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Abstract

This thesis explores the wrinkling and sagging behavior of thin viscous Newtonian
sheets and filaments motivated by analogous scenarios in elasticity. These problems
involve dynamic free boundaries and geometric nonlinearities but use simple physics.
The first problem examined concerns an annular viscous sheet subjected to torsional
shearing which consequently develops spiral wrinkles. Examination of the behavior of
this system leads to a scaling of the Stokes equations for zero Reynolds number flow
resulting in a reduced order mathematical model for the evolution of the sheet that
includes the effects of gravity and surface tension. Linear stability analysis yields the
most unstable modes for wrinkling of the sheet and their associated growth rates at
onset which agree with experimental observations. In the limit of a narrow annular
gap, the problem reduces to that of a sheared rectilinear sheet. Interestingly, this
Couette problem shows instabilities even in the zero Reynolds number limit.

The second problem examined concerns the sagging of a horizontal viscida (fluid
filament) under the influence of gravity. Resistance of the viscida to bending controls
the initial phase of deformation, while resistance to stretching begins to play a prin-
cipal role in later stages. At very late times the process resembles droplet break-off
from two thin filaments.
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Chapter 1

Introduction

Most of us typically associate buckling phenomena such as folding, wrinkling, and
coiling with solid media. It comes as no surprise then that such behavior has been
observed in elastic fluids. However, it has long been known that similar geometric
wonders can also be found in the world of Newtonian viscous fluids. One need look
no further than the kitchen to watch the beautifully regular ribbon folding of batter
pouring into a pan or honey coiling onto a piece of toast. For those less inclined to
culinary pursuits, many shampoos fold nicely when squeezed into the palm.
Instabilities associated with slender members such as thin films and filaments fall
under two main classifications. In the first, sinuous, also known as anti-symmetric,
folding, or buckling, the two opposite surfaces of the member move in unison following
the center line or center surface of the member. In the second, varicose, also known as
symmetric or pinch-and-swell, the resulting structure resembles a string of sausages
with alternating thinner and thicker regions, and the two opposite surfaces move in
mirror images of one another while the center line or center surface experiences no
displacement. Figure 1-1 illustrates an example of each type of instability. Surface
tension often drives the formation of varicose instabilities, and varicose instabilities
are therefore principally associated with fluids rather than solids. This thesis focuses
on the formation of sinuous type structures in viscous Newtonian fluids and the
interaction or competition between bending and stretching that gives rise to them.
Fluid buckling phenomena are not confined to the realm of novelties and have
drawn a considerable amount of scientific attention. In materials processing, many

__.'7 ]_.___

=]

Sinuous Varicose

Figure 1-1: Two modes of slender member instability

17



of the processes involve highly viscous filaments, films, and sheets manipulated in a
wide variety of ways from spinning of fibers to manufacture of transparency films and
plastic bags. An understanding of the instabilities present in these configurations and
how to avoid or harness them is highly desirable. In geophysics, rock folding is often
explained using mechanisms of viscous folding on very long time scales. Much work
has been done on rock folding in two dimensions, but folding in three dimensions
has not been equally well explored [14]. The reduced dimension equations shown
here could help explain many of the rock folding phenomena exhibiting variations in
three dimensions. Additional applications exist in manufacturing processes involving
sheets and films of molten glass, metal, plastic, food etc. Of course, in these cases
the presence of phase change or temperature variation complicates matters because
viscosity may acquire spatial variation.

The existence in fluids of what are thought of as primarily elastic behaviors comes
as no surprise; in fact, one ought to expect it. James Clerk Maxwell [19] wrote,

What is required to alter the form of a soft solid is a sufficient force and
this, when applied, produces its effect at once. In the case of a viscous
fluid it is 'time’ which is required, and if enough time is given, the very
smallest force will produce a sensible effect.

Following the ideas of Stokes, Lord Rayleigh, in The Theory of Sound, established a
formal analogy between the behaviors of a bulk elastic medium and a bulk Newtonian
viscous medium [29]. He demonstrated that the expression for the volumetric energy
dissipation rate in a fluid differs from the expression for the energy density in an elastic
solid only by a time derivative. The governing equations for the two media should,
thus, be of the same form with the exception of an additional time derivative in the
viscous medium (see Table 1.1). Though Lord Rayleigh’s analogy concerned behavior

Static Elasticity Low Reynolds Number Flows
Displacement Velocity

Strain Strain Rate

Shear and Bulk Modulus | Shear and Bulk Viscosity

Table 1.1: Stokes-Rayleigh Analogy

in the bulk, his results should extend to the slender geometries of thin films with little
modification. The primary difference between a bulk medium and a slender geometry
lies in the presence of free surfaces which introduce surface tension forces into the
problem. For high capillary number scenarios where viscous forces dominate surface
tension forces, the analogy should hold very closely. In the spirit of the analogy, this
thesis examines three viscous problems with close elastic analogs.

The first such problem is that of an annular sheet subjected to shearing in its
plane and the consequent evolution of spiral wrinkles in the sheet (Figure 1-2). If an
annular viscous film floating upon a relatively inviscid fluid is sheared by rotating the
inner cylinder of the annulus, at low shear rates, the film remains flat. However, when
the angular velocity of the inner cylinder is increased beyond a critical value, spiral
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Figure 1-2: Sheared annular sheet

wrinkles develop in the film. The wavelength of these wrinkles is large compared
to the thickness of the film. The number of wrinkles depends on the geometry of
the annulus as does the angular velocity of the inner cylinder necessary to provoke
the wrinkling. In 1924, W.R. Dean explored elastic instabilities of a sheared annular
plate [11]. By formulating and analyzing the governing equations of the plate, Dean
calculated the shape assumed by the plate when subjected to shear forces on its
edges exceeding some critical buckling load. In doing so, he calculated the shear load
necessary to cause deformations with different azimuthal wavenumbers as a function
of the geometry of the annulus as characterized by the ratio of outer to inner radius.
As he argued, for a given geometry, the only important distortion of the plate is
the one that results under the minimum external loading. His results characterize
the dependence of the various possible plate distortions upon geometry and shear

RN

Figure 1-3: Sheared rectilinear sheet

The second problem can be thought of as a limiting case of the first. Consider a
Couette geometry in which a thin film of finite width and infinite length is sheared by
the two width-wise bounding walls (Figure 1-3 shows one section of such a scenario).
This represents the limit of the annular case as the radius of the annulus approaches
infinity while the gap remains constant. The sheared sheet will develop wrinkles as
illustrated in the sketch. Southwell and Skan investigated the instabilities of a sheared
elastic strip in 1924 and calculated the conditions for and modes of deformation [28].
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Figure 1-4: Viscous catenary

The third problem is the viscous catenary. If a viscous filament (viscida) spans the
gap between two solid wall and sags under its own weight (Figure 1-4), it will form a
viscous catenary, the viscous analog of an elastic filament hanging freely from its two
endpoints. The original catenary problem concerned an inextensible chain hanging
from its two endpoints and was solved by Leibniz, Huygens, and Johann Bernoulli
in 1691 [20]. Love considered the elastic catenary problem including bending and
stretching stiffnesses of the filament [17].

1.1 Prior studies

1.1.1 General viscous buckling

Viscous (Newtonian) buckling has been studied in various contexts over the last half
century. In the early part of the twentieth century, geologists examined the possibility
of modeling certain behaviors of the earth’s crust as elastic buckling phenomena
in work attributed to Smoluchowski [21]. By the late 1950s, geologists considered
that viscous buckling could present a better model. Typical viscosities of the rocks
involved in geological analysis range from about 10'® — 10?* Pa - s [6]. Biot examined
the two-dimensional folding of a viscous layer embedded in a less viscous medium and
subjected to layer-parallel compression. Biot utilized a similarity between elastic and
viscous governing equations to develop expressions for the critical load and wavelength
of the instability for a variety of combinations of types of media including viscous,
elastic, and viscoelastic. For a viscous fluid, he found that the critical load necessary
to excite the buckling is zero, the wavelength of buckling normalized by the layer
thickness is proportional to the cube root of the ratio of the layer viscosity to the
ambient viscosity, and the wavelength of buckling does not depend on the magnitude
of loading [4]. Biot’s results would suggest that as the ambient viscosity becomes
negligible compared to the layer viscosity, the most unstable wavelength will grow
longer without bound. The system size would, of course, limit the wavelength, so
that in a two-dimensional case of layer-parallel compression of a viscous film on a
comparatively inviscid substrate, Biot’s results predict buckling with a wavelength
equal to twice the system size. In 1963, Ramberg proposed that the appropriate
boundary condition for the interface between the layer and the ambient medium
should be a welded condition rather than the free-slip condition used by Biot, thus
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incorporating the effects of layer-parallel shear. The resulting model predicts shorter
wavelength folds than does Biot’s model, but in the limit of comparatively vanishing
ambient viscosity, it also predicts a wavelength equal to twice the system span [21].
In 1959, Biot examined the effects of gravity producing a buoyant force in opposition
to buckling of a viscous layer floating atop a less viscous and more dense substrate
and subjected to layer-parallel compression. He found that the influence of gravity
produces a dependence of the buckling wavelength on the applied compressive stress
so that a finite wavelength exists for the maximally growing mode even as the viscosity
of the substrate tends to zero [5]. Ramberg and Stephansson, in 1964, also examined
the effects of gravity in this scenario. They found that gravity produces a non-zero
critical stress required to buckle the layer faster than the concomitant thickening
effect. At stresses below the critical threshold for buckling, layer thickening occurs
on a faster time scale than folding. Their results argued against Newtonian viscous
buckling as a mechanism for the formation of large crustal depressions [22]. In 1968,
Chapple analytically and computationally explored the effects of finite fold amplitude
on the buckling of a viscous layer and suggested that wavelength selection only occurs
at small amplitude after which the mode of buckling does not change. He then
explored the shape evolution of the finite amplitude folds [9]. Also in 1968, Sherwin
and Chapple performed experimental studies to verify Biot’s folding theory. They
developed a modified theory for scenarios with small viscosity ratios where shortening
of the layer plays a key role in addition to folding [25]. Johnson and Fletcher’s
1994 monograph on viscous buckling outlines a wide range of problems considered in
geology and geophysics [14].

In 1969, G.I. Taylor made a series of observations and comments on the buckling of
viscous filaments and sheets [30]. In the 1970s, Buckmaster, Nachman, and Ting ex-
plored the buckling of a viscida (a viscous filament) from a mathematical perspective
and looked at what effects might play important roles and how the various effects and
properties scaled [8] [7]. In 1988, Benjamin and Mullin attempted to explain some of
Taylor’s experiments by examining short wavelength instabilities in the shearing of a
viscous sheet [3]. In 1987, Bejan published a review article on buckling flows focusing
primarily on instabilities where inertia plays an initiating role [2]. In 1996, Howell,
building on scaling arguments made by Buckmaster, Nachman, and Ting, developed
a series of equations describing the evolution of a buckling sheet of viscous Newtonian
fluid [12]. In the last few years, a number of particular viscous buckling phenomena
have been explained. In 1997, Tuck, Stokes, and Schwartz examined the slumping of
a viscous bridge similar to the catenary problem considered here. They considered
the very short time behavior of the bridge and used finite elements to study its sub-
sequent evolution. In 1998, Mahadevan, Samuel, and Ryu looked at the coiling of a
viscous filament impinging on a flat surface under the influence of gravity [18]. In
2000, Skorobogatiy and Mahadevan examined the analogous problem of the folding
of a viscous sheet impinging on a flat surface under the influence of gravity [27]. Also
in 2000, da Silveira, Chaieb, and Mahadevan investigated the wrinkling of a ruptured
viscous bubble collapsing under its own weight [26]. In 2000, Kumar and Graham
examined the behavior of a non-Newtonian fluid sheet drawn radially inwards and
wanted to understand the consequent crumpling of the sheet [15]. They make only
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Figure 1-5: Equivalence of shear to tension plus compression
very brief reference to the Newtonian case. In 2001, Ribe carried out a formal reduc-
tion to derive asymptotic equations for sheets of high curvature and analyzed film
blowing and a couple of other high curvature scenarios [24]. This brief history is by
no means comprehensive, but is merely intended to provide an idea of the evolution
and current interest in viscous buckling problems. The current study provides the

first quantitative explanation of a truly two-dimensional buckling problem in viscous
sheets.

1.1.2 Annular sheet buckling

G.I. Taylor, who presented Dean’s 1924 paper and Biot’s 1957 paper to the Royal
Society, first documented a wrinkling effect similar to Dean’s in a viscous annular
sheet, though he made no reference to the elastic analogy or to Dean’s or Biot’s study
[30]. Taylor floated a layer of golden syrup a few centimeters thick on top of carbon
tetrachloride in a cylindrical container with a cylindrical stirring rod placed from
above into the center of the container. Taylor noted that when the stirring rod rotated
about its axis, spiral ripples appeared on the syrup’s surface radiating outward from
the rotating rod. Taylor declared that this effect was most likely related to buckling
because the wrinkling initiated across lines of maximum compressive stresses (The
layer was subjected to pure shear, but pure shear is equivalent to a combination
of tension and compression at right angles to one another along a set of directions
rotated forty-five degrees relative to the direction of shearing as shown in Figure 1-
5.). He did not offer a quantitative explanation. In 1988, Benjamin and Mullin
further examined the instability observed by Taylor and quantitatively analyzed the
instability for the case of a rectangular geometry in which the shear strain rate is
uniform across the fluid sheet [3]. The effect observed by Taylor and examined by
Benjamin and Mullin concerned ripples with azimuthal wavelengths shorter than the
thickness of the sheet and thus differed from that explored by Dean. Dean examined
distortions with azimuthal wave lengths much longer than the thickness of the plate.
Also, Benjamin and Mullin ignored the effects of shear strain rate variation over the
annular gap width, thus effectively converting it into a rectilinear geometry. In 1999,
following a suggestion by L. Mahadevan, Chaieb and Carnascialli performed some
preliminary qualitative experiments depicted in Figure 1-6 that suggested that there
is indeed a long wavelength analog of the Dean problem for a thin viscous sheet.
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Figure 1-6: Viscous experiment analogous to Dean’s: In the figure on the left, the
inner cylinder is rotating counter-clockwise at less than the critical angular velocity,
¢, so the surface is undisturbed. In the figure on the right, the inner cylinder is
rotating faster than the critical angular velocity, and the viscous layer wrinkles in
a very regular fashion. The fluid shown is a variety of polybutene with a viscosity
~ 140Pa - s; the diameter of the inner cylinder is ~ 10cm; the gap width is ~ 2em;
and the rate of rotation is ~ 0.5rad/s.

This thesis concerns an experimental, analytical, and numerical investigation of this
instability and some related problems.
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Chapter 2

Equations of motion: a physical
derivation

This chapter describes the development of a series of reduced order equations describ-
ing the evolution of a thin sheet of an incompressible Newtonian fluid. The equations
are derived from the Stokes equations for highly viscous flow using a scaling sug-
gested by Buckmaster et al. [8] and partially following the method used by Howell
[12] to derive a similar set of equations without gravity or surface tension which are
accounted for in the model presented here. An abbreviated version of the derivation
is presented here; for the full derivation, please see Appendix A. Once developed,
the equations are physically interpreted and compared to the analogous F&ppl-von
Kérman equations from elasticity. Finally, I briefly explore the linear stability char-
acteristics of the evolution equations for a simple case in order to set the stage for
further discussion of more complicated scenarios in the chapters that follow.

2.1 Basic equations

Let us consider a thin sheet of an incompressible Newtonian fluid with a very large
viscosity floating atop a fluid of higher density and comparatively vanishingly small
viscosity and being sheared such that the Reynolds number, ”—%9 << 1. The Stokes

equations describe the behavior of such a fluid (here in Cartesian coordinates):
VP = uv3i, (2.1)

where P is the pressure, and i is the velocity vector, (u, v, w). The continuity equation
ensures conservation of mass:

V.id=0. (2.2)
The top and bottom of the sheet must obey a kinematic surface condition,
D 1
Wl,mprin = T)—E(H + Eh)’ (2.3)
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where H is the z-coordinate of the center surface of the sheet, and h is the thickness
of the sheet. The top and bottom surfaces must also satisfy a dynamic traction
condition. Tractions on the surfaces of the layer result from ambient pressure and
surface tension of the interfaces. The ambient pressure in the air above the fluid
sheet can, without loss of generality, be considered zero. The ambient pressure below
will be determined by hydrostatic pressure variations in the underlying fluid, P~ =
p~gH, where p~ is the density of the underlying fluid and g is acceleration due to
gravity. Because of the extremely high viscosity ratio (in the cases considered here,
w/p~ ~ 10%), viscous forces in the underlying fluid can be considered negligible. The
free surface condition can be expressed as

a-i=T, (2.4)
where ¢ is the stress tensor,
g = —PL+ pu(Vi' + Vi), (2.5)
71 is the unit outward normal to the surface,
i = [ (Ha o ha), —(Hy £ 5hy), 117, (2.6)

T is the traction on the surface, and I is the isotropic tensor. The lateral edges of
the sheet satisfy a no-slip condition so that the velocity @ matches the velocity of the
walls.

One could question whether or not inertial forces in the underlying fluid could
affect the viscous sheet. Characteristic inertial pressures in the underlying fluid scale
as p~U?. Characteristic stresses generated within the viscous sheet scale as pU/L.
Since the characteristic velocities in the two fluids are of the same order, their ratio is
a Reynolds number based on the underlying fluid’s density and the sheet’s viscosity,
Re = p~UL/p. For characteristic values of the parameters considered here (u ~
102Pa - s, L ~ 1072m, p~ ~ 10%kg/m3, U ~ 102m/s), Re ~ 1073, so inertial forces
in the underlying fluid should not play a role in the sheet’s behavior. One could also
question whether capillary-gravity waves generated by the ripples could affect the
behavior of the sheet. If such a wave dissipates almost entirely over a length scale
much smaller than the wavelength of the ripples, it will have a negligible effect on the
behavior of the sheet. The quotient of the Reynolds number and the square-root of
the Froude number, Fr = U?/gL, provides a rough approximation of the attenuation
factor per wavelength travel [16]. For the characteristic values of the parameters
considered here, Re/v/Fr < 107}, so the effects of capillary-gravity waves can safely
be neglected.
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2.2 Asymptotic scaling

Following Buckmaster, Nachman, and Ting[8], we can scale the variables in the equa-
tion in a manner consistent with buckling type motion to generate an equation wherein
all of the scaled variables are of the same order. The scaled variables are indicated
by hats, and the scaling utilizes a characteristic in-plane length-scale of the sheet, L,
a characteristic out-of-plane velocity, U, and a slenderness ratio, ¢, characterizing the
ratio of the thickness of the sheet to L, where ¢ << 1. The variables scale as follows:

z=zL, y=9yL, z=2eL, P= Pue%,
u=ael, v=70eU, w=woU, t=1ek, (2.7)
H = HeL, h=heL.

This scaling should be contrasted with the scaling of lubrication theory typically
employed in a slender geometry. In lubrication theory, motion perpendicular to the
sheet is slower than motion in the plane of the sheet by an order of €. In buckling type
motion, for displacements of the order of the thickness of the sheet, motion within
the plane of the sheet is an order of € slower than motion perpendicular to the sheet.

Howell [12] demonstrated that by plugging these scaled variables into the gov-
erning equations and representing the scaled variables in perturbation series (e.g.
i = 4 + 0 + 4a® . ..) the equations could be solved order by order to generate
a set of equations describing the evolution of the geometry of the sheet. This chap-
ter demonstrates that the final equations arrived at by Howell can be derived in a
more physically intuitive manner by solving the leading order equations and balancing
forces and moments in the sheet. Ribe [24] illustrates a similar physically motivated
derivation for one-dimensional, initially curved sheets.

2.3 Asymptotics

Since all variables now considered are scaled, the hat notation will be dropped for con-
venience. Employing the scaling in the governing equations and boundary conditions
and solving for the leading order values of the field variables leads to the following
(see Appendix A):

h: =0, (2.8)

i.e. there is no varicose (symmetric) distortion of the sheet, and the thickness remains
constant everywhere. As a consequence,

w(z,y,t) = Hy, (2.9)

the fluid velocity perpendicular to the sheet everywhere follows the local center sur-
face. It immediately follows that

Il
&l

u (H — 2)Hiz, (2.10)

+
+ (H - 2)Hy, (2.11)

It
S]]
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where 7 and T are the depth-averaged in-plane velocities.

P = —2(uz + vy). (2.12)

2.4 Depth-averaged equilibrium

l
I
| i
|
h : >Y
X al Ax

Figure 2-1: Unit fluid element

Now the leading order balances of forces and balances of moments on a small
element of the sheet (see Figure 2-1) relate the leading order quantities in a series of
reduced order governing equations for the evolution of the sheet:

Tu = 4(u, + HyHy)h + 2(0, + HyHy,)h (2.13)
T12 = (ﬂy + Hyth)h + (ﬁz + Hthy)h (214)
T22 = 4(ﬁy + Hyth)h + 2(ﬂx + H;,;Hm;)h (215)
aTll aTl2
bt Wt 2.
O + By 0 (2.16)
0T, 0Ty .
o T o 0 (2.17)
GH T 1
Haox Ty + 2Hey Tio + Hyy T — = + ggVQH = §h3V4Ht, (2.18)
where 12
P g
=3 2.19
G =3 (2.19)
T+
r=3—— 2.20
T (2.20)

and v*% is the surface tension at the upper/lower interface. For the experiments
discussed in Chapter 3, characteristic values are G ~ 107! and I" ~ 1072 for p ~
10%kg/m3, L ~ 1072m, p ~ 102Pa-s, U ~ 107'm/s, and (y* +v7) ~ 107! N/m. Ti;,
T5,, and Tjo refer to the depth-integrated normal stresses in the z and y directions
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Resultant

Figure 2-2: Out-of-plane load due to tension

and the depth-integrated shear stress respectively. The Laplac1an and blharmonic
operators are strictly planar, V2 = 5‘1—25 + 56?;—2 and V4 = 5914 + 28z28y2 + a 2. (2.16)
and (2.17) express force equilibrium in the z and y directions respectively, and (2.18)
expresses force equilibrium in the z-direction. In dimensional form,

Ty = 4p(y + HyHy)h + 2(0, + HyHy)h, (2.21)
T12 = /J,(’l_iy =+ Hyth)h + ,Lt(ﬁw + Hthy)h, (222)
T = 4/1(@/ + Hyth)h + 2u(a, + HyHip)h, (2.23)

(2.16) and (2.17) remain unchanged, and
1
Ho,Tyy + 2Hy Thio + HyToo — pgH + (75 +77)VZH = gMh?’v‘llart. (2.24)

To summarize, the first three terms on the left hand side of (2.18) (e.g. H..T11)
represent contributions to out-of-plane motion from in-plane stresses as illustrated in
Figure 2-2. These terms provide both driving and mitigating forces for deformation;
the compressive stresses drive the buckling, while the tensile stresses oppose it. The
portions of these terms linear in H (e.g. 4t,hH,,) represent stress contributions due
to gradients in the in-plane velocity field; the nonlinear portions (e.g. 4hHyHy, H,;)
represent the effects of stretching of the sheet. The right hand side expresses the
bending response (V*H,;) with a resistance proportional to the rate of change of
curvature. The gravity term (GH) tends to damp out all wavelength deformations of
the sheet; however, its relative magnitude is larger for long wavelength modes. The
surface tension term (I'V2H), which is proportional to the mean curvature of the
sheet, also acts to damp out all wavelength modes and most strongly affects those
with the highest curvature.

2.5 Elastic analogy

For comparison, let us examine the equation utilized by Dean to describe the out-of-
plane displacement of an elastic plate:

o OH\ 8 OH\ & OH\ @ OH
(74 —_——_— —_—— _— —_ _— =
DViH -5 (T“ 83:) dy (T’” 8y> oz <T12 By) Ay (T” 83:) 0, (2.25)
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where D is the torsional rigidity of the plate, and the variables from this thesis replace
Dean’s equivalent variables. Timoshenko provides an expression for D [31],

Eh?

D -
12(1 = 12)’

(2.26)

where F is the Young’s Modulus of the material, and v is the Poisson’s Ratio of
the material. For comparison to the incompressible viscous case, let us consider an
incompressible solid, » = 1/2. Also, let us replace the Young’s Modulus with the
shear modulus of the elastic material [10],

E E

(2.16) and (2.17) apply to the plate as well [31] and can be used to simplify (2.25) to
1
H. Ty + 2H, Ty + Hy,Toy = gGh3v4H. (2.28)

Dean does not present the in-plane equations and only reveals the linear terms in the
in-plane stresses. The full equations for the in-plane stresses in the elastic case are
given by the Foppl-von Karmén equations [17], presented here in the notation of this
thesis,

0Ty, 0T
o T2 2.29
oz + dy 0 (2:29)
0T, 0Ty .
5, By 0 (2.30)
where ] 1

T, = 4G (u, + §H§)h + 2G (v, + 5Hj)h (2.31)

1 1
T = G(u, + EHyH,,.)h + G(7, + 5HzHy)h (2.32)
1
Ty = 4G (3, + 5 B+ 26(T: + %Hj)h. (2.33)

In keeping with the Stokes-Rayleigh analogy, (2.28)-(2.30) are the exact equivalent of
(2.16), (2.17), and (2.24).

2.6 Folding of a planar viscous sheet subjected to
layer-parallel compression

In order to understand the stability behavior of a viscous sheet in the presence of

gravity and surface tension, it is instructive to think about the planar case of a folding

sheet with no variation in the y-direction where the folding results from a constant
compressive force in the z-direction. Such a sheet obeys the following dimensionless
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Figure 2-3: Characteristic dispersion relations for folding of a viscous sheet subjected
to unidirectional compression, on the left for a stable sheet and on the right for an
unstable sheet. The axis scales are arbitrary.

evolution equation:

where C characterizes the magnitude of the compressive stresses in the sheet. If the
solution takes the form

H(z,t) = e’ cos kz, (2.35)
then C-T a

A mode will grow if o > 0. For long enough waves (small k), gravity will always
overpower the compression and surface tension to damp the waves. For short enough
waves (large k), gravity does not affect the growth, and stability is strictly determined
by the relative strengths of compression and surface tension. For C < I', the system
is always stable because all modes are stable, but the decay rate approaches zero
as k increases without bound. For C' > T, the system is unstable because there
are stable and unstable modes, and there is a maximally growing mode. At high
wave numbers, the growth rates decay like 1/k? for increasing k, and at low wave
numbers, the growth rates decay like ~1/k* for decreasing k. As C approaches T
from above, the most unstable wavenumber increases without bound. However, since
the governing equations were derived under the assumption that the wavelength is
large compared to the thickness of the sheet, the previous conclusion is only valid
when the predicted wavenumber is smaller than 27/h. The condition of marginal
stability occurs when one mode is neutrally stable and all others are stable. The
marginal stability conditions are degenerate in a respect because there is no set of
parameters for which only one finite wavenumber is neutrally stable and all others
are stable. Figure 2-3 shows the dispersion relation for the two cases. Increasing the
relative strength of gravity increases the wavenumber of the maximally growing mode
as does increasing the relative strength of surface tension.

In the absence of surface tension, this theory predicts that the most rapidly grow-
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ing mode will have a dimensional wavenumber of

[2pg
k =4/ —= .
o7 (2.37)

where P is the compressive stress in the sheet. This result matches exactly with
Biot’s results [5].
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Chapter 3

Spiral wrinkling of a torsionally
sheared viscous film

Let us now consider an annular sheet of an incompressible Newtonian fluid with a very
large viscosity floating atop a fluid of higher density and comparatively vanishingly
small viscosity and being sheared by rotation of the inner cylinder of the annulus
(as illustrated in Figure 3-1) such that the Reynolds number of the flow around the
annulus is vanishingly small. This is the analog of the Dean problem with the addition
of gravitational and capillary forces (The case without gravity or surface tension is
considered in Appendix C.). Here, linear stability analysis is employed to explore the
susceptibility of the sheet to small perturbations from its planar form. In the real
world, infinitesimal perturbations are always present, so the small amplitude analysis
presented here will elucidate the stability behavior and early evolution of the sheet as
it diverges from its initially planar form. In particular, linear stability analysis will
reveal the minimum shear rate necessary to create an unstable state in the sheet as
well as the rate and mode of departure into a deformed shape.

Figure 3-1: Schematic of scenario: plan view on left and partial section on right.
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3.1 Linear stability

To examine the case of a sheared annular viscous sheet, let us write (2.16), (2.17),
and (2.18) in cylindrical polar coordinates (r, 6, z), where u and v now represent the
r and 6 components of the depth-averaged in-plane velocity respectively:

3 1 4 ) 4 2
4“7‘1‘ + ~Urg + SUge + U — Vg — U+ 4HtrHrr + "HtrHr +
r r2 r r? 72 r
1 6 3 3 1
—HyyHog — s HigHo + — HygHyg + 4Hyr Hy + — HirgHg + — Hypg H, = 0, (3.1)
T T T T T
3 4 1 ) 1 1 3
Upr + —Urg + "‘2"000 + v, + 7“0 - _2'0 + _Q'HtrHO + _HtrHTO +
T T T T r r T
1 4

1 4 1 3
HypH,, + ﬁHer + ;‘gHtBHBH + ;HtrrHB + ;HtroHr + ;gHtaeHe =0, (3.2)

-
2 2 2 ]
H'rr [4ur + ;’U() + ;u + 4H,-Htr + 7._2H0Ht9 +

1 1 2 2 2 T
(5Heo =~ Ho) [20, + Zug = 20+ ZHoHy] +
r T r T r .

11 44 2
(5 Hoo + —H) [20, + S0+ S0+ 2H, Hyy + — HyHo) +
T T T T T i

2 2 GH TV?H 1
— HpgHoHy + — H,oH,Hyy — —— + —— = ~h*V'H, :
—1HooHoHg + —5 HyoHr Hep san T 3an — 3t v He (3.3)
where H is subject to clamped boundary conditions on the inner and outer cylinder

walls,
OH

» ar

and the in-plane velocities are subject to no-slip conditions at the walls,

_ 0H

H(R’i’e’ t) = H(Roaaat) =0 o W

=0, (3.4)

,TzR,; r=R,

u(R;, 0,t) =u(R,,0,t) =0, v(R;,0,t) =v;, v(Ro,0,t)=v,, (3.5)

where the two cylinders of the annulus rotate relative to one another with an relative
angular velocity 2 so that
Vo (2
—=——-q. 3.6
R R (3.6)
Linear stability analysis allows examination of the conditions under which the
sheet will deviate from its flat configuration. The equations of motion, linearized

about a base solution of H(r,,t) = 0 for small variations, become

3 1 4 5 4

4, + Vo + 2 U + FUr T Rl T pu = 0, (3.7)
4 1 5 1

Vpr + ;urﬁ + ;_5’”00 + ;vr + ﬁue - 7'_2U - 07 (38)

34



2 2 1 1 2 2
H,, [4ur + —vg + —’U,] + <“H79 — —2H0) [2’0,» + —ug — -—U} +
r r r r r r

GH TIV:H 1,_,
362h,+ 3€2h :‘?—)h V Ht. (39)

1 1 4 4
(—2ng + —HT) [2%,- —+ —vp + —u| —
T r T T

(3.7) and (3.8) are decoupled from (3.9). Assuming radial symmetry, derivatives with
respect to 6 vanish, and the general solutions to (3.7) and (3.8) are

u=qcr+ %2, (3.10)
v =T+ 674. (3.11)

The only u satisfying the radial no-slip conditions of (3.5) on the lateral edges of the
sheet is u(r,6,t) = 0. The azimuthal velocities of the two boundaries determine the
constants ¢z and ¢4. The motion controlled by c3 is a solid body rotation of the fluid
which has no effect in the inertia-free scenario considered here, so for simplicity and
without loss of generality, let us set c3 = 0 and examine azimuthal velocities of the
form v = 4

r?

QR2R?
Substituting these results into (3.9) yields
Ah (H H TV?H
1240 (Hy _ ro ) — o 1V = h*V*H, (3.13)
r3 r €2 €2

subject to (3.4). Let us consider disturbances from the base solution of the form
H(r,0,t) =R {f(r)e"”ime} (3.14)

with azimuthal wavenumber m and complex growth rate o which, when substituted
into (3.13), leads to the following stability equation:

4 3 2 2 2 ;
d*f 2df_(2m +1+F2)ﬂ+(2m +zsm+1_§)g+

drt ' 7 dr3 r2 dr? r2 r ) dr
4 42 2
(m 4m4 M _ G+ Fgm—2> F=0, (3.15)
r r

where S = %22% characterizes the ratio of the shear strain rate to the perturbation

growth rate, f(r) is subject to clamped conditions at r = R; and 7 = R,, G =

G
€2h30?
and I'y = 5. In Section D.1, I show that o is purely real.

Due to the difficulty of solving (3.15) analytically, I have investigated the be-
havior of the system by numerically solving the linearized sheet evolution equation,
(3.13), using a variety of methods which serve to support and validate each other.
Appendix F contains a detailed discussion of the numerical methods. The primary
approach was a spectral collocation method suggested by Trefethen [32]. By solving
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Figure 3-2: Eigenvalue spectrum just below the stability threshold for an annulus
with R;/R, = 0.457. o in the plot is the normalized growth rate of the instability
expressed as the growth rate divided by the characteristic time scale, €2/9).

for the eigenvalues of the discrete equation, the growth and decay properties of all
modes of deformation can be observed. In this manner, the conditions for marginal
stability can be extracted by seeking the shear rate at which one eigenmode first
acquires a positive growth rate while the remainder retain negative growth rates. At
these conditions, disturbances with the form of the eigenmode in question will grow,
while all other modes will decay. Thus, the eigenmode singled out by this method
represents the most unstable mode of the system and ought to be the mode mani-
fest in the physical system as the stability threshold is crossed. Figure 3-2 depicts
the eigenvalue spectrum just below the stability threshold for one size annulus. The
presence of nonzero imaginary components of the eigenvalues is an artifact of the
discretization and, even for the discrete representation, does not present a significant
effect because the azimuthal wave speeds of the ripples corresponding to the calcu-
lated imaginary components of the eigenvalues represent wave motion on a far slower
time scale than the characteristic time scale for ripple growth. The shape of the most
unstable mode for the same annulus is shown in Figure 3-3. The circles in Figure 3-5
display the predictions of linear stability theory. The same computational methods
accurately reproduced the results of Appendix C when gravity and surface tension
were neglected, serving as a check of the numerical scheme.

3.2 Experimental results

Using the apparatus pictured in Figure 3-4 a series of experiments were performed.
The apparatus consists of a cylindrical trough of 6.56” inner diameter and a series of
interchangeable center pieces, each with a different outer diameter. The center pieces
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Figure 3-3: Most unstable mode shape for annulus with R;/R, = 0.457.
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Figure 3-4: Experimental Apparatus
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attach to a motor spindle protruding through the center of the bottom of the trough.
Each center piece has a lip, lmm thick, with carefully machined sharp edges that
protrudes from the central column. The sharp edges pin liquid interfaces and prevent
liquid wetting one surface from wetting the orthogonal surface. For each experiment,
water fills the annular gap between the outer wall of the trough and the center piece
like a moat until it wets the bottom surface of the lip but not the vertical side surface.
Next, some preheated experimental fluid (Amoco Indopol H300), which is less dense
than water, is poured onto the surface of the water. It flows to form a viscous fluid

layer of thickness 2mm. Because the capillary length (1//pg) of the fluid is less than
2mm, no holes in the layer form. No experiments are performed until the fluid has
spread for twenty-four hours to ensure a uniform layer. During this time, the fluid
also cools to room temperature. A controller operating the motor attached to the
apparatus center piece allows an experimenter to vary and record the angular velocity,
Q, of the center piece.

In each experiment, the angular velocity at onset of wrinkling, {2¢, and the num-
ber of wrinkles, m, were recorded. Starting from rest with an unperturbed surface,
the angular velocity of the inner cylinder was slowly ramped up until the first rip-
ples began to appear in the surface. The angular velocity at the time of onset was
recorded from the motor controller. A video camera above the apparatus recorded
the experiments, and the number of ripples present at onset was counted from the
video tape. During a series of experiments with a single center piece, at least eight
hours elapsed between experiments to ensure that no residual effects of the previous
experiment remained in the viscous sheet.

The fluid used in these experiments was Amoco Indopol H-300, a form of poly-
butene with density 0.90kg/m?® and surface tension 0.0213N/m. The density was
measured using a balance and a container of known volume filled with the H-300.
The container volume was measured using the same balance by recording the mass
of water contained in the full vessel. The surface tension of the H-300 was measured
using a platinum plate in a Kruss surface tensiometer. The surface tension of the wa-
ter, measured using the same method, was 0.0716 N/m. The surface tension between
the Indopol H-300 and water can be calculated using Good-Fowkes model which for
water-hydrocarbon interfaces suggests

1
Ywu =vw + 78 — 2(VevH)? (3.16)

where 7y g is the water-hydrocarbon interfacial surface tension, vy is the surface ten-
sion of water-air interface, g is the surface tension of the hydrocarbon-air interface,
and ¢, is the portion of the water surface tension generated by dispersion forces and
is suggested to be approximately 0.0218 N/m? [1]. The Good-Fowkes model predicts
a water-H-300 interfacial surface tension of 0.050N/m. The shear viscosity of Indopol
H-300, as measured using an AR-1000N Rheometer in a cone and plate configuration
with a 4cm cone with a 4° angle of inclination, was 136.4Pa - s. Based on a Maxwell
fluid model and oscillatory rheometer tests with the AR-1000N, the relaxation time
for this fluid 7z < 0.001s. For such a fluid, the hydrodynamic forces generated by
viscous stresses in the underlying water bath can safely be ignored as the charac-
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Figure 3-5: Results of experiments and predictions of linear stability theory for In-
dopol H-300. m = azimuthal wavenumber, ()¢ = critical angular velocity.

teristic viscous stresses in the water are nearly 140,000 times smaller than those in
the Indopol H-300 film. Also, because the relaxation time of the H-300, 7g, is much
shorter than the characteristic time scale in the experiments (7 ~ ¢L/U ~ 0.02s), the
Deborah number, De = 7g/7 << 1, and any elastic effects in the fluid are negligible.
A characteristic Bond number for the set up is Bo ~ 100 implying that gravity plays
a more important role than capillarity here. A characteristic capillary number is
Ca ~ 100 implying that surface tension effects are small compared to viscous effects.
Figure 3-5 depicts the results of the experiments as squares.

3.3 Discussion

In a series of experiments inspired by but qualitatively different from G.I. Taylor’s
observations [30], a long wavelength instability in a viscous Newtonian annular sheet
subjected to shearing was noted. The instability is analogous to one explored by W.R.
Dean [11] in the context of a sheared elastic sheet. These experiments have quantified
the instability by determining the conditions for its occurrence and measuring the
wavelength at onset. Linear stability analysis shows the critical shear rate for onset
and the number of ripples as illustrated in Figure 3-5. The important effects that are
included in this analysis are the damping effects of gravity and surface tension that
produce a non-zero critical angular velocity for the onset of wrinkling of the sheet.
A number of potential sources of error for the predictions exist. Since this theory
is an asymptotic one in the limit of small thickness, any sheet of finite thickness
might be expected to show small deviations. Second, in these experiments, though
the angular velocity of the inner cylinder of the annulus was ramped up slowly, the
angular velocity, nevertheless, was transient. No transient edge boundary effects were
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Figure 3-6: Schematic of supercritical pitchfork bifurcation. ¢ = critical angu-
lar velocity, €.y, = angular velocity measured in experiment, H.;, = amplitude in
experiment.

considered in this analysis. Third, and perhaps most significantly, if the instability
is a supercritical pitchfork bifurcation, then the ripples will be infinitesimal at onset.
Infinitesimal ripples are difficult to observe, and, therefore, the data recorded in these
experiments corresponds necessarily to a regime slightly beyond the onset of the
instability when the ripples have grown to be visible as schematically illustrated in
Figure 3-6. Therefore, it follows that the number of ripples seen in the experiments
might differ from that predicted for onset by the linear model. Although the model is
only strictly valid for infinitesimal deviations from a flat sheet, for small amplitudes
close to onset the model should remain a close approximation. To try to compare the
experiment and theory differently, the experimental conditions (i.e. () were used
in the model to evaluate the number of ripples. Figure 3-7 depicts the predictions
of the linearized theory for what would occur at 2 = Q,;,. The agreement is good.
That Qe > ¢ is supported by the data in Figure 3-5(b). The underestimation of
the number of ripples at onset in Figure 3-5(a) can be understood using (2.36). The
fastest growing mode is k£* = arg max o (k),

. [ 2G
e (3.17)

When €2 goes up, C which is proportional to 2 goes up, and k* goes down. Therefore,
one should expect that for Q.. > Q¢, k:.p < kG as supported by Figure 3-5(a).
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Chapter 4

Buckling instability of a thin-layer
plane Couette flow

Couette channel flow is stable at all shear rates. However, if, instead of a channel of
infinite depth with no variation through the depth, the channel contains a thin sheet
with free surfaces, the Couette flow becomes unstable to infinitesimal shear rates.
Consider an infinitely long sheet of a viscous Newtonian fluid of finite width 2B and
uniform thickness h << B as shown in Figure 4-1. The surfaces of the sheet are
free, and the edges are in contact with solid walls which shear the sheet by moving

lengthwise with velocities £U respectively.

4.1 Linear stability

For small out-of-plane displacements, the sheet is governed by the equations given in
Section 2.4. The in-plane velocity field, 2 = Uy/B and © = 0, satisfies the linearized

in-plane force balances
4Rtz + 3higy + hity, =0 (4.1)

Figure 4-1: Schematic of system
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and
4hvyy + 3hizy + hUg, = 0. (4.2)

The shear strain rate in the sheet is ¥ = U/B. The behavior of the sheet is then
governed by the equation

h3 .
%—V“Ht = (v" +77)V2H — pgH + 2uhyH,, (4.3)

where H(z,y,t) is the out-of-plane displacement of the sheet, the z-axis points along
the length of the sheet, and the y-axis points across the width of the sheet. (4.3) can
be nondimensionalized utilizing the following scaling:

t=2B, y=9B, H=HeB, h=heB, t=1teE, (4.4)

where € is the slenderness ratio, h/B. The resulting nondimensional equation, omit-
ting hats, is

V*H,=TV?H - GH + 6H,,, (4.5)
where G = —BﬁU— and I' = -(—7:—:57—_) The boundary conditions are
H(z,-B,t)=H(z,B,t)=0, Hy(z,—B,t)= H,(z,B,t) =0, (4.6)
u(z,£B,t) = +U, v(z,+B,t) = 0.
Let us consider solutions to (4.5) of the form
H =5 (F)er™ + fg)em=) (4.7

where f is the complex conjugate of f. In Section D.2, I show that ¢ is strictly real,
so ¢ = 0. Substituting (4.7) into (4.5) yields

o [eikz (fll/l _ 2k2f” + k4f) + e~ tke (fml _ 2k2f‘-// + k4 )]
-G (feikf + f_'e—ikf) + P( k?fezkw + fll ikx k2fe—z T J?I —zkz)
+6 (ikf'e™® — ik f'e7). (4.8)

e* and e~™*? are independent, so the terms multiplying each can be separated leading
to two equations,

o [f" = 2k f" + k*f] = —=Gf + T(=K*f + f") + 6ik f’ (4.9)

and

o [f‘m/ _ 2k2f‘// + k4ﬂ — ——Gf_-l- F(—k2f+ f-n) _ Gikf'. (4.10)
(4.10) is the conjugate of (4.9), so I will use just (4.9),
- (2k2+£) f”—%fl‘i‘ (k4+£k2+§-)f=0 (411)
o o o o
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subject to the boundary conditions
F(ED) =0 f/(x1)=0.

For o # 0, the general solution to (4.11) can be written as
4 N
f(y) = Z: Cjel jya
j=1

where the \; satisfy the characteristic equation of the differential equation,

r
,\4+(2k2+£>/\2+6k/\+lc4+—k2+§:0.
g g g

g

The boundary conditions can be written in matrix form as

ei/\l eiAg eiAg ei/\4 Cl

e—i/\l e—i)\g 6—i)\3 e—i)\4 02
i/\lei’\l ’l.Agei)\z ?:)\36i'\3 ’i/\46i)‘4 03 =0

—z'/\le”“‘l ~i/\26_”‘2 —i/\ge_i)‘3 —i/\4e_i’\4 Cy

For nontrivial solutions, the matrix in (4.15) must be singular, so

eiA1 ei/\2 e’i)\a e’i/\4
e—i/\l e—i)\g e—iAa e—i,\4 _ 0
iA e iAgetr? iAges idgeM

—iA €M —igeT —fhge8 e M
which can be rewritten as

sin A\; sin Ay sin Az sin A4

COS A1 COS Ao COS A3 COS A4
)\1 sin )\1 )\2 sin )\2 )\3 sin )\3 /\4 sin )\4
A1 COSAT A2€0SAy A3COSA3 AgCOS A4

which expands to

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

()\1 —“/\2)()\3 — )\4) sin()q —/\3) Sin()\g - A4) = (/\1 — /\3)(/\2 — )\4) sin(/\1 - Az) Sin()\g —)\4).

(4.18)

The growth rate, o(k), of a mode with wavenumber & is determined by the simultane-
ous solution of (4.14) and (4.18). The mode with the highest growth rate determines

the shape of the viscous sheet at the onset of the instability.

45



351
0.12
30
0.1
o 25
2 o ;
N; 0.08 &5 20 ; (b
= o :
©15¢ : )
0.06} :
10
0.04tr B
B 5 I
0.020 2 4 6 8 00 2 4 6 8 10
2Bk Wavelength/B

Figure 4-2: (a) Normalized growth rate h%o/BU versus normalized wavenumber 2Bk
relationship for a sheared rectilinear viscous sheet when G =T' = 0. (b) Normalized
critical shear force 3B%S/Gh3 versus normalized wavelength relationship for a sheared
rectilinear incompressible elastic sheet with no oscillations as analyzed by Southwell
and Skan [28]. S is the shear force per unit length of the channel, and G is the
shear modulus. If the viscous result is replotted in this fashion, exactly the same plot
results with the y-axis relabeled 3BU/h*c = 3B2S/uh30.

4.2 The limit G =1'=0

Considering first the absence of both gravity and surface tension, the governing dif-
ferential equation for f, (4.11), reduces to

61k
fIIII__QkaII__ ”;_f,+k4f :0, (419)
and (4.14) reduces to
M 2k2N% 4 Es;,\ +k*=0. (4.20)

It is immediately apparent that if o = 0, the only solution is f(y) = 0 which is trivial,
thus there is no condition of neutral stability. For o # 0, (4.19) and (4.20) can be
solved to yield the relationship of the mode wavenumber to the growth rate as shown
in Figure 4-2(a). The maximum of the plot corresponds to the fastest growing mode.
The fastest growing mode has a wavelength equal to 3.318 B, where B is the channel
half-width. These data were generated by finding the eigenvalues and eigenmodes of
the discretized evolution equation using a spectral collocation method suggested by
Trefethen [32] and discussed in more detail in Appendix F.

This calculation is analogous to one performed by Southwell and Skan [28] for the
stability of a flat elastic strip under shearing in a similar configuration. (4.19) and
(4.20) arise in the elastic case as well with the shear strain rate divided by the growth
rate, 6/0, replaced by the shear strain, 6, so that

" —2k%f" —6ikf' + k*f =0 (4.21)
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Figure 4-3: The most unstable mode shape.

and

M 426207 + 6kX + K = 0. (4.22)

To produce the same shear force, the viscous sheet is subjected to a shear strain
rate whereas the elastic plate is subjected to a shear strain. Figure 4-2(b) shows the
results of their calculations and equivalently the results in Figure 4-2(a) plotted in the
same fashion as theirs. They too calculated a most unstable wavelength of 3.318B.
If the ordinate in Figure 4-2 is thought of in terms of strain rather than force, then
for the elastic case 3B2S/Gh® = 3BU/h?. Couched in this form, the elastic-viscous
analogy is transparent with U in the elastic case (a displacement) replaced by U/c in
the viscous case (a velocity divided by a growth rate). Figure 4-3 depicts the mode
shape of the fastest growing distortion of the strip.

4.3 The case G #0,1'#0

The sheared viscous sheet behaves in a fashion similar to the compressed planar sheet
discussed in Section 2.6, but an additional length scale is present, the channel width.
The channel width sets a maximum wavelength in the y-direction. Also, the shearing
generates tensile in addition to compressive forces. The general principles governing
the stability are unchanged. If surface tension is strong enough relative to shear,
the sheet will be stable to all wavelengths of disturbance. The stability threshold is
governed by the sign of the minimum principal depth-integrated stress component. A
negative minimum principal depth-integrated stress component indicates the presence
of compressive forces in the sheet. The minimum principal depth-integrated stress
component, Ty, takes the value [10]

_ 2
T B _ g (T (4.29

2 2

In this case, where in (2.24) T1» = 3 and, when the contribution due to surface tension
is incorporated into the other depth-integrated stresses, Ty = Toe = I, Tipin = I' — 3.
For ' > 3, Tuin > 0, so there are no compressive forces in the sheet, and the the
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system is stable to all wavelengths of perturbation. When I' < 3, T},;,, < 0, there are
compressive forces in the sheet, and the system is unstable.

The term on the left-hand side of (4.5) representing bending plays a resistive
rather than a restorative role and thus helps control the rate of growth or decay
of the instability but not the presence or absence of stability itself. The stability
criterion emerges strictly from the interplay between the terms on the right-hand
side. Thinking once again in terms of principal depth-integrated stress components

[]‘C]’
T 11 22 I \/ 2 ( 11 22) . (12 l)

In this case, Tyee = I' + 3. The wrinkles will form with their spines perpendicular
to the principal direction of compression with its compression of magnitude 7},;, and
along the principal direction of tension with its tension of magnitude 7,,,,. The
principal directions in this situation of shear plus isotropic tension will lie at forty-
five degree angles to the shear, or forty-five degree angles to the walls of the channel.
The wrinkles will assume the minimum possible curvature in the tensile direction
corresponding to a wavelength of twice the span of the channel in the principal tensile
direction, 4v/2 in nondimensional form.

Figure 4-4 shows the variation in the most unstable mode with G and I' from
results computed using the same numerical scheme as in Section 4.2 and described in
Appendix F. Similarly, Figure 4-5 shows how the dispersion relation depends on the
variations in G and I'. For a film of Indopol H-300 on water as used in the annular
experiments, with h = 2mm and B = 2¢m, this model predicts the stability threshold
corresponding to I' = 3 to occur when U = 0.52cm/s, a value on par with the shear
velocities found in the annular experiments at small gap widths.

4.4 Discussion

This chapter explored the linear stability of a sheared viscous strip analogous to that
examined by Southwell and Skan for a sheared elastic strip. Computation confirmed
that the most unstable mode for the viscous strip (that which grows most quickly) in
the absence of gravity and surface tension corresponds to the most unstable mode for
the elastic strip (that which appears at the lowest imposed shear stress). In the elas-
tic case, a finite shear stress is required to excite the instability. The viscous strip is
unstable at all magnitudes of imposed shear stress, but a single mode of deformation
emerges due to the differences in growth rates of the various possible modes. For a
given imposed shear stress, one mode will grow faster than all of the others. The pres-
ence of gravity and surface tension leads to a finite threshold for the appearance of the
instability. Surface tension produces the threshold. Shearing insufficient to overcome
surface tension will yield no departure from the planar form of the sheet. Only when
the shearing exceeds the restoring tensile effect of surface tension do wrinkles appear
in the sheet. Gravity contributes to the existence of a cutoff wavenumber below which
no perturbations can grow. The combination of gravity and surface tension generates
a situation where for a given shear stress above the threshold value, all perturba-
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Figure 4-4: Variation of the most unstable normalized wavenumber 2Bk with grav-
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ity and surface tension parameters, G = P I = T The same data are
presented in (a) as a shaded contour in which the dark area on the right represents
the region of stability and the height of the surface represents the most unstable
wavenumber and presented in (b) as a series of curves with varying values of G. In

the plot on the right, the curves of constant G are shown at intervals of 0.3 in G.
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Figure 4-5: Dispersion relation. Family of curves showing normalized growth rate
versus normalized wave number for varying G = ?’ﬁ%z and I' = 3—(%2 The top
curve is for zero gravity and surface tension. The next curve represents [' = G = 0.3.
The dashed curves then represent a progression of increasing I' in steps of 0.3. The
solid curves represent a progression of increasing G in steps of 1.2.
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tions with wavenumbers above the cutoff wavenumber will grow, and one will grow
faster than all of the others. Computations reveal the quantitative relationship be-
tween gravity, surface tension, shear stress, geometry, perturbation wavenumber, and
growth rate and pinpoint the most unstable mode. The calculated stability threshold
is of the same order exhibited by the annular experiments for narrow gaps.
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Chapter 5

Nonlinear effects: amplitude of the
instability

5.1 Introduction

When a sheet of viscous Newtonian fluid is sheared, it develops wrinkles above a
critical shear rate. The wrinkles grow to a point, and then their amplitude saturates.
In experiments with an annular configuration, the wrinkles have been observed to
travel around the annulus with a wave speed between the speed of the inner cylinder
and the speed of the outer cylinder. The equations and boundary conditions are
sensitive only to the relative rates of rotation of the two cylinders and not to the
absolute rates of rotation. The same holds true for the rectilinear case; only the
relative velocities of the walls matter. Here I consider what the equations governing
the sheet predict in the way of saturation. Let us consider a frame of reference in
which the wrinkles have a wave speed of zero at saturation. In this frame of reference,
at saturation
OH
ot
This chapter examines a number of possibilities regarding the nature and gov-
erning equations of the saturation of the instability. First, the original equations of
Section 2.4 are examined and it is argued that they do not predict saturation. Next,
a natural progression of new scalings is considered leading to a scaling of the equa-
tions allowing saturation to occur. Finally, an order of magnitude argument for the
amplitude of the ripples at saturation is derived from the scaled equations.

A scaling for the amplitude at saturation seems to present itself immediately out
of even the two-dimensional equations:

0. (5.1)

T = 4phla, + HyHyy). (5.3)

At saturation, the dominant balance is
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or

UH
“hfjﬁ ~ pgH. (5.5)

If at saturation, as experiments suggest, H ~ L ~ ),

Uh
H~ 2 (5.6)
P9
It shall be seen that this very scaling eventually emerges, but it does not constitute
a consistent picture of the model without modifications to the formulation.

5.2 Saturation occurs when H > h

At saturation, the equations remaining from (2.21)-(2.24) are linear so that no sat-
uration is predicted by the original equations. That the original equations do not
predict saturation comes as no surprise since the conditions at saturation violate at
least one of the premises of their derivation. The original equations evolved from the
Stokes equations by way of an assumption u ~ ew. At saturation, w arises solely
from a coupling of u to H,. The original scaling also suggested that H ~ h and that
therefore H, ~ €. This would suggest that w, far from being O(u/¢), would in fact
be O(eu).

Let us consider a rescaling of the equations appropriate for saturated wrinkles
with amplitudes of the order of the thickness of the sheet.

u~U v~U w~el, Pw,u%

h~elL, H~elL, x~L, y~L, z~c¢lL. (5.7)

This scaling is the one used in lubrication theory. Appendix E contains the details of
the derivation. The resulting governing equations in terms of leading order variables
are

ng = /,L(4’l_1y + 2ﬂx)h, (59)
Tz = (@, + 5.)h, (5.10)

0Ty | 0Ty
— =0 11
oz t oy =0 (5.11)

0T, 0Ty
LA T . 12
0z Ty 0 (5.12)

and

Hxa:Tll + 2szT12 + Hnygg = ng (513)

which are linear in H and thus cannot model saturation because they contain no
amplitude information. This result suggests that saturation does not occur while
the amplitude of the wrinkles remains of the order of the thickness of the sheet. To
understand saturation, we must consider wrinkles with slopes of order unity.
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5.3 A new scaling for the amplitude saturation

At large displacements of the viscous sheet (H, ~ H, ~ 1), derivatives with respect
to the fixed Cartesian coordinates,  and y, cannot be considered small compared
to derivatives in the z-direction because for H, ~ 1, a small change of position in a
direction parallel to the original plane of the sheet entails a similarly sized change of
position through the depth of the sheet. Thus, the separation of scales used in the
original scaling becomes invalid at large displacements, and derivatives with respect
to the z and y directions have magnitudes on the same order as derivatives in the z-
direction. The logic underlying the original separation of scales remains valid: changes
occurring through the depth of the sheet are expected to happen over a distance on
the order of the thickness of the sheet, while changes along the span of the sheet are
expected to occur over distances proportional to the in-plane dimensions of the sheet.
This separation of scales in the problem can be recovered in the equations through
the utilization of sheet-centered non-orthogonal curvilinear coordinates. The detailed
derivation of the scaling argument can be found in Appendix E.

Let z', 9/, and 2’ be the sheet-centered curvilinear coordinates, where z' points in
the original Z direction; £’ points along the sheet center-surface in the original x — 2
plane; and ¥’ points along the sheet center-surface in the original y — z plane (see
Figure 5-1). Let the origin of the (z',,2') system lie on the sheet center-surface.

Figure 5-1: Original fixed and new curvilinear axes shown with the y — z plane cross-
section of the sheet.

Once again, at saturation, with the displacement of the sheet constant, w will
result from coupling between u and H,. With slopes of O(1), w ~ u. Let us retain
expression of the velocities in the original fixed orthogonal coordinate system. The
following scaling is suggested by this model:

UNU, UNU) wNU)
g~z ~L y~y ~L 2 ~e€L,
2~ L, H~L, ~— h~el (5.14)
U fol el 1 3 1
Prpl 5o ™ag ~ D0 a7 ™ e
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and for quantities without z-dependence

0 0 1
o~ =~ 5.15
or OJdy L (5.15)
Under this scaling the resulting governing equations for the sheet are as follows
(where all terms are leading order quantities unless explicitly noted):

u=a (5.16)
V=17 (5.17)
w=H,+aH;+0H, (5.18)
o D 2 | 772

P =2 (i, +9,) - pp; [n (1 + H2 + H2)] (5.19)
uM =aW + 2 fo(z,y,1) (5.20)
v =M 4 2 fr(z,y, 1) (5.21)
 Hy(2a, + 9,) + Hyty, + H, 2 :ln (1+H2+ Hj) — 2, - 2
fo = 1+ H2 + H2 (5:22)
_ Hy(i, +20,) + Hoo + Hy 2 [In (14 H2 + H?)| — 22 - 03
fr= 1+ H2 + H? (5-23)

8/I’ll aTlQ
L2 5.24
oz + Jy (5:24)

0T, Ty
22 5.25
Oz + dy (5:25)

H:t:chl + 2nyT12 + Hny22 -
— pgH + 2(~* = .
T a2+ pgH +2(y" +97 )k =0 (5.26)
T = [2utiy ~ P — 2uH, feh (5.27)
T22 = [2[1/[_)9 - P - 2/.LHyf7]h (528)
T = ,u[ﬂy + U, — Hyfe - fo'/]h (529)
1+ H?)H,, —2H_H,H, 1+ H)H

2/€ = ( + y) Yy Yy + ( :t) vy (530)

(1+ H2 + H2)3/2

Thinking about the rectilinear sheet being sheared by two parallel walls a distance
2L apart moving in opposite directions, each with speed U, call H the amplitude of
the wrinkles and A their wavelength. Noting that gravity has a much more significant
effect than capillarity for reasonable experimental values of the parameters, for H ~
A ~ L, the following scaling emerges:

H~ B2 (5.31)



As expected, increasing the restoring forces in the form of p and g decreases the
amplitude; increasing the driving force in the form of U increases the amplitude;
and, increasing either p or h will increase amplitude because, for a given U, the
viscous forces are proportional to 1 and h. For reasonable values of the parameters,
p~103Pa-s, U ~ 1072m/s, h ~ 107%m, and p ~ 103kg/m3, the scaling predicts
H ~ 1072m a result quite in keeping with experimental observations.
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Chapter 6

The viscous catenary

6.1 Introduction

The term catenary describes the form of a chain hanging between two points and is
in fact derived from the Latin word for chain [13]. In 1691, Leibniz, Huygens, and
Johann Bernoulli became the first to discover the equation of the catenary in response
to a challenge set forth by Johann’s older brother, Jacob Bernoulli. Huygens coined
the term in a 1690 letter to Leibniz discussing the topic [20]. This chapter explores
the behavior of the viscous catenary. If a filament of an incompressible highly viscous
fluid forms a bridge across the gap between two solid vertical walls, it will sag under
the influence of gravity. The scaling of the variables for this scenario matches that
leading up to the governing equations presented in Section 2.4, the viscous analog
of the Foppl-von Kdrméan equations, and thus the same equations should govern the
behavior of the viscous bridge for moderate displacements.

Consider the case of an initially axisymmetric filament shown schematically in
Figure 6-1. s = z = the arc-length coordinate of unstretched filament (Lagrangian).
5(s,t) = the arc-length coordinate of stretched filament (Eulerian). 6(s,t) = the
angle of inclination of the viscida. H(s,t) = the vertical displacement. A(s,t) =
the cross-sectional area. h(s,t) = the diameter. U(s,t) = local filament velocity

Figure 6-1: Schematic of viscous catenary with relevant variables
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tangential to centerline.
U= — (6.1)

The tension, T'(s,t), is given by
oU (s, t)
95

where the extensional or Trouton viscosity of the viscida is 3u. The filament stretch,
A(s, t), is

T = 3pAé = 3uA

(6.2)

Ms,t) = 65(;3’ £) (6.3)

and can be used to express the other quantities in terms of Lagrangian coordinates
only:

dU(5,t) _ 0U(s,t)

95  Os A (6.4)
oU(s,t) _ 0%3(s,t)
95~ osat (6.5)

For an incompressible fluid filament, the differential conservation of mass equation
can be written as 5

5 (AN =0. (6.6)

Since the filament is initially unstretched, corresponding to A = 1, initially and for
all time, A\ = Ay. The tension can now be written as

At Oln A

= 3uAZt =344
T(s,t) = 3uA~ = 3ud—

(6.7)

6.2 Derivation of governing equations

Love [17] considered the elastic analog to this problem accounting for both bending
stiffness and shear forces in addition to tensile forces. Following Love’s derivation,
the equilibrium of forces and moments can be expressed as

> F,=0=T,—wsinf — N9, (6.8)
Y F,=0=T0, —wcosd — N, (6.9)

and
> M =0= Db+ N, (6.10)

where s and n are the local tangent and normal to the center-line respectively, T'(s, t)
and N(s,t) are the tension and shear force, w is the weight per unit length of the
undeformed viscida, pg A\ = pgAp, and D = 3ul is the bending stiffness, where I =
3muh* /64 is the area moment of inertia of the viscida cross-section, so D = 3wuh*/64.
(6.8), (6.9), and (6.10) are subject to the following boundary conditions: § must be
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an odd function about the midpoint of the span and
Q(Swau, t) =0. (6.11)

Combining (6.8), (6.9), and (6.10) to eliminate T and N yields

R 933 cos 0 assst
—w (2 sinf + =2 ) +D [5; ( > ) + 9sasst] - 0. (6.12)

Multiplying (6.12) by cos @ and integrating with respect to s yields

0 2
D (-——9”“(;08 +0,,sin 9) + “’Cgs o _ A, (6.13)

where f(t) = T at any point where § = 0 by comparison to (6.9) and (6.10). Multi-
plying by CO‘:; 5 and integrating again yields

DO,y sec + ws = fi(t) tan 6 + fo(t). (6.14)

# is an odd function about the midpoint of the span, so if we measure s from the
midpoint, f(t) = 0 because 6;:(0,t) = 0. Also because 6 is odd, 0(0,t) = 0, so
fi(t) = T(0,t) and

D0O,gsecf + ws = T(0,t) tanf (6.15)

subject to the boundary conditions
6(0,t) =0, A(+L/2,t) =0, (6.16)

where L is the undeformed length of the filament which satisfies the initial condition
6(s,0) = 0. Then (6.15) and (6.16) describe the evolution of the centerline of the
sagging filament once the tension, T'(0,t), is known.

As the viscous filament sags, tension arises naturally, and Section 2.4 can be
useful. For moderate deflections, the following equations which are analogous to
(2.18), (2.16), (2.8), and (2.21) are valid:

DHypoms = THay — w, (6.17)
aT
5 =0 (6.18)
and 94
— =0, 6.19
. (6.19)
where
T(z,t) = 3uAlU, + HyHy,). (6.20)
Integrating (6.18) yields
T(x,t) =T(t) = 3uA[U, + HyHy,). (6.21)
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Integrating (6.17) with this information yields
DHyyor = TH, — wz + f(2). (6.22)

By symmetry, H,,+ and H, must vanish- at = 0 (the midpoint of the viscida), so
f(t) =0, and
DH,.., = TH, — wzx (6.23)

which is exactly equivalent to (6.15) with § = H, and =z = s. Integrating (6.21)
over half the length of the viscida and noting that U(z = 0) = 0 by symmetry and
U(z = L/2) = 0 because no fluid penetrates the stationary wall leads to

GNA L/2
0

T(t) = H,H,,dz, (6.24)

where L is constant in this formulation, which can be rewritten as

3uA [L/2 9H?
il —Zdx

T(t) = 6.25
(®) L Jo ot (6.25)
Combining (6.25) with (6.23) and taking § = H, yields a single integro-differential
equation for 6,
3uA L2 892
Do, — s «9/ —dzr = —wz (6.26)
with boundary conditions
Oz =0)=0(x=LJ/2)=0. (6.27)
The first term in (6.26) represents resistance to bending
B = Dl,y,. (6.28)
The second term represents resistance to stretching
3 A L2 02
li —6 / 9 dz, (6.29)
where the tension is written as
L/2 1 802
=3uA L/ 3ot (6.30)

the product of the Trouton viscosity, the cross-sectional area, and the average rate of
stretch. The right hand side of (6.26) corresponds to the weight of the filament.

(6.26) can be nondimensionalized using the following scaling;:

e=h z=2 f=t22 (6.31)



Dropping tildes, (6.26) may be rewritten as

1/2 1(902
ef)mt 69/ ———dx = —x

2 Ot
subject to
6(0,t) =0, 6(1/2,t) =0,

where ]
B = '3—2—630‘7;:“
and 2 1 862
= ¢ / bl

S=e 0o 2 0Ot o

6.3 Bending solution

If we consider the case where § << 1, then (6.32) simplifies to

1
3_2‘5301xt = -
with boundary conditions

6(0,t) =0, 6(1/2,t)=0

which can be integrated twice to form

16€323
3

0, = — + zf3(t) + fa(t).

Applying the boundary conditions yields

so that
16e32®  4ée3x

3+3'

Integrating with respect to time yields

16e323t N 4e3xt
3 3’

0(z,t) = —

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.40)

(6.41)

where the constant of integration vanishes because 6(z,0) = 0. Another integration

yields the displacement,

T

H(x,t):/

-1/2

4€3t [1
4

sin 8dx ~ / fdz = ———
1/2 3
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Dimensionally,
wzdt  wLl’zt

O(z,t) = — oD + i (6.43)

and
H(z, 1) = —% [(g)z - xQ} | (6.44)

Trouton solved this problem in 1906 [33] for the rate of sag of a viscous bar
resting on two supports separated by a gap with boundary conditions requiring that
the internal moment vanish at the ends of the bar (equivalent to 6,,(£L/2,t) = 0).

He found that the center-point of the bar sags at a rate of g—;"%. For the boundary

conditions presented here, the center-point of the bar sags at a rate of 3—“;5%%, matching
results produced by Tuck et al. [34].

6.4 Stretching solution

After the initial phase of deformation when bending resistance controls the slumping,
stretching becomes significant. To estimate the time at which stretching begins to
play a role, I compare the relative magnitudes of S and B in (6.32) using the bending
solution, (6.41). Plugging (6.41) into (6.34) and (6.35) yields B = —z and

6412
S = - —4z°) . )
TR (a: T ) (6.45)

The effect of stretching becomes significant when S and B are of comparable magni-
tude,

642
—T & — — 42%) . :
x 58358 (x x ) (6.46)

9835
te ety — .
“\ 641 — 422) (6.47)

and happens earliest at x = 0 when

/2835
~ 4 —_—

ph®
" wLt
so that for a filament with L = 0.1m, h = 0.01m, p = 1000kg/m3, and u = 1000Pa-s,
stretching becomes significant when ¢ ~ 0.001s.

In an ever shrinking boundary layer near the wall, bending resistance remains
important, and the curvature of the viscida becomes high in order to conform to
the zero slope boundary condition at the wall. The outer solution, where stretching
is the dominant factor outside the confines of the boundary layer, can be closely

This occurs when

Dimensionally,

¢ (6.49)
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approximated by (6.32) without B,

1/2 1 99?

The outer solution to (6.50) exists in the form

[7
0= ¢ —62—$t1/3 (6.51)

12w

0= mxtw. (6.52)
In the stretching dominated regime, the viscida will sag at a rate proportional to
t1/3. much more slowly than in the bending dominated regime where the viscida sags
at a rate proportional to t. In fact, (6.51) not only satisfies (6.50), it also satisfies
(6.32) without the wall boundary condition and constitutes an outer solution to the
problem. It must be matched to the inner solution corresponding to the bending
dominated boundary layer near the wall.

or, dimensionally,

6.4.1 Bending boundary layer

This section examines how the extent of the bending boundary layer near the wall
changes with time. The viscida obeys (6.32). First note that the stretching term
contains an integral spanning half of the length of the filament. The departure of the
solution in the boundary layer from the outer solution will not produce a meaningful
contribution to the integral because of the comparatively small size of the boundary
layer. Thus, using the outer solution, (6.51), to evaluate the integral provides a good
approximation resulting in the modified equation

1 3 € .—~1/3
— 30, — Y —V —. .

Over the width of the boundary layer, # changes rapidly from the outer solution value
to zero, the value at the wall. Within the boundary layer, the bending term achieves
the same order of magnitude as the forcing term, —z. After rewriting the bending
term as

—e°— (0 .54
3¢ g7 Uez) (6.54)
estimate 0 0 ( )

gx wall — Vouter \ Twall 6.55
z 52(t) ’ ( )

where §(t) is the width of the boundary layer, 6,,; = 0, and

1,/72

oouter(xwall) = 5 Y _€_t1/3. (656)
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Equating the magnitudes of the bending term and the forcing term yields

1 3 3 aouter(xwall) 1
32 o ( 2() > (6.57)

or, on integrating with respect to time and substituting in (6.56),

1,72 5 (/3 ¢
i e (62@ 5 +C, (6.58)

where C' is an arbitrary constant which must vanish because as ¢t — 0, § does not
vanish, leaving C' ~ 0. Dropping numerical prefactors and solving (6.58) for ¢ yields

6 ~ 3713 (6.59)
or dimensionally
5~ (i)m R3/3¢1/3 (6.60)
wlL )

Thus the bending boundary layer should contract with time shrinking as t=1/3. The
analogous elastic bending boundary layer is present is Love’s solution {17] with

G

1/3
Selastic ~ <E> h*3, (6.61)

where G is the elastic shear modulus which has replaced u/t in (6.60).

6.5 Breakdown of slender-body theory

The equations presented hitherto rely on the Trouton extensional viscosity and a
simple bending stiffness. Both of these approximations require making the assumption
that cross-sectional planes in the undeformed viscida remain planes in the deformed
viscida. Both approximations are violated in a small region adjacent to the wall due
to the no-slip velocity boundary condition on the wall that does not allow the wetted
wall area to shrink as the viscida stretches. This assumption taken together with (6.6)
would imply that X always remains one at the wall which, together with (6.7), suggests
that the tension at the wall will always be zero. In reality, the extensional viscosity
becomes infinite at the wall allowing the presence of a finite tension with no reduction
in area. An extensional viscosity boundary layer such as this one is considered by
Stokes, Tuck, and Schwartz in their discussion of the pinch off of a falling viscous
fluid drop [35]. They suggest that the extensional viscosity boundary layer extends
from the wall a distance approximately equal to the thickness of the viscida and the
effect falls off as 1/22. They suggest the following “composite empirical expression”

for the Trouton viscosity:
1 (h\?
1+ —=1- . 6.62
* 32 <a:) } ( )
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Figure 6-2: Relative importance of bending (B) and stretching (S) as defined by
(6.34) and (6.35) at times just up to the emerging dominance of stretching. The
curves represent time snapshots in increments of 2 x 1077, e =1 /50.

The analogous bending stiffness boundary layer will be of similar extent covering
the region in which the cross-sectional planes of the viscida become curved during de-
formation. The effect of the bending stiffness boundary layer is incorporated through
the boundary condition that requires the slope of the viscida to vanish at the wall.

6.6 Numerical solutions

To account for both bending and stretching, (6.32) can be solved using a spectral
collocation method based on Chebyshev polynomials [32]. This solution confirms
that at early times, the viscida sags at the bending controlled rate proportional to ¢
and, at later times, at the slower stretching controlled rate proportional to ¢!/3. The
same solution shows that the boundary layer size shrinks at a rate proportional to
t~1/3. Appendix F elaborates on the details of the implementation of the numerical
scheme.

Figure 6-2 illustrates the relative importance of B and S for ¢ = 1/50. For
this slenderness ratio, (6.48) predicts that bending will outstrip stretching for ¢ >
1.1 x 1075, an estimate very close to the results shown in Figure 6-2. Figure 6-3
shows the evolution of the viscida as stretching asserts itself. For ¢ < 1077, the
bending solution presents an accurate picture of the viscida.

Figure 6-4 shows the behavior of the viscida at later times after stretching has
become dominant over most of the span. The stretching solution’s exaggeration of the
displacement stems largely from the gross over-estimation of the angle in the boundary
layer as seen in the left-hand plot of Figure 6-4. However, Figure 6-5 shows that the
growth rate of the full solution approaches the one-third power law growth rate of
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Figure 6-3: Evolution of the viscida just as stretching begins to emerge as a contribut-
ing factor. 6 = H; is the solution of (6.32). Opending is given by (6.41), and Hpenging
is given by (6.42). The curves represent time snapshots in increments of 2 x 107".
e = 1/50.
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Figure 6-4: Evolution of the viscida after stretching has dominated bending over most
of the filament. § = H, is the solution of (6.32). Ostretching is given by (6.51), and
Hstretching = J21 /2 Ostretchingdz. The curves represent time snapshots in increments of
1075 € = 1/50.
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Figure 6-5: Sag of the viscida after stretching has dominated bending over most
of the filament. H,,,, = —H(0,t) is the maximum displacement of the viscida.
HStretching == ffl/z OStretchingdl'a where gStretching is given by (651) €= 1/50

the stretching solution. Figure 6-6 contains a plot of the contraction of the bending
boundary layer extent over time illustrating the t~1/3 dependence predicted by (6.59).
Figure 6-7 shows the dependence of the boundary layer size on the slenderness of the
filament and confirms the €*/3 dependence predicted by (6.59).

6.7 Late time behavior

At comparatively very large times, the viscida will pinch off in finite time from the
extensional viscosity boundary region near the wall in much the manner suggested
for droplet pinch off by Stokes et al. [35]. When the filament has sagged sufficiently,
the portion of the filament extending from just outside of the bending boundary layer
near the wall to some point a considerable way along the filament will hang nearly
vertically with negligible curvature. The behavior of the filament at this stage follows
the limit of (6.8) when § — /2 and 6, — 0:

T, =w (6.63)

where
w = pgAo(s). (6.64)

Integrating (6.63) once from some point, s;, near the bottom of the vertical region to
an arbitrary point in the vertical region, s, leads to

fﬂaﬂzqmli%@Ms+f@) (6.65)
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Figure 6-6: Time dependence of the bending boundary layer extent. The dashed line

indicates a time dependence of t~1/3. € = 1/50.

e 55 5 45 4
In(e)

Figure 6-7: Variation of the bending boundary layer size with slenderness ratio at
t = 8 x 10™*. The dashed line indicates a slenderness ratio dependence of €*/3.
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At s =5, T =T(s1,t), s0 f(t) =T(s1,t). At s = s, the tension must by symmetry
support half the weight of the strand below s, so

T(s1,t) = ,og/O le(s)ds (6.66)
and s
T(s,t) = pg / Ao(s)ds. (6.67)
0
Utilizing the constitutive relation, (6.7), and noting that due to (6.6),
0
AN = pn (AN) — A\ = — A, (6.68)
T(s,t) = —3uAi(s,t) = pg/0 Ap(s)ds. (6.69)
Integrating in time yields
t
A(s,t) = 22 / Ao(s)ds + f(s). (6.70)

A(s,0) = Ap(s), so f(s) = Ao(s) and
Als, 1) = P9t / Ao(s)ds + Ao(s). (6.71)

To determine when and where the viscida will break, set A(s,t*) =0 in (6.71):

3uAo(s)
pg J3 Ao(s)

The filament will break at the position s = s* that minimizes ¢t*(s). These results are
completely analogous to those of Stokes et al. [35]. The denominator of (6.72) strictly
increases with increasing s. Thus, if Ag(s) does not vary with s or decreases with s,
the minimum ¢* will occur just outside of the extensional viscosity boundary layer and
wall region bending boundary layer at a distance O(h) from the wall. Examination
of (6.8) shows that from the time that stretching begins to dominate bending and
therefore N = 0,

t(s) = (6.72)

Ts = wsiné. (6.73)

This will occur during the time regime described by (6.26) during which the thickness
of the filament experiences no appreciable change. Thus, to a good approximation,
the filament enters the regime described by (6.73) with a uniform cross-sectional area.
Since in the region 0 < s < L/2,0 < 8 < /2 and w > 0, Ty > 0. This means that the
maximum tension will occur near the wall just outside of the bending boundary layer.
Since the rate at which the viscida pinches down is proportional to the tension, (6.69),
the viscida will slim most rapidly in the region near the wall during the entire time
span from the uniform cross-sectional area filament to the nearly vertical filament.
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Thus, in fact, Ag(s) for the late-time problem will have a minimum near the wall,

and the viscida will break there.

6.7.1 Exact outer solution for the stretching region

In the stretching region, even beyond the time for which the small angle approximation
is valid, N = 0, and the following reduced forms of (6.8) and (6.9) govern the evolution

of the viscida:
T, = wsind

and
TO, = wcosb

subject to the constitutive equation
T = —3uA;.
Substitution of (6.76) into (6.74) and (6.75) yields
—3uAg = wsinf

and
—3uAfs = wcosb.

(6.78) when multiplied by cos# can be rewritten as
d, . )
—3MAt£(sm 6) = w(l — sin®6).

Rearranging (6.77) as

36y
w

and substituting into (6.79) yields

st = sin@

3uA, [%Asst] =w [1 - g-‘fgiAft}

w w
or o

AAgy + A% = 07
(6.82) can be rewritten ,

() = 5
and then integrated to form
w?s
AAg = o2 + f(t)
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(6.75)

(6.76)

(6.77)

(6.78)

(6.79)

(6.80)

(6.81)

(6.82)

(6.83)

(6.84)



or

10 w?s
—— (A} = — : :
355 (4) = gz +70) (6.85)
At s =0, £ (A?) = 0 by symmetry. It follows that f(¢) = 0 and
0 ;.o\ 2w’s
o (At) =57 (6.86)
Integrating (6.86) leads to
2= (6.87)
7
or
w?s?
Ay =~ 0 + f2(2)- (6.88)
Differentiating shows
‘Ust
Ay = — (6.89)
v+ fo(1)
(6.89) taken together with (6.80) leads to
ws
sinf = S (6.90)

e+ 2(t)

which represents the outer solution condition that must be matched to 6 from the
bending boundary layer solution. For this solution, it would not suffice to say that
the slope of the filament near the wall is approximately 7 /2 since that would lead to
f2(t) = 0 and 0(s) = 7/2, and by symmetry, it must be the case that (0) = 0.

6.8 Sagging of sheets

If one wishes to consider the sag of a planar sheet, the only changes lie in the Trouton
viscosity which goes from 3y to 44 to account for the fact that no transverse stretching
can occur in the planar case, the moment of inertia which goes from % to % (keeping
in mind that planar quantities are per unit length in the direction of uniformity), and
A which goes from Th? to h.
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Chapter 7

Conclusion

In the spirit of the analogy between the behavior of viscous Newtonian fluids and
static Hookean solids formalized by Stokes and Rayleigh for bulk materials, this the-
sis explored extensions of the analogy to slender bodies such as filaments and films
of viscous fluids. Slender viscous bodies have not been nearly as well explored as
their elastic brethren. Interest was spurred in the late 1950s and 1960s by geological
applications and soon spread to the general fluid mechanics community. Flows involv-
ing slender viscous bodies have drawn great interest recently because they commonly
arise in manufacturing processes.

This thesis has striven to explore these fascinating fluid phenomena in the context
of their elastic analogs. The principal difference between slender viscous bodies and
their elastic counterparts is the presence of significant surface tension in fluids. In
order to explore the analogy, this work considers viscous scenarios with and without
important surface tension effects. The general equations for the evolution of a folding
viscous sheet are developed from the Stokes equations for highly viscous fluid flow
following the example of Buckmaster et al. [8] and Howell [12]. The two-dimensional
case of layer-parallel compression is considered in order to shed light on the general
stability behavior of the equations.

The thesis focused on three particular problems, wrinkling of a sheared annular
film, wrinkling of a sheared rectilinear film, and sagging of a horizontal filament.
Though many viscous folding problems have been considered over the years, the first
two problems in this thesis represent the first truly three-dimensional viscous folding
problems solved. All three of these scenarios exhibit very complex nonlinear behavior
even though the material properties are perfectly linear and no inertia is considered.
The complexities arise from the geometries which contain multiple length scales and
dynamic free boundaries.

The elastic analog to the annular problem was studied by Dean in 1924 [11]. Dean
clamped an elastic sheet in an annular geometry and investigated the instability of
the sheet under pure shear. Experiments were performed for the case of viscous
annular sheet shearing in order to quantify the behavior of the system and serve as
a validation of the model equations and their predictions of the critical shear rate
for wrinkling and the most unstable number of ripples as well as the resulting mode
shape. In Chapter 3, the experiments are described in detail. The most unstable
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modes, as expressed by the experimental sheet deformations, compared well, but not
perfectly, with the results of linear stability theory which predicts that the instability
arises in a supercritical pitchfork bifurcation in which the amplitude at true onset
is zero. Due to the difficulty of measuring very small deviations in the shape of
the sheet, the instability is only observed when the amplitude becomes detectably
large. The experimental data can only characterize this regime slightly beyond onset.
Utilizing the linear theory (which is only strictly valid for infinitesimal amplitudes
but represents a close approximation for small amplitudes at which nonlinear effects
remain small) to model the regime measured in the experiments showed excellent
agreement between theory and experiment. These results represent the first successful
model for a three-dimensional long wavelength instability in a viscous sheet.

The same model is applied in Chapter 4 to the rectilinear Couette geometry which
can be considered a limiting case of the annular geometry in which the radius of the
annulus is very large compared to the gap width. Southwell and Skan considered this
limiting case of the elastic problem in 1924 [28], the same year that Dean published
his annular study [11]. In contrast to standard planar Couette channel flow which is
stable for all shear rates, the presence of the free surfaces and slender geometry in this
scenario renders the flow unstable even to infinitesimal shear rates. The instability
to infinitesimal shear rates, exhibited by the annular sheet as well, may at first seem
to be at odds with the analogy since the corresponding elastic problems show finite
critical shear stresses necessary to produce the instability. The nature of the viscous
instability is, in fact, perfectly in harmony with the analogy. The analogy specifies
that displacements in the elastic medium be replaced by velocities in the viscous one.
An elastic sheets is stable below the critical shear rate because its bending stiffness
provides resistance to folding that prevents the deformation from occurring. In a
viscous sheet, the same bending stiffness provides resistance to rates of deformation
and, hence, does not hold the sheet in its planar shape, but slows the deviation instead.
Linear stability analysis of the viscous sheet equations yielded the dispersion relation
and the most unstable mode. It should be noted that in contrast to layer-parallel
compression, the rectilinear and annular sheared sheets are not subject to thickening
at small amplitudes of deformation due to the balance of tension and compression
resulting from shear; hence, the concerns of thickening taking place faster than folding
[22] do not apply to these scenarios.

The elastic analog to the third problem, the sagging filament, dates back to the
end of the seventeenth century when Jacob Bernoulli issued a challenge to find the
shape of a chain hung between two points. His brother Johann, together with Leibniz
and Huygens, solved for the resulting form [20]. Love considered the effects of elastic
stretching of the filament as well as its bending stiffness [17]. Here I have examined
the viscous catenary problem incorporating bending and stretching as Love did. This
is the inverse of the other two problems considered. In the case of the catenary, the
primary forcing is out-of-plane, and in-plane forces result. In the sheared sheet, in-
plane forces led to out-of-plane forces and folding. The observation that the equations
developed with the sheared sheets in mind were derived utilizing a velocity scaling
that was strictly kinematic allowed them to be applied to the sagging viscida as well
despite the reversal of the dynamic causality. The behavior of the viscous catenary was
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explored through three regimes of development. As an initially horizontal filament
begins to sag, resistance to bending governs the development. Once appreciable
deformation has occurred, naturally arising tensile stresses become important and
resistance to stretching then controls the evolving shape of the viscida except in
bending boundary layers near the wall where bending remains important in an ever
shrinking region. At very late times, the behavior of the filament resembles droplet
pinch-off from two necks.

These three problems serve as an emphatic assertion that the viscous-elastic anal-
ogy holds in slender members just as it does in the bulk. In each of these three
problems, not only do the shapes of the deformed viscous filaments and sheets share
all of the characteristics of their elastic counterparts; the forces present in each set
of scenarios also match. The only differences arise due to capillary forces and the re-
placement of strains with strain rates as required by the analogy. There is no shortage
of well examined plate, shell, and beam problems in elasticity. The elasticity litera-
ture should provide a well endowed mine of analogous viscous problems to examine
in the future.
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Appendix A

Derivation of model equations

The Stokes equations describe the behavior of a fluid in the limit of vanishingly small
Reynolds number (here in Cartesian coordinates):

Py = p(ugg + uyy + uzy), (A1)
Py = pvgg + vyy + vz), (A.2)
Pz - ﬂ(wm: + Wyy + wzz)a (A3)

where P is the pressure, and u, v, and w are the velocity components in the x, y, and
z directions. The continuity equation ensures conservation of mass:

Uz + vy +w, = 0. (A.4)

The top and bottom of the sheet must obey a kinematic surface condition,

Wl ey = D%(H + %h) _H+ %ht +(H, + -;hx)u +(Hy % 2k, (A5)
where H is the z-coordinate of the center surface of the sheet, and A is the thickness
of the sheet. The top and bottom surfaces must also satisfy a dynamic traction
condition. The tractions on the surfaces of the layer are a result of ambient pressure
and surface tensions of the interfaces. The ambient pressure in the air above the
fluid sheet can, without loss of generality, be considered zero. The ambient pressure
below will be determined by hydrostatic pressure variations in the underlying fluid,
P~ = p~gH, where p~ is the density of the underlying fluid, and g is acceleration
due to gravity. The free surface condition can be expressed as
c-i=T, (A.6)

S

where ¢ is the stress tensor,

-P+ 2:“’“1: H’(uy + Ua:) ﬂ(uz + wz)
pluy +vz) —P+2pv, p(v, +wy) |, (A7)
plu, +wy)  plv, +wy) —P+2pw,

IS}
|
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7i is an outward normal to the surface,
. 1 1 T

and T is the traction on the surface. The edges of the sheet satisfy a no-slip condition
so that the velocities u, v, and w match the velocity of the walls.

Following Buckmaster, Nachman, and Ting[8], the variables in the equation can
be scaled in a manner consistent with buckling type motion to generate an equation
wherein all of the scaled variables are of the same order. The scaled variables are
indicated by hats, and the scaling utilizes a characteristic in-plane length-scale of
the sheet, L, a characteristic out-of-plane velocity, U, and a slenderness ratio, ¢,
characterizing the ratio of the thickness of the sheet to L, where ¢ << 1. The
variables scale as follows:

x=2zL, y=19L, =z=2ZeL,
u=1uel, v=~0el, w=wU, (A.9)
— P, U — i L
P = Ppuez, t=teg.

Howell [12] demonstrated that by plugging these scaled variables into the govern-
ing equations and representing the scaled variables in perturbation series (e.g. @ =
4® + 24V + 44 . ..), the equations could be solved order by order to generate
a set of equations describing the evolution of the geometry of the sheet. What fol-
lows demonstrates that the final equations arrived at by Howell can be derived in a
more physically intuitive manner by solving the leading order equations and balanc-
ing forces and moments in the sheet. Ribe [24] does a similar physically motivated
derivation for one-dimensional initially curved sheets.

Since all variables now considered are scaled, the hat notation will be dropped for
convenience. The scaled equations and boundary conditions follow:

Continuity:
e2uy + ezvy +w, =0, (A.10)
Stokes:
P, = ug + ezuyy + Uy, (A.11)
E€P) = vy + vy + Vs, (A.12)
P, = Swyp+ ezwyy + w,,, (A.13)

Kinematic surface condition at z = H + %h:
1, 1 \ 1
w|z:Hi%h =H, + 5ht +e*(H, £ éhx)u +€e*(H, £ Ehy)v, (A.14)
Traction surface condition at z = H =+ sh:
2 1 2 1
e“(—P + 2u,)(H, + §h1) + e (uy + vy) (Hy + 5hy) — (u, + wy) =
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T, 1 1

€ —§—V (H -+ '—h)(Hx + Ehx)’ (A15)
1 1

62(—P + 2uz)(Hx — Ehz) + 62(Uy -+ ’Uz)(Hy - §hy

1

2
) — (ur +wy) =
r- 1 G 1
LR V212 - _ 2t 2 & _ 2t
€3 V(H 2h)(Hz 2hm) +€ 3H(Hx 2hz), (A.16)
1 1
€ (uy + ) (Hz + Eha:) + (=P + 2vy) (Hy + §hy) — (v; +wy) =
LI, 1 1
€ ?V (H + §h)(Hy +-hy), (A1T)
) -

— Sh) 4 E(-P+ 2vy)(H ;hy

- 1
ez%vz(H - —h)(Hy — y) + €

2
(v, +wy) =

,G 1
SH(H, - h),  (A18)

1 1
€ (uz + w) (Hz + 5ha) + €0z w,) (Hy + 5hy) = (=P + 2w,) =

ez(uy + v ) (Hy

€ —V2(H+ 5h), (A.19)

3
1 1
€2(uz + wx)(Hw - ghr) + 62(’02 + ’U)y)(Hy - §hy) - (—’62P + 2’[1)2) =
| 1 G
2l o2 I S U Al
€ 5 V*(H 2h) € 3H, (A.20)
where o2
P g
G=3 U (A.21)
and 7i
'+ =3-—. A.22
3ﬂU (A.22)

Consider each of the variables in the equations and boundary conditions to be repre-
sented by a perturbation series in the small parameter, €2, so that

v = u® 42D 4ty (A.23)
v o= v 4 ep® fty®@ . (A.24)
w w® 4 2w 4 ty®@ .. (A.25)
P = PO42pl L tp®@ ... (A.26)
H = HO 42O L fHO ... (A.27)
h o= RO 4 2pM 4 dp@ ... (A.28)

Substitute the perturbation series representations of the variables into the equations
and boundary conditions. Since ¢ << 1, the terms proportional to € are much
smaller than the other terms in the equations and to leading order can be ignored
(Equivalently, equate all terms of O(e°)). Thus, the leading order governing equations
and boundary conditions follow:
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Continuity:

w® =0 (A.29)
Stokes:

uw? = 0 (A.30)

w9 = 0 (A.31)

w® = 0 (A.32)

Kinematic surface condition at z = H + %h:

©) _ o 1
w HEbn H™W + 2ht (A.33)
Traction surface condition at z = H & %h:
W@+ =0 (A.34)
(0 +w(®) ity = 0 (A.35)
() _ .
w, Hilh 0. (A.36)

(A.29) shows that w depends only upon z,y, and ¢. This result combined with the
kinematic surface condition demonstrates that

KO =0 (A.37)

and
wO(z,y,t) = HO. (A.38)

(A.30) and (A.31) show that neither u{”) nor »{*) depends on z. The dynamic bound-
ary conditions, (A.34) and (A.35), then show that

u® = —HYO (A.39)
v® = —HD. (A.40)

Integrating (A.39) and (A.40) with respect to z gives

u® = _ZHO 4 fi(z,y,1) (A.41)
v© = —th(S)+f2(x,y, t). (A.42)

Let us define two new variables, 4 and ¥, as the depth-averaged velocities in the z
and y directions, respectively.

H+1
u(z,y,t) = h/——h
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= —HOHD + fi(z,y,1) (A.43)

flz,y,t) = @+ HOHY (A.44)
u® = G+ (HO - 2)HY (A.45)
u(z,y,t) = % :jih v0dz
= —HOHY + fy(z,9,1) (A.46)
foz,y,t) = o+ HOHY (A.47)
v® = 54 (HO - 2)H. (A.48)

Now, in order to evaluate the pressure, let us examine the order €2 correction to
the equations. All terms proportional to €* or higher powers of € can be ignored as
small compared to the remaining terms. The resulting set of equations has terms pro-
portional to €2 and terms with no dependence on e. The terms with no € dependence
cancel out because they satisfy the leading order equations. Dividing the remaining
equations by € and assuming that G and I'* are small compared to unity yields,
among others, the following equations and boundary condition:

w® = —ul® - 'UZ(/O) (A.49)
wl) = —wl® —wl+ PO (A.50)
1 1
200 1y, = PO+ @+ 0l (HO £ b0+ (o + ) (P 2 5). (A51)

Substituting (A.49) into (A.50), using the known expressions for the leading order
velocities, (A.45) and (A.48), and solving for P{%) yields

PO = 2(H) + H{y)). (A.52)

tyy
Integrating (A.52) with respect to z leads to
PO = 2(HQ + HONz + fa(z, v, 1). (A.53)

Applying the boundary condition, (A.51), as well as (A.34) and (A.35), yields an
expression for the pressure,

PO = 2 + véo)). (A.54)

Let us now consider leading order balances of forces and balances of moments on a
small element of the sheet (see Figure 2-1). When Re = 0 as considered here, inertia
plays no role and the forces and the moments must each sum to zero. First let us
consider balance of forces in the z-direction.

S F, =0 (A.55)
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o [ rH+Lh o [ rH+Lh
0 = dydo— [ / 1 dchm] +drdy [ / dzozy] (A.56)

or
0
=0 = o4 + HOHD WO +2(5, + HOHD)RO) +
0
gy (8 BV HEDAO + (0, + HO Hy ) (A.57)

which can be rewritten as

Ty = 4, + HOHD)RO + 2(5, + HOHY RO (A.58)
Tys = (@, + HOHD RO + (3, + HOHY RO (A.59)
aT111 aTlZ
=0. A.60
oz + Oy ( )
By the same argument, summing the forces in the y-direction yields
> F,=0 (A.61)
0 = 62[4(61‘ + HOHMRO 4 2(a, + HOHD)RO] +
Y
0
ool + HOHD)WO + (5, + HOHD)hO). (A.62)
Ty = 4(5, + HOHRO + 2(a, + HOHD)RO (A.63)
0T, 0Tn
e By - 0. (A.64)

Now, summing the forces in the z-direction leads to the following relations (the leading
order contributions are identically zero, so higher order terms have been included):

S F, =0 (A.65)

o H+ih o H+Lh G
- = _ 20
0 = dydr— p { / in dza,,.z] + dzdy 3y { / i dzayz] dxdy 3 HY +

d:vdy v2(H(°>+ h(o))+dxdy%—v2(H %h@)) (A.66)

where
. H+1h
.= /H . dzos, (A.67)
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H+ih
Q, = / dzoy, (A.68)

1h

which can be rewritten as

0Q,; 0Q, G 0) rt_, 1 r- 1
Y = ZHO - VA HO 4+ —pO) - —V2(HO - _pO) A.69
63:+8y 3H SV( +2 ) 3V( 2 ) (4.69)
Balancing moments about the y-axis,
S M, =0 (A.70)

P H+1lh o H+lh Q.
0= dydxa—x [/H_%h dzzom] + dxdyay [/ o dzzormy] — dyda: (A.71)

H+1ih
50 = 2L dataa, + 4HO B + a(HO - HO

(28, + 2H§°>H§§ ) +22(H® = 2)H{)| +

T cH+1in
9 / " dez(y + HOHD) + 2(HO — 2)Ho)+

Oy |/H-1n
2(tp + HOHD) + 2(HO - 2)HY) — cg;] (A.72)
9 [0 0)3 17(0) 03 50] . 9 [0 03770 _ Ye
S0=— [H( Ty, — 3h<> 7O 6h<> thy] 5 [H( Ty — 6h< ) thy] =
(A.73)
Similarly,
> M, =0 (A.74)
9 [0 1. (0)3 17(0) ®] . 9 [50 1 03 y0] @y
0= [H( Ty, — ShO°HS) - gh( HO ] . [H( Ty, — O Hmy] -
(A.75)

Finally, differentiating (A.75) with respect to y, differentiating (A.73) with respect
to z, and adding the results gives

O 10 L350 1,030
0= — [H( T — OB — hO"H] }+
02 1 3..(0) 3 .(0)
o2 [H(O)T B Eh(O) Heyy = 6h0) Hm]
o? 1 3 0Q o0Q
) HOT, — Zp© H(O)] — “we o Ty ) A76
O0zdy [ 276 tey oz + oy ( )

where the last terms can be rewritten using (A.69). Eliminating terms using (A.60),
(A.64), (A.69) and rearranging terms leads to

HOT, +2HOT, + HOTy, — SEZ+
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ELVEHO + 310) + S (HO - 1) =
2

3 3 3 3
g (30O Hizy + GhO  Hig | + 5 [5hO iy + $hO S| +

2 3.0
oo SO H)) (A.77)

A sheet with initially uniform thickness, h{®) = h3(10) = 0, will always remain uniformly
thick because h§°> = 0. Therefore,

GH® T 1
s T3z V' H = gh(°)3V4Ht(°), (A.78)

HOT, +2HO Ty, + HO Ty, -
— a1t+y™
where I' = 37717—.

In general, in this thesis the superscript ’(0)’ is omitted, and all quantities of
unspecified order are assumed to be leading order quantities.
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Appendix B

Confirmation of pressure scaling in

original theory

To confirm the pressure scaling in the theory for small displacements of a viscous
sheet, let us examine the effect of considering larger pressures. In the original scaling

at onset
x~L, y~L, z~e¢lL, Pwue%,

u~el, v~el, w~U, —t~ek

ﬁ.
What if pressure is O(e72)?
U

P~ust

From the leading order continuity equation
wgo) = 0.
The kinematic boundary condition at leading order requires
w® = Ht(o).
z-direction conservation of momentum requires at leading order that
PO = pu) = 0.
The z-direction dynamic boundary condition to leading order states

PO =0,

Therefore, P(O(z,y, 2,t) = 0, and P cannot be O(e~?).
What if pressure is O(e™1)?

U
P~ p—
eL
From leading order continuity
w'® = 0.
z
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The leading order kinematic boundary condition requires
w® = 1,

At O(e), the continuity equation requires

The leading order z-direction dynamic boundary condition states
PO =2, = 0.

Therefore, P(O)(z,y, z,t) = 0 and P cannot be O(e™!).
The original scaling, P ~ p¥, follows.
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Appendix C

Sheared annular sheet with
G=1'=0

W.R. Dean performed his calculations in the absence of gravity and surface tension
[11]. In order to fully illustrate the analogy of the viscous results of this thesis to his
elastic analysis, this appendix presents the predictions of the viscous analysis with
G =T = 0. The evolution equation for the sheet, (2.18), in cylindrical coordinates
becomes

2 2 2
Hrr [4’111- + -V + —u-+ 4H1-Ht,- + —EHgHw]
T T T

H,, H 1 11
+9 ( o _ _70) [Ur + —ug— —v + ~H0Htr]
r T T r r
Hyp H, 4 4 2
4 ( ‘2’9 + ) [zur + —vg+ —u+2H,. H;, + —QHoHte]
r T r r r

2 2 1
+;‘_4H00H0Ht0 + ﬁHﬁHrHtB = §h2V4Ht- (C.1)

Because the in-plane stress balances do not change, the base solutions for the in-plane
velocities, (A.45) and (A.48), also remains unchanged. Linearizing (C.1) about a base
state of H = 0, and examining solutions of the form H = e?**™ f(r) results in a
linear stability equation highly simplified by the absence of the gravity and surface
tension terms,

d*f zd3f_2m2+1d2f+2m2+iSm+1ﬁ+m4—4m2—z’Sm
drt  rdrd r2  dr? 72 dr rd

f=0 (C2)

subject to boundary conditions at the inner and outer radii of the annulus, r = R;
and r = R,,

f(R:) = [(R,) = f'(R;) = f'(Ro) = 0. (C.3)
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Converting from independent variable r to £ = Inr transforms the stability equation,
(C.2), into one with constant coeflicients,
d*f 3 f

N
d—§4—4—g£—3+(4 2m )d€2+(4m +1Sm)—

daf
a "

subject to clamped conditions at £ = InR; and £ = In R,. The general solution to
(C.4) can be written as

+(m* —4m? —iSm)f =0 (C.4)

F(€) = AeMe + Ay + Age™t 4 Ay, (C.5)

where the \; are the solutions to the characteristic polynomial of the stability equa-
tion,

M =40 4+ (4 - 2m®) A2 + (4m® + iSm)A + (m* — 4m? —iSm) = 0. (C.6)

The boundary conditions (C.3) can be written as

RM™ RM R} RM A 0
A R*l AR} A;;RA"“ A4 R’\“ A | _| 0 7)
Rgl R}  RM Rg4 A, 0 :
MRM MR AR A\ RM Ay 0

Introducing a new parameter, n = %?, and performing some simplifications, the

condition for the existence of nontrivial solutions can be written as

1 1 1 1
A A A A
,nAll n)\22 n)\33 ,n)i; = O' (CS)

/\171,)‘1 /\271,)\2 /\3’/’1/\3 /\477/\4

Solving (C.6) and (C.8) numerically reveals the relationship between aspect ratio and
S for each azimuthal wavenumber as depicted in Figure C-1(a) (Appendix F briefly
discusses the numerical method employed.). o € R as proved in Section D.1, so the
instability does not migrate around the annulus. The stability plot is identical to
Dean’s stability plot for the elastic case. The only difference lies in the definition of
S, S =4/o. In Dean’s graph, the lower envelope of the family of curves dictates the
mode number of the observed instability for each aspect ratio because the lowest curve
represents the deformation that occurs for the smallest load. For the viscous case,
the plot is better presented using o* = £+ = o/¥ (Figure C-1(b)) where the upper
envelope represents the observed instability because the highest curve for a given
aspect ratio belongs to the deformation with the highest growth rate for a given load.

The results of the linear stability analysis reveal that infinitesimal disturbances
of any azimuthal wavenumber in the out-of-plane displacement of the sheet will grow
exponentially in time for any non-zero shear rate. The system is thus always unstable.
The wave number dependent growth rates of the disturbances determine the particular
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Figure C-1: (a) Viscous stability plot for S = 4/o or Dean’s elastic stability plot for
S = 7. (b) Conventional stability plot with o* = o /7.

number of observed wrinkles in a given sheet. The fastest growing disturbance which
corresponds to the most unstable mode will rapidly dominate the geometry of the
sheet. The envelope of the curves in the stability plot represents this set of most
unstable modes as a function of the system aspect ratio.

These results ignore the effects of gravity and surface tension both of which sta-
bilize the sheet with regard to the instability considered. Gravity most strongly
damps longer wavelength ripples, and surface tension most strongly damps shorter
wavelength ripples. Each effect, though, will act to some degree on all perturbation
wavelengths. Therefore, the presence of these stabilizing phenomena creates a situ-
ation where a state of neutral stability exists for a non-zero forcing of the system.
Stronger forcing than that in the neutral case will generate wrinkles in the sheet,
weaker forcing will generate none.
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Appendix D

Proof that the instability is a
pitchfork bifurcation with real
growth rates

D.1 Case 1: Sheared annular sheet with G # 0 and
I'#£0

The following equation governs small motions of the sheet:
S (Hy r 1
‘H— = (—= —Hy)—=V*H+-GH =0. D.1
DV*H, T3<T 9) SViH + GH =0 (D.1)
Boundary conditions: at r = R, and r = R;
H=0 (D.2)

and
H,=0. (D.3)

The following proof follows a method inspired by similar analysis done by South-
well and Skan for the rectilinear problem [28]. Consider solutions to (D.1) of the
form

H = (W +iW')e, (D.4)

where W and W' are arbitrary real functions, and o is potentially complex. Consider
two solutions, '
H, = (W +iW')e"" (D.5)

and its complex conjugate
Hy = (W —iW')e ™", (D.6)

where the superscript * indicates conjugation.
If H, is a solution, then H, is also a solution because the real and imaginary parts
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of the solution don’t interact in a linear equation with real coefficients. Hence the
real part of the equation governing H; is the same as the real part of the equation
governing H,, while the imaginary part of the equation governing H, is the negative
of the imaginary part of the equation governing H,, and thus if one is satisfied the
other must be satisfied as well. Because the boundary conditions compare in the same
fashion, the supposition must be true: if H; is a solution, then Hj is also a solution.

Thus, it is true that

/ / [Hl( v, - S (Hzo HM)—EV?H2+ GH2)

3
"
_H, (DV4H“ - % (71” - Hl,.,,> _ §v%rl + 5GHl)] dA=0, (D7)

where the integrals are over the whole sheet. Utilizing the known forms of H; and
H,, (D.5) and (D.6), yields
iD [ [ [oHV Hy - " H VB, dA

_S//(Hsz HyHy,g  HiHg H1H2r0
r2 r3 r2

) drdf —
g / H\V*H, — H;V*H,) dA = 0 (D.8)
which can be rewritten as

ZD// [0V (.Y (V2H))) — o (VH,) - V (V2H,) -
V- (H (v Hy)) + 0" (VH)) -V (V2H,)] dA

—s// g (- ) -

Hyg (Hl _ le) + 9 <H1H20> N HHyy  HiHyo |, o
or \ r? r3 2
= [[ V-V E) — (VH) - (V) -
V - (H,VH,) + (VH,) - (VH;)]dA = 0. (D.9)

Using the divergence theorem and (D.2) to eliminate terms in the first and third
integrals and canceling terms in the second and third integrals yields

iD / / [~o (VH) -V (V2H)) + 0" (VH)) - V (V2H,)| dA

27 R,
_S/ [H2H1 - Hzle] g _ S/ [wa} d9=0.  (D.10)
6=0 r=R;

72

Rewriting the equation again noting that the integrand of the second integral van-
ishes due to periodicity and the integrand of the last integral vanishes due to the
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homogeneous boundary conditions yields

iD [[ [0V HiV*H; — 0V - (V2HiVHa) -
o*ViH,V?H, + 0*V - (V2H2VH1)] dA = 0,

(D.11)
and applying the divergence theorem and (D.3) yields
iD(o — o*) / / [V?H, V2 H,] dA = 0. (D.12)
Substituting the forms of H, and H; from (D.5) and (D.6) yields
iD(o —o")ele= [ [ [(v2w)2 + (vQW')"’] dA = 0. (D.13)
In order for this expression to be true, it must be that
oc=o0" (D.14)

implying that o is strictly real and that there are thus no traveling waves or oscillations
in the solution, just a growing or decaying mode shape.

D.2 Case 2: Sheared rectilinear sheet with G # 0
and [' # 0

The following equation governs small motions of the sheet:

0’H T 1

DV*H, - 28 —~ —V?H +-GH =0. D.1
¢ 923y 3V + 3G 0 (D.15)
Boundary conditions: at y = £B
H=0 (D.16)
and
H, =0. (D.17)

The following proof follows a method inspired by similar analysis done by South-
well and Skan [28]. Consider solutions to (D.15) of the form

H = (W +iW')e", (D.18)

where W and W' are arbitrary real functions, and o is potentially complex. Consider
two solutions, .
Hy = (W +iW')e! (D.19)
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and its complex conjugate
Hy = (W —iW')e ", (D.20)

where the superscript * indicates conjugation. If H; is a solution, then H, is also a
solution:

H, = H, + iH, (D.21)
Hy = H, — iH;. (D.22)

Plugging H,; into the governing differential equation and separating the real and
imaginary parts of the equation yields

0*H, r 1
4 -2 LA v r = r— .
DV*Hy, =285 50 = =V, + 3GH, =0 (D.23)
0°H; T 1
4rr. T 2Hi - ; = 0. i
DV*Hy, — 25550 = VAH; + 3GH; = 0 (D.24)

Plugging Hs into the same equation and separating the real and imaginary parts yields
the same two equations which are true by assumption. The boundary conditions
compare in the same fashion, and we find that the supposition is true, if H; is a
solution, then H, is also a solution.

Thus, it is true that

2 T 1
// [H1 (DV‘*HZt 95 Toap o gGHz) _

oxdy 3
0’H, T 1
DV*H,, — 2 - V2 - = .
H, ( V*Hy, Saxay 3V H, + 3GH1)] dA =0, (D.25)

where the integrals are over the whole sheet. Utilizing the known forms of H; and
H,, (D.19) and (D.20), yields

iD / / [0H, V" H, — 0* H\V*Hy) dA - 25 / / (HoHipy — HiHyyy) dA
—g / / (HiV2H, — HyV*H,) dA = 0. (D.26)

The second term can be rewritten as

—25 / / [ (HpHy,) — —y(Hlem)} dA (D.27)

and eliminated using Green’s theorem and (D.16). It immediately follows from the
results of Section D.1 that

o=o0% (D.28)

implying that o is strictly real and that there are thus no traveling waves or oscillations
in the solution, just a growing or decaying mode shape.
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Appendix E

Distinguished scalings for the
nonlinear problem

E.1 Saturation at H ~ h

Consider the following scaling of the equations appropriate for saturated wrinkles
with amplitudes of the order of the thickness of the sheet:

u~U, ov~U w~el,

heel, Hel, z~L y~L zn~ el (E.1)

This scaling is the one used in lubrication theory. Time and pressure still require
scalings, but let us examine the equations first to inform our assignment of their
scales. Time appears explicitly only in the kinematic boundary condition:

D 1 1 1 1
wlz:H:}:%h = —D—i(H + "2‘h) = Ht + iht -+ (Hx + §hx)u + (Hy + Ehy)’l). (EQ)

All of the terms in the boundary condition are O(eU) with the possible exception of
H, = 3h,. t can thus be no smaller than O(L/U) because assigning it a smaller value
would immediately imply a contradiction by requiring that H; and h; be zero so that
nothing would change on that time scale. So let us take

L

t~—. E.3

. (£3)
The largest term against which pressure is balanced is u,, in the z-momentum equa-
tion (A.1). Let us take a conservative estimate of the magnitude of the pressure and
scale it so that P, can balance u,,,

U

(E-4)

Expand all of the variables as perturbation series in the small parameter ¢ (e.g.
u = u® 4+ eu® 4+ 2u® 4 ...). Substitute the perturbation series forms into the
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Stokes equations and boundary conditions and scale each equation so that the largest
terms are O(e°). Consider first the z-momentum equation

P, = p(Wgy + Wyy + w;;) (E.5)
which to leading order states that
PO =, (E.6)

Now let us examine the z-direction dynamic boundary condition at z = H + %h

1 1
—(H; + Ehl.),u(uz +w,) — (Hy £ §hy)u(vz +w,) — P+ 2pw, =0 (E.7)
or to leading order
PO =, (E.8)

This in conjunction with (E.6) shows that P()(z,y, z,t) = 0 and that the pressure is
not O(e~?). So let us now instead consider

U
P~ p—r. (E.9)

Once again, the leading order z-momentum equation states that
PO =, (E.10)

and the leading order z-direction dynamic boundary condition requires that at the
surface
PO =, (E.11)

so that P(O)(z, y, z,t) = 0 for this scaling as well. This finally leads us to the conclusion
that the pressure will scale as the viscous stresses arising from the in-plane velocity
gradients created by boundary motion,

P~ u%- (E.12)

The z and y momentum equations are to leading order

u® =0 (E.13)
v® =0 (E.14)
which upon integration give
uw® =3+ (H® - 2)fi(z,y) (E.15)
v =54+ (HO — 2) f3(z, ) (E.16)
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Examining the 2 and y dynamic boundary conditions

1 1
—(H, £ §hm)(—P + 2uug) — (Hy §hy)(uy +vg) + p(u, + wy) =0 (E.17)

1 1
—(H, £ —z—hx)u(uy +v,) — (Hy £ -2—hy)(—P + 2pvy) + p(v, +wy) =0 (E.18)

which to leading order require

ul® =0 (E.19)
v =0 (E.20)
shows that
fi(z,y) =0 E.21)
fi(z,y) =0 (E.22)
and
u® =g (E.23
v =3 (E.24)

The leading order continuity equation states

w® = —a, — 3, (E.25)

=4}

The leading order z-momentum equation states
PO =y, (E.26)
Plugging in w(® from (E.25) yields
PO =0. (E.27)
The z dynamic boundary condition, (E.7), to leading order yields
PO = —2u(d, — v,) (E.28)
after utilizing known forms of (), v(®, and w(® from (E.23), (E.24), and (E.25).

Let us now examine the balances of forces and moments on a depth-integrated
infinitesimal section of the sheet. Selected leading order stresses in the sheet are

O = p(4Ug + 20,) (E.29)
Oyy = (20, + 47,) (E.30)
Oay = iy + Ts) (E31)

and the depth-integrated stresses are
Ty = p(4a, + 25,)hO (E.32)
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Too = (473, + 2ii;)h(® E.33)
T12 = /,L(ﬂy + ’l_)x)h(o) (E34)
Balance of forces in the x and y directions requires
0Ty, | 0T
— =0 E.35
oz Oy (E.35)
0T, 0Ty
=0. E.3
oz * Oy (E-36)
Balance of moments in the x and y directions requires
o [ rH+iR 1 o [ rH+3h ]
0 5 L/H—%h z20 | + 3y |Jn-1n 220 v) Q (E.37)
o [raetn 19 [pedn ]
0= . _/H—%h dzzazy_ + By /—lh dzzayy_ - Qy (E.38)
or 5 5
0=— [HOROT,] + — [HOROT,| — Q, E.39
856[ 11]+0y- 12] Q (E.39)
0=2 [HOROT;,) + 9 [HORO Ty, - @ (E.40)
Oz Oy 4
where
H+3h
H-1h
H+3h
v =, 0y.dz (E.42)
Balance of forces in the z-direction requires
Qs | 0Q,
=+ = — pgH® = 0. E.43
9 "oy " (E.43)

Substituting expressions from the balances of moments, (E.37) and (E.38), for Q,
and @, and applying the force balances, (E.35) and (E.36), to eliminate terms in the
expanded derivatives yields

HOT, + 2HOT, + HOTy = pgH®), (E.44)
where the bending term, V4Ht(0), has vanished due to its time derivative which be-
comes very small on the lubrication theory time scale at saturation which is much
longer than the folding time scale. Note that the time scale did not enter explicitly
into the derivation of these equations, so even if the correct time scale turns out to
be slower than that considered here, the resulting linearity of the equations would be
unaffected.
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E.2 A new scaling for the amplitude saturation

E.2.1 Curvilinear coordinate system

Let 2/, 3/, and 2z’ be the sheet centered curvilinear coordinates, where Z” points in
the original Z' direction; Z’ points along the sheet center surface in the original x — z
plane; and ¢’ points along the sheet center surface in the original y — z plane (see
Figure 5-1). Let the origin of the (z',y',2’) system lie on the sheet center surface. The

following relationships exist between the two coordinate systems:

7=73
Derivatives: 5 9
R 2~
oz~ Vit g, — Ho
d 0 o
2~ _
= 1+ H? Vg Hyaz,
9 _9
o0z 072
2 2
O _ HHee 0, 0 (1+H2)68 —2H, 1+H2

O0x? /1+ H? ar' oz

32 _ H,H,, G

,/——Hmay ~Hugut 5y?
0?2 0?
ﬁ: 022

E.2.2 Scaling of equations

2
(1+H2)6 —2H, 1+H2

62
2
Hx a 12

82
ya 2

(E.45)

(E.46)

(E.47)

(E.48)

(E.49)
(E.50)

(E.51)

(E.52)

(E.53)

(E.54)

(E.55)

(E.56)

Time and pressure still require scalings, but, as before, let us examine the equations
first to inform our assignment of their scales. The kinematic boundary condition on
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w states:

D 1
w|z=Hi§h = E(H + Eh) =H +

1 1 1
éht + (H, + ihx)u + (Hy £ §hy)v (E.57)
which at leading order reduces to

w® = HO 1 HOL©® 1 OO, (E.58)

All of the leading order terms in the boundary condition are O(U) with the possible
exception of H;. t can thus be no smaller than O(L/U) because assigning it a smaller
value would immediately imply a contradiction by requiring that H; be zero so that
nothing would change on that time scale. So let us take

L
T~ —. E.59
; (E.59)

Continuity and the Stokes equations remain
Up + Uy +w, =0 (E.60)

0=—VP+ uV3d. (E.61)

The largest term against which pressure is balanced is u,, in the z-momentum
equation. Let us take a conservative estimate of the magnitude of the pressure and
scale it so that P, can balance u,,,

P~ ng? (E.62)
Consider first the z-momentum equation
P, = p(Wzg + Wyy + w;;) (E.63)
which to leading order states that
P =o. (E.64)

Now let us examine the z-direction dynamic boundary condition at z = H + %h,

1 1
—(H, £ §hz),u(uz +w,) — (Hy £ Ehy)u(vz +wy) — P+ 2pw, =0 (E.65)
or, to leading order,
PO =y, (E.66)

This in conjunction with (E.64) shows that PO (z, y, 2,t) = 0 and that the pressure
is not O(e72). So let us now instead consider

U
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Now the leading order momentum equations state that
2 2
PP = pu(1+ H®® + HO"wl),

—HOP® = p(1 + HO? + HO*)u),
~HOPY = y(1 + H®® + HO* ).
Using the (E.68) to eliminate P( from (E.69) and (E.70) yields

ui?l; H(O)w(O)

vﬁ?ﬁ = —Héo)wg]z,.
The leading order continuity equation states that
—H;‘))ug“’ H(O)v(,) -+ w( ) =
which, differentiated with respect to 2’, requires
wl) = HOuY), + HOY),.
Using (E.74) to eliminate w( o in (E.71) and (E.72) yields
1+ H;"V)ug?l, = —HQ(CO)H?SO)USE,

0)2y,,(0) _ 0) 7(0), (0)
1+ HO Y, = —HOHOWS)

22!

which can be combined to form
0)2 02y, (0) __
1+ HO" + H"Yuy,), =

so that

NO.
2z T

and, similarly,

(0)

Vyz

When substituted into (E.74) these reveal that

I

which, in conjunction with (E.68), shows that

PO =0.

Now the derivation below [(E.92) through (E.109)] can be followed leading to

Uy = fl(xay’t)
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(E.68)

(E.69)
(E.70)

(E.71)

(E.72)

(E.73)

(E.74)

(E.75)

(E.76)

(E.77)

(E.78)

(E.79)

(E.80)

(E.81)

(E.82)



Uy = f3($7 Y, t) (E83)
Wy = Hgo)fl + H;O)fg, (E84)

At leading order the three dynamic boundary conditions reduce to

po)
—HO— = 1+ HO” + HO)f, (E.85)
PO 2 2
—H;‘”T =(1+HY +HO)f, (E.86)
P ©% L g2 () (0)
" =(1+H," +H, )(H,  fr + H,” f3). (E.87)
Using (E.85) and (E.86) to eliminate f; and f; from (E.87) yields
(0)
0)2 02y P _
(1+HO +H§,>)7_0 (E.88)
so that
PO =9 (E.89)
which together with (E.81) demonstrates that
PO(z,y,2,t) = 0. (E.90)
Thus, P cannot be O(e™!), and
U
P~ p— .
hT (E.91)

remains. The pressure scales as the characteristic viscous stresses generated by the
depth-averaged in-plane velocity gradients.

E.2.3 Derivation of expressions for significant field variables

To leading order continuity requires
0 0 0
~HOUWY — HOvD + ) = 0. (E.92)
The sheet is subject to the following kinematic boundary condition at 2’ = :i:%h:

D(H + ih)

1
H&x -h,t) =
TU(:E,y, ’ ) Dt

1 1 1
5 =H, + iht +uH, +vH, + u§hx + §Uhy (E.93)

which at leading order requires
w(z,y, H+h/2,t) = H” + u@HO + vOHO. (E.94)
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To leading order the x and y direction Stokes equations state

u?, =0 (E.95)
W9 =0 (E.96)
so, integrating,
u® = a4+ 2 fi(z,y,t) (E.97)
v = G542 fa(z,y,1). (E.98)

Substituting these forms for the in-plane velocities into (E.92) yields

wff/’) =HOf + Hgso)f3 (E.99)
which integrates to |
w® = (HP fi + HP f3)2' + f5(z,y,1). (E.100)

Now utilizing (E.97), (E.98), and (E.100) in (E.94) yields

0) 1 1
L(HOf; + HO fg)h—2~ + fs = H” + aH® + 7HO + §h(°) fLHO® + —2—h(°) fsHO.

Averaging the top and bottom boundary conditions reveals (E.101)
e 10

Plugging this result into (E.100) gives
w® = HO 4+ uOHO 4+ /O HO, (E.103)

In the absence of gravity and surface tension, the upper and lower surfaces of
the sheet are free of traction as expressed by the dynamic boundary condition at
z=H =% %h:

g-it=0 (E.104)

At =4+ [_Hz’ _Hy’ 1]
J1+HZ+ H?
—P + 2,U/U,z N(uy + vz) .U'(uz + w:v)

a=| pluy+vs) —P+2uv, plv,+wy,) |, (E.106)
plu, +wz)  plv, + wy) =P + 2pw,

(E.105)

where only the leading order terms have been included in 7. The three components
of the dynamic boundary condition are

—Hy(—P + 2pu,) — Hyp(uy + vg) + p(u, + wgy) =0 (E.107)
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sh(uy + vg) = Hy(—=P + 2pvy) + p(v; + wy) =0
otb(Uz + we) — Hy:u(vz + wy) — P+ 2pw, = 0.

To leading order, at z = H + %h, (E.107) requires

—H (—2H f1) = B (=B fy = HY fa) + fi = O (D fu+ ) f3) = 0

(1+HO + HO*)f =0
fl = 0,

and (E.108) by similar arguments requires

g}

0 =7

w® = H® + aH® + sH.
At O(e), continuity requires

wS) - H}C‘))uﬁ}’ - H;O)vg}) + Ug + vy = 0.
Momentum conservation at O(e) requires

PY = w(HO wl) + HO wl), +wll))

Wyt gt

or

PO = (1 +HO + HOMw),
0 = HOPY +pu(1+HO’ —|—H(°)2) )

T

0 = HOPY +u(1+HO" + Hg")z)v(})

T 22
which can be combined to show

o), = ~HOLY,
vf,};— H(O)w(l)

z'2'

(E.108)
(E.109)

(E.110)

(E.111)
(E.112)

(E.113)

(E.114)

(E.115)
(E.116)

(E.117)

(E.118)

(E.119)
(E.120)
(E.121)

(E.122)
(E.123)

Differentiating (E.92) with respect to 2’ and utilizing (E.122) and (E.123) shows

(1+H£0)2+H§0)2) W o,

Wyry =
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SO

wl), = 0. (E.125)

PP =0 (E.126)
from (E.119),

ul}), = (E.127)
from (E.120), and

o), = (E.128)

from (E.121). Integrating (E.127) and (E.128) twice and utilizing the results in
(E.117) yields

uY =@M + 2 fo(z,y, t) (E.129)
o® =30 4 2 fo (e, y, 1) (E.130)
wl) = HO fo + HO f; — @, — 5. (E.131)

The dynamic boundary conditions at O(e) require

~HO (~P© + 2y, — 20O fs) = HPO (@, — HO fo + 0, = HO fr) +
w(fo +w® + HO(a@, +3,) — HO? fo — HOHO f) = 0 (E.132)

~HOu(a, — HO fo + 5, — HO fr) = HO(~ PO + 25, — 2uHO f7) +
u(fr +w® + HO (8 + 7,) — HO" f — HOHP fg) = 0 (E.133)

~HO u(fo + wl® + HO (@, + 5,) — HO® fo — HOHP f7)
— _ 2
—HO u(fr +wl® + HO (@, + 5,) — HO" f — HOHO f5)
—PO 4+ 2u(HO fo + H fr — 4, — 7,) = 0. (E.134)

Rearranging (E.132) and (E.133) yields

p(l+ HO? + HO) fs = ~HO PO 4 4 [HOa, - HO%, + HO (1, + 7,) — vl

(E.135)
2 2 _ _ L
w1+ HO? + HO?) f, = ~HOPO 4 4 [HO5, - HO, + HO(1, + 5.) - w0
(E.136)
and then plugging into (E.134) gives
D
PO = 2 (4, + ) — Ho; [In (1 + HY” + HO?)|. (E.137)
Plugging back into (E.135) and (E.136) yields
o _ 2 2 ©
B H® (2t + v,) + HPu, + HO 2. [ln (1 +HO" + HO )] — DA
fo= (E.138)

2 )
1+ HY + H{Y
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HO (4, + 25,) + HO%, + HOL 1y (1 + HO? 4 gO?)] = P&
Y y T Yy Dt z Yy Dt
fi= 1+ HO + B - (B9
z Yy

The kinematic boundary condition at O(e) requires

w® = HO + 10 + uWHO + wOHO + @ HO + 5@ H()

Z'=Hx3h
+3u®h0) + Lo OpO). (E.140)

Taking the difference between the upper and lower boundary conditions yields

WO (HO fo + HO fr — G, — 7y) = b + hO feHO + b fHO + ah® + 5k
(E.141)
or

1 DAO L -
W—IDT = —'u,z—’vy: ——V-u, (E142)

Henceforth, superscripts ’(0)’ will be dropped for convenience. All unspecified
variable are assumed to be leading order. In summary:

V=17 (E.144)
w= Hy+uH, +vH, (E.145)
. .., D —

P =2u(a +0,) = pg; In (1+ HZ + H?)] (E.146)

u® = u® + 2 fo(z, y,1) (E.147)

U(l) = 'U(—l) + z’f7(g;’ Y, t) (E148)

e H, (28, + ;) + Hyy + Hy 3 [In (1+ H2 + H?)| — 2L (E.149)
6~ 1+ H? + H? '

5= H,(@s +20,) + Hots + Hy By [In (1 + HZ + HZ)| - Z5 (E.150)
[ 1+ H? + H? '

E.2.4 Depth-integrated force and moment equilibrium

Taking force and moment balances on depth-integrated unit of sheet as shown in
Figure 2-1 yields

2. F=0=QuetQuy (E.151)
Z Fp=0= %[h(zuﬂm ~-P - ZNfo6)] +
g&[h“ Gy + 0o — Hy fo = Ho f7)] (E.152)
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By = 0= 2 {huliy + 5 — Hyfy ~ Hefo)] +

0
a_y[h(zlwy — P —2pH,f7)] (E.153)

0

;—y[H hu(Gy + U — Hyfe — Hof7)] + Qq (E.154)
ST M, =0 = 2 [Hhp(dy + 0, ~ Hyfo — Hefr)) -
(%[Hh(lemy — P —2uH, f)] + Q. (E.155)

Using (E.155) and (E.154) to provide expressions for @, and @, in the (E.152), (and
using (E.152) and (E.152) to cancel terms) yields

H, T\, + 2H¢,;yT12 -+ Hny22 = 0. (E156)

(E.152) and (E.152) can be rewritten

ag’; + 85;2 =0 (E.157)
681;132 + 6{;’52 =0, (E.158)
where
Ty = [2uty — P — 2uH, fe)h (E.159)
Ty = [2u8, — P — 2uH, f7]h (E.160)
Ty, = play + 0 — Hyfs — Hyfr)h. (E.161)

E.3 Gravity and surface tension effects

Now let us consider the effects of gravity and surface tension. To leading order, the
traction on each surface due to surface tension is

TF = 2y* kAT, (E.162)

the surface tension times twice the mean curvature acting in the direction of the
upward normal to the center surface of the sheet,

(1 + Hg)Hz:c - 2H:cHszy + (1 + Hg)Hyy
(1+ H2 + H2)3/2 '

K =

(E.163)
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The traction due to gravity exerted on the lower surface is
Ty = —pgHi+ (E.164)
where g > 0. These tractions appear in the dynamic boundary conditions:
—H, (=P + 2pug) — Hyp(uy +v,) + plu, +w,) = F2H, vk + (pgHH,)_ (E.165)

—Hp(uy + vp) — Hy(—P + 2uvy) + p(v, + wy) = F2H, v k + (ogHH,)— (E.166)
—Hop(u, +wg) — Hyu(v, +wy) — P+ 2pw, = F2v5k + (pgH) — (E.167)

“w_»

where the subscript indicates that the gravity terms only appear in the boundary
conditions on the lower surface.

Gravity is characterized by the dimensionless group

3pgL?
G= , E.168
U ( )
and surface tension is characterized by
Y+
r=3———. E.169
p (E-169)

Let us assume that both G and I' are small compared to unity. In this case, the
new gravity and surface tension terms in the dynamic boundary conditions do not
contribute at leading or second order, and, as a result, the solutions above for the
leading and second order velocities and the leading order pressure are unchanged. If
G or T are smaller than O(e), then they will not contribute to the above force or
momentum balances either. Let us consider the case where they are O(e). Gravity
and surface tension will exert forces on the depth-integrated sheet unit equal to their
traction times the exposed surface area of the sheet. To leading order, the exposed
surface area of the sheet unit with length dz and width dy is given by

A = dzdy,/1+ HZ+ H]. (E.170)

To leading order, the new force and moment balances are

Y F=0=Qu+Qyy—pgH +2(v" +77)k (E.171)
T

Y F,=0= T + 0Tz +pgHH, — 2H, (vt +v7)& (E.172)

or oy

T, T
SN F,=0=—24+"24 pgHH, - 2H,(v" +7 )& (E.173)

oz Oy

O(H HT,

S M,=0=- (HTy) _O(HTi) pgHH, + 2HH,(v* +y )k + Q. (E.174)

ozx oy
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0(HTy2) 3 0(HT%)
oz oy

Once again using the in-plane force balances, (E.172) and (E.173), to cancel terms in
the moment balances, (E.174) and (E.175), leads to

Y M,=0=- —pgHH, + 2HH,(v" + 77 )c + Q,. (E.175)

Qa: = Hlel + HyT12 (E176)

Qy = H;Tio + H/T5,. (E.177)
Using (E.176) and (E.177) in (E.171) and canceling terms using (E.172) and (E.173)
once more leads to
Hx:rTll + 2[_Iacyfrl? + Hny22
1+ H2+ H?

—pgH +2(v" +97 )k =0. (E.178)

E.3.1 Scaling argument for saturation amplitude

Let us expand (E.159), (E.160), and (E.161):

ph _ _ _
Tll = TI{%TH—:’? [(1 -+ H;) (4'U/x + 2Uy) - 2H1Hyuy+
D DH?
2 2 2 Y
2(1+ H}) (n(1+ HZ + H2)| - _If} (E.179)
Tpy= — PP (1 + H2)(2u, + 45,) — 2H, Hy o+
1+ H2+ H? ¢ Y Y
D DH?
2(1+ H?) = 2 H - == .
(1+H) - [In(1 + H2 + HY)| o ] (E.180)
Ty = __puh [(1+H2)ﬂ +(1+ HY)v, — 2H, H, (i + vy,)
1 + Hg + Hg /7Y y/ vz ciiy\ Yz Yy
_ . DH.H, D s o
—H,Hy(iiy + ;) + =5 = 2H. Hy = [In(1+ HZ + Hy)H . (B.181)

Thinking about a rectilinear sheet being sheared by two parallel walls a distance 2L
apart moving in opposite directions, each with speed U, let us now employ a new set
of axes, x and y, oriented such that the z-axis lies parallel to the crests of the wrinkles,
and the y-axis lies perpendicular to the crests of the wrinkles. In these coordinates, all
four components of the velocity gradient will be of roughly the same order, ¥ = U/L.
Call H the amplitude of the wrinkles and A their wavelength. Utilizing this scaling,

uhH¥ H?\ H?
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H? 2 2 2 2 2 2
1+ 4 [H H> H H]L+L[H HH

iy U O A VR ) » L

phHY K Hz) H?

HyyToo ~ A [ 14+ 55 | + =+

yyd22 /\2(1+%+%> 12 AL

1+ 2 2 2 2 2 2 2
4 [H H> H H]L+L[H H”

[ PO T A VIR A I T I

uhH7y [ H? H?
1+ + =
LA(1+ 22+ 1) Az L2

HmyT12 ~

jBY 1+ & I AL

H? H? H? H?
H? <1+v+mj’\l‘—2j—ﬁL>+LH2(i+—l—):|-

(E.182)

(E.183)

(E.184)

After noting that gravity has a much more significant effect than capillarity for rea-
sonable experimental values of the parameters, the vertical force balance, (E.171),

requires
szTll + Ha:yTIZ + Hny22

1+ 44 22

~ pgH.

For H ~ X ~ L, the scaling reduces to the following:

Yuh
pgH ~
or
i [T
pPg
so that for ¥ = U/L
o iR
prg
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Appendix F

Numerical methods

This appendix describes in detail the numerical /computational methods employed in
the solution of the equations of Chapter 3, Chapter 4, Chapter 6, and Appendix C.
All calculations were done using Matlab.

F.1 Spectral collocation

Most computational schemes rely upon knowing the values of the field variables at
only a finite number of points. In order to solve a differential equation, a numerical
method requires a mechanism for measuring the derivative of the discretized field vari-
ables. Collocation methods approximate the derivative as the derivative of a function
that interpolates the discrete values of the field variable. The collocation methods
employed in this thesis utilize two types of interpolating functions, Fourier modes
and Chebyshev polynomials. Fourier modes are well suited to periodic domains such
as the azimuthal direction in the annular case and the longitudinal direction in the
rectilinear case. Fourier modes are particularly well suited to these problems be-
cause the discretely represented functions are in fact Fourier wave forms of varying
wavenumber. Chebyshev polynomial are employed in the radial direction in the an-
nular case, in the cross-channel direction in the rectilinear case, and in the viscous
catenary. The Chebyshev polynomials utilize a non-uniform distribution of discrete
points biased toward the boundaries. Favoring the boundary region in distributing
the discrete points allows the method to devote more resolution to the regions near
the walls where in all three of these problems the geometry changes most rapidly.
Representing the discrete valued field variable as a vector, the discrete derivatives
can be applied as matrices multiplying the field variable vector so that for example
0f ()

“or — D, f, (F.1)

where f is a function of z, f is the vector of discrete values of f, and D, is the
z-derivative matrix. The specific derivative matrices used here were calculated using
the programs in Trefethen’s book [32].

For time discretization, the numerical methods of this thesis utilize a finite-
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difference method. Finite-difference methods approximate derivatives using truncated
Taylor series. The particular finite-difference scheme used here is known as backward
Euler or implicit Euler which is considered highly stable. Euler time stepping uses a
two point finite-difference to represent time derivatives in the following fashion:

O£(t) _ f(t+ A1) — f(t) 2
ot At

where f is a function with time dependence, and At is the discrete time step. Back-

ward Euler specifies that, of the two times present in the discrete time derivative,

all terms in the equation not subject to time differentiation be evaluated at the later

time, t + At.

F.2 Annular sheet

The spatially discrete version of (3.13) is

h? €2h3 €2h3

124 (Dgﬁ B D,,D,H) L 3GH 3 (1D, + D2+ LD3) H
r4 r3

2

r

1
r3

(D;% + D3 + %DED% + =D, + %Dﬁ + ;14—D§ - ;1—2-1)3 —~ f—gD,Dg) H, (F.3)
The homogeneous Dirichlet boundary conditions are imposed by simply eliminating
from the equation the elements of the matrices and vectors corresponding to boundary
points. Periodicity is implicitly contained within the derivative matrices. The homo-
geneous Neumann boundary conditions are imposed by replacing D? by the special
operator .

D! — -
suggested by Trefethen which effectively treats the Chebyshev polynomial interpolant
as if it were two polynomial orders higher but restricted to have a slope of zero at its
endpoints.

To simulate the evolution of the sheet, in (F.3) H, is replaced by ﬂ”—AAtt"ﬂﬂ,
all the other terms are evaluated at ¢ = ¢ + At, and the resulting linear equation is
solved for H(t + At). In this fashion, the shape of the sheet at t + At can be found
given the shape of the sheet at ¢t. For given initial conditions, the shape of the sheet
at t = n/At can be found by solving the equation n times to evolve the sheet through
n time steps. The maximally growing azimuthal wavenumber disturbance for a given
set of conditions can be discerned by setting the initial condition to equally contain
all representable azimuthal wavenumbers and stepping through time until a single
mode dominates the rest. The mode asserting itself is that with the highest growth
rate.

The threshold of stability was located using a bisection method on the shear rate.
If all modes decay, the shear rate is below the threshold. If any mode grows, the shear

(1 —r*D} - 8rD? — 12D7) (F.4)
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rate is above the threshold. By choosing two limiting shear rates, one above and one
below the threshold, and progressively halving the gap between them by simulating
the shear rate midway between them such that the threshold value is sandwiched
between an ever narrowing set of shear rates, the threshold value was located.

An alternative to the simulation method is the eigenvalue method. Every step
of discretization introduces some error inherent in the difference between the con-
tinuous reality and the discrete representation. The eigenvalue method operates on
the spatially discrete and temporally continuous representation thus eliminating time
discretization and its concomitant error. The eigenvalue method extracts the mode
shapes and their growth rates directly out of the discrete spatial operator. The eigen-
modes are mode shapes, H, for which H;, = oH or in the discrete representation
H, = o H where o, the eigenvalue, is the growth rate. For a given set of conditions,
the eigenmode with the highest eigenvalue is the fastest growing, and, therefore, the
most unstable. (F.3) can be written as just AH, = BH where A and B are matrices.
The Matlab eig function calculates all of the eigenmodes and their eigenvectors for
the pair of operators A and B. The same bisection method employed in the simulation
method was used to locate the threshold of stability using the eigenvalue method and
confirmed the results of the simulation method. All results presented in Chapter 3
were calculated using the eigenvalue method.

For the case when surface tension and gravity are absent presented in Appendix C,
(C.6) and (C.8) can be solved for each aspect ratio and wavenumber using Matlab’s
minimization routine. In general, the roots of (C.6) and therefore the components of
(C.8) are complex, so a simple zero finding routine is insufficient. Matlab’s minimiza-
tion routine was used to find S that minimizes the absolute value of the determinant.
In this fashion, the growth rates of each mode for each aspect ratio were determined.
These results are presented in Appendix C. The simulation and eigenvalue methods
were also used to calculate the growth rates in the absence of gravity and surface
tension and produced results matching those in Appendix C providing support for
their results in the more general case where gravity and surface tension were included.

F.3 Rectilinear sheet

The rectilinear problem was solved using the eigenvalue approach as described for
the annular problem. Because in the rectilinear problem there are no factors of r
in the linear stability equation, (4.11), even with gravity and surface tension, the
problem can be approached directly through the simultaneous solution of (4.14) and
(4.18). However, due to the difficulty of filtering out inadmissible roots of (4.14)
(such as double roots which change the form of the solutions to (4.11) and therefore
change the entries in (4.18)), the eigenvalue approach provides a more tractable way
of dealing with the stability problem. The semi-discrete version of (4.5) is

(D% +2D2D? + D)) H, =T (D2 + D) H — GH + 6D, D, H (F.5)
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subject to periodic boundary conditions in the z-direction and homogeneous Dirichlet
and Neumann boundary conditions in the y-direction. The boundary conditions are
imposed exactly as above. Periodicity is implicit in the construction of the derivative
matrices in the z-direction for the Fourier modes. The homogeneous Dirichlet con-
ditions are imposed by eliminating matrix and vector entries corresponding to points
on the walls. The homogeneous Neumann conditions are imposed by utilizing the
special form of Dj

4
Dy—>1_y2

((1 - y*)D} - 8yD — 12D?) (F.6)

F.4 Viscous catenary

The viscous catenary problem only contains one independent spatial variable, z. The
evolution of the catenary is calculated using the simulation method described above.
In this case, in addition to differentiation, integration of the discrete function is
required. The quadrature scheme utilized is a Clenshaw-Curtis scheme suggested by
Trefethen [32] which provides optimal accuracy for use with Chebyshev polynomials
and their evaluation points as used here and takes the form of an inner product

/ f(z)dz — T f, (F.7)
where w is a vector of quadrature weights calculated using Trefethen’s program

clencurt.m, and the superscript T indicates transposition. The discrete version
of (6.32) is

Lope (J(t + Al - g(t)) - %eg(t + At)a" (éﬁ(t +AY - gz(t)) +E=0. (F.8)

32 F At At

In this case, the discrete equation (F.8) is nonlinear and cannot be solved simply
by Gaussian elimination as in the previous cases. Instead, 8(¢ + At) is found using
the Newton method for systems of nonlinear equations. The Newton method is an

-

iterative method which starts from an initial guess of 6(¢ + At) which in this case is

§(t) and makes progressively better guesses by using a linear approximation to the
equation. Specifically,

0(t + At)™ = 6(t + At)" — 'R, (F.9)

where the superscripts n and n + 1 indicate the number of the guess in the iterative
process, 6(t + At)? = 0(t), R™ is the residual for guess n,

s Lo (BE+AY) -8 1 Vo [P+ A —02@1)\
R'= 5D ( At peblt+ Aty A o
(F.10)
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and J is the Jacobian of ﬁ",

w8 (t+ At)"
At

J =

1 5 lewT(é?(tquAt)"—ﬁ?(t) (F11)

D _
32ALC F 9 At

) I —ef(t+ At)"
where [ is the identity matrix, and wh is a vector with each component equal to
the product of the corresponding components of @ and g. The iteration process is
continued until B" is smaller than a prescribed tolerance at which point g(t + At) is
set equal to (¢ + At)".

The three contributions to the discrete equation, (F.8), can be evaluated sepa-
rately to examine the relative importance of bending and stretching in each region.
The forcing contribution from gravity is just ©. The bending resistance is

Lape (é’(t+ At) — é’(t)) | (F.12)

32 At

The stretching resistance is

(F.13)

—-;—eé’(t + At)a” (éﬁ(t + At - 52(0) .

At

At each point the two resistances must exactly balance the forcing, so the fraction of
resistance due to bending as a function of position can be written

At

. (F.14)

1 312 [0+At)-6(t)
»eD; (

where the fraction is intended to represent an element by element division. This is
the method used to trace the evolution of the bending boundary layer.
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Appendix G

Viscous tension field theory

E. Reissner developed a generalized tension field theory to describe how an effectively
anisotropic medium reacts to imposed stresses in its plane [23]. In particular, he con-
siders a linearly elastic medium in which everywhere the stiffness in one local direction
is zero. This model accurately represents the reaction of a membrane subjected to
shearing because shearing is equivalent to compression along one direction and ten-
sion in the orthogonal direction. The membrane will behave as an anisotropic medium
because though the membrane has a finite tensile stiffness, the compressive stiffness
and the bending stiffness of the membrane are zero, so the membrane effectively has a
finite stiffness in the tensile direction and zero stiffness in the orthogonal compressive
direction. The same model effectively approximates the behavior of a thin buckled
sheet far from onset where the stresses applied to the sheet are resisted principally
through tension since the bending and compressive stiffnesses of the material in the
direction of buckling are compromised. Here the same approach is used to model the
behavior of a thin viscous sheet buckled by applied shear loading.

Let us introduce an orthogonal curvilinear coordinate system set in the thin sheet
with axes £ and 7 corresponding to the principal plane stress axes and subscripts 1
and 2 to refer to quantities associated with them. Let h; and h, quantify the spacing
of lines of constant £ and lines of constant 7 respectively so that infinitesimal distances
in the plane, ds, relate to the local coordinates through the following relation:

ds® = hid€* + hidn®. (G.1)

The orthogonality of the coordinate system requires satisfaction of the following con-

straint: 5 1 ah 3 L gk
1 2\
on <h2 37)> "o (hl 35) - 2

This constraint can be thought of as requiring that the sum of the angles in any closed
coordinate quadrilateral be 27.

Stress equilibrium in the medium can then be expressed as

8}120'1 _ 8h2
o~ TP oe

=0 (G.3)
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Figure G-1: Principle coordinates £ and 7
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where o, and oy are the principal stresses. The strain-displacement relation and
constitutive equations can be written as

=0, (G.4)

. _ 1 fOu wvim\ ™ o
€1 = hl (6§ + h,2 aﬂ) = El - El, (G5)
. 1 ov ’U.ahz _7'22_0'2
€ = h2 (0’[’ + h,l 66) - E2 = E2 (G6)
and 9 9
v = hp2_ i 2 7 i J—
V= hig, (h1> ha g (hz) 0 (G.7)

where u and v are the velocities in the £ and 7 directions, € is the strain rate, F is the
stiffness, 7 is the plane stress, and 7 is the shear strain rate which must be 0 because
the chosen axes are the principal axes.

Let us now consider the scenario of a sheared viscous annular sheet beyond the
buckling threshold once the out-of-plane displacements have become large so that
resistance to bending and compression in the compressive direction becomes small
compared to the resistance to stretching in the tensile direction. Call 7 the compres-
sive principal stress direction and ¢ the tensile principal stress direction. At this late
stage of wrinkling E; >> E,, so let us write F; = 0. It follows that oo = 0. Let us
now write £ = Fj.

In this limit, equilibrium under deformation can only be supported by tension,
hence “tension field theory.” Working from the equilibrium equations, (G.3) and
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(G.4), 02 = 0 implies

e 0 (G.8)
SO - o) o)
hy ’
d
h oh _ (G.10)
on '
SO hl = hl(f)

Without affecting the directional properties of the (£, 7) system, the scaling of the
system can be changed such that Ay = 1 everywhere. This makes lines of constant
7 straight because h; = C implies that lines of constant £ are locally parallel, so to
maintain orthogonality, a line of constant n crossing a line of constant £ must continue
straight across to the next line of constant 7. The orthogonality relation, (G.2), now

reduces to 5 /ah
2 —
% (3) -0 (G

hy = §f1(n) + f2(m). (G.12)

For our particular problem of the annulus, because of axisymmetry, the lines of
constant 7 cannot be parallel, so fi(n) # 0. Again a scale can be chosen without
changing the characteristics of the (£,7) system such that f;(n) = 1:

SO

hy = €+ f2(n). (G.13)
Utilizing (G.13) in (G.9) results in

gl
T RO (G.14)

which, in conjunction with the constitutive and strain-displacement relations, (G.5)
and (G.6), yields
g(n)  _ Ou

B+ fim) ~ O (619
S0
h
u= 1D (et o)) + 22 (G.16)
d
an 1 Ov_ —Mln(f + fa(n)) — M (G.17)
£+ f2(n) On E E
The shear strain rate equation, (G.7), now reduces to
ou 3 zﬁ v ,
o~ e (hz) (G198
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or

o () = e rys (o e o+ 2240 y)) . (o)

£+ fa(n)

Integrating,

_K:lwum+hgﬂ+ﬂ2gmﬁﬂﬂm<mﬁzfm)

+_

(G.20)

V=3 [’f(m(f + Fa) + (1) + LD ) 1+ Ine + fz(n))]] - (@)

2(E+ fa(n

Let us consider the relationship between the curvilinear coordinates and the fixed

(r,0) coordinates. We can write (£, n), 8(&,n), &(r,6), and 7(r, 0).

ds* = dz” + dy®

8:c
_ 3y
dy = dfaf +dn

Along a line of constant 7, dn = 0, so

ds? = de? (‘;’g) +d§2(g§) = h2de?

or\’ Oy 2_
(5@) +(6_5) -t

(g—;) + (gf;) — €+ R

The slope of a line of constant 7 is

Similarly,

Siglsie

and the slope of a line of constant £ is

Orthogonality requires these two slopes to be negative reciprocals:

dy oz
o _ _on
oz — Ty
¢ an
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(G.23)

(G.24)

(G.25)

(G.26)

(G.27)

(G.28)

(G.29)

(G.30)



Ordxr Oyody

el A 31
o€ on T acan (G-31)
In polar coordinates
ds® = r*df* + dr? (G.32)
or or
=dé— 4+ dn— .
dr §6§+ 77377 (G.33)
00
Along a line of constant 1, dn = 0, so
00\* or\?
2 142 2 (9T _ 1202
ds? = rid¢ (af) + dé (‘95) hid&®, (G.35)
a0\* (or\’
2 _ —_— g
r (8§) + (8{) 1. (G.36)
Similarly, , \
06 or
2 [ OV oy _ 2
#(5) +(5) =€+ nmr (.37)
x =rcosb, (G.38)
y =rsin. (G.39)
Substituting into the Cartesian orthogonality relation, (G.31), yields
Oror = ,0000
—— G.4
ocon " ogan (G.40)

Lines of constant n are straight, so in the (7, #) system they must take the form

rsin@ = m(n)r cos 6 + b(n) (G.41)
or
y=m(n)z + b(n). (G.42)
On any line of constant 7, A€ is the distance along the line.
Ohs
d =d 4
nge = dn (G.43)

is the angle between lines. If we choose 7 = 0 at a horizontal line, then 7 represents
the angle of inclination of a line with respect to the horizontal. In this case

7 = € cos -+ 7o (1), (G.44)

y = Esinn + yo(n). (G.45)
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Figure G-2: Annular geometry

(G.44) and (G.45) already satisfy

or\? Oy 2
(a—g) +(8_§) -t

Substituting (G.44) and (G.45) into

(gg) + (Z—i) = (€4 fal))

yields

(=€sinn +zo(n)” + (Ecosn +yy(m)” = (€ + f(m))”.

Separately equating terms in equal powers of &,
5 +y5 = f2(n)?,

and
—ahsing + yhcosn = fo(n).

Substituting (G.44) and G.45) into the orthogonality relation, (G.31), gives

Zgcosn + ypsinn = 0

or
' '
Ty = —Yytann.

Combining (G.52) with the (G.50) yields

yo = f2(n) cosn,

SO
zy = — fa(n) siny.

(G.46)

(G.47)

(G.48)

(G.49)

(G.50)

(G.51)

(G.52)

(G.53)

(G.54)

Now consider the annular geometry shown in Figure G-2. Every point on the
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inner boundary must lie on a tension line, and, by symmetry, all of these tension lines
must leave the inner boundary at the same angle 3 to the normal. Since these lines
fill the space, and lines of constant 1 cannot intersect (except perhaps at a singular
point), these are all of the tension lines.

The equations for z(£,7) and y(&,n) make lines of constant 7 of angle 7 to the z-
axis passing through (zo, yo) with distance along the line from (zo, yo) parameterized
by £. Each line must intersect the inner circle at an angle 3 to the radius (Figure G-2).

A point P on the inner boundary of the annulus will have Cartesian coordinates

(r; cos(n+ B), risin(n+ B)) and curvilinear coordinates (£, 7). Using the known form
of the correlation between the two coordinate systems, (G.44) and (G.45),

ricos(n + B) = x(&,n) = &(n) cosn + zo(n) (G.55)
or
xo(n) = ricos fcosn — r;sin Bsinn — &(n) cosn. (G.56)
Similarly
risin(n + B8) = y(&,n) = &(n) sinn + yo(n) (G.57)
or
yo(n) = risin fcosn + r; cos Bsinn — &(n) sinn. (G.58)
Differentiating,

/

xfy = —r;cos Bsinng — r;sin feosn — &(n) cosn + &o(n) siny = — f2(n) siny, (G.59)

SO
f2(n) = ricos B + risin fcot n + &(n) cotn — &o(n), (G.60)
and
Yo = —risin Bsinn + r;cos feosn — &(n) sinn — &o(n) cosn = fa(n) cosn,  (G.61)
SO
fa(n) = ricos B — risin ftann — &(n) tann — &(n). (G.62)
Equating the two expressions for f(n), (G.60) and (G.62), results in
&(n) = —risin B. (G.63)
Integrating yields
&o(n) = —nrisin B + K, (G.64)
SO
fa(n) =ricosf+nrisinf — K (G.65)
zo(n) = —risinfsinn + fo(n) cosn (G.66)
yo(n) = rysin Bosn + fa(n) sinn (G.67)
Ro =T; sin ,B (G68)
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Figure G-3: Relation between (r,8) and (£,7)

=

-1

Figure G-4: Relation between § — 7, r, R,, and h,

r? =22 4+ 9° =§2+x§+y§+2x0§cosn+2y0§sinn=
& + fo(m)? + Ry + 26 fo(n) = (€ + fa(m))? + Ry = h3 + 13 (G.69)

hZ=1r?—- R2 (G.70)
Returning to the velocities,
h
wm 9y, D @
1 !
o= [kohe + Ko + SO0 gy any)|. )
2

Figure G-3 illustrates the relationship between the two coordinate frames. In the
(r,0) frame of reference, the velocities in the r and # directions, u, and ug, are

u, = vsin(f — n) + ucos(d — n) (G.73)
ug = v cos(d —n) — usin(f — 7). (G.74)
From Figure G-4,
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Ry

sin(f —n) = — (G.75)
cos(f —n) = E (G.76)
2
By = ()20 1) 22 LI g 100 22 g ) ) 2 ) 2
(G.77)
ha , g9(n)Ro R,

Bug = k(n) 2 + W) ™2 + £+ k)2 o) (in 1) 2 — ()72

(G.78)

2r

We have in this scenario an axisymmetric state of stress, 01 = f(r). The current
stress relation states

g1 = g(ﬂ')', (G79)
ha
so it must be the case that g(n) = go.
R2
’I"E’u,r = k(n)tho + hl( )R -+ ggh, 0 + go(ln hg)hz + h(?’])hg (GSO)
2
. 2 ' gORO
rEug = k(n)hs + h'(n)he + 5~ go(Inho) Ry — h(n) Ry (G.81)
The displacements must also be axisymmetric:
Ou, (r,m)
URLEA G.82
9 = (G8)
$0
k'(n)haRo + k" (n)Ro + B (n)h2 = 0, (G-83)
and Dug(r, 1)
Ug\T, 7]
=0 G.84
o (G.81)
S0
K (n)h3 + R"(n)ha — ' (n)Ro = 0. (G.85)

Multiplying (G.85) by Ry/h; and subtracting it from (G.83) demonstrates that h'(n) =
0, s0 h(n) = ho, K'(n) =0, and k(n) = ko.

1 R2
Up = E [k0h2R0 + g20h20 + go(ln hg)hz + hohgil (G86)
1 R
Ug = E [koh% 902 0 _ go(ln hz)Ro — hoRo] (G87)

If the sheet is sheared by rotating the inner boundary of the annulus, then the
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boundary conditions on the velocities of the sheet are
up(7r:) = up(ro) = up(r,) =0

and
Uy (7",,) = Q’f‘i N

or
2

koha(ri) Ro + go (%(On) + (In hz(Ti))h2(7”i)> + hoha(ri) =0

2

boa(ro o + 8 (57 + (i) ) + Raa(r) = 0

R
Foh3(ro) + g0 (

2~ (In h2(ro))Ro> — hoRo = 0

R
kohg(ﬁ) + go (70 — (ln hQ(T'i))Ro) — hoRy = QEJ’I‘,L2

(G.88)

(G.89)

(G.90)

(G.91)

(G.92)

(G.93)

Since (G.90), (G.91), and (G.92) are homogeneous and linear in kg, gy, and hg, in order
to have nontrivial solutions, the determinant of the system of these three equations

must be zero:

ha(ri)Ro gty + (nha(ri))ha(rs)  ha(rs)
ha(ro)Ro 55 ) T (Inha(ro))ha(re) ha(re) | = 0
Bi(ro) = (nha(ro)Re  —Ro
2
Ry ﬁ?@ +1Inhy(r;) 1
Ry sz +nha(r,) 1]=0
Bi+h(r) a0

2

Ro ﬂég(om + lnhz(’l”i)
R? 11 ha(ro)

0 _QQ (hz(’"o) h%(’i)) +1n( : i )

R3
Rg + h‘% (To) Eg_(om%q

1
0
0
(85 +309) (3 (s ~ )+ (i) =©

Utilizing h% = r? — R2

R( 1 1 1 (r2- R
7<T§—R3_T$—R3>+5ln<?—Rﬁ =0
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Figure G-5: Tension field theory results
Define p = r;/r, and a = sin 3, so Ry = r;a.

o? 1 — o? 1—ao?
1—- F—= In|——=| = .
(o)) o

so B = f(ri/ro). (G.99) can be solved numerically (in this case using Matlab’s zero-
finding routine). The results of such a solution are plotted if Figure G-5.

One might expect that in the experiments described in Chapter 3, far from onset,
the wrinkles in the viscous sheet might have the arrangement predicted by tension
field theory. If this were to be the case, we would expect the crests of the wrinkles
to follow tension lines because the primary direction of buckling would always be
along the direction of the principal compressive stress which is normal to the tension
lines everywhere. The squares in Figure G-5 show the angles at which the wrinkles
in the experiments emanate from the inner cylinder. There does not appear to be
any correlation between the results of tension field theory and our experiments. This
suggests that even at saturation in our experiments, tensile stresses do not play the
sole important role in determining the behavior of the sheet.

The Bernoulli spiral provides an alternative promising candidate for the shape
of the ripples at saturation. The Bernoulli spiral (r = €%) intersects radial lines at
the same angle everywhere. In an isotropic medium, the principal stress axes and
the principal strain axes correspond to Bernoulli spirals with winding angles of 7/4
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Figure G-6: Isotropic medium principal axes: Bernoulli spirals

(Figure G-6). In our experiments, the wrinkles are well matched by Bernoulli spirals
with varying winding angles. For example, for an inner radius of 1” and an outer
radius of 3.28”, Figure G-8 shows the shapes of the experimentally recorded ripples
as solid lines and the Bernoulli spirals as dashed lines with '+’ signs.
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Bernoulii spiral winding angles
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Figure G-7: Bernoulli spiral winding angles in experiments

R=1" R =328
i 0

Figure G-8: Bernoulli spirals fit to experimentally measured ripples using Matlab to
obtain a least squares fit. Solid lines are experimental ripples. Dashed lines with "+’
signs are Bernoulli spirals.
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