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Abstract

A detailed treatment of the electrostatic energy of biomolecules in solution is used
for two applications that require consideration of large numbers of states: multiple-
site titration and protein design. The continuum electrostatic model is combined with
covalent, van der Waals, and non-polar energy terms, and the statistical mechanical
basis for this model is reviewed. Multiple-site titration is modeled with four titratable
residues of the protein barstar. A full enumeration of the titration states is used to
predict pH-dependent properties of the system, and the effects of several simplifying
assumptions are evaluated. The analytical continuum electrostatics (ACE) method, a
computationally inexpensive approximation of the electrostatic free energy, is evaluated
in the context of predicting group terms of the binding free energy. A primary source
of error in the ACE prediction of atomic solvation energies is identified and ameliorated.
A procedure is developed which optimizes the parameters of the ACE method in order
to minimize its errors as compared to finite-difference solution of the linearized Poisson—
Boltzmann equation. Parameter sets optimized on a “testing” biomolecular binding
system yield reduced average errors for related biomolecular systems. Finally, a protein
design method is developed which uses the dead-end elimination and A* discrete search
algorithms to systematically search large numbers (10%*) of structures, varying the protein
sequence and the side chain conformation at all selected residues. The method is novel
in its co-optimization of binding and folding free energies, its use of three levels of
increasingly detailed discrete search (sequence, fleximers, and rotamers), and its use of
three hierarchical energy functions to successively screen candidate structures identified
by the discrete search. Redesigning sets of three and seven residues of the protein barstar,
the wild-type sequence, which is experimentally known to bind very tightly to barnase, is
ranked very highly by this method (#5 out of 8000, or #89 out of 1.3x10°), unlike that of
previous protein design studies. The present method chooses a structure for the wild-type
sequence that is very similar to the crystal structure. Several novel sequences predicted
to bind more tightly than wild-type barstar are promising candidates for synthesis.
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Chapter 1

General Introduction

Two crucial functions of proteins are folding into their native conformations and binding
to other molecules. These processes are governed by the value of the free energy for
each state; for example, binding affinity is determined by the free energy difference of
the bound and unbound states of the binding partners. The presence of water has a
complex effect on the free energy of molecules in solution. The polar water molecules
can generally make better interactions with each other than with any solute molecule;
this is the basis of the hydrophobic effect. The polarization of the surrounding water in
response to the electric field produced by a solute molecule acts to screen the solute’s

internal interactions.

We account for the polarization of the water around a solute molecule with a
continuum electrostatic model: the water is modeled as a continuum with a high dielectric
constant, and a single solute molecule or molecular complex is modeled as a low dielectric
region of fixed shape, embedded in the high dielectric region, containing point charges
at the centers of its atoms. The electrostatic energy of the system, including the effects
of mobile ions in the solution, can then be obtained by finite-difference solution of the

linearized Poisson—Boltzmann equation [1, 2, 3, 4, 5].

The continuum electrostatic model, along with covalent, van der Waals, and

hydrophobic energy terms, can be used to predict free energy differences between states of
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a solute molecule or molecular complex. In this thesis, we use such free energy differences
to model the processes of binding, folding, titration, and conformational change. The
thesis begins and ends with applications that require the evaluation of many competing
states: multiple-site titration and protein design. In the middle, we develop approximate
methods of evaluating the electrostatic energy that are computationally faster than finite-
differences solution of the Poisson—Boltzmann equation, and therefore can be used to
evaluate the large numbers of states required for analysis of titration, minimization, or

protein design.

In Chapter 2, we review the statistical mechanical basis for our model, beginning
with the full quantum mechanical partition function for a solution consisting of explicit
solvent, ion, and solute molecules. We show that the states of the system are populated
according to their Gibbs free energies. We show the assumptions and reasoning which
allow us to consider a single solute molecule or molecular complex, to separate out the
electrostatic energy term, and to treat the solute as a dielectric continuum. We derive the
Poisson—Boltzmann equation from the Poisson equation. Finally, we describe how the
linearized Poisson—Boltzmann equation can be solved by a finite-difference method, and
how this method can be used to calculate free energy differences for solvation, titration,

binding, folding, or conformational change of a biomolecule.

In Chapter 3, we apply the continuum electrostatic method to the problem of
predicting the pH-dependent properties of a protein with multiple titratable side chains.
Titration events at each protonation site — the release of a hydrogen ion from an acidic
side chain, or the reverse — are dependent on the titration state of the other sites. For
four titratable residues of the protein barnase, we calculate the full partition function
including every combination of the four residues’ titration states. The predictions of this
model are compared to experiment, and to the “null model” of completely independent
titrating groups. Finally, we evaluate several simplifying approximations that have
been used to make the evaluation of exponentially larger numbers of titratable residues

tractable.

In Chapter 4, we introduce the analytical continuum electrostatics (ACE) method [6,
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7], which is a computationally inexpensive approximation to the more costly finite-
difference solution of the Poisson—Boltzmann equation. Such an approximation has value
for applications that require large numbers of electrostatic free energy calculations, such
as multiple site titration, minimization, and protein design. We identify and mitigate a
primary source of error for the ACE method, and incorporate a treatment of non-zero

ionic strength.

In Chapter 5, we develop and test a procedure which optimizes the parameters
of the ACE method in order to minimize its errors as compared to finite-difference
Poisson—Boltzmann results. Optimized parameter sets give significantly lower errors
in components of the electrostatic binding free energy. Only in some cases does the
transfer of an optimized parameter set from a “training” to a “testing” protein binding
pair result in reduced errors, but training and testing within a family of eight variant
Zif268 protein/DNA binding pairs achieves an average reduction of -25% for our error

function.

In Chapter 6, we develop a protein design method which uses discrete search
algorithms to systematically search extremely large numbers (10?*) of structures, varying
the amino acid type and the conformation at each selected protein residue. Our design
method has these novel features: (1) it can optimize the binding free energy while
maintaining a stable folding free energy, (2) it uses three stages of increasingly detailed
discrete search in order to evaluate a diversity of sequences as well as multiple structures
for each sequence, (3) it includes more accurate solvation and electrostatic free energy
terms than methods previously used with discrete searches, and (4) it uses a hierarchy
of three energy functions to successively screen candidate structures identified by the
discrete search. The three hierarchical energy functions apply Coulombic, ACE, and
finite-difference Poisson-Boltzmann electrostatics, respectively. We apply our design
method to three residues of the protein barstar in order to enhance its binding to its
partner barnase; then to three residues of gp41; and finally to seven residues of barstar.
Our method ranks the wild-type barstar sequence very highly, which validates the method

because barstar is experimentally known to bind very tightly to barnase. Several novel
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sequences predicted to bind more tightly than wild-type barstar are promising candidates

for synthesis.
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Chapter 2

Theory

2.1 Statistical Mechanics of Solvent, Solutes, and

Mobile Ions

In this section, we will develop the theory necessary to calculate free energy differences for
molecular processes taking place in solution, such as the formation of a binding complex
by solute molecules. Other processes of interest are protein folding and conformational
changes of a single solute molecule. These and all other processes of interest are described
by changes of the free energy, rather than absolute free energies. The physical system
of interest is a solution consisting of N, solvent molecules, N, molecules of each solute
species in the list {u}, and N, molecules of each mobile ion species in the list {m}. Each

solute species v in the list {u} can be a single molecule or a bound complex of molecules.

The ({N;}, P,T) ensemble, in which the number of each species of molecule, the
pressure, and the temperature are held constant, corresponds to the usual situation in
biological systems. However, at constant pressure and sufficiently large volume, the
({N;},V,T) ensemble gives a statistical mechanical description of the system identical
to that of the ({NV;}, P,T) ensemble, because the average fluctuation AV of the volume

about its equilibrium value Vj is negligible [8]. This will allow us to compute Helmholtz
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free energies

rather than Gibbs free energies
G{N;},P,T) = —kgT1In Q({N;}, P,T) (2.2)
because, for a sufficiently large volume and a constant pressure,
G =F+ PV, (2.3)

Therefore, we can use the more convenient ({NN;},V,T) ensemble when developing the

partition function.

The full quantum mechanical partition function Q of the solution (containing one

solvent species, various mobile ion species, and various solute molecule species) is

Q= Z e PH{z}) (2.4)
{z}
where H is the exact quantum mechanical Hamiltonian for the system, and {z} are all

degrees of freedom of the system.

We assume that there are no interactions between solute molecules except in such
binding complexes. That is, each solute molecule is free in solution but is not affected
by the other solute molecules. This is true in the limit of low solute concentrations
(>, Ny < N,), and is called the dilute solution limit [9]. The dilute solution limit also

implies that the solute molecules do not affect the bulk structure of the solvent.

In the dilute solution limit, and assuming that molecules of a given species
are indistinguishable, the Hamiltonian is separable into H" for the solvent-solvent
interactions (including ions), H* for the internal states of each solute molecule j of

each species u, and H"" for the interactions of each solute molecule of each species u
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with the region of solvent (and ions) around it [8]:
H({z}) =H"({a"H) + 2D H"({a7H) + 2 D H" ({2, 25}) (2.5)

where {7%} are the degrees of freedom of one solute molecule, number j of species w.
This allows the separation of the partition function into factors Qv for the solvent-solvent
interactions (including ions) and Qj for a single solute molecule of species u together with

an arbitrarily large region of solvent (and ions) surrounding it:

1
Q=09 1;[ @(QS)"“ (2.6)
where
Qu=3 et (2.7)
{zv}
and

> av) (e‘ﬂw) e AU =B

X =Y

{zv} Z{z”} (67,37.[1))
- <Z 6—5”“'“e—5”“> (2.8)
{zv} v

where the notation ( ), is an expectation value over all solvent states, Boltzmann-weighted

by the term e #*" for the solvent-solvent interactions.

At this point, it is convenient to explicitly allow conformational freedom to the solute
molecule, by allowing a solute molecule of species u to have a set of rigid conformations,
{x**} where i is the conformation number, and the allowed values of i are denoted {3, }.
A rigid conformation is a fixed internal geometry of the molecule’s atoms, which can be
defined by specifying values for the bond lengths and angles (which are typically fixed),
and dihedral angles. Nuclear, electronic, and vibrational degrees of freedom, because they
have much higher frequency modes than large changes of dihedral angles, are assumed

to be separable in the Hamiltonian. Let us separate those degrees of freedom, as well as

21



the 6 translational and rotational degrees of freedom for the whole molecule, out of the

solute intramolecular Hamiltonian:
HY = Hu,nuc—f—elec—f—vib 4 Hu,rot 4 Hu,trans 4 /Hu,conf (29)

Since we assume these terms are independent of the solvent, they come out of the

expectation value in Equation 2.8:

Qg _ Zu,trans Z Zu,i,inte*ﬂ%u’i’conf <eiﬂ%u,i,v> (210)
{u}
where
u,trans QWmUkBT i
Futrans _ 17 (T) (2.11)

is the translational partition function of solute species u, which has molecular mass m,,,
and h is Planck’s constant; and Z%%™ is the internal partition function for conformation
1 of solute species u, including nuclear, electronic, rotational, and vibrational degrees of

freedom.

Let us define the eigenvalue Gi' = H*#<" a5 the internal conformational energy of

a molecule of solute species u in conformation .

We also identify the eigenvalue of the average solute-solvent interaction energy of a
molecule of solute species u in conformation 7 with the solvation chemical potential:

Aplt = —kgTln <e**37{u’i’v >v (2.12)

solv

This chemical potential is the free energy of transfer of one solute molecule of species u
in conformation ¢ from vacuum into the solvent. Re-writing the partition function, we
have

Qg — Zutrans Z Zu,i,inte—ﬂ(GS’i'i'AN:(;]iV) (213)
{iu}

Finally, from Equations 2.6, 2.3, and 2.13, and defining G = PV + kg7 In Q, the Gibbs
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free energy of the entire solution is

G=G" +ksTY |Inn,! — nyln 2405 . 1n (Z zu’iﬁme—ﬂ(G’é’”Aﬂi‘éfv))] (2.14)
z i)

2.1.1 Covalent, Non-polar, Electrostatic Energy Components

The internal conformational free energy Gg’i of a molecule of solute species u in
conformation ¢ includes the bond, angle, and torsion (dihedral) strain, electrostatic,
and van der Waals energies internal to the solute molecule. In practice, G}f’i can be
calculated using quantum mechanics or with an empirical molecular force field such as
the PARAM19 [10] parameter set used with the molecular modeling package CHARMM [11].
By “electrostatic”, we mean the electrostatic energy of the average charge distribution
of the molecule. The van der Waals interaction of induced dipoles, as well as the effect
of the Pauli exclusion principle, can be calculated in practice with the Lennard—Jones
6-12 potential. The method of calculating the electrostatic energy will be discussed in
Section 2.1.2. The electrostatic component of Gg’i includes only interactions internal
to the solute molecule, not the screening effect of the solvent, so it is equivalent to the
energy of the solute molecule in vacuo. Aside from the electrostatic and van der Waals
components, empirical parameter sets model the rest of the true quantum mechanical
Hamiltonian with force constants for bond, angle, and torsional strain energy between

the covalently bonded atoms.

Assume that the Hamiltonian can be separated into electrostatic and non-polar terms:

({0, (o)) = Hig e} e + [ pus@ @@ (2.19)

where p, ;(Z) is the average charge distribution of the solute molecule, and ®¥(Z) is the

net electrostatic potential of a particular configuration {z"} of the solvent. Now we can

U,

«lv into electrostatic and non-polar terms:

also split the solvation chemical potential Ay,

Apgar, = Dpigg) + Aty s (2.16)

solv solv, non—polar S0
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where we let the non-polar term be the solvation chemical potential for a hypothetical
solute molecule in the same configuration {z**'} but with its charge p, ;(Z) set to zero:

Api — kTl <e—ﬂ%ﬁ;i;’ipolax{w“’i}a{m”D> (2.17)

solv, non—polar
v

This can also be thought of as the effect of creating a “cavity” in the solvent with the
shape of the solute molecule. It is difficult to compute this term carefully; in fact, how
much of it comes from van der Waals, electrostatics, and entropy of the solvent molecules
is still not fully understood [12, 13, 14]. In practice it has been found, from experimental
free energies of transfer of hydrocarbons from a non-polar hydrocarbon environment into
water, that this “cavity” or “hydrophobic” term scales roughly with the solvent-accessible
surface area (SAS) of the solute molecule [12, 15, 16, 17]. (The SAS is defined as the
locus of points of closest approach of the center of a water-molecule-size sphere (1.4 A)
to the solute, as the sphere is rolled over the union of the van der Waals radius volumes

of the solute atoms [18].)

Our definition of A,ug(ﬁv’ non—polar 11€ANS that the electrostatic term must be expressed

as an average weighted by the non-polar free energy,

o B ez h{a" D+ [ pu,i(f)¢v(f)df)>
Aptggly, s = —keTIn

SO.

u,%,v . v (2.18)
<e_’BHn(’)n’—polar({mu’l}’{mv})>

v

We can simplify the notation by defining the operator ( )y uu non—polar 8 the expectation
value over the solvent states, Boltzmann-weighted by the solvent-solvent and the non-
polar solute-solvent interactions. States in which solvent atoms overlap with solute atoms

are suppressed by this weighting. So,

Aﬂg(ﬁv, o = —kgTIn <e—/3fpu,i(f)q’”(f)df> (2.19)

v,uv non—polar

Assuming that the charge distribution of the solute molecule does not depend on the
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solvent configuration,

Aph,, ws = —kpT In (e=? [ rus@® @) (2.20)

v,uv non—polar
Consider the process of “turning on” the solute molecule charge distribution A p, ;(%)
by gradually raising A from 0 to 1. We will use the functional derivative of A,usolv ES

from Equation 2.20 with respect to p,;(Z), which is

aA,Usolv ES <(I)U(f)6_ﬁfﬂu,i(f)¢”(f)df>
0pui@) < B [ i@ <I>”(z)d;c>

) @ (e
D,y €7 P0HH

v,uv non—polar (221)

v,uv non—polar

(2.22)

We are treating one solute molecule of species u in fixed conformation 4, so the only
degrees of freedom are for the solvent {z,}. We can still multiply on the top and bottom
by e #"" to make it plain that the sums are based on the full Hamiltonian, and therefore

the expression is the expectation value of ®*(Z):

aA,Usolv BS _ iz P (Z)e=PH (2.23)
apu,z( ) Z{;cv} e_ﬂ% -
= (®'(7)) (2.24)

Let us gradually turn on the solute molecule charge distribution by gradually raising A
from 0 to 1. Let (®"(Z; \)) be the expectation value of the electrostatic potential at &
due to the solvent when the solute charge distribution is p,, (Z;A) = Apu(Z). Let the
functional variation be simply 0p,, (Z; A) = py,(Z)0\. Now we can integrate along A from

0 to 1:

i s = [ 4B, (@) [ AN ) (2.25)
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2.1.2 Continuum Electrostatics

Let us first consider the solvent molecules apart from the ions, both of which contribute
to (®Y(#;A)). The sum over solvent degrees of freedom implied in (®¥(Z; A)) means
that this expectation value of the electrostatic potential due to the solvent will, for a
polar solvent such as water, oppose the electrostatic potential due to the solute. This
is the behavior of a polarizable medium, i.e. a dielectric. So, to calculate (®¥(Z;\)),
we will employ a continuum dielectric model. In this model, the solvent is no longer
treated as explicit atoms; it is treated as a dielectric medium of high dielectric constant
€s. Recall that we are treating one solute molecule infinitely diluted in the solvent, so we
can divide all space into two regions, solute and solvent, whose boundary surface (called
the molecular surface) is defined as the locus of points of closest approach of the surface
of a water-molecule-size sphere (1.4 A) to the solute as the sphere is rolled over the union
of the van der Waals radius spheres of the solute atoms. The solute region is treated
as a region of low dielectric constant ei containing the charge distribution p,;(Z). We
let this charge distribution consist of partial atomic point charges at the centers of the
solute atoms, as parametrized in the PARAM19 [10] parameter set of CHARMM [11]. We
previously assumed that (1) the electronic and vibrational parts of the Hamiltonian are
independent of the electrostatic part, and (2) a discrete conformation i does not deform
due to the electric field. A convenient way to relax these assumptions, which we use, is
to assign the solute region a dielectric constant ¢ > 1, to model movement of the solute

in response to the electric field.

The total electrostatic potential (®(Z; \)) is given by the Poisson equation [19],
V- (e(@)V(Q(F;A)) = —4mApui(T) (2.26)

where

. € if & is in the solute region,
€(Z) = (2.27)
€s otherwise

The total electrostatic potential includes the potential due to the solvent (®¥(Z; \)) , and
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the Coulombic potential of the fixed solute point charges,
(BT N)) = (@°(F\)) + A / dz’ p“’ (2.28)

for Z inside the solute volume. Solution of the Poisson equation (Equation 2.26) and use
of Equation 2.28 to remove the potential due to the solute charges yields the electrostatic

potential ®¥(Z; \) due to solvent.

Now we will show how the mobile ions of species {m} alter the calculation of
(®*(Z; N\)). For ion species m, let ¢, be the charge of the ion, and let ¢, (Z;\) be
its equilibrium concentration (i.e., number density). The charge distribution of the ions
is

Pion (T3 A) Z(]mcm 7 \) (2.29)

Assuming that the ionic concentration is small allows us to neglect the possibility of two
ions overlapping, so that we may treat the ions in a mean-field sense. It also allows us to
keep the dielectric constant constant at €5 in the solvent, regardless of ionic concentration.

With mobile ions, the Poisson equation becomes
V - (e(Z)V(®(Z; X)) = =47 Apy i(Z) — 47 pion (Z5 ) (2.30)

We require the concentrations ¢, (Z; \) to be zero inside the Stern layer, defined as the
locus of points of closest approach of the center of an ion-size sphere (2.0 A, typically)
to the solute, as the sphere is rolled over the union of the van der Waals radius volumes

of all solute atoms [20, 21].

To calculate the mobile ion concentration c¢,,(Z; A), require the chemical potential of

mobile ion species m to be constant in Z:

Hm = ,U/m(fa)\) (2'31)

= 10 + kgTIna, (Z; \) + ¢ (®(Z; N)) (2.32)

27



where p2 is the standard chemical potential of mobile ion species m. We have made the
first approximation of Debye-Hiickel theory by using ¢, (®(Z; \)) as the potential of mean
force [22]. The activity a,,(Z; A) is assumed equal to the local ionic concentration [23]; if
all ion species have low concentrations, this assumption is accurate. Most of the volume

of the solvent is not near a solute molecule, so the concentration is the bulk concentration

b .

oy

fim = po, + kT lnc, (2.33)

Combining Equations 2.32 and 2.33, the concentration of mobile ion species m outside

of solute molecules’ Stern layers is
em (T X) = B e7Pam(®(@N) (2.34)
So the net ionic charge density is
Pion (T3 A) = quc}’ne_ﬂq’"@(f;’\)) (2.35)

Substituting this into the Poisson equation, Equation 2.30, gives the non-linear Poisson-

Boltzmann equation:
V- (e(@)VA{B(;N)) = —4mApyi(F) — 4T Y gcb e P (@A) (2.36)

If this equation is truly non-linear, there is no way to self-consistently describe free

energies of the system’s states.

The second Debye—Hiickel approximation will allow us to linearize the Poisson-
Boltzmann equation, by letting ¢,,(®(%; \)) < kgT. This is true except for ion locations
very near the solute molecule. With this approximation, we can expand the exponentials

and only keep terms to the first order:

Pion (T3 ) = D GmCy, — B g (®(T; N)) (2.37)
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Since the whole system must be approximately electrically neutral, and the infinite
dilution of the solute means that their concentration is much lower than any bulk
ion concentration, the first term vanishes. Now we define the modified Debye-Hiickel

screening parameter £ (Z), and use its definition to impose the Stern layer:

o 0 inside the Stern layer
R(Z) = — (2.38)

T elsewhere

where I = % S @2,cl is the bulk ionic strength. Putting Equation 2.37 into the Poisson
equation (Equation 2.26), we see that the second Debye—Hiickel approximation has given

us the linearized Poisson-Boltzmann equation:
V- (€@)V(R(T; 1)) — B (Z)(D(T;A)) = —4mApu,i(D) (2.39)

Solution of the linearized Poisson—Boltzmann equation, with the boundary condition
limz_oo(®(Z; X)) = 0, yields the electrostatic potential (®(Z;\)). The linearity of

Equation 2.39 requires that
(@(7;4)) = MO(Z; A = 1)) (2.40)
And so, since the solute-solute interactions in Equation 2.28 do not depend on A,
("(F N)) = & (3 A = 1)) (2.41)

Using Equation 2.25, we return at last to the electrostatic component of the solvation

chemical potential,

U, 1 - — V=
Aplh,, v = 5 [ dipu(@)(@"(3 A = 1)) (2.42)

where the potential is obtained from solving the linearized Poisson—Boltzmann equation,

Equation 2.39.

For the rest of this work, we will assume the continuum solvent model, so we adopt
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a simpler notation, ®(Z) = (®”(#; A = 1)) if clarity does not require the solute molecule
species u and conformation ¢ to be specified. For the electrostatic component of the
solvation chemical potential, we will use the notation AG*Y = A/Lg(;iiv, rs, Where the free

energy of solvation AG™"Y of one molecule can be expressed in the units kcal mol=".

The electrostatic component of the solvation chemical potential AG®Y is a true
free energy, not just an energy. The careful statistical mechanical treatment in this
chapter shows why continuum electrostatic calculations result in free energies. Briefly, it
is because the dielectric response of the solvent results from the expectation value of the
electrostatic field produced by the solvent. This expectation value, in turn, results from
the solvent populating its states according to a constant-temperature canonical ensemble.
AG™Y comes from a sum on the solvent states, and so it is entropic as well as enthalpic

in origin.

2.2 Finite-Difference Solution of the Poisson-Boltzmann

Equation (FDPB)

To solve the linearized Poisson—Boltzmann equation by the finite-difference method (a
method abbreviated as FDPB), a region of space is represented as a cubic grid of points [1,
2]. An iterative finite-difference algorithm is then used to solve for the electric potential
at every grid point. All FDPB calculations in this work were done with a locally modified

version of the program DELPHI [3, 4, 5].

First, boundary conditions must be set: the value of the electric potential must
be set at each grid point on the outside boundary of the entire grid. One way to set
approximate boundary conditions, which we use, is to superimpose the Debye-Hiickel
screened Coulombic electic potential (with €5) of every atomic point charge, and evaluate

this potential at each boundary grid point.

Next, arrays representing the charge, ionic strength, and dielectric constant must be

initialized. The charge distribution, which in our model is a collection of partial atomic
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point charges, must then be mapped onto the grid points. This is done by distributing
the charge of each atom center over the 8 grid points of the cubic grid box surrounding
the atom location, with the amount of charge assigned to each of the 8 grid points being
determined by a trilinear function of the atom center’s position within the grid box [1].
Next, every grid point must be assigned an ionic strength, and every grid line center
(the midpoint of every line connecting 2 nearest-neighbor grid points) must be assigned
a dielectric constant. As given in Equation 2.38, the ionic strength is set to the desired
value of the bulk ionic strength at all grid points outside the Stern layer, and set to zero
at all grid points inside the Stern layer. The solute dielectric constant ¢; is assigned to
every grid line center inside the solvent-accessible surface (SAS) of the solute molecule,
and the solvent dielectric constant e is assigned to each grid line center outside the SAS.
As mentioned in the previous section, the SAS is defined as the locus of points of closest
approach of the center of a water-molecule-size sphere (1.4 A) to the solute, as the sphere

is rolled over the union of the van der Waals radius volumes of the solute atoms.

Once the potential, charge, ionic strength, and dielectric constant arrays have been
initialized, a finite-difference procedure iteratively relaxes the potential at every grid point
until the values converge to those that satisfy the finite-difference representation of the
linearized Poisson—Boltzmann equation. To minimize the impact of the approximation
used for the boundary conditions, we do several focussing steps, beginning with a grid
box in which the solute molecule has a linear dimension only 23% of the edge length of
the whole grid. A second focussing step, in which the solute molecule fills 92% of the
grid’s linear extent, can be the final step, or further focussing steps at greater than 100%
fill can be done if the purpose of the calculation is to calculate electrostatic interactions
of small groups of atoms rather than the electrostatic free energy of the whole solute

molecule.

Finally, the electrostatic free energy is calculated as in Equation 2.42, a sum over all

grid points of the charge times the potential.

In order to reduce the error caused by the discretization of the grid, this whole

procedure is repeated ten times, with the grid translated by different fractions of the grid
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size in the three Cartesian directions. The results are then averaged, and their standard
error is used to assess the accuracy of the result. A finer grid, with more grid points, will

result in a better accuracy.

2.2.1 Calculating Solvation Free Energy with FDPB

To calculate an electrostatic solvation free energy with FDPB, we use the thermodynamic
process shown in Figure 2-1. The FDPB procedure is run once on the solvated molecule
and again on the molecule in the desolvated state. We define the “desolvated” state to
have ¢; = ¢, = 4 and zero ionic concentration in all space. The electrostatic solvation free

energy is the straightforward free energy difference of the solvated and desolvated states:

solv __ solvated desolvated

FDPB * AGSO'V

Figure 2-1: Thermodynamic process used to get an electrostatic solvation free energy
using FDPB.
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2.2.2 Calculating Free Energy Differences with FDPB

To calculate an electrostatic free energy difference of 2 conformations, we use the
thermodynamic cycle shown in Figure 2-2. This cycle is necessary because every FDPB

free energy result includes a fictitious “grid energy,”
Grs, ropB = Grs + Ggria (2.44)

which depends on each point charge’s magnitude, location relative to the finite-difference

Gcnnf

FDPE

| FDFE
hydrophobic —AGEG Y

|
hydrophobic ﬂGED v(B

Coulombic
- ) vajem -

G(desalvated B)
- G{desnlvated A)

Figure 2-2: Thermodynamic cycle used to get an electrostatic free energy difference for a
conformational change using FDPB for the solvation free energies and Coulomb’s Law for
the energy difference of the conformations when desolvated. To include non-electrostatic
energy terms, van der Waals and covalent energy terms would be part of the bottom arrow
of the cycle, and a hydrophobic term would be part of each of the solvation free energies.
But in practice, the non-electrostatic terms are all just straightforward differences of the
2 conformations.
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grid, and local dielectric constant. Recall that the FDPB procedure distributes each
partial atomic point charge over the 8 surrounding grid points. The grid energy is
partially an artifact of this procedure: it is the interaction of these 8 charges with each
other, as well as the self-energy of each point charge. The self-energy of a point charge,
which is actually infinite, has a finite value in the FDPB treatment because the solution
of the Poisson—Boltzmann equation’s finite-difference form has a finite potential at the

location of a point charge.

To ensure that all FDPB calculations use the exact same position of the finite-
difference grid relative to the solute atoms, “dummy” atoms with zero charge and zero
radius are placed at 2 opposite corners of a box large enough to contain all conformations
of interest. The electrostatic solvation free energy of one conformation, as given in
Equation 2.43, may be calculated straightforwardly using FDPB, because the grid energy
is the same in the solvated and desolvated states and therefore cancels out. So the free
energy difference of 2 conformations “A” and “B” is calculated using FDPB for the
solvation free energies of each conformation, and Coulomb’s Law for the energy difference

of the conformations when desolvated:
AGrs(B — A) = [AGY pppp(B) — AGEY pppp(A)] + AGE G (B - A)  (2.45)

This is the standard way to calculate an electrostatic free energy difference of 2
conformations. Binding, folding, and titration events can be considered as special types
of conformational change. Thermodynamic cycles used to calculate electrostatic free
energies for these events are described in Section 3.2.6 of Chapter 3 and Section 6.3.5 of

Chapter 6.
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Chapter 3

Multiple Site Titration: Effects of

Approximations

3.1 Introduction

Some protein side chains are titratable; that is, they can bind or release a hydrogen
ion. For small acid and base molecules in aqueous solution — including single amino
acids such as aspartate, glutamate, and histidine — the probability of having a hydrogen
ion bound depends only on the pH of the solution. The pK, is the pH at which the
probability of protonation is 50%; that is, the free energy difference of the protonated
and unprotonated states is zero. In a folded protein, the pK, of each titratable side
chain is shifted, because the protein environment of the protonation site is more or less

electrostatically favorable for the protonated relative to the unprotonated state.

The exponential dependence of the number of titration states on the number of
titrating residues makes it computationally intractable to calculate the continuum
electrostatic free energy of each titration state for most proteins. Various simplifying
approximations can be employed to make the problem computationally tractable. In
this chapter, we evaluate several such simplifications, some of which have been used by

previous investigators to calculate effective pK, values. Taking titration into account
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when calculating potentially pH-dependent properties, such as folding or binding free
energies, presents the same problem. Only a few studies [24, 25] have dealt with this

important problem.

We use a system (the binding of barnase to barstar, with the 4 barnase residues
Aspbd4, Glu73, Asp75, His102 allowed to titrate) with few enough ionization states so
that enumeration and energy calculation of all titration states is possible, but enough
that interactions between the titratable residues can be explored. By calculating the free
energy of each titration state we can evaluate the effect of each simplifying approximation.
More titratable residues can be treated by methods other than full enumeration of the
states: Alexov and Gunner [24] used a titration model similar to ours, but with a Monte

Carlo method to avoid full enumeration.

A natural benchmark for evaluating the accuracy of titration models is the “null
model” — that is, the assumption that every titratable residue in a protein has the
same pK, as it would free in solution — using an internal protein dielectric constant
¢ = 4. Some investigators [26] have roughly matched the accuracy of the null model by
using ¢; = 20, but we feel it is important to point out that raising ¢; may simply push
inaccurate pK, shifts closer to zero, rather than calculating the pK, shifts with a more
accurate method. In any attempt to consistently compute values more accurately than
the null model, improved modeling of the protonation states’ charge distributions and
conformations will be more useful than trying to pick the “best” ¢. We have chosen to use
the usual value ¢ = 4 in the present study, so that various methods can be more clearly
compared; using a higher ¢; would tend to wash out the differences between all methods.
The rationale is that a low internal dielectric is appropriate if the individual states are
being accurately enumerated and quantified; higher values might only be necessary to

account approximately for inaccuracies in sampling and energetics.

For binding free energy calculations, the effect of ignoring titration (i.e., assuming the
presumed predominant titration state is the only one populated) depends case-by-case
on whether any residues near the binding interface have significant pkK, shifts. Some

simplifications, such as the use of a single dielectric boundary for all titration states, may
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also cause systematic errors in binding free energy regardless of the predicted effective

pK, values.

3.2 Theory and Methods

3.2.1 Introduction to the Chemistry of Titration

An arbitrary acid AH, in a dilute aqueous solution, may dissociate into species A~ and H*
(a hydrogen ion). The equilibrium between the dissociation and the reverse (association)

processes can be represented:

AH=A" +H (3.1)

The free energy of the solution can be expressed in terms of the chemical potentials ux

and number populations nx of the chemical species X:
G = Z MUX X (32)
X

Let the free energy in equilibrium be at a minimum with respect to a small number d¢

of the AH molecules dissociating through the chemical reaction in Equation 3.1:

dG = MA— dnA— + ,uH+dnH+ + ,uAHdnAH

= (ua- + pm+ — pan)dé (3.3)
8G>
s = pa- + pEY — HAH (34)
(ag p,T
0= pa- + pu+ — pan (3.5)

For an ideal dilute solution, the chemical potential of each species X is related to its mole
fraction xx by:

pux = px + RT Inxx (3.6)
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For a non-ideal solution, we can define the activity ax to take the place of the mole
fraction xx in Equation 3.6:

px = px + RT Inax (3.7)

For an ideal dilute solution, the activity is simply ax = xx. We can define an equilibrium

constant for the reaction of Equation 3.1 by combining Equations 3.5 and 3.7:

—+
axa
Ki(A7) = =2 (3.8)
aan
Let [X] be the unitless concentration of chemical species X (with the units (mol L™1)
divided out). This concentration [X] is proportional to the mole fraction zx, so for an
ideal dilute solution, we define the equilibrium constant as:

[A][HT]

K,(A7) = TTAH]

(3.9)
At constant temperature and pressure, the fraction of deprotonated A~ to protonated
AH must be determined by the free energy difference of the 2 microstates, which is the

free energy of protonation:

AG,(A™) = G(AH) — G(A™~ + HY) (3.10)
] = exn(=BAG, (A7) (3.11)

where 8 = 1/kgT , kg is Boltzmann’s constant, and T is the temperature in Kelvin. The
concentration of hydrogen ions in solution [H*] (with the units (mol L) divided out)
defines the pH :

pH = —log;,[H"] (3.12)

and we similarly define the constant pK, from the equilibrium constant K,:

pK,(A7) = —logyy K, (A7) (3.13)
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Combining Equations 3.9, 3.11, 3.12, and 3.13,

pK,(A7) = +ﬁ [—BAGP(A‘)] +pH (3.14)
AG,(A™) = +1n(10) - kgT [pH — pKo(A )] (3.15)

The pK, values for fully solvated titratable residues have been experimentally
measured: 4.0 for Asp, 4.4 for Glu, 6.3 for His [27]. Approximately the same results
are obtained for the pK, values of blocked single amino acids or short polypeptides such
as Ala-“R”-Ala, where “R” is the titratable amino acid type [26, 28, 29, 30]. Residues
of denatured proteins in solution are generally found to have the same pK, values as in
short poly- or mono-peptides, although some have been found to differ by about 0.4 pH
units [31]. Related but different compounds can have significantly different pK, values
(e.g. 3.75 for formic acid, 4.75 for acetic acid, 4.0 for aspartic acid, and 4.4 for glutamic
acid). We take the experimental pK, value of amino acid type “R” to be the pK, in
solution of a specific model compound, the blocked amino acid N-acetyl-“R” methylamide

(CHy=(CO)-(NH)-(Cq “R”)~(CO)-(NH)-CHj):

pK,(model Asp) = 4.0 (3.16)
pK,(model Glu) = 4.4 (3.17)
pK,(model His) = 6.3 (3.18)

We let the model compound conformation be the same as the titrating protein residue
(as in references [27] and [32]). This means that 2 residues of the same amino acid type

each have their own model compound conformation.

To calculate pK, values for a specific protein residue, consider the whole protein to
be the same model compound with the rest of the protein attached, and call the protein
protonation states PA~ and PAH. Consider the thermodynamic cycle in Figure 3-1: the

protonation free energies of the model compound and the residues in the protein (the
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horizontal arrows) are related by the free energy differences of the vertical arrows, which
are, to within a constant that is the same for both sides of the cycle, folding free energies
of the protein in the protonated and deprotonated states. Use Equation 3.15 to write

the pK, of the protein residue in terms of the model compound pK, (A7) :

PKo(PA™) = pK, (A7) — ﬁﬁ [AG,(PA™) — AG,(A)] (3.19)

AG (A)
A~ + H* S » AH

AG (PA) AG (PAH)

v AG (PA)
PA- + H* » PAH
Figure 3-1: Thermodynamic cycle connecting pK, of a residue in a protein to the

experimental pK, of a model compound (in our case, N-acetyl-“R” methylamide for
amino acid type “R”).

3.2.2 Titration Microstates

Carboxylic acids include acetic acid, formic acid, and the protein side chains aspartic
acid and glutamic acid. The titratable moiety is the carboxy group (COOH, or COO~
when deprotonated). The deprotonated state, charged -1, has only one microstate. The
protonated state, charged 0, has 4 microstates, because the one hydrogen ion can go
on either of the 2 oxygen atoms, and there are 2 stable positions the hydrogen ion can
occupy relative to its oxygen atom. Quantum mechanical simulations show that the
valence electrons of this system are sp? hybridized, so the hydrogen atom stays in the

plane of the COO atoms, and the O-H bond makes an angle of about 120° from the C-O
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bond. The preferred position, closer to the other oxygen, is called the “syn” position,

and the position further from the other oxygen is called the “anti” position.

Histidine has an imidazole moiety, -NH-CH=N-CH=CH- where the first and last
atoms are bonded to form a ring. To form histidine from imidazole, the last hydrogen is
removed and the ring is attached, via one CH, group, to the protein backbone. Either one
of the nitrogens, or both, can be protonated. A hydrogen bonded to either nitrogen has
only one stable position. So, histidine has two neutral singly-protonated microstates and
one +1 charged, doubly-protonated microstate. Also, because protein crystal structures
do not currently differentiate nitrogen atoms from carbon atoms, it is not clear which
way histidine rings in protein crystal structures are flipped. Therefore, we double the
number of microstates by allowing the ring to be flipped either way, for a total of 4 neutral

singly-protonated microstates and two +1 charged, doubly-protonated microstates.

We are using the continuum solvent model with the CHARMM [11] PARAM19 [10]
united-atom parameter set. All heavy (non-hydrogen) atoms, and polar hydrogen atoms,
of the solute molecule are explicitly represented, with a partial atomic charge and a
van der Waals radius. Non-polar hydrogen atoms (for example, all hydrogens on a
hydrophobic side chain like valine, (CH3)2-CH- ) are united with the heavy atoms to
which they are bonded rather than being represented explicitly. Different radii are used
for CH, CHy, and CHj3 united atoms. Titratable hydrogens are polar and therefore are
always represented explicitly. The parameter set specifies partial atomic charges for the
deprotonated and protonated states: Aspartate and glutamate (deprotonated aspartic
and glutamic acid) end in the carboxyl group -C-COO™~ (i.e., -(CH3)-COO™); from here
on, we will often not refer to the non-explicit hydrogens). The -C-COO™~ atoms are given
partial atomic charges of -0.16, +0.36, -0.60, and -0.60 respectively in this parameter
set. Protonated aspartic and glutamic acids end in -C-COOH, and these atoms are given

partial atomic charges of 0.00, 4-0.70, -0.55, -0.60, and +0.45 respectively.

To explicitly take into account that the protonated and deprotonated states actually

each consist of several microstates, we start with Equation 3.11 and populate the
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protonated and deprotonated microstates x according to the Boltzmann distribution:

AH
exp [—BAG,(A7)] = % (3.20)
_ Y protonated x ©XP(—BAGmicro(X))
AG,(A™) =—kgTlo P 3.21
p( ) " 8 Zdeprotonated X exp(_ﬁAGmicro (X)) ( )
Using Equation 3.15,
111(10) . [pH _ pKa (A_):| — _ IOg Zprotonated x eXp(_ﬁGmiCTO(X)) (322)

Edeprotonated x €XP ( - 6Gmi01‘0 (X))

Since we know pK,(A~) from experiment, Equation 3.22 is one equation we will need to
find all of the relative free energies of the microstates Gmicro(X) . The other equations we
need will be free energy differences Gicro(X1) — Gmicro(X2) among the protonated states,
and among the deprotonated states, which can be obtained from certain experiments
which we will now discuss. Equation 3.22 serves to connect the Gmicro(x) for protonated

states to the Gmicro(x) for deprotonated states.

3.2.3 Barnase and its Four Residues Aspb54, Glu73, Asp75,
His102

Barnase is an extracellular ribonuclease from Bacillus amyloliquefaciens, and barstar is
its intracellular inhibitor. Barnase has evolved to be catalytically active (dissociation
constant K; ~ 107'* M), and barnase and barstar together have evolved to bind (as
shown in Figure 3-2) tightly and rapidly (association rate constant 3.7 x 10% s7t M~1)
because barnase activity inside the cell would be lethal [33, 34].

We will model the titration of 4 barnase residues (Aspb4, Glu73, Asp75, His102).
We chose these residues because they are near each other and near the binding interface
with barstar, and we want to investigate the effects of multiple residues’ titration on each
other and on binding. The 3 carboxylic acid residues form a negatively charged layer

behind the positively charged layer at the binding interface made up of Arg87, Arg83,
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Figure 3-2: Barnase and barstar are shown as blue and orange ribbon diagrams. Explicit
interfacial waters are shown as gray van der Waals spheres. The 4 residues of barnase
that we allow to titrate are Asp54, Glu73, Asp75, His102. (This figure was made with
the molecular graphics program MolScript [35].)
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and Lys27. Barnase is a ribonuclease, and this positive charge on its binding region is

important for its binding to negatively charged nucleic acids.

3.2.4 Histidine Model Compound Microstate Free Energy Dif-

ferences

Tanokura [37] used hydrogen NMR to measure the microscopic pK, values for each of
the 2 protonation sites of imidazole and the histidine model compound N-acetylhistidine
methylamide. We will denote the microstates of histidine by HisHy;, HisH.o, HisHg1 Ho,
HisHg: flip, HisH oflip, and HisHg Heoflip, where the protonation state is denoted by the
PARAM19 atom names for the hydrogens bonded to the Ns; and Ny nitrogens, and “flip”
means that the ring is flipped. Of course, reducing the conformational flexibility of a
histidine side chain to the 2 states, flipped and unflipped, is a gross simplification. The
idea here is to trust the heavy atom positions from the crystal structure but solve for the
uncertainty in titration state and ring orientation. This will only be valid at the pH of

the crystal, since heavy atom positions may move as pH changes.

For the histidine model compound, Tanokura found a pK, of 6.53 for the protonation
reaction HisH,, + HT &+ HisHs;Heo, and a pK, of 6.92 for the protonation reaction
HisHs; = HisHs Heo. These values imply a macroscopic pK, value of 6.38 . We use the
standard macroscopic pK, value of 6.3 as stated earlier, but we will use the difference of
Tanokura’s microscopic pK, values to set the free energy difference of HisHy; and HisH,,

in the histidine model compound:

Gmicro(model HisHg1) — Grjero(model HisHep) = (6.92 — 6.53)pH units

= 0.53 kcal mol™" (3.23)

G micro(model HisHg1flip) — Gicro(model HisHoflip) = 0.53 kcal mol ™" (3.24)

To connect microstates of the histidine model compound with the ring flipped and

unflipped, we use only electrostatic free energy, which we calculate as we would for any
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Figure 3-3: The 4 residues we allow to titrate are His102 at the upper left, and Glu73,
Asp75, and Aspb4 from left to right at the bottom of the picture. These 3 carboxylic
acids form a negatively charged layer behind the positively charged layer at the binding
interface, made up of Arg87, Arg83, and Lys27 from left to right in the center of the
picture. Smooth C, traces are shown for barnase and barstar in purple and orange. (This
figure was made with the molecular graphics program VMD [36].)
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other conformational change, as described in Section 2.2.2 of Chapter 2, using FDPB to
calculate the solvation free energy of each of the states, and Coulomb’s Law to calculate

their electrostatic energy difference when desolvated:

Gmicro(model His102 Hy1) — Gicro(model His102 Hy; flip)
= [AGgy(model His102 Hy;) — AGgory(model His102 Hyflip)]
+ [Gdesolvated (model His102 Hy1) — Ggesolvated (model His102 Hyyflip)]
= —0.157 keal mol !
(3.25)

Similarly,
G micro(model His102 Hep) — Giero(model His102 Heoflip) = —0.278 keal mol ™ (3.26)

The 5 Equations 3.22, 3.23, 3.24, 3.25, and 3.26 determine free energies for all 6
microstates of the histidine model compound. Arbitrarily setting the free energy of

the H,y state to zero will not affect any final results.

G micro(model His102 Hs;) = +0.53 kcal mol

Gmicro(model His102 Hey) = 0 keal mol ™!
G micro(model His102 H;;Hy) = +0.70 keal mol™" + log(10)kgT (pH — 7)
G micro(model His102 Hy flip) = +40.37 kcal mol *

= —0.16 kcal mol !

)
)
)
)
G micro(model His102 Hoflip)
)

Gmicro(model His102 Hy Heoflip) = +0.54 keal mol™! + log(10)kgT (pH — 7)

(3.27)
where, at room temperature,

log(10)kgT = 1.36 kcal mol ' = —1pH unit (3.28)
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3.2.5 Aspartic and Glutamic Acid Model Compound Microstate

Free Energy Differences

Wiberg and Laidig [38] used ab initio quantum mechanical calculations to obtain a gas
phase energy difference of the anti and syn conformations of protonated acetic acid of
5.85 kcal mol~'. We will denote the microstates of aspartic acid by “deprotonated”,
antil, synl, anti2, and syn2, where the number shows whether the hydrogen is bonded
to the Oy or Og atom. Similarly for glutamic acid, except that the hydrogen bonds to
the O, or O, atom. We calculated FDPB electrostatic solvation free energies for each
protonated microstate of each aspartic or glutamic acid model compound, then combined

them to get free energy differences of the model compound microstates in solution:

G'micro(model anti) — Gmicro(model syn) = [Ggas(model anti) — Ggas(model syn)]

+ [AGsoy(model anti) — AGgoly (model syn)]

(3.29)
G'micro(model Asp54 antil) — Giero(model Asp54 synl) = 4.31 kcal mol™*
G micro(model Asp54 anti2) — Gmicro(model Asp54 syn2) = 2.48 kcal mol ™
G micro(model Glu73 antil) — Guicro(model Glu73 synl) = 3.97 keal mol™*
Glmicro(model Glu73 anti2) — Gicro(model Glu73 syn2) = 3.38 kcal mol '
Gmicro(model Asp75 antil) — Gicro(model Asp75 synl) = 6.76 kcal mol ™!
G micro(model Asp75 anti2) — Gicro(model Asp75 syn2) = 3.62 kcal mol ™!
(3.30)

Unlike for histidine, the 2 protonation sites for aspartic and glutamic acids are not
chemically distinguishable, so we calculate the free energy difference of the synl and syn2
states as we would for any other conformational change, as described in Section 2.2.2 of

Chapter 2, using FDPB to calculate the solvation free energy of each of the states, and
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Coulomb’s Law to calculate their electrostatic energy difference when desolvated:

Gmicro(model synl) — Gmicro(model syn2)

= [AGsolv(mOdel synl) — AGSOlV(model syn2)] (331)

+ [Gdesolvated (mOdel Synl) - Gdesolvated (mOdel Syn2)]

G micro(model Asp54 syn1) — Guiero(model Asp54 syn2) = —0.321 kcal mol

G micro(model Glu73 synl) — Gicro(model Glu73 syn2) = +0.055 kcal mol™"

G'micro(model Asp75 synl) — Gmiero(model Asp75 syn2) = —0.413 kcal mol™*

(3.32)

For each aspartic or glutamic acid residue, Equations 3.22, 3.30, and 3.32 give 4

equations which determine free energies for all 5 microstates of each model compound.

Arbitrarily setting the free energy of the deprotonated states to zero at pH = 7 will not

affect any final results.

G'micro(model Asp54 deprotonated
G micro(model Asp54 synl
G micro(model Aspb4 syn2
G'micro(model Asp54 antil

G micro(model Aspb4 anti2

)

)

)

)

)

Gmicro(model Glu73 deprotonated)
Gmicro(model Glu73 synl)
G micro(model Glu73 syn2)
Gmicro(model Glu73 antil)
Gmicro(model Glu73 anti2)
)

Gmicro(model Asp75 deprotonated
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0 — log(10)kgT (pH — 7)

+4.36 kcal mol ™"

+4.68 kcal mol ™

+8.67 kcal mol ™!

+7.15 keal mol ™! (3.33)
0 — log(10)kgT (pH — 7)

+3.98 kcal mol !

+3.92 kcal mol™!

+7.95 keal mol ™!

+7.30 keal mol (3.34)
0 — log(10)kgT (pH — 7)



micro(mmodel Asp75 synl) = +4.32 kecal mol ™"

G
Gmicro(model Asp75 syn2) = +4.73 kcal mol !

)
)
G micro(model Asp75 antil) = +11.08 kcal mol™*
G )

micro(model Asp75 anti2) = +8.35 kcal mol™* (3.35)

3.2.6 Energy Function

Our energy function includes electrostatic and covalent terms. The electrostatic term
is calculated with FDPB. The covalent energy term includes bond, angle, dihedral, and

improper dihedral terms according to the PARAM19 parameter set.

van der Waals Term Used as a Screen

All titration microstates were allowed for the model compounds, but for the residues
in the protein, some titration microstates were disallowed due to bad van der Waals
clashes. For example, the Asp54 syn2 hydrogen position clashes with the hydrogen of
the barnase Lys27 backbone amide. The states Asp75 synl, Asp75 syn2, His102 Hy;,
and His102 Hs1H., were also disallowed due to van der Waals clashes. If we had some
way to allow conformational flexibility for heavy atoms, rather than just hydrogen atoms,
then such states would perhaps be allowed in concert with auxiliary movements. In one
study that attempted to do this, Havranek and Harbury [25] combined discrete side chain

freedom with multiple protonation states.

We do not include a van der Waals term in our free energy function, however, because
we found that van der Waals energy differences between states are not meaningful. If
we did include the van der Waals energy, then by consulting the thermodynamic cycle in

Figure 3-4, we see that the van der Waals energy difference of interest is
[GVdW({ir}; b) — GvdW({il}; b)] — Z [Gvdw(model ’l,r) — Gvdw(model ’1,1)] (336)

Consider the protonation of an Asp or Glu: one hydrogen atom is added, and the
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CHARMM atom type changes for the oxygen to which it is bonded. The van der Waals
energy difference in Equation 3.36 will contain several contributions which have no

physical basis:

1. The hydrogen atom’s van der Waals interactions with all other atoms in the protein
that are not its immediate neighbors are all favorable, and their total magnitude
is not small. This unfairly favors protonation, even at a solvent-exposed site where

the pK, should be the same as the model compound.

2. The hydrogen atom will unrealistically favor a position where it can contact more
protein atoms for favorable van der Waals interactions, versus a position facing

solvent.

3. The change of the oxygen’s CHARMM atom type changes its van der Waals radius
in the PARAM19 parameter set, which can make the van der Waals energy function
penalize it for a van der Waals clash with a neighboring atom even though they
were both in the same positions before the addition of the hydrogen. It is not clear
that the paramer set’s van der Waals radii are realistic; if they are, then these
atoms would have to move apart upon protonation to relieve the van der Waals

clash.

The underlying reasons that the van der Waals term does not give meaningful energy
differences are (1) we do not include the van der Waals interaction of a hydrogen ion free
in solution, (2) we do not include a hydrophobic term to account for the van der Waals
interactions of explicit protein atoms with implicit water molecules, and (3) we do not
allow heavy atoms to move in response to protonation state changes. While the first
2 problems could be addressed, the last is very difficult; neglecting the van der Waals

contribution appears to be the preferred option.
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Free Energy Differences of Protein Protonation States

The thermodynamic cycle used to calculate free energies for each titration state of the
protein is shown in Figure 3-4. A state of the protein is specified by ({i,}, b), meaning
that the microstate i, is specified for each titrating residue number 7, and b is 0 or 1 for
the unbound or bound state. The purpose of the cycle is to calculate the free energy
of protein state ({i,}, b) relative to the reference protein state ({i1}, b), in which every

titrating residue is in its microstate #1.

Since we have a model compound for each titrating residue, in the same conformation
as the residue, the grid energies cancel out of the terms for the 2 vertical arrows in the

top left half of the cycle:

GEs({’L.,,«}, b, no aux.) - GES({il}, b) — Ez [GES(model Zr) — GES(model ’Ll)]
= GES, FDPB({ir}, b, no aux.) - GES, FDPB({il}, b) (3-37)

— Y i |Grs, ropa(model i,) — Ggs, pppp(model )]

The grid energies also cancel out of each of the two vertical arrows in the bottom right

half of the cycle, because they are solvation free energies.

The result of the thermodynamic cycle, with the terms written in the same order as

their corresponding arrows in Figure 3-4, is

Grs({ir}, b) — Ges({i1}, ) = —Ggs, roee({i1}, b)

+ ;[ +Ges, rops(model ;)
—G'micro(model 77)
+Gmicro(model 7,.)
—Grs, rope (model 4,) |

+GdE%Sf1§’]a3t§%({ir}, b, no aux.)

Gt ({ir}, b, no aux.)

+GES o ({ir}, )

+AGEY o ({ir}, D) (3.38)

ol



{model {model _
compounds i } compoundsi }

fixed atoms
s |
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covalent

i},

no aux.

Figure 3-4: Thermodynamic cycle connecting protein state ({i,}, b) to reference protein
state ({71}, b). The top left half of the cycle changes from protonation state {i;} to {i,}
(these changes are shown in yellow); this is calculated using the model compounds, one
per titrating residue. The energy of the fixed atoms cancels out. In the middle of the cycle
is an intermediate state in which the titrating residues are in their proper microstates
({i.}, b), but the other atoms have made no “auxiliary movements” in response to the
titration state. The bottom right half of the cycle allows other atoms (hydrogens only,
in our model) to make auxiliary movements (these changes are shown in green); this is
calculated using desolvated states.
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where all terms are determined either by FDPB, Coulomb’s Law, or by the values of
Gmicro given in Equations 3.27, 3.33, 3.34, and 3.35. The values of Gpjcro for charged
microstates depend linearly on the pH, and this is the source of the pH-dependency of
the binding free energy.

The free energies of all bound states are linked to those of all unbound states via
the rigid binding free energy of the reference titration state, which can be calculated by

FDPB:

AGrs“ ({ir})

Grs({i-}, bound) — Ggs({i,}, unbound)

= GES, FDPB({ir}, bOllIld)

—Gags, ropa({%r}, unbound barnase)

—Ggs, rppe(unbound barstar) (3.39)

where the grid energy cancels out if, for each of the unbound binding partners, their
atom positions and finite-difference grids are made the same as in the bound state by

using the “dummy atom” positions determined for the bound state.

3.2.7 Simplifications to Speed pK, Calculation

We evaluate the effect on pK, prediction of several simplifying approximations, some
of which have been used in previous pK, prediction studies. First, simpler charge
patterns: simplifications can be made in the assignment of partial charges for each
titration state of each residue type. Methods that allow only two microstates, protonated
and deprotonated, lose a good deal of structural accuracy in exchange for reducing the

number of states.

Second, there are simplifications that can reduce the number of energy calculations
required for N titrating residues with m titration microstates each from m" to m x n.
This is possible if the free energy of any titration state can be decomposed into single-

residue and residue-pair terms. In the FDPB method, this can be done by making two
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assumptions:

1. a single dielectric boundary for the protein, which requires either

(a) fixing all atoms and not adding explicit new hydrogen atoms to the protonated

state, or

(b) using the union of the van der Waals regions of all titration states to define

the dielectric boundary for all states.

The second assumption is

2. no correlation between conformational changes caused by the titration of different
residues (i.e., each atom is either fixed, or it moves in response to the titration of

only one residue). This can be further simplified by

(a) allowing only polar hydrogen atoms to move, or even

(b) allowing no movement at all outside of the titrating residues.

We evaluate the assumption (1.b) in the present work. We do not allow non-hydrogen
atoms to move in the present study; so we compare assumption (2.b), no auxiliary
movement, to our most complete model, in which only hydrogens may move, but they

are allowed to relax independently for every titration state of the protein.

On the other hand, assumption (2) can be made less sweeping; for example, the
hybrid statistical mechanical/Tanford-Roxby [39] method assumes that residues that are
not too near each other interact only in a mean-field sense: the average charge of one
depends only on the average charge of the other, thus avoiding consideration of each
possible pair of their titration microstates. We do not evaluate this method here; it is
less drastic than the form of assumption (2) that we consider, and so it does not save as

much computation time; but it has shown promise in other studies [40].

When assumptions (1) and (2) are met, and therefore only m x N FDPB calculations

are required, there are still m” free energy terms that come out of those FDPB
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calculations and are needed to do exact calculations. If this calculation is intractably
large, very accurate approximations to the full free energy can be calculated using Monte

Carlo techniques to partially sample the state space [41, 42].

Simplification: Simpler Charge Patterns

In addition to the set of titration microstates described above (which we will call the
param19 charge pattern), we also evaluate the effects of using either of two simpler
charge patterns, which have only 1 deprotonated and 1 protonated microstate for each
titrating residue. These simpler charge patterns, which we will call the point and
smeared charge patterns, have been used in previous pK, prediction studies. The

exact charges used for the 3 methods of charge arrangement are given in Table 3.1.

Table 3.1: Point charges for the 3 charge pattern methods. For the “point” and “smeared”
patterns, there are only the 2 microstates given here. For the “PARAM19” pattern, the
Asp and Glu protonated charges shown here are for the synl or antil microstates, the
His deprotonated charges shown here are for the Hgs; microstate, and the His protonated
charges shown here are for the Hs; H.o, microstate.

deprotonated protonated
atom paraml19 point smeared | param19 point smeared
Asp Cg or Glu C, -0.16 -0.16 -0.16 0.00 -0.16 0.00
Asp C, or Glu Cs 0.36 0.36 0.36 0.70 1.36 0.70
Asp Og1 or Glu Oy | -0.60 -0.60 -0.60 -0.60 -0.60 -0.35
Asp Hy or Glu Hy N/A N/A  N/A 0.45 N/A  N/A
Asp Oy or Glu O, | -0.60 -0.60 -0.60 -0.55 -0.60 -0.35
His Cg 0.00 0.00 0.00 0.10 0.00 0.10
His C, 0.10 0.10 0.10 0.15 0.10 0.15
His Ng; -0.40 -0.40 -0.40 -0.30 -0.40 -0.30
His Hy; 0.30 0.30 0.15 0.35 0.30 0.35
His Cyo 0.10 0.10 0.10 0.20 0.10 0.20
His Cq 0.30 0.30 0.30 0.45 0.30 0.45
His N -0.40 -0.40 -0.40 -0.30 0.60 -0.30
His Heo N/A N/A 0.15 0.35 N/A 0.35

param19 Charge Pattern
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We will call our most careful way to arrange the partial atomic charges the param19
charge pattern, because we just use the PARAM19 partial atomic charges, including
the explicit titrating hydrogen atom. We use all of the titration microstates we described
above: 5 for aspartic and glutamic acid, and 6 for histidine. For the 4 barnase residues
we are allowing to titrate, some of the microstates are disallowed due to van der Waals
clashes. The number of titration states of the whole unbound protein barnase in our

model is 4 x 5 X 3 x 4 = 240. The bound state also has 240 states.
Point Charge Pattern

The point charge pattern, employed by Bashford and Karplus [27], uses only 2
titration microstates per titratable residue, protonated and deprotonated. For aspartic
acid, the protonated form has a charge of +1 added to the C, atom of the carbonyl group.
For glutamic acid, the protonated form has a charge of +1 added to the Cs atom of the
carbonyl group. For histidine, the neutral, singly-protonated form has the explicit polar
hydrogen Hy; bonded to Ns; as in the PARAM19 topology; and the positively-charged,
doubly-protonated form has a charge of +1 added to the N, atom. For barnase His102,
the unflipped deprotonated state is disallowed by a van der Waals clash, so we have
the ring flipped for both the deprotonated and protonated microstates. Bashford and
Karplus did not address the possibility of histidine rings being flipped the wrong way in

the crystal structure.
Smeared Charge Pattern

The smeared charge pattern, which we model after that employed by Schaefer,
Sommer, and Karplus [26], uses only 2 titration microstates per titratable residue,
protonated and deprotonated. For aspartic acid, the protonated form has a total charge
of +1 spread over the 4 atoms Cg, C,, Os1, and Oso. Similarly, for glutamic acid, the
protonated form has a total charge of +1 spread over the 4 atoms C,, Cs, O, and
O¢- The neutral, singly-protonated form of histidine is represented by one microstate,
with some charge at both the Hs; and H., positions. The positively-charged, doubly-

protonated form of histidine is represented by one microstate with the same partial
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charges as the Hs H.y microstate used in the PARAM19 charge pattern. As noted above
for the point charge pattern, the unflipped deprotonated state of barnase His102 is
disallowed by a van der Waals clash, so we have the ring flipped for both the deprotonated
and protonated microstates. Two differences of our method from that of Schaefer,
Sommer, and Karplus are: they did not consider flipping the histidine rings, and they
used the PARAM22 all-atom parameter set, so they had partial charges on nonpolar

hydrogen atoms as well.

Simplification: Single Dielectric Boundary

The 4 titration microstates of Aspb4 all have different dielectric boundaries in both the
bound and unbound states, because of the titrating hydrogen atom, and because of
the auxiliary movements of Ser28HG and waters #60 and #361 when all hydrogens
are allowed to relax (using the CHARMM HBUILD routine [43]) in response to the
protonation state of Aspb54. The 5 titration microstates of Glu73 all have different
dielectric boundaries in the unbound state, because of auxiliary movements. In the
bound state, they have only 2 different dielectric boundaries. The 3 titration microstates
of Asp75 all share the same dielectric boundary in the bound state, and all share the
same dielectric boundary in the unbound state. The 4 titration microstates of His102
all share the same dielectric boundary in the bound state, but have 3 different dielectric

boundaries in the unbound state.

We investigated the simplification of using a single dielectric boundary. With
this simplification, all titration states of the unbound protein use a dielectric boundary
enclosing the union of all titration microstates of all titrating residues. One dielectric
boundary for all bound states is constructed similarly. Also, when calculating free
energies for the state with no auxiliary hydrogen movement (this state is at the middle
of the thermodynamic cycle in Figure 3-4), similar constant dielectric boundaries are

constructed for the unbound and bound forms of this state.
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Simplification: No Auxiliary Movement

In our most complete model, each of the 480 titration states of the whole protein system
(240 bound, 240 unbound) is allowed to relax the positions of all of its polar hydrogen

atoms, using the HBUILD function of CHARMM.

We also evaluated the simplification of leaving all atoms except for the titrating
hydrogens fixed at positions determined by HBUILD on the deprotonated state. This
was done by Bashford and Karplus [27]. We call this the no auxiliary movement

simplification.

3.3 Results and Discussion

3.3.1 Simulated Titration of Barnase Residues

Our full titration model determines free energies for every bound and unbound protein
titration microstate. From these, the macroscopic electrostatic binding free energy can

be calculated:

i3 exp [-BG({7; }, bound)]
> 4i,3 €xp [-BG({i,}, unbound)]

AG"™ = kT log (3.40)
Figure 3-5 shows the binding free energy AGP™ of barnase and barstar vs. pH for the
full titration model of the 4 barnase residues (Asp54, Glu73, Asp75, His102), and also
with the single dielectric boundary and no auxiliary movement simplifications.
The binding free energy varies significantly with pH, and this conclusion holds even if
our model does not accurately predict pK, shifts. In our titration model, any pH value
is possible, and we want to consider a wide enough range of pH values so that all of our
residues can protonate, so we report results over the pH range -15 to 15 even though the

protein would actually denature as the pH dropped below about 2.

Figure 3-6 shows the populations of the titration microstates of the 4 barnase residues
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Figure 3-5: Electrostatic binding free energy of barnase and barstar vs. pH when all
of our titration states for the 4 barnase residues (Aspb4, Glu73, Asp75, His102) are
available in both the unbound and bound states. The solid black line is for our most
complete model. The long-dashed red line results when FDPB free energies of all states
are obtained using a single dielectric boundary. The short-dashed green line results when
other hydrogen atoms are kept fixed at their pH= 7 locations, rather than being allowed
to relax to different positions for every titration state.
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(Aspb4, Glu73, Asp75, His102) vs. pH, when unbound and when bound to barstar.

Figure 3-7 shows the total charge of the 4 barnase residues (Asp54, Glu73, Asp75,
His102) vs. pH, when unbound and when bound to barstar.

To reduce the populations of all of the protein microstates back to single pK, values
for each residue, we can define the effective pK®T of each residue as the pH value at
which half of the population has that residue deprotonated, and half has it protonated.
Since the titration states of the residues are not independent, a plot of the degree of
protonation of one residue vs. pH does not always have the classic sigmoid shape that
a single titration site would have, but we are defining the pK¢® as the pH at which
this plot crosses 0.5 . We can also define an “intrinsic” pK™ for each residue, as
the pK, that it would have if the other titratable residues in the protein were fixed in
their deprotonated reference states. The pK"™ and pK! values of each of our titrating
residues of barnase, in the bound and unbound state, are given in Table 3.2, along with
the available experimental values for pKe" [31, 44, 33, 45]. The experimental values are
not complete, and are contradictory in one case. Only an upper bound can be determined
for some pKT values, because proteins denature when the pH drops past about 2. For
the barnase residue His102, Buckle et al. [33] found a pK! shift upon binding, from 6.3

for unbound barnase to < 5 for barnase in complex with barstar.

The null model is the drastic simplification that all pK, shifts are zero, so a residue’s
pK and pK™ are equal to the pK, of the model compound. This means, of course,
that the titration of each residue is not affected by the other residues’ titration states, or
by whether binding partners are bound to the protein. So AGP™ does not depend on
pH in the null model.

The pK, shifts
ApK, = pK™ — pK,(model) (3.41)
depend on the free energies of all microstates, but they correspond approximately (within

0.2 pH units) to the free energy difference between the most populous deprotonated state
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Figure 3-6: Relative populations of the titration microstates of the 4 barnase residues
(Aspb4, Glu73, Asp75, His102) vs. pH. The grayscale represents 0 (white) to 1 (black).
The populations of the bound states at any pH value add up to 1, as do those of the
unbound states. States which are not significantly populated at any pH are not shown.
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Figure 3-7: Total charge of the 4 barnase residues (Asp54, Glu73, Asp75, His102) vs.
pH, when unbound (dotted line) and when bound to barstar (solid line).

Table 3.2: Model compound, intrinsic, effective, and experimental pK, values for 4
residues of barnase (Asp54, Glu73, Asp75, His102). The pK™" and pK® values come
from our full titration model. The experimental numbers are values for pKeT, so
comparing the “predicted” and “experimental” results shows how poorly our full titration
model does at predicting pK® values. Note that the null model of titration would give
pK" = pK,(model), so comparing the “model” and “experimental” results shows that
the null model does poorly as well.

model intrinsic predicted experimental
pK,(model) pKi™  pKT  pKg"
Asp54  unbound 4.0 5.46 5.48 < 2.2 [31]
Aspb4 bound 4.0 6.08 6.06
Glu73  unbound 4.4 2.05 2.22 < 2.1 [31], 4.8 [44]
Glu73 bound 4.4 5.26 5.09
Asp75  unbound 4.0 1.81 -2.02 3.1 [31]
AspT75 bound 4.0 3.84 -2.66
Glu102 unbound 6.3 0.86 1.18 6.3 [33], 6.3 [45], 5.4 [44]
Glul02  bound 6.3 335  -T.74 < 5 [33]
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and the most populous protonated state at pH = pKcT. These free energy differences
have the advantage of being easily broken up into contributions for every interaction,
and for the desolvation of the residue due to burial in the protein dielectric cavity. These
terms are shown in Table 3.3, with a further break-down of the interactions of the titrating

group in Table 3.4.

Table 3.3: Terms of the pK, shift. In order to break it up into terms, the pK, shift
is approximated by the free energy difference of the most populous deprotonated state
{iq} and the most populous protonated state {i,} at pH = pK" versus the model
compounds, for each pK¢T. That is, these are the terms of

[G({ip}) — G({ia})] = >_ [G(model {ip}) — G(model {iq})]

Their total, when converted to pH units, equals the “pK, shift” ApK, to within 0.2 pH
units. The “b” column has 0 or 1 for the unbound or bound state. The “ES group inter”
column is for the total electrostatic interaction of the titrating residue. The “ES other
inter” column is for electrostatic free energy terms not involving the titrating residue;
these are from auxiliary movements — hydrogen atoms that have different HBUILD
positions in the {iy} and {i,} states. The “ES desolv” column is for the electrostatic
free energy of moving the titrating residue from the model compound’s dielectric
boundary into the protein’s much larger dielectric boundary. The “covalent” column is
for the covalent free energy term. The “total” column is the total; it corresponds to the
“pK, shift” ApK, to within 0.2 pH units. All terms in this table are in kcal mol .

ES ES
group other ES

b | inter inter desolv covalent | total
Aspb4 | 0 3.5 -1.7 -3.8 -0.1 -2.1
Aspb4 |1 1.8 0.0 -4.0 -0.6 -2.8
Glu73 [0 ] 13.0 -4.1 -6.0 0.1 3.0
Glu73 [1]122 -3.7 -9.8 0.5 -0.8
Asp75 | 0] 13.3 2.5 -7.3 -0.3 8.2
Asp75 | 1| 17.5 1.2 -8.1 -14 9.2
His102 | 0 0.9 1.1 4.6 0.0 6.6
His102 | 1 8.2 -1.5 10.6 1.9 19.2

The electrostatic desolvation term always favors the neutral form of the titrating residue,

because the charged form pays a desolvation penalty when buried in the protein.
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Table 3.4: Subterms of the pK, shift that add up to the “ES group inter” term in
Table 3.3. In order to break it up into terms, the pK, shift is approximated by the free
energy difference of the most populous deprotonated state {iq} and the most populous
protonated state {i,} at pH = pK¢T, versus the model compounds, for each pK¢T. That
is, these are the terms of

[G{ip}) = G{ia})] = X [G(model {iy}) — G(model {ia})]

The “b” column has 0 or 1 for the unbound or bound state. The “barnase 54,73,75
charge” column has 0 or - for the charge, 0 or -1, of barnase residues Asp54, Glu73, and
Asp75. The next 5 columns are for the interactions between the titrating residue and
various groups. The “ES group inter” column is for the total electrostatic interaction of
the titrating residue. All terms in this table are in kcal mol *.

barnase barnase barnase ES

04,73,75 27,83,87 other  water barstar | group

b | charge | inter  inter inter inter  inter | inter
Asp54 |0 | (—) | -4.0 5.2 2.8 -0.5 . 3.5
Aspb4 | 1| (—) |-5.3 8.9 2.8 -0.3 -3.6 1.8
Glu73 0] (0 -) |-5.3 9.6 2.0 6.7 . 13.0
Glu73 | 1] (0 -) |-9.2 23.7 3.7 7.0 -13.0 12.2
Asp75 | 0| (00 ) |-0.9 15.5 -2.4 0.0 . 13.3
Asp75 | 1| (00 ) |-1.0 28.4 -1.9 0.0 -8.0 17.5
His102 | 0 | (00-) |-1.2 4.2 -2.1 0.0 . 0.9
His102 | 1 | (000) |-0.1 14.2 -1.6 0.1 -4.4 8.2
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Three positively-charged barnase residues, Lys27, Arg83, and Arg87 are near the three
carboxylic acid residues. Aspb4, Glu73, and Asp75 are progressively closer, in that order,
to the three positively-charged residues, which naturally favor the negatively-charged,
deprotonated forms of the carboxylic acids. Barstar has a net charge of -5, due mainly
to 4 carboxylic residues which line the docking region in order to interact with Lys27,
Arg83, and Arg87. Due to this net charge, barstar favors the protonated forms of all the

titrating residues.

At high pH, where Asp54, Glu73, and Asp75 are all deprotonated and negatively
charged, the unfavorable interactions between their negative charges mean that they all
favor each other’s protonation. Now consider gradually dropping the pH. One of them
will have the highest pK,, and that one will protonate first. Now that it is neutral, it no
longer favors the protonation of the other 2 residues so strongly, so their pK, values are
now lower. Again, one of these 2 will have the higher pK,, and that one will protonate
next. Now that it is neutral, it no longer favors the protonation of the last one of the
three, so the third and final pK, value drops even lower. This illustrates that pKcT
prediction for multiple interacting titratable groups is very sensitive to the accuracy of
the titration states’ relative free energies. When the 3 carboxylic acid residues are all
deprotonated, their pK, values could be quite close to each other, but only the one that
happens to be highest will protonate first as the pH is lowered, and this will shift the

other residues’ pK¢T values down substantially.

In our treatment, Asp54 protonates before the other 2 carboxylic acids in unbound
barnase as the pH drops, at pK®(Asp54, unbound) = 5.48. Experimentally, Oliveberg et
al. [31] found that Asp75 protonates first, at pKP*(Asp75, unbound) = 3.1, and that
pKT(Asp54, unbound) < 2.2 . So it would seem that our treatment incorrectly favors
the protonated, neutral form of Asp54 over the deprotonated, negatively-charged form.
The exact reason is not clear. One might expect that any error is due to Nature having
a lower free energy conformation for some state. But, for this to explain our error
on pK(Asp54, unbound), Nature would have to have a better conformation for the

deprotonated state of Aspb4. This does not make sense, because the crystal structure
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was obtained with all 3 of Asp54, Glu73, and Asp75 deprotonated. The weakest part of
our method seems to be that we did not allow heavy atoms to move in response to the
protonation state, but the exact causes of our errors are not clear. It should be noted
that these simplifications and consequent errors are endemic to nearly all studies of pK,

by calculation.

3.3.2 Simplifications to Speed pK, Calculation

These simplifications can only be useful if they do not significantly affect predicted pK e
values. It does not matter that our predicted pK do not match experimental values; if
a simplification is a valid approximation, it will not significantly affect the relative free
energies of any states. So we judge the simplifications by comparing their resulting p K%

and AGP"4 predictions to those of our full titration model.

Table 3.5 summarizes the effects of the various simplifications on the predicted
pK, shift, ApK™ and binding free energy, AGP. Not all combinations of the
simplifications are reported, because there is a logical order to them: assuming no
auxiliary movements is of no benefit unless one also makes the assumption of a single
dielectric boundary in order to make the number of required FDPB calculations low

enough to be feasible.

Simplification: Simpler Charge Patterns

The point charge pattern changes the ApK, values significantly compared to the
param19 charge pattern, from -6.06 for (Glu73, unbound) to +4.45 for (His102,
unbound). The smeared charge pattern changes the ApK, values somewhat less,
from -2.35 for (Asp75, bound) to +4.56 for (His102, bound). Both methods generally
disfavor protonation of the carboxylic acids. An investigation of the reason points to
these factors: The param19 charge pattern (1) puts +0.45 of the +1 charge out on
a new hydrogen; (2) it has 4 choices for where to put the hydrogen; and then (3) the
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Table 3.5: Effect of titration model simplifications on predicted pK, shift, ApK, (in pH
units), and binding free energy, AG*™ (in kcal mol™').

Method:

charge arrangemt.: | expt. PARAMI19 point smeared

no aux. mvmnts.: N N Y N Y N Y

single diel. bndry.: N Y Y N Yt N Yt

AG"™(pH = 7) 14.93 14.23 14.16 | 16.13 16.19 | 21.59 21.70

ApK, of:
Aspb4, unbound | <-1.8 1.48 1.50 -0.78 | -092 -231| 0.17 -1.46
Aspb4, bound 2.06 2.01 0.47 1.33  -0.87| 1.74 -0.17
Glu73, unbound | <-1.9| -2.18 -244 -11.23| -824 -8.89| -3.97 -9.30
Glu73, bound 0.69 082 -959 | -2.11 -11.58 | 0.87 -11.20
Asp75, unbound -09| -6.02 -6.03 -3.24| -435 -437| -727 -4.30
Asp75, bound -6.66 -6.62 -1.70 | -8.04 -3.35| -9.01 -3.01
His102, unbound 00| -5.12 -580 -5.63| -0.67 -0.18| -5.50 -4.88
His102, bound <-1.3 | -14.04 -14.04 -13.85|-13.66 -10.18 | -9.52 -7.61

T With the point or smeared charging method, the residue has the same shape when

deprotonated or protonated, so if no auxiliary movements are allowed, then all states
have the same dielectric boundary.

other hydrogens are all allowed to relax (away from the added hydrogen atom). This
procedure often finds a favorable interaction (a hydrogen bond, that is) for the added
hydrogen. The point or smeared charge patterns, on the other hand, (1) put the
whole +1 charge on the C atom of the carboxyl group, which is less likely to be able to
make favorable interactions with nearby negative or polar groups because (2) it is already
bonded to 3 other atoms, and so has less surface facing other groups, (3) negative atoms
are not likely to be near this carbon in the crystal structure, and (4) both this carbon
and all negatively charged atoms are not hydrogens and are therefore not able to move

in our procedure.

The simpler charge patterns also affect the electrostatic binding free energy at pH= 7,
because the population of titration microstates changes slightly. The 4 residues are
mostly deprotonated at pH= 7, but the smeared charge pattern is different from
the param19 charge pattern for the deprotonated as well as the protonated form of

histidine.
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Simplification: Single Dielectric Boundary

In the PARAM19 parameter set, the van der Waals surfaces of hydrogen atoms never
extend far beyond those of the heavy atoms to which they are bonded. So, even when we
allow all hydrogen atoms to make auxiliary movements to stabilize each titration state,
the dielectric boundary can not change very much due to the movement of hydrogen
atoms. So the carboxylic acid ApK, values change by less than 0.3 pH units when the

assumption of a single dielectric boundary is made.

The one larger effect that the choice of microstate has on the dielectric boundary
is actually from the histidine, because we allow flipped and unflipped versions of the
histidine ring, and the ring carbons have a larger van der Waals radius than the
nitrogens. This causes the binding free energy to drop by -0.9 kcal mol ! uniformly
for all microstates. It also causes the histidine ApK, to drop by -0.68 pH units in
the unbound state (using the param19 charge pattern). The effect of the single
dielectric boundary simplification will be small in general, except when heavy atoms
on the surface of the protein change position or size in any protonation microstates.
Note, however, that with this simplification, a surface histidine could cause an error in
the binding free energy even if its pK, was far from the pH at which the binding free
energy is calculated, because all possible titration states affect the dielectric boundary,

even states which are never significantly populated.

Simplification: No Auxiliary Movement

The binding free energy at pH= 7 is not affected much by this simplification, mainly
because all 4 residues are mostly deprotonated at pH= 7. However, some ApK, values
are changed a great deal by this simplification, because it causes a few microstates to be
heavily penalized for van der Waals clashes between the titration hydrogen and another
hydrogen. (Without this assumption, the other hydrogen would move away to relieve the
clash.) The worst example of this is that, for the (Glu73 syn2) microstate, the titration

hydrogen is 1.4 A away from an explicit water molecule’s hydrogen atom, earning a 5.85
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kcal mol™! energy penalty. Without this assumption, the water hydrogen relaxes to a

position 2.1 A away.

3.4 Conclusion

We model multiple-site titration using a system (4 residues of the protein barnase,
unbound and bound to barstar) small enough to allow enumeration of all titration states.
To calculate free energy difference between titration microstates, we use experimental
values for the pK, values of Asp, Glu, and His model compounds, the pK, difference
between histidine’s two protonation sites; ab initio quantum mechanical gas phase energy
difference of the anti and syn conformations of protonated acetic acid; and FDPB
electrostatic calculations. We use the van der Waals term to disallow protonation
microstates with steric clashes that can not be avoided by relaxation of hydrogen atoms

only.

We model the effect of titration on the electrostatic binding free energy of barnase
and barstar over a range of pH values. In the bound and unbound states, we define
effective pK" values for each of the four residues (Asp54, Glu73, Asp75, His102). Both
our full model, and the null model as well, compare poorly to the available experimental
pK, values. Our analysis shows that pK, predictions can depend delicately on relative
energies of titration microstates; as the pH drops, the protonation of one residue forces

the pK, values of neighboring titratable residues further down.

We evaluate several simplifying approximations to speed up the calculation of pK,
values. Most of the simplifications that we tested proved to be inadvisable, because they
affect the predicted pK, values too much. We do not recommend simplifying the charge
arrangement any more than the PARAM19 parameter set already has (point charges on
all heavy atoms and polar hydrogens). We recommend allowing other hydrogens to move
in response to each protonation state. Using a single dielectric boundary proved to be a
good approximation. However, when heavy atoms on the protein surface have different

positions or sizes for different titration states (as a surface histidine does, because of
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the way we allow it to flip its ring orientation), the assumption of a single dielectric
boundary is somewhat inaccurate: a 0.7 kcal mol~! error in the binding free energy, and
a 0.7 pH unit error in one pK, value. The number of titration states of a protein grows
exponentially with the number of titratable residues, so it gets unmanageably large for
more than a few titratable residues. The motivation for trying these simplifications was
to calculate the free energies of all states using fewer FDPB calculations than one per

state.

Movement of totally buried residues has no effect on the dielectric boundary, so
assuming a single dielectric boundary is not an approximation in that case. So another
possibility is that careful enumeration of the number of unique dielectric boundaries
used by all titration states could allow enough savings of calculation time to make the
treatment of large numbers of titratable residues feasible. The reason that our most
careful titration model does not predict pK, shifts more accurately than the null model
could be that non-hydrogen atoms are not allowed to move in concert with protonation
state changes. This important aspect of pH-dependent phenomena should be addressed

in future computational titration studies.
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Chapter 4

Improvements to the Analytical

Continuum Electrostatics Method

4.1 Introduction

Accurate calculation of electrostatic free energies in solvent requires the solution of
the Poisson-Boltzmann equation. This can be done by finite-difference or other
numerical algorithms, but it is computationally expensive. Computational techniques
such as molecular modeling, simulation, and ligand design require thousands of energy
calculations. Therefore, such efforts have, until very recently, used very easy-to-compute
but inaccurate electrostatic energy functions, usually Coulombic or distance-dependent
Coulombic interactions. Using these functions typically neglects desolvation effects

altogether.

Several analytical approximations to the solution of the Poisson-Boltzmann equation
have been proposed recently, building on the Generalized Born approximation of Still
et al. [46]. The Analytical Continuum Electrostatics (ACE) method of Schaefer and
Karplus [6, 7] is one such approximation, and it is already implemented in the program

CHARMM [11].

In this chapter, we describe improvements we have made to the method. We found

71



that its largest errors were typically caused by the few atoms whose atomic solvation
energies are predicted to be incorrectly high. We greatly reduced these errors with an
automatic procedure that adaptively determines a maximum atomic solvation energy
for each molecular system, based on the distribution of uncorrected atomic solvation
energies. We also incorporated the approximate treatment of salt effects proposed by
Srinivasan et al. [47] into ACE, and found that it predicted the effect of salt on binding

free energy terms quite accurately.

4.2 Theory

4.2.1 Generalized Born Methods

The electrostatic free energy Ggs of a solute molecule in solution can be divided into the

electrostatic free energy of the desolvated state plus a solvation free energy:
GES — GdEeSsolvated + AG%OSIV ( 41)

The desolvated state is defined to have the solute internal dielectric constant ¢; over all
space, so G&golvated can be obtained by a simple calculation of Coulombic interactions.
For point charges, it also contains infinite self energy terms, so one can instead treat each
charge i as uniformly distributed over a sphere of radius R;, as proposed by Born [48].
For the simple system of a lone charge ¢ uniformly distributed over a sphere of radius R,

with uniform dielectric constant € outside the sphere, the solution of the Poisson equation

V- (e(P)V - ¢(F) + 4mp(r)) = 0 (4.2)
L forr <R

p(r)=1 ° (4.3)
L forr>R
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D) = —e()V- () (4.4)
0 forr <R

ﬂ%f forr > R

G = i/ﬁ.ﬁd%
&7

_q2
= L 4,
G 2¢R (4.6)

So, the Born self energy of each atom ¢ when desolvated (e(7) = ¢ everywhere) is

2

—4q;
_ 4.7
QEiRi ( )

So,
2 (]

Gdesolvated — 4 % 4.8
ES ; 26 R; * g €Tij 9

The Born self energies in the first sum are independent of configuration, and so they

cancel out of any AG terms of interest, such as binding or folding free energies.

Notice that the desolvated free energy in equation 4.8 has “self” terms for each atom,
and “pair” terms for each pair of atoms. We now consider the effect of the solvent on
the total electrostatic free energy. The electrostatic solvation free energy of the solute
molecule AGS%Y, also called the polarization free energy, can also be constructed as a

sum of “self” and “pair” terms,

AGHS" =3 AGH + 3 AGH (4.9)

ij
i<j

where AG5*!" is the favorable interaction between the solvent and atom i, and AG}}* is

the solvent screening of the interaction between atoms ¢ and j.

The Generalized Born (GB) method of Still et al. [46] provides an approximation to

the atom pair terms AG, given the atomic self-energy terms AGS. The atomic self-
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energy terms, which are the interactions between each charge ¢ and the solvent outside of
the solvent-accessible surface (SAS), are equivalent (by the principle of superposition) to
the solvation free energy of a hypothetical solute with the same SAS shape but no charges
except for charge i. This can be obtained analytically in the case of a spherical solute
containing one charge. The Born solvation energy of an atom with charge ¢ uniformly
distributed over a sphere of radius R is defined as the free energy difference of moving
the charge from the desolvated state (the lone atom immersed in dielectric ¢) to the fully

solvated state (the lone atom immersed in dielectric €;):

AG®Y = 271;] (4.10)
where
1 1

The same result for AG*" is obtained if the charge ¢ is a true point charge at the
center of the sphere R. If the point charge were not at the center, this expression would
be the monopole term of a multipole expansion [49, 50]. This motivates the definition of

a “solvation radius” b; defined by

2
_Tq;

A gelf —
Gi 2b;

(4.12)

for a charge ¢ at a certain location in a certain SAS shape. Since b; is the radius of
a hypothetical spherical solute, centered on charge 7, for which ¢ has the same atomic
self-energy as in the actual solute, it offers a convenient measure of the effective degree
of burial of charge 7 in the solute. The definition of the solvation radius is illustrated in

Figure 4-1.

Now that we have defined the solvation radii, we will first show how they are used to

approximate the interaction terms before describing how they are calculated.
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AG AG

defines b

Figure 4-1: Definition of Solvation Radius: The solvation radius b of an atomic charge
in an arbitrary low-dielectric region is defined as the radius of the spherical region for
which the same charge, at the center, would have the same solvation free energy.

4.2.2 Generalized Born Interaction Term

The GB method provides a simple analytical approximation for the atom-pair interaction
energies, given the solvation radii of all atoms. The electrostatic solvation free energy
AGRLY can be written in a form that combines the atomic self-energies and the atom-pair

interaction energies:

solv T q:4;
% 7 )

(note the full double sum), where the form of fZ® chosen by Still et al. is

9= (1 + bibge D) (4.14)
r2.
where D = 4szbj

The form of SB is not uniquely determined, but this form chosen by Still et al. has the
correct behavior at the limits of very small or very large separations r;; . At r;; = 0,
it yields the correct Born energy for a single point charge with magnitude (¢; + ¢;). At
rij < b; = bj, it gives the correct Onsager energy for a dipole at the center of a dielectric

sphere [49]. At r;; > max(b;, b;), it gives the correct Coulombic result. The Generalized
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Born equation, Equation 4.13 along with Equation 4.14, approximates the interaction of
atoms ¢ and j using only 3 inputs, the solvation radii b; and b;, and the separation r;;.
This is illustrated in Figure 4-2. Furthermore, the Generalized Born equation has no free
parameters, and yet it performs remarkably well. Thus, considerable effort, and many
adjustable parameters, have been devoted in recent years to improving the approximation

of the atomic self energies rather than tinkering with the Generalized Born equation.

Figure 4-2: Generalized Born Screened Interaction: With no free parameters, the
Generalized Born equation approximates the screened interaction between each pair of
charges based only on their separation 7;; and their solvation radii b; and b;.

int __ q’LqJ
AGy =- \/ 9 12 /4b;b;
Tij + bzbje w J

4.2.3 ACE Approximation for Atomic Solvation Radii

Some method must be used to supply all atomic solvation radii b; to be used in the

GB equation. To calculate them by finite-difference solution of the Poisson—Boltzmann
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equation (FDPB) takes as much computer time as calculating all atom-pair interaction
terms by FDPB as well. Several analytical methods have been developed to approximate
the FDPB result much more quickly: the “pairwise descreening approximation” approach
of Hawkins, Cramer, and Truhlar [51, 52], the “ACE” method of Schaefer and Karplus [6,
7], and the “GB/SA Continuum Model” approach of Qiu et al. [53]. These methods share
two key approximations, the Coulombic field approximation and the pairwise descreening

approximation.

Coulombic Field Approximation

The electrostatic energy of the hypothetical state with the whole SAS shape but only
atom ¢ charged can be expressed as a volume integral of the electrical energy density over
all space, [ é f—;)d?’x . The Coulombic field approximation lets the dielectric displacement,
vector D due to a charge ¢ at the origin be the spherically symmetric Coulomb field
D(z) = — % regardless of the solute shape, as shown in Figure 4-3. This is less accurate
where the SAS is near the charge or not oriented with its normal pointing toward the
charge, because field lines actually bend somewhat from a charge toward the nearest
high-dielectric solvent region. Since D in the Coulombic field approximation is the same
in the solvated and desolvated states, the atomic self-energy simplifies to an integral over

all space except the solute region S:

self __ T
AGE = — =

D2d3 4.15
8w J¢ s o ( )

which can be changed into a Born solvation energy term and an integral over the solute

region S except for the van der Waals sphere V; of atom i, defined by |¥ — Z;| <= R;:
At = — T / D+ = / D2 (4.16)
! 81tz v, L) )
2 2
= _T% ﬂ/ 7 — 7| "Ad
Cc S

2R, 8m ¢ v
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Figure 4-3: The Coulombic Field Approximation of ACE: In order to calculate the
atomic solvation energy of an atomic charge, the ACE method assumes that the electric
displacement has the Coulombic form

q .
—T

D
r2

I

So the electric field E correctly drops in magnitude when crossing into the high
dielectric (solvent) region, but the curvature of the field lines (which would depend
upon the exact dielectric boundary) is neglected.
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In the Coulombic field approximation, a solvation radius depends only on the
geometry of the SAS and the location of the atom, and is independent of ¢ and €. That
is, atomic solvation energies are proportional to 7. We examined the actual dependence
of FDPB solvation radii on ¢ in Figure 4-4. Comparing solvation radii for the two
internal dielectric constant values we will use, solvation radii for ¢; = 4 average only 3%
(with a standard deviation of 1 percentage point) larger than solvation radii for ¢ = 1.
That standard deviation of 1 percentage point is not noise; a given atom depends more
or less strongly on ¢ across the whole range of ¢;. And b(¢; = 1) shows no correlation
with b(¢; = 4)/b(e; = 1), so the solvation radii themselves are not correlated with their

sensitivity to ;.

1.25 |

=
N

115 |

=
[EEN

1.05 |

solvation radius, normalized

0 2.5 5 7.5 10 12.5 15
internal dielectric constant

Figure 4-4: Dependence of FDPB solvation radii b; vs. internal dielectric constant e;.

The solvation radii are given as a ratio relative to the value at ¢ = 1. In the Coulombic

field approximation, solvation radius is independent of ¢;. Here we see that this is true to

within 3% (with a standard deviation of 1 percentage point) between ¢ = 1 and ¢ = 4.

The solvation radi are for a subset of 93 atoms (every tenth atom in the coordinate file)

in the A chain of the cyanovirin unit AB, unbound and bound in the domain-swapped
homodimer; so there are 186 data points at each ¢; value.
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Pairwise Descreening Approximation

The pairwise descreening approximation replaces the integral over the solute volume S
less the atomic van der Waals volume V; with individual terms for each other atom k # ¢

in the solute:

2
AGET = 10 S AGy! (4.17)
2R " &

Each AG%! is the electrostatic free energy cost of changing the volume of atom & from
€s to € in the presence of charge 7. This approximation amounts to ignoring the fact that
atoms’ van der Waals radii have gaps and overlaps to varying degrees. A cartoon of the

pairwise descreening approximation is shown in Figure 4-5.

atom 1

* trivial

Figure 4-5: The Pairwise Descreening Approximation of ACE: The approximation
assumes that every atom has an independent contribution to AGS®, the solvation free
energy of atom 7. The contribution of each atom £ is the free energy cost of desolvating
only the volume of atom k.
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Methods other than ACE

As mentioned before, the “pairwise descreening approximation” approach of Hawkins,
Cramer, and Truhlar [51, 52], and the “GB/SA Continuum Model” approach of Qiu et
al. [53] share with the ACE method of Schaefer and Karplus [6, 7] two key approximations,
the Coulombic field approximation and the pairwise descreening approximation. The

three methods use different approximations for the AGE! terms.

The “surface GB model” of Ghosh et al. [54] calculates an approximation of a surface
integral over the SAS which is equivalent to the above volume integral over the solute
volume. The “Modified Tanford-Kirkwood” approach of Havranek and Harbury [25] is
an alternative approach to approximating both the atomic solvation energies and the
atom-pair interaction energies based on simplifying the actual solute geometry (relative

to an atom pair) to a sphere containing the atom pair.

ACE Formulae

In the present work, we chose to use the ACE method of Schaefer and Karplus [6, 7]. In
order to calculate atomic solvation energies, ACE treats the charge 7 as being spread out
in a Gaussian pattern rather than a point or spherical-shell charge, and treats the degree
of desolvation by atom k£ as a Gaussian function as well, rather than a spherical step
function at its van der Waals radius Ry. The ACE form for the AG%! terms is based on
the analytical solution of a double integral over these two Gaussian distributions. The
first parameter of the ACE model is the density smoothing parameter o, which determines
how wide and low these Gaussian distributions are. The remaining parameters, one per
atom type, are effective atom volumes V}, which determine the net volume desolvated by

each atom k.

We will now summarize the ACE method in Equations 4.18 to 4.31, as given in

reference [7] and programmed in CHARMM version 27a2. For a solute with Nygoms atoms,
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the ACE free energy is

Grs = Y G+ G+ G (4.18)

i i#k i<j

Wi

4
o | exp(=rk /o) E Tk
+ 7> ¢ {— + o

4 4
itk Wik Tik T Hik

1 T
GES — - qz {265Ri * }

nb
o L T 4.19
2 {6iTij (Tin+bz'bj€$p(_7"i2j/4bibj))1/2} (419)

1<j

where 7, 7, and k are atom numbers from 1 to Nuioms; Where ¢;, R;, and V; are the partial
charge, radius, and volume of atom 7; where r;; is the distance between atoms ¢ and j;
and where ¢ and ¢ are the dielectric constants inside the solute, and outside it in the

*
)

solvent. We already defined 7 = (1/¢;) — (1/€5) in Equation 4.11. The parameters w
Wik, Oik, and p;;, are defined in Equations 4.23 to 4.31.

The first term of the first sum in Equation 4.19, ¢?/(2¢sR;), is the energy of atom ¢

alone in solvent (solvent dielectric ¢ filling all space except for the atomic sphere R;).

*
277

The next term, ¢?7/wy;, is the effect of changing the charge distribution from a spherical
shell at R; to a gaussian distribution. The terms of the second sum in Equation 4.19, for
1 # k are the effect of changing the dielectric constant in the volume occupied by atom k
from €, to €. So the sum of all those self terms (the first 2 sums in Equation 4.19) is an
approximation of Equation 4.17 for the free energy of atom 7 in the actual solute shape,
with all other charges turned off. The important thing to note is that the second term
of the second sum in Equation 4.19, except at small r;;, has the dependence ~ Vkrgf
because it is an approximation of the integral of |# — #;|~* over the solute volume in

Equation 4.17.

The first pair term is the Coulombic interaction of atoms ¢ and j in the desolvated

state. The second pair term is the generalized Born equation for the screening of the
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interaction by solvent. Reference [6] lets ;;-b equal zero for bonded and 1-3 atom pairs,
0.4 for 1-4 atom pairs, and 1 otherwise (by setting the NBXMOD 5 E14FAC 0.4 CHARMM
energy parameters). Since we want ACE to approximate the FDPB result, we let i‘;-b =1
for all atom pairs (by setting the NBXMOD O E14FAC 1 CHARMM energy parameters), so

that ACE calculates the full interaction between all atom pairs.

The ACE atomic solvation energy is

2 2
7q;,  TG; f
AGEN = — L G5! 4.20
i 2Rz w;(z' + ]92751 ik ( )

The uncorrected ACE solvation radius of each atom depends on its ACE atomic solvation
energy,
2

—Tq
Y= 4.21
T 2AGET (4.21)

We will discuss below why and how b;*" values are corrected to become solvation radii
b; for use in the Generalized Born interactions (the last term of Equation 4.19). Briefly,
one can apply a “tangential cutoff at by” according to Equation 4.42; or a “flat cutoff
at by” according to Equation 4.43; or a “flat cutoff at b,” according to Equation 4.48.
We define by = ((3/4w)Y; V;)'/3, the radius of a sphere with the volume of the whole
solute, in Equation 4.41, and our adaptive maximum solvation radius b, is described in

Section 4.3.2. These three types of cutoff are pictured in Figure 4-6.

Very small atomic radii cause large errors, so the atomic radii R; are defined by:

R, = max(R;dW,j _ max i(R]V-dW — 1)) (4.22)

where [;; is the equilibrium bond length for the atom types of atoms 7 and j.

*

The parameters w};, wik, oi, and p;; depend on the atomic radii and volumes, and

on the density smoothing parameter a:

1 Vi

Wi W(Qik — arctan Q) (4.23)
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solv. radius b

,/~{angenﬁal
cutoff at b0

flat
b, | cutoff at b
ba
flat
cutoff at ba
~ atomic solv.
—7q —7q energy AG*"

2b, 2b,

Figure 4-6: Depiction of the three types of solvation radii cutoff used. The curve is the
usual definition of the solvation radius, and the three straight lines are three different
cutoffs used when determining the solvation radius from the atomic solvation energy.
They are defined by Equations 4.42, 4.43, and 4.48. Note that the flat cutoffs are actually
connected to the curve by short splines.
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1 4

x 4

2 3(Qix, — arctan Q)
kT 3+ Z%CE)Qz’k — 4 arctan Q;

TTm/2

(Qqs — arctan Q) (4.24)

(inRy)* (4.25)

g

b= R; 4.26
Hik 512(1 — 273263 R; [ (wir Vi) (4.26)
Qi = L (4.27)

T (2gh + )2
qizk = a?(aikRk)z (428)

2 1
ACE _ _ 4.29
e = 1 T e 42

T 1
S= == 4.

“=V2R, (430)
oy, = max(«, R;/Ry,) (4.31)

Using the CHARMM [11] PARAM19 [10] united atom parameter set, both of our protein
binding test systems have 17 distinct atom types. So, including « , the ACE model has
18 adjustable parameters. The “default” values we used for these 18 parameters are given
in reference [7], distributed with CHARMM version 27a2, and given in Table 4.1 of the
present work. They were obtained by minimizing the solute volume fluctuations for a set
of 12 protein structures (i.e. making the sum of the Gaussian distributions representing
each atom’s desolvation as similar as possible to the step function with value 1 inside the
SAS and 0 outside) [55]. In Chapter 5, we describe a method to find parameters which

minimize errors from FDPB results in a variety of ways.

4.2.4 Generalized Born Salt Treatment

A correction to the Generalized Born equation (Equation 4.13), to account for the

presence of salt in the solvent, has been proposed by Srinivasan et al. [47]. The factor
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Table 4.1: Effective volumes and van der Waals radii for use with ACE and the PARAM19
polar hydrogen parameter set. They are compatible with a density smoothing parameter
a = 1.2. This table is adapted from reference [7]; these parameters were also distributed
with CHARMM version 27a2. They were obtained by Schaefer, Bartels, and Karplus by
minimizing the solute volume fluctuations for a set of 12 protein structures [7, 55]. Atom
types with only 0 or 1 instances in the test set of reference [7] are omitted.

Atom Type V (A3) R'W (A) Description

H 0.310 0.80 H which can H-bond to neutral atom
HC 0.529 0.60 H which can H-bond to charged atom
HT? 0.0 0.80 TIPS3P water hydrogen

Lp? 0.0 0.2245 ST2 lone pair

C 12.403 2.10 Carbonyl C

CHI1E 12.257  2.365 Extended atom C with one H

CH2E 35.356  2.235 Extended atom C with two H

CH3E 40.947  2.165 Extended atom C with three H
CRI1E 18.583 2.10 Extended atom C with one H, in aromatic ring
N 0.0 1.60 Peptide N bound to no H

NR 16.611  1.60 N bound to no H, in aromatic ring
NP 0.0 1.60 Pyrole N

NH1 1.708 1.60 Peptide N bound to one H

NH2 18.677 1.60 Peptide N bound to two H

NH3 15.521 1.60 N bound to three H

NC2 19.336  1.60 Charged guanidinium N bound to two H
0O 14.375  1.60 Carbonyl O

OoC 16.404  1.60 Carboxy O

OH1 21.427 1.60 Hydroxy O

OH2P 29.700 1.7398 ST2 water O

oTP 29.700 1.60 TIPS3P water O

S 15.196 1.89 Sulphur bound to no H

FE 0.411 0.65 Iron

 Volume set to zero.
> Volume derived from water density under standard conditions (1 atm, 298 K).
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e% — L is replaced by,

€s

T =

= rGB

1 e FRf
Tis = — —
/ €i €s

(4.32)

which can differ for each pair of atoms ¢, j. Here SB is the Generalized Born equation
term given in Equation 4.14. Srinivasan et al. found that a value of 0.73 for the scaling

parameter k gave acceptable results for predicting solvation energies. Here

_ \l 82N, (I/(mol L)) w33

1000kgT

is the modified Debye-Hiickel screening parameter, e is the fundamental charge, and I is
the ionic strength in mol L™!. Note that we use this to correct the atomic self energy

GB

i 1s the atomic solvation radius uncorrected for salt effects,

(i = j) terms as well, where
and 7; substituted into the GB equation yields the atomic solvation energy corrected for

salt effects.

4.2.5 Component Analysis

Now that we have reviewed how the electrostatic free energy Ggs is obtained, the

electrostatic free energy of binding is simply defined as the difference
AGEiéld = Gl]%%und . G%rébound (434)

where the unbound state consists of the two binding partners, infinitely separated by

solvent.

We are interested in predicting how each part of a protein-protein binding system
contributes to the electrostatic binding free energy. All proteins can be subdivided into
these three groups per residue: side chain, amino, and carbonyl. In the polar hydrogen
model of PARAM19, an amino group includes C,, the backbone N, and its H atom; a
carbonyl group contains the backbone C and O atoms; and a side chain group contains

the atoms Cg and beyond. We choose to include each N- or C-terminal blocking group
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in its residue’s amino group if it contains a nitrogen, or carbonyl group if it contains a

carbon.

The electrostatic binding free energy can be constructed out of self (or “solvation”)

terms for each group m, and interaction terms for each group pair m, n:

mn

AGPind — 3 AGPind solv . 3 AGPind int (4.35)
m m#n

A group solvation binding term AGP®d sV g the cost, with only group m charged,
of desolvating the volume of the other binding partner. For groups m and n on
opposite binding partners, the group interaction binding term AGPRd int for this “direct
interaction” is equal to their screened interaction in the bound state. For groups m and
n on the same binding partner, the group interaction binding term AGPId it for this
“indirect interaction” is equal to the screening of their interaction by the exclusion of

solvent from the volume of the other binding partner.

The group binding terms can, in turn, be constructed out of atomic solvation and

interaction terms (i and j are atom numbers):

AGErind solv _ Z(AG?ound _ AG;lnbound) + Z Z (AG?qund _ AG;l;lbound) (436)

1Em 1€m jEM

and

AGmgd int _ Z Z(AG%ound _ AG?J_nbound) (437)

1EM jEN
If groups m and n are not in the same half of the binding complex, the AG;‘fbound terms

will be zero.

In our model, the hydrophobic isostere of a group is the same as the group itself
except that all of its charges are set to zero. The mutation term of group m, i.e. the
change to the binding free energy of mutating group m from its hydrophobic isostere, is:

AG:)Tind mut __ AG:)Tilnd solv + Z AGbind int (438)

mn
n#m
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and the two terms on the right are called the group solvation term and the group total-
interaction term of the binding free energy. Note that since the mutation terms of both
group m and n include their entire interaction, the mutation terms do not sum up to the

binding free energy AG®™d.

The contribution term of group m takes only half of its interactions:

mn

in n in 1 ind in
AGlr)n d cont _ AG?R d solv + 5ZA(;b d int (439)
n
so that the contribution terms add up to the binding free energy:

AGbind — Z AGE;nd cont (440)

4.3 Methods

4.3.1 Structure Preparation

Two protein-protein binding pairs were used in this study: the cyanovirin-N (CV-
N) domain-swapped homodimer, and part of the protease-resistant core of the HIV-1

glycoprotein gp41l, three inner helices (ABC) binding to one of the outer helices (D).

Several other proteins and protein complexes were used only to test our algorithms
for the adaptive maximum solvation radius and for pseudo-symmetry detection. They
are the amino-terminal domain of phage 434 repressor (PDB entry 1R69) [56], rabbit
uteroglobin (PDB entry 1UTQG) [57], arc repressor from bacteriophage P22 (PDB entry
1PAR) [58], human class I MHC protein HLA-DR1 (PDB entry 1DLH) [59], and sperm
whale myoglobin (PDB entry 1MBD) [60].

Selected crystallographic subunits from the X-ray crystal structures were used. We
use the PARAM19 atomic charge and van der Waals radius parameters in both the
FDPB and ACE models. Polar hydrogens were built onto the crystal structure using the

HBUILD facility [43] in the CHARMM package [11].
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Cyanovirin-N Structure

CV-N, isolated from the cyanobacterium Nostoc ellipsosporum, is a potent virucide
against human immunodeficiency virus (HIV) in its monomeric form [61, 62]. A domain-
swapped homodimeric form is also formed at low pH under certain conditions (reverse-
phase HPLC purification, or 26% isopropanol used for crystallization). The monomeric
and dimeric forms are both stable at low pH, but only the monomeric form is stable at
neutral pH. Our test system is the rigid binding of the two subunits (AB and A’B’) making
up the domain-swapped homodimer of the 1.5 A X-ray crystal structure 3EZM [62],
pictured in Figure 4-7. It has been shown that the two halves of the homodimer (AB’
and A’B) are oriented differently in solution than in the X-ray crystal structure [63], but

most of the binding interface is within the halves rather than between them.

We aligned and compared the nuclear magnetic resonance (NMR) structure of the
monomer at pH 6.1, 2EZM [61], to one half of the X-ray crystal structure of the
homodimer at pH 4.4, 3EZM [62]. There are no major differences: except for the linker
between the A and B domains of each unit, no backbone atoms differ by more than about
1 A. This similarity suggests that the binding of two units to form a homodimer has a
mechanism similar to the assumed last stage of monomer folding, the docking of the two
domains. So, our rigid binding system can also be considered a simple model for the last

step of folding either the dimer or the monomer.

The only contact between the two halves of the homodimer other than the linker
region is between the carboxylic acid moieties of Glu4l and Glu4l’, which directly face
each other. Obviously, this is possible at the 4.4 pH of the X-ray crystal structure because

these side chains are protonated, and form hydrogen bonds with each other.

Based on an inspection of the 3EZM structure with an eye to satisfying hydrogen-
bonding patterns, the protonation states of 4 residues were changed. The His90 and
His90” were protonated at Hs;. The carboxylic acid moieties of Glu4l and Glu41’, which
directly face each other, were both protonated, adding Glu4l H,; and Glu4l’ He,. Glu4l

and Glu41’ form the only contact between the two halves of the homodimer other than
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Figure 4-7: Structure of cyanovirin domain-swapped homodimer (from PDB entry
3EZM [62]), color-coded for the rigid binding of the two subunits (AB and A’B’). All
bonds are shown except those to the atoms Glu41l H; and Glu41’ He, (the only asymmetry
in our structure), which are shown as points near the center of the picture. (Figure made
with QUANTA from Molecular Simulations, Inc. (San Diego, CA).)
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the linker region. to take advantage of hydrogen-bonding opportunities.

The two units are symmetry-related in the 3EZM structure. The only source of
assymetry was Glu4l H, and Glu4l’ H,. The HBUILD function of CHARMM placed
all but one of the symmetry-related hydrogen pairs within 0.4 A of symmetry; the one
exception, Thr83" H,;, which is far from Glu4l H,.; and Glu4l’ H,, was forced into

symmetry with Thr83 H,;.

gp41 Structure

Our second test system is part of the protease-resistant core of the HIV-1 glycoprotein
gp41, the 3 inner helices (ABC) binding to one of the outer helices (D). This rigid binding
system, pictured in Figure 4-8, is a simple model of the assumed last stage of folding, in
which the outer helices dock onto the inner helices. The coordinates are taken from the

2.0 A X-ray crystal structure 1AIK [64].

4.3.2 Limiting Large Solvation Radii

Consider the calculation of the ACE atomic solvation energy for a fairly well-buried atom,
as illustrated in Figure 4-5: the first term of Equation 4.17 is large and negative for the
free energy gain of allowing solvent to fill space right up to the atom’s van der Waals
radius. The sum in the second term adds small positive terms for the free energy cost
of removing solvent from the location of each other atom in the solute. If the atom is
fairly well-buried, the sum of these small positive terms must come out to very nearly,
but not quite, cancel the large negative first term. So it should not be surprising that in
some cases, due to the approximations of the ACE method, the sum in the second term
turns out to be larger in magnitude than the first term, in which case the atom would
be assigned a positive atomic solvation energy. This is physically impossible. Or, even
if the sum in the second term is smaller in magnitude than the first term, but too close
to it, then the atom would be assigned an atomic solvation energy near zero, and so a

very large solvation radius, much bigger than the size of the entire solute molecule. For
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Figure 4-8: Structure of the HIV-1 glycoprotein gp41 (from PDB entry 1AIK [64]), color-
coded for the rigid binding of the 3 inner helices (ABC) to one of the outer helices (D).
(Figure made with QUANTA from Molecular Simulations, Inc. (San Diego, CA).)
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our cyanovirin and gp41 test systems, Figures 4-9 and 4-10 use color-coding to show the
solvation radii calculated by ACE as in reference [7] and CHARMM version 27a2, without
our improvements. A few atoms, with too-high solvation radii, are a large source of error

for the ACE method in this case, because their interactions are essentially unscreened.

Effective System Radius From Sum of Atom Effective Volumes

In the ACE implementation of reference [7] and CHARMM version 27a2, an effective system
radius by is used as a maximum reasonable solvation radius. It is based on the sum of all

the atom effective volumes V;, by:
3
bo=(— > V)3 4.41
0= (5 V) (141)

If atom 7 has solvation energy greater than —7¢?/2by, then the solvation radius is only
allowed to increase linearly with solvation energy past that point, rather than inversely.
We call this a “tangential cutoff” at by because, as pictured in Figure 4-6, the solvation

radius vs. atomic solvation energy curve follows the tangent at by for solvation radii > by:

. Tqiz if AGself < 2/2[)
b = 2AGET 1 i ST/ 2h (4.42)
bo(2 + AG?GH%%) otherwise

This prevents infinite or negative solvation radii, but we found that it still allows solvation
radii that are unreasonably large and therefore greatly degrade accuracy (see Table 4.3).
We also tried using a flat cutoff at by, as pictured in Figure 4-6, so that the maximum

allowed solvation radius is by :

7'(1;'2 . self 2

bo otherwise

But the flat cutoff at by still allows unreasonably large solvation radii, because the system

effective radius is substantially larger than the largest actual solvation radius as calculated
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B--2-3=4-5-B-¢-8-0+1 [

Figure 4-9: Cyanovirin domain-swapped homodimer, color-coded by ACE atomic
solvation radius. The color-code key is on the left; a 10-A long ruler is at the bottom
right. These solvation radii are from ACE as in reference [7] and CHARMM version 27a2,
without our improvements. The three red atoms’ solvation radii are off the scale. (Figure
made with QUANTA from Molecular Simulations, Inc. (San Diego, CA).)
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Figure 4-10: Bound complex of ABC:D chains of gp41l, color-coded by ACE atomic
solvation radius. The color-code key is on the left; a 12-A long ruler is at the top right.
These solvation radii are from ACE as in reference [7] and CHARMM version 27a2, without
our improvements. Several red atoms, with too-high solvation radii, are a large source
of error for the ACE method. (Figure made with QUANTA from Molecular Simulations,
Inc. (San Diego, CA).)
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by FDPB. For the bound cyanovirin homodimer, for example, by = 18.7 A is much greater
than the largest actual solvation radius of a charged atom, 8.9 A determined by FDPB.
Our method, described in the next section, determines an adaptive maximum solvation

radius b, = 11.0 A.

Adaptive Maximum Solvation Radius

We implemented a procedure, which can run automatically within CHARMM’s modified
ACE routines, that determines a maximum reasonable solvation radius, b,, based on
the sorted list of uncorrected atomic solvation energies in the particular system under
consideration, AG?EH,Z' € [1, Natoms)- The algorithm skips over the negative and infinite
uncorrected solvation radii 5;*", then considers the b;*" one at a time, starting with the
largest one, b7*". The adaptive maximum solvation radius b, is chosen based on the b;*"

for which the scaled rate of decrease

_ s O =,
Bi = Nyl 15, (4.44)

where dn = 4, drops below a cutoff B.,; = 20, and stays below B, for a number of
atoms equal to 1/ fyass = 2% of the total number of atoms, and at least rpy, = 4 atoms.

Using N:t/osms like this ensures that the procedure works for arbitrary system size, since

the largest true (FDPB) solvation radius scales as N;t/o?’ms.
Repeating that in formulae, we set
ba = s2bj (4.45)

where npassed 15 the lowest integer 7 such that

B; < By for all i € [Npassed; Npassed + 71, (4.46)

97



where

r= min(Tmin; Natoms/fpass)- (447)

Having found b,, our procedure uses a flat cutoff at b,, as pictured in Figure 4-6, so this
is a maximum value for all corrected solvation radii. The parameters s; = 0.99, sy =

1.01 leave room for a small spline for uncorrected solvation radii bj*" € [by/$2,b4/51] =

[ Taw raw

i , s9/s1]. The spline ensures the continuous derivatives needed for continuous
passed ’  TMpassed

W

forces in MD applications. The spline affects b;*" just above by so the atom that

assed ’
passed (atom number npasseq) has the highest solvation radius which is not corrected. We
used the values s; = 0.99,s; = 1.01,dn = 4, Beyy, = 20.0, Tpass = 4, fpass = 50.0 . The

corrected solvation radii b; are given by:

_%f if Astelf S —%82
bi = { the connecting spline, if — %32 < AGH < —%51 (4.48)
ba if AGHM > —7Cs)
Or, in terms of the uncorrected solvation radius b;*",
b if b2 < b,/s9
bi = { the connecting spline, if b,/sy < b2¥ < b,/s; (4.49)
b, if b/ > b,/s1

Pseudo-symmetry Detection

The algorithm also detects pseudo-symmetry using the sorted list of uncorrected solvation
radii b™". In a nearly-symmetric homodimer like cyanovirin, for example, almost every
atom gets the same solvation radius as its symmetry twin, so the list will consist mostly
of pairs of values. If the system has m-fold pseudo-symmetry, the parameter dn above
should obey dn > m so that B; vs. i is relatively smooth, rather than dropping to zero

periodically because there are sets of m atoms with the same solvation radii.

Here is how our pseudo-symmetry detection algorithm works: If the b/*" have m
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praw _praw
i

values in a row that are nearly the same ( th/fms% < Bsymm = 0.5 ), then m votes
are cast for m-fold pseudo-symmetry. The number of atoms that cast votes is npassed + 7
If any one m value gets at least 40% of the votes, there may be m-fold pseudo-symmetry,

so if dn < m, then the determination of b, is started over again with dn set equal to m.

All of this was done in order to make the procedure fully automatic, so that solvation
radii will be limited to reasonable values for any system to which our modified CHARMM

ACE code is applied.

4.3.3 Salt Treatment

The approximate salt treatment of Srinivasan et al. [47] described in the previous section,
was implemented as an option in the CHARMM ACE code. For evaluating this salt
treatment, we use ¢; = 4, with and without 0.145 M ionic strength, rather than the

¢; = 1 used for the rest of our results.

4.3.4 FDPB Procedure

The structure of each bound complex is prepared for FDPB calculation by rotating it so
that it fits in the smallest possible cube. To calculate the solvation and interactions of
each group or atom, a series of 4 focussing steps were used, in which the entire bound
complex’s width was 23%, then 92%, then 184%, and finally 368% of the width of the area
represented on the FDPB grid. At 23% fill, the boundary conditions on the potential at
the edges of the grid are those in solvent fairly far from the protein complex. At 92% fill,
the grid has a slightly larger extent than the protein complex. At 184% and 368% fill,
only a portion of the protein complex is represented on the grid. For all magnifications
except the first, the boundary conditions for the potential at the edges of the grid are
taken from the potential map determined by the previous magnification. Interactions
between the group at the center of the grid, and any other atom, are determined using
the potential, at that atom’s position (from the highest-magnification grid on which it

fits), created by charging only the group at the center of the grid. These 4 magnification
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steps for each group were repeated 10 times at a series of small translations, to average
out any errors caused by the particular placement of the grid lines with respect to the

charges.

The number of grid points to use, 97, was chosen to ensure that the results are
converged with respect to the number of grid points used. This was verified by requiring
convergence of the group binding contribution terms which converged most slowly
(changed the most), when calculated without overfocussing. Using 97 grid points at the
final 368% fill yields a final grid spacing of 0.16 A /grid for the cyanovirin homodimer,
and 0.14 A /grid for the gp41 ABC:D complex.

Convergence of the free energy terms with respect to number of iterations of the
FDPB potential relaxation was confirmed by verifying that a group pair interaction got
the same value when calculated in either of two ways: (1) the free energy of group 2’s
charges in the potential created by group 1’s charges, or (2) the free energy of group 1’s

charges in the potential created by group 2’s charges.

For each group (side chain, amino, or carbonyl), the FDPB calculations just described
(10 translations, 4 magnifications) are done twice: once with that group charged in the
dielectric boundary of the bound complex, and once with that group charged in the

dielectric boundary of its unbound protein.

All FDPB calculations were repeated for each binding system, using ¢, = 4 and
e; = 80, with and without 0.145 M ionic strength, to evaluate the treatment of salt

effects.

4.3.5 Timing

For cyanovirin dimer binding, with 262 groups with charged atoms, the 262 x 2 FDPB
calculations needed for a binding free energy component analysis by group take about
100 minutes each on a 400 MHz Pentium II processor, for a total of 36.4 processor-days.
By comparison, to do a binding free energy component analysis by group or by atom

takes ACE less than 1 processor-minute!
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The routine which we added to CHARMM to calculate b, adds an insignificant amount
of time to an ACE free energy calculation. We also found it helpful to make unrelated
improvements to the CHARMM ACE code to reduce memory usage by 2/3 at no cost in
speed. We also added an optional flag which reduces memory usage by an additional

2/3, for a total reduction of 8/9, if forces are not required.

4.4 Results and Discussion

4.4.1 Adaptive Maximum Solvation Radius Results

Figure 4-11 shows ACE vs. FDPB atomic solvation radii for all charged atoms in the
cyanovirin homodimer. The ACE solvation radii were calculated with a flat cutoff at
b, = 11.0 A, which affects 3 atoms, Gln41 HE1 on the A subunit (appearing on the y = b,
dotted line, to the left, in Figure 4-11), and Gln50 HE21 on both the A and B subunits
(appearing on the y = b, dotted line, to the right, on top of each other). Table 4.2
shows the FDPB solvation radii for these 3 atoms, and what their ACE solvation radii

are limited to using a tangential cutoff at by, a flat cutoff at by, or a flat cutoff at b,.

Table 4.2: Atomic Solvation Radii (in A) for 3 Atoms of Cyanovirin Homodimer. These
are the atoms with which ACE has the most trouble. For this system, by = 18.66585
and b, = 11.01153. The effect of 3 different cutoffs on atomic solvation radii are shown.
These are the only atoms affected by any of the cutoffs, but the choice of cutoff still has
a big effect on the overall error of ACE, because atoms with very large solvation radii
have incorrectly strong interactions with all other atoms.

atom FDPB ACE

uncorrected tangent at by flat at by flat at b,
GIn50 H,y; | 5.68868 | -27.88325 T 52.27476 18.66585 11.01153
GIn50’ Hy; | 5.68649 | -31.73560 T 44.89072 18.66585 11.01153
Glu4l H, | 3.93435 | -81.09312 T 43.17975 18.66585 11.01153

1 ACE gets nonphysical positive values for the atomic solvation energies, and
so a nonphysical negative value for the solvation radii.
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Figure 4-11: Atomic Solvation Radii for all charged atoms of the cyanovirin homodimer
(plotted as red squares), and for one rigidly unbound subunit (plotted as blue stars).
The ACE radii were subject to a flat cutoff at b,. This cutoff only affects three atoms,
which appear as 2 points on the dotted line at y = b, = 11.01153.
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Figures 4-12 and 4-13 illustrate this point with histograms, for 16 protein systems, of
all atomic solvation radii b; calculated with a flat cutoff at by. If a tangential cutoff at
by were used instead, the atoms in the right-most bin would have even larger solvation
radii. The thin vertical line on each plot shows the location of the adaptive maximum

solvation radius b, found by our procedure for each system.

Table 4.3 shows the reduction of errors in terms of the binding free energy by using
more stringent cutoffs on atomic solvation radii. Reference [7] and CHARMM version 27a2
use a tangential cutoff at by . Using a flat cutoff (with a small connecting spline) at by,
so that by is the maximum allowed solvation radius, dramatically reduces the root mean
squared deviation (rmsd) errors of the solvation radii and the group interaction binding
terms, and reduces the errors somewhat on all terms. Using a flat cutoff at our adaptive
maximum solvation radius b, further reduces the rmsd error of the solvation radii, and

slightly reduces the errors of all the energy terms.

4.4.2 Salt Treatment Results

The Srinivasan et al. [47] salt treatment does well with their recommended value of the
scaling parameter £k = 0.73 . It predicts the salt effect on group binding contribution
terms with correlation coefficient r = 0.95 (coefficient of determination r* = 0.91), as
shown in Figure 4-14. The size of this salt effect is near zero for most groups, but ranges
up to about +0.4 kcal mol™" (with ¢; = 4) for some charged groups. The contribution is
almost all from “direct” interaction terms (i.e. for group pairs for which the two groups

are on opposite binding partners).

4.4.3 Pseudo-symmetry Detection Results

Our algorithm to automatically detect pseudo-symmetry using the ACE atomic solvation
energies correctly determines the pseudo-symmetry for all test cases (14 proteins and

protein complexes without pseudo-symmetry, 2 homodimers, 1 homotrimer, and 1
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Figure 4-12: Histograms of ACE Atomic Solvation Radii for 8 Test Systems. A vertical

line is shown at the adaptive maximum solvation radius b, determined by our method.

The number of atoms affected by a flat cutoff at b, is shown in large type at the top right
of each plot. Both charged and uncharged atoms are included.
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Figure 4-13: Histograms of ACE Atomic Solvation Radii for 8 More Test Systems. A
vertical line is shown at the adaptive maximum solvation radius b, determined by our
method. The number of atoms affected by a flat cutoff at b, is shown in large type at
the top right of each plot. Both charged and uncharged atoms are included.
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Table 4.3: Errors in binding free energy components for cyanovirin dimer binding. Error
terms are for ACE, with the parameters given in reference [7] and with the given cutoff
for the atomic solvation radii, vs. FDPB. Both ACE and FDPB used ¢; =1, ¢, = 80, no

salt.

rmsd errors of:

solv. radii | charged atom pair int.
(A) (kcal mol™1)
cutoff b A@GPind int
tangent at b 2.070 0.074
flat at b 1.127 0.062
flat at b, 0.991 0.061
rmsd errors of:
group pair binding terms:
(kcal mol 1)
cutoff AGbind int AGbind solv AGbind cont AGbind mut
tangent at by 1.70 0.91 1.16 1.18
flat at b 0.93 0.89 0.91 1.14
flat at b, 0.85 0.89 0.92 1.12
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Figure 4-14: Approximate Salt Treatment: The effect of 0.145 M ionic concentration on
the binding contribution terms of groups (side chain, amino, carbonyl) of the cyanovirin
swapped-domain dimer. The ACE treatment used a flat cutoff at b,. Both ACE and
FDPB used dielectric constants ¢ = 4, ¢, = 80. Charged groups are shown as red
diamonds; polar groups are shown as green boxes; hydrophobic groups are shown as blue
diamonds (and they are all at the origin, of course).
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homosexamer), with no fine-tuning of parameters needed. Details are shown in Table 4.4.

Table 4.4: Details of pseudo-symmetry detection algorithm. Atoms at the high end of the
sorted list of uncorrected solvation radii vote for m-fold pseudo-symmetry if m solvation
radii in a row are similar.

atoms votes votes votes votes cert- symmetry m
system, segments voting m=2 m=3 m=4 m=06 ainty predict actual
1R69 14 2 (0.14)
1UTG 30 22 4 0.73 2 22
1UTG, A 14 2 (0.14)

Arc 19 2 (0.11)
Arc, A 8 (0.00)
Arc, B 8 (0.00)
1DLH 104 22 (0.21)
1DLH, AB 88 10 6 (0.11)
1DLH, C 3 (0.00)
1MBD 36 4 (0.11)
1MBD, A 15 2 (0.13)
1MBD, B 15 (0.00)
cyano 37 24 3 6 0.65 2 2b
cyano, A 18 4 (0.22)
gp4l 37 4 (0.11)
gp4l, ABC 28 2 15 0.54 3 32
gp4l, D 6 2 (0.33)
gp4l, ABCABC 56 12 4 30 0.54 6 6°

2 exact symmetry, from the crystal structure.
b nearly exact symmetry, except for 2 hydrogen atoms.
¢ 2 separated copies of the exactly symmetric trimer.

4.5 Conclusion

The ACE analytical approximation of the electrostatic solvation free energy is much
faster than finite-difference solution of the Poisson-Boltzmann equation; for example, a
component analysis of the binding free energy takes less than one minute of processor time
for ACE, versus 5 weeks for converged FDPB results. Atomic solvation radii predicted
by ACE correlate very well (r > 0.87) with FDPB results. However, we found that

the ACE method’s largest errors were typically caused by a few atoms whose atomic

108



solvation radii are predicted to be incorrectly high. We found that limiting the solvation
radii of these atoms can greatly reduce errors in the group terms of the binding energy.
Using a flat cutoff rather than a tangential cutoff on the solvation radii reduces the
rmsd error for group interaction terms of the binding free energy from 1.70 to 0.93 kcal
mol~! for the cyanovirin homodimer binding system. To further limit the solvation
radii, we developed an automatic procedure that adaptively determines a maximum
reasonable atomic solvation radius for each molecular system, based on the distribution
of uncorrected solvation radii. We implemented the procedure as an option in the ACE
routine of the molecular modeling package CHARMM. For the cyanovirin homodimer
binding system, this further reduced errors in the solvation radii and the group binding
interaction terms. To ensure that our procedure performs properly for symmetric or
pseudo-symmetric molecular systems, a fully automated pseudo-symmetry detection
algorithm was also developed and implemented. The algorithm correctly detected the
presence or absence of pseudo-symmetry for all 18 test cases. We also incorporated the
approximate treatment of salt effects proposed by Srinivasan et al. into ACE. With
no changes or optimization, it predicts the salt effect on group binding contribution
terms with correlation r = 0.95. We have made the ACE method more accurate and
more flexible. These improvements, combined with the method’s speed, are especially
valuable when large numbers of electrostatic energy evaluations must be performed, such

as for minimization, multiple site titration, or ligand design.
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Chapter 5

Optimization of Analytical
Continuum Electrostatics

Parameters

5.1 Introduction

Development of analytical approximate electrostatic methods such as the Analytical
Continuum Electrostatics (ACE) method of Schaefer and Karplus [6] has focused to date
on predicting solvation free energies — first for small molecules, then for large molecules.
Overall solvation free energy, an aggregate quantity that is important in electrostatics, is
the most difficult part of the electrostatic free energy to calculate; however, validation of
the methods based only on solvation free energies does not justify their use for prediction
of other energy terms [65]. Binding affinity and folding stability, for example, are two
free energy terms which should be of paramount interest in ligand design. Furthermore,
in ligand design the actual value of the binding free energy is not needed; only the binding
free energy differences AAGP"? between possible ligands are of interest. For the folding
free energy as well, if an experimental folding free energy is known for one related ligand,

then only folding free energy differences AAG™4 are needed. Closely related to the
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AAGP™ s the breakdown of AGP™ into its components, such as the contribution of

each group of atoms to the binding.

The ACE method has a number of free parameters; Schaefer et al. optimized them
to minimize fluctuations in the solute density [55], and validated their use with solvation
energies [6]. In this chapter, we develop and apply a novel method to optimize the
ACE parameters to minimize any of a wide range of ACE vs. finite difference Poisson-
Boltzmann (FDPB) error functions. The terms of interest to us are the effect on AGPd
of the interaction and solvation terms of all atoms or groups of atoms. By minimizing
the error on this large set of small terms, our optimization should have an incentive to
get all the details right; whereas optimizing only the total AG®™?, for example, could

allow compensating errors in the components that add up to the correct total.

The parameters are optimized using data from a “training” system. (By “system”, we
mean a pair of biomolecular binding partners.) Then the parameters can be applied to a
“testing” system. In all applications of optimization, there is a danger of “over-training”.
Over-training means that the performance on the training system is improved, but not in
a way that improves the performance on other systems. In our case, for example, much
of the error of ACE vs. FDPB comes from a handful of atoms which ACE incorrectly
determines to be very desolvated. Suppose that a certain hydrogen atom has this problem,
and that there happens to be a nitrogen atom of type N near it. When we optimize the
ACE parameters, the algorithm could drop the effective atom volume parameter V (N)
nearly to zero only so that this one particular N atom can reduce that one hydrogen
atom’s desolvation, even though the change to V(N) degrades the accuracy of many
other atoms’ energy terms by small amounts. What we want instead is for the parameter
changes to reduce errors on the training system in ways that would also reduce errors on

any other protein.

We found no general method for finding a parameter set that will do well on all
protein binding systems. When a parameter set which was optimized to reduce errors on
one of our 4 protein-protein binding systems was used on the other systems, the error

sometimes improved and sometimes worsened. With a more closely related set of systems
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— 8 zinc finger variants — parameters optimized on one system usually performed better
on the other systems as well. We conclude that optimization of the ACE parameters can

significantly reduce errors when ACE is applied to large families of related systems.

5.2 Methods

5.2.1 Biomolecular Complexes Used for Testing
Cyanovirin-N Domain-Swapped Homodimer

See Section 4.3.1 of Chapter 4.

gp41 Protease-resistant Core

See Section 4.3.1 of Chapter 4.

Arc Repressor Dimer

We modeled the rigid binding of the arc repressor dimer from bacteriophage P22.
Coordinates for the A and B chains were takes from the 2.6 A-resolution crystal structure
(PDB entry 1PAR) [58], which includes residues 6 to 53 on the A chain, and 6 to 46 on the
B chain. Using the PARAM19 extended-atom parameter set, polar hydrogens were built

onto the crystal structure using the HBUILD facility [43] in the CHARMM package [11].

Bacillus subtilis Chorismate Mutase Homotrimer

The isomerase chorismate mutase from the organism Bacillus subtilis is a homotrimer
with 127 residues per monomer. We modeled the last step of trimer formation by rigidly
binding one unit to the other two. The structure is shown in Figure 5-1. Coordinates
of the crystallographic subunit consisting of chains A, B, and C were taken from from

the 1.9 A-resolution crystal structure (PDB entry 2CHS) of the trimer [66]. The crystal
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structure is missing density for the first one and the last 8 to 12 residues of each chain,
so the N-termini of the available chains were acetylated, and the C-termini were blocked
with N-methyl groups. Using the PARAM19 extended-atom parameter set, the acetyl
groups on the N-termini were minimized. Polar hydrogens were built onto the crystal
structure using the HBUILD facility [43] in the CHARMM package [11]. Based on visual
inspection of all histidine, aspartate, and glutamate residues with an eye to making
favorable hydrogen bonding patterns, we chose to doubly protonate all 9 histidines, but

leave all aspartates and glutamates deprotonated.

Zinc Finger Protein/DNA Complexes

A family of proteins called zinc fingers bind selectively to DNA sequences. We use 8 such
crystal structures, shown in Figure 5-2: variants of the Zif268 protein complexed with
DNA. The 8 differ from one another at three DNA base pairs, and at several protein
residues near those base pairs. For each structure, the protein is a single chain that
consists of three homologous regions (“fingers”) [67]. Each of the three finger regions

contains a zinc ion coordinated by two histidine and two cysteine residues.

Crystal structures were obtained from PDB entries 1AAY, 1A1F, 1A1G, 1A1H, 1A1I,
1A1J, 1A1K, 1A1L [67, 68]. (Do not confuse the zinc finger structure 1A1K with the
gp41 structure 1AIK.) For several atoms which had two possible positions in the crystal
structure, we selected the NH2B position in Argl3, OG1B in Thr21, NE2B in Gln34,
and CD1B in Leu48. (The selection was arbitrary since neither the X-ray data itself
nor a visual inspection show a preference for one position over the other.) Using the
PARAM19 extended-atom parameter set, polar hydrogens were built onto the crystal
structure using the HBUILD facility [43] in the CHARMM package [11]. Each zinc ion is
coordinated by two histidine and two cysteine residues. Based on a visual inspection, both
histidines coordinating every zinc ion were chosen to be singly protonated at Ng;. All of
the zinc-coordinating cysteine residues must be deprotonated. A restrained electrostatic

potential (RESP) fit to an ab initio quantum mechanical electron distribution was used to
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Figure 5-1: Chorismate mutase homotrimer from Bacillus subtilis, shown as a secordary
structure cartoon, and colored by chain.
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Figure 5-2: Aligned structures of the 8 zinc finger protein/DNA complexes 1AAY, 1A1F,
1A1G, 1A1H, 1A1I, 1A1J, 1A1K, 1A1L, each a variants of Zif268 complexed with DNA.
The DNA is shown in cartoon form going from the top right to the bottom left of the
picture. The protein is also shown in cartoon form; and the zinc ions are shown as van der
Waals spheres. The protein and zinc are colored red, green, and blue for finger regions
1, 2, and 3; the DNA regions are correspondingly colored pink, light green, and steel
blue. The three DNA-contacting protein residues which differ among the 8 structures
are shown as licorice near the top of the picture.
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determine partial atomic charge parameters for a zinc ion coordinated by two histidines
and two cysteines [69]. For these atoms, the RESP partial atomic charges are used
rather than the PARAM19 partial atomic charges: for the 2 cysteines, +0.154 on Cgz and
-0.858 on S,; for the 2 histidines, +0.144 on Cg, -0.055 on C,, -0.213 on N4, +0.319
on Hgi, +0.095 on Cso, -0.415 on N, and +0.249 on C,.; and +1.160 on the zinc ion.
All aspartates and glutamates in the structures were visually inspected with an eye to
satisfying hydrogen bonding patterns, and none of them needed to be protonated. For
the only non-zinc-coordinating histidine, His47, we chose the singly protonated state with
the hydrogen on the N, atom in all 8 structures. In one structure, 1A1G, we chose to
flip the His47 ring over. Finally, the structures were all rotated to fit the 1AAY structure

in the smallest possible cube, in order to make FDPB calculations more efficient.

In Section 4.2.5 of Chapter 4, we described how we conceptually divide proteins
into amino, carbonyl, and side chain groups in order to analyze the components of the
binding free energy. DNA segments are similarly divided into base, ribose, and phosphate
groups. In order that each of these three groups have a neutral net charge, the C| atom
is conceptually divided so that 40.2 of its charge is in the ribose group, and 40.06 of its

charge is in the base group.

In Table 4.1 of Chapter 4, we gave the ACE effective atom volumes for protein atom
types that we use as our “default parameters” and as the starting point of the parameter
optimization runs. We extended these volumes to the PARAM19 DNA atom types by
choosing the most similar protein atom type where possible: H2, HO, and HZ were set
to 0.310 (all volumes are in A%) like H; 02, OSZ, and OST were set to 16.404 like OC;
P was set to 15.196 like S; C2 was set to 35.356 like CH2E; C3 was set to 40.947 like
CH3E; CA, CB, CS, and CZ were set to 12.403 like C; CE and CF were set to 18.583
like CR1E; CH was set to 12.257 like CH1E; N2 was set to 18.677 like NH2; NA was set
to 1.708 like NH1; NB and NC were set to 16.611 like NR; NS was set to 0.0 like N; OH
was set to 21.427 like OH1; OZ was set to 14.375 like O; and ZN (zinc ion) was set to
9.854 based on its 1.33 A Born radius.

Table 5.1 shows the similarity of the 3 “finger” regions of the zinc finger structure
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with PDB code 1AAY. Table 5.2 shows a sequence alignment of the target DNA and
finger 1 of the protein for the 8 zinc finger structures with PDB codes 1AAY, 1A1F,
1A1G, 1A1H, 1A1I, 1A1J, 1A1K, 1A1L. They differ at three DNA positions, at three
residues in finger 1 of the protein, and some of them lack a final arginine residue at the

end of finger 3.

Table 5.1: Alignment of the three “finger” regions of the zinc finger structure with PDB
code 1AAY. The three regions comprise one protein segment, its sequence is simply the
three lines given here read in order. Blank spaces are included only to align the sequences.
The secondary structure is noted below: two arrows for short beta strands and “==="
for alpha helices.

RPYACPVESCDRRFSRSDELTRHIRITHTGQK finger 1
PFQCRI CMRNFSRSDHLTTHIRTHTGEK finger 2
PFACDI CGRKFARSDERKRHTKIHLR finger 3

--> --> ============ secondary structure

Table 5.2: Alignment of the DNA and the “finger 1” protein region for zinc finger
structures 1AAY, 1A1F, 1A1G, 1A1H, 1A1l, 1A1J, 1A1K, 1A1L. The differing locations
are marked with stars below. The DNA sequence is divided into amino acid codons.

Name DNA Protein Finger 1

1AAY: A GCG TGG GCGT RPYACPVESCDRRFSRSDELTRHIRIHTGQK
1A1F: A GCG TGG GAC C RPYACPVESCDRRFSDSSNLTRHIRIHTGQK
1A1G: A GCG TGG GCG T RPYACPVESCDRRFSDSSNLTRHIRTHTGQK
1A1H: A GCG TGG GCA C RPYACPVESCDRRFSQSGSLTRHIRITHTGQK
1A1L A GCG TGG GCA C RPYACPVESCDRRFSRSADLTRHIRIHTGQK
1A1J: A GCG TGG GCGT RPYACPVESCDRRFSRSADLTRHIRIHTGQK
1A1K: A GCG TGG GAC C RPYACPVESCDRRFSRSADLTRHIRIHTGQK
1A1L: A GCG TGG GCA C RPYACPVESCDRRFSRSDELTRHIRIHTGQK

Xk ok Xk ok

5.2.2 Minimizing Group Binding Term Errors

The choice of an error function to minimize depends on the uses to which one plans

to put the ACE method after optimizing its parameters. Here, we choose to optimize
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the parameters for use in ligand design or component analysis of biomolecular binding
systems. We seek to minimize errors in all groups’ terms of the binding free energy,
including the group-pair interactions (I, for short), the total interactions of each group
(TT), group solvation terms (S), group contribution terms (C), and group mutation terms
(M). The errors over many groups could be combined by taking the root mean squared
deviation (rmsd). We also use the “rm4d,” root mean fourth-power deviation, in some of
our energy functions. The rm4d error between two data sets {z;} and {z}}, which have

a one-to-one correspondence between the N members of each, is defined as:

~ 1/4
rm4d({z;}, {z;}) = (% Z |z; — x;|4> (5.1)

We used the rm4d function because it assigns more importance to a few large errors
than to widespread small errors. For contrast, however, we also used the rmsd and
the “rm1d” functions for some of our results. The rm1d could also be called the mean

absolute deviation:

mmld({z}, {2}}) = > i = (5.2

We took the rmsd, rm1ld, and rm4d of the S, TI, C, and M over all groups except
those with no charged atoms. We took the rmsd, rm1d, and rm4d of the I term over all
group pairs whose FDPB interaction I has magnitude > 0.005 kcal mol~!. Finally, in
order to optimize rm4d(I), rm4d(S), rm4d(TI), rm4d(C), and rm4d(M) simultaneously,
we can let our optimization function be their product or their weighted sum. We use the

names “rm1d5”, “rmsd5”, and “rm4d5” for these products of the 5 error functions:

rm1d5 = rm1d(I) - rm1d(S) - rm1d(TT) - rm1d(C) - rm1d(M) (5.3)
rmsd5 = rmsd(I) - rmsd(S) - rmsd(TT) - rmsd(C) - rmsd (M) (5.4)
rm4d5 = rm4d(I) - rm4d(S) - rm4d(TI) - rm4d(C) - rm4d(M) (5.5)

Using a product rather than a weighted sum has the advantage of fairly weighting each of
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the terms. For example, when we optimize the ACE parameters to minimize the rm4d5
error function, either a 1% improvement in rm4d(I) or a 1% improvement in rm4d(M)
would have the same effect on rm4d5 at any point in the optimization, regardless of how

much rm4d(I) and rm4d (M) had decreased in the course of the optimization.

5.2.3 Finite Difference Poisson-Boltzmann Procedure

The FDPB procedure to calculate group terms of the binding free energy is described
in Section 4.3.4 of Chapter 4. Using 97 grid points at a final magnification of 368%
yields a final grid spacing of 0.16 A/grid for the cyanovirin homodimer, 0.14 A/grid
for the gp41l ABC:D complex, 0.10 A/grid for the Arc dimer, and 0.15 A /grid for the
chorismate mutase trimer. For the 8 zinc finger structures, we used 65 grid points and
focussing steps with 23%, 92%, and 368% magnification, yielding a final grid spacing of
0.20 A /grid. Unless otherwise noted, FDPB and ACE results use zero ionic concentration

and ¢ = 4.

5.2.4 Optimization Procedure

We implemented a procedure to search a many-dimensional parameter space for a
parameter set that minimizes any desired error function. A simple example of an error
function would be the root mean squared deviation (rmsd), ACE vs. FDPB, for the
contribution terms of all atomic groups to the binding free energy. The parameter
optimization can be thought of as a search for the minimum height of a surface, where
the height is the objective function, and rather than 2 horizontal axes, there are many

more “horizontal” axes, one per parameter.

Minimization of a nonlinear function with a many-dimensional parameter space is an
inherently difficult problem. We implemented the downhill simplex method of Nelder and
Mead [70] with simulated annealing added as by Press et al. in Numerical Recipes [71].
The N-dimensional parameter space (in this work, N = 18 usually) is searched by a

simplex, which is a collection of N + 1 points. The method attempts to move one
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simplex point at a time, always the highest point (i.e., the one with the worst function
value), by reflecting it through the centroid of the other N points. If this proposed new
location is lower than the original highest point, the move is accepted. If the new location
is lower than any of the other simplex points, then an “expansion” move, twice as far
in the same direction, is attempted. If the original reflection gives a value that is still
higher than all the other simplex points, a “contraction” is attempted, trying a point
midway between the highest point and the centroid of the other simplex points. If this
contraction still gives a point higher than all the others, the entire simplex is shrunk
by one half, in the direction of its lowest (best) point. This procedure is vastly better
than striking out in random directions, because the simplex changes its shape in a way
that makes downhill moves more likely. The expansions stretch the simplex out in the
downhill direction, and the contractions shrink the simplex into narrow valleys. A few
such moves make the simplex longer along the uphill-downhill direction. This, in turn,

makes it even more likely that proposed moves will be downhill.

Simulated annealing is added to the downhill simplex method in the usual way, using a
temperature parameter 7' (with the same units as the function to be minimized) which is
started high and lowered according to an annealing schedule. A variant of the Metropolis
algorithm [72] is used: whenever comparing two points’ heights, T'(—log(random))
is added to the current point’s height, and T'(—log(random)) is subtracted from the
proposed new point’s height, where “random” is a new random number between 0 and
1 each time it is used. Thus there is an incentive to try new points if they are higher
than the current highest point by no more than about 7. As the temperature is lowered,
the range of heights of the simplex points decreases, and so the size of the simplex in the

parameter space also decreases.

The ACE parameters which we optimize are o and the effective atom volumes V. For
protein systems, there are 17 unique atom types and therefore 17 effective atom volume
parameters to minimize. For the zinc finger structures, which include DNA and zinc ions,

there are 41 unique atom types. We restrict the parameters to non-negative values.
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5.3 Results and Discussion

5.3.1 Low-Temperature Simulated Annealing Chosen

Ideally, simulated annealing should start at a temperature higher than the largest terrain
features, and cool very slowly. We found that it would take unpractical amounts of
time to do such a rigorous search for the global optimum. In practice, low-temperature
optimizations that take hours find lower minima than high-temperature optimizations
that take many days. So there are better local optima in the vicinity of the default
parameters than can be found in the wider parameter space by many searches in many

days of computer time.

All annealing schedules that we used lower the temperature 7' by the factor f.oo
every 100 steps. (Every attempted move of the simplex is one step.) Figures 5-3 and
5-4 show the progress of multiple optimization runs by plotting the value found for
the objective function rm4d3 = rm4d(S) - rm4d(M) - rm4d(I) (initially rm4d3;,;;) as the
temperature drops throughout the run. The runs which started at an initial temperature
of Tinit = 1000 X rm4d3;p;; used feoor = 0.95 and took 3.3 days for 24 x 102 steps. The runs
which started at Tj,;; = 100 x rm4d3;,;; used feoo values of 0.98, 0.95, and 0.9 (shown
as red, light purple, and dark purple in Figure 5-3) and took 6.7, 2.8, and 1.4 days for
49 x 103, 20 x 103, and 10 x 10® steps, respectively. The runs which started at lower

temperatures used f.oo1 = 0.9 and took less than a day.

We conclude that running several optimizations with starting temperatures 1/100th
the size of the initial value of the optimization function can quickly reach better optima
than either higher-temperature or zero-temperature optimizations. So although rigorous
global optimization is not computationally feasible, local optima exist that are most easily
found by a rather quick annealing schedule. Therefore one can afford to do multiple
optimization runs differing only in their random seeds in order to find a set of local
optima. This, in turn, allows one to statistically characterize the effect of chance on the

optimization.
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Figure 5-3: History of the error function through the course of each optimization. Each
line follows one optimization run from right to left as the temperature drops according
to the simulated annealing schedule. The vertical axis is the lowest value of the objective
function rm4d3 = rm4d(S) - rm4d(M) - rm4d(I) at any of the simplex’s points. The
temperature is shown on a logarithmic scale, relative to the objective function value
before optimization, rm4d3;,;;. Optimization runs were begun at initial temperatures
Tinit of 0.01, 0.1, 1, 100, and 1000 times rm4d3;,;;. The short dotted line at the lower
left shows the value of rm4d3 found by a zero-temperature optimization. The higher-
temperature runs search more widely in parameter space, but none of them ever find
values of the objective function as low as those found by all of the low-temperature runs.
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Figure 5-4: Histories of the error function through the course of an optimization. For the
optimization runs begun at Tj,;; of 0.01, 0.1, and 1 times rm4d3;,;;, this is a detail view
of the bottom left corner of Figure 5-3; see the explanation in that figure’s caption. The
short dotted line at the lower left shows the value of rm4d5 found by a zero-temperature
optimization. About half of the low-temperature optimization runs find lower values
than the zero-temperature run.
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We decided on the following simulated annealing schedule for all of the following
results: The initial temperature Ti,;; was set to 0.01 of the value of the error function
at the starting position (the “default” parameters). Every 100 attempted moves, the
temperature was lowered by a factor of fioo = 0.9 . One such ACE parameter

optimization takes about 7 processor-hours on a 400MHz Pentium II processor.

5.3.2 Parameters Optimized for Accurate Atomic Solvation

Energies

We optimized parameters to minimize the atomic solvation radius error rmsd(R) for the
bound cyanovirin dimer. The results are shown in Table 5.3: rmsd(R) and the atomic
solvation energy error rmsd(E) are reduced, but the group binding free energy terms
rmsd(I), rmsd(TI), and rmsd(M) are increased. The error function rmsd5 increases by

+52%, and rm4d5 increases by +396%.

We also optimized parameters to minimize rmsd(E). The results are shown in
Table 5.4: again, rmsd(R) and rmsd(E) are reduced, but the group binding free energy
terms rmsd(I), rmsd(TT), rmsd(M) are increased. The error function rmsd5 increases by

+55%, and rm4d5 increases by +233%.

We conclude that optimizing parameters for more accurate atomic solvation energies
does not give more accurate binding free energy terms; in fact, it makes them dramatically
less accurate. So, to use ACE to predict binding terms, it is not sufficient to use
parameters chosen to give accurate atomic solvation energies. Recall that ACE can
be conceptually divided into the prediction of atomic solvation radii, and the use of these
solvation radii by the Generalized Born equation to predict screened atomic interactions.
The finding that more accurate solvation radii do not necessarily lead to more accurate
interaction terms of the binding free energy demonstrates a weakness of the Generalized
Born equation. Nevertheless, in order to improve the accuracy of the binding free energy
terms, we optimize the ACE parameters. Such optimized parameters will yield ACE

solvation radii which compensate for the inaccuracy of the Generalized Born equation in
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order to produce more accurate binding free energy terms. This is acceptable because the
solvation radii are only an intermediate result used to calculate the binding free energy

terms.

Table 5.3: Errors before and after optimizing ACE parameters to minimize the error
function rmsd(R), the rmsd of the atomic solvation radii in the bound cyanovirin dimer,
with ¢ = 1. The “with optimized parameters” data are averaged over 8 separate
parameter sets optimized in the same way except for different random number seeds.
The “1 standard deviation range” is over these 8 data points. The units are kcal mol~!
unless otherwise noted.

bound state error function: | rmsd(R) rmsd(E)

w/ default params : | 0.99 A 2.93
w/ optimized params : 0.65 A 2.06
fractional change: -35% -30%

1 standard dev. range: +2% +2%

binding error function: | rmsd(I) rmsd(TI) rmsd(S) rmsd(C) rmsd(M)

w/ default params: 0.06 0.85 0.89 0.92 1.12
w/ optimized params: 0.08 1.12 0.82 0.96 1.33
fractional change: +30% +31% -7% +4%  +18%

1 standard dev. range: +9% +12% +6% +7% +7%

ACE, using the default parameters, systematically underestimates atomic solvation
energies by about 15% for the cyanovirin dimer, as shown in Figure 5-5. We therefore
added an optional new parameter, 3, to scale all atomic solvation energies before they
are used to calculate the interactions. Optimizing only the parameter 8 to minimize
rmsd(E) for the bound cyanovirin dimer results in a value of § = 1.2 (with standard
deviation 0.01 over 8 optimization runs). With the object of predicting group binding
terms, however, optimizing 3 along with the other 18 parameters results in an optimized
value of 5 = 1.0. Since this value means that the solvation energies are not scaled up, we
conclude that the parameter 3 is superfluous for prediction of group binding free energy

terms, and therefore its use is not warranted.
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Figure 5-5: Atomic solvation energies (kcal mol '), ACE with default parameters vs.
FDPB with ¢ = 1, for all atoms in cyanovirin dimer (shown as blue triangles), and all
atoms in the rigidly unbound cyanovirin monomers (shown as red diamonds). Least-
square fit lines and correlation coefficients are shown for the bound and unbound data
separately.
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Table 5.4: Errors before and after optimizing ACE parameters to minimize the error
function rmsd(E), the rmsd of the atomic solvation energies in the bound cyanovirin
dimer, with ¢, = 1. The “with optimized parameters” data are averaged over 8 separate
parameter sets optimized in the same way except for different random number seeds.
The “1 standard deviation range” is over these 8 data points. The units are kcal mol~!
unless otherwise noted.

bound state error function: | rmsd(R) rmsd(E)

w/ default params : | 0.99 A 2.93
w/ optimized params : 0.88 A 1.73
fractional change: -12% -41%

1 standard dev. range: +7% +3%

binding error function: | rmsd(I) rmsd(TI) rmsd(S) rmsd(C) rmsd(M)

w/ default params: 0.06 0.85 0.89 0.92 1.12
w/ optimized params: 0.08 1.14 0.75 0.86 1.25
fractional change: +32% +34%  -16% % +11%

1 standard dev. range: +7% +15% +7% +7%  £10%

5.3.3 Minimizing Only a Contribution or Mutation Term

Parameters optimized to minimize the group contribution or mutation binding free energy
error terms rm4d(C) or rm4d(M) on the cyanovirin or gp41l binding systems do so by
reducing the solvation error term rm4d(S) but increasing the interaction error terms
rm4d(I) and rm4d(TI). The results for one of those 4 combinations, the minimization
of rm4d(C) on the cyanovirin binding system, are shown in Table 5.5. In the following
sections, we minimize the error functions rm4d5, rm1d5, and rmsd5, which we will show
has the advantage of reducing both the solvation and interaction error terms rm4d(S),

rm4d(I), and rm4d(TI).

5.3.4 Error Reduction for Training System

Optimizing the error function rm4d5 on the cyanovirin system achieves a reduction of
-88%, as shown in Table 5.6. Recall from Equation 5.5 that rm4d5 is the product of 5

rm4d errors of group binding terms: group pair interaction I, group solvation S, group
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total interaction TI, group contribution C, group mutation M.

Optimizing function rm4d5 on the gp41 system acheives a similar reduction of 92% by

reducing each of rm4d(I), rm4d(S), rm4d(TI), rm4d(C), and rm4d(M) by at least 22%.

5.3.5 Training and Testing Between Cyanovirin and Gp4l

Systems

Optimizing the error function rm4d5 by training on gp4l, then using the parameters
on cyanovirin (with ¢ = 1), achieves a reduction of -57% in rm4d5 versus default
parameters on cyanovirin, as detailed in Table 5.7. Optimizing function rm4d5 by training
on cyanovirin, then using the parameters on gp41, achieves a lesser reduction of -25%
+32% in rm4d5, mostly by reducing contribution and mutation term errors rm4d(C) and
rm4d(M). This demonstrates that it is possible for a parameter set trained on one system

to reduce errors on an unrelated system.

5.3.6 Training and Testing Among Four Unrelated Protein

Systems

For the 4 protein-protein binding systems — cyanovirin, gp41l, Arc, and chorismate
mutase — we evaluated whether ACE parameters optimized on one such system will
reduce errors when applied to another system. We used each of the 4 systems as a
training system, doing multiple optimization runs, identical except for the random seeds,
to get a family of parameter sets. Fach parameter set was then used on the other 3
protein systems. Each such attempt to optimize a parameter set on a “training” system
and transfer it to a different “testing” system could be judged a success if it results in
a lower error than the default parameters applied to the testing system. In Figure 5-6,
results for all 4 x 4 combinations of training and testing system are shown. The errors are

all shown as a fraction relative to the error for the default parameter set applied to the

129



Table 5.5: Errors before and after optimizing ACE parameters to minimize the error
function rm4d(C), the rm4d of the group contributions to the binding free energy of the
cyanovirin dimer, with ¢ = 1. The “with optimized parameters” data are averaged over
8 separate parameter sets optimized in the same way except for different random number
seeds. The “1 standard deviation range” is over these 8 data points. All error functions
have units of kcal mol™!.

error function: | rm4d(I) rm4d(TI) rm4d(S) rm4d(C) rm4d(M)

w/ default params : 0.24 1.89 1.92 1.90 2.09
w/ optimized params : 0.39 2.33 1.49 1.03 1.65
fractional change: | +62% +24% -23% -46% -21%

1 standard dev. range: | £18% +27%  +13% +3% +6%

Table 5.6: Reduction of errors by optimizing ACE parameters to minimize the error
function rm4d5 = rm4d(I) - rm4d(S) - rm4d(TI) - rm4d(C) - rm4d (M) for cyanovirin dimer
binding, with ¢ = 1. The “with optimized parameters” data are averaged over 32
separate parameter sets optimized in the same way except for different random number
seeds. The “1 standard deviation range” is over these 32 data points. All error functions
have units of kcal mol~! except for rm4d5 which has units (kcal mol1)> .

error function: | rm4d(I) rm4d(TI) rm4d(S) rm4d(C) rm4d(M) rm4d5

w/ default params : 0.24 1.89 1.92 1.90 2.09
w/ optimized params : 0.23 1.15 1.04 1.12 1.38
fractional change: -6% -39% -46% -41% -34%  -88%
1 standard dev. range: +4% +2% +1% +2% +3% £2%

error function: | rmsd(I) rmsd(TI) rmsd(S) rmsd(C) rmsd(M)

w/ default params : 0.06 0.85 0.89 0.92 1.12
w/ optimized params : 0.06 0.64 0.58 0.63 0.81
fractional change: -2% -25% -35% -32% -28%

1 standard dev. range: +4% +2% +2% +3% +3%
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Table 5.7: Reduction of errors on cyanovirin binding by optimizing ACE parameters to
minimize the error function rm4d5 for binding of the gp41 ABC:D system, and then using
the parameters on the binding of the cyanovirin homodimer (with ¢ = 1). The “with
optimized parameters” data are averaged over 32 separate parameter sets optimized in
the same way except for different random number seeds. The “1 standard deviation
range” is over these 32 data points. All error functions have units of kcal mol~! except
for rm4d5 which has units (kcal mol=1)5 .

error function: | rm4d(I) rm4d(TI) rm4d(S) rm4d(C) rm4d(M) | rm4d5

w/ default params : 0.24 1.89 1.92 1.90 2.09
w/ optimized params : 0.26 1.34 1.44 1.58 1.89
fractional change: +6% -29% -24% -16% 9% | -57%

1 standard dev. range: + ™% + 5% +4% +3% +2% | + 5%

error function: | rmsd(I) rmsd(TI) rmsd(S) rmsd(C) rmsd(M)

w/ default params : 0.06 0.85 0.89 0.92 1.12
w/ optimized params : 0.06 0.73 0.74 0.82 1.03
fractional change: -1% -14% -17% -11% -8%

1 standard dev. range: +2% +4% +3% +3% +2%

testing system. Therefore, every point to the left of the vertical line could be considered
a successful transfer of a parameter set from one system to another. About half of the
4 x 3 combinations of different training and testing systems are generally successful, but
half of the transfers are not: between chorismate mutase and Arc, between chorismate

mutase and cyanovirin, from gp41 to chorismate mutase, and from gp41 to Arc.

Table 5.8 summarizes the mean rm4d5 errors for the 4 x 4 combinations of training

and testing system, as well as the errors for the default parameters used on each system.

The Arc system gets high errors using the default parameters or parameters optimized
on gp4l. Most of this error is due to a few groups whose energy terms are off by 3 to
13 kcal mol~!. Specifically, by lowering each parameter one at a time, we found that the
errors are much reduced by lowering the effective atom volumes V(HC) and V(NC2).
These are the atom types of arginine’s guanidinium moiety. The HC atom type is also
in the NH; moiety of lysine. The groups with large solvation term errors are near HC

and NC2 atoms which are not very solvated. The Arc system is rather unusual in that
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Figure 5-6: Error relative to the default parameter set, for each combination of training
system and testing system among the 4 protein binding systems cyanovirin, gp41, Arc,
and chorismate mutase (2chs). The 16 rows are for the 4 x 4 combinations of training
and testing system. The optimizations and transfers were repeated for each of the error
functions rm4d5, rm2d5, and rm1d5, which are shown in that order from top to bottom
within each row.

Table 5.8: Error function rm4d5 for each combination of training and testing system.
These are the actual rm4d5 values, in units of (kcal mol~'), unlike the relative values
shown in Figure 5-6.

rm4d5 error for system:
cyanovirin gp4l Arc 2chs

parameter set:

default: 3.46 1.50 346.84 6.24
optimized on cyanovirin: 0.424+0.02 1.06+0.29 3.704+0.02 54.80+2.48
optimized on gp41: 1.49+0.06 0.11+£0.00  719.77+0.59  5.88+0.17
optimized on Arc: 3.2842.01 2.34+1.63 0.45£0.00 55.25£2.04
optimized on chor.mut.2chs: | 9.784+1.06 1.3740.53 1195.60+2.00 0.35+0.01
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it has Arg and Lys side chains that are somewhat buried. In cyanovirin, gp41, and most
proteins, Arg and Lys side chains are exposed to solvent on the surface of the protein.
This is why it is possible for an optimization on gp41 to raise V (HC) and V(NC2) without
causing errors, because all HC and NC2 atoms are far from other atoms. But when a
parameter set optimized on gp41, which has large values of V(HC) and V(NC2), is used
on Arc, the HC and NC2 atoms, and other atoms near them, are incorrectly treated as

being very deeply buried, and so all of their interactions are made too strong.

5.3.7 Choosing From Among a Family of Optimizations

When we run a set of optimizations, identical except for their random seeds, the
resulting collection of parameter sets has a spread of error function values, for both
the training system and a different testing system. Using data from the four protein-
protein binding systems, we applied various methods of predicting which members of a

set of optimizations would perform best when transferred to other systems.

First, there was no significant correlation between the error function for the training
and testing systems (among the 4 protein-protein binding systems), so the parameter
sets which do best on the training system do not necessarily do better on the testing

system.

Second, considering each parameter set as a point in 18-dimensional parameter-space,
one might expect that a point near the center of the cluster would do better than
average when transferred to another system. However, no significant correlation was
found between the distance of a parameter-space point from the center of the cluster,

and the error when that parameter set was transferred to another system.

Lastly, when a family of parameter sets are optimized on a training system “1” and
then are applied to a second system “2”, some parameter sets do better than others at
reducing errors. If the sets that do better on system 2 also do better on system 3, that
would be evidence that those sets are more likely to do well on any other system, because

they are not over-trained on system 1. In Figure 5-7, we find no such correlation of errors
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on system 2 with errors on system 3. Some of the individual plots show correlation, but

in aggregate the correlation is not significant.
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Figure 5-7: For parameter sets optimized on system 1, the error on system 2 vs. the
error on system 3. All combinations of systems 1, 2, and 3 from among the our 4 protein-
protein binding systems are shown. The error function in all cases is rm4d5. The lack
of correlation means that we have not found any parameter sets that can be expected to
do better on an arbitrary fourth system.

Ideally, we would like to find a parameter set which does reasonably well on all,
or many, protein-protein binding systems. We did not find such a parameter set, nor
did we find any promising methods for choosing such a parameter set. We concluded
that we were expecting too wide of a range of applicability for the parameter sets, and in

Section 5.3.8 we have more success transferring parameter sets between related systems.
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5.3.8 Training and Testing Among Eight Zinc Finger Structures

Each of the 8 zinc finger structures is used as the training system for a family of
optimization runs, differing only in their random seeds, which minimize the error function
rmld5. These runs generate a family of optimized parameter sets. Each optimized
parameter set was applied to each of the 8 structures. The rm1d5 for every combination
is shown in Figure 5-8. The average reduction of rm1d5 error for the training structure
achieved by optimization is -59% (standard deviation 13%, range -32% to -79%). The
average reduction of rm1d5 error achieved by optimizing on any one of the 8 structures
and transferring the parameters to any other structure is -25% (standard deviation 31%,
range -67% to +33%). For 6 of the 8 structures, 92% of the parameter sets optimized on
another structure give lower rm1d5 error than the default parameters. Based on the data
for these zinc finger structures, it is generally more advantageous to use a parameter set

optimized on another structure rather than using the default parameters.

5.3.9 Optimized Parameter Values

Figure 5-9 shows the values of the ACE parameters, o and the 17 effective atom volumes
V. For some parameters («, V(CH2E), V(OH1), and V(OC)), distinctly different values
are obtained by optimization on cyanovirin versus gp41l. This is clear evidence that the
parameters are being optimized not simply for proteins in general, but for some unique
qualities of the training system. Another important observation is that, for these 4
parameters, optimization of either rm1d5 or rm4d5 results in the same range of values.
This is also true for all parameters in general, but it is easier to see for these 4 parameters.
Since the rm4db error function depends so strongly on the few largest error terms, one
could reasonably suspect that the rm4d5 error function would be more susceptible to
over-training than rm1d5. Where optimization of rm4d5 resulted in distinctly different
parameter values for the two training systems, this could be evidence of over-training.
But for every such case, optimization of rm1d5 resulted in a similarly distinct difference

of parameter values for the two systems. This suggests that rm4d5 does not lead to
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Figure 5-8: ACE vs. FDPB group binding free energy term error function rm1d5 (in
(kcal mol=1)%) for 8 zinc finger structures, using the default parameter set and families
of parameter sets optimized to minimize rm1d5 on each of the 8 structures. The single
black point at the top of each horizontal section is for the default parameter set. For each
of the 8 x 8 combinations of training and testing system, there is a row of data points for
the family of parameter sets optimized on that training system, and transferred to that

testing system.
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over-training any more than rm1d5.
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Figure 5-9: ACE parameter values before and after optimization of rm4d5 on the
cyanovirin and gp4l systems. The horizontal axis has units of A® for the volume
parameters and is unitless for the a parameter. The ACE parameters are listed along
the left side. For each parameter, its value before minimization is shown as one black
circle. The values from Voronoi polyhedra (adapted from Richards [73] by Schaefer
and Karplus [6]) are shown as one blue diamond. Parameters from each of 4 types of
optimizations are shown as stars in 4 horizontal rows. For each parameter, the top row,
in green, is from optimization of rm4d5 on gp41l. The next row down, in light green,
is from optimization of rm1d5 on gp41l. The bottom row, in red, is from optimization
of rm4d5 on cyanovirin. The next row up, in pink, is from optimization of rm1d5 on
cyanovirin.

5.3.10 Characterizing an Error Function Surface in Parameter

Space

Recall that we conceptualize the parameter space as 18 “horizontal” axes and the

objective function as the vertical dimension, so that optimization is a search for low
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points in parameter space. It is very difficult to characterize a surface with so many
dimensions, but we will now describe an experiment and some observations that suggest

what the surface is like.

Starting from the default parameter set, we swept each parameter, one at a time,
across the full range of reasonable values. At every position in parameter space visited,
the rmsd of the solvation radii, rmsd(R), was calculated for the bound cyanovirin dimer
with ¢ = 1. In Figure 5-10, we show, for each parameter, the error term rmsd(R)
versus the parameter’s value. Each curve is the profile of the error surface along a
different axial direction. The surface of this error function is smooth but steep in
some directions. Specifically, when an optimization starts from the default position,

the “downhill” direction includes increasing « and decreasing V(CH2E).

We have found that the largest ACE errors are usually caused by a handful of atoms
whose atomic solvation energies are incorrectly determined to be too close to zero. Such
atoms are then treated as though they were deeply buried in protein, so all of their
interactions are too strong because they are not screened enough by solvent. We limit
such errors by applying to the atomic solvation radii a flat cutoff at b,, the adaptive
maximum solvation radius described in Chapter 4. But this only limits the errors; it
does not fix their root cause: the fact that it is difficult for ACE to accurately calculate
an atomic solvation energy with a sum of many small terms for the desolvation caused

by the presence of each other solute atom.

For the cyanovirin bound dimer, three particular atoms have this problem of
incorrectly high solvation radii. Analysis of the atomic error terms reveals that increasing
a or decreasing V(CH2E) specifically alleviates these errors. (Several CH2E atoms are

near the three problem atoms.)

This type of error is very sensitive to the parameters. For example, parameter sets
optimized on gp41 have large errors when transferred to Arc. But lowering V(NC2) from
19.8 to 15.8 A3 lowers the rm4d5 error by a factor of 1/5 to 1/60; and lowering V (HC)
as well, from 1.8 to 0.7 A%, lowers the rm4d5 error by an additional factor of 1 /60 !
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Figure 5-10: Solvation radius rmsd error rmsd(R) for the bound cyanovirin dimer, with
€; = 1, as each parameter is swept, one at a time, over the full range of reasonable values,
starting from the default parameter set. The rmsd(R) curves for all parameter sweeps
are superimposed. The units of the horizontal axis are A3 for the effective atom volume
parameters. For visibility, the unitless o parameter is multiplied by 10 before plotting its
curve as a red line with long dashing. A large red dot marks the default value o = 1.2;
the height of the red dot is the rmsd(R) value with the default parameter set; and so the
default value of each parameter can be found by seeing where each curve is at the same
height as the red dot. The curve for V(CH2E), shown in green with short dashing, is
interesting because it, like «, is steep at the default position in parameter space.
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And below those approximate V(NC2) and V (HC) values, the error changes much more
gradually (like the shape of the green curve in Figure 5-10). So, based on this limited
exploration, the error surface seems to be smooth, but it has cliffs that slope up rather

abruptly out of the lowlands.

5.3.11 Predicting the Ranking of Group Contribution Terms

From among the list of groups (amino, carbonyl, or side chain) in a protein-protein
binding system, consider the 20 groups that have the most favorable contributions to the
binding free energy. How many of these does ACE correctly predict to be in the top 207
A similar test can be posed to predict the 20 groups with least favorable contributions
to the binding. For brevity, we will lump together 80 such tests: for cyanovirin and
gp41l, how many of each of their bottom 20 and top 20 does ACE correctly predict to
be in the bottom or top 207 With the default parameter set, ACE gets 42 correct out
of 80. Optimizing the error function rm4d5 improves this score to 51 correct out of 80.
Optimizing function rm4d5 and transfering the parameters to the other protein system

still scores better than the default parameters, getting 47 out of 80 correct.

5.3.12 Generalized Born Salt Treatment

We incorporated the approximate treatment of salt effects proposed by Srinivasan et
al. [47] into ACE. The results in this chapter used zero ionic strength unless otherwise
noted, but we investigated whether the optimization of parameters is affected by the
presence or absence of salt in the model. Optimizing for the salt-free case means
minimizing errors between ACE results (with no salt treatment) and FDPB results
(with I = 0 M). Optimizing for the salt case means minimizing errors between ACE
results (using the Srinivasan salt treatment with I = 0.145 M) and FDPB results (with
I =0.145 M).

The error rm4db in the salt case is lowered almost as much when the 18 parameters

are optimized for the salt-free case and then transferred to the salt case, as when the
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18 parameters are optimized for the salt case. This is true for function rm4d5 on the
training system cyanovirin as well as after training on cyanovirin and transfering the
parameters to the testing system gp41l. We conclude that there is no need to optimize

separate parameter sets for the salt and salt-free cases.

If the parameter & of this salt treatment is optimized as another parameter in addition
to the 18 others, it takes a value from 0.3 to 0.5, rather than the 0.73 that Srinivasan et al.
found best for predicting solvation free energies. (Of course, the other 18 parameters take
different values than if only the 18 were optimized.) But the error is only very slightly
reduced, so we feel this small error reduction is outweighed by the risk of degrading the
prediction of salt effects after transferring the parameters to other systems; and we would

recommend keeping their k£ = 0.73 value.

5.4 Conclusion

Although rigorous global optimization is not computationally feasible, local optima exist
that are easily found by a low-temperature annealing schedule. Therefore one can afford
to do multiple optimization runs differing only in their random seeds in order to find a
set of local optima. This, in turn, allows one to statistically characterize the effect of

chance on the optimization.

Optimizing parameters for more accurate atomic solvation energies does not give
more accurate binding free energy terms; in fact, they worsen dramatically. Parameters
optimized to minimize the group contribution or mutation binding free energy term errors
do so by reducing the solvation term errors but increasing the interaction term errors.
Minimizing an error function which is the product of all the error terms of interest —
binding free energy terms for group interactions, solvation, contribution, and mutation

— succeeds in reducing all of these group error terms.

Optimized parameters sets often give lower errors on systems unrelated to the training

system. This is dependent on particular differences between the training and testing
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systems’ structures; for example, the unusual degree of burial for the Arg and Lys side
chains of the Arc repressor dimer means that parameters optimized on most other systems
perform poorly when used on Arc. The shape of an error function landscape in parameter
space seems to be smooth, but with high cliffs sloping up rather abruptly from the lower

regions.

The treatment of salt effects which we added to the ACE model performs well
regardless of whether the ACE parameters were optimized with or without a non-zero

ionic concentration.

Optimization of the ACE parameters using FDPB data for a zinc finger structure
yields parameter sets which still achieve a reduction of -25% (standard deviation 31%)
in the rm1d5 error function when the parameters are applied to a different, but related,
zinc finger structure. Therefore, our method of optimization for the ACE parameters
is valuable for any application in which electrostatic free energies of multiple related

structures are needed. Ligand design is one such application.
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Chapter 6

The Design of Protein Binding
Interfaces: Co-Optimization of
Packing and Electrostatic

Interactions

6.1 Introduction

Biomolecular binding is essential to many aspects of biology. The functions of proteins,
which generally involve molecular association, are dictated by their structures. A
protein’s structure, in turn, is determined by its sequence. Protein design seeks sequences
and corresponding structures with improved binding or stability, or with novel binding
abilities.

Discrete search algorithms such as dead-end elimination and A*, which we will
introduce and then use in this chapter, allow vast numbers of conformations to be
searched systematically. These algorithms have mainly been applied with the goal of
increasing stability, for example in the repacking of a protein’s hydrophobic core. We

extend these search algorithms so that they can be used to optimize both stability and
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binding affinity.

The treatment of solvation and electrostatics used with discrete search algorithms
has been rather crude so far. An accurate treatment of electrostatics, such as the finite-
difference solution of the Poisson-Boltzmann equation, is computationally expensive and
intrinsically incompatible with these search algorithms because the interaction of an atom
pair depends on the location of the other atoms. We introduce a hierarchical treatment
of solvation and electrostatics, using three energy functions of increasing accuracy. We
show that the correlation of these energy functions allows them to be used as successive

screens, narrowing down the list of promising structures.

We also develop a three-stage dead-end elimination/A* procedure which ensures that
a wide variety of sequences, as well as a variety of conformations for each sequence, can
be passed to the two higher-resolution energy functions. This allows us to overcome the

less accurate electrostatic treatment of the low-resolution energy function.

Our protein design method is developed by using it to redesign three residues on
the protein barstar to enhance its binding to its partner barnase, while maintaining its
folding stability. Our screening protocol is then validated by using it on a redesign of
three residues of the HIV-1 glycoprotein gp41. Finally, seven residues of barstar, which
have been found to be critical to its binding to barnase, are redesigned. Several mutations
predicted to bind more tightly than the wild type, while retaining folding stability, are
promising candidates for synthesis. Wild-type barstar and barnase are experimentally
known to bind very tightly. So our method’s extremely high ranking of the wild-type
sequence among all other sequences compares favorably with the lower ranking assigned

by the low-resolution energy function used in previous protein design studies.
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6.2 Theory: Discrete Conformational Searching Us-

ing the Dead-End Elimination and A*Algorithms

To redesign proteins, we assume that we can keep the backbone and most of the residues
fixed and only change or move the atoms of a subset of “mobile” residues which we want
to redesign. This is perhaps the broadest simplification that we make, but there are very
many actual cases in which this has proven to be reasonable: for many pairs of binding
partners, a wide variety of mutant versions have been found by X-ray crystallography to

adopt very nearly the same bound conformation.

We represent the space of all possible conformations by allowing a discrete set of
side chain conformations, called “rotamers”, at each of the mobile residues. This makes
the problem of finding minimum-energy conformations amenable to systematic search
methods. The transition from a continuous to a discrete search space can cause minimum-
energy conformations to be overlooked only if the library of rotamers is not fine enough.
Search techniques such as dead-end elimination and A*, described in this chapter, have
made it possible to identify the global minimum-energy conformation (GMEC) from
among more than 100 combinations of protein sequence and conformation [74, 75],
a vastly larger number of conformations than continuous methods such as molecular
dynamics could ever search. In addition, these discrete search methods allow us to prove
that we have not missed the GMEC, unlike all non-discrete methods, and unlike discrete

Monte Carlo or simulated annealing methods as well.

Each conformation of the system can be defined by specifying, for each mobile residue
1, a rotamer state 7,. This formalism is not limited to protein side chains, although we
will call the mobile groups “residues”. All atoms in the system which are not part of a
mobile residue are “fixed” atoms. To design the sequence as well as the conformation,
one simply allows all rotamers of all amino acid types at each mobile residue. FEach

conformation of each sequence will be called a “rotamer state”, or simply a “structure.”

The main simplification required to use DEE and A* is that the energy be made
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pairwise additive:

E = Efixed + i Esa(ir) + i i Eraic(ir, Js) (6.1)

i=1 i=1 j=i+1
where p is the number of mobile residues, Efeq is the energy of the fixed atoms, Egq(i,)
is the energy contribution of mobile residue ¢ in rotamer i,., including its interaction with
the fixed atoms and with itself, and E,.; (i, js) is the interaction of rotamers i, and j,
at mobile residues ¢ and j. The assumption of a pairwise additive energy means that the
interaction of two residues depends only on their positions, but not on the positions of

the other mobile residues.

In principle, with discrete rotamers, the finite number of conformations of the whole
system could be exhaustively searched. In practice, for p mobile residues and n possible
rotamers at each position, the n? possible conformations of the whole system are usually
too numerous to evaluate exhaustively. The search algorithms DEE and A*, described in
this chapter, allow the GMEC to be found in a feasible amount of time, without having
to evaluate all n? conformations. Since the number of Ege(i,) and Epair(ir, js) terms, np
and %p(p — 1)n?, are usually much less than n?, it is advantageous to precompute all of

them.

6.2.1 Dead-End Elimination

Dead-end elimination (DEE) was originally proposed by Desmet et al. [76]. DEE is a
way to reduce the size of a very large search space by eliminating rotamers which can

not be in the desired rotamer set or sets.

Consider two rotamers of the same residue, 7, and i,. Rotamer 7, can not be part of
the GMEC if its best possible energy contribution is still worse than the worst possible

energy contribution of rotamer i,:

Eself(ir) + Z mtin Epair (ira ]t)

Eself (Zs) + Z mtax Epair (i57 ]t) >0 (62)
J#i

J#
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This is the simple DEE criterion [76], illustrated in Figure 6-1. It says that if we let all
the other mobile residues interact as well as possible with rotamer 7,, and as poorly as

possible with rotamer i,, and 7, still gets a worse energy than i, then 4, is definitely not

in the GMEC.

E

all other rotamer positions {]j t}

Figure 6-1: Simple DEE criterion, Equation 6.2.

Goldstein [77] improved upon this by eliminating rotamer i, if it has a worse energy

than i, for all possible conformations of the other mobile residues:

Eself(i'r) - Eself(is) + Z mtin(Epair(ira ]t) - Epair(is; ]t)) >0 (63)

J#i
This is the Goldstein DEE criterion, illustrated in Figure 6-2. The advantage of this
method is that it has greater eliminating power than the original criterion (for example,
the original method would not eliminate 4, in Figure 6-2); the disadvantage is that it is
computationally more expensive, scaling as n?p rather than np, where p is the number

of mobile residues and n is the number of possible rotamers per residue.

Pierce et al. [78] and Looger and Hellinga [74] went a step further by partitioning
the conformational space by the rotamers k, of mobile residue &k (or k could represent a

group of mobile residues). If, for every rotamer k,, there exists a rotamer 74 such that

Eself (Zr) - Eself(is) + Z msin[Epair (Z}, Jt) - Epair (isa ]t)] + [Epair(ir: kv) - Epair (isa kv)] >0
J#i#k
(6.4)
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all other rotamer positions { jt}

Figure 6-2: Goldstein DEE criterion, Equation 6.3.

then rotamer ¢, can be eliminated. The eliminating rotamer i; may be different in
different partitions k,. For example, for some arrangements of the rest of the system,
rotamer 74 is always better than ¢,; and for other arrangements of the rest of the system,
rotamer iz is always better than 4,. For every arrangement of the rest of the system,
there is a better alternative to 4,, and so i, is eliminated. This type of approach is often

referred to as “divide-and-conquer.”

Any of the criteria above can be extended to eliminate pairs of rotamers, which is
sometimes necessary when elimination over individual residues fails to reduce the search

space sufficiently. The simple DEE criterion applied to pairs is

Eself([irjs]) + Z mtin Epair([irjs]; kt)

Eself([iujv]) + Z m?XEpair([iujv]:kt) >0
kit j#i

ki

(6.5)
Here we essentially define [i,j;] as a single effective rotamer. So its self term includes the
interactions of rotamers 7, and j; with themselves, with each other, and with the fixed
atoms. Likewise, Epair([ir]s], k¢) is the interaction between the rotamer pair [i,js| and
the single rotamer k;. If the criterion above holds, then the pair of rotamers 7, and j
can not be together in the GMEC, but either one or the other alone may still be in the
GMEC.
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The Goldstein criterion applied to pairs is

Eself([i'rjs]) - Eself([iujv]) + k;éz.#.mtin[Epair([irjs]a kt) - Epair([iujv]; kt)] >0 (66)

DEE can also be used to help search for structures with energy within a given distance
AFE.y from the minimum energy. Each of the criteria above can be modified so that a
rotamer or rotamer pair is eliminated only if it can not be part of any conformation with

energy less than AFE,,; above the minimum energy. For example, Equation 6.3 becomes:

Eself(ir) - Eself(is) + Z mtin(Epair(irajt) - Epair(isajt)) > Ecut (67)
J#i
However, this weakens the technique considerably. We will discuss how we use DEE to

reduce the search space, and then use A* to search within the reduced space.

As an example of the computational cost of DEE, consider the single-residue Goldstein
criterion in Equation 6.3: the equation contains 2 arbitrary mobile residues, 7 and 7, and
3 arbitrary rotamers 7, s, and t. Assuming each of the p mobile residues has the same
number of possible rotamers n, the computational cost of applying the single-residue
Goldstein criterion in every possible permutation is O(n®p?) (“of order” n3p?). The
scaling of the cost of the other possible DEE criteria are summarized in Table 6.2.1. Of
course, they are all vastly smaller than the O(n”) cost scaling of a systematic search of

all conformations.

Table 6.1: Dependence of DEE computational cost on the number of mobile residues (p)
and on the number of rotamers per residue (n).

# of min. time to
Criterion | calculated find a min. Total time
Simple DEE (Eqn. 6.2) np np n’p?
Goldstein DEE (Eqn. 6.3) n?p np nép?
Split DEE (Eqn. 6.4) n?p np n®p?
Simple Pair DEE (Eqn. 6.5) n?p? np n®p?
Goldstein Pair DEE (Eqn. 6.6) ntp? np n°p?
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Our implementation of DEE follows a schedule including Goldstein singles and pairs,

and split singles:

1. Goldstein singles DEE (Equation 6.3) at every mobile position, repeated until no

more rotamers can be eliminated.

2. Split singles DEE (Equation 6.4) at every mobile position, repeated until no more

rotamers can be eliminated.

3. Goldstein pairs DEE (Equation 6.6) for every rotamer pair, repeated until no
more rotamer pairs can be eliminated. Whenever the pairs criterion eliminates
all the pairs that a rotamer 7, can make with some residue 7, then i, itself can be

eliminated [79].

4. If pairs DEE eliminated any single rotamers, then try repeating the whole procedure

from the top.

This procedure stops when no more rotamers can be eliminated. In general, a large

number of system conformations will remain.

6.2.2 A* Search (Branch and Bound)

The search algorithm called A* can now be used to search the system conformations
remaining after DEE [80, 81]. Imagine a tree representing partial or complete sets of
rotamers for the system, as shown in Figure 6-3. The mobile residues are kept in a fixed
order, and their rotameric states are decided upon in that order. The root node (at the
top) means that nothing has been decided yet. The row of n; nodes below that represent
all possible rotamers that can be placed at the first mobile residue. Each node in that
row has mny branches, representing all the possible rotamers that can be placed at the
second mobile residue. And so on, until the bottom row of the tree has [T?_; n; nodes,

each of which is a “goal” node, or a complete conformation of the system. Throughout

150



our treatment of the theory, we set all n; to the same value, n, and so there are n? goal

nodes; for actual applications, the n; can be arbitrarily distributed.

root node
residue 1
rotamer 1 rotamer 2 rotamer 3
residue 2
1 2 3 1 2 3 1 2 3
residue 3
< goalnodes ——MM—

Figure 6-3: A conformational search represented as a tree. The first branching, from the
top, or “root” node, represents placing each possible rotamer at mobile residue 1. The
next set of branchings represent placing each possible rotamer at mobile residues 2, and
so on. Each node at the bottom of the tree is a “goal” node, representing one of the
possible conformations of the whole system. The figure is adapted from reference [81]
and taken with permission from reference [69].

The A* algorithm is a method for finding the optimal path from the root node to a
goal node of a search tree. In this problem, there is only one direct path from the root
node to each node in the bottom row, and the optimal path represents the GMEC of
the system. The A* algorithm scores each node that it visits with a function f*, which
is a sum of g*, the known cost to get there from the root node, and h*  a heuristic

lower-bound estimate of the cost to get from there to a goal node.

f*=g"+h (6.8)

So f* for a given node is an estimate of the minimum total energy of the system, given
the rotamers that have been placed so far at that node. Number the levels of the tree

by p¢, the number of mobile residues placed so far at that level. At a given node, mobile
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residues numbered 1 to p; have been placed, and mobile residues numbered pr + 1 to p
have not yet been placed. With a pairwise additive energy function, the cost g* to get

to the given node is

Pt Pt Ps
g* = Eﬁxed + Z Eself(ir) + Z Z Epair(irajs) (69)
i=1 i=1 j=i+1

The h* function is an estimate of the cost of reaching a goal node, but the algorithm
requires that h* always underestimate this cost. So h* is a lower-bound estimate of the
cost to get from the current node to any goal node. At any goal node, where all residues

have been placed, g* is equal to the total energy of the conformation, and h* is zero.

In the basic version of A*, the data structure used to implement the search is a list
of nodes sorted by f*. The algorithm repeatedly finds the node with the minimum value
of f* and expands it, finding the values of f* for all of the nodes immediately below
that node. These nodes are all added to the list of nodes, and the process repeats by
expanding the node that now has the minimum f*. The process continues until the node
with minimum f* is a goal node. Note that the nodes in the list can be at a variety of
levels in the tree. Because f* of a node is a lower-bound estimate of the f* of any goal
node beneath it, a goal node with lower f* than the other nodes on the list must also

have lower f* than all other goal nodes, and therefore must be the GMEC.

The computational cost of the A* algorithm depends on a case-by-case basis. In the
worst case, all O(nP) nodes will have to be visited. In the best case, the algorithm will
follow a direct path down one branch of the tree, visiting O(np) nodes. The efficiency of

the algorithm also depends on

1. the quality of h*, the lower-bound estimate of the cost to get from the given node

to any goal node, and

2. the order in which the mobile residues are expanded as one goes down the tree.

It is also important that h* be calculated quickly, since this calculation will be the most

computationally difficult step.
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We will now introduce two different expressions for h*, and then use the second
because it is a higher, and therefore better, lower-bound estimate of the cost to get

from the given node to any goal node. The first, proposed by Leach and Lemon [81], is

straightforward:
P P P
h* = z msin Eself(js) + Z Epair(irajs) + Z mtin Epair(jSa kt) (610)
J=ps+1 i=1 k=j+1

where mobile residues 1 to p¢ are those that have been placed so far at the current node.
The first sum is over the mobile residues which have not been placed yet. The first and
second terms inside the square brackets are the self term of j;, and the interactions of
js with the mobile residues already placed. The third and final term is a lower bound
for the interactions of j; with the residues not yet placed. Since the last term inside the
brackets can be computed and stored for each js, the calculation of h* for each node

scales as O(np).

A second expression for h*, used by Gordon and Mayo [82] with an algorithm similar

to A*, defines new energy terms E( ) and E],; by dividing each rotamer’s self term
among its interaction terms:
wtt(ir) = 0 (6.11)
o Esar(r) + Eser(J o
Bpalin ) = P00 4 i ) (6.12)
Putting Eg s and E,;, into Equation 6.10 in place of Egr and Epgr,
p Pt P
* . 13 . . . 13 .
h*= ) min ZEpair(z,,js) + > min E i (Js, r) (6.13)
Jj=ps+1 i=1 k=j+1

Because part of the self terms are now inside the last min operator with the pair terms,
this definition of h* in Equation 6.13 almost always gives a higher, and therefore better,
lower bound than Equation 6.10. Tests performed with the two bounds have shown that

Equation 6.13 results in a faster search [69], and so this is the one we use.

153



The order in which the mobile residues are placed does affect the values of h* and the
speed of the search. Leach and Lemon [81] used a heuristic method to choose the order

wisely. For each rotamer, this quantity is calculated:

P
V(i) = Esar(ir) + Y_min Epgi (i, js) (6.14)

J#
For each mobile residue position i, the difference of the two lowest values of V(i) is
computed. The residue with the largest difference is expanded first in the tree, followed

by the residue with the second largest difference, and so on.

6.2.3 Depth-First A* Search

After the A* algorithm finds the GMEC, the goal node with minimum energy F = Eqy,
it could continue running in order to find the next-lowest energy goal node, and so on.
In practice, however, the list of nodes which the method maintains grows too large for
available computer memory when the algorithm is used this way. A different type of
search, depth-first A*, is better suited to finding additional low-energy conformations;
specifically, all conformations with energy within AFE ., of the minimum. A full depth-
first search could begin traversing the tree by going all the way down the left-most branch
of the tree, then taking one step up to go back down to the next leaf, and so on until the
whole tree has been traversed. A full traversal of the tree is not feasible in our case, so we
use the depth-first A* search, which can skip over large parts of the tree by evaluating f*
at each node it visits. As the depth-first search proceeds, each node’s f* is calculated. If
f*> Enin + AFE.y, then all goal nodes beneath that node have energy E > Eyin + AEqy,
so the search travels back up from the node rather than exploring the fruitless subtree

beneath it.

6.2.4 Search Procedure

Here is our complete DEE/A* search procedure:
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1. Find the rotamer state with minimum energy E, the GMEC:

(a) DEE to narrow down the set of rotamers that may by in the GMEC. Following
the schedule at the end of Section 6.2.1, we eliminate rotamers using Goldstein
singles, then split singles, then Goldstein pairs, then repeating until no more

rotamers can be eliminated.

(b) A* to find the GMEC among all combinations of the remaining rotamers. Call

its energy Epnin-

2. If, in addition to the GMEC, one wants all rotamer states with E within AE,, of
the GMEC energy Epn, then:

(a) DEE, starting over with all rotamers allowed, to narrow down the set of
rotamers that may be in any structure within AFE., of the GMEC energy
Emin-

(b) Depth-first A* to find all rotamer states with F < Epin + AFEcy.

6.2.5 Rotamer Library

The rotamer library is a list of side chain conformations. Since bond lengths and angles
are fairly constant, each conformation can be defined by a list of dihedral angles x. Most
x angles of rotatable bonds have local minima in the vicinity of —60°, +60°, and +180°.
We begin with the rotamer library of Dunbrack and Karplus [83], which has 3 such values
for most x angles, whose precise values were determined separately for each amino acid

type based on a statistical analysis of many protein structures.

We allow 19 natural amino acid types, all but proline, because its backbone is different.
We allow two forms of histidine, singly protonated on ND1 or NE2. We also double the
number of histidine rotamers by allowing x> to flip the ring by 180°, because PDB X-ray
crystal structures (upon which the Dunbrack and Karplus library is based) can not be

trusted to have histidine rings flipped correctly. We do not allow protonated forms of
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Asp, Glu, and His, but our method can be extended to allow this if care is taken to

include the correct free energy cost of protonation.

Using discrete rotamers can have the disadvantage of being too coarsely sampled.
Especially since the van der Waals energy function is so sharp, a rotamer or pair of
rotamers may not fit, even though small adjustments in their positions would allow
them to. We make up for this in two ways: We expand the rotamer library to include
adjustments of +10° to the x; and x» dihedrals. This increases the number of rotamers
by a factor of 9 for most amino acid types. Expanding the rotamer library so much puts
us in danger of going too far by sampling too finely: the search required of DEE and A*
is much harder, not just because there are more rotamers, but also because the minima

are not as sharp; many of the rotamer states have similar, low energies.

6.2.6 Fleximers

Our solution is to employ the flexible rotamer model suggested by Mendes et al. [84].
Each Dunbrack and Karplus rotamer is grouped with the 8 rotamers related to it by xi
and yo adjustments of +10°. These groups of rotamers {i,} are called flexible rotamers,
or “fleximers”, and denoted with symbols like i5. The individual rotamers within a
fleximer are called its subrotamers, or rigid rotamers, or simply rotamers. Throughout
our method, we will use 3 levels of description: the sequence (the set of amino acids at
the mobile residues), the fleximer state (the set of fleximers), and the rotamer state (the
set of rotamers). Only the rotamer state defines an exact conformation, but we would
like to define an approximate energy F' for each fleximer state, so that we can apply DEE

and A* to finding low-energy fleximer states in their smaller search space.

We require that F' be pairwise additive, like the energy E:

F = Efixed + ZFself(i'R_) + Z ZFpair(i'R_ajs) (615)

i j>i

where Fir(ig ) is the contribution of a single fleximer to the fleximer energy F' of the
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system, and Flai(ig,jg) is the contribution of a pair of fleximers to . Our definitions

for Fir and F,ie are the simplest forms used by Mendes et al. [84]:

For(ig) = min E(i,) (6.16)
Fpair(inajs) = {2,1’2 [E(Zr) + E(]S) + E(irajS)] - Fself(i'R) - Fself(is) (6-17)
SES

The value of F' for a given fleximer set is meant to approximate the lowest E of
any of its rotamer sets. But, because we approximated it as pairwise additive, F' will
not necessarily equal the E of any particular rotamer set [69]. The meaning of the min
operator in the Mendes et al. [84] definition of Fl,i in Equation 6.16 is illustrated in
Figure 6-4. A fleximer iy is allowed to get credit for its best possible interaction with
a neighboring fleximer jg4 and for its best possible interaction with another neighboring
fleximer k.-, even if both interactions are not possible for any set of rotamers i, js,
and k;. In this case, F' underestimates F. It is also possible for F' to overestimate FE,
because of the way the self terms do not cancel out in the Fj,;; definition. Unfortunately,
this means that we may not find the true GMEC, even though this was previously
guaranteed by the DEE and A* methods. Alternative definitions of Fier and Fpir have
been developed to restore the guarantee that F'<FE and therefore no low energy structures
will be missed [69]. But such definitions make F' underestimate F by so much that many
more fleximer states with low F' must be examined to find any rotamer states with low

true energy E. So we use the Mendes et al. [84] definitions in Equation 6.16.

So, we do DEE/A* as in Section 6.2.4 using the fleximer energy F to get a list of
all fleximer states with F within 30 kcal mol™ of the minimum. Then, for each fleximer
state on the list, we do DEE/A* again to find the minimum energy E rotamer state
that it contains. This is a rather small search space, so the DEE/A* proceeds rapidly,
and a rotamer state representing each of thousands of fleximer states can be found in
a reasonable amount of time. When this has been done for every fleximer state within
30 kcal mol ! of the minimum F, we are done. The final product is a list of rotamer

states, each representing a different fleximer state, sorted by energy FE.
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Figure 6-4: Illustration of the weakness of approximating the fleximer energy F' as
pairwise additive. Residues 1 and 2 are given credit for their best possible interaction,
using the rigid rotamers shown in red. Similarly, residues 1 and 3 are given credit for
their best possible interaction, using the rigid rotamers shown in green. Since residue 1
can not be in two places at once, no set of rigid rotamers can fully realize both favorable
interactions. The figure is taken with permission from reference [69).
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The method we have just described — searching for fleximer states, then for rotamer
states — was used by Mendes et al. [84] and Caravella [69]. In Section 6.3.3, we describe
how we use 3 levels of description rather than 2, searching for low-energy sequences, then

fleximer states, then rotamer states.

6.3 Methods

6.3.1 Designing for Tight Binding and Stable Folding

The usual goal of ligand design is to redesign a molecule in order to bind as tightly
as possible to its binding partner. In the case of proteins, one would also require the
redesigned protein to remain folded in the unbound state. So that is exactly what we
will do: find redesigned molecules with minimum binding free energy, and with folding

free energy below a cutoff to ensure stability of the unbound protein.

Previous attempts at computational ligand design [85, 86, 69] have aimed to maximize
the stability of the bound complex. Such a ligand could achieve this either by improved
interactions with the binding partner, or by improved intramolecular interactions, or a
combination of the two. There is no guarantee that such a redesigned ligand will have
better binding free energy than the wild type; nor is there a guarantee that its folded

form will be stable.

The other major shortcoming of previous protein design methods has been their
use of a poor approximation of electrostatic free energy. For computational ease, they
have used Coulombic or distance-dependent Coulombic energy, neither of which includes
the important terms for the desolvation of charges and the screening of intramolecular
interactions upon binding. We have used the finite-difference solution of the Poisson-
Boltzmann equation (FDPB), which is a reasonable, accurate, and computationally
tractable estimate using the continuum solvent model, for the final evaluation of
structures. But FDPB is still computationally expensive, so we have developed a

procedure which uses 3 energy functions, with electrostatic terms of low, medium,
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and high accuracy (and corresponding computational cost) as successive screens. The
“low-resolution” energy uses distance-dependent Coulombic electrostatic energy, which
is pairwise additive (the atom-pair interactions are independent of the other atoms),
and therefore can be used with the dead-end elimination (DEE) and A* algorithms.
Structures which look promising based on their low-resolution energy are passed on to the
“medium-resolution” energy function, which uses the ACE electrostatic approximation
of Schaefer and Karplus [6]. Finally, structures which look promising based on their
medium-resolution energy are passed on to the “high-resolution” energy function, which
uses FDPB electrostatics. The key requirement of this approach is that the energy
function used at one stage is sufficient to eliminate poor structures yet does not discard

structures that would score well in subsequent stages.
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6.3.2 Brief Overview of Entire Design Procedure

Here is a brief overview of the entire design procedure. Some terms used here are not
defined until later.
1. Begin with the atomic structure of 2 binding partners.
2. Choose a set of side chains to redesign (the “mobile residues”).
3. Choose a set of amino acid types to allow at each position (e.g., all but proline).
4. Choose a rotamer library, which has all discrete positions for each amino acid type.

5. Carry out DEE/A* to rank all sequences with a low-resolution pairwise additive
binding free energy within some cutoff (AFE.,;) of the minimum. Here AFE., =
30 kcal mol ™! was used. It was advantageous to represent the results at this stage
as a list of sequences, each represented by 10 structures (each defined by its set of

rotamers).

6. After DEE/A*, follow a strategy to:

(a) Evaluate the medium-resolution free energy function only for structures with

promising low-resolution free energy;

(b) Evaluate the high-resolution free energy function only for structures with

promising medium-resolution free energy.

7. Reject all structures with a high-resolution folding free energy more than 1 kcal mol™*

worse than the wild type.

8. Keep only one structure to represent each sequence — the one with the best high-

resolution binding free energy.

9. Final result: a list of sequences and their high-resolution binding and folding free

energies.
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6.3.3 Three Stages of DEE/A*: Amino Acids to Fleximers to

Rotamers
Naive Two-Stage Method: Fleximers to Rotamers

Rather than just running DEE/A* to rank the possible sets of rotamers at the mobile
residue positions, we described in Section 6.2.6 how rotamers can be separated into groups
called fleximers. Then DEE/A* can be run in two stages: first to rank the fleximer states,
and then, for as many of the top-ranked fleximer states as desired, to rank the rotamer
states within each fleximer set, or to find only the one best rotamer set for each fleximer
set. This two-stage DEE/A* method was used by Mendes et al. [84] and Caravella [69].
The method is pictured in Figure 6-5.

fleximer states Q Q O L
J

keep 1 out of ~9"

rotamer states () () ()

Figure 6-5: Naive Two-Stage Method: Fleximers to Rotamers

This method works well when DEE/A* is used to re-pack side chains without changing
their amino acid types. With the rotamer library we used, the amino acid types have
an average of 155 rotamers each. These are grouped into about 17 fleximers each. Each
fleximer has about 9 rotamers. (Some amino acids have far more conformational freedom
than others. Those averages are based on from 1 to 729 rotamers per amino acid type,

grouped into 1 to 81 fleximers, each containing from 1 to 27 rotamers.)

When amino acid type is allowed to vary, however, each position has 3098 possible
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rotamers grouped into 338 fleximers. The first stage produces a ranked list of fleximer
states which has too little diversity of amino acid sequence. The low-resolution energy
function will typically favor some sequences over others, and each sequence will be
represented by vast numbers of fleximer states on the list. Sequences which the low-
resolution energy function does not favor (some of which would be favored by the high-
resolution energy function) appear only a few kcal mol™' higher in energy than the
minimum, but such impossibly huge numbers of other fleximer states rank higher that

the list could never practically be made long enough to find these sequences.

So the problem with this method is that each sequence is represented by far too many

fleximer states, and so we can not get a large enough variety of sequences.

Naive Two-Stage Method: Amino Acids to Rotamers

In order to get a larger variety of sequences, let us have the first stage of DEE/A* rank
sequences (i.e., amino acid states). This stage produces a ranked list of sequences fairly
rapidly. Then, for each sequence on the list, a second stage of DEE/A* can be done to
rank rotamer states, perhaps with the intention of keeping only the best few rotamer
states to represent each sequence. This method is pictured in Figure 6-6. But the second
stage, because it must consider about 155" possible rotamer states, is too slow (5 minutes
per sequence on a 1 GHz Pentium III), considering that we want to sort through ~ 10°

sequences.

Three-Stage Method: Amino Acids to Fleximers to Rotamers

To get a large number of possible sequences in a reasonable amount of time, we have

decided on a three-stage method, pictured in Figure 6-7.

1. Do DEE/A* on amino acid types, to get a ranked list of sequences.
2. Then, for each sequence, do DEE/A* to get 10 best fleximer states.

3. Then, for each fleximer state, do DEE/A* to get 1 best rotamer state.
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sequences =
amino acid states

oo™

rotamer states

keep 10 out of ~155"

Figure 6-6: Naive Two-Stage Method: Amino Acids to Rotamers

sequences =
amino acid sets

fleximer sets

rotamer sets

Figure 6-7: Three-Stage Method: Amino Acids to Fleximers to Rotamers
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The second step is the slowest step, but it is feasible at 20 seconds per sequence.
Despite the fact that the low- and high-resolution energy functions can disagree greatly
about which sequences they favor, we have found that keeping only 10 structures per
sequence has worked well, presumably because (1) the choice of rotamers for a given
sequence is most constrained by the need to avoid van der Waals clashes, and (2) the
low- and high-resolution electrostatic energy functions agree more about close-range

interactions.

6.3.4 Test Systems
Barnase and Barstar

The proteins barnase and barstar bind extremely tightly (dissociation constant K, =
107'*M) [87, 88]. Barstar has been shown by Lee and Tidor [89] to be electrostatically
optimized for tight binding to barnase when their shapes are held fixed but barstar partial
atomic charges are allowed to vary. That study found a set of seven side chains that are
especially important for binding, in that the binding free energy is particularly sensitive
to the charge for those seven residues. Interestingly, the optimum side chain charges of
all 7 match the actual wild-type charges. The side chains in this set of seven, which we
call the “Lee 7” residues (Asn33, Asp35, Trp38, Asp39, Thr42, Val73, Glu76), make up

about half of barstar’s binding interface, as shown in Figure 6-8.

We chose to apply our ligand design method to the “Lee 7” barstar residues, primarily
as a validation of the method. Since barnase and wild-type barstar bind so tightly, we
expect a good design method to predict, out of all possible sequences and conformations,
that the wild-type sequence and conformation will be among the very best. Our method
does successfully make this prediction, in contrast with other approaches. Surprisingly,
it also suggests a few mutations (Val 73 — Gln or His) predicted to make binding even
tighter. Before redesigning the “Lee 7”7 residues, we first redesigned two smaller systems
in order to develop and verify our method’s use of a hierarchy of three energy functions.

The first smaller system we redesigned is a subset of the “Lee 7” barstar residues: three
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Figure 6-8: The “Lee 7” residues of barstar (Asn33, Asp35, Trp38, Asp39, Thrd2, Val73,
Glu76). All barstar side chains that bury solvent-accessible surface area (SASA) upon
binding to barnase, shown as licorice, can be seen through the translucent gray surface
of barstar. The “Lee 7” side chains are shown as element-colored licorice. The other
barstar side chains that bury solvent-accessible surface area upon binding to barnase are
shown as green licorice. Barnase is not shown; it would be in front of, and to the right
of, barstar in this view. (Figures 6-8, 6-21, 6-23, 6-32, and 6-33 were made with the
molecular graphics program VMD [36].)
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barstar residues in the center of the binding interface, Asp35, Trp38, Val73, which we will
call the “center 3” residues. The second system we redesigned is a set of three residues

on the glycoprotein gp41, which we will introduce in the next section.

In redesigning barstar side chains on the wild-type backbone, one faces an interesting
stability problem. The experimental free energy of folding for barstar in water is -5.28 kcal
mol~!, and slightly more stable, -5.88 kcal mol™!, in 300 mM NaCl [34]. Proteins typically
have folding free energies in the range -5 to -15 kcal mol™?; since barstar is on the less
stable side of that range, care must be taken to maintain stability in the unbound state
for any redesigned barstar while still optimizing binding affinity. In the current scheme,
this is achieved by effectively carrying out a constrained optimization on the computed
binding free energy with the constraint being that the computed folding free energy be
no more than one kcal mol~! worse than wild type. One source of the marginal stability
observed for barstar appears to be the concentration of negatively charged side chains
at the binding interface that complement a positive patch on barnase. The enhanced
stability in higher ionic strength is consistent with this view through ionic shielding of

the charges.

We started with the 2.0-A X-ray crystal structure (PDB entry 1BRS) [33] of the
barnase/barstar complex. Twelve interfacial water molecules from the crystal structure
have well-defined positions in the crystal structure. Of course, when barnase is unbound,
these water molecules could have less well-defined positions, but whatever effect this has
on the free energy of binding is a constant for all redesigned structures of barstar, and
therefore we may safely treat the water molecules as a rigid part of barnase for purposes
of redesigning barstar. In Appendix A, we develop a method to give conformational
flexibility, and the option of removal, to interfacial water molecules by treating them just

like protein side chains in a DEE/A* search.

Selected protein segments A and D from the X-ray crystal structures were used. Some
atoms with missing density in the crystal structure are omitted; they are far from the
binding interface. Polar hydrogens were built onto the crystal structure using the HBUILD

facility [90] in CHARMM [11]. We use the PARAM19 partial atomic charge and atomic
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radius (van der Waals radius) parameters, including in the FDPB and ACE models [10].

gp4l

Our second test system is part of the protease-resistant core of the HIV-1 glycoprotein
gp41, the 3 inner helices (ABC) binding to one of the outer helices (D) (pictured in
Figure 4-8 of Chapter 4) [64]. This rigid binding system is a simple model of the assumed

last stage of folding, in which the outer helices dock onto the inner helices.

We started with the 2.0-A X-ray crystal structure 1AIK [64]. Polar hydrogens were
built onto the crystal structure using the HBUILD facility [90] in CHARMM [11]. We use the

PARAM19 partial atomic charge and atomic radius parameters, including in the FDPB

and ACE models [10].

6.3.5 Energy Functions
Self and Pair Terms

The dead-end elimination and A* algorithms rely on having an energy function that is
pairwise additive with respect to the rotamers; i.e. the energy function has no three-
body terms. Rather, it can be expressed as a sum of terms that depend on single
rotamers, terms that depend on pairs of rotamers, and constant terms, as shown in
Equation 6.1. Some of the energy terms that one would like to use are not pairwise
additive, including a term to account for the hydrophobic effect, or more sophisticated
treatments of solvation and electrostatics. The other terms — covalent, van der Waals,
and Coulombic electrostatics — are pairwise additive with respect to the rotamers
because they are also pairwise additive with respect to the atoms. That is, these energy
terms can be expressed as a sum of terms which depend only on each single atom, and

terms which depend only on each pair of atoms.

For a pairwise additive energy term, the self-energy of all the fixed atoms is a constant

for all mutant conformations. Therefore, since we only care about the relative energies
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of the conformations, such constant terms are omitted from the calculated energies.

Covalent, van der Waals, Electrostatic, and Hydrophobic Terms

We calculate the free energy as a sum of covalent, van der Waals, electrostatic, and
hydrophobic terms:
G = Gcov + GvdW + Ges + Ghydr (618)

We have not included a term for side chain entropy: a side chain dihedral angle that can
occupy three minimum-energy positions in the unfolded state but is sterically constrained
upon folding or binding could incur a free energy penalty of up to kg7 In 3 [91]. Inclusion
of this term would require a method of assessing the rotational freedom of each side
chain or each dihedral angle. The free energy of translational and rotational entropy can
be neglected because it depends only on the overall size of the molecules, so it will not
vary significantly among our mutant conformations. We assume that vibrational and
electronic free energy terms are not affected by folding or binding. Our model assumes
rigid binding, so we are not considering the possibility of conformational change upon
binding. This is justified by the fact that our test system (barnase and barstar) and
many biomolecular complexes have been found to bind nearly rigidly, so variants of such
a system that are designed to have a more favorable rigid binding energy than the wild

type will surely bind rigidly as well.
Covalent Terms

The covalent free energy is a the sum of bond, angle, dihedral, and improper dihedral
terms, with the commonly-used CHARMM PARAMI19 parameter set [10]. This term

accounts for intramolecular strain. The covalent free energy is pairwise additive.

Geov = Ghond + Gangl + Gaihe + Gimpr (619)

van der Waals Term

We calculate the van der Waals energy term using the standard Lennard—Jones 6-12
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potential. The van der Waals term is omitted between atom pairs which are bonded (a
“1-2” pair) or connected via 2 bonds (“1-3”), as intended for the CHARMM PARAMI19

parameter set, using the NBXMOD 5 CHARMM energy parameter.

The CHARMM PARAM19 parameter set specifies atomic van der Waals radii and van
der Waals energy well depths for all atom types. The van der Waals term is sharp; i.e.,
putting atoms just a little too close to each other can make the van der Waals energy very
unfavorable. In Section 6.2.6, we described how we use fleximers so that our rotamers can
sample the conformations more finely. Another measure we take to address this problem
of coarse sampling with a sharp energy function is to scale all of the atomic van der
Waals radii by 90% . Any possible conformation of mobile side chains that is a relatively
compact or snug fit would require rather tightly constrained side chain geometry. If
the rotamer library is not fine enough, the library rotamers which are most similar to
such a “possible conformation” may have atoms that “bump” or “clash”, and therefore
have a very unfavorable van der Waals energy. This is an unfortunate consequence of
using a discrete rotamer library. We compensate for this by scaling all van der Waals
radii by 90%, so that conformations that would have slight van der Waals clashes are
not penalized for it, because in general there exists a slightly different conformation that

would not have a van der Waals clash, but which is not in the rotamer library.

Specifically, when DEE/A* is run to give the “Lee 7”7 barstar residues conformational
freedom, but with the wild-type amino acid types fixed, the conformation most similar
to the crystal structure has van der Waals clashes involving atoms in 2 of the 7 residues,
Asp39 and Glu76, penalizing it by about 18 kcal mol . Varying the factor by which the
van der Waals radii are scaled, we found that 0.9 was low enough to relieve the clashes
in this particular case. Dahiyat and Mayo [92] used DEE to repack hydrophobic amino
acids into a protein core; trying several van der Waals scale factors with DEE, they found

that a value of 0.9 resulted in “a well-packed native-like protein”.

The van der Waals term is pairwise additive. Therefore, the van der Waals interactions
between all pairs of fixed atoms are not calculated, because they are a constant for all

mutant conformations.
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Electrostatic Term

The electrostatic free energy is inherently non-pairwise-additive: the presence of every
solute atom, even an uncharged atom, screens the interaction between every other pair of
charged atoms. To take advantage of the eliminating power of dead-end elimination and
A*searches, we use an approximate electrostatic energy term that is pairwise additive
but not entirely accurate. In subsequent calculations, when the search space is much
smaller, more accurate treatments of electrostatics and solvation are incorporated which

are computationally more demanding.

We will now introduce three electrostatic energy functions of successively higher
accuracy and computational cost. In Section 6.4.2, we will discuss how these successive
levels of accuracy are used to narrow down vast numbers of structures to the few with

the best binding and folding energies calculated with our most accurate energy function.
Low-resolution Electrostatics

We desire an approximation to the electrostatic free energy which is pairwise additive.
Perhaps the simplest such approximation would be the Coulombic energy. The Coulombic
energy is simply the sum of the interactions of all atom pairs from Coulomb’s law, scaled

with an effective dielectric constant e:

GES, Coul — Z % (620)
iz € T

The conversion factor 1 = 332.0716 kcal mol~! A e~2, where e is the magnitude of the

electron charge, allows us to use our preferred units.

The distance-dependent Coulombic energy is usually a better approximation; it
uses an effective dielectric constant that depends linearly on distance, as a rough
approximation of the trend that the interactions of distant atom pairs are more screened

by the high-dielectric solvent than near atom pairs:

qi4q;
Grs, aa = ), ——+— (6.21)
7 €aalri)Ts;
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where

T
€aa(r) = €T (6.22)

For low-resolution electrostatic energy, we use the distance-dependent Coulombic
energy with ¢ = 4, a choice which we shall call “4r dielectric’. This is a common
choice when using CHARMM PARAM19 parameters. The distance-dependent Coulombic
electrostatic term is omitted between atom pairs which are bonded (a “1-2” pair) or
connected via 2 bonds (“1-3”), and is scaled by 0.4 for atom pairs which are connected
via 3 bonds (a “1-4” pair), as intended for the CHARMM PARAMI19 parameter set. This
set of rules for omitting and reducing the electrostatic term is set with the NBXMOD 5

E14FAC 0.4 CHARMM energy parameters.
Medium-resolution Electrostatics

The medium-resolution electrostatic free energy function is the ACE analytical
approximation of Schaefer and Karplus [6], modified as described in Chapter 4 to reduce
its error. The CHARMM PARAM19 topology and parameter sets are used. We used values
of the ACE parameters, « = 1.2 and effective atom volumes V' as given in reference [7]
and distributed with CHARMM version 27a2; they were obtained by minimizing the
solute volume fluctuations for a set of 12 protein structures (i.e. making the sum of
the Gaussian distributions representing each atom’s desolvation as similar as possible to
the step function with value 1 inside the solvent-accessible surface and 0 outside) [55].
We extended the volumes to similar atom types as described in Chapter 4. Internal
and external dielectric constants of ¢, = 4 and ¢, = 80 were used. No salt was used,
although it would be trivial to include salt effects in the future. The medium-resolution

electrostatic energy is not pairwise additive.
High-resolution Electrostatics

The high-resolution electrostatic energy is calculated using FDPB, calculated by the
program DELPHI [3, 4, 5], as described in Chapter 3. Internal and external dielectric
constants of ¢, = 4 and ¢, = 80 were used. As with medium-resolution electrostatics,

no salt was used, although it would be trivial to include salt effects in the future. The
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high-resolution electrostatic energy is not pairwise additive.

For the purposes of the current work, the FDPB continuum electrostatic treatment
is the best model considered. If another model is preferred, it can be substituted
with the overall scheme remaining essentially unchanged. For the work reported here,
AAGEE eppy values converged at a relatively coarse grid (65x65x65 grid points, or

0.8 A/grid), which was used throughout.

We chose the finite-difference grid spacing by finding the coarsest grid spacing at
which AAGEE9pppg, the differences of two states’ electrostatic binding free energies, is
converged. This was not done exhaustively; we tried cubes with 33, 65, or 129 grid points
on a side, and calculated the FDPB electrostatic binding free energy for 4629 structures
found by DEE/A* mutating the “center 3” barstar residues (Asp35, Trp38, Val73). In
Figure 6-9, we see that plotting the AGR{%kppp values for 33 vs. 129 grids/side gives a
standard deviation of 0.840 kcal mol™" from the best-fit line, which does not have slope
1, so we judge that the values of AAGRE%pp are not converged at 33 grids/side. The
figure also shows a similar comparison for 65 vs. 129 grids/side; the standard deviation is
0.304 kcal mol ' from the best-fit line, which has slope 1.01, so we judge that the values
of AAGRE . py are converged at 65 grids/side. Therefore, we use a cube with 65x65x65
grid points.

To ensure that the FDPB program DELPHI calculates all structures on the exact same
grid, we placed 2 dummy atoms (zero charge, zero radius) at opposite corners of a cube
containing all possible library rotamers at all mobile residues. The grid spacing was

about 0.8 A /grid.
Hydrophobic Term

The hydrophobic term is taken to be proportional to the solvent-accessible surface

area (SASA) of the solute molecule(s).

Giyar = (7)(SASA) (6.23)

173



r=0.999,y SD 0.304 fromy = 1.01 x + 5.96

AN
o

w
ol

w
o

N
ol

N
o

[EE
o1

[E
=)

FDPB Binding: 33 grids (green) and 65 grids (blue)
ol

10 20 30 40
FDPB (129 grids) Binding

Figure 6-9: In green, AGRS%:ppp for 33 grids/side (1.6 A/grid) vs. 129 grids/side (0.4
A /grid) shows a standard deviation of 0.840 kcal mol™"' from the best-fit line, which does
not have slope 1. In blue, AGEE%ppp for 65 grids/side (0.8 A/grid) vs. 129 grids/side
(0.4 A/grid) shows a standard deviation of 0.304 kcal mol™" from the best-fit line, which
has slope 1.01 . This demonstrates convergence of FDPB electrostatic binding free energy
differences AAGRE%pppp at 65 grids/side, but not at 33 grids/side. The points of each

color are for the same 4629 mutant structures from DEE/A* on the “center 3” residues
(Asp35, Trp38, Val73). Both dimensions are in kcal mol .
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We used the value v = 5.0 cal mol™" A~2, as used by Sitkoff et al. [93], except where
stated otherwise. We used CHARMM [10] to analytically calculate the solvent-accessible
surface area of the bound and unbound states of every structure, and of the unfolded
model compound for each amino acid type. A probe radius of 1.4 A, representing a water
molecule, was used. (The program msms, with the -—all components option, can usually
get identical results, but we found it to be somewhat unreliable, crashing or infinitely

looping for some combinations of conformation and probe radius.)

The hydrophobic term is not pairwise additive, so it must be omitted from the low-
resolution energy function for use with DEE/A*; but it is included in the medium-
and high-resolution energy functions. It should be noted that approximate solvent
exposure calculations that are pairwise additive have been constructed and could be

added here [94].

The factor v can be considered as the sum of two terms, the cavity term and the
solvent van der Waals term, which are both taken to be proportional to the solvent-

accessible surface area:

Y = Yeav + Yvdw (624)

The cost of creating an uncharged, hydrophobic cavity in the solvent is represented
by the cavity term 7ew =~ +47 cal mol™" A2 (for example, but this value is far
from certain) [12]. The cavity term corresponds most closely to experiments involving
partitioning between oil and water. The van der Waals interaction of the solute
atoms with the solvent are represented by the solvent van der Waals term ~,qw =
—40 cal mol™* A~2) [12]. Of course, a solute molecule immersed in either water or oil
will have about the same van der Waals interaction with either. But, since there are no
explicit solvent atoms in our model, we use a favorable term proportional to the solvent-
accessible surface area, yyaw - (SASA), for the van der Waals between the solute and
solvent. The values cited above for the cavity and solvent van der Waals terms combine

to give +7 cal mol ' A~2, very approximately, for .

There is still confusion and debate on what terms are actually causing the experi-
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mentally observed hydrophobic effect, and on its role in binding and other processes [12].
Some assume the cavity term to be dominated by the entropy change of creating a
cavity in the solvent with the shape of the solute [13]. Others [14] explain it in terms of
hydrogen bonding with water. Water molecules next to a hydrophobic group have higher
free energy than they would if the hydrophobic group were replaced by more water, with
which the waters could make a good hydrogen bond network. So part of the hydrophobic

term is for the solvent’s hydrogen bonds.

We used v = 5 cal mol™" A=2, as used by Sitkoff et al. [93], for most of the results in
this work. But the best value of « is still not clear. Some fits to experimental data get
values around 5 cal mol™" A~2, such as 7.2 cal mol™" A~2 from the non-polar solvation
free energy of neutral small molecules [46], ~ 8 cal mol™* A2 from the solvation free
energies of small apolar molecules [95], and the 7 cal mol * A=2 cited above [12]. Other
experiments obtain values around 25 cal mol™" A~2, the “canonical value” from the
transfer of alkanes from alkane solvent to water [15], which we believe is better understood
as measuring the cavity term. For example, 22.8 + 0.8 cal mol~! A~? from partitioning
of a family of host-guest pentapeptides (Ac-WLXLL) between water and n-octanol [16]
and 34 cal mol™* A~2 from oil-water partitioning, based on water-cyclohexane transfers
of alkanes [17]. The maximum reasonable value for v would be 75 cal mol ' A2, the

macroscopic surface tension of water.

In Section 6.4.1, we assess the effects of v values of 5, 22.8, and 75 cal mol™" A~2 on

the results of a protein redesign.

Definitions of low-, medium-, High-resolution Energy Functions

The low-resolution energy function is pairwise additive so that it can be used with
DEE/A*.
Giow = Geov + Gvaw + GEs, dd (6.25)

The medium- and high-resolution energies are not pairwise additive because of their

electrostatic and hydrophobic terms. The electrostatic terms are the computationally
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expensive part (FDPB being far more expensive than ACE).

Gmed = Geov + Gyaw + Grs, ace + Ghyar (6.26)

Ghigh = Geov + Gvaw + Gxs, ropB + Ghydr (6.27)

Note that the van der Waals term G.qw uses van der Waals radii scaled by 90%; the
“4r dielectric” distance-dependent Coulombic electrostatic term Ggg, qq uses € = 4, and

the hydrophobic term uses v = 5 cal mol ' A? unless otherwise specified.

Binding and Folding Terms

In the preceding sections, we have discussed the terms of the total free energy G.
Previously published design methods have only used a total free energy in the bound
state, G"°""_ to rank structures [85, 86]. In our method, however, we always calculate

terms of the binding free energy AG"? and the folding free energy AG™!.

AGbind = Gbound _ Gunbound (628)

AGfOld = Gunbound _ Gunfolded (629)

Minimizing G**"" will not necessarily minimize AGP™ or AG™4. By calculating
both AGP™ and AG™4 correctly, we have predictions not only of the binding free energy,
but of the stability of the molecules when unbound. This is very valuable because one

need not bother to synthesize a ligand predicted to be unstable.
Binding Free Energy

We must use one energy function with which to rank rotamer states in DEE/A* and

bind

omd. Our procedure is capable of ranking

we choose it to be the binding free energy AG
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on the bound, binding, or folding free energies, or any linear combinations thereof. Later
in the design method, we use the more accurate functions AGHd and AGPE! to rank

the promising rotamer states.

We assume rigid binding; that is, our model of the unbound state separates the two
binding partners by rigidly translating one of the binding partners away from the other
(far enough so they have no interaction). Therefore, the covalent term AGP4 cancels.
For the non-pairwise-additive energy terms Ggs, acr, GEs, ¥prB, and Ghyar, the binding
free energy terms must be calculated for each conformation, but the calculation is a

straightforward subtraction of the bound state free energy term and the unbound state

free energy term.

Self and Pair Terms of the Binding Free Energy for Pairwise Additive

Terms

The pairwise additive energy terms Gyqw and Ggs, 44 break up into self and pair terms
which can be further simplified by the assumption of rigid binding. If all mobile residues
are on the same binding partner, then since the low-resolution energy is pairwise additive,

bind
pair

the binding pair terms AGJ%¢ are all zero, and DEE/A* is actually more powerful than is
required to rank the rotamer states by binding free energy! Recall that the low-resolution
energy is calculated as a sum of constant, self, and pair terms, involving 0, 1, and 2 mobile
residues, respectively (Equation 6.1). The constant subterms of G and Gpd;q — the
van der Waals and electrostatic interaction of all the fixed atoms of one binding partner
with all the fixed atoms of the other — is not calculated because it would not alter the
relative ranking of the mutant conformations. The binding self term for mobile residue
¢ in binding partner “A” involves only the interaction of residue ¢ with the fixed atoms
of the other binding partner “B”:

AGY (1) = Gyaw (i : B) + Grs, aa(i : B) (6.30)

low
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AGEM (. ) = Gvaw (i : j) + GEs, qa(i : j) if 4,7 are on opposite binding partners

1
- 0 if 4, j are on the same binding partner

(6.31)
Folding Free Energy

We use the low-resolution folding free energy AG! in DEE/A* to discard rotamers

and rotamer pairs with very high contributions to the folding free energy (above a cutoff

fold

of 25 kcal mol™!). Later in the design method, we use the more accurate functions AG%Y

and AGfﬁlg‘i to assess the stability of every promising structure.
Unfolded State Model

The unfolded state is modelled as a collection of model compounds totally separated
in solvent. Since only the mobile residues vary amongst all rotamer states considered, and
we discard constant energy terms, we only include the mobile residues in the unfolded
state. For example, if a rotamer state has Trp, Asp, and Asp side chains at the 3
mobile residues, then its unfolded state free energy is the sum of the Trp unfolded model

compound free energy, plus twice the Asp unfolded model compound free energy.

The unfolded model compound for each amino acid type “R” is created as an N-acetyl-
“R” methylamide (CH3-(CO)-(NH)-(C,“R”)-(CO)-(NH)-CHj), with the backbone held
in an extended conformation, and the side chain atoms beyond Cg minimized to
completion using the low-resolution energy function Gy, but with full van der Waals
radii.

To demonstrate why it is vital to compare different mutants using the difference
AGPd = @unbound _ cunfolded pather than simply GP'd or Gurbound  Table 6.2 shows
terms of GUilelded for each amino acid type. Some amino acids, namely tryptophan and
histidine, have significant intra-side chain strain energy with this parameter set. All
tryptophan and histidine side chain conformations in the rotamer library have similar
strain energy. So, when we take the differences AGPnd = (@Gbound _ Guobound o

AGPd = @Guobound _ cGunfolded e} terms cancel out. But if one naively ranked sequences
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by GP°ud | tryptophan and histidine side chains would be unfairly penalized.

Table 6.2: Covalent Energy Terms of Unfolded Model Compounds, broken into intra-side
chain and side chain — backbone interaction terms. (Note: In the CHARMM PARAM19
topology library, “His” is histidine protonated on Ny;; whereas “Hsd” is histidine
protonated on N, .)

amino acid intra-side chain side chain — backbone interaction

Ala 0.00 0.00
Arg 0.36 1.68
Asn 0.09 1.95
Asp 0.01 1.08
Cys 0.00 0.27
Gln 0.10 1.77
Glu 0.06 1.55
Gly 0.00 0.00
His 1.76 1.58
Hsd 5.62 1.09

Ile 0.28 1.25
Leu 0.13 0.95
Lys 0.01 1.68
Met 0.03 1.63
Phe 0.17 1.16
Ser 0.01 0.20
Thr 0.05 0.35
Trp 12.98 1.04
Tyr 0.21 1.16
Val 0.03 0.51

The way that the unfolded model compounds are built does not have a very large effect
on the free energies. We tried using side chains only (the Cs atom and beyond) as the
model compounds, and minimizing as above. Only a few of the intra-side chain energies
changed significantly, compared to the N-acetyl-“R” methylamide model compounds:
Gln by +0.69 kcal mol™", Tle by —0.33 kcal mol™", and all other side chains by less than
0.12 keal mol™'|.

The minimized N-acetyl-“R” methylamide model compounds look reasonable to the
human eye, but we wanted to make sure that the minimization is not being led astray by

the strength of the “4r dielectric” distance-dependent Coulombic electrostatics, which is
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probably too strong for such a small molecule in solvent. So we did minimizations using
only covalent and van der Waals terms, with full van der Waals radii. Only a few of the
intra-side chain energies changed significantly, compared to the minimization which also
included Ggg, qa: Asp by +0.44 kcal mol™!, Hsd by +0.56 kcal mol™", and all other side

chains by less than 0.1 kcal mol™'|.
Folding Thermodynamic Cycle

Figure 6-10 illustrates the definition of the folding free energy. The actual unfolded
state is a poorly-defined ensemble of conformations. In general, the binding partners
may both have mobile residues, in which case we are calculating the folding free energy

of both binding partners.

Figure 6-10: Folding Cartoon. Of course, the unfolded state is actually an ensemble

of states. Blue represents water solvent (¢; = 80); orange represents protein dielectric
(Ei = 4)

—>

B

We assume that, to within a constant energy term, we can represent the unfolded
state by a collection of model compounds for the mobile residues. Therefore, we use the

thermodynamic cycle in Figure 6-11 for the folding of a rotamer state with N mobile
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residues. The thermodynamic cycle connects the unfolded state to the folded state by
desolvating the unfolded state, bringing the atoms to their folded configuration, and then

re-solvating.

AGfOld _ —AGSO]V (unfolded) + AGfOld’ desolvated + AGSO]V(unbOUHd) (632)

The cycle assumes that, for both the solvated and desolvated state free energies:

N

G(unfolded) 2 )~ G(model compound i) + constant (6.33)

=1

All of the terms except the electrostatics are, to within a neglected constant, a
straightforward free energy difference of the folded unbound system and the unfolded

model compounds:

AGPd = 4G, (unbound)
— ¥ | Geov(model compound 7) (6.34)

“+constant

AG{%{%\/ = +G,qw(unbound)
— ¥ Gyaw(model compound 7) (6.35)

“+constant

AG{I"ylgr = +Ghpyqr(unbound)
— 3N, Ghyar(model compound ) (6.36)

+constant

The medium-resolution electrostatic (ACE) folding term can be calculated with ACE
calculations to get the —AG™Y (unfolded) and AG*"(unbound) solvation terms, plus
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Gfold
- - +constant

model compounds

‘ —AGSO unfolded 1 AGSOIVunbound

+constant
/AGf2

fixed atoms

H s
desolvated

model compounds | +constant

AGH\

g

fixed atoms

o - .
- rotamers
fixed atoms
Figure 6-11:  Folding Thermodynamic Cycle. Our unfolded state model

assumes that, for both the solvated and desolvated state free energies,
G(unfolded) = Y, G (model compound i) + constant . Therefore, the solvated and
desolvated unfolded states are replaced in this representation by the set of unfolded
model compounds, plus the fixed atoms (whose energy is constant over all mutants).
Blue represents water solvent (¢; = 80); orange represents protein dielectric (¢ = 4).
The fixed side chains are not shown in this cartoon, but they are always attached to the
backbones.
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Coulombic electrostatics with ¢ = €, = 4 to get the AGPd, desolvated top .

AGRY \op = — 2N AGEY scp(model compound 1)
+AGES acg(folded)
—JrGES, Coul(folded) (637)

— >N Ggs, cou(model compound 1)

“+constant

Note that the Coulombic terms must include all atom pairs (by setting the NBXMOD 0
E14FAC 1 CHARMM energy parameters), as FDPB and ACE do, as opposed to the NBXMOD
5 E14FAC 0.4 behavior described above for the van der Waals and distance-dependent

Coulombic terms.

For the FDPB electrostatic term only, it is convenient to split up
AGHW, desolvated _ A\l 4 AGE2 4 constant (6.38)

as shown in Figure 6-11. The term AG" is the free energy of removing the mobile side
chains from their model compound backbones and changing their conformation to that
in the folded state, all while desolvated. This can be calculated simply with Coulombic

electrostatics with ¢ = ¢, = 4.

AG™ + constant = + 3%, GsOEed (rotamer i)
— >N, Gigelated (model compound i) (6.39)

+constant

By “rotamer ¢, we mean the atoms of mobile side chain number 3.

FDPB calculations can obtain the —AG®! (unfolded) solvation term:

—AG®" (unfolded) = —¥N, AG%‘,’a}?B%B(model compound 1) (6.40)
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AG™ is the unscreened interaction of the mobile side chains with the fixed atoms.

FDPB calculations can obtain AG? + AG*°" (unbound):

AG? + AG=™(unbound) = +Gsaed (folded)
—Gigsolvated (fixed atoms) (6.41)

— N | Gdeovated (rotamer 1)
Putting these terms together (we will simplify this expression below):

AGEY by = —AG™" (unfolded)
+AG™! + constant
+AG? 4+ AG**" (unbound)
= -¥¥, AGys by (model compound i)
+Golvated (folded) (6.42)
—Gesolvated (fixed atoms)
— N | Geolvated (rotamer 1)
+ TL, Gigelkated (rotamer i)
- GEgeeaed (model compound )

“+constant

AGE B (model compound ) is obtained, for each amino acid type used by any
rotamer %, from FDPB; the free energy difference of the solvated state (internal, external

dielectric constants ¢ = 4, €, = 80) and the desolvated state (i = 4, €5 = 4).

Gsdvated (folded) is obtained by FDPB (¢ = 4, ¢; = 80). A FDPB result such as this
one, which is not a difference of two runs with the charges in the exact same locations,

contains the true electrostatic free energy, plus a fictitious “grid energy”:

G sspp (folded) = G (folded) + Gigria(folded) (6.43)
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The grid energy is decomposable into atomic contributions, each of which depends only
on the atom’s position, the dielectric constant at its location, and the placement of the

finite-difference grid:

N
Ggria(folded) = Ggria(fixed atoms) + > Ggria(rotamer ) (6.44)
i=1
Since we use the same finite-difference grid for all rotamer states, Ggiq(fixed atoms) is

a constant, and so is ignored. The YN | Ggiq(rotamer i) terms will be cancelled out by

the same terms in the GE&ovated (rotamer 4) terms.
Gigsolvated (fixed atoms) is a constant, and so is ignored.

Giesolvated (rotamer ) is obtained by FDPB (¢ = 4, ¢; = 4). The FDPB result also

contains a grid energy which will cancel out in the end:

GdE"SS,"lIX%tS%(rotamer i) = Gisolvated (rotamer i) + G4 (rotamer 7) (6.45)

Ggoeed (folded) and GRgog (model compound 7) are obtained by a simple cal-
culation of Coulombic electrostatics, because ¢, = ¢ = 4 in all space. Note that
this Coulombic term must include all atom pairs (by setting the NBXMOD 0 E14FAC 1
CHARMM energy parameters), as FDPB and ACE do, as opposed to the NBXMOD 5 E14FAC
0.4 behavior described above for the van der Waals and distance-dependent Coulombic

terms.

Simplifying, we get:

fold _ N solvatio ;
AGE ppps = — X1t AGERESE s (model compound 1)
+GSE°SI,V3“1§%1PB (folded)

N desolvated :
— = GES, rhpp (Totamer i)

+3N, GdEeSS,Ol(Vjﬁfﬁd (rotamer %)

- YN, GEgegaed (model compound i)

(6.46)

“+constant
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where every term is obtainable by either FDPB or Coulomb’s law.

Self and Pair Terms of the Folding Free Energy for Pairwise Additive

Terms

The pairwise additive terms AGRM, AGRI,, and AGEY! 44 are calculated as sums of
self and pair terms. The unbound self energy term for mobile residue 7 in binding partner
“A” involves the interaction of residue ¢ with itself and with the fixed atoms of its own
binding partner “A”. Likewise for the unfolded self energy term, except that the fixed
atoms in the unfolded state consist of only the model compound backbone (“bb” in the
equations).

A Gfold( ) Gunbound ( ) + Gunbound( ) ( Gunfolded( ) + Gunfolded( bb)) (6 47)

low low low low low

The covalent term AGX4 appears only in the self terms, not the pair terms, since no

2 mobile residues are within 3 bonds of each other.

0 if 4, j are on opposite binding partners
AGfOld(l ]) g

low

Gyaw (i : j) + Grs, aa(? : j) 1if 7,7 are on the same binding partner
(6.48)

6.4 Results and Discussion

6.4.1 Results for Barnase/Barstar “Center 3” Redesign

We used the methods described above to redesign the “center 3” residues of barstar
(Asp35, Trp38, Val73) for optimal binding to barnase. Three-stage DEE/A* (see
Section 6.3.3) was run to rank sequences, and to rank up to 10 structures for each
sequence, by low-resolution binding energy. Before DEE elimination of single rotamers
and rotamer pairs, rotamers and rotamer pairs were eliminated by cutoffs of 25 kcal mol !

applied to the self and pair terms of the low-resolution binding and folding energies.
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Low-Resolution Energy Function

DEE/A* found 481 sequences with low-resolution binding energy within 30 kcal mol !
of the minimum. (There are 20> = 8000 total possible sequences.) Each sequence was
represented by up to 10 structures, so there were 4629 total structures. The amino acids
that these 481 sequences have at the 3 mobile residue positions is shown in Table 6.3. Of
these 3 positions, only residue 73 has much solvent exposure in the bound state, but all
3 positions sample many amino acid types. This diversity of amino acid types is made
possible by our three-stage DEE/A* procedure, because the first stage can produce a
long list of sequences, and the second stage keeps the total number of structures under

control by only keeping 10 fleximer states per sequence.

Table 6.3: Amino Acid Frequency in the 481 sequences within 30 kcal mol~! of the
minimum binding energy found by DEE/A* for the “center 3” barstar residues (Asp35,
Trp38, Val73). The wild-type amino acids are shown in boldface.

Amino Acid | barstar 35 barstar 38 barstar 73
ALA 7 18 23
ARG 17 24
ASN 76 19 27
ASP 340 52 41
CYS 12 18 23
GLN 22 33
GLU 47 76
GLY 3 17 22
HIS 25 26
HSD 23 22
ILE 18 23
LEU 19 24
LYS 18 23
MET 19 25
PHE 26
SER 13 18 23
THR 27 18 23
TRP 42
TYR 28
VAL 3 17 23
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The top of the list of sequences, as ranked by low-resolution binding energy, is
shown in Table 6.4. The low-resolution binding energy function favors sequences with
as much negative charge on barstar as possible. Such sequences get a favorable direct
interaction with the net positive charge of barnase, but the low-resolution energy function
has no desolvation penalty for the shielding of the charged groups from solvent by the
binding partner, nor does it have a penalty for the enhancement of the negative charges’

interactions with each other upon binding.

Medium-Resolution Energy Function

Medium-resolution binding and folding energies were then calculated for all 4629
structures. The beginning of the list of sequences sorted by medium-resolution binding
energy is shown in Figure 6.5. Using this energy function which includes the desolvation
penalty and indirect interaction binding terms, sequences with maximum negative charge
are no longer given the best binding energies, in contrast to the low-resolution energy

function.

The medium- vs. low-resolution binding energies are plotted in Figure 6-12. They are
strongly correlated, but the color-coding, by total charge of the mobile residues, shows
that the low-resolution binding energy incorrectly favors some structures with -3 and
-2 charge. These could be called “false positives,” because the low-resolution energy
function scored them favorably, but the medium-resolution energy function found them
to be unfavorable. On the other hand, there are no “false negatives” (these would appear
as points in the lower right of Figure 6-12). A lack of false negatives is a very good feature
in a low-resolution energy function, because it makes it possible to use the low-resolution
energy function as a screen to determine which structures to pass along to the better
energy functions. A false positive only costs a little extra computation before the better
energy function finds it unfavorable, at which point it can be discarded. A false negative,

on the other hand, is a desirable structure which may never be found if one can not
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Table 6.4: Barstar “center 3” sequences sorted by low-resolution binding energy relative
to the wild type AAGPNd = AGPnd — AGPM(wildtype). The wild-type sequence is
shown in boldface; it appears in the list, but is also shown at the beginning of the table
for reference. Note that “H” and “h” are HIS and HSD, the PARAM19 forms of histidine
protonated on the Ny and the N, atoms, respectively. For clarity, every position which

matches the wild type is shown as a blank space.

AAGPRd Sequence AAG%{,‘Vd Sequence
(kcal mol™1) 35 38 73 (kcal mol ™) 35 38 73
Wild type: -2.15 E L

0. DWYV -1.99 E R
In order of low-res. binding: -1.90 E I
-12.35 D E -1.90 Y Q
-11.72 E E -1.85 DT
-10.63 E -1.76 H
-8.89 Y E -1.71 D
-7.73 F E -1.69 D S
-7.62 D D -1.45 D K
-7.39 H E -1.44 M
-7.03 h E -1.43 D C
-6.99 E D -1.22 ET
-5.91 D -1.11 D A
-5.64 Q E -1.08 E
-5.36 D Q -1.07 L
-4.73 E Q -1.06 E S
-4.24 D N -0.93 D G
-4.16 Y D -0.91 QD
-4.05 N E -0.91 R
-3.98 M E -0.82 E K
-3.69 L E -0.82 I
-3.65 Q -0.80 E C
-3.61 E N -0.78 Y N
-3.48 D H -0.78 K E
-3.15 D M -0.75 F Q
-3.01 F D -0.58 C E
-2.85 E H -0.49 D h
-2.78 DL -0.48 E A
-2.66 H D -0.40 H Q
-2.62 D R -0.30 E G
-2.54 T E -0.27 I E
-2.54 D I -0.14 T
-2.53 N -0.05 h Q
-2.52 E M -0.02 Y H
-2.35 S E 0. DWYV
-2.31 h D
AN
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Table 6.5: Barstar “center 3” sequences sorted by medium-resolution binding energy
relative to the wild type AAGPRn, = AGPnd —— AGPnd (wildtype). The wild-type
sequence is shown in boldface; it appears in the list, but is also shown at the beginning
of the table for reference. Note that “H” and “h” are HIS and HSD, the PARAM19 forms
of histidine protonated on the Ng; and the N, atoms, respectively. For clarity, every

position which matches the wild type is shown as a blank space.

AAGHN. Sequence
(kcal mol 1) 35 38 73
Wild type:

0. DwWYV
In order of medium-res. binding:
-9.76

-8.10 Y
-6.82 F
-4.18
-3.84
-3.39
-3.30
-2.98
-2.53
-2.49
-2.02
-1.95
-1.95
-1.71
-1.67
-1.60
-1.51
-0.67
-0.64
-0.51
-0.25
-0.13
-0.08
0.

o< & 2 o~km =
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afford to consider many more of the structures that the low-resolution energy function

finds unfavorable.

High-Resolution Energy Function

High-resolution binding and folding energies were then calculated for all 4629 structures.
The beginning of the list of sequences sorted by high-resolution binding energy is shown

in Figure 6.6.

The high- vs. medium-resolution binding energies, plotted in Figure 6-13, are strongly
correlated, and the error does not correlate with the total charge as it did for the medium-
vs. high-resolution data (the lines on the plot are discussed in Section 6.4.2, and may be

ignored for now).

Electrostatic Binding Energy

The low-, medium-, and high-resolution energy functions all have the same covalent and
van der Waals terms, and differ only in their hydrophobic and electrostatic terms. To
clarify the source of their differences, we compare their electrostatic terms only. In
Figure 6-14, the color-coding of FDPB vs. “4r dielectric” binding electrostatics data
shows that, for each total charge, the correlation is fairly good; the largest source of error
is a function only of the total charge. As stated earlier, this error is caused by the low-
resolution “4r dielectric” electrostatic energy’s lack of desolvation penalties and indirect
interaction binding terms. The FDPB vs. ACE binding electrostatics data, shown in

Figure 6-15, have much better correlation.

Folding Energy

The low-, medium-, and high-resolution folding energies are shown in Figures 6-16 and 6-
17 (the lines on the latter figure are discussed in Section 6.4.2, and may be ignored for

now). The medium- vs. high-resolution folding energies are very well correlated. Again,
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Table 6.6: Barstar “center 3” sequences sorted by high-resolution binding energy relative
to the wild type AAGREE = AGYR! — AGP (wildtype).  The wild-type sequence is
shown in boldface; it appears in the list, but is also shown at the beginning of the table
for reference. Note that “H” and “h” are HIS and HSD, the PARAM19 forms of histidine
protonated on the Ny; and the N, atoms, respectively. For clarity, every position which
matches the wild type is shown as a blank space.

AAGRR Sequence

(kcal mol 1) 35 38 73
Wild type:
0. DWYV
In order of high-res. binding:
-4.05
-2.20
-2.19
-2.13
-1.62
-1.51
-1.08
-1.01
-0.91
-0.88
-0.47
-0.43
-0.23
-0.11
0.
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Figure 6-14: FDPB AGR{%ppp vs. “4r dielectric” distance-dependent Coulombic
AGP2d44 electrostatic binding free energy for 4629 mutant structures from DEE/A*
on the “center 3” residues (Asp35, Trp38, Val73). Structures are colored by the charge of
these three residues. The color-coding shows that, for each total charge, the correlation
is fairly good; the largest source of error is a function only of the total charge. Structures
with the wild-type sequence are shown as green “X”s. The FDPB electrostatic term uses
0.8 A/grid. Both dimensions are in kcal mol™".
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Figure 6-15: FDPB AGR:ppp vs. ACE AGRE?, (g electrostatic binding free energy
for 4629 mutant structures from DEE/A* on the “center 3” residues (Asp35, Trp38,
Val73). Structures with the wild-type sequence are shown as red diamonds. The FDPB
electrostatic term uses 0.8 A/grid. The correlation coefficient is » = 0.902. Both
dimensions are in kcal mol=!.
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there are no false negatives (which would appear as points in the lower right of these

plots).

It is helpful to consider the distribution of the structures in the two dimensions of
binding and folding energy, as shown in Figures 6-18, 6-19, and 6-20 for the low-, medium-,
and high-resolution energy functions. On such a plot, the promising structures are in the
lower left corner. That is, they are not much above the wild type in folding energy, and
they bind as tightly as possible (are as far left as possible). The most striking thing about
Figures 6-19 and 6-20 is that 2 structures with the wild-type sequence are in the extreme
lower left corner; i.e., the wild-type sequence is predicted to be a very tight binder and

folder.

Use of Wild-Type Folding Stability

Our energy functions were developed to compare binding and folding free energies of
different structures, not to calculate absolute binding or folding free energy values. In
order to make use of our calculated folding free energies, we take the known experimental
folding stability of wild-type barnase and barstar as a reference. The experimental free
energy of folding for barstar in water is -5.28 kcal mol™', and slightly more stable, -
5.88 kcal mol™!, in 300 mM NaCl [34]. Proteins typically have folding free energies in
the range -5 to -15 kcal mol™!; since barstar is on the less stable side of that range,
redesigned structures that are predicted to be less stable than the wild type are not
promising candidates. Therefore, we have chosen to screen the structures with the
following criterion: the high-resolution folding free energy must be no more than one

kcal mol~! worse than wild type.

Of the six structures representing the wild-type sequence (shown in Figure 6-21), two
of them have much better folding energy than the others. One of these two has the best
binding energy by a small margin, and this is the structure we chose to represent the

wild-type sequence. Its structure is very similar to the crystal structure.
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Figure 6-16: Medium-resolution AG®Y vs. low-resolution folding AG™! energy for

4629 mutant structures from DEE/A* on the “center 3” residues (Asp35, Trp38, Val73).

Structures are colored by the charge of these three residues. Structures with the wildtype

sequence are shown as green “X”s. The energy on each axis has an arbitrary constant

term.
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Figure 6-17: High-resolution AG¥ 4 vs. medium-resolution folding AGXY energy for

hi
4629 mutant structures from DEE/?A* on the “center 3” residues (Asp35, Trp38, Val73).
Structures are colored by the charge of these three residues. Structures with the wild-
type sequence are shown as green “X”s. The lines illustrate the protocol in Section 6.4.2:
The slanted line is an empirical lower bounding line; there are no points below the
line, and therefore no “false negatives”. To get every structure whose AG{{}{;} is within
4 = 7 keal mol™" of the minimum (below the horizontal line segment), only structures
with AGRE, below a cutoff (to the left of the vertical line) need to have their AGiSS,
calculated. The energy on each axis has an arbitrary constant term.
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Figure 6-18: Low-resolution folding AG®4 vs. binding AGPn energy for 4629 mutant
structures from DEE/A* on the “center 3” residues (Asp35, Trp38, Val73). Structures
with the wild-type sequence are shown as red diamonds. The energy on each axis has an

arbitrary constant term. Both dimensions are in kcal mol~!.
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Figure 6-19: Medium-resolution folding AG®Y vs. binding AGP{ energy for 4629
mutant structures from DEE/A* on the “center 3” residues (Asp35, Trp38, Val73).
Structures with the wild-type sequence are shown as red diamonds. The energy on
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Figure 6-20: High-resolution folding AG3, vs. binding AGY energy for 4629 mutant
structures from DEE/A* on the “center 3” residues (Asp35, Trp38, Val73). Structures
with the wild-type sequence are shown as red diamonds. The energy on each axis has an

arbitrary constant term. Both dimensions are in kcal mol 1.
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Figure 6-21: DEE/A* Redesign of “center 3” Residues: Structures with Wild-type
Sequence DWV. Barnase and the interfacial waters are shown as surfaces colored by
element. We are looking through barnase, which is invisible except for side chains
that bury solvent-accessible surface area upon binding. The “center 3” barstar residues
(Asp35, Trp38, Val73) are shown in fat licorice. The crystal structure positions are shown
in green. The 6 DEE/A*-designed structures with the wild-type sequence are colored by
element. They are very much like the crystal structure, except that some of them rotate
Val73.
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Prediction of Stable Tight-Binding Structures

To represent each sequence with a single set of values for the binding and folding free
energies, we use the structure with the best high-resolution binding free energy from
among from among those whose high-resolution folding free energy is no more than one
kcal mol ! worse than wild type. Out of the 4629 structures shown as points on Figure 6-
20, this leaves only the six points on Figure 6-22. The final result of our design procedure
is this small collection of promising sequences. The information in Figure 6-22 is also

shown in Table 6.7.

Table 6.7: Barstar “center 3” sequences found with good high-resolution binding and
folding. (For each sequence, the structure with lowest high-resolution binding free energy,
which also has high-resolution folding free energy no more than one kcal mol~" worse than
wild type, is used.) They are sorted by high-resolution binding free energy relative to the
wild type AAGPR = AGPR — AGR (wildtype). The high-resolution folding free energy
is also shown relative to the wild type. The wild-type sequence is shown in boldface; it
appears in the list, but is also shown at the beginning of the table for reference. For
clarity, every position which matches the wild type is shown as a blank space.

AAGRE  AAGRS, Sequence

(kcal mol 1) 35 38 73
Wild type:
0. 0. DWYV
Good folders in order of binding:
-1.77 -0.10 Q
-0.28 -0.40 I
-0.24 -0.99 M
-0.13 0.67 L
0. 0. DWYV
2.56 -3.61 R

Wild-type Sequence Asp35, Trp38, Val73

The wild-type sequence does very well, ranking #5 out of 8000 possible sequences (20?).
Furthermore, as stated above, the best structure with the wild-type sequence is very
similar to the crystal structure. So, at the end of our procedure, we have a structure very

much like the crystal structure ranked 5th out of 3x10'% possible structures (30983)!
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Figure 6-22: High-resolution folding AGS, vs. binding AGPR energy from DEE/A*
on the “center 3” residues (Asp35, Trp38, Val73). For each sequence, we only kept the
best-binding structure with folding no more than one kcal mol~! worse than the wild-type
sequence structure shown as a red diamond (AG, < AG, (wildtype)+1 keal mol ™).
The sequences shown are the only ones that meet this criterion. Each point is labelled
with the sequence of positions 35, 38, and 73. The energy on each axis has an arbitrary

constant term. Both dimensions are in kcal mol~".
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If we rank the sequences by binding energy using the best-binding structure for each
sequence, then, as we go from low- to medium- to high-resolution energy functions, the
ranking of the wild-type sequence’s binding energy improves from #67 to #24 to #14.
And the ranking of the wild-type sequence’s folding energy improves from #70 to #11
to #14.

Promising Non-Wild-type Sequences

There are only 4 non-wild-type sequences with high-resolution binding as good as wild
type, and high-resolution folding no more than 1 kcal mol™" worse than wild type. (See
Table 6.7.) They are all single-position mutants, with barstar’s short Val73 side chain
mutated to Gln, Ile, Met, or Leu. Only the Val73Gln mutant, pictured in 6-23, has
significantly better binding (by —1.77 kcal mol !). The power of DEE is that it considers
all possible combinations of rotamers, but in this case, the few promising mutations are

single-residue mutations.

The charge optimization study of Lee and Tidor [89] sought to optimize the atomic
charges on barstar’s side chains, with its shape held constant. They found that binding
was best when Val73 had a 0 charge, as opposed to a —1 or +1 charge, but the optimized
charges on Val73 were +0.85 on CB, —0.46 on CG1, and —0.39 on CG2. These optimized
charges form a strong dipole to interact well with barnase Arg39. In hindsight, this result
strongly suggests that a favorable electrostatic interaction is possible at this position. But
with the protein shape held constant, Lee and Tidor could only conclude that Val73 was
close to optimal, because it had the optimal total charge of 0, and because the optimized
charges only gave a small benefit of < 1 kcal mol~! over the all-zero charges of the wild-
type Val73. Our present study, which gives the side chains the freedom to move and grow
larger, predicts that the polar GIn73, oriented to interact well with barnase Arg39, will

improve binding and not hurt folding.

The —1.77 kcal mol™! binding improvement of the Val73GIn mutation is mostly
from the van der Waals term (—1.71 van der Waals, +0.02 hydrophobic, —0.08 FDPB
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Figure 6-23: DEE/A* Redesign of “center 3” Residues: Best Structure with Sequence
DWQ. Barnase and the interfacial waters are shown as surfaces colored by element. We
are looking through barnase, which is invisible except for side chains that bury solvent-
accessible surface area upon binding. The “center 3” barstar residues (Asp35, Trp38,
Val73) are shown in fat licorice. The crystal structure positions are shown in green.
The DEE/A*-designed structure with the sequence DWQ is colored by element. This
sequence differs from the wild type by the mutation Val73Gln. The GIn73 is positioned
to interact with barnase Argb9 (visible here as the 3 blue patches arranged in a triangle

at the top of the barnase surface). 508



electrostatics); but this does not mean that the electrostatics are not important.
Consider the mutation Val73Met: the medium-sized, hydrophobic Met73 is roughly like
a hydrophobic isostere of GIn73. The Val73Met mutation improves binding by only
—0.24 kcal mol™" (—0.84 van der Waals, +0.01 hydrophobic, 0.60 FDPB electrostatics).
That +0.60 kcal mol ™! electrostatic cost of desolvating this region is offset in the case of
GIn73 by a favorable electrostatic interaction. The moral is that the charge distribution

is important, even if the net electrostatic binding energy difference is zero.

Minimization

As a test of whether the rotamer library is fine enough, we minimized all 4629 structures
found by DEE/A* in the design of the “center 3” barstar residues, and then re-calculated
their high-resolution energies. The minimization was done on the bound state, with only
the mobile side chains allowed to move, using the low-resolution energy function Gjoy

but with full van der Waals radii.

The folding energies of many conformations improve after minimization, as shown in
Figure 6-24, due mainly to improved van der Waals in the bound state. Conformations
with folding energies on the upper, unfavorable, end of the range of values before
minimization drop down into the lower, favorable, end of the range. For most
conformations with folding energies in the lower end of the range, the value does not
change as much after minimization. This demonstrates that some conformations had
van der Waals clashes which minimization relieved, but most conformations did not have

major van der Waals clashes.

After all structures were minimized, we calculated high-resolution energies for all
structures, and screened the sequences using the high-resolution energies of the minimized
structures. Each sequence was represented by its best binding structure which folds no
more than one kcal mol~! worse than wild type. The most promising structures are
shown in Table 6.8, which should be compared to the same list from before minimization,

Table 6.7. The only major change is that the single-position mutant Val73His now
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Figure 6-24: High-resolution folding free energy AG}3 before and after minimization,

for 4629 mutant structures from DEE/A* on the “center 3” residues (Asp35, Trp38,
Val73). Both axes are in kcal mol™' and have the same arbitrary constant term.
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appears as a promising sequence, with predicted binding affinity 1. kcal mol™! tighter
than the wild type. All of the structures of this Val73His mutant have a van der Waals
clash between the His73 and Leu34 side chains of barstar. The histidine conformations
in the rotamer library we used are not spaced finely enough to fit a histidine in this
position, whereas minimization finds such a fit. After minimization, the electrostatic
term of the binding free energy for the Val73His mutation is about the same as for the
hydrophobic mutation Val73Met (+0.52 kcal mol™"). The Val73His mutation improves
binding by —1.05 kcal mol™" mainly by making a better steric fit (—1.57 van der Waals,
+0.01 hydrophobic, +0.52 FDPB electrostatics).

Table 6.8: Barstar “center 3” sequences found with good high-resolution binding and
folding after minimization. Minimization followed by high-resolution energy calculation
was done on all 4629 conformations of the 481 sequences within 30 kcal mol~! of
the minimum low-resolution binding energy before minimization AGPRd.  They are
sorted by high-resolution binding energy after minimization, relative to the wild type
AAG ™ = AGpst™™ — AGpie™™ (wildtype). The high-resolution folding energy
is also shown relative to the wild type. The wild-type sequence is shown in boldface; it
appears in the list, but is also shown at the beginning of the table for reference. Note
that “H” and “h” are HIS and HSD, the PARAM19 forms of histidine protonated on the
Ns1 and the N atoms, respectively. For clarity, every position which matches the wild
type is shown as a blank space.

AAGE;gﬂ’m‘m AAGﬁﬁ;mlm Sequence
(kcal mol 1) 35 3873
Wild type:
0. 0. DWYV
Good folders in order of binding, after minimization:
-2.43 -0.09 Q
-1.05 0.20 H
-0.36 0.19 M
-0.16 -1.97 I
-0.03 0.62 h
0. 0. DWYV
2.65 -1.31 R
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Computational Expense

For each variant structure of barnase/barstar, calculating the low-resolution binding
and folding energies takes a small fraction of a second on a 1 GHz Intel Pentium III.
Calculating the medium-resolution energies takes 10 seconds for each structure; most of
this time is for ACE calculations of solvation energies in the bound and unbound states.
Calculating the high-resolution energies takes 29 minutes for each structure; most of
this time is for FDPB calculation: 10 translations each, with 65 grids/side, of (4 + N)
configurations (bound with each binding partner charged, unbound with each binding

partner charged, and a separated desolvated state of each of the N mobile side chains).

Note that recompiling DELPHI with the Intel Fortran compiler, which optimizes the
code for use on Intel x86 processors, reduces its run time by a factor of about 0.5.
Using an improved DELPHI wrapper script (unpublished code, improved by David F.
Green) reduces its run time by another factor of about 0.5. Before it was improved,
a significant portion of the total run time was taken up by the wrapper script, which
sets up the charges on the grid, calculates energy terms as sums over the point charges,
etc. (everything except for the actual finite-difference solution, which DELPHTI itself does).
These two improvements combined reduce the DELPHI run time to 7 minutes per rotamer

state, still 42 times longer than ACE.

Results for Barnase/Barstar “center 3” Redesign with Higher Hydrophobic
v Coefficient

The preceding results for the redesign of the “center 3” barstar residues (Asp35, Trp38,
Val73) used a hydrophobic parameter of v = 5 cal mol ' A2, Because this parameter
is not generally agreed upon, and as a test of our method’s robustness, we repeated
the ligand design procedure with the values 22.8 and 75 cal mol™" A=2. The final
results, which should be compared to Table 6.7, are shown in Tables 6.9 and 6.10. The
top 5 sequences are in the exact same order for v = 5 and 22.8 cal mol ! A2, For

75 cal mol™' A~2, the top 5 sequences are the same, but are slightly reordered, with
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their AAGEE}? changed by less than 0.3 kcal mol™'. (The high hydrophobic term has
more of an effect on their folding free energies than their binding free energies, favoring
the larger side chains by up to 3 kcal mol™ or more.) The insensitivity of our ligand
design method to the choice of v does not just show that the choice is unimportant; it also

demonstrates the robustness of our method under perturbations of the energy function.

Table 6.9: Barstar “center 3” sequences found with good high-resolution binding and
folding, using hydrophobic v = 22.8 cal mol™* A=2. Compare to Table 6.7 for v =
5 cal mol™* A2,

AAGRE AAGRS,  Sequence

(kcal mol™!) 35 38 73
Wild type:
0. 0. DWYV
Good folders in order of binding:
1.72 -0.81 Q
-0.28 -0.88 I
-0.22 -1.95 M
-0.07 -0.05 L
0. 0. DWYV
2.56 -0.44 R
4.46 -0.25 F R
4.76 -0.28 Y R

6.4.2 Hierarchical Screening Protocol

In this section, we describe a protocol that uses the low-, medium-, and high-resolution
energies as successive screens to reduce the number of high-resolution energy calculations
required. The protocol was developed in an attempt to find all of the rotamer states with
good high-resolution binding and folding without actually calculating all of the high-
resolution energies. It is founded on the observed correlation, and lack of false negatives,

of the low-, medium-, and high-resolution energies for the “center 3” redesign.

The correlation of Glow and Greq With Ghign allows our algorithm to determine which

rotamer states have low-resolution energies promising enough to warrant a medium-
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Table 6.10: Barstar “center 3” sequences found with good high-resolution binding
and folding, using hydrophobic v = 75 cal mol™' A~2. Compare to Table 6.7 for
v =5 cal mol™" A=2,

AAGRRS  AAGRS, Sequence

(kcal mol™1) 35 38 73
Wild type:
0. 0. DWYV
Good folders in order of binding:
-1.56 -2.88 Q
-0.51 -0.76 M
-0.26 -2.28 I
0. 0. DWYV
0.11 -2.13 L
2.59 -10.80 R
2.71 -1.71 K
4.10 -3.43 F R

resolution energy calculation, and then which states have medium-resolution energies

promising enough to warrant a high-resolution energy calculation.

Empirical Relationship of Medium- to High-Resolution Energies

Consider the data in Figure 6-13: the slanted line on the plot is an empirical lower
bounding line; there are no points below the line, and therefore no false negatives, or

structures with very poor AG"24 but very good AGEIg‘ﬁ. So with this data, to be sure

med
to get all structures whose AGR! is within, for example, 7 keal mol " of the minimum

bind

ond below a cutoff (i.e.,

(i.e., below the horizontal line segment), only structures with AG
to the left of the vertical line) need to have their AGPE! calculated.
Based on the data in Figure 6-13, we chose the empirical bounding line for the high- vs.

bind

medium-resolution binding energies to have slope m*™ = 0.4 and to pass 2 kcal mol™

below the lowest point. Similarly, based on the data in Figure 6-17, we chose the empirical
bounding line for the high- vs. medium-resolution folding energies to have slope mfd =

0.8 and to pass 5 kcal mol™* below the lowest point.

Of course, to determine these empirical bounding lines, we calculated the high-

214



resolution energies for all the same conformations as the medium-resolution energies.
Now, for other DEE/A* redesign experiments, particularly those with more structures to
consider, one could simply use this protocol to save on high-resolution energy calculation

time.

Description of Hierarchical Screening Protocol

DEE/A* makes a list of rotamer states sorted by low-resolution binding energy (it is
computationally inexpensive to make this list longer than needed, or to extend it if
needed). Since the low-resolution energy function can favor over-charging the binding
interface, we employ a simple method which quickly finds out if some values of the total
charge get good low-resolution energies but poor high-resolution energies: the list of
rotamer states found by DEE/A* is sorted into separate lists for each value of the total
charge, and these list are then interleaved. The effect is to consider, for each value of
the total charge, the one structure with the best low-resolution binding energy, then the

second best structure for each charge, and so on.

For each rotamer state on this sorted and interleaved list, medium-resolution energies
are calculated. Then, for the first structure considered, high-resolution energies are
calculated immediately. For subsequent structures, however, high-resolution energies are
only calculated if both the binding and folding medium-resolution energies pass cutoffs.
These cutoffs are represented as vertical lines in Figures 6-13 and 6-17. Throughout the
screening procedure, these cutoffs are updated whenever a new minimum high-resolution

binding or folding energy is found.

In order to save on computation time for medium-resolution as well as high-resolution
energies, several criteria are used to determine when a given value ¢ of the total charge
is not expected to have any more medium-resolution energies promising enough to merit
a high-resolution energy calculation. After the criteria are met, all structures with that
charge ¢ are discarded. The criteria are (i.) that at least 20 structures with charge ¢ in

a row have had unpromising medium-resolution energies, (ii.) that at least 30% of all
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the structures with charge ¢ considered so far have had unpromising medium-resolution
energies, and (iii.) that we have proceeded up the list far enough that the low-resolution
binding energy is at least 2 kcal mol~! beyond that of the last structure which had
promising medium-resolution energies. Pseudo-code for the detailed protocol is given in

Figure 6-25.

Results of Screening Protocol on Barnase/Barstar “Center 3” Redesign

We chose to do the “center 3” system’s redesign first, because it has few enough structures
that low-, medium-, and high-resolution energies can be calculated for all structures. This
allowed us to develop a screening protocol which can be applied to design experiments

with many more structures.

We applied the screening protocol described above to the redesign of the “center 3”
residues of barstar, setting for the protocol the goal of finding all structures within 7
kcal mol~! of the minimum for both the binding and folding high-resolution energy.
The choice of 7 kcal mol~! was arbitrary, except that we wanted the the structures
sought by the protocol to include the wild type. The performance of the protocol is
depicted in Figure 6-26. In green are the 36 structures which we aimed to find with
the protocol; i.e., those within 7 kcal mol™ of the minimum for both the binding and
folding high-resolution energy. The protocol only calculates high-resolution energies for
the 1099 structures shown in black or green, and does not calculate them for the rest of
the 4629 structures, shown in blue. So, the protocol significantly reduced the number of
high-resolution energy calculation required in this case, from at least 4629 down to 1099,

while still succeeding in finding the 36 structures of interest.

Validation of Screening Protocol on gp41 Redesign

Having determined the empirical bounding lines assumed by the screening protocol using
data from the redesign of the “center 3” residues of barstar, we next chose an unrelated

protein binding system in order to validate the screening protocol. This second system
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Figure 6-25: Pseudo-Code for Hierarchical Screening Protocol

The goal is to find all rotamer states k with AGPind(k) within ¢”™? (e.g., 7 kcal mol ') of
the minimum, min(AGPR); and AG (k) within ¢ (e.g., 7 keal mol™!) of the minimum,
min(AGfﬁ}ﬁl).

We found empirically that all points on a plot of AGPIES vs. AGP2{ lie above a bounding line of

slope m®™d = 0.4 passing b*™® = 2 kcal mol ™" below the point with minimum AGPR. So we do
not need to consider rotamer states k with AGP"d(k) > AGPind where

med med, cutoff?
i . . . B bind bind
AGPR o = (AGYIRS of state with minimum AGPIN) + ——Fh—

We also found empirically that all points on a plot of AGfﬁl 1 vs. AG™! lie above a bounding line

of slope m™? = 0.8 passing ! =5 kcal mol™" below the point with minimum AG{%,. So we do
not need to consider rotamer states k with AGRM, (k) > AGRMY, | ¢, where
AGRE cutorr = (AGRE, of state with minimum AGJR,) + %

1. Beginning with the list of structures from DEE/A*, sorted by low-resolution binding energy,
break the list up by total charge, and interleave these lists.

2. Going through the list, for each rotamer state k:

(a) Calculate its medium-resolution energies AGEn¢(k) and AGR!4 (k). Increment

Ncale, med(g(K)), the total number of medium-resolution energies calculated so far for integer charge
q(k) of the mobile residues for state k

(b) If its medium-resolution energies look promising; i.e. (AGHad(k) < AGRR! .0p) and
(AG®I (k) < AGPM ) then

med med, cutoff
i. Calculate high-resolution energies AGPnd (k) and AGI3S, (k).

ii. Reset nmisses(q(k)) = 0, the number of medium-resolution energies in a row which have not
warranted a high-resolution energy calculation.

- Set AGPnY 1ast nign(4(K)), which is the AGPn? of the last rotamer state of charge g(k) for

Wthh we have calculated high-resolution energies, to AGPO“’,‘Vd( ).

iv. Update AGR2d o With equation above if AGPi% (k) is the new minimum AGPi.

v. Update AGRY, . iop With equation above if AG[SK (k) is the new minimum AGS .

(c¢) Otherwise, increment nmisses(q(k))-
(d) Decide that it’s time to stop looking at rotamer states of charge g(k) if
L. (Nmisses (q(k)) 2 nmin) and
ii. (Nmisses(2(k)) > fmax - Mcale, med(q(k))) and
i [(AGHRA() — AGHRY 1t wign(a(k)) > AAGR

low low, quit

where AAG}J(;VI:,? quit = 2 keal mol ™" is a minimum distance in AGP"? to proceed up the list, even
if none of their medium-resolution energies prove promising enough to calculate high-resolution
energies. fmax = 0.3 is the minimum fraction of the rotamer states of a charge ¢ considered so
far that must have unpromising medium-resolution energies, before giving on charge ¢ entirely.
Nmin = 20 is the minimum number of unpromising medium-resolution energies of structures with a

charge ¢ in a row that we require before giving up on charge ¢ entirely.
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Figure 6-26: High-resolution AGpin vs. medium-resolution binding AGHLS energy for

4629 mutant structures from DEE/A* on the “center 3” residues (Asp35, Trp38, Val73).
Structures with the wild-type sequence are shown as red diamonds. The colors illustrate
the protocol in Section 6.4.2: In green, the 36 structures which the protocol aimed to
capture: those within 7 kcal mol™' of the minimum of both the binding and folding
high-resolution energy. The protocol decides to calculate high-resolution energies for the
1099 structures shown in black or green, and decides not to calculate them for the rest
of the 4629 structures, shown in blue. The energy on each axis has an arbitrary constant

term.
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is a DEE/A* redesign of three residues of the D chain of gp4l (Trp2, Trp5, Asp6) to
optimize its binding to the ABC 3-chain core. It was not computationally feasible for the
screening protocol to find all conformations within 7 kcal mol~" of the minimum high-
resolution binding and folding energies, because the gp4l structures are more closely
spaced in energy than those of the “center 3” system. The gp41 conformations are more
closely spaced in energy because the binding interface is more open to solvent, and more
hydrophobic. Within 30 kcal mol ' of the minimum low-resolution binding energy, there
are 76307 conformations , as compared to 4629 for the redesign of the “center 3” barstar
residues. To limit computational expense, we only used the 9996 gp4l structures of the
1000 sequences within 19.0 kcal mol ' of the minimum low-resolution binding energy.
To validate the screening protocol, we ran it on the gp41 system, but we also calculated
the high-resolution energies of all 9996 structures to check if the protocol missed any

structures that it was supposed to find.

Data for high- vs. medium-resolution binding energies from this gp41 redesign are
shown in Figure 6-27. We see that a line constructed as before, with a slope of m"¢ = 0.4
passing through a point 2 kcal mol™! below the lowest point, is a lower bounding line for
this data as well. So the gp41 data obey the empirical bounding line determined from

the “center 3” data.

Similarly, the folding energy data from this gp41 redesign is shown in Figure 6-28. A
few of these gp41 structures fall slightly below the barnase/barstar “center 3” empirical

bounding line.

Figure 6-29 shows that the protocol calculated high-resolution energies for 4699 out of
9996 structures, and successfully found all 185 of the desired structures (i.e., those within
7 keal mol ! of the minimum of both the binding and folding high-resolution energy).
This validates the method.

By only taking the first 9996 structures with the best low-resolution binding energy, we
stopped the protocol early; as the low-resolution binding energy goes up, fewer structures

pass the screening protocol. Therefore, the time savings will generally be greater than
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Figure 6-27: High-resolution AGP! vs. medium-resolution binding AGRA{ energy
for 9996 mutant structures from DEE/A* on three residues of gp4l (Trp2, Trp5,
Asp6) to optimize its binding to the ABC 3-chain core. Structures are colored by
the charge of these three residues. Structures with the wild-type sequence are shown
as green “X”s. The lines illustrate the verification of the protocol developed from in
Section 6.4.2: The slanted line is the empirical lower bounding line determined from the
barnase/barstar “center 3" DEE/A* data in Figure 6-13: the line with slope 0.4 passing
2 kcal mol™* below the lowest point. There are no points below the line, and therefore
no “false negatives”. The figure has data for the 9996 structures with AGPM within
19.0 kcal mol™ of the minimum. The energy on each axis has an arbitrary constant
term.
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Figure 6-28: High-resolution AG{E& vs. medium-resolution folding AG™Y energy for

9996 mutant structures from DEE/A* on three residues of gp41 (Trp 2, Trp 5, Asp 6)
to optimize its binding to the ABC 3-chain core. Structures are colored by the charge of
these three residues. Structures with the wild-type sequence are shown as green “X”s.
The lines illustrate the verification of the protocol developed from in Section 6.4.2: The
slanted line is the empirical lower bounding line determined from the barnase/barstar
“center 3" DEE/A* data in Figure 6-17: the line with slope 0.8 passing 5 kcal mol
below the lowest point. The energy on each axis has an arbitrary constant term.
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Figure 6-29: High-resolution AGpin vs. medium-resolution binding AGHRS energy for

9996 mutant structures from DEE/A* on three residues of the D chain of gp41l (Trp 2,
Trp 5, Asp 6) to optimize its binding to the ABC 3-chain core. Structures with the
wild-type sequence are shown as red diamonds. The colors illustrate the protocol in
Section 6.4.2: The 185 structures which we aimed for the protocol to capture are shown
in green: those within ®™d = ¢4 = 7 kecal mol™" of the minimum of both the binding
and folding high-resolution energy. The protocol decided to calculate high-resolution
energies for the 4699 structures shown in black or green, and decided not to calculate
them for the rest of the 9996 structures, shown in blue. The energy on each axis has an
arbitrary constant term.
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4699/9996.

6.4.3 Results for Barnase/Barstar “Lee 7” Redesign

We used our design methods to redesign the “Lee 77 residues of barstar (Asn33, Asp35,
Trp38, Asp39, Thrd2, Val73, Glu76) for optimal binding to barnase.
743780 structures representing 75148 sequences within 30 kcal mol™ of the minimum
low-resolution binding energy. The diversity of amino acids that these 75148 sequences

had in the 7 positions is shown in Table 6.11. Figure 6-30 shows the low-resolution folding

vs. binding energy for all 743780 structures.

Table 6.11: Amino Acid Frequency in the 75148 sequences within 30 kcal mol~! of the
minimum binding energy found by DEE/A* for the “Lee 77 barstar residues (Asn33,
Asp35, Trp38, Asp39, Thrd2, Val73, Glu76). The wild-type amino acids are shown in

There were

boldface.
Amino barstar residue

Acid #33 #35 #38 #39 #42 #73 #76
ALA 781 16 704 10 1171 1854 650
ARG 6203 787 4863 2790 481
ASN 3061 484 2136 357 2755 4158 884
ASP 5956 74388 15423 64265 24948 9285 8242
CYS 986 42 826 29 1624 2050 744
GLN 1806 2816 44 2532 5471 3992
GLU 11483 12722 10213 10474 25279 43418
GLY 527 5 473 4 887 1773 613
HIS 4461 4820 2898 3464 1589
HSD 4411 4376 3409 1558 2140
ILE 2540 747 53 1250 2726 1110
LEU 1880 1927 2 1789 2887 1088
LYS 13936 784 2078 2062 437
MET 1696 2033 40 1803 3175 1435
PHE 3386 5098 1660 1518
SER 1202 55 1372 29 2615 2173 882
THR 1356 135 1439 71 2515 2259 952
TRP 4482 9484 2553 2117
TYR 3411 6879 1726 2032
VAL 1584 23 302 31 1598 2184 824
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Figure 6-30: Low-resolution folding AG®4 vs. binding AGPRd energy for 743,780 mutant
structures from DEE/A* on the “Lee 7”7 residues (Asn33, Asp35, Trp38, Asp39, Thr42,
Val73, Glu76). Structures with the wild-type sequence are shown as red diamonds. The

energy on each axis has an arbitrary constant term. Both dimensions are in kcal mol~!.
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With this many structures, it is not feasible to follow the protocol of Section 6.4.2;
trying to find all structures with good high-resolution energies would be too computation-
ally expensive. Happily, in ligand design, there is rarely any need to find all good ligands,
if the good ligands that one can afford to find are interesting. We therefore followed a
simpler procedure to find structures with low high-resolution binding and folding free
energies. For all structures found by DEE/A* using low-resolution energies, medium-
resolution energies were calculated. Figure 6-31 shows folding vs. binding energy for the

medium-resolution energy function, for all 743,780 structures.

Wild-Type Sequence Structures

Of the 10 structures representing the wild-type sequence (shown in Figure 6-32), the
structure most similar to the crystal structure is one of the 3 that are approximately
tied for best medium-resolution binding energy, as shown in Figure 6-31. Among those
3 structures, it is the one with the best medium-resolution folding energy by almost 10
kcal mol~!. (The same is true of their high-resolution binding and folding energies.)
This is the structure that we chose to represent the wild-type sequence. The only
significant difference it has from the crystal structure is that its Glu76 side chain orients
to make a bidentate interaction with barnase Argh9. All 10 of the structures representing
the wild-type sequence have this bidentate conformation, as do almost all of the other
designed structures with Glu at position 76. All 3 crystallographic subunits of PDB
code 1BRS have the same conformation of Glu76, but two other crystal structures of the
barnase/barstar complex, PDB codes 1B27 and 1B3S, each have 1 of 3 crystallographic

subunits with Glu76 in the bidentate conformation relative to barnase Argh9.

If we rank the sequences by the best binding energy among their structures, then as we
go from low- to medium-resolution binding energy functions, the ranking of the wild-type
sequence’s binding energy improves from #64447 to #5329. This demonstrates that the
medium-resolution energy function, which uses the ACE electrostatics treatment, does

much better at picking out the wild type as a tight-binding sequence. The ranking
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Figure 6-31: Medium-resolution folding AG™4 vs. binding AGP2Y energy for 743,780

med
mutant structures from DEE/A* on the “Lee 7”7 residues (Asn33, Asp35, Trp38, Asp39,
Thr42, Val73, Glu76). Some points with very poor AG™4 fall above the rectangular area
shown. Structures with the wild-type sequence are shown as red diamonds. The energy

on each axis has an arbitrary constant term. Both dimensions are in kcal mol~!.
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Figure 6-32: DEE/A* Redesign of “Lee 7” Residues: Structures with Wild-type Sequence
NDWDTVE. Barnase and the interfacial waters are shown as surfaces colored by element.
We are looking through barnase, which is invisible except for side chains that bury
solvent-accessible surface area upon binding. The “Lee 7" barstar residues (Asn33,
Asp35, Trp38, Asp39, Thrd2, Val73, Glu76) are shown in fat licorice. The crystal
structure positions are shown in green. The 10 DEE/A*-designed structures with the
wild-type sequence are colored by element. They are very much like the crystal structure,
except that all of them have Glu76 in a bidentate orientation to barnase Argb9, some of
them have Asn33 flipped out of its pocket,2 %I7ld some of them have Val73 rotated.



of the wild-type sequence’s folding energy improves from #2034 to #217. So, in this
case, it appears that the medium-resolution folding energy is more than 24 times better
(5329/217) at identifying the wild type than the medium-resolution binding energy.
These numbers show how important the folding free energy can be as a discriminator of

native-like tight-binding structures.

The disparity in how the wild-type sequence is ranked by the low- and high-resolution
energy functions also demonstrates the value of our search procedure, because the
structures with the wild-type sequence are far down on the list sorted by low-resolution
binding energy, but our procedure has kept the list short enough that they can be found
in a feasible amount of time. By using DEE/A* first to rank sequences, we get enough
diversity of sequence so that sequences which the high-resolution energy function prefers
can make it onto the long list of sequences. Our choice to keep only 10 structures from the
second and third levels of DEE/A* has proven to be a good balance between sampling
a diversity of structures and keeping the total number of structures low enough that
the medium- and high-resolution energy functions can sort through them in a feasible

amount of time.

Prediction of Stable Tight-Binding Structures

Having identified the wild-type-sequence structure found by DEE/A* which most closely
resembles the crystal structure, we use its binding and folding energies as benchmarks
for the other structures. For each structure with medium-resolution binding energy no
worse than wild type and medium-resolution folding no more than one kcal mol~! worse
than wild type, high-resolution energies were calculated for all structures (there are up

to 10) with the same sequence.

The final result of this design procedure is the small collection of promising sequences
shown in Table 6.12, a ranking by high-resolution binding energy of each sequence’s
best high-resolution binder with high-resolution folding energy not more than one kcal

mol~! worse than wild type. The wild-type sequence does very well, ranking #89 out of
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1.28x10° possible sequences (207). Each sequence is represented by only one sequence at
this final stage of the screening, so this simplified version of our protein design method
has ranked a wild-type-like structure in its top 100 out of 3x10?* total conformations

(30987).

Promising Non-Wild-type Sequences

The non-wild-type sequences in Table 6.12 that appear promising largely owe their
advantage to a few single-position mutations: Val73GIln, Val73Glu, and Asn33Leu.
Many of the sequences in Table 6.12 are actually combinations of one of these favorable

mutations and one or more other slightly unfavorable mutations.
Val73GIln Mutation

The structure of this single-position mutant is shown in Figure 6-33. The polar GIn73
makes a nice hydrogen bond with barnase Arg59, improving binding by —1.76 kcal mol *
while not affecting the folding free energy (+0.05 kcal mol '), very much as we found
when we redesigned the “center 3” residues (Asp35, Trp38, Val73) in Section 6.4.1.

Val73Glu and Asn33Leu Mutations

Although these mutations appear promising in Table 6.12, minimization reveals that
their folding free energies before minimization have an unfair and arbitrary advantage.

We discuss this in the next section.
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Table 6.12: Barstar “Lee 7" sequences found with good high-resolution binding and
folding. (For each sequence, the structure with lowest high-resolution binding free energy,
which also has high-resolution folding free energy no more than one kcal mol~! worse
than wild type, is used.) They are sorted by high-resolution binding energy. All binding

energies are shown relative to the wild-type binding energy AGpi (wildtype). Likewise,

the folding energies are shown relative to the wild-type folding energy. The wild-type
sequence is shown in boldface; we curtail the list at the wild type, but it is also shown
at the beginning of the table for reference. For clarity, every position which matches the
wild type is shown as a blank space.

AAGRE  AAGHS Sequence

(kcal mol 1) 33 35 38 3942 73 76
Wild type:
0. 0. NDWDTYVE

Good folders in order of binding:

-3.74 -1.04 L S E
-3.62 -3.07 L E
-3.11 0.83 E
2.74 -0.30 F S E
-2.65 -0.03 L CE
-2.63 -2.33 F E
-2.52 -2.23 K S E
2.41 -0.30 Y E
-2.40 _4.26 K E
-2.20 111 L F E
-1.88 -3.27 R S E
-1.76 -5.30 R E
-1.76 0.05 Q
-1.71 477 L 1 E
-1.57 0.25 L A E
-1.53 -0.40 F M E
-1.37 -1.23 E E
-1.37 -3.27 \Y% S E
-1.25 -5.30 \Y% E
1.23 -3.34 F L E
-1.21 -0.85 C S E
-1.21 0.12 S S E
117 -5.22 L S Q
1.12 -0.40 F QE

continued —
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AAGR  AAGHS Sequence
(kcal mol™!) 33 35 38 3942 73 76

Continued:

-1.09 -2.88 C E
-1.09 -1.91 S E
-1.01 -1.31 Y L E
-1.01 0.05 K M E
-1.00 -5.28 K L E
-0.89 -2.34 K QE
-0.80 -2.27 R C E
-0.79 -1.48 S Q
-0.77 -0.69 Y M E
-0.76 -1.38 A E
-0.73 -2.26 Y QE
-0.72 -1.49 M S E
-0.71 -4.03 F I E
-0.69 0.54 W Q
-0.66 -3.38 R M E
-0.61 -3.51 M E
-0.55 -2.94 Q S E
-0.50 -2.00 Y I E
-0.49 -5.96 K I E
-0.44 -4.96 Q E
-0.40 -0.56 S 1
-0.39 -1.66 L S N
-0.36 -6.32 R L E
-0.36 -1.07 L Q
-0.36 -0.55 M
-0.35 -3.34 R F E
-0.34 -0.25 S E
-0.30 0.75 L
-0.30 -0.40 I
-0.29 -2.26 Vv C E
-0.27 0.70 E M E
-0.26 -3.38 R Q E
-0.22 -2.28 T E
-0.17 0.52 F N Q
-0.15 -3.37 A% M E
-0.15 -4.52 F S Q
0.11 -0.45 M Q

continued —
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AAGR  AAGHS Sequence
(kcal mol™!) 33 35 38 3942 73 76

Continued:

-0.04 -6.55 F Q
-0.01 -0.29 R Y E

0. 0. NDWDTYVE

Minimization

For every structure with high-resolution folding energy no more that one kcal mol~! worse
than wild type, we performed minimization as described previously on all structures of
the same sequence. This was a total of 3390 structures of 339 sequences. The energy
function used was the low-resolution bound state energy, but using full van der Waals

radii. Only atoms of the mobile side chains were allowed to move.

High-resolution energies were then calculated for all minimized structures, and the
sequences were screened using the high-resolution energies of the minimized structures.
Each sequence was represented by its best binding structure which folds no more than one
kcal mol ! worse than wild type. The most promising structures are shown in Table 6.13,

which should be compared to the same list from before minimization, Table 6.12.

Since we only minimized a small subset of the structures, including the promising
sequences before minimization, it is not surprising that the list of promising sequences gets
shorter after minimization: sequences initially on the list can drop off after minimization,
but we did not give all the other sequences a chance to be promoted onto the list. If
this were done, we would at least expect the minimization procedure to promote the
Val73His mutant found by the “center 3” redesign experiment onto the list of promising

structures.
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Figure 6-33: DEE/A* Redesign of “Lee 7” Residues: Best Structure with Sequence
NDWDTQE. This sequence differs from the wild type by the mutation Val73GIn. Barnase
and the interfacial waters are shown as surfaces colored by element. We are looking
through barnase, which is invisible except for side chains that bury solvent-accessible
surface area upon binding. The “Lee 7” barstar residues (Asn33, Asp35, Trp38, Asp39,
Thr42, Val73, Glu76) are shown in fat licorice. The crystal structure positions are shown
in green. The DEE/A*-designed structure with sequence NDWDTQE is colored by
element. Both GIn73 and Glu76 interact with barnase Argb9 (visible here as the 3 blue
patches arranged in a triangle at the top o2f3t§1e barnase surface).



Table 6.13: Barstar “Lee 77 sequences found with good high-resolution binding and
folding after minimization. Minimization followed by high-resolution energy calculation
was done on 3390 conformations of the 339 sequences listed in Table 6.12. They are
sorted by high-resolution binding energy after minimization, relative to the wild type
AAGE;gg’mml = AGﬁigﬁ’mlm — AGE;gﬁ’mlm(wildtype). The high-resolution folding energy
is also shown relative to the wild type. The wild-type sequence is shown in boldface; it
appears in the list, but is also shown at the beginning of the table for reference. Note
that “H” and “h” are HIS and HSD, the PARAM19 forms of histidine protonated on the
Ns;1 and the N, atoms, respectively. For clarity, every position which matches the wild
type is shown as a blank space.

AAGR ™™ AAGRE™™ Sequence
(kcal mol?) 33 35 38 39 42 73 76
Wild type:
0. 0. NDWDTYVE
Good folders in order of binding, after minimization:
-2.44 0.02 Q
-1.67 -0.90 L Q
-1.24 -2.35 Q Q
-1.02 0.11 W QQ
-1.01 -0.04 M Q
-0.97 -1.46 I Q
-0.36 0.78 H Q Q
-0.34 0.40 M
-0.22 -1.94 I
-0.18 -0.30 S 1
0. 0. NDWDTYVE
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After minimization, the sequences with the mutations Asn33Leu and Val73Glu are

no longer on the list of promising sequences.

Why is the Asn33Leu mutation no longer on the list of promising structures after
minimization? DEE/A* chose rotamers for Asn33 that have a slight van der Waals
clash (about a 10 kcal mol™! penalty) with their own molecule, barstar. Recall that
we chose to have DEE/A* rank on the binding energy, and disqualify any rotamer or
rotamer pair whose folding energy term is above a cutoff, 25 kcal mol™!. So, in this case,
DEE/A* chose Asn33 rotamers unfavorable for folding, but not so unfavorable as to be
disqualified by the cutoff. This unfairly penalized the folding energies of all sequences
with the wild-type residue Asn33, which made many sequences in Table 6.12 with the
Asn33Leu mutation incorrectly appear to be as stable as the wild type. The minimized
structures reveal that the wild-type Asn33 residue is much more beneficial for folding

stability than any other residue at that position.

Why is the Val73Glu mutation no longer on the list of promising structures after
minimization? The reason is essentially the same as in the previous explanation, but
slightly more complicated. Asn33 occupies one of two rotamers in most of the structures
found by DEE/A*. These two Asn33 rotamers are nearly tied in their contribution to
the binding energy, so one of them is chosen by a small margin for some sequences, and
the other is chosen by a small margin for other sequences. It happens that the sequences
with a Val73Glu mutation choose the Asn33 rotamer that is better for folding than the
other rotamer, by -3.5 kcal mol~!. So sequences with the Val73Glu mutation incorrectly

seemed to have better folding energies than sequences with Val73.

Both of these cases reveal that it could be beneficial to use the folding energy more

directly in the DEE/A* ranking of structures.
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6.5 Future Directions

In general, molecules can change conformation upon binding. The present method
could be extended to allow this by this simple procedure: Use DEE/A* to redesign
the bound complex and each unbound molecule separately for maximum stability. (This
is straightforward using the present method; one can do two redesign runs to optimize
GPound _ unfolded a4y (Gunbound _ cqunfolded ) Thege could be used to calculate, for each
sequence, a non-rigid binding free energy: the free energy difference of the most stable
bound configuration versus the most stable unbound configuration. The final analysis

of the sequences could use both this non-rigid binding free energy and the folding free

energy.

As we concluded in the previous section, it could be beneficial to use the folding
energy more directly in the DEE/A* ranking of structures. For example, ranking on
AGRA  AGPINd pather than AGP™ would be one way to design structures that have

good binding or folding. Then the structures could be screened to select those with good

binding and folding.

Including a pairwise approximation of solvation in the low-resolution electrostatic
energy function could increase the accuracy of the first stage of DEE/A*. The
Generalized Born approximation of the atomic interactions could be used, but to make
it pairwise, a method could be developed to assign each atom one approximate value for

its solvation radius, regardless of the rotamers placed at the mobile residues.

A rotamer library should be developed which uses finer sampling of the dihedral
angles of histidine, tryptophan, and phenylalanine, for example, which have long bulky
shapes, but only two dihedral angles. Using our screening protocol on a combined set
of minimized and unminimized structures could help to overcome the coarseness of the

rotamer library while still preserving the wider range of structures before minimization.

When redesigning residues, it would be advantageous, in addition to giving full
mutational freedom to these residues, to also give conformational freedom to some

neighboring residues.
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When cutoffs are applied to the self and pair terms of the low-resolution energies, it
would be wiser to set the cutoff a given distance above the minimum value for that term

across all rotamers. Currently, we set these cutoffs at a given absolute value.

Although we did not treat salt in the present study, it is trivial to set the ionic strength
(to a physiological 0.145 M, for example) in both the medium- and high-resolution

electrostatic energy functions.

6.6 Conclusion

Our protein design method is novel in that (1) it optimizes the binding free energy while
maintaining a stable folding free energy, (2) it uses three stages of DEE/A* searching in
order to get a diversity of sequences as well as multiple structures for each sequence, (3)
it includes more accurate solvation and electrostatic free energy terms, and (4) it uses a

hierarchy of three energy functions to successively screen candidate structures.

We redesigned three residues of gp4l (Trp2, Trp5, Asp6), three residues of barstar
(Asp35, Trp38, Val73), and a larger set of seven residues of barstar (Asn33, Asp35,
Trp38, Asp39, Thr42, Val73, Glu76). We found that the low-resolution binding free
energy function ranks the barstar wild-type sequence, a known tight binder to barnase,
much less favorable than the high-resolution function does. The low-resolution binding
free energy naively favors sequences which are as negatively charged as possible. However,
the higher-resolution energy functions do not make this mistake, because they include
the desolvation and indirect interaction terms of the electrostatic binding free energy.
Our search procedure finds the wild type, even though the low-resolution free energy
function scores it poorly, by ensuring that a diversity of sequences is passed on to the

higher-resolution free energy functions.

The wild-type sequence, experimentally known to be a very tight binder, ranks #5 out
of 8000 for the barstar three-residue redesign and #89 out of 1,280,000,000 for the seven-

residue redesign. The folding free energy was also found to be very favorable for the wild
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type compared to other sequences; for example, the wild-type sequence ranks #217 in
medium-resolution folding free energy, but only #5329 in the corresponding binding free
energy. So, in this case, it appears that the medium-resolution folding energy is more than
24 times better at identifying the wild type than the medium-resolution binding energy.
These numbers show how important the folding free energy can be as a discriminator of
native-like tight-binding structures. The conformations found by our search procedure
for the barstar wild-type sequence are very similar to the crystal structure, which is, of

course, experimentally known to be the stable conformation.

We do not incorporate minimization of structures into our procedure, but the
minimization done in this study highlighted two improvements needed by our method.
The DEE/A* structures for the single-position mutant Val73His are incorrectly given
poor folding free energies, but this is corrected by minimization. The coarseness of the
rotamer library prevents a histidine at this position from fitting properly to avoid steric
clashes. His, Trp, and Phe may be particularly vulnerable to such problems because they
have long bulky shapes but only two flexible dihedral angles. Minimization also revealed
that ranking only on the binding free energy during DEE/A* can cause variations in
structures’ relative folding free energies which have no physical basis. Therefore it should
be beneficial to use the folding energy more directly in the DEE/A* ranking of structures;
for example, by ranking on AGMd 1 AGPInd rather than AGPnd.

low low low

The disadvantages of minimization, as we have implemented it, are that it uses a
low-resolution energy function, that it minimizes the bound state energy rather than the
binding or folding energies, and that it causes many conformations of a residue to all
minimize to the same conformation, reducing the diversity of the structures available to

pass on to higher-resolution energy functions.

The analytical continuum electrostatics (ACE) method, which we used in our medium-
resolution energy function, has proven invaluable as a rapid screening function which

includes electrostatic solvation effects.

The single-position barstar mutant Val73Gln is predicted to bind about 2 kcal mol !

238



more tightly than the wild type, and to have about the same folding stability as the
wild type. The optimum atomic charges on Val73 suggest that this side chain should be
polar to optimize its binding free energy. Our design method improves on that charge
optimization method by using different structures, and therefore different dielectric
boundaries, appropriate to each sequence. A second single-position barstar mutant,
Val73His, is predicted to bind about 1 kcal mol™! more tightly than the wild type,
and to have about the same folding stability as the wildype. Both of these mutants,
Val73GIn and Val73His, are promising candidates for synthesis.
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Appendix A

Protein Design: Treatment of

Crystallographic Water Molecules

A.1 Methods

Many X-ray crystal structures of binding complexes, including barnase/barstar, have
water molecules at well-defined positions in the binding interface. When redesigning for
tight binding, one strategy would be to remove some water molecules from the bound
conformation, in order to allow side chains to occupy the space instead, or to allow larger
side chains to fit. The complex of barnase and barstar has a particularly high number of
interfacial water molecules; it is commonly believed that this is the result of a trade-off
that evolution has made to gain binding speed at the cost of binding affinity. It would
also be advantageous for any ligand design effort with interfacial water molecules to
allow them to rotate or move in order to interact as well as possible with each candidate

structure.

We developed a method to allow the interfacial water molecules more freedom by
treating each of them just like a mobile residue, with a discrete set of rotamers. The
water rotamer set we used has 12 conformations, plus the choice of removing the water

molecule, which is treated as a 13th conformation.
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A.1.1 Allowed Conformations for Mobile Water Molecules

The 12 conformations of each water molecule are determined based on the position of its
oxygen atom in the wild type crystallographic structure, and the default positions of its
two hydrogen atoms as determined by the HBUILD facility [90] of the molecular modeling
package CHARMM [11]. Consider the oxygen atom as the center of a cube, with the 2
hydrogen atoms approximately at 2 corners of the cube separated by a face diagonal.
Allowing the 2 hydrogen atoms to be on any pair of cube corners separated by a face
diagonal results in 12 conformations. We forced the 8 possible hydrogen positions to be
exactly on the corners of a cube, which forces the hydrogens to move from their CHARMM
HBUILD positions by about 0.1 A, stretching the water bond angle from 104.52° to the
exact tetrahedral angle, 109.471°. (Allowing the rotamers to have the correct 104.52°
angle made very little difference in the relative energies of the rotamers or in the outcome

of a DEE/A* run.)

A.1.2 Defining Sequence, Fleximers, and Rotamers for Mobile

Water Molecules

We chose to treat each of these 12 conformations, plus the 13th state for absence of
the water molecule, as fleximers consisting of 1 rotamer each. Splitting the states at the
fleximer level rather than the “sequence” level or the rotamer level strikes a good balance
by allowing the waters to try different conformations in each of the 10 fleximer states we
keep for each sequence, while not making the total number of states any longer than it

is without freedom for the waters, i.e. 10 states per amino acid sequence.

Treating each of the 13 water states as different “sequences” is very computationally
expensive because rather than a ranked list of protein sequences, DEE/A* gives a much
longer list, because every possible conformation of the waters is considered a different
“sequence”. Treating only the presence or absence of each water as 2 different “sequences”

still lengthens the list of sequences made by DEE/A*, by up to 2Vweter for Nyaier mobile
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waters, and promises little benefit over the simpler treatment which we use.

A.2 Results and Discussion

A.2.1 Choosing Protein Residues to Redesign along with Wa-

ters

To find barstar residues to redesign along with some explicit water molecules, we did
DEE/A* redesigns for each individual barstar residues that has any solvent-accessible
surface area (SASA) burial upon binding. These were compared to DEE/A* redesigns of
each of these 18 barstar residues with all crystallographic water molecules removed from
the structure. For each residue, the difference between these results (the details are not
shown here) indicates whether the presence of the waters has any effect on the possible
conformations of that residue. We found very few obviously good conformations made
possible by giving the waters the freedom to rotate or vanish. Most of the residues (Gly27,
Tyr29, Tyr30, Glu32, Leu34, Ala36, Alad0, Glud6, GIn72, Val73) were not significantly
affected by the presence of the waters. Five of the residues (Asn33, Thr42, Trp44, Tyr47,
Glu76) were somewhat affected, but no promising new conformations were made possible
by the removal of all of the waters. Only three of the residues (Asp35, Trp38, Asp39)
had amino acid types with promising conformations made possible by the removal of
the waters. With the waters removed, Asp35 is able to mutate to Glu, Trp38 is able
to mutate to Arg or Lys, and Asp39 is able to mutate to Leu. Based on this analysis,
and the proximity of the residues to each other, we chose to redesign these two sets of

residues, pictured in Figure A-1:

1. Asn33, Asp35, and 3 neighboring waters.

2. Trp38, Asp39, Thr42, and 8 neighboring waters.
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Figure A-1: Two Sets of Barstar Residues to Mutate Along with Waters. All barstar
side chains that bury solvent-accessible surface area (SASA) upon binding to barnase,
shown as licorice, can be seen through the translucent gray surface of barstar. Interfacial
water molecules are shown as small atomic balls. Asn33, Asp35, and 3 waters numbered
22, 29, and 128 are shown in red. Trp38, Asp39, Thr42, and 8 waters numbered 14, 29,
33, 48, 56, 60, 116, and 361 are shown in blue. The other waters, and the other barstar
side chains that bury solvent-accessible surface area upon binding to barnase, are shown
in green. Barnase is not shown; it would be in front of barstar in this view.
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A.2.2 Results for Redesign of Barstar Asn33, Asp35, and 3
Waters

Our full design procedure was applied to barstar Asn33, Asp35, and the 3 water
molecules numbered 22, 29, and 128. Actually, since there were only 197 sequences
within 30 kcal mol™" of the minimum low-resolution binding energy, we calculated high-
resolution energies for all of them rather than using the screening protocol in Section 6.4.2
of Chapter 6. The final results of our design procedure are shown in Table A.1. The
chosen wild-type sequence structure is almost identical to the crystal structure, including
the conformations of the 3 mobile waters. For each other sequence, we kept the best-
binding structure which folds no more than 1 kcal mol™" worse than the chosen wild-type
sequence conformation. None of them bind as tightly as the wild type, and all the ones
with promising binding and folding free energies keep all 3 waters. Some conformations
(with Glu, Gln, Arg, Lys, Met, or Ile at position 35) keep only 1 of the 3 waters, but do

not score well.

The bottom line is that the wildtype sequence is predicted to be the best binder
for these 2 barstar residues, even when the neighboring water molecules are given the

freedom to rotate or vanish.

A.2.3 Results for Redesign of Barstar Trp38, Asp39, Thr42,
and 8 Waters

For the barstar residues Trp38, Asp39, Thr42, and the 8 water molecules numbered 14,
29, 33, 48, 56, 60, 116, and 361, we followed our full design procedure and also calculated
high-resolution energies for all 352 sequences within 30 kcal mol™* of the minimum low-
resolution binding energy, rather than using the protocol in Section 6.4.2 of Chapter 6. All
10 structures with the wildtype protein sequence have protein side chain conformations
almost exactly like the crystal structure. Their waters are all present, and are in a variety

of conformations. The final results of our design procedure are shown in Table A.2. The
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Table A.1: Sequences of Barstar residues 33 and 35 found with good high-resolution
binding and folding energy, when redesigned along with 3 neighboring waters. Also
shown are the number of the 3 waters present, and the number of them in the crystal
structure position. They are sorted by high-resolution binding energy relative to the wild
type AAGR = AGPR — AGpn! (wildtype). The high-resolution folding energy is also
shown relative to the wild type. The wild-type sequence is shown in boldface. For clarity,
every position which matches the wild type is shown as a blank space.

AAGRE AAGRS  Sequence waters waters
(kcal mol™!) 33 35 present xtal
Wild type:
0. 0. N D 3 3
Good folders in order of binding:
0. 0. N D 3 3
0.67 -3.71 F 3 2
0.91 -1.68 Y 3 2
0.92 -5.16 K 3 2
1.11 0.50 W 3 3
1.54 -6.25 R 3 2
1.91 -6.55 \Y 3 2
2.03 -4.30 E 3 2
2.05 0.09 H 3 3
2.07 -1.75 D 3 2
2.11 -0.36 L 3 2
2.22 0.72 h 3 3
2.52 -2.76 A 3 2
2.89 -3.57 T 3 2
2.99 -4.61 S 3 2
3.03 -5.56 C 3 2
3.04 -3.33 M 3 1
3.17 -4.81 Q 3 1
3.80 -1.52 G 3 2
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chosen wildtype-sequence structure is almost tied for the best binding free energy among
these 10 structures, and also almost tied for the best folding free energy. For each other
sequence, we kept the best-binding structure which folds no more than one kcal mol~!
worse than the chosen wildtype-sequence conformation. None of them bind as tightly
as the wildtype, and all the ones with promising binding and folding free energies keep
all 8 waters. All conformations with sequences within 30 kcal mol™' of the minimum
low-resolution binding energy have no more than 2 absent waters. Only one sequence

has 2 absent waters, and it does not score well or have a good steric fit.

Table A.2: Sequences of Barstar residues 38, 39, and 42 found with good high-resolution
binding and folding energy, when redesigned along with 8 neighboring waters. Also shown
are the number of the 8 waters present, and the number of them in the crystal structure
position. They are sorted by high-resolution binding energy relative to the wildtype
AAGYR! = AGPR — AGYix! (wildtype). The high-resolution folding energy is also shown
relative to the wildtype. The wildtype sequence is shown in boldface. For clarity, every
position which matches the wildtype is shown as a blank space.

AAGYES  AAGRS Sequence waters waters
(kcal mol™!) 38 39 42 present xtal

Wildtype:

0. 0. WD T 8 2

Good folders in order of binding:

0. 0. WD T 8 2

2.75 0.48 I 8 2

3.67 0.87 F 8 1

4.53 -0.14 A 8 1

5.86 0.62 F I 8 2

Again, the bottom line is that the wildtype sequence is predicted to be the best binder
for these 3 barstar residues, even when the neighboring water molecules are given the

freedom to rotate or vanish.
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A.3 Conclusion

We performed a search for ways to improve the binding free energy of barnase and barstar
by redesigning barstar residues and removing or rotating interfacial water molecules, and
we found no redesigned sequences that bind better than the wildtype as a result of giving
the waters this freedom. The search was thorough in its consideration of which water
molecules and barstar residues to redesign. Our two most limiting assumptions were that
we always used the crystal structure backbone conformation and binding geometry, and
that we only used 12 possible conformations for each water molecule. Nevertheless, it is
surprising that we found no evidence for the commonly-held theory that the interfacial

water molecules are there as a result of a “trade-oftf” of binding affinity for binding speed.

248



Bibliography

1]

I. Klapper, R. Hagstrom, R. Fine, K. Sharp, and B. Honig. Focusing of electric
fields in the active site of Cu-Zn superoxide dismutase: Effects of ionic strength and

amino-acid modification. Proteins: Struct., Funct., Genet., 1:47-59, 1986.

Michael K. Gilson, Kim A. Sharp, and Barry H. Honig. Calculating the electrostatic

potential of molecules in solution: Method and error assessment. J. Comput. Chem.,

9:327-335, 1988.

M. K. Gilson and B. H. Honig. Calculation of electrostatic potentials in an enzyme

active site. Nature (London), 330:84-86, 1987.

M. K. Gilson, K. A. Sharp, and B. H. Honig. Calculating the electrostatic potential
of molecules in solution: Method and error assessment. J. Comput. Chem., 9:327—

3395, 1988.

K. A. Sharp and B. Honig. Electrostatic interactions in macromolecules: Theory

and applications. Annu. Rev. Biophys. Biophys. Chem., 19:301-332, 1990.

M. Schaefer and M. Karplus. A comprehensive analytical treatment of continuum

electrostatics. J. Phys. Chem., 100:1578-1599, 1996.

M. Schaefer, C. Bartels, and M. Karplus. Solution conformations and
thermodynamics of structured peptides: molecular dynamics simulation with an

implicit solvation model. J. Mol. Biol., 284:835-848, 1998.

249



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Kangas. Optimizing Molecular Electrostatic Interactions: Binding Affinity and
Specificity. PhD thesis, Massachusetts Institute of Technology, 2000.

T. L. Hill. An Introduction to Statistical Thermodynamics. Dover, New York, 1986.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and
M. Karplus. CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations. J. Comput. Chem., 4:187-217, 1983.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and
M. Karplus. CHARMM: A program for macromolecular energy, minimization, and

dynamics calculations. J. Comput. Chem., 4:187-217, 1983.

B. Jayaram, K. J. McConnell, S. B. Dixit, and D. L. Beveridge. Free energy analysis
of protein-DNA binding: The ecori endonuclease-DNA complex. J. Comput. Phys.,
151:333-357, 1999.

R. M. Levy and E. Gallicchio. Computer simulations with explicit solvent: Recent
progress in the thermodynamic decomposition of free energies, and in modeling

electrostatic effects. Annu. Rev. Phys. Chem., 49:531-567, 1998.

L. Lins and R. Brasseur. The hydrophobic effect in protein folding. FASEB Journal,
9:535-540, April 1995.

K. A. Sharp. Calculation of hyhell10-lysozyme binding free energy changes: Effect
of ten point mutations. Proteins, 33:39-48, 1998.

W. C. Wimley, T. P. Creamer, and S. H. White. Solvation energies of amino
acid residues and backbone in a family of host guest pentapeptides. Biochemistry,

35(16):5109-5124, 1996.

H. S. Chan and K. A. Dill. Solvation, how to obtain microscopic energies from
partitioning and solvation experiments. Annu. Rev. Biophys. Biomol. Struct.,

26:425-459, 1997.

250



[18] B. Lee and F. M. Richards. The interpretation of protein structures: Estimation of
static accessibility. J. Mol. Biol., 55:379-400, 1971.

[19] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, 1999.

[20] J. O’M. Bockris and A. K. N. Reddy. Modern Electrochemistry. Plenum, New York,
1973.

[21] Michael K. Gilson and Barry H. Honig. Calculation of electrostatic potentials in an
enzyme active site. Nature, 330:84-86, 1987.

[22] D. A. McQuarrie. Statistical Mechanics. Harper & Row, New York, 1976.

[23] K. A. Sharp and B. Honig. Calculating total electrostatic energies with the nonlinear
Poisson—Boltzmann equation. J. Phys. Chem., 94:7684-7692, 1990.

[24] E. Alexov and M. R. Gunner. Incorporating protein conformational flexibility into

the calculation of pH-dependent protein properties. Biophys. J., 74:2075-2093, 1997.

[25] J. J. Havranek and P. B. Harbury. Tanford-Kirkwood electrostatics for protein
modeling. Proc. Natl. Acad. Sci. U.S.A., 96:11145-11150, 1999.

[26] M. Schaefer, M. Sommer, and M. Karplus. pH-dependence of protein stability:
Absolute electrostatic free energy differences between conformations. J. Phys. Chem.

B, 101:1663-1683, 1997.

[27] D. Bashford and M. Karplus. pK,’s of ionizable groups in proteins: Atomic detail
from a continuum electrostatic model. Biochemistry, 29:10219-10225, 1990.

[28] M. McNutt, L. S. Mullins, F. M. Raushel, and C. N. Pace. Contribution of histidine
residues to the conformational stability of ribonuclease T1 and mutant Glu58Ala.

Biochemistry, 29:7572-7576, 1990.

[29] R. Loewenthal, J. Sancho, and A. R. Fersht. Histidine-aromatic interactions in

barnase. J. Mol. Biol., 224:759-770, 1992.

251



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

T. E. Creighton. Proteins: Structures and molecular properties, 2nd ed. W.H.
Freeman & Co., New York, 1993.

M. Oliveberg, V. L. Arcus, and A. R. Fersht. pKa values of carboxyl groups in the
native and denatured states of barnase: The pKa values of the denatured state are
on average 0.4 units lower than those of model compounds. Biochemistry, 34:9424—

9433, 1995.

P. Beroza and D. A. Case. Including side chain flexibility in continuum electrostatic

calculations of protein titration. J. Phys. Chem., 100:20156-20163, 1996.

A. M. Buckle, G. Schreiber, and A. R. Fersht. Protein—protein recognition: Crystal
structural analysis of a barnase—barstar complex at 2.0-A resolution. Biochemistry,

33:8878-8889, 1994.

G. Schreiber, A. M. Buckle, and A. R. Fersht. Stability and function: Two
constraints in the evolution of barstar and other proteins. Structure, 2:945-951,

1994.

P. J. Kraulis. MOLSCRIPT: A program to produce both detailed and schematic
plots of protein structures. J. Appl. Crystallogr., 24:946-950, 1991.

W. Humphrey, A. Dalke, and K. Schulten. Vmd - visual molecular dynamics. J.
Mol. Graphics, 14(1):33-38, 1996.

M. Tanokura. H—NMR study on the tautomerism of the imidazole ring of histidine
residues. Biochimica et Biophysica Acta, 742:576-585, 1983.

K. B. Wiberg and K. E. Laidig. Rotational barriers adjacent to carbonyl groups
3. amide resonance and the C-O barrier in acids and esters. J. Am. Chem. Soc.,

109:5935-5943, 1987.

C. Tanford and R. Roxby. Interpretation of protein titration curves: Application to

lysozyme. Biochemistry, 11:2192-2198, 1972.

252



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A.-S. Yang, M. R. Gunner, R. Sampogna, K. Sharp, and B. Honig. On the calculation
of pK,’s in proteins. Proteins: Struct., Funct., Genet., 15:252-265, 1993.

D. Bashford, D. A. Case, C. Dalvit, L. Tennant, and P. E. Wright. Electrostatic
calculations of side-chain pK(a) values in myoglobin and comparison with NMR data

for histidines. Biochemistry, 32(31):8045-8056, 1993.

H. W. T. van Vlijmen, S. Curry, and M. Schaefer. Titration calculations of foot-
and-mouth disease virus capsids and their stabilities as a function of pH. J. Mol.

Biol., 275(2):295-308, 1998.

A. T. Briinger and M. Karplus. Polar hydrogen positions in proteins: Empirical
energy placement and neutron diffraction comparison. Proteins: Struct., Funct.,

Genet., 4:148-156, 1988.

R. M. H. Gordon-Beresford, D. Van Belle, J. Giraldo, and S. J. Wodak. Effect of
nucleotide substrate binding on the pKa of catalytic residues in barnase. Proteins,

25:180-194, 1996.

D. éali, M. Bycroft, and A. R. Fersht. Stabilization of protein structure by
interaction of a-helix dipole with a charged side chain. Nature (London), 335:740—
743, 1988.

W. C. Still, A. Tempczyk, R. C. Hawley, and T. Hendrickson. Semianalytical
treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc.,

112:6127-6129, 1990.

J. Srinivasan, M. W. Trevathan, P. Beroza, and D. A. Case. Application of a pairwise
generalized Born model to proteins and nucleic acids: Inclusion of salt effects. Theor.

Chem. Acc., 101:426-434, 1999.
M. Born. Volumen und Hydrationwarme der Ionen. Z. Phys., 1:45-48, 1920.

L. Onsager. Electric moments of molecules in liquids. J. Am. Chem. Soc., 58:1486—
1493, 1936.

253



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

L.-P. Lee and B. Tidor. Optimization of electrostatic binding free energy. J. Chem.
Phys., 106:8681-8690, 1997.

G. D. Hawkins, C. J. Cramer, and D. G. Truhlar. Pairwise solute descreening of

solute charges from a dielectric medium. Chem. Phys. Lett., 246:122-129, 1995.

G. D. Hawkins, C. J. Cramer, and D. G. Truhlar. Parametrized models of aqueous
free energies of solvation based on pairwise descreening of solute atomic charges from

a dielectric medium. J. Phys. Chem., 100:19824-19839, 1996.

D. Qiu, P. S. Shenkin, F. P. Hollinger, and W. C. Still. The GB/SA continuum
model for solvation. A fast analytical method for the calculation of approximate

Born radii. J. Phys. Chem. A, 101:3005-3014, 1997.

A. Ghosh, C. S. Rapp, and R. A. Friesner. A generalized born model based on a
surface integral formulation. J. Phys. Chem. B, 102:10983-10990, 1998.

M. Schaefer, C. Bartels, F. Leclerc, and M. Karplus. Effective atom volumes
for implicit solvent models: Comparison between Voronoi volumes and minimum

fluctuation volumes. J. Comput. Chem., 22(15):1857-1879, 2001.

A. Mondragon, S. Subbiah, S. C. Almo, M. Drottar, and S. C. Harrison. Structure
of the amino-terminal domain of phage 434 repressor at 2.0 A resolution. J. Mol.

Biol., 205:189, 1989.

I. Morize, E. Surcouf, M. C. Vaney, Y. Epelboin, M. Buehner, F. Fridlansky,
E. Milgrom, and J. P. Mornon. Refinement of the C222(1) crystal form of oxidized
uteroglobin at 1.34 A resolution. J. Mol. Biol., 194:725, 1987.

B. E. Raumann, M. A. Rould, C. O. Pabo, and R. T. Sauer. DNA recognition by
B-sheets in the Arc repressor—operator crystal structure. Nature (London), 367:754—
757, 1994.

254



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

L. J. Stern, J. H. Brown, T. S. Jardetzky, J. C. Gorga, R. G. Urban, J. L. Strominger,
and D. C. Wiley. Crystal structure of the human class II MHC protein HLA-DR1
complexed with an influenza virus peptide. Nature, 368:215, 1994.

S. E. Phillips and B. P. Schoenborn. Neutron diffraction reveals oxygen-histidine
hydrogen bond in oxymyoglobin. Nature, 292:81, 1981.

C. A. Bewley, K. R. Gustafson, M. R. Boyd, D. G. Covell, A. Bax, G. M. Clore, and
A. M. Gronenborn. Solution structure of cyanovirin-N, a potent HIV-inactivating

protein. Nature Struct. Biol., 5(7):571-578, 1998.

F. Yang, C. A. Bewley, J. M. Louis, K. R. Gustafson, M. R. Boyd, A. M. Gronenborn,
G. M. Clore, and A. Wlodamer. Crystal structure of cyanovirin-N, a potent HIV-
inactivating protein, shows unexpected domain swapping. J. Mol. Biol., 288:403

412, 1999.

C. A. Bewley and G. M. Clore. Determination of the relative orientation of the
two halves of the domain-swapped dimer of cyanovirin-N in solution using dipolar

couplings and rigid body minimization. J. Am. Chem. Soc., 122:6009-6016, 2000.

D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim. Core structure of gp41 from the
HIV envelope glycoprotein. Cell, 89:263-273, 1997.

M. Scarsi and A. Caflisch. Comment on the validation of continuum electrostatics

models. J. Comput. Chem., 20:1533-1536, 1999.

Y. M. Chook, H. Ke, and W. N. Lipscomb. Crystal structures of the monofunctional
chorismate mutase from Bacillus subtilis and its complex with a transition state

analog. Proc. Natl. Acad. Sci. U.S.A., 90:8600-8603, 1993.

M. Elrod-Erickson, M. A. Rould, L. Nekludova, and C. O. Pabo. Zif268 protein—
DNA complex refined at 1.6 A: a model system for understanding zinc finger- DNA
interactions. Structure, 4:1171-1180, 1996.

255



[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

M. Elrod-Erickson, T. E. Benson, and C. O. Pabo. High-resolution structures of
variant Zif268-DNA complexes: Implications for understanding zinc finger-DNA
recognition. Structure, 6:451-464, 1998.

J. A. Caravella. Flectrostatics and Packing in Biomolecules: Accounting for
Conformational Change in Protein Folding and Binding. PhD thesis, Massachusetts
Institute of Technology, 2002.

J. A. Nelder and R. Mead. A simplex method for function minimization. Comput.

J., 7:308-313, 1965.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes, 2nd Edition. Cambridge University Press, Cambridge, 1992.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equation of state calculations by fast computing machines. J. Chem. Phys., 21:1087—
1092, 1953.

F. M. Richards. The interpretation of protein structures: total volume, group volume

distributions, and packing density. J. Mol. Biol., 82:1-14, 1974.

L. L. Looger and H. W. Hellinga. Generalized dead-end elimination algorithms make
large-scale protein side-chain structure prediction tractable: Implications for protein

design and structural genomics. J. Mol. Biol., 307:429-445, 2001.

M. Shimaoka, J. M. Shifman, H. Jing, L. Takagi, S. L. Mayo, and T. A. Springer.
Computational design of an integrin I domain stabilized in the open high affinity

conformation. Nature Struct. Biol., 7:674-678, 2000.

J. Desmet, M. De Maeyer, B. Hazes, and I. Lasters. The dead-end elimination
theorem and its use in protein side-chain positioning. Nature (London), 356:539-

542, 1992.

R. F. Goldstein. Efficient rotamer elimination applied to protein side-chains and

related spin glasses. Biophys. J., 66:1335-1340, 1994.

256



78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

N. A. Pierce, J. A. Spriet, J. Desmet, and S. L. Mayo. Confomational splitting: A
more powerful criterion for dead-end elimination. J. Comp. Chem., 21:999-1009,

2000.

I. Lasters and J. Desmet. The fuzzy-end elimination theorem: Correctly
implementing the side chain placement algorithm based on the dead-end elimination

theorem. Protein Eng., 6:717-722, 1993.

P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, Massachussetts,
1992.

A. R. Leach and A. P. Lemon. Exploring the conformational space of protein side
chains using dead-end elimination and the A* algorithm. Proteins: Struct., Func.,

Genet., 33:227-239, 1998.

D. B. Gordon and S. L. Mayo. Branch-and-terminate: A combinatorial optimization

algorithm for protein design. Structure, 7:1089-1098, 1999.

R. L. Dunbrack, Jr. and M. Karplus. Backbone-dependent rotamer library for
proteins: Application to side-chain prediction. J. Mol. Biol., 230:543-574, 1993.

J. Mendes, A. M. Baptista, M. Arménia Carrondo, and C. M. Soares. Improved
modeling of side-chains in proteins with rotamer-based methods: A flexible rotamer

model. Proteins: Struct., Funct., Genet., 37:530-543, 1999.

B. I. Dahiyat and S. L. Mayo. De novo protein design: Fully automated sequence
selection. Science (Washington, D.C.), 278:82-87, 1997.

B. Kuhlman, J. W. O’Neill, D. E. Kim, K. Y. J. Zhang, and D. Baker. Conversion
of monomeric protein L to an obligate dimer by computational protein design. Proc.

Natl. Acad. Sci. U.S.A., 98(19):10687-10691, 2001.

G. Schreiber and A. R. Fersht. Interaction of barnase with its polypeptide inhibitor
barstar studied by protein engineering. Biochemistry, 32:5145-5150, 1993.

257



[88] R. W. Hartley. Directed mutagenesis and barnase—barstar recognition. Biochemistry,

32:5978-5984, 1993.

[89] L.-P. Lee and B. Tidor. Barstar is electrostatically optimized for tight binding to
barnase. Nature Struct. Biol., 8:73-76, 2001.

[90] A. T. Briinger and M. Karplus. Polar hydrogen positions in proteins: Empirical

energy placement and neutron diffraction comparison. Proteins, 4:148-156, 1988.

[91] W. R. Tulip, V. R. Harley, R. G. Webster, and J. Novotny. N9 neuraminidase
complexes with antibodies NC41 and NC10: empirical free energy calculations
capture specificity trends observed with mutant binding data. Biochemistry,

33:7986-7997, 1994.

[92] B. I. Dahiyat and S. L. Mayo. Probing the role of packing specificity in protein
design. Proc. Natl. Acad. Sci. U.S.A., 94:10172-10177, 1997.

[93] D. Sitkoff, K. A. Sharp, and B. Honig. Accurate calculation of hydration free energies
using macroscopic solvent models. J. Phys. Chem., 98:1978-1988, 1994.

[94] A.G. Street and S. L. Mayo. Pairwise calculation of protein solvent-accessible surface

areas. Folding and Design, 4:253-258, 1998.

[95] M. H. Abraham. Free energies, enthalpies, and entropies of solution of gaseous
nonpolar nonelectrolytes in water and nonaqueous solvents. the hydrophobic effect.

J. Am. Chem. Soc., 104:2085-2094, 1982.

258



