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Abstract

Issues of robust stability and performance have dominated the field of systems and control
theory because of their practical importance. The recently developed Integral Quadratic
Constraint (IQC) based analysis method provides a framework for systematically checking
- robustness properties of large complex dynamical systems. In IQC analysis, the system to
be analyzed is represented as a nominal, Linear Time-Invariant (LTI) subsystem intercon-
nected with a perturbation term. The perturbation is characterized in terms of IQCs. The
robustness condition is expressed as a feasibility problem which can be solved using interior
point algorithms.

Although the systems to be analyzed have nominal LTI subsystems in many applications,
this is not always the case. A typical example is the problem of robustness analysis of
the oscillatory behavior of nonlinear systems, where the nominal subsystem is generally
Linear Periodically Time-Varying (LPTV). The objective of the first part of this thesis is to
develop new techniques for robustness analysis of LPTV systems. Two different approaches
are proposed. In the first approach, the harmonic terms of the LPTV nominal model are
extracted, and the system is transformed into the standard setup for robustness analysis.
Robustness analysis is then performed on the transformed system based on the IQC analysis
method. In the second approach, we allow the nominal system to remain periodic, and we
extend the IQC analysis method to include the case where the nominal system is periodically
time-varying. The robustness condition of this new approach is posed as semi-infinite convex
feasibility problems which requires a new method to solve. A computational algorithm is
developed for checking the robustness condition.

In the second part of the thesis, we consider the optimization problems arising from IQC
analysis. The conventional way of solving these problems is to transform them into semi-
definite programs which are then solved using interior-point algorithms. The disadvantage
of this approach is that the transformation introduces additional decision variables. In many
situations, these auxiliary decision variables become the main computational burden, and the
conventional method then becomes very inefficient and time consuming. In the second part of
the thesis, a number of specialized algorithms are developed to solve these problems in a more
efficient fashlom* “The cricial, advantage in this development is that it avoids the equivalent
transformation. The results of umerical experiments confirm that these algorithms can solve
a problem arising Troim IQC analysis much faster than the conventional approach does.
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Title: Associate Professor of Electrical Engineering



For My Parents






Acknowledgments

First and foremost, I wish to express my deepest gratitude and appreciation to my research
supervisor and mentor Professor Alexandre Megretski, for his guidance, support, and en-
couragement, which have helped tremendously my doctoral study. There is no doubt in my
mind that Alex is one of the best researchers in my field of study and the best research
advisor one can possibly hope to have. I feel very fortunate to be one of his students.

I want to thank Professor Seth Lloyd and Professor Eric Feron for their input to this work
while serving as members of my thesis committee. Their valuable suggestions have helped
to make this a better thesis. I would also like to express my gratitude to Professor George
Verghese, Dr. Anuradha Annaswamy, Dr. Shen Liu, and Dr. Marija Ili¢ for attending my
thesis presentation and for all the comments and questions regarding this work.

My deepest appreciation also goes to my long-time colleague Dr. Ulf Jénsson of KTH.
I first met Ulf when he came to Laboratory for Information and Decision Systems (LIDS)
as a postdoctoral associate in 1997. We have worked and published papers together since
then. I appreciate the countless discussions with him, face to face or through e-mails, and
his valuable input to my research work over the years.

For creating such an enjoyable and intellectually stimulating environment to work in,
I thank my colleagues at LIDS in general and some of the formal and current members
of Control System Group in particular: Prof. Dahleh, Prof. Mitter, Soosan Beheshti,
Nicola Elia, Emilio Frazzoli, Jorge Gongalves, John Harper, Neal Jameson, Fadi Karameh,
Georgios Kotsalis, Nuno Martins, Reza Olfati-Saber, Muralidhar Ravuri, Keith Santarelli,
Sridevi Sarma, Danielle Tarraf, Saligrama Venkatesh, and Sean Warnick. I enjoyed very
much our interaction and the way we work together over the years. I am indebted to
Danielle, Keith, and Neal for their help on editing this thesis. Without their help, the
readability of this thesis would be far more worse.

I would also like to acknowledge the assistance from the administrative staff at LIDS
and the Graduate Office of Department of Mechanical Engineering, especially Doris Inslee,
Fifa Monserrate, and Leslie Regan. Joan Kravit and Lynne Dell have also been very helpful.
Thank you very much.

On a more personal note, I want to thank all my Taiwanese friends in the greater Boston

area, especially those from the Republic of China Student Association (ROCSA) at MIT.



My life at MIT would have been hardly sustainable without them around. In the past five
years, they added a colorful and pleasant social dimension of my MIT experience. There
are too many of them for me to list all their names here. Among them, I especially want
to acknowledge Wen-Hua Kuo, Wen-Tang Kuo and his wife Yu-Ru Liu, Ching-Yu Lin and
his wife Chun-Ling Chou for their wonderful companionship through my years at MIT.

Last but not the least, I wish to express my most sincere appreciation to my family
and relatives in Taiwan and around the world. I could not have accomplished any of this
without their unconditional and endless support. And to you : you will always be the most
important person in my life, and I will forever be indebted to you. This thesis is dedicated
to those who would never cease caring about me.

The research in this thesis was supported in part by the National Science Foundation
(NSF) under Grants ECS-9796033 and ECS-9796099, in part by the Air Force Office of
Scientific Research (AFOSR) under Grant F49620-00-1-0096, and in part by the Defense
Advanced Research Projects Agency (DARPA).



Contents

3.3
3.4

3.5

1 Introduction
1.1 Analysis of Uncertain Periodic Systems . . . . . ... ... ... ......
1.2 Specialized Fast Solvers for Standard IQC Problems . . . ... .. ... ..
1.3 Contributions of This Thesis . . . . . . . . . . ... .. ... ... ..
1.4 Thesis Organization . . . . . . .. . ..o e
2 Mathematical Preliminaries
2.1 Notations and Standard Concepts . . . . . . ... .. .. .. ... ... .
2.1.1 Normed Vector Spaces . . . . . . . . . v v v v v v it o i
2.1.2 Inner Product Spaces . . ... ... ... . . ...
2.1.3 Operators and Induced Norms . . . ... ... ... .. .......
2.1.4 Adjoint Operators and Quadratic Forms . . . . . ... ... .. ...
2.2 Linear Matrix Inequalities and Semi-Definite Programs . . . . . . . . . . ..
2.3 S-procedure . . . . . v .t i e e e
3 Robustness Analysis of Periodic Systems
3.1 Imtroduction . . . . . . .« o o e e e e
3.2 Systems Under Consideration and Problem Formulation . . . .. ... ...

Fourier Series Expansion Method . . . . . . ... ... .. .. ... .....
Periodic IQC Approach . . . . . . .. ... L. o oo
3.4.1 The State-space Realization of the Multiplier II . . . . . . . .. . ..
3.4.2 Parameterizing and Optimizing IQCs . . . . . .. .. ... .. ...
Parameterizations of Some IQCs . . . . . . . .. ..o o oL
3.5.1 Periodically Varying Parameter . . . . . . . ... ... ... .....

352 Time-varying uncertainty . . . . . . .. ... ... .. ... ... ..

17
19
20
23
25

27
27
28
29
30
32
32
33



3.5.3 Uncertain parameter . . . . . . . .. . ... ...
3.5.4 Dynamic Uncertainty . . .. . . . . ... ... ... ..

3.6 Summary ... ...

Analysis of Periodically Forced Uncertain Feedback Systems
4.1 Introduction . . . . . . . . . ...
4.2 Systems Under Consideration . . . . . . . . ... ... .. ... ... ...
4.3 Existence and Uniqueness of Stationary Solutions . . . . . . .. . ... ...
4.4 Stability of the Stationary Solution . . . . . .. . . .. ... .. ... ..
4.5 Harmonic Performance Analysis . . . . . . .. .. ... ... ... ...
4.5.1 Supremum Norm of Periodic Qutput . . . . . ... ... .... ...
4.6 Parameterizing and Optimizing IQCs . . . . . . . . .. .. .. ... . ....

4.7 Summary . ... L,

Cutting Plane Algorithms for Analysis of Periodic Systems
51 Introduction. . . . .. . . . . L
5.2 A Kelley Type Cutting Plane Algorithm . . . . . .. ... ... ..... ..
5.2.1 Kelley’s Cutting Plane Algorithm . . . . . . ... .. ... ......
5.2.2 The Equivalent Eigenvalue Maximization Problem . ... ... ...
5.2.3 A Kelley Type Cutting Plane Algorithm . . . . . ... ... ... ..
5.3 The Oracle for Problems Arising from Chapter 3 . . . . ... ... . .. ..
5.3.1 Verification of Linear Matrix Inequalities . .. .. ... ... . ...
5.3.2 Verification of the Integral Inequality . . . . . . ... ... ... ...
5.3.3 Some Issues Regarding Numerical Computation . . . . . .. . .. ..
5.4 The Oracle for Problems Arising from Chapter4 . . . . .. ... ... ...
54.1 A Frequency Theorem . . . .. .. .. ... ... .. .........
5.4.2 Generate Separating Hyperplanes . . . . . . . . . .
5.6 Examples . . .. ..
56 Proof of Theorem 5.3. . . . . . . . . . .. ... ... ... ...

5.7 Summary . . ... e

Cutting Plane Algorithms for Standard IQC Problems

6.1 Introduction. . . . . . . . . .

57
a7
59
60
61
63
65
67
68

69
69
71
71
73
76
79
80
80
85
87
90
91
93
108
114

117



6.2 A Motivating Example . . . . . . . .. ..o 122
6.3 The Oracle for the Standard TQC Optimization Problem . . . . . . . .. .. 126
6.3.1 Generate Separating Hyperplanes . . . . . . ... ... ... . .... 128
6.4 The Results of Solving Problem (6.9) Using the Kelley Type Cutting Plane
Algorithm . . . . . . . . 128
6.5 The Ellipsoid Algorithm . . . . . . .. ... ... ... ... .. ... ..., 131
6.5.1 The Basic Algorithm . . . . . . . . .. ... ... . ... ..., 131
6.5.2 The Ellipsoid Algorithm for Solving IQC Optimization Problems . . 136
6.6 Analytical Center Cutting Plane Method . . . . . .. ... ... ... ... 138
6.6.1 The Algorithm . . . . . . .. ... .. ... ... 139
6.6.2 The ACCPM for Solving IQC Optimization Problems . . .. .. .. 143
6.7 Examples . . . . . . .. .. 147
6.8 Comparison with the Conventional Method . . . . .. ... .. ... .. .. 158
6.9 Summary . . . - . ... 160
Interior Path-following Algorithms for Standard IQC Problems 163
7.1 Imtroduction . . . . . . . . . . . . o e e 163
7.2 Notations and Problem Formulation . . . . . ... ... ........... 165
7.3 The Interior Path-Following Algorithm . . . . .. ... ... ... ...... 167
7.3.1 The Barrier Function and the Central Path . . . . .. ... ... .. 167
7.3.2 The Path-following Algorithm . . . . . .. ... .. ... ... ... 168
7.3.3 Teasibility and the Phase-I Method . . . . . . ... ... ....... 170
7.3.4 Convergence and Complexity Analysis . . . . ... ... ... ... .. 171
7.4 New Barrier Functions for IQC Optimization Problems. . . . . .. ... .. 176
7.4.1 The First Barrier Function . . ... ... ... ... ......... 177
7.4.2 The Second Barrier Function . . . . . ... ... .. ... ...... 183
7.5 Path-following Algorithms for IQC Optimization Problems . .. ... ... 187
7.6 Comparison with the Conventional Method . . . . .. .. ... ... .... 189
7.7 Examples . . . . .. e 190
7.8 Proof of Theorem 7.5. . . . . . . . . . .. . . . 196
7.9 SUMINATY . . . ¢ o ot i e e 202



8 Conclusions and Future Research

8.1 Suggested Future Research . . . . . . . ... ... ... ... ...,

Bibliography

10



List of Figures

1-1

3-1
3-2

4-1

5-1

5-2

5-4
5-5
5-6

Standard block diagram for robustness analysis. . . . . . . .. .. ... ...

Systems for robust stability and performance analysis. . . . . . ... .. ..
Tllustration of the Fourier Series Expansion Method. Figure on the left-
hand-side: the original system has a LPTV nominal subsystem G and a
perturbation term A. Figure on the right-hand-side: the transformed system
has a LTI nominal subsystem G. The time-varying part of system G is
extracted and lumped into the feedback loop. Let = denotes the states of G.

Then signal v is equal to [z’ 2’ 2], while signal v2 is equal to [w' w' w']. .
Systems for robust stability and performance analysis. . . . . ... ... ..

The idea of the computational algorithm is to generate a sequence of piece-
wise linear functions that approximate ¢(\) around its maxima. Figure on
the left-hand-side: the test point satisfies Sy > yl, and an improved lower
bound of yep is obtained. Figure on the right-hand-side: the test point does
not satisfy Sy > yI, and a hyperplane is returned by the oracle to improve
the piece-wise linear approximation of g(A). Eventually, the maximum values
of these piece-wise linear functions converge to yopt. » + - - - . -« . . . . ..
Setup for applying Fourier Series Expansion Method to estimate Lo-gain of
the system in Example 5.1. . . . . . ... ... . oo
Setup for robust stability analysis of the uncertain coupled Mathieu equations
(5.40) using Fourier Series Expansion Method. Here ¢(t) = cos(wgt). . . . .
Stability region for the uncertain coupled Mathieu equations. . . . . . ...
An inverted pendulum on a vertically vibrating platform. . . . .. ... ..

Stability region for the inverted pendulum system. . . . . . ... ... ...

11

37

41

89

(i

94



5-7

6-1

6-3

6-4

6-5

Setup for robustness analysis of periodically forced uncertain coupled Math-

feu equations. . . . . ...

Standard block diagram for robustness analysis. . . . . .. ... ... ....
The figure shows the amount of time that the MATLAB LMI Control Toolbox
took to solve SDP (6.10). For each ng, five testing problems were randomly
generated. As we can see, the amount of time that MATLAB LMI Control
Toolbox took to solve a problem increases almost exponentially as n, grows.
It took approximately two hours for the LMI Control Toolbox to solve a
problem with 70 states. . . . . .. .. .. ... ... .. ... ..
The figure shows the amount of time that the Kelley type cutting plane
algorithm took to solve problem (6.9}. For each ng, five testing problems were
randomly generated. Compared with Figure 6-2, we see that the amount of
time that the Kelley type cutting plane algorithm took to solve a problem
is less than the conventional method. Furthermore, as the number of states
in a problem increases, the difference in speed becomes more significant. For
ns = 70, the cutting plane algorithm took only a few minutes to solve a

problem which the conventional method took approximately two hours to

Illustration of central cuts and deep cuts. Let © be the feasible set and A,
be a trial point. The shaded regions are the parts of ellipsoids removed by
the cutting planes. Figure on the left-hand-side: a central cut is a cutting
hyperplane that passes through the test point A;. Figure on the right-hand-
side: a deep cut passes between the test point and the feasible set and cuts
off a larger piece of the outbound set. . . . ... .. ... ... .. .....
Hlustration of the idea of using multiple cutting planes. Here, £} denotes the
feasible set. (1) Cutting planes C; and Cj are placed. (2) Cutting plane C;
is used to remove a part of the original ellipsoid and generate a new ellipsoid
of smaller volume. (3) Cutting plane Cs is then used to remove a part of the

newly generated ellipsoid. . . . . ... ... .. ... ...

12

106

123

125

129

134



6-6

6-8

6-9

6-10
6-11
6-12

The figure shows the amount of time that the modified ellipsoid algorithm
described in Section 6.5 tock to solve problem (6.9). For each ns, five test
problems were randomly generated. The algorithm starts with an initial ball
of radius equal to 10%. As we can see from the figure, all problems were solved
in less than 10 minutes. Compared with Figure 6-2, we see that the ellipsoid
algorithm is much faster than the conventional method when the problem to
be solved has a large state space. . . . . . . . ... ... ... ...
The figure shows the amount of time that the analytical center cutting plane
method described in Section 6.6 took to solve problem (6.9). For each ny,
five test problems were randomly generated. The algorithm started with an
initial box constraint \; € [—108,10°]. The figure indicates that all problems
were solved in less than 2 minutes. Compared with the Figure 6-2, we see
that the ACCPM is significantly faster than the conventional method when
the problem to be solved has a large state space. Furthermore, the ACCPM
is no worse than the conventional method even when the problem has only a
few states. . . . . . . . e e e e e e
Seismic isolation control of a building. The building is modelled as a series
connection of masses, springs, and dampers. . . . . . .. .. ... ...,
MATLAB SIMULINK diagram for design of seismic isolation controllers.

Setup for robustness analysis of the seismic control systems. . . . . . . . ..
Schematic diagram of the lateral flight control system of the Space Shuttle.
Setup for robustness analysis of the Space Shuttle lateral axis flight control

SYSteI. . . . . L e e

This figure shows the amount of time that the interior path-following algo-
rithm based on the first barrier function took to solve problem (6.9). For
each ng, five test problems were randomly generated. As we can see from the
figure, all problems were solved in less than 15 minutes. Compared with the
Figure 7-3, we see that the proposed algorithm is significantly faster than
the conventional method when the problem to be solved has a large state
space. Furthermore, the proposed algorithm is no worse than the conven-

tional method even when the problem has only a few states. . . . . . . . ..

13

147

149

1561
152
153
155

187



7-2

This figure shows the amount of time that the interior path-following algo-
rithm based on the second barrier function took to solve problem (7-1). We
see the performance of the interior path-following algorithm based on the
second barrier function is very similar to the performance of the algorithm
based on the first barrier. The amount of time they spent to solve a problem
isat thesamelevel. ... ...
This figure (same as Figure 6-2) shows the amount of time that the MATLAB
LMI Control Toolbox took to solve problem (6.10). . ...

14

192



List of Tables

5.1

6.1

6.2

6.3

List of  and estimated Lp-gain. . . . . . . ... ... ... ... .....

Results of solving (6.9) using MATLAB LMI Control Toolbox, the ellipsoid
algorithm, and the ACCPM. “LMI Tool“ denotes MATLAB LMI Control
Toolbox, “ACCPM?* denotes the Analytical Center Cutting Plane Method,
and “ Ellipsoid“ denotes the ellipsoid algorithm. In this set of testing prob-
lems, the ACCPM starts with a initial box constraint {z : |z;| £ 10}, and
the ellipsoid algorithm starts with a ball constraints {z : ||z|| < 10°}. The
objective value is accurate up to the 4* digit. When ng = 200 (the number
of states in the problem is 200), the ACCPM and the ellipsoid algorithm can
still solve the problem in a reasonable period of time. . . .. .. ......
Numbers of iterations that the ellipsoid algorithm (denoted by “Ellipsoid“)
and the analytical center cutting plane method {(denoted by “ACCPM*) took
tosolve (6.9). . . . . . L.
Results of solving the Lo-gain estimation problem in Example 6.2 using MAT-
LAB LMI Control Toolbox, the ellipsoid algorithm, and the ACCPM. “LMI
Tool“ denotes MATLAB LMI Control Toolbox. “ACCPM“ denotes the An-
alytical Center Cutting Plane Method. “ Ellipsoid“ denotes the ellipsoid al-
gorithm. The numbers in the column “var* indicate the number of decision
variables in a problem. In this set of testing problems, the ACCPM starts
with an initial box constraint {z : |z;] < 10}, and the ellipsoid algorithm

starts with a ball constraints {z : ||z| <10%}. .. ... ... ... ... ...

15

150

150



6.4

7.1

7.2

Results of solving the IQC optimization problem arising from the robustness
analysis of Space Shuttle lateral flight control system using MATLAB LMI
Control Toolbox, the ellipsoid algorithm, and the ACCPM. “LMI Tool“ de-
notes MATLAB LMI Control Toolbox. “ACCPM¢“ denotes the Analytical
Center Cutting Plane Method. “ Ellipsoid“ denotes the ellipsoid algorithm.
In this set of testing problems, the ACCPM starts with a initial box constraint
{z : |z;| < 10°}, and the ellipsoid algorithm starts with a ball constraints
{z: 2| <108} . . . .

Numbers of iterations that the MATLAB LMI Control Toolbox (denoted by
“LMI Tool“), the first interior path-following algorithm (denoted by “IPA-
19), and the second interior path-following algorithm (denoted by “IPA-2¢)
took to solve problem (6.9). . . . .. ... ... ...
Results of solving the L3-gain estimation problem in Example 6.2 using MAT-
LAB LMI Control Toolbox, the path-following algorithms. “LMI Tool“ de-
notes MATLAB LMI Control Toolbox. “IPA-1% denotes the interior path-
following algorithm based on the first barrier function. “IPA-2“ denotes the
interior path-following algorithm based on the second barrier function. The
numbers in the column “var® indicate the number of decision variables in a

problem. . . . . . L

16

158

194



Chapter 1

Introduction

Engineers typically base their work on mathematical models of actual processes. The math-
ematical models rarely describe the actual processes accurately, and they might even behave
quite differently from the real process. The source of the mismatch between the model and
the actual process could be: (1) statistical processes: consider for example, coeflicients of
material properties (such as Young’s modulus, Poisson’s ratio, conductivity, etc.). The val-
ues of these coefficients are usually set equal to the average obtained from empirical data.
(2) Simplification of the model: Higher order dynamics of complex dynamical systems are
usually ignored for the sake of simplicity. As a result, the model’s behavior can be quite
different from the true response of the real system when the system is subject to a high
frequency input. (3) Linearization of complicated nonlinear dynamics: for example, the
dynamics of robots and aircrafts are highly nonlinear, and controllers for these systems are
usually designed based on one or more linearized models. The mismatch between the model
and the true system can seriously deteriorate the system's stability and performance. For
sensitive applications, such as control of aircrafts and high speed elevators, there is a strong
need for rigorous analysis to ensure that these control systems behave in a tolerable range
even in the presence of certain unaccounted factors.

Issues of robust stability and performance have dominated the field of systems and
control theory because of their practical importance. A variety of approaches that treat
these issues has been developed since the 1940s: some are associated with absolute stability
theorems [50, 63, 83, 42], while other are based on the small gain and passivity theorems

[91, 71, 70], dissipativity theory [78], multi-loop generalization of the circle criterion based

17
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A

Figure 1-1: Standard block diagram for robustness analysis.

on D-scaling [69], structured singular value (or p-analysis) [17], etc.. All these analysis
methods are, explicitly or implicitly, based on a concept called “Integral Quadratic Con-
straint“ (IQC). Analysis based on the concept of IQCs was first suggested in the 1960s
by Yakubovich [84]. The IQC-based analysis approach was further developed in the early
1990s, when a minimal framework for the stability analysis of feedback interconnections
was presented [52, 64, 65, 55, 36]. We refer to this development as standard IQC analysis,
or analysis in the standard 1QC framework.

In standard IQC analysis, the system to be analyzed is represented as a nominal system
(denoted by () interconnected with a perturbation term (denoted by A). See Figure 1-1.for
an illustration. The nominal subsystem G is usually assumed to be Linear Time-Invariant
(LTI), while the perturbation term A is not restricted to a particular class of system and
represents the “trouble making”“ (nonlinear, time-varying, or uncertain) components of the
system. Signals f and z denote the external excitation and the signal representing the
performance of the system, respectively. The perturbation A is characterized by the rela-
tionship between its input signal v and output signal w. The relationship is described in

terms of IQCs. The robustness condition is either expressed as a feasibility problem:

find A;, such that

*
M (jw 2 M(jw (1.1)
(] ) (Eo + Z )\121) ( ) >0 Yw e [O, OO],
I i=1 1
or expressed an optimization problem:
inf ¢'A, subject to the constraint in (1.1), (1.2)

18



where M{s) := (sI — A)7'B is a rational transfer matrix, and A, B, X; = I are given

matrices. We refer to problems (1.1) and (1.2) as standard IQC problems.

1.1 Analysis of Uncertain Periodic Systems

While in many applications the system to be analyzed can be easily represented as a nominal
LTI subsystem in a feedback interconnection with an uncertain operator, this is not always
the case; there are problems where the natural feedback representation results in nominal
subsystems which are not LTI. A typical example is the problem of robustness analysis of
forced or unforced oscillations in a nonlinear system. Oscillatory behavior can be observed
in many engineering systems, including delta-sigma modulators, automatic tuning of PID
controllers, rotor motion of a magnetic bearing or a helicopter, or any machine which has a
rotating part [19, 41]. To study the effect of perturbations on the oscillatory behavior of a
nonlinear system, one can often linearize the perturbed system along the periodic trajectory
of interest and perform analysis on the linearized system [39]. This approach results in an
uncertain linear periodically time-varying system. Other engineering applications in which
one would encounter LPTV systems include analysis of the horizontal plane motion of ships
in wavés [73], study of the stability of satellite orbits [74], and stability analysis of beams
and plates subject to periodic excitation [18] (See also survey paper [8] for more examples,
motivation, and an overview of the status of the field).

Stability analysis of LPTV systems is often performed based on Floquet theory (See [12,
21, 8]). However, this technique is essentially restricted to the case where the uncertainty
in the LPTV model is a perturbation of trivial size. Uncertain LPTV systems can also be
analyzed to some extent by using the Nyquist Theorem developed in [33] (See also [8] for
a related discussion). Another approach would be to use lifting techniques to obtain an
equivalent infinite-dimensional but time-invariant system in discrete time [6, 5, 20, 8]. This
approach has been used mainly to obtain Hy and Hs optimal controllers for discrete time
LPTV systems [13, 76], and for rigorous analysis of sampled-data systems [5, 20, 57]. It
can also be used for analysis of general continuous time uncertain LPTV systems, but not
much work has been presented on this topic, to the author’s knowledge. Absolute stability
results for periodic systems have been developed by Yakuvobich [81], where LPTV systems

interconnected with simple nonlinearities were considered.
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The objective of the first part of this thesis (Chapters 3 to 5) is to develop new techniques
for robustness analysis of LPTV systems. Two different approaches will be proposed. In
the first approach, the harmonic terms of the nominal LPTV model are extracted, and the
time-varying coefficients are lumped into the feedback loop via a simple loop transformation;
the system to be analyzed is thus transformed into the setup suited for standard robustness
analysis methods. Stability analysis is then performed on the transformed system based
on standard IQC analysis, and the condition for robustness is formulated as an equivalent
problem of checking the feasibility of a set of Linear Matrix Inequalities (LMIs).

In the second approach, we allow the nominal system to remain periodic and we extend
the standard IQC analysis to include the case where the nominal system is periodically time-
varying. We also show how periodic IQCs can be used in the analysis. The development
is completely analogous to the time-invariant case, with the exception that the nominal
syétem and the quadratic forms that define IQCs are allowed to be periodically time-varying.
Furthermore, as opposed to LMIs in the linear time-invariant case, the robustness condition

of this new approach is expressed as a semi-infinite convex optimization problem of the form
inf ¢\, such that S, > 0, (1.3)

where Sy, is a self adjoint operator on a particular Hilbert space and depends affinely on the
parameter vector A. This type of problem can be solved using the cutting plane method, a
technique commonly used for solving non-differential optimization problems. A particular

cutting plane algorithm is developed in Chapter 5 for solving problems of the form in (1.3).

1.2 Specialized Fast Solvers for Standard IQC Problems

In the second half of the thesis, we consider the optimization problems arising from standard
IQC analysis. | |

The conventional way to treat standard IQC problems is to transform the frequency
dependent matrix inequality in (1.1) into a non-frequency dependent one. The Kalman-

Yakubovich-Popov (KYP) lemma states that the frequency dependent matrix inequality

20



holds if and only if there exists a symmetric matrix P such that

PA+A'P PB "
+X0+ Y AT > 0. (1.4)
B'P 0 i=1

Therefore, the inequalities in (1.1) and (1.2) can be equivalently expressed as (1.4). This
transforms the standard IQC problems (1.1) and (1.2) into Semi-Definite Programs (SDPs)
at the price of adding additional decision variables (i.e., the components of the matrix
variable P). Semi-definite programs can be viewed as generalizations of linear programs.
Recently, many interior-point algorithms for solving linear programs have been extended to
solve semi-definite programs [60, 75].

The number of additional decision variables which result from transforming the fre-
quency dependent inequality is proportional to the square of the number of states in the
system, or equivalently, the dimension of the matrix A. Therefore, when the number of
states is substantially larger than the square root of the number of original decision vari-
ables, the additional decision variables play a dominant role in the equivalent SDP and
become the major computational burden. Thus, most of the computational effort is spent
on computing the auxiliary decision variables rather than the original ones. In this sense,
the conventional method becomes “inefficient“ in the case where the system to be analyzed
has many states.

Complex systems having many states are not unusual to encounter. Typical examples of
such systems are aircraft control systems, vibration controllers for flexible structures, etc..
In fact, the motivation behind developing advanced analysis methods, such as the standard
IQC analysis method, was the need to systematically analyze such systems. Furthermore,
the state space of the transfer matrix M in (1.1) is the direct product of the state space of
the physical system to be analyzed and the state spaces of the dynamical multipliers, if any,
used in IQCs. Sometimes, in order to characterize the uncertainty in the system better,
which consequentially will help to improve the accuracy of analysis, advanced dynamical
multipliers which have many states are used. As a result, the resulting transfer matrix M
has a large state space. See [55, 36] for more discussions on the use of dynamical multipliers
to improve the accuracy of the analysis and the involvement of the states of these dynamical
multipliers in IQC optimization problems.

The need for more efficient computational methods for solving SDPs derived from the
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KYP lemma has been recognized a couple of years ago [87]. However, to author’s knowl-
edge, there have been no research efforts aimed at developing efficient solvers for standard
IQC until very recently. There are two different approaches by which efficient solvers can be
developed. One approach is to exploit the very special structure of the SDP and construct
spe_cialized interior point algorithms in which computation of directions of descent is per-
formed efficiently. Research work in this direction includes {34, 77]. The second approach
is to develop a different computational procedure such that no transformation to SDP is
required for solving standard IQC problems. Along this direction, existing research work
includes (61, 44].

The second part of the thesis (Chapters 6 and 7) is devoted to developing specialized
computational algorithms that solve standard IQC problems in an efficient fashion. The
crucial point in the development is to avoid the equivalent transformation. One of the
alternative computational procedures proposed in this thesis is the cutting plane method.
The development of the cutting plane method dates back to the 1950s, and a variety of
cutting plane algorithms has been proposed over the years (See Chapter 14 of [11] and
references therein). Three different cutting plane algorithms are considered in this thesis.
We implement these algorithms and test them on a number of numerical examples. As we
will demonstrate, the results of the numerical experiments indicate that the cutting plane
method is much more efficient than the conventional approach of solving standard IQC
problems in cases where the number of decision variables in the problem is small and the
number of states in the problem is large.

Although the cutting plane algorithms appear to outperform the conventional approach
in certain situations, it is well-known that they generally require many iterations to converge
to a suboptimal solution with good accuracy. Furthermore, some numerical experiments
indicate that the number of iterations grows substantially with the number of decision
variables. Therefore, the cutting plane algorithms are expected to perform poorly when
the number of decision variables in a problem is very large. This motivates us to consider
another alternative, the interior point method.

The interior point method generally does not require many iterations to converge, in
contrast to the cutting plane method. The development of interior point methods also
dates back to the 1950s, with good early reference being [22]. Interior point methods have

gained much attention and have become popular since Karmarkar introduced his famous
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algorithm for solving linear programs [46], not only because his algorithm can be proved
to have polynomial time worst-case complexity, but also because it works quite well prac-
tically. Another milestone in the development of interior point methods was the result by
Nesterov and Nemirovsky [60]. They discovered that Karmarkar’s algorithm, as well as
several other polynomial time algorithms for solving linear programs, can be extended to
solve a much larger class of convex optimization problems. The key element is the knowl-
edge of a barrier function with a certain property called self-concordance. To be useful in
practice, the barrier must be computable. Nesterov and Nemirovsky have shown that every
finite dimensional convex set processes a self-concordant barrier function; however, their
universal self-concordant barrier is generally not computable. There are only a few classes
of problems for which readily computable self-concordant barrier functions are known. For
the optimization problems resulting from IQC analysis, the only known computable seli-
concordant barrier function involves an auxiliary matrix variable which in some cases makes
the computational algorithm based on this barrier function very inefficient.

We propose two new barrier functions to construct interior path-following algorithms
for solving standard IQC problems. These barrier functions are readily computable: the
main computation required to obtain their first and second derivatives is to solve Lyapunov
equatioﬁs for which efficient computational routines are widely available. Thanks to the
new barrier functions, standard interior path-following algorithms can be applied to solve
the IQC optimization problems without introducing auxiliary variables, which is why the
interior point algorithms based on these newly introduced barrier functions are more efficient
than the conventional approach. Regarding the issues of computational complexity, we have
attempted to prove that the barrier functions are self-concordant in order to apply Nesterov
and Nemirovsky’s result. Our attempt was not quite successful, and we have not been able
to determine whether the path-following algorithms using these new barrier functions are
polynomial time algorithms or not. Nevertheless, we are able to show that the algorithms

converge globally.

1.3 Contributions of This Thesis

Since mathematical models for engineering systems are inherently inaccurate, engineering

designs based on such models have to be verified to ensure satisfactory performance in the

23



presence of internal perturbations and exogenous disturbances which are not captured by
the models. Hence, system analysis becomes an important part of the engineering design
process. To facilitate the design process, it is essential to have tools that can be used to ana-
lyze large-scale complex systems in an systematic, efficient, accurate, and automatic fashion.
The development of the Integral Quadratic Constraint (IQC) based analysis method in the
1990s had the goal to provide such a tool. The purpose of this thesis is to further advance
the IQC analysis framework. In the first part of this thesis, robustness analysis of a class
of systems which appear in many important engineering applications - Linear Periodically
Time-Varying (LPTV) systems - is considered. IQC-based analysis methods are developed
for this class of problems. In the second part of the thesis, specialized fast computational
algorithms are developed for solving the optimization problems arising from standard IQC
analysis. These specialized fast solvers allow one to solve the optimization problems, and
thus to verify the stability and performance of the system, in a very efficient fashion. The

main contributions of the first part of this thesis are summarized as follows.

¢ We develop two systematic approaches for robustness analysis of LPTV systems. The
development is closely related to the IQC analysis approach. These approaches are
practical and flexible. In the first approach, the condition for robustness is posed as
a semi-definite program, for which efficient commercial softwares exist. Therefore,
checking the robustness condition can be performed in an automated and efficient
manner. In the second approach, the condition for robustness is formulated as a spe-
cial convex optimization problem with constraints defined in terms of parameterized

operator inequalities which requires a new method to solve.

e We develop a computational algorithm to solve the convex optimization problem aris-
ing from the second approach for robustness analysis of LPTV systems. The develop-
ment is based on a non-differentiable optimization technique called the cutting plane
method. This computational algorithm allows one to check the robustness condition

in an eflicient fashion.

o We demonstrate the two approaches by applying them to a number of robustness
analysis problems which are related to practical engineering applications. By these

case studies, we compare the accuracy of the two approaches.
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The contributions here are more at the implementation level and are important for practical
engineering purposes. Using the ideas presented in the thesis, analysis of LPTV systems
can be performed in a systematic fashion, and conditions for robustness can be verified
automatically by computers.

The second part of the thesis is devoted to developing specialized fast solvers for standard

IQC problems. The main contributions of this part of the thesis are summarized as follows.

e We develop a number of computational algorithms that are potentially much more effi-
cient than the conventional approach for solving standard IQC problems. Specifically,
three different cutting plane algorithms and two interior path-following algorithms are

developed.

e We study the performance of these algorithms, as measured by the time the algorithm
spends to solve an IQC problem, by applying them to a number of practical engineering
problems. We also explain why the proposed algorithms are more efficient than the

conventional approach from the point of view of worst-case computational complexity.

e A user friendly, MATLAB-based software for robustness analysis of large scale, com-
plex dynamical systems is developed as a consequence of this part of research. This
software, called the IQC Toolboz, has been used for the research purpose by several
leading control groups around the world (at MIT, Caltech, Lund Institute of Technol-
ogy, Royal Institute of Technology, and Stanford University). The toolbox is open to
the public and available at http://web.mit.edu/cykao/www/.

1.4 Thesis Organization

The thesis is organized as follows: in the next chapter, we present mathematical concepts
and terminology that will be used throughout the rest of the thesis. This chapter is also
used to establish standard notations.

The first part of the thesis consists of Chapters 3, 4, and 5, where the topic of robustness
analysis of periodic systems is discussed. In Chapter 3, two new techniques for robustness
analysis of linear periodically time-varying systems are developed. In both approaches,
Integral Quadratic Constraints (IQCs) are used to characterize the uncertainties and/or

nonlinearities in the model. In Chapter 4, we address conditions for existence and stabil-
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ity of stationary periodic solutions to periodic systems subject to periodic excitations, as
well as conditions for certain harmonic performance of such systems. Integral Quadratic
Constraints (IQCs) are used for developing these conditions. Certain infinite dimensional,
convex optimization problems arise from the analysis in Chapters 3 and 4. In Chapter 5, a
cutting plane algorithm is developed for solving such optimization problems. Examples to
illustrate the robustness analysis techniques developed in Chapters 3 and 4 are also given
in Chapter 5.

The second part of the thesis consists of Chapter 6 and Chapter 7, where specialized fast
solvers for standard IQC problems are developed. In Chapter 6, three different cutting plane
algorithms are implemented to solve standard IQC problems. The performance of these
cutting plane algorithms are studied via a number of numerical examples and compared to
the performance of the conventional approach of solving IQC problems. In Chapter 7, two
new barrier functions are proposed to construct interior point algorithms for solving IQC
optimization problems. The algorithms are also tested on numerical examples to evaluate
their efficiency.

Finally, conclusions and remarks regarding future research direction are presented in
Chapter 8. Some of the research work presented in this thesis has already been published

in various journals and conference proceedings (37, 43, 44, 45, 40].
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Chapter 2

Mathematical Preliminaries

The purpose of this chapter is to introduce notations and to overview mathematical concepts
and some techniques that will be used throughout the thesis. Most of the notations and
mathematical concepts defined in this chapter are more or less standard, and can be found

in system theory or functional analysis textbooks (See, for instance [49]).

2.1 Notations and Standard Concepts

We start with a set of notations that will be used throughout the thesis. Let C be the set of
all complex numbers, C™ be the set of n x 1 complex vectors, and C™*™ be the set of n xm
matrices whose elements are in C. The notations R, R®, R"*" are used to denote the
corresponding spaces where the elements are real numbers. We denote the set of integers
by Z and the set of non-negative real numbers by R*. Given a complex number a € C, we
use @ to denote the complex conjugate of a.

We use I, to denote the n X n identity matrix. Sometimes the subscript n is dropped
when the dimension of I, is obvious from the context. Given a matrix M, the transposition
and the conjugate transposition are denoted by M’ and M*, respectively. A matrix M is
symmetric if M = M’ and is hermitian if M = M™. Let S™*" be the set of all n x n real
symmetric matrices and H™*™ be the set of all nx n hermitian matrices. Note that S7*" is a
subset of H™*™. A matrix M is called positive definite if M belongs to H™*" and 'Mz > 0
for all z € C*,z # 0. The notations M > 0 is used to denote positive definiteness. The
positive semi-definiteness, negative definiteness, and negative semi-definiteness have similar

definitions except that the “>* is replaced by “>%, “<* and “<*, respectively. A matrix
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M is called Hurwitz is all its eigenvalues have strictly negative real part. Given a square
matrix M, the notation tr(A) denotes the trace of M. The Furobenius norm of a square

matrix M is defined as ||M||p := /tr(M).

2.1.1 Normed Vector Spaces

A normed vector space is a vector space V over a scalar field F' with a norm defined on it.

A norm is function || - || : V — R such that the following axioms are satisfied

lwll >0, VveV, and ||p||=0 <= wv=0.
faw]) = lallol, YveV, Yaek

lo1 w2l < flvall + flwzll, ¥ o1, va € V-

The scalar field F' considered in this thesis is either R or C. One example of a normed

vector space is C”. We will equip C” three different norms

n n 3
el =" lil,  llallz = (Zlm?) o Doloo = max |z,

=1 i=1

We will simply write ||z|j for ||z||2 unless state otherwise. In the thesis, we also consider
norm vector spaces consisting of functions that map an infinite "time axis” 7 into R™ and
that are square summable, where T can be either (—oc, 00) or [0,00). This space will be
denoted by L§(—o00,00) or L3[0,00) to explicitly distinguish what time axis is used. We
usually drop the superscript n unless we want to emphasize the dimension of the signals in

the space. The norm for the Ls[0, oc) space is defined as

I fllapoeey = { [ 1F®NI2a) ",
]

The norm for the Lo(—o0, 00) space is defined similarly. Another normed vector space to
be considered in this thesis is the space of locally square integrable, Ty-periodic functions.
We denote this space by L%(Tp). Again, the superscript n is usually dropped unless the

dimension of the signals is to be emphasized. The norm of this space is defined as

1 1z = (;D /O T dt)%
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All the normed spaces mentioned above are complete; that is, all of their Cauchy sequences
converge. Complete normed spaces are also called Banach spaces. However, we will not

exploit the completeness property in this thesis.

Extended Spaces

The extended space of a normed space consists of signals that may not be bounded in
the norm of the vector space but any truncation to a finite time interval is bounded. To

formalize the definition, let us consider the truncation operator Pr defined as

f&), t<T
(Prf){t) =
0, t>T
The extended space of a normed space V (with norm || - ||yv) is then defined as

Ve=A{f | IIPrfllv <oo, VT =0}
In this thesis, we only consider the extended spaces of Ly, denoted by Lg.. Furthermore,
we notice that the norms of Lo spaces satisfy
1. For every f € Lo, if Ty < Ty, then ||Pr, f|l, < [Py fllL,-

2. For every f € Lo, we have |Prfl||L, — || fll1, a5 T — oo.

2.1.2 Inner Product Spaces

An inner product space is a vector space V over a field ' with an inner product defined on

it. An inner product is a function (-,-) : V' x V' — R, which satisfies the following

v,v) =0 <= v=0.

(

(v1,v2) = (va,v1), Yo, v2€V.

{avy,v2) = a{vy,ve), Vu,wmeV,VackF.
{

v + v, v3) = (v1,vs) + {vo,v3), VY ui,v2,v3EV.

Again, in this thesis, the field F' can be R or C. The norm of an inner product space can

be defined as |[v|| = v/ (v, v). Complete inner product spaces are called Hilbert spaces.
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We equip C"*(R") with the inner product {z,y} = z*y = >, Z;¥;. The inner products

of LE[0, oo} spaces are defined as

(f,9)= /:of(t)'g(t) dt.

By Plancherel formula, we have
1 /.
(h9) = 5 [ FG)3() do,
T —00

where f(jw), §(jw) are the Fourier transforms of f (t) and g(¢), defined as
T

T
fljw) = lim f®e M dt,  §(jw) = lim / g(te ™™t dt,  weR.
T—o0 Jg T—co Jg

The inner product for the bi-infinite case can be defined analogously. On the space L3 (Tp),

the inner product is defined as

To

(f9) = 7 [ 0'at) et

similarly, if we let the Fourier coefficients of f € LE(7}) be defined as

. 1 [T .
fr = ?/ u(t)e oM 4t ke Z,
0J0

where wg = ?F—g, then we have

It can be verified that R™, C", L3[0,00), La(—00, 00), and Lo(7p) with the inner products

described above are Hilbert spaces.

2.1.3 Operators and Induced Norms

An operator II is a mapping from one normed space X into another normed space Y.
In this thesis, we shall only consider the case where X = Y. An operator is linear if
oy fi + aafa) = arill{f1) + a2ll(f2). When an operator II is linear, we will use the

shorthand the notation IIf to denote II(f). In the thesis, we assume that all operators have
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0 offset value; that is II(0) = 0. Given an operator Il : X — X, the induced norm of Il is

defined as
IMling = sup  [III(f)]lx,
fex, Nflx=1
where || - |x denotes the norm of vector space X. We usually refer to the induced norm

of an operator as the ”gain” of the operator. An operator is bounded if it has finite
gain; i.e., its induced norm is finite. Given operators IIj, T3, it is easily to verify that
IT1 02 ling < (1L ling - 1T2]lind-

An operator II is called causal if PrllPr = Prll for all T' > 0, where Pr is the truncation
operator defined in the previous section. Physically, this means that the current value of
the output at the operator does not depend on the future values of the input. In other
words, when considering the output of the current time instant, it does not matter if we
truncate the future of the input. An operator is called noncausal if it is not causal.

Given a set of operators II; : V; — U, i = 1,--- , n, the notation II = diag(Ily,--- ,1I,)
defines the operator IT which maps elements of the product space V; x -+ x V,, to those
of the product space Uy x - X Up: let v; € Vi, i =1,--- ,n. Then II = diag(Ily,--- ,II,)

defines the operator

IT; (1) v
M(v) := : , where v=
Hn(vn) Un,
To give an example, let us consider the special case where IIy, - - - , Il, are square matrices.

Then II = diag(I1y, - - - ,1I,,) defines the block diagonal matrix
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2.1.4 Adjoint Operators and Quadratic Forms

Let II be a bounded linear operator from a Hilbert space X into itself. Then one can define

an adjoint operator [I* : X — X associated with II such that

(I1f,g) = (f,II"g), V¥ f,ge X.

An operator II is called self-adjoint if II = IT*. A self-adjoint operator II is called positive
semi-definite, denoted by IT > 0, if (IIf, f) > 0 for all f € X. It is called positive definite,
denoted by II > 0, if there exists an € > 0 such that (IIf, f) > ¢||f| for all f € X.
Negative semi-definite and negative definite self-adjoint operators are defined similarly. A
bounded self-adjoint operator II on a Hilbert space X defines a quadratic form o : X — R
by o = (IIf, f). Again, we say a quadratic form o is positive semi-definite if o(f) > 0
for all f € X and positive definite if there exists an € > 0 such that o(f) > ¢||f| for all
I € X. Negative semi-definite and negative definite quadratic forms are defined analogously.

Obviously, o is positive (semi)-definite or negative (semi)-definite if and only if IT is positive

(semi)-definite or negative (semi)-definite.

2.2 Linear Matrix Inequalities and Semi-Definite Programs

A Linear Matriz Inequality (LMT) has the form

n
F(z):=Fy+ Y z.F >0, (2.1)
i=1
where z € R” is the variable and the symmetric matrices ¥; € R**", 4 = 0,1,--- ,n, are

given. A Semi-Definite Program (SDP) is a feasibility or linear objective optimization prob-
lem over a set of linear matrix inequalities. A semi-definite program is a convex optimization
problem since its objective and constraint are convex. Although the LMI (2.1) may seem
to have a specialized form, it represents a wide variety of convex constrains on z. Many
convex optimization problems, including linear programming and (convex) quadratically
constrained quadratic programming, can be cast as SDPs.

SDPs have been extensively studied. It is shown that SDPs can be solved very efficiently,

both in theory and in practice. Commercial softwares for solving SDPs are available. For
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more information on SDPs, the reader is referred to (9, 75].

2.3 S-procedure

In system analysis, we often have to check whether a quadratic form is negative semi-definite
when other quadratic forms are all positive semi-definite. More precisely, given a Hilbert

space X and quadratic forms o;, ¢ =0,1,--- ,n, we want to check whether
ao(f) <0, forall f € X such that o;(f) >0, i=1, - ,n. (2.2)

A simple idea to check (2.2), which is now usually called the S-procedure in the systems and

control community, is to solve the following problem:

findn, 20, i=1,---,n, such that oo(f)+ zn:TiUi(f) <0, YfeX (2.3)

i=1
Quite obviously, if we can find a set of positive 7, such that the inequality in (2.3) is
satisfied, then (2.2) is true; i.e., feasibility of problem (2.3) is a sufficient condition for (2.2).
In general, condition (2.2) does not imply feasibility of problem (2.3), except in some special
cases. In the case where condition (2.2) and feasibility of problem (2.3) are equivalent, we
call the S-procedure lossless. It is shown in [86] that the S-procedure is lossless in cases

where

X=R"and n=1.

X=C"andn=2.

In the case of Ly, Megretski and Treils [56] showed that the S-procedure is lossless for any
finite number of quadratic forms that are defined by time invariant operators. The result
was further generalized by Yakuvobich in [82]. Here we state a version of the S-procedure

losslessness theorem without proof.

Theorem 2.1. Let X be a Hilbert space anda; : X - R, 1 =0, - -- 1, be quadratic forms
defined as oi(f) = (IL f, f), where I; are bounded self-adjoint operators. Let Sy be the shift
operator on X defined as Sx(f) = f(t — A). Suppose that the following conditions hold

1. If fe€ X then Sy f € X forall X > 0.
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2. Fori=0,---,n, and fi, fo € X, we have 1,5, f1, f2) — 0 as A — oc.
3. Fori=20,---,n, and f1, fa € X, we have (II; f1, Sxfz) — 0 as A — oo.
4- 0i(Snf) =oi(f) forall A>0 and all f € X.

Furthermore, there exists f* € X such that o;,(f*) > 0 fori =1,--- ,n. Then the following

statements are equivalent
1. oo(f) €0, for all f € X such that oy(f) 20,1 =1,---,n.

2. There ezist 7; >0, i =1, ,n, such that oo(f) + Y 1y mioi(f) <0 for all f € X.

=
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Chapter 3

Robustness Analysis of Periodic

Systems

Linear periodically time-varying systems appear in a number of engineering applications
ranging from the general problem of stability analysis of systems subject to periodic excita-
tion to the more specific problems arising in helicopter rotor control and study of stability
of satellite orbits. In all cases, there are various sources of uncertainty in the linear periodic
model. In this chapter, two new techniques for robustness analysis of linear periodically
time-varying systems are developed. In both approaches, Integral Quadratic Constraints
(IQCs) are used to characterize the uncertainties in the model. The condition for robust-
ness is formulated as an equivalent problem of checking the feasibility of a particular affinely

parameterized operator inequality.

3.1 Introduction

Linear Periodically Time-Varying (LPTV) systems appear in many important engineering
applications. A typical example where LPTV systems naturally occur is the problem of
robustness analysis of forced or unforced oscillations in a nonlinear system. Oscillatory
behavior can be observed in many engineering systems, including delta-sigma modulators,
automatic tuning of PID controllers, rotor motion of a magnetic bearing or a helicopter,
or any machine which has a rotating part [19, 41]. To study the effect of perturbations on
the oscillatory behavior of a nonlinear system, one can often linearize the perturbed system

along the periodic trajectory of interest and perform analysis on the linearized system

35



[39]. This approach results in an uncertain linear periodically time varying system. Other
engineering applications in which one would encounter LPTV systems include analysis of the
horizontal plane motion of ships in waves [73], study of the stability of satellite orbits [74],
and stability analysis of beams and plates subject to periodic excitation [18] (See also survey
paper [8] for more examples, motivation, and an overview of the status of the field).

Stability analysis of LPTV systems is often performed based on Floquet theory (See [12,
21, 8]). However, this technique is essentially restricted to the case where the uncertainty
in the LPTV model is a perturbation of trivial size. Uncertain LPTV systems can also be
analyzed to some extent by using the Nyquist Theorem developed in [33] (See also [8] for
a related discussion). Another approach would be to use lifting techniques to obtain an
equivalent infinite-dimensional but time-invariant system in discrete time [6, 5, 20, 8]. This
approach has been used mainly to obtain H, and H; optimal controllers for discrete time
LPTV systems [13, 76], and for rigorous analysis of sampled-data systems [5, 20, 57]. It
can also be used for analysis of general continuous time uncertain LPTV systems, but not
much work has been presented on this topic, to the author’s knowledge. Absolute stability
results for periodic systems have been developed by Yakuvobich [81], where LPTV systems
interconnected with simple nonlinearities were considered.

The objective of this chapter is to develop new techniques for robustness analysis of
LPTV systems. Two different approaches are proposed in this chapter. In the first ap-
proach, the harmonic terms of the nominal LPTV model are extracted, and the time-varying
coefficients are lumped into the feedback loop via a simple loop transformation; the system
to be analyzed is thus transformed into the setup suited for standard robustness analysis
methods - a Linear Time-Invariant {LTI) nominal subsystem in feedback interconnection
with a bounded operator. Robustness analysis is then performed on the transformed sys-
tem based on standard IQC analysis [55]. The criterion for robustness is formulated as an
equivalent problem of checking feasibility of certain Linear Matrix Inequalities (LMIs). We
refer to this approach as the Fourier Series Ezpansion Method. A new IQC is derived to
give better characterization of the harmonic terms than the IQC in [55] does.

In the second approach, we allow the nominal system to remain periodic, and we extend
the standard 1QC theory to include the case where the nominal system is periodically time-
varying. We also show how periodic 1Q)Cs can be used in the analysis. The development

here is completely analogous to the time-invariant case in [55], with the exception that the
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Figure 3-1: Systems for robust stability and performance analysis.

nominal system and the quadratic forms that define the IQC are allowed to be periodically
time-varying. Furthermore, as opposed to LMIs in the Fourier Series Expansion Method,
the stability condition of this new approach is expressed as a semi-infinite convex feasibil-
ity problem which involves operators defined on infinite dimensional Hilbert spaces. This
approach is referred to as the Periodic IQC Approach. We will also briefly discuss how
the semi-infinite feasibility problem can be solved using a non-differentiable optimization
technique called the cutting plane method.

Much of the theoretical foundation of the techniques used in this chapter was laid down
by previous work of other researchers. The main contribution here is to put together existing
results and develop systematic approaches for robustness analysis of LPTV systems.

The organization of this chapter is as follows: in Section 3.2, we describe the uncertain
LTV systems under consideration, as well as the type of analysis problems we want to study
in this chapter. Next, two different approaches for robustness analysis of LPTV systems
are presented. The Fourier Series Expansion Method is described in Section 3.3, and the
Periodic IQC Approach is described in Section 3.4. Periodic IQCs for several uncertain
operators are discussed in Section 3.5. Finally, we summarize the material of this chapter

in Section 3.6.

3.2 Systems Under Consideration and Problem Formulation

In robustness analysis, systems under consideration are often represented in the forms shown

in Figure 3-1. For robust stability we consider the system on the left-hand side

v=GCuw
5 (3.1)
w = A(v),
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and for robust performance we consider the system on the right-hand side

< - f _ G Ga f
v w G21 G22 w 7 (32)
w = A(v),

where G is referred to as the nominal subsystem and A ig the collection of "trouble making”
(nonlinear, time-varying, uncertain) components in the system.

In this chapter, we consider systems which have linear, bounded, and To-periodic nom-
nal subsystems. The nominal subsystem has g state space realization

6 = Ac(t)zg + Bo(t)u, z(0) =g, (3.3)

Yy = C(;(t)a:(;- + D(;(t)u,

where all matrices are assumed to be real-valued, Tg-periodic, and continuons. Furthermore,
Ag is assumed to be exponentially stable; i.c., the solution of d(t) = Ac(®)®(t), D(0) =1,

evaluated at T} has all eigenvalues inside the unit disc in the complex plane. Exponential

stability is given as follows.

Definition 3.1 ( Well-posedness). The feedback interconnection of ¢ and A as defined
in equation (3.1) is said to be well-posed if the map (v,w) v+ f hag a causal inverse on
L2 [0, 00). That is, for any f e L,, [0,00), there exists a solution (v, w) € L2 [0, 00) which

depends causally on f.

that the system is stable.

Definition 3.2 (Stability). The system in (3.1) is stable if it ig well-posed and there exists
& positive constant ¢ such that | Prw|f + |Prof < clPrfll, for all T > 0 and J € L [0, 00).
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For robust performance analysis, we are interested in verifying whether the signal pair
(z, f) satisfies a certain performance measure. We formally define robust performance as

follows.

Definition 3.3 (Performance). A performance measure oy (2, f) is a quadratic functional

U‘Il(z7f):< i ’\Il : > 3
f f

L2([0,00)

which has the form

where ¥ is a self-adjoint operator on La(—00,c0). The system in (3.2) is said to satisfy the

performance criterion with respect to oy if
(i) the interconnection of (Ga22,A) is stable in the sense of Definition 3.2.

(#3) the performance condition, oy(z, f) < 0, holds for all pairs (z, f) from the set
{(z,f) | 2= Ga(f), f € L2[0,00)}. Here Ga denotes the closed-loop map which

is bounded because of assumption (¢).

Example 3.1. As a simple example, take the quadratic functional oy (z, f) = ||z[|2—+*| f|*.
Then the performance criterion og(z, f) < 0 simply implies that the worst case Lo-gain of

the system z = Ga(f) is bounded by ~.

In this chapter, we will discuss two alternative approaches to use IQCs for robust stability

and performance analysis of the systems described in Figure 3-1.

3.3 Fourier Series Expansion Method

In this section, we propose the first method for robustness analysis of linear periodically
time-varying systems. In the first approach, the system matrices are expanded into Fourier
series. Then, the time-varying terms in the Fourier series are lumped into the feedback loop
via a simple loop transformation, and the system to be analyzed is transformed into the
standard setup for many existing robustness analysis methods - a Linear Time-Invariant
(LTT) nominal subsystem in feedback interconnection with a bounded operator. Robustness
analysis is then performed on the transformed system based on the standard IQC method

[55).

39



Let us expand the matrices in the state space realization (3.3) into Fourier series

Ac(t) = Ao+ Z (A}, cos(kwot) + A, sin(kwot)) 4+ A(t),
kely

Bg(t) = Bo+ > _ (B cos(kwot) + B sin(kwot)) + Ap(t),
kelp

Cat) = Co+ Y (Cf cos(kuwot) + Cf sin(kwot)) + Ac(t),
kels

De(t) = Do+ Y (Df cos(kwot) + Dj sin(kwot)) + Ap(t),
kelp
where wp = 27 /Ty, and A 4(t) to Ap(t) represent the remaining terms in the Fourier series.

We assume that A4(¢) is bounded in the sense
”AA(t)” Sva Vi,

where 74 is a constant and |- || denotes the 2-induced matrix norm. Similar assumptions are
made on Ag(t), Ac(t), and Ap(t). The index sets I4 to I define the dominating harmonics
of the Fourier expansion of Ag to D¢ respectively. Let I, = I4{JIc and I, = I UIp. We
assume that I is ordered; i.e., I, = {ki, ko, - ,kn}, k1 < ko < - < kp, and s0 is I,,.

‘The system can now be transformed into a LTI system G interconnected with an operator
Aoy = diag (A, Hy, Dy, Ag, Hy, A, Ap)

via a simple loop transformation. The LTI system G has a state space realization defined
in terms of the Fourier coefficients. The operator H, : LE[0, 00) — L2"V|0, c0) is defined as
multiplication in the time domain by the time-varying coefficients from the Fourier series

expansion; i.e.,

| COS(k,‘]_th)I

sin(klwgt)I

cos(knwot)

| sin(kywot)T |
H, is defined similarly. See Figure 3-2 for an illustration. The transformed system is now
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Figure 3-2: Illustration of the Fourier Series Expansion Method. Figure on the left-hand-
side: the original system has a LPTV nominal subsystem G and a perturbation term A.
Figure on the right-hand-side: the transformed system has a LTI nominal subsystem G.
The time-varying part of system G is extracted and lumped into the feedback loop. Let z
denotes the states of G. Then signal v; is equal to [z’ «’ 2|', while signal v is equal to
[w' w' w'].

in the form suitable for standard IQC analysis developed in [55]. Several IQCs that can be
used to characterize the operators in Ay, are given in that paper. The next proposition,

due to U. Jonsson, gives a new IQC for the operator Hy.

Proposition 3.1. The operator Hy satisfies the IQC defined by the quadratic form

!

& v M]_1 M12 U
o(v,w) ::/ dt, (3.4)
0 w M{Q M2'2 w
where
10 0 0 00 0]
Mu Mo 0 I 2 0 ... 0O 0O O
= Re(U*KU), U= _ ,
Mi, M2 '
00 0 0 ... 0 I ]
and K = K* € CNTUnX(N+Dn sotisfies the LMI
APA—P APB c’
+| | klc p|=0, (3.5)
B'PA B'PB D’
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for some P = P* € CPAv>"kN - Here A B, C, D is any controllable realization of

[ 1]
1 P
A

where a # 1 is a real number.

Remark 3.1. The additional constraints, M1 > 0 and My, < 0, can be introduced to ensure

the homotopy condition in the main theorem of [55].

Proof. The proof can be found in [37]. It is included here for the sake of completion.
The proposition is a consequence of the Kalman-Yakubovich-Popov (KYP) Lemma. To
see this we first notice that the condition

— -k - .

I I
Zhr P
K| |20, V|z=1, (3.7)
_szI_ _szIJ

is equivalent to the condition H(z)*K H(z) > 0, for all |z| = 1, which according to the KYP
lemma is equivalent to the existence of P = P* € C™NX™~N guch that (3.5) holds. Next,

we notice that (3.7) implies that the following inequality holds

!

I
U*KU >0, V¢t (3.8)
H, H,

To see this, notice that

.
I eiklwot]'
U - (3.9)
H,
e'ik:NthI

Now, for any fixed ¢, let z = ™', and we immediately see that inequality (3.7) implies
Y
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inequality (3.8). Finally, since Im(U*KU) is skew-symmetric, therefore we have

/

/Oo Yl mrrmy | U | de=o0. (3.10)
o |Ha(v) Ha(v)

Hence, inequality (3.8) implies the IQC defined by the quadratic form (3.4). O

Examples of using Fourier Series Expansion Method to analyze robust stability and
performance of LPTV systems are presented in Section 5.5. In the next section, we present

the second approach for robustness analysis for linear periodic systems.

3.4 Periodic IQC Approach

In this section, we consider another approach for robustness analysis of periodic systems (3.1)
and (3.2). In this approach, the nominal subsystem G is allowed to remain linear periodically
time-varying and periodic IQCs in the time domain are used to characterize the perturbation
A. By introducing a convex parameterization of the IQCs, we obtain robustness condition
in terms of a convex optimization problem that involves state space realizations of the IQCs

and the nominal subsystem G

Definition 3.4 (Periodic IQC). Let the quadratic form op : L3[0,00) X L2[0,00) — R
 be defined as

on(v,w)=< I’ > , (3.11)

w w
L2[0,00)

where the operator IT is bounded, self-adjoint (on Lg(—o00,00)) and Ty-periodic; ie., if
i (t) = n(t — kTp), then (IIng)(t) = (Ilno)(t — kTp) for all t € R and integers k. We say that
the operator A satisfies the IQC defined by oy (Notation : A € IQC(oyy)) if ori(v, A(v)) > 0
for all v € Ly[0, 00). We refer to II as the multiplier of the IQC.

Example 3.2. Consider an operator defined as multiplication by a Ty-periodically time-
varying scalar §(¢); i.e., A(v(t)) = 8(t)v(t), where §(t) satisfies 6(t) = &(t + kTp), for all

t € R and integers k. Suppose that |§(t)| < r(¢t) for some Typ-periodic and strictly positive
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function r(t). Then it is obvious that
r(6)?0(t)? — A(1)? = (r()* = 6(&)*)(1)* 2 0, ¥ w(t).
Let the quadratic form op(v,w) be

on(v,w) = /0*00 r(t) () — w(t)? dt.

It is clear that on(v, A(v)} > 0 for all v € Ly. Therefore, the operator A satisfies the IQC
defined by or;. The multiplier of this IQC is

1QCs of the form given in Definition 3.4 will be used to obtain conditions for robust
stability and performance of the systems (3.1) and (3.2). The periodic case is completely
analogous to the time-invariant case in [55], and the main stability result of [55] also holds

for the periodic case.

Proposition 3.2 (Robust Stability). Consider system (3.1) where G is a stable LPTV

system and A is ¢ bounded causal operator. Assume that
() for all T € [0,1], the interconnection of G and TA is well-posed;
(74) for all T € [0,1), TA satisfies the IQC defined by oy,

(112) there exists an £ > 0 such that

on(Guw,w) < —¢llw||?, ¥ w € Lyf0, ).

Then the system is stable.

Proof. This proposition can be proven by the arguments similar to those in the proofs of

the main results in [55] and [66]. O

The next proposition gives the condition for robust performance of system (3.2). It

follows from the S-procedure (See Chapter 2).
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Proposition 3.3 (Robust Performance). Consider system (3.2). Let oy correspond
to the performance measure, and let oq be the quadratic functional of the form in (3.11).

Assume that

(1) ow(z,0) >0, Vz € Ly[0, 00);

(i1) for all T € [0,1], the interconnection of (Gap,TA) is well-posed;
(121) for all T € [0,1], TA satisfies IQC defined by omy;

(iv) there exists an € > 0 such that
ou(z, f) +on(v,w) < —e(I £+ [wl*), V f,w e L0, 00).

where (z,v, f,w) satisfies system egquations in (3.2).
Then the system in (3.2) satisfies the performance criterion og < 0.

Proof. Let (f,w) := (0,w). Then conditions (7) and (¢v) imply that there exists an ¢ > 0
such that

on(Gozw, w) < —¢||lw|? ¥ w € Ly0,00).

Therefore, the interconnection of (Gag, A) satisfies all three conditions in Proposition 3.2
and is thus stable. Finally, the performance condition, og(z, f) < 0 for all (z, f) such that

2z = Ga(f) and f € Ly[0, 00), is obtained by applying the S-procedure. a

In applications, it is important to have several IQCs that characterize the uncertainty
in order to obtain more accurate analysis results; the more IQCs we have to describe the
uncertainty, the better our chance to find one such that condition (ii4) in Proposition 3.2
or condition (7v) in Proposition 3.3 is satisfied.

In the rest of this section, we show that it is possible to parameterize IQCs and that
checking conditions for robustness becomes finding values of the parameters in the parame-
terized IQCs such that condition (422) in Proposition 3.2 or condition (iv) in Proposition 3.3
is satisfied. As a result, the conditions for robust stability and performance are expressed as
infinite dimensional convex feasibility problems. We first introduce a state space realization

for the operator II in Definition 3.4.
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3.4.1 The State-space Realization of the Multiplier II

Consider multipliers of the form II = T™*Z(¢)I", where X(¢) is a real symmetric, continuous,

and Ty-periodic matrix. The operator I" is defined as

_ | J3 @ntt, 5)Bu(s)n(s)ds a0 = "] (3.12)

(T'n)(t) , :
7{t) w(t)

where B (t) = [Bn,v(?f) BH,w(t)]7 and @y is the transition matrix defined as
‘i’]‘[(t, S) = An(t)@r[(t, 5)7 (I)H(S: 5) =1

Matrices Ap, Br are Tp-periodic, real-valued, and continuous. Furthermore, Ap is expo-
nentially stable. Now, the quadratic forms defined by II can be represented in the time

domain as

!

orx(v, w) = / 2@ gy (O] 4 (3.13)
o | n(t) n(t)

where xr(t) satisfies the dynamical equation
tn(t) = An(t)zn(t) + Broo(t)v(t) + Brw(t)w(t), zn(0)=0.

3.4.2 Parameterizing and Optimizing 1QCs

Suppose that TA satisfies the IQCs with multipliers Ty, II;, - - - ,II,,. Then it is straightfor-

ward to see that 7A also satisfies any IQC with multiplier
k)
I(A) =Ho+ Y AT, where A >0, i=1,--,n. (3.14)
i=1

In other words, TA satisfies a set of IQCs that is parameterized by A, where A belongs to
the positive orthant of R™. The stability analysis problem now becomes the problem of

finding a positive A such that criterion (77) in Proposition 3.2 is satisfied. Hence, it can be
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formulated as a convex feasibility problem:
Find A>0, € >0, suchthat on(Gw,w,)) < —¢llw]!?, ¥ w ¢ L2[0,c0). (3.15)

Here the notation opp(, -, A) is used to emphasize that the quadratic form is parameterized
by A. In applications, depending on the properties of A, the constraints on parameter A
could be replaced by A € A where A is a convex set of R™*. We will give several examples
of parameterization of IQCs in Section 3.5.

The condition for robust performance can be treated similarly. There will, however, be
a distinctive difference. In the robust performance analysis, we normally want to optimize a
certain parameter in the performance criterion. Analogous to the stability analysis case, let
us assume that 7A satisfies an n-parameterized IQCs; i.e., the IQC has an n-parameterized
multipliers II(n) := Y." ; mll;, where 1 belongs to a convex set C; C R"™. Furthermore,
let the performance measure oy has the multiplier ¥(y;by), where y € C; denotes the
parameters in the performance multiplier, and &'y denotes the performance objective we
want to optimized. The set Cs is a convex set in R™. As an example, let us consider the
performance measure oy (z, f) = ||z|> ~ ¥2||f||*>. If the performance criterion holds, then
the system has Ly-gain no larger than +; i.e., v is an upper bound of the Lg-gain of the
system. In order to have a better estimate of the L,-gain, we usually want to minimize +.
In this case, define y := 42. Then we have one parameter y in oy. The set C; is equal to
R*, and the vector b is equal to 1.

Let II(n) and ¥(y) be partitioned as

I{n) = Mu(n) Mien) ‘I’(.y)= Yy b'y) Vaaly;b'y)

I, () Maafn) Ui (y; b'y) Yool(y;b'y)

where the dimensions of I1;;(n) and ¥, (y) correspond to the size of signal v and signal z,

respectively. Let X' = [77' y’], and

Tn(y;by) 0 Ta(yby) 0
0 11 (n) 0 IT12(n)
H(A) - * / ’
Uio(y; V) 0 Uao(y; b'y) 0
L 0 1 Iz(’]) 0 ﬁzg(n)A
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Then the quadratic form in condition (iv) can be represented as

] o
o(v,w,A) == ay(z, f,y) + oglv,w,n) = < , II(A) : (3.16)
w w
Lz[0,c0)
where ¢/ = [z’ v’} and @' = [f’ w’]- Criterion (iv) in Proposition 3.3 can now be

formulated as

o(Gw,w, A) < —¢||@||?, V¥ @ € L0, 00)
igf ¢, subj. to . (3.17)

AEAN >0

whered = |0 ... 0 ¥|,and A:=C; xCy € RPT™,
Suppose that each multiplier II; is in the form I'*%;(¢)I" where T is defined as (3.12) in
Section 3.4.1. Using the state space realizations of G and I', we can equivalently represent

the integral quadratic inequalities in (3.15) and (3.17) as: there exists an € > 0 such that
-
/ (@'Q(t, Nz + 22'F (¢, Yw + w'R(t, Nw) dt > e(||z[|* + ||w|?), Y(z,w)€ L, (3.18)
0

where 1’ = (zp, 75),

L={(z,w) | z=A{t)x + B(t)w,z(0) =0, w € L2[0,00)}}, (3.19)
Aff) = An(t) Bn(t)Ca(t) B() = Br +(t)Dg(t) + Brw(t) |
0 Ac(t) Bg(t)
and
I o 0
QN FON vy (zo(w + Z’Aizi(t)) N, N =0 Co®)| Datt
F(t,A) R(t, N i=1
0 0 I

Note that A(f) is exponentially stable because Ag(t) and Ap(#) are. Furthermore, £ C
Lo[0,00) is a Hilbert space. This follows from the closed graph theorem since A(t) is
exponentially stable. Also note that @(t, ), R(t, A) are symmetric and that Q(¢t, ), F(¢, \)
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R(L, ) all depend aflinely on A. Now, if we define

£ ) F(t, A

Sy = Q) &%) (3.20)
F(t,\) R(, A)

and view S, as a self-adjoint operator defined on £, then (3.18) can be equivalently expressed

as Sy > 0. The problem of robust stability and performance analysis problems now can be

formulated as feasibility/ optimization problems that involve the positivity of Si.

Proposition 3.4. Consider system (3.1). Assume that, for all 7 € [0, 1], the interconnec-
tion of G and T 18 well-posed and T satisfies \-parameterized 1QC which has o multiplier
in the form of I(A) = Ilo + $* Milli, A € A. Furthermore, assume that each I1; is in the
form of Il; = ()T, where I is defined as in (3.12). Then system (3.1) is stable if the

following conver feasibility problem has a solution:
find A€ A, suchthat Sy> 0, (3.21)

where Sy, is defined according to state space representations of the nominal subsystem G and

the multiplier in the 1QC.

Proposition 3.5 Consider system (3.2). Assume that, for all 7 € [0, 1], the intercon-
nection of Gaz and TA s well-posed and TA satisfies \-parameterized IQC which has o
multiplier in the form of () = o + S M, A €A Furthermore, assume that each
II; is in the form of Il = T*E;(t)T', where T' is defined as in (3.12). Then the robust

performance problem can be formulated as an optimization problem
ir;f dN, subj tode A, Sx>0, (3.22)

where S(X) is defined according to state space representations of the nominal subsystem G

and the multiplier in the IQC.

Feasibility problem (3.21} and optimization problem (3.22) can be addressed using meth-
ods from non-differentiable optimization. For example, various cutting plane algorithms
[11, 28, 44] can be applied to solve problems (3.21) and (3:22). In Chapter 5, a specific
cutting plane algorithm is developed to solve feasibility and optimization problems arising

in this chapter.
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In Section 5.5, we illustrate and compare the two different approaches for robustness
analysis of periodic systems by a couple of examples. As we will show, the Periodic IQC
Approach is generally more accurate than the Fourier Series Expansion Method.

3.5 Parameterizations of Some IQCs
In this section, we give several examples of parameterizing IQCs.

3.5.1 Periodically Varying Parameter

Constder an operator defined as multiplication by a periodically time-varying scalar §(t).

Suppose that |6(t)| < (¢) for some Tp-periodic and strictly positive function r(t). Let

aviw ) - | T A — (t)/r(0))t,

where A > 0. It can be readily verified that o(v,év,A) > 0. The multiplier of this IQC is
diag(\, —¢5)-

3.5.2 Time-varying uncertainty

Consider an operator defined as multiplication by a time-varying matrix A(t), where A(#)

belongs to a convex polytope; i.e.,

N N
A(t)E {A rA:'ZniAiu ’IhEO, Zfrh:]} CRmX’n,
i=1

i=1
where Ay, ..., Ay are fixed matrices. Let
I I
M={M=»M: M >0,i=1,...,N
Ay A;
and

S(t, Mo, -+, M) = Mo+ Y pi(t) My,
k=1
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where M € M, and pi(t) > 0 are Ty-periodic and continuous. Let X represent the coeffi-

cients of the matrices Mj. Then X(t, Mo, --- , M;) can be represented as
S
S(t,A) = To(t) + 3 ATi(t)- (3.23)
i=1

Notice that the conditions My € M restrict A to a convex set A which is defined in terms

of linear matrix inequalities. Finally, let

o (v, w, ) = /oo "D s [P0 g
0 w(t) w(t)

It can be easily verified that o(v, Av, A) > 0 for every A € A and for all v(t) € L0, 00).

3.5.3 Uncertain parameter

Here we consider the operator defined as muitiplication in the time domain by an uncertain

parameter 6 € [—1, 1]. It is easy to verify that it satisfies the IQC defined by the quadratic

v v X 0
o1(v,w) := Iy , M= ,
w w 0 —-X

Lz[0,00)

form

where X = X* > 0 is a Tp-periodic operator. In order to obtain a state space realization

we let X = X+ X and

K
Xo=Y_ N,
k=0
where! Ny, ..., N are n x n matrices, and 1 are Ty-periodic operators. For example, we
can take 1g(¢) to be a continuous, real-valued, Tp-periodic function and ¥, k = 1,..., K,

to be the operators with first order state space realizations?

Er = ar(t)zk + b (t)u,

y = c(t)zs,

1n is the size of the signal that & multiplies.
2We need to interpret Nitn as Ne(wel), i.e., 1 is a diagonal operator.
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where ag, by, ¢, are continuous, real-valued, and Ty-periodic functions. This way, we can

write X = W3XoWq, where the operator ¥q is of the form (3.12). The corresponding

matrices A and By are defined in terms of a1,...,ax, and by,...,bx, while the matrix
%o is defined in terms of Ny, ..., Nk, v, and c1,...,cx. Let Ay € R(K+Dn? correspond to
the coefficients in Ny, ..., Ny. Then we can represent Zo(t, A1) in the form given in (3.23).

The parameters in A; are constrained by the condition that X > 0. This can be written
as a convex IQC constraint in the following way: let og(v, A1) = (¥ov, Eo(t, A1) ¥ov), then

A € Ay = {A:o0(v,A) 20, Vv € Lsf0,00)}. Now, let the state space realization of ¥ be

Ao | Bo

I'0
017

and let 2y be partitioned as

Yo11 Xo,12
Yo = ,

Yoo1 o1

where matrix ¥g,, has the same dimension as matrix Ag. Then, it can be readily verified

that I1; has the following representation

I, = ¥1¥, ¥,

where ¥ has state space realization

Ao 0 | By O

Uy

i
o o o ~
o O o~ o-
o ~ o ©
~ o © ©

D2



and

i ]
Yon 0 Y0,12 0

0 —XYou 0 —Xo

¥
012 0 oo

0 —Xp12 0 —Fooa|

.

We have (v, dv, A1) > 0, for all A\; € A; and for all v € L;[0, 00).
We can also use the IQC defined by the quadratic form

v v 0 Y
O‘Q(an) = 71_-[2 ) H2 = )
w Yt 0
L2[0100)
where Y = —Y* is a Tp-periodic operator. In order to obtain a state space realization we

let Y =Yy — Yy and

K
Yo = Nit,
k=1
where the ¢y, k = 1,-- - , K, are Ty-periodic operators of the same type as in the definition

of the quadratic form o1 discussed above3

. It is easy to derive a representation II; =
U35, Wy, where X(t, Az) depends affinely on Az. Here Az € RE™ denotes the coefficients
in N1,...,Ng. We have oa(v, v, A2) > 0, for all Az and for all v € L3[0,00). Note that
there is no constraint on As.

The two IQCs defined by quadratic forms o7 and oy can be combined to a single IQC,
which is defined by the quadratic form ¢ = 0 + o7 with the multiplier IT = ¥*E(\)T,
where ¥ has the realization in the form of (3.12), and A € A = {A = (A1, A2) : A1 € A1}

To be more precise, if ; is defined by II; = 7%, ¥;, where ¥; has state space realization

3The matrices Ni,..., Nk and the ¥ need not be identical to the ones that defined o;.
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and X, is partitioned as

5, = Y Yo
Z32,21 X 29
Then, ¥ has state space realization
(4, 0B |
0 Ay | By
I 0] 0 ’
0o I |0
0 o1 |
and
Yin O 21,12
Y= 0 Zpn Y212

Y2 Tp1e S122+ Doz
We have a(v,du,A) > 0, for all A € A and for all v € Ly[0, 0).

3.5.4 Dynamic Uncertainty

In this example we consider a LTI dynamic uncertainty A which has Lo-gain less than or

equal to 1. This class of uncertainties satisfies the IQC with multiplier

where X ¢ RLy satisfies X = X* > 0. Again, a finite dimensional parameterization is
obtained by the same way we discussed in Example 3.5.3. We get X = U{Xo¥o, where
Yg()) is a symmetric matrix with coefficients defined in terms of the parameter A, and Wg

has the form

To(s) = (3.24)
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for some Hurwitz matrix A. The parameter vector is constrained as
Ae A= {x: ¥y(jw) Lo(A)¥o(w) > 0}.

We can, as in Example 3.5.3, find X()\) and an operator ¥ with state space realization in

the form of (3.12) such that IT = ¥*S(A)W¥.

3.6 Summary

We have presented two new techniques for robust stability and performance analysis of
Linear Periodically Time-Varying (LPTV) systems with structured uncertainties. In the
first approach, the harmonic terms of the nominal LPTV model are extracted, and the time-
varying coefficients are lumped into the feedback loop via a simple loop transformation; the
system to be analyzed is thus transformed into the setup suited for standard robustness
analysis methods. Robustness analysis is then performed on the transformed system using
the standard Integral Quadratic Constraint (IQC) method.

In the second approach, we allow the nominal subsystem to remain periodic. We develop
a framework for stability and performance analysis which is analogous to the standard IQC
method. In this approach, the uncertainties in the system are characterized by convex
combinations of IQCs defined by quadratic forms which are allowed to be periodically time-
varying. Conditions for robustness is formulated as infinite dimensional convex feasibility
problems. This type of problems can be solved using the cutting plane method. A particular
cutting plane algorithm will be developed in Chapter 5, where we will also illustrate and
compare the two different approaches for robustness analysis of periodic systems by a couple

of examples.
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Chapter 4

Analysis of Periodically Forced
Uncertain Feedback Systems

This chapter addresses conditions for existence and stability of stationary periodic solutions
to uncertain periodic systems, as well as analysis of harmonics in these solutions. Existence
of stationary periodic solutions is studied and harmonic performance analysis is carried
out using Integral Quadratic Constraints (IQCs) defined on the space of square integrable
periodic functions. Stability of the stationary periodic solutions is investigated using IQCs
defined on the usual space of square integrable functions. Conditions for existence of a
unique solution, stability, and performance are formulated as problems of checking feasibility

of ceratin affinely parameterized operator inequalities®.

4.1 Introduction

In chapter 3, analysis of periodic systems is performed on an infinite time horizon. This is
necessary when investigating stability but is less suitable when considering other important
system properties, such as existence of stationary periodic solutions in the system and
amplification of the harmonics in these solutions. In this chapter, we develop a framework,
similar to the Periodic IQC Approach in the previous chapter, for analyzing these properties
of an uncertain periodic system.

Several problems will be considered in this chapter. First, we consider the problem

!The contents of this chapter are adapted from technical report [40], which will soon appear in IEEE
Transactions on Circuits and Systems I. The report is the result of a joint work of Dr. U. Jénsscn at the
Royal Institute of Technology, Sweden and the author of this thesis.
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of existence of stationary periodic solutions to periodically forced systems. It is not at
all obvious that a periodic input signal to a dynamic system is mapped to a periodic
output signal. For example, an integrator does not map a periodic input to a periodic
output if the input does not have zero DC value. Incremental IQCs will be used to derive
an existence theorem that allows more flexible treatment of uncertain systems than the
methods previously proposed in the literature [85, 21, 14].

The condition for existence of a stationary periodic solution does not reveal any infor-
mation concerning stability of the solution. Here “stability“ means that the solution of
the system equations converges to the stationary periodic solution even if there are small
disturbances in the input signal or changes in the initial condition. We use incremental
IQCs defined on the usual space (i.e., Lz[0,00)) for robust stability analysis. A sufficient
condition for stability of stationary solutions is obtained in a fashion similar to the way by
which the condition for stability of equilibrium points is derived in [53].

Finally we consider the so-called harmonic performance analysis. Analysis of harmonics
has various important engineering applications [58]. There are many different performance
criteria one can consider. One particular criterion will be addressed in this chapter: the
criterion corresponds to the problem of estimating of the amplification of periodic signals
in an uncertain periodic system. This problem is relevant to robustness analysis of periodic
trajectories [38).

The analysis in this chapter results in optimization problems of the form
ir)1\f ¢'A, such that Sy >0 and X € A, 4.1)

where A C R" is a convex set of parameters and S, is a A-parameterized, self-adjoint
operator on the space of square integrable periodic functions. This type of problems is
very similar to the one arising from the Periodic IQC Approach for robustness analysis of
periodic systems. We will comment on the similarity between the two types of problems.
The computational algorithms which allow us to numerically solve the type of problems
arising in this chapter are almost identical to those for the optimization problems arising
from the previous chapter. These computational algorithms will be developed in Chapter 5.

The chapter is organized as follows: the uncertain periodic system under consideration is

described in Section 4.2. The problem of whether an uncertain periodic system subject to a
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ie = Ag(tyze + Bg(th,

Y=Celt)zg + Dg(t)u,

M(t) = Ac(t)M(t), M) =r.

It is well-known that if 1 ¢ eig( M (Tv)) and if the system is initialized appropriately, the
output y is Th-periodic for any input o € L(Tp) (See, for Imstance, [21]). Throughout thig
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4.3 Existence and Uniqueness of Stationary Solutions

Consider the system on the left-hand-side of Figure 4-1

v=Gw+ f, (43)

w = A(v),
where A is a Lipschitz continuous (possibly nonlinear) bounded operator on Lg(75). In this
section, we consider the problem of whether the system has a unique Ty-periodic solution

when it is subject to a Tp-periodic excitation. We will use incremental IQCs to derive a

sufficient condition.

Definition 4.1 (Incremental IQC on Ly(Ty)). Let the quadratic form oy : La(Tp) ¥
L(Ty) — R be defined as

JH(61162)=< “ 1H " > ) (44)

e e
2 217 1y(mo)

where II is a bounded, linear, self-adjoint operator on Lg(7p). Then we say that A :
Lo(Ty) — Lg(Ty) satisfies the incremental IQC defined by o if o (v1 — v2, A(v1) — A(vy)) >
0 for all vq,ve € Lg(To)_

Example 4.1. Consider an uncertain modulation operator (A(v))(t) = 7 cos(wot + 8)u(t),
where r > 0, 0 € [0,27], and w = % Then A satisfies the incremental IQCs defined by the

A-parameterized quadratic form

To | v(t) v(t)
on(v, w, A) := Iz, A dt,
(o0, = [ I RCRI

where

0 m(t)

T{t, \) = . omt) =X+ Y Apcos(wokt +0i), A >0,
m(t) O k51

and 6 € [0, 27].

The following theorem concerns existence and uniqueness of a stationary periodic solu-

tion of an uncertain periodic system subject to a periodic excitation.

60



Theorem 4.1. Consider system (4.8). Let on be o quadratic form as defined in (4.4).

Assume that
(i) for all T €[0,1}, TA satisfies the incremental IQC defined by om;

(#) there exists an € > 0 such that

on(Gw,w) < —¢l|w||?, V w e Ly(Tp).

Then the system (4.3) has a unique solution (v, w) € La(Ty) for every ezcitation f € La(Ty).

Furthermore, there exists a constant ¢ > 0 such that ||v| + |w| < | f]|-
Proof. The proof of this theorem is given in the technical report [40]. O

Note that Theorem 4.1 does not reveal any information concerning the stability of the
periodic solution v = (I — GA)~Y(f). In other words, if the input is perturbed by an
arbitrary small function 6§ € La(—o0, 00), then the solution ¥ = (I — GA)™}(f + §f) may
not converge to the stationary solution v. We will discuss the issue of stability in the next

section.

4.4 Stability of the Stationary Solution

Assume now that there exists a unique periodic solution (wg,wg) € La(Tp) of system (4.3)
for any fg € La(Tp). Stability of such stationary solutions means that when there is per-
turbation on the input and/or initial conditions? of the system, the solution of the system
equations converges to the stationary solution. In this section, we will derive a sufficient

condition for stability of the stationary solution. Let us consider the perturbed system

v=Gw+ fo+4df1, (45)

w = A(v) + d fo,

where, in addition to the assumptions made in the previous section, G and A are assumed
to be causal, bounded, and Lipschitz continuous on Lsg[0,00). For G, this is true if the

state space realization in (4.2) is exponentially stable. To ensure the exponential stability

2Note that the effect of perturbation on the initial conditions can be captured by introducing perturbation
signals to the system.
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of G, we assume that the transition matrix of the system, M (t), satisfies the condition that
all eigenvalues of M (1) are located strictly inside the unit disk of the complex plane.

If 6f1 = df2 = 0, then the system has the periodic solution (vg,wp). Consider the
difference between this solution and the solution (v, w) obtained when (§f1,df2) € L2[0, c0).
We have

ov=Gow+4f1,
(4.6)

Sw = A(6v) + 6 fa,

where A(6v) = A(du-+ vo)—A(wp). The stability of a stationary periodic solution is formally

defined as follows.

Definition 4.2. A periodic solution (vg,wg) of system (4.3) is stable if system (4.6) is
stable in the sense of Definition 3.2 (See Chapter 3). System (4.3) is uniformly stable if the

system has a stable periodic solution (v, wp) for every input fy € La(Tp).

Again, we will use incremental IQCs to derive a sufficient condition for stability of a

stationary periodic solution.

Definition 4.3 (Incremental IQC on L3[0, 00}). Let the quadratic form oy : Ls[0, 00) X
L3[0,00) — R be

Un(€1,€2)=< “ I “ > \ (4.7)

€ e
2 21 1,0,00)

where II is a linear, bounded, and self-adjoint operator on Lo(—00,00). Then an operator
A : La.[0,00) — L2.[0, 00) satisfies the incremental IQC defined by o if op3(v1 —v2, A(vy) —

A(va)) > 0 for all v1, vy € Lo, [0, 00) such that v, — vy € Ly[0, 00).

Notice that if A satisfies an incremental IQC defined by oy, then A satisfies the 1QC

defined by oq. The following stability theorem follows the main result in [55].

Theorem 4.2. Consider system (4.3). Assume that the system has a Ty-periodic solution
for any input f € La(Ty) and that G and A are causal, Lipschitz continuous on Lo [0, 00).
Let on1 be a quadratic form as defined in (4.7). If

(2) for all T € [0,1], TA satisfies an incremental IQC defined by ory;
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(12) there erists an € > 0 such that

on(Gw,w) < —¢|lw||?, ¥V w € Lz[0, 00),

then system (4.3) is uniformly stable.

Proof. Condition (¢) implies that A satisfies the IQC defined by oy for all 7 € [0,1].
Therefore, stability of system (4.6) follows the main result of [55]. Note that the well-

posedness condition is automatically satisfied in our setup. g

It might seem that conditions () and (i¢) in Theorem 4.2 are identical to the conditions
in Theorem 4.1, and the conditions for existence of a unique solution automatically ensure
the stability of the solution. However, this is not true. Notice that the strict negative
definiteness in (i7) of Theorem 4.2 is different from the one in (32} of Theorem 4.1 since
the function spaces considered in Theorems 4.2 and 4.1 are different. The L»[0, 00) case
in the above theorem is the same as condition (#42) of Proposition 3.2 in Chapter 3. We
will discuss how to check such a condition in Chapter 5. If G and II have time-invariant
state-space realizations, then the situation is even simpler. In this case, the condition in

(47) can be formulated as Linear Matrix Inequalities (LMIs).

4.5 Harmonic Performance Analysis

In this section, we consider performance analysis of stationary periodic solutions. Let us

consider the system on the right-hand-side of Figure 4-1

z —c f ,
v w (4.8)
w = A(v),

which has a special output z on which we want to perform certain performance analysis.
Here G and A are defined as in Section 4.2, and A is assumed to have 0 offset value;
i.e., A(0) = 0. Several objectives are possible. For example, the worst-case magnitude for
given sets of periodic inputs can be investigated. Another example is to study the energy

relation between given sets of harmonics in the output and input. This was done using
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other methods in [67]. We define robust performance for the closed-loop system (4.8) as

follows.

Definition 4.4. Let ¥ be a linear, bounded, self-adjoint operator on Ls(Tp) and oy :

L2(Tp) x L2(Tp) — R be the quadratic form
z z
ou(z, f) = U . (4.9)
f I e
We said that system (4.8) satisfies robust performance with respect to oy if

(a) there exists a unique solution (z, v, w) € La(Tp) for every f € La(Tp); i.e., there exists

a stationary periodic solution for all periodic inputs, and
(b) we have oy(z, f) < 0 for all solution pairs (z, f) € L2(Tp) of the closed-loop system.
We refer to the quadratic form og as the performance measure.
We have the following theorem for robust performance.

Theorem 4.3. Consider system (4.8). Let ow be a quadratic from as defined in (4.9) and

on be another quadratic form as defined in (4.4). Assume that
(@) ow(z,0) >0, for all z € Ly(Tp);
(#2) for all T €[0,1], TA satisfies incremental IQC defined by op;

(iti) there exists an € > 0 such that
ou(z, f) +on(v,w) < —(If|° + lwl?), V¥ f,w e La(To),

where (z,v, f,w) satisfies system equations in (4.8).
Then system ({.8) satisfies robust performance oy < 0.

Proof. By taking f = 0, we see conditions (7) and (74i) imply that there exists an £ > 0

such that

JH(ngw,w) < —6‘”’(1)“2, Ywe Lz(To)
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This, together with condition (44), implies that there exists a unique solution (z,v,w) €
Ly(Tp) to (4.8) for every f € Lo(Tp). Then condition (#4) implies robust performance,

since for all w = A(v),
onfv,w) = on(v, A(v)) = ou(v — 0, A(v) — A(0)) > 0.
This concludes the proof. O

4.5.1 Supremum Norm of Periodic Qutput

One problem of performance analysis was discussed in [38], where an estimate of the magni-
tude (supremum norm) of the output was obtained using a special performance IQC. Here
we state a stronger version of that result for the case where the signal z is scalar. If signal
z is vector-valued, then one can apply the proposition to each component of z to obtain an

estimate of the supremum norm.

Proposition 4.1. Let z(t) € La(Ty) be scalar function with absolutely summable Fourier

series. Then

o 1/2
max t)| = inf subject to 4.10
ax [2(0)] = _inf_ (&Z %) j w1 (4.10)

=—00

where v, & are real numbers, and = is defined by (é—;) e = EkZk.
Remark 4.1. It is possible to obtain state space formulations of this result in a form similar

to our related result in [38].

Proof. The absolute summability assumption implies that z(t) is uniformly continuous on

[0, T5], and hence the maximum is achieved at some particular time £ € [0, 7). Let & be
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n

nonzero constant, and let ¥; ¢ C be such that & = |¥;|?. Then we have

o0 e o]

o0
S owtwae R < ST, | Y gl

k=—00 k=—00 k=—oc

[& @]

E 2ke]wokt —

k=—o00

Z'Yk

k=—o00

|2(E)f =

[A

(2,E2) Lz(To) =

where we used the Cauchy-Schwartz inequality to obtain the first inequa,lity' and the two
constraints of the optimization problem in order to obtain the next two inequalities. This
shows that the objective value of the right-hand-side of (4.10) is an upper bound for
supycio,1y) [#(t)]. To see that it is exact, let us first assume 2, # O for all k. Then the
Cauchy-Schwartz inequality becomes an equality if we use \11;2 = ozEkej“"“kf for all k£ and
for some o € R. Now, let & = |Ux|? and 4 = 1/&. Furthermore, scale « such that
(2, E2)1,(1y) = 1 Then the last two inequalities also become equalities, and we conclude
that sup,c(o 1) |2(t)| is indeed equal to the optimal objective value of the optimization prob-
lemn.

If z; = 0 then we would have a problem since \I!g2 = a?kejwokf = 0 would imply that
£ = |¥,2 = co. This problem can be overcome by considering a suitable sequence of
g,ﬁ"') /" oo (as m — o0) in order for the objective of the optimization problem to converge

to the infimum. O

If the system in (4.8) is such that z, z € Lo(Tp) for all inputs f € Lz(7p), then z has
an absolutely summable Fourier series. Suppose that we are interested in knowing how
the amplitude of z corresponds to the input signal f. We can apply Theorem 4.3 with a

performance measure gn where

(1]

0
0 -1

Suppose that all the conditions in Theorem 4.3 are satisfied. Then we conclude that

(Z7HZ>L2 (To) = (-f’ f)Lz (To) -

As aresult of Proposition 4.1, we now get a bound on the amplitude of z: max; e 1] [2(?)] <
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YN LTy, where v = (zzo:foo fyk) 2, Furthermore, we can try to optimize over Z in order
to get a tighter upper bound.

In the next section, we show that it is possible to parameterize IQCs and that conditions
for existence of a unique solution, stability, and performance can be formulated as problems

of checking feasibility of certain affinely parameterized operator inequalities.

4.6 Parameterizing and Optimizing IQCs

We have seen in Chapter 3 that if II satisfies the IQCs defined by Ilg, II;,--- ,II,, then for
any A; > 0,i=1,---,n, A also satisfies the IQC defined by II(\), where

n
() =To+ Y _ AL
i=1
The same is true for the case of incremental IQCs. Therefore, the parameterization discussed
in Section 3.4.2 also applies here. Hence, following the idea discussed in Section 3.4.2, we
can formulate condition (i4) in Theorem 4.1 and its counterpart in Theorem 4.2 as feasibility

problems:

find \, suchthat A€ A, Sy > 0. (4.11)
and condition (4¢7) in Theorem 4.3 as an optimization problem:

irif A, subj. to A€ A, Sy>0. (4.12)

Set A in {4.11) and (4.12) is a bounded and convex subset of R™. It is defined by time-
dependent and/or time-independent linear matrix inequalities. Sy is a A-parameterized,
self-adjoint operator on a particular Hilbert space. For the feasibility problems arising from
condition (72) of Theorem 4.2, the Hilbert space is of the same form as the set £ defined in
(3.19). Therefore, the feasibility problems arising from Theorem 4.2 are of the same type
as (3.21).

On the other hand, the operator Sy in feasibility /optimization problems arising from

Theorem 4.1 and Theorem 4.3 is defined on a Hilbert space different from the set £ defined
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1]

in (3.19). In these problems, the Hilbert spaces are in the form of
Lg:={(z,w) | z=A{t)z + B(t)w, z(0) = 2(Tp), w € La(Tp)},

where matrices A(t), B(t), Q(t,A), F(t,A), and R(¢,A\) are continuous and Tp-periodic.
Matrix A(t) is exponentially stable. Matrices Q(¢, A), F'(t,A) and R(t, A) depend affinely on
A. Therefore, the constraint Sy > 0 in these problems is different from the one in problems
arising from Theorem 4.2.

The feasibility and optimization problems resulted in this chapter can be solved using
non-differentiable optimization techniques. The computational algorithm for solving these
problems will be developed in Chapter 5. In Section 5.5, we demonstrate the analysis
framework presented in this chapter by an example, where the problem of estimating the

amplification of a periodic load disturbance in a uncertain periodic system is considered.

4.7 Summary

We have derived conditions for existence, stability, and various performance criteria of
stationary periodic signals. A new class of integral quadratic constraints that is particularly
suited for analysis of periodic signals has been introduced for the analysis. We also show that
it is possible to parameterize 1QCs and that conditions for existence of a unique solution,
stability, and performance can be formulated as problems of checking feasibility of certain
affinely parameterized operator inequalities.

In the next chapter, a computational algorithm for solving will be developed optimiza-

tions problems arising from this and previous chapters.
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Chapter 5

Cutting Plane Algorithms for

Analysis of Periodic Systems

In Chapters 3 and 4, certain infinite dimensional convex optimization problems were found
to arise from the analysis of uncertain periodic systems. In this chapter, we develop a
cutting plane algorithm for solving these problems. Furthermore, several case studies are
performed in this chapter to demonstrate and compare the analysis techniques proposed in

Chapters 3 and 4.

5.1 Introduction

In Chapter 3, a new framework for robust stability and performance analysis of uncertain
periodic systems called the Periodic 1QC Approach was proposed. In this approach, condi-
tions for robust stability and performance can be expressed as infinite dimensional feasibility

and optimization problems of the following forms

(F) find A\, such that Sy >0

(0) iI}l‘f ¢X, subj. to S > 0.

where Sy = S 4 Y1 MS;, and each S; is a self-adjoint operator defined on a particular
Hilbert space. In Chapter 4, we developed techniques for analyzing certain properties of
periodically forced uncertain feedback systems. Conditions that ensure the system has

certain desired properties are also expressed as feasibility and /or optimization problems in

69



]

the forms of (F) and (O), except that the \-parameterized operator Sy is defined on a
different Hilbert space. In this chapter, we discuss how these problems can be solved using
a non-differentiable optimization technique called the cutting plane method.

In the cutting plane method, a mechanism that determines whether a given point is
feasible to the constraint of the problem to be solved is required. Furthermore, if the
point is infeasible, the mechanism needs to be able to generate at least one hyperplane
which separates the point from the feasible set. Such a mechanism is often called the
oracle. Given a sequence of trial points, the oracle produces hyperplanes which are used to
construct a sequence of outer approximations of the original problem. Every time a trial
point is tested, the outer approximation is refined. As more points are tested, the outer
approximation becomes successively closer to the original problem.

In this chapter, we develop a cutting plane algorithm to solve the optimization problems
arising from Chapters 3 and 4. The algorithm we propose follows the basic principles of Kel-
ley’s cutting plane algorithm [47, 11]. There are, however, some slight differences between
our cutting plane algorithm and Kelley’s. In particular, in our algorithm, the constrained
optimization problem (O) is solved via two unconstrained spectral value maximization prob-
lems. This is different from Kelley’s algorithm for solving constrained convex optimization
problems. Furthermore, evaluation of the function to be optimized and computation of a
subgradient of the function at each trial point - the two basic steps of the Kelley’s cutting
plane algorithm - are replaced by slightly different procedures. We will specifically address
these differences when our algorithm is presented. The essential part of the cutting plane
algorithm is the oracle. For the optimization problems arising from Chapters 3 and 4,
the oracles can be constructed using existing results. We will use results by Yakubovich
[79, 80, 81] to construct the oracle for the optimization problems arising {from Chapter 3.
For the optimization problems arising from Chapter 4, the oracle is constructed based on a
frequency theorem developed in [40].

Most of the material presented in this chapter is either known, or a direct consequence of
well-established results. The contributions of the work here are more at the implementation
level: to show how the infinite dimensional optimization problems arising from Chapters 3
and 4 can be solved using known results, to develop computational procedures using these
results, and to construct a usable software for robustness analysis of uncertain periodic

systems. This is important work for practical engineering purposes; after all, the analysis

70



frameworks presented in Chapters 3 and 4 would be useless if there is no practical way
to check conditions for robustness. Furthermore, we also conduct several case studies to
demonstrate and compare the analysis techniques proposed in Chapters 3 and 4.

The remainder of this chapter is organized as follows: in section 5.2, following a brief
introduction of Kelley’s cutting plane algorithm for solving general convex optimization
problems, an algorithm slightly different from Kelley’s is developed to solve the problems
arising from Chapter 3 and Chapter 4. In this section, we also address the differences
between Kelley’s algorithm and our algorithm. In Section 5.3, we present the oracle for
optimization problems arising from Chapter 3, while the oracle for optimization problems
arising from Chapter 4 is presented in Section 5.4. Several examples are presented in Section
5.5 to demonstrate and compare the techniques proposed in Chapters 3 and 4 for robustness
analysis of periodic systems. Finally, a technical proof is presented in Section 5.6, and we

draw some concluding remarks in Section 5.7.

5.2 A Kelley Type Cutting Plane Algorithm

In this section, we present a Kelley type cutting plane algorithm for solving feasibility
problem (F) and optimization problem (O). The algorithm follows the basic principles of
Kelley’s cutting plane algorithm [47] but is slightly different from Kelley’s. We start with a
brief introduction of Kelley’s cutting plane algorithm. The material presented in the next

subsection is adapted from [L1].

5.2.1 Kelley’s Cutting Plane Algorithm

Given a concave function ¢(z) : R®* — R, we say that ¢ € R"™ is a subgradient of ¢ at z if
#(z) < ¢p(x) + g (2 —z), ¥V z. We denote the set of subgradients of ¢ at = by d¢(z). Now,

let us consider the unconstrained maximization problem
max ¢(z). (56.1)
T
Suppose that we have computed function values and at least one subgradient at z;,--- ,zy:

¢($1)1 Tt ,¢(Ik), g1 € 8¢’($1)7 L0k € a¢(1§]€)
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‘We then have
d(z) < Pplm)+gi(z—x), Vz,i=1,---k
and hence

#(2) < Gk (2) = min (¢(z:) + gi(z — @:)).

1<i<k

Here ¢¥°(z) is a piece-wise linear concave function that is everywhere greater than or equal
to ¢(z). Let ¢* denote the optimal objective of (5.1). We can now get a upper bound of ¢*
by solving

ub
max oy (z).
This maximization problem can be solved via linear programming

max U, subj.to U<o(zi)+gilz—mz),i=1, - k.

2

Let Uy be the optimal objective of the above linear program. The function qu",gb(z) can be
unbounded above so that U/, = co. This is not a useful bound. We can avoid this situation
by explicitly specifying bounds on the variables. In other words, we change the original
unconstrained problem to

max .
Trin LC<Tmax QS(E)

In this case, we have the upper bound

US(}S(EJ—{*Q:(Z—.’L’@),Z:I,,]C
Uy = max U, subj. to . (5.2)
2

Tmin < 2 < Tmax

In practice, any computer system can only deal with numbers up to a certain digit, so we
can let (Zmin, Tmaz) = (—B, B) where B is the maximum number that a computer system
can have. Thus, the additional constraint z,i, < & < Zmge is justifiable and not practically

restrictive.
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Finally, a lower bound of ¢* can be found by solving

L’C = max{¢(x1), T ¢($k)}1 (53)

which is the maximum objective value obtained so far. If an objective value and a subgra-
dient are evaluated at another point zy.1, the new lower and upper bounds Ly, and Ug4)

are improved:

Ly < Ly £¢" LUy S U

Kelley’s cutting plane algorithm is built based on the idea described above. The algo-

rithm goes as follows.

Initialization: let the initial box that contains the minimizer be B := [Tmin, Tmaez]™
Let z; € B and k = 1. Compute ¢(z1) and any g1 € 9¢(x1).
Repeat

(a) Solve the linear program in (5.2) to find Ux. Let the maximizer of the linear
program be xj.
(b) Compute Ly according to (5.3).
(c) Set zpyq = x}.
(d) Compute ¢(zx+1) and any gx+1 € 0¢(Tx+1)-
() Set k:=k+1.
Until U, — Ly < e.
It can be shown that Kelley’s cutting plane algorithm converges. The proof of conver-

gence can be found in [47, 11]. The above algorithm can be modified to handle constrained

optimization problems. See Chapter 14 of [11] for the details.

5.2.2 The Equivalent Eigenvalue Maximization Problem

In this section, we show that feasibility problem (F) and optimization problem (O) can
be solved via spectral value maximization problems. Because of this, both feasibility and

optimization problems can be solved using the same algorithm which we are going to present.
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It is obvious that the feasibility problem (F) has a solution if and only if the ob jective

value of the spectral value maximization problem

Sy — yl >0
sup y subj to (5.4)

is strictly positive, where I denotes the identity operator of the Hilbert space which the S
is defined on. Any suboptimal solution (A, §) with Yy > 0 gives a feasible solution (i.e., A)
to problem (F). On the other hand, if the optimal objective of (5.4) is less than or equal
to zero, then problem (F) does not have any feasible solution. Therefore, problem (F) is
equivalent to problem (5.4).

It turns out that one can also solve optimization problem (O) via solving spectral value
maximization problems: first, one tries to find a point 7 € R™ such that S > 0. Such
a point can be found by solving (5.4). If a feasible solution n® is found, then one solves

the optimization problem

sup y subj to (5.5)

" M@ —m)—y>0 yeo1)

The next theorem shows that any suboptimal solution of problem (5.5) can be used to
construct a suboptimal solution of problem (O) in such a way that convergence to the true

optimum is guaranteed.

Theorem 5.1. Let y,p; denote the optimal objective of (5.5). If (0}, %) is a feasible solution
of problem (5.5) for each i such that ' — Yopt, then

. 1 . _
i i 0..(0)
A= " (" —y'n'"), (5.6)

are feasible solutions of problem (0) and

/ ’L_) ! (0) _ yopt — f /A 7
cA'—n R Yo S1An>0c . (6.7)

Note thot if yope = 1, then the optimal objective of problem (O) is unbounded.
Proof. Suppose (5*,4") are feasible solutions of problem (5.5) such that y* — Yopt- Let
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; 1 , .
M=o Y (n* - 4'n?). Then we have

1 i
'(Sr[" -y SU(D)) > 0,

Sy =
XT T g

which implies that A is a feasible solution of problem (O). Here we used the fact that
the parameterized operator S depends affinely on the parameter (Recall: S, is of the form
So+ ., AiSi, where A; denotes the i*h component of the parameter \). Furthermore, we
have

;

) 0 Q
(" —n?) <yl — ey

CI;\Z' — C’T](O) +

1— g

i.e., the objective of problem (O) at A’ is smaller than the objective at n©@ by at least
Y
11—y

Now, We will prove the last equality of (5.7) by contradiction. Suppose

inf A< cn® — _Yomt
S,>0 1- Yopt

Then there exist a 7 and a feasible solution A of problem (O) such that

c'5\<c’ @ _ —1}—_ < ©) —ﬂ. 5.8
! 1-g 7 1 — yope (5:8)

Since is monotonically increasing, we have yop < § < 1. Now, let 7 = (1 —Q)S\+§n(0).

- Y
By (5.8) and the fact that the parameterized operator S depends affinely on the parameter,

we have

S5 — Sy = (1 —§)S5 >0,

@ - —g=0-DCEHD -3 - /(1 -§) >0,

which imply that (7, ) is a feasible solution of problem (5.5). However, this is a contradic-

tion since § > yops- Hence, we have
' i
N < p® — Y dn® — Yort  _ inf A< i,
1—y 1 —yops Sx>0

which concludes the proof. O

75



i

Note that the optimization problems (5.4) and (5.5) are of the same type. Indeed, the
constraint Sy — yS,0) > 0 can equivalently be formulated as §n —yl > 0 where 5,7 =
50—1/2577561/2 and Sp = Spo. If we let gn = diag (gmc(n(o) — 7)), then the constrained

optimization problem (5.5) can be formulated as

Sp—yl >0
sup ¥ subj to

Y 0<y<1

Therefore, all we need for solving feasibility problem (F) and optimization problem (O) is

an algorithm for solving the spectral value maximization problems of the form in (5.4).

5.2.3 A Kelley Type Cutting Plane Algorithm

Consider the optimization problem (5.4). Let ¢(A) be the function defined as ¢(A) =
sup {y: Sy—yl >0, y < 1}. Then g(X) is a concave function that defines the boundary of
the feasible set of problem {5.4). It is clear that the optimization problem (5.4) is equivalent

to the unconstrained optimization problem

Yopt = S‘ip Q(’\)- (5'9)

We can use Kelley’s cutting plane algorithm described in Section 5.2.1 to solve (5.9) as long
as we know how to evaluate and compute one of the subgradients of the function at any
given A. Since ¢q(A) is defined in terms of spectral values of an infinite dimensional operator,
it has no analytical form, and therefore, computing the exact value and subgradients of g(\)
at a given A is a difficult task. Thus, we slightly modify the algorithm.

Our algorithm starts with computing a lower bound y; of the optimal objective of (5.4).
A lower bound g; can be obtained by fixing a particular A0 and searching for a y® such
that Sy — ¥ @I > 0 is satisied. We will discuss how the inequlality Sy —yOI > 0
can be checked in Section 5.3. For now, let us assume that there exists a mechanism
called oracle which can be used to check whether Syu) — vy T > 0 is satisfied for a given
(AR, y(’“)). Furthermore, if §yx) — y*)I > 0 is not satisfied, then the oracle returns at least
one hyperplane aA — b — y = 0 such that (A\*) y(¥)) satisfies a\y, — b — y, < 0 and all (), y)
which satisfy 8§\ — yl > 0 also satisfy aA —b—y > 0. Let giA—b; —y=0,i=1,--- k,
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(k) (k) a(X) (A y
(A4t Pr(A) ) new hyperplane

SN TR

feasible set

Figure 5-1: The idea of the computational algorithm is to generate a sequence of piece-wise
linear functions that approximate g(A) around its maxima. Figure on the left-hand-side:
the test point satisfies S) > yJ, and an improved lower bound of y, is obtained. Figure on
the right-hand-side: the test point does not satisfy Sy > yl, and a hyperplane is returned by
the oracle to improve the piece-wise linear approximation of g(A). Eventually, the maximum
values of these piece-wise linear functions converge to yop:.

be the hyperplanes returned by the oracle. Then, these hyperplanes provide a piece-wise

linear function which upper bounds g(A); i.e.,
A) < A) := mi iA—b;}.
a(A) < pr(N) lglilgk{a i}
At the k™ iteration of our algorithm, the linear program

X1'ni7'1.]%&3‘3}()\"1.r:l.z: Pr (/\) (510)

is solved to obtain an upper bound yi(tk) of yope- However, instead of evaluating q()\(’“)) and

computing a subgradient of g()\) at A*) (Here A\(*) denotes the maximizer of (5.10)) - an
important step in the standard Kelley’s cutting plane algorithm - our algorithm does the
following: the algorithm computes §*¥) = ay®) 4+ (1 — a)y;, where a € (0,1). Then, the
algorithm calls the oracle to check whether Syx) — g™ is positive definite. If it is, a new
lower bound of yp; is obtained and y; is updated to be 7®). If not, then the oracle returns
at least one hyperplane which can be used to improve the piece-wise linear approximation
of g(»). Figure 5-1 illustrates the idea of our cutting plane algorithm, and the algorithm is

summarized as follows:
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. Initialization: set the error tolerance ¢ and a constant « € (0,1). Find y;, a lower

bound of the optimal objective of (5.4). Set Py = {(\, ) | A € [Mmin, Amaz|™, ¥ < 1}
At the k™ iteration, solve linear program y*) = max {y: (), y) € Pi}.

Let %) = ay®) + (1 — )y and check whether Sy — g(’“)I > 0. If the inequality is
satisfied, then update the lower bound y; to be §%). If not, then derive a set of linear
constraints alA —b; >y, ¢ = 1,---,l to improve the piece-wise linear approximation
of g(A). Let Pry1 = Pp NCy, where Gy := {(\,y) :aA—b; > y,i=1,---,1}. Repeat
from Step 2.

Stopping criterion: check whether the difference between the lower bound y; and the
current objective y*) is less than ; i.e., check whether |y — Y| < e. If it is true,

then stop the program. Otherwise, repeat from Step 3.

Convergence of the algorithm described above can be proven. The proof follows the same

arguments for proving convergence of Kelley’s cutting plane algorithm [11].

Before we end this section, we briefly discuss how the cutting plane algorithm should

be adapted to solve problem (5.5). With X replaced by 1, we need to make the following

changes:

1.

The lower bound is y; = 0.

The inequality S, x — y(k)Sn(n) > 0 should be verified in each iteration, and the

computation of new hyperplanes should be based on this inequality.

After the algorithm stops, a suboptimal objective of the original problem, i.e., opti-

mization problem (O), can be obtained by

Ys

0 _ 7
A .

where y; is the solution of problem (5.5) generated by the algorithm.

The differences between Kelley’s cutting plane algorithm and the algorithm proposed in

this chapter are summarized as follows.

1.

Denote the optimal objective and argument of maximum of (5.10) by y(k) and M%),

respectively. In each iteration, the algorithm proposed in this chapter checks whether
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Sy — ¥ is positive definite, where §%) = ay®) + (1 — @)y and o € (0,1). Kelley’s

cutting plane algorithm would compute the value and a subgradient of g(A) at (k)

2. In the algorithm proposed in this chapter, the optimization problem (O) is solved
in two steps via two unconstrained spectral value maximization problems. This is
different from the way by which Kelley’s cutting plane algorithm handles constrained

optimization problems [11].

The most essential part in the algorithm is to check whether the operator inequality
Sy > ylI holds for a given {A,y). In Section 5.3 and Section 5.4, we will show how to check

the operator inequalities in the problems arising from Chapters 3 and 4, respectively.

5.3 The Oracle for Problems Arising from Chapter 3

Recall Chapter 3: at a given (A, y), the operator inequality S) > yI holds if and only if

1. Linear matrix inequality

n
Ex(\y)=Ewu+ Y MFBy—yl>0 (5.11)
k=1
holds, where Fq; are real symmetric matrices for £ =0,1, -+ ,n.

2. Linear time-dependent matrix inequality
 Ea(t, A y) = Eao(t) + > MeFar(t) —yl >0 (5.12)
k=1

holds for all ¢t € [0, Ty], where Eqy are Tp-periodic, continuous, real symmetric matrix-
valued functions for k=0,1,--- ,n.
3. The following integral inequality is satisfied:
there exists an € > 0, such that
o0 (o]
/ 2Ot M y)e + 22" F(t, Nw + w R(E, A, y)w dt > ¢ / Izl + Jlwl’dt, (5.13)
0 0 ‘

V(z,w) € Ly,
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where £1 := {(z,w) | £ = A(t)x + B(t)w, z(0) = 0, w € Ly[0,00)}. Matrices
A(t), B(t), Q(t, A\, y), F(t, A), and R(t, A, y) are continuous and Tp-periodically time-
varying. Matrix A(t) is exponentially stable. Matrices Q(¢t, A, y), F(£, A) and R(¢, A, y)
depend affinely on A and y: Q(t, A\, y) := Qo(t) + > _po; MQu(t) — yI, F(t,A) =
Fo(t) + > 51 AFu(t), R(E N y) == Ro(t) + D poq AeRi(t) — yl.

In this section, we will discuss how to check whether a given pair (), §) satisfies inequalities
(5.11), (5.12), (5.13) and, if not, how to derive hyperplanes which separate (S\,gj) from the
set of (X, y) pairs that satisfy Sy > yI. Let 2 denote this set.

5.3.1 Verification of Linear Matrix Inequalities

Given (X, #), to check whether a Ty-periodic matrix Ejy (t,j\,_ﬂ) is positive definite for all
t € [0,T06], we compute the eigenvalues of Ea(t, X, ¥) for all t € [0,Tp] and check whether
all eigenvalues are positive. If there exists to € [0, Tp) such that Ea(t, A, §) is not positive

definite, then there exists at least one vector v with [|v|| = 1 such that
'U’Ez(to, :\,ﬂ)v < 0.

Since Fy(t, A, y) depends affinely on (X, y), we have v/ Es(to, A, y)v = a’ A — cy — b for some
vector a and numbers b, ¢. More specifically, ¢ = |[v]| = 1, b = —v'Ey(to)v and a; =
v/ E9;(tp)v, where a; denotes the i*" component of a. Since any feasible point has to satisfy
a’'A—b—1y > 0, therefore a’\ — b — y = 0 is one of the hyperplanes that separates (j\,yj)
from the feasible set £1. Verification of positive definiteness of the fime independent matrix

E1(5\, ) is performed analogously.

5.3.2 Verification of the Integral Inequality

In this subsection, we will discuss how to check whether (5.13) holds for a given (), §) and
how to derive separating hyperplanes if it does not. We will use a “frequency theorem“ by

Yakubovich [79]. To introduce the theorem, we start with defining several terminologies.

Definition 5.1. A system ©(t) = Ao(t)z(t) + Bo(t)w(t), z(0) = =z is said to be Lo-
stabilizable if for any vector o € R", there exists a function w(t) € L2[0, co) such that the

solution z(¢) of the system is in L3[0, 00).
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Note that in Section 3.4.2, matrices Ag(t) and Ap(t) are assumed to be exponentially
stable, and therefore so is A(t). Thus the system £ = A(t)x + B(#)w in the definition of £;

1s Lo-stabilizable.

Definition 5.2. The Hamiltonian system corresponding to (5.13) is defined as!

2(t) = H(A)z(t), where (5.14)
o= PO) o | AT BR(A\,y)"'F(A) BR()\,y)~1B’
() QN y) — FVRAYTIF(N) —A'+ F(MR(Ay) '8’

Let ny denote the dimension of A. Let M(t) be the evolution matrix of the system
(5.14): M(t) = H(M\)M(t), with M(0) = I. Note that M(t) is 2n, x 2n,. To emphasize
the (A, y) dependence of M(t), we sometimes write M (¢, A,y). It can be shown that M(t)

is symplectic; i.e.,

—I
M®TIM(t) = J, where J =
I 0

This means that the eigenvalues of M(Tp) will be symmetric with respect to the unit circle.

Hence, if M(T}) satisfies the condition
det(M(Tp) — 1) #£0, Yw € [0,27), (5.15)

then there are n, eigenvalues outside the unit circle, and there are n, eigenvalues inside.

As a result, there exists a set of n, independent real vectors,
Zs=ln,22, -, 2n,), (5.16)

which form a basis for the stable subspace of M(Tj). A stable solution basis of z(t) and
z(t) in (5.14) can now be defined as

Z(t) = M(8)Zs, (5.17)

Xt =[1 o M@®)2, (5.18)

'To simplify expression, the time dependence of A, B, Q, F, R, K is suppressed.
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Yakubovich showed that (5.13) is equivalent to several conditions. We will use two of those
conditions in our algorithm. The following theorem follows the main result in Yakubovich's

paper [79].

Theorem 5.2. Consider (5.13). For a given (5\,@), let 2 Q = QD) F= F(X), and
B = R(\ ). Assume thot (A(t), B(t)) is L,-stabilizable. Then the following statements are

equivalent:

(a) There exisis an € > Q, such that

/ ' Qx + 21 Fw + w Rw dt > E/ ) + w|? dt, ¥ (z,w)€ L. (5.19)
0 0

(b) There exisls an € > 0 such that for any non-zero complez-valued vector functions

xz(t) € La(To), w(t) € L2(To), and constant w € [0, 27) which satisfy
#(1) = Aalt) + BEw(®), 3(To) = (0,
we have the inequalily

To . _ ~ To
/ 2O + 20" Fw +w* B dt > ¢ / a2 4+ o] dt. (5.20)
0 4]

(c) The Hamaltonian system (5.14) satisfies

(i) R>0, vte(0Tl,
(cii) det(M(To) — el £ 0, Vw e [0,2m),

(ciii) det(X (1)) #0, Vi€ [0, To)-
Proof. See [79]. a

Using Theorem 5.2, we can verify (5.13) by first checking whether B >0, ¥V t ¢ [0,Tp].
This is performed in exactly the same way discussed in Section 5.3.1. Then we compute
the evalution matrix M (To, A) of Hamiltonian system (5.14) and check conditions (cii) and
(ciit). If either condition (cit) or (cit4) is not satisfied, separating hyperplanes can be derived
according to the following propositions.

Eagain, the tme dependency of Q, F, R, and Q, F, & are suppressed for the sake of simplifying the

notation.
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Proposition 5.1. Suppose that M (Ty, :\,37) has eigenvalues on the unit circle. Then, there
exists a pair of functions z.(t) € La(Tp), we(t) € La(To) such that

To _ .
/ ziQr + 2z Fwe + wiRw, dt = 0.
0
Proof. Let z # 0 and w € [0,27) be such that M(T,, A)z = ™z, Define

zo(t) = [1 o] M(t, 3z,

we(t) = [0 I] M(t, Nz,

Then it can be readily verified that
$:Q$C + 21’:ch + wzéwc = $:(Q - ﬁR_IFI)wc + w:BR_lB!@bc = :E:’a,bc + Zote,

which in turn implies

To - N . To i
/ 2200 + 207 Fwe + w7 Ru, dt = / e+ 20, dt (5.21)
0 0

= 2o(T0) "Ye(Th) — 2e(0)"%e(0) = (|e™|* — 1)zc(0)*pc(0) = 0.

This concludes the proof. O

Hence, violation of condition (ciii) leads to a pair of non-zero functions that violate
inequality (5.20). Therefore, statement (b) in Theorem 5.2 is not true, and neither is (5.13).
Since Q(t, A, y), F(t,X), and R(¢, A, y) depend affinely on (), ), we have

To
/ ToQ(t, A, Y)xe + 222 F (8, Nwe + wiR(t, A\, y)we dt = a'X — b — cy,
0

for some vector @ and scalars b, c. Any point in the feasible set {2 must satisfy a’A—b—cy > 0;
therefore, the linear inequality a’A — b — cy > 0 should be used to exclude (A, %) from the
feasible set {. Note that there may be more than one eigenvalue of M(T5) on the unit circle.
All of them can be used to derive constraints. We next consider the case where condition

(c¢iid) is violated.
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Proposition 5.2. Suppose that * X(t(),j\,g) defined in (5.18) is singular for some ty €
[0,T0). Then there exist a pair of functions x.(t) € Lz[0,00), we(t) € Lz[0,00) such that

(o]
/ Q. + 2xh Fw, + wiRw, dt = 0.
0
Proof. Let v, # 0 be one of the zero eigenvectors of X (%o, X, 3). Define

za(t) = X(t, X, §)va,
dalt) =0 1] 253, 9)ve

wa(t) = B (B'%a(t) — F'za(t)).

(4(t), wa(t)) is then a pair of non-zero functions that belong to Ly[0, c0). Note that z,(to) =

0 because X (o, \)v, = 0. Now define

wlt) = 0 tel0,to]
we(t) t € [to,00

and let z.(t) denote the solution of #(t) = A(t)z(t) + B(t)we(t), £(0) = 0. We have

0 tec [0, t()]

zc(t) = .
z.(t) t€ [to,00)

If we use (z¢,w,) in (5.19) and recall the derivation in (5.21), we have
oe - o~ -~
[ (@2me + 202 P+ i Fowedit = lim 2T (00a(0) = 2 (toNialt0) = 0
Jo

The last equality follows from the fact that z,(t) and 9,(t) are stable solutions of the

Hamiltonian system and z,(to) = 0. O

Hence, if condition (ciii) does not hold, we can construct a pair of non-zero functions

(e, we) such that inequality (5.13) does not hold. Again, since Q(t, A, y), F(t, A), R(t, A, y)

3Here we explicitly indicate the fact that X (¢) in {5.18) depends on (X, %), since M(t) does.
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depend affinely on (A, y), we have

o0
/ 2z2Q(t A y)ze + 22, F(t, Mw, + wlR(t, N, y)w, dt
O (5.22)
_ / 5Q(t, A y)Te + 202 (8, Nwe + wiR(E, A y)we dt — a'A—b— ey,

to

for some vector a and scalars b, c. Then a’A — b — cy = 0 is the separating hyperplane and
the inequality a’A — b — cy > 0 shall be used to exclude (X, 7) from the feasible set. Note
that there may be more than one ty such that X(to, A, ¥) is singular. Also the null space
of X(t, \, %) could be of dimension higher than one. In these cases, we should use all the

information to derive as many separating hyperplanes as possible.

5.3.3 Some Issues Regarding Numerical Computation

In most applications, all matrices are given as numerical data and all computations are
performed numerically. In the following, we discuss several issues regarding the numerical

computation.

Computation of the integral in (5.22)

Recall that in (5.22) we had to compute

al—b—cy:= /OO zeQ(t A y)2e + 22 F(t, Mwe + wiR(t, A, y)w, dt (5.23)
to
where
arn Fen | e mo] ¢ fem B6O] (e o
FEN  REA| RO R| = |BQ R 0 Ron(®
(5.24)

Qn+1(t) and R, (t) are identity matrices. The following proposition shows that we can

avoid an infinite interval integration (5.23) by solving Lyapunov equations.

Proposition 5.3. Let M(t) be the evolution matriz of the system (5.14) with X = X and
y=9. Let Z; and X(t) be defined as in (5.16), (5.18) respectively. Suppose that X(t) s
singular ot to and v, is a zero eigenvector of X (tg). Then b, the jt* component of @, and ¢

can be computed as voPjv,, §=0,1,2,--+ ,n + 1, respectively. Each Pj 1is the solution of
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the Lyoapunov equation
r‘pr-pP =%, (5.25)
where

/:0+T0 M(T),lpj(T)M(T)dT) Zs,

0

%Z%(
/

I 0 Q, F I 0

0 =
-1 -1 -1 -1
-R; F]' Rj B’ F]" R;| |-R; FJ’ Rj B

and Q;, Fj, Rj, j = 0,1,--- ,n+ 1 are defined as in (5.24). Finally, I' is a real square
matriz that corresponds to the stable eigenvalues of M(Ty); i.e., M(To)Zs = Z,T.

Proof. To see how to get (5.25), we restrict the integration of the j*" component of a in

(5.22) to one period.

’
to+(k+1)To to+(k+1)To | (¢ (4
to+kTo to+kTo wa(t) wa(t)

Let 7 =t — kTp, then the integral can equivalently be written as

4
to+Th + kT, + KT
/ U I e (5.26)
o |alr + kTo) a7 + KT0)
Notice that
+ kT

IL'Q(T 0) = M(T + kTD)sta = M(T)M(Tﬂ)kzsva = M(T)kaa’ (527)
Vo7 + kTo)

where ['* = M(Tp)*Z,. By (5.27) and the periodicity of ¥, integral (5.26) is equal to
to+7To
(T*u )T (/ M(T)T‘Ifj(T)M(T)dT> Tk, = ol (TF) T, T y,.
to

Now it is easy to see that the integral corresponding to the j** coefficient in (5.22) can be
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expressed as
of (Z5 4 DT 0 4 o (TR0 ) va = vT Pjua,
where P; satisfies the Lyapunov equation (5.25). ]

Computation of the evolution matrix M(¢)

Since the evolution matrix M(t) of the Hamiltonian system (5.14) is symplectic, it is im-
portant to choose a numerical method that can preserve the symplectic structure when
numerically computing M(t). Let T, denote the time step of the numerical integration

scheme. The forward Euler formula,
M((k+ 1)Ts) = (I + ToH(kTs))M (KTs), M(0) =1
does not ensure the symplectic structure of M, while the integration method

M((k+ 1)Ts)
=(I - %H(kTs))_l(I + %H(kTs))M(kTs),
guarantees that A is symplectic.

Let us briefly summarize the material presented in this section: we discuss how to
construct the oracle for optimization problems arising from Chapter 3. The oracle has to
check three type of inequalities: (5.11), (5.12) and (5.13). Inequalities (5.11) and (5.12) can
be checked in the manner described in Section 5.3.1. One way to check inequality (5.13) is
discussed in Section 5.3.2. Several issues regrading numerical computation is discussed in
Section 5.3.3.

In the next section, we discuss how to check the operator inequality arising from the

feasibility and optimization problems discussed in Chapter 4.

5.4 The Oracle for Problems Arising from Chapter 4

In Chapter 4, we developed techniques for analyzing certain properties of periodically forced

uncertain periodic systems. Conditions that ensure the system has certain desired properties
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are expressed as feasibility and/or constrained optimization problems:

(F) find A, such that 5y >0

(0) ir)l‘f ¢, subj. to Sy > 0.

where Sy := Sg + >~ 1 \iS;, and each S; is a self-adjoint operator defined on a particular
Hilbert space. For a given ), the operator inequality S) > 0 is satisfied if and only if the

following inequalities hold.

1. Linear matrix inequalities in the following forms

Eqr(A) == B+ Z AeE > 0, (5.28)
k=1 .
Es(t,N) = Ex(t) + Y MEn(t) >0, Vte[0,Ty), (5.29)
k=1

where Ej; are real symmetric matrices and Eg, are Tp-periodic, continuous, real

symmetric matrix-valued functions for £ =0,1,.--- ,n.

2. Integral inequality in the form of

there exists an £ > 0, such that

T To
/ 2Ot Nz + 2 F(t, Nw +w R(t, Nw dt > ¢ / lol? + llwld,  (5.30)
0 0

Y (z,w) € Ly,
where L3 := {(z,w) | & = A(t)z+B(t)w, z(0) = z(Tv), w € L0, Ty|}. Matrices A(t}),
B(t), Q(t,N), F(t,\), and R(t,A\) are continuous and Tp-periodically time-varying.
Matrix A(t) is exponentially stable. Matrices Q(t,A), F(t,A) and R(t,A) depend

affinely on A: Q(t, A) = Qo(t) + Z:;clzl )\ka(tJ, F(t,)\) = Fo(f) + ZZ=1 )\k,Fk(t),
R(t, A) = Ro(t) + 2221 /\kRk(t)

Therefore, given (5\,3}), one component of checking whether S5 — ¢l is to check whether

(5.28) and (5.29) hold. This can be done in the manner discussed in Section 5.3.1. Another
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component is to check whether

there exists an € > 0, such that

™o i X T (5.31)
/ Q) + 22" F(t)w + v R(t)w dt > 5/ lzl|? + lw]|®dt, ¥ (z,w) € Lo
0 0

where Q(t) = Q(t,A) — 41, F(t) = F(t,\), and R(t) = R(¢,\) — §I. In this section, we will
discuss how to check whether (5.31) holds and, if it does not hold, how to derive hyperplanes
which separate (), §) from the set of points which satisfy (5.31). We start with the following

definition.

Definition 5.3. The pair (A, B) is completely controllable if any of the following equivalent
conditions hold (here t1,%o € [0, Tp])

1. For any z1, ¢ and ¢; > ¢y there exists a u € La[tp,%;] such that £ = Az + Bu,

x(to) = o gives z{t) = z1.

2. W(to,t1) = [ ®(tg, 7)B(r)B(r)/®(to, 7)'dr > 0, for all t; > to, where

L 5(t0,7) = AW)O(to,7), Dltoyto) = I.

3. For any interval [tg,t1] C [0, To] we have the implication

W

dt = Y(t)=0 on [t,t1].
WB =0

Similar to the one in Definition 5.2, the Hamiltonian system associated with (5.31) is

defined as
0] e [0]
Y(t) Y(t)

A A(t) — B()R(t)"LF(t) B(HR()™'B(t)
Q) — F)R()TIF(t) —A®) + F(t)R(t)"' B(t)

(5.32)
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The transition matrix of system (5.32) is defined by %]\/I(t, to) = H{t)M(t,t0), M(to,to) =
I. We will use the simplified notation M (¢) := M(¢,0). Let M(¢) be partitioned as

M) = Mu(t) ()| (5.33)
Mo (t) Moa(t)

where the size of each block is the same as the corresponding block in H(t).

5.4.1 A Frequency Theorem

We now formulate a so-called frequency theorem, which gives necessary and sufficient con-

ditions for (5.31) to be strictly positive definite.

Theorem 5.3 (Frequency Theorem). Consider (5.31) and the corresponding Hamuilto-
nian system. Let M(t) be the transition matriz of the Hamiltonian system. Assume that

(A, B) are completely controllable. Then the following two statements are equivalent

(a) There exists an € > 0 such that

Ta - ~ ~ To
/ T OO + 20 F(tyw + w B(tyw dt > s/ Izl + ul? dt, ¥ (z,w) € Lo,
0 0

(b) We have

(bi) 3 & >0 such that R(t) > eI, Vte[0,Ty,
(bl’t) det(MIZ(t)) 7£ OJ Vie (OJTO]J
(bii)) E=3(N+N')>0,
where N = le(To) + (MQQ(TQ) — ])Mlg(To)_l(I — Mll(T[))).
Proof. The theorem is adapted from [40]. We will show in Propositions 5.4 and 5.5 that
conditions (bi3) and (biti) are necessary for Statement (a). The full version of the proof is
included in Section 5.6. ]
Remark 5.1. Note that M12(0) = 0 so the time interval in (bi2) cannot include ¢ = 0.

The theorem provides a simple way to check whether (5.31) holds for a given (X, 7). To
do so, one first checks condition (b¢) of Theorem 5.3. If it is satisfied, one then computes the

solution of the Hamiltonian system (5.32) and checks conditions (bit) and (bdii). Violation
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of either condition will lead to one or more hyperplanes which can be used to separate (5\ ¥)

and the set of points which satisfy (5.31).

5.4.2 Generate Separating Hyperplanes

Suppose that condition () is not satisfied; that is, there exists to € [0, Tp] such that R(fg, \)
is not positive definite. Then we can derive separating hyperplanes in exactly the same way
as we discussed in Section 5.3.1. If condition (bi) is satisfied but condition (i) is not, then

the following proposition provides a way to derive separating hyperplanes.

Proposition 5.4. Let M(t) be the transition matriz of the Hamiltonian system defined in
(5.82). Suppose that Miy(t) is singular for some t € (0,Ty]. Then there exists a pair of

non-zero functions (z(t),u(t)) such that
Tp _ . -
/ ZQt)z + 22'F(t)u + v'R(t)u dt = 0.
0

Proof. Since Mj,(t) is singular for some t € (0, Tp], there exist at least one nonzero t, €

(0,Tp) and one nonzero 3y € R”™ such that Mi2(t.)p = 0. Then let

=) = Mia(?) Yo fort €[0,¢,], and #(t)

for t € (t«,Tn]. (5.34)
P(t) Mya(t) $(t) o

where ¢ denotes a function we don’t need to bother about. Using this choice of z(t) and

‘R—l(ﬁvz - B’w)a te [Oat*]a
U= (5.35)
0, te (t*7T0]>

we get

To

/ Q(t)z + 22/ F(t)u + v R(t)u dt = / "(Q—FR Iz +¢'BR™'B'y))dt (5.36)
0 0

Ly

(2% + #'P)dt = 2(t.)v(t) — 2(0)' o

%

The first and second equalities can be readily verified by substituting the Hamiltonian

system defined in (5.32) into the left-hand-side of (5.36), while the last equality follows
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from 2(¢,) = 2(0) = 0. O

Suppose that R(t) is invertible for all ¢ ¢ [0, Tp] and condition (bii) is violated. This
leads to at least one pair of nonzero functions (#(t), u(t)) defined in (5.34) and (5.35) such
that

To 5 . B ~
/ 2, NGz + 22 F(t, Nu+ ' R(¢, X, Pudt=a'X—b-cj=0,
0

where a is a vector in R™ and b, ¢ are constants. Since any (A, y) which satisfies (5.31) has
to satisty a’A —b— cy > 0, therefore the inequality ¢’A —b— cy > 0 excludes (5\, 7) from the
set of points which satisfy (5.31).

Finally, suppose that condition (¥) and (bit) are satisfied but condition (bii1) is not. The

following proposition shows that we can find a pair of functions which violate Statement
(a).

Proposition 5.5. Let M (t) be the transition matriz of the Homiltonian system defined in
(5.32}. Let = = %(N + N’), where N = M21(T0) -+ (MQQ(T()) — I)Mlg(To)-l(I — Ml]_(T())).
Suppose that E is singulor. Then there erists q pair of non-zero functions (z(t), u(t)) such

that
To _ - .
/ Q)2 + 22/ F(t)u + o/ R(t)u dt = 0.
0

Proof. Since E is singular, there exists at least one vector 20, |lz0|| = 1, such that 2(,Ez9 < 0.

Consider now a candidate extremal from the Hamiltonian system (5.32)

(5.37)

Z*(t) _ Mll(t) Mlz(t) 20
ba(t) Mai(t) Mao(t)| | Mya(To) (I — My (To)) 7|

and let u.(t) = ~R71(¢)F(£)'2.(t) + R~ (t) B(t)'yu(t). Notice that the choice
Yo = Mio(To) ™ (I — M1 (1h))zo
makes 2(0) = z(Ty) = zo. Therefore, (z,(t), u(t)) € Lo. It can be readily verified that
To B - . |
/ 2Q() 2z + 22, F(t)us + u, R(t)u, dt = 2(To) ¥(To) — 2o = zhZz0 = 0
0
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which concludes the proof. O

Since Q(t, A, y), F(t, A}, R(t, A, y) depend affinely on (},y), we have
To
/ 2, Q(t, Ay Y)ze + 220 F (8, Nus + ul R(t, A, y)uw dt,= aX —b— ey
0

where a € R" is a vector and b, ¢ are constants. The proof of Proposition 5.5 implies
that aA —b — ¢ < 0. On the other hand, any (A, y) which satisfies (5.31) has to satisfy
aX —b—cy > 0. Therefore, aA —b— cy = 0 is a hyperplane which separates (:\, 7) from the
set of points that satisfy (5.31). Note that = may have more than one eigenvalue less than

or equal to 0. In this case, we can use all of them to derive separating hyperplanes.

5.5 Examples

In this section, we present several examples to demonstrate the techniques proposed in

Chapters 3 and 4 for analysis of periodic systems.

Example 5.1 (An Academic Example). Consider the robust performance problem

(3.2). Let G have the state space realization

wy
t=Alt)z+ B , = Cz,
wo U2

where B, C are constant matrices, and matrix-valued function A(¢) is in the form of

A(t) = Ao+ Y Afcos(kwot) + Y Afsin(kwot).
k=1,2 k=1,2

Let A be an unstructured uncertainty with induced Lg-norm less than u.
Since the L2-gain of A is less than pu, A is characterized by the IQC defined by the

Ao-parameterized quadratic form

o2(w2, v2, A2) == Ka([lv2]|* = (|wall/w)?),

for any Az > 0. In this example, we are interested in estimating the induced Lo-gain from
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Figure 5-2: Setup for applying Fourier Series Expansion Method to estimate Lo-gain of the
system in Example 5.1.

w; to vi. Therefore, the performance measure we should use is

oa(vr,wi) = JJur|* = Xaffw]|*.

Fourier Series Expansion Method

Let v3 = = and define

’LU31- COS((.Uot)I ]
wag Sin(u.)(]t).[

ws = = H,(v3) := V3.
w33 cos(2wot) ]
| W34 | _Sil’l(2uot)f_

Let H,1() be the operator which maps v3 to wsy; i.e., w1 = Hz1(v3) := cos(wot)vs. Define
operators Hy;(+), ¢ = 2,3,4, in a similar fashion.

To apply the Fourier Series Expansion Method, we transform the original system into
the interconnection of (5,5) as shown in Figure 5-2. Here, operator G is a LTI system

with state space realization (Ag, By, Co,0). Matrices By and Cp are defined as

C

Bo=[B A a3 A5 A3), Co= .
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Operator A is block diagonal. The (1,1) block of A is A, while the (2,2) block is Hy(-).
The transformed system is now in the form suitable for IQC analysis developed in [55].

In this example, we use the IQC described in Proposition 3.1 to characterize the op-
erator Hz(-). Furthermore, we characterize operator Hy;(-) using the IQC defined by the

parameterized quadratic form

[ 9}

Ui(’lj3, Wz, Xl‘) = / @;(H@(jw - jwo) + Hi(jw + ij))’&g - ZU};iH,‘(jw)’cﬁ;}i dw, (538)

—0CQ

where 93 and w3; denote the Fourier transforms of v3(¢) and ws;i(t), respectively. The

frequency dependent matrix II;(jw) is of the form

- 1,
—jw+177

where the parameter X; has to be constrained such that II;(jw) > 0 V w € [0,00]. To see
the quadratic form (5.38) defines a set of IQCs for operator H,;(-), readers are referred to
[55].

Apply the standard IQC analysis, the Lo-gain estimation problem can be formulated as

a SDP. Here we omit the details of the problem formulations.

Periodic IQC Approach

In the Fourier Series Expansion Method, we have to transform the original system into
a new system where the nominal subsystem is LTI. In contrast, we do not perform any
transformation in the Periodic IQC Approach. Instead, we apply Proposition 3.3, and the

L;-gain estimation problem can be formulated as an optimization problem
inf A1, such that S >0,

A1>0,A2>0

where inequality Sy > 0 holds if and only if there exists an € > 0 such that

foo 2'Q(N)z + 22’ F(\w + w'R(A\)w dt > e(||z|)® + |w|?), V¥ (z,w) € L.
0
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£ is defined as {(z,w) | 2 = A(t)z + Bw,z(0) = 0,w € Ly}. Matrices Q()), F(}), R(A)

are defined as

-1 0 |0 0
’
QL) FV| _{C 0 0 =A)0 0 ||c o
F'(x) R(N\) 0 I 0 0 [N © 0 I
[ 0 0 |0 x|

Numerical Results

Let wg = 3.9641 and

- : 10
41570 —0.4687 110
A0= s B = y C= 1 0,
08592 29100 00 1
- : 0 1
o |-o8Tae 0835 ! ~0.0762  0.5442
1: 5 1:
08631 —0.9388 16071 —1.5792
[—0.1985 0.1715 0.5028 0.0133
A = AS =

) 2
—0.0817 0.2795 0.0624 0.4189

We solve the SDP arising from the Fourier Series Expansion Method using the MATLAB
LMI Control Toolbox and the semi-infinite optimization problem using the algorithm pre-
sented in Section 5.2. The results are listed in Table 5.1.

As we can see from Table 5.1, the Fourier Series Expansion Method is much more con-
servative compared to the Periodic IQC Approach. The Fourier Series Expansion Method
can only verify stability of the system up to p = 1.729. The Periodic IQC Approach is able
to prove stability up to u = 2.67, a much larger stability margin. Furthermore, given a y for
which stability can be verified by both approaches, the Periodic IQC Approach obtains an
estimated Lg-gain much smaller than the estimate obtained by the Fourier Series Expansion
Method.

Recall that in the Fourier Series Expansion Method, the system is transformed in such a
way that the harmonic terms in the nominal subsystem are extracted and lumped into the
feedback loop. These periodically time-varying coefficients are then treated as “uncertain-

ties“ and characterized (in other words, approximated) using IQCs. On the other hand, in
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for example, [18] and references therein. Usually, the deflection of the beam is approximated
by several vibration modes, and the partial differentig] equations of motion are reduced to

a set of coupled Mathiey equations

X+DX 4+ Fx _ WF cos(wpt) EX = (5.39)
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Mathieu equations then become
X + DX 4+ FX — wk cos(wrt) (EX + Ap(X)) =0, (5.40)

where A,,(X) represents the effects of the unmodelled vibration modes.

Suppose that X is a 3 x 1 vector. In this example, we will investigate whether 0
is a stable equilibrium of (5.40) when the unmodelled dynamics and uncertainties in the
damping matrix D are taken into account. Let D := Dy + diag (61, d2,d3), where é; are
unknown constants. Then equation (5.40) can be represented as the (G, A) interconnection
shown on the left-hand-side of Figure 3-1 (with the external excitation f equal to 0). Let

=X, Xo X3 X1 Xo X3]. Then operator G has state space representation

w1 v
= A(t)z + B(t) , = Cuz,

wy 2]
where v1, v2, w1, wa are 3 x 1 vector signals, and

0 I3 0 0 0 I
At) = , B(t) = L C=
wkcos(wpt)E— F  —Dy I3 wicos(wpt)ls I; 0

(5.41)

Operator A is in the following form

As 0
0 Am

where As = diag(é1, 82, 83). We assume that operator Ap, has induced Lo-gain less than or

equal to vz and each uncertain constant &; satisfies |6;] < ;.

Fourier Series Expansion Method

Again, to apply the Fourier Series Expansion Method, we first transform the system such

that the nominal subsystem becomes linear time-invariant. To do so, we introduce 3 x 1
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Figure 5-3: Setup for robust stability analysis of the uncertain coupled Mathieu equations
(5.40) using Fourier Series Expansion Method. Here ¢(t) = cos(wpt).

vector signals v3, v4, w3, we defined as
v3 =2, v4=wy, w3 =cos{wrt)vy, wg = cos(wpt)vs.

It can be readily verified that the coupled Mathieu equation (5.40) is equivalent to the

system shown in Figure 5-3, where the L'TT system G has state space realization

- - - - - - - = — -

w U1 0 1 0 0 0 Of |us
0 I 0 0 0 0 wa () I 0 0 0 0 0Of |wa
T= T+ ) = r+
-F —D() -1 0 OJ%E W%I ws V3 I 0 O 000 w3
_lU3_ _'U3‘ _U 0_ LO I 0 0_ ’UJ3_

Standard IQC analysis developed in [55] now can be applied to the transformed system.
In this example, operator A is characterized using the IQC defined by A-parameterized

quadratic form

o1y, 1, ) = /0 "D Ny + ADafr de, (5.42)

where y; and fi are 6 x 1 vector signals in L»[0, 00). A-parameterized matrices D;()\) and
Dy(X) are in the form of: D1(A) := diag(A1, A2, Az, Aalz) and Da(A) := —diag(f:—:, :\r—f, %, %Ig),
where parameters A;, ¢ = 1,--- ,4, have to be positive. Operator A, is characterized using
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the IQC defined by the X-parameterized quadratic form similar to (5.38)

o0

ooy, f2, X) = f 95 (T (jw — jwo) + LL(jw + jwo))dz — 2f3T(jw) fo dw,

—0CO

where ya(t), f2(t) are 6 x 1 vector signals in L[0, 00), and g2 and fa denote the Fourier
transforms of yo(t) and fa(t), respectively. The frequency dependent matrix II(jw) is of the
form

1 1o

II(jw) = X
(Jw) Jw+2 +—-jw—+—2 ’

where the parameter X has to be constrained such that II(jw) > 0V w € [0,00]. Apply the
standard IQC analysis, the condition for stability can be formulated as checking feasibility

of a set of linear matrix inequality. Here we omit the detailed formulation.

Periodic IQC Approach

If the coupled Mathieu equation (5.40) is analyzed using the Periodic IQC Approach, the
nominal linear system is kept to be periodic time-varying, and no system transformation is
required. Using the IQC defined by the A-parameterized quadratic form (5.42) to character-
ize A, we can formulated the condition for stability as checking feasibility of the following

problem
find \; >0, ¢ =1,---,4, such that S) >0,

where Sy, is a A-parameterized self-adjoint operator defined on a certain Hilbert space.

Inequality Sy > 0 holds if and only if there exist an € > 0 such that

(s 0] oo
/ W C'DyC — w Dyw dt > € / 2l + [wlPdt, ¥ (2,w) € £,
0 0

L:={(z,w) | & = A(t)z + Bw,z(0) = 0,w € La}.

Matrices A(t), B(t), C are defined as in (5.41).
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Figure 5-4: Stability region for the uncertain coupled Mathieu equations.

Numerical Results

Let wp =12 and

048 0O 0 475 0 0 0.059 —-0.249 2.505
Do=|0 131 0|, F={0 1902 0 ) W%E = 1-0.249 1.035 -9.570
0 0 215 0 0 11481 2505 —-9.570 —1.095

This set of data is obtained from [18].

Using the Fourier Series Expansion Method and the Periodic IQC Approach, we identify
the set of (v1,72) for which the uncertain coupled Mathieu equations are stable. The
stability regions obtained by both method are shown in Figure 5-4. We see that the stability
region obtained by the Fourier Series Expansion Method is strictly contained in the region
obtained by Periodic IQC Approach. This implies that Fourier Series Expansion Method is
more conservative than the Periodic IQC Approach. The region obtained by Periodic IQC

Approach is about 15% larger the one obtained by the Fourier Series Expansion Method.
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A cos(wot)

Figure 5-5: An inverted pendulum on a vertically vibrating platform.

Example 5.3 (An inverted Pendulum on a Vertically Vibrating Platform). Con-
sider the inverted pendulum system shown in Figure 5-5, where the notations have their
usual meanings. The system is subject to a vertically oscillation which is described as

Acos(wt). The equations of motion of this system can be derived as

mal?0 + mgl cos(8)F + bad = ma(g — wWiA cos(wot))i sin(8), (5.43)

(my + ma)i + mal cos(9)0 + biz + kz = mylsin(0)9°. (5.44)

Tt is well-known that the origin of this system is a locally asymptotically stable equilibrium
if the amplitude and the frequency of the oscillation are selected from a specific range. Let
mi =02 myg=101=1 b =by=2 k=25, and g = 10. In this case, it can be easily
verified that the origin of the the system is locally asymptotically stable for the selection of
A =0.111 and wq = 30.

In this example, we are interested in investigating the locally asymptotic stability of the
origin when the damping coefficient by and the amplitude of the oscillation A are perturbed.
More specifically, let A = 0.111(1 + 61) and by = 2(1 + J2). We would like to estimate the
ranges of §; and &3 such that the origin of the system remains locally asymptotically stable.

Linearizing equations of motion (5.43) and (5.44) around the origin and substituting the
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coefficients with the numerical values, we obtain the following dynamical equations

B+ +2(1+81)8 = (10 — 99.9(1 + 62) cos(308))8, (5.45)

1.2+ 6 +2& + 5z =0. (5.46)

It is well-known that the locally asymptotic stability of the origin is established if one can

show that the linearized system defined in (5.45) and (5.46) is asymptotically stable.

Fourier Series Expansion Method

To check whether the system defined in (5.45) and (5.46) is asymptotically stable by the
Fourier Series Expansion Method, we arrange the system in the standard setup for robust-
ness analysis. In this example, the linear time-invariant part of the system corresponds to

the dynamical equations in the form of

i+ %+ 2 — 10y = 2wy — 99.9wy + 99.0w;,

1.25 4+ § + 25 + 52 = 0.

It can be readily verified that the above LTI dynamical system is unstable. Since in any
standard robustness analysis method, the system to be analyzed is assumed to have a stable
linear time-invariant part, therefore, no standard robustness analysis method can be applied
to check whether the system defined in (5.45) and (5.46) is stable or not. Hence, in this

example, the Fourier Series Expansion Method fails to provide any stability margin!

Remark 5.2. That the Fourier Series Expansion Method fails to provide any stability mar-
gin can be interpreted physically as follows: suppose that the amplitude of the vertical
oscillation is zero; i.e., the inverted pendulum system is not subject to any vertical oscil-
lation. In this case, the origin of the system is indeed wunstable. Hence, stability of the
vibrating inverted pendulum system is due to the vertical oscillation, and the harmonic
term in equations (5.45) and (5.46) is essential for proving that the system is stable. In
the Fourier Series Expansion Method, the harmonic term is treated as uncertainty, which
deteriorates stability instead of providing it. Therefore, this method is not able to provide

any positive result regarding stability of the system.
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Periodic IQC Approach
To check whether the system defined in (5.45) and (5.46) is asymptotically stable by the
Periodic IQC Approach, we arrange the system in the (G, A) interconnection as shown in the

left-hand-side of Figure 3-1. The nominal subsystem G has the state space representation

. un
y=Alt)y+ B : = C(t)y,
wa ()
where
[ 0 1 0 0] o 0 |
60 — 599.4cos(30t) —12 25 10 ~599.4 —12
Alt) = , B= :
0 0 0 1 0 0| -
| —50+499.5c0s(30t) 10 —25 —10) | 4995 10 |
-cos(30t) 0 00
Ct) =
0 100

Operator A is a diagonal matrix which has two components d; and ds, each of which

represents an unknown constant. Signals vy, va, wy, wo are related as follows

w1 = 61'2)1, Wy = (521]2.

We assume that 81, dp satisfy |6;] < ;1 and |82 < 2, respectively.
In this example, we characterize the relationship w1 = §1v1 using the IQC defined by

the \i-parameterized quadratic fdrm
oo 1
=07 (M + H(jw) H(jw))ib dw, Ay >0,

01(A + H{jw) H (jw))o1 — v
1

oa(vy, wy, Ay i= /

—CO

325 Notations 01, W) denote the Fourier transformations of signals

where H(s) = o7 7350-
vy and w1, respectively. The relationship wg = davg is characterized using the IQC defined

by the As-parameterized quadratic form
e s]

| A .
o3(va, w3, A2) ;=/ ,\2(|U2|2—?|w2|2) dw, As >0,

—00 2
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Figure 5-6: Stability region for the inverted pendulum system.

where 97, 12 denote the Fourier transformations of signals vy and wy, respectively. Applying
Proposition 3.2 with these IQCs, we can formulate the condition for stability as finding
parameters A; and A to satisfy a particular parameterized operator inequality. Here we
omit the detailed formulation.

Using the computational algorithm developed in this chapter, we obtain a region in the
(71,72) space such that the system defined in (5.45) and (5.46) is asymptotically stable.

The region is shown in Figure 5-6.

Example 5.4. Consider again the uncertain coupled Mathieu equations (5.40) in Exam-

ple 5.2, but now let us add a periodic forcing function f(t):
X + (Do + A$)X + FX — w} cos(wrt) (EX + Am(X)) = (1), (5.47)

where Aj is a diagonal matrix with three components d1, s, 83. Each of them represents
the uncertainty in a damping coefficient. A,,(-) denotes an uncertain LTI operator which is

used to represent the effects of the unmodelled vibration modes. We assume that operator
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Figure 5-7: Setup for robustness analysis of periodically forced uncertain coupled Mathieu
equations.

Am has induced La-gain less than or equal to 2 and each uncertain constant é; has absolute
value less than or equal to ~1; i.e., 16| < v, 7=1,---,3. The period of f(t}is T := 3—71;
We can represent (5.47) in the standard form for robustness analysis (See Figure 5-7).

The nominal subsystem G is periodic and has state space representation

wn 2
:f:A(t):L'—i-B(t) wa | > ] =Czx
f V2

where vy, vg, w1, wy, f are 3 x 1 vector signals, and z = z;. Let ¢(t) = wk cos(wrt).

Matrices A(t), B(t) and C are defined as followings

0 I3 Ch
Alt) = , B(t) = [Bl(t) 32} , C= )
c(t)E — F Dy Cy
B (5.48)
r 0 I3 0 0 0
Ci=11 0 .- O], Ca = , Bi(t) = , Ba=
- I3 0 13 C(t)Ig I3

In this example, we are interested in checking whether system (5.47) has a unique stationary
periodic solution for any periodic input f(t) € Lo(Tp). Furthermore, we also want to
estimate a bound on the amplitude of z(t) relative to the amplitude of f(t).

Since Ag and A,, are linear, and we know that for linear operators each IQC is also

an incremental IQC, therefore the A-parameterized quadratic form (5.42) also defines an
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incremental IQC for A.

'To check whether the solution of (5.47) is periodic, we apply Theorem 4.1. Using the
incremental IQC defined by the parameterized quadratic form (5.42), we can formulate
the condition for existence of a unique periodic solution as checking whether the following

semi-infinite feasibility problem has a solution
find A\; >0, ¢=1,---,4, such that S) >0,

where Sy is a A-parameterized self-adjoint operator defined on a certain Hilbert space.

Inequality Sy > 0 holds if and only if there exists an € > 0 such that

T
/ —'CyD1Cyr — w' Dyw dt > e(|z])* + [wll?), ¥ (z,w) € L,
0

L:={(z,w) | £ = A(t)r + B1(t)w, z(0) = z(T), w € Lo(T)}

Matrices A(t), By(t), and C; are defined as in (5.48).
To estimate the amplitude of z, we apply Theorem 4.3. The following performance

measure is chosen

T
ool f) = [l 2P = sl
where the corresponding Q) is

T 0
0 —Xsls

Q= , As >0,

and the operator ¥ is defined as ¥(z) = (1 + %)z. Now, to estimate the magnitude of z,

we solve the following optimization problem

inf Az, such that S >0, (5.49)
X >0,i=1,,5
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where inequality Sy > 0 holds if and only if there exists an € > 0 such that

T
/ —|II'Cla:]2 — 2'Cy D Cox + w' Dow + /\5||f\|2 dt > e(Ha:H2 4 ||'LUH2), Y (z,w) € L,
)

L= {(z,w) | & = A(t)z + Bi(t)w + Bz f, 2(0) = z(T), (w, f) € Lo(T)}.
Matrices A(t), Bi(t), Ba, C1, and Cy are defined as in (5.48).

Numerical Results

Using the computational algorithm developed in Section 5.2, we were able to verified that if
A, <0.0165 and |4;] < 0.2,%=1,---,3, then the system defined in (5.47) has a unique
stationary periodic solution when subjected to periodic excitation. Furthermore, the objec-
tive of optimization problem (5.49) is found to be 38.6096. Then, applying Proposition 4.1,

we have

max |z(t)| < Y fllLacm)s

where

1
o0 z
As Vv As 1—e 2T
— 2 = =4.4779.
i ( 2 1+k2w1%) (1-e7) 2

=—00

Thus, we conclude that the amplitude of z(t) is bounded by 4.4779| f|lL,(7,)-

5.6 Proof of Theorem 5.3

The following proof is adapted from [40]. The original version of the proof was due to U.
Jonsson and A. Megretski.

The proof can be divided into two main steps.

S1: We first show that (b2) and (bii) are necessary for the following optimization problem

to be strictly convex

To
inf / o(t, z, u)dt,
(z,u)ellab) Jo

where o(t, z, u) = 2/Qz + 22/ Fu + w'Rw and L(a,b) = {(z,u) : £ = Az + Bu, 2(0) =
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a, z(Ty) = b, u € Ly[0,Tp)}. From the proof it also follows that (a) = (bi) and
(brz).

52: From the previous step we know that (&) and (biz) imply that

To
inf / o(t,z,u)d (5.50)
20)

(z,u)eL(zo,

has a unique minimum for all 2p € R". We will show, using the extremal from the

Hamiltonian system, that

To
min o(t, z,u)dt = z) N z.
(z,u)eﬁ(zo,zo)/o (t2) 0

This shows that (bié7) is also necessary. A simple calculation will show the sufficiency,

which gives the implication (b) = (a). A proof of 2 is previously given in [51].

We will start with 81 which is the main part of the proof. Let Z and % € Lo(Tp) be
such that Z = A%+ B, 2(0) = a, 3(Tp) = b. This means that £(a,b) = (7, %) + Lo, where
Lo = E(O 0). If we use the notation v = (z,u) € L(a,b), ¥ = (Z,%), and vo = (20, u0) € Lo,

fo o(t, z,u)dt, then we have

v,y (v) = il (vo,v0) +2 (v, D) + (1,0).

Thus, the optimization problem is strictly convex if and only if the problem
inf (UO:Ul))

voE€Lg

is strictly convex. This means that we need to prove that

TO TO
/ o{t, 2, u)dt > g/ (l=l? + [ul2)dt, ¥ (z,u) € Lo (5.51)
0 0

We will show that the following are equivalent, which also proves (a) = (bi) and (bii).

(I) There exists an € > 0 such that

To To .
/ o(t, 2, u)dt > 5/ (1212 + [ulP)dt, ¥ (,u) € Lo.
4] 0
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(IT) We have

(Ila) 3 € > 0 such that R(t) > eI, ¥V t € [0, To),
(Hb) det(Mlz(t)) #{(,Vte (0, TU].
Proof of (I) = (1I): 1t is easy to see that (Ila) is necessary, see for example [35] for a similar

proof. The proof of necessity of (IIb) follows arguments similar to those in [35]. Indeed,

assume that there exist ¢, and nonzero o € R™ such that Mi2(t.)1o = 0. Then let

*(?) = Ma?) Yo for t € [0,¢,], and (1) = 0 for ¢ € (t«, To)- (5.52)

$(t) Mas(t) (1) ¢

where ¢ is a function we don’t need to bother about. Using this choice of z(t) and the

control

—R~YF'z — B'Y), 0,
" ( ¥), t€[0,8] (5.53)

0, t E (t*7T0]7

we get

To b . o ~
/ o(t, z,u)dt = / (Z(Q — FRT1F)z+ ¢/ BR™'B'y))dt
0 0
te
= / () + 39)dt = 2(b)B(ts) — 2(0)'abo = . (5.54)
0
The first and second equalities can be readily verified by substituting the Hamiltonian
system defined in (5.32), while the last equality follows from z(t,) = 2(0) = 0. The last
equality in (5.54) would contradict (I) provided that the solution {z,u) is nontrivial. We

will show the non-triviality by contradiction: the differential equation corresponding to the

solution (5.52) over [0,t,] can be formulated as

z=Az+ Bu, =z(0)=0,
=AY+ Qz+ Fu, (0) = o,
u=—RYF'z— BY).

If we assume that u = 0 then z = 0. This gives ) = —A'yY, ¥'B = (Ru+ F'z) =0, but
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¥ # 0 on [0,t,], since ¢(0) = Yo. This contradicts the strong controllability assumption
on (A, B). Therefore, the pair of functions, (z(¢),u(t)), defined in (5.52) and (5.53) are
hon-zero solutions, and we conclude that violation of (ITb) leads to a pair of non-zero {z,u)
which do not satisfy inequality (I). Thus (I) implies (1I1).

Proof of (II) = (I): Here we will use standard properties of the Riccati equation that

corresponds to the Hamiltonian system. Let Zy € R and

Z(t)
U (t)

=M()Zo, tel0,Ty.

If Z(t) is nonsingular, then P(t) = —0()Z(t)~! satisfies the following properties (for ¢ €
[07 TOD

o P(t) = P(t).

. ng—]; +PA+ AP+ Q - (PB+ F)R™Y(PB + ). (We refer to this equation as the

Riccati equation).

e If2=Az+ Buand K = -RYPB+ FY, we have

dit(z'Pz) +o(tz,u) = (u— Kz) Rlu — Kz). (5.55)

The choice Zy = [0 [J gives Py(t) = —Maa(t) M13(t) ™2, which is defined everywhere except
at ¢ = 0. We will construct a bounded solution to the Riccati equation by perturbing the

final value of Py. Let P(t) = —U(t)Z(t)~, where

Z(t
= M(t,Tp)

J,teMRL (5.56)
T(¢) —P(Tp)

and P(Tp) = Py(Tp) + €I for some £ > 0. We will show below that P(t) is well defined and
bounded for all ¢ € [0, 7)). Then integration of (5.55) gives

To To
/ o(t, z,u)dt = / (u — K2)'R(u — Kz) dt. (5.57)
0 0 ‘

The first term of the left hand side of (5.55) disappears because 2(Tp) = 2(0) = 0 and P is
bounded. The next lemma shows that (5.57) implies ().
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Lemma 5.1. There exists an € > 0 such that

T - To
(u— K2) R(u— Kz)dt > e/ (1202 + [u]|2)dt (5.58)
0 0

for all u € Lo(Tp) such that 2 = Az + Bu, z(0) = 0 satisfies 2(Tp) = 0.

Proof. Let the subspace U = {u € Lo(Ty) : 2 = Az + Bu, 2(0) = 0, and 2(Tp) = 0} be

equipped with the norm

o _
l|ul|? = / u' Ru dt
0

and let L : U — Lo(Ty) be defined as Lu = u — Kz. We will show that the kernel of L is
{0} and the co-dimension of Im(L) is finite, where Im(L) denotes the range space of L. It
then follows from a version of Banachs’ isomorphism theorem that there exists a ¢ > ( such

that ||L|| > ¢. This gives

2

To 3 2c  [To
/O (w= K=Y Rlu=K2) de 2 7 /0 (1=l + ulf2)dt. (5.50)

Here we used the fact that R(t) > eI. Constant ¢; denotes any bound on the induced norm
of the operator U — Ls(Tp) defined as u — z, where z = Az + Bu.

To see that the kernel of L is {0}, we note that Lu = 0 implies that v = Kz. Use of
this in the state equation gives z = (A + BK)z, z(0) = 0. This means that z = 0 and thus
u=0.

To prove that the co-dimension of Im(L) is finite, we consider an arbitrary vector v €
Im(L). This means that v = u — Kz for some u € U, which in turn implies that z =
(A4 BK)z+ Buv. Let ® be the transition matrix for A+ BK. Then we have the following

constraint on v:
To
2(Ty) = f B(Th, 1) B(t)u(t)dt = 0.
0

Let hy(t) = B(t)®(To,t) e;, where e; is the i*" unit vector. It follows that Tm(L) = {v €
Lo(To) : {hi,v) = 0}, which is the intersection of at most n hyperplanes. This shows that

the co-dimension of Im(L) is less than or equal to n. ]
Therefore, we conclude that (II) implies equality (5.57), which in turn implies (I). To
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complete the proof, we need to show that P(t) = —W(t)Z(¢)"! is well defined (i.e., bounded
over ¢ € [0,Ty]). To do this we use the following two conditions on a Riccati equation

Strict monotonicity: From (5.55) it follows that

To

uEE;i[ETo]{ A o(t, 2, u)dt + 2(To) P(To)2(To)} = =(t)'P(t)(t).

Hence, if Pi and P, are solutions of the Riccati equation with Py (1p) > Pp(Ty) then Py(t) >
P»(t), since z(t) can be chosen arbitrarily.

Extension of solution: If P(¢) is defined on (tg, Tp] but cannot be extended to [ty — &, Ty
for any € > 0, then Ayin(P(t)) — —0o as t — &o. To see this note that (5.55) gives

z(to— €)' P(tg —€)z(tg —€) = min {/tto o(t, z,u)dt + z(to) P(to)z(to)}.

u€Lz([to—¢,to] Jy—g

If P(to) is bounded then there exists € > 0 such that the optimization problem on the right
hand side is bounded. Note also that z(¢p — £) can be chosen arbitrarily. This means that
P(ty — ) must be bounded.

From the above properties we see that our choice of P(t) satisfies P(t) > Fo(t) and it is
defined at least on (0,7p]. We will see next that it is defined also at ¢ = 0. Assume on the

contrary that there exists a nonzero vg such that Z(0)vg = 0. It then follows from (5.56)

that
I 0
vo = M(Tp,0) 9. (5.60)
—P(To) v (0)
We also have
I 0
vo = M{Tp,0) Q. (5.61)
—Py(Th) Mya(To) ™!

It can be seen that (5.60) and (561) imply that M2(Th)"tvy = ¥(0)vp, which in turn
implies that vg(Po(Z0) — P(Tp))vo = 0 . This is a contradiction. Hence, we have shown that

P(t) must be bounded. We have thus proven (I) < (II).

Step 2: Condition (a) holds if and only if the following optimization problem has a strictly
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positive objective

inf inf / " ot 2(0), u(t))dt (5.62)
0

20€ER™ (z,u)eL(z0,20)

We have shown that conditions (b¢) and (b4) imply that the inner optimization is strictly
convex. Hence, the extremal candidates suggested by the Hamiltonian system are indeed
optimal for the inner optimization problem. Let z(0) = 2o be given. Integration of the

Hamiltonian system gives

z(Ty) M1 (To) Mua(To)| |20
¥(To) Moy (To) Mo (To)| [%o

The constraint z(Ty) = 2 implies that yo = M12(Tp) ™ (7 — M11(Tp))z0. Hence

To
min / o(t, z,u)dt = 2(Tp) v(Ty) — zoP0 = 29N 20, (5.63)
(Z,H)EE(ZD,ZQ) 0

where N is defined in (biii) of the theorem statement. We immediately see that that
N + N’ > 0 is a necessary and sufficient condition for the optimal objective of (5.63) to be

strictly positive. Thus we conclude that (biii) < (a).

5.7 Summary

In this chapter, a cutting plane algorithm is proposed to solve the feasibility and optimiza-
tion problems arising from Chapters 3 and 4. The algorithm follows the basic principles of
Kelley’s cutting plane algorithm. There are, however, two distinctions. One is that, in our
algorithm, the constrained optimization problems are solved in two steps via two uncon-
strained spectral value maximization problems. This is different from Kelley’s algorithm
for solving constrained convex optimization problems. The other difference is that the two
basic steps of the Kelley’s cutting plane algorithm, namely, evaluation of the function to be
optimized and computation of a subgradient of the function at each trial point, are replaced
by slightly different procedures in our algorithm.

The essential part of the algorithm is the oracle, which checks whether a given trial point
satisfies the constraint in an optimization problem. We use one of Yakubovich’s results to

construct the oracle for the problems arising from Chapter 3. A new frequency theorem
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by Jonsson and Megretski is used to construct the oracle for the problems arising from
Chapter 4.

Several examples are presented in this chapter to demonstrate the techniques proposed in
Chapters 3 and 4 for analysis of periodic systems. The results of the examples indicate that
between the two methods proposed in Chapter 3 for robustness analysis of periodic systems,
Periodic IQC Approach is more accurate than the Fourier Series Expansion Method. This is
because the periodically time-varying part of the nominal system is treated approximately
using IQCs in the Fourier Series Expansion Method, while it is treated exactly in the

Periodic IQC Approach.
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Chapter 6

Cutting Plane Algorithms for
Standard IQC Problems

The conventional way to treat standard Integral Quadratic Constraint (IQC) problems is
to transform them into Semi-Definite Programs (SDPs). SDPs can be solved using interior
point methods which have been proven efficient. This approach, however, is not the most
efficient since it introduces additional decision variables to the SDP, and the additional de-
cision variables sometimes largely increase the complexity of the problem. In this chapter,
the Kelley type cutting plane algorithm presented in the previous chapter, the ellipsoid al-
gorithm, and the analytical center cutting plane method are implemented to solve standard
IQC problems. We will demonstrate that in certain cases these cutting plane algorithms can
solve IQC problems much faster than the conventional approach. Numerical examples, as
well as some explanations from the point of view of computational complexity, are provided

to support our point.

6.1 Introduction

Developing systematic methods for analyzing stability and performance robustness of a
system has been a dominating research topic in the area of systems and control theory
because of its practical importance. Many different approaches have been developed over the
past several decades. A class of methods, based on the idea of utilizing Integral Quadratic
Constraints (IQCs) to characterize uncertainties and/or nonlinearities in the system to be

analyzed, offers flexible frameworks to analyze large and complex systems [69, 16, 55]. The
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robustness conditions given by these methods can be expressed as feasibility problems:

find );, such that

G(jw ' n G(jw (6.1)
() (Zo + Z AiL;) () >0 Ywe [D,OO],
I | =1 I
or optimization problems:
irif ¢}, subject to the constraint in (6.1), (6.2)

where G(s) = (sI — A)"1B is a rational transfer matrix. We will refer to (6.1) as IQC
feasibility problems and (6.2) as IQC optimization problems due to their close connection
to integral quadratic constraints.

The conventional way to treat standard IQC problems is to transform the frequency
dependent matrix inequality in (6.1) into a non-frequency dependent one. The Kalman-
Yakubovich-Popov lemma states that the frequency dependent matrix inequality holds if

and only if there exists a symmetric matrix P such that

PA+ A'P PB n
+ 0+ Z AT > 0. (6.3)
B'P 0 P

Therefore, the inequalities in (6.1) and (6.2) can be equivalently expressed as (6.3). This
transforms the IQC problems (6.1) and (6.2) into Semi-Definite Programs (SDPs) at the
price of adding additional decision variables (i.e., the components of the matrix variable
P). Semi-definite programs can be viewed as generalizations of linear programs. Recently,
many interior-point algorithms for solving linear programs have been extended to solve
semi-definite programs [60, 75).

The number of additional decision variables which result from trans'forming the fre-
quency dependent inequality is proportional to the square of the number of states in the
system, or equivalently, the dimension of the matrix A. Therefore, when the number of
states is substantially larger than the square root of the number of original decision vari-
ables, the additional decision variables play a dominant role in the equivalent SDP and
become the major computational burden. Thus, most of the computational effort is spent

on computing the auxiliary decision variables rather than the original ones. In this sense,
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the conventional method becomes “inefficient “ in the case where the system to be analyzed
has many states.

Complex systems having many states are not unusual to encounter. Typical examples of
such systems are aircraft control systems, vibration controllers for flexible structures, etc..
In fact, the motivation behind developing advanced analysis methods, such as the standard
IQC analysis method, was the need to systematically analyze such systems. Furthermore,
the state space of the transfer matrix G(s) in (6.1) is the direct product of the state space
of the physical system to be analyzed and the state spaces of the dynamical multipliers, if
any, used in IQCs. Sometimes, in order to characterize the uncertainty in the system better,
which consequentially will help to improve the accuracy of analysis, advanced dynamical
multipliers which have many states are used. As a result, the resulting transfer matrix G(s)
has a large state space. See [55, 36] for more discussions on the use of dynamical multipliers
to improve the accuracy of the analysis and the involvement of the states of these dynamical
multipliers in IQC optimization problems.

To improve the efficiency of the conventional approach, some specialized algorithms
have been proposed recently [34, 77]. The basic idea of these algorithms is to explore and
exploit the very special structure of the IQC problems and construct specialized interior
point algorithms in which computation of directions of descent is performed efficiently. In
[34], it is reported that such a specialized algorithm can solve an IQC optimization problem
with about 5000 decision variables in 10 minutes. It is much faster than the general purpose
SDP solver of the MATLAB LMI Control Toolbox.

On the other hand, since the inefliciency of the conventional method is due to the
existence of auxiliary decision variables, another way to improve the efficiency is to avoid
introducing the matrix variable P. Along this line of thought, the cutting plane method
is one of the prospective alternatives. In this chapter, several cutting plane algorithms are
implemented to solve standard IQC problems. A cutting plane algorithm generally has three
major steps. First, an outer approximation of the original problem is chosen. A trial point
is then selected by applying certain operations to the outer approximation. Finally, the
trial point is used by a mechanism, often called the oracle, to produce cutting hyperplanes
to improve the outer approximation. A cutting plane algorithm iterates these three steps
until a suboptimal solution with certain desired accuracy is obtained.

The first cutting plane algorithm we implement to solve the standard IQC problems is
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the Kelley type cutting plane algorithm presented in Chapter 5. Numerical experiments
show that the algorithm works very well in some cases but suffers from slow convergence
from time to time. This motivates us to consider another type of cutting plane algorithm
- the centering method. Performance of the centering method generally does not vary too
much when it is applied to solve a set of problems of the same size.

Many different centering methods have been proposed. One of the well-known centering
methods is the ellipsoid method [1, 32] where ellipsoids are used to outer-approximate the
feasible set of the original problem, and centers of ellipsoids are selected as the trial points.
The advantage of the ellipsoid method is that it takes very little computational effort to
generate the trial points. However, practical experience shows that it generally requires
many iterations to converge. The recently developed Analytical Center Cutting Plane
Method (ACCPM) [72, 27, 24, 2, 59] uses polyhedrons as outer approximations of the
feasible set of the original problem and analytical centers of polyhedrons as the trial points.
Although the ACCPM requires more computational effort to generate trial points and its
estimated worst-case complexity is higher than the complexity of the ellipsoid algorithm, it
appears to be an efficient algorithm according to practical experience. We have implemented
an ellipsoid algorithm, which is slightly different from the original version, and a version of
ACCPM to solve standard IQC problems.

The most essential part of a cutting plane algorithm is the oracle which is used to
determine whether a given point satisfies the constraint in (6.1) and, if not, produces a
hyperplane to separate the point from the feasible set. We will show the oracle for standard
IQC problems can be constructed using a well—kﬁown result from the systems and control
literature. The oracle requires low computational effort. This is the main reason why
cutting plane algorithms are able to outperform the conventional method. Using numerical
examples, we compare the three cutting plane algorithms with the conventional approach.
As expected, the results of numerical experiments indicate that when the size of the matrix
A is significantly larger than the number of decision variables, the cutting plane algorithms
clearly outperform the conventional method. Previous work in the direction of constructing
an efficient algorithm for solving standard IQC problems via avoiding the introduction of
P matrix includes [61, 44].

The chapter is organized as follows: following the introduction section, we present a

motivating example in Section 6.2 to show that more efficient computational methods to
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solve IQC optimization problems are in need. In Section 6.3, we discuss how to use the
Kalman-Yakubovich-Popov lemma [92] to construct the oracle which is required for ap-
plying cutting plane algorithms to solve IQC optimization problems. In Section 6.4, the
results of applying Kelley type cutting plane algorithm to solve the problem in Section 6.2
is demonstrated. The Kelley type cutting plane algorithm outperforms the conventional
approach in many cases, but its performance is not very consistent. This motivates us to
consider the ellipsoid algorithm presented in Section 6.5 and the analytical center cutting
plane method presented in Section 6.6. The cutting planes algorithms are tested on several
numerical examples. The results are presented in Section 6.7. In Section 6.8, we discuss the
computational complexities of these cutting plane algorithms and explain why the cutting
plane method is much more efficient than the conventional method in certain cases from
the point of view of the theoretical worst-case complexity. Finally, some remarks are given
in Section 6.9 to conclude this chapter.

In the rest of this section, we introduce a couple of notations which will be used through-
out this chapter and formally state the standard IQC problem for which we would like to
find efficient algorithms.

Notations and Problem Formulation

The feasibility problems arising from IQC analysis are of the forms

find A such that H(w,z) )+ Z AH(w) >0, Vwe|0,00], (6.4)

while the optimization problems are of the form
ir;f dX subj. to H{w,\) )+ ZA H;(w) >0, Ywe [0,00], (6.5)

where each H;(w) is a self-adjoint, rational transfer matrix in the following form

jwl — A)1B ) P jwl — A)~IB
H(w) = |7 I) fﬂ . 4 I) , i=01,-,n.  (66)

1
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Matrices @; and R; in (6.6) are symmetric. Martix A is a Hurwitz matrix; i.e., none of its
eigenvalues is in the closed right-half complex plane. Let
@i F

Y= , i=1,- 0.
F R

2

We assume that X; are linearly independent. This ensures that none of the decision vartable

\; can be removed. The notations Q(A), F(A), and R(A) are used to denote
n n n
Qo+ > MQi, Fo+) MFE, Ro+Y MR, (6.7)
i=1 i=1 i=1
respectively. The feasible set of the IQC problems is denoted by §2; i.e.,
Q={\| Hw,A\) >0, Yw & [0,00]}. (6.8)

Note that feasibility problem (6.4) can be solved as a spectral value maximization prob-

lem

sup y, subj. to H(w,\) —yIl >0 Y w € [0, 009].
(Ay)
Any suboptimal solution (A, ) with § > 0 will give us a solution A to problem (6.4). Notice
that the above problem has exactly the same setup as the optimization problem (6.5).
Therefore, without loss of generality, we will only consider problem (6.5) through the rest
of the paper.
In this chapter, we will present a number of computation algorithms that can be used

to solve problems (6.4) and (6.5) in an efficient fashion.

6.2 A Motivating Example

In this section, we present an example to show that more eflicient computational methods
than the conventional approach of solving IQC optimization problems are in need.

Consider the standard block diagram for robustness analysis in Figure 6-1. The nominal
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Figure 6-1: Standard block diagram for robustness analysis.

system G is linear time-invariant and has a state space representation

& = Az + Bywy + Baws,
z1 = C1& + Dyywy + Dagwo,

29 = Chx + Daywy + Degws,

where A is a ng X n, Hurwitz matrix, and wy, ws, 21, 22 are vector-valued signals. Each
of them has n components. The uncertainty A corresponds to a diagonal, gain bounded,
linear time-varying operator. That is, if zo; and wy; denote the ith components of signals
z3 and wy respectively, then zy = 6;(t)ws;, where |§;(t)] < 1 for all £. We note that the
uncertain system described above captures a large class of practical problems [4].

In this example, we would like to compute an upper bound of the Ls-gain of the system

in Figure 6-1. By the standard IQC analysis, an upper bound of the Ly-gain can be found

by solving
H’{f A"l+1v
subjto  H{w,A\) >0, Vwe[0,0) (6.9)
Ai>0, i=1,-- n+1,
where
r . N1 T 7 [ . .
Gnw) Gu(w)| |-I 0 0 0} [Gu(jw) Gua(jw)
Gzl(jw) ng(jw) 0 -—A 0 0 G21 (jw) ng(jw)
H(w, /\) = ’
I 0 0 0 Appil O I 0
i 0 I 1L 0 0 0 A_ | 0 I ]
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Grs(jw) = Cr(jwl — A)71Bs + Dy, and A = diag(A1, -+, \,). Conventionally, one solves
problem (6.9) by transforming the problem into its equivalent SDP formulation and then
solving the SDP using the interior point method. The equivalent SDP of problem (6.9) can

be expressed as

inf A
g,lA n+1;
subj to  S(P,\) >0, (6.10)

P=P, X\>0 i=1,-,n+1,

where P is a matrix variable, and

4

PA+ AP PB N C D| |M Q0 C D

S(P,A) :=
B'P 0 0 I 0 My (0 T

Matrices B, C, D, My, and My are defined as follows

) D D -I 0 Mgl 0
B=[Bl Bz]: C= 3 D= , My = y My = "
Ca Dy Do 0 —-A 0 A
Let n = 10 and ng = 10, 20,---, 70. For each pair of (n,ns), five problems of the form

in {6.10) are randomly generated and solved using the MATLAB LMI Control Toolbox. The
average time spent on solving each set of problems is shown in Figure 6-2. These problems
were solved on a Pentium III 800MHz machine With 256MB of memory. The operating:
system of the machine is LINUX and the version of MATLAB is 5.3.1.

As we can see from Figure 6-2, the time that LMI Control Toolbox took to solve a
problem grows rapidly as the number of states (i.e., ns) grows. This can be expected since
the number of decision variables in P is proportional to n2. When ng = 70, the optimization
problem has totally 2496 decision variables, and 2485 of them are from the matrix variable
P. The largest problem we have ever tested has 100 states (totally 5061 decision variables).
The problem took the LMI Control Toolbox more than 10 hours to solve.

Robustness analysis problems which have large state spaces are not unusual to encounter.
An aircraft control system, for example, can easily have 30 to 40 states [4]. Furthermore, the
state space of G is the direct product of the state space of the physical system to be analyzed

and the state spaces of the multipliers used to defined the IQCs. If the multipliers have
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Figure 6-2: The figure shows the amount of time that the MATLAB LMI Control Toolbox
took to solve SDP (6.10). For each n, five testing problems were randomly generated.
As we can see, the amount of time that MATLAB LMI Control Toolbox took to solve a
problem increases almost exponentially as n, grows. It took approximately two hours for
the LMI Control Toolbox to solve a problem with 70 states.
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non-trivial state spaces, then the number of states in G is the sum of states in the physical
system and states in the multipliers. Sometimes, in order to characterize the uncertainty
in the system better, which consequentially will help to improve the accuracy of analysis,
advanced dynamical multipliers which have many states are used. As a result, the resulting
transfer matrix G has a large state space, and the corresponding SDP have a huge number
of decision variables, most of which are from the auxiliary matrix variable P. We can infer
from the results of the numerical experiments presented above that in this case it requires
substantial computational capacity and takes a long time to solve the corresponding SDP.
Furthermore, the computational effort is mostly spent on computing the auxiliary decision -
variables. In this sense, the conventional approach is very “inefficient®.

Since the inefficiency of the conventional approach is mainly due to the introduction
of matrix variable P, an obvious approach to improve efficiency is to avoid introducing
it. Along this line of thought, the cutting plane method is a prospective candidate. Take
the Kelley type cutting plane algorithm presented in the previous chapter for example.
In order to apply the cutting plane algorithm to solve IQC optimization problems, all we
need is an oracle which can check whether a given point satisfies the frequency dependent
matrix inequality in (6.5) or not and generates cutting hyperplanes accordingly. As long as
no auxiliary decision variable is required for the computational procedures involved in the
oracle, the cutting plane algorithm should be more efficient than the conventional method,
at least when solving a problem which has many states.

In the next section, we show that an efficiently computable oracle for IQC optimization
problem (6.5) can be constructed using a well-known result in the field of systems and

control.

6.3 The Oracle for the Standard IQC Optimization Problem

To solve IQC optimization problem (6.5) using the Kelley type cutting plane algorithm
presented in the previous chapter, one requires an oracle which checks whether a given

(A, 7) satisfies

H(w,A) > ¢, Ywe [0,00], (6.11)
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and, if not, generates cutting hyperplanes to separate (),§) from the set of points which

satisfy (6.11). The following well-known result can be used to construct such an oracle.

Lemma 6.1 (Kalman, Yakubovich, Popov, ...). Assume the pair of matrices (A, B)
is stabilizable!. For o given point A let Q= Q(S\), F = F(;\), and R = R(S\), where Q(A),
F(X), R(A) are defined in (6.7). The following statements are equivalent:

1. H(w,)) > 0 for allw € [0, o0)].
2. There exists a P = P’ such that

PA+ A'P PB N Q F

B'P 0 F' R

> 0.

3. R > 0, and the Hamiltonian H defined below has no eigenvalues on the imaginary
aIis.
A-BR'F"  BRB

H= |27 o , (6.12)
Q- FR'F' —A'+FR B

Furthermore, if the Hamiltonian matriz ‘H has eigenvalues on the imaginary axis, for ez-

ample +jwy, - , +jwm, then H(w, A) is singular at frequency w1, - ,wm.

Proof. The proof can be found in a number of control theory textbooks. See, for example,

[92]. O

To check whether inequality (6.11) holds or not, one can use the third statement of
Lemma 6.1. That is, one first checks whether R > §I. This can be performed by computing
the eigenvalues of R — I and checking whether all the eigenvalues are strictly positive. If
some of the eigenvalues are not strictly positive, then R — ¢/ is not strictly positive definite,
which in turn implies that (6.11) is not satisfied. If R > §I, then one forms a Hamiltonian
matrix H which is defined as in (6.12) except that R is replaced by R — §I and computes
the eigenvalues of H. If none of the eigenvalues of H is on the imaginary axis, then (6.11)

is satisfied. Otherwise, the inequality does not hold.

'In any IQC optimization problem, matrix A is assumed to be a Hurwitz matrix. Therefore, the stabi-
lizability condition is automatically satisfied.
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If (X, 4) does not satisfy inequality (6.11), cutting hyperplanes which separate (), %)

from the set of points that satisfies (6.11) can be derived as follows.

6.3.1 Generate Separating Hyperplanes

Suppose that R > §I is not satisfied. Then there exists at least one vector v with ||jv]| = 1,

such that
vRv—§ <O0. (6.13)

Since R() is affine in A, we have v"R(A\)v = o'\ — b for some vector a and number b. More
specifically, let a; be the i*" component of a. Then a; = v'Ryv and b = —v'Rgu. Since
any (A, y) which satisfies (6.11) must also satisfy '\ —b — y > 0, therefore the polyhedral
constraint to be introduced is a’A —b—y > 0.

Now suppose that R > I, but the Hamiltonian matrix 7 has eigenvalues on the imag-
inary axis, say £jwi, - - -, jwm. This means that H{w, X) > §I is violated at each one of
wy, 1 =1,---,m; ie., H(wi,j\) — ¢1 is not strictly positive definite. Then the separating
hyperplanes can be derived as in the case when R > ¢ is not satisfied.

Usually, there may be more than one eigenvalue of R— I which are not strictly positive,
or more than one pair of eigenvalues of H which are on the imaginary axis. In either of these
cases, we should use all the information available to obtain as many separating hyperplanes
as possible.

The oracle described in this section can be used to construct various cutting plane
algorithms for solving IQC optimization problem (6.5). Note that the major computation

involved in the oracle is the eigenvalue decomposition, for which efficient computational

routines are widely available.

6.4 The Results of Solving Problem (6.9) Using the Kelley

Type Cutting Plane Algorithm

The first cutting plane algorithm we implemented to solve the IQC optimization problems
is the Kelley type of cutting plane algorithm. The algorithm is exactly the same as the

one presented in Section 5.2 except that the oracle is replaced by the one suitable for
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Figure 6-3: The figure shows the amount of time that the Kelley type cutting plane al-
gorithm took to solve problem (6.9). For each ng, five testing problems were randomly
generated. Compared with Figure 6-2, we see that the amount of time that the Kelley type
cutting plane algorithm took to solve a problem is less than the conventional method. Fur-
thermore, as the number of states in a problem increases, the difference in speed becomes
more significant. For n, = 70, the cutting plane algorithm took only a few minutes to solve
a problem which the conventional method took approximately two hours to solve.

problem (6.5). We tested the algorithm on the Lj-gain estimation problem in Section 6.2.
Again, a set of problems is randomly generated for each pair of (n,n;), where n = 10 and
ns = 10, 20, ---, 70. The amount of time the cutting algorithm spent to solve each
problem is shown in Figure 6-3.

Compared with Figure 6-2, we see that the cutting plane algorithm is significantly faster
than the conventional method when n, (the number of states in the problem) is larger than
30. Furthermore, as ns; becomes larger, the difference in speed becomes more significant.
When ng = 50, the cutting plane algorithm is roughly 10 times faster than the conventional

method. When n; = 70, it took the cutting plane algorithm only a couple of minutes to
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solve the problems which the conventional method took over an hour to solve. We also
notice that the amount of time required for the cutting plane algorithm to solve a problem
increase fairly slowly as the number of states in the problem grows.

On the other hand, Figure 6-3 also indicates that the performance of the Kelley type
cutting plane algorithm is not quite consistent. For instance, at n, = 10, there is one prob-
lem for which the algorithm took longer time to solve. In addition, at ns = 40, 50, 60, 70,
there are cases where the algorithm converges very slowly so that the algorithm was forced
to terminate before it found the solution with desired accuracy.

Slow convergence is a known problem for all cutting plane algorithms. In the case of the
Kelley type of cutting plane algorithm, the estimated number of iterations for the algorithm
to converge to an e-accurate suboptimal solution (i.e., the difference between the objective
at the suboptimal solution and the optimal objective is less than €.) is O(1/e™) [11], where
n is the number of decision variables. Therefdre, from the worst-case complexity point of
view, the Kelley type of cutting plane algorithm potentially could work very poorly. Some
of our numerical experiments agree with this point.

An heuristic argument for slow convergence of the Kelley type of cutting plane algorithm
is as follows: the algorithm uses extreme points of polyhedral outer approximations as the
trial points. The extreme point is a good choice when the outer approximation is very
close to the original problem. However, the extreme point could also turn out to be almost
irrelevant when the outer approximation is far from accurate. In this case, the improvement
on the outer approximation is usually little, and the Kelley type cutting plane algorithm
converges slowly. On the contrary, cutting plane algorithms which use certain centers as trial
points generally have no such problem. The reason is that centers are generally less sensitive
to the introduction of cutting planes, and therefore, using them as trial points usually results
in steady improvement on the outer approximations. Hence, when the approximation is far
from accurate, this class of cutting plane algorithms converges more rapidly than the Kelley
type cutting plane algorithm. This motivates us to consider the centering methods presented
in the next two sections, the ellipsoid algorithm and the Analytical Center Cutting Plane

Method (ACCPM).
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6.5 The Ellipsoid Algorithm

One of the best known cutting plane algorithms which uses centers as trial points is the
ellipsoid algorithm. The ellipsoid algorithm was first developed in the 1970s in the former
Soviet Union by Shor; Yudin, and Nemirovsky. A detailed history of its development can
be found in [1]. The algorithm was used by Khachiyan [48] in his famous proof that linear
programs can be solved in polynomial time. The algorithm and its variations have been
well studied. A good reference of this subject is [32]. In [11], it was shown that many
control related engineering problems can be solved using the cutting plane method, and the
ellipsoid algorithm is specifically discussed. In the next subsection, we briefly describe the

basic principles of the algorithm. The material is adapted from Chapter 14 of [11].

6.5.1 The Basic Algorithm

Consider the constrained minimization problem
inf ), subj. to A€ A (6.14)

where A € R™ and A € R" is an open convex set. We assume the convex set A is described
by a separating oracle. That is, there exists a mechanism which can be used to test whether
a given A belongs to A or not. Furthermore if A does not belong to A, the mechanism
generates a hyperplane which separates ) from A.

The basic idea of the -ellipsoid algorithm goes as follows. Suppose that we have an
ellipsoid Ey that is guaranteed to contain the optimal solution of (6.14). In the algorithm,
the center (denoted by Ag) of Ey is submitted to the oracle for feasibility test. If Ag is
feasible, then obviously the sliced half ellipsoid Eo [{A | A < ¢/X¢} contains the optimal
solution of (6.14). We then compute the ellipsoid F; of minimum volume that contains the
sliced half ellipsoid; we call this an objective iteration and refer to the hyperplane ¢ A = ¢’ A\g
as an optimality cut. If Ap is not feasible, the oracle returns a hyperplane a’\ = b such that
the feasible set A is contained in the half ellipsoid Ep({A | o’A < b}. Then, again, the
ellipsoid E; of minimum volume that contains the sliced ellipsoid is computed. We call this
a constraint iteration and refer to the hyperplane a’A = b as a feasibility cut. In a constraint
iteration, the points discarded are all infeasible. In an objective iteration, the objective

values at all the points discarded are greater than the objective value at the current feasible
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point. Thus, in each case, we do not discard any optimal solutions, and Fy always containg
all optimal solutions that are in Ep. The ellipsoid algorithm iterates this procedure and
generates a sequence of ellipsoids which guarantee to contain an optimal solution of (6.14).
Furthermore, the ellipsoid generated in an iteration is guaranteed to be smaller than its
counterpart in the previous iteration by a factor. As the ellipsoids become smaller and
smaller, the algorithm eventually finds a suboptimal solution with certain desired accuracy.

The basic ellipsoid algorithm is summarized as below.

Initialization: select Ao and Ey, where FEy is any initia) ellipsoid that contains A (if
Ais non-empty), and Ay is the center of Fy. Set U, the upper bound of the optimal
objective, to be an empty set. Set &k := (.
Repeat

Submit Ay, to the oracle for feasibility checking.

If Ay € A,

1. Compute (Akt1s Ey11), where Epy1 is the minimum volume ellipsoid which
contains By (Y{A | A < &\ }, and Ak+1 18 the center of Epi1.
2. Set Upyy = ¢/ Ay
Else

1. The oracle returns s hyperplane o'\ = p such that the feasible solutions

satisfy a’A < b and the center Ar satisfies a’\, > b

2. Compute (A, Eyi1), where By 4 is the minimum volume ellipsoid which

contains Ey ({A | a’A < b}, and Mg is the center of Bpy,.
3. Set Uypy; = Ug.
Endif
Set k:=k + 1.

Until (the stopping criterion is satisfied).

Generating New Ellipsoids

Let £ be an ellipsoid defined as {A (A= Aya-ip - Ao) € 1} and P be a half plane

{A ] @’X < b}, The minimum volume ellipsoid which contains (1P can be found using the
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following proposition. The proposition is well-known and can be found in the programming

literature. For instance, see Chapter 3 of [32].
Proposition 6.1. Let

0,’)\0 —b Aa
=

Via'Aa’ B Va'Aa

Let the minimum-volume ellipsoid that contains E(\P be E. Then E can be determined

according to the value of .

1. If @ > 1, then the intersection of E and P is empty.
2. If a =1, then the intersection of E and P is a poini, given by Ap — 3.
S Ifa< —%, then E = E.

4. ]f—% <a<l,then E= AN (A= 5\0)’14_1()\ - :\0)}, where

- 1+an
Ao = Ao —

0=lo— 3 — B,

2
. n 2(14an)
A= 1-a®)(A- ————2—pF|.
e )( (n+1)(1+a)ﬁﬁ)
Proof. See Chapter 3 of [32] for a complete proof of the proposition. O

In each iteration of the ellipsoid algorithm, we first compute the corresponding o and
then produce the minimum volume ellipsoid according to the value of a. If @ > 1, then
the intersection of the separating hyperplane and Ej is empty. In this case, we stop the
algorithm immediately. Notice that if the problem is feasible, this case is not supposed to
happen since we assume that the initial ellipsoid Ep contains all optimal solutions. The
case of a = 1 is very rare, and virtually impossible to encounter. If it does happen, we find
the exact optimal solution.

The third case of Proposition 6.1 never happens in the ellipsoid algorithm. To see this,
suppose that the algorithm is in an objective iteration; i.e., A, the center of ellipsoid Ey, is
feasible. Then the cutting hyperplane for computing the next ellipsoid is ¢\ = ¢/ A, and the
corresponding « is 0. On the other hand, suppose that algorithm is in a constraint iteration;
i.e., Ay is not feasible. In this case, the cutting hyperplane a’\ = b satisfies a’A;, > b which

in turn implies the corresponding « is greater than or equal to 0.
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Figure 6-4: Illustration of central cuts and deep cuts. Let 2 be the feasible set and A; be
a trial point. The shaded regions are the parts of ellipsoids removed by the cutting planes.
Figure on the left-hand-side: a central cut is a cutting hyperplane that passes through the
test point A;. Figure on the right-hand-side: a deep cut passes between the test point and
the feasible set and cuts off a larger piece of the outbound set.

The last case in Proposition 6.1 is what usually happens in most of the iterations of
the ellipsoid algorithm. As discussed above, the value of « is always greater than or equal
to 0. If @ = 0, which implies that the cutting hyperplane passing through the center of
the ellipsoid, we call the cutting hyperplane a central cut. Notice that in any objective
iterations, the cut is central. If & > 0, we refer to the hyperplane as a deep cut. In constrast
to the central cut which passes through the test point, a deep cut strictly separates the test
point and the feasible set. See Figure 6-4 for an illustration. We see from Figure 6-4 that a

central cut cuts exactly half of the ellipsoid away, while a deep cut cuts more than a half.

The Stopping Criterion

The following assumptions on the feasible set A is made: A is either bounded and of full
dimension, or empty. Furthermore, if A is not empty, then it contains a ball of radius €.
These assumptions imply that if A is non-empty, then the volume of A is lower bounded by
Tne™, where 7, denotes the volume of the unit ball in R".

Suppose that A is non-empty. Since we assume that an optimal solution is contained in

FEo, we know that there always exists an optimal solution A* € Ej for all k. Therefore, we
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have

¢\ > min '\ (6.15)
AEE),

Thus a lower bound on the optimal objective of (6.14) can be obtained by solving the
minimization problem on the right-hand-side of (6.15). Let By := {A | (A—=Xx)’ A, H(A—Xy) <
1}. Then the right hand side of (6.15) is equal to ¢’Ag — /¢’ Axc. Hence, the simple stopping

criterion

Until (U — (Ao — v/ Age) <€) (6.16)

guarantees that on exit, we find a suboptimal solution A such that the difference between
c ) and the optimal objective is less than or equal to .

Suppose that up to the k** iteration, there is no feasible point found. Then the volume
of E}, is checked to.determine whether the algorithm is to be terminated. Since we assume
that the volume of A is at least m,e™ if it is not empty, and ellipsoid Ej, contains A, therefore,
the volume of Ej has to be at least mpe™ if A is not empty. Thus if the volume of Ej, is
smaller than m,e", then A is empty. The volume of Ei is equal to m, \/m, where
det(Ay) denotes the determinate of Ag. Hence, the criterion for terminating the algorithm

18
Until (v/det(Ax) < €). (6.17)

As soon as the inequality in (6.17) is satisfied and there is no feasible point found, the
algorithm declares the problem is infeasible and stops.

To summarize, the ellipsoid algorithm uses (6.17) as a stopping criterion until a feasible
point is found. When a feasible point is found, the algorithm starts to use (6.16) as the
stopping criterion. On exit, criterion (6.16) guarantees an e-accurate suboptimal solution

if the problem is feasible.

Convergence and Complexity

It is well-known that the ellipsoid algorithm converges in polynomial time. More specifically,

the algorithm terminates in O(n?|loge|) iterations with an e-accurate suboptimal solution
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Figure 6-5: Illustration of the idea of using multiple cutting planes. Here, ) denotes the
feasible set. (1) Cutting planes C; and Cy are placed. (2) Cutting plane C) is used to
remove a part of the original ellipsoid and generate a new ellipsoid of smaller volume. (3)
Cutting plane Cs is then used to remove a part of the newly generated ellipsoid.

found or with the declaration that A is empty. The proof is available in the literature. See

for example, Chapter 14 of [11] or Chapter 3 of [32].

6.5.2 The Ellipsoid Algorithm for Solving IQC Optimization Problems

In this subsection, the ellipsoid algorithm we implement to solve 1IQC optimization prob-
lem (6.5) is presented. Our implementation follows the basic principles of the ellipsoid
algorithm described in Section 6.5.1. However, there are a few small variations. The mod-
ifications are due to certain features of the oracle for the IQC optimization problem (6.5).
As we have mentioned in Section 6.3, the oracle for IQC optimization problems is capable
of generating more than one separating hyperplanes on a single inquiry. We take advantage
of this feature and manage to use all cutting hyperplanes to produce the volume-reduced
ellipsoid for the next iteration. The idea is as follows: suppose that the algorithm is in
the k** iteration and the oracle returns m hyperplanes ajA = b;, 2 = 1,--- ,m. The opti-
mal] solutions is contained in Ex (VP1[\P2--[)Fm, where P; = {A | aiA < bj}. We first
compute the ellipsoid of minimum volume which contains Ey [} P1. Denote this ellipsoid by
E,. Then we use the cutting hyperplane abA = by to further reduce Ey and compute the
ellipsoid of minimum volume which contains Fy (1 P. Denote this ellipsoid by E5. Then
we reduce E using hyperplane ajA = bs, ---, and so on. Finally, the test point for the
next iteration is the center of the minimum volume ellipsoid which contains Em_1 ) P

Figure 6-5 illustrates the idea.
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Another modification we made is that, the linear inequalities returned by the oracle are
collected, and any new candidate for the optimal solution is subject to feasibility test with
respect to these inequalities before submitted to the oracle. Since the optimal solution has to
be feasible to all of these inequalities, a candidate which violates any of these inequalities can
not be the optimal solution and should be disqualified immediately. The inequalities which
the candidate violates can be immediately used as cuts to reduce the ellipsoid. Although
our experience shows that trial points are often feasible to these inequalities, it is still
worthwhile to perform the checking. The reason is that, compared to the computational
complexity of the oracle, the complexity of checking feasibility with respect to these linear
inequalities is very low. Therefore, if a trial point does not satisfy any of these inequalities,
we obtain a cutting plane with very little computational effort spent.

It turns out thét these modiﬁcafions substantially speed up the algorithm. We have
compared the modified ellipsoid algorithm with the basic one; i.e., the algorithm described
in Section 6.5.1. The modified version is approximately three times faster than the basic
ellipsoid algorithm.

We summarize our modified ellipsoid algorithm for solving IQC optimization prob-

lem (6.5) as follows.

1. Initialization: set the initial outbound ellipsoid Ey to be
Eo:={AeR": ]\ <r},

where 7 is a positive constant, say 10%. Set the first test point A(® = 0. Set thresholds

for stopping criteria. Let P4 be an empty set.

2. At the k¥ iteration, submit A*)| the candidate for the optimal solution, to the oracle
for feasibility checking. If it is not feasible to the inequality in (6.5), the oracle
returns a set of inequalities P, = {alA < b;,12=1,--- N }. If it is feasible, let Py be
{2 < c’)\(k)}. Attach Py, to Pa;i.e., set Py := P4 UP,.

3. Produce a new, volume-reduced ellipsoid: let Ny be the number of constraints in P,

and perform the following procedure.
Set g = E and [ = 1.

While [ < Ny,
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(a) Let B, = {\ : alA < b}; i.e., the half-plane defined by the (" inequality
in the set P,. Compute Ej, the minimum volume ellipsoid that contains
E, NP

(b) Compute AY)| the center of E;.

{c) Setl:=1+1

until [ = N,

4. Check whether A(Vi) satisfies all inequalities in P4. If it does not, then let Py be the
set of inequalities which A6 violates, set Fy = ENk, and repeat from Step 3. If

A satisfies all inequalities in Py, set Ejpy = By, and A*HD = 3V,

5. Check stopping criteria. If any stopping criterion is met, stop the program. Otherwise

repeat from Step 2.

The most essential part of the algorithm is the oracle. The oracle can be constructed
using the Kalman-Yakuvich-Popov lemma, which we have already presented in Section 6.3.
In Step 5, the stopping criteria are exactly as what we discussed in Section 6.5.1. The
modified ellipsoid algorithm described above has been implemented in MATLAB and tested
on several numerical examples, including the one presented in Section 6.2. These results
are presented in Section 6.7.

The most favorable aspect of the ellipsoid algorithm is that it takes very little com-
putational effort to generate trial points. However, the algorithm usually requires many
iterations to converge to a suboptimal solution with moderate accuracy. This motivated
us to consider another centering method, the Analytical Center Cutting Plane Method
(ACCPM). Practical experience shows that this particular centering method has very good

performance in terms of rate of convergence. We present this algorithm in the next section.

6.6 Analytical Center Cutting Plane Method

The concept of analytical center was introduced by Sonnevend [72] who also alluded to its
use in the cutting plane methods. The Analytical Center Cutting Plane Method (ACCPM)
and its implementation were then proposed by Goffin, Haurie, and Vial [24], and Ye [88].
After that, theory underlying the ACCPM has been studied in depth by several authors,

who provided estimates of complexity for the basic method and several of its enhancements
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[25, 89, 26, 29, 31]. The method has been implemented in C/C++. The package is available
at http://ecolu-info.unige.ch/logilab with a tutorial guide [62]. ACCPM has been applied
to solve various type of programming problems. Judging from the practical experience, it
appears that the performance of the algorithm is very good [23, 3]. An article by Goffin
and Vial [28] gives a detailed survey of the recent development of ACCPM.

In the next subsection, we briefly introduce the analytical center cutting plane method.
The contents presented in the next subsection is adapted and summarized from the material

in the references mentioned above.

6.6.1 The Algorithm

Consider again the minimization problem (6.14)
inf '\, A€A.

The underlying principles of the analytical center cutting plane method are exactly the
same as those of the ellipsoid algorithm: the algorithm first selects an outer approximation
of the feasible set A; i.e., a set A which contains A. Then a trial point inside A is selected
for feasibility checking. Feasibility checking is performed by the oracle, and an optimality
or a feasibility cut is returned to reduce the approximation A. The algorithm iterates this
procedure until a suboptimal solution with certain desired accuracy is obtained, or the
algorithm determines that the problem is infeasible.

In the ellipsoid algorithm, the outer approximations are ellipsoids, and the trial points
are the centers of these ellipsoids. In the analytical center cutting plane method, the outer

approximations are polyhedrons defined by linear inequalities
Pk = {/\ | a.:;)\—bi Z 0, ||a1|| = 1, 1= 1, ,N}c},

and the trial points are e-approximate analytical centers of these polyhedrons. The analyt-

ical center of P is defined as the unique minimizer of the logarithmic function
Ny
F(\) = =) log(ajA —b;), A€ Int(P),
i=1

where Int(Py) denotes the interior of P;. Given an ¢ € (0,1), an e-approximation of the
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analytical center, or e-center for short, is a point A which satifies

[y

ou(R) i= (VFk(:\)’VQFk(;\)VFk(X))E <e, (6.18)

where VF,()), V2Fi()) denote the gradient and Hessian of Fj(A), respectively. The algo-

rithm is summarized as follows.

Initialization: select Ay and Fy, where Fy is any initial polyhedron that contains
A (if it is non-empty), and Mg is an e-center of Py. Set Up, the upper bound of the
optimal objective, to be an empty set. Set k := (.

Repeat

Submit A, to the oracle for feasibility checking.
If A € A,

1. Let Pyyq = Po(){A | X< A}

2. Compute Ag41, an e-center of Peyq.

3. Set Ugqy = ¢ A

Else
1. The oracle returns a number of separating hyperplanes a;\ = b;,¢ =1,--+,m,
such that the feasible solutions satisfy afA > b;, ¢ = 1,- - ,m, and A satisfies
aA < b,i=1,---,m.

2. Let Poyy =P N{A | aA = b, e =1,--- ,m}.
3. Compute Apy1, an e-center of Pry.g.
4. Set Ugyy := Up.

Endif

Set £ .=k + 1.

Until (the stopping criterion is satisfied}.

Generate an =-Center

In each iteration of the analytical center cutting plane method, an e-center of polyhedron
P has to be computed. Algorithms for finding such an approximate center have been well-

studied for decades. Various algorithms based on the Newton’s method have been developed
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and can be found in the mathematical programming literature. These algorithms are proven
to be efficient (converge in polynomial-time). The book by Ye [90] is a good reference of
this subject.

Furthermore, the Newton’s method for finding an e-center of P, would converge very
rapidly if it starts with an appropriately selected point in Pj,. Therefore, some research
efforts have focused on the issue of how to select a good starting point. In the ACCPM
where one central cutting plane is introduced in each iteration, the paper by Goffin, Luo
and Ye [25] proposes a way of selecting starting points such that the Newton’s method
restores an e-center of P in O(1) iterations. The case of multiple cuts was studies in [31].
It is shown that the restoration of an e-center can be done in O(plog(p + 1)) Newton’s

iterations, where p is the number of new cuts introduced by the oracle.

The Stopping Criterion

Again, we assume that set A is bounded, of full dimension, and contained in the initial outer
approximation F5. We also assume that A contains a ball of radius & if it is non-empty.

Suppose that A is not empty. Since Py contains A, therefore, at least an optimal solution
A* is contained in P for all k. Therefore, we have

dX* > min A= min ), (6.19)
MEP A'AZb

where A = [01, .. .aNk] and ¥ = [bl, .. ‘ka]. Thus a lower bound on the optimal objec-
tive of (6.14) can be obtained by solving the minimization problem on the right-hand-side
of (6.19), which is a linear program.

Another approach to obtain a lower bound of ¢/A* is to solve the dual problem of the

linear program in (6.19)
max b'y, subj. to Ay=¢, y>0. (6.20)

This approach is suggested in [62]. It is well known that the optimal objective of (6.20) is
equal to the optimal objective of the linear program in (6.19). Therefore, any suboptimal
objective of (6.20) is a lower bound of ¢/A*. Hence, the advantage of this approach is that

a lower bound of ¢’A* is obtained whenever a feasible solution of (6.20) is found and we do
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not have to solve (6.20) exactly.
Let Ly be a lower bound of ¢'A* obtained by solving either the linear program in (6.19)

or the linear program (6.20). Then, the simple stopping criterion
Until (Uy — Li, < &) (6.21)

guarantees that on exit, we find a suboptimal solution A such that the difference between
¢/A and the optimal objective is less than or equal to .

Suppose that there is no feasible solution found up to the kt* iteration. Then the
following stopping criterion is used to determine whether the algorithm is to be stopped

with a declaration that there is no feasible solution:

g2

Until (Fj(Ax) > —NiIn(x) + 1_ ¢2

), (6.22)

where Ay is the e-center of Py, Ny is the number of linear inequalities which define P, and
% is the radius of the ball contained in A. The idea behind this criterion is as follows [25]:
assume that A is non-empty. Then A contains a ball of radius k. Let ) denote the center
of the ball and A, denote the analytical center of P;. Since P, contains A, therefore P
contains the ball. Note that ||a;|] = 1 for all ¢. Hence, al\ — b > sk fori=1,---, N}, and

the following inequalities hold

Ny N
~Fi(Aa) ==Y In(a}ha ~ b;) > > In(a}A — b;) > Ny In(x).
1=1 i=1

Finally, it is well-known that if X; is an e-center, then

—F (M) +

Hence if A is non-empty, the following inequality has to hold for all k

g2

Fk(/\k:) < =N ln(n) + 12

To summarize, the analytical center cutting plane algorithm uses (6.22) as a stopping

criterion until a feasible point is found. When a feasible point is found, the algorithm starts
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to use (6.21) as the stopping criterion. On exit, criterion (6.21) guarantees a s-accurate

suboptimal solution if the problem is feasible.

Convergence and Complexity

If the total number of cuts generated by the oracle before the algorithm stops is assumed
to be known a priori, then it is easy to show that the number of iterations of ACCPM
is polynomial in this number. This assumption is of course not tenable in general, and
the challenge is then to prove a complexity bound that depends on the number of decision
variables but not on the number of cutting hyperplanes generated. Goffin, Luo, and Ye [25]
showed that, the basic setup of the algorithm - the algorithm adds one single central cut in
each iteration - has a complexity estimation of 0*(’:-22—) for the total number of iterations,
where n is the number of decision variables, € is the index of accuracy used in the stopping
criterion, and the O* notation means that the lower order terms are ignored. The extensions
of this result to the case of deep cuts were given in [26, 29].

In practice, it often occurs that the oracle in the cutting plane algorithm can generate
more than one cutting hyperplane upon a single inquiry. In [30], the case of two central cuts
was analyzed, and it is shown that the ACCPM in which two central cuts are placed in each
iteration also converges in 0*(%;) iterations. The case of multiple central cuts was analyzed
in [89]. It is shown that the algorithm converges after O*(’%ﬁ) cutting planes have been

generated, where p is the maximum number of cuts generated at any given iteration.

Remark 6.1. Our numerical experiments suggest that the O*(%;—) bound on the number
of iterations is a very conservative estimation. From our experience, the ACCPM usually
terminates long before the bound is reached.

6.6.2 The ACCPM for Solving IQC Optimization Problems

We have implemented ACCPM in MATLAB to solve IQC optimization problems (6.5). Our
implementation follows exactly the algorithm described in the previous subsection, except
for the stopping criterion.

An Alternative Stopping Criterion

As mentioned in the previous subsection, at the k** iteration of the ACCPM, a lower bound

of the optimal objective of the problem to be solved can be obtained by minimizing the
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linear objective over P; i.e., by solving a linear program. However, this is often too much
computational effort for the purpose. A rough lower bound can be obtained by a much less
expensive way. The idea is to find an ellipsoid E} which contains Py. Then a lower bound
of the optimal objective can be obtained by minimizing the linear objective over Ek, for
which an analytical solution is available.

Let A > 0 be an n x n symmetric matrix and Ag be a column vector in R™. Let
E(A, Xo,) denote the ellipsoid { | (A= 20)'A(X = Xg) < v%}. Let A% be the analytical
center of P, and A; be an e-approximation of Ar- The following properties are well known.

The proofs can be found in [60, 2].

Proposition 6.2. If pr(Ax) < 1, then analytical center Ay belongs to E(V2Fu(M\p), Ak, K),

where py(-) is defined in (6.18) and k = %.

Proposition 6.3. Let z belong to the interior of Py, and 0 < o < 1. Then E(ViF(2), 2, a)

is contained in Py. Furthermore, for anyy € E(V2F(2),z, ), the following inequality holds

1

1 2
m 2V Fk(z)

V2F(z) < V2E(y) < 0—a2

Proposition 6.4. The polyhedron P, is contained in the ellipsoid E(VZF(A;),A*,N;C),
where Ny is the number of linear wnequalities that define P.

'The following lemma shows that the polyhedron P is contained in a particular ellipsoid

centered at an e-center of Py.

Lemma 6.2. Let A\, be an e-center of P, and ¢ < % Then Py, is contained in the ellipsoid

E(V2F(\), M, &), where

Ny Pr(Ax)
K= + ,
T—pe{M) 1 pe(Ai)

and Ny is the the number of linear inequalities that define Py.

Proof. Since Ay is an e-approximation of the analytical center and ¢ < %, pr{ M) must

satisfy
PiAx)
LR o,
1 — pr(Ag)
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Therefore, by Proposition 6.2 and Proposition 6.3, we have

2
(L — M) VP Fe(h)(\L — M) < (M) <1,

AL pr(Ae)
and
2
VIF(\) < (1 + %) VEFL(AL) = (ITbi(f\—k))?sz’“('\’:)' (6.23)

Now, let z € P,. We have

(z = M) VPF(M)(z — M) = (2 = Mo+ Af — M) VEE () (2 — AL+ AL — M)

2
< (\/(Z — AZ)'Vsz(Ak)(Z -0+ \/()\Z - )xk,)'VZFk()\k)(/\z - )\k))

2
< (%Ju = AV (= = W) + /(0 — W) V2R QW) (N m) -

To see the first inequality, we note that VZFg(Ax) > 0, and therefore g(k) := (R'V2F, (Ak)h)%
is a generalized norm of R”. Thus, g(z — AL + A, — Ar) < g(z — Af) + g(Af — Ag). The
second inequality follows inequality (6.23). Now, by Proposition 6.4 and Proposition 6.2,

we obtain

2
(2= MY VEROW)(z = ) < (1 — o+ f’“,ﬁj{“ik)) - (6.24)

This concludes the proof. O

Therefore, by computing an e-approximation of the analytical center of Py, we also get
- an ellipsoid which contains the polyhedron P}, as a byproduct. A lower bound of the optimal

objective can now be easily computed as

M — KV (V2F(0\)) e

Furthermore, since the ellipsoid E(V2F (), A, &) contains Py, its volume can be used as
an estimation of the size of F.
Under the assumption that {2 contains a full dimension ball of radius e if it is non-empty,

we adopt the following stopping criterion: at the k** iteration, if no feasible solution has
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been found so far and x™/+/det(V2F (X)) < €, then the algorithm stops and declares that
the problem has no feasible solution. If any feasible solution is found, the algorithm stops

whenever

Up — (Clz\k — KA/ c’(VQF(/\k))‘lc) < €.
On exit, the above criterion guarantees the suboptimal found is ¢-accurate.

Some Other Implementation Details

Some other implementation details about our implementation are summarized as follows:

1. Initialization: in our algorithm, we assume that the feasible set of (6.5) is contained

in a box Py
Po={deR":—r< <, i=1,--- ,n},

where r is a positive constant, say 10°. Notice that by this choice, 0 is the exact

analytical center of Fy.

2. The oracle for the IQC optimization problems is discussed in Section 6.3. The main
computational procedure involved is basically eigenvalue decomposition of certain

matrices.

3. We have implemented two versions of ACCPM to solve IQC optirhization problems.
One adds a single central cut in each iteration; the other allows multiple central cuts.
In the single central cut version, we follow [25] to implement a routine for recovering
an e-center after a cut is placed. The restoration takes O(1) Newton’s iterations. In
the multiple central cuts version, we follow [31] which suggests an approach that takes
O(plog(p + 1)) Newton’s iterations to restore an e-center. Here p is the number of

new cuts introduced by the oracle, which may vary with the iteration.

We have tested our implementation on a number of numerical examples. We present

the results of these numerical experiments in the next section.
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Figure 6-6: The figure shows the amount of time that the modified ellipsoid algorithm
described in Section 6.5 took to solve problem (6.9). For each n;, five test problems were
randomly generated. The algorithm starts with an initial ball of radius equal to 10. As we
can see from the figure, all problems were solved in less than 10 minutes. Compared with
Figure 6-2, we see that the ellipsoid algorithm is much faster than the conventional method
when the problem to be solved has a large state space.

6.7 Examples

Example 6.1. Consider again the Ly-gain estimation problem in Section 6.2. The modified
ellipsoid algorithm and the analytical center cutting plane method described in Sections 6.5
and 6.6 are used to solve the same set of problems. Figure 6-6 and Figure 6-7 show the
amount of time which the ellipsoid algorithm and the ACCPM spent on solving these
problems, respectively.

In the case of the ellipsoid algorithm, Figure 6-2 and Figure 6-6 indicate that the con-
ventional method solved a problem faster than the ellipsoid algorithm when the number

of states in the problem is small (ns < 20). The ellipsoid algorithm becomes faster than
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the conventional method when the problem to be solved has more than 30 states. When
30 < n; < 50, the ellipsoid method is about 2 to 5 times faster than the conventional
method. When n, > 60, the difference in speed becomes more significant. The ellipsoid
algorithm in these cases is more than 10 times faster than the conventional method. In all
cases, the ellipsoid algorithm solved a problem in 10 minutes.

In the case of the analytical center cutting plane method, Figure 6-2 and Figure 6-
7 indicate that the ACCPM is no worse than the conventional method even when the
problem to be solved has a small state space. When the number of states of a problem
is 10, the ACCPM and the conventional method took about the same time to solve the
problem. The ACCPM took approximately half amount of the time which the conventional
method spent on solving a problem with 20 states. The difference in speed becomes more
and more significant as the number of states grows. When ny = 70, the ACCPM solved a
problem approximately 60 to 100 times faster than the conventional method. In all cases,
the ACCPM spent less than 2 minutes to solve a problem.

Note that the initial ball constraint of the ellipsoid algorithm and the initial box con-
straint of the analytical center cutting plane algorithm certainly affect the amount of time
which the two algorithms spend on solving a problem. For a particular optimization prob-
lem, the larger the sizes of the initial ball and box in which we assume the feasible set is
contained, the longer it takes for the ellipsoid algorithm and the ACCPM to obtain sub-
optimal solutions with the same accuracy. For the results presented so far, the ellipsoid
algorithm starts with a ball of radius equal to 109, and the analytical center cutting plane
algorithm starts with the box [—10%,10%]". We have tested the algorithms with different
initial constraints. With the radius of the initial ball increasing to 10'® and the initial
boxes increasing to [—101?,10'°", ellipsoid algorithm and the ACCPM still significantly
outperform the conventional method when ng > 50.

In contrast to the conventional method, the amount of time which the ellipsoid algorithm
and the analytical center cutting plane method spent on solving the problems does not
increase significantly as the number of states of the problems increases. Therefore, one can
expect that the ellipsoid algorithm and the ACCPM are able to solve problems with very
large state space in a reasonable time. We have tested the algorithms on problems which
have up to 200 states. The results are listed in Table 6.1. Note when problems have more

than 130 states, the sizes of the equivalent SDPs are so large that the MATLAB LMI solver
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Figure 6-7. The figure shows the amount of time that the analytical center cutting plane
method described in Section 6.6 took to solve problem (6.9). For each ng, five test prob-
lems were randomly generated. The algorithm started with an initial box constraint
Ai € [—10%,108). The figure indicates that all problems were solved in less than 2 min-
utes. Compared with the Figure 6-2, we see that the ACCPM is significantly faster than
the conventional method when the problem to be solved has a large state space. Further-
more, the ACCPM is no worse than the conventional method even when the problem has
only a few states.
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| n, = 100 | ns = 130
Method objective | time (sec) | iterations | objective | time (sec) | iterations
LMI Tool || 0.80193 | > 9 hours 53 || AR Aok R
ACCPM 0.80192 277 380 (0.21066 414 412
Ellipsoid 0.80191 1347 1087 || 0.21066 2180 1001
ns = 160 ns = 200
Method objective | time (sec) | iterations | objective | time (sec) | iterations
LMI Tool ®Aksk ko Fgesksk ek ok EEE L 3T ek ok gk K
ACCPM 0.03846 1473 371 0.92488 3244 402
Ellipsoid 0.08846 5773 1031 || 0.92487 13767 1327

Table 6.1: Results of solving (6.9) using MATLAB LMI Control Toolbox, the ellipsoid algo-
rithm, and the ACCPM. “LMI Tool“ denotes MATLAB LMI Control Toolbox, “ACCPM*
denotes the Analytical Center Cutting Plane Method, and “ Ellipsoid“ denotes the ellipsoid
algorithm. In this set of testing problems, the ACCPM starts with a initial box constraint
{z : |z;] < 10°}, and the ellipsoid algorithm starts with a ball constraints {x : flz| < 10°}.
The objective value is accurate up to the 4t digit. When ng = 200 (the number of states
in the problem is 200), the ACCPM and the ellipsoid algorithm can still solve the problem
in a reasonable period of time. ‘

[ ns;=10] n,=20] ng=30] n;=40[ n,=50] n,=60] n,=70 |
Method | iteration | iteration | iteration | iteration | iteration | iteration | iteration
ACCPM 397 388 340 374 327 360 334
Ellipsoid 1589 1582 1406 1339 1414 1388 1296

Table 6.2: Numbers of iterations that the ellipsoid algorithm (denoted by “Ellipsoid “) and
the analytical center cutting plane method (denoted by “ACCPM*) took to solve (6.9).

ran out of the memory (256MB) of the machine we tested these problems on-and failed to
produce results.

Finally, we note that the analytical center cutting plane algorithm is approximately 5
times faster than the ellipsoid algorithm according to the numerical results presented in this
example. This is somewhat contrary to the theoretical prediction. Recall the theoretical
worst-case complexity analysis of the two algorithms. Counted in the number of iterations
required to find an e-accurate suboptimatl solution, the ACCPM has a worst-case 0*(%;)
estimate. The estimate for the ellipsoid algorithm is O(n?|loge|). This suggests that the
ACCPM should have taken more iterations to converge compared to the ellipsoid algorithm.
However, in all test incidents, the ACCPM took fewer iterations to solve a problem. Ta-
ble 6.2 shows the average number of iterations which the two algorithms took to solve these

problems.
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Figure 6-8: Seismic isolation control of a building. The building is modelled as a series
connection of masses, springs, and dampers.

Example 6.2 (Seismic Isolation Control). This example is adapted from [53]. Consider
the problem of seismic isolation control of an n story building. The building is modelled as
* a series connection of masses, springs and dampers. See Figure 6-8 for an illustration. This

way, the dynamics of the building is modelled by multiple spring-damper-mass equations

miZ1 + ady + ki — (e — £1) — ka(z2 — 11) = —u + v,
mpZr + Cr(jr - ir—l) + kr (177' - 177‘—1) - Cr+1(i'r+l - ir) - kr+1($7‘+1 - SCT-) =0
(forr=2,--- ,n~1),

MpZn + Cn(in - -'1.3n~—1) + kn(mn - wn—l) =0,

where u is the control force applied between the ground and the first floor of the building,
and v represents the result of earthquake force applied to the ground. The frequency
spectrum of v is assumed to be between 1/3 and 3 Hz.

Seismic isolation controllers are designed for buildings of 6, 7, 8, 9, 10, and 11 stories,

under the assumption that acceleration sensors are available at each floor of the buildings.
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Figure 6-9: MATLAB SIMULINK diagram for design of seismic isolation controllers.

The following values of m,, ¢, and &, are used

my = 44.2 (T‘ = ]., T ,10), mi1 = 54.2,
ke(r=1,---,11) = [91.6 91.6 88.3 89.2 79.1 73.1 66.1 58.0 48.8 38.1 25.5], (6.25)

er(r=1,---,11)=[183 183 17.7 17.8 15.8 14.6 13.2 11.6 9.8 7.6 5.1]. (6.26)

The controller design is based on H, optimization and carried out using MATLAB p-
Analysis and Synthesis Toolbox. The design schematics is shown in Figure 6-9.

In the controller design, the following third order transfer function

18.35 + 91.6
53 +51.845% + 79.57s + 31.01

is selected as the shaping filter. The weight on the sensor noise, KN, and the control
penalty KC are randomly selected in the range between 0.01 and 1. The output 21 is equal
to 100%,. The seismic isolation controllers are designed based on minimizing the Hs norm
from [w’ v] to [21 32].

In this example, we are interested in analyzing robustness properties of the seismic
control systems. We assume that real values of the stiffness coefficients k1,--- , ks and the
damping coefficients ci,--- ,cs are different from the nominal values used for controller

designs, but within +10% of those shown in (6.25) and (6.26); i.e., the real stifiness and
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Figure 6-10: Setup for robustness analysis of the seismic control systems.

damping coefficients for floors 1 to 5, denoted by &, and Cr, are represented as
ET:(1+JkT)kT7 Er=(1+6c1‘)cr) 71:17"')57

where 0k, and 6, are unknown constants whose absolute values are less than or equal to
0.1. We are interested in checking whether the seismic control systems are still stable under

the change of these parameters and estimating the L3-gain from the earthquake input v to

as
2= |kizy ka(za—m) oo kslms—z4) g, cafta—d)) cs(Es—iy)
10 10 10 10 10 10 ’

Matrix A := diag(d,, - - - ,010) represents the uncertainties in the system. Each d; denotes
an unknown constant with absolute value less than or equal to 1,
To estimate the L3-gain from v to Z, we apply standard IQC analysis to the system in

Figure 6-10. The IQC defined by the following quadratic form

II; (jw) dw (6.27)
i (jw) Wi (jw)

il 7 (J'-w) * zi(jw)
/

15 used to characterize the relationship w; = di2;, where the multiplier TI;(jw) is of the form

. Re(A;; + Agi =) /\31'(—.51—— - =1-)
I (jw) = L Jutl et (6.28)
ASi(—juH—l - m) —Re(A; + /\Zij—w:q

153



| I n=6 I n=T1
Method L;-gain | time (sec) | iterations | var. || Lo-gain | time (sec) | iterations | var.
LMI Tool || 0.91807 4947 59 | 1169 || 1.48210 8700 76 | 1367
ACCPM 0.91805 339 1803 31 || 1.48210 271 1382 31
Ellipsoid 0.91805 1461 2066 31 || 1.48211 1988 3701 31

n=3 n=9
Method Ly-gain | time (sec) | iterations | var. || Lo-gain | time (sec) | iterations | var.
LMI Tool || 1.02685 11947 78 | 1981 || 1.10925 15221 82 | 1811
ACCPM 1.02685 290 1393 31 || 1.10017 208 975 31
Ellipsoid 1.02686 2163 3875 31 || 1.10917 1421 3178 31

n =10 n=11
Method Ly-gain | time (sec) | iterations | var. || L-gain | time (sec) | iterations | var.
LMI Tool || 0.83181 19033 77 | 2057 || 1.14860 22325 74 | 2319
ACCPM 0.83179 383 1560 31 || 1.14815 317 1190 31
Ellipsoid 0.83181 1590 1871 31 || 1.14816 2054 3195 31

Table 6.3: Results of solving the Lo-gain estimation problem in Example 6.2 using MAT-
LAB LMI Control Toolbox, the ellipsoid algorithm, and the ACCPM. “LMI Tool“ denotes
MATLAB LMI Control Toolbox. “ACCPM* denotes the Analytical Center Cutting Plane
Method. “ Ellipsoid“ denotes the ellipsoid algorithm. The numbers in the column “var®
indicate the number of decision variables in a problem. In this set of testing problems, the
ACCPM starts with an initial box constraint {z : |z;| < 10}, and the ellipsoid algorithm
starts with a ball constraints {z : ||z|| < 10%}.

and parameters Ay, Ag; must satisfy Re(Ay; + )\gijjlﬁ) > 0V w. Then the Lo-gain estima-
tion problem can be formulated either as an optimization problem over frequency dependent
matrix inequalities, or equivalently a SDP. Here we omit the details of the problem formu-
lations.

We solve the optimization problems resulting from IQC analysis of seismic isolation
control systems using the MATLAB LMI Control Toolbox, the ellipsoid algorithm described
in Section 6.5, and the analytical center cutting plane method described in Section 6.6. The
results are listed in Table 6.3. Table 6.3 indicates that both the ellipsoid algorithm and
the ACCPM solved every problem faster than the conventional method using MATLAB
LMI Control Toolbox. When n =
SDP has 1169 decision variables and it took the LMI Control Toolbox about 80 minutes to

6 (that is, the building has 6 floors), the equivalent

solve the problem. For the same case, the ellipsoid algorithm took about 25 minutes and
the ACCPM took only 5 minutes. As n increases from 6 to 11, the amount of time which
the LMI Control Toolbox took to solve a problem increases rapidly. This is expected since
the number of decision variables in the equivalent SDP increases from 1169 to 2319. On

the other hand, the amount of time which the ellipsoid algorithm and the analytical center
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Figure 6-11: Schematic diagram of the lateral flight control system of the Space Shuttle.

cutting plane method took stays at the same level. For n = 11, the LMI Control Toolbox
took more than 6 hours to solve the problem, while the ellipsoid algorithm took about half

an hour and the ACCPM took only 5 minutes.

Example 6.3 (Space Shuttle Robustness Analysis). This example is about robustness
analysis of the Space Shuttle lateral axis flight control system during the reentry. The system
is a simplified model of the space shuttle, in the final stage of landing, as it transitions
from supersonic to subsonic speeds. This example is adapted from [4], and the material is
originally based on the paper [15].

Figure 6-11 shows the Space Shuttle lateral axis flight control system. The rigid body

model for the aircraft at Mach 0.9 is a four-state system with states

(ﬁ sideslip angle
P roll rate

xr = =
r yaw rate
K | bank angle |

There are three inputs to the aircraft. The first input is the actual angular deflection of
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the elevon surface. The second input is the actual deflection of the rudder surface. Finally,
the last input is a lateral wind gust disturbance input 7yng, due to the winds that occur
at this altitude.

The major source of uncertainty in the aircraft model is in the aerodynamic coefficients.
There are standard acrodynamic parameters which express incremental forces and torques
generated by incremental changes in sideslip, elevon, and rudder angles. This is a linear

relationship, expressed as

side force ¢ €y C3 I}
yawing moment | = |cs ¢35 Cg| | fete
rolling moment cr ca Col| |Brua

Uncertainty in these coefficients is modelled as a nominal value, plus a perturbation term

¢l C3 C3

C4 Cgs Cg =C'+WTAI/V17

Cr Cg €9

where Wx and W}, are weighting matrices of dimension 3 x 9 and 9 x 3, respectively. A is
a diagonal uncertainty; i.e., A = diag(dy, -, d9), and the each &; is assumed to be a fixed,
unknown real parameter which satisfies |6;| < 1.

The controller has four noised sensor inputs and one command input. Three of the
sensor inputs are states: (p,7,$). The fourth sensor input is the lateral acceleration at the
pilot’s location, denoted by n,. The command input is the band-angle command. There
are two outputs of the controller. One is the rudder cbmmand, and the other is the elevon
command. In this example, the flight controller is identical to the one in Chapter 7 of [4],
where controller design is based on welghted Hoo optimization. The controller has 28 states

The control signals are modified by two identical nonlinear operators before they enter

the aircraft model. The nonlinear operators are defined as

0, if |z| €1
@;(x) = v —den;(z), where dzn(x) = :
z, otherwise

The purpose of these nonlinearities is to model the effect of actuator saturation. Note that
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Figure 6-12: Setup for robustness analysis of the Space Shuttle lateral axis flight control
system.

in [4] where this example is taken, the effect of actuator saturation is not considered. Here
we add these nonlinearities to make the setup more realistic.

In this example, we are interested in verifying stability of the flight control system subject
to the uncertainty in aerodynamic coefficients and actuator saturation. Furthermore, we
also want to compute an upper bound of the Ly-gain from the disturbance 7,4 to the state
vector x. To do so, we transform the flight control system into the standard robustness
analysis setup, as shown in Figure 6-12 and apply standard IQC analysis. In this example,
the nominal linear time-invariant system G has 58 states. The feedback part consists of
9 unknown constants and two dead zone nonlinearities. The uncertain constants §;, 1 =
L, ---,9 are characterized using IQCs defined by the quadratic forms of the form in (6.27).
The dead zone nonlinearities dzn;(-) (¢ = 1,2) are characterized using the so-called Zame-

Falb’s IQCs [55]. The IQCs are defined by the following quadratic forms

/ % | 9(jw) 0 1L (jw) b (jw)

dw, i=1,2, (6.29)
o |di(jw)| |IGw) —2Re(T(w))| |wi(jw)

where 9;(jw), Wi(jw) are the Fourier transforms of the input and output signals of dzn;(-).
IL;{jw) are in the form of
w —jw Jw+2 —jw+2

: J
IL, = A1 Ao Az, = R S
i(Jw) “jcu+1 + 21—jw+1 + A3 Jo 1 4l—jw+1’

where Ag; > 0, k = 1,--- ,4. The La-gain estimation problem then can be formulated as

an optimization problem of the form in (6.5). We solve the problem using the ellipsoid al-
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Method | #. of dec. var. | Estimated Ljy-gain | Time (sec) | Iterations |

LMI Tool 1756 66.338 20437 116
ACCPM 36 66.337 334 813
Ellipsoid 36 66.323 1022 2402

Table 6.4: Results of solving the IQC optimization problem arising from the robustness
analysis of Space Shuttle lateral flight control system using MATLAB LMI Control Toolbox,
the ellipsoid algorithm, and the ACCPM. “LMI Tool“ denotes MATLAB LMI Control
Toolbox. “ACCPM* denotes the Analytical Center Cutting Plane Method. “ Ellipsoid*“
denotes the ellipsoid algorithm. In this set of testing problems, the ACCPM starts with
a initial box constraint {z : |z;| £ 105}, and the ellipsoid algorithm starts with a ball
constraints {z : ||z < 10°}.

gorithm described in Section 6.5 and the analytical center cutfing plane method described
in Section 6.6. The equivalent SDP of the optimization problem is solved using MATLAB
LMI Control Toolbox. The results are listed in Table 6.4. Again, we see that the ellipsoid
algorithm and the analytical center cutting plane method are much faster than the MAT-
LAB LMI Control Toolbox. While the MATLAB LMI Control Toolbox spent more than
8 hours to solve the problem, the ACCPM and the ellipsoid algorithm only took about 5

minutes and 20 minutes, respectively.

6.8 Comparison with the Conventional Method

Recall that the IQC optimization problems are in the form of

ir){f d X, subj. to

T . (6.30)
(Gl = A)7'B| QM) F)| |(Gwl-A)"'B >0 Yw € [0, 00).
I F(A) R(X) 1

This problem has an equivalent SDP formulation

inf ¢\, subj. to
P=P'\
Pa+aP PB| [@®) FO)

B'P 0 F(A) R\

(6.31)

The conventional approach of solving an IQC problem is to transform (6.30) into (6.31)

and then solve (6.31) using interior point methods. In this chapter, several cutting plane
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algorithms are presented to solve (6.30) directly. It turns out that in certain cases, the
cutting plane algorithms can solve an IQC problem much faster than the conventional
method does. In this section, we offer some explanations to this phenomenon from the
point of view of computational complexity.

Let the number of decision variables in A be n. Let the dimension of matrix A be ng x ng
and the dimension of R(A) be n, x n,.

In each iteration of a cutting plane algorithm, the major computation involved is to
check whether a trial point is feasible or not. In the case of IQC optimization problems,
the most expensive computational procedure performed in feasibility checking is eigenvalue
decomposition of the matrix R and the Hamiltonian matrix . The arithmetic operations
for eigenvalue decomposition of an m x m square matrix is O(m?). Since the dimension
of the matrix R is n, x n, and the dimension of the matrix # is 2n; x 2n,, the com-
putational complexity of checking feasibility of a trial point is bounded by O(n3 + 8n3).
Suppose that n; = O(n;). Then the number of arithmetic operations required for feasi-
bility checking is O(n2). Thus, the computational complexity of each iteration of cutting
plane algorithms for solving IQC optimization problems is O(n2), provided n, = O(n,).
‘The total complexity of an algorithm is equal to the number of iterations multiplied by the
complexity of each iteration. As discussed in Sections 6.5 and 6.6, the number of iterations
required for the ellipsoid algorithm and the analytical center cutting plane method to con-
verge to an e-accurate solution are O(n?|loge|) and O*(g;), respectively. Therefore, the

total computational complexities of the ellipsoid algorithm and the ACCPM are as follows:

the ellipsoid algorithm: O(n?|loge|) - O(nd),

2
the ACCPM: 0*(:—2) - O(n?).

The computational complexity of the interior point methods for solving SDP has been
well studied [75, 60]. Suppose that n, = O(n,). Then the computational complexity of a
single iteration of the interior point method is O(n2(n2 + n)?), and the total number of
iterations required for the algorithm to converge to an e-accurate solution is O(,/nz| log |).
Therefore, the total computational complexity of the interior point algorithm for solv-
ing (6.31) is O(\/nz|loge|) - O(nZ(n2 + n)?).

From the complexity analysis, we observe the fundamental difference between the cutting
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plane algorithm and the interior point algorithm for solving IQC optimization problems.
In a cutting plane algorithm, the complexity of each iteration is low but the algorithm
requires many iterations to converge. On the contrary, the interior point algorithm requires
only a few iterations to converge but the computational complexity of each iteration is
much higher. The observation from the complexity analysis completely agrees with the
numerical experiments presented in the previous section. Now suppose that n, = O(n) and
disregard the £ term. Then the total complexity of the interior point algorithm is O(nf?),
while the total complexities of the ellipsoid algorithm and the analytical center cutting
plane algorithm are both O(r?n3). This indicates that the cutting plane algorithms shall
outperform the interior point algorithm when ny = O(n). Furthermore, the larger the ratio
nz/n is, the difference in speed is more significant. These two points also agree with what
we observe from the results of our numerical experiments.

Finally, we remark that according to our numerical experiments, the total number of
iterations that the analytical center cutting plane algorithm requires to find an e-accurate
suboptimal solution is closer to O(n|loge|) instead of O*(?—j). That is why the ACCPM
outperforms the ellipsoid algorithm in all our experiments. However, our attempt to prove
that O(n|loge|) is indeed the number of iterations for analytical center cutting plane algo-

rithm to converge was not successful.

6.9 Summary

We implement three cutting plane algorithms, the Kelley type cutting plane algorithm, the
ellipsoid algorithm, and the analytical center cutting plane method to solve feasibility and
optimization problems arising from standard IQC analysis. The cutting plane algorithms are
potentially very efficient compared to the conventional approach for solving IQC problems.
The key idea of achieving the efficiency is to avoid introducing additional decision variables,
which are required in the conventional approach. These cutting plane algorithms have been
tested on a number of numerical examples. The results indicate that they are indeed much
faster than the conventional approach. The difference in speed is very significant when the
dimension of the system matrices is large.

The cutting plane algorithms presented in this chapter are programmed in MATLAB.

These special solvers for IQC optimization problems, as well as the numerical experiments
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Chapter 7

Interior Path-following Algorithms
for Standard IQC Problems

In this chapter, we propose two new barrier functions for IQC optimization problems.
The new barrier functions are used to construct interior path-following algorithms which
follow the basic principles of the standard path-following method. As we already discussed
in the previous chapter, the conventional approach to solve IQC optimization problems
requires introducing new decision variables. Thanks to the new barrier function, the path-
following algorithms proposed in this chapter do not have this requirement. As a result,
these algorithms can solve IQC optimization problems in a more efficient fashion. Numerical

examples are used to evaluate the efficiency of the proposed algorithms.

7.1 Introduction

IQC analysis offers a flexible framework to analyze large complex dynamical systems with
structured uncertainties [55, 66, 67]. In IQC analysis method, conditions for robust stability
and performance are expressed as feasibility and optimization problems over frequency
dependent linear matrix inequalities. The conventional way to treat this type of problems
is to transform them into Semi-Definite Programs (SDPs), which can then be solved using
interior point methods. This transformation, however, has the disadvantage of introducing
additional decision variables. In certain practical problems where the systems to be analyzed
have state spaces of large dimension, the number of additional decision variables resulting

from the transformation is much larger than the number of the original decision variables.

163



The additional decision variables hence become the major computational burden, and most
of computational effort is inefficiently spent on something auxiliary. In these cases, more
efficient algorithms which achieve fast computation are very desirable.

Since the inefficiency is due to the existence of auxiliary decision variables, one approach
to improve the efficiency is to avoid introducing these variables. Along this line of thought,
we presented several cutting plane algorithms which are able to solve IQC optimization
problems in a more efficient fashion in the previous chapter. These algorithms appear to
work very well, especially when the number of states in the system to be analyzed is much
larger than the number of decision variables. However, a disadvantage which cutting plane
methods commonly have is that they generally require many iterations to converge to a
suboptimal solution with good accuracy. Furthermore, our experience indicates that the
number of iterations grows substantially as the number of decision variables becomes larger. -

The interior point method generally does not require many iterations to converge, in
contrast to the cutting plane method. The development of interior point methods dates
back to the 1950s, with good early reference being [22]. Interior point methods have gained
much attention and have become popular since Karmarkar introduced his famous algo-
rithm for solving linear programs [46], not only because his algorithm can be proved to
have polynomial time worst-case complexity, but also because it works quite well practi-
cally. Another milestone in the development of interior point methods was the result by
Nesterov and Nemirovsky [60]. They discovered that Karmarkar’s algorithm, as well as
several other polynomial time algorithms for solving linear programs, can be extended to
solve a much larger class of convex optimization problems. The key element is the knowl-
edge of a barrier function with a certain property called self-concordance. To be usetul in
practice, the barrier must be computable. Nesterov and Nemirovsky have shown that every
finite dimensional convex set processes a self-concordant barrier function; however, their
universal self-concordant barrier is generally not computable. There are only a few classes
of problems for which readily computable self-concordant barrier functions are known. For
the optimization problems resulting from IQC analysis, the only known computable self-
concordant barrier function involves an auxiliary matrix variable which in some cases makes
the computational algorithm based on this barrier function very ineflicient.

In this chapter, new barrier functions for solving IQC optimization problems are pro-

posed. These barrier functions are readily computable: the main computation to obtain
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their first and second derivatives is to solve Lyapunov equations for which efficient com-
putational routines are widely available. Thanks to the new barrier functions, standard
interior path-following algorithms can be applied to solve the IQC optimization problems
without introducing auxiliary variables, which is why the interior point algorithms based on
these newly introduced barrier functions are more efficient than the conventional approach.
Regarding the issues of computational complexity, we have attempted to prove that the
barrier function is self-concordant in order to apply Nesterov and Nemirovsky’s result. Our
attempt was not quite successful, and we have not been able to determine whether the
path-following algorithms using these new barrier functions are polynomial time algorithms
or not. Nevertheless, we are able to show that the algorithms converge globally.

The chapter is organized as follows: following the introduction section, in Section 7.2
we define the notations to be used and formally state the IQC optimization problem under
consideration in this chapter. In Section 7.3, the notion of central path is introduced, and
the interior path-following algorithm for solving general convex optimization problems is
brieﬂy presented. A short discussion of Nesterov and Nemirovsky's complexity analysis
for interior path-following algorithms is also given in this section. In Section 7.4, the new
barrier functions we propose for IQC optimization problems are presented. We will show
how to evaluate the functions and how to compute their gradients and Hessian at a given
point. We also prove certain properties of these barrier functions. These properties ensure
that the interior path-following algorithms based on the proposed barrier functions converge
globally. These algorithms are summarized in Section 7.5. In Section 7.6, we explain why
the proposed algorithms are more efficient than the conventional approach from the point of
view of computational complexity. The proposed algorithms are tested on some numerical
examples. The results and comparison with the conventional approach are presented in
Section 7.7. Section 7.8 collects the proofs of some technical results. These proofs are
put in the end of the chapter for the sake of a smooth presentation of the material in this

chapter.

7.2 Notations and Problem Formulation

Given a function F(A) : R — R, the notations VF()) and V2F () are used to denote the

gradient vector and the Hessian matriz of F(A) (the gradient and the Hessian for short),
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respectively. The partial derivative of F/(\) with respect to the i*" component of X is denoted
by 8;F(A). The second partial derivative of F()) with respect to the i** and j** components
is denoted by ijF(/\). That is,

OF 6 F
GF(N) = 5N BFN = g5 (V).

If F()) is at least k times differentiable, then the notation
VEF)[hy, - ]

denotes the value of the k" differential of F taken at A along the collection of directions
hy, -, hg, where h; € R™.
Recall Chapter 6. The standard IQC optimization problem can be formulated as

inf ¢\, H(w,)) >0, Vwe 0,00, (7.1)
where H(w, A) are of the form
n
H(u.), )\) = Ho(w) + Z )\iHi(w)-

i=1

Each H;(w) is a self-adjoint, rational transfer matrix of the form

(jwl = A7'B| |Qi Fi| |(wl-A)'B
H;(w) = )
I F! R, I

1

where matrices @Q;, R; are real symmetric, and matrix A is Hurwitz; i.e., none of its eigen-

values is in the closed right-half complex plane. Let

i 5
5= | ¢ L i=1, 0. (7.2)

We assume that ¥; are linearly independent. This assumption ensures that none of the

decision variable ); can be removed. The notations Q(A), £'(A\), and R(A) are used to
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denote
k) n n
Qo+ Y M@, Fo+ > MFi, Ro+ Y ARj, (7.3)
i=1 i=1 i=1
respectively. The feasible set of the IQC optimization problems is denoted by ; i.e.,
Q={)|H(w,A) >0, Vwe [0,00]}. (7.4)

In this chapter, we propose two new barrier functions for . Furthermore, standard
interior path-following algorithms based on the proposed barrier functions are implemented

to solve IQC optimization problem (7.1).

7.3 The Interior Path-Following Algorithmn

Consider the general convex optimization problem
inf ¢'A, subj. toXe A (7.5)

where A C R" is a bounded open convex set defined by inequalities ¢;(A) > 0, j =
1,2,.--. The number of inequdlities could be infinity. In this section, we discuss a class of
computational algorithms, called the sequential unconstrained minimization method, or the
interior path-following method, for solving problem (7.5). The method is based on using
smooth minimization techniques, often Newton’s method, to approximately solve a sequence
of smooth, unconstrained problems. The sequence of unconstrained problems is selected in
such a way that the approximate solutions of these problems, denoted by Ay, converge to
the set of optimal solutions of (7.5). The term interior point refers to the fact that AL are
all strictly feasible; i.e., A} belongs to the interior of A for all k.

The contents in this section are well-known. The material is adapted and summarized

from [10], [60], and [7].

7.3.1 The Barrier Function and the Central Path
Suppose that A is non-empty and there exists a function B()\) defined on A such that

e B()) is convex and smooth.
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® B(\) — oo as A approaches the boundary of A.

We refer to B(A) as a barrier function of A. Now, let ;(\) be defined as
0i(A) = td A+ B(A)

where £ > 0. Note that o;(}) is a convex function since it is a combination of a linear and
a convex function.

For any fixed ¢, consider the minimization problem
inf (X)) subj. to A€ A. (7.6)

Note that since ¢;()) is a convex function and A is a convex set, problem (7.6) has a
unique optimal solution. Suppose that a point Ag inside A is known and a gradient method
is applied to solve (7.6) starting at Ag. It is obvious that the successive iterates of the
gradient method will be all strictly feasible and so is the minimizer, since B ()) approaches
infinity as A approaches to the boundary of A. Therefore, the infin (7.6) can be replaced
by min, and the problem (7.6) is solved as if there is no constraint A € A.

We will refer to problem (7.6) as centering. Centering is the main step in an interior

path-following algorithm. Let the minimizer of (7.6) be A*(t); i.e.,
A*(t) = argmin {p:(\) | A € A} (7.7)

For a fixed ¢, the argument of minimum A*(2) is referred to as the center of (7.6). The curve

A*(t), t > 0, is referred to as the central path.

7.3.2 The Path-following Algorithm

Note that A*(t) is also the minimizer of the problem
I
min c¢'A + ZB(/\)'

The term }B(A) — 0 as t — oo for all interior point A € A; therefore, as ¢ approaches
infinity, the barrier term in (7.6) becomes increasingly inconsequential as far as interior

points are concerned. Hence, as ¢ becomes bigger and bigger, the minimizer A*(t) becomes
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successively closer to the boundary of A and eventually converges to the set of optimal
solutions of (7.5).

The idea of the interior path-following algorithm is to follow the central path A*(t) to
an optimal solution of (7.5). The algorithm forms and solves a sequence of unconstrained

problems
min A+ B(A),

where ty = ptp_1, 2> 1,k =0,1,---. As ) is sequentially increased to infinity, the solution
Ak becomes closer and closer to an optimal solution of (7.5). The idea of this algorithms
was first proposed in the 1960s by Fiacco and McCormick, when it was called the sequential

unconstrained minimization method. The basic algorithm can be summarized as follows

Given: Aj € A.
Initialization: set k:=1, t; = 1.

Repeat

(1) Centering : solve A} = argmin ¢y, (A), starting with A}_;.
(2) Select a p > 1.

(3) Set tgy == pty.

(4) Update k:=k+1.

Until ¢, is large enough.

At each iteration, except the first one, we compute the center point starting from the
previously computed center point and then increase ¢ by a factor u. Various unconstrained
minimization methods can be applied to compute the central point in each centering step. A
commonly used method is the Newton descent method. We refer to the iterations executed
during the centering step as the innef iterations.

In the Centering step of the above described algorithm, we assume that the exact center
point is computed. Practically, however, it is not necessary and in fact not possible to
compute the exact center point. Since the central path has no significance other than that
it leads to an optimal solution of the original optimization problem (7.5) when t approaches
infinity, the algorithm will still produce a sequence of feasible points that converges to an

optimal solution even if the centering is inexact.
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The following theorem gives a weak result regarding the convergence property of the

interior path-following algorithm.

Theorem 7.1. Every limit point of a sequence {\;} generated by an interior path-following

algorithm is a global minimum of the original constrained problem (7.5).
Proof. The proof can be found in Chapter 4 of [7] O

In the algorithm, we assume that a strictly feasible point is available to start with. A
feasible point of optimization problem (7.5) can be found using the method discussed in the

next subsection.

7.3.3 Feasibility and the Phase-I Method

To find a point feasible to optimization problem (7.5), we can solve the following problem
sup y, subj. to ¢;j(A)—y>0, Vi (7.8)
Ay

Note that this problem is always feasible. Furthermore, a feasible point of this problem
can be easily obtained. For example, we can simply choose A® = 0 and y(® < min; ¢;(0).
Let n = [)\’ y]’. We can see that maximization problem (7.8) is also in the form of (7.5)
with ¢ = [(] 0 ... _1]. Therefore the problem can be solved using the interior path-
following algorithm described in Section 7.3.2 starting at the point n{® = {0, e ,y(o)]. If
the optimal objective of (7.8) is larger than or equal to 0, then (7.5) has a strictly feasible
point. Furthermore, if 7 is a feasible solution of (7.8) such that y > 0, then A is a feasible
solution of (7.5). This means we can terminate the algorithm anytime when we obtain a
solution with a positive y. On the other hand, if the optimal value of (7.8) is less than 0,
then the original optimization problem is infeasible.

There are many variations on this idea which one can adopt to obtain a feasible point.
One of them, which is often called the Phase-I or the Big-M method, is quite useful because
of an interesting property. The Phase-1 method forms an auxiliary problem similar to (7.8)

but adds an inequality ¢ < M:

inf —y, subj. to
Ay (7.9)
M—dX>0 and ¢;(A)—y>0, Vj,
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where M is larger than the optimal objective of (7.5). Suppose that there exists a function

B(X,y) such that
* B(),y) is a barrier function of the set {Ny) | o) - ¥>0,Vj}

* B(A,0) is a barrier function of the set {) | $;(A) >0, v 5},

c .
i =0, __1,,_., .
VB(A,y)—f- C,,\—O ) n

If (A, ¥) is on the central path and g = Q, then X satisfies

G 3 .
oax tVBA0 =0, =1,

Note that the above equalities are the Optimality conditions of the minimization problem

n}\in A+ (M- A B(A, 0).

central path associated with (7.5) (at £ =1 /(M — ). Therefore, when the path-following
algorithm returns ap approximate center point of (7.9) such that ¥ is larger than but very

close to zero, we immediately obtain feasible solution of (7.5) which is almost centered.

7.3.4 Convergence and Complexity Analysis



a polynomial function which only depends on log(1/¢) and the size of problem. Usually, an
algorithm is considered to be efficient if it is a polynomial time algorithm.

The introduction of polynomial time interior point methods is one of the most remark-
able events in the development of mathematical programming in the 1980s. The first method
of this family was suggested for linear programming by Karmarkar [46]. Karmarkar’s work
is considered as a landmark since his work inspired very intensive and fruitful studies in the
subject of polynomial time interior point algorithms. The connection between Karmarkar’s
algorithm and classical interior path-following algorithms was pointed out by Renegar [68].
He also demonstrated that in the case of a linear programming problem, the path-following
algorithm associated with the standard logarithmic barrier converges in polynomial time.
Another major breakthrough in this subject is the result by Nesterov and Nemirovsky [60].
They discovered that among all properties of a barrier function, only two are responsible
for the polynomiality of the associated interior path-following algorithm. In this subsection,

we briefly summarize Nesterov and Nesmirovsky’s results.

Self-concordance and Complexity of the Interior Path-following Algorithm

Let X < R™ be an convex open set. A smooth convex function F' : X — R is called
self-concordant with the parameter value a (or a-self-concordant for short) if there exists a

constant a such that the following inequality holds for all x € X and for all A € R™:
IV2F(z)[h, h, B]| < 2a~Y2(V2F(z)[h, h])?. (7.10)

F(z) is called strongly e-self-concordant if furthermore F(r) — oo as z approaches the
boundary of X.
Example 7.1. The function f(z) = —Inz is a self-concordant function on (0, 00). It can
be easily verified that | f(z)| < 2f(z)"5. However, f(z) is not a strongly self-concordant
function since f(x} — —oo as z — co. On the other hand, g(x) = x — Inz is a strongly
self-concordant function on (0, c0) which has the same self-concordant parameter as f(x)
has.

Now, consider again the minimization problem (7.5). Let B(A) : R” — R be a smooth

convex function defined on A and satisfy

(P1). B(X) — oo as X approaches the boundary of A.
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(P2). There exists a constant ¢, such that inequality [V3B(A)[h, h, k]| < c1(V2B(A)[h, h})%
holds for all A € A, and for all h € R™.

(P3). There exists a constant ¢, such that inequality |VB(A)[h]| < co(VZB(A)[h, k])7 holds
for all A € A, and for all h € R™.

By properties (P1) and (P2), the barrier function B(}) is strongly self-concordant. Note
that a scaling B(A\) — ¢B(}) updates the constants ¢; and ¢y as follows

c] — c—l/zcl, Cy — cl/ch.

Therefore, one can enforce one of the constants to be a prescribed value. Nesterov and
Nemirovsky refer to a barrier function which satisfies all three properties with ¢; = 2 (This
irplies that B(\) is a strongly 1-self-concordant function.) and ¢y = ¥ as a ¥-self-concordant

barrier.

Example 7.2. Let A be a bounded convex polytope {X | alX < b;, 1 <i < m}. Then the

standard logarithmic barrier function for A
B(A) == In(b; — aj))
i=1

is an m-self-concordant barrier.

Nesterov and Nemirovsky gave a complete complexity analysis of an interior path-
following algorithm based on a self-concordant barrier. Their results are summarized in
the following theorems. The proofs of these theorems can be found in Chapters 2 and 3 of

their book [60].

Definition 7.1. Let F(z) be an a-self concordant function. The Newton decrement of F

at a point z is defined as

@) = (ore )

where e(z) := — V2F(2) !V F(z) is often referred to as the Newton descent direction at z.

Theorem 7.2, Let F(z) : X C R” — R be a strongly a-self-concordant function, and p(z)
be the Newton decrement of F(z).
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1. If there exists x € X such that p(x) < 1, then F(z) attains its minimum over X; 1.e.,
argminy F(z) # 0.

2. Let # € X such that p(#) < co. Let p* =2 — /3 and consider the following Newton

ieration starting at ©

where

L, if p(zi) < p*

1/(1 + p(z;)), if otherwise.

o(p(x:)) =

Then, we have p(ziy1) < 3p(xi), if p(x;) < p*. If p(zi) = p* then F(z:) = F(Tip1) >
(™ —n(1 + ).

3. Let z* € argminx F(z), and let x; be such that p(z;) < 1/3. Then

o 07 (z) (1 + 7(24))
F(z;) - F(a*) < 20— ()

(7.11)

where T(z;) = 1 — (1 — 3p(z:))M/5.

Theorem 7.3. Let B(X) be a V-self-concordant barrier for problem (7.5), and @i(\) =
tc/ X+ B()\). Let p and s be constants such that p > s > 1 and & = p/fs.

1. Letv >0 and N € A. If ps(\) < v, and

1/2 5
(1+-ﬁ—)lnm§1—M,

v 14

then p,(A) < v. Here py()) and ps()\) are the Newton decrements of () and @s(A),

respectively.

2. Let pe (0,1) and X € A be such that ps(\) < p. Then
ou(N) = u(N (1)) < O()(Jk — 192 + 1) + Ik — 1 — In k).

where \*(u) denotes the minimizer of p,(N), and O(1) depends only on p.
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Theorem 7.4. Consider problem (7.5). Let X*(t) be the central path generated by a ¥-self-
concordant barrier and p* be the optimal objective of (7.5). Then /A*(t) — p* < 9/L.

In the first outer iteration of the interior path-following algorithm, we minimize the

function

10 = A+ B(N).

Suppose that B(A) is a ©-self-concordant barrier. Then, @;()) is a strongly 1-self-concordant
function since the second and the third derivatives of ¢;()) are identical to those of B()).
In fact, @:(M) is 1-self-concordant for all t. Therefore, the Newton’s method described in
the second statement of Theorem 7.2 allows us to compute an e-approximation of the center

A*(1) in

l'gol()\o) —(;.01(,\*(1))-‘ + O(lne]) (7.12)

Newton iterations, where § := p* — In(1 + p*) ~ 0.0305, and )¢ is the initial point at which
the Newton’s method starts. To see (7.12), note that the Newton’s method described in
Theorem 7.2 can be divided into two stages: the first one corresponds to p1()) > p* and
the second one corresponds to p1(A) < p*, where p;()) is the Newton decrement of ¢;()).
At the first stage, @1(A) decreases in each iteration by a quantity that is guaranteed to be

at least p* —In(1 + p*). Since ¢;(A) is bounded below, therefore, in at most

200 )] 713
]

iterations, p;(A) has to become smaller than p*, and the Newton’s method enters the second

stage. At the second stage, the quantities pj(};) decrease quadratically. Hence, an e-

accurate suboptimal solution is found in O(|loge|) Newton iterations after the Newton’s

method enters the second stage.

In each outer iteration (except the first one), with an increased t, the path-following
algorithm recomputes an approximate center point starting at the previously computed
one. Theorem 7.3 relates the increment in ¢ and the number of Newton iterations required
to obtain an approximation of the new center. Suppose that the value of t is increased

from s to s7. Furthermore, suppose that an approximate center for A*(s) (denoted by As)
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satisfies ps(As) < % p*. Note the inequality implies that ) is in the quadratically convergent
stage of minimizing @s(A). By the first statement of Theorem 7.3, if v := p* and

st o —psQs)
1 = — < _— 7.14
< K p _eXp( P*+791/2 ) ( )

then pg+ (A5} < p*. In other words, if « is selected according to (7.14), then the current solu-
tion A, remains within the quadratically convergent stage of minimizing ¢+ (A). Therefore,
only a single Newton iteration is required to obtain an approximate center Ag+ for A*(sT)
such that pa(Ae+) < %p*. This selection of & usually referred to as the small step strat-
egy. The advantage of small step strategy is that only one Newton iteration is required for
re-centering. However, since « in this selection is usually very close to 1, therefore, many
outer iterations are required for the path-following algorithm to converge.

On the other hand, the large step strategy chooses a larger x which might make pst(As) =
p*. In this case, \s is no longer in the quadratically convergent stage of minimizing ¢+(A),
and more than one Newton step is required to restore the centrality. The second statement
of Theorem 7.3 provides an upper bound on @+ (As) — (,os+()\*'(s+)'). This upper bound
in turn gives an estimate of O(Y) Newton steps for restoring the centrality. Thus, by the
large step strategy, we make a more rapid progress in increasing ¢ at the price that more
Newton's steps are required for re-centralization each time when the value of ¢ is increased.

Finally, Theorem 7.4 implies that the algorithm converges to a central point which is

an guaranteed e-accurate suboptimal solution in O(log g) outer iterations.

Remark 7.1. We note that only properties (P1) and (P2) (i.e., the strongly self-concordance)
of a barrier function are required to establish Theorem 7.2. Furthermore, the first statement

of Theorem 7.3 and Theorem 7.4 are established only by property (P3).

7.4 New Barrier Functions for IQC Optimization Problems

Now let us consider the IQC optimization problem (7.1). It is well-known [9] that the
frequency dependent matrix inequality in (7.1) holds if and only if there exists a symmetric

matrix P such that

PA+ A'P PB n
E(P,)) := +To+ Y ME; > 0. (7.15)
B'P 0 i=1
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Hence, problem (7.1) is equivalent to a SDP
Pir}l:fll/\ dA, E{(PX) >0 (7.16)
The feasible set of problem (7.16) has a well-known self-concordant barrier
—logdet(E(P, A)), (7.17)

where the notation det(M) denotes the determinate of the matrix M. The barrier func-
tion (7.17), however, involves an additional matrix variable P. The decision variables in
P is proportional to the square of the dimension of the matrix A. Therefore, when the
dimension of the matrix A is significantly larger than the square root of the number of
the original decision variables, the decision variables in P become the major computational
burden for an interior point algorithm based on barrier function (7.17). In these cases, the
interior point algorithm is inefficient in the sense that the computational effort is spent on
solving auxiliary decision variables.

The main purpose of this chapter is to propose alternative barrier functions which can
be used to construct more efficient interior point algorithms for solving IQC optimization

problems. We propose two new barrier functions. They are described in this section.

7.4.1 The First Barrier Function

We propose the following function

o0}

Bi(\) = * / tr(H(w, 3)~")

- m, A€ £, (718)

as a candidate barrier function for IQC optimization problems. It is obvious that B1(}) is
smooth. The i** element of the gradient and the (¢,7) entry of the Hessian of B;(\) are

given as follows:

BB(N) = - /_ " e (H(w, )~ Hy () H(w, )\)1)%, (7.19)
82,B)() = % / Z tr(FL(o, 1)~ O, )7 H () Hw, ) ) i“’wg. (7.20)

Furthermore, it is not difficult to verify that B;(}) is a convex function.
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Proposition 7.1. Bi(A) is a conver function.

Proof. We prove B, (A) is convex by showing that the Hessian of By (A) is strictly positive
definite; i.e., VZB1(X) > 0, for all ) € 0. By (7.20), we have!

OQ
V2 BUN) B = 3 82 By (A — % / tr(H- AH -1 AH~1)
7,7 -

o0 14+ w2
= [t e

where A4 = 57 | hH,(w). Therefore VZBi(N)[h,h] > 0 for all A € 0 and for all A # (.
This concludes the proof. 0

Furthermore, we can show that the value of B1(A) approaches Infinity as A approaches
the boundary of . This property, together with smoothness and convexity, makes Bi(A) a

natural barrier for £2. Before we prove this property, we first discuss how to evaluate B, {A).

Computation of the value, the gradient and the Hessian of By(N)

Although the integration over an infinite horizon makes B, (A) seemingly difficult to evaluate
at any given A, the evaluation can be performed by using a rather efficient computational
procedure. The main computation for evaluating B, (A) is to solve one Riccat; equation and
one Lyapunov equation. Moreover, efficient computation of the gradient and the Hessian
of Bi(A) at a given A can be also performed by a similar approach. We here present thege
computational procedures.

Let A belong to the feasible set 2. Therefore H(w,X) >0V w. Let Q, F, R denote con-
stant matrices Q(A), F(}), and R(X), where Q(A), F(}), and R(X) are defined in (7.3). The

Lemma 7.1. Assume that 4 € Rm*m is @ Hurwitz matriz. The following three statements

are equivalent

1 H(w,)])>0\/w€[0,oo].

1 he w, A dependence of H{w, A\) and H; {w) are suppressed for simplifying the notation.
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2 H(w,X\)™! can be factorized as Dy + Gy (jw) + Gp(jw)*, where

Gu(s) = Cy(sI — Ag) 'By, (7.21)
Ay =A+BCy, By=BR'+YC}, (7.22)
Cy=-RYPB+F), Dy=R1, (7.23)

and P, Y salisfy the following Riccati and Lyapunov equations, respectively

PA+AP+Q—(PB+F)RY(PB+F) =0, (7.24)

AgY + YAy + BRT'B' =0. (7.25)

Furthermore, matriz Ay is a Hurwitz matriz and has the same dimension of matric

A.

3 H{w, )" can be factorized as U (jw)¥(jw)*, where
U(s) = R% + C(sI — Ay) " BR3. (7.26)

Proof. See [92]. O
Given any A € ©, B1()) can be evaluated using the formula in the following lemma.

Lemma 7.2. Let X € Q. Then By()) = tr(Dy) + 2tr(Cy(I — Ay)~'By), where Ay, By,
Cu, Dy are defined in (7.22) to (7.25).

Proof. First, notice that the order of the trace operator and the integral operator can be

reversed; therefore by the second statement of Lemma 7.1, we have

B =tr (3 [ (D + Gutio) + Gt 1525 )

—00

= tx(Dp) +r (1 [ (Guliu) + Grlje) )4z ).

—o0

Now, if we treat Gy (jw) as the Fourier transform of the stable causal system Gg(s) and

let g(t) be the impulse response of Gg(s), then we have

et e = o [ aute); Ly o= gty se

14+ w? 27 J_ o 14+ w? =0
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where * denotes the convolution operator. Since Gg(s) is stable and causal, we have
o0
sy we M| = [ atr)ear = Gu(t) = Cull - Am) ™ By
= 0
Similarly, we have
1 /00 G (jw)*#dw =Cg(l— Ap)~ !By
T J oo A 1+ w? )

Thus we conclude that By(}) is equal to the formula stated in the lemma. O

Therefore, computation of B;(A) mainly involves solving Riccati equation (7.24) and
Lyapunov equation (7.25). Solving Riccati equations and Lyapunov equations has been
well studied, and efficient computational routines are widely available. Thus, evaluation of
Bi()) at a given A can be performed very efficiently.

We are now ready to show that that Bj(\) approaches to infinity as A approaches to
the boundary of £2.

Proposition 7.2. Let {)\,}3%, be a set of points strictly inside ) such that A, approaches
the boundary of §1 as n — oo. Then Bi(A,) — oc.

Proof. Let A belong to the boundary ; i.e., H(w,X) is only semi-positive definite and
singular at the set I' = {£w;, i = 1,--- ,m}. It is a well-known result in the area of systems
and control that, in this case, either R := R(X) is singular (if co € I'), or Ay has pure
imaginary eigenvalues {%jw;, i = 1,---,m} (if co & I'). If R is singular, we see from
Lemma 7.2 that B; (X) is unbounded since Dy = R~ and R is not invertible. If R is not
singular, then H(w, X) can be factorized as ¥(jw)¥(jw)*, where ¥(s) is defined in (7.26).
Note that

L e = T e u o) T = 2@, (720

T /oo 1+ 7/ o
where ¥(s) = s%@(s) Since Ay has eigenvalues on the imaginary axis, T(s) is not a

stable transfer matrix. Therefore, its Hg-norm is unbounded, which in turn implies that

B1(X) is unbounded. This concludes the proof. g
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Lemma 7.2 gives the following equivalent expression for B; (A)
Bi(A) =tr(Dg(X) +2Cu (NI — Ax(N) ' Bu()), (7.28)

where Ay (A), Br(A), Cr(A), and Dy (A) are defined as in (7.21) to (7.25) with G, F and
R replaced by Q(A), F(A), and R(A). By partially differentiating (7.28) with respect to \;,

we obtain the following expressions for the 5t* component of the gradient of B; ()

0iB1(X) = tr(8,Dur) + 2(0Cr)(I ~ Ar) "' By — Cy(I — Ap) ' (8:4n)(I — Ax) "By
+Cu(I - An)~Y(:By))
=tr(8:Dg +2(I + Cu(l — Ag) 'B)((8:Cu)(I — Ag)~ By)
+2Cy(I — Ax)~Y(8;By)), (7.29)

where the second equality is obtained by noting that 0iAy = B(9;Cy). It can be easily

verified that the partial derivatives of By, Cg, and Dy have the following expressions

8;Cy = R™'RiR"'(PB+ F)Y - R™Y((8,P)B + F,Y, (7.31)
&Dy=-RIR,R7!, (7.32)

and the partial derivatives of P and Y satisfy the following equations

(0:;P)Ap + A (8;P) + (Q; + F.Cy + CyF, + CyR,.Cy) = 0, (7.33)

Ar(3Y) + (8Y)Ay + (B(8:Cn)Y +Y(8,Cy)B — BR™'R,R™'B') = 0. (7.34)

For a given point A € 2, computation of V; B, (:\) can be performed as follows: first, notice
that for a fixed A, equation (7.33) is a Lyapunov equation with respect to §;P. Thus, the
value of 9; P can be obtained by solving the Lyapunov equation. Then the values of 8; Dy,
0;Cy can be computed according to expressions (7.32) and (7.31), respectively. As soon as
the value of 8;Cy is available, one can solve another Lyapunov equation (7.34) to obtain

the value of 8;Y and then evaluate &;Bp using expression (7.30). Finally, &;B1(A) can be

evaluated using equation (7.29). Hence, the main computation for obtaining the value of
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every entry of the gradient of B;(A) is to solve two Lyapunov equations.

If we further differentiate (7.29) with respect to A;, we obtain an expression for d;; B1(A)
8i;B1(N) = tr(8% D) + 2tr(Cuy (I — Ag) ™ (85 Bu) + (L + Cu(l — Ag) 1BYTY), (7.35)
where

Ty = (83Cu)(I = An) "' Bu + (3:Cu)(I — Aw) ™' ((8;Bn) + B(0;Cu)(I — An)~'Bpy)

+(8;Cm)(I — An) '((&Bn) + B@Cr)(I — An) " Bn), (7.36)
3B = (95Y)Cly + Y (B5Ch) + (BY )(8,Cu) + (BY)(OCu), (7.37)
& Cu = —R™(Ry(8iC) + Ri(d;Cr) + B'(95PY), (7.38)
02Dy = R'RiR'R;R™' + RT'R;RT'R:R7Y,. (7.39)

B%P and B%Y satisfy the following Lyapunov equations
(85, P)An + A (95P) + (T2 + T3) = 0, (7.40)
(O5Y)Am + Ag(95Y) + (T3 +13) =0, (7.41)

where 75 and T3 denote the following expressions

Ty = ((6;P)B + CuRi + F3)(0;CH), (7.42)

T3 = B((8:;Cy)(9;Y) + (0;Cr)(0;Y) + (B%CH)Y) + BR-IRT;R_IRJ'R_IB’. (7.43)

For a given X € Q, the computational procedure for evaluéting 8ijBl(5\) is similar to the
one for computing V;B1()). Assume that the values of first partial derivatives of By, Ch,
Dy, P, and Y are available. Then, T3 can be evaluated, and Lyapunov equation (7.40) can
be solved for the value of 82-21-P. As soon as the value of B%P is available, one can evaiuate
82 By, 8%4Cu, and 8}, Dy using expressions (7.37) to (7.39). Once the value of 8%CH is
obtained, Lyapunov equation (7.41) can be solved for the value of B%Y. Finally, ijBl (A)
can be computed according to expression (7.35). Thus, we see that the main computation
for obtaining the value of of every entry of the Hessian of Bi(A) is to solve two Lyapunov

equations.
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Properties Related to Polynomial Time Complexity

In order to apply Nesterov and N emirovsky’s results to construct a polynomial time interior
path-following algorithm, the barrier function B1() has to satisfy properties (P1) to (P3).
We have already shown that B;(\) satisfies (P1) in Proposition 7.2. However, the following

counter-example demonstrates that in general, B; (A) does not satisfy property (P3).

Example 7.3. Let H(w, \) := A — ;2175 It can be readily verified that the set ) defined
by {A | H(w,A) > 0, ¥V w € [0,00]} is the open interval A > 1. It can also be easily verified,
using Lemma 7.2, that Bj(A) = 2//A(A —1). Therefore, the first and second derivatives
of Bi(X) can be computed straightforwardly:

2A—1
(AA-1))3’
B (/\)=18)\2—8/\+3
T zonont

Bi(\) = -

Let

(N2 2(2x —-1)?
Bi()  (A(A-1)3(8X -8A+3)

T =

Obviously, r1 — o0 as A — 1. Thus, there exists no constant ¢ such that |Bi(\)] <

¢ (Bi(\)2, ¥ XA € (1, 00).

‘Therefore, we can not apply Nesterov and Nemirovsky’s results to construct a polynomial
time interior path-following algorithm using barrier function Bi(A). Nevertheless, B;(A) is
still a well-defined barrier for Q and can be used to construct an interior path-following
algorithm for solving IQC optimization problems. Furthermore, Theorem 7.1 guarantees

that the interior path-following algorithm based on B1(A) converges globally.

7.4.2 The Second Barrier Function

In this subsection, we present the second barrier function we propose for IQC optimization

problems. Consider the following function defined on

Bs(A) = log B1(A). (7.44)
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Obviously, B2(\) is a smooth function, and Ba()) approaches infinity as A approaches the
boundary of Q since Bi()) does. The following proposition shows that Ba(}) is also a

convex function. Hence, By()) is a well-defined barrier for {2.

Proposition 7.3. Ba()\) is a convex function.

Proof. We will show that the Hessian of By () is strictly positive definite; i.e., V2Bz(X) > 0,
for all A € Q. It can be easily verified that

V2By()\) = B{Y (W) V2B (\) — BT (A)VB1(A) VB (A

Since B1()\) > 0 for any A € Q, therefore, given any A € (, V2B,()\) > 0 if and only if
V2B (A) — B{{(A) VB (A\)VBi(A) > 0. To prove V2B1()\) = B{ {(A)VB1(A)VBi(A) >0,

it is sufficient to show that

V2Bi(\) VBi(})
VBi(A)  Bi(A)

(7.45)

Matrix inequality (7.45) holds if V2By(A)[h, &] + 2VB1(A)[h] + Bi(A) > 0, for all h € R™,
h#0. Let A=3"h;H;(w). By (7.19) and (7.20) , we have

VBB, ]+ 2VBI(N[R] + Bi(A) = Y hihi83Bi(X) + 2> hidiBi(A) + Bi()

1 [e0)
- _/ tr( 2H ' AH ' AH-!—2H"1AH"! + H™) du
TJ oo 1+ w?
1 [ 1 1 1 dw
== 2|H zAH ! — 0.5H"2||% + 0.5|H 2| —.
L[t osEH 0 Er

Hence, for any A € Q, V2B1(A)[h, ] + 2VB1(A)[h] + B1(A) > 0 for all A # 0. This in turn
implies that VZB3(X) > 0 for all A € 2, and thus Bg(}) is a convex function. O

Since Bo()\) = log(B1(\)), evaluation of barrier function Bz()) is performed by a com-
putational procedure the same as the one for evaluating By(\), except the logarithm of the
value of B;()) is taken in the end. Therefore, the complexity of evaluating Ba(A) is almost

the same as the complexity of evaluating Bi(A). As to the gradient and the Hessian of
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By(}), it can be readily verified that

VBy(\) = B (M VBi(N),
V2By(A) = By Y(A)VZB1()\) — BIAA)WVB (A VB (N

Therefore, as soon as the value, the gradient, and the Hessian of B;()\) are available, the
gradient and the Hessian of B3(A) can be easily computed with little extra computational
effort. Hence, the computational complexities of computing the gradient and the Hessian
of By(A) are only slightly higher than those of Bj()).

What we gain from the extra computational effort is that now the barrier function Ba()\)

satisfies property (P3), one of the requirements for Bz(A) to be a self-concordant barrier.

Proposition 7.4. The barrier function Ba(\) satisfies
IVB,(M[R] < (V2Bs(W)[h, k)7, VA€A, VheR", (7.46)

where v is greater than or equal to 1.

Proof. Substituting the expressions of the gradient and the Hessian of By()) into the in-
equality in (7.46) and noticing that B;(A) > 0V A € €2, we see (7.46) is equivalent to

@+ 1)BIHVBI(NR)? < v2V2Bi(A)[h, k], YAEQ, YheR" (7.47)
Condition (7.47) is satisfied if the matrix

VZBi(A)  VBi())
VBi(\) #1Bi(})

is positive definite for all A € Q. Therefore, what we have to show is that V2B, (\)[h, k] +
2VBi(\)[h) + #7B1(X) = 0 for all A € Q and for all h € R™. We have

2

9 1%
Ak B
VEB1(A)[h, k] + 2V B1(A)[h] + 1 1(A)
= l/m tr( 2H 1 AH ' AH 1 —2H'AH-! + - H1) d
T J_ oo v+l 1+ w?
1 ™ 1 _1 1.9 v2 1 _l.,p dw
B L S
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2

2 v
241 =

where A = 57 | hiH;(w). Note that 3=
Lify? > 1. Hence, as long as v = 1, we have V2B1(A)[h, k] + 2V Bi(N)[b] + #1 Bi() > 0
for all A € © and for all A € R". This concludes the proof. O

is monotonically increasing on [0, c0), and

Furthermore, we can also prove that property (P2) also holds for Ba(X).

Theorem 7.5. There exists a constant ¢ such that
IV3By(A) [k, b, h]| < o(V2Ba(N[h, AT ¥ b € R (7.48)

holds for all X € §).
Proof. The proof is included in Section 7.8. O

Thus, By()\) satisfies all three properties (P1) to (P3) and is a strongly self-concordant
barrier. However, although we are able to prove that (7.48) holds, the value of the constant
¢ is not provided from our proof and yet to be determined. Furthermore, in order for the
interior path-following algorithm based on B3(A) to be a polynomial time algorithm, the
constant ¢ can only depend on the size of a given problem but not the data of the problem.
Judging from some numerical experiments, this property does not seem to hold on Ba(A).

See the following example.

Example 7.4. Let H(w, A) be § + 123, a > 0. Note that this H(w, A) corresponds to the
set {\ | 0 < A < 1} regardless the value of a. Then

1

Bg()\) = log Bl()\) = log (; + —1_—)\>

The second and the third derivatives of By(A) can be easily computed. Let

_ Ba(W?
T By

. (7.49)

Numerical computations indicate that the maximum of v over (0,1) varies with a: the
maximum is equal to 4 when a = 1, is between 38 and 39 when a = 100, and is between

7634 and 7635 when a = 100000. We expect the maximum approaches infinity as a does.

Hence, we are not able to apply Nesterov and Nemirovsky’s results to construct a polyno-

mial time interior path-following algorithm based on By()). Nevertheless, the path-following
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algorithm based on B, (X) converges globally according to Theorem 7.1. Furthermore, for a

fixed ¢, Theorem 7.4 shows that the center corresponds to
m}i\n tc' A + Ba(A)

is guaranteed to be %-accurate; i.e., if A*(t) is the minimizer of the above minimization prob-
lem, then the difference between ¢/ A*(t) and the optimal objective of the original problem

is less than 1/t.

7.5 Path-following Algorithms for IQC Optimization Prob-

lems

Barrier functions Bi(A) and Ba()) are used to construct interior path-following algorithms
for solving IQC optimization problems. The algorithms follows the basic principles of the
interior path-following method described in Section 7.3. The algorithm based on barrier

function B1(A) can be summarized as follows.

Given: X € S
Initialization: select t :=to >0, g > 1, and € > 0. Set Ay := Ao and U = c' Ay

Repeat

(1) Centering : find an approximate solution to the problem
min ei(A) =t A+ B1(X\)

using the Newton's method:
Start at A\p. Set n=20.
Repeat
(a) Compute the Newton descent direction dA, = —(Vznpt(An))’IVLpt(/\n)
(b) Compute Newton decrement at A : p = (Vot(An) (Vz%(}\n))—lv%(}\n))%.
(¢) Line minimization: compute o = argmin pi(An +a- 5Xn)-
(d) Set Ant1 = An + a*dA, and n:=n+ 1.

(e) If ' Apy1 < U, then update Ay = An41 and U:=cd M.
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(f) If p < ¢, then stop the loop and return A, and Ay.
End.
(2) Update Ao : set Ag := Ay.
(3) Update t : set t := pt.
Until (the stopping criterion is satisfied).
The initial feasible point Aq is found (or determined not to exist) using the Phase-I method
described in Section 7.3.3. The algorithm for Phase-1 is the same as the algorithm described
above.
Since By (A) is not a self-concordant barrier, the rigorous stopping criterion (in the sense

that on exit, an e-accurate suboptimal solution is guaranteed) by Nesterov and Nemirovsky

does not apply here. In the algorithm, we adopt a heuristic criterion
. (1
Until (EBl(AU) < e) : (7.50)

The idea of this criterion is straightforward: if } By (\y) is very small, then the penalty term
has very little influence, and one can expect that the objective at the solution Ay should
be very close to the optimal objective of the original problem.

The interior path-following algorithm based on barrier function B is the same as the

algorithm described above, except the stopping criterion. Instead of criterion (7.50), we use
Until (% < e) (7.51)
as the stopping criterion. We have already shown that barrier function Be()\) satisfies
(VBy(A) Al < (VEBy(A)[h, B])Z, Y AEQ, VheR™
Therefore, according to Theorem 7.4, the minimizer of
rn)fn t' A + Ba(A)

1s guaranteed to be %-accurate. Hence, if % < ¢ and the approximation of the center is

sufficiently close to the center, then one can expect that the approximation of the center
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is e-accurate. If the barrier function is self-concordant, then there is a rigorous mathemat-
1cal criterion to determine whether an approximate center is sufficiently close or not. The
criterion, however, requires the value of the self-concordant parameter (i.e., the constant c
in (7.48)). In our case, since we do not know the value of the self-concordant parameter
associated with Ba(A), we are not able to apply the criterion. In our algorithm, an approx-
imate center is considered to be close enough to the center if the Newton decrement at the

approximate center is less than a pre-selected small number.

7.6 Comparison with the Conventional Method

In this section, we compare computational complexities of the interior path-following algo-
rithms proposed in this chapter with the complexity of the conventional method of solving
IQC problems.

The conventional approach to solve the IQC optimization problem (7.1) is to transform

it into the equivalent SDP

inf’ c’A, subj. to

P=P’,\
; (7.52)
PA+AP PB| QX FO| _
B'P 0 F(AY RN

Problem (7.52) is then solved using interior point method. Let the number of decision
variables in A be n. Let the dimension of matrix A be ny x n; and the dimension of
R()) be n, x n,. Problem (7.52) has a well-known strongly (ng + n,)-seli-concordant
barrier, and the interior point algorithm for solving (7.52) can be proven to converge in
O(y/ny + n, log "E0c) Newton steps [75, 60]. Furthermore, the computational complexity
of each Newton step is counted as O(nZ(n2 + n)?). Therefore, the total complexity is
O(y/z F 7oy log "2tz . O(n2 (n2 + n)?).

In the case of the interior path-following algorithms proposed in this chapter, the number
of Newton steps required for the algorithms to converge is yet to be determined. However,
the complexity of each Newton step of the algorithms can be estimated as follows: in each
Newton step, the algorithm computes a descent direction and performs a line search to find
a new point. This procedure involves one computation of the gradient, one computation of

the Hessian, and O(1) evaluations of the barrier function. To evaluate the barrier function,
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a Riccati equation in the form of (7.24) and a Lyapunov equation in the form of (7.25) have
to be solve. The computation complexities of solving (7.24) and (7.25) are both O(n}). To
compute each entry of the gradient and the Hessian of the barrier, two Lyapunov equations
in the form of (7.25) have to be solved. Complexity of solving each of the Lyapunov function
again is O(nS). There are n entries in the gradient vector and ”2% entries in the Hessian
matrix. Therefore, the estimated complexity of each Newton step is O(n’n3).

Suppose that ny = O(n). Then each Newton step of the interior point algorithm for
solving SDP (7.52) requires O(n¢) arithmetic operations, while each Newton step of interior
path-following algorithms proposed in this chapter requires only O(n®n?). This is the why
the algorithms proposed in this chapter are more efficient. Furthermore, we expect that
when the ratio ng/n is large enough, the algorithms proposed in this chapter will perform
significantly better than the conventional method. The total complexity of an algorithm
is the complexity of an iteration times the number of iterations the algorithm requires to
converge. Therefore, the argument here is based on the assumption that the number of
iterations which the path-following algorithms presented in this chapter require to solve
an IQC problem is roughly the same as the number of iterations which the interior point
algorithm requires to solve the equivalent SDP.

In the next section, we present the results of numerical tests on the interior path-
following algorithms proposed in this chapter. As we will see, these results agree with the

expectation from the complexity analysis.

7.7 Examples

Example 7.5. Consider the Lp-gain estimation problem in Example 6.1. Again, let n =
10 and n, = 10,---,70. For each pair of (n,n;), the five randomly generated problems
mentioned in Chapter 6 are solved using the interior path-following algorithms proposed
in this chapter. Figures 7-1 and 7-2 show the amount of time the two algorithms spent on
solving these problems.

First of all, we see from Figure 7-1 and 7-2 that the two interior path-following algorithms
have similar performance. The amount of time they spent on solving a problem is at the
same level. This is expected since, for a single iteration, the two algorithms have similar

computational complexities.
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Figure 7-1: This figure shows the amount of time that the interior path-following algorithm
based on the first barrier function took to solve problem (6.9). For each ng, five test
problems were randomly generated. As we can see from the figure, all problems were solved
in less than 15 minutes. Compared with the Figure 7-3, we see that the proposed algorithm
is significantly faster than the conventional method when the problem to be solved has a
large state space. Furthermore, the proposed algorithm is no worse than the conventional
method even when the problem has only a few states.
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Figure 7-2: This figure shows the amount of time that the interior path-following algorithm
based on the second barrier function took to solve problem (7-1). We see the performance
of the interior path-following algorithm based on the second barrier function is very similar
to the performance of the algorithm based on the first barrier. The amount of time they
spent to solve a problem is at the same level.
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Figure 7-3: This figure (same as Figure 6-2) shows the amount of time that the MATLAB
LMI Control Toolbox took to solve problem (6.10).
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Method iteration | iteration | iteration | iteration | iteration | iteration | iteration
LMI Tool 24 23 28 25 28 37 33
iPA-1 31 30 31 43 28 33 36
IPA-2 27 34 42 40 33 24 36

Table 7.1: Numbers of iterations that the MATLAB LMI Control Toolbox (denoted by
“LMI Tool“), the first interior path-following algorithm (denoted by “IPA-1%¢), and the
second interior path-following algorithm (denoted by “TPA-2*) took to solve problem (6.9).

Compared to the Figure 7-3 (which is the Figure 6-2 in Chapter 6), the performance of
the two algorithms proposed in this Chapter is similar to the performance of the MATLAB
LMI Control Toolbox when the problem they solve has few to moderate number of states
(ns < 20). When the number of states in a problem becomes larger (30 < ng < 50), the
performance of the two proposed algorithms becomes much better than the performarice
of the MATLAB LMI Control Toolbox. For a problem of 30 states, the amount of time
which the two proposed algorithms spent is about 1/3 of the time which the MATLAB LMI
Control Toolbox took. For a problem of 50 states, the ratio reduces to 1/5 to 1/6. As the
number of states becomes larger, the difference in speed becomes more significant. When
ns = 70, the two proposed algorithms are more than 10 times faster than the MATLAB
LMI Control Toolbox. This fits our expectation from the complexity analysis.

Table 7.1 shows the average number of iterations which the two path-following algo-
rithms proposed in this chapter and the MATLAB LMI Control Toolbox took to solve a set
of problems. As we can see, the number of Newton’s iterations which the proposed interior
path-following algorithms took to solve these problems is similar to those the MATLAB LMI
Control Toolbox took. Therefore, although we have not been able to determine whether
the proposed path-following algorithms are polynomial-time algorithms or not, this example
shows that at least practically the proposed algorithms can work as good as the interior

point methods for SDPs.
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Example 7.6. Consider the Seismic Isolation Control System (Example 6.2) described
in Chapter 6. Again, we are interested in analyzing robustness properties of the seismic
control systems. We assume that real values of the stiffness coefficients ki, - -- , k3 and the
damping coefficients ¢1,---,¢3 are different from the nominal values used for controller
designs, but within £5% of those shown in (6.25) and (6.26); i.e., the real stiffness and

damping coefficients for floors 1 to 3, denoted by k. and &, are represented as
Er=(1+5kr)kra ar=(1+5cr)cr7 T=11"'s3:

where g and d.r are unknown constants whose absolute values are less than or equal to
0.05. We are interested in checking whether the seismic control systems are still stable under
the change of these parameters and estimating the Ly-gain from the earthquake input v to
the acceleration vector & To do this, we represent the closed-loop seismic control systems
in the standard form for robustness analysis as shown in Figure 6-10, where G denotes the

nominal closed-loop seismic control system, and output z is a 6 x 1 vector signal defined as

o = [ bz kz(zzgu—zl) k3(x230—:r2) e cz(a'séo—:i:l) cg(:bgo—{vg) _
Matrix A := diag(d1,--- ,ds) represents the uncertainties in the system. FEach §; denotes
an unknown constant with absolute value less than or equal to 1.

To estimate the Lz-gain from v to &, we apply standard IQC analysis to the system in
Figure 6-10. The IQCs used to characterize uncertain constants §;, i = 1,--- , 6, are similar
to the IQCs described in Example 6.2. The problems were solved using the MATLAB LMI
Control Toolbox and the interior path-following algorithms proposed in this chapter. The
results are listed in Table 7.2.

Table 7.2 indicates that the two interior path-following algorithms solved every problem
faster than the conventional method using MATLAB LMI Control Toolbox. When n = 5
(that is, the building has 5 floors), the equivalent SDP has 655 decision variables and it
took the LMI Control Toolbox about 12 minutes to solve the problem. The two interior
path-following algorithms took only about 60% of the time to solve the same problem. As
n increases from 5 to 11, the amount of time which the LMI Control Toolbox took to solve
a problem increases rapidly. When n = 11, the two interior path-following algorithms are

about 5 to 7 times faster than the MATLAB LMI Control Toolbox.
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L il n=>5 I n=56 T =7

Method L;-gzain | time (sec) | var. || Lo-gain | time (sec) | wvar. || Lp-gain | time (sec) | var.

LMI Tool [ 1.16309 723 655 || 1.11712 1169 805 || 0.78299 1483 971

IPA-1 1.16228 382 19 || 1.11547 806 19 || 0.78425 335 19

TPA-2 1.16242 431 19 4 1.11534 498 19 || 0.78334 467 19
n=32 n=9 n=10

Method L-gain | time (sec) | var. || Ly-gain | time (sec) | var. || Lz-gain | time (sec) | wvar.

LMI Tool || 0.82624 2424 | 1153 || 0.82851 3153 | 1351 || 0.95618 4285 | 1565

IPA-1 0.82611 481 19 )i 0.82806 788 19 1| 0.95581 597 19

IPA-2 0.82622 564 19 {| 0.82816 788 19 || 0.95626 847 19
n =11

[ Method L,-gain | time (sec) | var.

LMI Tool |l 0.93548 7141 | 1795

TPA-1 0.93559 1017 19

IPA-2 0.93558 1437 19

Table 7.2: Results of solving the Lo-gain estimation problem in Example 6.2 using MATLAB
LMI Control Toolbox, the path-following algorithms. “LMI Tool* denotes MATLAB LMI
Control Toolbox. “IPA-1“ denotes the interior path-following algorithm based on the first
barrier function. “IPA-2“ denotes the interior path-following algorithm based on the second
barrier function. The numbers in the column “var“ indicate the number of decision variables
in a problem.

7.8 Proof of Theorem 7.5

We prove Theorem 7.5 in this section. The following two lemmas will be used in the proof

of Theorem 7.5.
Lemma 7.3. Let wy be a real number and 8 > 2 be a positive even integer. Let

ro(t) + ri(t)(w — wo)B 4 - - + 11 () {w — wp)Bln)

G(t,w) = , 7.53
(4 (000) + (0~ wo)Pat)" (7:59)
where p(t), q(t), ri(t), ¢ =0, - ,n — 1 are polynomial functions in t. Now consider the
integration
wo+-€
F(t) = / Gl w)dw. (7.54)
wo—¢€
Then, for any t* > 0, there exists a sufficiently small € such that
1 1
F(t) ~ ct) - ro(Op(t)% "q(t) (7.55)

for all |t| < t*, where ¢(t) is a bounded function in t.
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Proof. Fix ¢. 'Then for sufficiently small ¢, the term ro(¢) dominates the numerator of

G(t,w). Therefore,

_[eote To(2)
ey~ f B0 + (@ —woPald))® “
Let
=w p() %CJ
v (q(t)) '
We have

ke ro(t) o [ Te®p(®)Pa)F
/ ) + (@ — w0 ° “/_n (1 + By

= ro()p(t)? "g(t) /_n (T+1a—ﬁ) >

@i

. Finally, let

where n = ¢ (%)_

K 1 ~
C(t) = '/;n(l-l-—a‘)ﬂjz div.

Since

nq e N
. dw< | 45 = const
/_,, 1+ah)r = /_m (1 + &8 const,

therefore, we conclude that F(t) ~ c(t)rg(t)p(t)%_"q(t) %, where ¢(t) is bounded. d

Lemma 7.4. Let o > 1 be an integer and 8 > 2 be an even integer. Let

_ 'r‘(t) _ wo+e
6) = o - PO = / C(t,w) do,

wp—€

where p(t), g(t), r(t) are polynomial functions in t, and p(0) # 0, ¢(0) # 0. Then

F(t) =t "sg(t), F(t) =t 1s1(8), (7.56)
F(t) =t 2sy(2), F(t) = t7™ 3s3(8), (7.57)
where n = o — %, and 5i(t) 2 = 0,---,3 are bounded at 0.

197



Proof. Notice that G(¢) is in the form of (7.53). The corresponding ro(¢), p(t), ¢{t), and n

are 7(t), t*p(t), q(t) and 1, respectively. Therefore, by Lermma 7.3, we have

Qe

Ft) ~ c(Or(e)(Ep(e))p a(6) T = £ Feltyr(®p(t)? a(t)”

which is exactly of the form in (7.56) with so(t) = c(t)'r(t)p(t)%_lq(t)_%. Since p(0) # 0,

q(0) # 0, therefore so(t) is bounded at 0.
Now, let us consider the differentiations of F(t). We have

i = [ Cww o, Fo= [ 6w A FO - [ s e
where |
: W) = dlo(t) + dn(t)(w - wo)ﬂ
Gl = Gop(a) + (w - w)Pa()”
é(t W) = dao(t) + do1(t)(w — wo)’B + daa(t)(w — wo)Zﬂ
’ (top(t) + (w — wo)?q(t))? ’
G(t w) _ d30(t) + d31(t) (u) — n‘.a.l[))'6 + dgg(t) (w— wo)gﬁ + d33(t)(w — u.!g)sﬁ
’ (top(t) + (w — wo)Pg(t))* ’
and

diolt) = 7 (£Ep(t) - r(t)(at 'p(t) + 7B (E)
= —at* Lr(t)p(t) + O@%)
dao(t) = dio(H)t*p(t) — dio(t) (™ p(t) + t7p(£))
— ala + D)2 r(@)p(t)? + O 1)
dao(t) = dao(£)t*p(t) — dao(t)(ct® ' p(t) + t7p(2))
—a(a + 1)(a+ 2 3r(t)p(t)? + O(** %)

We do not care for the detailed expressions of the rest of d;;(t) terms. By Lemma 7.3,

B(t)  ex (Hdao()t 2 Fp() 5 () 3. (7.58)
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Substituting the expression of dio(¢) into (7.58), we obtain

B(t) = £ (—at® e (t)p(t) + O())er (B)r (B)p(t) B >q(t) 7
= " ey (Dr(p()F 2g(t) P ) (—ar(E)p(t) + O(1))

=t g (2),

where s1(t) is bounded at 0 since p(0) # 0 and q(0) # 0. Therefore, we conclude that F'(t)
is in the form described in (7.56). F(t) ~ t™""259(t) and F(t) ~ t~""3s3(¢) are obtained in

a similar fashion. O

Proof of Theorem 7.5

We are now ready to prove Theorem 7.5. Recall that

1

By(\) =log(B1(}), and By(N) = (; /_ ) tr(H(w, )75 fuwz)'

Given any A € Q and any h € R", let T be the open interval {t | A + th € Q). Now,
define F(t) : T — R := Bi(A + th) and E(t) : T — R := By(\ + th) = log(F(t)). Let
(1) := %(%)72 To show Bj(A) satisfies (7.48), we have to prove that

sup ¥(¢) < oo, (7.59)
teT

i.e, 7(t) is bounded above for all t € T'. Since 7(¢) is a continuous function, therefore (7.59)
is true if v(¢) is finite as ¢t approaches any boundary point of T.
Note that

L1 —1y _
;mtr(H(w,)\ +ih)7) = s(w,t)’

where 7(w, t) and s(w, t) are polynomials in w and ¢. Without loss of generality, let us assume
that 0 is a boundary point of T and (1 + w?)H(w, A + th) is singular at w = wy, -+ -, wy, at
t = 0. Under these assumptions, we have

r(w,t)
s(w, t)

_ k(1)
torpy(t) + (w — wy)Prqp(t)

— Gi(t) : (7.60)
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as w — wy, where oy is an integer greater than or equal to 1, g is an even integer greater
than or equal to 2, and pi(t), qx(2), T%(t) are polynomials in ¢ such that pi(0) # 0, gx(0) # 0.

Let € be a small number and ¥ = {J;_;[wr — €, wi + €]. We have

F(t) = /m L e (H(w, A + th) D) — 2

—oo T (1+w?)
n W, +e€
_ Z/ k r(w,t)dw+/ T(w’t)dw.
k=] YWk—E€ S(W’t) [—o0, co\D S(L‘)’t)

Since s(w,t) is bounded away from 0 for all ¢t € T and for all w € [--00, 00| \ &, therefore

1 dw
sup/ Ztr(H(w, A+ th) ™} -————= < M, 7.61
teT J[—o0, co\E T (H( ) (1+w?) (7.61)

where M is a constant depending on e¢. Thus, by (7.60) and (7.61), we see that for every
teT,

F(t) = Zn: “a (w, t)dw + O(1), (7.62)

k=1"wkT¢

where O(1) depends on ¢ and ¢. Let us consider the £ derivative of F(t). We have

dr Y Al _1y  dw
n wrte gk K
:Z/ %(r(w,t))dw_‘_/ d_ﬂ(r(w,t))dw
=] ¢ wr—e dt S(Wa t) [—o0, o]\ dt 'S(Wat)

mk-i—e
_Z/ —i—/ Tn(w’t)dw,
wg—€ [—o0, co]\B 'S(U-)at)‘lc

where 74(w,t) is a polynomial in w and t. Since s(w,t)" is bounded away from 0 for all

t € T and for all w € [—o0, ool \ X, and

7w, t) d®

—_— t .
as w — wy, thus, we conclude that
dr n wrke gr
—F kz » T Gr(w,)dw + O(1). (7.64)
=1 €
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Now, let

Wi—+e€
Fk(t)=/ Gr(w,t)dw, k=1,--- n.

Wk —€

By virtue of Lemma 7.4, we conclude that

Fio(t) m t7 ™ sp0(t), (7.65)
Fr(t) m 7™ g (), (7.66)
Fp(t) me t7™ 2550(2), (7.67)
Fr(t) s 7™ 3g4(1), (7.68)
where my = ay — %f, and sg(t), ¢ =0,---,3, are bounded at 0. Without loss of generality,

let us assume my > mgy > --- > my. Then (7.62), and (7.64) to (7.68) imply that

F(t) ~ 7™ g0(t), (7.69)
E(t) mt™™ g (1), (7.70)
E(t) = 7™ 255(2), (7.71)
F(t) m 7™ 3gy(1). (7.72)

Again, in (7.69) to (7.72), s;(t), i =0, --,3, are bounded at 0.
Now, consider E(t) = log F'(t). It can be readily verified that

E(t) = F(t)~'F(8),
E(ty = F(t) ' F(t) — F(t)"2F ()%,

E(t) = FO)T'Ft) — 3F@) 2R F () + 2F(t) S ()%,

and

(1) = E? _ (FQF(@) - 3F)F@)E(E) +2F()%)?
T By (F(t)F(t) — F(t)?)3 '

(7.73)
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Substituting (7.69) to (7.72) into (7.73), we obtain

(t . tgﬁml—ﬁ(SO(t)zsg(t) - 350(t)81(t)52 (t) + 251(t)3)2
"= oS (30(0)52(1) — 51 (9 |

Therefore, as t — 0, we have

(50(0)233(0) - 330(0)81(0)52(0) + 231(0)3)2
(50(0)52(0) — 51(0)?)° ’

7(0) ~
which is a finite number. Thus, the supremum

E(t)?
sup =
ter E(t)?

is bounded. This in turn implies B2(\) satisfies (7.48).

7.9 Summary

In this chapter, we proposed two new barrier functions to construct interior path-following
algorithms for solving standard IQC optimization problems. Conventionally, one transforms
a standard IQC optimization problem into a SDP and then solves the SDP using interior
point methods. The transformation requires an additional matrix variable which in some
cases substantially increases the computational complexity. Thus, in these cases, the con-
ventional approach to solve IQC optimization problems is very inefficient. The new barrier
functions we propose do not involve any additional decision variable, and therefore, interior
path-following algorithms proposed in this chapter can solve standard IQC optimization
problems in a more efficient fashion.

It is known that one can construct a polynomial time interior path-following algorithm
provided that the barrier function used in the algorithm is strongly self-concordant. The
two barrier functions proposed in this chapter do not quite satisfy this property. One barrier
function can be shown not to be a strongly self-concordant barrier. For the other barrier
function, although we are able to prove that it is a self-concordant barrier, the value of self-
concordant parameter is yet to be discovered. Furthermore, numerical experiments indicate
that the value of the self-concordant parameter seems to depend not only on the dimension

but also the data of the problem. Thus, we are not able to determine whether polynomial
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time interior path-following algorithms can be constructed based on the proposed barrier
functions.

Nevertheless, the interior path-following algorithms based on the proposed barrier func-
tions can be shown to converge globally. We have tested the proposed algorithms on a
number of numerical examples. The results indicate that the proposed algorithms work
well and significantly outperform the conventional method of solving IQC optimization

problems, especially when the number of states in an IQC problem is very large.
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Chapter 8

Conclusions and Future Research

Motivated by the need for robustness analysis of periodic trajectories, the first part of this
thesis considers the problem of robustness analysis of Linear Periodically Time-Varying
(LPTV) systems. This part of thesis consists of Chapters 3 to Chapter 5.

In Chapter 3, two new techniques for robust stability and performance analysis of LPTV
systems with structured uncertainties were proposed. In the first approach, the system was
transformed into a setup suitable for the standard Integral Quadratic Constraint (IQC)
method. Analysis is then performed on the transformed system based on standard IQC
analysis. In the second approach, we extended standard IQC analysis to include the case
where the nominal system is LPTV. The robustness conditions were formulated as checking
feasibility of affinely parameterized operator inequalities.

In Chapter 4, we derived conditions for existence and stability of stationary periodic
solutions to periodic systems subject to periodic excitations, as well as conditions for cer-
tain harmonic performance of such systems. A new class of integral quadratic constraints
particularly suited for analysis of periodic signals was introduced. Checking conditions for
existence of a unique solution, stability, and performance was again formulated as solving
certain constrained feasibility problems with affinely parameterized operator inequalities.

In Chapter 5, a cutting plane algorithm was developed to solve the feasibility and
optimization problems arising from Chapters 3 and 4. The algorithm follows the basic
principles of Kelley’s cutting plane algorithm. The most essential part of the algorithm is
the oracle. One of Yakubovich’s results was used to construct the oracle for the problems

arising from Chapter 3. A new “frequency theorem* by Jénsson and Megretski was used to
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derive the oracle for the problems arising from Chapter 4. Several examples were given to
illustrate the analysis techniques proposed in Chapters 3 and 4.

Motivated by the need for faster solvers for standard IQC problems, a number of com-
putational algorithms that are potentially more efficient than the conventional approach for
solving standard IQC problems were developed in the second part of the thesis. This part
of thesis consists of Chapters 6 and 7.

In Chapter 6, three cutting plane algorithms - the Kelley type cutting plane algorithm,
the ellipsoid algorithm, and the analytical center cutting plane method - were implemented
to solve standard IQC problems. We studied their performance by testing them on a
number of numerical examples and comparing their performance to that of the conventional
approach of solving standard IQC problems. The results of numerical experiments indicate
that the cutting plane algorithms are potentially very efficient as they avoid introducing
additional decision variables, which are required in the conventional approach. In many
numerical experiments, the cutting plane algorithms solved a problem more than 10 times
faster than the conventional approach did. This difference in time is very significant, and
grows bigger as the dimension of the system matrices becomes larger.

In Chapter 7, we proposed two new barrier functions to construct interior path-following
algorithms for solving standard IQC optimization problems. Conventionally, one solves a
standard IQC optimization problem by transforming the problem into a SDP and then
solving the SDP using interior point methods. The transformation requires an additional
matrix variable which in some cases substantially increases computational complexity. Thus,
in these cases, the conventional approach for solving IQC optimization problems is very
inefficient. The new barrier functions we proposed do not involve any additional decision
variable. Therefore, interior path-following algorithms based on these barriers can solve

standard IQC optimization problems in a more efficient fashion.

8.1 Suggested Future Research

The research presented in this thesis raises a few interesting questions. We list some of

them in the following as topics for future research:

1. Systematic approaches for robustness analysis of linear periodically time-varying sys-

tems are proposed in the first part of the thesis. We demonstrated these approaches by
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a number of examples, which are simple and more or less “academic* (as opposed to
“practical“). More case studies related to practical engineering problem are required

in order to investigate how well these approaches can deal with real world problems.

. The analytical center cutting plane method described in Chapter 6 has a worst-case

O*(%;) bound on the number of iterations required for convergence. The results of
our numerical experiments suggest that the O*(’e—‘;) bound is very conservative and
that the algorithm usually terminates long before the bound is reached. The number
of iterations required seemed to be practically close to O(n|loge|). Our attempt to
prove that O(n|loge|) is indeed the number of iterations for analytical center cutting
plane algorithm to converge was not successful, nor can we construct an example
to show that the worst-case O*( ?—;) bound can be reached. Whether the worst-case
complexity of ACCPM counted in the number of iterations is O(n|log e|) is yet to be

determined. Further investigation is required to answer this question.

. We were unable to determine whether the interior path-following algorithms proposed

in Chapter 7 are polynomial time algorithms or not, and further research is required to
answer this question. In Chapter 7, one of the barrier function is shown not to be self-
concordant. Therefore, the technique used in Nestrov and Nemirovsky’s proof cannot
be used to prove that the interior path-following algorithm based on that barrier
function converges in polynomial time, and one has to develop a new approach for
proving polynomiality. The other barrier function is proven to be self-concordant.
However, the value of the self-concordant parameter (or at least a bound on it),
which is required to apply Nestrov and Nemirovsky’s result, is yet to be determined.
Furthermore, the value (or the bound) can depend on the size but not on the data
of a problem. Otherwise, the result by Nestrov and Nemirovsky still does not apply,

and one has to look for a new proof to show polynomiality.

. For now, the specialized fast computational algorithms presented in this thesis are

programmed in MATLAB. Our implementation is crude and has a lot of room for
improvement. For instance, these algorithms can be implemented in C /C++. For
certain computational procedures, C programs are known to perform better (in terms
of speed) than MATLAB programs. In addition, more numerical tests are required to

further investigate the efficiency of these algorithms.
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