposition experiments [4, 5].  Note that this design requirement is 

relatively conservative because Figure 6.5 provides the relative SiC thickness based on 

the desired turbine service life of the turbine of 106 seconds irrespective of the turbine 

wall temperature.  The deformation-time results in Figure 6.2 and 6.3 would be useful 

when the turbine operating conditions are specified more in detail.  The effect of the 

turbine rotor rotational speed was also considered.  The reduction of the rotational speed 

by 20 % allows for a thinner SiC layer down to the relative SiC thickness of 10 %.  This 



 

 148 

result implies that the level of the SiC reinforcement needs to be determined from the 

trade-off between the overall system requirements and the constraints imposed by the 

micro-fabrication of Si/SiC hybrid structures.  Moreover, it is clear that this design 

requirement on the SiC thickness is driven by the fracture strength of SiC for this case.  

Finally, it is worth noting that the turbine rotor radial growth due to the elastic deflection 

is approximately 1 µm, which is not a negotiable value (See Section 6.2.1). 
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1. Rotational speed of the turbine rotor of 1.2 million rpm was used for a baseline in the analysis. 
2. 106 seconds was used as a reference time for the maximum turbine radial growth. 
3. Based on the analysis over the temperature range of 600 to 900 °C. 
4. Stability margin for the bearing operation from Teo [6]. 
 
Figure 6.5  Effect of SiC reinforcements on the radial growth of a Si/SiC hybrid turbine 
rotor 
 

6.3 Basic guidelines for the design of Si/SiC hybrid rotor 
 

This section provides the basic guidelines for the design of Si/SiC hybrid structures at 

elevated temperatures from the experimental observations and model predictions.  The 

scope of this section is limited to the materials and structures issues pertaining to the 

proposed configuration of the Si/SiC hybrid turbine rotor.  However, the concepts 
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underlying the issues considered in this section can be utilized in the design of the 

general Si/SiC hybrid structures or other powerMEMS. 

 

1. The upper yield strength of single crystal Si is non-conservative in the design of Si 

hot structures.  As discussed in Chapter 5, any static load, which results in stress 

levels between the peak and the plateau in a stress-strain curve of single crystal Si, 

has been shown to yield a high creep rate.  Also from the perspective of the design of 

Si hot structures, the lower yield strength of Si is insufficient, particularly for micro-

turbomachinery operating at elevated temperatures and high stresses.  The values for 

the lower yield strength of Si can be found in Chapter 2.  The recommended approach 

to the design of Si hot structures is to use the Si model for extracting appropriate 

operating conditions, given the overall design requirements, and to reinforce the Si 

structures with SiC in strategic locations.  Even with SiC reinforcement, the design of 

Si/SiC hybrid turbine rotor should account for creep-limited design as implied from 

the FE results presented in this chapter. 

 

2. At elevated temperatures, the effect of stress concentrations is not as significant as in 

low temperature Si structures.  According to the experimental results for the notched 

Si 4-point bend tests in Chapter 5, the effect of stress concentrations on the structural 

instabilities of Si hot structures does not appear to be sufficient to cause plastic 

collapse, particularly in structures subject to bending moments.  Unlike the low 

temperature Si structures, where stress concentrations at the sharp corners may lead to 

a catastrophic brittle fracture, at high temperatures the plasticity present adjacent to 

the sharp corners reduces the effect of stress concentrations.  Although catastrophic 

failure seems unlikely, the distortion of the turbine blade with time still needs to be 

carefully estimated using the Si model.   

 

3. The creep life of the all-Si turbine rotor was predicted to be approximately 3 hours at 

600 °C.  This is a functional failure since it takes approximately 3 hours for the 

turbine radial growth to close the current bearing gap of 15 µm.  The rotational speed 

of the turbine rotor of 1.2 million rpm was used in the analysis.  The stability margin 
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for the bearing operation may further reduce the allowable creep life of the all-Si 

turbine rotor.  From a design point of view, the creep life of the all-Si turbine of 3 

hours may be sufficient for the purpose of the demo microengine.  However, from a 

practical standpoint the all-Si turbine is not feasible at higher temperatures. 

 

4. The design space for the structural design of the microengine turbine rotor can be 

extended by incorporating SiC in the Si structures.  In Chapter 5, the Si/SiC hybrid 

structural concept was verified.  The experimental results assessed the integrity of the 

Si/SiC interface during deformations at high temperatures as well as the material 

properties of CVD SiC.  The significant increase in the load carrying capability of the 

Si/SiC hybrid specimens compared to the all-Si specimens provides more design 

space for the design of the Si/SiC hybrid turbine rotor for the next generation 

microengine. 

 

5. The turbine rotor of the next generation microengine requires SiC reinforcement by at 

least a relative thickness of 20 % provided that the SiC fracture strength is 700 MPa 

and the stability margin for the bearing operation is 5 µm.  The relative SiC thickness 

of 20 % corresponds to a layer of 60 µm for the design specifications of the current 

microengine rotor.  This value is relatively conservative.  More precise predictions 

can be made using the FE results in Figure 6.2 and 6.3 once the more specific turbine 

operating conditions are available.  More accurate values for the SiC fracture strength 

and the stability margin are needed for a better prediction.  

 

6. Si hollow blades reduce the distortion of the blades themselves as well as the 

umbrella-shape deflection of the microengine turbine.  The aerodynamics of the rotor 

operation depends on the well-defined 3-D geometry of the blades.  In order to 

minimize the distortion of the blade, the Si half-hollow blade was suggested in the 

previous work by Miller [1] and the initial structural analysis presented in Chapter 2.  

Furthermore, the SiC reinforcement in the mid plane is not effective in reducing the 

umbrella-shape deflection.  This deflection mode can also be reduced by adopting the 
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Si hollow blades as suggested earlier.  SiC reinforcement in the blade is not desirable 

because of the complications associated with micro-fabrication. 

 

6.4 Summary 
 

An axisymmetric FE analysis was performed to estimate the creep life of the Si/SiC 

hybrid turbine rotor for various SiC thicknesses at the temperatures of interest.  The FE 

results identified the limit of the all-Si turbine rotor of the current microengine as well as 

the superior performance of the Si/SiC hybrid rotor in terms of creep life.  Comparison of 

the model prediction for creep life estimation and the previous elasto-plastic analysis by 

Miller [1] demonstrated the additional refined modeling capability for the design of 

Si/SiC hybrid structures provided by the Si model.  Furthermore, the FE results for the 

creep life estimation were applied to yield a design criterion for the SiC reinforcement.  

Finally, based on the experimental observations and model predictions, improved 

guidelines to the design of Si/SiC hybrid structures for high temperature micro-

turbomachinery were summarized. 

 

Chapter 7 provides the overall conclusions and suggestions for future work. 
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Chapter 7 
 

Conclusions and future work 
 

 

7.1 Overall summary 
 

Detailed design of Si/SiC hybrid structures for high temperature micro-turbomachinery 

has been hampered by the relatively poor performance of single crystal Si at elevated 

temperatures and high stresses and by the unavailability of accurate material properties 

data for both Si and SiC at the temperatures of interest.  From previous work [1, 2, 3], the 

critical structures and materials issues to be resolved, in order to proceed with the design 

of high temperature Si/SiC hybrid structures, were identified as follows: 

1. the safety margin of the structural design of Si/SiC hybrid structures based on the 

upper yield strength of Si 

2. reliable estimation of the service life of the Si/SiC hybrid structures 

3. structural instabilities caused by the combination of high stress concentration, 

creep, and strain softening. 

In the course of this thesis, these issues provided the key motivations of the work, and 

have been substantially resolved. 

 

A constitutive model for single crystal Si with low grown-in dislocation density at high 

temperatures and high stresses, necessary to predict accurately the deformation of Si/SiC 

hybrid structures, has been developed that takes into consideration both the microscale 

deformation mechanisms and the experimental results at the macroscale.  This Si 

constitutive model accounts for the two deformation regimes:  Regime 1, the initial 

deformation stages characterized by the rapidly multiplying dislocations, and Regime 2, 

the later stages of deformation after a sufficiently large mobile dislocation density has 

been generated.  At the macroscale, this model is versatile in predicting various aspects of 

the pronounced material characteristic of Si at elevated temperatures, namely, strain-

softening, thermal softening, and the various creep stages.  The Si model, implemented in 
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an ABAQUSTM user subroutine, VUMAT [4], has been calibrated using the uniaxial 

compression creep tests and then validated against the experimental results for a series of 

4-point bend tests. 

 

From the experimental observations and model validation, basic guidelines for the design 

of Si/SiC hot structures have been provided.  First, the use of the upper yield strength of 

single crystal Si for design purpose is non-conservative.  Also from the perspective of the 

design of Si hot structures, the lower yield strength is insufficient, particularly for micro-

turbomachinery operating at elevated temperatures and high stresses.  The recommended 

approach to the design of Si hot structures is to use the Si model for extracting 

appropriate operating conditions, given the overall design specifications, and to reinforce 

the Si structures with SiC in strategic locations.  Second, at high temperatures, the effect 

of stress concentrations is not crucial.  Unlike the low temperature Si structures, the 

plasticity present adjacent to the sharp corners reduces the effect of stress concentrations.  

Third, the Si/SiC hybrid structures concept was verified.  The considerable increase in the 

load carrying capability of the Si/SiC hybrid specimens encourages the development of 

Si/SiC hybrid structures for elevated temperature micro-turbomachinery in order to 

increase the available design space.  Finally, the FE results for the creep life estimation of 

the Si/SiC hybrid turbine rotor identified the limit of the all-Si turbine rotor of the current 

microengine as well as the superior performance of the Si/SiC hybrid rotor in terms of 

creep life. According to the model prediction, SiC reinforcement is required  for the 

turbine rotor of the next generation microengine with at least a relative layer thickness of 

20 %. 

 

7.2 Conclusions 
 

The primary goal of this research, as a part of the microengine project, is to design a high 

temperature Si/SiC hybrid rotor that improves the overall engine efficiency while 

maintaining structural integrity.  In the course of this thesis, two main objectives derived 

from the overall goal of this work have been achieved. 
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First, a constitutive model for single crystal Si at elevated temperature and high stresses 

to support the design process has been developed.  The model has been calibrated and 

validated against elevated temperature mechanical test data for Si and Si/SiC structures.  

The test data for Si represents the most comprehensive data set yet produced.  The test 

data for Si/SiC is the first of its kind and this is the first experimental validation of the 

Si/SiC hybrid structure concept. 

 

Second, this thesis provides the basic guidelines for a self-consistent design of Si/SiC 

hybrid structures for elevated temperature micro-turbomachinery, given the constraints 

imposed by the micro-fabrication processes and system considerations.  The guidelines, 

although specific to the Si/SiC hybrid turbine rotor, can be applied to the more general 

application of Si/SiC hybrid structures in PowerMEMS or other microsystems. 

 

7.3 Contributions 
 

The contribution of this work includes the following accomplishments: 

 

1. A constitutive model for single crystal Si at elevated temperatures and high 

stresses to support design process has been developed. 

2. The Si model has been calibrated and validated against mechanical test data for Si 

and Si/SiC structures. 

3. The test data for Si represents the most comprehensive data set yet produced. 

4. The test data for Si/SiC is the first of its kind, and the first experimental validation 

of the Si/SiC hybrid structure concept. 

5. Given the constraints imposed by the micro-fabrication processes and system 

considerations, the basic guidelines for a self-consistent design of Si/SiC hybrid 

structures for elevated temperature micro-turbomachinery have been provided. 
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7.4 Future work 
 

There are two major aspects of this work  that should be extended in the future: 

improvements for Si constitutive model, which is of general applicability, and 

development of a Si/SiC hybrid rotor for the next generation microengine, more specific 

to the overall microengine project. 

 

7.4.1 Improvements for Si constitutive model 
 

1. The overall modeling process from model calibration to validation needs to be 

refined.  The Si constitutive model has been calibrated using the experimental 

data for the Si uniaxial compression creep tests.  However, despite the simplicity 

of the testing procedure, the compression creep testing is not an ideal method for 

model calibration simply because of the inherent experimental errors 

(approximately 15 %) due to effects such as friction, seating of the load train, 

accurate strain measurement, and plastic buckling.  According to the model, the 

calibrated dislocation nucleation rate appears to be faster, and the transition 

between the deformation regimes earlier than is observed experimentally.  If 

properly designed, specifically with attention to the grips and strain measurement 

technique, uniaxial tension testing in monotonic loading has the potential to 

provide more accurate results. 

 

2. More concrete explanation of the effect of stress concentrations on the localized 

deformation needs to be further explored.  The experimental results with the 

notched specimens were somewhat difficult to interpret because of the materials 

adjacent to the neutral plane stiffening with deflection.  The effect of stress 

concentrations on the localized deformation and overall load could not be 

quantified from the experimental results.  Thus, it is desirable to isolate the pure 

effect of stress concentrations on the localized deformation from the effect of the 

loading conditions.  Tensile testing would also facilitate this. 

3. The Si model implemented in the crystal plasticity frame-work is critical for the 

description of the effect of crystal orientations and shear localizations.  The 
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isotropic version of the Si model was not effective in capturing the localized 

deformations at stress concentrations.  Moreover, the efforts to investigate the 

effect of crystallographic orientations on the structural response was not fruitful 

because of the experimental errors associated with the compression creep testing.  

The improved predictive capabilities of the Si model could be obtained through 

the Si model implemented in the crystal plasticity frame-work together with more 

accurate mechanical testing results. 

 

7.4.2 Development of Si/SiC hybrid rotor 
 

1. Given the constraints imposed by the micro-fabrication processes and system 

considerations, design iterations of the Si/SiC hybrid rotor using a better material 

model and thermal BC’s need to be conducted.  Thermo-mechanical FE analysis 

is required to obtain temperature and stress fields of Si/SiC hybrid structures 

using the Si material model, to assess the advantage of the hybrid structure, and to 

provide structural design criteria and fabrication requirements.  Moreover, since 

accurate heat transfer coefficients around the rotor are essential, numerical 

iterations with fluidic domain calculations will be performed to provide them, 

which will lead to obtaining more accurate temperature fields. 

 

2. It is critical for the development of Si/SiC hybrid structures to characterize 

material property data of CVD SiC, particularly the fracture strength.  According 

to the analysis of the creep life of the Si/SiC hybrid turbine rotor, the fracture 

strength of SiC is the limiting factor for the structural integrity of the turbine 

rotor.   The factors determining the fracture strength of SiC are the dimensions of 

the device, process conditions, and stress-states within the structures. As was 

conducted on the Si fracture strength at room temperature, Weibull statistics 

needs to be performed on the CVD SiC films.  Moreover, a more complete 

understanding on the failure mechanisms of the hybrid structures composed of a 

brittle material and a ductile material should be obtained. 
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3. Si/SiC hybrid structures may include thin interlayer materials because of the 

Si/SiC micro-fabrication processes.  Currently, the candidate materials are SiO2 or 

poly-Si.  In either case, the integrity of the bond or deposition interface and the 

effect of thin layers on the overall structural response should be assessed at 

elevated temperatures. 
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APPENDIX A 

Specifications for High Temperature Material Testing System 
 

InstronTM 3118 Ceramics Testing System 
 
Furnace type Single zone split cylindrical 
Furnace dimensions Height:                520 mm 

Diameter:            360 mm 
Internal bore:       100 mm 
Hot zone height:  280 mm 

Heating elements 6 kanthal supper 33 (molybdenum disilicide) 
Temperature range 800 to 1500 °C 
Maximum heating rate 12 °C/min 
Power requirements 3.6 kW 
Thermocouples 2 Type B with facility for a third unit 
Furnace Controller Eurotherm 818P microprocessor controller with computer 

interface 
Furnace controller 
dimension 

Height:    615 mm 
Width:     550 mm 
Depth:     500 mm 

Over-temperature protection Eurotherm 106 temperature alarm 
Power supply 240 V, 50 Hz single-phase fused at 25 A 
Cooling water minimum 
flow rates 

1 l/min for furnace 
1 l/min for load-train 

Cooling water maximum 
pressure 

6 bar 

Cooling water maximum 
inlet temperature 

30 °C 

Pushrod material Alumina 
Pushrod dimensions Upper – solid 25 mm diameter 

Lower – hollow 45 mm outside dia., 30 mm inside dia. 
Pushrod load capacity 1 kN at 1500 °C 
Deflection measuring 
system 

LVDT operated by probe in lower compression rod.  
LVDT position manually adjustable along the longitudinal 
axis 

LVDT range ± 1 µm 
Testing fixture material SiC 
Testing fixture type and 
dimensions 

Bend fixture: 
 3118-300, 4-point, fully articulating, 40/20 mm span 
Compression anvils: 
 3118-303, partially articulating, 50 mm diameter 
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APPENDIX B 

Detailed Compression/Flexural Testing Procedure 

 

B.1 Si Compression Creep Testing Procedure 

 

Preparing the workplace for testing 

1. If needed, remove previous specimen from SiC fixture and clean apparatus to 

remove debris and oils. 

2. Set load and position limits. 

3. Turn on the hydraulics and actuator. 

4. Set a sinusoidal position waveform of 15 mm at 0.5 Hz.  Ensure range of motion 

is within the limits set above (adjust pushrod height manually with  keys if 

necessary) and run the waveform for about 24 cycles.  Press FINISH when done, 

then turn off actuator and hydraulics. 

5. Check channels and cables into LabViewTM interface: make sure program 

diagram matches setup. 

6. Ensure that the units and gain values are correct both for InstronTM and 

LabViewTM interface.  (Ensure whole range of possible values is covered in 10V 

range.) 

7. Make sure the Load Cell is reading properly and is calibrated.  If necessary, 

calibrate Load cell using “Auto Calibration” procedure. 

 

Specimen loading 

8. Apply the specimen and the SiC load pads uniformly with the mixture of BN 

power and acetone. 

9. Set Load Protect at 10N.  Ensure load and position limits are on. 

10. Set up specimen, along with the SiC compression anvils, in the testing machine.  

Check alignment, making sure that the sample and load pads are centered. 

Be very careful and gentle when handling and assembling the SiC fixture. 
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11. Manually raise lower pushrod, using slow speed  with Load Protect on.  (If the 

pushrod stutters as it is raised, try increasing the value for Load Protect slightly.  

Sometimes the noise in the load cell causes the Load Protect to be tripped during 

normal pushrod activity.) 

12. Set Load Gain Control: 

a. Press Load “SETUP” 

b. Press “loop”, “prop” and enter the appropriate gain level.  For 1000µm Si, 

use a value between 26-30. 

13. Turn off Load Protect. 

14. Switch from position control to load control by pressing “LOAD”, then 

“IMMED”.  (The load should remain near the pre-existing value.  If the load 

fluctuates sharply, return to position control by pressing “POSSITION”, then 

“IMMED”.  Once in position control, turn LOAD PROTECT back on.  

Fluctuations are usually caused by improperly set gain values.  Recheck the gain 

as in step 25.  If correct (around 26), reduce by one or two and try switching to 

load control again as described above.) 

15. Set load at -10 N using “Go To” command. 

16. Command a load ramp waveform of –50 N at 30 N/s.  Do another of 50 N at the 

same speed.  Do not forget to press Finish.  Repeat several times.  This step is 

required to improve the seating of the load-train. 

 
Setting the temperature controller 

17. Close the oven being careful of thermocouples.  Turn on water and circuit breaker 

for furnace.  (Watch cables behind testing machines.) 

18. Turn on temperature controller  by pressing the left-most square green button. 

19. Set temperature profile as needed.  A typical temperature cycle is: 
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a. Hold  until display changes; press  again to display PROG. 

b. Press b to select. 

c. Press  to cycle through program options use  to change. 

d. Return to main display by b and . 

Do not heat/cool the furnace at a rate faster than 12 °°°°C/min. 

20. Press ||> twice to start and then hold the program.  Press right-most square green 

button to commence heating and ||> again to resume the program. 

21. Start LabViewTM program on the computer. 

22. After the desired temperature has been reached, wait an additional 1.5 hours so 

that the load-train can settle thermally (until the saturation of the thermal 

elongation) 

 

Beginning the test sequence 

23. Command a load ramp waveform of –50 N at 30 N/s.  Do another of 50 N at the 

same speed.  Do not forget to press Finish.  Repeat this step several times. 

24. Restart LabViewTM’s data collection and check that all readings on the computer 

match the real time displays. 

25. Set the sampling rate to 5 Hz. 

26. Load the machine using a ramp waveform up to the desired static load.  Once the 

desired load is achieved, load control will maintain it until additional input is 

received. 

27. Change the sampling rate back to 0.5 Hz.  (Smaller sampling rate for longer tests.) 

28. Allow the specimen to creep until either the specimen fails or the desired creep 

strain/time. 

 

Completing the test 

29. When stop point is reached, return to position control by pressing “POSITION”, 

then “IMMED”. 

30. Carefully lower the pushrod manually with the  key.   

31. Turn off actuator and hydraulics. 

32. Press “STOP and RECORD” in LabViewTM and save file to detailed filename: 
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Si5d12h100_900c_1500n_a.txt 

 

 

 

 

 

 

33. On temperature controller, press ||> to hold program.  While held reduce duration 

time to 0 with  key.  Resume the temperature waveform.  Once cooling ramp 

has started, wait until the temperature is under 400 °C before opening the furnace.  

Turn off furnace circuit breaker and then turn off water.  (Caution should be used 

when allowing furnace to cool in isolation.  The resistor coils can suffer thermal 

shock if cooled too quickly.) 

  Under no circumstances should the furnace be opened with the temperature 

above 400 °°°°C. 

34. Take necessary safety precautions to prevent injury on hot furnace and let cool. 

35. Remove and analyze sample when cooled. 

36. Clear up the workplace 

Creep load 
Temperature 

Silicon 5 mm (D) x 12.5 mm (H) 
compression specimen, <100> in 
compression axis 

1st test of this kind 
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B.2 Si 4-Point Bend Testing (Monotonic loading) Procedure 

 
Preparing the workplace for testing 

1. Follow Steps 1-7 in 2.1 Si compression creep testing procedure. 

2. If LVDT “SETUP” light is flashing, calibrate manually as shown below.  If not, 

proceed to the next step. 

a. Turn on the Hydraulics and Actuator.  Remove position limits and raise 

lower pushrod using slow speed, , so that the LVDT is compressed to 

it’s zero point as indicated by the display.  (note – this is NOT complete 

compression of the black nub but rather the mid-point of its range of 

motion) 

b. Press the LVDT’s “SETUP” button. 

c. Select “Calibrate”, “Cal”, “Manual”, “Coarse Balanace”, and “Go” 

d. Relay on.  Press “SPAN”, “Go”.  It will span the range.  When it is settled 

and is reading 1mm, press “Go” again. 

e. Relay off.  Press “Fine balance”, “Zero Point”, “Go”.  The light will stop 

blinking when calibration is completed. 

 

Specimen loading 

3. Place specimen in SiC 4-pt bend fixture being careful about alignment. 

4. Transfer assembled SiC fixture with loaded specimen to push rod.  Make sure 

LVDT is through opening in bottom of fixture and compressed to about 1mm. 

5. Check alignment and clearance, making sure that the sample is centered in the 

1cm groove so that its edges will not touch the fixture as it deforms. 

6. Place cut cylinder flat side down on top of SiC fixture. 

7. Set Load Protect at 10N.  Ensure load and position limits are on. 

8. Turn on hydraulics and actuator. 

9. Manually raise lower pushrod until top of fixture is about 1cm from top pushrod.  

Turn off actuator and hydraulics. 
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Setting the temperature controller 

10. Follow Steps 17-22 in Si compression creep testing procedure. 

 

Beginning the test sequence (Monotonic loading) 

11. Turn on hydraulics and actuator 

12. After thermal settling, raise fixture until it makes gentle contact with the top 

pushrod using the  key.  To determine contact, watch both the real time load 

display and the real time LVDT display.  The load should switch from near-zero 

to negative and the LVDT should compress very slightly upon making contact. 

13. Change position gain to 1mm/V in LabViewTM and on InstronTM output. 

14. Calibrate Load Cell using “Automatic Calibration”. 

15. Set a single ramp waveform down to –0.2 mm with a ram speed of 0.001 mm/s, ( 

which may be altered as desired.) 

16. Start collecting data in LabViewTM and cross check with InstronTM display. 

17. Run the waveform. 

18. Watch InstronTM output and LabViewTM data plots for the desired deflection or 

fracture.  Press HOLD at stop point. 

 

Completing the test 

19. Save data. 

20. FINISH waveform and lower pushrod manually with  key.  Lower LVDT 

manually with thumb wheel in base of bottom pushrod if still under strain. 

21. Turn off actuator and hydraulics. 

22. On temperature controller, press ||> to hold program.  While held, reduce duration 

time to 0.  Resume the temperature waveform.  Once cooling ramp has started 

turn off furnace, turn off water, turn off furnace circuit breaker. 

23. Take necessary safety precautions to prevent injury on hot furnace and let cool. 

24. Remove and analyze sample when cooled. 
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B.3 Si 4-Point Bend Creep Testing Procedure 

 

Follow the same procedure with 2.3 Si 4-point bend testing (monotonic loading) 

procedure except for Steps at “beginning of the test sequence” 

 

Beginning the test sequence (Monotonic loading) 

1. Turn on hydraulics and actuator. 

2. Calibrate Load Cell using “Automatic Calibration”. 

3. Raise fixture until it makes gentle contact with the top pushrod using the  key. 

4. Change position gain to 0.5mm/V in LabViewTM and on InstronTM outputs. 

5. Watching the real-time load display, switch from position control to load control 

by pressing “LOAD”, then “IMMED”.  Set an integer-valued load using “Go To” 

command. 

6. Set single ramp load waveform: 

SRAMP to desired load at a loading rate of 1 N/s. 

7. Restart LabViewTM’s data collection and check that all readings on the computer 

match the real time displays. 

8. Run the waveform by pressing “START”.  Once the desired load is achieved, load 

control will maintain it until additional input is received. 

9. Allow the specimen to creep until either the specimen fails or the fixture reaches 

maximum compression (the LVDT reading should not drop below –1 mm). 

10. When stop point is reached, return to position control by pressing “POSITION”, 

then “IMMED”. 
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APPENDIX C 

Effect of Machine Compliance on Strain Measurements 
 

As pointed out in Chapter 4, the high stiffness of the compression specimen prevents the 

determination of an accurate stress-strain curve using a constant-strain compression test.  

Here, how the machine compliance affects the displacement measurement (in case where 

an extensometer cannot be attached) is illustrated using load-displacement curves of a 

fictitious material.  Figure C.1 shows the schematic of a testing machine and specimen 

represented by linear/nonlinear springs. 

 

 

 

 

 

 

 

 

Figure C.1 Schematic of a testing machine and specimen 

 

Given the crosshead displacement, X1, and spring constants for the machine and 

specimen, the problem is to find the force measured by the load cell installed on the 

testing machine.  For simplicity, the spring constant of the testing machine was assumed 

to be linear, and the specimen nonlinear (a 3rd order polynomial to describe strain-

softening). 

 

Testing machine elongation:  δm = X2 

Specimen displacement:  δs = X1 - X2 

Force measured by the load cell: Fm = Km*δm 

Force applied to the specimen: Fs = Ks(δs) 

     =  δs
3 – 6* δs

2 + 11∗δs 

X1 

X2 

Km 

Ks 

Testing Machine 

Uniaxial tension/compression 
specimen 
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From force equilibrium, 

Fm = Fs or 

Km*δm = δs
3 – 6* δs

2 + 11∗δs 

 

Substituting δm = X2 and δs = X1 - X2, and solving the nonlinear equation for X2, the force 

Fm (or Fs) can be obtained.  Two spring constants for the testing machine were 

considered.  Figure C.2 and C.3 show the results.  As shown in the plots, the high 

stiffness of the uniaxial specimen does not allow for an accurate load-displacement 

measurement. 
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Figure C.2 Load-displacement curve obtained using a testing machine more compliant 
than the specimen. 
 



 170 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

DISPLACEMENT

LO
A

D

Specimen
Machine 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

DISPLACEMENT, X1

LO
A

D

Load Cell Reading          
Ideal Load-Disp Measurement

 
Figure C.3 Load-displacement curve obtained using a testing machine stiffer than the 

specimen.
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APPENDIX D 

ABAQUSTM EXPLICIT VUMAT User Subroutine 

 

C************************************************************************* 
C              USER MATERIAL SUBROUTINE VUMAT FOR 
C   Silicon at high T, isotropic model 
C   (TO BE USED WITH ABAQUS VERSION 5.8) 
C 
C           THIS VUMAT IS NOT FOR USE IN PLANE STRESS OR IN ANY OTHER 
C           SITUATION WHEN THERE ARE MORE STRAIN TERMS THAN STRESS TERMS. 
C 
C  COPYRIGHT H.-S. Moon, L. Anand; April 2002 
C 
C************************************************************************* 
C      CONTENTS OF PROPS VECTOR (*USER MATERIAL, CONSTANTS = 19) : 
C      PROPS(I) 
C 1 EYOUNG 
C 2 ANU 
C 3 BV 
C 4 ALPHA 
C 5 V0 
C 6 TAU0 
C 7    Q 
C 8 AKB 
C 9 AM 
C 10 RHO0 
C 11 AK 
C 12   GDOT0 
C 13   DELF 
C 14   H0 
C 15   S0 
C 16   SSAT 
C 17   RHOCRIT0 
C 18 THETA0 
C 19 ALPHAT 
C 
C  STATE VARIABLES 
C  *DEPVAR  
C  21            :          
C 
C STATEV(1) = RHO     -- DISLOCATION DENSITY 
C STATEV(2) = GBARDOTP --SCALAR PLASTIC SHEARING STRAIN RATE. 
C STATEV(3) = GBARP   -- SCALAR PLASTIC SHEARING STRAIN. 
C      STATEV(4) = S       -- SHEAR RESISTANCE 
C STATEV(5) = FP(1,1) -- PLASTIC DEFORMATION GRADIENT, (1,1) COMP. 
C STATEV(6) = FP(1,2) -- PLASTIC DEFORMATION GRADIENT, (1,2) COMP. 
C STATEV(7) = FP(1,3) -- PLASTIC DEFORMATION GRADIENT, (1,3) COMP. 
C STATEV(8) = FP(2,1) -- PLASTIC DEFORMATION GRADIENT, (2,1) COMP. 
C STATEV(9) = FP(2,2) -- PLASTIC DEFORMATION GRADIENT, (2,2) COMP. 
C STATEV(10) = FP(2,3) -- PLASTIC DEFORMATION GRADIENT, (2,3) COMP. 
C STATEV(11) = FP(3,1) -- PLASTIC DEFORMATION GRADIENT, (3,1) COMP. 
C STATEV(12) = FP(3,2) -- PLASTIC DEFORMATION GRADIENT, (3,2) COMP. 
C STATEV(13) = FP(3,3) -- PLASTIC DEFORMATION GRADIENT, (3,3) COMP. 
C 
C STATEV(14) = S_STRESS(1,1)   
C STATEV(15) = S_STRESS(2,2)  
C STATEV(16) = S_STRESS(3,3)  
C STATEV(17) = S_STRESS(2,3)  
C STATEV(18) = S_STRESS(1,3)   
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C STATEV(19) = S_STRESS(1,2)   
C       
C      STATEV(20) = IPHASE 
C STATEV(21) = PWRINC 
C 
C********************************************************************** 
 
        SUBROUTINE VUMAT ( 
C       Read only (unmodifiable) variables :- 
     +                    NBLOCK, NDIR, NSHR, NSTATEV, NFIELDV, 
     +                    NPROPS, LANNEAL, STEP_TIME, TOTAL_TIME, 
     +                    DT, CMNAME, COORD_MP, CHAR_LENGTH, PROPS, 
     +                    DENSITY, STRAIN_INC, REL_SPIN_INC, 
     +                    TEMP_OLD, STRETCH_OLD, DEFGRAD_OLD, 
     +                    FIELD_OLD, STRESS_OLD, STATE_OLD, 
     +                    ENER_INTERN_OLD, ENER_INELAS_OLD, TEMP_NEW, 
     +                    STRETCH_NEW, DEFGRAD_NEW, FIELD_NEW, 
C       Read and write (modifiable) variables :- 
     +                    STRESS_NEW, STATE_NEW, ENER_INTERN_NEW, 
     +                    ENER_INELAS_NEW) 
 
        INCLUDE 'VABA_PARAM.INC' 
C 
C             ALL ARRAYS DIMENSIONED BY (*) ARE NOT USED IN  
C             THIS ALGORITHM 
C 
        DIMENSION COORD_MP(NBLOCK,*), CHAR_LENGTH(NBLOCK),  
     +            PROPS(NPROPS), DENSITY(NBLOCK),  
     +            STRAIN_INC(NBLOCK,NDIR+NSHR), 
     +            REL_SPIN_INC(NBLOCK,NSHR), TEMP_OLD(NBLOCK), 
     +            STRETCH_OLD(NBLOCK,NDIR+NSHR), 
     +            DEFGRAD_OLD(NBLOCK,NDIR+NSHR+NSHR), 
     +            FIELD_OLD(NBLOCK,NFIELDV),  
     +            STRESS_OLD(NBLOCK,NDIR+NSHR), 
     +            STATE_OLD(NBLOCK,NSTATEV),  
     +            ENER_INTERN_OLD(NBLOCK), 
     +            ENER_INELAS_OLD(NBLOCK), TEMP_NEW(NBLOCK), 
     +            STRETCH_NEW(NBLOCK,NDIR+NSHR), 
     +            DEFGRAD_NEW(NBLOCK,NDIR+NSHR+NSHR), 
     +            FIELD_NEW(NBLOCK,NFIELDV),  
     +            STRESS_NEW(NBLOCK,NDIR+NSHR), 
     +            STATE_NEW(NBLOCK,NSTATEV),  
     +            ENER_INTERN_NEW(NBLOCK), 
     +            ENER_INELAS_NEW(NBLOCK) 
 
       CHARACTER*8 CMNAME 
 
       CHARACTER*80  FILE1 
 
 INTEGER  I, KM, IPHASE 
 
       REAL*8 FT(3,3),FPT(3,3),RHOT,RHOTAU,DTIME,TOT_TIME,   
     +         FTAU(3,3),FPTAU(3,3), 
     +         ST,STAU, UTAU(3,3),UTAUINV(3,3), RTAU(3,3),  
     +         RTAU_TRANS(3,3),TEMP1(3,3), 
     +         STRESS_POWER, GBARPT, GBARPTAU,GBARDOTPT, 
     +         GBARDOTPTAU,PWRINC,PWRINCT, 
     +         STRESSTAU(3,3),ABASTRESS(3,3), 
     +         CHIT,CHITAU,S_STRESST(3,3),S_STRESSTAU(3,3), 
     +         THETAT,THETATAU 
   
 REAL*8 EYOUNG,ANU,AMU,AKAPPA,ALAMBDA 
 REAL*8 BV,ALPHA,V0,TAU0,Q,AKB,AM,RHO0,AK,THETA0 
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 COMMON/MATPEL/EYOUNG,ANU,AMU,AKAPPA,ALAMBDA 
 COMMON/MATPRD1/BV,ALPHA,V0,TAU0,Q,AKB,AM,RHO0,AK 
       COMMON/MATPRD2/GDOT0,DELF,H0,SO,SSAT,RHOCRIT0,THETA0,ALPHAT 
 COMMON/TIMEINFO/TOT_TIME 
  
 PARAMETER(ZERO=0.D0, ONE=1.D0, ONE_HALF=0.5D0, TWO=2.D0, 
     +    ONE_THIRD=1.D0/3.D0, TWO_THIRD=2.D0/3.D0, 
     +    THREE=3.D0,THREE_HALF=1.5D0,E_EULER=DEXP(1.D0), 
     +          ROOT_THREE =DSQRT(3.D0), PI=4.0*DATAN(1.0D0) ) 
C---------------------------------------------------------------------- 
C                       INITIALIZATION 
C---------------------------------------------------------------------- 
 DTIME = DT 
 TOT_TIME = TOTAL_TIME 
 
       FILE1= '/u4/hsmoon/ANAND/short2.073/vumat_T/VUMAT_MSGS'      
 OPEN(UNIT=80,FILE=FILE1,STATUS='UNKNOWN') 
         
       EYOUNG  = PROPS(1) 
       ANU     = PROPS(2) 
 
 BV = PROPS(3) 
       ALPHA = PROPS(4) 
       V0 = PROPS(5) 
       TAU0 = PROPS(6) 
       Q       = PROPS(7) 
       AKB = PROPS(8) 
       AM = PROPS(9) 
       RHO0    = PROPS(10) 
       AK      = PROPS(11) 
       GDOT0   = PROPS(12) 
       DELF    = PROPS(13) 
       H0      = PROPS(14) 
       S0      = PROPS(15) 
       SSAT    = PROPS(16) 
       RHOCRIT0 = PROPS(17) 
       THETA0   = PROPS(18) 
       ALPHAT   = PROPS(19) 
  
C---------------------------------------------------------------------- 
C                       START COMUPTATION 
C---------------------------------------------------------------------- 
        DO 1000 KM = 1,NBLOCK 
 
C 
C       Copy the old and new Deformation gradients into FT and FTAU, 
C       respectively, and the old and new stretches into UT and UTAU. 
C 
 
          FT(1,1) = DEFGRAD_OLD(KM,1) 
          FT(2,2) = DEFGRAD_OLD(KM,2) 
          FT(3,3) = DEFGRAD_OLD(KM,3) 
          FT(1,2) = DEFGRAD_OLD(KM,4) 
 
          FTAU(1,1) = DEFGRAD_NEW(KM,1) 
          FTAU(2,2) = DEFGRAD_NEW(KM,2) 
          FTAU(3,3) = DEFGRAD_NEW(KM,3) 
          FTAU(1,2) = DEFGRAD_NEW(KM,4) 
 
          UTAU(1,1) = STRETCH_NEW(KM,1) 
          UTAU(2,2) = STRETCH_NEW(KM,2) 
          UTAU(3,3) = STRETCH_NEW(KM,3) 
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          UTAU(1,2) = STRETCH_NEW(KM,4) 
 
          IF (NSHR .EQ. 1) THEN 
            FT(2,3) = 0.D0 
            FT(3,1) = 0.D0 
            FT(2,1) = DEFGRAD_OLD(KM,5) 
            FT(3,2) = 0.D0 
            FT(1,3) = 0.D0 
 
            FTAU(2,3) = 0.D0 
            FTAU(3,1) = 0.D0 
            FTAU(2,1) = DEFGRAD_NEW(KM,5) 
            FTAU(3,2) = 0.D0 
            FTAU(1,3) = 0.D0 
 
            UTAU(2,3) = 0.D0 
            UTAU(3,1) = 0.D0 
            UTAU(2,1) = UTAU(1,2) 
            UTAU(3,2) = 0.D0 
            UTAU(1,3) = 0.D0 
          ELSE 
            FT(2,3) = DEFGRAD_OLD(KM,5) 
            FT(3,1) = DEFGRAD_OLD(KM,6) 
            FT(2,1) = DEFGRAD_OLD(KM,7) 
            FT(3,2) = DEFGRAD_OLD(KM,8) 
            FT(1,3) = DEFGRAD_OLD(KM,9) 
 
            FTAU(2,3) = DEFGRAD_NEW(KM,5) 
            FTAU(3,1) = DEFGRAD_NEW(KM,6) 
            FTAU(2,1) = DEFGRAD_NEW(KM,7) 
            FTAU(3,2) = DEFGRAD_NEW(KM,8) 
            FTAU(1,3) = DEFGRAD_NEW(KM,9) 
 
            UTAU(2,3) = STRETCH_NEW(KM,5) 
            UTAU(3,1) = STRETCH_NEW(KM,6) 
            UTAU(2,1) = UTAU(1,2) 
            UTAU(3,2) = UTAU(2,3) 
            UTAU(1,3) = UTAU(3,1) 
          ENDIF 
 
C 
C       AT THE START OF AN ABAQUS CALCULATION THE STATE 
C       VARIABLES ARE PASSED INTO VUMAT WITH ZERO VALUES. 
C       INITIALIZE THE STATE VARIABLES. 
C       AT THIS POINT, 
C       THE TIME TOTAL_TIME AND STEP_TIME BOTH HAVE A VALUE 
C       EQUAL TO 0.0. AND DT IS EQUAL TO 1.D0 
C 
 
      IF (TOTAL_TIME .EQ. 0.0D0 .OR. STEP_TIME .EQ. 0.0D0) THEN 
   
     STATE_OLD(KM,1)  = RHO0 
          STATE_OLD(KM,2)  = 0.D0 
          STATE_OLD(KM,3)  = 0.D0 
          STATE_OLD(KM,4)  = S0 
         
    STATE_OLD(KM,5)  = 1.D0 
          STATE_OLD(KM,6)  = 0.D0 
          STATE_OLD(KM,7)  = 0.D0 
          STATE_OLD(KM,8)  = 0.D0 
          STATE_OLD(KM,9)  = 1.D0 
          STATE_OLD(KM,10)  = 0.D0 
    STATE_OLD(KM,11) = 0.D0    
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    STATE_OLD(KM,12) = 0.D0 
          STATE_OLD(KM,13) = 1.D0 
 
    STATE_OLD(KM,14)  = 0.D0 
          STATE_OLD(KM,15)  = 0.D0 
          STATE_OLD(KM,16)  = 0.D0 
          STATE_OLD(KM,17)  = 0.D0 
          STATE_OLD(KM,18)  = 0.D0 
          STATE_OLD(KM,19)  = 0.D0 
 
          STATE_OLD(KM,20) = 1 
          STATE_OLD(KM,21) = 0.D0  
                
      ENDIF 
 
C 
C       STORE THE VALUE OF THE DEFORMATION RESISTANCE AT 
C       THE BEGINNING OF THE TIME STEP IN ST 
C 
        RHOT       = STATE_OLD(KM,1) 
  GBARDOTPT  = STATE_OLD(KM,2) 
  GBARPT     = STATE_OLD(KM,3) 
        ST         = STATE_OLD(KM,4) 
 
C  
C       STORE THE COMPONENTS OF THE PLASTIC DEFORMATION  
C       GRADIENT AT THE BEGINNING OF THE TIME STEP IN ARRAY FPT 
C 
        FPT(1,1) = STATE_OLD(KM,5) 
        FPT(1,2) = STATE_OLD(KM,6) 
        FPT(1,3) = STATE_OLD(KM,7) 
        FPT(2,1) = STATE_OLD(KM,8) 
        FPT(2,2) = STATE_OLD(KM,9) 
        FPT(2,3) = STATE_OLD(KM,10) 
        FPT(3,1) = STATE_OLD(KM,11) 
        FPT(3,2) = STATE_OLD(KM,12) 
        FPT(3,3) = STATE_OLD(KM,13) 
 
        S_STRESST(1,1) = STATE_OLD(KM,14) 
        S_STRESST(2,2) = STATE_OLD(KM,15) 
        S_STRESST(3,3) = STATE_OLD(KM,16)   
        S_STRESST(2,3) = STATE_OLD(KM,17) 
        S_STRESST(1,3) = STATE_OLD(KM,18) 
        S_STRESST(1,2) = STATE_OLD(KM,19)  
  S_STRESST(3,2) = S_STRESST(2,3) 
  S_STRESST(3,1) = S_STRESST(1,3) 
  S_STRESST(2,1) = S_STRESST(1,2) 
     
  IPHASE  = STATE_OLD(KM,20) 
        PWRINCT = STATE_OLD(KM,21) 
 
  THETAT = TEMP_OLD(KM) 
  THETATAU = TEMP_NEW(KM) 
 
C 
C       CALCULATE THE  LAME MODULI  
C 
 
        AMU     = EYOUNG/(2.D0*(1.D0 + ANU)) 
        AKAPPA  = EYOUNG/(3.D0*(1.D0 - 2.D0*ANU)) 
        ALAMBDA = AKAPPA - TWO_THIRD*AMU 
  
C---------------------------------------------------------------------- 
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C               TIME INTEGRATION PROCEDURE FOLLOWS 
C----------------------------------------------------------------------   
        CALL     KINTEG(FT,FPT,S_STRESST,RHOT,GBARPT,GBARDOTPT,  
     +             ST,DTIME,FTAU,FPTAU,S_STRESSTAU,STRESSTAU,RHOTAU, 
     +             GBARDOTPTAU,GBARPTAU,STAU,IPHASE,PWRINCT,THETAT, 
     +             THETATAU) 
C     
C       Update the state variables 
C 
 
      IF (DTIME .NE. ONE) THEN 
 
    STATE_NEW(KM,1)  = RHOTAU 
    STATE_NEW(KM,2)  = GBARDOTPTAU 
    STATE_NEW(KM,3)  = GBARPTAU 
    STATE_NEW(KM,4)  = STAU 
    STATE_NEW(KM,5)  = FPTAU(1,1) 

  STATE_NEW(KM,6)  = FPTAU(1,2) 
  STATE_NEW(KM,7)  = FPTAU(1,3)   

   STATE_NEW(KM,8)  = FPTAU(2,1)   
   STATE_NEW(KM,9)  = FPTAU(2,2)   
   STATE_NEW(KM,10)  = FPTAU(2,3)   
   STATE_NEW(KM,11) = FPTAU(3,1)   
   STATE_NEW(KM,12) = FPTAU(3,2)   
   STATE_NEW(KM,13) = FPTAU(3,3)   
    STATE_NEW(KM,14)  = S_STRESSTAU(1,1)   
   STATE_NEW(KM,15)  = S_STRESSTAU(2,2)    
   STATE_NEW(KM,16)  = S_STRESSTAU(3,3)    
   STATE_NEW(KM,17)  = S_STRESSTAU(2,3)    
   STATE_NEW(KM,18)  = S_STRESSTAU(1,3)    
   STATE_NEW(KM,19)  = S_STRESSTAU(1,2)   

  STATE_NEW(KM,20) = IPHASE  
  STATE_NEW(KM,21) = PWRINCT 

        
 ENDIF  
C 
C       UPDATE THE STRESS-MEASURE, ABASTRESS=( (R^T) T R) 
C       USED BY ABAQUS/EXPLICIT 
C   

  CALL KMINV(UTAU,UTAUINV,DET_UTAUINV)            
  CALL KMPROD(FTAU,UTAUINV,RTAU) 
  CALL KMTRANS(RTAU,RTAU_TRANS) 
  CALL KMPROD(RTAU_TRANS,STRESSTAU,TEMP1) 
  CALL KMPROD(TEMP1,RTAU,ABASTRESS)    

 
        DO 200 I = 1,NDIR 
            STRESS_NEW(KM,I) = ABASTRESS(I,I) 
200     CONTINUE 
 
        IF (NSHR .NE. 0) THEN 
            STRESS_NEW(KM,NDIR+1) = ABASTRESS(1,2) 
            IF (NSHR .NE. 1) THEN 
              STRESS_NEW(KM,NDIR+2) = ABASTRESS(2,3) 
              IF (NSHR .NE. 2) THEN 
                STRESS_NEW(KM,NDIR+3) = ABASTRESS(1,3) 
              ENDIF 
            ENDIF 
        ENDIF 
    
250     CONTINUE    
    
C 
C       Update the specific internal energy 
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C 
          STRESS_POWER = 0.D0 
          DO 300 I = 1,NDIR 
            STRESS_POWER = STRESS_POWER + 
     +      0.5*((STRESS_OLD(KM,I)+STRESS_NEW(KM,I))* 
     +            STRAIN_INC(KM,I)) 
300       CONTINUE 
          IF (NSHR .NE. 0) THEN 
            STRESS_POWER = STRESS_POWER + 
     +      0.5*((STRESS_OLD(KM,NDIR+1)+STRESS_NEW(KM,NDIR+1))* 
     +            STRAIN_INC(KM,NDIR+1)) 
            IF (NSHR .NE. 1) THEN 
              STRESS_POWER = STRESS_POWER + 
     +       0.5*((STRESS_OLD(KM,NDIR+2)+STRESS_NEW(KM,NDIR+2))* 
     +             STRAIN_INC(KM,NDIR+2)) 
              IF (NSHR .NE. 2) THEN 
                STRESS_POWER = STRESS_POWER + 
     +          0.5*((STRESS_OLD(KM,NDIR+3)+STRESS_NEW(KM,NDIR+3))* 
     +                STRAIN_INC(KM,NDIR+3)) 
              ENDIF 
            ENDIF 
          ENDIF 
 
          ENER_INTERN_NEW(KM) = ENER_INTERN_OLD(KM) + 
     +                          STRESS_POWER/DENSITY(KM) 
 
  
   ENER_INELAS_NEW(KM) = ENER_INELAS_OLD(KM) + 
     +                          PWRINCT/DENSITY(KM) 
 
1000 CONTINUE 
 
 RETURN 
 END 
 
C********************************************************************** 
  SUBROUTINE KINTEG(FT,FPT,S_STRESST,RHOT,GBARPT,GBARDOTPT,  
     +             ST,DTIME,FTAU,FPTAU,S_STRESSTAU,STRESSTAU,RHOTAU, 
     +             GBARDOTPTAU,GBARPTAU,STAU,IPHASE,PWRINCT,THETAT, 
     +             THETATAU) 
      
C THIS SUBROUTINE UPDATES THE STATE VARIABLES FOR A GIVEN TIME 
C INCREMENT.  
C        
C********************************************************************** 
 
 IMPLICIT REAL*8 (A-H,O-Z) 
 
 COMMON/MATPEL/EYOUNG,ANU,AMU,AKAPPA,ALAMBDA 
 COMMON/MATPRD1/BV,ALPHA,V0,TAU0,Q,AKB,AM,RHO0,AK 
       COMMON/MATPRD2/GDOT0,DELF,H0,SO,SSAT,RHOCRIT0,THETA0,ALPHAT 
 COMMON/TIMEINFO/TOT_TIME 
  
 PARAMETER(ZERO=0.D0, ONE=1.D0, ONE_HALF=0.5D0, TWO=2.D0, 
     +    ONE_THIRD=1.D0/3.D0, TWO_THIRD=2.D0/3.D0, 
     +    THREE=3.D0,THREE_HALF=1.5D0,E_EULER=DEXP(1.D0), 
     +          ROOT_THREE =DSQRT(3.D0), PI=4.0*DATAN(1.0D0) ) 
 

REAL*8 FT(3,3),FPT(3,3), S_STRESST(3,3),FTAU(3,3),FPTAU(3,3), 
     +      S_STRESSTAU(3,3),STRESSTAU(3,3), 
     +      FPTINV(3,3),FETAU(3,3),RETAU(3,3),RETAUT(3,3),EETAU(3,3), 
     +      FPTT(3,3),BPT(3,3),DEV_BPT(3,3),SIGMAT(3,3),DPT(3,3), 
     +      FPTAUINV(3,3),DEV_EETAU(3,3),DEV_SSTRESST(3,3), 



 178 

     +      AIDEN(3,3),FTEMP(3,3),TEMP1(3,3),TEMP2(3,3) 
 

REAL*8  NPLAS(3,3)  
      
C 
C  INITIALIZE 
C 
       CALL KZEROM(STRESSTAU) 
       CALL KZEROM(S_STRESSTAU) 
       CALL KONEM(FPTAU) 
       CALL KONEM(AIDEN)   
       CALL KZEROM(FTEMP)        
 
       RHOTAU       = RHOT 
       GBARDOTPTAU  = ZERO 
       GBARPTAU     = GBARPT 
       STAU         = ST 
       PWRINCT      = ZERO 
  
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
C          FOR THE INITIAL DUMMY STEP 
C          RETURN WITH APPROPRIATE VALUES 
C          CORRESPONDING TO NO PLASTIC DEFORMATION 
C 
 
 IF (DTIME .EQ. ONE) THEN 
C 
C         CALCULATE THE  ELASTIC DEFORMATION GRADIENT 
C 

  CALL KMINV(FPT,FPTINV,DET_FPTINV)   
  CALL KMPROD(FTAU,FPTINV,FETAU)   

       
C 
C         PERFORM THE POLAR DECOMPOSITION 
C         FOR THE  ELASTIC DEFORMATION GRADIENT, 
C         AND CALCULATE THE  LOGARITHMIC ELASTIC STRAIN 
C         TOGETHER WITH OTHER KINEMATICAL QUANTITIES 
C 
   CALL KSKINEM(FETAU,DETFETAU,RETAU,EETAU) 
 
C 
C         CALCULATE THE  STRESS  S_STRESS AT TIME TAU 
C    
      DO 10 I = 1,3 
     DO 10 J = 1,3 
       S_STRESSTAU(I,J) = 2.0D0*AMU*EETAU(I,J)  
     +        +ALAMBDA*(EETAU(1,1)+EETAU(2,2)+EETAU(3,3))*AIDEN(I,J) 
     +        -3.D0*AKAPPA*ALPHAT*(THETAT-THETA0)*AIDEN(I,J) 
10     CONTINUE 
 
     CALL KMTRANS(RETAU,RETAUT) 

    DO 20 I = 1,3 
     DO 20 J = 1,3 
       TEMP1(I,J) = S_STRESSTAU(I,J)/DETFETAU 
20     CONTINUE           
     CALL KMPROD(TEMP1,RETAUT,TEMP2) 
     CALL KMPROD(RETAU,TEMP2,STRESSTAU) 
      
            CALL KONEM(FPTAU) 
            RHOTAU      = RHOT   
            GBARDOTPTAU = ZERO          
            GBARPTAU  = ZERO 
            STAU      = ST 
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            IPHASE    = 1 
            PWRINCT   = ZERO  

    GO TO 999 
 ENDIF  
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 CALL KDEVM(S_STRESST,DEV_SSTRESST) 
 CALL KDOTPM(DEV_SSTRESST,DEV_SSTRESST,TEMP3) 
 TAUBART = SQRT(0.5D0*TEMP3) 
 
 IF (TAUBART .LT. TAU0*1.D-15) THEN 
   TAUBART = TAU0*1.D-15 
 ENDIF 
 
C 
C         
C 
 
             DO 110 I=1,3 
             DO 110 J=1,3 
               DPT(I,J) = GBARDOTPT* DEV_SSTRESST(I,J)/2.0D0/TAUBART 
110          CONTINUE 
 
C 
C        CALCULATE  F^P AT TIME TAU AND ITS INVERSE 
C 
 

DO 120 I=1,3 
DO 120 J=1,3 

                FTEMP(I,J) = AIDEN(I,J) + DTIME*DPT(I,J)   
120  CONTINUE 

CALL KMPROD(FTEMP,FPT,FPTAU) 
C 
C              NORMALIZE FPTAU SO THAT ITS DET IS ONE 
 

CALL KMDET(FPTAU,DET_FPTAU) 
  
   VAL = ONE/(DET_FPTAU**ONE_THIRD) 
 

DO 130 I=1,3 
DO 130 J=1,3 

                 FPTAU(I,J) = FPTAU(I,J)*VAL 
130  CONTINUE 
 

CALL KMINV(FPTAU,FPTAUINV,DET_FPTAUINV) 
 
C 
C        CALCULATE  F^E AND ASSOCIATED KINEMATICAL 
C                 QUANTITIES  AT TIME TAU   
C 
         CALL KMPROD(FTAU,FPTAUINV,FETAU)      
  CALL KSKINEM(FETAU,DETFETAU,RETAU,EETAU)   
 
C 
C        CALCULATE  S_STRESS AT TIME TAU   
C 
 
C      
C         CALCULATE TRACE_EETAU AND DEV_EETAU 
C         
  TRACE_EETAU = (EETAU(1,1)+EETAU(2,2)+EETAU(3,3)) 
  DO 140 I=1,3 
  DO 140 J=1,3 
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    DEV_EETAU(I,J)= EETAU(I,J)-ONE_THIRD*TRACE_EETAU*AIDEN(I,J) 
140     CONTINUE 
 
C 
C  CALCULATE THE MEAN NORMAL PRESSURE 
C  CORESSPONDING TO THE S_STRESS AT TIME TAU 
C 
 
 
    PRESSTAU = - AKAPPA*TRACE_EETAU 
C 
C  CALCULATE THE  S_STRESS AT TIME TAU  
C  
 
    DO 150 I=1,3 
    DO 150 J=1,3 
      S_STRESSTAU(I,J)=2.0D0*AMU*DEV_EETAU(I,J)-PRESSTAU*AIDEN(I,J) 
     +        -3.D0*AKAPPA*ALPHAT*(THETAT-THETA0)*AIDEN(I,J) 
150      CONTINUE    
 
C 
C  CALCULATE THE CAUCHY  STRESS AT TIME TAU 
C 
     CALL  KMTRANS(RETAU,TEMP1) 
           CALL  KMPROD(S_STRESSTAU,TEMP1,TEMP2) 
           CALL  KMPROD(RETAU,TEMP2,STRESSTAU) 
 
      DO 160 I=1,3 
      DO 160 J=1,3 
       STRESSTAU(I,J)= STRESSTAU(I,J)/DETFETAU 
160        CONTINUE     
 
C 
C CALCULATE THE CRITICAL DISLOCATION DENSITY 
C 
        RHOCRIT = 2.0D7*208.2D0*1.0*(TAUBART/TAU0)**2.11D0 
        IF (IPHASE .EQ. 2) THEN 
           RHOCRIT = RHOCRIT0 
        ELSEIF (RHOCRIT .LT. RHOCRIT0) THEN 
           RHOCRIT = RHOCRIT0 
        ENDIF 
 
        IF (RHOT .LE. RHOCRIT) THEN 
C 
C     REGIME I 
C 
    TAUINTT = ALPHA*AMU*BV*RHOT**0.50D0 
    TAUEFFT = DABS(TAUBART)-TAUINTT 

   IF (TAUEFFT .GT. 0.D0) THEN 
 

      IF (TAUBART .GE. 0.D0) THEN 
               VBART = V0*DEXP(-Q/AKB/THETAT)*(TAUEFFT/TAU0)**(1.D0/AM) 
      ELSE 
               VBART = -V0*DEXP(-Q/AKB/THETAT)*(TAUEFFT/TAU0)**(1.D0/AM) 
            ENDIF 
 
            GBARDOTPT = RHOT*BV*VBART 
            GBARDOTPTAU = GBARDOTPT 
      RHOTAU = RHOT + DTIME*AK/BV*TAUEFFT*GBARDOTPT 
            GBARPTAU = GBARPT + DTIME*GBARDOTPT 
            STAU = ST 
 
    ELSE 
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             VBART = 0.D0 
             GBARDOTPT = 0.D0 
       GBARDOTPTAU = 0.D0 
             RHOTAU = RHOT 
             GBARPTAU = GBARPT 
             STAU = ST 
 
    ENDIF 
 
        ELSE 
C 
C     REGIME II 
C 
 
          IF (IPHASE .EQ. 1) THEN 

     TAUINTT = ALPHA*AMU*BV*RHOT**0.50D0 
     TAUEFFT = DABS(TAUBART)- TAUINTT 

 
     IF (TAUBART .GE. 0.D0) THEN 

              VBART = V0*DEXP(-Q/AKB/THETAT)*(TAUEFFT/TAU0)**(1.D0/AM) 
            ELSE 
              VBART = -V0*DEXP(-Q/AKB/THETAT)*(TAUEFFT/TAU0)**(1.D0/AM) 

 ENDIF 
 

            GBARDOTPT = RHOT*BV*VBART 
            ST = TAUBART/(1.D0+DLOG(GBARDOTPT/GDOT0)*(AKB*THETAT/DELF)) 

 IPHASE = 2 
    ENDIF 

            
TAU_CRIT = ST*(1.D0+DLOG(1.D3/GDOT0)*(AKB*THETAT/DELF)) 
 

           IF (TAUBART .GE. TAU_CRIT) TAUBART = TAU_CRIT 
 
           RHOTAU = RHOT 
           GBARDOTPT = GDOT0*DEXP(-DELF/AKB/THETAT*(1.D0-TAUBART/ST)) 
           GBARDOTPTAU = GBARDOTPT 
           GBARPTAU = GBARPT + DTIME*GBARDOTPT 
           SDOTT = H0*(1.D0-ST/SSAT)*GBARDOTPT 
           STAU = ST + DTIME*SDOTT 
            
        ENDIF 
 
        CALL KDOTPM(S_STRESST,DPT,PWRINCT) 
 
     
C%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
999 CONTINUE 
 
 RETURN 
 END 
C ********************************************************************** 
C********************************************************************** 
C THE NEXT SUBROUTINE CALCULATES VARIOUS KINEMATICAL QUANTITIES  
C ASSOCIATED WITH THE DEFORMATION GRADIENT 
C********************************************************************** 
 SUBROUTINE KSKINEM(F,DETF,R,E) 
  
C THIS SUBROUTINE PERFORMS THE RIGHT POLAR DECOMPOSITION 
C [F] = [R][U] OF THE DEFORMATION GRADIENT [F] INTO 
C A ROTATION [R] AND THE RIGHT  STRETCH TENSOR [U]. 
C THE EIGENVALUES AND EIGENVECTORS OF [U] AND 
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C THE LOGARITHMIC STRAIN [E] = LN [U] 
C ARE ALSO RETURNED. 
C********************************************************************** 
 
 IMPLICIT REAL*8 (A-H,O-Z) 
 DIMENSION F(3,3),FTRANS(3,3), C(3,3), OMEGA(3), 
     +           UEIGVAL(3),EIGVEC(3,3), EIGVECT(3,3),  
     +            U(3,3),E(3,3),UINV(3,3),R(3,3),TEMPM(3,3) 
 
C F(3,3) -- THE DEFORMATION GRADIENT MATRIX WHOSE 
C     POLAR DECOMPOSITION IS DESIRED. 
C DETF -- THE DETRMINANT OF [F]; DETF > 0. 
C FTRANS(3,3) -- THE TRANSPOSE OF [F]. 
C R(3,3) -- THE ROTATION MATRIX; [R]^T [R] = [I]; 
C     OUTPUT. 
C U(3,3) -- THE RIGHT STRETCH TENSOR; SYMMETRIC 
C     AND POSITIVE DEFINITE; OUTPUT. 
C UINV(3,3) -- THE INVERSE OF [U]. 
C C(3,3) -- THE RIGHT CAUCHY-GREEN TENSOR = [U][U]; 
C     SYMMETRIC AND POSITIVE DEFINITE. 
C OMEGA(3)-- THE SQUARES OF THE PRINCIPAL STRETCHES. 
C  UEIGVAL(3) -- THE PRINCIPAL STRETCHES; OUTPUT. 
C EIGVEC(3,3) -- MATRIX OF EIGENVECTORS OF [U];OUTPUT. 
C EIGVECT(3,3)    -- TRANSPOSE OF THE ABOVE. 
C E(3,3) -- THE LOGARITHMIC STRAIN TENSOR, [E]=LN[U]; 
C     OUTPUT. 
C********************************************************************** 
 
C STORE THE IDENTITY MATRIX IN  [R], [U], AND [UINV] 
 
 CALL KONEM(R) 
 CALL KONEM(U) 
 CALL KONEM(UINV) 
 
C STORE THE ZERO MATRIX IN [E] 
 
 CALL KZEROM(E) 
 
C       CHECK IF THE DETERMINANT OF [F] IS GREATER THAN ZERO. 
C IF NOT, THEN PRINT DIAGNOSTIC AND STOP. 
 
        CALL KMDET(F,DETF) 
        IF (DETF .LE. 0.D0) THEN 
          WRITE(80,100) 
          STOP 
        ENDIF 
 
C       CALCULATE THE RIGHT CAUCHY GREEN STRAIN TENSOR [C] 
 
        CALL  KMTRANS(F,FTRANS) 
        CALL  KMPROD(FTRANS,F,C) 
  
C CALCULATE THE EIGENVALUES AND EIGENVECTORS OF  [C] 
 
 CALL KSPECTRAL(C,OMEGA,EIGVEC) 
 
C CALCULATE THE PRINCIPAL VALUES OF [U] AND [E] 
 
 UEIGVAL(1) = DSQRT(OMEGA(1)) 
 UEIGVAL(2) = DSQRT(OMEGA(2)) 
 UEIGVAL(3) = DSQRT(OMEGA(3)) 
 
 U(1,1) = UEIGVAL(1) 



 183 

 U(2,2) = UEIGVAL(2) 
 U(3,3) = UEIGVAL(3) 
 
 E(1,1) = DLOG( UEIGVAL(1) ) 
 E(2,2) = DLOG( UEIGVAL(2) ) 
 E(3,3) = DLOG( UEIGVAL(3) ) 
 
C CALCULATE THE COMPLETE TENSORS [U] AND [E] 
 
 CALL KMTRANS(EIGVEC,EIGVECT) 
 CALL KMPROD(EIGVEC,U,TEMPM) 
 CALL KMPROD(TEMPM,EIGVECT,U) 
 CALL KMPROD(EIGVEC,E,TEMPM) 
 CALL KMPROD(TEMPM,EIGVECT,E) 
 
C CALCULATE [UINV] 
 
 CALL KM3INV(U,UINV) 
 
C CALCULATE [R] 
 
 CALL KMPROD(F,UINV,R) 
100     FORMAT(5X,'--ERROR IN KINEMATICS-- THE DETERMINANT OF [F]', 
     +         ' IS NOT GREATER THAN 0') 
 
 RETURN 
 END 
C********************************************************************** 
C THE FOLLOWING SUBROUTINES CALCULATE THE SPECTRAL 
C DECOMPOSITION OF A SYMMETRIC THREE BY THREE MATRIX 
C********************************************************************** 
 SUBROUTINE KSPECTRAL(A,D,V) 
C 
C THIS SUBROUTINE CALCULATES THE EIGENVALUES AND EIGENVECTORS OF 
C A SYMMETRIC 3 BY 3 MATRIX [A].  
C 
C THE OUTPUT CONSISTS OF A VECTOR D CONTAINING THE THREE 
C EIGENVALUES IN ASCENDING ORDER, AND 
C A MATRIX [V] WHOSE COLUMNS CONTAIN THE CORRESPONDING 
C EIGENVECTORS. 
C********************************************************************** 
 
 IMPLICIT REAL*8 (A-H,O-Z) 
 PARAMETER(NP=3) 
 DIMENSION D(NP),V(NP,NP) 
 DIMENSION A(3,3),E(NP,NP) 
 
 DO 2 I = 1,3 
          DO 1 J= 1,3 
            E(I,J) = A(I,J) 
1   CONTINUE 
2 CONTINUE 
 
 CALL KJACOBI(E,3,NP,D,V,NROT) 
 CALL KEIGSRT(D,V,3,NP) 
 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KJACOBI(A,N,NP,D,V,NROT) 
 
C COMPUTES ALL EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC 
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C MATRIX [A], WHICH IS OF SIZE N BY N, STORED IN A PHYSICAL  
C NP BY BP ARRAY. ON OUTPUT, ELEMENTS OF [A] ABOVE THE DIAGONAL  
C ARE DESTROYED, BUT THE DIAGONAL AND SUB-DIAGONAL ARE UNCHANGED 
C AND GIVE FULL INFORMATION ABOUT THE ORIGINAL SYMMETRIC MATRIX. 
C VECTOR D RETURNS THE EIGENVALUES OF [A] IN ITS FIRST N ELEMENTS. 
C [V] IS A MATRIX WITH THE SAME LOGICAL AND PHYSICAL DIMENSIONS AS 
C [A] WHOSE COLUMNS CONTAIN, ON OUTPUT, THE NORMALIZED 
C EIGENVECTORSOF [A]. NROT RETURNS THE NUMBER OF JACOBI ROTATIONS 
C WHICH WERE REQUIRED. 
 
C THIS SUBROUTINE IS TAKEN FROM "NUMERICAL RECIPES", PAGE 346. 
C********************************************************************** 
 
 IMPLICIT REAL*8 (A-H,O-Z) 
 PARAMETER (NMAX =100) 
 DIMENSION A(NP,NP),D(NP),V(NP,NP),B(NMAX),Z(NMAX) 
 
C INITIALIZE [V] TO THE IDENTITY MATRIX 
 
 DO 12 IP = 1,N  
   DO 11 IQ = 1,N 
     V(IP,IQ) = 0.D0 
11        CONTINUE 
          V(IP,IP) = 1.D0 
12 CONTINUE 
 
C INITIALIZE [B] AND [D] TO THE DIAGONAL OF [A], AND Z TO ZERO. 
C THE VECTOR Z WILL ACCUMULATE TERMS OF THE FORM T*A_PQ AS 
C IN EQUATION (11.1.14) 
 
 DO 13 IP = 1,N 
   B(IP) = A(IP,IP) 
   D(IP) = B(IP) 
   Z(IP) = 0.D0 
13 CONTINUE 
C 
 NROT = 0 
 DO 24 I = 1,50 
 
C SUM OFF-DIAGONAL ELEMENTS 
 
          SM = 0.D0 
          DO 15 IP = 1, N-1 
            DO 14 IQ = IP + 1, N 
       SM = SM + DABS ( A(IP,IQ )) 
14          CONTINUE 
15        CONTINUE 
 
C IF SUM = 0., THEN RETURN. THIS IS THE NORMAL RETURN 
C WHICH RELIES ON QUADRATIC CONVERGENCE TO MACHINE  
C UNDERFLOW. 
 
          IF ( SM .EQ. 0.D0) RETURN 
C 
C   IF ( SM .LT. 1.0D-15) RETURN 
 
C IN THE FIRST THREE SWEEPS CARRY OUT THE PQ ROTATION ONLY IF 
C |A_PQ| > TRESH, WHERE TRESH IS SOME THRESHOLD VALUE,  
C SEE EQUATION (11.1.25). THEREAFTER TRESH = 0. 
 
          IF ( I .LT. 4) THEN 
            TRESH = 0.2D0*SM/N**2 
          ELSE 
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            TRESH = 0.D0 
          ENDIF 
C 
          DO 22 IP = 1, N-1 
            DO 21 IQ = IP+1,N 
              G = 100.D0*DABS(A(IP,IQ)) 
 
C AFTER FOUR SWEEPS, SKIP THE ROTATION IF THE 
C OFF-DIAGONAL ELEMENT IS SMALL. 
 
       IF ((I .GT. 4) .AND. (DABS(D(IP))+G .EQ. DABS(D(IP))) 
     +            .AND. ( DABS(D(IQ))+G .EQ. DABS(D(IQ)))) THEN 
                A(IP,IQ) = 0.D0 
              ELSE IF ( DABS(A(IP,IQ)) .GT. TRESH) THEN 
                H = D(IQ) - D(IP) 
                IF (DABS(H)+G .EQ. DABS(H)) THEN 
 
C T = 1./(2.*THETA), EQUATION(11.1.10) 
 
           T =A(IP,IQ)/H 
         ELSE 
           THETA = 0.5D0*H/A(IP,IQ) 
           T =1.D0/(DABS(THETA)+DSQRT(1.D0+THETA**2)) 
           IF (THETA .LT. 0.D0) T = -T 
         ENDIF 
         C = 1.D0/DSQRT(1.D0 + T**2) 
         S = T*C 
         TAU = S/(1.D0 + C) 
         H = T*A(IP,IQ) 
         Z(IP) = Z(IP) - H 
         Z(IQ) = Z(IQ) + H 
         D(IP) = D(IP) - H 
         D(IQ) = D(IQ) + H 
         A(IP,IQ) = 0.D0 
 
C CASE OF ROTATIONS 1 <= J < P 
     
         DO 16 J = 1, IP-1 
           G = A(J,IP) 
           H = A(J,IQ) 
           A(J,IP) = G - S*(H + G*TAU) 
           A(J,IQ) = H + S*(G - H*TAU) 
16         CONTINUE 
 
C CASE OF ROTATIONS P < J < Q 
 
         DO 17 J = IP+1, IQ-1 
           G = A(IP,J) 
           H = A(J,IQ) 
           A(IP,J) = G - S*(H + G*TAU) 
           A(J,IQ) = H + S*(G - H*TAU) 
17         CONTINUE 
 
C CASE OF ROTATIONS Q < J <= N 
 
         DO 18 J = IQ+1, N 
                  G = A(IP,J) 
           H = A(IQ,J) 
           A(IP,J) = G - S*(H + G*TAU) 
           A(IQ,J) = H + S*(G - H*TAU) 
18         CONTINUE 
         DO 19 J = 1,N 
           G = V(J,IP) 
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           H = V(J,IQ) 
           V(J,IP) = G - S*(H + G*TAU) 
           V(J,IQ) = H + S*(G - H*TAU) 
19         CONTINUE 
         NROT = NROT + 1 
              ENDIF 
21     CONTINUE 
22   CONTINUE 
 
C UPDATE D WITH THE SUM OF T*A_PQ, AND REINITIALIZE Z 
 
   DO 23 IP = 1, N 
     B(IP) = B(IP) + Z(IP) 
     D(IP) = B(IP) 
     Z(IP) = 0.D0 
23   CONTINUE 
24 CONTINUE 
 
C IF THE ALGORITHM HAS REACHED THIS STAGE, THEN 
C THERE ARE TOO MANY SWEEPS, PRINT A DIAGNOSTIC 
C AND STOP. 
 
 WRITE (80,'(/1X,A/)') '50 ITERS IN KJACOBI SHOULD NEVER HAPPEN' 
 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KEIGSRT(D,V,N,NP) 
 
C GIVEN THE EIGENVALUES [D] AND EIGENVECTORS [V] AS OUTPUT FROM 
C KJACOBI, THIS ROUTINE SORTS THE EIGENVALUES INTO ASCENDING ORDER,  
C AND REARRANGES THE COLUMNS OF [V] ACCORDINGLY. 
 
C THIS SUBROUTINE IS TAKEN FROM "NUMERICAL RECIPES", P. 348. 
C********************************************************************** 
 
 IMPLICIT REAL*8 (A-H,O-Z) 
 DIMENSION D(NP),V(NP,NP) 
 
 DO 13 I = 1,N-1 
   K = I 
   P = D(I) 
   DO 11 J = I+1,N 
     IF (D(J) .GE. P) THEN 
       K = J 
       P = D(J) 
     END IF 
11   CONTINUE 
   IF (K .NE. I) THEN 
     D(K) = D(I) 
     D(I) = P 
     DO 12 J = 1,N 
       P = V(J,I) 
       V(J,I) = V(J,K) 
       V(J,K) = P 
12     CONTINUE 
     ENDIF 
13 CONTINUE 
 
 RETURN 
 END 
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C********************************************************************** 
C THE FOLLOWING SUBROUTINES ARE UTILITY ROUTINES 
C********************************************************************** 
 SUBROUTINE KZEROV(V,SIZE) 
 
C THIS SUBROUTINE STORES THE ZERO VECTOR IN A VECTOR V 
C OF SIZE SIZE. 
C********************************************************************** 
 
 INTEGER SIZE 
 REAL*8 V(0:SIZE-1) 
 
 DO 1 I=0,SIZE 
   V(I) = 0.D0 
1 CONTINUE 
  
 RETURN 
 END 
 
C********************************************************************** 
       SUBROUTINE KZEROM(A) 
C 
C THIS SUBROUTINE SETS ALL ENTRIES OF A 3 BY 3 MATRIX TO 0.D0. 
C********************************************************************** 
 
        REAL*8 A(3,3) 
 
 DO 1 I=1,3 
   DO 1 J=1,3 
     A(I,J) = 0.D0 
1 CONTINUE 
C  
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KONEM(A) 
 
C THIS SUBROUTINE STORES THE IDENTITY MATRIX IN THE  
C 3 BY 3 MATRIX [A] 
C********************************************************************** 
 
        REAL*8 A(3,3) 
        DATA ZERO/0.D0/ 
        DATA ONE/1.D0/ 
 
 DO 1 I=1,3 
   DO 1 J=1,3 
     IF (I .EQ. J) THEN 
              A(I,J) = 1.0 
            ELSE 
              A(I,J) = 0.0 
            ENDIF 
1       CONTINUE 
 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KMTRANS(A,ATRANS) 
  
C THIS SUBROUTINE CALCULATES THE TRANSPOSE OF AN 3 BY 3  
C MATRIX [A], AND PLACES THE RESULT IN ATRANS.  
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C********************************************************************** 
 
 REAL*8 A(3,3),ATRANS(3,3) 
 
 DO 1 I=1,3 
    DO 1 J=1,3 
     ATRANS(J,I) = A(I,J) 
1 CONTINUE 
 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KMPROD(A,B,C) 
  
C  THIS SUBROUTINE MULTIPLIES TWO 3 BY 3 MATRICES [A] AND [B], 
C  AND PLACE THEIR PRODUCT IN MATRIX [C].  
C********************************************************************** 
 
 REAL*8 A(3,3),B(3,3),C(3,3) 
 
 DO 2 I = 1, 3 
   DO 2 J = 1, 3 
     C(I,J) = 0.D0 
     DO 1 K = 1, 3 
       C(I,J) = C(I,J) + A(I,K) * B(K,J)                        
1     CONTINUE 
2 CONTINUE 
C 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KMPROD4(A,B,C) 
  
C THIS SUBROUTINE MULTIPLIES TWO 3 BY 3 MATRICES [A] AND [B], 
C  AND PLACE THEIR PRODUCT IN MATRIX [C].  
C********************************************************************** 
 
 REAL*8 A(4,4),B(4,4),C(4,4) 
 
 DO 2 I = 1, 4 
      DO 2 J = 1, 4 
     C(I,J) = 0.D0 
     DO 1 K = 1, 4 
       C(I,J) = C(I,J) + A(I,K) * B(K,J)                        
1     CONTINUE 
2 CONTINUE 
 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KDOTPM(A,B,C) 
 
C THIS SUBROUTINE CALCULATES THE SCALAR PRODUCT OF TWO 
C 3 BY 3 MATRICES [A] AND [B] AND STORES THE RESULT IN THE 
C SCALAR C. 
C********************************************************************** 
 
 REAL*8 A(3,3),B(3,3),C 
 
 C = 0.D0 
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 DO 1 I = 1,3 
   DO 1 J = 1,3 
            C = C + A(I,J)*B(I,J) 
1 CONTINUE 
C 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KMDET(A,DET) 
  
C  THIS SUBROUTINE CALCULATES THE DETERMINANT 
C  OF A 3 BY 3 MATRIX [A]. 
C********************************************************************** 
 
 REAL*8  A(3,3), DET 
 
 DET =   A(1,1)*A(2,2)*A(3,3)  
     +         + A(1,2)*A(2,3)*A(3,1) 
     +         + A(1,3)*A(2,1)*A(3,2) 
     +  - A(3,1)*A(2,2)*A(1,3) 
     +  - A(3,2)*A(2,3)*A(1,1) 
     +  - A(3,3)*A(2,1)*A(1,2) 
 
 RETURN 
 END 
 
C********************************************************************** 
 SUBROUTINE KM3INV(A,AINV) 
 
C  THIS SUBROUTINE CALCULATES THE THE INVERSE OF A 3 BY 3 MATRIX 
C [A] AND PLACES THE RESULT IN [AINV].  
C  IF DET(A) IS ZERO, THE CALCULATION 
C  IS TERMINATED AND A DIAGNOSTIC STATEMENT IS PRINTED. 
C********************************************************************** 
 
 REAL*8  A(3,3), AINV(3,3), DET, ACOFAC(3,3), AADJ(3,3) 
 
C A(3,3)         -- THE MATRIX WHOSE INVERSE IS DESIRED. 
C DET  -- THE COMPUTED DETERMINANT OF [A]. 
C ACOFAC(3,3) -- THE MATRIX OF COFACTORS OF A(I,J). 
C      THE SIGNED MINOR (-1)**(I+J)*M_IJ 
C      IS CALLED THE COFACTOR OF A(I,J). 
C AADJ(3,3) -- THE ADJOINT OF [A]. IT IS THE MATRIX 
C      OBTAINED BY REPLACING EACH ELEMENT OF 
C      [A] BY ITS COFACTOR, AND THEN TAKING 
C      TRANSPOSE OF THE RESULTING MATRIX. 
C AINV(3,3) -- RETURNED AS INVERSE OF [A]. 
C      [AINV] = [AADJ]/DET. 
C---------------------------------------------------------------------- 
 
 CALL KMDET(A,DET) 
 IF ( DET .EQ. 0.D0 ) THEN 
   WRITE(80,10) 
   STOP 
 ENDIF 
 CALL KMCOFAC(A,ACOFAC) 
 CALL KMTRANS(ACOFAC,AADJ) 
 DO 1 I = 1,3 
 DO 1 J = 1,3 
      AINV(I,J) = AADJ(I,J)/DET 
1 CONTINUE 
10 FORMAT(5X,'--ERROR IN KM3INV--- THE MATRIX IS SINGULAR',/, 
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     +         10X,'PROGRAM TERMINATED') 
 
 RETURN 
 END 
C********************************************************************** 
 SUBROUTINE KMCOFAC(A,ACOFAC) 
  
C  THIS SUBROUTINE CALCULATES THE COFACTOR OF A 3 BY 3 MATRIX [A], 
C  AND PLACES THE RESULT IN [ACOFAC].  
C********************************************************************** 
 
 REAL*8  A(3,3), ACOFAC(3,3) 
 
 ACOFAC(1,1) = A(2,2)*A(3,3) - A(3,2)*A(2,3) 
 ACOFAC(1,2) = -(A(2,1)*A(3,3) - A(3,1)*A(2,3)) 
 ACOFAC(1,3) = A(2,1)*A(3,2) - A(3,1)*A(2,2) 
 ACOFAC(2,1) = -(A(1,2)*A(3,3) - A(3,2)*A(1,3)) 
 ACOFAC(2,2) = A(1,1)*A(3,3) - A(3,1)*A(1,3) 
 ACOFAC(2,3) = -(A(1,1)*A(3,2) - A(3,1)*A(1,2)) 
 ACOFAC(3,1) = A(1,2)*A(2,3)  - A(2,2)*A(1,3) 
 ACOFAC(3,2) = -(A(1,1)*A(2,3) - A(2,1)*A(1,3)) 
 ACOFAC(3,3) = A(1,1)*A(2,2) - A(2,1)*A(1,2) 
 
 RETURN 
 END 
C**************************************************************************** 
 SUBROUTINE KMINV(A,AINV,DET_AINV) 
 
C This subroutine calculates the inverse of a {3 x 3} matrix and the 
C determinant of the inverse 
C****************************************************************************  
 
 IMPLICIT REAL*8(A-H,O-Z) 
 
 DIMENSION A(3,3), AINV(3,3) 
  
 
 PARAMETER(ZERO=0.D0, ONE=1.D0) 
 
 DET_A = A(1,1)*(A(2,2)*A(3,3) - A(3,2)*A(2,3)) - 
     +         A(2,1)*(A(1,2)*A(3,3) - A(3,2)*A(1,3)) + 
     +         A(3,1)*(A(1,2)*A(2,3) - A(2,2)*A(1,3)) 
 
 IF (DET_A .LE. ZERO) THEN 
   WRITE(80,*) 'WARNING: DET OF MAT IS ZERO/NEGATIVE !!' 
 ENDIF 
 
 DET_AINV = ONE/DET_A 
 
 AINV(1,1) = DET_AINV*(A(2,2)*A(3,3) - A(3,2)*A(2,3)) 
 AINV(1,2) = DET_AINV*(A(3,2)*A(1,3) - A(1,2)*A(3,3)) 
 AINV(1,3) = DET_AINV*(A(1,2)*A(2,3) - A(2,2)*A(1,3)) 
 AINV(2,1) = DET_AINV*(A(3,1)*A(2,3) - A(2,1)*A(3,3)) 
 AINV(2,2) = DET_AINV*(A(1,1)*A(3,3) - A(3,1)*A(1,3)) 
 AINV(2,3) = DET_AINV*(A(2,1)*A(1,3) - A(1,1)*A(2,3)) 
 AINV(3,1) = DET_AINV*(A(2,1)*A(3,2) - A(3,1)*A(2,2)) 
 AINV(3,2) = DET_AINV*(A(3,1)*A(1,2) - A(1,1)*A(3,2)) 
 AINV(3,3) = DET_AINV*(A(1,1)*A(2,2) - A(2,1)*A(1,2)) 
 
 RETURN 
 END 
C********************************************************************** 
        SUBROUTINE KINVAR(A,IA,IIA,IIIA) 
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C THIS SUBROUTINE CALCULATES THE PRINCIPAL INVARIANTS  
C IA, IIA, IIIA OF A TENSOR [A]. 
C********************************************************************** 
 
        REAL*8 A(3,3), AD(3,3),AD2(3,3), DETA, IA,IIA,IIIA 
 
        DO 1 I=1,3 
          DO 1 J=1,3 
            AD(I,J) = A(I,J) 
1       CONTINUE 
        IA = AD(1,1) + AD(2,2) + AD(3,3) 
 
C CALCULATE THE SQUARE OF [AD] 
 
        CALL KMPROD(AD,AD,AD2) 
        IIA =0.5D0 * ( IA*IA - ( AD2(1,1) + AD2(2,2) + AD2(3,3) ) ) 
 
        CALL  KMDET(AD,DETA) 
        IIIA = DETA 
 
        RETURN 
        END 
 
C********************************************************************** 
 SUBROUTINE KTRACEM(A,TRA) 
 
C THIS SUBROUTINE CALCULATES THE TRACE OF A 3 BY 3 MATRIX [A] 
C AND STORES THE RESULT IN THE SCALAR TRA 
C********************************************************************** 
 
 REAL*8 A(3,3),TRA 
 
 TRA = A(1,1) + A(2,2) + A(3,3) 
 
 RETURN  
 END 
 
C********************************************************************** 
 SUBROUTINE KDEVM(A,ADEV) 
 
C THIS SUBROUTINE CALCULATES THE DEVIATORIC PART OF A 
C 3 BY 3 MATRIX [A] 
C********************************************************************** 
 
 REAL*8 A(3,3),TRA,ADEV(3,3),IDEN(3,3) 
 
 CALL KTRACEM(A,TRA) 
 CALL KONEM(IDEN) 
 CALL KZEROM(ADEV) 
 
 DO 1 I = 1,3 
   DO 1 J = 1,3 
     ADEV(I,J) = A(I,J) - (1.D0/3.D0)*TRA*IDEN(I,J) 
1 CONTINUE 
 
 RETURN 
 END 
C ********************************************************************** 
        SUBROUTINE KPRESS(A,PRA) 
C 
C       THIS SUBROUTINE CALCULATES THE MEAN NORMAL PRESSURE 
C       OF A 3 BY 3 MATRIX [A] 
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C       AND STORES THE RESULT IN THE SCALAR PRA 
C ---------------------------------------------------------------------- 
C       VARIABLES 
C 
        REAL*8 A(3,3),PRA 
 
        PRA = -(1.D0 / 3.D0)*( A(1,1) + A(2,2) + A(3,3) ) 
 
        RETURN  
        END 
C********************************************************************** 
C********************************************************************** 
 SUBROUTINE KEQUIVS(S,SB) 
 
C THIS SUBROUTINE CALCULATES THE EQUIVALENT SHEAR STRESS SB 
C CORRESPONDING TO A 3 BY 3 STRESS MATRIX [S] 
C********************************************************************** 
 
 REAL*8 S(3,3),SDEV(3,3),SDOTS,SB 
 
 SB = 0.D0 
 SDOTS = 0.D0 
 
 CALL KDEVM(S,SDEV) 
 CALL KDOTPM(SDEV,SDEV,SDOTS) 
 SB = DSQRT(0.5D0* SDOTS) 
 
 RETURN 
 END 
C********************************************************************** 
 SUBROUTINE KEQSTNRT(S,SB) 
 
C THIS SUBROUTINE CALCULATES THE EQUIVALENT TENSILE STRESS SB 
C CORRESPONDING TO A 3 BY 3 STRESS MATRIX [S] 
C********************************************************************** 
 
 REAL*8 S(3,3),SDEV(3,3),SDOTS,SB 
 
 SB = 0.D0 
 SDOTS = 0.D0 
 
 CALL KDEVM(S,SDEV) 
 CALL KDOTPM(SDEV,SDEV,SDOTS) 
 SB = DSQRT((2.D0/3.D0)* SDOTS) 
 
 RETURN 
 END 
C********************************************************************** 
 SUBROUTINE KPRTMAT(A,M,N) 
C********************************************************************** 
 
 INTEGER M,N 
 REAL*8 A(M,N)    
 
 DO 10 K=1,M 
   WRITE(80,'(2X,6E12.4,2X)') (A(K,L), L=1,N) 
10      CONTINUE 
 
        RETURN 
        END 
 
C********************************************************************** 
 SUBROUTINE KPRTVEC(A,M) 
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C********************************************************************** 
 
 INTEGER M 
 REAL*8 A(M)    
 
 WRITE(80,'(2X,6E12.4,2X)') (A(K), K=1,M) 
 
        RETURN 
 END 
 
C********************************************************************** 
C 
C THE FOLLOWING  SUBROUTINE IS THE GENERIC ROOT FINDING ROUTINE 
C 
C ******************************************************************** 
 SUBROUTINE KRTSAFE(FUNCD,X1,X2,ROOT,XACC,iterk,itererr) 
C 
C THIS IS A FAIL-SAFE SUBROUTINE TO SOLVE AN IMPLICIT EQUATION 
C F(X) = 0 FOR ITS ROOT. THIS ROUTINE UTILIZES 
C A COMBINATION OF THE BISECTION AND THE NEWTON-RAPHSON SCHEMES. 
C THE HYBRID ALGORITHM TAKES A BISECTION STEP WHENEVER NEWTON- 
C RAPHSON WOULD TAKE THE SOLUTION OUT OF THE BOUNDS (X1 
C IS THE CURRENT LOWER BOUND ON X, AND X2 IS THE CURRENT 
C UPPER BOUND ON X), OR WHENEVER NEWTON-RAPHSON IS NOT REDUCING  
C THE SIZE OF THE BRACKETS RAPIDLY ENOUGH. 
C 
C THE ROOT, RETURNED AS ROOT, IS REFINED UNTIL ITS ACCURACY 
C IS KNOWN WITHIN |ROOT|< XACC. 
C 
C FUNCD IS A USER SUPPLIED SUBROUTINE WHICH RETURNS BOTH THE  
C FUNCTION VALUE AND THE FIRST DERIVATIVE OF THE FUNCTION. 
C 
C THIS SUBROUTINE IS BASED ON THE ONE GIVEN IN ''NUMERICAL 
C RECIPES'', PAGE 258. 
C ---------------------------------------------------------------------- 
C VARIABLES 
C 
 IMPLICIT REAL*8 (A-H,O-Z) 
 REAL*8 X1,X2,ROOT,XACC 
        EXTERNAL FUNCD 
 PARAMETER(MAXIT=100) 
 
 iterk = 0 
 itererr = 0 
 
 CALL FUNCD(X1,FL,DF) 
 CALL FUNCD(X2,FH,DF) 
C 
C  VERIFY THAT THERE IS A ROOT WITHIN THE ORIGINAL 
C  INTERVAL 
C 
 IF(FL*FH .GE. 0.D0) THEN 
    WRITE(80,'(/1X,A/)') 'ROOT MUST BE BRACKETED' 
    STOP 
 END IF 
C 
C  ORIENT THE SEARCH SO THAT F(XL) < 0. 
C 
 IF( FL .LT. 0.D0 ) THEN 
     XL = X1 
     XH = X2 
 ELSE 
     XH = X1 
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     XL = X2 
     SWAP = FL 
     FL = FH 
     FH = SWAP 
 END IF 
C 
C  INITIALIZE THE GUESS FOR THE ROOT, THE ''STEP SIZE 
C  BEFORE LAST'', AND THE LAST STEP 
C 
 ROOT = 0.5D0 *( X1 + X2) 
 DXOLD = DABS(X2 - X1) 
 DX = DXOLD 
 
 CALL FUNCD(ROOT,F,DF) 
 
C 
C   LOOP OVER ALLOWED ITERATIONS 
C 
 DO 10 J = 1,MAXIT 
C 
C   BISECT IF NEWTON OUT OF RANGE, OR NOT DECREASING 
C   FAST ENOUGH. 
C 
    IF( ((ROOT-XH)*DF - F)*((ROOT - XL)*DF -F) .GE. 0.D0 
     +        .OR. DABS(2.D0*F) .GT. DABS(DXOLD*DF) ) THEN 
 
              DXOLD = DX 
              DX = 0.5D0*(XH-XL) 
              ROOT = XL + DX 
              IF( XL .EQ. ROOT ) THEN 
C 
C   CHANGE IN ROOT IS NEGLIGIBLE 
C 
                 RETURN 
              END IF 
 
    ELSE 
C 
C   NEWTON STEP IS ACCEPTABLE. TAKE IT. 
C 
              DXOLD = DX 
              DX = F/DF 
              TEMP = ROOT 
              ROOT = ROOT - DX 
              IF( TEMP .EQ. ROOT) THEN 
C 
C    CHANGE IN ROOT IS NEGLIGIBLE 
C 
            RETURN 
       END IF 
 
    END IF 
C 
C  CONVERVEGENCE CRITERION 
C 
    IF( DABS(DX) .LT. XACC) then 
  iterk = j 
  RETURN 
 endif 
C 
C   THE ONE NEW FUNCTION EVALUATION PER ITERATION 
C 
    CALL FUNCD(ROOT,F,DF) 
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C 
C  MAINTAIN THE BRACKET ON THE ROOT 
C 
    IF( F .LT. 0.D0) THEN 
        XL = ROOT 
        FL = F 
    ELSE 
        XH = ROOT 
        FH = F 
    END IF 
 
 10 CONTINUE 
 
 iterk = maxit +1 
 itererr = 1 
 
 WRITE(6,'(/1X,A)') 'RTSAFE EXCEEDING MAXIMUM ITERATIONS' 
 RETURN 
 END 
C ********************************************************************** 
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APPENDIX E 

ABAQUSTM Input Files 

 
*HEADING 
ONE ELEMENT SIMPLE COMPRESSION CREEP 
** 
** Model Definition 
** 
*NODE,NSET=NALL 
1,0.,0.,0. 
2,1.E-03,0.,0. 
3,1.E-03,1.E-03,0. 
4,0.,1.E-03,0. 
5,0.,0.,1.E-03 
6,1.E-03,0.,1.E-03 
7,1.E-03,1.E-03,1.E-03 
8,0.,1.E-03,1.E-03 
*ELEMENT,TYPE=C3D8R,ELSET=ELALL 
1,1,2,3,4,5,6,7,8 
*SOLID SECTION,ELSET=ELALL,MATERIAL=silicon 
*MATERIAL, NAME=silicon 
** 
** Material Properties Data 
** 
*USER MATERIAL, CONSTANT=19 
150.8E9,0.23,3.83E-10,2.000,6.40E4,0.55E7,3.53E-19,1.38E-23 
0.9091,2.0E6,2.0E-4,0.5E9,6.6E-19,12.5E9,25.E6,330.E6 
2E8,1073.,4.0E-6 
*DEPVAR 
21 
*DENSITY 
1.E15 
** 
** Normal Density is 0.234E4 kg/m^3 
** 
** Initial BCS 
** 
*NSET,NSET=XZERO 
1,4,5,8 
*NSET,NSET=YZERO 
1,2,5,6 
*NSET,NSET=ZZERO 
1,2,3,4 
*BOUNDARY 
**XZERO,1 
**YZERO,2 
ZZERO,3 
*NSET,NSET=XTOP 
2,3,6,7 
*NSET,NSET=YTOP 
3,4,7,8 
*NSET,NSET=ZTOP 
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5,6,7,8 
*NSET,NSET=XTOP1 
3,6,7 
*NSET,NSET=YTOP1 
4,7,8 
*NSET,NSET=ZTOP1 
6,7,8 
*EQUATION 
**2 
**XTOP1,1,1.0,2,1,-1.0 
**2 
**YTOP1,2,1.0,3,2,-1.0 
2 
ZTOP1,3,1.0,5,3,-1.0 
*BOUNDARY 
1,1,3 
2,2 
*NSET,NSET=REF 
5 
*RESTART,WRITE,NUM=10 
** 
*initial condition, type=temperature 
nall, 1073 
*AMPLITUDE,DEFINITION=SMOOTH STEP,NAME=RAMP 
0.0,0.0,60.,1.0,36000,1.0 
*AMPLITUDE, NAME=AMP_TEMP 
0.,1073.,36000,1073. 
** 
**Step Definition 
** 
*STEP 
*DYNAMIC,EXPLICIT 
,36000 
*DLOAD,AMP=RAMP 
ELALL,P2,60.E6 
*TEMPERATURE, AMPLITUDE=AMP_TEMP 
NALL, 1. 
** 
** Output request 
** 
*FILE OUTPUT,NUM=10 
*history output, time interval=30 
*EL FILE 
S,SDV 
E 
*NODE FILE 
U,RF 
*el history, elset=elall 
s,sdv 
le 
*node history, nset=nall 
u,rf 
*MONITOR, NODE=5, DOF=3 
*END STEP 
** 
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*HEADING 
ONE ELEMENT 3-D COMPRESSION, CONSTANT STRAIN 
** 
** Model Definition 
** 
*NODE,NSET=NALL 
1,0.,0.,0. 
2,1.E-3,0.,0. 
3,1.E-3,1.E-3,0. 
4,0.,1.E-3,0. 
5,0.,0.,1.E-3 
6,1.E-3,0.,1.E-3 
7,1.E-3,1.E-3,1.E-3 
8,0.,1.E-3,1.E-3 
*ELEMENT,TYPE=C3D8R,ELSET=ELALL 
1,1,2,3,4,5,6,7,8 
*SOLID SECTION,ELSET=ELALL,MATERIAL=MAT 
1., 
*MATERIAL, NAME=MAT 
** 
** Material Properties Data 
** 
*USER MATERIAL,CONSTANTS=19 
151.E9,0.23,3.83E-10,2.000,6.4E4,0.55E7,3.53E-19,1.38E-23 
0.9091,2E6,2.0E-4,0.5E9,6.6E-19,12.5E9,25.E6,330.E6 
2E8,1073.,4.0e-6 
*DEPVAR 
21 
*DENSITY 
1.E13 
** 
** REAL DENSITY 1210 KG/M^3 
** 
*NSET,NSET=BOT 
1,2,3,4 
*BOUNDARY 
BOT,3 
1,1,2 
2,2 
*NSET,NSET=TOP 
5,6,7,8 
*NSET,NSET=TOP1 
6,7,8 
*EQUATION 
2 
TOP1,3,1.0,5,3,-1.0 
*NSET,NSET=REF 
5 
*INITIAL CONDITION, TYPE=TEMPERATURE 
NALL, 1073. 
*AMPLITUDE, NAME=AMP_TEMP 
0.,1073.,100.,1073. 
** 
** Step Definition 
** 
*STEP 
*DYNAMIC,EXPLICIT 
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,100. 
*RESTART,WRITE,NUM=400 
*BOUNDARY,TYPE=VELOCITY 
REF,3,,-2.4E-7 
*TEMPERATURE,AMPLITUDE=AMP_TEMP 
NALL,1. 
** 
** Output Request 
** 
*Output, field 
*Node Output 
U, RF 
*Element Output 
S, LE, SDV 
*FILE OUTPUT,NUM=400 
*NODE FILE 
U,RF 
*EL FILE 
S,LE,SDV 
*MONITOR,NODE=5,DOF=3 
*End Step 
** 
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*HEADING 
Si 4-PT BEND TEST, MONOTONIC LOADING 
*RESTART,WRITE,NUM=10 
** 
** Model Definition 
** 
*NODE 
1, 0., 0. 
5, 0.0005, 0. 
6, 0.001, 0. 
20, 0.0087, 0. 
21, 0.009, 0. 
30, 0.010, 0. 
39, 0.011, 0. 
40, 0.0113, 0. 
48, 0.019, 0. 
49, 0.0195, 0. 
53, 0.020, 0. 
57, 0.0205, 0. 
58, 0.021, 0. 
62, 0.025, 0. 
8001, 0., 0.001 
8005, 0.0005, 0.001 
8006, 0.001, 0.001 
8020, 0.0087, 0.001 
8021, 0.009, 0.001 
8030, 0.010, 0.001 
8039, 0.011, 0.001 
8040, 0.0113, 0.001 
8048, 0.019, 0.001 
8049, 0.0195, 0.001 
8053, 0.020, 0.001 
8057, 0.0205, 0.001 
8058, 0.021, 0.001 
8062, 0.025, 0.001 
*NSET,NSET=B1 
1 
*NSET,NSET=B2 
5 
*NSET,NSET=B3 
6 
*NSET,NSET=B4 
20 
*NSET,NSET=B5 
21 
*NSET,NSET=B5M 
30 
*NSET,NSET=B6 
39 
*NSET,NSET=B7 
40 
*NSET,NSET=B8 
48 
*NSET,NSET=B9 
49 
*NSET,NSET=B9M 
53 
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*NSET,NSET=B10 
57 
*NSET,NSET=B11 
58 
*NSET,NSET=B12 
62 
*NSET,NSET=T1 
8001 
*NSET,NSET=T2 
8005 
*NSET,NSET=T3 
8006 
*NSET,NSET=T4 
8020 
*NSET,NSET=T5 
8021 
*NSET,NSET=T5M 
8030 
*NSET,NSET=T6 
8039 
*NSET,NSET=T7 
8040 
*NSET,NSET=T8 
8048 
*NSET,NSET=T9 
8049 
*NSET,NSET=T9M 
8053 
*NSET,NSET=T10 
8057 
*NSET,NSET=T11 
8058 
*NSET,NSET=T12 
8062 
*NFILL,NSET=BOT1,BIAS=0.8 
B1,B2,4,1 
*NFILL,NSET=BOT2 
B3,B4,14,1 
*NFILL,NSET=BOT3L,BIAS=1.11 
B5,B5M,9,1 
*NFILL,NSET=BOT3R,BIAS=0.9 
B5M,B6,9,1 
*NFILL,NSET=BOT4 
B7,B8,8,1 
*NFILL,NSET=BOT5L,BIAS=1.25 
B9,B9M,4,1 
*NFILL,NSET=BOT5R,BIAS=0.8 
B9M,B10,4,1 
*NFILL,NSET=BOT6 
B11,B12,4,1 
*NFILL,NSET=TOP1,BIAS=0.8 
T1,T2,4,1 
*NFILL,NSET=TOP2 
T3,T4,14,1 
*NFILL,NSET=TOP3L,BIAS=1.11 
T5,T5M,9,1 
*NFILL,NSET=TOP3R,BIAS=0.9 
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T5M,T6,9,1 
*NFILL,NSET=TOP4 
T7,T8,8,1 
*NFILL,NSET=TOP5L,BIAS=1.25 
T9,T9M,4,1 
*NFILL,NSET=TOP5R,BIAS=0.8 
T9M,T10,4,1 
*NFILL,NSET=TOP6 
T11,T12,4,1 
*NFILL,NSET=NALL 
BOT1,TOP1,8,1000 
BOT2,TOP2,8,1000 
BOT3L,TOP3L,8,1000 
BOT3R,TOP3R,8,1000 
BOT4,TOP4,8,1000 
BOT5L,TOP5L,8,1000 
BOT5R,TOP5R,8,1000 
BOT6,TOP6,8,1000 
*NSET,NSET=MIDDLE,GEN 
1,8001,1000 
*ELEMENT,TYPE=CPE4R,ELSET=ELALL 
1,1,2,1002,1001 
*ELGEN,ELSET=ELALL 
1,61,1,1,8,1000,1000 
*NODE,NSET=NRIGID1 
90001,0.01,0.0035 
*RIGID BODY,REF NODE=90001 
*NODE,NSET=NRIGID2 
90002,0.02,-0.0025 
*RIGID BODY,REF NODE=90002 
*SOLID SECTION,ELSET=ELALL,MATERIAL=SILICON,CONTROL=B 
0.009, 
*SECTION CONTROLS, HOURGLASS=STIFFNESS, STRESS RATE=SPIN, NAME=B 
*MATERIAL, NAME=SILICON 
** 
** Material Properties Data 
** 
*USER MATERIAL, CONSTANT=19 
155.8E9,0.23,3.83E-10,2.000,6.40E4,0.55E7,3.53E-19,1.38E-23 
0.9091,2.0E6,2.0E-4,0.5E9,6.6E-19,12.5E9,25.E6,330.E6 
2E8,1073.,4.0e-6 
*DEPVAR 
21 
*DENSITY 
5.0E13 
*BOUNDARY 
MIDDLE,1 
90001,1,2 
*INITIAL CONDITION, TYPE=TEMPERATURE 
NALL, 1073. 
*AMPLITUDE,NAME=RAMP 
0.,0.,0.5,1.,1000.,1. 
*AMPLITUDE,NAME=AMP_TEMP 
0.,1073.,750.,1073. 
** 
** Step Definition 
** 
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*STEP 
*DYNAMIC,EXPLICIT 
,750. 
*ELSET,ELSET=TOP,GEN 
7020,7041,1 
*ELSET,ELSET=BOT,GEN 
48,57,1 
*RIGID SURFACE,NAME=ROLLER1,TYPE=SEGMENTS,REF NODE=90001 
START,0.0125,0.0035 
CIRCL,0.0100,0.001,0.010,0.0035 
CIRCL,0.0075,0.0035,0.010,0.0035 
*SURFACE DEFINITION,NAME=INNER 
TOP 
*SURFACE INTERACTION,NAME=IN_ROL1 
*FRICTION 
0.1, 
*CONTACT PAIR,INTERACTION=IN_ROL1 
ROLLER1,INNER 
*RIGID SURFACE,NAME=ROLLER2,TYPE=SEGMENTS,REF NODE=90002 
START,0.0175,-0.0025 
CIRCL,0.0200,0.,0.020,-0.0025 
CIRCL,0.0225,-0.0025,0.020,-0.0025 
*SURFACE DEFINITION,NAME=OUTER 
BOT,S1 
*SURFACE INTERACTION,NAME=OUT_ROL2 
*FRICTION 
0.1, 
*CONTACT PAIR,INTERACTION=OUT_ROL2 
ROLLER2,OUTER 
*BOUNDARY,TYPE=VELOCITY,AMPLITUDE=RAMP 
90002,2,,2.E-6 
*TEMPERATURE, AMPLITUDE=AMP_TEMP 
NALL,1. 
** 
** Output Request 
** 
*MONITOR,NODE=90002,DOF=2 
*FILE OUTPUT,NUM=2,TIMEMARKS=YES 
*EL FILE 
S,LE 
*NSET,NSET=MONITOR 
1 
90001 
90002 
*HISTORY OUTPUT, TIME=1.00 
*NODE HISTORY, NSET=MONITOR 
U2,RF2 
*NODE FILE, NSET=NRIGID2 
U,RF 
*energy file 
allke, allie 
*energy history 
allie, allke 
*END STEP 
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*HEADING 
Si/SiC HYBRID ROTATING DISC 
*RESTART, WRITE, NUM=10 
** 
** Model Definition 
** 
*NODE 
1, 0., 0. 
11, 3.e-3, 0. 
1001, 0., 0.045e-3 
1011, 3.e-3, 0.045e-3 
3001, 0., 0.15e-3 
3011, 3.e-3, 0.15e-3 
*ngen, nset = bot 
1, 11 
*ngen, nset = middle  
1001, 1011 
*nfill,nset = sic 
bot,middle,1,1000 
*ngen, nset = top 
3001, 3011 
*nfill,nset=si 
middle,top,2,1000 
*element, type = cax4r, elset = sic 
1, 1, 2, 1002, 1001 
*elgen, elset = sic 
1, 10, 1, 1, 1, 1000, 10 
*element, type = cax4r, elset = si 
11, 1001,1002,2002,2001 
*elgen, elset = si 
11,10,1,1,2,1000,10 
*nset, nset = rotaxis,generate 
1, 3001,1000 
*nset, nset = symm, generate 
1, 11, 1 
** 
*SOLID SECTION,ELSET=SI,MATERIAL=SILICON 
*MATERIAL,NAME=SILICON 
** 
** Material Properties Data 
** 
*USER MATERIAL, CONSTANT=19 
155.8E9,0.23,3.83E-10,2.000,6.40E4,0.55E7,3.53E-19,1.38E-23 
0.9091,2.0E6,2.0E-4,0.5E9,6.6E-19,12.5E9,25.E6,330.E6 
2E8,300.,4.0E-6 
*DEPVAR 
21 
*DENSITY  
2.33E14 
*SOLID SECTION,ELSET=SIC,MATERIAL=SIC 
*MATERIAL,NAME=SIC 
*ELASTIC, TYPE=ISOTROPIC  
430.00E+09,0.21 
*expansion 
4.5E-6 
*density 
3.2E14 
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** 
*BOUNDARY 
  rotaxis, 1 
  symm, 2 
*initial condition, type=temperature 
si, 300 
sic, 300 
*amplitude,name=centrif 
0.,0.,10.,1.,36000,1. 
*amplitude,name=amp_temp 
0.,300.,10.,1073.,36000,1073. 
** 
** Step Defintion 
** 
*STEP 
*DYNAMIC,EXPLICIT 
,120 
** 
** Centrifugal LOAD BC 
** 
*DLOAD,amplitude=centrif 
1,br,0.0999E11 
2,br,0.233E11 
3,br,0.380E11 
4,br,0.528E11 
5,br,0.678E11 
6,br,0.826E11 
7,br,0.976E11 
8,br,1.126E11 
9,br,1.275E11 
10,br,1.426E11 
11,br,0.0728E11 
12,br,0.170E11 
13,br,0.277E11 
14,br,0.385E11 
15,br,0.494E11 
16,br,0.602E11 
17,br,0.711E11 
18,br,0.820E11 
19,br,0.929E11 
20,br,1.039E11 
21,br,0.0728E11 
22,br,0.170E11 
23,br,0.277E11 
24,br,0.385E11 
25,br,0.494E11 
26,br,0.602E11 
27,br,0.711E11 
28,br,0.820E11 
29,br,0.929E11 
30,br,1.039E11 
*temperature,amplitude=amp_temp 
si,1 
sic,1 
*nset,nset=all 
si 
sic 
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*elset,elset=all 
si 
sic 
*nset,nset=monitor 
11 
3011 
*elset,elset=el_mon 
1 
11 
** 
** Output Request 
** 
*MONITOR,NODE=3011,DOF=1 
*FILE OUTPUT,NUM=2,TIMEMARKS=YES 
*history output,time=1.0 
*node history,nset=monitor 
u1 
*el history,elset=el_mon 
s 
*energy history 
allke,allie 
*el file, elset=all 
s,le 
*node file, nset = all 
u,v 
*energy file 
allke,allie 
*END STEP 
** 
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APPENDIX F 

Crystal Plasticity Framework for Si Model 
 

Governing Variables 

),,,,,( sp ρθFFT , 

where T is the Cauchy stress, F is the deformation gradient tensor, pF is the plastic 

deformation gradient tensor, θ is the absolute temperature in Kelvin, ρ is the dislocation 

density, and s is the isotropic slip resistance. 

 

Equations for Stress 

Multiplicative decomposition of F: peFFF =  

Strain Tensor (Green elastic strain): )(2/1 1FFE −= eee T

 

Piola-Kirchoff stress tensor:  
Teee −−

= TFFFT
1

)(det  

Constitutive law:   ])([ 0 1ET θθα −−= T
eCCCC , 

where 1Tα is the second-order isotropic thermal expansion tensor, and 

θ and θ0 are the absolute temperature and a reference temperature, 

respectively.   

 

Flow Rule 

)()(
12

1

1 αα

α

αγ nmpp ⊗= ∑
=

−
&& FF

 

where 
αγ& is plastic shearing rate in the α slip system and )()( αα nm ⊗ are slip systems.  

FCC or diamond-structured crystals have twelve slip systems as listed in Table A6.1.  
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Table A6.1 Components of mα and nα referred to an orthonormal basis {ei
c} associated 

with the crystal lattice for FCC and diamond-structured crystals. 
 

mα                           nα 
2

1  - 2
1   0     3

1   3
1   3

1  
- 2

1   0 2
1      3

1   3
1   3

1  
0  2

1  - 2
1      3

1   3
1  3

1  

2
1   0  2

1      - 3
1   3

1   3
1  

2
1   2

1   0     - 3
1   3

1   3
1  

0  2
1  - 2

1      - 3
1   3

1  3
1  

2
1   0 - 2

1      3
1  - 3

1   3
1  

2
1   2

1   0      3
1  - 3

1   3
1  

0 - 2
1  - 2

1      3
1  - 3

1   3
1  

2
1  - 2

1   0     3
1   3

1  - 3
1  

2
1   0  2

1       3
1   3

1  - 3
1  

0 - 2
1  - 2

1       - 3
1  - 3

1  3
1  

Regime I )( critρρα ≤  

Orowan equation:  ααα ργ vbm=& .  
αα ρρ m≅  in Regime I 

Internal shear resistance: 
αα ραµτ bi =  

Resolved shear stress:  
)()( ααατ nm T⋅=  

Effective shear resistance; 
ααα τττ ieff −=  

Dislocation velocity:  ( ) ( ) ( )



−
= αα

α

τττθ signkQv
v m

eff
/1

00 //exp
0

 0
0

>
≤

α

α

τ
τ

eff

eff

if
if

 

Plastic shear rate:  ( ) ( ) ( )



−
= αα

α

τττθρ
γ

signkQbv m
eff

/1
00 //exp

0
&

0
0

>
≤

α

α

τ
τ

eff

eff

if
if

 

Evolution equation for dislocation density: 

∑=
β

βαβα γρ && g
 

βαββαβαβ δ gqqgqg ll ])1([ −+==  
βββββ γτγρ &&& effbKg )/(== ,

 
where K is a multiplication rate constant.
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Regime II )( critρρα >  

Plastic shear rate:  











−∆−= α

α
α τ

θ
γγ

sk
F 1exp0&&   

where 0γ&  is a reference shearing rate, and ∆F is the activation free 

energy required to overcome the obstacles to slip without the aid of an 

applied shear stress. 

 

Evolution equation for shear resistance: 

∑=
β

βαβα γ&& hs  

βαββαβαβ δ hpphph ll ])1([ −+==  

βββ γ&& hs =  

α
α

α
α γ&& 





−= *0 1

s
shs

 

Transition between two models 

Critical dislocation density: 

















=

0

0

0

0

ρ
ρ

τ
τ

ρ
ρα

crit

n

crit
A

 
.0

0

crit

crit

if

if

ρρ

ρρ

α

α

<

≥
  

Shear resistance initialization: 

    
21 regime

p
regime

p γγ && =  at )( critρρα = , 

)(ˆ00 critss ρ=
 1

0

1

0 log1

−

=

















∆












+⋅=

F
ks crit

regime
p

θ
γ

γ
τ ρρ

&

&
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APPENDIX G 
Experimental Data 
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APPENDIX H 

Experimental Error Analysis 

 
As discussed in Chapter 5, the experimental error was estimated to be approximately 15 

% from the comparison of the Si compression creep data for multi-slip system <100> and 

<111> orientations.  Here, the experimental errors associated with the Si uniaxial 

compression creep testing are investigated in detail.  The sources for the experimental 

errors include the creep temperature, load, strain measurement (LVDT), friction between 

the load pad and the specimen, seating of the load-train, and any misalignment in the 

load-train.  The experimental error boundaries can be conceived as: 

etotal ≅ etemperature + eload + eLVDT + ealignment + efriction + eseating (%)  (G.1) 

 

Effect of uncertainty in creep temperature and load 
 
First, the effect of creep temperature and load change on Si creep strain in compression 

was considered.  Chen1 discussed the uncertainty in creep temperature of ±7 °C 

pertaining to the thermocouples installed in the furnace.  He also identified the noise level 

in load of approximately 5 N.  This corresponds to the stress level of 0.25 MPa for the 

compression specimen dimensions.  The machining tolerance of the compression 

specimen also adds more variations in the creep load of approximately 0.5 MPa.  Figure 

G.1 shows the model prediction on the effect of creep temperature and load change on Si 

creep in compression.  From this result, the sensitivity of the temperature to creep strain, 
e
TS , can be obtained to be approximately 0.2 %/°C, and the sensitivity of the load to creep 

strain, e
PS , approximately 2 %/MPa.  Thus, the errors in creep strain due to the creep 

temperature and load, etemperature and eload, are approximately 1.5 % and 1.5 %, 

respectively. 

 

                                                 
1 K.-S. Chen, Materials characterization and structural design of ceramic micro-turbomachinery, Ph.D., 
Dept. of Mechanical Engineering, MIT, 1999. 
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Figure H.1 Effect of creep temperature and load change on Si creep in compression 

 
Effect of accuracy in strain measurement (LVDT) 
 
From the specification of the machine, the accuracy of the Linear Variable Differential 

Transducer (LVDT) installed in the testing machine is ±1 µm.  This results in an error of 

0.5 % in strain measurements. 

 

Effect of misalignment of the load train 
 
Misalignments in the load train including the specimen and fixture might cause 

elastic/plastic buckling and undesirable stress gradients in the specimen.  Figure G.2 

shows the configuration of the Si compression creep testing with a finite misalignment of 

0.5 mm.  The model prediction for the deformation under a nominal creep load of 80 

MPa at 800 °C is also presented.  As described in the test procedure in Appendix B, 

specimens and fixtures are centered by eye-inspection, which may lead to a misalignment 

of 0.5 mm with ease.  In the analysis, the friction coefficient of 0.1 was used for the 

contact interface that consists of a pair of SiC load pads, a Si specimen, and BN solid 

lubricant.  The lateral movement of the node at the center of the top load pad was fixed in 
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order to simulate the rolling contact of the hemispherical top load pad in the experiments.  

This boundary condition was verified by the fact that experimentally relative lateral 

movements of the specimen to the load pads were seldom observed.  Figure G.3 shows 

the normal stress distribution within the specimen due to the misalignment with non-

uniform stress gradients.  As shown in Figure G.4, the misalignment of the load train 

yields a change in creep strain of approximately 10 %.  It appears that the areas of low 

stresses yielding low creep rates tend to reduce the overall creep rate due to the geometric 

constraints of the top load pad block. 

 

 

 
(a) (b) 

 
Figure G.2 (a) Configuration of the Si compression creep testing considering a finite 
misalignment of 0.5 mm, (b) deformed FE mesh under a nominal creep load of 80 MPa at 
800 °C. 
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SiC load pad 
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Figure G.3 Non-uniform stress gradients within the specimen due to the misalignment of 
0.5 mm under a nominal creep load of 80 MPa at 800 °C. 
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Figure G.4 Comparison of the model predictions for Si creep in compression for cases of 
well-centered and misaligned by 0.5 mm at the creep temperature of 800 °C and nominal 
creep load of 80 MPa. 
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Effect of seating of the load train 
 
The initial displacement during the load ramp is composed of contributions from the 

elastic/plastic deformation of the specimen, machine compliance, seating of the load 

train, namely: 

δramp = δE + δin + δseating + O(e) = δE, Si + δE, machine + δin, Si + δseating + O(e) (G.2) 

As shown in Figure G.5, the overall displacement during the ramp, δramp, was measured 

to be approximately 150 µm for the test at the creep temperature of 800 °C and the 

nominal creep load of 80 MPa.  First, the elastic deformation of the Si specimen is: 

δE, Si = PL/EA = 6.2 µm.    (G.3) 

The machine stiffness, Kmachine, was measured to be approximately 16000 N/mm.  From 

this, the contribution of the testing machine can be obtained as: 

δE, machine = P/Kmachine ≅ 100 µm.   (G.4) 

From the model prediction, the inelastic deformation of the specimen during the load 

ramp was found to be negligible.  Substituting the obtained values into Equation G.2, the 

contribution of the seating of the load train during the load ramp is obtained as: 

δseating ≅ 45 µm.     (G.5) 

 

It is still unclear whether or not the seating of the load train is completed at the start of 

the creep load.  Considering the difference in the time constants of the viscous 

deformation (i. e. creep) of Si and other factors such as the BN solid lubricant and loose 

interfaces of the load train, the creep deformation after the load ramp, however, appears 

to be almost free of the seating of the load train.  Thus, the effect of the seating of the 

load train is considered negligible during creep. 
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Figure G.5  Experimental creep data at 800 °C and 1570.8 N. 

 

Effect of friction between the load pad and specimen 
 
As discussed in Chapter 3, Debschutz2 claimed that the additional stress required to 

maintain a given creep rate, ranged from 6 to 10 % of the average creep stress for an 

aspect ratio of specimen base, 21, to height, h, ranging from 1/3 to 1/1.5.  For the 

dimensions of the specimen in this work, the additional creep stress is estimated to be 7 

%.  This was verified in Chapter 5, where the numerical prediction of the creep strain 

with an axisymmeric FE model is smaller than those of the model prediction using a 

single-element mesh. 

 

Overall, the experimental error boundaries in the uniaxial compression creep testing are 

estimated to be approximately 20 %.  From this error analysis, the misalignment of the 

load train is identified to be the most critical factor that determines the experimental error 

boundaries in compression creep testing, and the friction between the load pads and 

specimen the second most critical factor.  The experimental errors can be minimized by 
                                                 
2 K. Debschutz, et. al, Critical evaluation of the compression creep test, J. Am. Ceram. Soc., Vol. 76, No. 
10, pp 2468-74, 1993. 
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adopting improved alignment methods such as using a better fixture design or a long 

range optical telescope.  If properly designed, specifically with attention to the grip and 

strain measurement technique, tensile testing has the potential to provide more accurate 

results. 
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APPENDIX I 

GDMS Analytical Report for Si (compression specimen) 
 

Element Concentration [ppmwt] 
B 0.2 
C 0.3 
N ~ 0.9 
O 7 
Si Matrix 
P 980 
S < 0.01 

As 0.02 
Ta < 1 

Data provided by Lattice Materials Corporation 
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