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Abstract

The modern theory of condition numbers for convex optimization problems was devel-
oped for convex problems in conic format:

(CPy):  z.:= mzin{ctm | Az —b e Cy,z € Cx} .

The condition number C(d) for (CP;) has been shown in theory to provide upper and/or
lower bounds on many behavioral and computational characteristics of (C Py), from sizes
of feasible and optimal solutions to the complexity of algorithms for solving (CP;).
However, it is not known to what extent these bounds might be reasonably close to
their actual measures of interest. One difficulty in testing the practical relevance of such
theoretical bounds is that most practical problems are not presented in conic format.
While it is usually easy to transform convex optimization problems into conic format,
such transformations are not unique and do not maintain the original data, making this
strategy somewhat irrelevant for computational testing of the theory.

The purpose of this thesis is to overcome the obstacles stated above. We introduce
an extension of condition number theory to include convex optimization problems not
in conic form, and is thus more amenable to computational evaluation. This extension
considers problems of the form:

(GPs):  z :=min{c's | Az —be Cy,z € P},
where P is a closed convex set, no longer required to be a cone. We extend many results
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of condition number theory to problems of form (G'F;), including bounds on optimal
solution sizes, optimal objective function values, interior-point algorithm complexity,
ete.

We also test the practical relevance of condition number bounds on quantities of
interest for linear optimization problems. We use the NETLIB suite of linear opti-
mization problems as a test-bed for condition number computation and analysis. Our
computational results indicate that: (i) most of the NETLIB suite problems have in-
finite condition number (prior to pre-processing heuristics) (ii) there exists a positive
linear relationship between the IPM iterations and log C'(d) for the post-processed prob-
lem instances, which accounts for 42% of the variation in IPM iterations, (iii) condition
numbers provide fairly tight upper bounds on the sizes of minimum-norm feasible so-
lutions, and (iv) condition numbers provide fairly poor upper bounds on the sizes of
optimal solutions and optimal cbjective function values.

Thesis Supervisor: Robert M. Freund
Title: Theresa Seley Professor of Operations Research
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Chapter 1

Introduction

1.1 Objectives and results

The modern theory of condition numbers for convex optimization problems was initially

developed by Renegar in [28] for problems in the following conic format:

z, :=min c'z
(CFy) s.t. Az —b e Cy (1.1)

II?GC)(,

where, for concreteness, we consider A to be an m X n real matrix, b € R™, ¢ € R",
and Cx € IR™, Cy C IR™ are closed convex cones, and the data of the problem is the
array d = (A,b,c). We assume that we are given norms llz|l and ||y|| on IR™ and R™,
respectively, and let || A|| denote the usual operator norm; let ||v||« denote the dual norm

associated with the norm [lw|| on R" or R™. We define the norm of the data instance

d = (A,b,¢) by ||d|| = max{[| Al 8], l|ef|.}-
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We denote by C(d) the condition number of the problem with data d. Roughly
speaking C'(d) is a scale-invariant reciprocal of the smallest data perturbation Ad which
would render the perturbed data instance, d + Ad, either primal or dual infeasible.
The theory of condition numbers for (CP;) uses the quantity C(d) to bound various

behavioral and computational measures of (CFy).

The condition number C'(d) has been shown in theory to be connected to a wide
variety of behavioral characteristics of (C'P;) and its dual, including bounds on sizes
of feasible solutions, bounds on sizes of optimal solutions, bounds on optimal objective
values, bounds on the sizes and aspect ratios of inscribed balls in the feasible region,
bounds on the rate of deformation of the feasible region under perturbation, bounds on
changes in optimal objective values under perturbation, and numerical bounds related
to the linear algebra computations of certain algorithms, see [28], [9], [8], [13], [11], [14],
[35], [33], [36], [34], [24], [26]. In the context of interior-point methods for linear and
semidefinite optimization, this condition number has also been shown to be connected to
various quantities of interest regarding the central trajectory, see [22] and [23]. The con-
nection of these condition numbers to the complexity of algorithms has been developed

in [13], [11], [29], [3], and [6], and some of the references contained therein.

Given the theoretical importance of these results, it is natural to ask whether these
theoretical results are meaningful for problem instances that one encounters in prac-
tice? What are typical values of condition numbers that arise in practice?, and are
such problems typically well- or ill-conditioned? These questions motivate the need for
computation and analysis of the condition number theory for problems that arise in

practice.

Problem (C'P;) covers a very general class of convex problems; in fact any convex
optimization problem can be transformed to an equivalent instance of (C'P,). However,
such transformations are not necessarily unique and are sometimes rather unnatural

given the “natural” data for the problem. This ambiguity makes using the conic format
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impractical for computation. It is for this reason that we consider the following more

general format for convex optimization:

z(d) = min ciz
(GPy) st. Az —beCy (1.2)
T € P,

where now P, which we call the “ground-set,” is allowed to be any closed convex set,
possibly unbounded, and possibly lacking an interior. For example, P could be the
solution set of box constraints of the form ! < z < u where some components of [
and/or ¢ might be unbounded, or P might be the solution of network flow constraints
of the form Nz = g,z > 0. And of course, P might also be a closed convex cone. We

refer to problem (G F;) as the ground-set model (GSM) format.

Inspired by the construction and theory pertaining to condition numbers for conic
convex problems, we extend the concepts of condition numbers to the ground-set model
format (GP;,) herein, and we extend many condition number results to analogous results
for problems in the GSM format. In this thesis we define the condition number for the
ground-set model format (GF;), and we characterize the condition number using the
optimal values of certain associated optimization problems. We then use this charac-
terization to bound (i) the size of least-norm feasible solutions of (GP,), (ii) relative
error and optimal solution of (GF,), (iii) changes in optimal values under perturba-
tion, and (iv) the sizes and distances of solutions from the relative boundary of the
feasible region. Finally we use these theoretical results to bound the complexity of an

interior-point-method (IPM) algorithm for solving (GP,).

The GSM format allows us to define the condition number for a convex optimization
problem without requiring a transformation to conic form. Using the GSM format, we
compute the condition number for linear programs that arise in practice. We analyze the

condition numbers for the NETLIB suite of industrial and academic LP problems. We
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present computational results that indicate that 72% of the NETLIB suite of linear opti-
mization problem instances are ill-conditioned. However, after routine pre-processing by
CPLEX 7.1, we find that only 19% of post-processed problem instances in the NETLIB
suite are ill-conditioned, and that log C'(d) of the finitely-conditioned post-processed

problems is fairly nicely distributed.

Using the condition numbers computed for the NETLIB suite we investigate whether
condition number theoretical bounds are reasonably close to the actual measure of in-
terest for linear programming problems that one might encounter in practice. The com-
putational experiments in this thesis concentrate on the performance of state-of-the-art
IPM algorithms and the bounds on the minimum-norm feasible solution, optimal solu-

tion size, and optimal objective function value.

In the case of modern IPM algorithms for linear optimization, the number of IPM
iterations needed to solve a linear optimization instance has been observed to vary from
10 to 100 iterations, over a huge range of problem sizes, see [19], for example. Using the
condition-number model for complexity analysis, one can bound the TPM iterations by
O (y/nlog{C(d) + - --)) for linear optimization in standard form, where the other terms
in the bound are of a more technical nature, see [29] for details. (Of course, the IPM
algorithms that are used in practice are different from the IPM algorithms that are used

in the development of the complexity theory.)

A natural question to ask then is whether the observed variation in the number of
IPM iterations (albeit already small) can be accounted for by the condition numbers of
the problem instances? In this work we show that the number of IPM iterations needed
to solve the problems in the NETLIB suite varies roughly linearly (and monotonically)
with log C(d) of the post-processed problem instances. A simple linear regression model
of IPM iterations as the dependent variable and log C(d) as the independent variable
yields a positive linear relationship between IPM iterations and log C(d) for the post-

processed problem instances, significant at the 95% confidence level, with R? = 0.4258.
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Therefore, over 42% of the variation in IPM iterations among the NETLIB suite problems

1s accounted for by log C(d) of the problem instances after pre-processing.

Classic condition number theory bounds the norm of the optimal solution, the opti-
mal objective function value and the norm of the minimum feasible solution by condition
number quantities. These results, as mentioned above, were extended for the GSM for-
mat and the bounds compared to the actual values obtained for the problems in the

NETLIB suite.

We find that the condition number bound for the minimum-norm primal feasible
solution is small, on average 10%® times the actual value of the minimum-norm primal
feasible solution size. The condition number bounds for the optimal solution size and
optimal objective function value are larger. On average the corresponding condition
number bound is 10™* times the primal optimal solution size, 10!%!® times the dual
optimal solution size, and 10%? times the optimal objective function value. Each average
above are corresponds to the geometric mean of the ratio defined by the condition number

bound over the actual value.

1.2 Structure of thesis

The structure of this thesis is as follows: In Chapter 2, we present the basis of condition
number theory, and we provide the definitions and notation that we use in this work. We
also review the theoretical research on condition number theory and show an example
that illustrates the need to develop an extension of the condition number theory to

include problems not in conic form.

In Chapter 3 we present the ground-set model framework, conditions for strong
duality, the characterization of the condition number, and a result providing sufficient

conditions for strong duality in terms of the condition number. In Chapter 4 we present
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a number of geometric bounds for the primal and dual feasible regions using condition
numbers. These results prove the existence of reliable solutions in the feasible region,

which are bounded by condition-number-related quantities.

We show in Chapter 5 that, for a problem in the GSM format, the condition number
bounds the size of feasible and optimal solutions, the size of the objective function, and
the size of change in solutions due to perturbations in the data. In Chapter 6 we present a
complexity result for problems in the GSM format in terms of the condition number. We
describe a standard IPM which solves problem (G F;) in a number of Newton iterations

that is bounded by the logarithm of the condition number of the problem.

The computational results are presented in Chapter 7. We use the NETLIB suite of
linear programs for these computational experiments. The results describe the distribu-
tion of the condition number for the problems in the NETLIB suite, study the relation
of the condition number to the number of iterations a state-of-the-art IPM solver takes
to solve the instance, and studies the relation of the condition number to the size of

feasible and optimal solutions.

The last chapter in the thesis presents extensions of the current work. We mention
the applicability of this procedure to compute condition number for semi-definite pro-
gramming (SDP), what has been done to relate condition numbers to the homogeneous
self-dual model, some limitations of the GSM format, and other future directions of

research.
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Chapter 2

Research Review

In this chapter we review elements of the foundation of condition number theory. We
describe these ideas, first in the context of linear systems of equations (LSE), and then
in the context of convex optimization (CO). We also state theoretical results that are

relevant to our work in each setting.

We present characterizations of the distance to ill-posedness and condition numbers
for CO problems. These characterizations provide a basis for computing these quantities.
We provide examples that illustrate how these characterizations stumble into difficulties
when trying to compute the distance to ill-posedness and condition numbers for CO
problems that arise in practice. In this chapter we also mention previous work on

computing condition numbers.

2.1 Condition Numbers for LSE

Research has been conducted on condition numbers in many different mathematical

contexts. For example, this notion is present in research involving the solution of LSE,
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computing eigenvalues of a matrix, and solving linear least squares problems. Lately,
condition numbers have been used to study CO problems and the feasibility of conic

linear systems.

in all settings, the condition number of the problem is defined using the same three
concepts. The condition number depends on the definitions of what is a data instance,
what is an ill-posed data instance, and what is the distance to ill-posedness of a data

mstance.

To illustrate these definitions, we present the condition number in the setting of a

LSE.

2.1.1 The LSE

Consider the following finite dimensional LSE. For a given A € IR™" and b € IR", the

problem is to find a vector z € IR” such that

Az =b.

In this problem, the data is defined as (A,b). The dimension of the problem, n, is
fixed. Each pair (A, b) defines a different data instance of the same problem. We refer

to (A,b) as a data instance, or just an instance, of the problem.

The set D is defined as the set containing all possible data instances of the problem.
In our LSE example, D is the set of all possible n by n matrices and n dimensional right

hand side vectors:

D={(Ab)]|Ac R™™ bc R"} .
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2.1.2 Ill-posed instances

The subset of instances, 7 C D, is defined as the set of consistent instances. Out of
all possible instances, we group into J the instances that are solvable. For the LSE

example we have

F={(A,b) € R x R" | b € range(4)} .

In LSE, we refer to instances in the interior of F as well-posed instances. These
are instances (A, b) for which all instances in a neighborhood around (A4, b) also have a

solution. We can characterize the interior of F for LSE as
intF = {(4,0) € B™" x R" | det(A) #0} .

The set of ill-posed instances, which we denote by Z, is the boundary of F, that is
instances (A,b) which have infeasible instances arbitrarily close. In this case F¢ C

(intF)¢ =7 = 8F, and we have

7= {(A,b) € RV x R" | det(4) =0} .

2.1.3 Distance to ill-posedness

The set of all data instances, D, has to be contained in a normed vector space to be
able to define a distance to ill-posedness. Let || || denote the norm on the vector space

containing D. For any instance d € D the distance to ill-posedness, p(d), is defined as

p(d) = dist (d,T) = inf {||Ad|| | d+ Ad € T}.

The quantity p(d) is the smallest data perturbation, Ad, of instance d that makes
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the instance d + Ad ill-posed.

In the LSE case, the norm of the data is defined in terms of the norms used in
IR™ and the operator norm in R™"™. The usual definition is {|d|| = max {||A]|,||6]|}.
Representing a change in the data by Ad = (AA, Ab), we can express the distance to

ill-posedness as

o) = it {J(AD]| | det(A+Ad) = 0)
= inf {max {||AA|,||Ab]|} | det(A+ AA) =0}
= inf {||AA] | det(A+ AA)=0}.

Note that the distance to ill-posedness, p(d), does not depend on the right hand side,
b, for LSE. In this case, the distance to ill-posedness equals the distance of the matrix

A to the set of singular matrices. In other words,

p(d) = p(4),
where p(A) is the distance to the set of singular matrices for a square matrix A.
Consider A non-singular and let the norm on A be
|A]] = max {\/): | A; is an eigenvector of AtA}
= max{o; | o; is a singular value of A } .

In this case, the following characterization of p(A4) is due to Eckart and Young [4]:

1
p(A) = m

This result is valid for any operator norm on the matrix A. The proof for an arbitrary

operator norm is due to Gastinel [15].
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2.1.4 Condition Number

The idea of the condition number of a square matrix is present in the classic LSE
literature. This condition number is defined as x(A4) = ||4]||||A7!|| for non-singular

matrices, and &(A) = oo if the matrix A is singular.

Using the previous characterization of p(A), we can rewrite this condition number as

1 A A
w(A) = (1Al |47 = % _ g(_d‘)'

for a non-singular matrix, and x(A) = oo for a singular matrix. Therefore, the condition
number of a matrix A is the ratio of the size of A to the distance from A to the set of

singular matrices.

The definition of a condition number for a general problem follows this idea. For a
problem instance d, the condition number is the ratio of the norm of d to the distance
from d to the set of ill-posed instances. In other words, the condition number of the

data instance d is defined as

C(d) = %

for instances where p(d) > 0 and C(d) = oo for ill-posed instances. The condition

number is a scaled reciprocal of the distance to ill-posedness.

The quantities x(A) and C(d) are very similar. In fact, in the LSE case, we have

K max M e
() {1’ ||A||} )

If ||b]| < ||A]|, these quantities are the same. If ||b|| > ||A||, we can scale b to obtain an
equivalent problem such that {|3] = ||A||. This idea, and the fact that & is not involved
in determining whether the data d is consistent or not, suggest that b is not part of the

data for a LSE. If we define the data of a LSE problem as d = A, the classic condition
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number of a matrix is in fact the condition number of the problem.

2.1.5 Results in Condition Number for LSE

The following results illustrate that <(A) is known to bound the solution to the LSE

and the size of changes in the solution due to changes in the data.

Proposition 1 For any instance d = (A,b) of LSE, let x be the solution to the system
Ar =1b. Then

1 1< [ A[ATY] = s(A).

2. ||zl < B = w(A) 81

3. If &' is the solution of the perturbed system Az =V, then

lz — '

=]

<~

]

4. If 2’ is the solution of the perturbed systern A'z = b, then

|z — 2’}
[l

JA - 4
< s A

These are classic results in the numerical linear algebra literature. Proofs of these
results can be found, for example, in [17], Chapter 7. We can re-express the previous

results using C(d) since x(A) < C(d).

Some observations on these results follow:

e The condition number satisfies C'(d) > 1. As the problem instance approaches the

set of ill-posed instances, the condition number diverges to +oo.
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The norm of any solution to LSE is bounded by the condition number.

The last two results show that the relative change in the solution is bounded by

the condition number times the relative change in the data.

¢ The relative changes in the solution in items 3 and 4 are defined differently. In
item 3 it is the relative change with respect to the original solution, while in item

4 it 1s with respect to the perturbed solution.

e A similar result exists for a simultaneous change in both A and &.

All of these results are valid for ill-posed instances, where k(A) = C(d) = oo.

2.2 Condition Numbers for CO

The first analysis of the distance to ill-posedness for convex optimization was done by
Renegar in [28]. In this work, he obtained bounds for the norms of solutions and for
sensitivity to data perturbation in terms of the distance to ill-posedness, for convex
optimization problems in conic form. For simplicity, we present the definition of con-
dition number for finite dimensional CO problems in conic form. We also restrict our

exposition to the case of consistent data instances.

2.2.1 Conic convex optimization

The problem is stated as:

z, = min czx
(CPy) st. b— Az € Cy, (2.1)
x € Cx,
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where Cyx C IR™ and Cy C IR™ are closed convex cones. These cones are considered
fixed. The data of the problem is the tuple formed by the matrix A € ™ " and the

vectors b € IR™ and ¢ € IR™. We refer to a data instance as d = (4,0, c).

We refer to problem (2.1) as (CP;) for conic primal. The subscript d is used to
emphasize the dependency of this problem on the data.

Problem (CP;) is a very general model, which includes as special cases linear pro-
gramming (LP) and semidefinite programming (SDP), among others. The choice of

cones 'y and Cy determines the specific type of problem (CF;) models. For example:

1. An LP problem in standard form can be obtained by setting Cy = {0} and Cx =
R

2. An SDP problem is obtained by setting Cy = {0} and Cx = S%, which is the set

of symmetric positive semi-definite n x n matrices.

The norms || - ||x and || - ||y are defined on JR™ and IR™ respectively. Based on these

x} , where ||A]| is

norms we define the norm of the data as ||d|| = max {||A4]|, ||b]ly , ll|

the appropriate operator norm:

JAll = max || Az]ly

st ||z|lx €1,

and || - ||x- is the corresponding norm on the space of linear functionals:

= maxclz

el

X*
st ||lzl|x <1

For the remainder of the work, we drop the subscripts X and Y on the norms. The
norm we refer to will be clear from the context. We still differentiate the original norms

from the dual norms using the subscript *.
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The primal feasible region, for the data instance d, is denoted by

Xd:{.ZERnlb—AHIECy,l‘EC)(}.

The problem in conic form has a corresponding dual problem:

2* = max —bly
(CDy) st. Aly+ce Ck (2.2)
yely .

Here, C% and C}, denote the (positive) dual cones of Cx an Cy respectively. The

dual cone C*, for a convex cone C € IR™, is defined by

C*:{yEIR”IxtyEOforall:GEC'}.

The dual feasible region, for the data instance d, is denoted by

nz{yeﬂzmmtwcec;,yec;}.

Consider now the example with cones Cx = {0} and Cy = IR™. With this cone

selection we obtain the following primal and dual pair of problems:

Z, = min ciz = min 0 =0,
st. b— Az c IR™ st. b—ADe IR™
z € {0}
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and

2" = max —by = max —b'0 =0.
st. Aly+ce R" st. A0+cec R"
y € {0}

Since b ¢ IR™ and ¢ € IR™ by the definition of the problem, these problems are feasible
for all data d € D. In this trivial case D = F and p(d) = oo for every instance, we will

exclude in the remainder of this work this trivial case.

2.2.2 Tll-posed instances and distance to ill-posedness

For conic CO problems, the set of consistent instances, F, is defined by

F = {deD|(CPy) and (CD,) are feasible }
= {deD|Xs#0and Yy # 0} .

In this setting, the ill-posed instances are, again, the boundary of the consistent in-
stances, that is, Z = 0F. For a consistent instance, d € F, the distance to ill-posedness,

p(d), is its distance to the boundary of F. In other words,
pld) = inf{HAdH | Xa+ad = 0 or Yypna =0} .

If we use the definitions

Ilz{deple:@}

and

IQZ{d€D|Yd=®},
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then p(d) becomes

p(d) =inf{||Ad]| | Xuyaa =0 or Yyng =0}
—inf {|Ad]| | d+ Ad € T, UT,)
~ min{ inf {|Ad| |d+Ad €L}, inf {Ad]| | d+ Ade T} }

= min{ inf {[|Ad]| | Xorng =0}, inf {[|Ad]| | Yarna =0} }.

This means that p(d) is the size of the smallest data perturbation Ad that makes the
primal problem (C'Pyya4) infeasible or the dual problem (G Dy, a4) infeasible. Therefore
the characterization of p(d) for conic CO depends on what is defined as the primal and

dual distances to infeasibility. These distances are defined by
pp(d) = inf {||Ad|| | Xgsna = 0}

and

pp(d) = inf{||Ad|| | Yg1a4 = 0}.

Then, for a consistent instance, d € F, the distance to ill-posedness is

p(d) = min{pp(d), pp(d)} .

2.2.3 Condition Number

The condition number, C'(d), is defined as the following scale-invariant (by a positive

scalar) reciprocal of the distance to ill-posedness:

C(d) = ;L%
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for p(d) > 0 and C(d) = oc if p(d) = 0. This definition implies that, as the problem

instance is closer to being ill-posed, the condition number approaches infinity.

It is easy to show that when Cx # {0} or Cy # IR™, the instance (4,0, ¢) = (0,0,0)

is ill-posed. This fact is used to bound p(d) for any instance d by
p(d) = inf {|Ad|| | d+ Ad e I} < |ld].

The above implies that C(d) > 1. As in the LSE case, the condition number lies between

1 and +oo, being larger for data instances that are closer to being ill-posed.

2.3 Theory of C(d) in conic CO

In this section, we review recent research on C(d) for a conic convex optimization prob-
lem. We state the results for the case of consistent instances and finite dimensional CO

problems.

These results are categorized into three areas:

1. Results where C(d) provides information on geometric properties of (CFy).

2. Results that bound the complexity of algorithms for solving (CFy) in terms of
C(d).

3. Results that characterize the distance to ill-posedness as the solution to an opti-

mization problem. These results are the impetus for computing C(d).
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2.3.1 Geometric properties

A simple argument that illustrates that the condition number is related to the geometry

of the problem is the following:

We know that an ill-posed instance has an infeasible primal problem, dual problem,
or both. Therefore, an instance with a large condition number will have either a primal
feasible region, or a dual feasible region about to disappear. At least one of these feasible
regions is “thin” or “small”. On the other hand, a condition number close to one means
we have primal and dual feasible regions that do not disappear easily. We can think
of these regions as “fat” or “large”. This intuitive relationship between geometry and

condition number is formalized in various theoretical results.

In [28], Renegar proves that the condition number is related to the size of solutions,
the size of optimal solutions, and the sensitivity of solutions to perturbations in the

data. This result, which is Theorem 1.1 in [28], is

Theorem 1 [28] Suppose that d € F. If d satisfies pp(d) > 0, then the following are

true:

1. There exists x € Xy such that

]l <

2. If ' € Xgyaq where Ad = (0, Ab,0) then there ezists x € X4 such that

max {1, [|2"||}

z—12| < ||Ab
o =2 < g 2=

If p(d) > 0, then
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—[1b]| Il . Bl
i 10| P
pp(d) — pp(d)

4. The optimal solution set is not empty, and for every x* optimal for (CPy),

¥ <

This theorem states that for a well-posed problem, there exists a feasible point z such
that ||z|| < C(d). Moreover, that for any optimal solution z*, we have [|z*|| < C(d)?
and |ctz*| < ||d|| C(d). The second point shows how the condition number bounds the

change in feasible solutions under a perturbation of the data b.

The following result gives a geometric description of how the feasible region X is
related to the condition number. For this result each of the cones Cy and Cy needs
to be a regular cone, i.e. a closed convex pointed cone with a non-empty interior. (A
pointed cone is a cone that does not contain a line.) The result below also uses the
measure of the minimum width of a cone. For a non-empty convex cone C # {0}, the

minimum width of cone (' is defined by

dist (&, reloC
7¢ = sup (%, C) = sup i(w—re—)
#eC ieC |||

where
. dist (£, reloC’
r(6,0) = P

is the distance from the point Z to the relative boundary of C.

Theorem 2 [14] Suppose that d € F and Cx and Cy are regular. If p(d) > 0, then
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there exists © € Xy and positive scalars v and R salisfying

(1)  B(&,r)CXy
(1) B(z,r) C B0, R)

IS

(Z”) T S Tmin{TcX,Tcy C(d)
. l 1
S e

1
Theorem 2 corresponds to part (vi) of Theorem 15 in [14]. The result states that, for a

well-posed problem, we can find a feasible ball that is not far from the origin and whose

radius is bounded from below.

2.3.2 Complexity of algorithms

Herein we review theoretical results concerning the complexity of algorithms for solving
(CFy). All of the results presented here use the condition number of the problem to
bound the number of iterations the algorithm takes. The complexity results presented
are for an interior point algorithm and for the ellipsoid algorithm. This section also
reviews complexity results for algorithms that solve the feasibility problem for (CPy)

which depend on the condition number of the problem.

All the complexity results below assume a consistent and well-posed data instance.

This means d € F and p(d) > 0.

In [29], Renegar presents a complexity analysis for an interior point method in terms
of the condition number. The algorithm used in solving (CP,) is a primal path-following
algorithm. This interior point method requires a ¥-self-concordant barrier function for
the cones Cx and Cy. The algorithm starts from a given pair of interior points, which

we denote by # € relintCy and b € relintCy. These starting points affect the complexity
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through their distance to the boundary of Cx and Cy respectively. This is expressed by
7(%,Cx) and T(B, Cy). The algorithm also uses a positive scalar § that is specified as

part of the input.

For a given tolerance level £ > 0, the algorithm analyzed returns an interior £-optimal

solution, that is a point in the set
ng{xeXd\ctxgz*—l-s} )

in at most

T 1 max{s, 4]}
O(mn (ﬂw(d” : +T(j,cx>ﬂ(a,c,,)““mm{s,.un}))

Newton iterations, see Theorem 3.1 and Corollary 7.3 of [29].

A version of the ellipsoid algorithm for solving (C'F;) is analyzed in [13]. For £ > 0,
this algorithm finds an e-optimal solution by finding a point in Xj. The algorithm solves
a homogenized version of (CP;) and is initiated with the Euclidean unit ball centered
at the origin. Under the additional assumptions that the cones C'x and Cy are regular,
and 0 < € < ||c||,, the ellipsoid algorithm computes an e-optimal solution of (C'Fy) in

o(nzln (C’(d)+ L, ! +||c||*))

TCOx TCy £

iterations, see Theorem 5.1 in [13].

The feasibility problem for (CP,) is to find a point z € Xg4. This problem is the first
step in the interior point method described above. For this part of the algorithm, we
need the ¥-self-concordant barrier, and the pair of interior points £ and b. Theorem 3.1
of [29] proves that the first step of the algorithm returns an interior point Z € relint.Xy

in

0 (\/5 In (\/5 +C(d) + T(j}cx) N fr(z},lcy)))
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Newton steps.

The ellipsoid algorithm in [13] can also be applied to solve the feasibility problem.
Theorem 5.1 in [13] implies that if cones C'y and Cy are regular, the ellipsoid algorithm

will return a feasible solution to (C'P,) in

O (n2 In (C(d) + % + %))

iterations.

An elementary algorithm has also been shown to solve the feasibility problem of
(CPy) in a number of iterations that is bounded by the condition number. An iteration
of this elementary algorithm consists only of matrix-vector, vector-vector multiplications
and comparisons. Therefore the work per iteration is significantly less than that in the
interior point and ellipsoid algorithms, where linear systems need to be solved. In [5],
the authors describe the elementary algorithm, for the case when Cjx is regular and

Cy = {0}, which takes, at most,

o (C(Zd)Q ln( C(d), ))

iterations to find a feasible point, see Lemma 5 in [5].

The result for any regular cone Cy appears in [7]. There, Lemma 4.5 states that for

regular cones Cx, C'y and a positive scalar value v, the elementary algorithm requires,

o (C(d)z (max{ndu/v, v/ndu})2)

at most,

min{7c, 7c, }

iterations to find a feasible point.
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2.3.3 Characterization and computation of p(d)

To compute condition numbers C(d), we need to compute the distance to ill-posedness
p(d), and the norm of the data ||d||. In this section, we present a characterization of
p(d) for consistent convex optimization problems in conic form, i.e., problems for data

instances such that d € F.

This characterization of the distance to ill-posedness, which is central to our work in
computing condition numbers, is presented in {14] based on Theorem 3.5 of [29]. The
characterization uses the fact that if d ¢ F, then p(d) = min{pp(d), pp(d)}, where
pp(d) and pp(d) are the primal and dual distances to infeasibility, respectively. These
distances to infeasibility can be characterized by the solution to an optimization problem
if we select || - ||; as the norm in the constraint space JR™ and || - ||o as the norm in the
variable space JR™. Theorem 1 and Remark 6 in {14] imply that the primal distance to

infeasibility is characterized by

pp{d) = min min min  max {||A'y — q||1, [y + g|}
ie{t...m} je{-1,1} yeCy
g€ Cx%
920
Yi=17-

Likewise the dual distance to infeasibility can be characterized by

pp(d) = min min min max {||Az + p||1, [z + ¢|}
ie{l...n} jc{-1,1} zeCx
peCy
g=0
i =7 .
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Therefore, the characterization of pp(d) is equivalent to solving 2m convex opti-
mization problems, and the characterization of pp(d) is equivalent to solving 2n convex

optimization problems.

2.4 Alternate characterization and previous compu-

tational work

Previous computational work on the condition number of linear programs was reported
by Pefia in [24]. This work considers the conic problem (CP;) with Cy = {0}. In that
work the author presented several schemes to approximate the distance to ill-posedness,
and reported on the tightness of these approximation schemes over randomly generated

problems.

These schemes are based on two ideas: solving a related analytic center problem and
exhibiting infeasible perturbations for the system. Both approaches work with consistent
instances, i.e., d € F, and consider Euclidean norms in JR™ and JR™. The interior point
approach assumes the existence of a ¥-self-concordant barrier function over the C'x cone.
In theory, the interior point approach yields an approximation of p(d) within a factor
of ¥, while the second scheme produces an approximation of p(d) within a factor of
v/m. In practice the author reports that over the randomly generated instances the

approximations performed much better than predicted by theory.

Although this work computes the condition number for conic problems with equality
constraints, it does not address the validity or significance of any of the theoretical

condition number bounds.
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2.5 Computing C(d)

Given the different results that, in theory, relate C{d) to important behavioral and
computétional characteristics of (C'Fy) outlined in this chapter, it is natural to attempt
to obtain computational evidence that could describe the typical C(d) of problems that
arise in practice and that could indicate if the theoretical bounds above are significant

for practical problems.

In order to address this lack of computational experience, one can start by com-
puting the condition numbers for a suitably representative set of linear optimization
instances that arise in practice, such as the NETLIB suite of industrial and academic
linear optimization problems, see [21]. Practical methods for computing (or approxi-
mately computing) condition numbers for convex optimization problems in conic format
(C'Py) have been developed in [11] and [24]. The first method is briefly presented in the
previous section, the second alternative is due to Pefa; both of these methods are rela-
tively easy to implement. It would then seem to be a simple task to compute condition
numbers for the NETLIB suite. However, it turns out that there is a subtle catch that
gets in the way of this simple strategy, and in fact necessitates using an extension of the

condition number theory just a bit, as we now explain.

Linear optimization problem instances arising in practice are typically conveyed in

the following format:

min, c'z

st. Az <b ,ieL
Ai.’lﬁ':bi,iEE
A@.IZ[JZ,’LGG

(2.4)

zj21li, 7€ Llp

r; <u;, j€Up,
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where the first three sets of inequalities/equalities are the “constraints” and the last
two sets of inequalities are the lower and upper bound conditions, and where L, Ug C
{1,....,n}. (LP problems In practice might also contain fange constraints of the form
“bip < Az < by as well. We 1gnore this for now.) By defining Cy to be an appropriate
cartesian product of nonnegative half-lines IR, nonpositive half-lines —IR.., and the
origin {0}, we can naturally consider the constraints to be in the conic format “4 be

Cy” where Cy C IR™ and m — ILI+|E|+|G). However, for the lower and upper bounds

lower and upper bound constraints inte ordinary constraints, Assuming for expository
convenience that all original constraints are equality constraints and that all lower and

upper bounds are finite, this conversion of (2.4) to conic format is:

P imin, ¢z
s.t. Az -b=0
Iz —[ >0
Iz -y <.

whose data for this now-conic format is:
A
A= |7 b=y ,C:=¢
I

with cones:

C—'y = {O}m X B:l_ x -—Bi and C—'X = ",
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Another way to convert the problem to conic format is to replace the variables z

with nonnegative variables s := z — [ and ¢ := u — x, yielding:

P, :min,; c's+cl
s.t. As—(b—Al) =0
Is+ It —(u—1)
5,t >0,

0

whose data for this now-conic format is:

N A 0) . b— Al
A= b= ,Ei=c
I I u—1

with cones:
Cy := {0}" x {0}* and Cx:=R!x R".

These two different conic versions of the same original problem have different data
and different cones, and so will generically have different condition numbers. This is

illustrated on the following elementary example:

P :ming, 4, 11
5.t. 1+ x> 1
40021 + 2o < 420
1<z <5

—151'2
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| L & [ B |
Id| 128 405
pp(d) | 0.24450 | 0.90909
op(d) || 0.00250 | 1.00000
C(d) || 171,200 | 445

Table 2.1: Condition Numbers for two different conic conversions of the same problem.

Table 2.1 shows condition numbers for problem P under the two different conversion
strategies of P, and P, using the L.,-norm in the space of the variables and the L;-
norm in the space of the right-hand-side vector. (To compute the condition numbers
of these problems in conic form we can use for example the characterization presented
in Section 2.3.3, which is described in more detail for LP in Section 7.1.) As Table 2.1
shows, the choice of the conversion strategy can have a very large impact on the resulting
condition number, thereby calling into question the practical significance of performing

such conversions to conic format.

It is to get around this problem that we introduce in the following chapter a gener-
alization of the condition number theory to consider problems that are naturally not in
conic form. This generalization will allow us to compute the condition number for linear
programs that arise in practice without requiring a conversion of the problem that could

alter the structure that is present in the data.
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Chapter 3

Ground Set Mode]

3.1 Introduction and working assumptions

Recall from the previous discussion, that condition number theory for convex optimiza-

tion has been developed for convex optimization problems in conic form:

zZy = min, 'z
(CPy) st. Ar—beCy (3.1)
RS C_)(,

and that problem (CPy) covers a very general class of convex problems; in fact any
convex optimization problem can be transformed to an equivalent instance of (CP;).
Recall also that such transformations are not necessarily unique and are sometimes
rather unnatural given the “natural” data for the problem. These reasons make the
current characterizations of the condition number ambiguous, and therefore, impractical

for computing the condition number of problems in practice.

It is for this reason that we consider the following more general format for convex
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optimization:

z,(d) = min, c'z
(GFy) st. Az —beCy (3.2)
z € P,

where now P, which we call the “ground-set,” is allowed to be any closed convex set,
possibly unbounded, and possibly lacking an interior. For example, P could be the
solution set of box constraints of the form [ < x < wu where some components of {
and/or v might be unbounded, or P might be the solution of network flow constraints
of the form Nz = g,z > 0. And of course, P might also be a closed convex cone. We

refer to problem (G P;) as the ground-set model (GSM) format.

The definition of the condition number for the convex optimization problem (G F;)
depends on the Lagrangian dual of (GP,) and on the notion of distance to ill-posedness.
In this chapter, we present the definitions and notation needed to define the Lagrangian
dual problem, the distance to ill-posedness, and the condition number for problems in
the GSM format. We also present characterizations for the distance to ill-posedness and

conditions for strong duality of the problems in the GSM format.

This work considers the finite dimensional GSM format. For concreteness, denote the
variable space X by IR and the constraint space J by IR™. Therefore, P C IR", Cy C
IR™, Ais an m by n real matrix, b € IR™, and ¢ € IR". The Reisz-Frénchet representation
theorem, see Theorem 5.5 of {2], proves that the spaces of linear functionals A™* and J*,
for the Hilbert spaces X = R" and Y = IR™, can be identified with IR" and IR™

respectively.

The assumptions we make on the ground set P and the cone Cy are just that P # )
and Cy # 0. For the moment, note that when Cy = IR™, problem (GPy) will be feasible
for all data d.
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3.2 GSM duality

The following definitions, which depend on the ground-set P, are needed to present the

Lagrange dual problem of (GFy).

Recall that a vector r € IR™ is a ray of P if there is a vector x € P such that for all
@ > 0 the vector x + 8r ¢ P. Let R denote the set of rays of P. Since P is a closed

convex set, the set of rays R is a closed convex cone.

Define the set
Cp .= {(x,t) |z €tPt> 0}

and let C denote the closed convex cone
C:=clCp (3.3)
where cl S denotes the closure of set S. Then it is straightforward to prove that
C=CpU{(r,0)|reR}
and that

C* = {(s,u) | sz +u >0, for all:cEP}

= {(s,u)| infsta:+u>0} :
TCP

The Lagrange dual of (GFy) is:

2*(d) = max,, by—u
(GDy) st. (c— Aly,u) € C* (3.4)
yeCy .
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Note that (G Dy) is technically in conic form; however evaluating the inclusion (s, u) € C*
is typically not an easy task. An equivalent form of the dual problem (GD,) uses the

convex function defined by

g ot
u(s) = %2};5 T (3.5)

The convexity of function u(-) is due to the fact that the set P is convex and that

u(s) = sup(—s)'z = &"(=s | P),

zeP

where §*( - | P) is the support function of the set P as defined in [31]; Theorem 5.5 of

[31] shows that u(-) is convex. The epigraph of function u(-) is the set defined by
epi u(-) == {(s,v) € R" x R | v > u(s)} .

The projection of this set onto the space of the domain of u(-) is the effective domain of

dom u(-) :={s € R" | u(s) < oo} .

Note that

cr = {(s,u) | ig}f)stm +u > 0}
= {(s,u) | u>uls)}

= epiu(-).

With the definitions above, it is straightforward to show that the dual problem (G D)

48



is equivalent to the following optimization problem:

z*(d) = max, b'y— u(c— A'y)
st. ¢— A'y € dom u(-) (3.6)
yeCy .

The following proposition, which is exactly Corollary 14.2.1 of [31], relates the domain

of the function u(-) to the recession cone of the underlying ground set P.

Proposition 2 [31] For a convez set P, cl dom u(-) = R*. u

This proposition implies in the case that dom wu(-) is closed that

z*(d) = max, b'y—u(c— Aly)
st. c¢— Ay e R*

yeCy .

Consider now the case when the ground set P is a bounded set. In this case, for every
vector s € IR", the value u(s) = —inf,cp 'z is a finite real number. As a consequence
we have (s,u(s)) € C* for any s € IR®. The above implies that problem (GD,) is feasible

for all data instances d.

Let X4 and Y, denote the feasible regions of (GP;) and (GD,), respectively:
Xg={zx€R"| Az —beCy,z € P} (3.7)
and
Yo={(y,u) € R™" x R | (c— A'y,u) € C*,y € C}}. (3.8)

Remark 1 Weak duality holds between (GPy) and (GDy), that is, z*(d) < z.(d) .
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Proof: Let us consider z and (y, u) feasible for (GF;) and (GD,) respectively. Then
0< (C—Aty)thru:ctx—ytAerug dr — bty +u,

where the last inequality follows from the fact that y'(Az — b) > 0. Therefore z,(d) >
z*(d). |

3.3 Slater points and strong duality

A primal-dual pair of problems satisfies strong duality if the optimal objective function
values of both problems coincide. In particular for the GSM format, problems (GP;)
and (GD,) satisfy strong duality if z,(d) = z*(d). The conditions under which a pair
of primal-dual problems satisfies strong duality vary, for instance, in the case of linear
programming if both the primal and the dual problems are feasible, then they satisfy
strong duality. In convex optimization however, the existence of strong duality between a
pair of primal-dual problems usually depends on additional hypotheses, these are known
as constraint qualifications. A classic constraint qualification is the existence of a Slater

point in the feasible region, see for example Theorem 30.4 of [31] or Chapter 5 of [1].

Below we present results that show that the existence of a Slater point is sufficient
for strong duality in the GSM case. These proofs use a separating hyperplane argument
to directly imply that the optimal objective function values coincide. This argument is

based on the convexity of problems (GPy) and (GDy).

First let us make the notion of a Slater point precise for the GSM format. The

relative interior of a set S is noted by relintS.
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Definition 1 A point z is a Slater point for problem (GFy) if
z € relintP and Az — b € relintCy .
Likewise, a point (y, ) is a Slater point for problem (GD,) if

y € relintCy. and (c — A'y, u) € relintC™* .

Theorem 3 If 2’ is a Slater point for problem (GP;), then z,(d) = z*(d) and problem

(GDy) attains its optimum.

Proof: For simplicity, let z, and 2* denote the primal and dual optimal objective

values respectively. Consider the set
S = {(p,q,a) | Ixrst.z+pe P Az —b+qeCy,dr—a< z*},

which is a nonempty convex set. We can properly separate (0,0,0) from S, since
(0,0,0) € S. Therefore, there exists (v, y,#) # 0, which satisfies y'p + y*q + 7o > 0 for
all (p,q,) € S.

Foranyz e R", pe P,§e€Cy,ande >0definep=—z+p,9g=—Az+ b+ g, and
a=c'z — 2, +¢. Then (p,g,0) € S.

From the proper separation,

YV(—z+p) +y(—Az+b+§ +n(cfr—2,+e)>0 forallz,pe PjeCy,e>0.

Because £ > 0 is not bounded, the multiplier 7 > 0. If 7 > 0, re-scale (y,y, ) such
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that 7 = 1, and then
Yz +p) +y(—Az+b+§) +cfr—2.+e>0 forallz,pe Pge Cy,e>0.
Rearranging,

(—A'y+c—z+yDp+yd+yb—2z+e>0 foralla,pe Pge Cy,e>0.

This last expression implies that ¢ — Ay = v and y € Cs. Set ¢ =0, u = y'b — z,,
and take the limit as ¢ — 0, then the last expression implies (¢ — Ay, u) € C*. Therefore
(y,u) is feasible for (GDy) and z* > b'y — u = b'y — y*b + 2z, = 2z, > z*, which implies

that z* = z, and the dual feasible point (y,u) attains the dual optimum.

Itr=0, ﬁroper separation gives the following:
Y(—z+p)+y'(-Az+b+q) >0 forallz,pe P,ge Cy .
Rearranging,
(—A'y —Y'r+ 45+ y'§+y'8>0 forallz,pc P,gc Cy.

This implies that —A'y = v and y € C}. The last expression becomes —y’ Ap+y‘g+y'd >
0, for any p € P,§ € Cy. Proper separation also guarantees that there exists (p, g, &)
and % such that £ 4+p € P, Az —b+ ¢ € Oy, 'z — & < z, and ¥'p + y'¢ + m& > 0.
Now 7 = 0 by supposition, and we noted that v = —Aly, and y € C;. Therefore
—ytAp + yt¢ > 0.

Let z’ be the Slater point. For all [£| sufficiently small, ' + £(£ + p — ') € P and
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Az’ — b+ (A2 — b+ § — (Az' — b)) € Cy. Therefore

0 < YA +€@E+p 1)) +y' (A b+ (AT —b+G— (Ax' — b)) +y'b
= ¢ (—ytA:i“ — oyt Ap+ vt Az + P A — o'+ ytG -yt Ax + ytb)

= ¢(-v'ap+y'q)

which is a contradiction, since £ can be negative and —y*Ap+ y'q > 0. Therefore 7 # 0,

and the proof is complete. [

Theorem 4 If (y',u') is a Slater point for problem (GDy), then z.(d) = z*(d) and

problem (GPy) attains its optimum.

Proof: For simplicity, let z, and z* denote the primal and dual optimal objective

values respectively. Consider the nonempty convex set
S = {(S,an,a) | Jy,ust. (c— Ay, u)+ (s,0) € C*y +q € Ch by —u+a > z*} _

We can properly separate (0,0,0,0) from S, since (0,0,0,0) ¢ S. Therefore, there exists
(z,8,7,0) # 0, which satisfies ‘s + Bv + g + da > 0 for all (s,v,9,0) € S.

For any y € R™, w € R, (5,0) € C*, § € C}, and € > 0, define s = —c + Aly + 3,

v=—-u+7,qg=-y+q, and a =z* — by + u+¢. Then (s,v,q,0) € S.

From the proper separation,
g(—c+ Ay +3) + B(-u+8) + 7' (~y +9) +8(z" = by+u+e) >0,

for all y,u, (3,9) € C*,q € Cy,e > 0. Because ¢ > 0 and not bounded, then § > 0. If
d > 0, re-scale (z, 3,7, ¢) such that 6 = 1, and

(et Ay + 5+ B(—u+ D)+ (—y+ 4§+ —bytute>0.
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Rearranging,
(A —b— 'y + (@860 +(1 - Bu+yli—ca+2+e>0),

for any y,u and any (5,0) € C*,§ € Cy,e > 0. This last expression implies that
Ax -b=7v¢€ Cy, =1, and (x,1) € C, which means that x € P. Therefore z is
feasible for (GP;). Set (3,0) = (0,0), ¢ = 0, and take the limit ¢ — 0, then the above
expression implies z* > c'z > z, > z*, which implies that z* = z, and the primal feasible

point z attains the optimum.

If 6 = 0, proper separation gives the following:
t(—c+ Ay +3)+P(—u+9)++(-y+¢) >0 forally,u (50 € C*,geCy .
Rearranging,
(Az — 'y + (2,8)45,0) — Bu+~'Gg—cz >0 forall y,u,(5,8) € C*,§e C} .

This implies that § = 0 and Az = v € Cy. The above inequality also implies that
(z,0) € C, which means that z € R, and = # 0 (for otherwise (z, 3,7,d) = 0, a contra-
diction). The proper separation states that there exists (5,7, 4§, &) and (g, @) satisfying

(c—Ag+5a+0)eC*,g+¢cCy, bty —a+a>z and 2'5 + 2P A%G > 0.

Consider the Slater point (y',%). Then (¢ — Aly', ') € relintC* and ¢’ € relintC'.
Then for all |£| sufficiently small, we have ¢/ + £ (§ + ¢~ %') € Cy and

(c—Aty'+§(c—At37+§—c+Aty'),u'+§(ﬂ+6—u')) eC”.
Therefore
st{c— Ay +E(c— Ag+i-ct AY)) + 2" A W HE@+I—Y)) -tz >0
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Simplifying and canceling, we obtain

0 < ¢ (—actAtg) +ztd + 2t Aty 4 A+ 2t Ag :z:tAty')

= g(a:t§+zﬂAtq) :

However, by choosing £ < 0 we have g contradiction, since '3 + ' A%§ > 0. Therefore
y

d # 0, and the proof is complete. ||

3.4 Distance to ill-posedness and Condition Number

In this section we introduce the definitions of the distance to ill-posedness and condition
number for a convex optimization problem in the GSM format. These definitions are
the natural extension of the definitions introduced by Renegar for conic problems in [28]

and [29].

The vector space of all data instances d=(4,b,¢) for the GSM format is

D=R"™"x R™ x R".

A norm on D can be constructed as follows. Consider given norms ||z|| and lly|l on
iR™ and IR™, let || A]l denote the usual operator norm, and let [v||, denote the dual norm
associated with the norm |jw|| on &R™ or IR™. We define the norm of any data instance
d=(A,b,c) € Dby ||d := max{||All, b]], |lc|l.}. Let B(d,r) C D denote the ball with

center d and radius r, for the norm defined on D,

We now pause to remark that there are four different normed vector spaces present in
the GSM framework. There are the two normed vector spaces present in the definition
of the primal problem: the variable space (IR",||-]}) and the constraint space (IR™, ||-||).

There are also the two normed vector Spaces present in the definition of the dual problem:
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the linear functionals over the constraint space (™, | - [|.) and over the variable space
(IR, || - ||.)- The fact that elements of each dual space can be associated to elements of
the corresponding original space is due to Theorem 5.5 of [2]. In the remainder of the
thesis, we let x € IR" and w € IR™ denote the primal points and s € IR” and y € IR™
denote the dual points. This convention will remind us to make a distinction between

primal and dual points in [R" or [R™ in order to use the appropriate norm.

Define the sets Fp of primal feasible data instances:
Fp-={deD| Xy4#0},
and Fp of dual feasible data instances:

fD::{dE’Dlyd?é@}.

A data instance that is both primal and dual feasible is a consistent data instance.

The set F of consistent data instances is therefore

fZ:.’FPﬂfD-’:{dEDle?é@,Yd?ém}.

In general terms, a problem with data instance d is well-posed if its consistency status
is unchanged by small perturbations of the data. In other words, d € F is well-posed
if, for some & > 0, d + B(0,¢) € F. Likewise, d € FC is well-posed if, for some £ > 0,
d + B(0,¢) € FC. The well-posed instances are the data instances which Jay in the

interior of either F or F C,

Therefore, the set Z of ill-posed instances is made up of exactly those instances for

which an arbitrarily small perturbation of the data will change its consistency status.
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Ill-posed instances lie on the boundary of F and F¢:

T :=0F = 0F€ = clF NclFC.

The distance of any instance d to the set Z, noted p(d), is the distance to ill-posedness

of the instance. For d € F, the distance to ill-posedness is

p(d) :=inf {||Ad|| | Xa4ad =0 or Yiing = 0},

the size of the smallest data perturbation Ad that would make problem (G Py, A4) and/or

problem (GDy.a4) infeasible. For d € ¢, the distance to ill-posedness is

p(d) = inf{HAdH | Xd+Ad # (Z) and Yd+Ad 75 @},

the size of the smallest data perturbation Ad that would make both problems (G Py aq),
and (GDgy, aq) feasible.

The existence of the set of ill-posed instances 7 depends on the ground set P and
the cone C'y. The pathological case is when both Cy = IR™ and the set P is bounded.
The fact that Cy = IR™ implies that X4 # 0 for all d, and the boundedness of P implies
that Yy # 0 for all d. Therefore, in this pathological case, F = D and the set of ill-posed
instances does not exist. We will not consider this case in the remainder of this work,

and so we make the following assumption:

Assumption 1 FEither Cy # IR™ or the ground set P is not bounded (or both).

The condition number of instance d is defined as

4]l
C(d) := M p(d) >0
o pld) =0,
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which is a scale invariant reciprocal of the distance to ill-posedness.

Note that C(d) increases as the problem instance d becomes closer to the set of

ill-posed instances 7.

Remark 2 For any data instance d € D, the condition number satisfies C(d) > 1.

Proof: Consider the data instance dy = (0,0,0). Note that X, = P # @ and
Yy, = Cy x IRy # 0, therefore dy € F. If Cy # IR™, consider b € IR™\ Cy, b # 0, and
for any € > 0, define the instance d. = (0, —¢b,0). This instance is such that for any

e >0, X4, =0, which means that d, € FC and therefore dy € Z.

If Cy = IR™, then P is unbounded. This means that there exists r € R, r # 0, a
ray of P. For any £ > 0 the instance d. = (0,0, —e7) is such that Y, = (), which means
that d, € F¢ and therefore do € Z.

Since dy is always ill-posed, we know that p(d) < ||d — do|| = ||d]].

3.5 Characterizations of p(d) as the solution of asso-

ciated optimization problems

For the remainder of this work we will consider consistent data instances, that is d € F.
The characterization of the distance to ill-posedness, p(d), in the case when d € F€ is

not a direct extension.
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3.5.1 Definitions and preliminary results

To characterize the distance to ill-posedness we need a few more definitions. Define, for

d € D, the primal distance to infeasibility pp(d):
pp(d) == inf {||Ad|| | Xaina =0},

the size of the smallest data perturbation Ad that makes (GPy,aq4) infeasible. Define

also, the dual distance to infeasibility pp(d):
pp(d) == inf {||Ad|| | Yoyae = 0},

the size of the smallest data perturbation Ad that makes (GDy,a4) infeasible.

Now, for d € F, the distance to ill-posedness p(d)} becomes:

p(d) = inf{||Ad|| | Xgraa =0 or Yyng =0}

= min{pp(d), pp(d)}.

This shows that to characterize of p(d) it is sufficient to express pp(d) and pp(d) in
a convenient form. Below we show that these distances to infeasibility can be obtained
as the solutions of certain associated optimization problems. The characterization pre-
sented below follows ideas used to characterize the condition number for problems in

conic form introduced in [29] and [14].

Before doing so, we first present a number of technical results that are used in the
characterizations of the distances to infeasibility. Proposition 3 is a special case of the

Hahn-Banach Theorem; the proof below appears originally in Proposition 2 of [14].

Proposition 3 Consider X an n-dimensional linear vector space. For every z € X,
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there exists T € X* with the property that |||« = 1 and |jz]j = Z'=.

Proof: If z = 0, then any 7 € X* such that ||z||, = 1 satisfies the proposition.
Suppose now that z # 0. Consider the real valued convex function f(x) = |lz|. Its

sub-differential operator 8f(z) is non-empty for all z € X. Let z € 9f(z). Then
fw) > f(z)+ 2 (w—1z) forany we X .

Setting w = 0 we have zlz > f(z) = ||z||, and setting w = 2z implies z'z < f(2z) —
f(z) = f(x) = ||z||, whereby z'z = ||z||. Using the Hélder inequality in this last equality
means that ||z[l, > 1. Now for any v € X, set w = @ +u, then 2u+ f(z) < f(z +u) <
f(z) + f(u), therefore z*« < ||u|l for any w € X. This implies from the definition of the

dual norm that ||z||. < 1. In conclusion ||z|[, = 1. [ |

The following weak alternative lemmas will be used in the proofs for the characteri-

zations of pp(d) and pp(d).

Lemma 1 Consider the systems

(—Aly,u) € C*
(—Afy,u) € C*
Ar—be Oy bty > wu
(Xa) , (AL , (42) wy>u
r€eP y#£0 c
yeCy
yely

If system (Xg) is infeasible, then system (A1) is feasible. Conversely, if system (A2)

is feasible, then system (Xg) is infeasible.
Proof: Let us assume that system (X,) is infeasible. This implies that

bg S:={Az —vjzxc Pvely},

60



and S is a nonempty convex set. Therefore the vector b can be separated from S, and

therefore there exists y # 0 and u such that

v > u

y(Az —v) <u Yz e PveCy.

Since v € Cy we see that y € Cf, and setting v = 0 € Cy we obtain
Y
(A% +u>0Vre P= (—Aly,u) € C*,

therefore (y, u) satisfies system (A1).

To prove the other implication, assume both (A2) and (X;) are feasible, then we

obtain the following contradiction:

0<y(Az—b) = (Ay)'z -y < ~ ((-A' 'z +u) <0 . m

Lemma 2 Consider the systems

ACEECY
( 4t ) o . <0 AJJEC}/
c— Aly,u) e C” cr <
(}/d) ) (Bl) ) (Bz) CtI<0
yecCy z#0
T € R
re R

If system (Y,) is infeasible, then system (B1) is feasible. Conversely, if system (B2)

is feasible, then system (Yy) is infeasible.
Proof: Assume that system (Y}) is infeasible, this implies that

(0,0,0) ¢ 5= {(s,0,0) | Tmust. (¢~ Ay, u)+ (5,0) € Oy +q € G} )
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and S is a nonempty convex set. The point (0,0,0) can be separated from S, that is,

there exists (z,d,z) # 0 such that zts + v + ztg > 0 for all (s,v,q) € S.
Consider any (y,u), (5,9) € C*, and § € C5, and define 5 = —(c — Aly) + 3,
v=—-u+v and g = —y +4§. Then (s,v,q) € S. This implies that

—ate+ (Az—2)y+ats—Su+di+2¢20 for all y,u, (5,7) € C*,g € Cy -

The above expression implies that § = 0, Az = z € Cy, and (z,8) = (x,0) € C. This
last inclusion implies that = ¢ R. Setting (5,7) = (0,0) and ¢ = 0 we obtain dx <0.
It is necessary that x # 0 because otherwise, (z,4, z) = (2,0, Az) = 0. This means that
(B1) is feasible.

To prove the other implication, assume both (B2) and (V) are feasible. Then we

obtain the following contradiction:

0< zt(c— Aly) =cz—y'Az < —¢yfAz<0. W

The next strong duality result will also be used in the characterizations of the dis-

tances to infeasibility.

Lemma 3 Consider two closed conves cones C C R™ and Cy C IR™, and data (M, v) €

IR™*n % JR™. Strong duality holds between

(P): z,= min |My+gll. and (D): 2= max 6

st. ylv>1 s.t. Mz —6veCy
yely =l <1
geC” 6>0
zeC .
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Proof: For any (y, q) feasible for (P) and (z, 8) feasible for (D) we have:
0 < Oy'v +2'q <zt (M'y+q) < lall|M'y +qll. < [|1M'y +qll. -

Therefore z* < z,. Suppose z* < z,, then we have that 0 < 2* < z, — ¢, for £ > 0 and

small enough. Consider the nonempty convex set S defined as follows:

S = {(u,é,a) | Iy, gst.y+ueCy,g+decCylv>1— a,”MterqH* < z, —5} .
Since (0,0,0) & S, we can separate (0,0,0) from S. Therefore there exists (z,z,6) # 0
such that, z'u + 26 + 6a > 0 for any (u,d,a) € S.

Consider any y € R™, @ € 5, § € C*, and § that satisfies |||, < z. — ¢, and define
g=-My+G§ u=-y+a 6 =—q+38, and @ =1 — y'v. Then (v,d,@) € S, and so
A—y+a)+rt(My—G+8)+6(1—yv)>0.
Rearranging yields

' (Mz —0v—2) + 29+ 28 —2'4+0>0

for any y, & € C, 0 € C*, and any ||g||, < z. — . This last expression implies that
Mz —6v=2¢€Cy,z € C,and § > 0. If x # 0, re-scale (z,z,0) such that [|z| = 1
and then (z,0) is feasible for (D). From Proposition 3, there exists § € IR" such that
lgll, = 1 and §'z = ||z]| = 1; use ¢ to define § = (2, — ¢)g§. Then (z,0) satisfies

2* >0 > x'qg =z, — € > z*, which is a contradiction.

If z = 0, the above expression implies —0v = 2 € Cy, and § > 0. If 6 > 0 then
—v € Cy, which means that the point (0, 8) is feasible for (D) for any 6 > 0, implying
that z* = oo, a contradiction. The last case is # = 0, but this means that z = 0, which

is a contradiction since (z,z,8) # 0. |
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3.5.2 Characterizations of pp(d) and pp(d)

Before delving into the characterizations of the primal and dual distances to infeasibility,

we show the following:

Proposition 4 For any dala instance d = (A,b,¢) € D,

1. pp(d) = oo if and only if Cy = R™.

2. pp(d) = oo if and only if P is bounded.

Proof: Clearly Cy = IR™ implies that pp{d) = oo. Also, if P is bounded, then
R = {0} and R* = IR", whereby (GDy) is feasible for any d, and so pp(d) = co.

Therefore in both points we only need to prove the converse implication.

Assume that pp(d) = oo, and suppose that Cy # {0}. Consider a point § € C},
7 # 0, and define the perturbation Ad = (AA, Ab, Ac), where AA=—A, Ab= —b+ 7,
and Ac = —c. System (A2) of Lemma 1 is feasible for the data d = d + Ad = (0, §,0),
in fact the point (y,u) = (f/, %3) satisfies (A2). This means, from Lemma 1, that X;

is infeasible and ||d — d|| > pp(d) = oo, a contradiction. Therefore C; = {0}, and so
Cy = R™.

Assume that pp(d) = oo, and suppose that R # {0}. Consider ¥ € R, # # 0, and
define the perturbation AA = —A, Ab= —b, and Ac = —c—Z. System (B2) of Lemma 2
is feasible for the data d = d+Ad = (0,0, —), in fact the point # satisfies all constraints.
Then, from Lemma 2, we have that Y; is infeasible and so ||d — d|| > pp(d) = oo, a

contradiction. Therefore R = {0}, which implies that the ground set P is bounded. ®

The two theorems below present characterizations of the distance to infeasibility as
optimization problems. Each of the following results is an extension to problems not in

conic form of Theorem 3.5 of [29], and Theorems 1 and 2 of [14].
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Theorem 5 Suppose d € Fp. Then pp(d) = jp(d) = rp(d), where

jr(d) = min max {||A%y + s|,, [b'y — u|}

=1
ol 50
y € Cy
(s,u) € C*
and
rp(d)= min max 6
v[| <1 Az —bt — vl c C
ol < v 510

veR™ ||z)| + [t <1
(z,t) € C .

Proof: Assume that jp(d) > pp(d), then there is an infeasible data instance d =
(A, b) such that HA— fi” < jp(d) an Hb—BH < jp(d). From Lemma 1, for the data

instance d, there is a point (7, %) that satisfies the following:

— Aty u) € C*

o=l o~

> G
£ 0
€

<

Cy.

2

Scale 7 such that ||3||, = 1, then (y, s,u) = (7, —A'g, b'§) is feasible for (3.9) and
W, = oty ], < 4= 2] <ol

by —u| = |o'g— Byl < b— B l17ll, < jp(d).

In the first inequality above we used the fact that || A*||, = ||A]|. Therefore jp(d) <

max { || Aty + s||, , |0’y — u|} < jp(d), a contradiction.
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Let us now assume that jp(d) < < pp(d) for some . This means that there exists
(y,5,u) such that y € C3, ||g]|, = 1, (5,4) € C*, and that

|G +5| <7 g-al <.

From Proposition 3, consider § such that ||§|| = 1 and 'y = ||7]|, = 1, and define, for

e > 0,

We have that § € C, —A'y = 5, b'§ = &+ > @, and (—A!F, @) € C*. This implies
that for any ¢ > 0, the problem (A2} in Lemma 1 is feasible with data d. = (A4, b, 0).

Lemma 1 then implies that X; = ) and therefore pp(d) < “d —d.|. To finish the proof

we compute the size of the perturbation:

2] <o (19 + 9] < |+l <

|6 =] = [0 —a—elllgll < b5 — @l +& <7 +e,

which implies, pp(d) < max {HA - fl“ : ||b — b,

} < v +e < pp(d), for € small enough.

This is a contradiction, whereby jp(d) = pp(d).

To prove the other characterization, we invoke Lemma 3 to rewrite problem (3.10)

as
rp(d)= min  min max{||A%y + s, .| — by + ul}

| <1 ¢tv>1
veER™ yelCy
(s,u) € C*.
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The above problem can be written as the following equivalent optimization problem:

rp(d) = min max {||A*y + s||,,| — b’y + ul}
Iylle > 1
yeCy
(s,u) € C*.

The equivalence of these problems is verified by combining the minimization operations
in the first problem and using the Cauchy-Schwartz inequality. The converse makes use
of Proposition 3. To finish the proof, we note that this last problem will be optimized at

a point which also satisfies ||y||. = 1, whereby making it equivalent to (3.9). Therefore

rp(d) = min max{{|A'y +s|,,| - by +ul} =jp(d).
lyll. =1
yeCy
(s,u) € C* u

Theorem 6 Suppose d € Fp. Then pp(d) = jp(d) = rp(d), where

jo(d)= min  max{]|Az — p||,|c' + g}

z€R (3.11)
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and

rp(d) = min  max @
v, <1 —A'y+cd—0ve R
ve R |yl +ol <1 (3.12)
vy €y
§>0.

Proof: Assume that pp(d) < jp(d). From Lemma 2, for data d = (4, ¢), there exists
r € R such that z # 0, Az € Cy, &z <0, ||[A — A|| < jp(d), and ||c — &. < jp(d). We
can scale 2 such that ||z]| = 1. Set p = Az and ¢ = —¢’z. Then (z,p, g) is feasible for
(3.11), and

14z = pll = | Az — Az| < |4 - 4] |l2ll < jp(d)

'z + g} = |c'z — &'z| < lle—éll, llz]l < jn(d) .

Therefore, jp(d) < max {||Az — p||, |tz + g|} < jp(d), which is a contradiction.

Assume now that pp(d) > § > jp(d) for some 4. Then there exists (Z,d,§) such
that z € R, ||z]l = 1, p € Cy, and § > 0, and that ||AZ — 5| < ¢ and |[¢'Z + g| < 6.
From Proposition 3, consider # such that ||Z|l, = 1 and £'Z = ||Z|| = 1, and define:
A=A-(AZ-p)dtand &, = ¢ - #(c'ZT + g+ ¢), for £ > 0. We have Az = p € Cy
and &% = —g — ¢ < 0, for any € > 0. With data d. = (4,0,¢,), Lemma 2 implies that
Yz = 0. We can then bound pp(d) as follows:

pp(d)

A

ji-a

< max{”(A:T: - P) f?t|l , “:E(ctf +3g+¢)

g

< max{d,d+¢e}=6+¢ < pp(d)

for ¢ small enough, which is a contradiction. Therefore pp(d) = jp(d).
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To prove the other characterization, we invoke Lemma 3 to rewrite problem (3.12)

as
rp(d)= min  min max{||-Az +p|,|ctz + ¢|}

loll, <1 v >1
velR" zeR
peCy
9=20.

The above problem can be written as the following equivalent optimization problem:

rp(d) = min max {||—Az +p||, |tz + g|}
|l > 1
reR
pECy
g=0.

The equivalence of these problems is verified by combining the minimization operations
in the first problem and using the Cauchy-Schwartz inequality. The converse makes use
of Proposition 3. To finish the proof, we note that this last problem will be optimized at

a point which also satisfies |z|| = 1, whereby making it equivalent to (3.11). Therefore

rp(d) = min max {||-Az +p|,|cz + 9|} =jp(d).
=[] = 1
T € R
peCy
9=20 L
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3.6 Well-posed instances and strong duality

We now show that a positive distance to ill-posedness gives us a sufficient condition for
the strong duality between (GP) and (GDg). We proceed by showing that a positive
primal or dual distance to infeasibility implies the existence of a primal or dual Slater

point, respectively.

Theorem 7 Suppose that d ¢ Fp and that pp(d) > 0. Then Xy contains a Slater

point.

Proof: If pp(d) > 0, assume that X, contains no Slater point. This implies that
relintCy N{Az — b | z € relintP} = 0. Then there exists y # 0 that separates these two

nonempty convex sets, and so
y's > y' (Az —b) forany s€ Cy,z € P.

This equation implies y € C} and y*Az—y*b < 0 for any © € P. Therefore, (—A'y, b'y) €

1
C*. Then the point (7,5, %) = Hy—“(y, —Aly, b'y) is feasible for problem (3.9) with an
objective function value of zero. Therefore Theorem 5 implies pp{d) < 0, which is a

contradiction. [ ]

Theorem 8 Suppose that d € Fp and that pp(d) > 0. Then Yy contains a Slater point.

Proof: If pp(d) > 0, assume that Y; has no Slater point. Consider the nonempty
convex set S defined by:

S = {(c— Aty,u) | y € relintCy,u € ]R} .

No Slater point in the dual implies that relintC* NS = . Therefore we can properly

separate these two nonempty convex sets. This means that there exists (r,t) # 0 such
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that
rts 4ty > rt (C-Aty) +tu forall (s,v) e C*,ycCy ,uec R.

Since u € IR is unconstrained, this means that ¢ = 0 and r # 0. Re-scale r so that
7]l = 1. The left side of the inequality states that for any (s,v) € C*, the quantity
(r,0)*(s,v) > r'c, which is bounded. Therefore (r,0) € C, which means that r € R.
Setting (s,v) = 0 € C*, the right hand side of the inequality above can be written as
(Ar)ty > rtc for all y € Cy, which implies A7 € Cy. This same equation evaluated at
y = 0 € Cy states that r’c < 0. Then the point (x,p, g) = (r, Ar, —c'r) is feasible for
problem (3.11) with an objective function value of zero. Therefore Theorem 6 implies

pp(d) <0, which is a contradiction. u

In the next chapter, we show that a positive distance to infeasibility not only implies
the existence of a Slater point for the problem, but it also establishes the existence of a
Slater point that has bounds on the norm, its distance to the boundary, and the ratio
between them. In other words, the next chapter proves the existence of a Slater point

with good geometric properties.

Corollary 1 (Strong Duality) Suppose that d € F, and that pp(d) > 0 or pp(d) > 0.
Then z.(d) = z*(d). If pp(d) > 0 and pp(d) > 0, then both the primal ond the dual

attasn their respective optimal values.

Proof: The proof of this result is a straightforward consequence of Theorems 3, 4,

7, and 8. [ |

Note that the contrapositive of this result says that if d € F and 2,(d) > z*(d), then
p(d) = 0, which means that the instance is ill-posed. In other words the contrapositive
states that a data instance for which the primal and dual problems are feasible and have

a nonzero duality gap, must be ill-posed.
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Chapter 4

Geometric Properties of the Primal

and Dual Feasible Regions

In the previous chapter we showed among other things that a positive primal and/or
dual distance to infeasibility implies the existence of a primal and /or dual Slater point,
respectively. We now show that a positive distance to infeasibility also implies that the
corresponding feasible region has a reliable solution, where by reliable solution we mean
a relatively interior solution which has good geometric properties: it is not too far from
the origin, it is not too close to the boundary of the feasible region, and the ratio of its

norm to the distance to the boundary is not too large.

A primal solution z in the relative interior of the feasible region relintX, is a reliable

solution if its norm ||z||, its distance to the boundary dist(z,reldX,), and the ratio

|

MUE!W are all not too large. The results in this chapter show that if a problem has a

positive distance to ill-posedness, then a reliable solution exists and the above quantities
are bounded by a function that depends naturally on the reciprocal of the distance to

ill-posedness of the problem.

The next section presents the notation that is used in this chapter; the subsequent
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two sections present the results that imply the existence of reliable solutions for the

primal problem and the dual problem, respectively.

4.1 Affine hull, norms, and width of a cone

We first present the definition of the affine hull of a set; this concept is useful to work

in the vector subspaces where the (possibly lower dimensional) feasible regions lie.

An affine set T is the translation of a vector subspace L, i.e. T = a + L for some a.
The minimal affine set that contains a given set S is known as the affine hull of S. We

denote this affine set by Lg, and it is characterized by
Ls = {Zo‘zxi | € R, x; € 5, Zo‘i =1, I a finite set} ,
el it

see for example [31]. Also note that if the set S contains 0 then the affine hull Lg is
a subspace. We denote by Lg the vector subspace obtained when the affine hull Lg is

translated to contain the origin. That is, for any = € .5, Is:=1Lg—=.

Let us now mention which norms are defined in the primal and dual feasible regions.
Recall that there are given norms ||z|| and {|y|| on /R® and IR™, and that ||v||. denotes
the dual norm associated with the norm ||w|| on IR™ or JR™. Consistent with the charac-
terization of pp(d) given by Problem (3.10) in Theorem 5, we define the following norm

in the augmented space IR" x IR.

Definition 2 For any (r,t) € IR" x IR define
[, ) == [l]] + 12] -

This primal norm ||z|| + |¢| is for the points in C C IR™ x IR and implies that
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max{]||s||., |u|} is the dual norm used for points in C* C R" x IR.

The given norm on IR™ is used to measure distances in the primal feasible region
Xy. For the dual feasible region Y, we have to define a norm on IR™ x IR. Counsistent
with the characterization of pp(d) given by Problem (3.12) in Theorem 6, we define the

following dual norm in the augmented space R™ x IR.

Definition 3 For any (y,6) € R™ x IR define

1Cy: O)ls = llyll« + 16] -

It is clear that the above defines a norm on the vector space that contains Y}, and that

it implies that max{||w||, |¢|} is the primal norm in R™ x IR.

The purpose of Lemma 5 below is to show how this dual norm on the dual feasible
region is related to the norms on JR™ and to the norms on IR™ x IR. Before this lemma,

we define the distance to the relative boundary of a set from a point in the set.

Definition 4 Given a non-empty set S and a pownt z € S, the distance from z to the

relative boundary of S is denoted by dist(z,reldS) and given by

dist(z,reldS) := infy ||z — Z||

(4.1)
st. T € Lg \ S .
Define also the projection of Y; onto IR™,
Yy := {y € R™ | (y,u) € Yy for some u} , (4.2)
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and the set formed by one of the two constraints of Y;:
Var={(yw) e R"x R | (c— Aly,u) €C"} . (4.3)

Note that the dual feasible region is recovered by Yy = Y; N (Cy x IR). This fact

motivates the following L.emma:

Lemma 4 Given sets A and B, and a point x € AN B, then
dist{z, reld(A N B)) > min {dist(z, rel0A), dist(z,reldB)} .

Proof: The proof of this lemma is based in showing that Lang \ (ANB) C (La\ AU
(Lg \ B). If this inclusion is true then

dist(z,reld(A N B)) = ||z — ||

inf
€L ans\(ANB)

>  inf |z — x|
Te(La\A)U(LB\B)

= min{ inf ||z —z||, inf i]tr—:f“}
€L A\A FeLp\B

= min {dist(z, reldA), dist(z,reldB)} ,

which proves the lemma. Therefore we now prove the inclusion. Consider some Z €
L anp, this means that there exists a; € IR, z; € ANB, ¢ € I afiniteset, and } ;.7 a; =1,
such that Z = Y ;c; ou2;. Since 2, € A, T € L4 and since z; € B, T € Lp. Therefore

Linp C LaN Lg. The desired inclusion is then obtained with a little algebra:

Lang\(ANB) € LanLgn(AnB)°
= LanLpn (A°UBY)
= (LanLpnA°)U(Lan L BY)
C (LAﬂAC)U(LBmBC)
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= (La\A)U(Lp\B) . n

Lemma 5 Given a dual feasible point (y,u) € Yy, let s = ¢ — Ay € dom u(-). Then
the following hold

1. dist ((y, u), relo(Cy x R)) = dist (y, reldCy.) .
2. dist ((y,u),rela?}) > m&st((s,u),relﬁc*) :
3. dist ((y, u), reldYy) > m min {dist ((s, u), reldC*) , dist (y, reldCy) } .

4. dist(y, reldllYy) > dist((y, u), reldYy) .

Proof: Equality (1.) is a consequence of the fact that (y,u) € Loy i \ (Cf % R) if
and only if y € Loy \ O, and that [[(y,u) — (7, w)ll = ly = 9ll. + Ju —ul = [ly — gl|..

To prove inequality (2.), we first show that if (§,%) € Ly \ Yy, then (¢ — A'g, @) €
Le- \ C*. First note that if (7, @) ¢ Y, then, by the definition of ¥, (c — Alg,u) ¢ C*;
therefore we only need to show that if (7,%) € Ly, then (c — A'g,u) € L. Let
(g,1) € L . Then there exists o; € IR, (yi, u;) € Yy, i € I a finite set, and Yicr o =1,

such that (§,4) = ¥,c; ai(y:, u;). Consider

(c— Atga @) = (c— Al Z Qi Z Qi) = Z aic - Atyz-, ;) -

i€l iel i€l
Since (y;,u;) € Yy then (¢ ~ Aly;,u;) € C* and therefore (¢ — A'§, %) € Lo,

The inclusion above means that

dist((s,u), reldC*) = inf  [|(s,u) — (5, @)l

(5, m)eLo=\C"

< inf _ ||(s,u) — (c — A3, @)
(g,ﬁ)EL?d\Yd

— it max{lis — (c— A, |u— )
(ﬂ,ﬁ)ELVd\Yd
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= inf _ max{]|4'7 — A'||., |v — @}
(ﬂ,ﬂ)EL’}';d\Yd

< infmax{{|Alllg — vl e - al}
(g:m)ELy \Yy
< inf _ max{|| A, 1} max{|ly — gll., [u — ]}

(y_vﬂ) EL‘?d \Yy

IA

maX{IIAHal}( inf |y — @l + |u— 1l

5=ﬂ)€L3;d \Yq ‘

= max{||AH,1}( inf  ||(y,u) — (7, 9)|

g,ﬁ)eL;d \Yy

= max{||A]|, 1}dist((y, u), reldYy) .

Inequality (3.} follows from the observation that ¥ = ¥;N (C} x IR), Lemma 4, and
the bounds obtained in (1.) and (2.}.

The proof of item (4.) uses the fact (soon to be proved) that if ¥ € Ly, \ 1Yy then
for any @, (,4) € Ly, \ Y4. Then from the definition of the relative distance to the

boundary we have

it (10 = it )~ (0]
< inf _”(yau)_(_vﬂ’)n*

FELmy \I1Yy,a

= inf — Yl +lu—1u
ena it =gl

= Ilf — *
ser i, ly — gl

= dist (y, reldllYy) ,

which proves inequality (4.). To finish the proof we now show that if § € Ly, \11Yy then
for any 4, (§,@) € Ly, \ Ys. The fact that § ¢ ITY; implies that for any @, (7,4) ¢ Y.
Now since i € Lyy,, there exists a finite number of dual feasible points {(v;, ui) }scr C Ya

such that § = ¥,c; auy; and Y ;7 = 1. Since for any (y,u) € Yy and § > 0 the point
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(y,u+ B) € Yy, we can express the point (g, &) for any % by the following sum

(y,u) = (Zaiyz+y—yazaiui+u+ﬁl —U—52) ,
icl icl
where the positive values 3; and 3, are set so that the second component of the right

side equals 4. This shows that for any u, (y,7) € Ly,, finishing the proof. [ |

We finish this introductory section by reviewing the measure of the minimum width
of a convex cone, defined in (2.3) for cones other than {0}. This measure plays a role in

the bounds of the reliable solutions that we present in the following sections.

Definition 5 For a conver cone K, the minimum width of K is defined by

dist
e = { ist(y, reloK)

IyEK,yaéO} :
lly|]

for K # {0}, and 7% == oo if K = {0}.

For a subspace K # {0}, the value of the minimum width is 7 = co. This can be
deduced since in this case, for any v € K, the distance dist(y, reldK) = oo. For a cone
K which is not a subspace, the quantity 75 measures the width of the largest spherical
cone contained in K, and 7x satisfies 0 < 7 < 1, taking on larger values to the extent

that K has larger minimum width.

4.2 Solutions in the relative interior of X

In this section we present a number of results that relate the primal distance to in-
feasibility pp(d), and a known point in the ground set z° € P, to the existence of a
feasible solution Z in the relative interior of X, that has nice geometric properties, in

other words, the existence of a reliable solution of X,.

79



We prove that under the hypothesis that pp(d) > 0, there exists a Slater point in X4
which has norm, distance to the relative boundary of the feasible region, and the ratio
of its norm to the distance to the boundary that are bounded by the condition number
of the problem. Recall that a point Z is a Slater point for (GF,) if Az — b € relintCy

and 7z € relintP, whereby 7 also satisfies Z € relintXg.

Many results in this section involve the distance of a point x € S to the relative
boundary of the set S. In the case when S is an affine set, the distance to the relative
boundary is infinite. This is due to the fact that in this case the affine hull equals the
affine set, i.e. Lg = S, and therefore the distance to the relative boundary, from its

definition in (4.1), is

dist(z,reldS) ;= inf; |z — Z|| = infy [[z—&| =occ.

st. € Lg\S st. 2¢O

Note that a singleton {z} is a special case of an affine set, which is obtained by translating
the vector subspace {0} by z. Recall that if the affine set S contains zero then it is a

linear subspace.

The results in this section, besides showing the existence of a reliable solution 7 € X4,
also bound dist(z, reldP) and/or dist(z,rel0X,), using dist(z°, reld ) for a given point
4 € P. Therefore, when the set P is an affine set, both the quantity to be bounded
and the bound used might be infinity. For clarity of exposition, we avoid this special
case, which can be dealt with in a straightforward but careful analysis, and present here
the results for the case when P is not an affine set. For each result we will also mention

what can be proved without this additional assumption in a subsequent remark.

The inspiration for the results in this section are Lemma 2 and Lemma 3 in [14]
where for a consistent instance of a conic linear system the authors show that there

exists a reliable solution with good geometric properties. The results here extend these
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results to the GSM format and are stated regardless of any regularity condition on the

cone or the ground set.

First we present a technical lemma that is used to relate feasible solutions in Xy
with the distance to primal infeasibility of the problem. This lemma makes use of the

program (PP), which we now define.

For given points 2 € P and w® € Cy, define problem (PP) by

(PP) max,;,ps 6
s.t. Az — bt —w =60 (b— Az + ")
2]l + It < 1 (4.4)
(z,t) e C

w € Cy.

Lemma 6 Suppose that d € Fp and pp(d) > 0. Given 12° € P and w® € Cy such that
Az® — w® £ b, then there is a point (z,t,w,0) feasible for problem (PP) that satisfies

6> ||b—ill;(0di- o7 >0 (4.5)

Proof: Note that problem (PP) is feasible for any z° and w® since (z,t,w,0) =

(0,0,0,0) is always feasible, therefore it can either be unbounded or have a finite optimal
objective value. If (PP) is unbounded, we can find feasible points with an objective
function large enough such that (4.5) holds. If (PP) has a finite optimal value, say
2", then it attains this value since it is a linear objective over a bounded domain (add
bounds on 6, for example “0 < ¢ < z* 4 1”7, which makes the domain bounded). From

Theorem 5 the optimal solution (z*,t*, w*, 6*) for (PP) satisfies (4.5). |

The following result establishes the existence of a feasible point Z whose norm and
distance to the boundary of P is bounded by similar quantities involving a known point

in the ground set P.
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Theorem 9 Suppose that d € Fp, pp(d) > 0, and P is not an affine set. Let z° € P

be given. Then there exists T € Xy satisfying:

. 0
o)l < dist(Az" — b, Cy)

1. {a) ||z —2x max{1, ||a°
(a) || o (d) {1 ]7[[}
_ dist(Az° — b, Cy)
b) 1Z] < 12°) + ’
o) flal < a7+ S
1 1 diSt(AI‘D — b, Cy)
2. ——— < =
dist(Z, reloP) — dist(z%, reloP) pr(d)
|z — 2?] 1 dist(Az" — b, Cy) 0
. <
5 (a) dist(z,reldP) — dist(z?, reloP) pp(d) max{l, [lz"[l}
|z|] 1 o . dist(Az® — b, Cy)
<
) dist(Z, reldP) — dist(z, reloP) =7+ pp(d)

Proof: We assume z° ¢ X, otherwise select z = 1°. The case pp(d) = +oo, which

implies that Cy = IR™, is verified also by selecting Z = z, since then X, = P. With

this, all inequalities hold.

The non-trivial case is when pp(d) is finite. This implies that Cy # IR™. Set w® € Cy
such that ||4z° — b — w°|| = dist(4z® — b,Cy) > 0 and let rypo = dist(z?, reldP). With

the above 1% and w° use Lemma 6 to obtain the point (z,t, w,6), feasible for (PP) and

that from inequality (4.5) satisfies

0 < 1 < dist{Az® — b, Cy) |
4 pp(d)
Define the following:
g7 + 020 P + Ouw® Br 40
= = - T:E = .
t+6 t+6 t+6

By construction dist(z,reldP) > rz and w € Cy. Note also that

AT b = Am+9A:c°)—b

1
7
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- t—i—Q(Ax—tb—Q(b—A:cojLwo))+fjr009
= t—ﬁ(wﬂi—ﬁwo)
= 'U_JECY

Therefore the point £ € X, and, if rzo > 0, then Z is in the relative interior of P, such

that dist(Z, reldP) > rz. Note also that, by definition, rz < ryo.

To finish the proof, we just have to bound the different expressions from the statement

of the theorem; here we make use of inequality (4.6):

—tz° 1 i 0 —
L@ flo -l = P < Gt o0l < SHAZ 20O gyt
1 1 dist(Az" — b, Cy)
b) [|Z] < =zl = ||=°)] € = + ||2°]] < [|2°)| + ’
(b) Nzl < Zlizll + [l="l < 7 + 27l < [|l=7]] (@)
1 1 t+8 1 1 1 dist(Az" — b, Cy)
2 — < — = <—(1+-)<—1 .
dist(Z,reldP) — rz  fOryo T Tho ( * 9) T Ty ( * pp(d)
1z — 27| lz -t _ 11 0
. < < —= 1
3 @) Gt redP) S 6r. = g meiblEll
1 dist(Az" — b,Cy) 0
< — maxil, ||z .
R _— oo {1, 112"}
1Z]] |z +62°) _ 1 ( 0 1)
< < — -
(b) dist(Z,rel0P) —  Orypo T T ="l + 6
1 (o  dist(Az® — b,cy))
< — 1z || + . |
T T (” | pp(d)

Remark 3 Theorem 9 is valid when P is an affine set. The same proof shows that items
1.(a) and 1.(b) are still true, and the fact that dist(Z, reldP) = dist(z?, 1eldP) = oo with
the convention = = 0, implies that the bounds in 2, 3.(a), and 3.(b) have both sides

equal to zero and are therefore trivially satisfied but uninformative. [ |

Theorem 9 shows that there exists a feasible point £ which has some good geometric

properties with respect to the ground set P. However, Z could lie on the relative bound-
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ary of the feasible region X,. The corollary below establishes the existence of a reliable
solution for the primal problem, under the additional assumption that the cone Cy is
a subspace. This result shows that a Slater point exists which has norm, distance to
relative boundary and ratio of these two quantities bounded by the distance to primal
infeasibility and the properties of a relatively interior point 2% € P. Since Slater points

belong to the relative interior of Xy this point is a reliable solution.

Corollary 2 Suppose that Cy 1is a subspace, d € Fp, pp(d) > 0, and P is not an affine
set. Let 29 € relintP be given. Then there exists a Slater point T for (GP,) which

satisfies

dist{ Az — b, Cy)

1 (o) |7 - 2| < max{1, [l2|[}

pp(d)
() lzl| < ||2°) + dist(Ajj(;)b, Cy)
’ diSt(E’ielaXd) = diSt(ﬂ?”TrelaP) (1 " diSt(A;:(;)b, CY))
5 (@ disﬂé;;;”)(d) = dist(zOTrelaP) (diSt(A;i(;)b’ Cv) max{1, ||1;0||})
(b) dist(jj,'f(!laXd) = dist(moielap) (uxo“ n dist(AZ:(;)b, Cy))

Proof: This is a consequence of Theorem 9 and the fact that if Cy is a linear
subspace, every point w € Cy belongs to the relative interior of Cy and dist(w, reloCy ) =

00, which implies that dist(Z, rel0.X,) = dist(Z, rel0P). u

Remark 4 Like Theorem 9, this corollary is also valid of P is an affine set, tn which

case bounds 2, 8.(a), and 3.(b) are uninformative. u
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Remark 5 The bound 1.(b) of Theorem 9 cannot be improved. Consider the example

with data
it 1
A — b = CcC = )
1 1 2(1 — t)

wheret € [0,1), Cy = IR and P = {I clR: | z;>(1—¢), 1€ {1,2}} for any e > 0.
Consider also the || ||y in IR™ and ||+ || in R™. We show that for ° = (1,1) € relintP,

B =

pam—y

every x € Xy must satisfy

diSt(ACL‘O - Cy) 1
> ||z° : - -€.
'I'T’Il = ”I ”1 + pP(d) 25

Proof: We show below that this example satisfies pp(d) = . Note that dist(Az® —
b, Cy) = dist ((—1 + 4¢, 2¢t)", Cy) =1— 3¢, and thus
dist(Az® — b, Cy) 1— 3t

11
=9 2 _ 2,1
or(d) Ty

1z°ll: +

It £ € Xy then the first inequality of the constraints of the example implies that

|zlly = z1 + 2 > &1 + ; — 321 = 371 + 1. Now since z € P we can further bound this

norm by

dist(Az® — b, Cy) ls

1 1
> —(1-— —=|z"
Jelh > 50 e) 4 = ol + AL

To complete the proof, we prove the claim that pp(d) = t. The perturbation

ad=| 2t

0 O

makes the problem infeasible, and due to the norms chosen the size of this perturbation

is [JAA{l = supy, <1 [AAzZ||loo = max; je(1 2y |AA; ;] = t. To show that any perturbation
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such that ||Ad|| < t does not make the primal infeasible, we note that from Theorem 5

that is the same as showing that the system

Ax —br —v e Cy
lzllh+r <1
z; > (L—2)r, i€{1,2}

is feasible for any v such that ||v|| < ¢, which can be verified easily. |

In what follows we extend the Slater point result of Corollary 2 to any cone Cy. In
order to do this the notion of minimum width of a cone, introduced in Definition 5, is

central. Also, the following theorem will be used in the proof of the result.

Theorem 10 (Theorem 6.8 of [31]) For any convez set @ C IR", cl relint@ = cl @,
and relint ¢l @ = relint Q).

Theorem 11 Suppose that d € Fp, pp(d) > 0, and P is not an affine set. Let z° € P

be given. Then there exists T € Xy satisfying:

1@ e - o) < P gy, o
) o < a7 + 122~ 14
2. (a) dist(a‘:,lrelaP) = dist(a:OTrelc')P) (1 | 1A ;:(Ic'z; HAH)
(t) dist(j,ielaXd) = in {dist(z:o,lrelaP),TCY} (H - ,jpb(l,lir ”AH)
5 (5] disl‘!:zjring) = dist(wo;e]ap) (“Axo ;Pb(IC'l;L = max{l,l!x°|l}>
®) disﬂ(ic;jauxd) = min {dist(a:o,lrelaP),TcY} (HAmO ;pb(icli)+ 1 a1, ”“’0”})
(c) dist(:g?llc')P) = dist(xOTrelaP) (IISUOH s [_)Pb(lcll)Jr “A“)
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1]l 1 o, 1Az" = bl + [14]
(4) dist(z, reldXy) — min {dist(z? reldP), 7¢, } ) pp(d)

Proof: In the case Cy is a subspace, this is just a special case of Theorem 9. First
note that, in this case, statement 2.a is equivalent to 2.b, 3.a is equivalent to 3b, and 3.c

is equivalent to 3.d. Also note that dist(Az® —b,Cy) < ||Az® — b|| < || Az® — b|| + ||A].

Therefore we only need to consider the case when Cy is not a subspace. The proof
18 similar to the proof of Theorem 9. Note that now pp(d) is finite, for otherwise
Proposition 4 shows that Cy = IR™ which is a subspace. We also assume z° ¢ X,

otherwise select Z = z° to satisfy all conditions. We now set w® € Cy such that

lw’]| = ||Al| and 10, = SUELECY) Lot p o = dist(w®, reldCy) = ||Al7e, and let

[l

also rzo = dist(z°, reldP). With the above z° and w° use Lemma 6 to obtain the point

(z,t,w,0), feasible for (PP) and that from inequality (4.5) satisfies

L _ (142~ 5] + |4

0<
0~ pp(d)

(4.7)

Define the following:

z+60x°  _ w+bu Or 40 670,
W= ——, Tz=——, 7Tg5= :

t+6° t+ 0

T =

By construction dist(Z, reldP) > rz, dist(w, reldCy) > ry||Al|, and AZ—b = @ € Cy-.
Therefore the point Z € X; and, if r,0 > 0, Z is in the relative interior of P, such that
dist(Z, reldP) > r;. Let us now show that it is in the relative interior of the feasible

region and bound its distance to the boundary.

Consider any v € Lp N {y|Ay € L, } such that |lv]| <1, then

T+ave P, forany |o| <7z,
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and

A(Z + av) — b =0+ a(Av) € Cy, for any |a| < rg .

Therefore (Z + av) € X, for any || < min{rs, 7}, and the distance to the relative
boundary of X is then dist(Z,reloXy) > |afljv|| > |af, for any o < min{rg, s}

Therefore dist(Z, reldX,) > min {rgy,rg} > ﬂ%@

To finish the proof, we just have to bound the different expressions from the statement

of the theorem; here we make use of inequality (4.7):

- z — ta® b— Az°|| + || A
1. (a) ||z — g;OH = ”t—f——QH < Hmax{l onll} < | pP(lcll) I Imax{l, [‘370”} _
A < L 1 b— Az®| +||A
) Il < gl + a7 < o+ ) < ) + L2222 (16’0 Al
1 Lot 1] 6 — As°ll + (1Al
2. TP S < — - 1 _
(a) dist(z, rel0P) C Brgo T 70 (1+ 9> T 40 ( * pp(d)
1 1 t+6 1 1
< < 142
(b) dist(7,reloXy) — min{ryo,7¢, } 0 — min{rz, 70, } ( + 0)
_ U]
SRS S (1+ b As ||+||A||) |
minrs0, 70, ) pe(d)
[7-a® et _ 11 0
3. <
(®) dist(Z,reldP) =  frypo Tmngmax{l Skl
1 Jlb— Az + || 4] 0
< — max{1, ||z°}|} .
< )
Iz - 2| Iz — ) N 0
(b) dist(z,1eldXy) — 6min{ry,7¢,} — min{r,o, Tcy}gmax{l 12|}
1 16 — Az®|| + || Al 0
: axy1, ||z .
‘ ~ min{r, TCY} pr(d) max{1, [z"||}
]l [z + 6% _ ( 0 )
<
(©) dist(z, reldP) Orp0  — g ll2°]| +
Loy, NI ~A$°l|+HAH)
< — z || + .
<o (e 22
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1zl |z + 6z°|| 1 ( . 1)
d < < :
(d) dist(Z, reldXy) ~ @min{rze, 7¢, } ~ min{ry, ¢, } ll=° + 7

1 b— Az +]|A

~ min{rz, 7¢, } pr(d)

Remark 6 Theorem 11 s valid when P is an affine set using essentially the same proof.
In this case both sides of bounds 2.(a) and 3.(a) are zero; if in addition Cy is a subspace,

then bounds 2.(b) and 3.(b) are also uninformative. u

The next result, which is a direct consequence of Theorem 11, guarantees the exis-
tence of a reliable solution for the primal problem, £ € X, under the hypothesis that

the primal problem is feasible and pp(d) > 0.

Corollary 3 Suppose that d € Fp, pp(d) > 0, and P is not an affine set. Then, given
z° € relintP, there exists a Slater point T for (GPy) which satisfies:

| Az® — b]| + || Al
pp(d)

1 flzl) < fl=°]f +

R 1 Az o+ )
~ dist{(Z,reldX;) — min {dist(z%, reldP), ¢, } pp(d)

© dist(Z, reldXy) — min {dist(z?, reldP), 1, } pp(d) '

Remark 7 Corollary 3 can also be proved when P is an affine set. If in addition Cy is

a subspace, then bounds 2 and 3 are uninformative. [ |

We end this section by presenting a pair of theorems which restate Theorem 11,
emphasizing how the geometric properties of the point z° € relintP impact the geometric
properties of the reliable solution z € X, and the geometry of the feasible region, through

condition number quantities.
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For 2° € relintP, let us define the following measure

. max{||z°||, 1}
QP,CY(I' )= : it (40
min{1, dist(z?, reldP), 7¢, }

= max{ o, — 12 LB
* dist (20, reldP) dist(z0, 1eldP) 7o, 1oy [

Theorem 12 Suppose that d € Fp, pp(d) > 0, and P is not an affine set. Let z° €

relintP be given. Then there emists z € Xg satisfying:

[4z° — bl + || Al
pp(d)

HAwO—bH+HAH)
pp(d)

1. (o) ||z = 2°]| < gpey (=)

() 2] < gro, (%) (1 4

1 0 | Az — b + || Al

2 (%) Gisioreaiap) = 9Por(@) (1 o(d)
0 |4z° = b|| + || Al

) stz raaxy = 9rer (@) (H pr(d)

| Az — b]| + [|A]]
pp(d)
() |z —= [ Az® — bl + [|A]
dist(Z, reld X, pp(d)
Ikl 0 [ Az — o]} + || All
B | | B
(%) Gist(z re@p) = 9Por (@) {1+ op(d)
HAE0—5H+HAH)
pr(d)

|

Hf -T 0
. (o) —————m——— < T
I ( ) dist(:c’,relaP) o gP’CY( )

|

) < gr.cy (‘TO)

2]
(d) dist(Z, relo Xy

j < gpcy (7°) (1 +

Let us now define a geometric measure of the feasible region Xy:

S Il 1
9% = 18X, max{“azll, dist(z, rel0X,)  dist(z, reldXy) |

The following theorem is a byproduct of Theorem 12.
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Theorem 13 Suppose d € Fp, pp(d) > 0, and P is not an affine set. Let 20 € relint P

be given. Then:

| Az® — b + HAH)

< 91
ax, < gpc, (2°) ( + or(d)

Remark 8 Under the additional assumption that Cy is a subspace, the measure 9p,cy (29)

becomes

gr.0y (2%) = max {||z°]), —A1Z L
Y " dist(z0, reldP)’ dist(z°, reldP)’ " |
and we can replace || Az® — b|| + || A|) by dist(Az® — b, Cy) in Theorems 12 and 13.

Finally, Theorems 12 and 13 are valid when P is an affine set because Theorems 9

and 11 are valid in this case. [ |

4.3 Solutions in the relative interior of Y}

This section presents a number of results that relate the dual distance to infeasibility
pp(d), and a known point y° € C¥, to the existence of a feasible dual solution (g,1) in

the relative interior of ¥j that has nice geometric properties.

Here we prove that under the hypothesis that pp(d) > 0 there exists a Slater point
in Yy which has good geometric properties. Recall that a point (7,u) 1s a Slater point
for (GDy) if (c — A'g,4) € relintC* and § € relintCy. It then follows that if (g, @) is a

Slater point it also satisfies (g, u) € relintY.

Recall also that for points in the dual feasible region (y,u) € Yy, we use the dual
norm in IR™ x IR

1y W)l = llylls + Jul -
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The results below, like the results in Section 4.2, involve the distance from a point
£ € S to the relative boundary of the set S. In this section, for a reliable dual point
(7,@) € Yy, we bound either dist(y, reloCy) or dist((g, w), reldYy) with dist(y°, reldCy ),
for a given point y° € C}. Therefore, when the cone Cy is a subspace, which is equivalent
to C} being a subspace, the quantity to be bounded and the bound used can become
infinity. For clarity of exposition, we avoid this special case, which can be dealt with
in a straightforward but careful analysis, and present here the results for the case when
Cy is not a subspace. For each result we will also mention what can be proved without

this additional assumption.

The results in this section are, like the ones in Section 4.2, also an extension of
Lemma 2 and Lemma 3 of [14] to problems of a more general format. First we present a
technical lemma that is used to relate feasible solutions in Y; with the distance to dual
infeasibility of the problem. This lemma makes use of the program (DP), which we now

define.

For given points 3° € Cy and s° € R*, define problem (DP) by

(DP) maxyss0 0

s.t. —Aty+6c— s =0(A" —c+ s
L8 <1
Iyl + b )
ye sy
>0
s e R*.

Lemma 7 Suppose that d € Fp and pp(d) > 0. Given y° € Cy and s° € R* such that
Aty + 0 # ¢, then there is a point (y,0,s,8) feasible for problem (DP) that satisfies

PD(d)
g > TA — c+ 5. > 0. (4.9)
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Proof: Note that problem (DP) is feasible for any y° and s° since (y, 4, 5,6) = (0,0, 0,0)
is always feasible. Therefore it can either be unbounded or have a finite optimal objective
value. If (DP) is unbounded, we can find feasible points with an objective function large
enough such that (4.9) holds. If (DP) has a finite optimal value, say z*, then it attains
this value since it is a linear objective over a bounded domain (add bounds on 8, for
example “0 < 6 < z* + 17, which makes the domain bounded). From Theorem 6, the

optimal solution (y*, 6%, s*,8*) for (DP) satisfies (4.9). u

The following result establishes the existence of a feasible point (7,4) € Y; that
has norm and distance to the boundary of Cy bounded by properties of a known point

y° € Cy.

Theorem 14 Suppose that d € Fp, pp(d) > 0, and Cy 1s not a subspace. Let y° € C}
be given. Then for any € > 0, there exists (§, @) € Yy that satisfies the following:

_ dist(c — A'y®, R*) + ¢
1 (0) g -2l < BT AR o))
pp(d)

dist(c — A%°, R*) + ¢

(5) 17ll« < y°ll« +

po(d)
: _ At,,0 *

9 _ 71 < 1 1+dISt(C A R*) + ¢

dist(y, reldC}y) — dist{y?, reldC?,) po(d)

17— ¥°ll. 1 dist(c — A%°, R*) +¢ )
. <
(%) GG relocy) dist(y°, reldCy) o (d) max{l, [[y[|}
171l 1 o , distlc— A%° R ) +¢
<
() dist(g, reloCsy) — dist(y?, reldCy) 7l + op(d)

Proof: We assume that ¢ — A'y® ¢ domu(-) C R*, from Proposition 2, otherwise
select ¥ = y° and @ = u(c — A%yYP) to satisfy the assertions of the theorem. The case
pp(d) = oo, which implies R* = IR™, is also verified by selecting § := y° and @ =
u(c — A'y?), since then ¢ — A'y" € R" = R* = domu(-).
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Consider now the case when pp{d) is finite. This case implies that R* # IR". Set
s € relintR* such that 0 < |lc — A%°® — & < dist(c — A'Y° R*) + ¢, let 10 =
dist(y°, reldCy ), and let ry0 = dist(s”, relOR*). With the points y° and s° above, invoke

Lemma 7 to obtain a point (y,§, s,6), feasible for (DP) and that from inequality (4.9)

satisfies
1 dist(c — A", R*) +¢
D<o < : 1.10
0~ pp(d) (4.10)
Define the following:
o oy+y° 5+ 68° fr,0 Or o
b= y 5= s Tg= o Ts =
d+40 d-+0 d+46 d+0

By construction dist(i, 1eldC}) > ry and dist(5, reldR*) > r;. We now show that
u(3) is finite, by considering two cases. If R* = {0}, then ¢ — A'j = 5 = 0 and therefore

u(3) = 0. If R* # {0}, then any point in relintR* has a positive relative distance to
the boundary, therefore roo > 0. This and (4.10) show that r; > 0, which in turn
implies ¢ — A*%j = 5 € relintR* C dom u(:), because relintR* = relint cl dom u(-) =
relint dom u(-) C dom u(:). The first equality here follows from Proposition 2 and the

second equality is from Theorem 10. Therefore, in both cases u(5) is finite, and so

(7,%) = (7, u(8)) € Ya

To finish the proof, we just have to bound the different expressions from the statement

of the theorem. Here we make use of inequality (4.10):

ly — 0°)ls _ 1 0

== < < - m
6+ 0 — 9 a‘x{lﬂ ”y H*}
dist(c — A%y", R*) + ¢

po(d)

L (a) llg =9l

max{1, [|s°[l.} -

dist(c — A% R*) + ¢
pp(d) '

_ 1 1
(b) N7l < Zllylls + 15°)l« < g T ly°(ls < lly°ll« +
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1 1 d+6 1 1 1 dist(c — A%°, R*) + ¢
2. < - =""7c 0 )< — (1 .
dist(y,reldCy) — v Orye ~ 70 (1 * 9) - ( * pp(d)

yO

9=l ly— oyl _ 1 0
(a) dist(7,1el0C) = Orp 7y 5 max{L, [|y°]l.}
1 dist(c — A%° R*) + & )
o max{l, <}
91l ly + 64 1 ( . 1)
< < L
(b) dist(7,reldCy) = Orye 1y 5711 + 5
1 dist{c — A", R*) + ¢
< (1) + S AT ) i
Ty po(d)

Remark 9 Theorem 14 is valid in the case that the cone Cy is a subspace. The
same proof can be used to show that items 1.(a) and 1.(b) hold, while the fact that
dist(y, reloCy) = dist(y°, reldCy) = oo implies that both sides in bounds 2, 3.(a), and

3.(b) are zero, and therefore are trivially satisfied but uninformative. ]

Theorem 14 shows that there exists a feasible point (y, ) which has good geometric
properties with respect to Cy.. However, (7, @) could lie on the boundary of the feasible
region Yy. The corollary below establishes the existence of a reliable solution for the
dual problem, under the additional assumption that the cone R is a subspace. This
result shows that a Slater point exists which has norm, distance to relative boundary
and ratio of these two quantities bounded by the distance to dual infeasibility and the
properties of a relatively interior point y® € C}. Since a Slater point belongs to the

relative interior of Y; this point is a reliable solution.

Corollary 4 Suppose that R is a subspace, d € Fp, pp(d) > 0, and Cy is not a
subspace. Let y° € relintCy be given. Then for any ¢ > 0, there emists a Slater point

(y,u) for (GDy), which salisfies

dist(c — A*y% R*) +¢

1. (a) I|g_y0||* < pD(d) maX{l,HyOH*}
) llgl. < IIy"|l, + 5t = ;13 E}d)’ R)+e
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P 1 < max{1, | A]|} . dist{c — A*°, R*) + ¢
- dist((7, ), reldYy) ~ dist(y?, reldCy ) pp(d)

, 17— 9l max{l, |Af|} (dist(c— A%°,R") +« 0

Y FG0), relovy) S dist(y?, reldCy) po(d) mas{L, [ly"]l.}

13 max{1, || A[|} oy , dist(c—A%° R*) t ¢
(b) dist((g, u), reldYy) = dist(y°, rel0Cy) (Hy I+ pp(d) )

Proof: Recall that for any set S, if S is a subspace, then so is S*, and any s € S*
belongs to the relative interior of S*, and dist(s, reldS*) = oo. Consider the points
y € relmtCy and 5 = ¢~ A'y € dom u(-) constructed in Theorem 14. The fact that R is a
subspace implies that R* is a subspace and R* = dom u(-). This equality follows because
R* = relint R* = relint cl dom u(-) = relint dom u(-) € dom u(-) C ¢l dom u(-) = R*,
where the second and third equalities here follow from Proposition 2 and Theorem 10,

respectively.

For a scalar x > 0, define the function u(k) by

wk) = k + sup, u(s)
lls —c+ A%l <&
s € R".

For every x > 0, this function u(x) is finite, since u(-) is continuous on the relative
interior of its effective domain, see Theorem 10.1 of [31], which here is R* as noted
above. By construction dist((s, 44(x)), reldC*) > , and the point (5, u(k)) € relintC*.
Therefore for every x > 0 the point (7, u(x)) is a Slater point of Y, From item 3 of

Lemma 5, we can bound the distance of this Slater point to the relative boundary of ¥}:

dist((7, p(x)), reldYy) > mmin{dist((s,u(m)),relac*),dist(g,rewo;,)}

1

———————min{x, dist (g, reldC%)} .
max(1, [JA]) ot dist (7, reloCy )}

Setting x = dist(y, reldCy ), @ = p(x), and using Theorem 14 yields the corollary. [ |
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Remark 10 If the cone Cy is a subspace then the same proof can be used to show that
items 1.(a) and 1.(b) hold. In this case however, bounds 2, 3.(a), and 3.(b) are not
valid. But following the proof of Corollary 4, using the same § and setting 4 = (k) for

a large enough x, we can ensure that (y,u) € Yy satisfies instead

3

1
. < e,
dist((, @), reloyy) = °

15— 3°l
7. < g.
3 ) Fet(.a) ey = °

7.
) G5, 1), reloYy)

<e. [ |

The following remark shows that Theorem 14 finds a dual feasible solution whose
norm can be bounded by C(d) plus an arbitrarily small term. This bound is similar
to what is obtained in the conic case, where there exists a feasible solution with norm
bounded by C(d), and illustrates a difference between the dual and the primal ground
set problem, where the bounds on the norms of feasible solutions need the norm of a

point in P, as illustrated by Remark 5.

Remark 11 Suppose that d € Fp and pp(d)} > 0. Then for any € > 0 there ezists

(g,u) € Yy such that
“C“* +e .

yll« <

Proof: Observe that if 4° = 0 then the proof of Theorem 14 holds, and the only
informative bounds are items 1.a and 1.b, which are equivalent and imply this remark.

‘This argument is also valid in the case when Cy is a subspace. [ |

In what follows we extend the Slater point result of Corollary 4 to any cone R. Now

the quantity that will play a central role is the minimum width of the cone R*.
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Theorem 15 Suppose d € Fp, pp(d) > 0, and Cy is not a subspace. Let y' ¢ Ch
be given and rp = dist(y?,reloCy). For any £ > 0, there ewists (g, u) € Yy with the

following properties:

1A%y — clls + |4

L (a) [lg = 2"l < max{1, [ly°[|}

pp(d)
Aly® -l + || 4]
8) ligl < 7], + p
() 117l < "]l ol
1 ! |4%° — il + |A]
<
2 (0) st ra00y) < Tist(y0, reldCs) (1 * on(d)
() 1 o (reomadl AL} () 1A% — )+ [1A]
dist((7, @), reldYy) — min {dist(y°, rel0CY ), r- } pp(d)

17 = °lls 1 | 4%° — cll, + || A]
. <
5 (e) dist(y, reldCy) — dist(y°, reloCy) pp(d)
ly =«
(t) dist((y, u), reldYy) —
(1+e)max{L, |4}  ([IA%° = cll. + 4] 0
~ min {dist(y°, reldCy), g+ } pp(d) max{L, [lyl.}

17l 1 o o A% —clls + 4]
<
() dist(7, reldCy) — dist(y?, reloCy ) 7l + pp(d)

max{1, 7).}

171l
d <
(d) dist((g, u), reldYy) —

(+e)max{L I} (o0 |A%° — cll + | Al
~ min {dist(y°, reloCs ), g~ } * pp(d)

Proof: If R is a subspace we have the hypothesis needed to invoke Corollary 4.
Define ¢ < min{||A|}, e}, and use this £’ in Theorem 14 and Corollary 4 to obtain a point
(y,4) € Yy which, by the proof of the corollary, also satisfies Theorem 14. The bounds in
Corollary 4 and Theorem 14, and the fact that dist(c— A'y?, R*)+¢’ < |le - A%yl +||A]

imply this theorem.

Therefore we consider the case when R is not a subspace. The following is similar to

the proof of Theorem 14. Note that now pp(d) is finite since otherwise R = {0} which is

98




a subspace. Set s° € R* such that ||s®||, = ||A|| and 75 = wﬂi;ﬁia—m. We also assume
for now that ¢ — A%y® # s°. We show later in the proof how to handle the case when

¢ — A'y® = s Denote r,0 = dist(y°,1eldC3 ), and 740 = dist(s°, reldR*) = 75-|| 4| > 0.

With the points 4° and s°, use Lemma 7 to obtain a point (y, d, s, §) feasible for (DP)
such that from inequality (4.9) satisfies

1 ||A%® —cfl. + || Al
0< =< } 4.11
g~ pp(d) (4.11)
Define the following:
o oy+0y° 5468 fry0 Or o
Y= y S= y Ty = y Tz = .
d+48 o+0 o+ 0 d+0

By construction dist(7, reloCy) > 7y, dist(5, reldR*) > ry, and ¢c— A*§ = 5. Therefore
the point (9, u(5)) € Y;. We now will choose % so that (¢, %) € relintYy and bound its
distance to the relative boundary. Since relint B* C dom u(-), from Proposition 2 and
Theorem 10, we have that for any € > 0, the ball B (g, ﬁg) N Lg- C relint dom u(-).

Similar to the function p(-) defined in Corollary 4, define the function

i(3,k) 1= ppk + sup,u(s)

lIs =5l < &

s € R*

This function fi(-, -) is finite for every 5 € relint dom u(-) and « € [0, dist(, reldR*)). It
is finite for these arguments because the supremum is over a set contained in the relative
interior of the effective domain of u(-), where u(-) is continuous, see Theorem 10.1 of
[31]. With thié function fi, we can define % = i (E, 1%), since by construction r; > 0.

Therelore the point (¢~ A'j, @) = (5,4) € C* belongs to the relative interior of C*, since

the norm on C* is ||(s, u)|| = max{||s]|., |u|}-
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Let us now show that (y,u) € relint Yy, and bound its distance to the relative

boundary. Consider any vector v € Lgx M {y| — A'y € Lg-} such that [|v|l. < 1, then
§+av e Cy forany |of <ry,
and

c— Ag+aov)=5+al-Av) e B (S‘, 11:5

T_
N Lg for any o] < ———— .
E) I|A[[(1 + ¢)

This last inclusion implies that (¢ — A*(§ + av), v + ) = (§ + a(-A'v), 2+ ) € C*
for any |e|, [8] < paizs- We have shown that dist(y,reldC}) > ry and dist((c —

to 5 * 73
Aty u), reloC*) > AT

g Therefore item 3 of Lemma 5 implies

ist((7. T —1—min PN L B
dist((7, @), 1eldYs) 2 E T {y’wﬂu1+s)}

~ 1 0 min {r Tg0

l —_—

= (I +e)max{1,[[A[} 5 + 0 1A
@ min{r,o, 7p-}

(14 ¢)max{1, [|A|[}(6 +8)

For the case ¢ — Aty® = 50, define j = ¢° and @ = [ (SD, Eﬂ[_aﬁu) The same analysis
done for the general case shows that now dist((c — A’J, @), 1eldC*) > &=, this implies
that dist((c — A%, @), reloYy) > W min{7g-, dist(y%, reldCy )} from item 3 of

Lemma 3, this is the last ingredient to show that the theorem also holds in this case.

To finish the proof, we bound the different expressions in the statement of the theo-

rem; let £ = max{1, ||A||} for simplicity. Here we use inequality (4.11):

; y— 6l max(L, [} _ A% —cll. + |4
Lo(a) g9l = I . max{L, 5"} _ | I + [14]

0
(5 + 9 — 9 — PD(d) max{lv Hy H*} '
o1 1 1A' — clls + |A]]
b * < - * + 0 * <= + 0 * < 0 * + .
(b) gll- < Zligll- + 19°l- < 5+ Myl <l oo ()
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1 I 640 1 1 1 1A — ], + I|A]l
e < _ < = S <= — T han
(a) dist(g, reldCt ) Ty O T oy (1 N 6‘) Ty (1 *

Y Pp (d)
‘f—_*}*%-—— < L—_(_ILE)_L(E__F_Q < M_ (1 + i)
dist((7, u), relgyy) = min{ryeo, rg.} g = min{ryo, 7. } )

(1+e) 14%° — el + || 4fi
= min{ryo,TR*} (1 + op(d) ) )
~_ .0 _ 0
3 (a) disjtj(yg, r(i/l(;lé;-) = & Hrj;y - = E%max{l: ”yO“*}
S $ ”A Y ;D(Ell[*)'f‘ “A” max{l, ”yOH*} _
17— 4. (X +£)lly — 89, (1+e)¢ 1
(b) dist((7, i), reldYy) = W = min{ryo,TR*} ) max{l, “yOH*}
il b st 10y
9]l ly +0y°, _ 1/ o 1
% Esi) 1eldCy) S Br, S o (”y I+ 5)
S % (“yO”* + ”A Y ;DC(‘(';)"_ ”A”) )
1l ly + 8y°I1. (1 + £)¢ (1+¢)¢ 0 1
0,5 = it < i (1 + )

(1+e)¢ 0 14%° — |, + || 4
= min{ryo, 75. } (Hy e+ —\_W) )

Remark 12 In the case that Cy s ¢ subspace, by inspection we note that items 2.(a),
3.(a), and 3.(c) have both sides of the inequality equal to zero, and are therefore unin-
formative. In this case the same proof can be used to show thay items 1.(a) and 1.(b)
are true. If Cy is ¢ subspace and the cone R s not a subspace, then the proof above also
implies that 2.(b), 3.(b), and 3.(d) are true, These last three bounds gre not true if Cy
and the cone B are subspaces; however in this case, as in Remark 10, we can define i

such that (3, @) € Y, satisfies 2, 3 .(a), and 3".(b) of Remark 10. |

The next result, which is a direct consequence of Theorem 15, demonstrates the
existence of a reliable solution (7, %) for the dual problem, under the hypothesis that the

dual problem is feasible and po(d) > 0.
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Corollary 5 Suppose that d € Fp, pp(d) > 0, and Cy is not a subspace. Let Yy €
relintC} be given. For any e > 0, there exists a Slater point (g,a) for (GDy), such that

A%° — el + 1Al

L gl < Nyl +

po(d)
) L oLl (), 149t 4]
" dist((7, @), 1eldYy) ~ min {dist(y°, reldCY), T+ } pp(d)
o Mol OromaxLiA (), 490l A
" dist((y, @), reldY,) ~ min {dist(y°, 1eldCy ), T+ } - pp(d)

Remark 13 In the case that Cy is a subspace and R is not a subspace, this corollary
is valid, but if both Cy and R are subspaces, then we can construct a Slater point (y, )

that satisfies item 1 above and also satisfies 2’ and 3’.(b) of Remark 10. [ ]

We end this section by presenting a pair of theorems which restate Theorem 13, em-
phasizing how the geometric properties of the point % € relintCy impact the geometric
properties of the reliable solution § € dom u(-) and the geometry of the feasible region

Y,, through condition number theory.

For 4° € relintC%, let us define the following measure

max{||y°[l., 1}
min{1, dist(y?, reldCs ), 7x- }

oy, 1 o, 1
15°|l l1%°]] ,1} .

_ 0 B
N max{”y s Fse 0 reldcs) dist(y?, reldCy) 1me " a

gcy R~ (¥°) ==

Theorem 16 Suppose that d € Fp, pp(d) > 0 and Cy is not a subspace. Let y° €
relintCy be given. Then for all € > 0 there exists (§,%) € Yq satisfying:

4% — clls + [|All
po(d)
[ A%y° — ells + | Al
" PD(d) )
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1 149° el + 4]
: < ges r-(¥°) [ 1
b ) Gt relacy) < 9 R )( M—e

(%) dist((g,a;l),relam < (1 + &) max{1, || Al }ocy e (4°) (1 L 14 ;Dc(lg)+ nAn)

17— °Il+ oy 14™° — ¢l + || Al
. < o (7
5 (a) dist(7, reldCy) — YR (") pp(d)

Ay — |l + || A
< (1 A o e (270 | *
Gist((7.7), retory) ~ (LT ) max{LliAl}ge; v ()

po(d)

i 14%° = . + 1A]
(c) dist(y, reloC} ) < 9oy (v') (1 N pp(d) )
Il o (1 AP — el + Al
@ G oy < 0 maxd Al aes o 6) (1 L )

We now define a geometric measure for the dual feasible region. We will not consider
the whole set Yj; instead we consider only the projection onto the first m coordinates.
We define a geometric measure to describe the relative interior of the set IIY;. Note

that the set ITY; corresponds exactly to the feasible region in the alternate formulation

of the dual problem (3.6).

We define the following measure,

, Iyl 1
= f *3 - 3 R B
e (y,lul)leYd max { Iy dist(y, reldllYy)’ dist(y, reldIIYy)

The tollowing theorem is a byproduct of Theorem 16.

Theorem 17 Suppose d € Fp, pp(d) > 0 and Cy is not a subspace. Let y° € relintC}

be given. Then

At 0 _ . A
gv; < max{1, [ A[}gc; a- (v°) (1 + 1A% — el + |l H) _

pp(d)
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Proof: From Lemma 5, item 4, dist(y, reldIlYy) > dist((7, @), reldYy). From Theo-
rem 16 use items 1.(b), 2./b), and 5.(d) and apply the definition of gy, to obtain

gv, < (1+¢)max{1, |4l }gc; r- (4°) (1 n A" —cll. + HA|) ‘

pp(d)

Since now the left side is independent of ¢, take the limit as ¢ — 0. |

Remark 14 Under the additional assumption that R* is a subspace, the measure gc;, r- (y®)

becomes

0 0 ”yUH* 1
v = I )y N
gei.Rr (") maX{Hy | dist(y?, reldCy )’ dist(y°, reloCs )

and we can replace | Aty — ||, + ||A|| by dist(c — A*°, R*) in Theorems 16 and 17.

Finally, from Theorem 15 and the discussion following it, we see that if Cy is a
subspace and R is not a subspace then Theorem 16 is valid, but if Cy and R are subspaces,
then we can sharpen items 2.(b), 3.(b), and 3.(d) and replace them by 2', 3'.(a), and
3’.(b) of Remark 10, respectively.

This implies that if Cy is a subspace and R is not a subspace then Theorem 17 holds,

and if Cy and R are subspaces, then we can sharpen Theorem 17 to obtain

Aty ]l + ||A||) |

< gon m (Y° (1+
9 < gei.m (V) e
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Chapter 5

Size of Optimal Solutions and

Sensitivity Analysis

In this chapter we continue to explore the geometric properties of the GSM format
in terms of the condition number C(d) of the problem. Here we provide bounds on
the norms of solutions, on the optimal objective function value, and on the rate of

deformation of solutions due to data perturbation in terms of C(d).

In order to comstruct these theoretical bounds for the GSM format, we first need
to define a geometric measure of the ground set P. This measure, which depends on a

scalar parameter r and is noted by ¢*(r), reduces to 0 in the conic case.

5.1 Geometry measure of support function

In this section we define the measure g*(r), prove that it is well defined, and build some
intuition on it by presenting some examples. Recall from Section 4.1 that we denote the

affine hull of a set S by Lg, and that for a convex cone K, 7% denotes the minimum
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width of K.

Definition 6 For any r € [0, 7g:] we define the measure g*(r) by

g*(r) == sup,, —s'z = sup, u(s)
st. z€P st. sl =1
Isll« =1 dist(s, reldR*) > 7 (5.1)
dist(s, reldR*) > r s € R,
s e R*

if R* # {0}, and by g*(r) =0 for allr > 0 if R* = {0}.

Note that if R* = {0}, then P = R = IR™ which implies that (GP;) is in conic form.
Proposition 6 below shows that for any problem in conic form, i.e. P is a cone R, then

g*(r)y=0for all r > 0.

The parameter 7 > 0 in the definition above causes the optimization problem to
consider only points s in the relative interior of R*. The idea is that points in relintR*
are in the relative interior of the domain of the function u(-), while this function might
be unbounded at points on the relative boundary of R*. A small positive r will bound
the points away from the relative boundary of R* and allows us to bound the function
u(+). Note that from Definition 5, there is no point s € R* such that ||s|l, = 1 and
dist(s, reldR*) > 7g-; therefore 7g. is the largest value of r for which Problem (5.1) is

feasible, which explains why g*(r) is only defined for r € [0, 7r-].

Theorem 18 For any r € (0, 7|, the measure g*(r) is finite.

Proof: Consider R* # {0}. The upper bound on r, ensures that the problem that

defines g*(r) is feasible, therefore providing a finite lower bound on g*(r).

For the upper bound, assume g*(r) is unbounded, that means there exist sequences

{s;} and {z;} such that: z; € P, s; € R*, ||s;|« = 1, dist(s;, rel0R") > 7, and —stz; —
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oo. From the sequence {z;}, we can construct a sequence {a;} which satisfies a; € PNLg-
and —sta; — oo, as follows: for every i, let z; = a; + b;, where a; € Lg- and b; € (LR*)l.
Therefore —b; € (Lg-)* C R, which means that the point z; — b; = a; € P. Since

—sta; = —stx; + stb; = —stz; = oo

The above implies that ||a;|| — co and a;/||a;|| = @ € RN Ly, a # 0. Considering

a subsequence, if necessary, s, — &, such that ||3||. = 1, § € R*, and dist(3, rel0R*) > r

sal

llasl} —
limit, implies §’a < 0. This is a contradiction, and therefore g*(r) is bounded. u

This implies that §'a > 0. But since —sia; —+ oo, we know that - < 0, which taking

[[s]l

Proposition 5 Let s € It', be such that s £ 0 and Zor = o ps

1
< - Then for any

Z € P, we have

Proof: The definition of function u(-) implies the left-hand inequality (which in fact
holds for any s € IR"), and

[4 t

] 5T
u(s) = —|lsll inf —— = [[s[l sup —7—— < [Isll.g™(r) -
zeP |[s]]. SN

e

The last inequality follows from the definition of ¢*(r) since the hypothesis is equivalent

to dist ( relBR*) [ ]

lIsll”

Note that this result is also valid for s = 0, since »(0) = 0. This then includes the
case R* = {0}.
5.1.1 Examples

Proposition 6 If P = R is a cone, then g*(r) =0 for all v > 0.
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Proof: For any z, s feasible for Problem (5.1), the fact that z € P = R and s € R*
implies that —s'z < 0. Since 0 € P = R, there is a feasible solution such that —s*z = 0.

Proposition 7 If P = E+ R, and |F| := max{||z|| | € E} s bounded, then g*(r) <

|E| for any r € [0, Tp-].

Proof: Any x € P = E + R, can be written as z =z 4+ d, with £ € £ and d € R.

The definition of g*(r) becomes

g (r) == sup,;, —s'z— sid < sup,; —S'7T < |£]
st. ZTEE st. TckE
deR lisllx =1
s« =1
dist(s, reldR*) > r
se R*. N

Proposition 8 If R is a subspace, then g*(r) is independent of r, that i3 ¢*(r) = ¢* > 0

for all v > 0, where

* t

g*= sup,, Sz
s.t. xzeP
(5.2)
sl =1
s € RY

and this program satisfies
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Proof: The case R = g implies R* = {0} and is therefore true by definition. If
R # IR™, then R* # {0}. The fact that R is a subspace implies that R* is g subspace,
RY = R* and for every s € R*, dist(s, rel0R*) = 0o and s € R*. These conditions
prove the equivalence between the optimization problems that define g*(r) and g* for

all 7 > 0. The fact that —s € B* for any s € R implies that g* > (.

‘The proof of the bound on g” uses the fact that P = p Rt + R, which we now
prove. The inclusion P n RL + R C Pis true trivially. For the other inclusion consider
any r € P, and its decomposition z = T1 + Z3, where z; € Rt and T2 € R. As the
cone R is a subspace, then —T2 € 12, which implies that Z1 =2 —z3 € P and therefore
z € PNR*+ R. The bound is then due to Proposition 7 and the fact that the set PR
is bounded. To prove that P N gL is a bounded set, consider an unbounded sequence
1z} € PN RY) and note that there exists a subsequence for which & — , € R,

[EA
7|l = 1, which is a contradiction since, by construction, r & R-. |

Remark 15 If R is ¢ subspace and the dual norm on IR™ s the dot product norm, i.e.
Isll« = Vsts, then ¢* = max{(|z|l | z € Pn R},

Proof: Let z* € PNR' be of maximum norm, i.e. ||z*| = max,{||z| | z ¢ PNRY}.
From Proposition 3, there exists 5 IR™ such that ||5]l, = 1 and 3tz* = lz*]|. Let
§ =51 +82, with s; € R and s, € RL. By construction we have sta* = §p* = llz*|| > 0.
Then ||5]I2 = s{s; + 2515, + sis, — lls1llZ + lls2lf? > [|sf2. If s, = 0, then ||z*[| = §'z* =
skz* = 0, therefore 9" = 0 and the remark is true. If S2 # 0, then (x*, ﬁ) is feasible

for (5.2), and ¢* > “%I”— > shr* = §'r* = ||z*|). u

5.1.2  Asymptotic behavior of g*(r) for small r

It is straightforward to check from the definition of g*(r) that it is a decreasing function

of . Denote by F, the feasible region of (5.1). The monotonicity of g*(-) is due to the
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fact that a larger value r means a smaller feasible region ..

As r approaches the boundaries of its domain [0, 7z-], the behavior of function g*(r),
is determined by the ground set P. The upper limit of the domain is exactly the min-
width of R*. Theorem 18 shows that this will be a finite quantity. The behavior at
the other extreme of the domain of r is not so clear. We now illustrate the behavior
of g*(r) as 7 approaches zero using three examples. These examples consider the same
linear problem in two variables, where we only change the definition of the ground set
P. In these examples we will use || - ||; as the dual norm on JR™. Since the set P is what

determines the function g*(-), it is the only thing we make explicit in the examples.

1. Let P = {(x1,73) | z2m1 > 1, 1 > 0}. This ground set has a recession cone
given by R = {(z1,22) | 71,72 > 0}, and R* = R with 7z. = 1/2. By considering

r € (0,1/2) and careful algebraic manipulation, we obtain the following:

g*(r)= maxy, —s11 52 = —24/r(l-7).

s.t. 122 > 1
I1,Zo Z 0
81+ S = 1

51, 82 2 r

The above implies that lim,_,o g*() = 0.

9. Let P = {(x1,73) | 72 > z?}. This ground set has a recession cone given by
R = {(z1,22) | 21 = 0,25 > 0}, and R* = {(21,%3) | 72 > 0} with 7. = 1. By
considering r € (0,1) and careful algebraic manipulation, we obtain the following:

g*(r) = max,, —s5% — STy = Q%)z .
st.  To > i
|s1] + 52 =1

5227‘
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The above implies that lim,_,q g*(r) = co. In fact,

oo a<l
S _ -
lim g (r) =4 1/4 a=1

0 a>1.

3. Let P ={(z1,22) | zo > —In(z;), z; > 0}. This ground set has a recession cone
given by R = {(x1,22) | 1,29 > 0}, and R* = R with 7. = 1/2. By considering

7 € (0,1/2) and careful algebraic manipulation, we obtain the following:

g*(r) = max,s —s121— 223 = (1—7)(In(l—7r)—In(r)-1).
st. x> —In(m)
1 >0
S1+s,=1

81,82 2 1
The above implies that lim,_,5 g*(v) = oo and also

limr%g*(r) = o ax0
r—0 g B
0 a>0.

The examples above show that as 7 tends to zero, the function ¢*(-) can either diverge

or converge, all at different rates, depending on the shape of the ground set P.

5.2 Bounds on norms of optimal solutions and the

optimal objective value

The following theorem bounds the optimal objective function value using condition num-

ber quantities and the g*(-) measure. The rest of this section deals with condition number

111



bounds on the norms of optimal solutions.

The next theorem, as well as the other results in this section, are an extension to the
GSM format of the results developed for the conic case by Renegar in [28]. For example,
Theorem 19 below extends to the GSM format a result which appears in Assertion 3 of
Theorem 1.1 in [28] for the conic case. In the remainder of the section we also mention

which result of [28] the current theorem or proposition is related to.

Theorem 19 Suppose d € F and p(d) > 0. Then problem (GP;) has an optimal

solution. Consider 2° € P, then z,(d) will satisfy:

|z.(d)] < [[d]|C(d) (3max{g"(F)", [|2°]]} +2) ,

A
where T = M of 12 15 not a subspace, and ¥ > 0 if R is a subspace.

3|l C(d)
Proof: The existence of an optimal solution is a consequence of p(d) > 0 and
Corollary 1. In fact, there is no duality gap and both the primal and the dual problems

attain their common optimal value.

We assume that R is not a subspace. To bound the optimal objective function value,

we use Theorem 9, which asserts the existence of a feasible T € X; which satisfies

diSt(ACL‘O — b, Cy)

| 4z° — bj|
pp(d) '

PP (d)

2] < ll2°|] + < 2% +

We also use Theorem 15 with y® = 0 to obtain a feasible (7, %) € Y that satisfies

liells + 1Al

Yl <
Il < 2

We use the claim, yet to be proved, that when R* is not a subspace, the dual feasible
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solution (7, ) also satisfies

lle — Ayl 1
dist(c — Atg,reldR*) — 7

for the 7 defined in the statement of the thecrem.

First note that

z.(d)

<z < ezl < el (Hw“H 4

| Az — o]
pr(d) )

< |dic(d) (20 +1) .

Now, let us look at the lower bound:

z(d) = 2°(d) 2 b7 ~ ulc — A'g) 2 ~|Blll|7ll. — lle — A'yll.g"(7) ,

here the bound on u(c — A'y) uses Proposition 5, where equation (5.3) implies the

necessary hypothesis. Therefore

z(d) =

>

v

Y

—lellllgl = lle — A*gll.g* ()"

~lelleg* @ = (I8l + 11Allg* () * ) liglls

e + (i + 1o ) (
—ldll [+ + (1 + g*(7)*) 20(d)]
—lld|lC(d) (3g"(7)* +2)

el + [1A]

PD(d)

)

'The theorem is obtained by combining the upper and lower bounds of the optimal

objective value.

We now prove that if R* is not a subspace then (5.3) holds. Using the notation in
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Theorem 15, we know that the feasible solution (y, %) also satisfies

B || Al

dist(c — Ay, 1eldR*) > r; = 518 4

and I=gs

where 6 > 0, ||y||« + ¢ < 1, and 8 satisfies (4.11). Therefore

le— Al _ G+ ligl)
dist(c — Aty reloR*) — Ts
o+5 Il )
< |d +
< ldl (9TR*HA|| Tre [ AT
< _ldl (1+1)
- TR*”AH o
Il ( ||c||*+uA|)
< 1+
— 7| Al PD(d)
Il
< 20(d) + 1
el 2C@ )
. 3ldic@
TR* A”

=] =

Assume now that R is a subspace. In this case the proof presented above is valid,
and is in fact simplified since, under this assumption, Proposition 5 is valid regardless

of the value of 7. |

We now turn our attention to bounding the sizes of optimal primal and dual solutions.
This will require a couple of different intermediate results and will require an additional
agsumption on the ground set P. The next two propositions, which do not require
this additional assumption, are exactly Proposition 3.4 and Proposition 3.5 in [28] for

problems in conic form.
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Proposition 9 If pp(d) > 0 and (y, u) is feasible for (GD,), then

max {|lc|, , —(b'y —u)}
pr(d) '

Iyll. <

Proof: If y = 0 the result is true. If y # 0, then there exists § such that ||j|| = 1

and §'y = ||lyll,, see Proposition 3. For any ¢ > 0, define the following perturbation:

1 —bt +
A=—Loge  ape Myt 95 Ac=0.
1yl [
We note that (y, ) satisfies the system
(—Aty, u) e C*
bty > u
yely

for data d = (A4,b,¢) = d + Ad. Therefore (GP,, a4) is infeasible, from Lemma 1. We
conclude that pp(d) < ||Ad||, which implies

max {|lcfi, , (=b'y +u)* + ¢}

pr(d) < Tl

and so

max (|l , ~(#'y ~ u)}

pp(d) <
( il

Proposition 10 If pp(d) > 0 and 2 = & -+ r is feasible for (GF,), where & € P and
r € R, then

el < max {[|Az — b, c'r} .

L
PpD (d)
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Proof: If r = 0 the result is true. If 7 # 0, then there exists 7 such that ||7||, = L

and #'r = ||r||, from Proposition 3. Consider the perturbation

(et
(ctr) Ef'

AAd= (A2 —b)#  Ab=0, Ac=

7]
Note that r satisfies the system

A’l‘ c Cy

clr <0

reR,

for data d = (A,b,¢) = d + Ad. Therefore (GDgyynaq) is infeasible from Lemma 2. We
conclude that pp(d) < ||Ad||, which implies

max {|| Az — b]|, (¢'r)* + ¢}

Il

pp(d) <

and so

max {|| Az — b||, c'r}

pold) = I

In order to be able to bound the norm of the optimal solutions, we now make an

additional assumption on the set F.

Assumption 2 The ground set P can be separated as a sum of a bounded set E and a

cone of rays R, in other words P = E + R where

|E| = sup, |||
st. zel

and |E| is finite.

The following theorem, which provides condition number bounds for the optimal

solution size and optimal objective function value for problems in GSM format is an
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extension of the results given by Assertions 3 and 4 of Theorem 1.1 in [28]. The bound
on the dual optimal solution size for conic problems, although is not explicitly stated in

[28], is obtained combining Propositions 3.4 and 3.7 in that paper.

Theorem 20 Suppose d € F and p(d) > 0. If P satisfies Assumption 2, then problems
(GPy) and (GDy) have optimal solutions. All optimal solutions * of (GPy) satisfy:

lz*[| < C(d)* (4B +1) ,
and all optimal solutions (y*,u*) of (GDy) satisfy
ly*]ls < C(d)* (21E| + 1) .

Furthermore

|2(d)] = |z7(d)] < || dlIC(2IE] + 1) .

Proof: From the previous two propositions, we know that for any feasible (y, u) € Yy

max{||c||,, —(b'y — u)}
PP(d) ’

ylls <

and that for any feasible z € X, which is separated into

r=2%+r withz€FandreR, (5.4)

max{|| Az — b||, ¢tz — '%}

lzll < 2] +

PP(d) )
< oy sl ’;l‘f’('é’f 2+ el 2}
(0 maxflAlL L) | max{[el, ¢z}
< izl (1+ = )+ o
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max{|}p], 'z}

< 2|E|C(d) + op(d)

For optimal solutions the above inequalities imply

max{|lc|l«, —2"}
pp(d)

"] < 2(E|C(d) +

IA

"l (5.5)

max{ [[b]], 2"}

pp(d) (5:6)

where z* = z*(d) = z,(d) from Corollary 1. Suppose that z* < 0. Then (5.6) implies
that ||z*|| < 2|E|C(d)+ % < C(d)(2]E|+1). This in turn can be used to lower bound
the objective value: z* > —|c|l.]|lz*]] = —||4||C(d)(2|E| + 1), and it then follows that

[l < C(d)*(21E] + 1).

Now suppose that z* > 0. Then (5.5) implies that [|z*]|. < ;!';C%;—) < C(d). This can be
used to bound the objective value: z* < ||b]|[|ly*||» —u(c— Aly*) < [|d[|C(d) —u(c— Ay").
The right most term can be bounded by —u{c—A'y*) < —(c—Aly*)'z < [le=Aty*||i ||zl <
ld||(C(d) + 1)||z|| for any z € P. By selecting some = € E we can further bound the

objective value by 2* < ||d||C(d) + ||d||(C(d) + D)|E| < ||d]|C(d) (2|E| 4+ 1).
This then implies that

lz*| < 2C(d)|E]+ C(d)* 2IE[+ 1)
< C(d)? (4Bl +1) . m

Without Assumption 2 we can use (5.5) and Theorem 19 to bound the norm of the

dual optimal solution as follows:

o o maxdlell, = ()
o'l < FE
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max{|lcll., 3lld[|C(d)x}

a pp(d)
< 3C(d)*k ,

where £ = max {g*(7}", ||z%|} + 1, and 2° € P is given. Although this bound does not
require Assumption 2, it is a looser bound than the one provided by Theorem 20 since

K < |E| + 1 under Assumption 2.

For a primal optimal solution 2* the bound we can obtain without Assumption 2 is
weaker. If we separate the optimal solution into z* = # + r as in (5.4), note that |E| in

inequality (5.6) is simply a bound on ||Z||, and using Theorem 19 we obtain

max{||b], z(d)}
PD(d)
max{||b]], 3(|d||C(d)x}
po(d)
< 2||2|C(d) + 3C(d)%k

]l < 2)12IC(d) +

< 2ljzllC(d) +

where £ depends on the optimal solution z*. Here is where some additional assumption

on the ground set, or a different proof, is necessary.

5.3 Relative error bounds and sensitivity under data

perturbation

The results in this section are also inspired in the results obtained by Renegar for
problems in conic form in [28]. The next theorem is an extension to problems in GSM

format of Assertion 1 of Theorem 1.1 in [28].

Theorem 21 Suppose that d € Fp and pp(d) > 0. Let z° € P be given. Then there
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exists T € Xy satisfying

dist(Az — b, Cy)

-zl < max <1, z .
lo—<ll < =00 {1121}
Proof: This is just part 1.2 of Theorem 9. [ |

In the next two theorems we present bounds on the change in primal feasible solutions
when the data is perturbed. These bounds depend on the condition number of the
problem prior to the data perturbation. Theorem 22 below extends Assertion 2 of
Theorem 1.1 in [28] to problems in GSM format and is the basis for Theorem 23, which

presents the sensitivity of primal solutions to a general data perturbation.

Theorem 22 Suppose that d € Fp and pp(d) > 0. Let Ad = (0,Ab,0). Then, for

every ' € Xgiaq, there erists T € Xy satisfying

|| Ab|| max {1, ||'||}
PP(d)

Iz — =] <

Proof: We consider problem (PP), defined by (4.4), with 2° = z’ and w° such that
Az — b — Ab = w® € Cy. From Lemma 6 we have that there exists a point (z,t,8,w)
feasible for (P P) that satisfies

pp(d) _ pp(d)
O A o] AN (5-7)

We define
T+ Az w + 6w’

t+0




By construction we have that z € P, AT — b = @ € Cy, therefore Z € X, and

Iz — 'l _ (lzll + &) max{1, [l='][} _ [|Ab]

_ nmo__
|z =2l = ==~ < 7 = pp(d)

max{1, ||z'||} - [ |

Theorem 23 Suppose that d € Fp and pp(d) > 0. Let Ad = (AA, Ab,Ac¢). Then for

every ' € Xq a4, there ezists T € Xy satisfying

max{1, ||='|| }

Iz =1l < 1l + AaAf) == 2

Proof: If ' € Xgyaq then it also belongs to X, .4, where Ad = (0, Ab — AAZ',0).
Theorem 22 with data Ad gives

max{1, ||z

||} o - max{l, |lz’|}
Ab— AAY|| « —22 27 111
pp(d) | I<

pp(d)

Iz — 2| < (ladl + [[AAN=]) - =

The next two results present bounds on the change of the optimal objective function
value when the data of the problem is perturbed. These bounds depend on the condition
number of the problem prior to the data perturbation. Proposition 11 and Theorem 24
below respectively extend to the GSM format the results for problems in conic form of

Lemma 3.9 and Assertion 5 of Theorem 1.1 in [28].

Proposition 11 Suppose thatd € F and p(d) > 0. Let Ad = (0, Ab,0) satisfy Xgrng #
@. Then,

max{||c|/., —z*(d) } _

z.(d+ Ad) — z.(d) > —||Ab| e @)

Proof: The hypothesis that p(d) > 0 implies that the GSM format problem with
data d has zero duality gap and (GP;) and (GD,) attain their optimal values, see
Corollary 1. Also, since Yy aq = Yy # 0 has a Slater point (since pp(d) > 0), and
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Xaraa # 0, then (GPyiaq) and {GDyyag) have no duality gap and attain their optimal
values, see Corollary 1. Let (y,u) € Yy be an optimal solution of (G Dy), due to the form

of the perturbation, point (y,u) € Y3, a4, and therefore
(A Ad) > b+ Ab)'y — u = 2(d) + Aby > 2(d) — A1yl -

The result now follows using the bound on the norm of dual feasible solutions from

Proposition 9. [ |

Theorem 24 Suppose that d € F and p(d) > 0. Let Ad = (AA, Ab, Ac) satisfy || Ad|| <
p(d). Then, if x* and & are optimal solutions for (GPy) and (G Payaa) respectively,

2a(d + Ad) = z(d)] < [y mextllell: = A, =2 (d)}

or(d)— [ Ad]
c max{ell. + [Acl =@} oo
(el + a2l S IEdee O ) o, oy

Proof: The hypothesis that p(d) > 0 and p(d+ Ad) > 0 imply that the GSM format
problems with data d and d + Ad both have zero duality gap and all problems attain

their optimal values, see Corollary 1.
Let £ € X4.naq be an optimal solution for (GPying). Define the perturbation Ad =
(0, Ab — AA%,0). Then by construction the point £ € X, ,; Therefore |
Z(d+ Ad) = (¢ + Ac)' & > —||Ac||.|1E]| + '3 > —||Ac|l]|Z]| + z.(d + Ad) .
Invoking Proposition 11, we bound the optimal objective function value for the problem
instance d + Ad-:

-~ - * d
w(d+ Ad) + [AcllllZ] > 2 (d+ Ad) > 2 (d) — [|Ab— AA:?:HmaX{”;” "~ @)
P
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Therefore

max{lel, 2" (d)}

2(d+ Ad) = 2.(d) > —[|Acll]|2]] — (|Ab]| + || Al o (d)

|£11)

Changing the roles of d and d + Ad we can construct the following upper bound:

2.(d+ Ad) = 2.(d) < [|Acllle*] + ([l a6l + |4 o) 22 +pff;'i;;2;)(d sy

The value —2*(d + Ad) can be replaced by —z*(d) on the right side of the previous
bound. To see this consider two cases. If —z*(d + Ad) < —z* (d), then we can do the
replacement since it yields a larger bound. If —z*(d + Ad} > —z*(d), the inequality
above has a negative left side and a positive right side after the replacement. To finish
the proof note that because of the hypothesis ||Ad|| < p(d), the distance to infeasibility
satisfies pp(d + Ad) > pp(d) - ||Ad|| > 0. Incorporating this and combining these

previous two bounds we finish the proof. N
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Chapter 6

Condition Number Complexity of
solving (G P;) using an Interior-Point

Algorithm

In this chapter we present an interior-point algorithm to approximately solve problem
(GP,). The algorithm is comprised of two phases: Phase 1 will obtain a feasible point,
Z, which will have good geometry with respect to the feasible region. Then Phase 2 will
obtain an e-optimal solution starting from the point Z obtained in Phase 1. The overall
number of Newton iterations of the combined Phase 1 and Phase 2 algorithm is bounded

by a function that depends on the condition number of the problem.

125



6.1 Notation, assumptions, and interior point com-

plexity

The interior point algorithm presented here is inspired in the algorithm and complexity
analysis present in [12]. This algorithm uses as input an interior point z° € relintP,
with 750 = dist(z?, reldP), and an interior point w° in the cone Cy, w® € relintCy with
Tyo = dist(w®, reldCy). From [12], we borrow the definition of the following geometric

measure, which is also used as input to the algorithm to bound the iteration count:

G.:= max, |z —2°
st. Az-beC
g (6.1)
r € P

cdr < z(d)+ ¢ .

The geometric measure G, is equal to the maximum distance of points in the e-optimal

level set to the interior point z°.

Recall that for a given set S, Lg denotes its affine hull and Ls denotes the linear

subspace obtained by the translation of Lg to the origin. Define the quantity
§:=max{c'w | Aw € Loy, w € Lp, [|w| <1} . (6.2)

This constant appears in the complexity bound of the algorithm but can be replaced by

|||« since § < ||c||. from its definition.

This algorithm uses self-concordant barrier functions for the sets involved. We
assume there exist a 9p-self-concordant barrier function for the set P, a J¢,-self-
concordant barrier function for the cone Cy, and a 9| y-self-concordant barrier function

over the unit ball for the primal norm | - || defined in IR"™.
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The algorithm we present in this chapter uses the interior point machinery as devel-
oped by Renegar in [29] and {30], based on the theory of self-concordant functions of
Nesterov and Nemirovskii [20]. We refer to this machinery as the barrier method. Tt is

designed to approximately solve a problem of the type
(OP) z* =min{f'z |z € S},

where 5 is a compact convex set and f € JR"™ is a linear objective function vector.

The barrier method requires the knowledge of a self-concordant barrier function F(z)
on the interior of set S, such that dom#(-) = relintS. The method solves a sequence of

problems of the form
(OP,)  z,=min{f'z+ pF(z) | z € relintS} ,

for a decreasing sequence of the parameter p.

In very general terms, the barrier method creates a sequence of iterates, which are
interior to the set S and approach the optimal solution set. The sequence is started
at an interior point z° € relintS. The barrier method is separated into two stages. In
stage I, the method computes iterates according to Newton’s method ending when it
has computed a point & which is an approximate solution to problem (OP;) for some
computed internally in stage I. Stage II, sequentially constructs approximate solutions
% of (OF,,) using Newton’s method, for a sequence of parameters uy converging to

zero. One of the key properties of the iterates in stage II is that
fla* — 29 < 2* < fra (6.3)

where ¥ is the complexity parameter of the self-concordant barrier function F' (). In

general, the barrier method is stopped when the current iterate is an e-optimal solution,
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for a given tolerance £. An e-optimal solution is a point z € 5 such that flzr < z* +«.

The complexity of the barrier method for approximately solving problem (OP) can

be stated in the following result.

e Assume that S is a bounded set, and that z° € relint$ is gwven. The barrier method
requires

0 (\/ﬁln (19 b ?)) (6.4)

sym{z?, S)

iterations of Newton’s method to compute an -optimal solution of (OP).

The above result is based on the convergence results for the barrier method presented
in [29] and has been stated in this form in [11} and [12]. Here ¥ is the complexity
parameter of the self-concordant barrier function defined on S, R is the range of the
objective function over the set S, that is R = 2* — z* where 2" = max{f'z | z € S},
and the quantity sym(z,S) measures the symmetry of the point z with respect to the

set S, defined by

sym(z,S) :=max{t |y S=>2—t(y—x)c S} .

The next two sections describe and analyze the complexity of the interior point
algorithm we use to solve (GPy). The first section covers Phase I, which computes a
feasible interior point with good geometry. Phase II, which is covered in the second
section, is initialized at this good interior feasible solution and computes an e-optimal

solution. Both phases of the algorithm use the barrier method described above.
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6.2 Phasel

The inputs for Phase I are an interior point z° € relintP, with a distance Tgo =
dist(z®, reldP) > 0, and w® € relintCy, with a distance 7,0 = dist(w?, reldCy) > 0.
The output for Phase I will be a feasible solution 7 € X, with good geometric proper-

ties.

To simplify notation, we define the following measure for a point z in the relative

interior of a set S, with r, = dist(z, reldS):

as(e) = max { o, 121 =

e T.’Z‘
The main result in this section will show that Phase I will require

0 (\/ﬁln (19 +9p(z") + 90, (") + [ld]| + C(d) + E:_(i‘l”)))

iterations of Newton’s method. In this complexity result, the value 9 is the expression
9= 8009p + V¢, + 8009 | + 2,

and therefore depends on the complexity parameters of the barrier functions for the
set P, the cone Cy, and the unit ball in JR" with norm || - ||. In other words, ¥ is

O (9p + Y, + 9 )-

Phase I will solve, using the barrier method, a modified version of problem (PP),

and obtain a point = € relintXy such that r; = dist(Z,reldX,) > 0. This solution will
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be the input to the Phase II of the algorithm. Let us recall problem (PP) from (4.4):

(PP) maxgsuwe 0
s.t. Az — bt —w =6 (b— Az® + w?)
[zl + 1t <1
(z,t) € C

w € Cy.

Let us first assume that the given interior points x® and w satisfy Az® —b—w® € Cy.
This means that Az° — b € w° + Cy C relintCy, and therefore z° € X;. The following
shows that in this case z° € relintX,, which implies that the original point 2° is already

an interior feasible point and no computation of phase I is necessary.

Proposition 12 Consider a point x € X, such that dist(z,reldP) = r, > 0 and
dist(Az —b, 1eldCy) = 7, > 0. Then z € relintXy and dist(z, reld Xy) > min{r,, WTW}'

Proof: Consider ¢ € IR™ such that ||€|| < 1 and € € Lp N {z | Az € L¢, }. Since

this vector lies in the appropriate linear spaces we have that

z+al € P for |a| <7,
1
Alz+al)—b=Az - b+ aAL € Oy for]a\gmrw.
Therefore z + af € X, for any |o| < min{r,, ||;f“"rw}, which completes the proof. [ |

We consider now the case in which Az® —b—w® € Cy. We first present a result that
shows that in this case problem (PP) has a bounded optimal objective, and therefore
a bounded feasible region. Then we present a variation of problem (PP) which has an
explicitly bounded feasible region, this modification will provide a simple expression for

the complexity bound. We finalize this section by analyzing the complexity of solving
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this new problem with the barrier method and proving that the output of Phase [ is an

interior primal feasible solution with good geometry.

Lemma 8 Suppose thatd € Fp, 1° € relintP, and w’ € relintCy. Jf Az® - p— 40 g Cy
then problem (PP), defined in (4.4) is bounded and the optimal solution 6* satisfies

. Il
-1 <6 < .
b=t < dist(Az® — b — w9, Cy)

Proof: For the lower bound, consider the point (z,¢,w, 0) = W"lﬂ:ﬁ(mo’ 1,uw% 1),
and note that it is feasible for (PP) and that —1 < ﬂz:"lllﬁ For the upper bound first
assume there is a sequence (z;,t;, w;, &;) of feasible points for (PP), such that 6, - oco.

Rearranging the feasibility conditions of these points we can write

=t Az% — b — 0 .

o~ 6 "
Since 6; tends to infinity, we can consider that 9; > 1, which implies that 1520 is
bounded by ||d|| + ||Az® — b - w°|| and therefore (taking a subsequence if need be) we
have 5t — @ € Cy. The equation above then implies that Az° - b — 4 = @ ¢ Cy,

which contradicts the hypothesis.

Therefore there is no feasible sequence with ¢; — oo and the optimal solution of
(PP) is bounded. To bound the optimal solution, now consider a feasible sequence of
points (z;, ¢, w;, 8;) such that 8; — 0*. Due to the bounded domain in z and ¢, and
restricting to a subsequence if necessary, we have that (2;,t) — (%,7) € C. Then
W= AZ — th — 0*(b — Az + w?) belongs to Cy, since by construction we have that
w; — w. Rearranging and taking norms in the definition of @ we can bound 6* by

1Az — ]| < ANz + [1o]e < ]
1o — Az0 + w0 + +w|| ~ dist(Az0 — b — w?, Cy) = dist(Az® — b — 0 Cy)

*
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where the first inequality is due to the fact that 01—*1?1 e Cy. |

Therefore problem (PP) has a bounded domain under the hypothesis of Lemma
8. We modify problem (PP) by adding explicit bounds on the variable §. The main
purpose of this modification is to provide a nicer expression for the symmetry of the
starting point for the barrier method that will solve the problem. We consider the

following variation of (PP):

(P1) maxgeyg 0
5.t. Az — bt —w=0(b— Az® + w°)
el + It < 1
(z,t) € C
w € Cy
—-1<0<1.

(6.5)

The proposition below shows that the optimal solution to problem (P1) has a lower
bound similar to Equation 4.5 for problem (PP). This lower bound is used to show that

the solution provided by Phase I has good geometric properties.

Proposition 13 Suppose that d € Fp and pp(d) > 0. Let (z*,*, w*,0*) be an optimal
solution of (P1). Then

o > min{l | pp(d) } _

|6 — Az® + wO||

Proof: If 8% = 1 the result is true, therefore we assume that ¢* < 1. In this case

(z*,t*, w*, 0*) is also optimal for (PF), and this in turn implies the result, since

pp(d)
0% >
b — Az® + wO||
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from Equation (4.5) in Lemma 6. ||

To study the complexity of solving problem (P1) using the barrier method we have
to bound the symmetry of the starting point, the complexity parameter of the barrier
function over the feasible reglon, and the range of the objective. The next proposition
concerns the symmetry of the starting point with respect to the feasible region of (P1).

Let us call Sy the feasible region of problem (P1), namely

Sy = {(z,t,w,0) | Aa:—btyw-ﬂ(b—Aa:OerD) =0,
Jall H1E <1
(z,t) €C
w € Cy
_1<0<1}) -

We will denote points in the set 51 by 2= (z,t,w,0)-

Proposition 14 Assume d € Fp and pp(d) > 0 Then sym (2°,51) 2 3, where 2=

in—mén—_;g(xo,l,wn, —1) and

= e——l———’min _’__153.———- _’;_fﬂi_;—
P = 5o+ 3 {Tmoﬂ\m‘]\\ﬂ > Tl +2) + O ’1} '

Proof: First we assume that P is not an affine set and Cy is not a subspace.

Note that 2° € S, and for gimplicity let 7 = 2|z + 2. For a point z = (z,t,w,0)
which satisfies that A 4 2z € Sy, we have to show that 0 — Bz & 51 Note that since
N4, € S then AT~ bt —w — O(b— Az’ 40 = 0, therefore 0 — Bz satisfies the equality

. 20 w® _
constraint: A (_n" - 6:6) —b (}’ — {)’t) — ('}T - ﬁw) — (?1 — 69) (b — Az® + w?) = 0.
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The hypothesis 2% + z € 5] also implies the following four expressions:

-1
-1<—+6<1 (6.6)

n

1, 1
o+ >+t <1 (6.7)

n n

1, 1
—x'4+z,—+t)eC (6.8)

n n

1 0

Equation (6.6) is equivalent to 2t oo o 22043 Also, from its definition we

0+2 = V= g2
see that § satisfies 0 < 8 < § < %‘I%di—; < 1. Then
_ _ 0 0
e S I S I

= <
= 2|z + 2 =0 +2 2|z +2 —

-1 -1 2012°| + 1Y\ (2]/=z°]| + 3
o s — B0z - =-1,
2| z°|| + 2 2||z0|| + 2 2[|z%| + 3/ \2|jz%]| + 2

which means that -1 < % - B8 <1.

GEEE

and

From equation (6.7) we note that ||z[| + [¢] < 1+ ;(f|z°]| + 1) = 3/2. Then

~(@ 1)~ B0 < 5+l + 1) <5+ (5) (5) =1

E
n

The hypotheses z° € S; and 2% + z € S| imply that (z,t) € Ls. Now consider the

expression

= =z

. — Pt 1— 7t 1—npt
which belongs to P if % ||z° — x|| < r4o. To prove that this condition is true, first
note that from its definition 8 <

120 _ Bz 0 _ nh
% T —nbr o, (a:ot—m) ,

2r 0
3n(r o+ll=0ll+1) "

inequality —3/2 < t < 3/2 to show that 1 — gt > 1 — 393 > rﬂ)“_“;—;gs% > 0. By

We combine this bound on 8 with the
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applying these inequalities to the expression we want to bound, we obtain

nB)|z% — x| 27 0 reo + |20 + 1
[L=nBt] = 3(reo +1l2° + 1) l2°|| +1

(] -+ 161) (Jl2°] 4+ 1) < s

We have therefore proved the condition that (%a:o — Bz, % — Bt) eC.

'To finish the proof have to show that }’wo — Bw € Cy. We note from w°® € Cy and

w’+w € Cy, that w € L¢,. To show that %wo — Bw = % (w® — nBw) belongs to Cy we

only need to prove that ||[nfw|| < ryo.

From the definition of 3, we bound 3 < 3n(|ldlI(IIIQ"TJL:SIIHIIw“II)' From 2° + 2z € C we

have A (“;'J—D + :v) —b (% + t) — (“’TO + w) — (%1- + 9) (b— Az® + w®) = 0. Rearranging

and taking norms in this expression gives

1
jwll < l|d||+El|w0|(+||b—z4$°+w°||

1
<l 4+ 2l 4l et + e
22| + 3
= 2||d| + [|d]|||=° 0
Il + N1l + s et
3
< ld(lla®) +2) + 3 [l
: 3 0 0
<5 (il +2) + ) -

We can now prove that ||nfw|| < rye, since

InBwil = nB|lwl
27,0 3 . X
< ST+ 2 1wy 2 (A +2) + 1l
S Two -
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Assume now that P is an affine set and/or Cy is a subspace. In this case the proof
presented above is still valid, with simpler arguments to show that (%9:” — Bz, % — /Bt) €

C and/or (%wo — ﬁ”w) € Cy. u

We now turn our attention to the desirable geometric properties of the point com-
puted by the Phase I of the algorithm. These properties as well as the assumptions

needed to construct it are seen in the next proposition.

Proposition 15 Suppose that d € Fp and pp(d) > 0. Let z° € relintXy and w? €
relintCy be given. If (z,t,w,0) is feasible for (P1) and 8 < 0* < 26 then the point

— 0 .
T = % € X, satisfies:

1. ||z — 2% £ 2max{1, ||z°|} (C(d)(”x“” +1) 4 HwOH)

pp(d)
1 2 1 llw?|
: < - 0 1=
2 dist(Z,1eldXy) ~ min{r,o, ﬁiﬁ} (2 @+ 1)+ pp(d)
Iz — 2" 2max{l, [|2°| }

(c<d)<||x°n+1>+ '“’0”) .

| dist(Z,1eldXy) ~ min{reo, 57}

Proof: Proposition 13 provides the following bound:

1 2 ||b—Am0+w0||} 0 2]|w®||
- < —<2max<1, <20(d)(||z°]| +1) + —— . 6.10
;< soma{1, P2 @+ + 2 )
Note that the above bound implies that # > 0. Define the following:
T 0z° o wt g Or o 01,0
—= = T'E = s Ty = .
t+86 "’ t+6 ' 7 t+0 Y t+0

By construction Z € P and @ € Cly, also dist(Z, reldP) > rz > 0 and dist(w, reldCy) >

re > 0. We also have that AT — b = w € Cy. Therefore z € Xy, and from Proposition
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12 we have that

1 A 1
dist(Z, rel0Xy) > min § rz, —ru—,} = ——min {Tzo, —rwo} >0.
(&, reloXa) { AT " 40 T

We finish the proof showing the that the point Z satisfies the inequalities in the

statement of the proposition:

— 2] _ |zl + [t]ll2°] 2|l
15— g0 = 12 < < 1, 12%1} (20(d) (2] + 1 .
Iz — ° s 7 < max{1, [|z"||} { 2C(d)(||2"]| + 1) + ()
'UJO
. 1 < 1 ( 1) < 1+2C(d)(fl=°) +1) + ip(d)
© dist(z, reldXg) — min{rmo,ﬁﬁ} 8/ — min{nmﬁfﬁ}
1z -2  _fz—ta®ll _ t+0 =]+ [tl="] L
© dist(z,reldXy) —  t+ 8 Gmin{rzo,ﬁ‘ﬁ} - 6 miI]{Txn,%i%}
wO
. max{L [2°l1} (2C@ Il + 1) + 3 ) .

min{ro, ﬁﬁ }

In order to solve problem (P1) using the barrier method, we must specify the barrier
function on the feasible set S;. This barrier can be constructed using barrier calculus
from the barrier functions defined on P, Cy and the unit ball in R* of norm || - ||. To
construct the barriers functions over the sets C and {(z,t) | ||z|| < 1 — |¢|}, use Propo-
sition 5.1.4 of [20], which shows that for a given ¥-self-concordant barrier function F(-)
over a set S, a self-concordant barrier function over the set {(z,t) | z € ¢S, > 0} is
400 [F (%) —2¥1n t], with complexity value of 8009. The barrier function over set S is
therefore induced by

F(z,t,w,6) = 400 [Fp (2) ~ 20pInt] + Fo, (w) — In(1 — 0) — In(1 + 6)+
+400 [F”.” (ﬁ) — 219”.”111(1 — t)] ,

and therefore the induced barrier has complexity value at most

¥ = 8000p + 190‘, +24+ 80019”,“ .
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Before presenting the Phase I algorithm, we will discuss the termination criteria
for the barrier method. In this case we are not interested in solving problem (P1)
approximately because, from Proposition 15, if the current iterate satisfies ¢ < 6* < 26
we can construct an interior point with good geometry. The iterates of the barrier

method satisfy inequalities (6.3), which for problem (P1) are equivalent to
0F < 0" < 0% +2u09 .

Therefore, taking 2,9 < 36* implies the condition of Proposition 15 strictly.

Deﬁnition 7 Algorithm Phase I:

1. If Az — b —w® € Cy, stop, return T = z°.
2. Starting from m (2%, 1,20 —1), use the interior-point method to solve (P1).

3. Stop when the current iterate of the interior-point method sotisfies 49 < 6%,

1"‘”‘-{»9"’10
th4-g% -

Return 7 =

Theorem 25 (Complezity of Algorithm Phase 1.) Consider d € Fp, such that pp(d) >
0. Algorithm Phase I finds returns a feasible point T € relintXy that satisfies

1. ||z — 2% € 2max{1, ||z°)|} (C(d)(|lz°|| +1) + [|w ||)

pp(d)
1 2 1 |w?|
23 < - 0
¢ dist(z, rel0Xy) — min{ro, ﬁ}ﬁ} (2 @l + 1) + pp(d)
|1z — 2% 2max{L, ||=°|} 0 [[w°]
- dist(Z, rel0Xy) — min{ryo, ﬁ‘jﬁ} Cla)(ll"l] + 1) + pp(d) )

Algorithm Phase I will terminate after

0 («5 In (ﬁ ¥ gn(2) + gy () + ldll + C(d) +
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Newton iterations.

Proof: The inequalities 1., 2., and 3. are a consequence of Proposition 15 and the
fact that the termination criteria implies that 8% < #* < 20*. Also note that the point

2V satisfies the inequalities of the theorem trivially.

For the complexity bound on this algorithm first recall that the barrier function on
the feasible region of (P1) has complexity parameter ¢, then use Proposition 14 to bound

the symmetry of the starting point, this gives

1
sym(z%,51) —

< 301 + 1) max {1 Sl 1 ) | ||w°||}

20 ’l”mo T 0
< 3(gp(a”) + 1) max {1+ 20p(2°) , gy (w)gp(@)lld] + gy (w) (2]l + 1)}

The definition of S; shows that the range of the objective function of (Pl) over S;

is R = 2. Also, the stopping criteria for the algorithm is equivalent to ¢ = since if

2 ’
the iterate satisfies 4, < 6%, then 8% > 6* — 2,9 > 6* — % > & = 6" — . Therefore

we can bound

4 _ 4 0 Wl
S gt (C(d)(llfv I+1)+ pp(d)) ’

using equation (6.10). These bounds and properties of the logarithm function complete

R
£

the proof. [

6.3 Phase I1

The second phase of the algorithm uses the barrier method with Z € X, obtained from
Phase I as the starting point. Phase II applies the barrier method to problem (GPy)

with an additional constraint in order to bound the feasible region. The problem solved
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1S

(P2) min, c'z
st. Ar—beCy
rebP

(6.11)
dr<dz+3,

where the quantity 5 is a positive offset, which keeps 7 in the interior of the feasible region
of (P2). The complexity analysis done in [29] uses this type of additional constraint,
the explicit construction of the offset 5, which we use here, is due to [12]. The offset is

defined by
<. (89 +1 " s
5_,,( VG max{cac|A:v€LCY,xELP,xH(O)zgl},

where H(0) is the Hessian matrix of the 9} -self-concordant barrier function for the unit

ball in IR"™ of norm || - || evaluated at zero. Also define

§:= max{ct:v | Az € Le, ,a € Lp ,|z]l < 1} :

The main result in this section shows that we can compute an e-optimal solution in

at most

1 o 8
O(\/ﬁp+l9cy In (19P+190y+19||-||+Gs+max{1’;}+““’_“ ||+max{1,5})) ’

iterations of Newton’s method, where G, is the maximum distance of points in the e-
optimal level set to the interior point z°, see (6.1). We denote by S the feasible region

of problem (P2), namely

52::{.’13|A$Ab60y, z € P, ctxgct:f+§} :
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The next lemma establishes the relationship between the practical quantity we use

in the algorithm 5 and the theoretical quantity 3.

1
Lemma 9 ————35 < 3§ <5,
619”.” +1

Proof: Since Fjj(z) is a J)-self-concordant barrier for B(0,1), then F(z) =
Fyy(@) + Fy(—=) is a 20)-self-concordant barrier for B(0,1), whose analytic center is
z° = 0, and note that the Hessiaﬁ of F(x) at z¢ = 0 is 2H(0) where H(z) is the Hessian
of Fyy(-) at z. Then from Proposition 2.3.2 of [20] it follows that

{:1: | «/22H(0)z < 1} C B(0,1) C {:L' | xt2H(0)z < 3(29)) + 1} :

These set inclusions imply the result. [ |

The next lemma presents a property which is central in the complexity bound ob-
tained here. This lemma implies that if the e-optimal level set is bounded then the entire
set S, is bounded, this helps bound the symmetry of the startihg point Z. This lemma
is the extension of Lemma 4.1 of [12], which assumes Cy = {0}, to the case of a general

cone Cy. Although the proof is analogous, we present it here for completeness.

Lemma 10 Consider 7 € Xz such that dist(Z,1el0Xy) = 7 > 0 and /% < . If Q
satisfies

szax{H;r—:f:H]Az—beC'y,zEP,ct:cga} )

then, for every t > 0, if T is such that x € X, and ¢’z < a +t then

le—sll<@(1+3)

Proof: Let & := argmax,{c'z | Az € Lg,,z € Lp,|lz]] < 1}. Then by definition

§=c'% > 0. Then # — 7% € X4 and c¢/(F — 7%) = '@ — Fctd& < a. Note that if § =0
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this lemma is trivial since the right hand side is infinity; therefore we consider the case

§ > 0 in which it is easy to show that ||Z|| = 1.

Let # € X, be such that ¢tz < o +t. Consider the convex combination of z and
I — 7

7y = Mi —-72) + (1= Nz € Xyg forany Ae[0,1].

Define ¢’ := ¢tz —a < t. If & <0 then ¢’z < « and ||a:—i"H§Q§Q(1+%§) by

the definition of Q. Consider then the case s’ > 0, this implies that '+« —c'Z+75 > 0.

Set A = o—%——, which means that 1 - A = ﬁ%, and c‘zy = o. Therefore
Q> lor -z =1l -+ (1= Nz -2) = (1= Ne—z[| -7A,

Rearranging this expression we obtain

s’+a—ct§;+F§( N 7s' )

|z — Z] — , ——
a—cx4rs s4+oa—cxr+71s
s rs'
< (1 + t) Q+ —
78 7§
25!
< (1 —+ T) Q,
73
where the last inequality is because Q > ||z - 7& — || = 7[|Z|| = - u

The following two propositions are used to provide a bound on the symmetry of the
point Z with respect to the set S3. This bound is a polynomial function of 7, |z — «°||,
9y, §, €, and G.. When the e-optimal level set of (GP,) is unbounded (G. is infinite,)
then this bound is also infinite and therefore so will be the bound on the symmetry and
the number of iterations. The interesting case is when the e-optimal level set is bounded,

and G, is finite.

Proposition 16 If T € Xy is such that 7 := dist(z, reldXy) > 0, then any v € Sy
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satisfies ||z — Z|| < h(Z,T), where

(Is ol + G2)}

™M |

1
W, 7) = 4Ge + _8G. (|5 = 2°|| + Ge + 60y + 1) max {1,

oo the result is trivial, therefore assume G, is finite. First we

Proof: If G, =
show that there exists £ ¢ X, such that ¢z < z* + ¢ and dist(Z,rel0Xy) > 7

= 7 > 7. Therefore we now

If 7 < z* + € then set £ = z and dist(Z, reldXy)

consider the case c'T > z* + . Let 2* € X be such that z* = c'z*, this z* exists since
the optimal level set is bounded by G.. Define

. cdr—zt—¢ £ _
r=—F" Ere— A
&z — z* ctz — z*

which satisfies ¢!Z = z* + ¢ and dist(z, reldXy) > .5-.7 > 7.
ctL—z

Note that for any y € X such that ¢ty < z* + ¢, the definition of G, implies that
ly = 2| < lly -2l + 1z - 2°|| < 2G. .
Consider the case when ¢!Z + 5 < 2* +&. This case implies that Z = Z and that any
r € Sy is such that c¢fz < ¢*Z + 5 < z* + €. Then we conclude that for any z € Sy,
lz —z[| = ||lz — £|| < 2G.. |
The case when ¢’z + § > 2* + ¢ is handled using Lemma 10. Set Q = 2G., then

Lemma 10 shows that for any z € S5 the norm

| 23 T o
’I_EIIS2GE(1+2(61+S~~Z 5)) |
57
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This then implies that for any = € .55,

. _ 2z +5—2"—¢
o= 2l < lla - &1 + b -l < G (14 XEEEZE)
Now since c't —z* = c'Z—c'z* < §||T—z*|| < §(||7—=°||+G.), then ¢'T—2*+5—¢ <

obtain an upper bound, for every z € S
1 5
z—2|| < 4G, (1 +os max{ ="+ 6 )} (Il — 2%l + G« + 69y + 1)) Com

Proposition 17 If T € Xy is such that 7 := dist(z, reldX,) > 0, then

1 < h(Z,7)
sym(Z, S2) — min{l,7}

Proof: Let 8 = ml—d and consider v such that £ + v € Sy, we have to show that
T — Bv €S, Since T+ v € S,, from Proposition 16 we know that ||v]| = ||z + v — || <
h(z,7), and since T € X, and & + v € Xz we have that v € Lp and Av € Lg,. This
implies that T — fv € X, since ||Bv|| < Ah(Z,7) = min{l,7} < 7. To check that

z — Bv € 9y, it remains to verify that ¢*(Z — fv) < ¢!z + 3, which we now verify:

d(z—pv) = dz— By
< 'z + f3|y|
< 'z + Bh(z,7)d
< 'z +min{l,7}5
< dz+5
< cz+5.

144



Therefore £ — fv € Sy and the proof is complete. [ ]

In order to solve problem (FP2) using the barrier method, we must specify the barrier
function on the feasible set S;. This barrier can be constructed using barrier calculus
from the barrier functions defined on P and Cy. The barrier function over set S, is
induced by

F(z,w) = Fp(x) + Fg, (w) — In(c'2 + 5 — 'z) |

therefore the induced barrier has a complexity parameter at most

d=vp+V¢, +1.

Definition 8 Algorithm Phase II.

Given a starting point © such that dist(Z,reldXy) > 7 > 0.

1. If 5 =0, stop. All feasible points are optimal. Return T as the optimal solution.

2. Use the interior-point method to solve (P2) starting at T = T to find an s-optimal
solution to (GFy).

Theorem 26 (Complezity of Algorithm Phase II.) Suppose that d € Fp, and that there
exists a point T € X4 which has dist(Z,reldX,) > 7 > 0. Then Algorithm Phase IT will

compute an e-optimal solution of (GF,) in at most

1 _ ]
O (\/'ﬂp + J¢, In (191: + Ve, + ) + Ge +max{1., ;} + |z — 2% + max{l, E}))

ierations of Newton’s method.

Proof: First recall that the complexity parameter of the self-concordant barrier

function used in Phase Il is ¥ = ¥p + ¥¢, + 1.
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Also from Proposition 17 we note that

< rnax{l, {} h(z,7) .

sym(Z, Sy) 7

We can therefore bound the symmetry of Z with respect to the set S; by a polynomial
ini @ Ge, H:f - CL‘OH, ?9“.”, and max {1, g}

7l

Finally we bound

f = é(ct:3+§—z*)
< %g (Hi —z*|| 4 69 + 1)
< S (HE—IO” +G5+619||.|| —|—1)

Combining the bounds on —+%— and £ and the definition of ¥ we obtain the result. ®
ym(Z,52) €

6.4 Overall complexity

We now present the complexity bound of running both Algorithm Phase I and Algorithm
Phase II. Given interior points z° € relintP and w® € relintCy we execute Algorithm
Phase 1, which outputs Z € relintX,;. We use this point as input to Algorithm Phase II,

which returns an e-optimal point for (G Py).

Theorem 27 Algorithm Phase I and Algorithm Phase II will find an c-optimal solution
of (GP,) in at most

1 0 Kl
IV e e S A i

C(d) + G + ||dl| + L2k
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werations of the Newton method, where 9 = 9p +d¢, + 9.

Proof: The proof is a consequence of Theorem 25 and Theorem 26, which give

bounds of

0 (\/1—9111 (19 +9p(2°) + gy (w°) + |ld]| + C(d) + /L‘;U—(ZHJ)) ’

and

1 _ 5
O (\/'ﬂp +Jey In (1913 + ¢, +9) + Ge +ma,x{1, F} + ||z — £°|| + max {1, E})) ,

respectively. To finish the proof we note that bounds from Theorem 25 imply

0
l < polynomial - L ——, C(d), gp(z°), Il
T min {rIo, W%IJT} pr(d)
|z — 2°|] < polynomial (C(d), gp(z?), Il ) . L
pr(d)

6.5 Condition Number bound on G,

We now present a result which proves that for a consistent instance, we can bound the
measure G, by condition number quantities if the ground set P satisfies Assumption 2

and the instance is well posed.

Recall that Assumption 2 states that P = F + R, that is the ground set is the
direct sum of a bounded set E and a recession cone R. Recall also that we denote by

|E| = max{||z]| | =z € E}.

Proposition 18 Assume that P satisfies Assumption 2, d € F, and p(d) > 0. Then
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for any € > 0, the measure G, defined in (6.1) satisfies

G < ||2°]] + C(d)* (4| E] + 1) + )

Proof: Consider any z in the e-optimal level set, that is z € Xy and ¢’z < z.(d) +¢.

Then Assumption 2 implies that there exist 2 € E and r € R such that ¢ = £+r. Then

lz =2 < 12— 2 + |7l
max{||AZ — b||, c¢‘r}

< ||z -2 +
I | oo @
ST max{|| Az — b||, ¢z — '}
pp(d)
< |- + max{||AZ — b]|, z.(d) + € + llc]l«||Z[|}
PD(d)

u . R z,(d) + ¢

< l|w—a:°||+c<d>max{nmu+1,||x||+%} ,

where the second inequality is from Proposition 10. We can bound the optimal objective
function value using Theorem 20 to obtain |z,(d}| < ||d||C(d)(2|E|+ 1). Incorporating

this bound in the previous expression we obtain

) i ) 3
o= =l =)+ C@man o]+ 116l + C@OCIE+ 1)+ o

[A

& — 2°|| + C(d) (I:"nH +C@)(2|E +1) + m)
0 5 z —
< |l + 2018l + CE*BI+1) +

\|z”||+C(d)2(4|Ey+1)+m : |

VAN
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Note that if z° = 0, the previous result shows that G, < C(d)?(4|E| + 1) + e C(d).
The first term in this bound is exactly the bound on the size of the optimal primal

solution according to Theorem 20. The second term shows that increasing £ expands

L

the e-optimal level set at most proportional to -

A consequence of Proposition 18 is that under Assumption 2 we can state the fol-

lowing complexity bound to solve (GFy).

Corollary 6 Assume that P satisfies Assumption 2, d € F, and p(d) > 0. Algorithm
Phase I and Algorithm Phase II will find an e-optimal solution of (GP,) in at most

0+ —— + 9p(z°) + gc, (w°) + max{f, 1} +
O |Vdn min{r.o 74 }
'LUG €
C(d) + ||d|| + | B| + I + &
iterations of the Newton method, where 9 = dp + 9¢, + 9. |
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Chapter 7

Computational Experience and the
Explanatory Value of Condition
Numbers for LP

The last three chapters contain a number of results which show that the condition
number of a convex optimization problem is a quantity which is of interest in theory.
In order to investigate the relevance of condition numbers for problems that arise in
practice, we start by computing the condition numbers for a suitably representative
set of linear optimization instances that arise in practice, such as the NETLIB suite of
industrial and academic linear optimization problems, see [21]. Practical methods for
computing (or approximately computing) condition numbers for convex optimization
problems in conic format (CFPy) have been developed in {11] and [24], and such methods
are relatively easy to implement. It would then seem to be a simple task to compute
condition numbers for the NETLIB suite. But as noted in Chapter 1, it turns out that
there is a subtle catch that gets in the way of this simple strategy, and in fact necessitates

using the GSM format extension presented.
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Linear optimization problem instances arising in practice are typically conveyed in

the following format:

min, c'x

s.t. Ai.fl? <b ,ieL
44.;.1' = b,‘ ,i EFE

flezzb‘ ,7:€G

(7.1)

$j2lj,j€LB

‘rjgujvjEUBa

where the first three sets of inequalities/equalities are the “constraints” and the last
two sets of inequalities are the lower and upper bound conditions, and where Lg, U C
{1,...,n}. (LP problems in practice might also contain range constraints of the form
“biy < Az < b;,,” as well. We ignore this for now.) By defining Cy to be an appropriate
cartesian product of nonnegative half-lines /R, , nonpositive half-lines —/R., and the
origin {0}, we can naturally consider the constraints to be in the conic format “Az —b €
Cy” where Cy C IR™ and m = |L|+ |E|+|G|. Note that we are amending the notation,
previously in the thesis, the set £ denoted the bounded subset of P in Assumption 2.
(To avoid confusion, for this chapter, we denote by E the set of indices for which the
constraint is an equality; and by E for the bounded subset of the ground set P, as in

Assumption 2.)

We will treat linear optimization problems conveyed in the format (7.1) to be an
instance of (GP;) by setting the ground-set P to be defined by the lower and upper
bounds:

P:={z|=z; > forj€ Lp, z; <u,forjeUp}t, (7.2)

and by re-writing the other constraints in conic format as described earlier. But now

notice the data d does not include the lower and upper bound data I;,7 € Lp and
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u;,J € Up. This is somewhat advantageous since in many settings of linear optimization
the lower and/or upper bounds on most variables are 0 or 1 or other scalars that are
“fixed” and are not generally thought of as subject to modification. (Of course, there
are other settings where keeping the lower and upper bounds fixed independent of the

other constraints is not as natural.)

7.1 Computation of pp(d), pp(d), and C(d) via convex

optimization

In this section we show how to compute pp(d) and pp(d) for linear optimization data
instances d = (A, b, c) of the ground-set model format, as well as how to estimate ||d]|
and C(d). The methodology presented herein builds on Theorems 5 and 6 and is an
extension of the methodology for computing pp(d) and pp(d) developed in [11]. We will

make the following choice of norms throughout this chapter:

Assumption 3 The norm on the space of the x variables in IR™ is the Lo,-norm, and

the norm on the space of the right-hand-side vector in IR™ is the Li-norm.

Using this choice of norms, we will show in this chapter how to compute p(d) for linear
optimization problems by solving 2n + 2m LPs of size roughly that of the original
problem. As is discussed in [11], the complexity of computing p(d) very much depends on
the chosen norms, with the norms given in Assumption 3 being particularly appropriate
for efficient computation. We begin our analysis with a seemingly innocuons proposition

which will prove to be very useful.
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1

Proposition 19 Consider the problem:

= minv,w f('U) T,U)
st ]l =1 (7.3)
(v,w) € K ,

where v € IR*, w € B K is 4 closed conver cone in R and () 0 RE R,
is positively homogenepys of degree one (f(a(v,w)) = ol f(v,w) Jor any o € I and

(v, w) € R*!). Then problem (7.8) and (7.4) have the same optimal values, i.e., 7, = Za,

where
29 = min; ; mify,, f(v, w)
ie{l,...,n},je{—l,l} v =g (7.4)
(v,w) € K .

Proof: Let (v*,w*) be an optimal solution of (7.3). Since (v*llc = 1, there exist
"€ {l,...,n}and j* ¢ {=1,1} such that U = j*. Therefore (v*, w*) is feasible for the

inner problem in (7.4) for ¢ = ¢* and J=J% and so zy < z.

If (v*,w*) is an optimal solution of (7.4) with = ¢* and j = 7* then v, >
LoIf vl = 1, the point (v*, w*) is feasible for (7.3) which means that z; < z,,
completing the proof. Therefore, assume that lo*ll. > 1, and consider the new point
U, W) = m(v*, w*) € K. Then (3, W) is feasible for an inner problem in (7.4) for some
i =1 +# i* and 7 =3, and so z < f(0,w) = f (”—v:t(v*,w*)) = “—U}T;f(v*,w*) < 2z,

which now implies that (%,@) is also an optimal solution of (7.4). Since lo]l., = 1, the

previous argument implies that z; < 22, completing the proof. [ ]

7.1.1 Computing pp(d) and pp(d)



ill-infeasibility by pp(d) = jp(d) and pp(d) = jp(d), where

gp(d) = miny,, max{||Ay + s||; , by — v[}

s.1. Wl =1 (75)
yeCy
(s,v) € C*,

and
jp(d) = ming,, max{lAz —p|,,|c'z + g}

s.t. lz||, =1
TE€R (7.6)
pe€Cy
g=>0.

Neither (7.5) nor (7.6) are convex problems. However, both (7.5) and (7.6) are of the
form (7.3), and so we can invoke Proposition 19, and solve (7.5) and (7.6) using problem

(7.4). From Proposition 19, we have:

pp(d) = min miny ;, max {[|A%y + slly bty — v}
teql,...,m},7e{-1,1 s.t. ;=
{ Fie{-1,1} Yi=J 7
yeCy
(s,uv) € C*
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and

pp(d) = min ming ,, max{||[Az —pl|,,|c'z + gi}
ie{l,...,n},j€{-1,1} st xi=j
z€R (7.8)
pelCy
g>0.

Taken together, (7.7) and (7.8) show that we can compute pp(d) by solving 2m convex
optimization problems, and we can compute pp(d) by solving 2n convex optimization
problems. In conclusion, we can compute p(d) by solving 2n + 2m convex optimization
problems, where all of the optimiiation problems involved are of the roughly the same

size as the original problem G Fj.

Of course, each of the 2n + 2m convex problems in (7.7) and (7.8) will be compu-
tationally tractable only if we can conveniently work with the cones involved; we now
show that for the special case of linear optimization models (7.1), there are convenient
linear inequality characterizations of all of the cones involved in (7.7) and (7.8). The

cone Cy is easily seen to be:

Cy={pcR™|p<0foriec Lp=0forieFE,p; >0foriecG}, (7.9)
and so

Ci={yeR™ |y <0forie L,y € Rforic E,y; >0fori € G} . (7.10)
With the ground-set P defined in (7.2}, we have:

R={rc€R"|z;>0forje Lp, x; <0 forjeUp}, (7.11)
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and also

C={(zt)e R"x R|t>0,2; > ljtfor j € Lp, z; <yt for j € Ug} . (7.12)

The only cone whose characterization is less than obvious is C*, which we now character-
ize. Consider the following system of linear inequalities in the variables (s,v,s,s7) €

R" x IR x IR™ x IR™

s—st+s~ = 0
st > 0
s >0
s =0 for j € N\ Ug (7.13)
st =0 forje N\ Lg
U+lesj—2ujsj“ > 0,
J€ELp J€UR

where we use the notation N := {1,...,n} and S\ T is the set difference {k | k € S,k ¢
T}.

Proposition 20 For the ground-set P defined in (7.2), the cone C* is characterized by

C*={(s,v) € R" x IR | (5,v,s",s7) satisfies (7.13) for some s*, s~ € IR"} .

Proof: Suppose first that (s,v) together with some s*, s~ satisfies (7.13). Then for all
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(z,t) € C' we have

(th)t(Sa/U) - Z Sja;j - Z S;:Uj_*_tv

jeLls Jj€UR

> N osflit— Y sjugt+tv (7.14)
jelp i€Us

2 0,

and so (s,v) € C*. Conversely, suppose that (s,v) € C*. Then

n
—00 < —v < mingep stz = min Y s;7;
j=1

st @, > 1, for j € L (7.15)

z; <u;forjelUp,
and define st and s~ to be the positive and negative parts of s, respectively. Then
s=s5"—s,s7 >0, and s~ > 0, and (7.15) implies s; = 0 for j € N\ Lp, s; =0
for j € N\ Ug, as well as the last inequality of (7.13), whereby (s,v,s™, s™) satisfies all
inequalities of (7.13). u

Taken together, we can use (7.9), (7.10), (7.11), (7.12), and Proposition 20 to re-write
the right-most minimization problems of (7.7) and (7.8) and obtain:
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pp(d) = min Mminy g+ s- 5 max {|| 4%y + s — 3_”1 ) |th/ - |}

i€ {l,...,m} 5.t. Yi=J
je{-1,1} <0 forlelL
w>0 forled
7.16
s, =0 forke N\Up (7.16)
si =0 forke N\ Lg
v+ Z st — Z ugs, > 0
k€Lg keUg
st,s7 >0
and
pp(d) = min min, , , max{||Az — p||,, |’z + g|}
ie{l,...,n} st. x;=3j
]6{—1,1} IL'[CEO IkaLB
2, <0 forkelU
€= g (7.17)

<0 forlel
m=0 forleFE
p=>0 forle@G
920,

whose right-most objective functions can then easily be converted to linear optimiza-
tion problems by standard techniques. This then shows that we can indeed compute
pr(d), pp(d), and p(d) by solving 2n + 2m LPs, under the choice of norms given in

Assumption 3.
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7.1.2 Computing ||d||

In order to compute the condition number given by C(d) := ||d||/p(d), we must also
compute ||d]| = max{]|A|, Ib]],lc|ls}. Under Assumption 3 we have |[bf| = |[bl|, and
licll« = llc|l1, which are both easy to compute. However, ||A]l is the operator norm,
and so ||A]| = |4l = max{||Azll1 | |zl = 1}, whose computation is a hard
combinatorial problem. We therefore will bound || A}l 1 and hence ||d|| from below and

above, using the following elementary norm inequalities:

max {HAHM N Al 4l liAell; , HA33||1} = HAHOO,I < max {HAHL1 ,Vnm HAHz,z} '

where
1Al = max=y, n llAsgll
1All, = Amax{A*A),
”A“F = i Z?:l(Ai,j)Q:
1Al = i X 1Al
e:=(1,...,1)%, and i is defined using ; = sign(A;» ;), where ¢* = argmax,_;, . {|Ai|l;-

Most of the norm inequalities are easily verified due to the definition of the operator
norm and the relations ||7]/oe < |lzll2 < ||z]l1 < Vnlz]]2 < n|lz]|e. The bounds that are
not verified this way are ||Alloo1 < |[|Allz, and [|Allr < [|A]jco,1-

Of these, the first is true because if ||z]|ec < 1, then |z;] < 1 for all j and so
Azl = 32 |5, Asgay| € Tt 20 JAulles] < lAllz,. The remaining bound to
prove is a bit more involved, and requires the following property of matrices.

Lemma 11 For any M € IR™", Hrﬁla)élrz;t]\/fa: > tr(M).

Proof: The proof is by induction on the dimension n. If n = 1, then the result is

verified since rlria}élmn:cQ = myy = tr(mqy).
Zi<a<
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Assume the result is true for matrices of order 7 x n. Consider the (n+ 1) x (n 4 1)
matrix

M = Mn bl

by Mpiing
where M, € IR"", b1,by € IR", and My 4141 1s a scalar. We also separate the n + 1
dimensional vector = (z,, Tn41), where z,, € IR™ and z,, 4 is a scalar. Also, let z* € IR™
be such that z* = argmax”xnnmglrﬁan:cn. Then

¢ t t ¢ 2
max z'Mz = max Ty My Tn + Tppr (B]Tn + b5Tn) + My 1012041
“m“mEl 1Znlloo €1, [Zat1]<1

A%

* * Lk U % 2
Jnax T Mpx* 4+ Tny1 (W12 4+ byx”™) + M g1 120 44
n+1i>

tr(M,) + |zn1?|}él Tnp1 (05" + 052%) + Myg1nniZiy,

IV

v

tr(M,) + ‘btlm* + bhz*

+ Mn+1,n+1

Vv

tr(Mn) + Mn+1,n+1

tr(Mn+1) . |

Proposition 21 For A € R™", ||Allr < || 4]lco.1-

Proof: Let M = A*A, and from Lemma 11 we know there exists Z satisfying ||Z||o <

1 and #¥MzZ > tr(M). Then

|Alloo, = [|AZ]lx > [|AZ|2 = VZTATAT ,

where the last equality is from the definition of the Euclidean norm. Rearranging the

above expression we have

|Allwr > VFtALAZ

Y
=
=



= VitrdtA

n m

- Jrra

ji=1li=1

|AllF - |

7.2 Computational results on the NETLIB Suite of

linear optimization problems

7.2.1 Condition Numbers for the NETLIB Suite prior to pre-

processing

We computed the distances to ill-posedness and condition numbers for the NETLIB suite
of linear optimization problems, using the methodology developed in Section 7.1. The
NETLIB suite is comprised of 98 linear optimization problem instances from diverse
application areas, collected over a period of many years. While this suite does not
contain any truly large problems by today’s standards, it is arguably the best publicly
available collection of practical LP problems. The sizes of the problem instances in the
NETLIB suite range from 32 variables and 28 constraints to problems with roughly 7,000
variables and 3,000 constraints. 44 of the 98 problems in the suite have non-zero lower
bound constraints and/or upper bound constraints on the variables, and five problems
have range constraints. We omitted the five problems with range constraints (boeingl,
boeing2, forplan, nesm, seba) for the purposes of our analysis. We also omitted an
additional five problems in the suite because they are not readily available in MPS format
(qap8, qapl2, qaplh, stocfor3, truss). (These problems are each presented as a code that
can be used to generate an MPS file.) Of the remaining 88 problems, there were five more
problems (dfl001, fit2p, maros-r7, pilot, pilot87) for which our methodology was unable

to compute the distance to ill-posedness in spite of over a full week of computation
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time. These problems were omitted as well, yielding a final sample set of 83 linear
optimization problems. The burden of computing the distances to ill-posedness for the
NETLIB suite via the solution of 2n + 2m LPs obvicusly grows with the dimensions of
the problem instances. On afiro, which is a small problem instance (n = 28, m = 32),
the total computation time amounted to only 0.28 seconds of machine time, whereas for
d6cube (n = 5,442 and m = 402 after pre-processing), the total computation time was

77,152.43 seconds of machine time (21.43 hours).

Table 7.1 shows the distances to ill-posedness and the condition number estimates for
the 83 problems, using the methodology for computing pp(d) and pp(d) and for estimat-
ing ||d|| presented in Section 7.1. All linear programming computation was performed

using CPLEX 7.1 (function primopt).

Table 7.1: Condition Numbers for the NETLIB Suite prior
to Pre-Processing

El g O

Lower Upper | Lower Upper
Problem pp(d) pp(d) Bound Bound | Bound Bound
25tv4T7 0.000000  0.000000 30,778 55,056 oC 00
80baulb 0.000000  0.000000 142,228 142,228 oC o's}
adlittle 0.000000  0.051651 68,721 68,721 oo 00
afiro 0.397390  1.000000 1,814 1,814 3.7 3.7
agg 0.000000  0.771400 | 5.561E4-07 5.51E+07 o oo
agg?2 0.000000  0.771400 | 1.73E407 1.73E+07 oo 00
aggd 0.000000  0.771400 | 1.72E407 1.72E407 o) 00
bandm 0.000000  0.000418 10,200 17,367 00 00
beaconfd 0.000000  0.000000 15,322 19,330 00 00
blend 0.003541  0.040726 1,020 1,255 5.5 9.5
bnll 0.000000  0.106400 8,386 9,887 oo o0
bnl2 0.000000  0.000000 36,729 36,729 e 0o
bore3d 0.000000  0.003539 11,912 12,284 o 00
brandy 0.000000  0.000000 7,254 10,936 o o0
capri 0.000252  0.095510 33,326 33,326 8.1 8.1
cycle 0.000000  0.000000 365,572 391,214 o's) o0
czprob 0.000000  0.008807 328,374 328,374 o0 00
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[l log C(d)

Lower Upper | Lower Upper
Problem pp(d) ep(d) Bound Bound | Bound Bound
d2qQ6c 0.000000  0.000000 171,633 381,438 00 %
d6cube 0.000000  2.000000 47,258 65,574 o0 o0
degen2 0.000000  1.000000 3,737 3,978 o0 00
degend 0.000000  1.000000 4,016 24,646 o0 00
€226 0.000000  0.000000 22,743 37,344 o 00
etamacro 0.000000  0.200000 31,249 63,473 o0 0o
800 0.000000  0.033046 | 1.55E+06 1.55E+406 00 )
finnis 0.000000  0.000000 31,978 31,978 o0 00
fitld 3.500000 00 493.023 618,065 5.1 5.2
fitlp 1.271887  0.437500 218,080 384,121 5.7 5.9
fit2d 317.000000 o0 | 1.90E+06 2.25E4-06 3.8 3.9
ganges (0.000000  1.000000 | 1.29E+406 1.29E406 oo co
gird-pnc 0.000000  0.347032 | 1.63E+07 1.63E+07 oC oo
greenbea 0.000000  0.000000 21,295 26,452 oC 00
greenbeb 0.000000  0.000000 21,295 26,452 00 o0
growld 0.572842  0.968073 209 977 2.6 3.2
grow22 0.572842  0.968073 303 1,443 2.7 34
grow? 0.572842  0.968073 102 445 2.3 2.9
israel 0.027248  0.166850 | 2.22E+06 2.22E+06 7.9 7.9
kb2 0.000201  0.018802 10,999 11,544 7.7 7.8
lotfi 0.000306  0.000000 166,757 166,757 o0 00
maros 0.000000  0.000000 | 2.51E+06 2.55E+06 oC o0
modszkl 0.000000  0.108469 | 1.03E4+06 1.03E+06 oG 0o
perold 0.000000  0.000943 703,824 2.64E+06 00 0o
pilot.ja 0.000000  0.000750 | 2.6TE+07 1.40E+08 00 00
pilot.we 0.000000  0.044874 | 5.71E+06 5.71E406 oC oo
pilot4 0.000000  0.000075 763,677 1.09E406 00 o0
pilotnov 0.000000  0.000750 | 2.36E+07 1.35E408 00 00
recipe 0.000000  0.000000 14,881 19,445 (o' o0
sc105 0.000000 0.133484 3,000 3,000 o0 00
sc205 0.000000  0.010023 5,700 5,700 o0 00
schla 0.000000  0.562500 1,500 1,500 o0 00
scb0b 0.000000  0.421875 1,500 1,500 o0 0o
scagr25 0.021077  0.034646 430,977 430,977 7.3 7.3
scagr? 0.022644  0.034646 120,177 120,177 6.7 6.7
scfxml 0.000000  0.000000 21,425 22,816 o o0
scfxm?2 0.000000  0.000000 44153 45,638 00 0o
scfxm3 0.000000  0.000000 66,882 68,459 00 0o
scorpion 0.000000  0.949393 5,622 5,622 o0 00
scrs8 0.000000  0.000000 68,630 69,449 lo's) [6%)
scsdl 5.037757  1.000000 1,752 1,752 3.2 3.2
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Il log C'(d)

Lower Upper | Lower TUpper
Problem pp(d) pp(d) Bound Bound | Bound Bound
scsd6 1.603351  1.000000 2,973 2,973 3.5 3.5
scsd® 0.268363  1.000000 5,549 5,549 4.3 4.3
sctapl 0.032258  1.000000 8,240 17,042 5.4 5.7
sctap?2 0.586563  1.000000 32,982 72,870 4.7 5.1
sctap3 0.381250  1.000000 38,637 87,615 5.0 5.4
sharelb 0.000015  0.000751 60,851 87,988 9.6 9.8
share2b 0.001747  0.287893 19,413 23,885 7.0 7.1
shell 0.000000  1.777778 253,434 253,434 [o's) o0
ship041 0.000000 13.146000 811,956 811,956 00 00
shipO4s 0.000000 13.146000 515,186 515,186 o0 00
ship08l 0.000000 21.210000 | 1.91E4+06 1.91E+06 o0 00
ship08s (0.000000 21.210000 | 1.05E4+06 1.05E+06 o0 00
ship121 0.000000  7.434000 794,932 794,932 o0 00
ship12s 0.000000  7.434000 381,506 381,506 o0 00
sierra 0.000000 oo | 6.60E406 6.61E406 o0 o0
stair 0.000580  0.000000 976 1,679 o0 00
standata 0.000000  1.000000 21,428 23,176 o0 00
standgub 0.000000  0.000000 21,487 23,235 e's) 00
standmps 0.000000  1.000000 22,074 23,824 00 00
stocforl 0.001203  0.011936 23,212 23,441 7.3 7.3
stocfor2 0.000437  0.000064 462,821 467,413 9.9 9.9
tuff 0.000000  0.017485 136,770 145,448 o0 00
vip.base 0.000000  0.500000 530,416 534,652 o0 00
woodlp 0.000000  1.000000 | 3.66E+4+06 5.04E406 o0 o0
woodw 0.000000  1.000000 | 9.86E4+06 1.35E+07 o0 o0

Table 7.2 presents some summary statistics of the condition number computations
from Table 7.1. As the table shows, 72% (60/83) of the problems in the NETLIB suite
are ill-conditioned due to either pp(d) = 0 or pp(d) = 0 or both. Furthermore, notice
that among these 60 ill-conditioned problems, that almost all of these (58 out of 60)
have pp(d) = 0. This means that for 70% (58/83) of the problems in the NETLIB suite,

arbitrarily small changes in the data will render the primal problem infeasible.

Notice from Table 7.1 that there are three problems for which pp(d) = oo, namely
fitld, fit2d, and sierra. This can only happen when the ground-set P is bounded, which

for linear optimization means that all variables have finite lower and upper bounds.
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Table 7.2: Summary Statistics of Distances to Ill-Posedness for the NETLIB Suite prior
to Pre-Processing.

pp(d)
0 | Finite | oo || Totals
0 18 39 1 58
pp(d) | Finite | 2 21| 2 25
s 0 0 0 0

| Totals [20] 60| 3] 83 |

7.2.2 Condition Numbers for the NETLIB Suite after pre-pro-

cessing

Most commercial software packages for solving linear optimization problems pérform
pre-processing heuristics prior to solving a problem instance. These heuristics typically
include row and/or column re-scaling, checks for linearly dependent equations, heuristies
for identifying and eliminating redundant variable lower and upper bounds, etc. The
original problem instance is converted to a post-processed instance by the processing
heuristics, and it is this post-processed instance that is used as input to solution software.

In CPLEX 7.1, the post-processed problem can be accessed using function prslvwrite.

In order to get a sense of the distribution of the condition numbers of the problems
that are input to a modern IPM solver, we computed condition numbers for the post-
processed versions of the 83 NETLIB suite problems, where the processing used was
the default CPLEX preprocessing with the linear dependency check option activated.
Table 7.3 shows the condition numbers in detail for the post-processed versions of the
problems, and Table 7.4 presents some summary statistics of these condition numbers.
Notice from Table 7.4 that only 19% (16/83) of the post-processed problems in the
NETLIB suite are ill-posed. The pre-processing heuristics have increased the number
of problems with finite condition numbers to 67 problems. In contrast to the original

problems, the vast majority of post-processed problems have finite condition numbers.
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Table 7.3: Condition Numbers for the NETLIB Suite after
Pre-Processing by CPLEX 7.1

lll log C(d)

Lower Upper | Lower Upper
Problem pp(d) pp(d) Bound Bound | Bound Bound
25fvd7 0.000707  0.000111 35,101 54,700 8.5 8.7
80baulb 0.000000  0.000058 126,355 126,355 o) 00
adlittle 0.004202  1.000488 68,627 68,627 7.2 7.2
afiro 0.397390  1.000000 424 424 3.0 3.0
agg 0.000000  0.031728 | 3.04E407 3.04E+07 00 00
agg?2 0.000643  1.005710 | 1.57E4+07 L1.57E+07 10.4 10.4
aged 0.000687  1.005734 | L.56E+07 1.56E+07 10.4 10.4
bandm 0.001716  0.000418 7,283 12,364 7.2 7.5
beaconfd 0.004222  1.000000 6,632 6,632 6.2 6.2
blend 0.011327  0.041390 B72 1,052 4.9 5.0
bnll 0.000016  0.159015 8,140 9,544 8.7 8.8
bnl2 0.000021  0.000088 18,421 20,843 8.9 9.0
bore3d 0.000180  0.012354 8,306 8,306 7.7 7.7
brandy 0.000342  0.364322 4,342 7,553 7.1 7.3
capri 0.000375  0.314398 30,323 30,323 7.9 7.9
cycle 0.000021  0.009666 309,894 336,316 10.2 10.2
czprob 0.000000  0.001570 206,138 206,138 o 00
d2q06¢ 0.000000  0.003925 172,131 378,209 oa oo
d6cube 0.945491  2.000000 43,629 60,623 4.7 4.8
degen2 0.000000  1.000000 2,613 3,839 oa 00
degen3 0.000000  1.000000 4,526 24,090 e 00
e226 0.000737  0.021294 21,673 35,518 7.5 7.7
etamacro 0.001292  0.200000 55,627 87,767 7.6 7.8
fHfff800 0.000000  0.033046 696,788 696,788 oa 00
finnis 0.000000  0.000000 74,386 74,386 00 00
fitld 3.500000 : 00 493,023 617,867 5.1 5.2
fitlp 1.389864  1.000000 218,242 383,871 5.3 5.6
fit2d 317.000000 oo | 1.90E4-06 2.24E+06 3.8 3.8
ganges 0.000310  1.000000 143,913 143,913 8.7 8.7
gfrd-pnc 0.015645  0.347032 | 1.22E4-07 1.22E+07 8.9 8.9
greenbea 0.000033  0.000004 65,526 65,526 10.2 10.2
greenbeb 0.000034  0.000007 43,820 43,820 9.8 9.8
growlb 0.572842  0.968073 209 977 2.6 3.2
grow22 0.572842  0.968073 303 1,443 2.7 3.4
grow?7 0.572842  0.968073 102 445 2.3 2.9
israel 0.135433  0.166846 | 2.22E4+06 2.22E+06 7.2 7.2
kb2 0.000201  0.026835 10,914 11,054 7.7 7.7
lotfi 0.000849  0.001590 170,422 170,422 8.3 8.3
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] og C(d)

Lower Upper | Lower Upper
Problem pp(d) pp(d) Bound Bound | Bound Bound
maros 0.000000  0.006534 | 1.76E4+06 1.80E-+06 00 00
modszk1 0.016030  0.114866 | 1.03E4+06 1.03E+406 7.8 7.8
perold 0.000000  0.002212 | 1.56E4+06 2.35E+06 00 00
pilot.ja 0.000000  0.001100 | 2.36E+07 1.36E+408 0o 00
pilot.we 0.000000  0.044874 | 5.71E+06 5.71E406 0o 00
pilot4 0.000399  0.002600 696,761 1.03E+086 9.2 9.4
pilotnov 0.000000  0.001146 | 2.36E+07 1.32E+08 ) o0
recipe 0.063414  0.000000 13,356 15,815 00 00
scl105 0.778739  0.400452 3,000 3,000 3.9 3.9
sc205 0.778739  0.030068 3,700 5,700 5.3 5.3
sch0a 0.780744  1.000000 1,500 1,500 3.3 3.3
sch0b 0.695364  1.000000 1,500 1,500 3.3 3.3
scagr2h 0.021191  0.049075 199,859 199,859 7.0 7.0
scagr? 0.022786  0.049075 61,259 61,259 6.4 6.4
scixml 0.000010  0.002439 20,426 21,811 9.3 9.3
scfxm2 0.000010  0.002439 38,863 43,630 9.6 9.6
scfxm3 0.000010  0.002439 57,300 65,449 9.8 9.8
scorpion 0.059731  0.995879 123,769 123,769 6.3 6.3
scrs8 0.009005  0.004389 66,362 68,659 7.2 7.2
scsdl 5.037757  1.000000 1,752 1,752 3.2 3.2
scsd6 1.603351  1.000000 2,973 2,973 3.5 3.5
scsd8 0.268363  1.000000 5,549 5,549 4.3 4.3
sctapl 0.032258  1.000000 7,204 15,186 5.3 5.7
sctap2 0.669540  1.000000 27,738 64,662 4.6 5.0
sctap3 0.500000  1.000000 32,697 78,415 4.8 5.2
sharelb 0.000015  0.000751 | 1.67E+06 1.67E+06 11.0 11.0
share2b 0.001747  0.287893 19,410 23,882 7.0 7.1
shell 0.000263  0.253968 874,800 874,800 9.5 9.5
ship041 0.000386  25.746000 881,005 881,005 9.4 9.4
ship04s 0.000657  25.746000 545,306 545,306 9.0 9.0
ship081 0.000000 22.890000 | 1.57E406 1.57E+06 0o 00
ship08s. 0.000000 22.890000 816,531 816,531 00 00
ship12l 0.000124  7.434000 748,238 748,238 9.8 9.8
ship12s 0.000149  7.434000 340,238 340,238 9.4 9.4
sierra 0.001039 47.190000 | 6.60E4+06 6.61E+06 9.8 9.8
stair 0.003800  0.163162 7,071 7,071 6.3 6.3
standata 0.090909  1.000000 4,931 5,368 4.7 4.8
standgub 0.090909  1.000000 4,931 5,368 4.7 4.8
standmps 0.020000  1.000000 12,831 12,831 5.8 5.8
stocforl 0.002130  0.109062 10,833 29,388 6.7 7.1
stocfor2 0.000811  0.000141 45,458 616,980 8.5 9.6
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|l log C'(d)
Lower Upper | Lower Upper
Problem pp(d) pep(d) Bound Bound | Bound Bound
tuff 0.000025 0.047081 131,554 138,783 9.7 9.7
vip.base 0.005287  3.698630 17,606 17,606 6.5 6.5
woodlp 0.059008 1.442564 | 2.11E4-06 3.25E+06 7.6 7.7
woodw 0.009357 1.000000 | 5.68E+06 7.26E+06 8.8 8.9

Table 7.4: Summary Statistics of Distances to Ill-Posedness for the NETLIB Suite after
Pre-Processing by CPLEX 7.1.

po(d)
0 ] Finite ‘ oo || Totals
0 1 14| 0 15
pp(d) ! Finite || 1 65| 2 68
00 0 0 0 0
| Totals [2] 79] 2 83 |

Figure 7-1 presents a histogram of the condition numbers of the post-processed prob-
lems taken from Table 7.3. The condition number of each problem is represented by the
geometric mean of the upper and lower bound estimates in this histogram. The right-
most column in the figure is used to tally the number of problems for which C(d) = oo,
and is shown to give a more complete picture of the data. This histogram shows that of
the problems with finite condition number, log C(d) is fairly nicely distributed between
2.6 and 11.0. Of course, when C(d) = 10", it is increasingly difficult to distinguish

between a finite and non-finite condition number.

7.2.3 Condition Numbers and the observed performance of

interior-point methods on the NETLIB Suite

It is part of the folklore of linear optimization that the number of iterations of the
simplex method tends to grow roughly linearly in the number of variables, see [32]

for a survey of studies of simplex method computational performance. This observed
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Figure 7-1: Histogram of Condition Numbers for the NETLIB Suite After Pre-Processing
Heuristics were Applied (using the geometric mean of the lower and upper bound esti-
mates of C(d))

linear growth is (fortunately) in stark contrast to the worst-case iteration bound for
the simplex method, which is exponential in the dimension of the problem, see [16].
Of course, even here one must bear in mind that implemented versions of the simplex
algorithm (on which computational performance is assessed) do not correspond to the
theoretical versions of the simplex algorithm (on which theory and complexity analysis is
developed) in many respects, including the way degeneracy is handled, feasibility checks

are performed, numerical tolerances are used, etc.

In the case of modern IPM algorithms for linear optimization, the number of IPM
iterations needed to solve a linear optimization instance has been observed to be fairly
constant over a huge range of problem sizes; for the NETLIB suite the number of itera-
tions varies between 8 and 48 using CPLEX 7.1 baropt; for other codes the numbers are
a bit different. Extensive computational experience over the past 15 years has shown

that the IPM iterations needed to solve a linear optimization problem instance vary in
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the range between 10-100 iterations. There is some evidence that the number of IPM
iterations grows roughly as logn on a particular class of structured problem instances,

see for example [18].

The observed performance of modern IPM algorithms is fortunately superior to the
worst-case bounds on IPM iterations that arise via theoretical complexity analysis. De-
pending on the complexity model used, one can bound the number of IPM iterations
from above by V9L, where ¥ is the number of inequalities plus the number of variables

with at least one bound in the problem instance:
U= |L[+ |G|+ |Lg| + |Us| — |Lp N Us|, (7.18)

and L is the bit-size of a binary encoding of the problem instance data, see [27] (sub-
traction of the final term of (7.18) is shown in [10]). The bit-size model was a moti-
vating force for modern polynomial-time LP algorithms, but is viewed today as some-
what outdated in the context of linear and nonlinear optimization. Using instead the
condition-number model for complexity analysis, one can bound the IPM iterations by
O(V¥log(C(d)+- - -), where the other terms in the bound are of a more technical nature,
see [29] for details. Similar to the case of the simplex algorithm, the IPM algorithms
that are used in practice are different from the IPM algorithms that are used in the

development of the complexity theory.

A natural question to ask is whether the observed variation in the number of IPM
iterations (albeit already small) can be accounted for by the condition numbers of the
problem instances? The finite condition numbers of the 67 post-processed problems
from the NETLIB suite shown in Table 7.3 provide a rich set of data that can be used
to explore this question. Here the goal is to assess whether or not condition numbers
are relevant for understanding the practical performance of IPM algorithms (and is not

aimed at validating the complexity theory).
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In order to assess any relationship between condition numbers and IPM iterations for
the NETLIB suite, we first solved and recorded the IPM iterations for the 83 problems
from the NETLIB suite. The problems were pre-processed with the linear dependency
check option and solved with CPLEX 7.1 tfunction baropt with default parameters. The
default settings use the standard barrier algorithm, include a starting heuristic that sets
the initial dual solution to zero, and a convergence criteria of a relative complementarity
smaller than 1078, The iteration counts are shown in Table 7.5. Notice that these

iteration counts vary between 8 and 48.

Table 7.5: IPM Iterations for the NETLIB Suite using
CPLEX 7.1 baropt

|| Problem EPM Iterations Jl Problem ] TPM Iterations ” Problem I IPM Iterations ”

2b1v47 22 ganges 13 scrs8 20
80bau3b 30 gfrd-pnc 18 scsdl 10
adlittle 12 greenbea 38 scsd6 11
afiro 9 greenbeb 33 scsd8 9

agg 22 growlh 12 sctapl 13
agg? 18 grow22 12 sctap2 15
agg3 21 grow? 10 sctap3 15
bandm 16 israel 23 sharelb 22
beaconfd 8 kb2 17 share2b 14
blend 11 lotfi 14 shell 16
bnll 25 MAaros 27 ship04l 13
bnl2 28 modszkl 23 ship4s 17
bore3d 16 perold 42 ship08l 14
brandy 19 pilot.ja 46 ship08s 14
capri 19 pilot.we 48 ship12] 19
cycle 25 pilot4 35 shipl2s 17
czprob 32 pilotnov 19 sierra 16
d2qU6¢ 28 recipe 9 stair 16
décube 22 sc105 10 standata 9

degen2 13 sc205 11 standgub 9

degen3 19 sch0a 10 standmps 13
e226 18 scb0b 9 stocforl 10
etamacro 24 scagr2d 14 stocfor2 16
fHT800 30 scagr? 13 tuff 21
finnis 19 scfxm1 18 vtp.base 10
fit1d 14 scfxm?2 20 woodlp 13
fitlp 13 scfxm3 20 woodw 21
fit2d 18 scorpion 13
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Figure 7-2 shows a scatter plot of the number of IPM iterations taken by CPLEX 7.1
to solve the 83 problems in the NETLIB suite after pre-processing (from Table 7.5) and
VU log C(d) of the post-processed problems (using the log C(d) estimates from columns
6 and 7 from Table 7.3). In the figure, the horizontal lines represent the range for
VUlog C(d) due to the lower and upper estimates of C(d) from the last two colummns
of Table 7.3. Also, similar to Figure 7-1, problems with infinite condition number are

shown in the figure on the far right as a visual aid.
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Figure 7-2: Scatter plot of IPM iterations and vdlog C(d) for 83 NETLIB problems
after pre-processing, using CPLEX 7.1

Figure 7-2 shows that as v log C(d) increases, so does the number of IPM iterations
needed to solve the problem (with exceptions, of course). Perhaps a more accurate
summary of the figure is that if the number of IPM iterations is large, then the problem
will tend to have a large value of v/dlog C{d). The converse of this statement is not
supported by the scatter plot: if a problem has a large value of v/# log C(d), one cannot

state in general that the problem will take a large number of IPM iterations to solve.
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In order to be a bit more definitive, we ran a simple linear regression with the IPM
iterations of the post-processed problem as the dependent variable and Vilog C(d) as
the independent variable, for the 67 NETLIB problems which have a finite condition
number after pre-processing. For the purposes of the regression computation we used
the geometric mean of the lower and upper estimates of the condition number from the

last two columns of Table 7.3. The resulting linear regression equation is:
IPM Iterations = 10.8195 + 0.0265v/9 log C(d) ,

with R? = 0.4267. This indicates that over 42% of the variation in IPM iteration counts
among the NETLIB suite problems is accounted for by VPlogC(d). A plot of this
regression line is shown in Figure 7-3, where once again the 16 problems that were ill-
conditioned are shown in the figure on the far right as a visual aid. Both coefficients of
this simple linear regression are significant at the 95% confidence level, see the regression

statistics shown in Table 7.6.

Table 7.6: Statistics for the Linear Regression of IPM iterations and v/¢ log C(d).
[ Coefficient | Value [ t-statistic | 95% Confidence Interval |

Bo 10.8195 10.7044 [ 8.8009 , 12.8381 |

5 0.0265 6.9556 [0.0189, 0.0341 |

The presence of v/4 in complexity bounds for interior-point methods seems to be a
fixture of the theory of self-concordant barrier functions, see [20], despite the belief that
such dependence is not borne out in practice. The above regression analysis indicates
that v9log C(d) does explain 42% of variation in IPM iteration counts among the
NETLIB suite of linear optimization problems. Nevertheless, one can also ask whether
the condition number alone (without the /9 factor) can account for the variation in
IPM iteration counts among the NETLIB suite problems? Figure 7-4 shows a scatter
plot of the number of IPM iterations taken by CPLEX 7.1 to solve the 83 problems in

the NETLIB suite after pre-processing and log C(d) of the post-processed problems (the
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Figure 7-3: Linear regression of IPM iterations and /9 log C(d) for 67 NETLIB problems
with finite condition number after pre-processing, using CPLEX 7.1 (using the geometric
mean of the lower and upper bound estimates of C'(d))

horizontal lines refer to the range of the lower and upper estimates of C(d) from the
last two columns of Table 7.3; also, problems with infinite condition number are shown
in the figure on the far right as a visual aid). We also ran a simple linear regression of
IPM iterations as the dependent variable and log C(d) as the independent variable. The

resulting linear regression equation is:
IPM Iterations = 4.1389 + 1.7591log C(d) ,

with R? = 0.4258. A plot of this regression is shown in Figure 7-5, and Table 7.7
shows the regression statistics. It turns out that this regression model is comparable
to the linear regression with v/9log C(d). Both regression models are significant at the
95% confidence level and account for just over 42% of the variance in the iterations of
the NETLIB suite. These results indicate that log C(d) and /8 log C(d) are essentially

equally good at explaining the variation in IPM iteration counts among the NETLIB
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Table 7.7: Statistics for the Linear Regression of IPM iterations and log C'(d).
[ Coefficient | Value | t-statistic | 95% Confidence Interval |

Bo 4.1389 2.1999 [ 0.3814 , 7.8963

By 1.7591 6.9427 [ 1.2531, 2.2652

suite of linear optimization instances.

50 T T T
*
*
46+
¥
40+
*
35 **
2 * .
O
-t:\"; 30 *
et »* *
4+ *
—
— 25 - *
E A
ke * o * *
E ok X ¥
20+ * A
% ¥ * *
- *h * *
* * ok
* *kk T
15 AR
£ e * *
#opex ¥ * * »*
Fok—idok *
* "~ *
10%—* # % W—k
* ¥ L *
*
5 L 1 L
2 4 6 8 10 12
log C(d)

Figure 7-4: Scatter plot of IPM iterations and log C(d) for 83 NETLIB problems after
pre-processing, using CPLEX 7.1

We also computed the sample correlation coefficients of the IPM iterations from Table
7.5 with the following dimensional measures for the 67 finitely-conditioned problems in
the NETLIB suite: logm, logn, log, and V9. The resulting sample correlations are
shown in Table 7.8. Observe from Table 7.8 that IPM iterations are better correlated
with log C(d) than with any of the other measures. The closest other measure is logm,
for which R = 0.520, and so a linear regression of IPM iterations as a function of log m

would yield R? = (0.520)% = 0.270, which is decidedly less than R* = 0.4258 for log C'(d).

Note from Table 7.8 that log C'(d) and logm themselves are somewhat correlated,
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Figure 7-5: Linear regression of IPM iterations and log C'(d) for 67 NETLIB problems
with finite condition number after pre-processing, using CPLEX 7.1 (using the geometric
mean of the lower and upper bound estimates of C(d))

having a correlation coefficient of 0.431. We have no immediate explanation for this
observed correlation, and this may be the subject of future study. Also, note from Table
7.8 that both log ¥ and +/J by themselves are significantly less correlated with the IPM
iterations than log C(d).

7.2.4 Controlled perturbations of problems in the NETLIB
Suite

One potential drawback of the analysis in Subsection 7.2.3 is that in making comparisons
of problem instances with different condition numbers one necessarily fails to keep the
problem instance size or structure invariant. Herein, we attempt to circumvent this
drawback by performing controlled perturbations of linear optimization problems which

allows one to keep the problem size and structure intact.
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Table 7.8: Sample correlations for 67 NETLIB problems (using the geometric mean of
the lower and upper bound estimates of C(d))
| H IPM iterations l log C(d) } logn l logm [ log ¥ | @

IPM iterations 1.000
log C(d) 0.653 1.000
logn 0.453 0.262 | 1.000
log m 0.520 0.431 | 0.732 | 1.000
log ¥ 0.467 0.267 | 0.989 | 0.770 | 1.000
VI 0.421 0.158 | 0.919 | 0.585 | 0.929 | 1.000

Consider a problem instance d = (A, b,¢) and the computation of the primal and
dual distances to ill-posedness pp(d) and pp(d). It is fairly straightforward to show
that if (¢*, 5%, \*, (s*)*, (s7)*,v*) is an optimal solution of (7.16), then the rank-1 data

perturbation:

Ad = (AA, Ab, Ac) = (_j*e“ (AN + (s7)" - (s_)*)t =gt (BA = v¥) ,o) (7.19)

is a minimum-norm perturbation for which pp(d + Ad) = 0 (where '’ denotes the (5*)™

unit vector in JR™). That is, ||Ad|| = pp(d) and the data instance d := d+ Ad is primal

ill-posed.

The simple construction shown in (7.19) allows one to construct a controlled pertur-
bation of the data instance d. Consider the family of data instances d, := d + aAd for
a € [0,1]. Then if pp(d) > pp(d) > 0 it follows that p(ds) = (1 — a)p(d) for o € [0,1],

and we can bound the condition number of d, as follows:

ld+aAd]| _ [|d]| — ap(d)

) = T wpla) = (1= adpla)

where the numerator satisfies ||d|| —ap(d) > 0 for & € [0,1]. In the case when ||d|| > o(d)
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(satisfied by all problem instances in the NETLIB suite) we can create a family of data
instances for which C(ds) — 00 as @ — 1 by varying « in the range [0, 1], all the while
keeping the problem dimensions, the structure of the cone Cy, and the ground-set P

invariant.

To illustrate, consider the problem scagr25 from the NETLIB suite, and let d denote
the data for this problem instance after pre-processing. According to Table 7.3, pp(d) =
0.049075 > 0.021191 = pp(d) > 0. Now let Ad be the perturbation of this data instance
according to (7.19). If we solve the resulting perturbed problem instances d, for select
values of o € [0,1] and record the number of IPM iterations, we obtain the results
portrayed in Figure 7-6. As the figure shows, the number of IPM iterations grows as the

perturbed problem instance becomes more ill-conditioned.
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Figure 7-6: The number of IPM iterations needed to solve the perturbed post-processed
problem instance scagr25, as a function of the perturbation scalar «.

The pattern of growth in IPM iterations as the perturbed problem becomes more
ill-conditioned is not shared by all problem instances in the NETLIB suite. Figure 7-7

shows the plot of IPM iterations for problem €226, as the perturbed problem instance
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becomes more ill-conditioned. For this problem instance the growth in IPM iterations

1s not monotone.
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Figure 7-7: The number of IPM iterations needed to solve the perturbed post-processed
problem instance e226, as a function of the perturbation scalar «.

Of the 67 post-processed problems in the NETLIB suite with finite condition number,
56 of these problems satisfy pp(d) > pp(d) > 0 and ||d|| > p(d), and so are amenable
to analysis via the construction described above. For a given problem instance in the

NETLIB suite, let k, denote the number of IPM iterations needed to solve the perturbed

post-processed problem instance d,. Then
Ak = kl - ]‘CO

is the difference between the IPM iterations needed to solve the un-perturbed prob-
lem instance and the fully-perturbed problem instance. Table 7.9 shows some summary
statistics of the distribution of Ak for the 56 problems in the NETLIB suite that are
readily amenable to this analysis. As the table shows, the fully perturbed problem in-
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stance has a larger IPM iteration count in 68% (38 out of 56) of the problem instances.
Curiously, the number of IPM iterations is actually less (but by at most three itera-
tions) for the fully-perturbed problem instance in 18% (10 out of 56) problem instances
amenable to this analysis. A rough summary of the results in Table 7.9 is that the
number of IPM iterations for the fully perturbed problem increases dramatically (more
than 10 iterations) on 30% of the problem instances, increases modestly (1-10 iterations)
on 38% of the problem instances, and remains the same or decreases slightly on 32% of

problem instances.

Table 7.9: The distribution of the change in IPM iterations needed to solve the un-
perturbed problem instance and the fully-perturbed problem instance, for 56 post-
processed problems in the NETLIB suite.

Change in IPM Iterations Number of
(Ak) Problem Instances
~3to —1 10
0 8
ltod 12
6 to 10 9
11 or more 17
| Total 56

7.2.5 Condition Number bounds in practice

In this section we compare how the theoretical results that bound the minimum-norm
solution size, the optimal solution size, and the optimal objective function value compare
with the values obtained for linear programs in practice. We are concerned with the
theoretical bounds presented in Theorem 9 and Theorem 14, which bound minimum-
norm feasible solution sizes, and Theorem 20, which bounds the optimal solution sizes

and optimal objective function value.

We use the problems in the NETLIB suite as the practical testbed of problems to
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study the significance of these theoretical bounds. These are linear programs of type

(7.1), in which the ground set P is defined by (7.2), that is
P={zxeR"|z;>l;forje Lg, z; <u;forjeUp}.

Recall that for this ground set P, the recession co‘ne is given by (7.11)
R={xc R"|xz;>0forje€ Lg, z; <0forjeUp},

and we can easily verify that P satisfies Assumption 2, that is P = E + R with the
bounded set F defined by

ljngsuj for je UgNLpg

- [; < z; < max{0,l; for j e L\ U
o P B 1€Le\Us | (7.20)

min{0,u;} <z; <u; forjcUg\Lg
z; =0 for j g UgU Lp

\

Note that Assumption 2 is necessary for Theorem 20.

The theoretical bounds in Theorems 9, 14, 20 can be sharpened when considering an
LP of form (7.1). In this cas;e, we have a number of easily computable quantities that
can be used to improve the theoretical bounds. For the set E given by (7.20) we define
the quantity

FE = max{max—lj, ‘ axuj} .
jJELp JjeUg

The following result shows how to compute other values also used to improve the theo-

retical bounds for practical LPs.

Lemma 12 Consider a linear program of type (7.1), with ||+ ||c and ||+ ||, as the primal
norms in IR™ and IR™ respectively. Then, for Cy defined in (7.9), R defined in (7.11),
and E defined in (7.20) we have
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1| Ifeagilﬂflloo max  max [}, max fu|

2. dist(w, Cy) == min [lw —w'|h =Y w +> wy + > jwl

w'eCy icl icc i€k

8. dist(s, R") ;== min [ls— 5= > sf+ Y s+ > |l

s'eR* . . .
JEUB\Lp JELp\Up JEUBULp

Proof: The definition of \E’ is the same as the one in Assumption 2. From (7.20)
we note that for any z € £ we have that max; lz;| < max{max;cr, |||, max;cp, u;|}.
This shows that ’E“ < max {max;er, |l;|, maxey, |u;]}. The equality is shown using

the point Z defined by

Uy 1f]€ UB\LB OrjEUBﬂLB and |’U,J' > llJ|
57_1' = lj if 5 € LB\UB or je UgNLp and |ZJ} > |'U,JI

0 otherwise .

The point # defined above belongs to £ and has norm equal to the right hand side.

To show items 2 and 3, note that Cy from (7.9) is
Cy:{wERm|wiSOforiEL,wi:OforieE,w,-ZOforz'EG},
and from (7.11) we see that the polar of R is
R*={seR"|s; <0forj€Up\Lp,s;=01forj g LgUUg,s; >0forje L\Us}.

The formulas of items 2 and 3 follow easily from these characterizations of Cy and R*.

We now present the result which states tighter theoretical bounds for the case of

practical linear programs.
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Theorem 28 Consider an instance of problem (7.1) with d € F and P defined by
(7.2). Let 1° € P be given and let || - |l and || - || be the primal norms in IR* and IR™

respectively. Then the following holds

1. If pp(d) > O then there exists an x € Xy such that

diSt(A:L‘O — b, Cy)
pr(d)

zlloo < llz°ll0 +

2. If pp(d) > 0 then for any & > 0 there exists (y,u) € Yg such that

dist(c, R*) + ¢
<« ot "

If p(d) > 0 then problems (GPy) and (GDg) have optimal solutions. If z° € X4 and
(y*,u*) € Yy are optimal solutions of (GPy) and (GDy) respectively, then

. ||A||E"+||b|\1) ( . dist(Ax“—b,Cy))
3 ey | E+ ————— ] £27°(d) < |c Z oo +
Il ”1 ( pD(d) = ( ) -~ H ”1 || ” PP(d)

[ Rk

max{]|b||1, !|¢ll1 }

. _ -
T {1, 12°]]oo + dist(Az — b, Cy) }

po(d) pr(d)
. lellx = IAIE + Bl
5y llee < e (d) max{l,E+ on(d) }

Proof: Items ! and 2 are exactly items 1.(b) of Theorem 9 and 1.(b) of Theorem
14 using 3° = 0, respectively.
The fact that p(d) > 0 implies the existence of optimal solutions with no duality gap

is due to Corollary 1. To bound the optimal objective function value, we use a feasible

solution z € X, from item I. and bound using:

dist(Az® — b, C
(d) < o < fiellllelloo < fell (||x°noo+ ( Y>) |
pp(d)
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For the lower bound we use item 2 and note that if (y,u) € Yy, then
2(d) 2 by — u(e - AY) = —[blliflyllee — ulc - A%y),

where since ¢ — A’y € dom u(-) C R* we know, from the definition of R*, that if
(¢ — A'y); > 0 then i € Lp, and if (c — A'y); < 0 then i € Up. Therefore, denoting

s = ¢ — Aly, we have that

n
ulc— Aly) = sup ) —s;7;

.TEszl
= sup Z —8iT5 + Z —85%y

zeP jis;>0 Ji5;<0
= - Z Sjlj— Z sjuj

Ji5;>0 Jjis;<0

< max {max —{. maxu-} 55 + -8,
- {JELB 7 gets (j:§>0 ’ jg;o 7)
= Els| .

The above inequality then, using item 2, implies that

2(d) > —lblhllyllo — Elle — Aty]);
> —[bll][ylleo — Ellell — EllAlllly]loo
-~ S el +e
> =Ellely = (o]l + E||Al]) ——— .
> —Ellell - (llbll + EllA]) oo(d

To finish the proof of the lower bound in the optimal objective function value we take

the limit as ¢ — 0.

To prove the bound on the optimal solution size, we recall from the proof of Theorem

20 that z* and y* satisfy

et 8] 1+ 2L ||c||1}) , max{[ls, ()

pp(d) pp(d)
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and
Hy*H maX{HC“]_,*Zx(d)}
= pp(d)

The last two items in the thcorem are obtained by using item & to bound the optimal

objective function value in the above inequalities. ||

To assess the significance of the theoretical condition number bounds presented in
Theorem 28 we solve and compute the theoretical bound for each of the 83 problems
from the NETLIB suite. Below we compare the primal and dual optimal solution size
to the bounds in Theorem 28 items 4 and 5, for the NETLIB suite problems. We
also analyze the difference between the optimal objective function value and the bounds
from Theorem 28 item 3. To analyze the bound on the size of a feasible solution, we
compute and record the minimum norm primal feasible solution, that is mingcx, [|7]|c,
and compare it to the bound in Theorem 28 item I for each problem in the NETLIB

suite.

To compute the bounds in Theorem 28, we define z° € E by

u; ifieUpandu <0
z;, =< I, ifieLgandl; >0

0  otherwise ,

and we compute the quantities |E|, E, dist(4z® — b,Cy), and [|z°||« for each problem
in the NETLIB suite. The problems were pre-processed with the linear dependency
check option and solved with CPLEX 7.1 function baropt with default parameters. The
primal and dual optimal solution sizes, ||2*||o and ||y*||e, and the corresponding theo-
retical bounds from Theorem 28, which we denote by Bound(}|z*||«) and Bound(||y*|is)

respectively, are shown in Table 7.10.
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Table 7.10: Primal and dual optimal solution size and theo-
retical bounds for the NETLIB suite after pre-processing by

CPLEX 7.1
| Problem [ [[#*]loo | Bound(Jle*[loo) || [l5*lloo | Bound([ly*lloo) |
25fv47 2,082 4.5E+15 46 1.3E4+17
80ban3b 9,442 %) 116 0o
adlittle 320 - 8.7TE+10 3,310 3.3E+11
afiro 500 20,919 1 178,979
agg 955,197 oo || 186,640 00
agg?2 325,488 2.7E+16 3,816 1.0E+17
agg3 413,300 2.3E+16 3.816 1.0E+17
bandm 65 1.8E+13 18 1.2E+14
beaconfd 1,893 1.0E+10 4 2.6E+408
blend 22 670,420 6 3.1E+409
bnll 1,545 24E+12 1,477 5.6E+15
bnl2 2,077 7.2E416 39 59E+19
bore3d 4,696 8.0E+12 63 4.0E+414
brandy 1,445 5.1E+09 23 4.9E+-09
capri 5,072 8.1E+12 432 5.2E+12
cycle 21,056 2.1E+11 1 4.8E+17
czprob 1,467 0o 19,060 0o
d2q06¢ 133,345 00 116 00
d6cube 48 2.6E+08 3 6.4E4-07
degen? 4 00 42 00
degend 10 00 8 00
€226 103 2.3E+09 29 1.3E4+13
etamacro 77 6.6E+10 52 8.9E+13
{EHT800 246,944 oo || 132,633 0o
finnis 11,411 00 1,050 00
fit1d 3 3 38 94,869
fitlp 167 6.4E-+08 3 4.8E4+11
fit2d 4 32 9 56,972
ganges 15,299 3.8E+13 1,250 9.2E+12
gfrd-pnc 70,000 3.2E+14 98 1.0E4+20
greenbea | 3.3E+408 3.3E+19 || 116,003 2.9E-+22
greenbeb 190,604 8.4E+18 17,582 1.6E4-22
growld 1.6E4-06 1.1E409 86 3.4E+11
grow22 1.5E406 1.6E409 86 7.5E+11
grow7 1.5E406 51E+08 86 6.9E4+10
israel 10,372 3.6E+10 365 2.7TE+13
kb2 6,263 4.1E4-07 17 1.7E4+13
lotfi 13,905 1.8E+16 1 9.5E+13
maros 46,784 o0 101 o0
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| Problem || [la*[ls | Bound(l2*floo) || lly*lo | Bound((ly* ) |
modszkl 687,209 5.7E+14 296 7.6E+13
perold 110,244 00 354 00
pilot.ja 152,417 00 62 o0
pilot.we 143,857 o0 19,394 o0
pilot4 96,137 1.2E+17 48 3.1E+17
pilotnov 56,652 00 1 00
recipe 20 o0 2 o0
scl05 709 7,492 || 1.6E-01 7,950
5c205 2,380 189,570 || 1.6E-01 201,184
schla 300 1,500 || 3.1E-01 1,588
scb0b 195 1,500 || 3.2E-02 2,157
scagr2s 22,937 4.0E+13 5,459 4.4K+414
scagr? 4,569 3.8E+12 3,374 2.0E+13
scfxml 14,443 2.9E+15 183 3.6B+17
scfxm?2 14,561 1.3E+16 183 1.4E4+18
scfxm3 14,657 3.1E+16 183 3.2E+18
scorpion 1 2.1E+07 432 1.0E 108
scrs8 137 2.2E+10 1,499 6.5E+11
sesd1 1 1,752 9 348
scsd6 2 9,734 16 9,734
scsd® 23 930,439 42 930,439
sctapl 35 9.1E+07 293 1.1E-+08
sctap2 16 2.4E4-07 21 3.9E407
sctap3 6 2.9E407 21 6.2E+4-07
sharelb 1.3E4-06 2.1E+20 43 8.1E+18
share2b 58 3.2E+07 315 3.1E+09
shell 106,169 8.7E+15 4,435 2.6K+18
ship041 187 3.4E+10 5,861 2.8E+11
ship04s 191 1.6E+410 5,602 3.0E+11
ship08l1 71 00 21,826 oo
ship08s 72 00 26,494 00
ship12] 136 56E+11 42,559 5.9E+11
ship12s 134 2.3E+11 42214 5.3E+12
sierra 2,079 2.7TE+12 40,454 5.5E+19
stalr 283 2.2E+10 9 2.3E+07
standata 10 4.9E4-06 21 3.0E+10
standgub 10 4.9E+06 21 3.0E+10
standmps 10 8.7E4-07 22 7.7E4+11
stocforl 42 4.4E+09 474 8.5E+13
stocfor2 406 22E+13 257 3.4E+18
tuff 4,088 2.7E+11 || 1.2E-02 3.0E+11
vtp.base 1,856 1.6E+10 1,098 4.2E+10
woodlp 5.0E-01 178,084 5 178,084
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[ Problem [| [l#"[loo | Bound([lz"lleo) [ lly* oo | Bound(ly*floo) |
| woodw || 2.7E-01 | 3.4E+08 | 2 | 7.5E+11 |

The results in Table 7.10 show that the theoretical bounds on the primal and dual
optimal solution size can be quite large. Also, if a problem has a zero primal or dual
distance to infeasibility, that is the problem is ill-posed, then it has an infinite bound.

Define the ratio of the theoretical bound to the norm of the optimal solution:

_ Bound(||z*||)

N Bound(}y*[]oo)
ratio(z*) = | = .

, and ratio(y*) = il
o0

These ratios are numbers always greater than one, if a ratio is small it means that the
corresponding bound is a good estimate of the size of that optimal solution. Note that
these ratios are well defined for all problems in the NETLIB suite since ||z*]|o > 0 and

ll7*]loo > 0 for these problems.

To illustrate the significance of these bounds, we plot the histogram of the ratios
defined above. In Figure 7-8 we plot the histogram of log(ratio(z*)), and in Figure 7-9
we plot the histogram of log(ratio(y*)). We use a log scale in both graphs due to the
large range in the values of the ratios. The rightmost column in the figures is used to
tally the number of problems that have an infinite bound, which are exactly the instances

with a zero primal or dual distance to infeasibility.

Table 7.11 presents the arithmetic means and standard deviations of distributions
of the logarithm of ratios presented in Figures 7-8, and 7-9. These averages correspond
to the geometric mean of the ratios, which due to the wide range of values is a more

meaningful measure than a simple arithmetic mean of the ratios.

In Table 7.12 below we present the optimal objective function value, z*(d), and its
upper and lower bounds from Theorem 28, which we denote by UpBound(z*(d)) and

LoBound(2*(d)), respectively. The minimum norm primal feasible solution, ||z||s, and
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Figure 7-8: Ratio of theoretical bound to observed primal optimal solution size for the
NETLIB suite after pre-processing by CPLEX 7.1
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Figure 7-9: Ratio of theoretical bound to observed dual optimal solution size for the
NETLIB suite after pre-processing by CPLEX 7.1
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Table 7.11: Arithmetic mean and standard deviation of the finite values in log(ratio(-))
for primal and dual optimal solution sizes, for the NETLIB suite after pre-processing by

CPLEX 7.1
[ [ log(ratio(z*)) [ log(ratio(y*)) |
Mean 7.49 10.18
Std.Dev. 3.49 4.36

the bound on a primal feasible solution from Theorem 28, denoted by Bound(||z||s),

also appear in Table 7.12.

Table 7.12: Optimal objective function value, minimum-
norm primal feasible solution and theoretical bounds for the
NETLIB suite after pre-processing by CPLEX 7.1

| Problem || LoBound(z*(d)) | z*(d) | UpBound(z*(d)) | [Zlloc | Bound([[z]lco) |

25fv47 -9.3E+13 5,661 14E+10 1,414 1.4E407
80bau3b -4.7TE+19 529,528 00 2,400 o0
adlittle -1.4E+09 225,495 8.7TE+10 90 1.3E+06
afiro -71,125 -465 0 0 0
age -4.7TE+15 | -3.6E+07 oo || 308,235 00
age2 -6.6E+13 | -2.3E+07 1.3E+13 || 181,638 1.7E4+09
ageg3 -6.8E+13 | 7.1E4+06 1.1E+13 || 181,638 1.5E+09
bandm -2.1E+11 -298 4.4E4-08 39 1.8E+06
beaconfd -1.1E+06 19,652 1.9E+08 947 1.6E4-06
blend -3.5E407 -31 0 0 0
bnll -8.7E+10 1,978 1.8E+11 875 1.9E+08
bnl2 -1.2E+15 1,688 3.0E+11 950 3.4E+08
bore3d -7.2E+10 5 1.7E+10 596 1.2E+07
brandy -1.7E+06 1,519 3.4E4-06 1,439 1.7E406
capri -2.0E+09 5,316 2.5E+10 2,626 8.4E-+07
cycle -1.0E+13 -5 0 0 0
czprob -1.5E+14 966,733 o0 489 00
d2q06¢ -6.8E+15 | -111,634 oo || 62,668 00
décube -6.1E+07 314 1.3E+08 2 23,604
degen2 -1.1E407 -794 o0 2 00
degen3 -7.1E4-07 -717 00 3 00
e226 -9.9E+09 -11 4.9E+07 8 135,375
etamacro -1.2E+11 167 2.5E+09 17 973,770
fHtf800 -4.6E+13 555,622 oo || 246,943 00
finnis -00 221,974 o0 3,860 (%)
fit1d -332,040 -9,146 0 0 0
fitlp -6.7TE+11 9,146 1.4E+4-07 80 10,195
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[Problem H LoBound(z*(d)) r z*(cu UpBound(z*(d)M Iz ] o | Bound(||z s} |
fit2d -1.8E407 -68,464 0 0 0
ganges -2.9E409 | -108,347 1.3E+10 7,722 2.6E4+08
gfrd-pnc -1.6E4+18 | 6.9E+06 1.1E-+14 70,000 9.0E+406
greenbea -9.5E4+17 | -7.3E407 3.0E+13 15,496 2.0E+09
greenbeb -5.3E-4+17 | -4.2E406 2.3E+13 9,948 1.3E+09
growld -1.9F+11 | -1.1E408 0 0 0
grow22 -4.3E+11 | -1.6E+408 0 0 0
grow’? -4.0E+10 | -4.8E+07 0 0 0
israel -3.7E4+12 | -896,645 4.8E4-07 1,100 2,577
kh2 -3.5E+409 -1,750 0 0 0
lothi -8.1E4+10 -30 6.85+09 2,851 1.7E408
maros -1.1B416 | -104,895 00 13,724 o0
modszk1 -1.2FK+12 321 8.7E+12 69,299 6.4E407
perold -4.55+14 -8,747 00 39,764 00
pilot.ja -2.5E-+18 -5,697 oo || 28,177 fo's)
pilot.we -2.4E+19 | -2.7TE+06 oo || 36,579 00
pilot4 -1.2E+14 -2,581 6.9E4-09 412 5.8E+08
pilotnov -1.4E+17 -4,497 00 6,556 o0
recipe -00 -257 11,768 10 798
sc105 -6,191 -52 0 0 0
5¢205 -156,670 -52 0 0 0
sch0a -1,240 -65 0 0 0
seb0b -1,500 -70 0 0 0
scagr2h -9.4FK+12 | -1.4E407 7.8E+11 2,144 9.8E-+06
scagr? -4.5E+4+11 | -2.1E406 5.4E+10 1,996 3.1E-+06
scfxml -3.6E+12 18,626 1.3E+11 14,120 6.0E4-08
scfxm2 -1.4FE+13 37,079 5.8E+11 14,120 1.3E4-09
scfxm3 -3.2I5+13 55,529 1.3E+12 14,120 2.0E+09
scorpion -6.2E4-06 1,696 2.1E4-07 1 166
scys8 -5.9E+09 904 9.5E+-07 14 1,698
scsdl -1,752 9 348 || 1.3E-01 2.0E-01
scsd6 -15,607 51 9,734 || 4.6E-01 3
scsd8 -249,695 | 905 930,439 8 168
sctapl -3.6E+06 1,412 9.1E+07 10 16,523
sctap? -2.6E4+07 1,725 2.4E4+07 | 3.7E-01 1,038
sctap3 -3.1E407 1,424 2.9E+07 || 3.2E-01 1,072
sharelb -1.2E+14 76,589 4.7TE-+13 | 122,892 9.3E+10
share2b -5.4E+06 -416 2.1E+06 42 48,655
shell -6.8E-+14 | 1.2E+09 9.4E+14 60,801 2.5E409
ship041 -1.1E4+08 | 1.8E406 8.8E+11 74 994,244
ship04s -1.7E4+08 | 1.8E406 4.2E+11 74 761,565
ship081 -4.5E+07 | 1.9E4+06 00 32 o0
ship08s -3.0E+08 | 1.9E+4+06 00 32 00
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| Problem || LoBound(z*(d)) |

z*(d) I UpBound(z*(d)) |

||l 0o l Bound(llwllmﬂ

ship12l -7.3E4+07 } 1.5E406 4.2E+12 82 5.6E+06
shipl2s -7.9E408 | 1.5E4+06 1.7E+12 82 5.1E+06
sierra -5.7BE+4+16 | 1.5E+07 1.3K+14 957 3.1E+07
stair -88,221 -251 508,805 209 508,805
standata -2.7E+09 1,086 2.3E+06 10 802
standgub -2.7E409 1,086 2.3E4-06 10 802
standmps -1.5E+10 1,235 8.4E4-07 10 6,h68
stocforl -1.8E+11 -41,130 4.8E+08 40 44,472
stocfor2 -2.7TB+15 -39,024 3.1E409 49 303,137
tuff -7.4E+06 2.9E-01 66,831 3,986 9.5E406
vtp.base -2.2E+408 48,931 7.1E4+09 1,650 3.4E406
woodlp -10,508 1 256,898 || 1.1E-02 31
woodw -7.0E+409 1 3.4E408 | 6.9E-02 53,654

Table 7.12 shows that the range formed by the upper and lower bounds on the
optimal objective function value can be quite large. The case of the minimal norm
feasible solution is a bit more encouraging: although the bounds can be large, the
values of the feasible norm bound are consistently smaller than the values of the optimal
objective function value bound, in some instances significantly smaller. Which bounds
in Table 7.12 are infinite is explained by Theorem 28, which shows that if the primal
distance to infeasibility is zero then UpBound(z*(d)) and Bound(]|z||.) are infinite, and

if the dual distance to infeasibility is zero then LoBound(z*(d)) is infinite.

Similar to the exposition for the bounds on the optimal solution size, we define the
ratios of theoretical bounds to the quantity bounded for the optimal objective function
value and the feasible solution size. To quantify the bounds on the optimal objective

function value we define the following two ratios:

max {|LoBound(z"(d))|, [UpBound(2"(d))|}
|2*(d)] ’

ratiol(z") =

and
LoBound(z*(d))

z*{(d)
UpBound(z*(d))
z*(d)

if 2*(d) <0
if 2*(d) > 0.

ratio2(z*) =
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The main difference in these ratios is that one is an a priori bound and the second
requires knowledge of the optimal solution. However, the second ratio is, by definition,

consistently sharper than the first one.

We also define the following ratio to quantify the bound on the minimum-norm primal
feasible solution:

ratio(z) = %@l _

These ratios are also numbers always greater than one, and if a ratio has a small
value, close to one, then it means that the corresponding bound is a good estimate of
the quantity bounded. Here we use the convention that % = 1, to define the ratio when
the minimum norm feasible solution and its bound are both zero. Since in this case the

bound equals the quantity bounded a ratio of one is appropriate.

To illustrate the significance of the bounds in Table 7.12, we plot the histograms
of the ratios defined above. In Figure 7-10 we plot the histogram of log(ratiol(z*)), in
Figure 7-11 we plot the histogram of log(ratio2(z*)), and in Figure 7-12 we plot the
histogram of log(ratio(z)). We use a log scale in all graphs due to the large range in the
values of the ratios. The rightmost column in the figures is used to tally the number of
problems that have an infinite bound. Note that ratio2(z*) has 9 instances more that
are finite compared to ratiol(z*). From Theorem 28, this is due to problem instances
which have a finite dual distance to infeasibility, involved in LoBound(z*(d)), and infinite

primal distance to infeasibility.

Table 7.13 presents the arithmetic means and standard deviations of distributions
of the logarithm of ratios presented in Figures 7-10, 7-11, and 7-12. These averages
correspond to the geometric mean of the ratios, which due to the wide range of values

is a more meaningful measure than a simple arithmetic mean of the ratios.
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log(ratio1{z* ))

Figure 7-10: Ratio 1 of theoretical bound to observed optimal objective function value
for the NETLIB suite after pre-processing by CPLEX 7.1

Frequency

12 1a

0 2 4 6 8 10
log(ratio2(z* ))

Figure 7-11: Ratio 2 of theoretical bound to observed optimal objective function value
for the NETLIB suite after pre-processing by CPLEX 7.1
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Frequency

4 6
log(ratio(x))

Figure 7-12: Ratio of theoretical bound to observed minimum-norm feasible solution
size for the NETLIB suite after pre-processing by CPLEX 7.1

Table 7.13: Arithmetic mean and standard deviation of the finite values in log(ratio(-))
for optimal objective function value and minimum-norm primal feasible solution, for the
NETLIB suite after pre-processing by CPLEX 7.1
\ [ log(ratiol(z")) | log(ratio2(z*)) | log(ratio(s) |
Mean 6.36 6.25 2.98
Std.Dev. 2.89 3.11 1.90
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7.3 Summary conclusions

The purpose of this computational study has been to gain some computational expe-
rience and to test the practical relevance of condition numbers for linear optimization
on problem instances that one might encounter in practice. We used the NETLIB suite
of linear optimization problems as a test bed for condition number computation and
analysis, and we computed condition numbers for 83 NETLIB suite problem instances
both prior to and after the instance was pre-processed using CPLEX 7.1. This compu-
tation was done using the ground-set model format of convex optimization, where the

ground-set was defined by the lower and upper bound constraints on the variables.

A summary of our computational findings is as follows:

1. 72% of the original problem instances in the NETLIB suite are ill-conditioned.

2. 70% of the original problem instances in the NETLIB suite are primal ill-posed,

1.., arbitrarily small data perturbations will render the primal problem infeasible.

3. After pre-processing of the problem instances by CPLEX 7.1, only 19% of problem

instances are ill-posed.

4. log C(d) of the 67 post-processed problems with finite condition number is fairly
nicely distributed in the range from 2.6 — 11.0.

5. The number of IPM iterations needed to solve linear optimization problem in-
stances is related to the condition numbers of the post-processed problem in-
stances. If the number of IPM iterations is large for a given problem instance,
then the problem will tend to have a large post-processed condition number. How-
ever, the converse of this statement is not supported by computational experience:
if the post-processed problem instance has a large condition number, one cannot
assert that the problem instance will need a large number of IPM iterations to

solve.
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10.

11.

12.

. A simple linear regression model of IPM iterations as the dependent variable and

V¥log C(d) as the independent variable yields a positive linear relationship be-
tween IPM iterations and v/0log C(d), significant at the 95% confidence level,
with B2 = 0.4267. This means that 42% of the variation in IPM iterations among
the NETLIB suite problems is accounted for by v/ log C(d).

A simple linear regression model of IPM iterations as the dependent variable and
log C(d) as the independent variable yields a very similar result, also significant
at the 95% confidence level, and with R? = 0.4258. These results indicate that
log C(d) and v/dlog C(d) are essentially equally good at explaining the variation

in IPM iteration counts among the NETLIB suite of linear optimization instances.

The number of IPM iterations correlates better with log C(d) than with logn,
log m, log 1, or V9.

Curiously, log C(d) is somewhat correlated with log m, having a sample correlation

of 0.431. This observation bears further scrutiny.

In controlled perturbations of problem instances to ill-conditioned perturbed in-
stances, the number of IPM iterations of the ill-posed perturbed instances are
larger than for the original instance in about 68% of the problems studied, signif-
icantly larger in about half of these. However in the other 32% of the problems

studied there was no change or even a slight decrease in IPM iterations.

The theoretical bounds on the optimal solution size and optimal objective function
value are in general large for the post-processed NETLIB suite of problems. The
ratio of the theoretical bound to the quantity has geometric means of 10749 for the
primal optimal solution size, 10'%® for the dual optimal solution size, and 1082

for the optimal objective function value.

The theoretical bound on the minimum norm primal feasible solution is fairly sharp

for the post-processed NETLIB suite of problems. The ratio of the theoretical
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bound to the quantity has a mean of 10*% for the minimum norm primal feasible

solution.
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Chapter 8

Extensions

In this chapter first we present an adaptation of the characterization of the distance
to ili-posedness to semi-definite programming problems. This extension should permit
computational testing of condition number theory for semi-definite programming prob-
lems. We then list other questions and future research ideas that this thesis has brought

to light.

8.1 Computation for semi-definite programming

'This section outlines how to adapt the characterizations of the distance to ill-posedness
presented in Theorems 5 and 6 to semi-definite programming (SDP) problems. The prin-
cipal aim of this line of research is to perform computational experiments to assess the

significance of condition number theory in a setting different from linear programming.
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We consider a SDP problem in the form

min C e X
st. Ao X —b; <0 i=1,...,k 8.1)
AeX —b=0 i=k+1,...,m '
X =0,
where €, A; € S¥™ for i € {1,...,m} and S™*" is the space of n x n symmetric

matrices. We define for matrices A, B € S™" the usual dot product in S™*" by
AeB =Y _ a;b; = trace(A'B). We also use the usual vector dot product in IR™.

Finally the constraint X = 0 means that the matrix X is positive semi-definite.

8.1.1 Characterization of p(d)

Before presenting the characterization of the distance to infeasibility, we set the notation
which will help us in determining which norms should be used in S™*" and IR™. The

SDP problems of form (8.1) can be written as

min CeX
st. A(X)-beCy (8.2)
X=0.

With this notation, X € S™" belongs to the semi-definite cone, b € IR™, Cy is a
closed convex cone in IR™ that is made up of cross products of R, and {0}, and we

define the operator A by

A 8" — R™
X = AX)=(410X,...,Ape X).

Given the dot products defined in $"*" and IR™ we note that the adjoint of operator A
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is defined by
A R™ — S™7
v = Av=3" A .
Therefore the data of the problem is the linear operator A, the right hand vector b and
the cost matrix C, and we denote d = (4,5, C).

To compute the distance to ill posedness p(d) we compute the primal and the dual
distance to infeasibility, which are pp(d) and pp(d) respectively. This approach is pos-

sible since for a feasible problem with a finite optimal value,

p(d) = min {pp(d), pp(d)} -

The programs that characterize the distance to infeasibility are given by Theorems 5
and 6 for the general GSM format, and apply in particular for the conic case problem
considered here. For the SDP problem given by (8.2), these theorems imply the following

characterizations for the primal and dual distance to infeasibility:

pp(d) = min  max{| Ay + Z|., by - gl}
yeCy
Z =0
g=>0
Juil, = 1

and

pp(d) = min max{||A(X) —p||,|C e X + g}
X =0
peCy
g=0
X1 =1.
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What allows to obtain a tractable program, as in the case of LP, is the fact that by
selecting appropriate norms, these non-convex programs can be partitioned into a small
number of convex problems. We select the norm || - ||; as the primal norm on ™ and
the norm || X|| := max; ; |X;;| as the primal norm on S™*". The dual norm on 5™*" is
then given by

1] = sup Se X =[Sy

IXli<1 i

Proposition 22 If X = 0 then || X|| = max; Xj;.

Proof: The proof of this proposition is reduced to showing that for any pair ¢, 7, we
have X?j < XiiX};, which means that | X;;| < max{Xy, Xj;}, which in turn implies the
result. The inequality is a consequence of the fact that the 2 x 2 submatrix formed by

the 4 and j columns and rows is positive semi-definite. [ ]

The objective functions in the characterizations of the primal and dual distances can

be simplified to become:

pp(d) = min vy
_S< Ay —Z <8
(ec’) @5 <
—by <
yeCy
Z*0

[9llee = 1
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and

po(d) = min v
—s<AX)+p<s
ets <oy
CeX <y
X >0
peCy
x|l = 1.

From Proposition 19, the problem that characterizes the primal distance to infeasi-

bility is equivalent to

pe(d) = min, ; ming z,s 7y
ie{l,....m} —S<Ay-2Z<8§
je{-1,1} (eet)e S <~
by <y
y e Cy
Z =0

V=17

Proposition 19 also implies that the dual distance to infeasibility is equivalent to

pp(d) = min; mixpq,s 7
i€{l,...,n} —-s<AX)+p<s
els < v
CeX <~
X*=0
pely
Xi=1.
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In conclusion, to compute the distance to ill-posedness for a SDP, we need to solve the
9m + n SDP problems. This approach makes computable the distance to ill-posedness

for SDP problems of type (8.1).

8.1.2 Computing ||d|

The characterization of the condition number for SDP instances also requires computing
the norm of the data. The characterization of the norm of the data is determined by
the norms selected to compute the distance to ill-posedness. In the previous section we
defined || - ||, as the primal norm in JR™ and the norm || X|| = max;; | X;;| as the primal

norm in S™*". Therefore, the norm on the data d = (4,b,C) is
|dl| = max {[|A[}, l|8ll1, [Cll.}

where the dual norm on S™*" is used for the objective cost matrix C, that is

n

ICH = 32 1Cql »

ij=1
and the operator norm on A is given by

m
Al = supx ) |A4ieX]

=1

s.t. max, 4 !X'i_j| <1
X e 5™ .

An efficient method of computing the operator norm is needed to compute the con-

dition number for SDP problems. Currently we upper bound this norm by

1Al < i lAg = 55 3 (4] -

k=11,j=1
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This upper bound is obtained by changing the supremum with the sum in the definition

of the operator norm.

8.2 Future work

In this section we outline possible future research directions that arise from this thesis.
We group these directions into three categories: (1) research to improve the data per-
turbation model used, (2) research aimed at expanding computational experience, and
(3) research on using the GSM format to represent the structure of the data in specific

problem classes and application areas.

8.2.1 On the data perturbation model

The GSM format developed in this thesis allows us to consider specific structures that
can be present in the data of the problem. For instance in the case of linear programming,
the upper and lower bound constraints are not considered part of the data, therefore the
structure in these constraints is preserved under data perturbation. We now list some

limitations of the GSM format presented here and mention ideas to overcome them.

First, the GSM format requires the additional Assumption 2 to be capable of extend-
ing the conic case condition number theory. This assumption, which is used to bound
the size of the primal optimal solution, does not allow to consider ground sets P in full
generality and is somewhat artificial. A different proof to obtain a condition number
bound on the norm of the primal optimal solution, that does not require Assumption 2

would allow us to improve the generality of this model.

It is clear that not all structures that might be present in the data can be considered

with the GSM format, for example a linear program with range constraints cannot be
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adequately represented in the current GSM format. To be capable of considering other
types of structure present in the data we should develop different data perturbation
models. An initial idea is a further extension of the GSM format which we call the Full
GSM format. The Full GSM format considers a convex optimization problem, with data

d = (A, b,c), of the form

min, c'z
st. Ar—-be
r€P,

where now the ground sets P and @ are closed convex sets no longer required to be
cones. As noted for the linear problems studied, a non-conic constraint is not frequent
in practice, however it does occurs. Out of the 98 NETLIB suite problems, only 5

problems have range constraints.

Note that the Full GSM format can be used to treat more forms of structure present
in the data, however, the model still requires that the data is a linear constraint with
a right hand side, and a linear objective. Alternate models of data perturbation should
be studied to consider further structure that cannot be adequately represented in this

fashion.

A different form of extension, which has not been studied in this thesis, is the char-
acterization for inconsistent instances of a condition number which takes into account
structure present in the data of the problem. The extension to characterizing the distance
to ill-posedness for inconsistent instances is not a straightforward task. As mentioned in
Chapter 3, the distance of an inconsistent data instance d € F C to the set of ill-posed

instances is given by

p(d) = inf {”Ad“ | Xd+Ad 75 (Z) and Yd+Ad 7—L @} s

the size of the smallest data perturbation Ad that would make both problems (G Pytaq),
and (GDgynq) feasible.
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An important reason for studying these instances arises from algorithms that can
decide whether a problem is feasible or not. Conceivably the complexity of detecting
that a problem is infeasible should depend on how infeasible that problem is, and the
measure of the distance to ill-posedness for inconsistent instances measures this. The
homogeneous self-dual algorithmn, introduced in [37], is an example of algorithms that

can decide the feasibility question.

8.2.2 On expanding computational experience

The purpose of improving the computational experience is twofold: first we need to
develop a more efficient computational scheme to compute or even estimate the condition
number of a problem. Second, we need to validate the usefulness of the condition number

for problems that arise in practice.

The computational scheme presented in this thesis to compute the condition number
of a problem requires more work than solving the original problem. Although this can
be justifiable for some instances, for example if the problem will be solved repeatedly a
detailed study of its complexity might prove useful, in general it does not make sense
to spend more work than solving the problem to obtain information on its complexity,

sizes of solutions and sensitivity analysis.

Alternate characterizations and computational schemes, for example those in [24] and
[25], should be studied and compared to the computational scheme presented here. It
can prove worthwhile to reduce the accuracy in computing the distance to ill-posedness
in order to obtain a more efficient computation. Once a faster computational strategy
is available, the analysis of examples that are larger and pose difficulties to solvers can

be attempted.
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8.2.3 On applications and problem classes

In order to validate the usefulness of condition number for problems that arise in practice,
we need to perform more computational tests. By considering certain application areas
with particular classes of problems we can explore if the condition number is more suited

for certain structure present in the data or not.

As mentioned in Section 8.2.1, what the GSM format accomplishes, is to separate
from consideration as data certain structure present in the description of the problem.
In general terms the GSM creates a framework by which anything that is not data is
included in the definition of the set P and could conceivably allow for richer data to be

separated.

Some classes of problems have inherent structure which should not be considered
subject to perturbation. Two elementary examples come to mind: network flow problems

and inventory management problems.

For a given graph G, a network flow problem solves the problem of finding the flows

z on the arcs of graph G that minimize

min, c'z
s.t. Nz =
[ <z <u

for the node-arc incidence matrix N of graph G, a vector of node demands b, a linear
cost vector ¢, and upper and lower bounds on arc flow u and [, respectively. Besides the
data structure present in the upper and lower bounds, here the data structure of graph

G is encoded in the matrix N.

If we wish to consider as fixed the structure that defines graph G, we should define a

ground set P that restricts the variables to the feasible flows for graph G. For example
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we might define the problem as

where the set P is defined to be

P:{(JJ,S)INﬂj:S, lﬁfﬂﬁu}:

which is the set of feasible flows through graph G; note that P is a convex set. For this
version of the problem, we could study the condition number theory as a function of

quantities like the cost vector ¢ and the demand vector 5.

We consider now inventory management problems. Without going into the specifics
of which inventory management problem we are considering, we can identify variables
z;, for 4 € {1,...,T} which represent the amount of inventory (at a warehouse, a store,
total inventory, etc.) for each stage ¢ of the planning horizon. These inventory variables

are related stage by stage through the following equation:

Ti—Ziy1+a,—b =0 , (83)

where a; accounts for the amount of inventory added at stage ¢ and b; accounts for the

amount of inventory consumed at stage 1.

Whatever are the dynamics that govern the specific inventory management problem
we consider, and that determine a; and b;, we can always identify a constraint of the
form (8.3). These constraints have integer data, and a perturbation of this inventory
management problem should also have constraints with this structure. This structure is
what defines a problem to be an inventory management problem and should be taken into

account by a suitable format. The following ground set P incorporates the structure
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of these constraints and could be used to define a GSM format in which inventory

management problems are studied:

P={z=(%,a,0,%) | & — Tiy1 +a; — b =0, forie{l,...,T}} ,

where we assume that the decision variable z is at least of dimension 37" and that we

can identify in z variables Z, a, and b; all other variables are grouped in Z.
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