
Noise and Stability of Actively Modelocked Fiber Lasers

by

Matthew Edward Grein

B.S., Electrical Engineering, Texas A&M University (1993)
S.M., Electrical Engineering and Computer Science, Massachusetts Institute of

Technology (1997)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY AKI

June 2002

© Massachusetts Institute of Technology 2002

Signature of Author...
Department of Electrical Engineering and

Certified by .............

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 1 2002

LIBRARIES

................
Computer Science

May 10, 2002

............
Erich Ippen

Elihu Thompson Professor of Electrical Engineering
Professor of Physics

Thesis Supervisor

Certified by ..........
Hermann Haus

Institute Professor
Thesis Supervisor

Accepted by .............
Arthur Smith

Chairperson, Department Committee on Graduate Students



Noise and Stability of Actively Modelocked Fiber Lasers

by

Matthew Edward Grein

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The timing jitter of a modelocked laser is fundamentally limited by the amplified spontaneous
emission in the laser cavity. While one cannot, even in principle, remove this source of noise,
one does have control over the pulse timing by using filtering and modulation. In this thesis,
we report on the advances made in developing the understanding of timing jitter and stability
in actively modelocked soliton fiber lasers. The main achievements reported here are: the
development of a theory for quantum-limited timing jitter for the cases of amplitude and phase
modulation (AM and PM, respectively); identification of a set of characteristic coefficients gov-
erning the physics of pulse retiming that depend on the laser parameters; construction of an
apparatus-including the development of harmonically modelocked soliton fiber lasers in both a
ring and a sigma configuration-to measure the predicted coefficients; and residual phase-noise
measurements of the quantum-limited timing jitter using homodyne detection. The measure-
ments of the characteristic coefficients and the timing jitter were found to be in good agreement
with the theory. In addition, a theory for the case of harmonic modelocking was developed, and
it is shown that the supermodes reveal pulse-to-pulse correlation statistics and must be included
in measurements and calculations of the timing jitter. For the case of uncorrelated timing jitter
between different pulses in the laser cavity, the supermodes are predicted to have the same tim-
ing jitter spectrum as the baseband mode, and this is confirmed by measurements. A scheme
for reducing the timing jitter of a pulse train outside of the laser cavity using group-velocity
dispersion and phase modulation is described, and it is shown theoretically that a reduction in
the timing jitter is possible, but only at the expense of the carrier-frequency fluctuations. It
is also shown that two-photon absorption in a semiconductor mirror structure prevented pulse
dropouts in a short harmonically modelocked soliton fiber laser producing picosecond pulses at
2 GHz.

Thesis Supervisor: Erich Ippen
Title: Elihu Thompson Professor of Electrical Engineering
Professor of Physics

Thesis Supervisor: Hermann Haus
Title: Institute Professor
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Chapter 1

Introduction

1.1 Motivation

The development of actively modelocked lasers generating streams of picosecond and subpi-

cosecond duration at repetition rates exceeding tens and hundreds of gigahertz has lead to

many promising applications. One application is a high speed time-division multiplexed opti-

cal communications system in which a single wavelength channel is used at a very high line rate

(upwards of 100 Gb/s) [6] [7]. Such a system uses return-to-zero (RZ) pulses in time slots that

are only 10 picoseconds wide at 100 Gb/s. The RZ source is required to produce transform-

limited picosecond pulses to achieve a sufficient ratio of the time slot width and pulse width

for good system margin. The RZ source must be synchronized to an external radio-frequency

(RF) clock, thus necessitating active modelocking or some other means of synchronization such

as regenerative modelocking with a phase-locked loop (PLL) referenced to the external RF

clock [8] [9] [10]. The amplitude and timing jitter must be small enough such that the laser noise

does not affect the system margin. For such a TDM system, the timing jitter is required to be

on the order of the pulsewidt or less.

Another application example is photonic sampling. Soon after the invention of modelocking,

it was proposed[11][12] that optical sampling could be used to augment electronic sampling in

analog-to-digital converters (ADCs). The resolution of electronic ADCs is limited by a number

of mechanisms, including thermal noise, sampling aperture jitter, and comparator ambiguity[1].

At high sampling rates, aperture error and comparator ambiguity tend to be the limiting factors.
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Figure 1-1 shows the necessary sampling jitter needed in order to achieve a given number of

bits as a function of the sampling rate (Nyquist bandwidth). The 0.5-2 picosecond jitter of

state-of-the-art electronic ADCs limits the number of resolvable bits at high sampling rates. In

order to push high-performance ADCs beyond the apparent wall imposed by electronic sampling

resolution, optical sampling can be used. A scheme[2] for an optically sampled ADC operating

at 505 megasamples-per-second (MS/s) is shown in Fig. 1-2. In the front end, a modelocked

laser produces a stream of modelocked pulses at a repetition rate of 505 MHz. The electronic

signal to be sampled (with a maximum bandwidth of 1/2 the optical sampling rate) is input

into one arm of a Mach-Zender interferometer. The interaction of the electronic signal and
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optical pulse leads to a time-dependent transmission through the interferometer, with the data

now encoded onto the laser pulse amplitude. This sampling scheme was first shown in Refs.

[13][14]. The encoded pulse train is passed through a time interleaver in order to time-

demultiplex the data into a eight data streams the operate at one-eighth of the sampling rate

of 63 MS/s-the technique of combining optical sampling and time interleaving was shown in

Refs. [15] [16]. Each channel can then be passed through high-performance photonic integrate-

and-reset circuits and quantized electronically. By using both arms of the interferometer, it

was shown that the impact of amplitude noise of the laser pulses used for optical sampling can

be reduced by over 60 dB using a novel phase-encoded technique[17] [18].

An estimate of the timing jitter necessary for an optically sampled ADC with time inter-

leaving is given by[19]
T

0- 2N
(1.1)
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where 1/T is the sampling rate, N the number of resolvable bits, and o- the pulse-to-pulse

timing jitter. To resolve 10 bits at 10 GS/s requires a pulse-to-pulse timing jitter that is less

than 10 fs. Achieving such low pulse-to-pulse timing jitter requires a thorough understanding

of the sources of laser noise and how the noise can be reduced.

1.2 Thesis Outline

The thesis is organized as follows:

Chapter 2 is an expository chapter on the master equation formalism for active modelocking

with nonlinear pulse shaping. Filtering and active modulation impose stability limits on

the parameters (such as pulse width and pulse energy) of the soliton-like pulses that can be

maintained, and the regions of stability as a function of laser parameters (such and modulation

depth, optical filter bandwidth, and group-velocity dispersion) are reviewed.

In chapter 3, a semi-classical theory of timing jitter for the case of amplitude and phase

modulation (AM and PM, respectively) using soliton perturbation theory are given. In this

treatment, the intracavity pulse shaping is dominated by the nonlinear soliton effects. The

noise in the cavity is produced by amplified spontaneous emission (ASE) from the gain medium.

The addition of modulation affects the stability of the soliton pulses and governs the retiming

dynamics. We find that there is a set of characteristic time constants governing how the

laser pulses respond to the ASE noise, and the constants depend on laser parameters such as

modulation depth, optical filtering bandwidth, and pulse width. These time constants reflect

the trapping forces that pull (or drive) the pulse to (or from) its steady-state position. Using

the characteristic time constants and diffusion constants derived from the ASE noise, we derive

analytical expressions for the timing jitter and compare the efficacy of AM and PM on timing

jitter performance. For the case of PM, we discuss the analogy between timing jitter of a laser

pulse and the position fluctuations of a classical damped harmonic oscillator and show where

the analogy differs.

In chapter 4, we discuss a novel experimental setup for measuring the time constants gov-

erning timing jitter. Using the experimental setup, the retiming dynamics can be studied in

real time. Over the range of accessible laser parameters for the fiber laser under test built for
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these measurements, the time scale of the retiming dynamics is on the order of many tens to

hundreds of round-trip times. The key accomplishment of these experiments was to show that

the measured characteristic time constants agree with the theoretical predictions.

In chapter 5 we present evidence for the ASE-limited (or quantum-limited) timing jitter

of an active, harmonically modelocked fiber laser. The measurement of the timing jitter is

achieved using a dual-channel single-sideband phase-noise measurement apparatus. With an

understanding of the characteristic time constants derived in chapter 3 (and confirmed by

measurements in chapter 4), and with the analytical derivations for the timing jitter spectrum

given in chapter 3, we show that measurements of timing jitter for the case of AM and PM can

be completely described using the theory, both qualitatively and quantitatively. We also show

how supermodes affect the timing jitter spectrum.

In chapter 6, we discuss the spectrum for harmonically modelocked lasers and present ev-

idence confirming our theoretical picture; namely, that the supermodes of the laser cavity

exhibit characteristics based on the pulse-to-pulse correlations. For the case of uncorrelated

pulses (each pulse driven by ASE and independent of the other pulses), the spectra of the timing

jitter for all of the supermodes are identical to that of the baseband mode. This claim is also

supported by time-domain optical cross-correlation measurements. We show that all of the

supermodes must be included in calculating the timing jitter over a given bandwidth.

From our study of retiming dynamics for the case of PM, we discovered that GVD and PM

can be used to retime pulses inside a laser cavity. This phenomenon can also be exploited

outside of a laser cavity to reduce the timing jitter, but it comes at the expense of carrier-

frequency jitter. In chapter 7, we derive the conditions necessary for timing jitter reduction

using GVD in a length of optical fiber and a phase modulator and show that timing jitter

reduction is possible for a reasonable set of operating parameters.

One of the central challenges in building harmonically modelocked lasers is the phenomenon

of pulse dropouts. Because the gain relaxation time in most rare-earth doped fibers is on the

order of milliseconds, one must provide some mechanism to equalize pulse energies on a pulse-

to-pulse time scale (<100 ps at 10 GHz). In chapter 8, we show how two photon absorption

in a semiconductor mirror structure can stabilize a short, harmonically modelocked fiber laser.
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Chapter 2

Review of Solitons and Active

Modelocking

In this chapter, a brief review of active modelocking with solitonic nonlinear pulse shaping is

given. The stability region for the soliton-like pulses for the cases of amplitude and phase

modulation are given.

There exists a long history and development of modelocking using internal loss modulation-

both theoretically and experimentally- since the late 1960's and early 1970's[20][21][22] (also

see review articles in Refs. [23][24][25][26]). The master equation describing the action of the

cavity elements per roundtrip, TR, on the amplitude of the electric-field amplitude, a, is given

by

TR a(T, t) = (g-1)a+ + - a+(MAm+jMpm)(1-cosWmt)a+S(T,t) (2.1)

where g is the small-signal gain, 1 the linear loss, Qf the optical filtering bandwidth (or gain

bandwidth), D the group-velocity dispersion (GVD), 8 is the self-phase modulation coefficient

due to the instantaneous Kerr effect, MAM and MPM the depth of modulation for amplitude

(AM) and phase (PM) modulation, wm the modulation frequency, and S a generalized noise

term. The equation has been written on two time scales: one on the scale of the pulse width,

t, and one on the scale of the roundtrip time, T. This also allows us to write power spectra of

laser parameters (such as timing and amplitude jitter) that can evolve in time, something that
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can not be done if the spectra and time variables are Fourier transform pairs. The equation

has been normalized such that the pulse energy is given by

w Ja(T, t)12 dt (2.2)

so that a has units of J/s = V'W. The gain is assumed to have a long relaxation time

(-2 ins), and we can ignore the changes of the gain per pass. The gain only saturates on a

succession of pulses. We can write

9 = 1 g (2.3)
1-F PTR f j 2dt(23

where go is the small signal gain and Psat is the saturated power (or PsatTR = Wsat is the

saturated energy).

2.1 Active Modelocking

The case of active modelocking without intracavity nonlinear pulse shaping and for the case

of zero GVD was studied by Kuizenga and Siegman[20] using a circulating Gaussian pulse

analysis and by Haus[27](where it was also shown that the description of active modelocking

can be manipulated in both the frequency and time domain, each bearing its own particular

advantages). From the master equation from (2.1), we ignore the self-phase modulation term

61 a2 | a and set the GVD to zero. To find steady-state solutions to the master equation, we

will also set the noise S equal to zero. We will first consider the case of AM. The pulse

will form in the position where the loss is minimized, which is the time when the sinusoidal

modulation is lowest. The sinusoidal modulation can be approximated as a parabola. We find

that the resulting equation is a linear partial differential equation resembling that of a particle

trapped in a parabolic potential well. The solution of eigenmodes for the cavity is the family

of Hermite-Gaussians:

an(T, t) = a,(t) exp AnI (2.4)
) TR

at) = W l H f(tTa) exp (t 2 ) (2.5)
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where w, is the pulse energy of the nth eigenmode, Hn(t/Ta) is a Hermite polynomial of order

n, Ta is the 1/e pulse width of the Gaussian where

Ta = / (2.6)
Ta MAM /2

and An is the roundtrip gain of the nth eigenmode of the cavity where

An= g, - 1 - 2MAMTa(n + 1/2) (2.7)

and gn = 1/(1 + Wn/Wsat). It turns out that the n = 0 mode is the most stable of the

eigenmodes as it requires the least amount of roundtrip gain[27], in which case

ao(t) = exp - 2 (2.8)Xira a7

Upon every pass of the pulse through the cavity, the active modulator broadens the spectrum

of the pulse (similar to injection locking) and shortens the pulse width, whereas the filter (or

limited gain bandwidth) narrows the spectrum and broadens the pulse width. The resulting

pulse width is a balance of these forces, as expressed in (2.6).

The pulse width is weakly dependent on the modulation depth (oc 1/ MAM) and mod-

ulation frequency (oc 1/Wn). This is due to the fact that the pulse near the peak of the

transmission is only weakly affected by the modulator curvature. It takes an increase by a

factor of sixteen in modulation voltage or a factor of four in modulation frequency to halve the

pulse width. Also, for case considered here where there is no nonlinear pulse shaping due to

self-phase modulation and GVD, the pulse width is not dependent on the pulse energy-only the

balance of spectral narrowing by the filter and spectral broadening by the modulator counts.

It turns out that the case for PM is similar to that of AM, but the pulses are somewhat longer

than for the case of AM and are not as robust in terms of the allowable detuning range[28].
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2.2 Solitons

Since Hasegawa's prediction of the existence of solitons in optical fibers in the infrared[29], the

study of optical soliton formation in optical fibers has received considerable attention-at the

time of this writing, a search using the INSPEC database using the headings "optical solitons"

revealed 7076 hits. In this section, only a very brief review of some of the interesting properties

of solitons in modelocked lasers is given.

Using the same formalism as introduced above, we will ignore the effects of modulation,

noise, and loss, leaving the following master equation

TROT a(T, t) = jD a - j ja| 2 a (2.9)

The solution to the equation[30] [31] is given by

a(T, t) = ao sech [-] exp (3 -04T + jo (2.10)
T TR

where ao is the amplitude of the field, 3 is the chirp parameter, T the soliton pulse width, '

the phase shift per pass, and 0 the phase of the pulse. Notice that a2 is the peak power of

the pulse (in units of Watts). The gain, loss, and filtering come into play in the calculation of

the soliton chirp, energy, and pulse width. The solution of (2.10) is self consistent only for the

case where the coefficients are balanced:

-jo + g - I 1+I + + -D ) 0 (2.11)

1( f

+ D) (2 + 3j - 02) - joa = 0 (2.12)

In this case, the spectral broadening induced by self-phase modulation (SPM) upchirps the

pulse. This nonlinear upchirp is balanced by the linear chirp of anomalous GVD (D < 0). For

the case for #3 = 0, then we find that the balance is obtained for

D
(2.13)

T2
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From (2.12), we find that the pulse width and pulse energy product are fixed by the parameters

of the system

22= 2D (2.14)
0 6

This is the area theorem for solitons. We can express the area theorem in terms of average

power: since the pulse energy is given by

w = 2a0T (2.15)

then the area theorem becomes

WT = 4D (2.16)
6

For fixed GVD and fixed SPM coefficient, increasing the pulse energy decreases the pulse width.

However, because the nonlinear phase shift from (2.13) is limited, a short soliton pulse must

generally be achieved by reduced GVD.

2.3 Actively Modelocked Solitons

Including the effects of SPM and GVD along with active modulation, the master equation does

not have exact solutions. However, it has been demonstrated experimentally that soliton-like

pulses can be generated from actively modelocked fiber lasers: the pulses have a hyperbolic

secant shape (beyond 30 dB as revealed in autocorrelations), and the pulses obey the area

theorem from (2.14). The active modelocker for a soliton system plays a major role in stabilizing

the soliton and controlling the timing and amplitude jitter[32]. It turns out that the soliton

effects can shorten the pulse compared that achievable with active modelocking alone, but only

by a limited amount. Haus and Silberberg[33] showed that the soliton-like pulses can only be

shorter than that of the actively modelocked pulse (in equation (2.6)) by up to a factor of 2.5,

and it was later shown[34][35] that using excessive GVD, the limit can be extended to 4.4.

The stability of solitons in actively modelocked lasers is determined by the competition

between the continuum (shed by the soliton on every round trip in response to perturbations)

and the soliton itself. One can treat the continuum as a weak background pulse, ac(T, t), that

does not have enough peak power to experience significant SPM. Stability requires that the
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continuum experiences a net round-trip loss and is damped out. We can solve for this case by

using the master equation while neglecting SPM:

TR ac(T, t) = (g - l)a, + a2 (Qf + jD)ac + (MAM + jMM)(1 - cos wmt)ac (2.17)

This is the same equation as that governing active modelocking,with solutions and eigenvalues

given in (2.4) and (2.5). In this case, however, we require that the continuum be damped out.

Since the lowest-order mode, n = 0, requires the least amount of round-trip gain, then all of

the continuum modes will be damped if the lowest order one is damped:

( 11 2___12_
g - I - Re 2 MAMW- JM2PW) 242 2~ 3D <0 (2.18)

While the round-trip gain of the continuum must be less than zero, the round-trip gain of the

soliton must be greater than zero. Using soliton perturbation theory (as done in more detail

in chapter 3), the expression for the round-trip gain of the soliton with pulse width T can be

written as

T wO =2 g 1- 2MAMWm2 2 2 2  (2.19)OT ~24 M 32T

Clearly, the soliton must have enough gain to overcome the linear losses 1. Losses from the

modulator are proportional to T 2 and decrease rapidly as the pulses get shorter. The filtering

losses are proportional to T- 2 and increase rapidly as the pulse gets shorter. As an example,

for a 1.0 ps pulse at 10 GHz modulation with 100% modulation depth and a 10 nm filter, the

losses from the filter are - 3 times larger than losses from modulation. For a 500 fs pulse,

the relative filter losses are ~ 50 times larger than modulation. The criterion for stability is

expressed as

24 3 2'r22 A w2i<RMPMAM)P(272 2JD (2.20)

We can see from the expression in (2.18) that the effects of amplitude and phase modulation

(AM and PM, respectively) affect both parts of the stability equation. For AM, the soliton

losses are greater than for the case of PM. For PM, the GVD can be used to increase the losses
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Figure 2-1: Stability plot for the case of amplitude modulation as a function of filtering strength
and modulation strength (scaled by group-velocity dispersion). The region of stability is finite.
Figure reproduced from Ref. [3].

of the continuum, resulting in the case that the region of stability for PM is greater than that

for AM. Figs. 2-1 and 2-2 show the regions of stability as a function of filtering strength and

modulation strength (scaled by D) for the case of amplitude and phase modulation, respectively.

The region of stability for PM is much larger than that for AM.
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Chapter 3

Semiclassical Theory of Timing

Jitter in Actively Modelocked

Soliton Lasers

3.1 Introduction

'There have been a number of theoretical studies of timing jitter in actively modelocked

lasers[38] [39] [40] [41] [42]. A comprehensive analysis of timing jitter in modelocked solid-state

and fiber lasers for passive and active modelocking was given in a paper by Haus and Mecozzi[43].

In that paper, the noise was handled with soliton perturbation theory (SPT). In this chapter,

we extend the analysis to actively modelocked fiber lasers and analyze the achievable timing

jitter performance for the cases of amplitude and phase modulation. The SPT is useful in ana-

lyzing the noise of actively modelocked fiber lasers where solitonic effects play a role in the forma-

tion of pulses much shorter than that given by active modelocking alone[33][34] [35] [44] [45] [46].

Even in cases where the shortest pulses are not required, there is another reason why solitonic

or some other kind of nonlinear effects are important in real fiber laser systems. High rep-

etition rates (multi-GHz) call for harmonic modelocking where the repetition rate is set at a

harmonic of the fundamental cavity frequency, resulting in the formation of supermodes that

Many of the results from this section were obtained with helpful discussions and insights from John Moores,
Moti Margalit, and Yijiang Chen. Results from this section also appear in Refs. [36][37].
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individually compete for gain, resulting in amplitude fluctuations in the laser output. It has

been shown that nonlinear effects, including additive-pulse limiting[47], self-phase modulation

combined with filtering[48], and two-photon absorption[49] can be exploited to suppress the

supermode noise.

At present, there are two basic types of modulation employed in the active modelocking of

fiber lasers: amplitude (AM) and phase (PM) modulation[23]. The laser pulse characteristics

using either modulator (i.e., pulse shape, pulse duration) are similar[44][46][50]. However,

the characteristics of pulse retiming are qualitatively different for AM and PM[46]. For AM,

mistimed pulses experience loss, leading to a timing restoration dependent on the slope of the

transmission window and the square of the pulse width. For PM, mistimed pulses are initially

frequency-shifted. The frequency shift is converted to a timing shift via GVD, leading to a

timing restoration dependent on depth of modulation, GVD, and filtering. We should expect,

then, that the resulting timing jitter for AM and PM are quite different, and we show in this

paper that they are.

Previous work on passively modelocked soliton[511 and stretched-pulse[52][53] fiber lasers

have shown that the timing jitter is quantum-limited in the sense that the amplified spontaneous

emission (ASE) of the gain dominates the timing jitter. While other quantum effects-including

fluctuations due to dissipation[54]-also contribute, they are much smaller than ASE contribu-

tions. Many experiments on actively modelocked soliton fiber lasers (AMFL)-in which the

laser is modelocked using an external microwave oscillator-have demonstrated that, at present,

the timing jitter is limited by the phase noise of the driving oscillator[9][55] [56][57]. This is

a technical limitation of the laser timing jitter which can be overcome using a lower-noise os-

cillator. Just as for the case of the passively modelocked laser, the fundamental limitation of

the laser timing jitter is given by the ASE. In this chapter, we derive the ASE-limited timing

jitter of actively modelocked soliton lasers. One could ask for the amount of timing jitter

reduction possible using either squeezed light or some other scheme in which the timing jitter

(or pulse position) is reduced at the expense of the pulse momentum (or carrier frequency),

but that is considered in Refs. [58][59] and in chapter 7. We derive analytical expressions for

the timing jitter and find that there is a set of characteristic time constants determined by the

laser parameters that define the timing jitter spectrum. We show that the use of AM and PM
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affect the pulse retiming is qualitatively different ways.

The rest of the chapter is organized as follows: in sections 3.2 and 3.3, we derive the spectrum

of the timing jitter for AM and PM, respectively. We derive the eigenvalues that determine the

pulse retiming constants and describe the characteristic differences in the restoration of pulse

timing for AM and PM. We derive analytical expressions for the timing jitter as a function

of characteristic time constants and diffusion constants that characterize the noise sources. In

sections 3.4 and 3.5, we consider the quantum-limited jitter for AM and PM where the only

noise source is the amplified spontaneous emission from the gain and consider how the jitter

depends on GVD. In section 3.6, we compare the relative minimum jitter between AM and

PM.

3.2 Active Modelocking with Amplitude Modulation (AM) and

Filtering

Our starting point will be the master equation for modelocking describing the evolution of a

pulse in an actively modelocked laser with SPM and GVD [27] [33] [60]:

R a Da2a-l12 1 2
TR-a-iD a-iIa| 2a= g-l+--- (3.1)OT t2  [ at2

- A 2 I _ coskWm') a + TRS(t, T)

The master equation is written as a function of two time scales: a short time scale, t, on the

order of the pulse width, and a long time scale, T, on the order of the roundtrip time. a is the

amplitude of the electric field envelope, TR the cavity round-trip time for a cavity of length

L, D the net group-velocity dispersion (GVD) where D > 0 is anomalous, 3 the self-phase

modulation (SPM) coefficient, 1 the linear loss, Qf the bandwidth of an intracavity optical

filter, and MAM the depth of modulation and varies from zero to one. For solid state and fiber

lasers, the gain relaxation time is on the order of milliseconds, and the saturation energy is large,

thus we can ignore changes in the gain on the time scale of the pulse, and the gain saturates

only after a succession of pulses. The pulse energy wo is given by wo = _ a(T,t) 2 dt.

S(t, T) is a generalized noise source and can be of classical and/or quantum-mechanical origin.
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For simplicity, we ignore detuning effects by assuming that the frequency of an external local

oscillator driving the modulator and the natural laser cavity frequency (or some harmonic of

it) are synchronized. In writing (3.1) we have also ignored the fact that the lasing wavelength

and the gain peak do not usually coincide. In the harmonically modelocked laser, the pulses

are generally very long and have spectra much narrower than the available gain spectra, so the

approximation that the gain is flat over the extent of the pulse spectrum is a reasonable one.

Complete analytical solutions to the master equation (3.1) have not been found. However,

it is known that the pulses resulting from the actively modelocked soliton laser are solitary

waves whose behavior is dominated by the nonlinear Schrmdinger equation (NLSE), comprising

the left-hand side of (3.1). Without the dissipative terms of the right-hand side, complete

analytical solutions have been found[61], and they are solitons. The terms on the right hand

side are perturbations to the NLSE that govern the stability of the solitons[3] [32] in the presence

of the dissipative terms, including the noise. We make the transition from the purely soliton

solutions to the stabilized soliton-like solutions via the soliton perturbation theory (SPT). SPT

is applied by asserting that the solution to the master equation, a, consists of the soliton

solution to the unperturbed NLSE, as, plus perturbations /a linearized about the soliton

solution [34][60] [62] [631:

a(t, T) = a.(t, T) + Aa(t, T) exp j (3.2)
2 OTR

where the unperturbed soliton solution is

as(t, T) = Aosech (- )exp (-j A- (3.3)
T 2 TR

The soliton solution obeys the area theorem, relating the pulse energy, pulse width, and GVD:

WO =4D (3.4)

The perturbations are expanded in the four pulse parameters: Aw, photon number; AO, phase;

Ap, momentum (carrier frequency); and AT, timing, plus a continuum, Aac, which is not part
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of the pulse:

Aa(t, T) = fw(t)Aw(T) + fo(t)AO(T) + fp(t)Ap(T)+ (3.5)

fr(t)AT(T) + Aac(t, T) (3.6)

where the f, terms (for i = w, 0, p, T) are projection functions[64 for each of the pulse

parameters given by the derivatives of the steady-state solution

fw(t) = a, = 1 - tanh a.(t, T) (3.7)

a
fo(t) = -ao =jas (t, T) (3.8)

2w0
fp (t) = 2-ta, (t, T) (3.9)

ft(t) = at = tanh as (t, T) (3.10)

Soliton perturbation theory assigns an orthogonal set of adjoint functions such that the products

integrate to a Kroneker delta function, given by

Re dt'f* (t')f (t') = (3.11)

Then our choices for the adjoint functions become

f_w(t) = 2as(t) (3.12)

f o(t) = 2j 1 - tanh (A)]as (t) (3.13)
2O (( T

fp(t) = j tanh- as(t) (3.14)
WOT tn T)

f_t(t) = ta(t) (3.15)

and the coefficients of the perturbation expansion from equation (3.6) are given by

Ai(T) = 2 / dt [f*i(t)Aa(t) + fi(t)Aa*(t)] (3.16)
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where i = [w, 0, p, T]. Substituting (3.6) into the master equation in (3.1), the equations of

motion for the four pulse parameters are given as[3] [60] [64]

Ta Aw = -2gsatAw + TRSn(T) (3.17)

T a A
TR A0 = -0 Aw + TR So(T ) (3.18)OT wo

a 4
TR AP = - Ap + TR Sp(T) (3.19)aT 3Q2 T 2

TR AT = -2DAp - 2 MAM 2 2 A
OT 3 2 m

+TRST(T) (3.20)

where the saturated gain, gYat, is given by

Y9at =0 (3.21)1 + WO/Wsat Wsat

and determined by the losses per round trip, given by

9sat = 6 MAM2 2 + T (3.22)

The first term is due to the losses by the modulator, showing that the losses increase with the

square of the pulse width. The second term is due to the losses by the filter and inversely

proportional to the square of the pulse width. The Si terms (for i = w, p, 0, T) are the

projections of the noise S onto each of the pulse parameters. We will explicitly consider the

quantum noise starting in later sections, but for now its specification is unnecessary.

The terms governing the equations of motion have simple interpretations:

* Amplitude fluctuations are damped out by gain saturation. The relevant time scale

for saturation of the gain in solid-state and fiber lasers is on the order of milliseconds.

Amplitude changes are reflected in pulse width-and thus spectral-changes, and filtering

helps to damp them out on the laser roundtrip time scale, typically tens to hundreds of

nanoseconds.

* Optical phase fluctuations are driven by amplitude fluctuations through Kerr SPM. Changes
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in phase are not, however, coupled to the other pulse parameters, as changes in amplitude,

timing, and carrier frequency are not sensitive to the optical phase.

" Filtering damps carrier frequency fluctuations.

* Frequency fluctuations perturb the laser timing. GVD converts frequency fluctuations

into timing changes.

" Timing fluctuations are damped out by the restoring action of the amplitude modulator.

In general, changes in the pulse energy can lead to changes in the pulse timing through the

Kramers-Kronig relation associating changes in the gain with changes in the index of refraction.

However, this effect is very small in a fiber laser and ignored here.

The equations of motion are easily solved in the frequency domain. We define the Fourier

transform as:

f()

f(T)

= 0 f(T) e-jQT d ,

= T f(Q) edn' dT

(3.23)

(3.24)

with a normalization time To that has been introduced to avoid the divergence of the frequency

spectra. This also conveniently puts the units of f(Q) in terms of f(T)/v Hz. The spectra

for the mean-square pulse parameters are given as

(IAWQ 12)AM

KIAO(Q)12 )A

KIAT(Q) 2)AM

KIS.(Q)12)
= Q2

+Q2

= 2 +KQ2

+72

21 1 )2 (ISP(Q)12)
2S TR / _ + Q2A M P

|ISr(Q)12
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where time constants have been defined as

1-B 2 (jT2I + MAM2m12 T 2) 1 (3.29)
TW 30 2; 12 M TR

1 AO
= W (3.30)

1 _ 4 1
- 3Q ---TR (3.31)

TP 3Q2 T2TR

1 _ r2 MAM 2 1- W T (3.32)
TAM 3 2 m TR

In writing (3.28), we have ignored the cross correlation terms between the noise projections.

For completeness, they are given in the appendix. The units of KIAT12) are in s 2 /Hz.

Our interest here is to quantify the mean square fluctuations, assuming white noise spectra

for the frequency and timing noise sources. The first two terms of equation (3.28) contribute

components that have spectra of the form

1

( (3.33)
(TM++Q2) ++Q2)

\AM /\WP

while the last term contributes as
1

(3.34)(2 1
AM /

where the TAM term is attributed to-and inversely proportional to-the modulator strength.

The presence of the retiming term TAM prevents the timing jitter spectrum from diverging at

low frequencies. This is in contrast with the timing jitter spectrum of a passively modelocked

laser that is proportional to 1/Q 2 at low frequencies and indicative of the fact that without a

retiming element (such as a modulator), the pulse timing undergoes a random walk[43]. Noise

projected out onto the carrier frequency change, Sp(Q), fall off at 40 dB/decade due to the

two-terms in the denominator, while the noise projected out directly onto the pulse timing,

ST(Q), falls off at 20 dB/decade. The effect of AM on the jitter is governed by the decay rate,

TAM. From (3.32), the decay rate is proportional to the curvature of the modulation times the

pulse width squared.

In the limit of weak soliton shaping, the pulse width dependence on modulation strength
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Figure 3-1: Spectrum of the timing jitter for the case of amplitude modulation driven by white
noise that perturbs both the position and carrier frequency of the pulse.

is given by the Siegman-Kuizenga formula[20]: T oc - /MAMW2, thus (1/TAM) oc VMAMWm,

suggesting that the damping rate is independent of pulse width. In the limit of strong soliton

shaping[33] [34], the pulse shaping mechanisms are much less dependent on the modulation

depth as given by Siegman-Kuizenga-at least the dependence will be even weaker than the

inverse-fourth root dependency (see Fig. 4-11). In that limit, the decay rate decreases-that is,

TAM gets bigger-as the pulses get shorter due to soliton effects. In both cases, however, the

decay rate is enhanced by using as large a modulation depth as possible.

Fig. 3 - 1 shows the jitter spectrum for some typical parameters with white noise sources

given in equations (3.39) and (3.58) - (3.61). The spectrum is flat until the first turning point

where f = 1/(27FTAM), after which the spectrum falls off at 20 dB/dec. For f > 1/(27rFT), the
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spectrum falls off at 40 dB/dec until the frequency f = fpi given by

fPU11 1 1 + 2D )2(IS, (Q)1) (-5
27 T2 TR (ST (Q)|)(.

1 1 2D 2 D
= + T T ) (3.36)2 T T D

Eqution (3.35) shows that fp,,1 will always equal to or larger than 1/ (27r p), thus the timing

jitter spectrum will always first drop off by 40 dB/dec before being pulled up to 20 dB/dec.

The mean-squared timing jitter is given by the integrated spectrum of the timing fluctua-

tions, expressed as

U2 [flow, fAigh] ='fw - IAT(Q)12) dQ (3.37)
flo.w 7

where flow and fAigh bound the frequency range of interest, and the units of - are in seconds. To

add up the contributions for all frequencies, one sets flow and fAigh to 0 and +00, respectively.

In many cases, one is only interested in timing jitter fluctuations that occur at rates faster than

kilohertz. Then one can ignore the contributions from amplitude fluctuations, since they are

negligible due to the long upper-state lifetime of the gain in fiber lasers (on the order of a few

milliseconds). Carrying out the integral in (3.37), the timing jitter for AM becomes

2M (2 D 2
(7AM[0,+00] o AM= 2|D| I Ai DyP +

TR) Tp +TAM

TAMDTT (3.38)

where we have assumed that the noise sources are white and described by diffusion constants

Dij from the correlation

(Si(T, t)Sj(T', t')) = Dij J, 6(T - T')3(t - t') (3.39)

Our assumption of white noise sources simplifies the analytical treatment, but it should be

noted that while the quantum noise sources are white, the classical sources in general are

not[43]. Our use of diffusion coefficients for the case of classical noise, then, can be considered

to be valid within the bandwidth of the actual noise source. Also, since the pulses from the
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actively modelocked laser are rather long, the corresponding spectrum is narrow. A filter is

used to stabilize the pulses in the harmonically modelocked laser, thus only a portion of the

gain bandwidth is accessible. The noise is generally white within the spectrum of the pulse.

In a later section, we will consider the quantum-limited diffusion constants given by amplified

spontaneous emission.

We now consider the case where the damping due to filtering is stronger than that of the

modulator such that T << TAM. Then (3.38) reduces to

2 = 2D|) TAMT2 Dp + TAMDTT (3.40)

We can make a few observations from equation (3.40). The timing jitter due to noise that

drives carrier frequency fluctuations, Dpp, is reduced by strong filtering and small dispersion.

Of course, a soliton laser can not operate with zero net GVD, for such a pulse would necessarily

have zero energy. However, one can extend the idea to the case of dispersion-managed solitons

(DMS) in which the average dispersion is near zero, but the local dispersion is allowed to

swing between normal and anomalous. This stretching allows for an enhancement of the pulse

energy compared to that of the soliton, even where the average GVD is zero[65]. From (3.32),

rAM is inversely proportional to the product of modulation depth, the square of the driving

frequency, and the square of the pulse width. Thus, one should employ as large a modulation

depth as possible. Using longer pulses will also minimize fluctuations from both DyP and DTT

insofar as the noise terms do not depend on pulse width (for the case of ASE-limited noise,

however, Dpp and DTT do depend on pulse width and discused in section 3.4). The MAMW2

term gives the curvature of the modulation "well"-here, it is determined by the frequency of

the modulation cycle so that higher modulation frequencies yield narrower wells, thus steeper

slopes. Ideally, one would use strongly-curved wells that yield a strong restoring force, but not

so steep as to introduce excessive losses to the pulses. In practice, high bit-rate modulators have

electrical bandwidths on the order of 100 GHz for LiNbO 3 and polymer waveguides and similar

bandwidths for electro-absorption modulators, thus limiting the steepness of the modulator

well.
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3.3 Active Modelocking with Phase Modulation (PM) and Fil-

tering

For modelocking with a phase modulator, we replace the MAM term with JMPM in the master

equation given in (3.1). The equations of motion are then given by

U
TR 0Aw

Ta w
TRa AO

OT

TR aAP

TR a AT

-2gsat Aw + TRSw(T)

-Aw + TRSo(T)
wo

A

(3.41)

(3.42)

(3.43)

(3.44)

T2 AP ± MPMW E2AT + TRSp(T)

= -2DAp+TRST(T)

and the round-trip gain needed to compensate for the loss is given by

1
2 gsat = 3Q 2 T 2

f
(3.45)

In comparison with the equations of motion for AM, we can distinguish the key differences for

PM:

* Timing fluctuations are not directly damped out. Mistimed pulses are first frequency

shifted by the phase modulator. The frequency shifts are then converted to timing shifts

via GVD, and the timing restoration will depend on the product of the frequency shift

exerted by the modulator and GVD.

* While MAM is limited to 1.0, MPM can be much larger (> r)

Just as the case for AM, we can write the spectra for the perturbed pulse parameters driven

by the noise sources. We show only the spectrum of the timing fluctuations here, again ignoring
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the cross-correlation terms:

KAT (Q)12) | ± Q2) 2 4M]
PM [4 + 2(-L4P

- Q2 ) (
2)

21DI ) 2 KkS(Q)I) + KIST(Q)2} (3.46)
TR I Q2)

where

= 2D (3.47)QPM VJDJM~bjmTR

1 _ 4 1

TP 3Q2T 2 TR

Comparing the spectrum of the rms timing jitter for PM to that of the AM case, we see

that the effect of the phase modulator is to add terms in both the numerator and denominator

to the leading term of (3.46). This point can be seen more clearly by analyzing the features of

(AT(Q))pM rather than the mean-square value KIAT(Q)1 2)PM and solving for the poles and

zeros:

-jQ + .. (,()
(AT(Q))PM= -P 21D) { 1(DK + (S(Q)) (3.48)

(-Q + ri) (-j'Q + r2) TR )(-jQ + l

The first term of (3.48) has the form

1 (3.49)
(-jQ + ri) (-j+ r 2 )

where the poles r 1 and r 2 are given by

rl,2 - 1 [i ± 1 - 4 (TpQPM)2] (3.50)

These poles can, in general, be complex, depending on the relative values of filtering, rP, and

effective phase modulation, QPM. This is a natural consequence of the retiming action of

phase modulation. The form of the spectrum from equation (3.49) is that of a driven, damped
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harmonic oscillator, with damping 1/Tp and restoring force Rpm. From (3.31), the damping is

provided by filtering. From (3.47) the restoring force is provided by the frequency shift due

to the product of phase modulation and GVD. The character of the solution for the pulse

retiming, AT(T), can be overdamped, underdamped, or critically damped, depending on the

value of the determinant in equation (3.50). Where 4(TP QPM) 2 < 1, the damping term is

stronger than the restoring force, the poles r 1,2 are real, and the pulse retiming is a decaying

exponential, characteristic of overdamping. Where 4 (TPQpM) 2 > 1, the restoring force is

stronger than the damping term, the poles r1 ,2 are complex, and the pulse retiming is that

of an exponentially decaying sinusoid, characteristic of underdamping. For 4 (TPQpM) 2 = 1,

the damping and restoring force balance each other, the poles are degenerate, leading to a

pulse retiming that is given by an exponential and the product of a linear function of t and

an exponential, characteristic of critical damping. These regimes governing pulse retiming for

PM have been verified and will be covered in more detail in the chapter 4.

The second term has the form

(3.51)

(-jQ + ri)(-jQ +r 2 )

which is similar to that of the first term, but the filtering in the numerator adds a zero to the

spectrum. Depending on the relative values of Tr and QPM, the timing jitter spectrum for PM

in equation 3.46 can fall off more or less quickly than for AM. What matters in the evaluation

of timing jitter is the integral of the spectrum in the frequency range of interest.

Figs. 3-2 is the spectrum of the jitter as expressed in equation (3.46) for the case where

4(TpQpM) 2 < 1, corresponding to overdamping. Fig. 3-3 is the spectrum for the underdamped

case, where 4(TQpM) 2 > 1. The peak in the spectrum is indicative of a strong oscillation in

the pulse retiming from the complex poles.

The jitter is given by

UPM (2D+2 D, + T 1 + 2 DTT (3.52)

where we have assumed that the noise sources SP and ST are white and assigned diffusion

coefficients from (3.39). Before analyzing the expression for the jitter from equation (3.52),
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we should first consider the position fluctuations of a particle (with unity mass) trapped in a

1-D parabolic potential well with restoring force F = -QhAT and damping rate 1/Th driven

by white noise, Sh, (where we have transformed the spatial coordinate of x into the temporal

coordinate of t). The solution for the position of the particle is given by

1
(A T(Q))ho = I-(Sho(Q)) (3.53)(-jQ + ri) (-jQ + r2)

where Sho is a white noise source with a delta-function correlation given by

(Sho(X)Sho(X')) = Dho6(X - X') (3.54)

and where the poles ri,2 are the same as those in equation (3.50) but replacing QpM and Tr

with Qho and T ho, respectively. The spectrum of the rms position jitter of the particle is then

given by

KIAT(Q)12) h Q4 +2 ( Dho (3.55)
ho 4 p 2 _ +gh PM

The jitter of the damped harmonic oscillator over all frequencies, from equation (3.37), is given

by

ao = Dho (3.56)
ho

The notable feature of equation (3.56) is that the jitter of the harmonic oscillator approaches

zero with strong filtering (Tho --+ 0) as long as there exists a finite restoring force Qho. Compar-

ing the position jitter spectrum of the damped harmonic oscillator [equation (3.55)] with the

timing jitter spectrum for the pulses in a phase-modulated laser [equation (3.46)], we see that

the timing jitter spectrum is driven by an additional noise term. This results in an expression

for the jitter that has two components: The first component is due to noise driving a change

in the carrier frequency. The changes in carrier frequency are converted to timing changes via

GVD-this is the well-known Gordon-Haus effect[66]. Unlike the damped harmonic oscillator,

we can not reduce the contributions of this term to zero by arbitrarily increasing the restoring

force, QpM. Increasing the restoring force requires increasing the amount of phase modulation

and/or increasing GVD. The amount of phase modulation is limited to values up to 27r, and the
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modulation frequency is limited by the repetition rate of the laser and the available bandwidth

of the electro-optic modulator, typically under 100 GHz. Increasing the restoring force further

requires increasing GVD. However, GVD also appears in the numerator of the first term of

(3.52) as D 2 , and D 2 /Q 2 is linearly proportional to D. So the jitter due to frequency fluc-

tuations increases linearly with GVD. This is true, however, only for the case where the noise

contributing to frequency fluctuations, Dp, does not depend on GVD. We will see when we

introduce the quantum noise sources that Dpp does, in fact, depend on the GVD due to the fact

that the pulse width depends on GVD via the area theorem given in (3.4). Filtering helps to

control this source of jitter; however, the impact of filtering is limited. Recall from (3.31) that

the damping strength, 1/rP, is proportional to the square of the product of the filter bandwidth

and pulse width, Qjr 2. Increasing the damping (reducing Tp) can be achieved by reducing the

filter bandwidth, Qf; however, reducing the filter bandwidth increases the spectral losses for

the pulse, leading to spectral narrowing of the pulse and a longer pulse in the time domain.

Thus the product Q2 T2will not vary much as the laser parameters are changed.

The second component of the timing jitter from (3.52) can be reduced to a minimum level

with large restoring force (large QPM) and strong damping (small Tp) such that TQpm >> 1

where the minimum contribution is TPDTT. Further reducing the jitter requires increasing the

damping further, but as discussed previously, the amount of reduction is limited.

3.4 Quantum-Limited Timing Jitter, AM

In this section, we compute the quantum-limited timing jitter for the case of amplitude mod-

ulation by including the explicit contributions from the dominant quantum noise source in the

laser, amplified spontaneous emission (ASE) from the gain. The spontaneous emission noise

can be modeled as a white-noise source with correlation[43][66][67]:

(Sqri(T, t)S*(T', t')) = Dijo 6-,(T - T')J(t - t') (3.57)
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and the corresponding diffusion coefficients become

Dww,qn = 4wo 2 phv (3.58)
TR

4 +,2 )2g
Doo,qn = (+ ) gnhv (3.59)

Dpp,qn 2 2gnphv (3.60)
3wOT 2 TR

Dr 2 ~T 2 2g
DTT,qn = 3w TRnsphv (3.61)

where nr, is the enhancement factor due to incomplete inversion of the gain. The diffusion

coefficient corresponding to frequency fluctuations, Dpp, is inversely proportional to the square

of the pulse width: shorter pulses have a larger bandwidth, thus increasing the spectrum in

which amplifier noise can couple into. The DTT coefficient due to pulse displacement is reduced

for shorter pulses. The total noise power is only a small fluctuation about the steady-state

pulse energy, thus the diffusion coefficients are inversely proportional to pulse energy.

Explicitly including the dependencies of the pulse width into the damping terms T and TAM

from (3.31) and (3.32) and the diffusion constants from (3.60) and (3.61) into the expression

for the timing jitter for AM in (3.40), we find that the contribution from the first term is

proportional to Q4D 2 /wo, and the second term is proportional to l/wo, and both of them

inversely proportional to the modulation depth:

A - 4 g2hv 9 Q4 D2 + 1 (3.62)
MAMW- wo k27Tr2 f

We can make a few statements about (3.62).

" The timing jitter is inversely proportional to the pulse energy. As discussed previously,

this is a signal-to-noise term that has come from the diffusion constants and represents

noise power compared to signal power.

" The jitter is reduced for high-Q laser cavities (small g). Lower loss implies that fewer

photons need to be regenerated per round trip, thus minimizing the ASE contributions.

* The pulse width dependence of the retiming force TAM and the diffusion constants Dpp

and DTT has cancelled out-there is no explicit dependence on the pulse width. However,
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Parameter Value

6 2 W- 1 km- 1 - Leff
9sat 0.8
ns, 2
Leff 150 m

MPM 7

MAM 1.0
Wm 27r 10 GHz
Qf 27r - 750 GHz (5.5nm)
WO 2 pJ

Table 3.1: Parameters used for timing jitter computations.

there is an implicit pulse width dependence because the pulse width depends on the optical

filter bandwidth, pulse energy, and GVD.

" The first term is the contribution from frequency shifts manifested in the amplifier that

translate to timing shifts via GVD by the Gordon-Haus effect. The jitter is bound by the

restoring force of the modulator and filtering, and the Gordon-Haus noise is proportional

to the square of GVD.

* The second term is the contribution from displacement of the soliton pulse by the amplifier-

it is independent of GVD and is minimized for large pulse energy and large modulation

depth.

For small GVD such that

2r 2  D2 << 1 (3.63)

the minimum jitter is independent of GVD and given by

(AM)min,qi = TAMDTT

4 2gn~,hv (3.64)
MAMWM W0

The minimum jitter requires the largest possible modulation depth (and, consequently, the

deepest modulation well) and large pulse energy. Using typical laser parameters given in Table

(3.1), the minimum timing jitter is 78.4 fs2 .

While the minimum jitter approaches zero asymptotically with pulse energy, the pulse energy
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is limited by the maximum nonlinear phase shift experienced by the soliton before the onset of

instabilities [33][34] where

D (jO)2 2
<b 2 2 (3.65)

Excessive phase shifts on the order of -r lead to pulse instability. For fixed GVD, the nonlinear

phase shift increases with the square of the pulse energy. One can reduce the nonlinear

phase shift by employing a dispersion-managed (or stretched-pulse) laser design[68] in which

the average GVD is zero while the dispersion is allowed to swing between alternating sections of

positive and negative GVD, resulting in a breathing solitary pulse that exhibits less nonlinear

phase shift while maintaining a large pulse energy (compared to a path-averaged soliton).

Additionally, one could use a large core fiber to allow for the increase of pulse energy without

increasing the nonlinearity.

3.5 Quantum-Limited Timing Jitter, PM

The quantum-limited jitter for PM is given by the expression for the jitter in (3.52) with the

diffusion coefficients given by (3.60) and (3.61) from the ASE noise source:

2DF 7r2 Q4 8
PM f + 9 1+ 2npghv (3.66)PM 2uw 4wo 9Q4T4DMPMWm

We can simplify equation (3.66) considerably for two cases

Case 1 Overdamped Case: 8/ (9Q T4DMpMw '> 1.

Then equation (3.66) simplifies to

[2 2i 2 1 1 2grn hv
0- I = DQ + I 2 ph (3.67)TPM f[f 9DQ 2 MpMW4 wo

Given the operating parameters of Table 3.1, the approximation holds for D < 0.1 ps2 . Just

as for the case with AM, the explicit dependence on the pulse width has dropped out of the

expression. We can make a few observations from equation (3.67):

e The timing jitter is inversely proportional to the pulse energy. This is a signal-to-noise

52



term that has come from the diffusion constants and represents noise power compared to

signal power.

" The jitter is reduced for high-Q laser cavities (small g). Lower loss implies that fewer

photons need to be regenerated per round trip, thus minimizing the ASE contributions.

* The Gordon-Haus noise dominates for large GVD and is linearly proportional to GVD.

" For small GVD, the noise due to pulse displacements dominates.

" There exists an optimum dispersion that minimizes the overall timing jitter due to the

contributions of both noise terms.

We can also make the following observation in comparing the jitter between AM and PM:

for cases where the GVD is large (and the diffusion coefficients are independent of GVD), the

increase in jitter with GVD from carrier frequency fluctuations goes as D 2 for AM, but only as

D for PM. The explanation is that GVD can assist pulse retiming for PM by converting fre-

quency shifts into timing shifts (provided that one uses adequate filtering to damp out excessive

frequency shifts), whereas for AM, GVD does not assist pulse retiming and only increases the

jitter via the Gordon-Haus effect. Thus for cases where the GVD is large, using PM is more

effective than AM in reducing the jitter. We can solve for the GVD that minimizes the jitter

due to the contributions from both noise components

Doptqi =F (3.68)Q2  91
f

and the minimum jitter is given by

PM min,ql 2gniphv (3.69)
9 MPMWM~ WOJ

The optimum dispersion that achieves the minimum timing jitter for PM depends solely on the

filter strength. The minimum jitter is inversely proportional to the pulse energy, as we might

expect based on noise-to-signal power ratio, and inversely proportional to the phase shift per

round trip exacted by the phase modulator. Filtering and GVD do not appear explicitly in

the expression for the minimum jitter.
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Case 2 Underdamped Case: 8/ (9Q T4DMPMW) < 1

Then equation (3.66) simplifies to

2 ~DJ 2 T Q2 T 2 2gnsphv
0-PM 2 + F2T2MPMWS 2 (3.70)

_ T2 j MPMWm WO

For the parameters from Table 3.1, we find that 7r2 T2 MPMW2 < D/T 2 , so we can further

simplify (3.70) to
DQ 2

2 D 2gnsphv
(-PM - 2 WO(3.71)

MPMWm

Equation (3.71) indicates that the jitter increases linearly with GVD. For typical laser para-

meters given in Table 3.1, the minimum jitter is 37.2 fs2 , and the optimum GVD is D = 0.0064

ps 2 . Again, the minimum jitter asymtotically approaches zero as the pulse energy increases,

with the limit on allowable pulse energy set by the onset of pulse instabilities. For small GVD,

the jitter grows quickly, indicative of the fact that phase modulation requires some GVD for

pulse retiming, and for large GVD, the jitter is linearly proportional to D.

3.6 Comparison Between AM and PM for Quantum-Limited

Noise

In general, we want to compare the minimum quantum-limited timing jitter between AM and

PM. We define R as the ratio of AM to PM jitter. Where this ratio is below unity, AM

yields lower timing jitter, and above unity, PM yields lower timing jitter. We can evaluate the

minimum ratio where we have independently adjusted the GVD for AM and PM. For AM, we

adjust GVD such that 9D 2Q4/27r2 << 1, and for PM, we use the optimum GVD from equation

(3.68). From equations (3.64) and (3.69), the ratio is

(M) min,ql _ 1 9 MPM (3.72)

PM minql rr 2 MAM

It is a remarkable fact that although the physics of timing restoration between AM and PM is

quite different, we find that the ratio of the minimum timing jitter between the two configura-

tions depends solely on the ratio of the modulation depths.
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It makes sense to talk about MAM as an extinction ratio proportional to the drive power

of the amplitude modulator: the action of amplitude modulation is interferometric, thus the

maximum extinction between the "off' and "on" states is unity. For PM, this is not the case,

as the "modulation well" is formed with the combined action of phase modulation plus filtering.

MAM is limited to a value of one for complete extinction, whereas MPM can take on values

up to 7r and greater, thus the MAM/MPM term can be as small as 1/7 for the same drive

power. This makes intuitive sense when we consider the action of the phase modulator on the

pulse spectrum: ignoring for the moment the action of gain, loss, and nonlinearity, the phase

modulator puts a linear chirp on the pulse, as

& . 1MpM
a = -3 [1 - cos(wmAT)] a

OT TR 2

~ .j1 MPM2 1 AIM (w AT)2 a(3.73)
TR 2

So, placing the reference frame at z = 0,

a(z, AT) ~ exp j1 MPM (WmAT)2Z (3.74)

d 1
and the chirp becomes 2 - = MPMW AT z. The additional effect of dispersion is

to increase the spectral width with propagation distance, much like the temporal expansion of

a beam in a highly dispersive medium. The spread spectrum experiences loss in the filter via

gain dispersion.

Taking the values for the same power driving each modulator from Table 3.1, MAM = 1

(full extinction, requiring a differential phase shift of 7r in a Mach-Zender type interferometer)

and MPM = r (requiring an additive phase shift of wr in the same interferometer), we find that

Mmin / (0 M) m = 2.1, indicating that the timing jitter for PM can be twice as small as

that for AM.

3.7 Conclusions

Using the soliton perturbation theory, we derived the equations of motion for the pulse para-

meters and derived analytical expressions of the timing jitter for both AM and PM. For AM,
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the quantum-limited jitter increases with the square of GVD, D 2, due to the Gordon-Haus

noise, and the minimum jitter is proportional to the pulse energy and the modulator curvature.

For PM, we derived an equation of motion for the pulse timing and identified it as that of a

damped harmonic oscillator in which the damping is provided by filtering and the restoring

forces provided by the phase modulator and GVD. For mistimed pulses, the phase modulator

imparts a frequency shift that is converted to a timing shift via GVD. While an increase in

the GVD increases the effect of Gordon-Haus noise, the GVD also assists the retiming force,

thus for large GVD, the jitter increases only linearly with D. Thus, in a laser where the GVD

is large, PM can be much more effective in reducing the jitter than AM. For small GVD, the

noise that imparts pulse displacements dominates over the Gordon-Haus effect, but the phase

modulator can not restore timing effectively without GVD, thus the quantum-limited jitter for

small GVD in inversely proportional to D. We derived the optimum GVD that minimizes the

jitter for PM. For both AM and PM, filtering helps to control the jitter. The ratio of the

minimum quantum-limited jitter between AM and PM is proportional to the relative strengths

of modulation depth. While the modulation depth for AM is limited to unity, the modulation

depth for PM can be as large as 7r. The quantum-limited jitter for PM can be less than the

jitter for AM by as much as a factor of two. For both AM and PM, the quantum-limited jitter

is inversely proportional to the pulse energy.

3.8 Ideas for Future Work

Using dispersion-management in the laser cavity should allow the laser to be operated with

low average GVD while maintaining large pulse energies. However, achieving large stretching

ratios in short lengths is a challenge when operating with picosecond pulses and may require

the use of fiber-Bragg gratings or other dispersive elements.

It has been argued[69] that for the case of phase modulation and GVD, the perturbation

theory yields non-orthogonal expansion functions that may give rise to additional noise terms

under certain conditions (similar to the case of continuum generation by a soliton). This should

be a topic explored further.
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Chapter 4

Retiming Dynamics

4.1 Introduction

'In chapter 3, an analytical expression for the timing jitter in actively modelocked lasers for

the cases of amplitude (AM) and phase (PM) modulation were derived from soliton pertur-

bation theory (SPT), and the resulting spectra of the timing jitter were described in terms

of characteristic time constants determined by the laser parameters and noise sources [37][36].

The characteristic time constants govern the laser response to noise that leads to timing jitter

and thus are crucial for an understanding of the physics of timing jitter. In this chapter, we

demonstrate an experimental apparatus that enables the measures of the characteristic time

constants for both amplitude (AM) and phase (PM) modulation, and we compare the results

to those derived from theory. In addition, the measurement technique allows us to directly

observe the pulse retiming dynamics in real time.

'The work appearing in this section benefitted greatly from useful discussions with Moti Margalit, Paul
Juodawlkis, and John Twichell. Results from this section can also be found in Refs. [46][70].

57



4.2 Theory

In chapter 3, we derived the equations of motion from the master equation for modelocking

describing the evolution of a pulse in an actively modelocked laser with SPM and GVD:

a_ 82 22 12
TR a = +i -a+i ja|2a+ g-l+G 8t

I (MAM + jMPM) (1 - cOs(wmt)) a + TRS(t, T)

MAM and MPM were defined as the depths of amplitude and phase modulation, respec-

tively. MAM is a loss parameter proportional to the drive power of the amplitude modulator.

The modulator is typically an electro-optic device with patterned single-mode interferometric

waveguides. In lithium niobate, the achievable extinction rates are on the order of 20-25 dB

between the "on" and "off' state when operated in transmission. The largest modulation

depth for the AM modulator is 1.0. For PM, this is not the case (as discussed in chapter

3)-MPM can take on values exceeding 7r.

Using SPT, we found equations of motion for the pulse timing, AT, and the carrier frequency

(or momentum), Ap:

aT T Ap" AT + TSp(T) (4.1)

8 _ 2D 1-AT - Ap - AT + TRST(T) (4.2)
8T TR TAM

where

1 ir 2  221
-- MAMWmT (4.3)T AM 6 TR

1 _ 4 (4.4)
Tp 3Q2T 2

QPM \2DMPMW2 (4.5)m TR

The Si terms (for i = w, p, 0, T) are the projections of the noise S onto each of the pulse
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parameters. The perturbation theory produced a set of coupled ordinary differential equations

of motion that govern how the pulse carrier frequency (p) and pulse timing (T, measured with

respect to the phase of the external microwave frequency source) evolve in the presence of noise.

That evolution depends on the set of constant coefficients-given in equations (4.3) - (4.5)-and

noise terms, and the coefficients depend only on the laser parameters. In this chapter, it is our

goal to verify the laser-parameter dependencies for the characteristic constants. We will study

the retiming dynamics separately for the two cases of amplitude and phase modulation.

4.3 Actively Modelocked Fiber Ring Laser

The modelocked fiber laser used for the experiment is shown in Fig. 4-1. The fiber laser

is 167 m long-corresponding to a 1.2 MHz free spectral range (833 ns round-trip time)-and

is constructed with polarization-maintaining fibers (and devices with polarization-maintaining

pigtails). An isolator ensures unidirectional operation. Reduced dispersion (achieved by use of

a 100 m of dispersion-shifted fiber) in combination with spectral filtering (achieved by insertion

of a 5.5-nm bandwidth angle-tuned interference dielectric filter) permits effective supermode

suppression [48]. The modulator is a Lucent m2122a Mach-Zender type and can be configured

for either AM or PM action, as described in a below subsection. The laser is optically pumped

at 980 nm with approximately 300 mW from a semiconductor master oscillator power amplifier.

The output power is ~4 mW extracted from a 10 % output coupler.

The pulse characteristics could be varied by adjusting the pump power, optical filtering

bandwidth, modulation depth, and average GVD. Typical characteristics for the pulse width,

optical spectrum, and RF spectrum are given in Figs. 4-2, 4-3, and 4-4, respectively. The

autocorrelations were obtained via second-harmonic generation with a 2 mm POM crystal in a

noncollinear geometry and double chopping (to eliminate the background). The pulse width

given is the full width at half maximum (FWHM) for a best fit line assuming a hyperbolic

secant pulse shape, as given by the dotted curve. The dynamic range between the signal

and background was greater than 23 dB and limited only by the A/D converter of the lock-

in detector (8 bits of resolution ~-24 dB dynamic range). From the curve in Fig. 4-2, the

agreement is good over the extent of the pulse shape. The optical spectrum is shown in Fig. 4-
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Figure 4-1: Fiber ring laser schematic for retiming measurements. All fibers and fiber pigtails
constructed with polarization-maintaining fiber. ISO is a two-stage isolator, EDF erbium-
doped fiber, WDM wavelength division multiplexer for the 980 nm pump, PZT fiber-wound
piezo-electric cylinder, DSF dispersion-shifted fiber, LO local oscillator, AS aspheric lens, HWP
half-wave plate, F interferometric tunable filter, and OC a 10% output coupler.
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Figure 4-2: Typical trace of the intensity of the second-harmonic in a non-colinear, background-
free autocorrelation as a function of delay. Dotted curve assumes a hyperbolic secant pulse shape
with a full-width-at-half-maximum pulse width of 2.39 ps.
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Figure 4-3: Intensity of the optical spectrum (linear scale) as a function of wavelength. The
10 GHz fringes are resolved with a ~0.08 nm instrument resolution bandwidth.

3. The maximum resolving power of the optical spectrum analyzer is -0.08 nm, corresponding

to -10 GHz resolution, and the 10.0012 GHz modes can be resolved. The RF spectrum of the

photogenerated current after direct detection is shown in Fig. 4-4 with supermode suppression

> 70 dB, indicative of very stable laser operation.

4.4 Experimental Setup for Retiming Measurements

The experimental setup is shown in Fig. 4-5. Just a simplified schematic of the fiber laser

(previously described) is shown in the figure. The bias circuit allows the modulator to be

operated with any combination of amplitude and phase modulation (see Appendix B). The

phase shifter imparts a discrete change in the phase of the LO whenever the control signal CLK

goes high or low (see Appendix C).

The RF phase detection circuit is shown in Fig. 4-5. The input optical pulses are photode-

tected, lowpass filtered such that the higher harmonics of the repetition rate are filtered out,

and amplified before entering the RF port of a double-balanced mixer-the signal is sinusoidal
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Figure 4-4: Intensity of the radio-frequency spectrum (log scale) near 10.0 GHz. The super-
modes are suppressed by over 70 dB.
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Figure 4-5: Retiming measurement setup. LO local oscillator at 10 GHz, CLK is a TTL
pulse train that triggers the phase shifter to alternate the RF phase of the LO delivered to the
modulator between two phase states, PS microwave phase shifter, M double-balanced mixer,
PD 16 GHz photodiode, F 10 GHz bandpasss filter, A preamplifier, PLL phase-locked loop, HV
high-voltage amplifier, PZT fiber-wound piezo-electric transducer, ISO isolator.
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with a phase jitter determined by the timing jitter of the laser pulses. The LO signal (after

passing through the phase shifter) is input into the LO port of the mixer as well. The LO and

laser are phase-locked together, and the carrier frequency of the LO (in this case, 10 GHz) is

the same as the laser repetition rate. By proper biasing the phase shifter such that the RF

and LO are in quadrature, the output voltage of the mixer (also referred to as the IF port)

is proportional to the phase difference between the LO and RF signal (also see chapter 5 on

timing jitter measurements for more detail). In other words, the IF voltage is a measure of

the distance between the pulses and the center of the modulation window. Also, quadrature

detection reduces amplitude fluctuations from the laser pulses by -10 dB.

In order to maintain active modelocking, the length of the cavity must be set to a subhar-

monic of the LO frequency to within ~10 kHz. In order to maintain locking, the fiber laser was

enclosed in a metal box and temperature controlled to within ±0.01C as measured with an RTD

temperature sensor. Assuming an index change of 1.1 x 10 5 per degree C, the cavity drift was

±1.7 Hz. However, it was found that the laser would not maintain modelocking for more than

a few minutes without having to adjust either the cavity length or the synthesizer frequency by

a few hundred Hz. A phase-locked loop (PLL) with analog control circuitry was constructed

in order to maintain modelocking. The voltage from the phase detector (described above)

was used as the error signal for the PLL. An inverting proportional control circuit shown in

Appendix D (Fig. D-2) provides an integrating pole and a zero for lead-lag control of the PLL.

The output of the circuit drives a high-voltage PZT driver (Burleigh PZ-70, adjustable gain

and DC offset) that drives a fiber-wound PZT cylinder (wound with ~12 m dispersion-shifted

polarization-maintaining fiber). In order that the PLL not interfere with the measured time

constants, the loop bandwidth was reduced to < 2 Hz. The noninverting control circuit of Fig.

D-1 given in Appendix D seemed to work equally well as the inverting circuit.
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4.4.1 Amplitude Modulation

For pure amplitude modulation (with PM set to zero), the governing equations of motion are

simplified to

8 1
Ap = Ap +TRSp(T) (4.6)

OT TP

& 2D 1
AT = - Ap - AT + TRST(T) (4.7)

OT TR TAM

While we have previously derived the retiming dynamics of pulses using amplitude modulation

by employing soliton perturbation theory (see section 3.2), a more straightforward derivation

for TAM can be made. Consider a Gaussian pulse given by

a(t) = exp (-t 2 /2T 2 ) (4.8)

with pulse width T. We will artificially shift the pulse in time by a small amount Rt and ask

for the changes to R1 as it passes through a modulator. For the case of amplitude modulation

with depth of modulation MAM and sinusoidal drive frequency of fm Wm/27r, we can write

the transmission function as

M(t) = 1 - MAM 2 2 (4.9)
2

The pulse upon exiting the modulator is modified to yield

b(t) = M(t)a(t)

= 1 - MAMW 2 t2 exp [_ (t - 6t) 2 /2T2 (4.10)

The pulse is shifted to a new position t'. We can solve for the shift (6t - R') and find that the

pulse is shifted by MAMW2T 2 per pass through the modulator, resulting in a retiming constant

TAM OC MAMW2T 2 /TR. This is identical to equation (3.32) obtained using soliton perturbation

theory in chapter 3.

The experiment proceeds as follows: at t = 0, an instantaneous "kick" is applied to the

phase of the 10 GHz LO signal using the microwave phase shifter. This is equivalent to shifting

the position of the pulse by an amount AT relative to the LO modulation, as depicted in Fig. 4-
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Figure 4-6: Illustration of the transmission of a mistimed optical pulse through an amplitude

modulator. AT is the instantaneous position of the pulse with respect to the point of maximum

modulator transmission, MAM is the modulation depth (values range from 0 to 1), and 1/T is

the pulse repetition rate.

6. With the microwave phase detector properly biased, the IF output voltage of the mixer is

proportional to AT. By monitoring this voltage on an oscilloscope, we can directly observe

the dynamics of the pulse as it relaxes to its unperturbed state. Equation (4.7) suggests that,

for a step-wise perturbation of the pulse timing and no perturbation of the carrier frequency,

the pulse retiming dynamics are governed by a simple first-order exponential of the type

AT(T) = ATo exp (_T) (4.11)
T AM

where ATO is the initial perturbation of the pulse position using the microwave phase shifter.

A typical measured trace for the case of AM is given in Fig. 4-7. Before t = 0, the pulse

is near the center of the modulation and AT(t > 0) = 0. At t = 0, the microwave switch
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Figure 4-7: Retiming dynamics for the case of AM for two different modulation depths.
dark curve, data; dashed and dashed-dotted curves, fit to first-order exponentials.

Solid

is activated, the pulse is now shifted from the center of the modulation by ATO such that

AT(t = 0) = ATo. It is seen that after the initial perturbation, the pulse position relaxes back

to its original quiescent state at AT = 0 at an exponential rate. The dotted curve is the best

fit for a first-order exponential recovery with time constant rAM. By changing the modulation

depth, the time constant decreases and the timing recovery happens at a faster rate, as shown

in the figure. The time scales of the slower and faster relaxation times shown in Fig. 4-7 are

-200 ps and ~600 [Ls. Because the roundtrip time of the laser is 833 ns, this relaxation rate

corresponds to ~240 and -720 round trips, respectively.

While monitoring the relaxation rate, the amplitude fluctuation were also monitored (as

shown in the setup of Fig. 4-5)-a sample trace is shown in Fig. 4-8. The average power was

monitored by tracking the photocurrent after direct detection of the laser pulses using a fast

photodetector (3-dB BW -3 GHz) triggered by the clock controlling the microwave switch.
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After the phase kick at t = 0, the average power fluctuates by -2 percent and oscillates for a

few hundred microseconds at a rate of ~52 kHz. This rate is also the relaxation oscillation

frequency of the fiber laser. The excitation of the relaxation oscillation is most likely caused by

the action of the microwave switch as it changes from one state to another, during which time

the modulator drive power turns off during the switching. Another explanation is the fact that

in the act of instantaneously switching the LO phase, the pulse experiences an instantaneous

loss due to the decreased transmission through the modulator. If this were the case, then the

amplitude fluctuation should increase as the initial perturbation, ATO, is increased. This was

not the case, however, suggesting that the power actually is shut off during the 25 ns as the

microwave switch changes from one state to another, as verified by further experiments. The

excitation of the relaxation oscillation did not affect the measurement of the time constants

because the timing recovery occurred on a much longer time scale, and fluctuations of the

average power are suppressed by -10 dB.

Timing recovery curves were taken for an array of laser parameters by varying the pump

power, optical filtering, and modulation depth. For each timing recovery curve, autocorrelations

were taken to measure the pulse width. The modulation depth was measured by monitoring

the RF power delivered to the modulator using a directional coupler and normalizing it to the

power needed to drive the modulator between maximum and minimum optical transmission

(data provided by the manufacturer) so that MAM takes on values from 0.0 to 1.0. The

retiming constant TAM was measured for each trace and compared with the theoretical value,

as shown in Fig. 4-9. The agreement between the data and the theory is good over a wide

range of TAM values and within experimental uncertainty.

The time constant was also tested as a function of the magnitude of the phase kick, ATO, and

shown in Fig. 4-10. Increasing the size of the kicks (while remaining much less than 7r/4 (i.e.,

less than 12.5 ps over 100 ps period) did not change the retiming constant. As evident from

the fourth trace in the figure where a large phase kick (>7r/4) was used, the timing recovery

exhibited a recovery described with two time constants, and the directly-detected and monitored

power fluctuations increased. Pushing the phase kicks to larger offsets led to large oscillations

of the average power and large oscillations in the timing recovery. Testing the timing constants

in this regime go beyond the parabolic approximation of the modulation function and are not
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Figure 4-8: Dynamic timing recovery for the case of AM (solid and dashed curve) and measure-
ment of amplitude perturbations via direct detection of the laser pulses with a slow detector.
The power oscillation corresponds toa relaxation oscillation frequency of ~ 52 kHz.
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Figure 4-9: Plot of the characteristic time constant TAM due to amplitude modulation as a
function of modulation depth and pulsewidth; dots indicate data points, dotted curve indicates
theory. Error bars for the data set are shown on one of the data points.
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Figure 4-10: Retiming traces for various initial perturbations where the initial offset ATO was
changed, ranging from 0.0177r, 0.0597, 0.117, and 0.197 where the phase shift on the vertical
axis is calibrated as 280 mV=7r/2 radians.

applicable for studies in this thesis.

The pulse width was measured for each value measurement of rAM. As the depth of

modulation was varied (by attenuating the power applied to the modulator), the pulse width T

also varied but only as a very weak function of MAM. The measured dependence is given in Fig.

4-11 for two different settings of pump power. The presence of soliton effects shorten the pulse

compared to its Siegman-Kuizenga pulse width and give the pulse its characteristic hyperbolic

secant shape, as shown in Fig. 4-2. The solid curve of Fig. 4-11 shows the dependence assuming

purely Siegman-Kuizenga active modelocking in which the pulse width is inversely proportional

to the fourth root of the modulation depth TS-K oc -MAM. The dependence shown in

the figure for both data sets is much weaker. The best empirical fit to the data is given by

T OC -MAM.
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Figure 4-11: Pulse width as a function of modulation depth for the case of amplitude modu-
lation, with the pulse width for Siegman-Kuizenga active modelocking also shown (solid line).
The filled squares and empty circles are data for two different pump powers. Error bars for
the data sets are shown on one of the data points.
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4.4.2 Phase Modulation

The same class of experiments were performed using phase modulation (with amplitude mod-

ulation set to zero). The equations of motion in that case are given by

a 1 MPMW2
Ap = - Ap + ".AT+TRSP(T) (4.12)OT TP TR

aA T = - DAp + TR ST(T) (4.13)
OT TT

For a perturbation of the pulse position only, Sp(T) = 0, and we can simplify the equation of

motion to the second-order differential equation given by

2 1 (4.14)-AT + AT +pMAT=
OT T, T TTT PrI

This is the equation of motion for a driven, damped harmonic oscillator with damping time

and natural oscillation frequency given by

1 4 1 (4.15)
23Q 2 TR

1
PM = V2DMPMW2  (4.16)

m TR

Unlike the case for AM, the dynamics of pulse retiming for PM requires two constants, given

by T and 2pM. For the experimental conditions of our setup, AT(t = 0) = ATo is the initial

kick that we can set, and 2AT(t = 0) = 0 since the momentum of the pulse immediately after

displacement is zero. The initial value problem is easily solved, and the solutions of (4.14)

have a character governed by the product 4 (TPQPM) 2:

e Case 1 Underdamped: 4 (rPQpM) 2 > 1

The solution is given by

AT(T) = Rexp cos (pT - J) (4.17)

where
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R =ATo (p M) 2  (4.18)
4 (TpQPM)

2 _i1

arctan ) (4.20)
4 (rGpm)2 _ I)

Equation (4.17) is that of an oscillating, decaying sinusoid whose envelope of decay is given by

T with natural oscillation frequency p. This is the underdamped solution. For the case where

the oscillation term is much stronger than the damping term such that 4 (TP 9PM)
2 > 1, then

equation (4.17) simplifies to

AT(T) = ATo exp T cos [pMT - arctan (4.21)
2T, 2 (T 9PM)_

and the oscillation frequency simplifies to 9pM.

9 Case 2 Overdamped: 4 (TQ)PM 2 1

This is the overdamped solution, given by a sum of decaying exponentials

AT(T) = A exp (-r1T) + B exp(-r 2T) (4.22)

where the exponential decay terms r 1 and r 2 are

7r1,2 =- 1  1 - 4 (rQPM)) (4.23)

and the constants A and B are

A = AT0  (4.24)
A= AT 1 - r2(

B = AT,, ri r (4.25)
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Figure 4-12: Autocorrelation trace for the case of phase modulation. The fit (dotted line)
assumes a secant hyperbolic pulse shape with a full-width-at-half-maximum pulse width of 2.06
ps.

For the case where 4 (r0QPM)2 << 1,

AT(T) = A exp (-TTr) + ATO

Case 3 Critically damped: 4 (TPQpM) 2 = 1

The motion of the pulse is critically damped and is given by

AT(T) = ATo I + I T exp (-T/2TP) (4.26)

The pulses generated using phase modulation are almost identical with those generated

using amplitude modulation-slightly longer (typically by 10-20% depending on the depth of

modulation) but having the hyperbolic secant shape, as shown in Fig. 4-12. The optical and

RF spectra were similar to that of AM.
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The experiments for PM proceed in an identical fashion as for AM. At t = 0, an instan-

taneous "kick" is applied to the phase of the 10 GHz LO signal, equivalent to shifting the

position of the pulse by an amount AT relative to the LO modulation. By monitoring the

output IF mixer voltage on an oscilloscope, we can directly observe the dynamics of the pulse

as it relaxes to its equilibrium position. A typical set of traces are shown in Fig. 4-13. The

two traces correspond to different settings of modulation depth. For the lower trace, the pulse

oscillates about its equilibrium position and is quickly damped out in a few oscillations-this is

the character of an underdamped response. The dashed curve is a two-parameter fit to find the

damping, TP, and natural oscillation frequency, QPM. The value of the product 4 (T PM)2

is 8.63, consistent with the behavior of an underdamped harmonic oscillator. By decreasing

the modulation depth-thus reducing the damping-the retiming resembles that of a critically

damped harmonic oscillator as shown in the figure with a dash-dotted curve. For the extracted

parameters T and RPM, the product 4(TP pM) 2 is 1.16 and very close to critical damping, as

expected.

Just as for the case of AM, the fluctuations of the average power during the switching event

was also monitored-an example trace is given in Fig. 4-14 for the case where the response

is close to critical damping [4 (TPQPM) 2 = 1.26]. After the switching event for which the

phase was shifted by 0.117r (approximately 5.5 ps) at t = 0, the power oscillated with a peak

fluctuation of -2 percent and was damped out in ~80 pus with an oscillation frequency of ~20

kHz.

A variety of similar retiming curves were generated after varying the pump power and

modulation depth, and for each curve the data was fit using a two-parameter fit to extract T,

and Rpm. The resulting data and the comparison with the theory for T, and QPM are given

in Figs. 4-15 and 4-16 and again, just as for the case of TAM, show good agreement.

4.5 Conclusion

In this chapter, we briefly reviewed the equations of motion that govern the retiming of a soliton

under the influence of a driving noise source for the cases of amplitude and phase modulation and

identified the characteristic time constants. We demonstrated an apparatus that can directly
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Figure 4-13: Retiming dynamics for the case of PM for two different modulation depths. Solid
dark curve, data; dashed and dashed-dotted curves, fit to second-order exponentials.
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measure the characteristic constants and compared them with theory, with good agreement.

4.6 Experimental Notes and Ideas for Future Work

Using a modulator that allows both modulation ports to be driven based on external bias cir-

cuitry allows for the simultaneous use of both amplitude and phase modulation. The equations

of motion resulting from this kind of modulation reveals a damped harmonic oscillator with

added damping. The left-hand side of equation 4.14 is given by

d2 1 d
d AT + --- AT+ Y MAT (4.27)dT 2  T dT

where

1 1 1
-+ 1(4.28)

Tp Tp TAM

1
Q2/ = )2+ (4.29)~PM QPM + TAMTp

It would be interesting to measure this enhanced damping directly and if there is an optimum

way of distributing the RF power between amplitude and phase modulation to achieve the

minimum timing jitter.

The time constants measured in these experiments stemmed from the perturbation of the

position of the pulse. It would interesting to study the time constants when driven by a

perturbation of the pulse carrier frequency to allow for a more direct measure of TP and QPM.

Modelocking an actively modelocked laser requires the adjustment of a number of parameters

for optimum performance, including bias voltage, modulation depth, and detuning between

the external reference oscillator and cavity length. The locking circuit constructed for these

experiments is designed such that it will reduce the error voltage associated with drift between

the external reference oscillator and the cavity harmonics. To initially match the external

reference oscillator (LO) and one of the cavity harmonics requires one to either tune the LO or

the length of the cavity. Optimum modelocking is determined by monitoring the RF spectrum

as well as the optical spectrum. Once this is done, the bias of the phase detector must

be manually adjusted to zero by tuning the phase delay from one of the arms of the phase
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detection circuit, and then the control circuit is switched on. If one makes an error in the

manual adjustment by not biasing the error voltage exactly at zero, turning on the circuit will

result in a pulling of the cavity length away from the optimum position. Using regenerative

modelocking with an external LO reference is capable of generating true phase-locked loop

action and can automatically reduced the relative difference between the LO and the cavity.

It was useful to monitor the autocorrelation traces in real time using a swept delay line

(standard speaker drive is sufficient for picosecond pulses). If one used the retiming traces as

a measure of optimum modelocking by setting the laser parameters (i.e., bias voltage setting,

cavity detuning, modulation depth) to achieve the fastest time constants, it would often be

found that the autocorrelation scans revealed large amounts of continuum (sometimes as much

as 10%-50% of the power would be in the background compared to the pulse). It was difficult

to study these effects systematically, as often they were observed in a quasi-stable state.
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Chapter 5

Timing Jitter Measurements

5.1 Introduction

'In chapter 3, we derived a theory for the quantum-limited timing jitter for actively modelocked

lasers. We found characteristic time constants that describe how the laser responds to noise

that leads to timing jitter, and in chapter 4 we experimentally verified the dependencies of the

time constants on the laser parameters. In this chapter, we present experimental evidence of

quantum-limited jitter in an active harmonically modelocked soliton fiber laser for both AM and

PM and compare them to theory. We find experimentally that the spectrum of the timing jitter

for harmonic modelocking is an aliased version of that for active modelocking, consistent with

the case for which the pulse-to-pulse timing jitter within one round-trip time is uncorrelated.

A comprehensive theory for the case of harmonic modelocking is presented in chapter 6.

5.2 Theory

A comprehensive theory of timing jitter in actively modelocked soliton lasers has been presented

in chapter 3 and in Ref [36], and the key results are given here. The master equation describes

the evolution of the amplitude envelope of the electromagnetic field of a laser pulse[27] [32][36] [43]

The work in this section was accomplished in collaboration with Leaf Jiang, Jeff Hargreaves, and Paul
Juodawlkis. Jesse Searls and Cameron McNeilage provided invaluable assistence and loan of the ultrastable
oscillator, and Farhan Rana provided many insightful discussions. Kim Trapp donated the 18 GHz LiNbO 3
modulator, Bob Windeler provided the double-clad Er:Yb fiber, Harry Lee loaned a high-speed preamplifier,
Kazi Abedin provided a fiber-wrapped PZT, and Robert R. Kerr loaned an ultrastable oscillator.
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and the action of linear gain and loss, filtering, group-velocity dispersion (GVD), self-phase

modulation, and active modelocking with both amplitude (AM) and phase (PM) modulation.

The equation is driven by ASE noise. To treat the resulting laser noise, the master equation

is linearized around a soliton solution to produce a set of ordinary differential equations with

constant coefficients. These coefficients determine how the laser pulses are affected by the

ASE[46]. We found previously that the power spectrum of the timing fluctuations can be

solved and written as

4-v +(- 2QIM Q2±Q M

2 D 2 D2 1
2D/ + D T (5.1)TR ,L + Q2

where AT is the deviation of the pulse timing measured from the average pulse position, and

the brackets () denote time or sample averaging. Q is the offset frequency measured from

the laser repetition rate in radians/s, TR is the round-trip time, and D the group-velocity

dispersion (GVD). DTT and Dpp are diffusion constants determined by the ASE[43] and are

given as DTT = 27r2T 2 gOhv/(3woTR) and Dpp = 4gOhv/(3woT2 TR) where g is the gain per pass,

0 is the gain-inversion factor, h Planck's constant, v the optical carrier frequency, T the soliton

pulse width, and wo the pulse energy. From equation (5.1), the spectrum is determined by

characteristic coefficients[46], given as

11/ = 1 TT,+ 1ITAM (5.2)

GpM = QPM + 1/(TpTAM) (5.3)

where

1 - 221
-MAMWMT

TAM 6 TR
1 4 1

3Q2T2 TR

QPM \2DMPMW2 /TR
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Laser Parameters Value

9 10
D 0.1 ps2

Qf 10 nm
wo 7.6 pJ
T 1.05 ps

TR 483 kHz
1/_ _ _ 42 x 103 rad/s

Q'/ 22 x 103 rad/s

Table 5.1: Parameters used for theoretically-determined single-sideband timing jitter spectrum
for the case of AM.

As defined previously, Qf is the optical filtering bandwidth, MAM and MPM are the modulation

depths for AM and PM, respectively, and wm the modulation frequency in radians/s. Here, we

have allowed for simultaneous AM and PM action. The spectrum of the jitter given in (5.1)

is similar to that of a driven damped harmonic oscillator (but with important differences, as

discussed in section 3.3). The effect of AM is to restore the pulse timing with time constant

TAM and is reduced for long pulses, large modulation depth, and shorter laser cavities. The

effect of PM is to impart frequency shifts QpM that are translated into retiming via GVD and

is enhanced for large modulation depth and large GVD. However, while GVD helps to restore

the pulse timing using PM, GVD also increases the Gordon-Haus jitter[66] (in which ASE-

induced frequency shifts are converted to timing shifts via GVD). Thus, there is an optimum

GVD that minimizes the overall jitter[36] for the case of PM. Strong spectral filtering (small

Tr) limits the frequency shifts. Using AM and PM simultaneously leads to an enhancement

of the imparted frequency shifts (Q'pM) and stronger filtering (T'). The relative strength of

the product 4( PM'T')2 governs the characteristic spectrum of the jitter and can vary from

underdamped (product is greater than one) to overdamped (product is less than one)[36][37].

The spectrum of the jitter (given in units for single-sideband phase-noise measurement) is

given in Fig. 5-1 for a set of typical laser parameters given in Table 5.1. The modulation was
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set for predominantly AM operation, thus we can simplify equation (5.1) to

KIAT(Q)12) 1 [2D 2 D +DTT (5.4)Q 2 + I TR Q2  ]
AM -P

2 + (2D) 2 P
D F + + T+ R DTT

~T 1 (5.5)2  22 _
AM P

where we have written the equation in a form suitable for Bode-plot type of analysis and

identification of the turning points in the spectrum. The spectrum is flat from Q = 0 until

the frequency encountered at Q = 1/TAM after which the the spectrum falls off by 20 dB per

decade (dB/dec)-this reflects the fact that the action of amplitude modulation restricts the

random-walk behavior at frequencies up to 1/TAM due the ability of the modulator to retime

pulses. The next turning point occurs at 1/T after which the spectrum falls off at 40 dB/dec

and is due to the strength of filtering that reduces the Gordon-Haus jitter that is caused by

random fluctuations of the carrier frequency that translate into timing fluctuations via GVD.

Increasing the filtering strength reduces the amount of frequency deviation. The frequency in

the numerator occurs at

+ = (D pp (5.6)QPU1 TT D2 R iT

after which the spectrum is pulled up to 20 dB/dec, and 0,ul depends on the magnitude of the

noise sources due to carrier frequency shifts Dpp and timing shifts DTT-this noise-dependent

frequency is not encountered in the typical equation of motion for the position of a particle

trapped in a potential well and comes about because of the Gordon-Haus effect. As GVD

approaches zero, Qpu0l approaches 1/Tp, and the spectrum of the jitter is reduced to a simple

Lorentzian of the form

IAT()I12 DTT (5.7)
AM

and the carrier frequency noise Dpp does not couple to the timing jitter.

The features at harmonics of the round-trip frequency of 483 kHz are the supermodes

of the cavity. The spectrum of the supermodes reveal information about pulse-to-pulse

correlations[71]. For the case where the pulses are uncorrelated, the spectra of the super-
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Figure 5-1: Theoretical single-sideband curve for the harmonically modelocked laser with pa-
rameters given in Table 5.1 for the case of AM assuming that the pulse-to-pulse timing jitter
is uncorrelated.

modes are identical to that of the spectrum at the harmonically-modelocked repetition rate

and discussed in more detail below and in chapter 6. The spectra of the supermodes appear

to be compressed compared to the spectrum at baseband, but this is due to the log-log plot.

Table 5.2 gives another set of typical laser parameters for the case where the modulation is

mostly PM, and the theoretical spectrum of the jitter is given in Fig. 5-2. Again, the spectrum

at low frequency offsets is flat-the action of phase modulation limits the random walk of the

pulse position. The physics underlying retiming for phase modulation is that pulses arriving

at the wrong time compared to the LO are frequency shifted by the phase modulator by an

amount depending on the slope of the phase modulation, given by the square root of the

product of the modulation depth and the square of the repetition rate (for a sinusoidal driving

frequency). The frequency shift is translated to timing jitter via GVD. Optical filtering limits

88

.L.............



Laser Parameters Value

g 10
D 0.1 ps 2

Qf 10nm
WO 7.6 pJ
T 1.05 ps
TR 483 kHz
1/r' 24 x 103 rad/s

Q'M 32 x 10 3 rad/s

Table 5.2: Parameters used for theoretically-determined single-sideband timing jitter spectrum
for the case of PM and underdamping.

the amount of frequency shift and damps the pulse retiming, leading to characteristic retiming

that can be overdamped, underdamped, or critically damped. The peaking in Fig. 5-2 indicates

underdamped retiming.

5.3 Sigma Fiber Laser

The actively modelocked fiber laser used for our experiments shown in Fig. 5-3 is similar

to that previously described[45. The dual-drive lithium-niobate modulator (Lucent x2624,

18 GHz bandwidth) can be configured for any combination of AM and PM. The gain is

provided by a double-clad Er:Yb optical amplifier side-pumped at 980 nm. The GVD is

1.1 ps/nm/km (anomalous). A phase-locked loop (PLL)-using a fiber-wound piezo-electric

cylinder and an integrating, amplifying control circuit-is used to stabilize the cavity length

fluctuations [72]. The ring portion of the laser consists of all polarization-maintaining fiber and

devices with polarization-maintaining fiber pigtails. The linear portion of the cavity consists

of non-polarization-maintaining fiber.

The sigma geometry allows for a laser cavity whose operation is similar to that of a po-

larization ring cavity in that it is stable in the presence of environmental perturbations. The

principle of operation of the laser is as follows: pulses exiting the PBS from the ring in the

clockwise direction enter the linear portion of the cavity traveling to the right and are linearly

polarized. Upon passage through the long lengths of fiber in the linear portion, the polarization
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Figure 5-2: Theoretical single-sideband curve for the harmonically modelocked laser with pa-
rameters given in Table 5.2 for the case of PM (underdamped case) assuming that the pulse-
to-pulse timing jitter is uncorrelated.
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PBS EYDFA
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Figure 5-3: Actively modelocked sigma fiber laser setup for amplitude and phase modulation.
ISO isolator, PBS polarizing beam splitter, HWP and QWP half- and quarter-wave plate, F
optical filter (10 nm), EYDFA erbium/ytterbium-doped amplifier, DSF and DCF dispersion-
shifted (110 m) and dispersion-compensating (13.3 m) fiber, FR Faraday rotator, AS aspheric
lens, LO local oscillator, and G is an RF power amplifier.
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evolves into a general elliptical state due to birefringence. After making two passes through

the faraday rotator, the major and minor axes of the elliptical polarization are switched, and

the polarization state of the pulse entering the PBS from the linear portion of the ring and

traveling to the left is linear and orthogonal compared to the signal leaving the PBS, and thus

is switched down into the ring in the clockwise direction. The linear portion of the cavity

is subject to environmental drift over time, which will alter the polarization state of the laser

pulse. Because the time scale of environmental drift is on the order of ins, the pulses experi-

ence a constant birefringence (transit time of the laser pulse through the linear portion of the

ring is on the order of microseconds), and the Faraday rotation ensures that the pulses travels

along both virtual birefringent axes. The primary advantage of the sigma laser design is that

it allows for the use of non-polarization maintaining fiber components without sacrificing the

stability of an all polarization-maintaining fiber ring laser design.

The gain is provided by a 15.5 m length of co-doped erbium-ytterbium in a silica host

(Lucent Technologies) with a 0.45-N.A. polymer outer cladding, a nearly hexagonal 131-mm

inner cladding, a 6-mm-diameter core with a N.A. of 0.16, and an absorption of 2.2 dB/m at

975 nm. The fiber was side-pumped with a 975-nm, 2-W (at 3.0 A) broad stripe diode (SDL,

Inc.) by a V-groove pump coupling technique[73] [74] with pump light counterpropagating

relative to the signal. The double-cladding fiber's ends were fusion spliced to TruWave (Lucent

Technologies) single-mode fiber pigtails. Typical small-signal gain for the amplifier is shown

in Fig. 5-4 and typically ~30 dB. The spectrum of the gain is slightly red-shifted compared

to erbium-doped silica fiber. As shown in Fig. 5-5, the spectrum of the gain is blue shifted as

the pump current is increased.

The laser produced transform-limited pulses (hyperbolic secant shape) at 9.00 GHz (the

18,634th harmonic of the 483 kHz fundamental cavity repetition rate) with pulse widths between

1.5 and 3.5 picoseconds at 1558 nm with typically -75 dB of supermode suppression and up to

10 mW output power. A typical autocorrelation trace (non-colinear, background-free in a 2 mm

POM crystal) is shown in Figs. 5-6, with the dotted line a fit to a hyperbolic secant. Figure

5-7 shows the RF spectrum of the directly detected photocurrent with > 75 dB of supermode

suppression.
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Figure 5-4: Counter-propagating gain for the
single multimode edge-emitting laser diode at

15.5 m Erbium-Ytterbium fiber pumped with a
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Figure 5-5: Spontaneous emission spectrum of the erbium-ytterbium double-clad amplifier side-
pumped at 975 nm from a single mulitimode laser diode in a counterpropagating geometry as
a function of pump current. The pump diode was temperature stabilized at 20.0 C.
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Figure 5-6: Autocorrelation trace of the intensity of the second-harmonic as a function of
pulse delay. Dotted curve is a fit to a secant hyperbolic pulse shape with a full-width-at-half-
maximum pulse width of 1.55 ps.
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Figure 5-7: RF spectrum of the directly detected photogenerated current; supermode suppres-
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5.4 Timing Jitter Measurement Scheme

There are a number of techniques for measuring timing jitter. Von der Linde proposed using

direct detection and a large bandwidth RF spectrum analyzer to measure timing (and ampli-

tude) jitter [75]. Optical cross correlation has also been used[76] [77]. Another method relies

on the rapid scanning of two lasers but at slightly different repetition rates with optical cross-

correlation[78] [79]. Phase-encoded optical sampling has also been shown to measure timing jit-

ter while achieving large rejection of amplitude noise[18]. The phase-detector method is a tech-

nique often used in the measurement of ultrastable microwave clocks and oscillators[80] [81] [82]

and has been shown to be useful for timing jitter measurements[9] [10] [55][57] [83][84] and is the

technique used for measurements here.

The phase detector method requires that the laser pulse train be converted into a sinusoidal

waveform after photodetection by low-pass filtering of the harmonics of the repetition rate.

The timing jitter of the optical pulses is then converted to phase noise of the sinusoidal carrier

frequency at the laser repetition rate. To extract the phase noise from the carrier frequency, the

carrier signal is beat against a low-noise RF local oscillator (LO) with homodyne RF detection,

thus downconverting the phase noise on the sinusoidal carrier frequency to baseband. At

baseband, we can use sophisticated electronic processing of the signal with high performance

digital electronics not available at the RF carrier frequency. Also, by removing the carrier

frequency, we can achieve very high dynamic range in our measurements of the noise. A good

review article on using the phase-detector method for measuring timing jitter is given in Ref.

[85].

With a phase-locked loop maintaining quadrature between a local oscillator and the laser

repetition rate, the mixer output voltage is proportional to the difference between the LO and

phase (timing) of the laser pulse train:

Vout(t) = 2k0VL(t)VLo(t) (5.8)

ko sin [WLt + 0(t)] cos(wLOt)

k sin [2wLt + 0(t)] + ko sin [#(t)]

where the RF frequency of the LO and laser-WLo and WL, respectively-are the same (and phase
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locked). Quadrature detection using a double-balanced mixer suppresses the effects of the laser

amplitude fluctuations by -10-15 dB. The high frequency component at 2 WL is filtered out,

and for the case where 0(t) < 1,

Vout(t) ~_ k#(t) for 0(t) < 1 (5.9)

where ko is a calibration term for the mixer (measured in V/radian) and depends on the mixer

technology, LO average power, and average RF power, given by

VLOVLko = a 2 (5.10)

where a is the mixer conversion constant. For a typical level-7 mixer with LO power +7 dBm

and RF power +6 dBm, ko is ~0.25 V/rad.

The frequency spectrum of the mixer output that is directly measured on the FFT analyzer

is the spectrum of the voltage, from (5.9)

S(f) = ) (5.11)

measured in rad2 /Hz. Typically, the spectrum of the phase noise is referred to the equivalent

noise that would result if an oscillator with phase noise SO(f) were phase-modulating a carrier

wave[86]. If SO(f) is small, then sidebands develop close to the carrier, and the spectrum of

one of the sidebands is given as

L(f) = SO(f)/2 (5.12)

where L(f) is measured in dBc/Hz and referred to as the single-sideband phase noise. SO(f)

is related to the spectrum of the timing jitter Stt(f)

SO(f) = (2-rfm )2 Sitty) (5.13)

where fm = wm/27r is the laser repetition rate, and Stt(f) is the spectrum of the jitter for

a train of pulses in units of s 2 /Hz, derived in detail in chapter 6. In chapter 3, we had

discussed the spectrum of the timing jitter after defining a variable AT for the position of
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Figure 5-8: Dual-channel single-sideband phase-noise setup. C is a fiber-coupled 50/50 splitter,
PD photodiode, F bandpass filter, A preamplifier, M double-balanced mixer, LO local oscillator,
and PS phase shifter.

a single pulse, and the resulting equations of motion for AT did not include pulse-to-pulse

correlations. For a fundamentally modelocked laser (or a harmonically modelocked laser whose

pulses are strongly correlated), Stt(f) = (IAT(f) 12, and L(f) = (2f)2 KIAT(f)12. For

a harmonically modelocked laser whose fundamental cavity length is fR and whose pulses are

totally uncorrelated, Stt(f) = E, (|AT(f - nfR)12) and L(f) = (2f) 2 En AT(f - nfR2).

Again, these results are discussed in more detail in chapter 6.

The timing jitter measurement scheme is shown in Fig. 5-8. The laser pulses are split

by a 50/50 coupler into two identical channels consisting of a fast photodetector (16 GHz

bandwidth), amplifier (8-12 GHz bandwidth, N.F. 3.9), and double-balanced mixer. The

generated photocurrent is lowpass filtered to eliminate harmonics at the repetition rate, leaving

a sinusoid whose phase noise is determined by the timing jitter of the pulse train. This

sinusoidal signal is amplified and input to the RF port of a double-balanced mixer. The LO

is input into the LO port of the mixer after passing through an adjustable phase shifter. By

using two channels, we can reduce the measurement noise floor and increase the sensitivity, as

discussed below.

99



LO

PS

Ch 1

ATTN -- Ch2
A M FFT

ANALYZER

Figure 5-9: Dual-channal single-sideband setup for establishing the measurement phase noise
floor. LO is a local oscillator, PS phase shifter, ATTN attenuator, A preamplifier, and M
double-balanced mixer.

The measurement noise floor of the system is found by replacing the photodiodes and filter

with an attenuated version of the LO, as shown in Fig. 5-9. The level of attenuation is set

such that the output current after the attenuator is equivalent to the photocurrent generated

after direct detection of the laser pulses. In this way, the noise floor reflects conditions of the

measurement system closely resembling those during the experiment. The resulting noise floor

is given in Fig. 5-10 and measured in dBc/Hz expressing the number of radians of deviation

of the phase at the carrier frequency (here, at 9.00 GHz) per Hz of bandwidth. The phase

noise is plotted in terms of offset frequency from the carrier frequency. The bandwidth of the

FFT analyzer used here (HP 89410A) is from 0-10 MHz and can achieve frequency resolution

bandwidths down to mHz. Each channel was independently calibrated for ko in order to

convert the measured voltage on the FFT analyzer (in V/vHz) into units of measured phase

with respect to a carrier frequency (dBc/Hz), and the results are shown in Fig. 5-10. Each

channel is matched to within 1 dB over the measurement range. The level of each channel's

measurement noise suggests that the limiting factor is noise added by the preamplifiers: at

1 kHz offset, the single-sideband noise is ~-132 dBc/Hz. The noise floor of each channel is

dominated by 1/f for 0 < f < 1 kHz, and by 1/f 2 for 1 kHz< f < 10 kHz, and 1/f 3 for 10
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Figure 5-10: Single sideband phase measurement noise floor for channels 1 and 2 and for the
electronic cross-correlation between the channels as a function of offset frequency.
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kHz< f < 100 kHz.

It was previously demonstrated in Ref. [87] that the measurement noise floor can be lowered

by crosscorrelating the two channels using the FFT analyzer. The idea is that while the thermal

noise from the preamplifiers between the two channels are uncorrelated, the phase noise we want

to measure is correlated (and identical) in both channels. By crosscorrelating the two channels

with the FFT analyzer, the uncorrelated thermal background is reduced. Using this technique,

it was found that the noise floor was reduced an additional -14 dB, as shown in Fig. 5-10.

Each amplifier was driven with an independent power supply so as to mitigate power-supply-

dependent noise that could lead to unwanted noise correlations. Johnson noise from a 50 Q

resistor (from the mixer or from the photodetector, for example) is V = V4kTR = 0.9 nV/v/Hz

(-181 dBV/v Hz) where k is Boltzman's constant equal to 1.38x10- 2 3 J/K, T is the ambient

temperature of the resistor (ambient 293 K). This gives a level of -177 dBm/Hz, resulting in

a phase-noise level of -174 dBc/Hz. This is well below the -132 dBc/Hz level of the amplifier

and below the crosscorrelation level of -155 dBc/Hz (for offsets > 50 kHz), suggesting that the

noise floor is dominated by the thermal noise of the preamplifiers or from the local oscillator.

The sharp spikes are due to ground loops and other electromagnetic pickups.

5.5 Timing Jitter Measurements

Fig. 5-11 shows the measured spectrum of the jitter for one set of laser parameters g-10,

D = 0.1 ps 2, 10 nm, wo = 7.6 pJ, TR = 483 kHz, T = 1.05 ps with the modulation set

to be mostly AM and a small amount of PM. For each decade of frequencies, the data was

averaged and then reassembled. While residual phase-noise measurement schemes can reduce

the influence of LO phase noise on the measurement, it has been observed that one achieves

better results when using an LO with low-phase-noise[83]. This is perhaps due to the fact the

LO noise can be reduced at low offset frequencies due to the filtering action of the modulator,

but at higher offset frequencies the LO phase noise is not filtered, and a poor LO with large

phase noise will dominate the spectrum. The phase noise of the 9.00 GHz oscillator (Poseidon

Shoe-Box Oscillator: -112 dBc/Hz @ 100 Hz, -141 dBc/Hz A 1 kHz, -161 dBc/Hz A 10 kHz,

-172 dBc/Hz A 100 kHz) is lower than that of the laser phase noise. The many sharp spikes
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Figure 5-11: Single-sideband phase noise for the case of mostly AM. Dark solid line, data; gray
line, theory; lower dark line, measurement noise floor.

from 10 Hz to 10 kHz and again at 70 kHz and 90 kHz are due to electromagnetic interference,

ground loops, line voltage fluctuations, and their harmonics picked up in the detection circuitry

and data acquisition cables.

The peak near 20 kHz corresponds to the relaxation-oscillation frequency of the laser and is

mainly an artifact of insufficient amplitude noise rejection of the measurement system and does

not contribute to phase noise[88]. The shoulder near 2.5 kHz is due to the retiming constant

1/TAM, after which the spectrum falls off by approximately 30 dB per decade (dB/dec) for

f > 2.5 kHz and 20 dB/dec for f > 50 kHz. Another feature is the series of harmonics

at 483 kHz-these are the cavity supermodes and reveal information about the pulse-to-pulse
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Figure 5-12: Single sideband phase noise of the baseband mode and supermodes using the
measurement setup of Fig. 5-8 with electronic cross correlation. The spectra of the noise for
harmonics 1, 10, and 20 are superimposed.

correlations [71].

The theory for the quantum-limited timing jitter from (5.1) is also shown in Fig. 5-11 where

L(f) = C E (IAT(f - nfR2), fo = 483 kHz, and C is a normalization constant. This is a

valid model insofar as the pulses are uncorrelated. For the twenty displayed supermodes, we

find that the supermodes have the same spectrum as the baseband mode as shown in Fig. 5-12

(the baseband mode is labeled as Harmonic 1 in the figure). This is consistent with the case

in which the pulse-to-pulse noise is uncorrelated.

The theoretical fit shows that the apparently flat floor in the data near -152 dBc/Hz (and

above the measurement noise floor) is due to the overlapping tails of the supermodes and not
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Figure 5-13: Single-sideband phase noise for the case of mostly PM. Dark solid line, data; gray
line, theory; lower dark line, measurement noise floor.

due to thermal or shot noise. The level of the floor is very sensitive to the parameters used

for fitting-it is not possible to independently adjust TI and £'gM without adjusting the level of

the floor. The -152 dBc/Hz level is well above the calculated shot noise floor of ~ -166 dB

(for an average photodetector current of 3.5 mA, incident optical power 7 mW, photodetector

responsivity 0.5 A/W). The match between theory and the experiment-including the proper

turning points in the spectrum as well as the supermode overlap-is quite good and verifies our

theoretical model for the timing jitter.

For the case of Fig. 5-13, the laser parameters were kept fixed, but the amount of PM was

increased at the expense of AM and the pulse width was increased to T = 3.5 ps. The features

near 12 kHz, 70 kHz, and 95 kHz in Fig. 5-13 are artifacts of the measurement and not part of
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the laser spectrum. The relaxation oscillation frequency can be observed near 20 kHz. The

feature near 15 kHz was not present in repeated measurements and is probably a measurement

artifact. The spectrum falls off rapidly for f > 4 kHz at approximately 40 dB/dec and 20

dB/dec for f > 70 kHz as predicted from the theory. For the case of Fig. 5-13, the GVD

was not optimized to minimize jitter, and the product 4 (T IQ'M)2 is 7.1 > 1, consistent with

underdamping (due to insufficient filtering) and the observed peak near 4 kHz. In comparison,

4 ( Q,'M) is 1.1 for the case of Fig. 5-13, indicating critical damping.

Phase noise can be readily converted into a measure of timing jitter, a, in a root-mean-square

sense

1 ffh

o[fV, fh] L(f)df (5.14)
27f. . f

where f is the frequency offset measured from the laser repetition rate, and fi and fA are the

low and high limits of integration. The results of the integrated data via equation (5.14) and

the theoretical values are given in Table 5.3. The discrepancy between the theoretical and

measured values is mainly due to the inclusion of the erroneous noise spurs in the measurement

system.

5.6 Conclusion

In conclusion, we have observed the quantum-limited timing jitter of an active, harmonically

modelocked laser. We have examined the influence of AM and PM on the timing jitter spectrum

and compared the measured spectrum and the governing characteristic coefficients with that

determined by theory. We have shown that the measured spectra of the timing jitter is in

good agreement-both qualitatively and quantitatively, with that given by the theory developed

in chapter 3. We have also shown that the spectra of the supermodes are identical to that

at baseband, indicative of uncorrelated pulse-to-pulse timing jitter. With knowledge of the

quantum-limited jitter spectrum, we can engineer the laser parameters to achieve lower jitter.
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Integration. Range a, Fig.5-11 a, Fig. 5-13
10 Hz-241.5 kHz 9.74 (9.66) fs 80.0 (62.2) fs
10 Hz-10 MHz 37.0 (19.3) fs 113.2 (88.1) fs

Table 5.3: Integrated jitter values of the data; measured values (no parenthesis) and theoretical
values (in parenthesis).

5.7 Future Work and Ideas

The sigma laser cavity used in these experiments are on the order of ~200 m long, with effective

cavity lengths on the order of ~400 m. These very long cavities require good enclosures,

electronic feedback, and temperature control to maintain good modelocking. Making a shorter

fiber laser (say, on the order of meters) would be advantageous in that the cavity would be

much less sensitive to environmental perturbations.

Applying stretched-pulse (or dispersion-managed) laser design principles to the actively

modelocked laser would benefit in achieving very low dispersion while maintaining high pulse

energy. Achieving stretching ratios on the order of 2-3 is difficult for picosecond pulses. For

example, the sum of GVD through each section of a two-section, balanced dispersion-managed

laser (one section with anomalous GVD, the other section with normal GVD of the same

absolute value) for a 2 ps pulse would need to be 12 ps2 , equivalent to propagation through

600 m of SMF. While it has been reported that significant stretching is occurring in some

sigma laser designs with only -200 m of length[45], it would be optimal if some other means

for achieving large swings in GVD could be attainable in a shorter span.
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Chapter 6

Timing Jitter in Harmonically

Modelocked Lasers

6.1 Introduction

'The spectrum of the noise for a harmonically modelocked laser differs from that of a funda-

mentally modelocked laser due to the nature of the pulse-to-pulse correlations. In this chapter,

we derive the spectrum of the timing jitter for a harmonically modelocked laser for the case of

uncorrelated noise and give experimental results that verify the model.

6.2 Model

Rather than starting from the master equation of modelocking, we will begin our analysis

assuming a train of pulses generated by the laser with pulse-to-pulse correlations we will specify

and not derive from first principles. Consider a train of pulses with intensity 1(t) modelocked

at the Nth harmonic:

1(t) = Eof (t - nTN) (6.1)

where EO is the average pulse energy, f the time-dependent intensity of a single pulse normalized

such that its integration is unity, TN the average separation between pulses where the repetition

'Work in this section was accomplished in close collaboration with John Fini, Leaf Jiang, and Farhan Rana,
and many of the results reported here appear in Ref. [71].
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rate fN 1/TN = N/TR where TR is the round-trip fundamental cavity delay, and PO = EO/TN

is the average power. The notation used here is slightly different than that presented in

a previous chapters (i.e., we previously used "T" as a time scale in the master equation as

that on the scale of pulse separations, and "t" on the time scale of the pulse width). The

notation used here was modified to be consistent with Ref. [71]. Introducing timing and

energy fluctuations AE[n] and At[n] and expanding to first order,

I1(t) =: ( Eo +,AE[n]) f (t - nTN ~ Atin]
n

S (Eo + E[n]) f (t - nTN) - Eo f(t - nTN) At [n] (6.2)
n n

Assuming stationary noise processes, we can characterize the noise of the laser with correlation

functions, written as

R,,[n] = (Ace[n]A[O]) (6.3)

where [c, /3] equals any one of [E, t]. For the rest of this section, we will only be concerned with

timing jitter, and we will assume that there is no coupling between amplitude and timing such

that REEn] REtfn] = 0. The Fourier transform of the correlation function is the spectral

density[89]:
00

Stt() = E Rit[n] exp (-jQTNn) (6.4)
n=-oo

The spectral density function is periodic with the period of the repetition rate, 1/TN. If the

spectral density functions are known (i.e., by measurement), we can take the inverse Fourier

transform of the spectral density to find the correlation function, given by

Rtt[n] = ] Stt(Q) exp (jQTNn) dQ (6.5)W N - wN 12

where the integration bandwidth is that over a single period at repetition rate fN = WN/(27r).

The rms value of the timing jitter is the integrated spectral density function,

2 f+WN/2
2 N2 Stt(Q) dM (6.6)

-- +WN (2

Rit[ 0] (6.7)
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So far, our approach has used discrete notation for the pulses, as was done in Ref. [90].

The use of continuous functions[89 for the correlations was done similarly[43][76] with the same

results.

6.3 Harmonic Modelocking, Uncorrelated Noise

For the case in which N pulses within the laser cavity are uncorrelated with each other, the

correlation function Rit[n] is nonzero only for pulses that are separated by an integer multiple

of round trips; i.e., pulse n and n + kN are correlated for integers k. In the frequency domain,

the frequency of correlation is not the repetition rate as for a fundamentally modelocked laser,

but rather given by the frequency of the round-trip time where fR = 1/(N - fN). Then the

spectral density function from (6.4) becomes

00

Stt() = E Ru[n] exp (-jQTNn)
n=-oo

00 00

= Rtt[kN exp (-jQTNkN) = Rt[kN] exp (-jQTRk) (6.8)
k=-oo k=-oo

The spectral density Stt(Q) is periodic with frequency given by that of the round-trip frequency-

this is a result that we have shown in chapter 5 (recall Figs. 5-1, 5-2, 5-11, and 5-13)-the

spectrum of the noise is aliased at harmonics of the round-trip time. The root-mean-square of

the timing jitter can be found by either integrating the spectral density over a frequency span

given by the repetition rate fN (up to the Nyquist rate for a periodic signal at fN), or by just

integrating over a frequency span given by the round-trip rate fR and multiplying by square of

the harmonic number N:

- = fN j Sut(Q) dQ (6.9)
27rfN _WN12

= If j R2 S(Q) dQ (6.10)
27rfN -WR/2

Correlations can develop between pulses in the laser cavity through a number of mechanisms.

It was shown[91] in a previous experiment on a harmonically modelocked semiconductor laser

110



that the pulses amplitudes were negatively correlated through the laser gain dynamics. For

actively modelocked fiber laser, the phase noise of the active modelocker positively correlates

the pulses and appears in the spectrum of the timing noise at the repetition rate (low-frequency

spectrum in a residual phase-noise measurement) and does not appear at the supermodes. The

formalism for handling generalized pulse-to-pulse correlations can be found in Ref. [71].

The spectrum of the noise can be found by a number of methods. The photocurrent idet(t)

after direct detection of the train of laser pulses is given by

Zdet (t) = 7 x'(t')I(t - t') dt' (6.11)

where X(t') is the photodetector response (normalized to have unity area) and q the photode-

tector responsivity (in units of A/W). Assuming a photodetector whose bandwidth is much

larger than the largest offset frequency of interest, then the spectrum of the photocurrent noise

is given by

S11(Q) = lim 1 ([Zet (f) -- (t" ] [det (t ± T) - (idet (t + T))]) dt
Too T _T/2

(P) 2 p 1 See(Q) + 2 TNStt(Q) + [SET(Q) - SET(Q)]

(Tp 0T N 
PO

(rPo)2 Q2TN Stt (Q) (6.12)

where we have assumed that the amplitude noise and amplitude-timing noise are zero. Note

that this is the spectrum of the photocurrent noise, so the sum of delta functions that usually

appears has been subtracted out from (6.12). This is the result Von der Linde had derived

previously[75]-the spectrum of the timing jitter appears in the spectrum of the photocurrent

noise directly proportional to the square of the offset frequency.

Using residual phase-noise techniques (discussed in chapter 5) allows for a more direct

measurement of the timing jitter spectrum by automatically subtracting out the deterministic

signal, achieves high dynamic range, and facilitates measurements at lower frequencies where

one can use more sophisticated electronic processing (Hz to MHz) than that available at higher

frequencies (tens of GHz). In that case, we find that the measured single-sideband phase noise
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L(Q) can be easily related to the spectrum of the jitter Stt(Q) by a proportionality constant-one

that is typically calibrated for a given measurement setup.

6.4 Measurements

The sigma fiber laser from the previous section was used for the experiments. The data for the

cases of mostly AM and PM and the fits to the jitter theory assuming uncorrelated supermodes

from Figs. 5-11 and 5-13 give very strong evidence of the case for uncorrelated pulses. A closer

look at the overlapping spectra shown in Fig. 5-12 also shows very strong agreement for the

case of uncorrelated pulses.

Another test of the theory is to compare the integrated timing jitter from single-sideband

traces with the timing jitter obtained from cross-correlation measurements. For the test, a

dielectric resonant DRO with oscillation frequency at 10.0 GHz and internally phase-locked

to the external 10 MHz reference of an HP 83732B synthesizer was used for a local oscillator

(NXPLOS-IX-1000). The performance of the sigma laser was similar to that when driven with

the 9.00 GHz Poseidon ShoeBox oscillator-a typical optical spectrum and RF spectrum with

over 80 dB of sidemode suppression are shown in Figs. 6-1 and 6-2.

A typical single-sideband phase noise spectrum of the sigma laser is shown in Fig. 6-3. The

maximum offset frequencyof 1 GHz is 1/5 of the 5 GHz Nyquist frequency (for a repetition

rate of 10 GHz) and limited by the IF frequency output of the double-balanced mixer. IUnlike

the measurements in chapter 5, the floor near -145 dBc/Hz is due to the noise floor of the

NXPLOX-IX-1000 local oscillator. The integrated spectrum from 100 Hz to 10 MHz is 27.2

fs, and from 10 MHz to 1 GHz is 243.5 fs. Multiplying by 5 (to get to Nyquist frequency and

assuming that the jitter spectrum is the same in the 1-5 GHz range as it is in the -0-1 GHz), the

jitter is calculated as 1.11 ps. Because the measurement is limited by the LO noise floor, this is

an overestimate of the noise-assuming a constant level of -145 dBc/Hz over all frequencies, the

local oscillator noise floor integrates to 89.5 fs. We can also calculate the jitter by integrating

the jitter around one of the supermodes and multiplying by y'N where N = 20921 is the

harmonic number of the cavity. For a typical harmonic, integrating by the jitter over a span

of 478 kHz yields 2.70 fs, and the total rms jitter is calculated as 2.70 x /20921 = 391 fs. This
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Figure 6-1: A typical optical spectrum of the directly-detected photocurrent (log scale) for the
10.0 GHz sigma laser driven with the DRO.

is a factor of 2.8 less than that computed by integrating the full jitter spectrum.

We can compare these results to those obtained by optical cross correlations[76][77]. For

the case of uncorrelated pulses, the broadening of the detected SHG cross correlation compared

to that of the autocorrelation is a good measure of the total rms timing jitter (integrated over

all frequencies). We found that delaying pulse 1 to pulse number 2, 3, and approximately

pulse numbers 99, 100, 101, 102, 4997, 4998, 4999, and 5000 that the broadening due to cross

correlation remained constant, which is further verification of the claim that the timing jitter

between pulses in one round trip (i.e., within one pulse pattern) are uncorrelated. Fig. 6-4

shows a typical cross-correlation trace for one pulse delay. The timing jitter computed from

the broadening of the cross-correlation trace compared to the autocorrelation trace is given by

~=/c - Tac (6.13)

where Txc is the cross-correlation width, and rac is the autocorrelation width. For the data in

Fig. 6-4, the autocorrelation width was 4.82 ps, and the ensemble-averaged cross-correlation
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Figure 6-2: A typical RF spectrum of the directly-detected photocurrent for the 10.0 GHz sigma
laser driven with the DRO.

width was 4.91 ps, resulting in o = 0.95 ± .3 ps (the magnitude of the error is a measure of

the repeatability of the cross-correlation traces over a large number of data sets and not an

absolute measurement error). This is within a factor of ~2.5 of the estimated value assuming

that all the pulses are uncorrelated.

6.5 Conclusions

We have presented a model of the timing jitter for harmonically modelocked lasers and found

that for the case of uncorrelated noise, the spectrum of the timing noise aliases at the super-

modes. We also showed that the timing jitter can be computed by either integrating over

the repetition rate or by just integrating over one round-trip frequency and multiplying by the

square root of the harmonic number.
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traces: an auto-correlation trace and a cross-correlation trace between two neighboring pulses.
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6.6 Future Work and Ideas

Results have been reported for the active, harmonic modelocking of a fiber laser using a Fabry-

Perot etalon (FPE) designed such that the free-spectral range is equal to the repetition rate

helps to prevent pulse dropouts[92] [93]. It was also shown recently (Delfyett group, CREOL)

that an FPE suppresses the supermode noise. It is important to understand the degree of

correlation using an FPE, including correlations of the pulse-to-pulse optical phase. It is

conjectured that using the FPE should act as a noise filter and reduce the absolute phase of

the pulse train. It has been shown that some means for correlating pulses-such as using a

composite cavity[94][95]-only results in a redistribution rather than an overall reduction of the

timing jitter.
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Chapter 7

Timing Jitter Reduction using

Phase Modulation and

Group-Velocity Dispersion

7.1 Introduction

'In this chapter, we study linear Hamiltonian processes, such as dispersion in an optical fiber,

and time-dependent processes, such as phase modulation, which affect the position (timing)

and momentum (carrier frequency) of an optical pulse. These processes are closely analo-

gous to the quantum propagation of a free particle and its focusing by a lens[96]. While

the problem of quantizing a propagating electric field in both linear dispersionless inhomoge-

neous dielectric media and in linear homogeneous dielectric media with dispersion have been

studied[97] [98] [98] [99] [100] [101] [102], the effects of phase modulation have not. The combina-

tion of dispersion and phase modulation can reduce the position fluctuations (timing jitter) at

the expense of momentum fluctuations (carrier frequency jitter). This can be contrasted with

generation of squeezed states-using parametric processes utilizing either second order (X (2 )
or third order (x(3)) nonlinearities[103] [104] [105] [106] [107] [108] [109]-in which the projections of

zero-point fluctuations are manipulated through their phase-sensitive nature. Classical ana-

'Work in this section benefitted greatly from contributions from John Fini and Prof. J. Shapiro. Prof. H.
Haus provided most of the key concepts for this work, much of which appears in Ref. [59].

118



logues to squeezing have also been demonstrated[110] [111] [112]. The approach here achieves a

reduction of position uncertainty by renormalization of the excitations and is entirely classical.

Aside from its theoretical interest, this finding is of practical importance: the reduction of

the timing jitter of a pulse can improve the accuracy of optical sampling for analog-to-digital

conversion[2] [11] [12] [14] [17] and for retiming pulses at the end of a transmission link. A process

that reduces the timing jitter at the expense of frequency jitter leads to improvement of the

timing signal, since the optical bandwidth of detectors is large enough to be insensitive to fre-

quency jitter. We consider Gaussian pulses, such as are produced by active modelocking, and

quantize them. We develop equations of motion for the position and momentum operators

as affected by dispersion and phase modulation. Then we show that this system conserves

commutator brackets and thus the area of the uncertainty ellipse. Reduction of pulse position

fluctuations (timing jitter) is demonstrated theoretically.

7.2 Quantization of the Optical Pulse

We consider a periodic train of Gaussian pulses. The envelope of the electric field amplitude

is quantized if described in terms of the annihilation operator &(T, x), where T and x represent

two time scales: the slow time scale T of pulse evolution, and the fast time scale (expressed as

a spatial scale) x = vgt, where vg is the group velocity. The operator obeys the commutation

relation[113] [114]

[a(T, x), at (T, x')] = (x - x') (7.1)

We separate the excitation into a classical c-number part ao in terms of which the pulses are

described, and a perturbation operator Ad that characterizes the noise

a = ao + A& (7.2)

The commutator associated with the perturbation operator is:

[A&(T, x), Ad t(T, x')] = 6(x - x') (7.3)
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Focusing on one of the pulses, we write the c-number part of the excitation in the form

ao = A 0 0 ( ) (7.4)

where k0 is the zeroth-order Hermite-Gaussian of the set:

- ~ 1 H( )e2 "Tb >e-4n± (7.5)
V /2n! _ I T

where b = 0 /w", W" = d2w/d#2 is the group-velocity dispersion, and # tan-1 (z/b). This

set expresses, in general, chirped pulses after a time T starting with minimum width 0. The

pulse width changes when the pulse propagates in a dispersive medium according to the law

02 =[$1 + (T(7.6)

The perturbation is expanded in a complete set

Aa= EnA~nn( ) (7.7)

The annihilation operators AA, can be expressed as sums of Hermitian operators

AAn = AA(1) + iAA(2) (7.8)

where AA$P and AA$(2 are in quadrature. A displacement and a carrier frequency change are

represented by the first-order Hermite-Gaussian. The coefficient AA1 is obtained from the

expansion of a pulse that has been displaced by AX and frequency shifted by Aw. The pulse

is described by

AO (X - AX + W"AWT/ ) Awx
Ao4'0 (x, T, AX, Aw) = expXi+ T exp -i exp [-i4] (7.9)

7r e2w"(T - ib) I [ V9 J
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The expansion is carried out to first order in AX and Aw, the perturbations are replaced by

operators, and the result is equated to AA4 10(x, T) with the result

A - 1 (A X *AW 1 + Z

1- 2 -- = ( (7.10)
v/2 ( o V9 (

where we have introduced the momentum operator

= -AP (7.11)

The position and momentum operators can be related to the in-phase and quadrature compo-

nents of the expansion coefficient AA1

5 1 an A 2 i AAA = 0F AA1 and A= 1A (7.12)Ao AO O I

The operators AA(l and AA(2 ) obey a commutation relation that can be gleaned from (7.3)

and (7.8)

[AA('), AA( = (7.13)

We find the commutation relation for position and momentum

[A, AP = i(n) (7.14)

where (n) = A2 is the average photon number.

7.3 Phase Modulation and Group-Velocity Dispersion

A carrier frequency shift changes the group velocity of the pulse propagation. A pulse prop-

agating over a time T changes its position in a manner proportional to the carrier frequency

change and the dispersion w" = d2W/d3 2 . This leads to an equation relating the position after

propagation over a time T to its initial value AX(0)

AX(T) = AX(0) + w"TAP (0) (7.15)
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A phase modulator multiplies the pulses of equation (7.7) by iM cos QM(t - AX/vg), where

M is the depth of modulation, and QM is the modulation frequency. When expanded to first

order in AX, we find a first-order Hermite Gaussian in quadrature. This term produces a

momentum perturbation

AFout = ApIn - M M Ax (7.16)
9

7.4 ABCD Formalism for Position and Momentum

We have found that the operators AZ and AP between input and output experience transfor-

mations that can be described by ABCD matrices

AXnt A B AXin (7.17)

APout C D Apin

The matrices are, respectively, for propagation through dispersion:

A B 1 w"T
(7.18)

C D 0 1

and through a phase modulator

A B 1 0
=]2 (7.19)

. C DM 1

The determinants of these matrices are unity, and cascading of the components leads to ABCD

matrices that also have a unity determinant as required by Heisenberg's uncertainty principle.

An example of a position fluctuation reduction arrangement is shown in Fig. 7-1. A

section of dispersive fiber w' and delay T, is followed by a phase modulator, and then followed

by another dispersive fiber w'' with delay T2 . The computed position fluctuation reduction is

shown in Figs. 7-2a and 7-2b for the cases where the input position and momentum fluctuations

are uncorrelated. The uncertainty of the pulse position at the output has been reduced at the

expense of the momentum uncertainty in regions of phase space in which S < 1. We find that

the best position fluctuation reduction occurs for the case where the modulation depth and
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Figure 7-1: Schematic of system analyzed for Fig. 7-1 where w" is the group-velocity dispersion,
and T the propagation delay.

0. 0.
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Figure 7-2: R = (M 2 /) 2 K AX / K Ap for the cases (a) n = 2 and (b) n = 1
where S R=/Rn, X (MQ2 / ')wT1 , and Y (MQ2 / 2)w2T 2 . The pulse position
fluctuations are reduced in the regions where S < 1. Regions for S > 1 are not shown.

modulation frequency are large, and the dispersion w"T is large and can be either anomalous

or normal. Experimentally, the measurement of position fluctuations is classical and can be

achieved using conventional RF phase noise detection techniques employing direct detection

with a fast photodetector, a double-balanced mixer, and a local oscillator (as shown in chapter

5), and the position fluctuations before and after the setup of Fig. 7-1 can be compared.

7.5 Conclusions

We have shown that the perturbation operators of pulse position and momentum, when acted

upon by dispersive propagation and/or phase modulation, obey an ABCD matrix transforma-

tion. The uncertainty ellipse of position and momentum fluctuations can be transformed using
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a system containing phase modulators and dispersive propagation segments. The reduction of

position fluctuations can be used to improve timing signals obtained from detected pulse trains.

The system need not operate at the minimum uncertainty limit to be of use.

7.6 Ideas and Future Work

Preliminary experiments[115] have shown that jitter reduction using phase modulation and

GVD is possible. Additional experiments are under way.
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Chapter 8

Two-Photon Absorption for

Supermode Suppression

8.1 Introduction

'In chapters 4 and 5, the fiber lasers that were demonstrated were hundreds of meters long,

leading to fundamental repetition rates of hundreds of kHz or a few MHz. Achieving GHz

repetition rates required that the laser operate at a harmonic, N, of the fundamental repetition

rate, which created N pulses per round trip. However, because of the millisecond gain lifetime

of erbium, the gain cannot equalize the pulse energies in each of the time slots in a fiber laser

so that, in general, the output may contain unequal-amplitude pulses or even pulse dropouts,

as illustrated in Fig. 8-1.

Several techniques for stabilizing the pulse trains of harmonically modelocked lasers have

been developed. A high-finesse Fabry-Perot etalon matched to the repetition rate of the laser

produced a stabilized output[93]. Several techniques that use intensity limiting have been

demonstrated to equalize pules energies. Proper biasing of nonlinear polarization rotation in

the presence of a polarizer provides a stabilization mechanism through additive-pulse limiting.

Although this technique is effective, it suffers from environmental instability[47]. Recently,

other researchers demonstrated that the regime of stability can be extended by use of dispersion

'Experiments in this section were obtained in collaboration with Erik Thoen, Elizabeth Koontz, Gale Petrich,
and Prof. L. Kolodziejski. Results from this chapter also appear in Refs. [49][116][117}.
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Output

output

zPulse Intensity Limfiter

Figure 8-1: Illustration of the phenomenon of pulse dropouts and amplitude fluctuations in an
active, harmonically modelocked ring laser. Pulse dropouts are prevented using an intracavity
pulse intensity limiter that operates on the pulse peak intensity. The average power in the
cavity is distributed equally among the time slots.
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management in a sigma laser[118]. Spectral broadening owing to self-phase modulation (SPM)

in the presence of filtering stabilizes against pulse fluctuations [48]-this is the technique used for

the fiber lasers previously presented in this thesis. However, hundreds of meters of fiber are

typically required for generating the necessary SPM to stabilize the pulse train, and long fiber

lengths are undesirable because of the enhanced instability due to environmental fluctuations.

Peak-intensity limiting in the form of two-photon absorption (TPA) by a GaAs wafer

in transmission was shown to prevent Q switching in fundamentally modelocked Nd:YAG

laser[119]. Recently, TPA in a semiconductor saturable absorber mirror was used to stabi-

lize pulses against Q-switched modelocking[4][120]. In this chapter, we report on experiments

exploiting TPA in a semiconductor mirror to stabilize a train of picosecond pulses and prevent

pulse dropouts in a short 2 GHz harmonically modelocked fiber laser.

8.2 Theory of Operation

Stabilization of pulse intensities requires a mechanism that responds much faster than the pulse

repetition rate (tens to hundreds of ps) and is sensitive at low (-pJ) pulse energies. Pulses with

carrier frequencies near 1.55 pm have energies -0.8 eV and are transparent at low fluence when

incident on a semiconductor such as InP with a bandgap of ~1.35 eV. As the fluence of the

incident pulse increases, the probablity of two-photon absorption increases. The instantaneous

transmission through a TPA region of length L is given by

1 - gTPA = exp (-aCTPAL) (8.1)

where gTPA is the instantaneous loss and aTPA is the TPA loss coefficient given by

/3AstructA|
aTPA - A ff

AEf f

where /3 is the TPA coefficient for the material (typically in units of cm 2 /GW), A the intensity

of the electric-field envelope, Astruct a parameter accounting for structural effects (e.g., standing

wave field, intensity enhancement due to various optical coatings), and AEff the spot size on
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For small TPA absorption,

qTPA c TPAL

The time-averaged loss (absorption) for the pulse is expressed as

4TPA I 100 qTPA A 2dt
WO _o

where wo is the average pulse energy.

width T

Assuming a hyperbolic secant pulse shape with pulse

t
A = Aosech-

T

we can solve for time-averaged loss by substituting eqns. (8.2) and (8.4) into (8.3)

4TPA

(8.4)

(8.5)

(8.6)

= OTPAL 0 A2|secht!12dt
WO -- oo0 T

= aTPAL A2 4

wo 3

We recall from chapter 2 that the pulse energy is related to the amplitude and pulse width by

the relation

wo = 2A2T (8.7)

Substituting in (8.5), the time-averaged loss (absorption) is given by

- _ AstruetL wo
QTPA = A6 AEff T

(8.8)

For a given TPA semiconductor sample, the absorption is proportional to the product of the

average pulse energy times the interaction length, and inversely proportional to the pulse width.
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8.3 Semiconductor Mirror Structures

The TPA semiconductor mirror used for the experiments is shown in Fig. 8-22. The mirror

consists of a bulk 5.2 pm InP layer (22 A/2 layers) deposited by gas source molecular beam

epitaxy onto a 22-period GaAs/AlAs distributed Bragg reflector (> 99% reflectivity over 100

nm, centered at 1.55 pm). A dielectric antireflection coating (A/4) is deposited onto the

structure (following the epitaxial growth) to enhance the field in the InP. The structure exhibits

only TPA and free-carrier absorption (FCA) in the InP layer, and the structure is designed for

normal incidence. Because of the very thick InP layer, the horizontal axis of the plot is broken

so as to include the major features of the semiconductor mirror structure. The engineering

and design of the structure were detailed in previous thesis work[121][122].

To characterize the structure, time-averaged reflectivity measurements were performed using

a wavelength-tunable synchronously-pumped optical parametric oscillator (OPO) with ~150 fs

pulses at 82 MHz repetition rate. The reflectivity measurements were not performed on the

structure of Fig. 8 - 2 but were done on a very similar structure[4] with a smaller InP region

(A/2) and two InGaAs quantum wells within -15 nm from the top layer surface. For the

reflectivity measurements, the position of the quantum wells corresponded to the nulls of the

electric field, and the wavelength of the OPO was -90 nm below the bandedge of the quantum

wells, thus minimizing the effects of the quantum wells. Reflectivity measurements for that

structure are shown in Fig. 8 - 3 to demonstrate the TPA effect in the InP. The fluence was

changed by varying the average power, pulse width, and spot size incident on the semiconductor

sample.

At low fluence, the structure acts as a linear dielectric mirror with - 99.6% reflectivity,

indicating that the DBR stack and material was of high quality with low non-saturable losses.

At higher fluences, the reflectivity rapidly rolled off in a manner consistent with TPA. The

solid line was fit using a simple model given by

R(t) = 1 - /AStructLI(t) + ao (8.9)

where R(t) is the instantaneous reflectivity, t is time on the scale of the pulse width, I(t) the

2The semiconductor structures were grown by Elizabeth Koontz.
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Figure 8-2: Schematic of an anti-reflection-coated semiconductor structure and distributed
Bragg reflector stack, sample # SBR5AR. The refractive index and magnitude squared of the
electric field (A = 1.54 ym, incident from the left-hand side) are plotted as a function of distance
from the GaAs substrate-DBR interface. The scale of the plot is adjusted so as to include the
major features of the structure.

130

4

I
*0

4-

3

2

1

5.0

Now.- .. R



Z%

.,

1.01.

1.00.

0.99.

0.98-

0.97-

0.96-

0.95-

nOAil

0.1

.. W--YI UT"

S10 100 2
Energy Density (pJ/cm2

Figure 8-3: Time-averaged reflectivity measurements of a similar semiconductor mirror struc-
ture with one A/2 InP layer using 150 fs pulses at 1.54 pm from a synchronously-pumped optical
parametric oscillator at 82 MHz as a function of fluence. Figure appears in Ref. [4].
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instantaneous pulse intensity (assuming a Gaussian pulse shape), # the TPA coefficient, Astct

a structural factor accounting for the field distribution determined by the dielectric coating and

the DBR, L the thickness of the TPA region, and ao the non-saturable loss.

To determine the nature of the nonlinear reflectivity measurements, pump-probe reflectivity

measurements were performed 3 on the structure of Fig. 8-2 to be used in the experiment. The

pump-probe measurements were performed using a ~150 fs pulses at 1.55 pm from an OPO with

an 82 MHz repetition rate in a cross-polarized, collinear arrangement in which the differential

reflectivity of the probe was monitored as a function of the probe delay. Figure 8-4 shows an

array of non-normalized traces corresponding to a variety of fluence levels. At low fluences,

the dominant feature of the trace is the instantaneous change of the nonlinear reflectivity at

zero delay. This is the pump-pulse-induced TPA as observed by the probe when the two

pulses overlap. The width of the trace corresponds to that of the cross correlation between the

pump and probe pulses, consistent with the instantaneous TPA response. As the fluence was

increased (by increasing the focusing and/or the average power), a longer-lived feature appears

with a time constant ~6-8 ps appears and is much longer than the time scale of the pump

and probe pulse widths. This is explained by the creation of a large number of free-carriers

in the conduction band by the strong pump pulse, and these free carriers can absorb single

photons from the probe, resulting in a change of the probe reflectivity[123]. This free carrier

absorption (FCA) takes place until the carriers recombine (interband process). While in pure

semiconductor materials this can take on the order of nanoseconds, defects in the semiconductor

mirror structure create recombination centers in the InP that speed up the recovery time.

Defects can be intensionally introduced by a number of mechanisms, including low-temperature

growth[124][125] and proton bombardment[117]. However, increasing the defect density can

also lead to unwanted nonsaturable losses and an additional time constant due to photoinduced

absorption due to carriers trapped in defect states[126] [127]. While both TPA and FCA result

in nonlinear losses that increase with higher intensity, the carriers generated by FCA must

recombine at a time scale much faster than the repetition rate in order for it to be useful in a

high repetition rate laser; else, the fluence will need to be reduced to a level such that the free

carrier contribution is negligible.

3 Time-resolved pump-probe measurements were performed by Juliet Gopinath.

132



0.00-

-0.01 -

-0.02-

-0.03-

-0.04-

-0.05-

P/P 21X/2 InP AR + DBR 1.55 im c220 lens 4/28/00

.' it'fly0.".-W..~ 0

4000

-- 10/1 mW
- - 25/2.5 mW
- - . 40/4 mW
- - -75/7.5 mW

I I * I ~]

6000 8000 10000 12000
Time Delay, fs

/opolab/e/juliet/pumpprobe/sbrs/4-28-00/00apr28155

Figure 8-4: Time resolved nonlinear reflectivity measurements of the TPA semiconductor mirror
structure as a function of fluence for various pump-to-probe power levels. Data provided by
Juliet Gopinath.
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8.4 Experiments

To test the effect of TPA in a harmonically modelocked fiber laser, we designed the laser shown

in Fig. 8-5 to eliminate the stabilizing effect of additive-pulse limiting or SPM and filtering.

The cavity consists of polarization-maintaining PANDA-type fiber (including the pigtails of

all devices) to eliminate additive-pulse limiting effects. To minimize the effects of SPM and

filtering, the cavity length was reduced to -47 m (fundamental cavity frequency -4.3 MHz),

and a wide 20-nm tunable interference filter is used to shift the operating wavelength away

from the sharp gain peak near 1530 nm. The cavity includes a circulator with a collimator

to permit insertion of a normal-incidence mirror. Aspheric lenses with various focal lengths

are added following the collimator to control the spot size on the mirror. The average group-

velocity dispersion of the cavity is -6 ps/nm/km and anomalous. The laser is modelocked

at the -465th cavity harmonic with a LiNbO 3 amplitude modulator driven by a rf synthesizer

(HP 83732B) near 2 GHz. The entire laser, with the exception of the amplitude modulator,

focusing lens, and dielectric end mirror or TPA mirror structure, were placed in a temperature-

controlled, resistively-heated metal box to reduce thermal drift of the cavity. Over the time

scale of these experiments, we found that no electronic stabilization of the cavity length (using

a fiber-wound PZT, for example) referenced to the synthesizer frequency was necessary.

8.4.1 Modelocking in a Short Cavity Without TPA

Initially, the TPA mirror was placed in the laser cavity without a focusing lens, thus produc-

ing a large spot size (-9.5 x 10-3 cm 2) and created negligible TPA based on nonreflectivity

measurements of a similar structure[4], shown in Fig. 8-3. The 20-nm filter was adjusted such

that the laser operated at -1555 nm. The output power from the 10% coupler was -164 pJ,

and the laser produced clean, transform-limited 980 fs hyperbolic secant pulses-as expected for

soliton pulse shaping-with a spectral full-width-at-half-maximum (FWHM) of 2.65 nm. The

second-harmonic-generated (SHG) autocorrelation (noncollinear, background-free) is shown in

Figs. 8-6 and the optical spectrum in Fig. 8-7. While the autocorrelation and optical spectrum

is clean, the absence of stabilization is revealed in the RF spectrum of the directly detected

photogenerated current, as shown in Fig. 8-8. The suppression of sidemodes is only on the
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Figure 8-5: Schematic of an actively modelocked fiber ring laser for stabilization studies; WDM
wavelength-division multiplexer for the 980 nm pump; EDF erbium-doped fiber.

order of 25-30 dB, indicative of massive pulse dropouts and/or large amplitude fluctuations.

Qualitatively, this is not enough to determine the amount of amplitude and timing fluctuations.

However, the pulse pattern can directly be observed on an oscilloscope, as shown in Fig. 8-9.

While the sampling rate of 5 Gs/s is not fast enough to reveal each time slot (pulse-to-pulse

separation of 0.5 ns), the entire pattern can be viewed in time where the pattern length is

just one roundtrip time, or 235 ns. The 300 ns span of the trace of Fig. 8-9 reveals shows

the pattern repeating itself. The oscilloscope trace reveals that there are large numbers of

pulse dropouts and distribution of amplitudes amongst pulses in the pattern. The data from

the oscilloscope trace was obtained with direct triggering from the 2 GHz synthesizer. The

stability of the pattern indicated that the particular configuration of amplitudes and dropouts

in the figure was not transient. Perturbing the cavity (by turning off the 2 GHz synthesizer

and remodelocking, adjusting the bias voltage, or changing the cavity loss) resulted in a the

formation of a new pattern, but once formed would be maintained over a period of tens of

seconds to minutes.
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Figure 8-6: Non-collinear, background-free autocorrelation trace for the case without the TPA
mirror structure. Pulse width is the full-width-at-half-maximum of a hyperbolic secant pulse
shape.
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Figure 8-7: Optical spectrum (log scale) for the case without the TPA mirror structure.

8.4.2 Modelocking in a Short Cavity With TPA

An aspheric lens with a 4.5 mm focal length, N.A. 0.55 (ThorLabs C230) was inserted to

produce a small spot size of ~5x10- 8 cm 2 on the TPA semiconductor mirror structure. In

making room for the addition of the lens and lens-adjusting translation stages in the cavity, the

cavity length was slightly increased to 4.35 MHz. The filtering (20 nm), lasing wavelength (1555

nm), modulation depth (corresponding to +29 dBm before the bias tee and biasing circuit) and

average power (164 pJ) were all kept constant in order to compare the case with and without

the lens. The incident pulse energy on the absorber was ~2.8 pJ, and the calculated fluence

based on the spot size and average power was ~56 puJ/cm2

The resulting autocorrelation and optical spectrum are shown in Figs. 8-10 and 8-11,

respectively. Compared to the case without TPA, the pulses broadened by a factor greater

than two (from 980 fs to 2.4 ps), and the spectrum correspondingly narrowed (from 2.65 nm to

1.4 nm). The explanation for the pulse broadening is that because shorter pulses have larger

peak power (and, hence, larger fluence) than longer pulses focussed into the TPA region, the
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Figure 8-8: RF spectrum (log scale) for the case without the TPA mirror structure. The
supermode suppression is > 25 dB.

138

L.

0 *4 6A" v-



E
&
c

8-

6-

4-

2-

0

I IL .4j A U "Ii'I III

IIIIIInhhI*IhuIImII Huh lhlIlIlIBI uN!

-150
00012910

11 IQ, 1-7 1", P 1-'

-100 -50

I' ni .1 1,11 r

0 50 100 150

Time, ns

Figure 8-9: Oscilloscope trace of the directly-detected laser pulse train (sampling rate of 5
Gsamples/s) for the case without the TPA mirror structure. Individual time slots can not be
resolved, but massive pulse dropouts and various pulse amplitudes can be observed.
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Figure 8-10: Non-collinear, background-free autocorrelation trace for the case with the TPA
mirror structure. Pulse width is the full-width-at-half-maximum of a hyperbolic secant pulse
shape.
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Figure 8-11: Optical spectrum (log scale) for the case with the TPA mirror structure.

shorter pulses experience more loss than longer pulses. This extra induced loss favors the

formation of longer pulses.

A spectrum of the directly-detected photogenerated current is shown in Fig. 8-12. The

supermodes are suppressed by an additional 25-30 dB as compared to the case without TPA

stabilization. A trace from a real-time digital oscilloscope is shown in Fig. 8-13. Again,

because of the limited sampling rate of the scope (5 GS/s), individual time slots of 0.5 ns

width cannot be resolved. The traces do not show evidence of either amplitude fluctuations

at levels > 2.8 % nor any pulse dropouts. The choppiness of the trace is due to the noise of

the oscilloscope, as shown by the lower trace in which the optical input to the photodetector

preceding the oscilloscope was blocked and the fluctuations measured. As shown on the figure,

both traces fluctuated by approximately the same amount.

Another interesting feature of the oscilloscope plot is the conservation of area: while the

average power for each case (with and without the TPA mirror structure) was held to be

approximately constant, the maximum detected voltage level of the oscilloscope for the case

without TPA in Fig. 8-9 of 7.8 mV is much higher than the 6.4 mV level for the case with

141



0

-10-

-20-

- -30-

Fn -40-

c-50-

-60-

-70-
1.985 1.990 1.995 2.000 2.005

00012807

Frequency, GHz

Figure 8-12: RF spectrum (log scale) for the case with the TPA mirror structure. The super-
mode suppression has been improved (compared to the case without the TPA sample) to > 55
dB.
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Figure 8-13: Oscilloscope trace of the directly-detected laser pulse train (sampling rate of
5 Gsamples/s) for the case with TPA mirror structure. The lower trace is a measure of
the instrument noise, obtained while blocking the optical input to the photodetector. The
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TPA in Fig. 8-13. This is due to the fact that while the peak detected power level is the same

as the average for Fig. 8-13, the large number of dropouts for the case without TPA indicates

that in order to maintain the same average power, the peak voltage level must be higher than

the average of 6.9 mV.

In order to further test for the stability enhancement due to TPA, we removed the TPA

mirror from the cavity and inserted a standard dielectric mirror which did not exhibit TPA at

normal incidence while keeping in the 4.5 mm aspheric focusing lens in the cavity. The results

obtained were identical to those shown as for the case with the TPA mirror structure and large

defocusing[116].

The nonlinear loss of TPA was estimated by use of a TPA coefficient of 90 cm/GW for

InP[128 and integration over the standing-wave field present in the TPA mirror. For the esti-

mated intracavity intensity in the absorber, the induced nonlinear loss was estimated to be 0.5%-

1.0%. This estimate agrees with experiments performed externally on a similar structures[4]

for the fluence estimated to be present in the TPA mirror structure. To test for the presence

of FCA, external measurements of the time-resolved nonlinear reflectivity measurements (same

setup used to collect the data from Fig. 8-4) of the TPA mirror structure were performed.

In that experiment, the fluence level was increased until the maximum nonlinear-induced loss

reached between 0.5%-1.0% and shown in Fig. 8-14. For this level of nonlinear loss, only the

TPA response is seen, and no FCA is observed. Thus, the nonlinear mechanism responsible

for the elimination of pulse dropouts was TPA.

8.5 Discussion

The evidence presented here proves the efficacy of TPA as a mechanism for stabilizing against

pulse dropouts. We showed that by incorporating a TPA mirror structure in the fiber laser

cavity that pulse dropouts could be eliminated. Time resolved pump-probe traces revealed

that the mechanism causing nonlinear loss was entirely due to TPA and not due to absorption

caused by the generation of free carriers.

Using TPA to stabilize a harmonically modelocked laser offers some advantages over other

methods. Because the nonlinearity required for peak intensity limiting is contained in a thin
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Figure 8-14: Pump-probe trace with C220 (11 mm) aspheric lens at a fluence level necessary to
produce a maximum nonlinear reflectivity change between 0.5% and 1.0%. Figure reproduced
from Ref. [5].
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semiconductor layer, stabilization of short cavities is possible. The TPA mirror structure's small

size, compared with hundreds of meters of fiber, makes it much less sensitive to environmental

changes, and the mirror can easily be incorporated into polarization-maintaining or sigma-type

laser cavities. Because the TPA depends on the peak intensity, it is effective regardless of

the group-velocity dispersion in the laser, thus it should be possible to stabilize a harmonically

modelocked laser that operates in with normal average GVD. Because most semiconductors

exhibit TPA over a broad wavelength range, TPA mirror structures can be used in variety of

laser systems over a large selection of operating wavelengths.

8.6 Ideas for Future Work

Using a passive InP waveguide should allow for better stabilization by overcoming diffraction-

limited focussing experienced in bulk InP. Other nonlinear-induced loss mechanisms can be

employed in to achieve stabilization, including semiconductor optical amplifier waveguide em-

ploying TPA in an SOA waveguide designed for 1.3 pm.

Also, one could use a nonlinear crystal for second-harmonic generation (SHG). The amount

of signal converted to SHG is filtered out of the laser (by an optical filter and by the limited

gain bandwidth) and results in an intensity-dependent loss. We can compare the efficiency of

SHG-induced loss to that of TPA-induced loss. Writing the transmission for the input and

output intensities 'In(t) and Iout(t),

Iout = 'in - 12w (8.10)

= Iin - 77SHGin 2(8.11)

Iout/Iin = T = 1 - 77SHGlin (8-12)

where T(t) is the instantaneous transmission through the SHG sample, t is time on the scale

of the pulse width, I(t) the instantaneous pulse intensity (assuming a Gaussian pulse shape),

L the thickness of the SHG region, and qSHG the SHG coefficient in units of cm 2/W and given

by
2w 2 d L2 HG

71SHG - eff 'SHG (8.13)
n2wn2 C36E
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For TPA,

Iout Iin exp (- 3 TPALTPAIn)

in(1 -- 
3TPALTPAIin)

T = 1 - /3 TPALTPAIin

So, we find that the ratio of SHG- to TPA-induced loss is

SHG loss _ 7SHGIin

TPA loss 3TPALTPAIn

2w 2d 2 LP
ef f SHG 1

n2wnlC 3 EO /3 TPALTPA

1 d2 L
_________ef f SHG

10- 17Fm/s 3TPALTPA

where we have set n2w - n, 6O = 8.85 x 10- 12 F/m, and A = 1.55pm. Taking some typical

numbers for deff ~ 12 x 10- 1 2m/V (approximate value for POM), 3TPA ~ 90cm/GW in InP,

SHG loss 1 LHG
~ -" (8.14)TPA loss 2 LTPA

where LSHG and LTPA are in meters. For LSHG ~ 1 X 10-3 m, LTPA ~ 21 A/2 ~ 5 x10-6 m,

the ratio of SHG loss to TPA loss is - 0.1, which suggests that SHG in a short POM nonlinear

crystal would not be as effective as TPA for the device structure shown here. However, recent

advances in periodically-poled LiNbO 3 waveguides, for example, achieving very high conversion

efficiencies using quasi phase matching and could enable large nonlinear losses (large LSHG) for

preventing dropouts in relatively small, fiber-coupled package[129].
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Chapter 9

Conclusions

This thesis has described many achievements towards building an understanding of the timing

jitter and stability of active harmonically modelocked soliton fiber lasers. A comprehensive

semi-classical theory of the noise using soliton perturbation theory was presented, and the

equations of motion governing pulse retiming dynamics were derived for the case of ASE-

limited noise. It was shown how the ASE leads to fluctuations in the pulse timing and pulse

carrier frequency (which lead to timing fluctuations through GVD). It was shown that while the

characteristics of the steady-state modelocked pulses for amplitude and phase modulation are

similar, the forces governing pulse retiming are rather different. For AM, mistimed pulses are

retimed directly, whereas for PM, mistimed pulses are retimed through a second-order process

involving carrier-frequency shifts that translate to timing shifts through GVD. The retiming

dynamics for PM were shown to be similar to that of a classical damped harmonic oscillator

whose qualitative character could be changed from overdamping to underdamping depending

on the relative strengths of filtering and carrier frequency shifting. A set of characteristic

coefficients describing the retiming dynamics for AM and PM were derived. The equations of

motion and spectra of the timing jitter were derived for AM and PM, and the features of the

spectra were described in terms of the characteristic coefficients. Analytical solutions of the

integrated timing jitter were found for AM and PM. For AM, the Gordon-Haus contribution

to the jitter (in units of time) is proportional to the square of the filter bandwidth and directly

proportional to GVD. For low GVD, the jitter for AM is minimized to a value inversely

proportional to the square-root of the product of modulation depth and modulation frequency
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squared and directly proportional to the noise-to-signal ratio in the cavity. For PM, the

Gordon-Haus jitter is proportional to the filter bandwidth and to the square root of GVD-in

comparison to AM, the Gordon-Haus jiiter for PM is smaller because the GVD helps to retime

pulses. The portion of the jitter due to direct pulse mistiming is inversely proportional to the

product of the square root of GVD and filter bandwidth, indicating that GVD is necessary for

PM in order to retime pulses that have been mistimed. Thus, for PM there exists an optimum

GVD that minimizes the Gordon-Haus jitter while also minimizing the jitter due to direct

pulse mistiming. The minimum jitter for PM is inversely proportional to the square-root of

the product of modulation depth and modulation frequency squared and directly proportional

to the noise-to-signal ratio in the cavity.

A high-performance polarization-maintaining harmonically modelocked fiber ring laser near

1555 nm generating picosecond pulses at 10 GHz with > 65 dB supermode suppression was

shown. An apparatus for directly measuring the predicted characteristic constants (and for ob-

serving the pulse retiming dynamics in real time) was constructed, and the measured constants

for both AM and PM were shown to agree with the theory.

Timing jitter measurements were performed on a sigma-type active harmonically mode-

locked fiber laser driven with a low-noise local oscillator. A dual-channel residual phase-

noise measurement setup using homodyne detection was shown. The measured spectra of the

quantum-limited timing jitter for the cases of AM and PM were described. It was shown that

the measured spectra agreed both qualitatively and quantitatively with the theory. A theory

for the timing jitter of a harmonically modelocked laser was derived, and it was shown that the

timing jitter spectra of the supermodes depend on the pulse-to-pulse noise correlations within

the pulse pattern. It was shown that the measured timing jitter spectra of the supermodes

were identical, in agreement with the case for which the pulses in the harmonically modelocked

laser cavity are uncorrelated. It was also shown that the spectra of the supermodes must

be included in the evaluation of the timing jitter by comparing the the residual phase-noise

measurements with optical cross correlations.

It was shown theoretically that, using phase modulation and GVD in two section of fiber

external to the laser cavity, the timing jitter of a train of pulses can be reduced, but only at

the expense of the carrier frequency jitter.
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Finally, experiments were shown demonstrating that two-photon absorption in a semicon-

ductor mirror structure can be used to stabilize against pulse dropouts in a short harmonically

modelocked laser.
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Appendix A

Full Expression for the Spectrum of

Pulse Timing

The complete expression for the pulse timing, including the cross-correlation terms between the

noise projections, is given for AM and PM:

KIAT(Q2)AM
2 + 2

TAM

{ ( ~ 2 +Sw(Q12>

± Qf WO TR (21DI+)

+ (IS*(Q)S(Q)I) 1
+ _ iQ)

+f (WO+)( 9 1

K! SW(Q)S *(Q) I)

+ (21D +) 2 KISP(Q)12)
TR ( ±+Q2)

(I S (Q) S*Q) ) + (IS ()ST |)

_L + ( 1 jQ)

+ (2|D| ±<S(Q)AST A!> + KIST(Q)|2)

and
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Appendix B

Modulator Bias Circuit

The circuit used to bias the modulator is shown in Fig. B-1. The 10 GHz local oscillator (HP

83732B synthesizer) is divided in a 50/50 power splitter. In one arm, the bias tee is used to

combine the 10 GHz LO and a DC bias voltage. In the other arm, a microwave phase shifter

is used to impart an adjustable delay. With the phase shifter set to 7, the voltages arriving

at the modulator are out of phase. In this configuration (push-pull operation) with Vbias set

to quadrature, the modulator acts as an amplitude modulator and does not impart any phase

modulation to the optical signal. By adjusting the relative delay and power in each arm, the

chirp of the modulator can be varied from zero (pure AM) to ±1 (pure PM).
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Vbias Modulator
LO

BT
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Figure B-1: Microwave bias control circuit to control the relative amounts of amplitude and
phase modulation. LO is the microwave local oscillator, BT bias tee, Vbias bias voltage, PS
microwave phase shifter.
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Appendix C

Electronically- Controlled Microwave

Phase Shifter

The microwave phase shifter is used to change the phase of the 10 GHz LO. The microwave

phase switch is comprised of a single-throw double-pole two-port microwave switch and two

microwave delay lines, as shown in Fig. C-1. The input voltage from the LO, V-,, is directed

to either port A or port B, depending on the logic states of the TTL inputs V1 and V2, and

the switch can only be in either state A or B. The phase accumulated by the Vi, is different

for the two paths as determined by the phase shifter such that #A - #B = kick The switch

logic is such that port A is connected when V1 = 0 and V2= 1 (for TTL logic, logical "0" is 0

Volts and logical "1" is +5 Volts), and port B is connected when V1 =1 and V2 = 0. Thus,

in order to switch from one port to the other requires each V1 and V2 to be changed. While

the intermediate states with V1 = V2 = 0 and V1 = V2 = 1 are not well defined, testing of

the microwave switch showed that when the switch passes through the state V1 = V2 = 1, the

switch goes unstable and rings for a period on the order of 50 ns. If the switch is initially

in the B state, then V1 = 1 and V2 = 0. In order to switch to the A state, V1 must first

be pulled down to zero and then V2 is pulled up to one. To achieve this, the control circuit

shown in Fig. C-2 was designed. The desired rate at which the microwave switch is to flop

between two phase states is given at a rate CLK. A delayed version of CLK is generated by

propagating CLK through an AND gate with delay time tdelay. The outputs V1 and V2 are
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Figure C-1: Schematic of the electronically-controlled microwave phase shifter. CLK is the
TTL input that sets the voltages VI and V2 high or low. PS and ISO are microwave phase
shifter and isolator, respectively, and PC is a power combiner. The phase of the output voltage
V0 st is determined by the relative phase diffterence set between the two paths as determined
by the microwave phase shifter.
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CLK
DCLK

V1

V2

Figure C-2: Logic circuit to control the microwave switch. DCLK is a delayed version of CLK.

CLK [ DCLK 1V I V2
0 0 0 1
1 0 0 0
0 1 0 0
1 1 1 0

Table C.1: Boolean logic table of microwave circuit controller.

given by the timing diagram of Fig. C-3 and obey the logic given in Table C.1. The reader

can convince him(her)self that the circuit prevents both V1 and V2 going high at the same

time. The resulting switching time in going from state A to state B (or state B to state A)

was reduced to < 25 ns and shown in Fig. C-4.
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Figure C-3: Timing diagram for the logic circuit used to control the microwave single-pole
double-throw switch. Delay through the AND gate (SN74S08) is 6 ns; delay through NOR
gate (SN74S02) is 5 ns. The rising edge of VI and falling edge of V2 follow the delayed clock
DCLK, and the falling edge of VI and rising edge of V2 follows CLK.
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Figure C-4: Switching transient of the microwave switch that occurs when switching an input
10 GHz signal from port A to port B.
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Appendix D

Circuits for Phase-Locked-Loop

Control

The lead-lag circuits used for PLL control of the laser cavity are shown in Figs. D-1 and D-2.
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VilR2 OP27EP
0 + Vout

R1 C1 C2

R3 R4

R5

Figure D-1: Noninverting control circuit for laser stabilization. The parametere were R1 = 50Q,
R2 = 2.2MQ, C1 = 0.2pf, R 3 = 10MQ, C 2 = 17/f, R 4 = 2.2MQ, and R 5 = 22MQ.
R 5 C 2 = 40s refresh rate, circuit bandwidth < 8 Hz.

R3 C1

R4

VinR2 OP27EP 
VOP27EP 

Vout
R1 D2 nr c -cto

Figure D-2: Inverting control circuit for laser stabilization.
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