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Abstract

An error correction and grid adaptive method is presented for improving the accuracy
of functional outputs of compressible flow simulations. The procedure is based on an
adjoint formulation in which the estimated error in the functional can be directly
related to the local residual errors of both the primal and adjoint solutions. This
relationship allows local error contributions to be used as indicators in a grid adaptive
method designed to produce specially tuned grids for accurately estimating the chosen
functional. The method is applied to two-dimensional inviscid and viscous (laminar)
flows using standard finite volume discretizations, and to scalar convection-diffusion
using a Galerkin finite element discretization.

Isotropic h-refinement is used to iteratively improve the grids in a series of sub-
sonic, transonic, and supersonic inviscid test cases. A commonly-used adaptive
method that employs a curvature sensor based on measures of the local interpola-
tion error in the solution is implemented to comparatively assess the performance of
the proposed output-based procedure. In many cases, the curvature-based method
fails to terminate or produces erroneous values for the functional at termination. In
all test cases, the proposed output-based method succeeds in terminating once the
prescribed accuracy level has been achieved for the chosen functional.

Output-based adaptive criteria are incorporated into an anisotropic grid-adaptive
procedure for laminar Navier-Stokes simulations. The proposed method can be
viewed as a merging of Hessian-based adaptation with output error control. A series
of airfoil test cases are presented for Reynolds numbers ranging from 5,000 to 100,000.
The proposed adaptive method is shown to compare very favorably in terms of output
accuracy and computational efficiency relative to pure Hessian-based adaptation.

Thesis Supervisor: David L. Darmofal
Title: Associate Professor of Aeronautics and Astronautics
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The error therefore lyeth neither in the abstract nor in geometry, nor in physicks,

but in the calculator, that knoweth not how to adjust his accompts.

- Galileo Galilei, 1632
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Chapter 1

Introduction

Computational simulations of complex aerodynamic flows have become integral com-

ponents of the design process in the aerospace industry due to their potential to

provide valuable physical data thereby reducing the need for costly wind tunnel test-

ing. Increasing reliance on computer simulations necessitates a corresponding increase

in the accuracy and reliability of the underlying algorithms. Furthermore, large-scale

simulations must be made more affordable so that their potential benefits can be fully

realized within the design cycle.

A well known strategy for minimizing the cost of a computational simulation

while achieving a given level of accuracy is grid adaptation [1, 6, 8, 10, 15, 16, 27,

28, 30, 33, 45, 48, 50, 51, 63, 64, 66, 68, 70, 71, 72]. The basic premise is to locally

enrich the computational grid in regions which most adversely affect the accuracy

of the final solution while coarsening the grid in more benign regions to prevent

incurring unnecessary computational costs. A major difficulty in achieving definite

improvements using adaptation for Euler and Navier-Stokes calculations is the lack

of reliable error indicators. For example, a common strategy is to adapt to certain

physical features of the flow, such as shock waves, boundary layers, wakes, slip lines, or

stagnation points, by employing indicators based on large flow gradients or undivided

differences [6, 8, 50, 64]. The assumption here is that regions of larger gradients are

associated with regions of larger error. Unfortunately, continuous local refinement of

the dominant features of the flow does not necessarily guarantee that certain measures
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of the global error will simultaneously be reduced. In some cases this procedure may

even lead to incorrect results' [64].

An alternate approach is to use adaptive indicators based on the local interpolation

error in the solution [16, 27, 28, 48, 64, 67]. The error associated with piecewise-linear

interpolation of a scalar field is proportional to the second derivatives of that scalar.

Thus, these indicators essentially adapt to the curvature of the solution. From this

perspective they share some of the qualities and potential deficiencies associated with

feature-based indicators for nonlinear flow problems.

Within the context of linear elliptic problems, a relatively rigorous adaptive pro-

cedure has been outlined by Zienkiewicz and Zhu [70, 71, 72]. They propose using

a recovery technique to obtain higher-order projections of the solution gradients.

The local error is assessed by comparing the solution gradients with the higher-order

projections. Unfortunately, these types of estimates cannot be made rigorous for

convection-dominated flow problems.

Error estimates based on local residual evaluations can be used as indicators for

adaptation. Aftosmis and Berger [1] employ a multilevel Richardson-type indica-

tor for adaptive refinement within a finite volume context. Error estimates are con-

structed by evaluating the discrete residual on a coarse grid using a restricted solution

from a fine grid. Zhang et al. [68] derive local adaptive indicators by evaluating the

residual of the governing partial differential equations using the approximate numer-

ical solution.

The aforementioned adaptive indicators all use local measures of the error in one

form or another. However, the local error in a discrete flow solution may be dominated

by remote effects in an entirely different part of the domain [13, 51]. An example of

where such an occurrence might arise would be in a transonic flow. An adaptive

algorithm based on derivatives in the local Mach number would tend to provide

very high grid resolution near shocks. While this would result in a sharply-resolved

shock, the shock location could, nevertheless, be in significant error due to a lack

'The term incorrect results refers to certain measures of the error converging to non-zero values
as the refinement process proceeds indefinitely.
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of grid resolution far upstream from the shock (for examples of such an occurrence,

see reference [64]). This, in turn, could lead to substantial errors in other derived

quantities.

Even within the setting of finite-element-discretized elliptic problems, where rig-

orous error estimates have been available for decades [2, 58], one can argue that a

global error norm based directly on the solution and its derivatives may not be optimal

within an engineering context. The issue is even less clear for Euler and Navier-Stokes

computations that have multiple length scales and isolated flow features scattered

throughout complicated, multidimensional domains. Adaptation based on a global

error norm of this nature generally leads to a somewhat uniform consideration of

all the features in a flow, which may not be desirable. For example, if one is only

interested in computing the drag on an engine nacelle mounted below the wing of an

aircraft, or the lift generated by a canard, it may not be necessary to resolve the wake

downstream of the rudder to any appreciable extent.

An alternate approach to making error estimation more relevant for engineering

applications is to assess the error made in predicting an integral quantity representing

an engineering output. For example, in aerodynamic applications, outputs of interest

include the lift, drag and moment coefficients on aircraft configurations. These are all

expressible as surface integrals over portions of the domain boundary. Other examples

include the total losses across a blade row in a gas turbine engine, the total heat flux

to a high-pressure turbine blade, the acoustic noise levels at an airport terminal due

to an aircraft taking off, or the rate of ice formation on an aircraft wing during adverse

flight conditions.

This dissertation presents an error estimation and grid adaptive method specifi-

cally designed for improving the accuracy of functional outputs from numerical sim-

ulations. The method is applicable to general discretizations including finite volume,

finite element, or finite difference approximations. This thesis focuses on finite volume

implementations for inviscid and viscous (laminar) compressible flows, and a Galerkin

finite element discretization for scalar convection-diffusion. The procedure invokes

a duality concept in which an equivalent dual or adjoint formulation of the original

25



primal problem is exploited. The primary benefit of invoking the dual problem, in

the context of grid adaptation, is that the error in a chosen functional can be directly

related to local residual errors of the primal solution through the adjoint variables.

This property elucidates the potential for devising an optimal grid adaptive strategy

designed to produce specially tuned grids for maximizing the accuracy of a particular

functional.

1.1 Error Analysis for Functional Outputs

The first results related to error analysis for functional outputs likely originated in the

work of Aubin and Nitsche (see reference [58]). They developed a technique (widely

known as Nitsche's trick) for proving a priori finite element convergence rates for

elliptic problems in certain norms other than the natural norm (or energy norm)

for the particular problem. The technique makes use of a suitably defined adjoint

problem that serves as an artifice in the proof.

Babuska and Miller [5] were perhaps the first to focus attention on functional

outputs. In structural analysis applications, the outputs of interest are typically point

quantities such as displacements, rotations and moments. In their paper, Babuska and

Miller outlined a procedure whereby these point quantities could be converted into

integral expressions using what they termed extraction functions. Using an auxiliary

(or adjoint) problem based on the extraction functions, and under certain smoothness

conditions, these integral quantities were shown to converge at the same rate as the

strain energy, whereas, the point quantities obtained directly from the finite element

solution converged at suboptimal rates.

More recently, there has been a significant volume of research into a posteriori

error analysis and optimal grid adaptation for functional outputs within the context

of finite element methods for fluid dynamics. Researchers in the area include Becker,

Rannacher and collaborators [9, 10, 13, 51], Siili and co-workers [23, 30, 59], Larson

and Barth [34], and Patera, Peraire and collaborators [38, 46, 47].

Becker, Rannacher and collaborators [9, 10, 13, 51] have developed an optimal
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control approach for output-based grid adaptation within a Galerkin finite element

framework. Their approach exploits finite element orthogonality properties and dual-

ity concepts that involve the use of an adjoint problem. A posteriori error estimates

are used to derive effective indicators for adaptation.

Sili and Houston [30, 59] present an a posteriori error analysis of the hp-version

of the discontinuous Galerkin finite element method. Using duality arguments, com-

putable error bounds are derived for linear functionals of scalar, first-order hyperbolic

problems. These bounds are used to design an adaptive algorithm that is capable of

both local mesh subdivision and local polynomial-degree enrichment.

Larson and Barth [34] have outlined an a posteriori error estimation procedure for

specified functionals of first-order systems of conservation laws for the discontinuous

Galerkin finite element method. Using duality techniques, error representations are

derived for linear and nonlinear functionals given an associated bilinear or nonlinear

variational form.

Patera, Peraire and collaborators [38, 46, 47] have established an implicit a poste-

riori procedure for computing upper and lower bounds on functional outputs of finite

element solutions. These error bounds are measured with respect to the value of the

output on a suitably refined truth mesh that is considered sufficiently fine that the

discretization errors may be neglected. They incorporate an adaptive procedure into

the bounding framework designed to produced optimized grids that meet a target

bound gap.

Pierce and Giles [24, 25, 26, 49] have developed an adjoint-based error correction

technique for functional outputs. Essentially, this technique extends superconvergence

properties, automatically inherent in many finite element methods, to cover numerical

results obtained from any numerical method, including finite difference, finite volume,

or finite element without natural superconvergence. Moreover, the technique can also

be used to improve the accuracy of superconvergent functionals obtained from finite

element methods by constructing smoother, higher-order interpolants of the primal

and dual solutions.

The output-based adaptive method outlined in this dissertation is based on an
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algebraic version of the Pierce and Giles correction technique. It shares the advantage

of being applicable to any type of discretization method, including finite volume

methods which are widely used for the simulation of compressible flows. The present

methodology also borrows, from Patera and Peraire, the concept of the truth mesh,

referred to in the present context as simply the fine grid, which is to be distinguished

from the associated working or coarse grid. The procedure involves estimating the

error in the coarse-grid functional with respect to its value on a globally refined fine

grid. Solutions on the fine grid are not required. The only auxiliary computations are

functional and residual evaluations on the fine grid, and the solution of a linear adjoint

problem on the coarse grid. The adaptive algorithm strives to improve the quality

of the aforementioned error estimate by attempting to reduce and equidistribute the

remaining error in the functional after correction. At the next iteration, a new fine grid

is defined with respect to the newly adapted coarse grid and the process is repeated

until convergence. Convergence is defined in terms of local and global adaptation

parameters and a prescribed error level for the computed functional.

1.2 Unstructured Grid Adaptation

A traditional method of discretizing the computational domain is to employ struc-

tured or block-structured grids comprised of regular arrays of quadrilateral or hex-

ahedral cells in two or three dimensions, respectively. Generating these types of

grids on regularly shaped domains is usually a straightforward matter, however, they

become exceedingly difficult to construct as the domains become increasingly more

complex. Unstructured grids employing triangles in two dimensions or tetrahedra in

three dimensions have emerged as a viable alternative to structured grids, primarily

due to their ability to discretize geometrically complex domains with relative ease

while providing a natural setting for the implementation of grid-adaptive techniques.

The compressible flows considered in this work are simulated using unstructured

grids composed of triangular cells or elements. While the numerical results are focused

on two-dimensional test cases, the concepts, algorithms and procedures presented in
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this dissertation are, in principal, applicable or extendable to three dimensions. In

particular, analogies to unstructured tetrahedral grids can be readily drawn in most

cases [45].

Standard h-version isotropic adaptation is used for the inviscid simulations in this

work. At each iteration in a typical adaptive loop, criteria are derived for determin-

ing the desired element sizes for the new grid. There is no information provided for

stretching or reorienting the elements in this case. The viscous simulations employ

anisotropic adaptation. At each node in the domain, information regarding the local

size, stretching, and orientation of the elements is provided. Based on this informa-

tion, the grid is regenerated using a generalized Delaunay-type algorithm [12, 35] and

the entire process is repeated, iteratively, until the coupled grid-solution system has

converged.

The output-based anisotropic grid-adaptive method proposed in this work is an

extension of current anisotropic methods. Peraire et al. [48] proposed a directional re-

finement method for two-dimensional inviscid flows. In their work, grids composed of

stretched triangles are constructed with biased resolution along directions of rapidly

changing gradients of the density. The approach they adopt is based on reducing

the interpolation error in the density by focusing on the Hessian matrix of second

derivatives. The local Hessian is diagonalized and the absolute value of the eigenval-

ues are used to determine the local grid spacing in two orthogonal directions given

by the corresponding eigenvectors. This allows stretching parameters and principal

directions to be defined over the entire domain. The grid is then regenerated based

on equidistributing the estimated error along the eigenvector directions.

The more recent work of Castro-Diaz et al. [16], Habashi et al. [27, 28] and

Dervieux et al. [19] also employs anisotropic adaptive indicators based on the in-

terpolation error in a chosen scalar or combination of scalars. They make use of a

symmetric positive-definite metric obtained from the Hessian by taking the absolute

value of its eigenvalues. The metric, which varies continuously over the domain, can

be interpreted as a transformation matrix from the physical space to a Riemannian

space. Equidistributing the error along edges in the grid can be achieved by equidis-
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tributing the length of the edges in the Riemannian space. Castro-Diaz et al. use an

hr-adaptive strategy to achieve directionally-adapted unstructured grids with high-

aspect-ratio elements. Habashi et al. generate highly stretched grids using local

operations: refinement, coarsening, edge swapping and node movement, without any

recourse to remeshing. The use of local grid operations enables tighter coupling with

the solver.

A common scalar used in the Hessian-based approaches for viscous flows has

been the Mach number [6, 27, 67]. Unfortunately, several difficulties are associated

with using the Mach number Hessian alone. Xia et al. [67] present a summary of

heuristics for modifying the Hessian in an attempt to alleviate some of its inherent

limitations as an adaptive sensor. Examples include bounding the eigenvalues from

below when the flow is nearly uniform and the Hessian approaches zero. Conversely,

the eigenvalues are capped from above in the vicinity of shocks where the Hessian

becomes virtually unbounded in the normal direction. Another difficulty can arise in

boundary layers when the Mach number passes through curves of inflection or layers

of very low curvature. In practice this may result in nearly isotropic elements within

the boundary layer adjacent to the wall.

For systems of PDEs involving multiple dependent variables, the choice of a single

scalar may not be appropriate. Combinations of scalars can be used, but the appro-

priate weighting is unclear. Castro-Diaz et al. [16] suggest using the intersection

metric associated with all the conservative variables of the system. This amounts to

approximating the metric that minimizes the maximum interpolation error over all

variables. Incorporating all the conservative variables into the Hessian calculation is

an improvement over using a single scalar variable. However, no justification is given

for choosing the conservative variables over any other set of variables. Furthermore,

their criterion still focuses on the interpolation error alone, without addressing other

sources of error.

Castro-Diaz et al. have shown that anisotropically adapted grids for high-Reynolds-

number flows often yield poor boundary layer resolution and inaccurate skin friction

estimates. This is attributed to the nonuniformity in the distance of the first layer
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of nodes to the wall. They recommend modifying the metric near the boundaries in

order to obtain a quasi-orthogonal grid in near-wall regions. This requires the user

to specify a spacing parameter for the first layer of elements near the wall.

The output-based adaptive method used in the present work is able to alleviate

some of the aforementioned shortcomings of pure Hessian-based adaptation, while

maintaining a rigorous link to the functional error. The anisotropic adaptive algo-

rithm merges Hessian-based information with adjoint-based error estimation. Metric

information is decomposed into three distinct characteristics for each element: size,

aspect ratio, and orientation. The Mach number Hessian is used to obtain stretching

and orientation information for each element while the adjoint information is used to

determine its size.

No explicit effort is made to avoid large-angle triangles for the anisotropic test

cases in this work2 . Babuska and Aziz [4] have shown that the accuracy of a finite

element approximation on a triangular element degrades as the maximum angle of the

element is increased. This suggests that stretched obtuse-angle triangles containing

one large angle and two small angles should be avoided, whereas, triangles with

one small angle and two nearly right angles are preferred. An acceptable limit on

how large the largest angle may be depends on the specific application. For linear

interpolation, Rippa [52] has shown that if the function being interpolated has a

highly preferred direction, angles approaching 7r may still be acceptable provided the

triangle is appropriately oriented. He presents bounds on the interpolation error in

terms of the triangle shape and the second derivatives of the function.

For the directionally adapted grids in this thesis, the largest angle in a typical

triangulation often approaches 7r to within 1%, particularly in higher Reynolds num-

ber simulations. Nevertheless, the adaptive results indicate that this has not been a

significant factor, in regards to output accuracy, whenever the adjoint-based adaptive

criteria have been used.

2 The grid generator used for the viscous test cases [35] implements various grid quality measures
that may influence the magnitude of the largest angles.
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1.3 Thesis Overview

In Chapter 2, the output-based error correction and grid adaptive procedure is de-

scribed in detail. The chapter begins with a discussion of some preliminary concepts

and definitions associated with the functional correction technique. The method is

described within a general framework, without reference to a particular discretization

method. A brief description of the Pierce and Giles [26, 49] correction technique is

provided (a more detailed treatment is given in Appendix D). The present method is

essentially an application of their method within an algebraic context. In Section 2.3,

the proposed adaptive methodology is described. The functional error is decomposed

into two contributions: a computable term and a remaining error term. The com-

putable term is the correction term that can be used to improve the accuracy of the

chosen functional. The proposed adaptive algorithm is designed to enhance the qual-

ity of the correction term by reducing the magnitude of the remaining error term.

Adaptive parameters are derived by invoking the principle of error equidistribution.

In the proposed adaptive procedure, local elemental contributions to the remaining

error are driven towards the same value throughout the domain, while the estimated

global remaining error is reduced towards a user-specified tolerance.

In Chapter 3, the functional correction and grid-adaptive procedure is applied to

two-dimensional, inviscid flows covering subsonic, transonic, and supersonic regimes.

The functionals considered are the lift, drag and moment coefficients on a variety of

airfoil configurations. Isotropic grid-refinement is applied to improve the quality of

the grids. A curvature-based adaptive method [6, 64] is implemented to comparatively

assess the performance of the output-based method. The output-based method is

shown to compare favorably in terms of output accuracy, computational efficiency

and reliability.

In Chapter 4, the functional correction and grid-adaptive methodology is applied

to two-dimensional, laminar, subsonic Navier-Stokes flows for Reynolds numbers

ranging from 5,000 to 100,000. The functionals considered are the lift and drag

coefficients in a series of airfoil test cases. The output-based adaptive criteria are
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incorporated into an anisotropic grid-adaptive procedure. The local element size

is determined using output-based criteria, whereas the local stretching and orienta-

tion is based on the computed Mach number Hessian. An anisotropic grid-adaptive

method based exclusively on the Mach number Hessian [16, 19, 27, 48] is implemented

for the purposes of comparison. The proposed output-based method is shown to com-

pare very favorably in terms of output accuracy and computational efficiency relative

to pure Hessian-based adaptation.

Chapter 5 concludes with a summary of the thesis, a delineation of the primary

contributions, and suggestions for future work. In Appendix A, the output correc-

tion/adaptive method is applied to a Galerkin finite-element discretization of scalar

convection-diffusion. The functional correction theory, specialized for a linear prob-

lem, is presented in A.4. Appendix D presents the continuous adjoint correction the-

ory of Pierce and Giles [25, 26, 49] and draws analogies with the algebraic approach

employed in the current work.
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Chapter 2

Grid Adaptation for Functional

Outputs

A correction technique and grid adaptive methodology for functional outputs is pre-

sented. The functional correction technique is based on a discrete adjoint formulation

that relates the local residual errors in the flow solution to the corresponding global

error in the output. A correction term is thus derived that can be used to improve the

accuracy of the chosen output once an auxiliary adjoint problem has been solved. The

proposed adaptive methodology is based on reducing the magnitude of the remaining

error in the functional, after correction. Adaptive parameters are derived by invoking

the principle of error equidistribution. During a typical adaptive simulation, local

elemental contributions to the remaining error are driven towards a common value

throughout the domain while the estimated global remaining error is reduced towards

a user-specified tolerance. The correction/adaptive methodology is presented within

a general framework, without reference to a particular discretization method.

2.1 Adjoint Error Correction

This section begins with some preliminary definitions related to the mechanics of the

functional correction technique, which is essentially an algebraic version of the Pierce

and Giles [26, 49] method. The functional correction term is derived in Section 2.1.2.
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Coarse Grid (QH) Fine Grid (Qh)

Characteristic Element Size H h

Discrete Solution UH Uh

Residual Equations RH(UH) = 0 Rh(Uh) = 0

Functional Output fH(UH) fh(Uh)

Table 2.1: Nomenclature associated with coarse- and fine-grid quantities

2.1.1 Preliminary Definitions

The primary goal is to estimate an integral quantity f(U) that can be written as a

nonlinear functional of the solution U to a system of partial differential equations

(PDEs). The PDEs are defined over a physical domain denoted by Q. Consider two

distinct computation grids that approximate the physical domain: a coarse grid QH

and a fine grid Qh. The parameters H and h (H > h) represent characteristic lengths

associated with each grid such as the average edge length in a finite element or finite

volume triangulation, or the average grid spacing in a finite difference approximation.

The nonlinear system of discrete residual equations arising from some discretization

of the original PDEs on the coarse grid is denoted RH(UH) = 0, where UH is the

corresponding discrete solution on that grid. The discrete approximation of f(U) on

the coarse grid using a prescribed quadrature rule is denoted fH(UH). Analogous

quantities are defined for the fine grid as summarized in Table 2.1.

Consider the coarse grid as being representative of a typical working grid; one

that might be used in a design context, for example, or some application requiring

rapid simulation turnover. While the coarse grid may be regarded as affordable with

respect to available computing resources and allowable solution times, it may not

provide sufficient accuracy for the intended application. More precisely, it may not

provide a sufficiently accurate output fH(UH).

The fine grid is considered to be a grid of improved resolution relative to the

coarse grid. Solving on the fine grid would generally be expensive, however, if the

discrete solution were obtained on this grid, the computed output would have in-
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Figure 2-1: A typical coarse grid and two possible fine grids that may be used in
the functional correction procedure. Left: patch of coarse-grid elements near an
airfoil boundary; center: superimposed fine grid corresponding to N = 2; right:
superimposed fine grid corresponding to N = 7. Note that the fine grids conform to
the original airfoil boundary.

creased accuracy for the particular application. In the present work, the fine grid

is taken to be a uniform refinement of the coarse grid. At the boundaries of the

domain it is made to conform to the physical boundary OQ. For example, if QH is a

two-dimensional triangulation, one way of constructing Qh is to subdivide each of the

triangles of QH into an integer number, N 2 , of self-similar triangles where N = H/h.

The fine-grid boundary nodes are then repositioned so as to coincide with 19. This

may also require the movement of some interior nodes adjacent to the boundary in

order to maintain the quality and integrity of the fine grid. Figure 2-1 shows a patch

of elements in a typical coarse grid and two possible fine grids corresponding to N = 2

and N = 7. Note that a hierarchy of fine grids corresponding to N = 2, 3,... can

be constructed in this way and that each grid in the hierarchy would be completely

characterized by N with respect to the original coarse grid.

If QH is a three dimensional grid composed of tetrahedra, a slightly different

approach is required since it is not possible to subdivide a tetrahedron into self-similar

tetrahedra. Alternatively, a 1:12 refinement ratio can be achieved by adding nodes to

the mid-points of each of the edges of the original tetrahedron and by adding one more

node to its centroid. The application of this systematic refinement algorithm to each

tetrahedron in the coarse grid would yield a legitimate fine grid for the purposes of
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the error estimation procedure. Recursive repetition of this process would result in a

hierarchy of grids where each successive grid would be embedded within the previous

one. As in the two-dimensional case, each fine grid should be made to conform to the

physical boundary, 0Q.

The goal in the subsequent section will be to obtain an accurate estimate of fh(Uh)

without ever solving on the fine grid. The only auxiliary computations will be residual

evaluations and inner products on the fine grid, and the solution of a linear adjoint

problem on the coarse grid.

2.1.2 Functional Correction

In this section, the focus will be on deriving a correction term for the error in the fine-

grid output due to a perturbation in the fine-grid solution. In the present context,

the perturbed solution will be obtained by prolongating the coarse-grid solution onto

the fine grid. In general, however, it could be obtained from other sources such as an

asymptotic expansion, a reduced order model, or an entirely different discretization.

The impetus for this procedure is the correction technique of Pierce and Giles [26, 49].

Let 6 Uh represent a small perturbation in the primal solution. Each component

of the vector 6Uh corresponds to the local error in the perturbed solution relative to

the exact solution of the primal residual equations on the fine grid. The perturbed

solution is denoted Uh and is defined by

Uh = Uh +6U. (2.1)

In practice, the fine-grid solution Uh and the error SUh are not known, whereas, the

approximate solution Uh is assumed given. The resulting perturbations in the func-

tional and residual operators due to the perturbation in the solution are, respectively,

f - fA(Oh) - fA(Uh), (2.2)
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and,

6 Rh Rh (Uh)- Rh(Uh),

= Rh(Uh). (2.3)

The last equality holds due to the fact that the fine-grid solution satisfies the residual

equations Rh(Uh) = 0. Linearizing about the perturbed solution yields,

6fh afh U, (2.4)
aUh

and,

6 Rh ~ Rh 6U (2.5)
aUh

The row vector, Ofh/Uh, contains the linear sensitivities of the functional with re-

spect to the solution vector. The square matrix &Rh/Uh is the Jacobian of the

residual operator. Both quantities are evaluated using the perturbed solution.

The discrete adjoint system of equations associated with the primal residual op-

erator and functional is given byl

aRhT_ T- fh T (2.6)
aOlh O9Uh

where Xh is the discrete adjoint solution on the fine grid. Using (2.4)-(2.6), the

perturbation in the functional can be expressed as

fh Ofh Uh

=6A -R W Uh-
aUh

= FT &Rh 6 U,(2.7)

'Supplemental information on adjoint equations and their uses can be found in references [21,
24, 32, 37, 42, 57].
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The last expression in (2.7) approximates the error in the functional as the inner

product of the adjoint solution and the primal residual error. This expression is

exact for linear functions and residuals. To compute this estimate would require the

solution of the adjoint problem on the fine grid, which is undesirable. Instead, it is

assumed that an approximate adjoint solution -h is available as a substitute. In a

fashion analogous to (2.1), we define the adjoint perturbation 6"9h by

"rh - 'P -+ 6'Ih. (2.8)

Note that the perturbation in the adjoint is independent of the perturbation in the

primal.

The adjoint residual operator is defined as,

= ORhT OfhTR(= ( - allh(2.9)

so that RT (Wh) = 0, and

Rq' ORh T ahT

R (Th) = (h + fho) - ,

= RhT 64. (2.10)
aUh

Using (2.7) - (2.10), the perturbation in the functional can be further expanded as

6fh TT

h J4Rh (Uh)- '; R(U)

'F7 T Rh (Oh) - 6 TT Rh AU)
~ hR

- 14hRh(Uh) -R 'qfIh) TUhWh~ p T Rh (h) - E" h 6Uh,h ~h

~ IRh(Uh) - R ('Ph)T  - Rh (U) (2.11)
aUh

The term, hI Rh(Uh), is computable given the approximate solutions Uh and "Fh. This

term can be used to correct the perturbed functional yielding the following estimate
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for the fine-grid output:

fh(Uh) _ fh(Uj) -- NIVRh(). (2.12)

An asymptotic bound on the remaining error in the corrected functional is obtained

from the last expression in (2.11) as,

6f-'~jRhUh < R~i,) Rh -1 ~
h- Rh (Oh) I< JR () I R(Uh) + ,

+ 6, (2.13)
OUmin

where |- denotes the 2-norm, > 0 represents the magnitude of all higher-order

terms, and omin is the smallest singular value of ORh/OUh satisfying

aRh
o-min = min Zh (2.14)

Zh,11Zh11=1 aUh

Note that for linear functionals and residuals, e= 0 and the bound in (2.13) is

uniformly valid.

Discrete Adjoint

The functional correction procedure provides an estimate for the true value of the fine-

grid output given approximations of the primal and adjoint solutions on that grid.

In the present context, these approximations are obtained by prolongating coarse-

grid solutions onto the fine grid using polynomial reconstruction (see Section 2.2).

This imposes smoothness requirements on the discrete adjoint. For this reason, the

primal residual operator Rh(-) is assumed to represent an integral statement such as

one that would arise naturally from a finite element or finite volume formulation. A

typical finite difference stencil would need to be scaled by an appropriate area term

(or volume term in three dimensions) so that the residual became analogous to an

integral expression. If the primal residual operator does not represent an integral

quantity, the solution of the discrete adjoint equations in (2.6) will generally scale

40



with the local grid size. Consequently, smoothness will be compromised on grids with

irregular spacing. Furthermore, the discrete solution will no longer be consistent with

the analytical adjoint [24].

Implementation Issues

Depending on the structure of the source code, the functional correction procedure

can be implemented very rapidly into a flow solver that already computes the adjoint

solution 2 , particularly if the residual and functional subroutines are modular and eas-

ily accessible. Residual and functional evaluations on the fine grid can be performed

by simply calling these subroutines with the fine grid coordinates and approximate

solutions as input. This would require substantial memory overhead since the fine grid

would need to be stored in its entirety. The alternative is to modify the machinery of

the code so that residual evaluations on the fine grid can be achieved by assembling

local contributions sequentially - in a loop through the coarse grid elements, for ex-

ample. This would eliminate the memory overhead at the cost of increased coding

work.

Pierce and Giles Correction Technique

The correction formula given by (2.12) is an algebraic analogue of the Pierce and

Giles (P&G) correction term [26, 49]. The current derivation utilizes the notion of

a fine grid and appeals directly to the nonlinear, discrete residual equations. The

P&G derivation is cast in a continuous framework; errors are measured relative to

the exact value of the functional corresponding to the solution of the PDEs under

consideration. In the P&G approach, the vector inner product of the adjoint and the

discrete residual in (2.12) is replaced by an integral inner product of the adjoint and

the residual of the governing PDEs using approximate adjoint and primal solutions.

Both the P&G correction technique and the algebraic version used in the present

work have been shown to produce significant improvements in functional accuracy

2For example, the adjoint is used in several gradient-based aerodynamic optimization codes [21,
31, 32, 42].
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(See the superconvergence results in references [26, 49, 62] and the improvements in

functional accuracy in reference [63] and in Sections 3.6, 4.6, and Appendix A).

A convenience associated with the current method is that the error contribution

from the domain boundary is automatically accounted for in the correction term

given by (2.12). The reason for this is that the primal boundary conditions are al-

ready incorporated into the residual operator by construction. In the P&G technique,

additional terms need to be accounted for explicitly whenever the approximate solu-

tions do not satisfy inhomogeneous boundary conditions exactly [25, 26]. However,

as will be seen in Section 4.4, some care must be taken in the current approach when

primal boundary conditions are imposed in a strong sense.

A brief outline of the continuous adjoint correction theory of Pierce and Giles is

presented in Appendix D.

2.2 Prolongation Operators

The approximate primal and adjoint solutions used in the functional correction pro-

cedure are obtained by prolongating coarse-grid solutions onto the fine grid. The

prolongation operators take advantage of the fact that the fine grid elements are

embedded within associated coarse-grid elements. Polynomial interpolants are con-

structed over each coarse-grid element and then used to inject values directly onto the

embedded fine grid nodes within that coarse-grid element. Two different polynomial

orders are used in the adaptive procedure: linear and quadratic.

2.2.1 Linear Operator

The linear operator Lf' represents simple linear interpolation over each coarse-grid

element. The resulting interpolant matches the data at the coarse-grid nodes ex-

actly and is, therefore, continuous across element edges. This operator is used for

computing the adaptive parameters described in Section 2.3.2.
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2.2.2 Quadratic Operator

The quadratic prolongation operator Q' is defined by a local least squares procedure.

A quadratic profile is obtained over each coarse-grid element using a local error-

minimization process involving the nodal values and slopes of the function being

interpolated.

Consider a generic scalar function, q, and its derivatives, #., and #y, sampled at

the nodes of the coarse grid'. Over each coarse-grid element, k, we can establish the

following linear distributions

3

N , (2.15)
i=1

3

)= N#, (2.16)
i=1

3

Ni # ,(2.17)
i=1

where #', #'x, and # are the sampled values at the three vertices of element k, and

Ni are the standard shape functions for a linear triangle. A quadratic interpolant of

# over element k can be represented as

6

= N]eg, (2.18)
j=1

where Nj are the shape functions for a quadratic triangle [69] and /j are the unknown

3 The function and its derivatives are assumed to have comparable accuracy at the nodes. To
achieve this for a typical finite element or finite volume discretization, the gradients can be re-
covered from the numerical solution using gradient recovery techniques such as those described in
references [3, 71]. The solver used for the flow simulations in this work is FUN2D [41]. Gradients
at the nodes are recovered from the flow/adjoint solution using a local least squares procedure de-
scribed in reference [3]. This algorithm computes nodal gradients as least squares averages of the
gradients computed along each edge impinging upon that node.
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coefficients to be determined. The least squares problem is to determine these coeffi-

cients by minimizing the 7' norm of the difference between the linear and quadratic

profiles. That is,

find z* =I{* ,. .. , }T,

such that A(z*) = min A(z), (2.19)

where A(z) = j # (z) - 4 + (#(z) -#2 + (#(z) - 4)2 dQ.

Once z* has been determined for element k, it is substituted back into (2.18)

yielding the desired interpolant. The procedure is repeated for all elements in the

coarse grid.

This process produces a piecewise quadratic interpolant that is discontinuous

across element edges. Values on edges are obtained by taking the arithmetic av-

erage of the interpolant values from the two adjacent elements associated with that

edge. Values at coarse-grid nodes are similarly obtained by taking the arithmetic

average of the interpolant values from the patch of elements surrounding that node.

The least squares problem defined by (2.19) can be solved efficiently by invert-

ing the associated normal equations. Unfortunately, the normal equations become

severely ill-conditioned on highly stretched elements resulting in numerical instabil-

ities. To circumvent this issue, the least squares problem is solved using a singular

value decomposition (SVD) algorithm. Solving the least squares problem via SVD is

computationally more expensive, however, it provides for a highly stable algorithm

[61].

The quadratic prolongation operator is used for evaluating the correction term in

(2.12), and for computing the adaptive parameters described in Section 2.3.2.

2.2.3 Grid Movement

As described in Section 2.1.1, the fine grid is constructed in two steps. The first step

is to uniformly refine the coarse grid by subdividing each triangle into a specified
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number of self-similar triangles. This results in a fine grid with boundary nodes that

do not generally lie on the physical boundary. The second step is to reposition the

boundary nodes, and possibly several layers of interior nodes, so that the fine grid

conforms to the physical boundary.

The physical boundary is represented by cubic splines. Nonconforming boundary

nodes are snapped to the nearest point on the cubic spline representation. The

remaining fine-grid nodes within each coarse-grid boundary element are smoothed

using the isotropic smoothing algorithm described in Appendix C. Figure 2-1 shows

examples of two fine grids after their boundary nodes have been repositioned to

conform to the physical boundary. In the case of the N = 7 fine grid, adjacent nodes

have also been smoothed in order to improve grid quality.

For highly stretched grids, such as those used in the viscous test cases, reposition-

ing of the boundary nodes may result in negative elements. If this occurs, the grid

is repaired by moving adjacent interior nodes until consistency is restored. Laplace's

equation is used to determine the x- and y- components of the interior-node displace-

ments. A standard Galerkin discretization is used to approximate Laplace's equation

on the nonconforming grid. The boundary-node displacements are used as Dirichlet

conditions. The resulting systems of discrete equations (one for the x-component

and one for the y-component of the displacement vector) are solved, approximately,

yielding a consistent displacement field for the interior nodes. This is a simplified

version of the node movement strategy used in reference [43].

Prolongation of the coarse-grid solution onto the fine grid is performed prior to

the aforementioned node repositioning steps. The nodal values of the prolongated

solution remain unchanged during the boundary conforming process. This can be

viewed as a one-to-one mapping of the prolongated solution from the nonconforming

grid to the boundary-conformed grid.

2.2.4 Strong Boundary Conditions

For problems where primal boundary conditions are imposed in a strong sense, some

care must be taken when prolongating the coarse-grid adjoint onto the fine grid. The
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issue arises when Dirichlet conditions are imposed in a strong sense as is the case for

the viscous test cases in Chapter 4. Modifications of the prolongation operators for

the viscous adjoint are described in Section 4.4.3.

2.3 Adaptive Methodology

The grid adaptive procedure proposed in the present work is designed to compliment

the functional correction procedure of Section 2.1.2. The goal of the adaptive algo-

rithm is to improve the accuracy of the corrected output in (2.12) by reducing the

remaining error after correction.

2.3.1 Remaining Error in the Functional

As shown in (2.11), the error in the functional can be expressed as the sum of two

terms: a computable correction that can be evaluated given the approximate solutions

Uh and 'Ph, and a remaining error term that generally cannot be evaluated without

solving for quantities on the fine grid. The remaining error can be written in several

different forms. Two forms that are particularly useful in the present context are,

6fh _ X'F Rh (0h) _jq -6 Rh(0h),

Error Correction Remaining Error

~-R"(@n)6Uh (2.20)

Remaining Error

The proposed adaptive strategy is based on reducing these two forms of the remaining

error, thereby improving the accuracy of the computable correction. We see from

(2.20) that the remaining error can be expressed as the inner product of the adjoint

solution-error and the primal residual-error, or as the inner product of the adjoint

residual-error and the primal solution-error. Neglecting nonlinear terms, these two

inner products are equal. The magnitudes of their corresponding components are

comparable (but generally not equal) and their units are identical to those of the

functional f(U). This illustrates the duality between the primal and adjoint residual
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operators. If nonlinear effects are accounted for, a duality gap, D # 0, will exist

between the two inner products. By retaining nonlinear terms in the expansion of

the residual operator in (2.5), one can obtain the following expression for the duality

gap:

D R*(X4)T 6Uh - o6 Rh (h),

- 6f W, (2.21)

where W is a vector containing quadratic forms of the primal error. An explicit

expression for W is given in Appendix B. The proposed adaptive procedure is based

on reducing and equidistributing the magnitudes of the components of each of the

inner products on the right-hand-side of (2.21). In addition to improving the quality

of the computable correction, this will lead to a reduction in the magnitude of the

duality gap, and hence, a reduction in the nonlinear contribution to the functional

error.

The primal form of the remaining error, 61pT Rh (0h), is essentially what is used by

Becker and Rannacher [9, 10] in their finite-element output-based adaptive strategy.

The addition of the dual term in the current approach is a natural way of incorpo-

rating the adjoint residual error into the adaptive scheme. Utilizing information from

both the primal and adjoint residuals is expected to lead to a more robust adaptive

algorithm.

Muller and Giles [40] have adopted a somewhat different philosophy in their adap-

tive strategy for functional outputs. Instead of using the remaining error in the func-

tional as an adaptive sensor, they focus directly on the correction term 'I'TRh(Oh).

In principle, this leads to an adaptive algorithm for minimizing the magnitude of the

correction term. However, if one is to preserve the role of this term as an accurate

correction for the functional, it may not be advantageous to minimize its magnitude.

Unlike the remaining error terms, the correction term is computable and generally ap-

proximates the leading order error in the functional to high accuracy (for example, see

the functional convergence results in references [26, 49, 62, 63] and in Sections 3.6.2
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and 4.6.1). The strategy in the present work, therefore, is to take advantage of the

improved accuracy from correcting the functional, and to use the adaptive process to

further enhance this accuracy by reducing the remaining error.

2.3.2 Adaptive Criteria and Parameters

The philosophy adopted for the current adaptive framework is to allow the user the

freedom to specify control parameters that are most relevant within a practical en-

gineering design context. One or more of these parameters will ultimately define the

termination criteria for the adaptive procedure. The parameters that may be pre-

scribed a priori in the current strategy include: 1) a desired remaining error level for

the functional of interest; 2) an upper limit on the total number of degrees of freedom

in the simulation; 3) an upper limit on the total computing time; and 4) an upper

limit on the total number of adaptive iterations. The anisotropic adaptation proce-

dure used for the viscous test cases requires additional information to be specified as

discussed in Section 4.5.4.

In the proposed adaptive strategy, we seek to reduce and equidistribute the value

of an adaptation parameter throughout the computational domain while simultane-

ously monitoring and reducing an upper bound on the estimated remaining error in

the functional of interest. Consider the operation of computing an inner product over

the fine grid, Qh, embedded within QH. For each coarse-grid element, k, there are

N 2 (in two dimensions) fine-grid elements over which a partial inner product must

be computed. For each fine-grid node, 1(k), within element k, there are 4 subcompo-

nents (for the two-dimensional Euler and Navier-Stokes equations) to the primal and

adjoint residual vectors corresponding to the mass, x-momentum, y-momentum and

energy conservation equations. Equation (2.21) suggests the following definition for

the adaptation parameter, ek, at element k:

Ek = { | [R*(L HkH) ) [QHUH - L H UHl(k)
1(k)

+ | [QnHH ~- LnH]H (k) [Rh(LhHUH)11(k) I- (2-22)
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In this last expression, a term of the form, [Vh]1(k), for some generic vector, Vh, on

Qh, refers to the 4 x 1 subvector (component) of Vh corresponding to the fine-grid

node, 1(k), within the coarse-grid element, k. The summation in (2.22) is over all

fine-grid nodes within the kth coarse element. For those nodes on the boundary of k,

a partial contribution may be implied depending on how the nodal residual is defined

for the particular discretization. For example, in the case of a vertex-based finite

volume discretization, the fractional contribution from a node on the boundary of

element k is proportional to the fraction of the associated control volume within that

element. The operators LH and QH/ are prolongation operators that map coarse-grid

vectors onto the fine grid via linear and quadratic interpolation, respectively. These

prolongation operators are defined in Section 2.2.

The adaptation parameter in (2.22) is a crude approximation of the magnitudes

of the primal and dual forms of the remaining error in the functional. The intention

here is not to obtain a quantitative estimate of these terms, but rather to estab-

lish an indication of how they are distributed throughout the domain. The residual

operators in the expression for the adaptation parameter are evaluated using linear

prolongations of the respective coarse-grid solutions. Linear prolongation is chosen

over quadratic in this case because the magnitudes of the residuals tend to be larger,

giving a more conservative bound on the remaining error terms. The perturbations

6Uh and 6 Th in (2.21) are replaced by measures of the local interpolation error in the

primal and adjoint solutions, respectively. In particular, setting 6 Uh ~ QHUH-LHUH

and 6Ah e Q/"WH - LHTH amounts to the assumption that the dominant component

of the local error in the primal and adjoint solutions is characterized by the interpo-

lation error. This does not preclude the notion that the cause of these local errors

may ultimately be attributed to residual errors in remote parts of the domain.

Let e denote the summation of Ek over all elements in QH. That is,

E = Z Ek. (2.23)
k

With the presence of the absolute value signs in (2.22), e represents an upper
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bound on the estimated remaining error in the functional. In light of this, a global

adaptation parameter can be defined as

1,= - (2.24)
eo

where eo is a user-specified desired error level. The global error criterion is satisfied if

m, < 1 while further refinement is required if ?7g> 1. Using this measure alone would

lead to uniform grid-refinement only. To complete the h-refinement strategy a local

adaptation parameter must also be defined. An appropriate local error measure can

be determined by invoking the principle of error equidistribution [6, 69]. In particular,

an attempt is made to equidistribute Ek over all elements in the domain. In this vein,

a local adaptation parameter is defined as

7k - Ek (2.25)

where so = eo/Ne is the target error for each element and Ne is the total number of

elements in the current grid, QH. The local criterion is satisfied if 77 k 1 while further

refinement of element k is indicated if rik > 1. Finally, at each adaptive iteration, a

new desired element size, Hk is computed from the old one, Hk, according to

H=H H ( w. (2.26)
g7k

The underrelaxation parameter w controls how aggressively each subsequent grid is re-

fined during the iterative adaptive process. If the refinement procedure does not allow

for coarsening, an inappropriately large choice for w would lead to over-refinement,

resulting in a suboptimal final grid with more elements than is necessary for the pre-

scribed level of error. If coarsening is allowed, then a large value of W would lead to

oscillatory grid convergence, whereby the grid is continually over- and under-refined

in an alternating fashion. Conversely, an inappropriately small value for W would

prolong the adaptive process by increasing the total number of adaptive iterations to

convergence. An appropriate value for w can be deduced by examining the asymp-

50



totic convergence rates of the global and local adaptation parameters. Numerical

results indicate (see Section 3.6.2) that r1g -' 9 ~ O(IP) with 2 < p 5 3 where

ft is an average element size in the grid. These results are obtained by monitoring

the convergence of qg and rik on a series of uniformly refined grids for an inviscid,

subsonic test case without geometric irregularities. A heuristic for determining W is

to render the new element size independent of its current size; that is, to choose W

such that Hk - 0(1). In the present case we assume a convergence of 7gqk ~ O(Hk)

yielding a heuristic value of w = 1/4 which is used in all the output-based adaptive

simulations in this dissertation. This simple convergence rule may not be valid near

singularities, discontinuities or geometric irregularities. Nevertheless, the adaptive

procedure exhibits robust grid-convergence, usually terminating after 3-4 adaptive

iterations regardless of the type of refinement algorithm employed. Reference [44]

provides further discussion on grid convergence for adaptive methods.

Two types of adaptive refinement are used in this work. A standard isotropic

h-refinement strategy without coarsening is employed for the inviscid problems of

Chapters 3. For the viscous simulations of Chapter 4, the BL2D [12] anisotropic

grid generator is employed to regenerate the grids at each adaptive iteration. The

proposed anisotropic grid-adaptive procedure combines Hessian-based adaptation

with the output-based criteria of this section.
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Chapter 3

Inviscid Flow

The output-based adaptive methodology presented in Chapter 2 is applied to a fi-

nite volume discretization of the Euler equations. The proposed method is demon-

strated on a series of subsonic, transonic, and supersonic test cases involving various

airfoil configurations. The outputs considered are the lift, drag and moment coef-

ficients. An isotropic h-refinement algorithm is used to improve the grids during

the adaptive simulations. A commonly used adaptive indicator based on the local

flow curvature [6, 15, 64] is implemented to comparatively assess the performance

of the proposed output-based adaptive procedure. The curvature-based method of-

ten fails to terminate or produces incorrect values for the functional at convergence.

In all test cases, the output-based method provides superior accuracy and succeeds

in terminating once the specified error tolerance has been achieved for the chosen

functional.

3.1 Governing Equations

The Euler equations are expressions of the principles of mass, momentum, and energy

conservation for an inviscid, compressible gas. In two dimensions these equations may
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be written as

+ + = 0, (3.1)at ax ay

where the conservative variables U, and inviscid fluxes F and G, are given by

P Pu pv

pu pU2 +p puv
U = F = , G = . (3.2)

pv puv pv2 +±p
pE u(pE + p) v(pE + p)

In these expressions, p is the mass density; u and v are, respectively, the x- and

y-components of the gas velocity; p is the static pressure and E is the total energy.

The system is closed with the equation of state for an ideal gas:

p =p(7y-l) E- -, (3.3)
2

where -y is the ratio of specific heats. The working gas is assumed to be ideal air with

specific heat ratio -y = 1.4

Attention is focused on steady solutions of the Euler equation system specified by

(3.1)-(3.3).

3.2 Aerodynamic Forces

The functionals chosen for the present study are those of common interest in aero-

nautical applications: the lift, drag and moment coefficients. These outputs are all

expressible as surface integrals over parts of the domain boundary. Let 8Q' denote

that portion of the continuum boundary over which aerodynamic forces are to be

computed, such as the surface of an airfoil or the walls of a channel. The resultant
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force FR acting on Of' due to the inviscid flow is given by

F,,j pfids, (3.4)

where fn is the unit normal vector on Of'. The lift L and drag D are defined as the

components of FR perpendicular and parallel, respectively, to the free-stream velocity,

L FR sin 0, (3-5)

D FR cos , (3.6)

where 0 is the angle between V and FR. In two dimensions, an implicit definition

for 0 that accounts for the proper sign convention is

sin6(Vo x FR

V, FR

where k is the unit vector pointing out of the page. The total moment exerted on

83Q' about ?o = (xo, yo) is given by

M f (r - bO) x p fi ds - k, (3.7)

where '= (x, y) is the position vector measured with respect to the origin. Finally,

the lift, drag and moment coefficients are defined, respectively, as

CL =
L

qwc
(3-8)

(3-9)CD = D
qc
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M
C = 0 2 , (3.10)

where q, = poV2/2 is the free-stream dynamic pressure and c is a reference length

such as the airfoil chord length.

3.3 Flow Solver

The base solver used for the inviscid and viscous simulations in this investigation is

FUN2D: a fully implicit, unstructured grid, vertex-based, finite volume code originally

developed by Dr. W. K. Anderson, formerly of NASA Langley [41]. The flow solver

has available several different methods for evaluating fluxes at cell interfaces. The

Osher upwind scheme [17] is used for the inviscid test cases in the present study. A

backward-Euler time-stepping method is used to drive the solution to a steady state.

An approximate solution of the linear system of equations formed at each time step

is obtained using several iterations of a point-iterative Gauss-Seidel-type method.

Boundary conditions are imposed weakly in the inviscid calculations. Flow-tangency

conditions are enforced by setting V -n = 0 in the flux contributions from solid-wall

boundary segments. Farfield fluxes are evaluated using characteristic reconstructions.

Further details can be found in reference [3].

3.4 Adjoint Solver

After each flow (primal) solution in an adaptive run, the coarse-grid adjoint TH is

obtained by solving the system,

_H OfHT (3-11)
OUH OUH
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Although this system can be solved directly using GMRES [54], a time-like derivative

is added and the solution is obtained by marching in time, much like the flow solver:

AH RH T (AH) fH T _RH T

At [UHj . YUH) .UH

where (''H)n+1 = ('H - (AIH)" and AH is a diagonal matrix containing the

control-volume areas associated with each node in QH. The time term can be used to

increase the diagonal dominance of the system for cases in which GMRES alone would

tend to stall. Generally, this results in a more robust adjoint solver. Preconditioning

is achieved using a point-iterative scheme similar to that used in the flow solver.

Further details concerning the adjoint solver can be found in the references [42, 43].

3.5 Grid Refinement

The original grids (prior to adaptive refinement) are generated using AFLR2: an

advancing-front/local-reconnection, unstructured, triangulator developed by Dr. D.

Marcum at Mississippi State University [39]. During the adaptive runs, a Delaunay

node insertion and local retriangulation algorithm written by Shewchuk [551 is used

for refining the grids. The algorithm attempts to satisfy a prescribed element size

distribution such as the one implied by (2.26). If more then 50% of the elements in

the current grid are flagged for refinement, then the desired element size distribution

obtained from (2.26) is scaled so that no more than half of the elements are refined

from one adaptive iteration to the next. This measure may be triggered in the early

stages of an adaptive run if the prescribed error level for the functional is very low

relative to the resolution of the initial grid.

Grid coarsening is not performed for the inviscid test cases in this study. Requests

for larger element sizes are simply ignored by the refinement algorithm. Coarsening

could be introduced into the algorithm without modification to the proposed adaptive

strategy. Various grid quality measures [15] are incorporated as postprocessing steps

after the initial Delaunay refinement: edge swapping is used to reduce the maximum
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node degree in the triangulation to 7, and a node removal algorithm is used to remove

nodes of degree lower than 5. All remaining nodes that have been affected by these

measures are then smoothed using several iterations of a local least-squares procedure

described in Appendix C.

3.6 Numerical Results

Several inviscid test cases are presented to demonstrate the effectiveness of the pro-

posed output-based grid adaptive procedure. Comparisons are made with a com-

monly used adaptive method that employs a curvature sensor based on interpolation-

error estimates [6, 15, 64]. The proposed output-based scheme is shown to compare

favorably in terms of accuracy, efficiency and reliability relative to the curvature-based

scheme.

3.6.1 Curvature-Based Adaptive Method

A curvature-based adaptive method is implemented for the purpose of comparatively

assessing the performance of the proposed output-based method. The adaptive indi-

cator is based on the scalar sum of the local magnitudes of the second derivatives in

either the computed pressure or Mach number scaled with Hk' where Hk is the local

element size and r = 2 or 3 [6, 15, 64]. The elemental second derivatives are esti-

mated using the quadratic reconstruction procedure described in Section 2.2.2. The

adaptive criterion requires that the value of the indicator be less than some predeter-

mined threshold value for all elements. In the absence of any rigorous relationship to

the functional error, the threshold values used in this work are chosen heuristically

depending on the field quantity being adapted on and the value of r. While the

threshold value influences the extent to which the grid is refined, it does not change

the general refinement pattern of the final grid. Hence meaningful comparisons with

the output-based adaptive patterns are possible. If the adaptive indicator for an el-

ement is greater than the predetermined threshold value, the element is flagged for

refinement and the desired new element size is set to half of its original size. Grids are
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Figure 3-1: Gaussian bump test case: M,,= 0.38, a = 00. Computed Mach number
distribution.

refined using the Shewchuk [55] algorithm supplemented with the same grid quality

measures described in Section 3.5.

3.6.2 Functional Correction Results

Subsonic flow in a channel of height 10 and length 20 is simulated with an inlet

Mach number of M, = 0.38. The shape of the lower wall is a Gaussian of ampli-

tude 0.5 centered at the mid-length of the channel. The purpose of this test case

is to examine convergence rates of various quantities associated with the base solver

and functional correction procedure. No adaptation is performed for this test case.

A hierarchy of 8 embedded grids is constructed for the purposes of conducting the

convergence tests. These grids are generated by subdividing each of the edges in the

coarsest grid into n equal segments for values of n = 2, 3, ... , 8. This corresponds to

subdividing each triangle in the coarsest grid into n2 self-similar triangles to create

the nth grid. Boundary edges are made to conform to the channel geometry as de-

scribed in Sections 2.1.1 and 2.2.3. Figure 3-1 shows a plot of the computed Mach

number distribution on the finest grid. Three functionals are considered: the coef-

ficients of drag, lift, and moment acting on the walls of the duct. The moment is

computed with respect to the origin. Figure 3-2 shows plots of the relative error in

the functionals 6 fhl = Ifh(QH UH) - fh(Uh) and the remaining error after correction

ofh -- (Qa4'H)TRh(QHUH) . Errors are measured with respect to fine-grid values

corresponding to (N = 2) (see Section 2.1.1). These quantities are plotted versus
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Figure 3-2: Gaussian bump test case: Mo. = 0.38, a = 00. Convergence plots of the
error in the functional and the remaining error after correction. Errors are measured
with respect to fine-grid values corresponding to N = 2.
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Figure 3-3: Gaussian bump test case: M = 0.38, a = 04. Convergence plots of the
global and local adaptation parameters as defined in (2.24) and (2.25), respectively.

a characteristic length parameter h associated with each grid in the hierarchy. A

value of hi 1 is arbitrarily assigned to the coarsest grid. The length parameter

associated with the nth grid is given by hn = hi/n. The drag converges like 0(h 3 ),

whereas the lift and moment coefficients appear to converge at a slightly lower rate.

In all cases, the remaining error after correction is observed to converge at a faster

rate than the uncorrected error, exhibiting approximately O(h4) convergence. Figure

3-3 shows convergence plots of the global and local adaptation parameters defined

in (2.24) and (2.25), respectively. The local adaptation parameter 7k is evaluated

over an interior element located approximately 0.5 units above the peak of the Gaus-

sian bump, and over a boundary element bordering the peak. The local adaptation
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parameter on the boundary is observed to converge essentially as O(h2 ), one order

slower than in the interior. Even slower convergence would be expected near singu-

larities, discontinuities or geometric irregularities such as sharp corners. The global

adaptation parameter exhibits approximately 0(h2.1) convergence. The convergence

rates of these parameters are used as a guide in determining an appropriate value for

the underrelaxation parameter w that appears in (2.26) (see Section 2.3.2).

3.6.3 M,, = 0.26, a = 8' Advanced Energy Efficient Transport

(EET) Three-Element Airfoil

Adaptive simulations of subsonic flow past the Advanced Energy Efficient Transport

(EET) three-element airfoil [36] is performed for Moo = 0.26 and a = 80. This test

case is representative of a high-lift wing configuration for take-off or landing. The

functional of interest is the lift coefficient for the entire airfoil (i.e. all three elements).

Figure 3-4 shows the computed Mach number contours and streamlines for this test

case. Results from the output-based adaptive simulation are shown in Figure 3-5

for a specified error level of e, = 0.05. For comparison, the lift convergence on a

series of uniformly refined grids is also plotted (lower-most curve). These grids are

generated by subdividing each of the edges in the original grid into n equal segments

for values of n = 2 , 3, ... , 5. The original grid in the hierarchy of uniformly refined

grids is identical to the starting grid in the adaptive run. The extrapolated value in

the figure is obtained using a Richardson extrapolation of the three finest, uniformly

refined grids. The output-based algorithm surpasses the requested error level and

terminates at a final grid of less than 9,000 nodes. In comparison, the uniformly

refined grids achieve the same level of accuracy at approximately 70,000 nodes.

Performance of an interpolation-error-based adaptive indicator is compared with

that of the proposed output-based approach. Implementation details are given in

Section 3.6.1 and reference [64]. Figure 3-6 shows adaptive results using a curvature

sensor applied to the static pressure field. The adaptive indicator is based on the

magnitude of the second derivatives in the pressure scaled with Hk where Hk is the
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Figure 3-4: Advanced EET 3-element airfoil test case: M. = 0.26, a = 8". Computed
Mach number distribution and streamlines.

local element size. Even though the flow field is smoothly varying (i.e. no shocks), the

(uncorrected) lift appears to be converging to an erroneous value and never achieves

the level of accuracy of the final output-based grid. Note that the error estimation

procedure dramatically improves the lift error but still does not quite match the

apparent asymptotic lift value of the uniform-grid results. Based on visual inspections

of the grids in Figures 3-5 and 3-6, we attribute the lack of convergence in the lift

using the pressure-based scheme to a lack of grid resolution in the following regions:

the rear portion of the suction side of the main element, the pressure side of the main

element, and the pressure side of the flap. During the last 4 pressure-based adaptive

iterations there is little or no grid refinement in these regions. Most of the nodes are

being added near the geometric irregularities of the three elements (i.e. at the sharp

corners).
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Figure 3-5: Advanced EET 3-element airfoil test case: M = 0.26, a = 8'. Upper left:
error convergence in the computed lift during a typical adaptive run. The proposed
output-based adaptive algorithm is used. A requested error level of eo = 0.05 is
prescribed. Upper right: final adapted grid. Lower: blow-up near slat and flap.
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Lift Convergence - Advanced EET - M = 0.26 - a 8 Distant view
Adaptive indicator: Pressure-based 1n d
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Figure 3-6: Advanced EET 3-element airfoil test case: Moo = 0.26, a = 80. Upper left:
error convergence in the computed lift during a typical adaptive run. A curvature-
based adaptive strategy is used [64] with an indicator based on the magnitude of the
second derivatives in the pressure scaled with H2 where Hk is the local element size.
Upper right: final adapted grid. Lower: blow-up near slat and flap
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Moment Convergence - M.= 0.4 - a = 5' Final grid
Adaptive indicator: Adjoint-based, e, = 0.001 8956 Nodes
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Figure 3-7: NACA 0012 test case: M, = 0.4, a = 5'. Left: error convergence in the
computed leading-edge moment during a typical adaptive run. The proposed output-
based adaptive algorithm is used. A requested error level of eo = 0.001 is prescribed.
Right: final adapted grid.

3.6.4 Moo = 0.4, a = 50 NACA 0012 Airfoil

Subsonic flow past a NACA 0012 airfoil is simulated with a free-stream Mach number

of M, = 0.4, and angle of attack, a = 5". The functional of interest is chosen

as the moment coefficient taken about the leading edge. In this test case, proper

flow resolution on the suction side of the airfoil near the leading edge is particularly

important for predicting the aerodynamic forces accurately since the flow accelerates

rapidly in this region and essentially sets the pressure distribution over the rest of the

airfoil. In the case of the moment coefficient, however, resolution further downstream

is also important due to the increasing influence of the moment arm on the magnitude

of the output as one proceeds away from the leading edge.

The output-based adaptive results are shown in Figure 3-7. Convergence of the

moment to the desired error tolerance of eo = 0.001 is achieved in three to four

adaptive iterations with a final converged grid containing approximately 9,000 nodes.

The output-based algorithm tends to refine the grid along the entire length of the

airfoil as anticipated. Pressure-based adaptive results are shown in Figure 3-8. The

computed moment coefficient fluctuates erratically during the pressure-based adaptive

process and does not appear to be converging to any particular value. Furthermore,
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Figure 3-8: NACA 0012 test case: M,,= 0.4, a = 50. Left: error convergence in
the computed leading-edge moment during a typical adaptive run. A curvature-based
adaptive strategy is used [64] with an indicator based on the magnitude of the second
derivatives in the pressure scaled with H2 where Hk is the local element size. Right:
final adapted grid.

the adaptive process does not show signs of terminating after the eighth iteration. In

contrast, the adjoint-based adaptive scheme provides a stable, monotonic convergence

of the moment to the extrapolated value and self-terminates once the requested error

level has been surpassed. The erratic convergence and poorer accuracy of the pressure-

based scheme is primarily attributed to a lack of grid resolution on both the upper

and lower airfoil surfaces downstream of the mid-chord position.

3.6.5 M, = 0.8, a = 1.250 NACA 0012 Airfoil

Transonic flow past a NACA 0012 airfoil is simulated with a free-stream Mach number

of Mo, = 0.8, and angle of attack, a = 1.250. This test case is representative of cruise

conditions for a commercial airliner. The flow exhibits a strong shock on the upper

surface of the airfoil and a relatively weaker shock on the lower surface. The functional

of interest is chosen to be the lift coefficient. Output-based adaptive results are shown

in Figures 3-9 and 3-10 for prescribed error levels of eo = 5% CL and eo = 2.5% CL,

respectively. Pressure-based adaptive results are presented in Figure 3-11. The lift

converges poorly on the uniformly refined grids for this test case. This is attributed
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Figure 3-9: NACA 0012 test case: M, = 0.8, a = 1.25". Left: error convergence
in the computed lift coefficient during a typical adaptive run. The proposed output-
based adaptive algorithm is used. A requested error level of e, = 5% CL is prescribed.
Right: final adapted grid.
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Figure 3-10: NACA 0012 test case: M, = 0.8, a = 1.250. Left: error conver-
gence in the computed lift coefficient during a typical adaptive run. The proposed
output-based adaptive algorithm is used. A requested error level of eo = 2.5% CL is
prescribed. Right: final adapted grid.
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Lift Convergence - NACA 0012 - M. = 0.8 - a = 1.25' 8th grid
Adaptive indicator: Pressure-based 
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Figure 3-11: NACA 0012 test case: M,= 0.8, a' = 1.250. Left: error convergence
in the computed lift coefficient during a typical adaptive run. A curvature-based
adaptive strategy is used [64] with an indicator based on the magnitude of the second
derivatives in the pressure scaled with H2 where Hk is the local element size. Right:
final adapted grid.

to inadequate grid resolution in the trailing edge region of the seed grid. Note that

this seed grid is also the starting grid in each of the adaptive runs. For this test case

only, the extrapolated lift value in the convergence plots of Figures 3-9 - 3-11 is based

on a different set of uniformly refined grids. The alternate seed grid is chosen as the

final adapted grid in the e0 = 2.5% CL output-based run; it contains 5214 nodes and

is shown in Figure 3-10. This grid is globally refined twice yielding two additional

fine grids corresponding to n = 2 and n = 4. The n = 4 grid contains 81840 nodes.

The final lift value is obtained by performing a Richardson extrapolation on the three

grids in the series. The implied convergence rate from the extrapolation is first order.

It is apparent from Figures 3-9 and 3-10 that the output-based algorithm termi-

nated well within the prescribed error limits for the lift. Note that the weak shock on

the lower surface is only slightly refined in the eo = 5% CL case. Evidently, refining

the lower shock is not as important as refining the leading edge, upper shock region,

and trailing edge for the given error tolerance. When the tolerance is lowered to

eo = 2.5% CL, however, it becomes beneficial to resolve the weaker shock as well.

We see from Figure 3-11 that the pressure-based adaptive method tends to refine
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Figure 3-12: NACA 0012 test case: Moo = 0.8, a = 1.250. Comparison of final
adapted grids using the proposed output-based method with eo = 5% CL (left),
eo = 2.5% CL (middle), and the pressure-based method (right). Top row: blow-up of
leading edge region; 2nd row: shock region on suction side; 3rd row: shock region on
pressure side; bottom row: trailing edge region.
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Figure 3-13: NACA 0012 test case: M = 0.8, o = 1.25'. Adaptive adjoint solution
using the proposed output-based method with e, = 2.5% CL. Left: magnitude of
the computed x-momentum adjoint variable based on the lift. Right: blow-up near
trailing edge.

the shock further away from the airfoil surface, where it is less important to have high

resolution with respect to the lift.

Figure 3-12 shows blow-ups of the final refined grids for each of the adaptive runs.

The pressure-based scheme refines the leading edge and shock regions significantly

more than does the output-based method, however, it comparatively underrefines the

trailing edge. In light of the convergence results, we conclude that the resolution of

the trailing edge region is critical for computing an accurate lift in this test case.

This is further elucidated in Figure 3-13 where plots of the x-momentum adjoint

variable are shown. The magnitude of the adjoint is plotted using a logarithmic

contour distribution. It is evident from the right-hand plot that the magnitude of

the adjoint is very large near the trailing edge, implying that the functional error

is extremely sensitive to local residual errors in the trailing edge region. Other fea-

tures of interest include what appears to be a singularity in the adjoint along the

stagnation streamline and a weak discontinuity upstream of the primal shock on the

upper surface. An analysis of the analytical adjoint for the quasi-one-dimensional

and two-dimensional Euler equations is provided in reference [24]. Their analysis

shows that the adjoint variables have an inverse square-root singularity along the up-
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Figure 3-14: NACA 0012 test case: = 0.95, a = 0'. Computed Mach number
distributions. Left: blow up near the airfoil; right: more distant view.

stream stagnation streamline in the two-dimensional case, but are continuous across

primal shocks. The adjoint plot in Figure 3-13 appears to be consistent with their

results.

3.6.6 M, = 0.95 NACA 0012 Airfoil

Transonic flow past a NACA 0012 airfoil [64] is simulated with a free-stream Mach

number of M, = 0.95, and angle of attack, a = 00. The drag coefficient is chosen

as the functional of interest in this case. Figure 3-14 shows plots of the computed

Mach number distribution for a well-resolved solution. The left plot is a blow-up near

the airfoil; the right plot illustrates some of the flow features further away from the

airfoil. In this test case, the flow accelerates as it passes over the leading edge section

through the sonic line to supersonic speeds. The flow then encounters an oblique

shock at the trailing edge after which it remains at a low supersonic Mach number.

Further downstream of the airfoil, a weak normal shock occurs lowering the Mach

number to subsonic conditions. An adaptive scheme based on the local curvature of

the Mach number or pressure field would tend to refine the shocks indefinitely owing to

the unbounded derivatives across the discontinuity. However, if the primary goal is to

accurately compute the airfoil drag, it is not necessary to refine the shocks downstream

of the trailing edge to any appreciable extent. This test case demonstrates that the
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Figure 3-15: NACA 0012 test case: M,,= 0.95, a = 00. Left: error convergence
in the computed drag during a typical adaptive run. The proposed output-based
adaptive algorithm is used. A requested error level of eo = 0.01 is prescribed. Right:
final adapted grid.

output-based adaptive algorithm, unlike the curvature-based scheme, avoids refining

the shocks and instead focuses on regions that are more important for computing the

drag, such as the leading edge and trailing edge regions.

Figures 3-15 and 3-16 show adaptive results using the proposed output-based

adaptive procedure. Desired error levels of eo = 0.01 and eo = 0.0005 are specified,

respectively. The drag is plotted versus the total number of nodes in the corresponding

grid. Also shown is the corrected drag on each grid after using the proposed error

estimation procedure to correct the base value. For comparison, the drag convergence

on a series of uniformly refined grids is also plotted.

In both adaptive cases the desired error levels are surpassed, the drag predictions

converge to the correct value, and the adaptive process terminates after only two or

three iterations. Note that the grid is refined near the leading edge region where the

flow is rapidly accelerating. There is also some modest refinement near the trailing

edge of the airfoil. Conversely, the oblique shock and the normal shock downstream

of the airfoil are not resolved by the output-based adaptive algorithm.

Also of interest is the manner in which the adaptive procedure converges for

different requested error levels, eo. Comparing Figures 3-15 and 3-16, we see that
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Figure 3-16: NACA 0012 test case: Moo = 0.95, a = 0'. Left: error convergence
in the computed drag during a typical adaptive run. The proposed output-based
adaptive algorithm is used. A requested error level of eo = 0.0005 is prescribed.
Right: final adapted grid.

when eo is relatively large (e.g. eo = 0.01), the adaptive algorithm adds only a

limited number of nodes (less then 50 new nodes are added) to quickly raise the

desired accuracy. However, when higher accuracy is requested (i.e. lower values of

eo), the adaptive procedure tends toward more global refinement. For eo = 0.0005,

the initial refinement more than triples the grid size, adding over 2000 new nodes.

Figure 3-17 shows plots of the initial (top left) and final (top right) grids in a

typical adaptive run using the proposed output-based scheme. Below each of these

are the corresponding distributions of the adaptation parameter ek. The adaptation

parameter is effectively reduced during the adaptive process to a level below the

minimum contour level on the plot.

The left-hand plot in Figure 3-18 shows the convergence of the computed drag

on each grid during a typical adaptive run. The adaptive indicator is based on the

magnitude of the second derivatives in the pressure scaled with Hk where Hk is the

local element size. It is evident that both the corrected and uncorrected values of

the drag are converging to an erroneous value somewhat less than the extrapolated

value. Furthermore, the adaptive process does not show signs of self-terminating and

is, therefore, halted after 8 adaptive iterations. The right plot in Figure 3-18 shows
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Figure 3-17: NACA 0012 test case: M = 0.95, a = 04. Top left: original grid.
Bottom left: adaptation parameter, Ek, on the original grid. Top right: final adapted
grid using the proposed output-based adaptive method with a prescribed error level
of eo = 0.0005. Bottom right: adaptation parameter on the final grid.
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Drag Convergence - NACA 0012 - M,,= 0.95 - a = 0" Distant view 6th grid
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Figure 3-18: NACA 0012 test case: Moo = 0.95, a = 0". Left: error convergence in the
computed drag during a typical adaptive run. A curvature-based adaptive strategy
is used [64] with an indicator based on the magnitude of the second derivatives in the
pressure scaled with H' where Hk is the local element size. Right: intermediate grid
in the adaptive run.

an intermediate grid in the adaptive sequence. The pressure-based indicator, being

extremely sensitive to discontinuities, continues to refine the grid near the shocks

despite the lack of convergence in the drag.

Figure 3-19 is analogous to Figure 3-18 in almost every regard except that the

adaptive indicator used in this run is based on the magnitude of the second derivatives

in the pressure scaled with H3 instead of H'. This is recommended as an improvement

in reference [64]. This time, the predicted values for the drag are converging to an

erroneous value significantly larger than the extrapolated value, however, it appears

as though the adaptive process, itself, would have eventually terminated had it not

been stopped after 8 iterations. Note that the functional corrections in Figures 3-

18 and 3-19 are providing a significant improvement in accuracy. Nevertheless, the

corrected values are still not converging to the extrapolated value of the drag.

Finally, Figure 3-20 shows analogous results using an indicator based on the mag-

nitude of the second derivatives in the Mach number scaled with H'. As with the

pressure-based scheme, the predicted drag converges to an erroneous value slightly

less than the extrapolated value. Furthermore, the adaptive process does not appear
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Figure 3-19: NACA 0012 test case: M. = 0.95, a = 04. Left: error convergence in the
computed drag during a typical adaptive run. A curvature-based adaptive strategy
is used [64] with an indicator based on the magnitude of the second derivatives in the
pressure scaled with H where Hk is the local element size. Right: intermediate grid
in the adaptive run.
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Figure 3-20: NACA 0012 test case: M. = 0.95, a = 00. Left: error convergence in the
computed drag during a typical adaptive run. A curvature-based adaptive strategy
is used [64] with an indicator based on the magnitude of the second derivatives in the
Mach number scaled with H 2 where Hk is the local element size. Right: intermediate
grid in the adaptive run.
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Figure 3-21: NACA 0012 test case: M..= 6.00, a = 00. Upper left: error convergence
in the computed drag during a typical adaptive run. The proposed output-based
adaptive algorithm is used. A requested error level of e, = 0.001 is prescribed. Upper
right: final adapted grid. Lower: blow-up of airfoil leading edge region.

to be terminating. The Mach number indicator continues to refine the grid near the

shocks without any corresponding improvement in the accuracy of the drag.

3.6.7 Moo = 6.0 NACA 0012 Airfoil

Supersonic flow past a NACA 0012 airfoil is simulated with a free-stream Mach num-

ber of M, = 6.0, and angle of attack, a = 00. The functional of interest is the drag

coefficient. This test case evaluates the performance of the proposed output-based

adaptive algorithm in the presence of a strong shock.
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Figure 3-22: NACA 0012 test case: Moo = 6.00, a = 00. Upper left: error con-
vergence in the computed drag during a typical adaptive run. A curvature-based
adaptive strategy is used [64] with an indicator based on the magnitude of the second
derivatives in the pressure scaled with H2 where Hk is the local element size. Upper
right: final adapted grid. Lower: blow-up of airfoil leading edge region.
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Output-based results are shown in Figure 3-21. Convergence of the drag to the

desired error limit (in this case eo = 0.001) is achieved with under 4,000 nodes. By

comparison, the uniform refinement cases have still not converged even after 60,000

nodes. Output-based adaptation occurs around the body in general but is most

significant at the leading edge and at the bow shock in the leading edge region.

Pressure-based adaptive results are shown in Figure 3-22. The adaptive algorithm

does not appear to be self-terminating after the 5th adaptive iteration and the drag is

exhibiting oscillatory convergence. Refinement for the pressure-based scheme is much

more uniform between the bow shock and the airfoil, in contrast to the output-based

method which favors leading-edge refinement. As one would expect, the leading-edge

is a dominant region for determining aerodynamic performance.

3.6.8 Mo = 3.0 Two-element Airfoil

Two airfoils in a M, = 3.0 free-stream are simulated. The left plot of Figure 3-

23 shows the Mach number distribution for this flow. The airfoils are positioned

such that the bow shock of the upstream airfoil interacts with the upper surface

of the downstream airfoil. The functional is chosen to be the drag coefficient on

the downstream airfoil. This test case is included to demonstrate that the proposed

output-based procedure is capable of providing appropriate grid resolution for the

shocks that influence the lower-airfoil drag while avoiding unnecessary refinement of

the shocks that play no role whatsoever.

The right plot of Figure 3-23 shows a contour plot of the adjoint x-momentum vari-

able based on the lower-airfoil drag. The results for the output-based and pressure-

based algorithms are shown in Figures 3-24 and 3-25, respectively. The output-based

approach (with an error tolerance of eo = 0.001) converges the lower airfoil drag in

less than 4,000 nodes while the pressure-based approach requires over 37,000 nodes

to achieve the same accuracy. The differences in adaptation are striking with the

pressure-based approach excessively refining all shock waves including those which do

not play any role in determining the lower airfoil drag (e.g. the upper surface shocks

on the upstream airfoil). Also, the pressure-based refinement of the leading-edge of
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Figure 3-23: Two airfoil (NACA 0012) test case: M = 3.00, a = 0*. Left: computed
Mach number distribution. Right: adjoint x-momentum variable based on the lower-
airfoil drag.

the two airfoils is nearly identical whereas the output-based approach refines only

those features which dominate the lower airfoil drag. Specifically, the leading-edge

region (including the bow shock) of the lower airfoil, the oblique shock from the up-

per airfoil, and the leading-edge region of the upper airfoil are adapted. None of the

trailing edge shocks are refined as they play little or no role in the drag.
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Figure 3-24: Two airfoil (NACA 0012) test case: Mo= 3.00, a = 00. Upper left:
error convergence in the computed drag on the downstream (i.e. lower) airfoil during
a typical adaptive run. The proposed output-based adaptive algorithm is used. The
adjoint is based on the lower-airfoil drag. A requested error level of eo = 0.001 is
prescribed. Upper right: final adapted grid. Lower: blow-up of leading edge regions.
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Convergence of drag on lower airfoil - M_= 3.0
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Figure 3-25: Two airfoil (NACA 0012) test case: Moo = 3.00, a = 04. Upper left:
error convergence in the computed drag on the downstream (i.e. lower) airfoil during
a typical adaptive run. A curvature-based adaptive strategy is used [64] with an
indicator based on the magnitude of the second derivatives in the pressure scaled
with H' where Hk is the local element size. Upper right: final adapted grid. Lower:
blow-up of leading edge regions.

81

0.085-

0.080 -

0.075 -

0.070 -

0.1

-0.1



Chapter 4

Viscous Flow

The output-based adaptive criteria presented in Chapter 2 are incorporated into a

anisotropic grid-adaptive procedure for laminar Navier-Stokes simulations. The pro-

posed method is demonstrated on a series of airfoil test cases for Reynolds numbers

ranging from 5,000 to 100,000. The outputs considered are the lift and drag coeffi-

cients. The proposed anisotropic grid-adaptive method can be viewed as a merging

of output error control with Hessian-based adaptation. Stretching and orientation

of the elements in the grid are determined using information from the local Hessian

matrix of second derivatives in the Mach number, whereas the local element size is de-

termined using the output-based adaptive criteria. Use of the Mach number Hessian

in the proposed output-based procedure is completely arbitrary; it is chosen in the

present context in order to facilitate comparisons with a commonly used anisotropic

adaptive method based exclusively on the Mach number Hessian [27, 28, 67]. The

proposed output-based method is shown to compare very favorably in terms of out-

put accuracy, reliability, and computational efficiency relative to pure Hessian-based

adaptation.

4.1 Governing Equations

The Navier-Stokes equations are expressions of the principles of mass, momentum,

and energy conservation for a viscous, compressible fluid. In two-dimensions these
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equations my be written as

9U+ a(F- Fv) +(G - Gv)
at Ox ay

(4.1)

where U is the vector of conservative variables, F and G are the inviscid fluxes, and

Fv and G, are the viscous fluxes given, respectively, by

P

U Pu , (4.2)
Pv

pE

F-

Pu

pu2 +p

puv

ut pE + p)

Pv

puv

pv2 +p

v(pE + p)

(4.3)

and,

0

Tx

unx+ vxy - qx

0

Txy

uTxy + vTyy - qy

In these expressions, p is the mass density; u and v are, respectively, the x- and

y-components of the fluid velocity; p is the static pressure and E is the total energy.

The equations are nondimensionalized by the free stream density pO, speed of sound

d0, temperature To, viscosity pt, thermal conductivity Ico, and a reference length

c. From this point onward, expressions are considered nondimensional with respect

to these quantities unless accented by the tilde symbol. If the nondimensional conser-

vative variables and flux vectors are of the form (4.1)-(4.4), then the corresponding
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nondimensional shear stress and heat conduction terms are given by

2 M0
rX = p M (2ux - vy) (4.5)3 Re

reY = p (nY + oX), (4.6)
Re

2 M0r =Re p (2vy - uX), (4.7)
T =3 Re

-1 Moo y 0a2

qx = -1 Re p O' (4.8)
-y - 1 Re Pr Ox'

qy =- - Mo p a 2  (4.9)
y-1 Re Pr ay'

where Re = poicV/po is the Reynolds number, V. = ( W22 + ',2) 1/ 2 is the free-

stream gas speed, and M. = 17o/do is the free-stream Mach number. In the present

context, the working fluid is assumed to be ideal air with constant specific heat ratio

- = 1.4 and Prandtl number Pr = 0.72. The dynamic viscosity is determined using

Sutherland's law [65]

p 1 + C*T3/2 (4.10)
T+C*

with C* = S/Too, where S = 198.6 R is Sutherland's constant and Too = 460.0 R

is the assumed value for the free-stream temperature. The system is closed with the

equation of state for an ideal gas

p=p(7y-l) E- +V 2) (4.11)
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Attention is focused on steady, laminar solutions of the Navier-Stokes equation system

specified by (4.1)-(4.11).

4.2 Functional Outputs

The functional outputs considered are the lift and drag coefficients, denoted CL and

CD, respectively. These coefficients are nondimensional forces expressible as surface

integrals over portions of the domain boundary. The lift L and drag D forces acting on

a given body are defined as the components of the net aerodynamic force on this body

acting perpendicular and parallel, respectively, to the free-stream gas velocity V.

The lift and drag coefficients evaluated over the closed contour 8Q' can be expressed,

respectively, as

L
CL L

q0oC
Sj {Cp (-nx sin a + ny cos a)

2r
+ M sin a (Trxn +Ty ny)

- cos a (rzy nx + ryy ny) ds,

and,

CD -- = J' Cp (nz cos a + ny sin a)

2r

M 2 cos a (T n + y ny))

+ sin a (r nx + Tyy ny)

where qoo = poeiV2/2 is the free-stream dynamic pressure, and n=

unit normal vector on 8Q'. The angle of attack a is defined by

Voo
Cos a

l7)C

nos + nyj is the

(4.14)
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implying that the chord of the airfoil is aligned with the x-axis. The pressure coeffi-

cient C, is defined as

P - P = -- - Poo) (4.15)go M o o).

4.3 Flow and Adjoint Solvers

The flow and adjoint solvers used for the viscous simulations are part of the FUN2D

suite of codes [41]. The FUN2D flow solver is a two-dimensional, implicit finite

volume scheme that employs unstructured grids composed of triangular elements.

Non-overlapping control volumes are constructed around each node in the grid by

connecting the centroid of each triangle to the midpoints of its edges. The discrete

residual equations associated with each interior node are obtained by numerically

integrating the steady form of (4.1) over the control volume surrounding that node.

These residual equations, therefore, represent approximations to the conservation

laws embodied by (4.1). The Roe upwind scheme [53] is used to evaluate the inviscid

fluxes at control-volume interfaces and a Galerkin-type formulation is employed to

approximate the viscous terms. A brief description of the solution procedure used in

the flow solver is given in Section 3.3.

The adjoint solver utilizes an exact linearization of the flow (primal) residual oper-

ator described above. The adjoint code is discussed further in Section 3.4. Additional

details pertaining to the solvers can be found in the references [3, 42, 43]

4.4 Strong Boundary Conditions

The imposition of boundary conditions in a strong sense refers to the explicit mod-

ification of the form of the residual equations at boundary nodes relative to their

counterparts in the interior. This has implications on the character of the discrete

adjoint at the corresponding nodes. For Navier-Stokes simulations, the issue arises

when the momentum and energy residuals associated with nodes on solid boundaries
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are discarded in favor of imposing no-slip and specified temperature conditions, re-

spectively. Given a perturbation 6 Uh, the residual on the boundary represents the

error in the Dirichlet data, whereas in the remainder of the domain it represents lack

of momentum and energy conservation. Correspondingly, the discrete adjoint takes on

a different character on the boundary relative to the interior. This will be illustrated

in the following development, which follows closely that found in reference [22].

Consider the projection matrix Bh which is the zero matrix except for unit diagonal

entries on the rows where Dirichlet conditions will be imposed strongly. It has the

properties (Bh)" = Bh and BT = Bh. We also have the complimentary projector

Ih - Bh where Ih is the identity matrix. Note that Bh(Ih - Bh) = 0. The primal

system with Dirichlet conditions can be written as

(Ih - Bh) Rh(Uh) 0,

DhUh = 0. (4.16)

The first expression represents the residual equations at interior nodes. These equa-

tions represent discrete conservation statements over the control volumes surrounding

each interior node. In the second expression, the block diagonal matrix Dh sets the

Dirichlet conditions in a strong sense. For example, in FUN2D, the Dirichlet condi-

tions at solid boundary nodes are

U = 0,

V = 0,

pE - Talp= 0. (4.17)

Thus, the 4 x 4 diagonal block of Dh Uh = 0 corresponding to a boundary node is
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given by

0

0

0

-K

0

1

0

0

0

0

1

0

0

0

0

1

P

Pu

PV

pE

where K = Twaii/y('y - 1).

For convenience, we consider a different set

affine transformation Uh = AhUh. We choose Ah

the Dirichlet conditions on the new variables to

Bh since Dh Uh = Dh Ah Uh = Bh Uh. In FUN2D,

Ah =

1

0

0

K

0

1

0

0

0

0

1

0

0

0

0

0

(4.18)

of primal variables Uh through an

such that Bh = DhAh. This allows

be set using the projection matrix

the appropriate choice for Ah is

0

0

0

1

(4.19)

yielding the new variables

Uh = AK1 Uh,

= (p, pu, pv, pE - pK)T .

Thus, the primal system can be rewritten as,

(Ih- B) Rh(Uh) = 0,

Bh Uh 0,

or, combining these,

(Ih - Bh) Rh(Uh)+ BhUh = 0.
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The perturbation in the primal solution 6 Uh = Ah6Uh satisfies, approximately,

ORh
(Ih - Bh) OUh Ah Uh

Bh6Uh

(Ih- Bh) 6 Rh,

- DhUh. (.

This can be combined into

+ Bh Eh

The discrete adjoint system is, therefore, given by

(Ih - Bh) + Bh) 'h =

(Ih - Bh) 6Rh + Dh 6Uh.

Note that Equation (2.6) is recovered if we left-multiply the last expression by A-T.

Using (2.4), (4.24) and (4.25), the perturbation in the functional can be expressed

as

6fh

afh
=lh Ah Uh,

&Uh

= A

h
= ( ((In -

T

(Ih- Bh)+

Bh) OUh Ah +

Bh )'h EUh,

Bh OUh,

~'T [(Ih- Bh) 6Rh+ Dh Uh].

Now consider a decomposition of the adjoint into two orthogonal components,

1h= h+
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&Rh

- Bh) &Uh Ah (4.24)

T(A ORh
h u

A OfhTAu0 (4.25)

(4.26)
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where

IF' = (Ih Bh)'l,

Bhqh. (4.28)

The superscripts (b) and (i) correspond to strong boundary nodes and interior nodes,

respectively. Using this decomposition, the last expression for the functional error in

(4.26) can be rewritten as

6 fh ~ + ())T 6 ,U (4.29)

showing that the adjoint takes on a different role on the boundary relative to its

function in the interior: the boundary adjoint weighs the solution error whereas the

interior adjoint weighs the residual error.

Figure 4-1 shows a contour plot of the discrete adjoint x-momentum variable for

a Navier-Stokes simulation of flow past a cylinder. The corresponding grid is plotted

on the left. In this case, Re = 10, M, = 0.38 and the adjoint is based on the drag.

The distinction between the boundary adjoint and the interior adjoint is clear from

the clustering of contour lines near the boundary. The contour levels in this plot

are distributed linearly within each element, however, the sharp variations within

the elements adjacent to the boundary are meaningless since two entirely different

quantities are being interpolated within these elements.

4.4.1 Recovering the Boundary Adjoint

As illustrated in the previous section, using interpolation as a means of transferring

the coarse-grid adjoint onto the fine grid is not appropriate for elements adjacent

to the boundary. A viable alternative is to extrapolate the interior adjoint to the

boundary of the coarse grid and prolongate the extrapolant onto the fine grid, as

described in Section 4.4.3. Once this is done, the only remaining task is to postprocess

the boundary adjoint on the fine grid. The formula for recovering the boundary
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Figure 4-1: Discrete x-momentum adjoint variable based on the the drag (right),
and corresponding grid (left) for viscous flow past a circular cylinder (Re = 10,
Moo = 0.38).

adjoint given an approximation of the interior adjoint is derived below.

Substituting (4.27) into (4.25) and premultiplying by (Ih - Bh) yields

T

(Ih - BT)AOTaRh)h U

The second term is zero and the interior adjoint satisfies

(Ih- Bh)A TRh(h-
F

h

Bh Ihi

= (Ih- Bh)A hT

= 0, (4.31)

which can be combined into

- Bh)A +Bh)h u

proving that T'9) is not dependent on X .hh

(4.32)

The expression for the adjoint on the

strong boundary may be calculated in a postprocessing step once 'i) has been ob-
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tained from (4.32). The desired formula is obtained directly from (4.25) as,

h hg ( u al h

= Ab - RA (f _)). (4.33)

Similarly, if "h is an approximation to the interior adjoint on the fine grid, then the

discrete boundary adjoint may be approximated as

'b -BhA R((Ih - Bh)''). (4.34)

4.4.2 Residual-Based Functionals

Engineering outputs often involve boundary integrals of diffusive-type fluxes. These

fluxes involve gradients of the solution normal to the boundary. In Navier-Stokes ap-

plications, the skin friction contribution to the aerodynamic forces on a body can be

expressed as a contour integral involving the gradients of the velocity components at

the surface of the body. One method of computing these forces is to differentiate the

solution within the elements adjacent to the body, and then integrate the result. Eval-

uating the forces in this manner generally results in poor convergence of the output.

In the finite element community it is commonly referred to as an unbounded form of

the output. Finite volume practitioners often labeled it as a non-conservative evalu-

ation of the output. This type of functional definition may also lead to irregularities

in the adjoint variables near the corresponding boundaries resulting in compromised

accuracy of the corrected functionals and diminished effectiveness of the adaptive al-

gorithm. A more natural and accurate method of evaluating the aerodynamic forces,

which is both bounded and conservative, is to define them as residual balances as

described below.

Let a&(Uh) represent the vector of residual equations prior to imposing no-slip

conditions and specified temperature in a strong sense at the solid boundaries. These

equations are discrete conservation statements defined over control volumes surround-

ing each node in the grid. At the boundary nodes, the momentum and energy residu-
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als are missing viscous flux contributions from the wall. In FUN2D, Rh(Uh) includes

pressure contributions from integrating the inviscid fluxes along the boundary, but

is missing flux contributions from the viscous terms. In the case of the momentum

residuals, these missing fluxes correspond to the shear forces that would be needed in

order to maintain momentum conservation over the control volumes surrounding the

boundary nodes. The sum of these forces over all boundary nodes corresponds to the

total skin friction force on the body. In this vein [22], the forces can be defined as

fh(Uh) = f/P(Uh) + ch Bh (Uh), (4.35)

where f/ (Uh) is the pressure contribution1 . The vector ch takes the appropriate

component of the momentum residuals into the selected force direction (whether it

be lift or drag, for example). The right hand side for the discrete adjoint system is

given by

OfhT_- O9fpT Oh T(-6
- + Bhch. (4.36)

OUh alUh OUh

Fortunately, the last term in this expression can be evaluated using existing subrou-

tines from the discrete adjoint code.

Figure 4-2 compares the computed x-momentum adjoint variable near the bound-

ary of a circular cylinder for a non-conservative evaluation (center plot) and a conser-

vative evaluation (right plot) of the drag. The flow conditions for this simulation are

Re = 10 and Moo = 0.38. The computational grid is plotted on the left. In the center

plot, irregularities in the adjoint are observed in the second layer of elements away

from the boundary. These irregularities are not present in the right plot, illustrating

that the conservative evaluation of the drag leads to an interior adjoint with better

smoothness properties. The clustering of contour lines in the first layer of elements

reflects the presence of the boundary adjoint, which is a separate issue as discussed

earlier in the section.

11f Rh(Uh) is missing both inviscid and viscous flux contributions from the wall, then ff(Uh)
should be omitted from (4.35) since it would already be incorporated into Rh(Uh).
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x-momentum adjoint based on x-momentum adjoint based on
Computational grid non-conservative drag evaluation conservative drag evaluation
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Figure 4-2: Comparison of the x-momentum adjoint variable based on a non-
conservative (center) and a conservative (right) evaluation of the drag for viscous
flow past a circular cylinder (Re = 10, Moo = 0.38). The computation grid is plotted
on the left.

Figure 4-3 compares lift and drag convergence plots for the same test case using

both types of functional evaluations. These values are obtained from simulations on

a series of uniformly refined grids. The farfield boundary is placed at 22.5 diameters.

The coarsest grid in the series contains 800 nodes and is shown in Figure 4-2. The

nth grid in the series is constructed by subdividing each triangle in the coarsest grid

into n2 self-similar triangles for values of n = 2, 4, and 8. Boundary edges are made

to conform to the circular cylinder as described in Sections 2.1.1 and 2.2.3. The

lift and drag errors are plotted versus a characteristic length parameter h associated

with each grid in the series. A value of hi = 1 is arbitrarily assigned to the coarsest

grid. The length parameter associated with the nth grid is given by hn = hi/n.

The true lift and drag values used to measure the errors in Figure 4-3 are taken

as CL = 0 and CD = 2.99165, respectively. The true drag value is obtained as a

Richardson extrapolation of the conservative drag values from the three finest grids.

The implied convergence rate from the extrapolation is approximately third order.

We see from Figure 4-3 that the non-conservative evaluation produces essentially first-

order-accurate values for the forces whereas the conservative evaluation is essentially

third order.
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Viscous Flow Past a Cylinder
Re = 10, M = 0.38
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Figure 4-3: Convergence of the error in the lift and drag on a series of uniformly
refined grids for viscous flow past a circular cylinder (Re = 10, Moo = 0.38). The
conservative and non-conservative evaluations of the forces are compared.

4.4.3 Extrapolation of the Interior Adjoint to the Boundary

The prolongation operators L' and Q', defined in Section 2.2, should only be applied

to coarse-grid functions that are uniform in character throughout the domain. If the

primal problem involves strongly imposed boundary conditions (as is the case for the

convection-diffusion and viscous test cases in the present work), the discrete adjoint

takes on a fundamentally different character on the boundary relative to the interior

as discussed earlier in the section. Interpolation of the adjoint across boundary and

interior nodes is not appropriate in this case. An alternative approach, used in the

present work, is to extrapolate the interior adjoint to the boundary of the coarse grid

thereby establishing polynomial extrapolants over each coarse-grid element adjacent

to the boundary. The value of the interior adjoint at the fine-grid nodes within

these elements is obtained by evaluating the corresponding extrapolant. The interior

coarse-grid elements are handled by the standard interpolation-based prolongation

operations associated with L' and Q'. Once the entire prolongation of the interior

adjoint is completed, the final task is to postprocess the boundary adjoint on the fine

grid using (4.34).

The linear and quadratic prolongation operators modified for extrapolation at the
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boundary are denoted LfH and Qf', respectively. The corresponding algorithm that

defines their operation is summarized here:

1. Loop through all the coarse-grid nodes and flag those nodes where primal bound-

ary conditions are imposed in a strong sense (hereafter referred to as strong

nodes). If a node that is initially flagged as an interior (non-strong) node has

less than two interior nodes as its immediate neighbors, then that node is re-

designated a strong node.

2. Flag all coarse-grid elements with at least one strong node as a vertex (hereafter

referred to as strong elements).

3. Flag all coarse-grid edges with at least one strong node as an endpoint (hereafter

referred to as strong edges).

4. In the case of the quadratic operator Q, compute the gradients of the interior

adjoint at the interior nodes of the coarse grid using a modification of the least-

squares algorithm described in reference [3]. This algorithm computes gradients

at a node as least squares averages of the gradients along each edge impinging

upon that node. The algorithm is modified by using only those edges that are

not strong edges. This allows gradients of the interior adjoint to be computed

without contamination from the boundary adjoint.

5. For all interior (non-strong) elements, construct polynomial interpolants using

operations associated with the operators L' and Qf described in Section 2.2.

6. For all strong elements construct polynomial extrapolants by extending the

polynomial interpolants of adjacent interior elements. If there is more than

one adjacent interior element take the arithmetic average of the extended in-

terpolants. If there are no adjacent interior elements use the interpolant of the

closest (in terms of Euclidean distance between centroids) interior element.

7. Compute the prolongated nodal values on the embedded fine grid by evalu-

ating the appropriate interpolants/extrapolants from the coarse grid. Values
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for fine-grid nodes on coarse-grid edges are obtained by taking the arithmetic

average of the interpolant/extrapolant values from the two adjacent elements

associated with that edge. Values at fine-grid nodes that are colocated with

coarse-grid nodes are similarly obtained by taking the arithmetic average of

the interpolant/extrapolant values from the patch of elements surrounding that

node.

8. Postprocess the boundary adjoint on the fine grid using (4.34).

4.5 Anisotropic Adaptation

The adjoint-based adaptive criteria derived in Section 2.3.2 are incorporated into a

framework for anisotropic adaptation for functional outputs. The goal is to ensure

that the estimated remaining error in the functional, after correction, is less than a

specified tolerance prescribed a priori. In Section 4.5.1 the theory and procedure is

laid out for standard interpolation-error-based adaptation using the Hessian matrix

of second derivatives of a chosen scalar [27, 48]. In Section 4.5.2 a geometric analogy

is made between the interpolation error along an edge in the grid and the generalized

length of this edge in a Riemannian space [12, 16, 19, 27]. The transformation from

the physical space to the Riemannian space is governed by a symmetric positive-

definite metric that can be obtained from the Hessian matrix by taking the absolute

value of the eigenvalues of the symmetric Hessian. In a typical Hessian-based adaptive

procedure, the size, stretching, and orientation information for the elements in the

grid are obtained exclusively from the local Hessian matrix. In the proposed output-

based procedure, only the stretching and orientation characteristics are obtained from

the Hessian. The local element size is determined from the adjoint-based adaptive

parameters derived in Section 2.3.2. This allows for effective control of the functional

error while simultaneously achieving more efficient resolution of the flow field than

would otherwise be possible with isotropic adaptation alone.
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4.5.1 Interpolation Error

Error indicators for driving anisotropic adaptation of unstructured triangular and

tetrahedral grids are typically based on the interpolation error incurred by approxi-

mating continuous functions using piecewise-linear interpolation [16, 27, 48, 67].

Consider the one-dimensional function u(x) and a piecewise linear approximation

uk(x) of this function on a grid with node spacing h. The error at the nodes is zero,

by construction. It can be shown through simple Taylor-series arguments (see, for

example [58]) that the maximum interpolation error over a typical interval x E =

[jh, (j + 1)h] is given by

max ju(x) - u, (x) h 2 max uxx. (4.37)
zenj 8 XEnj

This error estimate can be directly extended to higher dimensions by restricting atten-

tion to the interpolation error along a line. For example, consider using a piecewise-

linear interpolant uk (x, y) over a two-dimensional triangulation to approximate the

continuous function u(x, y). Assuming zero error at the nodes, the maximum inter-

polation error over an edge E in the triangulation, with unit tangent vector s and

length h, is given by

12
max Iu(x,y) - uk(x,y)l -h2 max |u,,|, (4.38)

(x,y)EE 8 (x,y) E E

In this last expression u,, is the directional second derivative of u in the direction s,

which can be expressed as

U=s (4.39)

where

W UXX 1 (4.40)
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is the Hessian matrix of second derivatives.

4.5.2 Riemannian Metric

A geometric interpretation of the interpolation error along an edge can be made by

considering the length of that edge in a Riemannian space [12, 16, 19, 27]. The

transformation from the physical space to the Riemannian space is specified by a

symmetric positive-definite matrix M,

M =.(4.41)
b c

The generalized length 1M of edge E in the transformed space is given by

12 = sM h2 (4.42)

Note that if M is the identity matrix, the physical (Euclidean) length l = sTIs h2

h2 is recovered.

To illustrate the directional properties of the metric M, consider the unit phasor

8 = (x, y)T stemming from the origin in the metric space. The square of its metric

length is given by

8T M8 = ax2 + 2bxy + cy 2 = 1. (4.43)

This is the equation of an ellipse centered at the origin in the physical space. The

ellipse is rotated by an angle 0 to the x-axis, and has major and minor principal

lengths hi and h2 , respectively, as shown in Figure 4-4. These parameters are related

to the metric components (a, b, c) as follows:

a b 1/h 2 0
M" b R RT11 , (4.44)

b~~ c 1h
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Figure 4-4: Ellipse defined by the metric parameters 0, hi and h2 .

where,

cos 0 - sin 1
R= . (4.45)

sin0 cos0

Comparing (4.38)-(4.39) with (4.42), the interpolation error along edge E is analo-

gous to the square of the metric length of that edge if M is chosen to be a modification

of the Hessian matrix. In particular, the Hessian is modified by taking the absolute

value of its eigenvalues, resulting in a symmetric positive-definite matrix. Let R be

the orthonormal matrix containing the eigenvectors of 7 as its columns, and let A be

the corresponding diagonal matrix containing its eigenvalues. The symmetric Hessian

is diagonalized by

X =RART, (4.46)

and the Hessian-based metric can be defined as

MH =R|A|RT. (447)

One possible strategy for anisotropic adaptation is to equidistribute the error along

edges in the grid by equidistributing the length of the edges in the Riemannian space

governed by M [12, 16, 19, 27].

The definition for the metric length in (4.42) assumes that the metric is constant
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over the edge. In general, the metric may vary continuously over the physical domain.

Consider the parameterization of M using t E [0,1] on edge E. The metric length

can be generalized as

lM = hf (TM (t)) 1/2 dt, (4.48)
l0

In practice, the metric is interpolated over a background grid and the integral in

(4.48) is approximated using a prescribed quadrature rule [27].

4.5.3 Pure Hessian-Based Adaptation

In pure Hessian-based adaptation, the element size, aspect ratio, and orientation are

determined using the Hessian-based metric M . As seen in (4.44) and (4.45), the

eigenvalues omin = 1/h2 and c-max = 1/h2 are related to lengths in two orthogonal

directions and the eigenvectors yield the orientation of these directions with respect

to the coordinate axis.

A Hessian-based scheme is implemented for the purposes of comparing the ef-

fectiveness of the output-based strategy described in Section 4.5.4. The algorithm

attempts to equidistribute the interpolation error in the computed Mach number

over each edge in the grid. Different error tolerances are achieved by scaling the met-

rics associated with each element by a constant multiplicative factor K. Larger values

of K correspond to more stringent tolerances on the estimated interpolation error.

The Mach-number Hessian is obtained using the quadratic reconstruction procedure

described in Section 2.2.2. Piecewise quadratic Mach number profiles are constructed

over each element and differentiated twice yielding piecewise constant second deriva-

tives. Nodal values of the second derivatives are obtained using an area-weighted

average of the piecewise-constant values over each element surrounding the node. To

avoid excessive element sizes in the farfield, the eigenvalues of the metric are bounded

from below so that h 2 < hi < hmax, where hmax is a specified maximum element length

for the domain. A value of hmax = 10 chord-lengths is used in the present simula-

tions. A typical adaptive simulation requires several adaptive iterations before grid
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convergence is achieved. At each iteration, a flow solution is obtained, the Mach-

number Hessian and corresponding metric are computed at the nodes, and the grid is

regenerated using the BL2D grid generator (see Section 4.5.5), which takes the nodal

metrics as input.

Adaptation based on the Mach-number Hessian alone is known to have several

deficiencies. For example, curves of inflection in the Mach-number distribution may

lead to inappropriate grid stretching in certain regions of the domain, and inadequate

resolution of the flow field may occur in regions where the magnitude of the Hessian

is close to zero. Heuristic remedies for these deficiencies have been proposed in the

literature [16, 67], however, no explicit steps are taken in the current implementation

to deal with them. It will be shown in Section 4.6 that the output-based scheme is

able to mitigate the effects of these shortcomings while maintaining effective control

of the functional error.

4.5.4 Output Error Control

The output-based adaptive parameters derived in Section 2.3.2 can be incorporated

into an anisotropic grid-adaptive framework for functional outputs. The method

proposed in this thesis is a modification of a Hessian-based adaptive procedure to

use adjoint information for controlling the output error.

Metric Parameters

The Riemannian metric introduced in Section 4.5.2 contains three independent pieces

of information that can be used for anisotropic grid adaptation. In its original form the

metric is specified by the components (a, b, c). Through diagonalization, the metric

can also be characterized by the parameters (hi, h2 , 0), as shown in (4.44)-(4.45).

In the present context it is convenient to decompose the metric into the parameters

(H, #, 0), which represent the local size, stretching, and orientation of the elements,
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respectively. These parameters are defined by

(H, #, 9) = (h2, hi/h 2, 9) (4.49)

In the proposed output-based adaptive method, the stretching and orientation pa-

rameters, # and 9, are obtained from the Mach number Hessian whereas the local

size parameter H is determined from the adjoint criteria.

Grid-Implied Metric

In a typical output-based adaptive simulation, several adaptive iterations are required

in order to achieve grid convergence. Each iteration involves a flow and adjoint

solution on the current grid, and an adaptive step in which a new grid is generated.

For each element in the current grid the parameters (H', #', 9') are computed to

indicate how the local size, stretching and orientation should change in the new grid.

The stretching and orientation parameters for the new grid, #' and 9', are obtained

directly from the Hessian-based metric. The new size parameter H', however, is

obtained in a more implicit manner. It is not computed exclusively from the adjoint

criteria, but rather as the product of an adjoint-based factor and the current element-

size parameter H.

The following describes a method for determining the size parameter H associated

with an element in the current grid. If it is assumed that the current grid is optimal

in some metric, then the metric lengths of all the edges in the grid are constant.

Correspondingly, the local metric value for an element can be approximated using

(4.43). Specifically, consider the triangle shown in Figure 4-5. For each of its edges

k E [1, 3], the following holds, approximately 2:

a(Axk) 2 + 2bAxkAyk + c( Ayk) 2 = 1. (4.50)

2The appropriate constant on the right-hand-side of (4.50) is dependent on the standard em-
ployed by the particular grid generator. In BL2D, physical lengths are mapped onto a metric length
of unity [35].
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AXk

Figure 4-5: Typical triangle in the current grid.

This results in the system of equations

(AX1)2 2Ax1Ay1 (Ay1)2 a1

(zAx 2 )2 2ZAx 2 Ay2 (Ay 2 ) 2  b, (4.51)

(Ax 3 )2 2Ax 3 Ay 3  (Ay 3 ) 2  C

which can be solved for the metric components (a, b, c). These components represent

an average metric for the triangle. The size parameter H can be obtained from the

largest singular value omax of the implied metric vias

1
H = 1/2 (4.52)

0~max

The approximate grid-implied metric for a tetrahedron can be obtained in an anal-

ogous fashion. In three dimensions, the Riemannian metric is a symmetric positive-

definite 3 x 3 matrix specified by 6 components. Tetrahedra have 6 edges over which

6 equations analogous to (4.50) can be written and solved for the 6 unknown compo-

nents.

Adaptive Procedure

Prior to an output-based adaptive simulation, one must specify the functional of

interest f(U), a desired tolerance on the functional error e0, and a scalar field for the

3 The true metric is symmetric positive-definite; its eigenvalues are positive and equal to its

singular values. The implied metric is not guaranteed to be positive definite, therefore, the size

parameter H is computed in terms of the largest singular value, which is equal to the absolute value

of the largest eigenvalue in magnitude.
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Hessian calculations. For the viscous test cases in this dissertation, the Hessians are

computed from the Mach number distribution.

A single iteration in the output-based procedure is comprised of the following

steps:

1. Obtain the flow and adjoint solutions on the current grid.

2. For each element, compute the piecewise-constant Mach number Hessians using

the quadratic reconstruction procedure outlined in Section 2.2.2.

3. For each element, compute the Hessian-based metric M using (4.47), by diag-

onalizing the Hessian and taking the absolute value of its eigenvalues. Compute

the desired new stretching and orientation parameters, #' and 9', using (4.44),

(4.45) and (4.49).

4. For each element, estimate the grid-implied metric as described in Section 4.5.4,

and compute the current element-size parameter H.

5. Compute the adjoint-based adaptation parameters T, and rk derived in Sec-

tion 2.3.2. Specifically, rqg = E/eo and rik = Ek/Eo for each element k, where

o = eo/Ne is the element target error, Ne is the total number of elements in

the current grid, E = Zk 8 k, and

Ek 2 h h'H [Rk H(LH)]Tk) [QHUH - L'UH 1(k)
1(k)

+ |[QHH - h H H]Tk) [Rh(L'UH)1l(k) l- (4.53)

The prolongation operators LI and Q', modified for the viscous adjoint, are

defined in Section 4.4.3.

6. For each element, use (2.26) to compute the desired new element size parameter

H' from the current one H:

H' = H . (4.54)
r/gr/~k
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A value of w = 1/4 is chosen for the underrelaxation parameter for all the

test cases considered. This value is obtained using a heuristic described in

Section 2.3.2.

7. For each element, construct the new output-based metric M' for the next grid

using the parameters (H', #', 0'). Transfer the elemental metric components to

the nodes using area-weighted averages of the piecewise-constant values over

the elements surrounding each node.

8. Input the nodal metrics into the anisotropic grid generator and regenerate the

grid.

The iterative process is considered converged when the change in the total number

of nodes from one iteration to the next is on the order of 1% or less (- 5% for very

coarse grids). If the desired error tolerance e, is very low relative to the resolution of

the initial grid, excessive overrefinement may result in the early stages of the adaptive

process. To overcome this difficulty, a modest (large) value for e, can be prescribed

initially and then gradually ramped down to the desired error level over the course of

several iterations.

Functional Correction

Once the adaptive procedure has converged, (2.12) can be used to compute the cor-

rected functional. Specifically,

fh(Uh) = fh(QHUH) ~ (Qh"H )T Rh(QhHUH). (4.55)

4.5.5 Grid Generator

The BL2D grid generator [35] is used to anisotropically adapt the grids for the viscous

test cases in this work. The BL2D software package is a two-dimensional, adaptive,

anisotropic grid generator developed at INRIA-Rocquencourt, France. The domain

grid generator accepts metric values at the nodes of the current grid, as input, and
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generates a new grid using a generalized Delaunay-type algorithm [12]. Domain

boundaries are represented by cubic splines. BL2D is incorporated into the current

adaptive framework using shell scripts.

4.6 Results

Several viscous test cases are presented to demonstrate the performance of the pro-

posed anisotropic grid-adaptive method for functional outputs. An adaptive method

based exclusively on the Mach-number Hessian (see Section 4.5.3) is also implemented

for the purposes of comparatively assessing the proposed output-based scheme. Pure

Hessian-based adaptation is essentially what is used in references [12, 16, 19, 27, 48,

67] although their methodologies and implementations may differ to varying degrees.

The proposed output-based method is shown to provide substantial improvement in

terms of output accuracy and computational efficiency relative to pure Hessian-based

adaptation.

4.6.1 Functional Correction Results

Two test cases are presented to demonstrate the output correction procedure for low-

to-moderate Reynolds number (laminar) Navier-Stokes simulations. Hierarchies of

embedded grids are constructed to conduct error convergence tests. No adaptation is

performed for these test cases.

Re = 10, M, = 0.38 Cylinder

Flow over a cylinder (Re = 10, Mo, = 0.38) is simulated on 4 embedded grids. The

coarsest grid contains 800 nodes and serves as the seed grid in the hierarchy. Sub-

sequent grids are constructed by subdividing each of the triangles in the previous

grid into 4 self-similar triangles. The farfield boundary is placed at 22.5 diame-

ters. Figure 4-6 shows plots of the computable correction I(Q/HH)TRh(QIIUH) ,
the true error lof|= I fh(QHUH) - fh(Uh)|, and the remaining error after correction

1fA - (Qh14H)TRh (QHUH)|, for each grid. Errors are measured with respect to the
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Cylinder Drag - Re = 10 - M= 0.38

-21

-3 -3

-4
1

-5
-- Computed correction
A True error (N = 2)

-6-- I Remaining error after correction"
III 111 ii i I ii i li i ii i i I tIII

-0.2 0 0.2 0.4 0.6 0.8 1
-Logl0 (h)

Figure 4-6: Cylinder test case: Re = 10, M. = 0.38. Convergence of the error in the
computed drag, the correction term, and the remaining error after correction. Errors
are measured with respect to fine-grid values corresponding to N = 2.

fine grids (N = 2) associated with each base grid in the hierarchy. The computable

correction is shown to approximate the true error to high accuracy. The ~ 0(h)

convergence of the remaining error demonstrates that the corrected functionals con-

verge faster than the corresponding perturbed functionals on the fine grid, which are

converging at approximately O(ha).

Re = 10, 000, M. = 0.4 NACA 0005 Airfoil

Analogous results for flow over a NACA 0005 airfoil (Re = 10, 000, Mo = 0.4,

a = 00) are presented. A hierarchy of 8 grids is constructed and used to conduct

error convergence tests. The coarsest grid contains 507 nodes and serves as the

seed grid (n = 1) in the hierarchy. The nth grid (n - [2, 8]) is constructed by

subdividing each of the triangles in the original grid into n2 self-similar triangles.

The farfield boundary is placed at 25 chords. The plots on the right side of Figure 4-

7 show the first (n = 1) and fifth (n = 5) grid in the hierarchy. The left side

of the figure shows a plot of the computable correction |(QHq'IH)TRh (Q/UH)|, the

true error ofhI = Ifh(QHUH) - fh(Uh)|, and the remaining error after correction

6 fh - (Q/lH)TRh(QHUH) , for each grid. Errors are measured with respect to the
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Figure 4-7: NACA 0005 Airfoil test case: Re = 10, 000, Mo = 0.4, a = 00. Left
plot: convergence of the error in the computed drag, the correction term, and the
remaining error after correction. Errors are measured with respect to fine-grid values
corresponding to N = 2. Right plot: the first and fifth grid used in the convergence
study.

fine grids (N = 2) associated with each base grid in the hierarchy. The corrected

functionals are shown to converge faster than the associated perturbed functionals.

It is likely, however, that the finest grids in the hierarchy are not yet in the asymptotic

region for this problem, and that the remaining error curve would eventually flatten

to a lower rate of convergence if finer grids were added to the hierarchy. Nevertheless,

the convergence plot demonstrates that the adjoint correction procedure is capable

of yielding substantial improvements in functional accuracy.

4.6.2 Re = 5, 000, Moo = 0.5, a= 0" NACA 0012 Airfoil

A series of adaptive simulations are performed for flow over a NACA 0012 airfoil with

free stream conditions Re = 5, 000, Moo = 0.5 and a = 00. The functional of interest is

the drag coefficient. The initial grid in the adaptive simulations is shown in Figure 4-

8. The farfield boundary is placed at 15 chords. This test case is representative of

'cruise'-type conditions (i.e. no significant boundary layer separation).

Output-based simulations are performed for five different error tolerances: e0 =

0.005, 0.0025, 0.00125, 0.000625, and 0.0003125. The final adapted grids range in size

109



NACA 0012 - Initial Grid

0.5

0

-0.5

-1

-1.5

-2

0.075

0.05

0.025

0

-0.025

-0.05

-0.075

-0.1

-0.125

-0.15

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 4-8: NACA 0012 Airfoil test case: Re = 5, 000, Moo = 0.5, a = 00. Initial grid
in the adaptive runs for this test case.

110

820 Nodes



NACA 0012 - Re = 5,000 - M = 0.5 - a= 0"
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0.14-I
0.13 Hessian Based

HB - Corrected

0.12 - Output Based -1.5
~ OB - Corrected -2

0.11 ----. Fine Grid
- - - Swanson et. al. -2.5

0.1

Q 0.09

0.08 -- 4

0.07 -4.5 Hessian Based
.08----- B- Corrected

0.06 ~-- Output Based
-5.5 --- OB - Corrected

0 2500 5000 7500 2.5 3 3.5 4
Nodes Logl0(Nodes)

Figure 4-9: NACA 0012 Airfoil test case: Re = 5,000, Moo = 0.5, a = 00. Plots
of the base and corrected drag (left), and corresponding errors (right) from a series
of adaptive simulations. Adaptive runs are performed using the proposed output-
based scheme and pure Hessian-based adaptation. Five different error tolerances
are specified for the output-based simulations ranging from eo = 0.005 to eo =
0.0003125. Five different multiplicative factors are prescribed for the pure Hessian-
based simulations ranging from K = 25 to K = 400. The fine-grid value shown
in the left plot is computed on a single fine-grid (N = 2) corresponding to the
finest adapted grid from the output-based simulations. Errors in the right plot are
measured with respect to this fine-grid value. The Swanson et al. value is obtained
from reference [60].

from 343 nodes (eo - 0.005) to 2904 nodes (eo = 0.0003125). Pure Hessian-based

adaptation is performed for five multiplicative factors: K = 25, 50, 100, 200, and 400.

The final grids range in size from 251 nodes (r, = 25) to 6235 nodes (K = 400).

The left plot in Figure 4-9 shows the base drag fH(UH) and corrected drag

fh(QHUH) - (Q/ 41H)TRh(Q HUH) for each of the final adapted grids. The fine-grid

value shown in the plot (hereafter denoted fh(Uh)eIo ooo3 12 5) is computed on a single

fine-grid (N = 2) corresponding to the finest adapted grid from the output-based

simulations. This fine grid contains 11435 nodes. The right plot shows the correspond-

ing errors in the drag measured with respect to the fine-grid value fA(Uh)eo=0 .0 00 3 125 -

The Swanson et al. value shown in the plot is obtained from reference [60]. Swanson

et al. use a finite volume discretization that employs a structured C-type grid with

512 x 128 cells and farfield boundary at 10 chords.
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The plots indicate that the output-based scheme offers a considerable improve-

ment in output accuracy over pure Hessian-based adaptation for grids of comparable

size. Furthermore, the adjoint-corrected functionals are consistently more accurate

than their corresponding base values for both types of adaptation.

Figure 4-10 compares the final adapted grids from the eo = 0.0003125 output-

based simulation (top) and the t, = 200 Hessian-based simulation (bottom). The

inaccurate drag prediction from the Hessian-based simulation is attributed to insuffi-

cient grid resolution in the inviscid regions of the flow. Moreover, the boundary layer

and wake regions are comparatively overrefined relative to the output-based grid.

Note that in the output-based grid, the wake is not significantly refined beyond one

chord-length downstream of the trailing edge. Discretization errors downstream of

that point do not appreciably influence the error in the computed drag. Figure 4-11

presents plots of the Mach number distributions on the same grids. It is again evident

that the Hessian-based solution is not well-resolved outside the boundary layer and

wake regions due to insufficient grid resolution.

The near-field views in Figure 4-10 show grid anisotropy a small distance away

from the airfoil boundary whereas the triangles immediately adjacent to the wall

are essentially isotropic. This effect, which occurs in both the output-based and

pure Hessian-based grids, is caused by layers of very small curvature or by curves

of inflection in the Mach number close to the wall. Xia et al. [67] observed the

same effect using their Hessian-based scheme prior to implementing a heuristic for

improving the grid resolution at the wall. No measures are taken to prevent this effect

in the present implementations of the output-based and pure Hessian-based adaptive

procedures. Nevertheless, results indicate that this effect has not been a significant

factor, in regards to output accuracy, whenever the output-based adaptive method

has been used.

4.6.3 Re = 5, 000, Moo = 0.5, a = 34 NACA 0012 Airfoil

Adaptive simulations are performed for flow over a NACA 0012 airfoil with free

stream conditions Re = 5, 000, M, = 0.5 and a = 3'. Under these conditions, the
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Figure 4-10: NACA 0012 Airfoil test case: Re = 5,000, Moo = 0.5, a = 00. Top:
final adapted grid using output-based adaptation with a requested error level of
eo = 0.0003125 for the drag. Bottom: final adapted grid using pure Hessian-based
adaptation with r, = 200. The computed drag values shown in the plots correspond
to base values without correction. The true value is the base drag computed on the
fine grid (N = 2) associated with the top grid.
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Figure 4-11: NACA 0012 Airfoil test case: Re = 5, 000, Moo = 0.5, a = 0". Top:
plot of the Mach number distribution on the final adapted grid using output-based
adaptation. A requested error level of eo = 0.0003125 is prescribed for the drag.
Bottom: Mach number distribution on the final adapted grid using pure Hessian-
based adaptation with , = 200.
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flow separates from the suction side of the airfoil at approximately the 50% chord

position while remaining attached on the lower surface. The functionals considered

for this test case are the lift and drag coefficients. The initial grid in the adaptive

simulations is shown in Figure 4-8. The farfield boundary is placed at 15 chords. This

test case is included to demonstrate whether the proposed output-based scheme is

able to resolve the separation bubble and correctly predict the aerodynamic forces.

Lift-based simulations are performed for five different error tolerances: eo = 0.05,

0.025, 0.0125, 0.00625, and 0.003125. The final adapted grids range in size from

392 nodes (eo = 0.05) to 4745 nodes (eo = 0.003125). Drag-based simulations are

performed for eo = 0.005, 0.0025, 0.00125, 0.000625, and 0.0003125 with final grids

ranging in size from 358 nodes (eo = 0.005) to 3479 nodes (eo = 0.0003125). Pure

Hessian-based adaptation is performed for five multiplicative factors: r. = 25, 50,

100, 200, and 400. The final grids range in size from 263 nodes (K = 25) to 6395

nodes (, = 400). The left plot in Figure 4-12 shows the base and corrected lift

values from the final adapted grids using lift-based adaptation and Hessian-based

adaptation. The lift is also computed on a series of adapted grids using drag-based

adaptation. The fine-grid value shown in the plot is computed on a single fine-grid

(N = 2) corresponding to the finest adapted grid from the lift-based simulations.

This fine grid contains 18746 nodes. The right plot shows the corresponding errors in

the lift measured with respect to the aforementioned fine-grid value. The Swanson

et al. value shown in the plot is obtained from reference [60]. Swanson et al. use

a finite volume discretization that employs a structured C-type grid with 512 x 128

cells and farfield boundary at 10 chords.

It is evident from Figure 4-12 that the lift-based scheme offers a considerable

improvement in lift accuracy over pure Hessian-based adaptation for grids of compa-

rable size. As expected, lift accuracy on the drag-based grids is inferior to that on

the lift-based grids. Nevertheless, the drag-based grids generally yield superior lift

accuracy relative to the Hessian-based grids.

Figure 4-12 is analogous to Figure 4-13 except that the drag is plotted in the latter

figure. The fine-grid value shown in the left-hand plot of Figure 4-13 is computed on
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Figure 4-12: NACA 0012 Airfoil test case: Re = 5, 000, Moo = 0.5, a = 3'. Plots
of the base and corrected lift (left), and corresponding errors (right) from a series of
adaptive simulations. Five different error tolerances on the lift are specified for the
output-based simulations ranging from eo = 0.05 to eo = 0.003125. Five different
multiplicative factors are prescribed for the Hessian-based simulations ranging from
r = 25 to , = 400. Also shown is the base lift computed on a series of adapted grids
using output-based adaptation on the drag. The fine-grid value shown in the left plot
is computed on a single fine-grid (N = 2) corresponding to the finest adapted grid
from the output-based simulations on the lift. Errors in the right plot are measured
with respect to this fine-grid value. The Swanson et al. value is obtained from
reference [60].
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NACA 0012 - Re = 5,000 - M_ = 0.5 - a = 3"
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Figure 4-13: NACA 0012 Airfoil test case: Re = 5, 000, Mo = 0.5, a = 30. Plots of
the base and corrected drag (left), and corresponding errors (right) from a series of
adaptive simulations. Five different error tolerances on the drag are specified for the
output-based simulations ranging from eo = 0.005 to eo = 0.0003125. Five different
multiplicative factors are prescribed for the Hessian-based simulations ranging from
, = 25 to /- = 400. Also shown is the base drag computed on a series of adapted
grids using output-based adaptation on the lift. The fine-grid value shown in the left
plot is computed on a single fine-grid (N = 2) corresponding to the finest adapted
grid from the output-based simulations on the drag. Errors in the right plot are
measured with respect to this fine-grid value. The Swanson et al. value is obtained
from reference [60].
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a single fine-grid (N = 2) corresponding to the finest adapted grid from the drag-

based simulations. This fine grid contains 13716 nodes. Once again, the drag-based

simulations are dramatically more accurate than the Hessian-based simulations with

respect to the computed drag. Even the lift-based grids yield superior drag estimates

relative to the Hessian-based grids.

Figure 4-14 compares the final adapted grids from the eo = 0.00625 lift-based

simulation (top) and the r = 200 Hessian-based simulation (bottom). The inaccurate

lift prediction from the Hessian-based simulation is attributed to insufficient grid

resolution in the inviscid regions of the flow, and to insufficient resolution of the

separation zone on the suction side of the airfoil. The elements adjacent to the upper

surface near the trailing edge are inappropriately large, resulting in unacceptable

discretization errors in both the flow solution and in the geometric representation

of the airfoil. The lack of resolution in the separation zone is further illustrated

in Figure 4-15, which plots the Mach number distributions for the same grids. It

is evident that the flow solution is poorly resolved in this portion of the Hessian-

based grid relative to the corresponding region in the output-based grid. Moreover,

comparison of the contour lines outside the boundary layer give further indication

that the inviscid regions are relatively underresolved in the Hessian-based grid.

Figure 4-16 shows the final adapted grid using drag-based adaptation with eo =

0.000625. The grid is similar in appearance to the lift-based grids of comparable size.

4.6.4 Re = 5, 000, Mac = 0.5, a = 30 Two Element Airfoil

Adaptive simulations of flow past two NACA 0012 airfoil elements are presented. The

leading edge of the downstream element is positioned four chord-lengths aft of the

trailing edge of the upstream element. The flow conditions are Re = 5000 (based on

the chord of a single element), M = 0.5 and a = 3'. At this angle of attack, the wake

from the upstream element passes directly over the suction side of the downstream

element.

If the grid possesses insufficient resolution downstream of the left element, dis-

cretization errors will cause its wake to diffuse prematurely and impinge upon the
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Figure 4-14: NACA 0012 Airfoil test case: Re = 5, 000, Moo = 0.5, a = 30. Top:
final adapted grid using output-based adaptation. A requested error level of eo =
0.00625 is prescribed for the lift. Bottom: final adapted grid using pure Hessian-based
adaptation with r, = 200. The computed lift values shown in the plots correspond to
base values without correction. The error is measured with respect to the base lift
computed on the fine grid (N = 2) associated with the finest grid in the output-based
simulations for the lift.
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Figure 4-15: NACA 0012 Airfoil test case: Re ,000, M = 0.5 = 3" Top:

plot of the Mach number distribution on the final adapted grid using output-based
adaptation. A requested error level of eo = 0.00625 is prescribed for the lift. Bot-
tom: Mach number distribution on the final adapted grid using pure Hessian--based
adaptation with ri = 200.
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NACA 0005 Airfoil test case: Re = 5, 000, Moo = 0.5, a = 34. Final
using output-based adaptation. A requested error level of eo = 0.000625
for the drag.
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Figure 4-17: Two Element (NACA 0012) Airfoil test case: Re = 5000, Mo = 0.5,
a = 34. Initial grid in the adaptive runs for this test case.

downstream element. This, in turn, will adversely effect the accuracy of certain de-

rived quantities associated with the downstream element, such as the computed lift

or drag. If the output of interest is the drag on the upstream element only, then

the wake structure several chord-lengths downstream of the left element is of little

concern since it does not influence the left-element drag to any appreciable extent.

Similarly, discretization errors near the downstream element will have little impact

on the accuracy of the upstream-element drag. Alternatively, if the drag on the

downstream element is important, it will be necessary to resolve the flow around the

upstream element and to resolve its wake up to and beyond the downstream element.

Adaptive simulations are performed to demonstrate the ability of the output-

based scheme to provide appropriate grid resolution for three different outputs. The

output-based scheme is applied, independently, to the left-element drag, the right-

element drag, and the total drag (both elements). In each case, the prescribed error

tolerance on the output is eo = 0.0005. For comparison, an additional simulation is

performed using pure Hessian-based adaptation.

The initial grid for all four adaptive runs is shown in Figure 4-17. The farfield

boundary is placed at 15 chords. Figure 4-18 shows the final adapted grids for each

case and Figure 4-19 presents near-field views of the same grids. Figure 4-20 shows

the corresponding Mach number distributions computed on these grids.

Output-based adaptation on the left-element drag alone produces a final grid with

limited wake resolution beyond two chord-lengths downstream of the left element. As

eluded to previously, the left-element drag is relatively insensitive to discretization
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Figure 4-18: Two Element (NACA 0012) Airfoil test case: Re = 5000, Moo = 0.5,
a = 30. Final adapted grids from four different adaptive runs. The proposed output-
based method is applied to the left-element drag (top), the right-element drag (second
from top), and the total drag (third from top). The bottom plot corresponds to pure
Hessian-based adaptation.
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Figure 4-19: Two Element (NACA 0012) Airfoil test case: Re = 5000, M, = 0.5,
a = 30. Near-field view of final adapted grids from four different adaptive runs. The
left column (respectively, right column) of plots shows the grid near the upstream
element (respectively, downstream element). The proposed output-based method is
applied to the left-element drag (top row), the right-element drag (second from top),
and the total drag (third from top). The bottom row corresponds to pure Hessian-
based adaptation.
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Figure 4-20: Two Element (NACA 0012) Airfoil test case: Re = 5000, Moo = 0.5,
a = 3". Contour plots of the Mach number distribution from four different adaptive
runs. The proposed output-based method is applied to the left-element drag (top),
the right-element drag (second from top), and the total drag (third from top). The
bottom plot corresponds to pure Hessian-based adaptation.
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errors downstream of that point. Correspondingly, the grid near the downstream

element is only marginally refined.

Output-based adaptation on the right-element drag produces a grid with signifi-

cant wake resolution over the entire length of the inter-element gap, and beyond. The

drag on the downstream element is more strongly effected by discretization errors in

the vicinity of the upstream element. The adaptive algorithm responds accordingly

by providing moderate grid resolution around the upstream element.

Output-based adaptation applied to the total drag produces significant grid reso-

lution near both elements. The wake from the upstream element is resolved well past

the downstream element.

Adaptation based on the Mach number Hessian yields a final grid with higher

resolution in the leading edge and boundary layer regions relative to any of the output-

based simulations. However, as seen in previous test cases, the inviscid regions further

away from the elements are relatively underresolved without the adjoint error control.

The multiplicative factor for this case is r = 325.

The left-element, right-element, and total drag computed from each adaptive

simulation is presented in Table 4.1. Numbers in brackets correspond to corrected

values using the associated adjoint correction term (see Section 4.5.4). The drag

values from the adaptive simulations are compared with the drag computed on a single

fine grid obtained by uniformly refining (N = 2) the adapted grid corresponding to

output-based adaptation on both airfoil elements.

In each case, the output-based method is effective at ensuring that, the computed

output (after correction) from the final adapted grid meets the imposed error toler-

ance. The adaptive algorithm resolves only those regions of the flow that are crucial

for accurately computing the prescribed output. For the case where the output-based

method is applied to the left-element drag alone, accuracy in the right-element drag

is sacrificed in favor of a considerable reduction in grid size. This effect is not as severe

in the opposite case, when the output-based method is applied to the right-element

drag alone, for reasons outlined earlier. It is evident that for grids of comparable

size, output-based adaptation on both elements yields drag estimates that are dra-
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Table 4.1: Two Element (NACA 0012) Airfoil test case: Re = 5000, Moo = 0.5,
a = 34. Computed drag from four different adaptive runs: output-based adaptation
on the left-element drag, right-element drag, and total drag (both elements), and
pure Hessian-based adaptation. Numbers in bold face correspond to corrected drag
values using the associated adjoint correction term. Numbers in brackets are the
percentage error in the drag measured with respect to the fine grid value. The fine
grid is obtained by uniformly refining (N = 2) the adapted grid corresponding to
output-based adaptation on both airfoil elements.
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Grid Drag (Error)

Adaptive Criteria Nodes Left Element Right Element Total

Pure Hessian-Based 10561 0.06049 (4.2%) 0.06148 (7.5%) 0.1220 (5.8%)

Left-Element 0.05847 (0.7%) 0.07265 (27.0%) 0.1311 (13.7%)
Adjoint 3015 0.05821 (0.3%)

Output Right-Element 0.05800 (1.4%) 0.1182 (2.6%)
Based Adjoint 4526 0.06018 (3.7%) 0.05741 (0.3%) 0.1182_(2.6%)

Based on 0.1158 (0.5%)
Both Elements 9758 0.05820 (0.3%) 0.05756 (0.6%) 0.1153 (0.0%)

Fine Grid 38574 0.05804 0.05722 0.1153
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Figure 4-21: Two Element (NACA 0012) Airfoil test case: Re = 5000, Moo = 0.5,
o = 3'. Contour plots of the x-momentum adjoint variable from three different
adaptive runs. Output-based adaptation is on the left-element drag (top), the right-
element drag (middle), and the total drag (bottom).

matically more accurate than those obtained from pure Hessian-based adaptation.

Figure 4-21 shows plots of the x-momentum adjoint distribution for each of the

output-based adaptive simulations. With adaptation on the left element alone, the

magnitude of the adjoint is close to zero near the downstream element. This is consis-

tent with the fact that the accuracy of the left-element drag is essentially insensitive to

discretization errors near the downstream element. However, with output adaptation

on the right element alone, the adjoint takes on non-zero values near the upstream
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Figure 4-22: NACA 0005 Airfoil test case: Re = 100, 000, M, = 0.4, a = 00. Initial
grid in the adaptive runs for this test case.

element illustrating that the right-element drag is indeed sensitive to discretization

errors near the upstream element.

4.6.5 Re = 100, 000, M,, = 0.4 NACA 0005 Airfoil

Adaptive simulations are performed for flow over a NACA 0005 airfoil with free stream

conditions Re = 100, 000, M, = 0.4 and oz = 0'. This test case is included to assess

the performance of the output-based method on a higher-Reynolds-number flow. In

comparison to previous test cases, this flow is characterized by the presence of thinner

boundary layers, resulting in increased stretching requirements on the grid in order

to achieve comparable flow resolution.

The functional of interest is the drag coefficient. The initial grid in the adaptive

simulations is shown in Figure 4-22. The farfield boundary is placed at 25 chords.

Output-based simulations are performed for error tolerances of eo = 0.001, 0.0005,
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Figure 4-23: NACA 0005 Airfoil test case: Re = 100, 000, Moo = 0.4, a = 00.
Plots of the base and corrected drag (left), and corresponding errors (right) from a
series of adaptive simulations. Five different error tolerances are specified for the
output-based simulations ranging from eo = 0.001 to eo = 0.0000625. Five different
multiplicative factors are prescribed for the Hessian-based simulations ranging from
n = 25 to , = 400. Errors in the right plot are measured with respect to a single fine-
grid (N = 2) value corresponding to the finest adapted grid from the output-based
simulations. Also shown is the drag computed using XFOIL [20].

0.00025, 0.000125, and 0.0000625. The final adapted grids range in size from 539

nodes (eo = 0.001) to 5641 nodes (eo = 0.0000625). Pure Hessian-based adaptation

is performed for multiplicative factors of , = 25, 50, 100, 200, and 400. The final

grids range in size from 275 nodes (n = 25) to 6709 nodes (r = 400).

The left plot in Figure 4-23 shows the base drag fH(UH) and corrected drag

fh(QHUH) - (Q[IJH)T Rh(QHUH) for each of the final adapted grids. The fine-grid

value shown in the plot (hereafter denoted fh (Uh) eo=0.oooo625) is computed on a single

fine-grid (N = 2) corresponding to the finest adapted grid from the output-based

simulations. This fine grid contains 22123 nodes. The right plot shows the correspond-

ing errors in the drag measured with respect to the fine-grid value fA (Uh) Ieo=O.OOOO625-

The left plot also shows the computed drag using XFOIL [20], an interactive pro-

gram for the design and analysis of isolated airfoils. XFOIL uses a high-order panel

method for incompressible potential flow interacted with an integral boundary layer

formulation. A Karman-Tsien compressibility correction is incorporated.
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The output-based method provides corrected and uncorrected drag estimates that

are considerably more accurate than those predicted from the Hessian-based simula-

tions. As in previous test cases, the poor performance of the Hessian-based method

is attributed to insufficient grid resolution outside the boundary layer and wake re-

gions. This is illustrated in Figures 4-24 and 4-25 which present plots of the final

adapted grids and corresponding Mach number distributions for the eo = 0.000125

output-based simulation and the t, = 200 Hessian-based simulation.

Figure 4-26 shows plots of the final adapted grids from the K = 50 Hessian-based

simulation (left) and the eo = 0.001 output-based simulation (right). Below these are

corresponding plots of the local adaptation parameter T k defined by (2.25). A value

of eo = 0.001 is used to compute 77k on each grid. The value of 'rk for a given element

k quantifies the magnitude of the local contribution to the estimated remaining error

in the functional, expressed as a multiple of the target error for that element. In the

Hessian-based grid, ik reaches values greater than 150 indicating that the local error

contribution is 150 times greater than the elemental target error. In the output-based

grid, values of Tik are generally less than the smallest contour level in the plot, which

is 10. Typical values of 77k in a fully converged output-based grid are 0(1).

131



NACA 0005 - Re = 100,000 -M = 0.4

Output-Based Adaptation (Drag) 3226 Nodes
0.6-

0.4

0.2

0

-0.2
Leading Edge

-0.4 Blow-up

-0.6 0.025

-0.8

-1 True Value = 0.00957 0

-1.2 Enor 0.73%

-1.4 -0.025

-1.6

-1.8
-0.5 0 -0.05

-0.05 00.05 0 .1

Pure Hessian-Based Adaptation 3301 Nodes
0.6

0.4

0.2

0

-0.2
Leading Edge

-0.4 Blow-up

-0.6 0.025

-0.8

-1 True Value = 0.00957 0

-1.2 Err= 39.29%

-1.4

-1.6

-1.8
-0.5 0 .-0.05

-0.05 0 0.05 0.1

Figure 4-24: NACA 0005 Airfoil test case: Re = 100, 000, Mo,,= 0.4, a = 0'.
Top: final adapted grid using output-based adaptation with a requested error level
of eo = 0.000125 for the drag. Bottom: final adapted grid using pure Hessian-based
adaptation with r = 200. The computed drag values shown in the plots correspond
to base values without correction. The true value is the base drag computed on the
fine grid (N = 2) associated with the finest grid in the output-based simulations for
this test case.
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Figure 4-25: NACA 0005 Airfoil test case: Re = 100, 000, M, = 0.4, a = 0". Top:
plot of the Mach number distribution on the final adapted grid using output-based
adaptation. A requested error level of eo = 0.000125 is prescribed for the drag.
Bottom: Mach number distribution on the final adapted grid using pure Hessian-
based adaptation with rK = 200.
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Figure 4-26: NACA 0005 Airfoil test case: Re = 100, 000, Moo = 0.4, a = 0".
Top row: final adapted grids; bottom row: corresponding distributions of the local
adaptation parameter rik as defined by (2.25). The grid on the left is obtained using
pure Hessian-based adaptation with r = 50. The grid on the right is obtained using
output-based adaptation on the drag with eo = 0.001.
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Chapter 5

Conclusion

5.1 Summary

An error correction and grid adaptive procedure was presented for improving the ac-

curacy of functional outputs from numerical simulations of compressible flows. The

procedure is based on a discrete adjoint formulation in which the estimated error in

the functional can be directly related to the local residual errors of both the primal

and adjoint solutions. The adaptation/correction procedure was demonstrated by ap-

plication to two-dimensional inviscid and viscous (laminar) test cases using standard

finite volume discretizations. The procedure was also applied to a Galerkin finite

element discretization of scalar convection-diffusion.

An isotropic grid refinement procedure was outlined and applied to a series of

subsonic, transonic, and supersonic inviscid test cases. Comparisons were made with

a commonly-used adaptive scheme [6, 64] that employs indicators based on the local

magnitude of the second derivatives of the static pressure or Mach number. In many

cases, this scheme either failed to self-terminate or produced erroneous values for the

predicted functional at termination. For every test case considered, the proposed

output-based method succeeded in self-terminating and surpassed the prescribed ac-

curacy level for the chosen functional.

An anisotropic grid-adaptive procedure for functional outputs was presented and

applied to a series of laminar Navier-Stokes test cases for Reynolds numbers ranging
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from 5,000 to 100,000. The output-based procedure can be viewed as a merging of

Hessian-based adaptation with output error control. The Hessian of a prescribed

scalar is used to determine the local stretching and orientation characteristics of the

grid, while adjoint-based criteria are used to establish the local element size. The pro-

posed output-based method was shown to compare very favorably in terms of output

accuracy and computational efficiency relative to pure Hessian-based adaptation.

5.2 Contributions

1. Output-based adaptation for finite volume methods.

Adaptive methods for functional outputs have been successfully implemented

within the framework of the finite element method [9, 10, 13, 23, 30, 38, 46,

47, 51]. The current work is perhaps the first implementation of an output-

based adaptive method for compressible flow simulations within a finite vol-

ume framework. The proposed output-based method has been implemented

for quasi-one-dimensional inviscid flows [62] and two-dimensional inviscid flows

[63]. This dissertation presents the Navier-Stokes implementation for the first

time. M6ller and Giles [40] have recently implemented an output-based adap-

tive method for two-dimensional Euler flows using a finite volume discretization.

Their adaptive indicators differ from those used in the present method (see Sec-

tion 2.3.1 for further details).

The adaptive criteria used in the present work are based on reducing and

equidistributing the remaining error in the functional after correction. The

adaptive parameters are comprised of two inner products representing mea-

sures of the remaining error: a primal term and a dual term (see Section 2.3.2).

These inner products can be expressed as sums of local contributions from each

element in the domain. While the two inner products are approximately equal

(exactly equal for linear problems), the local contributions to these products

from any given element are generally not equal. The primal term is essentially

what is used by Becker, Rannacher and collaborators [9, 10, 13, 51] in their
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finite-element-based adaptive procedure for functional outputs. To the author's

knowledge, the addition of the dual term in the present procedure is novel.

2. Anisotropic adaptation for functional outputs.

Much of the previous work in anisotropic grid adaptation has utilized adaptive

sensors based on the error incurred by linear interpolation of a prescribed scalar

field [16, 18, 19, 27, 48, 67]. To the author's knowledge, the viscous implemen-

tation in this work represents the first time output-based adaptive criteria have

been incorporated into an anisotropic grid-adaptive procedure for either the

finite volume or finite element methods. Output error control is incorporated

into a metric that governs three characteristics: the size, stretching, and orien-

tation of the elements in the grid. Output-based criteria are used to control

the local element size whereas the Mach number Hessian controls the stretching

and orientation. To the author's knowledge, the manner in which these three

metric characteristics are decomposed, to allow for the introduction of the ad-

joint information, is novel. In principal, this decomposition technique can be

used to specify adaptive information for each of the three metric characteristics

individually.

3. Application of adjoint error correction to functional outputs of Navier-

Stokes simulations and two-dimensional transonic Euler simulations.

The functional correction technique used to improve the accuracy of the com-

puted outputs in the present work is essentially an algebraic version of the

Pierce and Giles method [26, 49]. The primary difference being that the cur-

rent approach is cast in a multilevel framework in which the functional value

on a fine grid is used as the accuracy benchmark instead of the exact functional

corresponding to the solution of the original PDEs. In this sense, the fine grid

used here plays a similar role to that of the truth mesh in the bounds procedure

of Patera and Peraire [38, 46, 47].

Pierce and Giles obtained superconvergent functional estimates for the Poisson

equation in one and two dimensions, the quasi-one-dimensional Euler equations,
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the one-dimensional Helmholtz equation, and for nonlinear diffusion in two di-

mensions using their adjoint-based correction technique [25, 26, 49]. Supercon-

vergent results for the quasi-one-dimensional Euler equations were also obtained

in reference [62] using the current algebraic implementation. Improvements in

functional accuracy are exhibited in virtually all the numerical results presented

in this dissertation. Accuracy improvements in the lift, drag and/or moment

coefficients from the current implementation of the adjoint correction technique

have been obtained for subsonic, transonic, and supersonic Euler flows (see Sec-

tion 3.6), and for subsonic Navier-Stokes simulations with Reynolds numbers

ranging from 5,000 to 100,000 (see Section 4.6). Improvements in the rates of

convergence of the functional error were demonstrated for the Gaussian bump

inviscid test case in Section 3.6.2, and the Re = 10, M, = 0.38 viscous cylinder

and Re = 10, 000, M, = 0.4 NACA 0005 airfoil test cases in Section 4.6.1. In

addition, improvements in the convergence rate of a diffusive flux integral was

obtained for modest-Peclet-number scalar convection-diffusion in two dimen-

sions using a Galerkin finite element method (See Section A.5.1).

5.3 Potential Impact

1. Improved reliability of CFD simulations.

In industry, complex CFD simulations often require hours or even days of CPU

time to converge. The reliability and accuracy of these simulations is imperative

owing to the substantial costs involved. An inaccurate drag prediction due to

inappropriate grid resolution in a obscure part of a complex, three-dimensional

domain would require that the grid be adjusted, and the simulation rerun,

which is generally unacceptable. The possibility of such an occurrence is what

may preclude the use of CFD in some applications. Furthermore, even for the

most experienced practitioners of CFD, the manner in which a grid should be

adapted in order to ensure the accuracy of the simulation while maintaining

computational efficiency is not always clear. This is particularly true if the
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accuracy of the simulation is measured by the accuracy of specific outputs such

as lift or drag, which tend to be the most important quantities needed from the

simulation. As demonstrated in this thesis, some of the most commonly used

feature-based or interpolation-error-based adaptive algorithms cannot achieve

this reliably. The potential benefit of a robust output-based adaptive scheme is

that these outputs can be predicted accurately, efficiently and in an automated

manner, saving valuable time and resources. Most importantly, however, is

the added reliability such an adaptive scheme could provide for the overall

simulation process.

2. Enhanced applicability of anisotropic adaptation.

Numerical results indicate that anisotropic adaptation based exclusively on the

Hessian of the Mach number often provides unsatisfactory estimates for the

lift and drag coefficients. This has also been observed in the literature [16,

67]. Castro-Diaz et al. [16] state that the poor performance of Hessian-based

adaptation is due to incorrect boundary layer resolution; in particular, they

claim that the cause is due to the nonuniformity in distance of the first layer of

nodes to the wall. Other explanations are related to the general shapes of the

triangles in the grid. According to Rippa [52], a broad consensus exists in the

literature that good triangulations should contain as few long and thin triangles

as possible, particularly when the largest angle in the triangle approaches 7r

radians.

Despite these past results, the proposed output-based adaptive method was

able to provide dramatic improvements in the accuracy of the lift and drag over

pure Hessian-based adaptation for all the viscous test cases considered. No

special modifications were needed near the walls in regards to the distance to

the first layer of nodes, and no explicit effort was made to limit the largest angle

in the triangulation. Typical values for the maximum angle in the triangulation

Rippa goes on to show that thin triangles with angles approaching 7r may still be acceptable for
interpolating functions with highly biased directionality.
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were well within 1% of 7r.

Results indicate that the Hessian-based scheme was unable to provide sufficient

grid resolution in key parts of the domain, where discretization errors had signif-

icant impact on the accuracy of the aerodynamic forces. In particular, boundary

layers and wakes tended to be overrefined relative to adjacent inviscid regions

where the grid was often severely underrefined.

The fact that slight modifications of the grid in localized regions of the domain

can have such a dramatic impact on the accuracy of certain outputs is even

more relevant in three dimensions. This is where a reliable adaptive algorithm

can make the biggest impact on the scope of CFD usage in practical design

applications.

5.4 Future Work

1. Implementation for Reynolds-Averaged-Navier-Stokes (RANS) com-

putations.

In principle, the output-based anisotropic grid-adaptive method outlined in

Chapter 4 can be applied without modification to the simulation of the RANS

equations using turbulence models such as the Baldwin-Barth [7] or Spalart-

Allmaras [56] one-equation models, for example. Output-based adaptation is

expected to be particularly effective for turbulent flows. High-Reynolds-number

RANS simulations are characterized by very thin boundary layers that require

highly stretched elements for efficient resolution. Furthermore, achieving grid

convergence for turbulent flows is generally more difficult than for laminar com-

putations due to the additional transport equation for the turbulent viscosity.

The use of an effective output-based adaptive scheme could greatly facilitate

the process, particularly when key outputs are of primary importance.

2. Extension to three dimensions.

The algorithms and procedures outlined in this dissertation are all extendible to
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three dimensions. In many cases the details that define their operation for trian-

gular grids can be extended in a natural manner to tetrahedral grids. Park [45]

has implemented an extension of the proposed output-based adaptive proce-

dure for three-dimensional Euler simulations. Application to three-dimensional

high-Reynolds-number Navier-Stokes simulations could potentially be the most

important extension of this work (see Section 5.3).

3. Output-based adaptive criteria for element stretching and orienta-

tion.

In the output-based adaptive method described in Section 4.5.4, adjoint criteria

are used to determine the local element size, and the Mach number Hessian is

used to obtain local stretching and orientation information. The use of the Mach

number distribution for the local Hessian calculations is completely arbitrary. It

was chosen in the present context to facilitate comparisons with pure Hessian-

based adaptation on the same scalar; in particular, it highlighted the fact that

the dramatic improvements in accuracy obtained by the output-based adaptive

method were entirely due to the use of adjoint error control on the functional

of interest, and not on the choice of scalar for the Hessian calculations. In

principle, the current framework does not even require that the Hessian of a

scalar be used to provide the stretching and orientation information. A useful

extension to the current method would be to introduce size, stretching and

orientation information based exclusively on the adjoint criteria.

4. Extension to unsteady flows.

Many practical flows are characterized by unsteady phenomena such as vortex

shedding or oscillatory shock motion. In such cases, the outputs of interest may

be time-averaged quantities, or perhaps time histories of instantaneous quan-

tities. During a typical unsteady simulation, the local resolution requirements

of the grid may change significantly from one time step to the next. An effi-

cient time-accurate simulation would require frequent modifications of the grid

to account for the changing flow patterns while maintaining output accuracy.
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An output-based adaptive scheme might be an ideal candidate to achieve this.

The most obvious implementation (in the general nonlinear case) requires that

the unsteady adjoint equations be marched backward in time after the full un-

steady primal problem has been solved to completion. In general, this is not

a practical way to proceed. An alternate possibility, for appropriately defined

outputs, might be to solve a steady adjoint problem at each primal time step.

The adjoint solution from the previous time step could be used to initialize the

solution process at the current time step. In principle, the adjoint might also

be used to provide information on the optimal time step.
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Appendix A

Convection-Diffusion

The adjoint error correction and grid adaptive methodology presented in Chapter 2 is

applied to steady, scalar, linear convection-diffusion using a Galerkin finite element

discretization. In Section A.4 the general nonlinear correction theory is specialized

for a linear problem. In Section A.5 functional correction and adaptive results are

presented. The correction technique is shown to provide an improvement in the con-

vergence rate of a diffusive flux integral. Adaptive results demonstrate effective error

control for a similar functional using the proposed output-based adaptive procedure.

A.1 Governing Equation

The steady, two-dimensional convection-diffusion equation may be written as:

(u) V - (YU) -Pe V2U=, (A.1)

where L represents the linear, homogeneous, differential operator, u is the scalar de-

pendent variable, V is a prescribed, divergence-free velocity field, f is the volumetric

generation term, and Pe is the Peclet number which quantifies the relative strengths

of advective to diffusive transport of the scalar u.

The most common boundary conditions encountered for this equation are Dirich-

let (specified value) and Neumann (specified normal derivative) conditions. If DQD
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and 80N represent portions of the domain boundary where Dirichlet and Neumann

conditions are specified, respectively, then these conditions may be written as

n = us, on

Vu-n= on 8QN, (A.2)

where us, and (Ou/n),, are specified distributions over their respective boundaries.

Another common boundary condition is the Robin condition (also known as the con-

vective boundary condition) in which a linear combination of the scalar and its normal

derivative is specified.

Two physical processes that are described by the convection-diffusion equation

are heat and mass transfer. In the case of heat transfer u represents the internal

energy or temperature of a fluid being transported due to overall fluid motion (advec-

tion) and molecular interaction (diffusion). In the case of mass transfer u represents

the concentration of a particular species being transported by similar mechanisms.

Convection-diffusion equations also result from a particular linearization and simpli-

fication of the incompressible Navier-Stokes equations. In this case u represents a

component of the specific momentum vector (that is, a velocity component). In the

Navier-Stokes equations, the velocity, itself, is an unknown giving rise to the nonlinear

terms in the equations.

A.2 Galerkin Finite Element Method

The finite element method is a numerical discretization method for approximating so-

lutions to partial differential equations (PDEs) with associated boundary conditions.

The method may be summarized as follows: find Uh E Sh such that V Wh E Sh

f/ Wh Z(Uh) dQ = 0, (A.3)
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where Sh is a prescribed function space of trial (or interpolation) polynomials and Sh

is an associated space of weighting functions. The piecewise polynomial function Uh

is the resulting approximation to the PDE. The residual R is defined as

R (u) = L (u) - f, (A.4)

where L is the homogeneous differential operator associated with the PDE under

consideration and f is the corresponding inhomogeneous term as defined in (A.1), for

example. The computational domain, Qh, is a partition of the original domain (upon

which the continuum PDE is defined) into Ne non-overlapping triangular elements,

Qe, such that

N,

Qh= JQe. (A.5)
e=1

In the present implementation, Sh is chosen to be the space of piecewise linear poly-

nomials over each element in the domain. The Galerkin method is obtained when the

space of weighting functions, Sh, is also chosen to be piecewise linear except at the

Dirichlet boundaries, where Wh is set to 0 and the Dirichlet conditions are imposed

strongly. The function Uh is usually written as a linear combination of nodal basis

(or shape) functions Ni(x, y)

uh(x, y) ZuiNi(x, y), (A.6)

where the coefficients ui are nodal values Uh (Xi, yi) which constitute the degrees of

freedom or unknowns of the discrete problem. The shape functions Ni(x, y) are linear

"tent-shaped" functions associated with each node i such that

Ni(xj, yj) = oss, (A.7)

for any grid node j where 6oj is the Kronecker delta symbol. Figure A-1 shows an

example of the shape function Ni(x, y) for a typical node i and a piecewise linear rep-
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Figure A-1: Left: Galerkin weighting function ("tent function") for node i; right:
schematic of a piecewise linear representation of the solution u over a typical patch
of elements. Figure obtained from reference [15].

resentation of the solution over a typical patch of elements. Further implementation

details can be found in reference [29].

A.3 Stability

When the Peclet number is large (that is, Pe > 1) advection dominates diffusion.

In this case the exact solution often exhibits narrow internal and/or boundary layers

characterized by strong variations in the transport variable. Under these conditions,

the Galerkin method and other central-difference-type methods are known to produce

solutions that are corrupted with spurious node-to-node oscillations. One way to

eliminate this is to severely refine the mesh to the point where advection no longer

dominates diffusion at an elemental level. In quantitative terms, if one defines an

elemental Peclet number as Peh = ||V|h/K where h is a measure of the element size

(such as the diameter) and K is the physical diffusivity (appearing in the dimensional

form of the convection-diffusion equation) then the Galerkin method may produce

stable solutions if Peh ~ 0(1) throughout the domain [29]. For higher Peclet-number

problems it may become prohibitive to refine the mesh to the extent that is needed

for stability. An alternate approach is to use some type of upwind differencing on

the advective term. In the finite element context, the Streamline Upwind/Petrov-

Galerkin Method (SUPG) [14] has proven to be quite robust and stable at higher
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Peclet numbers without requiring such extreme limits on grid spacing. In the present

implementation, however, only modest Peclet numbers (< 100) are considered, for

which the Galerkin method performs adequately.

A.4 Adjoint Error Correction: Linear Theory

The functional correction procedure presented in Chapter 2 is specialized for a linear

problem. This procedure is essentially an algebraic implementation of the Pierce and

Giles [26, 49] correction method. From this point onward Uh represents the discrete

vector containing the finite element solution at the nodes.

A.4.1 Duality

We are interested in computing the linear functional output Jh

A = gU U+ ah, (A.8)

where Uh is the primal variable satisfying the discrete finite-element system of equa-

tions

Lhuh = fA, (A.9)

and ah is a constant vector. The dual problem is to determine

Jh = vhfh + ah, (A.10)

where Vh is the adjoint variable satisfying

L vh = gh. (A.11)
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Equivalence of the formulation is seen from

=T
JA = ghuh+ah,

= oT Luha , (A.12)

= vfh -|ah.

A.4.2 Error Correction

The primal and dual residual operators are defined as

Rh(#h) Lh -- fh,

R'(#h) L T#h - gh. (A.13)

where Rh(uh) = 0 and R'(vh) = 0. Note that these are discrete operators that

represent integral quantities such as those that would arise from the finite element

approximation (A.3).

Consider a perturbation oUh. We have,

Rh(uh+ 6 uh) = Lh(uh+u) -fh,

= Lh6 uh. (A.14)

The corresponding error in the functional will be

6 Jh - ghouh,

h V6Uh,

= vTRh(uh + 6uh). (A.15)

Let iih = nUh + oUh and Jh = Jh + 6Jh denote the perturbed primal solution and

functional, respectively. Also consider an independent perturbation in the adjoint,
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6 Jh = vhRh(ih),

- si3Rh(iUh) + (Vh - h) Rh (h),

= iRh (iih) - 6vTRh(ih),

= D/Rh(ih) - 6vT LOuh,

- iRh (ih) - Rv(ih)TOuh,

= iRh (ih) - Rv(h)TL-Rh (h). (A.16)

Note that the perturbation in the adjoint will also lead to an independent perturbation

in the functional, Jv = Jh + 6Jh, which can be expressed as,

6Jh = jvTfh,

= ovTLhuh,

Rv(ih )Tifh - Rv(h )T6U. (A.17)

The remaining error term is

the following identity:

identical to that which was derived for 6Jh leading to

Jh ~- J Jh -h- hv

= TRh (fh) - R(ih)T ft (A.18)

A.4.3 Strong Boundaries

The following development follows the derivation in Section 4.4 and reference [22]. Let

Lh denote the discrete operator without boundary integrals, and let Bh represent the

projection matrix that sets the boundary conditions in a strong sense (see Section 4.4).
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(Ih - Bh)Lhuh

Bhuh

~ (Ih- Bh)fh,

= Bhch,

[(Ih - Bh)Lh + Bh] Uh = (Ih - Bh)fh + Bhch.

The relation to Lh is given by

Lh (Ih- Bh)Lh+ Bh,

f = (Ih- Bh) fh+ Bch,

so that we recover (A.9)

Lhuh = fh-

The adjoint can be decomposed into two orthogonal components:

b)
oh

Vh

= BhVh,

= (Ih - Bh)vh. (A.23)

where (b) denotes the strong boundary nodes and (i) the remaining interior nodes.
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Expressing the functional error in terms of these components,

6Jh = gDuh,

h- T LLh6Uh,

= v TRh (fh),

= (Bhvh + (Ih - Bh) vh)T Rh(4),

S(B 2vh + (Ih - Bh)2v) T Rh(iih),

- (bv + (Ih - Bh)v R(iih),

b))BhRh(h) + v) (I Bh)R(iih),

= b) Bh)Lh 6 uh + v W))T (Ih - Bh)Lh6 uh,

= (v(b) Bh [(Ih - Bh)Lh + Bh] 6 1uh + vW)T (Ih - B) [Ih - Bh)L

+ Bh] 6 Uh,

v (b) Bh 6 uh + v ) (Ih ~ Bh)L 6 uh,

- (vb Bh(-h --Ch) + ( T (Ih ~ (Lhuh - fh),

b) h ~( h - Ch) + (V ) (Ih- Bh)Rh (ih), (A.24)

shows that the boundary adjoint weighs the explicit error in the solution at the strong

boundary whereas the interior adjoint weighs the residual error in the interior. This

elucidates the difference in the character of the adjoint on the strong boundaries. In

general, the magnitude of the adjoint on the boundary can be quite different than

that in the interior.
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A.4.4 Postprocessing the Boundary Adjoint

The following is based on reference [22] (see also Section 4.4.1). Examining the adjoint

system we have,

LhVh

[(Ih - Bh)Lh+Bh]T vh

I ( Ih- Bh)vh + Bhvh

= gh,

= gh,

= gh. (A.25)

Left multiplying by (Ih - Bh) yields,

(Ih - Bh(h - Bh)gh. (A.26)

Thus 0) satisfies

(Ih - Bh)L TvW

BhVh

= (Ih - Bh)gh,

= 0,

which can be combined into

[(Ih - Bh)LT + Bh] vW = (Ih - Bh)gh.

Once v(' is obtained, the boundary adjoint can be postprocessed from

V(b)
Vh

- Bh gh - L jV1

A.5 Results

The error correction technique and grid adaptive procedure are tested within the

framework of the Galerkin finite element method outlined in Section A.2.
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Figure A-2: Convergence results (left); Primal and adjoint solutions (right) for Pe =

10.

A.5.1 Functional Correction Results

Scalar convection-diffusion is simulated on the rectangular domain shown in Figure A-

2. The velocity field is set to V = i. The Dirichlet condition u = 1 is prescribed

on the left and bottom sides of the rectangle, denoted QD. Homogeneous Neumann

conditions are prescribed on the top and right boundaries 9 QN. The source term is

f = 1 and the Peclet number is 10. The functional of interest is the diffusion flux

across Dirichlet boundaries,

J(U) = Vu -fi ds, (A.30)

which is approximated using residual balances as described in Section 4.4.2. Figure A-

2 shows plots of the base error loJhI = jh - JA and the remaining error after cor-

rection IJh -- H(QH)TRh(Q HuH) computed on a hierarchy of 5 embedded grids.

Starting with the coarsest grid, each subsequent grid is constructed by subdividing

the triangles of the previous grid into 4 self-similar triangles. Errors are measured

with respect to the fine grids (N = 2) associated with each base grid in the hierarchy.
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The prolongation operators Qi and Q' are defined in Sections 2.2.2 and 4.4.3, respec-

tively. The convergence results demonstrate that the corrected functionals converge

faster than the associated base values.

A.5.2 Adaptive Results

A convection-diffusion test case is contrived for testing the proposed output-based

adaptive procedure outlined in Section 2.3.2. Grid refinement is achieved using the

isotropic h-refinement algorithm described in Section 3.5. The domain is contained

within a rectangular outer boundary. The inner boundary is geometrically complex;

shaped like a letter of the alphabet. Figure A-3 shows the preliminary grid used (prior

to adaptation) with a blow-up near the object.

Velocity Field

Prior to solving the convection-diffusion equation, a divergence-free velocity field V

must be specified. One way of obtaining a velocity field that satisfies V - V = 0

everywhere and V - i = 0 on solid walls is to solve the Laplace equation for the

velocity potential # with appropriate boundary conditions. By defining V = V# we

obtain

V -Y = V2#= 0. (A.31)

To prevent flow through solid walls we impose homogeneous Neumann conditions

there,

V -fi = V # - i 0. (A.32)

Lastly, a potential difference is imposed across the inflow and outflow boundaries by

prescribing different values for the potential at each boundary. A greater value for

the potential is assigned at the outflow boundary (relative to the inflow boundary) so

that the flow does indeed leave the domain there. Fortunately, the Laplace equation is
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Figure A-3: Initial computation grid prior to adaptation (top); blow-up of the same
grid near the obstacle (bottom).
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a special case of the convection-diffusion equation; it is obtained when Pe = 0. Thus,

the very same finite element method described in Section A.2 can be used without

modification to solve for the velocity potential. Once # is obtained it is a trivial

matter to differentiate the solution to obtain the velocity components. Figure A-

4 shows the computed velocity potential (top) and the corresponding velocity field

(bottom) in the vicinity of the object.

Boundary Conditions

As is evident from Figure A-4, the inflow boundary is chosen to be the left-most seg-

ment of the outer boundary and the outflow is prescribed at the right-most segment.

The upper and lower segments as well as the entire surface of the interior object are

chosen as solid walls. At the inflow boundary, the value of the transport variable

u is held at 0. Homogeneous Neumann conditions are prescribed at the upper and

lower walls as well as on the outflow boundary. Homogeneous Dirichlet conditions are

applied on the surface of the object except on the upper-left-most segment where a

Gaussian distribution for u is prescribed. The distribution varies from machine-zero

at the edges to a maximum of 1 at the middle of the segment.

Functional

The functional of interest is chosen to be the diffusive flux across the boundary seg-

ment QDi,

J() = Vu -fi ds, (A.33)

where QD1 is the upper-left-most segment of the object.

Primal and Adjoint Solutions

Figure A-5 shows plots of the primal and adjoint solutions for different Peclet num-

bers. In each case, the adjoint solution corresponds to the functional defined in (A.33).

All solutions presented in this figure were solved on the mesh shown in Figure A-3.
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Figure A-4: Velocity potential (top); corresponding velocity field near the upper-left
portion of the obstacle (bottom).
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Figure A-5: Computed solutions of the primal (left column) and adjoint (right col-

umn) convection-diffusion equations for different Peclet numbers (Pe).
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For Pe = 0 the primal and adjoint equations simplify to the Laplace equation. In

both cases the transport scalar diffuses out from the upper-left segment of the object

in an isotropic manner without any advective bias. For Pe = 10 the primal scalar

is diffused and transported downstream by advection whereas the adjoint variable

is advected upstream. At Pe = 100 advective effects are even more pronounced.

Note the slight instability in the adjoint solution at the inflow boundary. This is

attributed to the inadequacy of the Galerkin method to handle the moderate to large

advection associated with the higher Peclet number. See Section A.2 and [14] for a

more elaborate discussion of this.

Adaptation

Figure A-6 shows adaptive results performed for Pe = 10. The original and final grids

and corresponding primal solutions are shown in this figure. The adapted solution

is better resolved in the vicinity of the upper-left surface of the object upon which

the functional is defined. Figure A-7 shows the convergence of the functional during

the iterative adaptive process versus the total number of nodes in the respective

grid. The total number of nodes is plotted on a logarithmic scale. Also shown is

the convergence of the corrected functional. The functional convergence on uniformly

refined meshes is also provided for comparison. The two uniformly refined grids were

obtained by subdividing each of the elements in the original mesh into 4 and 16

elements, respectively. The solid line is a Richardson extrapolation of the functional

values computed on the uniformly refined grids.
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Figure A-6: Plots of the original grid and primal solution (left) and the final refined
grid and corresponding primal solution (right) for Pe = 10.
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Appendix B

Error Analysis

In this section, nonlinear terms are retained in the analysis of the functional error. A

derivation of the duality gap D, encountered in Section 2.3.1, is also presented.

B.1 Functional Error

The exact, truncated, second order, Taylor series expansion of fh(Uh) about the

perturbed solution can be written as

afh ~1 OU ~) 2 fh h-O) (.1
fA(Uh) = fh(Oh) + afh (Uh - Uh) + 2(U - Uh) (Uh - h), (B.1)

where fh(Uh) is assumed to be twice differentiable with respect to the components

of Uh. In this expression, [O2 fh/&Ul] is the Hessian of the functional evaluated at

the intermediate state (U, where Uh - < < Uh - Uh componentwise. Similarly,

the residual operator, Rh(Uh) can be expanded as

Rh(U) Rh (Uh) + UW (B.2)

where

(W)i= -(Uh - h)T (Uh - (B.3)
2 2
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for each component i of the vector W. The term, [02(Rh)i/&Uh]j| represents the

Hessian of the ith component of the residual vector evaluated at the intermediate

state Uj, where U - U U - Uh componentwise. In general, the intermediate

state Uj' is different for every component i of the residual expansion in (B.2). From

(B.2), the solution error is obtained, symbolically, as

B__ -1

(Uh-- h)= Oh Uh (Rh(0h)+W , (B.4)

where the Jacobian is assumed nonsingular due to wellposedness. Using (B.1), (B.4),

and the definition of the fine-grid adjoint given by (2.6), we arrive at the following

expression for the functional error:

fh (Uh) - h(Uh) 'J4Rh (Uh)

Computable correction
T

+ (h - h RTh(U)

Remaining error neglecting nonlinear effects

182
+ qJIlW _(UI h) T 0 2 fhS W 2 (Uh ~ h T (Uh - h)

Error due to nonlinear effects

B.2 Duality Gap

Right-multiplying the transpose of (2.10) by [BRh/0Ush] - Rh(Uh), and using (B.4),

(W - Th) Rh)(Uh) = -R' ('4)T [aRh Uhl Rh(Uh),

~ T ~ Rh
= RT (C -) Uh h+ alh W]]

R' ( h) (Uh - Uh) - (h - 'Ph W,
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from which the duality gap D is obtained as

D (h - h- ) T Rh( h)- R"" T (Uh -h ),

=T= - - 'W W,

= of W. (B.7)
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Appendix C

Isotropic Grid Smoothing

A local least squares procedure for isotropic grid smoothing is presented. This pro-

cedure is used to improve the quality of the grids during the inviscid simulations of

Chapter 3. Referring to triangle k in Figure C-1, the isotropic quality measure [11]

(C.1)
h+ h2 + h3 (h1 + h2 + h3)

qk =
16v/5A

has value 1 for an equilateral triangle and tends to infinity as the area A of the

triangle tends to zero holding at least one of its sides constant. Note that for a

positive triangle, qk E [1, oo). Let Ni be the number of triangles surrounding node i

(in Figure C-1, Ni = 6). The least squares problem is to determine the coordinates

(XI, y') of node i such that the sum of the squares of the quality measures qk for the

node i
triangle k

Figure C-1: Patch of triangles surrounding node i.
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triangles k E [1, Nj] surrounding node i is minimized. The surrounding nodes are

held fixed during the minimization process. More specifically, the optimal location of

node i is given by

Ni

(x'i, y) = arg min q (C.2)
(xi,yi) k=1

Thus the procedure positions node i such that the surrounding triangles are as close

as possible, in a least squares sense, to equilateral triangles. This procedure is applied

sequentially to selected nodes in the grid (see Section 3.5).
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Appendix D

Continuous Adjoint Correction

Theory

A brief outline of the continuous adjoint correction theory of Pierce and Giles is

presented. The subsequent treatment focuses on the linear theory and follows the

presentation given in references [25, 26, 49]. The reader is referred to the same

references for the nonlinear continuous theory. Analogies are made with the linear

and nonlinear algebraic theory of Sections A.4 and 2.1.2, respectively.

D.1 Theory Without Boundary Terms

Let u be the solution of the linear partial differential equation

Cu = f, (D.1)

in the domain Q, subject to homogeneous boundary conditions. The adjoint differ-

ential operator L* and associated homogeneous boundary conditions are defined by

the identity

(v, 12u) = (L*v, u) , (D.2)
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for all u and v satisfying the respective boundary conditions. The notation (-,-)

represents an integral inner product over the domain Q.

We are concerned with the functional output

J = (g, u), (D.3)

where g is a given function. An equivalent dual formulation of the problem is to

determine the functional

J = (v, f) , (D.4)

where v satisfies the adjoint equation

L*v = g, (D.5)

subject to homogeneous boundary conditions. Equivalence of the two forms of the

problem follows from

(V, f) = (v,Lu) = (L*v, u) = (g, u). (D.6)

Let uH and VH be approximations to u and v, respectively, that satisfy the homo-

geneous boundary conditions. We assume that these approximations are derived from

a numerical discretization such as a finite element or finite volume approximation on

a grid with average element size H. When using a finite volume method, UH and

vH might be created by interpolation through computed values at the nodes. With

finite element methods, one might use the finite element solutions themselves, or one

could again use interpolation through nodal values to obtain approximate solutions

that are smoother than the finite element solutions. Substituting uH and vH into the
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Linear-Continuous Linear-Algebraic Nonlinear-Algebraic

Exact Functional (g, u) gh Uh fh(Uh)
Approximate Functional (g, UH) gh USh fh( h)

Computable Correction (VH, IUH - f) T (Lhiih - fh) XI T Rh (Uh)

Remaining Error (vH - V, £UH ~- f) (Ph - Vh)T(Lhih - fh) (XIh - h )T Rh(0h)

Remaining Error (I*vH - g, uH ~ U) (L 9hh - - Uh) R' (h )T (&h - Uh)

Table D.1: Terms associated with the algebraic linear correction theory of Section A.4
and the algebraic nonlinear correction theory of Section 2.1.2 that are analogous to
the terms in the continuous linear theory of Pierce and Giles [25, 26, 49].

primal and adjoint partial differential equations yields

IUH ~ fH,

I*VH ~ gH. (D.7)

Using the definitions and identities above, the functional can be expressed as

J = (g, U),

(9, UH) - (9H, UHI - U+ 9H - 9, UH - U) ,

(9, UH) - (gUH, UH - U) ±H - 9, UH - ) ,

(9, UH) - (H, UH - f)+(H - V, UH - f) , (D.8)

where (g, UH) is the functional estimate computed using the numerical solution UH,

(VH, IUH - f) is the computable adjoint correction, and ($*vH - g, UH - u) and

(VH - v, IUH - f) are two equivalent forms of the remaining error after correction.

Table D.1 shows analogous terms associated with the algebraic linear correction the-

ory of Section A.4 and the algebraic nonlinear correction theory of Section 2.1.2.

One difference between the algebraic and continuous approaches is that the algebraic

expression for the functional, ghUh or fh(Uh), already contains boundary integral con-

tributions whereas the continuous expression, (g, u), does not. Boundary integrals are
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added as separate terms in the continuous case as will be seen in the next section.

D.2 Theory With Boundary Terms

The theory is extended to include inhomogeneous boundary conditions for the primal

and dual problems, and boundary integrals in the output functional. The subsequent

presentation follows references [25, 26].

Let u be the solution of the linear partial differential equation

Cu = f, (D.9)

in the domain Q, subject to the linear boundary conditions

Bu = e, (D.10)

on the boundary 9Q. The form of the operator B may differ on different parts of the

boundary (e.g. inflow and outflow boundaries for convection).

The output of interest is taken to be

J = (g, u) + (h, Cu)an ,, (D. 11)

where (-,-), represents an integral inner product over the boundary. The boundary

operator C may be algebraic (e.g. Cu u u) or differential (e.g. Cu =-Du/an), but

must have the same dimension as the adjoint boundary operator B* to be defined

below.

The corresponding linear adjoint problem is

fC*V = g, (D.12)
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in Q, subject to the boundary conditions

B*v = h, (D.13)

on 0Q. The fundamental identity defining L*, B*, and the boundary operator C* is

(v, Lu) + (C*v, Bu)a, = (L*v, u) + (B*v, Cu),, , (D.14)

for all u and v. This identity is obtained by integration by parts [24]. The equivalent

dual form of the output functional is obtained immediately from D.14 as

J = (v, f) + (C*v, e)n,, (D.15)

Given the approximate numerical solutions uH and VH, the functional can be

expressed as

J = (g, u) + (h, Cu) . ,

- (g,uH) + (h,CuH)ag

- (gH, UH - u) - (B*v u - u)),

+ (gH - 9, UH - U) H (3* v - h, C(uH - u)g,

- (g, UH) + (h, CuH),

- (*VH, UH - u) - ( 3*V C(UH - U)go

+ (1C*VH - 9, UH - U) + (1 *vH - h, C(uH - u),

= (g,uH) + (h,CuH)

- (VH, IUH - f - (C*vH, 3 UH - e)aQ

+ (vH - v, LUH - ) + (C*(vH - V), UH - e) - (D.16)

In this last expression, (g, uH) + (h, CnH),g is the functional estimate computed using

the approximate solution UH, and (vH, LuH - f) + (C*vH, BuH - e),, is the com-

putable adjoint correction.

179



We see from (D.16) that the computable correction term in the continuous frame-

work includes an extra boundary term related to the residual error in satisfying the

primal boundary conditions. This boundary contribution to the functional error is

already incorporated into the linear algebraic correction term T1(Lhii - fh) (see Sec-

tion A.4) and the nonlinear algebraic correction term 'T Rh(Uh) (see Section 2.1.2)

due to the fact that primal boundary conditions are already incorporated into the

primal residual operator Lhiih - fA or Rh(Uh), and that boundary integrals are al-

ready incorporated into the expression for the functional ghah or fh(Uh). In the linear

algebraic theory, if the discrete adjoint is decomposed into a boundary component

Vb and an interior component 0) as defined in (A.23), then a somewhat analogous

form for the algebraic correction term can be expressed as

6 J h (Lhi6h - fh) + ( Bh(6h - eh), (D.17)

where Bh is a projection matrix that sets the boundary conditions in a strong sense as

defined in Section A.4.3. Note the similarity in form between (D.17) and the second-

to-last line in (D.16). In the nonlinear algebraic context, the form of the correction

term analogous to (D.17) is

6f Rh(Uh) + 6Uh, (D.18)

where U is a vector of transformed primal variables as defined in Section 4.4.
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