
March 1986 LIDS-P-1546

Ha Weighted Sensitivity Minimization for
Systems with Commensurate Input Lags

by

Gilead Tadmor!

Abstract

Optimal stabilizing feedback which minimizes the Hf weighted
sensitivity is derived for systems with multiple input lags. The solution
of an associated operator interpolation problem in H , occupies most of this
note. Reformulation of the problem as a maximal eigenvalue/eigenfunction
problem in the time domain, is a key step. The main result is a
characterization of these eigenvalue and eigenfunction.

Key Words. Weighted Sensitivity, HP spaces, Interpolating functions,
Maximal eigenvalues, Time domain analysis.

1Dr. Gilead Tadmor, Massachusetts Institute of Technology, Laboratory for
Information and Decision Systems, Room 35-312, 77 Massachusetts Ave.,
Cambridge, MA 02139 (617)253-6173.



3

1. Introduction

The Ha approach transforms a variety of control problems into problems

of interpolation of operators on H2. (For overview of that approach and for

extensive lists of references, see Francis and Dyle 181] and Helton [11].

The operator interpolation problem and the more general problem of Hankel

extensions are discussed in Adamjan, Arov and Krein [1] and in Sarason

[121.) The presence of input lags renders the associated interpolation

problems infinite dimensional, hence remarkably more difficult than in the

ordinary case. This happens already in the relatively simple case of a

single pure delay, as discussed in the recent works of Flamm and Mitter

[3,4,5] and Foias, Tannenbaum and Zames [6,7].

Inspired by those articles, our aim here is to develop the theory to

suit also multiple (commnensurate) input lags. In fact, the scope of our

technique goes beyond that class, and in a following note [131, it is

applied in handling certain distributed delays.

Let us start right away with a description of our system, the problem,

and an outline of the solution. Consider a system governed by a scalar

transfer function P(s) = PO(s)B(e-S). Here PO(s) is a proper rational

function and B(z), a polynomial. A proper rational function w(s) is the

weight function. It is assumed that both P0(s) and w(s) are stable and

minimum phase2, and that P(s), hence B(e-S), has no zeros on the imaginary

axis 3

2Ways for handling instabilities and right half plane zeros in either P (s)
or w(s) were developed in [4,51 and in [7]. Although these techniques adapt
to our case, we prefer to concentrate here on the effect of the countable
get of right half plane zeros of B(e-s).
This is a standard technical assumption (c.f. [3,4,5,6,7,14,15]).
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0. Notations.

H2 and H a are the spaces of L2 and L, functions on the imaginary axis,

having analytic continuations in the right half plane. A good source on HP

spaces is [9]. By abuse of notations, we shall not distinguish between a

function in H2 and its inverse Laplace transform, which is a function in

L2[10,]. (In particular, our use of the sytbol "A" will be for a completely

different purpose.) Hopefully, this will simplify, rather than obscure the

discussion. A star will denote the adjoint of an operator or a matrix

(e.g., T*), and a bar, the complex adjoint of a scalar (e.g., z). The

kernel of a linear operator is denoted by "ker" (e.g. ker(T)).
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Given an internally stabilizing feedback compensator, F(s), in the

system described in Figure 1, the system's weighted sensitivity is the

function w(s)(l+P(s)F(s))-1. The problem is to

F(s)

Figure 1

find that stabilizing F(s) which minimizes the supremum of the weighted

sensivity over all frequences; that is, the HO norm

JIW(S)(1+P(s)F(S))| II.. (1.1)

Following Zames [14], the equivalent interpolation problem is set in

two steps. (For details see [14] or any of the following articles, e.g.

[151].) First let 0(s) be the inner part of P(s). Then there exists h(s)sHm

which minimizes this next sup-norm

I w(s) - 0(s)h(s) II ,

Furthermore, having the minimizing function h(s), the optimal feedback

compensator is given by
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F() (s) (s) (1.3)
P(s)(w(s)-0(s)h(s))

and the minimum value of the two problems is equal.

The second step follows from an important result of Sarason [12,

Proposition 2.1]: Consider the compression of multiplication by w(s) to the

space K =: H28e(s)H2 ; that is, the operator

Tf = nK (w(s)f(s)) for feK

(uK being the orthogonal projection onto K along H2). Then the minimum in

(1.2) is equal to the operator norm of T. In other words: The function q(s)

= w(s) - 0(s)h(s) interpolate T when h(s) minimizes (1.2).

Sarason showed also [12, Proposition 5.1] that if the operator T has a

maximal function, say f(s), in K, then the unique interpolating function is

Ts) =: Tf(s)/f(s). Moreover, that ¥(s) is a constant multiple (by I1TII)

of an inner function.

Our main effort will be to find a maximal function for T, or

equivalently a maximal eigenvalue and eigenfunction for T*T (this follows

the philosophy of both [3,4,5] and [6]). The main result will be the

construction of a parametrized family of matrices, QU(2), directly from the

system's ingredients, such that X2 is an eigenvalue of T*T precisely when

Q(X2) is singular. The corresponding eigenfunctions are computed from the

right annihilating vectors of D(O2 ).

In some cases, however, a maximal eigenfunction does not exist. We

treat this possibility too.
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A key step in the analysis is the conversion of the problem to a time

domain setup, which proved advantageous already in the single pure delay

case. Yet the computations of K', T and T* are significantly more

complicated in the present context. The following section 2 is dedicated to

these computations. The interpolation is then discussed in section 3.
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2. The Time Domain Setup

The polynomial B(z) can be written in the form

N a.
B(z) = azm i (1-e z),

i=l

where non of the ai's is imaginary (as follows from the assumption

B(e-jW) # 0 for all weR). Let al,...,an (n<-N) be those which lie in the

open right half plane, and set

B0(z) =: m (1-e lz).
i=1

Observation 2.1. The inner parts of P(s) (namely 0(s)) and of BO(e- s)

are equal. Moreover, BO(e-S)HP = 0(s)HP for all p>l.

Proof. By assumption and the construction above, PO(s)B(e-S)/BO(e- s)

has no right half plane zeros, it is continuous on the imaginary axis and it

is not of the form e-ISh(s) for some X>O and h(s)eH". Hence it is outer and

the first statement follows.

The inner part of Bo(e- s) is the product of e-ms and the blaschke

product whose zeros are at ai+2knj for i=l,...,n and k=O, ±1, -±2,... . A

simple computation shows that 0(s)/BO(e-s) is uniformly bounded in the

vicinity of these zeros, so the outer part of BO(e-S), has an He inverse.

Hence the second part of the observation. Q.E.D.

In view of its time domain meaing as a delay operator, it will be

convenient to work with BO(e-S), rather than with 0(s). From now on we
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shall identify H2 with L210,-) and K, with a subspace of the latter. All

functions, unless stated otherwise, will be of the time variable.

The Subspace K.

We shall use the following notations: Given a scalar function f(t),

defined on [0,x), f(t) and f(t) will be these next n and m+n-vector valued

function

f(t+1) af (t+1)
f(t) =:( and f(t) =: .

f(t+n-l) (t+m+n-1)

Here m and n ar as in the definition of BO(z). It is assumed that n>l, the

case n=O being virtually covered in [2-7].

Let us rewrite Bo(z) in the form

Bo(Z) = zm(a0+alz+...+anzn)

Computation of the ai is left out. It is important to note that both ao and

an are non zero. Thus one can define an nxn matrix E, as follows

0 a a o ...

E =:-' n-

... 0 a a o... 2n

The matrix E plays a major role in our developments:



9

Theorem 2.2. The subspace K is determined by the matrix E as follows

K = : {f:[O,) -C1 fl[O,m+n] e L2[0om+n];

E(t+in) = Eif(t) for t>m and i=0,1,2,...}

In particular, the geometric series I (E*E)i converges.

Given any function f(t) in L2[0,-), here is its projection f0o(t) =

nKf(t)

fo(t) = f(t) for te[O,m)

f0(t) = (I-E E) 2 E*if(t+in) for te[m,m+l)

i=i

f0(t+in) = Ef 0 (t) for te[m,m+1) and i=1,2, ...

Corollary 2.3. The subspace K is isometric to L2([0,1], Cm+n), where

the latter is endowed with the inner product

<f>K = <f(t), Ql(t)>dt

with
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Q 0nxm (I-E*E)-1

Proof of the Corollary. Theorem 2.2 establishes a continuous 1:1

correspondence between K and L2 ([0,m+n), C), or equivalently (using the "^"

symbol) - between K and L2([0,1], Cm +n). The inner product is obtained by

direct computation: Suppose fo(t) and go(t) were in K. Then

<fg0> JO= <f0(t)e g0(t)>dt

= <f0(t), go(t)>dt + <f(t+in), g0(t+in)>dt
~~0 ~i=0

= <fO(t), g0(t)>dt + f<E f0 (t)' E i 0(t)>dt
i=0

<f(t), QQ0(t)>dt.

Q.E.D.

Proof of Theorem 2.2. The space K ' (=BO(e-S)H 2) consists of the

functions fl(t) of the form
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fl(t) = t aig(t-i-m) for te[O,c),

i=O

allowing g(t) to vary in L2[0, ) and taking g(t)=O for negative t. Thus,

fo(t) belongs to K if and only if for all g(t) in L2 0,-), it satisfies

G~ n
0o o<f(t), aig(t-i-m)> dt

i=0

n

< E aifo(t+i), g(t-m)>dt.
i=o

Our subspace K is thereby characterized by the difference equation

n

a if0(t+i) = 0 for ttm. (2.1)

i=0

Observe that, in vector form, Eq. (2.1) becomes

f0(t+n) = Ef0(t) for tzm. (2.2)

In order to complete the proof of the first part in the theorem, it

remains to demonstrate the decay of Ei in operator norm. Indeed, notice

that Eq. (2.1) gives rise to a group of operators on L2[0,n], denoted S(t),

which shifts along solutions. Precisely: given t(z) e L2 [0,n] and the
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unique solution, f(t), of Eq. (2.1) which satisfies f(r) = 4(W), 8[O,n],

set [S(t)fl(W) =: f(t+-). The (point) spectrum of the generator of that

group is the set of zeros of the equation

n n- is n 1+s

0 = f aieis (1-e )
i=O

and is therefore uniformly contained within the left half plane. In

particular, the sequence IIS(in) I decays exponentially. Yet, the

equivalence between Eqs. (2.1) and (2.2) implies that ilEill = IIS(in) I

which proves our claim (namely, the convergence of E (E*E)i).

As for the second part, one can easily check by direct computation that

our definition of rK is that of an orthogonal projection on K. For

completeness, let us derive the stated formulas: Choose any function fl(t)

in K . Obviously, fl(t) vanishes for t<m. Given any fo(t) in K we have

0 = I<fO(t), fl(t)>dt = <lfo(t), fl(t+in)>dt
i=0

= Ef O(t), Ef 1 (t+in)>dt .

i=O

Since f0 [m,m+1] could be any L2 function, the following holds
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co

E fl(t+in) = 0 for te[m,m+1].

i=0

Thereby, if f(t) e L210,) and fo(t) = fKf(t), then

0 = E Ei(f(t+in) - Eifo(t))

i=0

Ejf(t+in) - (I-E E) f (t) for tem,m+1).

i=O

Q.E.D.

The Operator T.

In order to formulate T we need some specific representation of the

weight function w(s). For simplicity we assume that its poles are all of

multiplicity 1. Then it can be written as

p

w(s) = a + 1i+S

i=l 1

By assumption (w(s) is stable) all pi lie in the open right half plane. In

the time domain (i.e., by inverse Laplace transform) w(s) becomes
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P -i t

w(t) = O6(t) + yP ie

i=!

The operator T (on K) is defined by convolution with w(t), followed by

projection onto K. That is

Tf(t) = (lf(t) = K(f(td) for f(t K.

i=1

Since nf(t) is in K, it is invariant under nR. Also, by Theorem 2.2, the

projection does not affect the convolution for t/m. In order to compute the

projection for t>m, let us isolate one of the elements (suppressing for the

moment the index i) g(t) =: fteP(t-t)f(1)d,. For fixed te[m,m+1) and an

integer i, straightforward computation yields

g(t+in) = eft [e-iniv e13 f(r)dc

i-i

+ (Fo0 e(q-i)nEq + F1Ei)C eef(r)dv (2.3)

+ Eit e f(W)dl],

where the vector v and the matrices Fo and F1 are as follows
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pS .(n-1)j

e-iP e O i 1 .........e(n-2)P
v =: . F 0 : . .

e-(n-1l) e-(n-1)A e(n2)P e /n-2l1

'0 0 ... O

and F 1 = .

e-(n-1) e-(n-2)p.. e-o

For simplicity, we assume that e-nP is not an eigenvalue of E, and obtain a

simpler formula for the second summond on the right hand side of Eq. (2.3),

namely

+(F0(1-en E) (ein.Ei) + F Ei ) u ef(i )d ....
m

Next we have to compute (I-E*E) I E*iq(t+in). Doing so term by term in

Eq. (2.3), the last term becomes simply

Tf e (-t)f(s)d.s

The first term sums up over i, to
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e- t(I-E*E) (I-e-n'E ) v eAf ( x)dd

The more complicated one is the middle one, which yields

e-tG Sl er(s)dz

where

G = (I-E*E)[(I-eniE *)- F (I-enhE)- 1

+ 2 E*i (F-F 0(I-enOE)-
1 )Ei].

i=0

It should be pointed out, however, that the infinite sum in the last

expression converges to the solution of the Lyapunov type matrix equation

X-E*XE = FI-FO(I-enPE) - 1

which is solvable via a finite procedure (for details see Djaferis and

Mitter [2]).

We shall now collect all these details and describe the action of T as

an operator on L2(10,1], Cm+n) (which is possible, in view of Corollary

2.3). In doing so, however, we still need a few more notations: We
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substitute Gi and vi for G and v, which were constructed above, to indicate

that Pi substitutes for A in their definitions. THen we build (m+n)x(m+n)

matrices Hi, i=l,...,p, from the following blocks

'o ... O

e- 0 ... 0

(Hi)11 : e-21 e- 0 ... 0

. -e(m-) 

(Hi)2!=: (I-E'E)(1-e-nPE*)-lte-mv, ...,e-pv]

(Hi)12 =: mxn and (Hi)22 =: Gi-

Observation 2.4. The operator T acts via

Tf(t) = if(t) + ¥ i Je f ( )d

r. H.1 (u-t)
+ iHi f(O)dz (2.4)

i=1

for f(t) in L2([0,1], Cm+n).

Corollary 2.5. When restricted to L2( [0,1], Cm+n), the adjoint

operator, T*, is given by
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p (t- )
T f(t) = ) f(t) + 2 i e f(r)dt

i=1

(2.5)

+ i HQ e f()d .

i=!

The observation is obvious. The corollary follows by direction

computation, taking into account the inner product induced by the isometry

to K on L2([0,11, Cm+n), as described in Corollary 2.3.
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3. The Main Steps in the Interpolation.

The operator T*T is of the form IRI2I + (a compact operator). By

Weyl's Theorem (see e.g. [10, pp. 92 & 2951), its spectrum consists of

countably many eigenvalues (each of a finite multiplicity) and their only

cluster point, kI12, which, as we shall later show, is not an eigenvalue.

In choosing an interpolation strategy, we distinguish between two

possibilities: Should there be a maximal eigenvalue for T*T, then the

orresponding eigenfunction, say f, is maximal for T. This solves the

interpolation problem, as explained in the introduction. Otherwise (i.e.,

when #0 and all eigenvalues are smaller than k j2) we check whether w(s)

itself interpolates T.

Here are sufficient conditions for these two possibilities:

Proposition 3.1. If there exists wO>O such that Iw(jw)I>kij for all

wsR, IwI>wo, then infinitely many eigenvalues of T*T are larger than Hln2.
In particular, a maximal eigenvalue does exist.

Proposition 3.2. If (w(jw)I < ] 1 for all weR, than w(s) interpolates

T and the zero feedback F(s) is optimal.

We defer the proofs to this section's end. Meanwhile we assume that a

maximal eigenvalue exists, and try to find it. The following is a nice and

very useful observation of Flamm [4,5]:

Proposition 3.3. Suppose )2 is an eigenvalue of T*T and let sl,... ,2p

be the roots of the equation
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w(s)w(-s) = x2 (3.1)

repeated according to multiplicity. Let j1(t),... ,2p(t) be scalar

functions defined as follows: If si = si+l = ... = si+q is a root of

multiplicity q+1, then

s t s t s-t
4i(t) =: e , (t) t e ,..., +q (t) =: tqe it

Then, any associated eigenfunction lies in the subspace U -:

sp{4l(t), ... 2p(t)}. (Note: Since eigenfunction take values in Cm+n and

{i(t) are scalars, the coefficients in the relevant linear cormbinations are

(m+n)-vectors.)

Proof. Consider this next set of differential equations

dt bi(t) = - fiii(t) + rif(t)dt i

(3.2)

dt Fdt i+p 1 i+p 1

for i=l,...,p, and assume

p

4(t) = nf(t) + fi(t)
i=l

and
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p
h(t) = fgt) + )li+PW. (3.3)

i=1

It is easy to see that for properly chosen initial data (defined by f(t)) we

have g(t) = Tf(t) and h(t) = T*g(t).

Suppose now that f(t) is an eigenfunction associated with the

eigenvalue x2. It then follows (combining Eqs. (3.3) and (3.2), and

substituting terms in f(t) and fi(t) for g(t) and h(t)) that both f(t) and

fi(t), i=1,...,2p, are analytic. Taking the Laplace transforms of their

analytic continuations to the whole half line [0,X), one obtains

(X2, I|2)f(s) = [-B, B](sI- [ D* (C (s) + x(O)), 3.4)

where x(O) is the 2p(m+n)-vector of initial data for 1(t),...o22p(t) ,

p times Im+n

B =: [Im+n I...,Im+n ], C =: [I + ,
p m+n-

C is the like of C with ri substituting for yi, and finally, D is the block

diagonal matrix

D =: diagt[lIm+n s ... t pIm+n 

Direct computation shows that the coefficient of f(s) on the right hand
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side of Eq. (3.4) is w(s)w(-S)-Iq 12. Eq. (3.4) thus becomes

f(s) = -2 [B, B](sI-[ )x(O). (3.5)
I -w(s)w(-9) D

Now, the poles of the inverse matrix in (3.5) are exactly those of

w(s)w(-s) (i.e., -l, ,-p , !...p) so they cancel each other. It

remains that the poles of f(s) are zeros of Eq. (3.1), as stated. Q.E.D.

Having in mind one (candidate for being an) eigenvalue, A2, we can now

consider the restriction of T to the corresponding subspace

U =: sp( 1l(t),..., 42p(t)}. The range of T is then

V =: U + sp{e- P t,..,e-Pt}. Restricted to V, the adjoint operator T* takes

values in W =: V + sp{elt,...,pflptl.

Thus restricted, T and T* can be described by 3p(m+n)x2p(m+n) and

4p(m+n)x3p(m+n) matrices, which we denote (block-wise)

2p T1 2p12 p

p T P and

31 T3 2 J

The corresponding vectors describe the coefficients of Wl(t),..., 2p(t),

e-P t,...,e- t and eLt,...,ea it, according to this order. (Recall that

each of the coefficients is an (m+n)-vector.) We leave out the detail of

these matrices, which are read directly from Formulas (2.4) and (2.5).

Now set
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0(X 2) = -- 1.
31Tl+T31T 2

(This 2p(m:+n)x2p(m+n) matrix depends on A2, since our whole construction

starts with Eq. (3.1).) Here is our main result.

Theorem 3.2. A positive number X2 is an eigenvalue of T*T if and only

if the corresponding matrix 0(12) is singular (i.e., detG(X2)=0). If this

is the case and zsC 2P(m+n) satisfies 0(02)z=O, then an associated

eigenfunction is

2p

i=l

Proof. We leave it to the reader to check these next two facts: (i)

TlT1 = XI2p(m+n)' (Hint: Check first the case where sl,...,s2p are

distinct values and {i(t) = es t). (ii) T22 is invertible. (Explicitely:

T22 = diag{w(l1),...,w(Pp)}, and since w(s) is minimum phase, T22 is

invertible.)

Now if f(t) is an eigenfunction associated with A2, it belongs to U (by

Flanmm's result). Hence so does T*Tf(t). Letting z be the vector of

coefficients, as described in Formula (3.6), we should have T22Tlz=O and

(TT 1+T32T2)z = 0. In view of fact (ii), above, it means that A(X2)z=O.

The converse direction is by now obvious. Q.E.D.

Remark 3.3. A characterization of eigenvalues of T*T could also be
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made in terms of certain boundary constraints that Eqs. (3.2) and (3.3) must

satisfy in order to be a true model for T and T*. It seems that solution of

the associated two sided boundary value problem will be computationally far

more complicated than our criterion.

Since we look for a maximal eigenvalue, our suggested scheme is simply:

Compute detg(X2) for a decreasing sequence of numbers 12 and find the first

12 which yields the value zero. This next simple observation is of great

help.

Observation 3.4. The maximal eigenvalue X2 lies in the interval (k 12,

I w(sI Ic]-

Proof. Since jlw(s)j I1 is the norm of the uncompressed multiplication

by w(s), we have X2 = IIT*T112 <I Iw(s) 11. Since hI 2 is a cluster point

of eigenvalues of T*T, X2 cannot be strictly smaller than I 12. Finally,

one easily finds out that if lR12 is substituted for X2 in Eq. (3.5), above,

then the right hand side of that equation is not strictly proper, hence f

could not be in K. Q.E.D.

Assume that a maximal eigenfunction, f(s), for T*T (i.e., a maximal

function for T) is at hand. Let us recall now the further steps described

in the introduction towards the solution of the interpolation, and of the

original sensitivity minimization, problems: The interpolating function is

T(s) = Tf(s)/f(s). Using the notations of section 1, ¥(s) is of the form

T(s) = w(s) - 0(s)h(s),

for some h(s)eHm, and the corresponding optimal feedback compensator is
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F(s) =- 09(s)h(s)
P(s)(w(s)-9(s)h(s)) 

Substituting w(s)-Tf(s)/f(s) for 9(s)h(s), we get

) w(s)f(s)-Tf(s)
F(s) - P(s)Tf(s)

(I-YK)(w(s)f(s))
P(s)Tf(s)

which is the solution to the original problem.

Before bringing two more proofs that we owe, let us make one more

comment: The formula we have just displayed is of the optimal compensator,

when optimality is measured in terms of minimal weighted sensitivity. This

compensator is likely to have, however, serious drawbacks. As in simpler

cases, it might be unstable, and have delays. This has already been

observed by Flamm in [5]. So in order to obtain a more practical

compenstor, one has to look for an approximating, stable and rational

suboptimal F(s). This search goes beyond the scope of the present

discussion.

Here are the proofs of Propositions 3.1 and 3.2.

Proof of Proposition 3.1. A key fact is that the operator

f: -*Rf =: (I-nK)(w*f): K -4K is finite dimensional. One can easily see

that (when restricted to f(t)eK) the terms in w*f(t) which contribute to the

projection onto K are the first and second sunmonds on the right hand side

of Eq. (2.3) (with Pk, k=l,...,p, substituting for i). Each of these terms
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defines a finite dimensional operator; in particular, so are their

projections onto KJ.

Henceforth the proof goes mainly in the frequency domain; i.e., members

of K are regarded as functions of the imaginary argument jw.

Claim. The restrictions of functions in K to any (fixed) finite

interval [-jwl, jwl], are dense in the associated space L2[-jl_,jwll].

Proof. Suppose a function g(jw) e L2[-jwl,jwl] is orthogonal to the

restrictions of all functions in K to [-jw1 ,jwl]. Each member in K is of

the form

f(jW) = t(io) J eJ Cjf(t)dt,
0

where t(jo) is this next row vector

f(ji) =: [1,e-j ... ,e(m+n-l)jM] n
I (Inx-Ee-[mxm nxn

(This follows from Theorem 2.2.)

Hence <g,f> = 0 for all fsK, means
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0 = J <g(jo), t(jw) j e-jtf(t)dt>dw
-W1 O

= f' ~<i ejtt(j )*g(j )d, f(t)>dt
° -jW

In effect, t (jw)g(jw) should vanish. Since t(j)iO0, the observation

g(jo)MO follows.

By hypothesis Iw(jw)l>Iln for weR, IwI>o)o Choose positive 1w, c and

a, such that wl>wo+e and Iw(j )I > Iknl+ when o+a _< 11 _< w1 . Then denote

by X the infinite dimensional subspace of L2 [-jo1 ,j 1]l, which contains those

functions that vanish along [-j(w0+a), j(wo0+o)]. If g(jo) is in X, we have

Iljw(j)g(jW)l L2[-j1,jl1] > (!, 11+)1 g(IL2[-j1j3.1].7)

Now, recall R, the operator defined at the beginning of the proof, and

let Y be the closure in L21-jwljwl] of the (restrictions to [-jwl, jll] of

functions in) ker(R). The subspace Y is of finite codimension. It thus

easily follows from the definition of X that Yf X is infinite dimensional.

Let g(jw) belong to that intersection, and let f(jw) E ker(R) approximate

g(jw) well enough, which is possible by the definition of Y. Since g(jw)

satisfies inequality (3.7), the function f(jw) satisfies
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IIw(jW)f(jw) 2 112 _jljl In2 I f(ji) 11I 2[ jj ] (3.8)

(In fact, the degree of the approximation of g by f is made so that (3.8)

will hold.)

By definition of R, the choice of f(jw) in ker(R) implies that

Tf(jw) = w(jw)f(jw). Since for Itw > oo , the inequality lw(jwo) > [1[12

holds, we can substitute - for w1 in (3.8) without affecting the validity of

that inequality.

Summing up: We found a function f(j)seK for which I[TfIl > InIIif[I.

The completeness of the set of eigenfunctions of T*T implies the existence

of an eigenvalue which is larger than q 12. In order to show that

infinitely many such eigenvalues exist, one substracts from Y, above, the

(finite dimensional) eigenspace associated with the eigenvalue we have just

found. Then the same argument implies the existence of a second eigenvalue

which is larger than [I.I2, and so on. Q.E.D.

Proof of Proposition 3.1. Since Jil = lim Iw(jwl, the assumption

lw(jW)I < •I" implies Ilw(s)II| = Jil. As when arguing Observation 3.4, we

now obtain

In12 = IsIw(s)1 -> I IT 2 = IT *Ti = sup l2:A 2 is an eigenvalue

of T*T2I > Iq|12

namely I w(s)l I = I ITII. This means that T is interpolated by w(s). (The

other requirement in the definition of an interpolating function is
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Tf = nK(w(s)f(s)), and is met by definition of T.) Q.E.D.
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