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by

Paulo Rocha e Oliveira

Abstract

This dissertation analyzes the strategic implications of customization policies available to
companies that must simultaneously provide service and learn about their customers
through automated interfaces. The first part of the dissertation lays out the theoretical
framework within which the analysis is carried. The second part addresses whether
companies should use Internet-based customization tools to design service encounters that
maximize customers' utility in the present or explore customers' tastes to provide more value
in the future. Good customization policies must quantify the value of knowledge so as to
adequately balance the expected revenue of present and future interactions. Such policies
can be obtained by analyzing the customization decision problem within the framework of
dynamic programming. Interpretation of the service design policies enhances the current
understanding of the mechanisms connecting service customization, value creation, and
customer lifetime value. This leads to insights into the nature of the relationship between
learning, loyalty, and long-term profitability in service industries. The final part of the
dissertation considers situations where companies have the ability to acquire information by
other means in addition to observing interactions with customers. In information-intensive
industries, investments in customer retention often take the form of paying customers to
answer questionnaires, or somehow acquiring information about the customers’ preferences.
The value of customers is convex as a function of knowledge. This means that the more firms
know about a customer, the more eager they should be to learn even more. However, the cost
of obtaining information about customers increases as knowledge increases. Understanding
the interactions between these two functions is fundamental to designing information
acquisition policies. In the real world, investment in customer retention must often be
balanced with investment in customer acquisition. Therefore, investment in learning about a
current customer must depend not only on the current level of knowledge about that
customer but also on properties of the population to which potential customers belong. The
analysis concludes with the characterization of information acquisition policies for a number
of different managerial settings.
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Chapter 1

Introduction

The delivery of services through automated interfaces requires the implementation of inter-
face design strategies that result in encounters in which the firm actively gathers information
while providing service. The design of these strategies requires an understanding of the value
customer information and a quantification of the risk involved in unsuccessful service encoun-
ters.

The design of the customer interface is a strategic issue that has received a significant
amount of attention in the services management literature. Customer interfaces are the
point at which customers meet companies. Figure 1-1, based on the frameworks developed
in [12] and [13], show how both service delivery and information gathering take place at
the interface. Companies have clear objectives that are expressed in mathematical terms
such as profit maximization, workforce scheduling, logistics, and optimization. Customers,
on the other hand, are human beings and thus experience services subjectively. Therefore,
the successful design of interfaces requires understanding customer behavior (psychology) in
mathematical terms and delivering services that will satisfy subjective needs.

services Customer services |
Customer [~ | Company
: : Interface
information information

Figure 1-1: The dual role of automated customer interfaces

Up until very recently, the analysis of the service interface dealt with human interfaces.
The problem with human interfaces is that a single employee can make a mistake and thereby
taint the entire company’s image. The quintessential case study from the early days of ser-
vices operations management is Levitt’s [54] study of McDonald’s. This study exemplifies
the philosophy of designing service delivery systems so robust that any employee with min-
imal intelligence and training would do exactly what was in the company’s interest. Chase
and Stewart [22] adapted the manufacturing concept of fail-safing and showed how service



delivery systems can have built-in devices to identify potential sources of failure and rectify
mistakes before they happen. Another important issue in the design of human interfaces is
the management of supply and demand. Employees are expensive which means that some
customers will have to wait in order to receive service. Consequently, managing supply
and demand and understanding the psychology of waiting have attracted the attention of a
nummber of researchers such as Bitran and Mondschein [14] and Katz et al. [50].

When interfaces change from human-based to computer-based the main strategic deci-
sions about their design also change. As the Internet came into existence, the traditional
problems of associated with the control of customer interfaces seemed to go away. Providing
consistent services is easy for computers that do exactly what they are programmed to do.
Capacity constraints are not a problem if customers can go to a website instead of talking
to a human customer service representative. However, an entire new set of problems has
emerged. The link between the interface and the company became very strong, the link
between the interface and the customer became weaker. Computers are not able to deliver
determinants of quality such as courtesy, compassion or empathy [72] as effectively as hu-
mans. Urban et al. [93] describe how to increase the perception of a website’s quality by
introducing human cues into a computer interface so as to increase the customers’ trust in
the company. Ariely [4] reports that customers are much more likely to forgive a mistake
when it is made by a human agent as opposed to a computer agent.

When the interface is automated, companies learn about customers by observing how
they react with the interface. Therefore, the way in which the interface is configured can
have a tremendous impact on the rate of learning. Customers react differently to different
interfaces. Therefore, the problem of customizing services and interfaces is intimately linked
to the way in which companies learn about their customers. In this way, interface design in
the present has a direct effect on the company’s future ability to provide customized services
of high quality.

Customization is a prominent feature of the Internet. There is too much information
on the Internet and people will not be able to find what they are looking for without the
assistance of software programs. The Internet provides companies with many different ways
in which they can customize their services. However, all these possibilities will be of no value
to customers unless companies have the ability to provide customers with a small subset of
options that closely match their preferences.

A large number of web-based companies correctly identified customization as an impor-
tant business opportunity. Maes [64] describes how intelligent agents, the software programs
that enable web-based customization, are becoming increasingly cheaper and easier to im-
plement. Two important business changes have begun to take place. First, customization
will be available to customers that could not previously afford it. Very few customers can
afford the services of a human personal shopping agent. Any customer with a web connec-
tion can have an electronic personal shopping agent. Second, customization will begin to
take place in industries where it was previously not feasible. Personalized radio stations and
customized news services are rare (and for many people unheard of) in the brick-and-mortar
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No customization
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interactions

Figure 1-2: The Customer Sacrifice Gap (CSG)

world. These changes have already begun to have an impact on the competitive strategies
in many industries.

Customization reduces what Gilmore and Pine [36] call the “customer sacrifice gap.”
The customer sacrifice gap is the difference in value between the best possible service that
could be offered to a customer (depicted by the dashed line in Figure 1-2) and the service
that the customer experiences during a service encounter. When there is no custornization,
the customer sacrifice gap remains more or less constant over time. With customization,
companies go up a learning curve as by observing the customers’ reactions to the services
they receive. This means that customers are receiving increasingly higher value over time,
which results in higher levels of loyalty and, consequently, profit. From a competitive stance,
customization enables companies to erect entry barriers for their competitors. Customers
that consistently receive customized services of high value know that their customer sacrifice
gap will increase if they switch to a different company. The ability to provide quality to
customers depends on knowledge of the customer.

Figure 1-3 gives an example of an automated web-based service. CNN quick news is
an example of a permission email service. When customers are browsing CNN's website
they may notice a banner ad offering them the opportunity to receive email messages with
custorized news. If they click on this banner, they are taken to a page where they will enter
their contact and demographic information and answer a few questions about the type of
news they are interested in receiving. The customer will then receive email messages at a
certain pre-determined frequency.

The customer who receives the email in Figure 1-3 will read a few headlines and click
on the “Full story” link, in which case they will be immediately taken to the CNN website
where they can read more about the story. If they are not interested in that particular piece
of news, they can simply delete the message or ignore it. If, however, they find that the



& Eudora - [CNN QuickNews, 08:02 AM 2/19/02 -0500. Mother accused ol killing het 5 childien goes on lnal]
E Fils Edn Mailboy - Message : ijsf!l _S_pec Iools !{ndow ]:[slp .

" A “ __I ISub}ect [CNN QuickNews Top Stories

CNN.com./QUICK NEWS

uesday, 19 Feb 02, 08:01:00 AM EST
Top Story

World News ¥ CNN.com

U.S. News
Media can see some Micresoft testimony

The federal judge overseeing the Microsofl anlitrust case
Monday agreed to rnake public the transcripts ang
videotapes of deposilions taken recently from Microsoft
chief Steve Ballmer and several other major figures in the
tase.

FULL STORY

Politics from
AllPolitics

Business from

Sci-Tech
Health

norts from CNN/SI IBM builds fastest communications microchip

International Business Machines Corp. said on Monday it
has buitt the world's fastest microchip, which will enable
%mwm@g |SSUES communicalions systems to run more guickly.

FULL STORY

Entertainment

Geta 14 day free trial ta CNN's web exclusive Quickcast and Uncut.

Watch canstanily updated online nawscasis and unedited interviews with Real One
Cllck here for rhore Information h c

© 2001 Cable News Netwark, All Rights Reserved.

Terms under which this service is provided to you.

Read our privacy quidelines,

To unsubscnbe please Click Here

" 1 CHN QuickNews, ...

Figure 1-3: An example of permission email
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customized email is utterly uninteresting and the CNN’s messages do nothing but clutter
their mailboxes they can click on the “unsubscribe” link at the end of the message. After
that click they are no longer customers of CNN.com.

CNN’s has the potential to learn about customers even before they sign up for the service.
Once they click on the banner to request the service, CNN can observe the article that they
were reading before they click and use it to make inferences about the customer’s interests.
Learning continues with the initial questionnaires. CNN can keep track of which email is
sent to each customer and refine their knowledge of the customers’ preferences by observing
their reactions to each message. Consider a customer who clicked on the “Full story” link
in Figure 1-3. What email should CNN send them during the next interaction? Was the
customer interested in Microsoft, the legal system, monopoly trials, or high-tech business
news?

If CNN wants to maximize the probability that the customer will click return to their site
during the next interaction they will send an email that is very similar to the previous one.
It could be, for example, another piece of news about the Microsoft trial. Alternatively, they
could send something about a different trial. If the customer is interested in the other trial,
then CNN has learned that this person’s interests were probably not related to Microsoft
in particular, but to legal issues in general. However, it is also possible that the person
was only interested in high-tech news and will not click on the email. Worse still, the new
message could be perceived as junk mail and CNN might even lose a customer. How should
a company such as CNN.com balance the objectives of providing good service in the present
and learning so as to provide better service in the future? How should CNN simultaneously
provide service while gathering information?

These are precisely the questions that are addressed in this dissertation. Chapter 2
provides a review of partially observable Markov decision processes (POMDPs) so as to
provide the theoretical framework within which the analysis will take place. This chapter
demonstrates the importance of POMDPs in Management Science and shows how the state-
of-the-art solution techniques found in the Artificial Intelligence literature can be applied
to managerial settings. This chapter also describes a new method to find approximate
solutions to POMDPs. Chapter 3 directly addresses the problem of finding good service
customization policies. Its results include a decision rule that allows for experimentation to
learn about customers’ tastes and quantifies the risk of losing the customer due to a bad
service encounter. The model analyzed in this chapter allows for a quantification of the value
of customers as a function of how well the company knows them. The value of the customer
base is not adequately captured by the number of customers and the amount of time for
which they have been with that company. Learning, therefore, is an important component
of loyalty. Finally, chapter 4 analyses the costs and benefits of information acquisition.
This chapter describes a decision rule that can be used by companies to determine whether
they should use a service encounter to make a recommendation or to ask a question. The
analysis also includes a model that determines how companies should balance investments
in customer retention (through learning) and customer acquisition. The output of this

11



model gives insights into situations when information is most valuable, and describes how
information acquisition policies change when the method of learning or the interface design
policy is improved.

12



Chapter 2

Partially Observable Markov Decision
Processes in Management Science

2.1 Introduction

Sequential decision making models have several applications in Management Science. These
models are important to help managers make decisions in situations where present actions
have an impact on future payoffs. Problems involving pricing decisions, inventory policies,
and machine maintenance, for example, have been analyzed through these types of models.
The objective in analyzing these systems is to obtain a policy, or control rule, that maps
states of the world into concrete actions. These policies are usually found through dynamic
programming. The Markov decision process, used to model problems of sequential decision
making, is a well-known tool in the world of Operations Research and Management Science.
It provides a rigorous analytical foundation for the analysis of repeated decisions where the
decision-maker chooses between actions with different costs that have different impacts in
the environment. The decision-maker then observes the effect on the environment and makes
the next decision based on the new state.

There are many situations where the decision maker (DM) does not have a perfect view
of the world. Managers rarely have complete information about their customers, their com-
petition, or the production processes they use. In these situations, it is not sufficient to
find the optimal actions given the state of the system because managers cannot determine
the state of the system exactly. Markov Decision Processes are or limited use because they
require the decision maker to have perfect knowledge of the environment. Partially Observ-
able Markov Decision Processes (POMDPSs) are a generalization of the MDP framework:
the DM still chooses actions with different cost and impacts on the environment, but he
doesn’t know for sure what the environment is. The decision maker has a prior distribution
over what the world should be, but he only observes it indirectly. There are two sources of
uncertainty which are modeled explicitly: the underlying stochastic dynamical system and
the DM’s knowledge of that system’s parameters.

Obtaining information is crucial in situations where parameters are not known perfectly.

13



The need for information is particularly acute when interactions involve people, and DMs
must learn about customer behavior through interactions. The more DMs knowsthe system
(or the customer’s preferences, as the case may be) the more likely they are to choose a
good action (or provide good service). Actions have an impact on the system, and the DM
observes a signal of that impact. After each observation, the DM updates estimates of some
parameter and acts again. Parameter values about the system improve over time. The rate
at which learning occurs depends on the actions taken. It would, therefore, be desirable to
have a decision-making model that explicitly captures the value of learning.

The goal of maximizing learning often stands in conflict with the goal of maximizing
immediate payoffs. Real learning only comes from surprises. The analytical framework must
therefore balance the exploration/exploitation tradeoff. POMDPs are an appropriate frame-
work. POMDPs have their origin in Electrical Engineering. More precisely, the application
that motivated the development of the POMDP model was Drake’s [29] problem of decoding
information from a noisy channel . The next major contribution was Sondik’s [86] analysis
of the mathematical properties of the optimal solution and description of the first algorithm
that finds exact solutions to POMDPs in a finite amount of time. Sondik’s algorithm is
extremely inefficient and infeasible for all but the smallest problems. Nevertheless, the
theoretical importance of his work proved to be the foundation for almost all POMDP re-
search that followed. Apart from Sondik’s work, the 1970s and 1980s saw a great number of
POMDP applications but little progress in solution methods (Monahan [70] and Cheng [23]
being notable exceptions). Most applications made use of approximate solution methods the
development of customized algorithms that exploit structural features of the specific problem
being studied.

In the past decade or so, POMDPs have recently received a great deal of attention from
the AT community because they provide a framework for the analysis of a number of robot
navigation problems (e.g., [20], [58], [59]). This surge of interest resulted in the development
of new and efficient solution techniques. These contributions significantly reduced the com-
putational complexity involved in the computation of optimal policies for POMDPs. Exact
solution methods are still impractical for most POMDP applications. However, the exact
solution methods presented in the literature have provided the framework for a number of
approximate solution methods. This chapter introduces one such approximation.

In addition to literature reviews contained in POMDP-related dissertations, there are
a few published surveys about POMDPs. All these surveys have their merits and limita-
tions. However, none of them fully accomplish the objective of explaining the ways in which
POMDPs can help managers make decisions and understand the best available techniques
for finding control policies. Some of them are outdated (e.g., [70], [62], [100]), and others
focus exclusively on technical matters (e.g., [19]). Furthermore, the methodological gap
between the solution methods used in Artificial Intelligence and Management Science has
been considerably widened in recent years. The present chapter bridges the gap between the
Al and the management literature with a focus on the managerial relevance of the present

findings.
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The remainder of this paper is organized as follows. §2.2 provides a formal definition
of POMDPs making explicit the way in which they generalize MDPs. §2.3 provides the
managerial motivation for studying POMDPs, by describing important managerial decision-
making situations where fully observable MDPs would be inappropriate. The focus in on
application in Management Science, but applications in other fields are also mentioned.
§2.4 reviews the currently existing methods for solving POMDPs. Rather then providing
and exhaustive listing of all the methods, the emphasis is on describing the algorithms that
make important theoretical contributions to the understanding of the problem thus providing
building blocks for the current state-of-the-art. §2.5 proposes a new algorithm for deriving
control policies for POMDPs. Finally, §2.6 offers some concluding remarks and directions
for further research.

2.2 Problem formulation

2.2.1 Markov Decision Processes

This section presents a description of Markov Decision Processes in order to review basic
concepts and establish the notation and definitions that will be used elsewhere in this dis-
sertation. The reader is referred textbooks such as (8] for a more thorough discussion on this
subject.

Definition 1 A Markov Decision Process (MDP) is a 4-tuple {S,X, T, R} where

o S={51,5,..,55} is a set of states; these are the possible states the system can be
in at any point in time. S° denotes the initial state and S* denotes the state after t
interactions.

e X(5),S €8S, is a finite set of actions; these are the actions that the controller can
take at each of the states. X* denotes the action taken during the t'th interaction.

o7 :8xX — |0, 1]'5' are the transition probabilities for each action in each state;
T (51, X, 83) = P (8|51, X) is the probabiliy that the system will change to state Sp if
action X is taken in state S,.

e :8 X X — R are the immediate rewards; R (S, X) is the reward obtained whenever
action X is chosen when the system in state S.

The Markov assumption, an essential property for the development of solution algorithms,
states that the ability to act optimally does not depend on knowing what the previous states
were on how the system arrived at state it is currently in. Mathematically, the Markov
assumption is defined by the equation

P (8% =88 X!, 874, X4, L, 8 X1, 8%) = P (S = 5|8, XY
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It follows from the assumption that the DM only needs to consider the present state when
choosing an action. All the relevant past information is summarized in the current state.

s
" Initial I
State s
4
—

s =75, x7) X Action

—

L) N x)

‘.

b

> Payoffs

Figure 2-1: Sequence of events in a Markov decision process

The sequence of events in a MDP is depicted in Figure 2-1. At time ¢, the Decision Maker
observes state St € S and takes action X! (5%) € X based on the state observed. He then
received a feedback R*!, which is a function of X**! and St. The system then moves from
St to S according to T (S*, X1, S*+1) . This cycle is repeated for IV periods. In the case
of infinite horizon problems (N = oc), a discount factor 0 < v < 1 is usually introduced to
ensure convergence. This discounted problem was first formulated by Blackwell [15]. The
discount factor is not always necessary, but its absence requires the presence of additional
structural features in the particular problem. One example of an infinite-horizon MDP that
does not require a discount factor is the infinite-horizon version of the stochastic shortest
path problem introduced by Eaton and Zadeh [31]. The discount factor is not necessary
to ensure convergence of the finite horizon problem, but it often makes sense to have it for
modeling assumptions (today’s rewards are worth more than tomorrow’s).

The control problem to be solved is the optimization of the total reward. The total
reward is denoted V and is given by the expression

V=E {RN (8%) + NZIT'R [X’lsi]}

i=0
where X; is the action taken at time ¢ and S; is the state of the system at time 7.
The DM'’s objective is to determine the actions that maximize the expected reward.
Hence, the optimal value function is:
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N-1
V' = maxE {RN (8%) + ; VR[X', S }
Definition 2 A policy
w:S—-X

maps each state S; into an action X (S;).

The solution of an MDP is called the optimal policy. If the optimal policy is denoted
p* (S), it follows that

eX
Xie i=0

N-1
v -maxE{RN (SM) +nyR (1 (59, .5”}}

Traditional techniques for formulating and solving sequential optimization problems that
make the Markov assumption is dynamic programming (e.g., [8]) Two basic solution tech-
niques are policy iteration and value iteration. One important result from this literature is
the principle of optimality (the formulation below is adapted from [8]):

Theorem 3 Principle of optimality. Let u* = { KTy 145y ey u;_l} be an optimal policy for the
basic problem, and assume that when using p*, a given state Sy occurs at time k with positive
probability. Consider the subproblem whereby we are at Sy at time k and want to minimize
the “cost to go” from time k to the N :

E{RN SY) Ai:lvR [ (S7), Sl]}

1=k

Then the truncated policy {p}, pfy1, - th_y } 18 optimal for this subproblem.

There are two main solution methods for MDPs: policy iteration and value iteration.
Both make use of the Bellman equation to develop iterative procedures that converge to
the optimal solution. Which of the two methods is better depends on the structure of each
particular problem. There have been several papers specializing these methods to particular
problems. The most important solution methods for POMDPs are based on value iteration.
A more precise description of this technique will be provided in §2.4.1 in the context of
POMDPs.

2.2.2 Partially Observable Markov Decision Processes

POMDPs are a generalization of MDPs. In addition to the four elements of the Markov
Decision Process defined in section 2.2.1,{S, X, T, R}, the POMDP also has: a discrete set
of possible observations (©), and an observation model

W:9x8SxX—[0,1]

17



Initial e
State ) ——®| Belief Update
9 L o & =¢(bf-1’3:,Xf)
: —
bl
v
r__\
5 =f(S"',Xﬂ= '_X’ L Action
R =f(SI—I,X|) l . e Xf( l-l)
 EE—
'. R » Payoffs
. J

Figure 2-2: Sequence of events in a Partially Observable Markov Decision Process

defining the probability of making a particular observation given state/action pairs. Cas-
sandra [19] provides the following concise and precise definition of POMDPs. His notation
has been modified in order to be consistent with the terminology being used in this paper.

Definition 4 A POMDP is a hextuple {S, X, T,R, 0, W} where

S is a set of states;

X is a finite set of actions;

T:SxX — [0, 1]IS| are the transition probabilities for each action in each state;

R:S x X — R are the immediate rewards;

© 1s a finite set of possible observations;

W :© xS x X — [0,1] is an observation model that defines the probability of making a
given observation given a state-action pair.

The process {S,X, T, R} is often referred to as the “core process”. The sequence of
events in a POMDP is depicted in Figure 2-2. The initial state of the system is Sy € S. The
decision maker cannot observe the state perfectly, but has prior beliefs about what the initial
state may be. These beliefs are represented by a |S|-dimensional vector b° € B, with each
component corresponding to the probability that the customer belongs to a given segment.
More specifically, if S* denotes the true state of the system the prior beliefs are

Pr (S* = Sl) b?
bO o Pr (S* = SQ) . bg
Pr (S* = S[s|) b?S|

|S|

where b? € [0,1] Vi and Y 8 = 1.
=1
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During each interaction, the DM chooses an action from the set X = {X 1, X2, 0 Xpx) } .Three
events happen after this choice: the state of the system changes according to T'(S, X), the
DM earns a revenue based on the function R (S, X) and the DM makes an observation 6t €

©. After making the observation the DM updates the beliefs according to a function

¢:BxXx© ->B

that determines the new belief given the previous belief and the action/observation pair of

the last interaction. If b* denotes the belief vector after ¢ interactions, then

Pr (S =S |t°% X', 6%, X2, 0%, ..., X", 6") b
v | Pr (S* = St X1, 6", X2,6%, .., X", 6") _| B |
Pr(S* = Sig)|b?, X1, 6%, X2,6°, ..., X, 6") big)

which can be written more compactly as

Pr (S* = S|t Xt,et) bt
" Pr(S* = S|pt~1, X1, 6") I
Pr (S* = S|s||bt_1, X, Bt) bfs|

since b*~* is a sufficient statistic for {t°, X*,6', X2,6%, .. X*"1 6"} ie.,
Pr (S = 5% X', 0", X2,6%,..., X", 6") = Pr (S" = S;|b~", X*,6%), Vi

The new belief can be computed in a Bayesian manner, using the relationship

* _ Qo pt-1 yt gty _ 1 C[pt-1 tlo vyt
Pr (S* = Si|p* 1, X*,6") = Pr (61T, X9 [6i=* - Pr (6°]S, X*)]
where 8|
Pr (6", X*) =Y b7 - Pr (8|S;, X1)]
i=1

is a normalizing factor. The update function ¢ can then be defined by

by - Pr(6]8;, X)

B 1 by - Pr (6, X)

? 0.6, X) = 5%
b|s| - Pr (9|S|s|,X)
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It is useful to define a matrix

Pr (6|5, X) 0 0
¥ (X) = (.) Pr(e'.Sz’X) " (2.4)
0 0 - Pr(8lSis.X)
so that b 1% (X)
0 (5,0,X) = B (06, X)°

The DM’s problem is to find a policy
p:B—-X

that determines the best action to take for each possible belief. The POMDP policy is
much more complex than its MDP counterpart because the domain is no longer a finite set
of states: it is a set of infinitely many beliefs. In the belief-state problem, the payoff function
must be map belief states and actions to revenues, i.e.,

R:BxX - R

where R is defined by
t]

R(b,X)=> b-R(S,X,).

The optimal policy solves the equation

* i
p' = arg max {E‘ (;7 rt) } (2.5)
where v € (0,1) is a discount factor and r, is the reward at time t.

The policy that solves the POMDP {S,X,7T,R,0,W} is the same policy that solves
Markov Decision Process (MDP) is a 4-tuple {B, X, o, R}. The state in the MDP { B, X, g, R}
is the continuous belief space, and the actions are the discrete set X. Therefore, any solution
method used for continuous-space discrete-action MDPs can be used to solve POMDPs. In-
deed, early POMDP models (e.g., [29], [49]) were solved by discretizing the belief space and
directly applying standard discrete MDP solution methods. Unfortunately, these methods
are not very accurate efficient. Moreover, POMDPs have particular structural features that
can be explored to develop better solution techniques. These features will discussed in §2.4.
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2.3 Applications

2.3.1 Applications in Management Science
Machine Inspection and Quality control

Eckles [32] formulated a model of machine maintenance that proved to be an important
building block for dozens of papers in the years that followed (e.g., (81], [80], [99]). Figure
2-3 depicts one version of the machine inspection problem. In this problem, the DM must
decide whether to continue production or stop to inspect a machine. The state of the world
is whether or not the machine works. The DM’s payoffs depend on the yield (or quality of
the output). After observing the machine’s output, the DM updates the beliefs about the
state of the machine and then makes the inspection decision for the following period. The
objective is to maximize the yield over the planning horizon.

Machine b‘O p— e
works ) > Belief Update
g .

bl - bl-l,et’Xt
of )
S bl
SR R —

X Action:
Machine does| ! - Inspect?
not work E *J

i | Machine I
' works 5 ; , -l Yield

A

4

Figure 2-3: The machine inspection problem

The machine inspection problem has been extended to analyze quality control (e.g., [34])
and well as process control in general (e.g., [25]). This line of research continues to be
popular, as evidenced by recent publications such as [25].

Demand Learning

Retailers operate in environments where they do not know the demand that they will have
for each given product. The problem of determing optimal inventory levels under these
conditions has been the subject of much investigation in operations management (e.g., [33)).
These papers usually assume that the demand distribution is known, even though the exact
demand is not. The resulting policies are the well-known (s,8) policies, which prescribe
increasing the inventory up to level S if it is found to be lower than s at the beginning of
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each planning period. This can be an unreasonable assumption in may situations. To remedy
this shortcoming, Lovejoy presents a model where the demand distribution is unknown. The
problem of determining optimal inventory levels can then be analyzed as a POMDP.

In Lovejoy’s model, the observations are the inventory levels at the beginning of each
planning period. The controls are the levels to which the inventory can be increased. Two
observation models are proposed. In the first, firms observe sales but do not observe demand.
In the second, firms observe demand. The difference between the two occurs when the
inventory level reaches zero, in which case the firm that observes only sales does not receive
any useful information after the stock runs out. The possible states of the world are the
different possible demand probability distributions. After observing sales or demand, the
firm updates the belief about the demand distribution. Lovejoy finds that the optimal
control policy is a generalization of the (s, S) policy, where the levels s and S are functions
of the current belief..

Service Customization

POMDPs can be used to determine optimal service customization policies. This applica-
tion is discussed in detail in the next chapter of this dissertation. In this application, the
state space corresponds to different types of customers. The controls the firm has are the
different ways in which the service can be customized. Customer types are defined by their
preferences, i.e., by the way in which they react to each of the different services. Firms
that provide services observe the way in which the customers reacts to the service and used
this information to update the belief about the segment to which the customer belongs.
The payoffs received by the firm depends on the utility the customer experienced from the
customized service.

2.3.2 Applications in other fields

Non-managerial applications are not directly relevant to this dissertation, but are mentioned
here for two reasons. First, for the sake of completeness and in order to give the reader
an idea of the vast applicability of POMDPs. Second, because engineering applications
have motivated important innovative solution approaches that represent major contributions
to the theory of POMDPs. Drake’s [29] application is historically significant because it
motivated the development of the first POMDP model and is described in detail in §2.3.2.
§ 2.3.2 provides a brief overview of other applications.

Decoding signals

Drake [29] studied the problem of controlling a symmetric two-state Markov source through
a memoryless binary symmetric channel. The system studied by Drake is depicted in Figure
2-4 (note that Drake’s original notation has been altered in order to preserve the consistency
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of notation of the present paper). Time progresses in discrete units, and the state space is
S = {51,852} . The transition functions are symmetric and defined as follows:

Pr (St+1 == Sllst = Sl) = ﬁ Pr (SH—l = Sl1st = S?) =1- :8
Pr (St+l = 52|St == Sz) = ,B Pr (St+1 = Slet = Sl) =1- ﬁ

e~ B

(1-p) (-8

PP

Figure 2-4: Drake’s symmetric two-state Markov source monitored by a binary symimetric
channel

There are three possible actions at any of the two states. X = {X;, X2, X3}. Xjconsists
of asserting that the current state is Si; X, consists of asserting that the current state is
Sy X5 consists of ascertaining the present state. The cost structure associated with these
actions is also symmetric, and it is given by the three equations below (where L, K, and B
are positive constants).

R(S]_,Xl) =1L R(Sg,Xl) =-K
R(S),X3)=—-K R(Sy,Xy)=1L
R(Sl,Xg) =—B R(SQ,XQ,) =—-B

If the problem was completely observable, the optimal solution would have been trivially
simple: choose X if the state is S; and X if the state is S;. The complication, however, is that
the states are not directly observable. The states 5; and S; cannot be observed directly. The
observer either receives a signal from the set © = {6,, 6,83} with the following probabilities:

Pr (OIIS]_,Xl) =Pr (91]81, Xg) =« Pr (92|82,X1) = Pr (92'82, Xg) =
PI‘ (HQISI,X]_) = PI' (92'81,X2) = (1 — CI) PI‘ (61|SQ,X1) = PI' (91'52,)(2) = (1 —_ a)
Pr (93[51,)(1-) =1lifi= 3., 0 otherwise Pr (93|51,X,;) =0V

The objective function is given below:

N
;{ng&E {;W‘R [X*, 5] }
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Drake analyzes two separate cases: o = %

ignoring the observations. In this case, the optimal policy consists of periodically choosing ag
to determine the current state, the length of these periods being a function of the transition
probability 3. The second case is much more diflicult. There is no closed form solution, but
the analysis of the problem as a dynamic program and numerical solutions of a few special
cases reveal the important insight that the controller’s state of knowledge plays a key role in
determining the action to be taken in each point in time. Drake notes that it is “the steady
state statistics of these statistical state variables which allow one to determine the properties
of a Bayesian decoder which operates on the infinite past.” However, it was Astrom [6] who
presented a thorough understanding and formalization of these statistics and their role in the
solution of POMDPs by redefining the POMDP as a fully observable “Belief State MDP”
(c.f. §2.2.2).

and o > 3. The first case consists of essentially

Other Applications

One of the first applications of POMDPs was in the context of education. Smallwood and
Sondik [85] studied a problem where the state of the world was whether or not the student
possessed a certain knowledge. Knowedge could only be observed indirectly, through tests
whose implementation had costs. The controls are the various ways in which the material
could be presented to the student.

Lane [53] describes a POMDP application in the British Columbia’s salmon fishing in-
dustry. The DM is a fisherman that must determine in which zone to fish. The objective is
to maximize the net operating income, which takes into account the cost of fishing and the
price of fish. The decision is made under imperfect information because the fisherman does
not know the catch potential in a given region, which is a function of the number of fish
in the region and “catchability”. The core process is a Markov process that determines the
amount of fish in each potential region. The observations are the total catch (by weight) of
a given expedition in a particular region. These observations are used to update the priors
about the amount of fish in each region. The optimization problem was formulated as a finite
horizon POMDP, where the number of time periods is the number of fishing expeditions left
in the season.

POMDPs can be used to decide where to search for a moving target. Pollock [73] formu-
lated the original problem where the target could be in only of of two places, and Eagle [30]
generalized it to the case where the target could be in any of a finite number of cells and
the set of cells available for searching depend on the cell that was searched in the previous
period. The objective is to find the sequence of search cells that maximizes the chance of
finding the target in a fixed number of periods.

Hauskrecht [43] demonstrated how POMDPs can be used as a decision-support tool in
the treatement of ischemic heart diesease (IHD). The state of the system is the patient’s
condition. The patient can be dead, alive with IHD and alive without IHD. The controls
are the different types of treatment, which can include do nothing, administer medication,
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or request an angiogram. Doing nothing gives the physician the opportunity to observe
symptoms in an unobtrusive manner, but increases the chance of a myocardial infarction
(MI) or death. An angiogram provides a great amount of information, but in addition to
causing patient discomfort it may also lead to MI or death. Finally, administering medication
can ease the symptoms, obscuring information about the true cause of the patient’s initial
discomfort and can also have negative side effects. The physician’s decision must be made in
light of past observations of symptoms as well as the ways in which the disease can progress.
The optimal control is the one that maximizes objective functions such as increasing length
and /or quality of life, or decreasing overall discomfort.

The control of robots in partially observable environments has been a very popular re-
search topic in Artificial Intelligence in recent years (see [48] for an overview). These problems
are motivated by the wide application potential of autonomous robots that are often unable
to determine their location due to mechanical and sensorial limitations. The objective is for
the robot to accomplish a given task (e.g., to reach a given location) as fast as possible (or
to maximize the probability that the location is reached within a. given number of periods).
The observations are the signals obtained by the robot’s sensors, and the controls are the
directions in which the robot can move.

2.4 Solution Methods

This section places an emphasis on exact solution methods for three reasons. First, because
these methods represent the most significant theoretical contributions and led to a better
conceptual understanding of the problesm. Second, because approximate solution methods
are numerous and often involve "ad-hoc" techniques. Approximate solution methods come
from a wide variety of fields and involved many different techniques, and their study does not
necessarily lead to a more precise understanding of the main issues at stake in the solution of
POMDPs. Third, these methods provide a logical sequence to introduce the approximation
method of § 2.5.

2.4.1 Value Iteration

Solution methods for POMDPs are based on value iteration. Therefore, this section briefly
reviews the basic ideas behind this solution technique.
The optimal policy for POMDPs from (2.5) must satisfy the Bellman equation

V* (b) = max {R (b5, X)+7>_ P¥b,X)V* (b’)} ,

vYeB

ie.,
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u*(b) =argr§lg%c{é(b,X) +’yZP(6’|b,X) v* (ga(b,H,X))} .
90

When there is a finite amount of possible observations, the Bellman equation can also be
written as

V* (b) = max {R(b,X)+’yZP(9|b,X)V* (cp(b,@,X))}.

XeX
fe®

The mapping

XeX
fco

(TV) (b) = max {R (b,X)+7 > P66, X)V (b6, X))} (2.6)

is called the dynamic programming mapping. Note that (V') (-) is itself a value function
defined over B, so 1" is a mapping that transforms the value function V' into another value
function T'V. Using this notation, (2.6) can be rewritten as

TV* (b) = V* (b).

The dynamic programming mapping has two important properties: it is monotonic and it is
a contraction under the supremum metric.

Definition 5 A mapping is a contraction under the supremum metric if 3c € [0,1)

such that
ITU (b; X) — TV (b; X)| < c-sup U (b; X) = V (b; X))

beB
forallU V €V | forallbe B and all X € X, where V 1s the set of all bounded functions
from B to R.

Definition 6 A function T' is monotonic if
Ub) >V () —TU(b) >TV(b)

holds for all U,V €V

The fact that T is a contraction mapping means that it satisfies the fixed point theorem,
stated below.

Theorem 7 (Fired point theorem) If V is a complete metric space and T is a contraction
of V into V then there exists a unique V € V such that T

TV () =V (b), Vbe B

Proof. This is a standard result in the theory of contraction mappings. Many textbooks
such as Rudin [88] present a complete proof of this theorem. ]
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Denardo [26] proved one important consequence of Theorem 7: the repeated application
of the operator T to a value function V' converges to the optimal value function. This result
is stated as a theorem below.

Theorem 8 IfT™ denotes n repeated applications of the operator T then

lim (T"V) (b) = V* (b)

n—oo

where V* (b) is the optimal value function.

Proof. See [26]. =
Theorem 8 provides the basis for the value iteration algorithm, which consists of evalu-
ating a sequence of value functions V™ = TV"~! until

sup |[V* (b)) = V" (b)| < e

beB
where € is an arbitrarily small error factor known as the Bellman error. In order to solve
the infinite horizon problem, the operator T is applied to the value function V' until
[V* () — V™ (b)|] < e, which can be expressed as a function of |[V™(b) — V"1 (b)]| (this is
a standard result, found in [9] or [58], for example).

2.4.2 General Properties of POMDPs
Properties of the Optimal Value Function

The most important mathematical property of POMDPs is that their finite-horizon value
function is piecewise linear and convex. This implies that the optimal value function for the
infinite horizon problem can be approximated arbitrarily well by a piecewise linear convex
function. To be exact, the value function after n iterations of the value iteration algorithm

can be written as
v (b) = max (b a)

where A™ is a finite set of |S| — dimensional vectors.
The piecewise linearity and convexity of the value function is stated in the form of a
theorem below.

Theorem 9 The finite horizon value function is piecewise linear and convez for every hori-
zon length.

Proof. The first complete proof can be found in [86]. Two simpler proofs are briefly
described below.

Proof 1: Show that the value function for ¢t = 1 is piecewise linear and convex. Prove by
induction that if the value function for ¢t = 7 is piecewise linear and convex then the value
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Figure 2-5: A set A™ of vectors and their corresponding value function

function for time t = ¢ + 1 is also piecewise linear and convex. (See [19]) An important part
of the proof is showing that V**! (b), the value function for step (i 4+ 1), can be expressed
in terms of A‘, the vectors defining the value function V?. The precise relationship is the
following (c.f. [44]):

Vi (0) = max {R(b,)o +7)_max [Z Pr (5,015, X)] o (S’)}

] 8'e8 |58

Proof 2: There is a finite number of policy trees, each region corresponds to a different
policy tree. (See [58]) m

Figure 2-5a shows an example of the convex hull of a hypothetical set A™ = {a (1), (2),a(3),a (4)}
and 2-5b shows the corresponding value function V™ (b). The belief states labeled by, by, and
bsare the boundary points of the four linear segments that make up the value function. The
result of theorem 9 implies that the value function has a compact representation as a set of
vectors, and in Figure 2-5 there are four such vectors, each corresponding to one of the four
linear segments .This is a very important result that plays a key role in the development
of the algorithms that follow: the value function corresponding to a POMDP is a continous
function in [0, 1]* (where n is the number of states in the underlying dynamical system), yet
it can always be represented by a finite set of vectors.

Let A* denote the set of the vectors that are necessary to describe the t — step value
function. A is sometimes calied the support set of the value function. In Figure 2-5,
A = {a, a9, a3,a4}. The value function can be completely described by
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o o O

o

More generally, the optimal value function can be written as

V*(b) = maxb- a;

a€EA"

A subset S (&, A*) of [0,1]'"! is called the support region for & € A if
S (& At) = {be 0,1 :6-4>b-aVa eA-t}.

Why are POMDPs difficult?

Theorem 9 provides the missing link to ensure that the value iteration algorithm is certain
to arrive at the optimal solution for the finite-horizon problem and an arbitrarily good
approximation for the infinite horizon problem in a finite amount of time. Unfortunately,
this finite amount of time can be very large and often impractical. The essential difficulty
of solving POMDPs lies in the efficient computation of the sets A™ since the size of these
sets grows very fast with each step of the value iteration algorithm. More precisely, in each
iteration of the algorithm there is one new « vector for each possible product recommendation
X for each permutation of size 2 of the vectors in A1,

Each « vector corresponds to a policy tree and neighbouring o's correspond to different
policy trees. Let §; = ¢ (a;) denote the policy tree corresponding to «;. Each policy tree
corresponds to a unique vector, so the mapping §; — «; is one-to-one and the inverse mapping
@; = a(d;) is well-defined. The vectors a; have |S| dimensions: a; = (a},af, 'Sl) .Each
component o represents the value of implementing d; = 6 (o) ,the policy tree corresponding
to a;, when the true initial state of the system is s.It will sometimes be more convenient to
use the notation a® (4;) instead of af, but both mean the same thing.

Let §; denote the first action prescribed (the action in the parent node) by policy tree ;.
If 4; is a t-step policy tree then let d; (6;) be the (¢t — 1)-step policy tree to be followed if g,
is observed after taking action 4.

We are now in a position to state precisely how a t-step vector & € A? can be defined in
terms of vectors in A*~! and some parameters.

e /15

55’)+Z Z [6 ak)] T[s,di,s,,] W[S'H j]

where T and W are as defined in Definition 4.
Solving a POMDP reduces to finding the optimal set A*. Each « in the set A corresponds
to a different policy. Expressing the value function in terms of a finite set of vectors paves
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Figure 2-6: Generating sets A™ from A™~!

the way for a number of variations on the value iteration method. POMDPs can be solved
by finding Aj, the set of the optimal vectors « for the 1-step problem. This set can then be
used to build Aj,and so on.

The way in which the sets A™ generated make it impossible to determine the optimal
value function in closed-form, and the rate at which they grow often make numerical solutions
impractical. Figure 2-6 show the convex hull of a sequence of sets A” as n increases. The
next section describes solution approaches that can be used in absence of a closed-form
solution. These methods basically consist of making the generation of the sets A™ more
efficient in order to find the optimal solution numerically.

2.4.3 Exact Solution Methods

This section describes five different algorithms that can be used to find exact solutions to
POMDPs. Figure 2-7 shows how they are related. The first algorithm, by Sondik [86], is
very inefficient but contains the foundation upon which all other algorithms are built. Mon-
ahan [70] improved Sondik’s algorithm by specifying a linear program to remove extraneous
vectors between value iteration updates. Eagle [30] made a small improvement to Monahan’s
algorithm that led to important insights on the structure of POMDPs. Cheng’s [23] linear
support algorithm begins by specifying an approximate value function over the entire belief
space and proceeds by improving the value function at each step of the algorithm. One im-
portant property of this algorithm is that it can be stopped before optimality is reached in
order to obtain good suboptimal policies. Finally, Littman’s [58] Witness Algorithm draws
on recent work on artificial intelligence to improve on Cheng’s value function improvement

procedure.
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Figure 2-7: Algorithms for POMDPs.

Sondik’s Algorithm

Sondik’s One-pass algorithm was regarded as ground-breaking work because it was the first
exact algorithmic solution to POMDPs. The main sequence of steps defining the algorithm
are described below.

Algorithm 10 (by Sondik [86] ; as described in [19])

(1) Initialize a search list of belief states to contain any single point on the belief simplez.
Initialize a set of vectors, VY, to be empty.

(2) Remove a point from the search list. If the list is empty, then we are finished and
T}t == V; .

(3) Find the true vector (and its associated action) for this point and add it to V.

(4) Define a region around this point where this vector is guaranteed to be the true vector.

(5) Select points that lie on the edges of this region and add them to the search list.

(6) Go to step (2).

The next two algorithms take different approaches to the problem of generating the
set A;.; from the set A;. First, Monahan creates a set /LH D Aty and eliminates the
unnecessary vectors from A1, eventually reducing it to A,,,. Second, Cheng generates a
sequence of sets A},; € A2, — —— = A,y that converge in a finite amount of time to the

optimal set Ay ;.

Monahan’s Algorithm

Monahan’s [70| algorithm is quite simple to understand conceptually. He uses an enumera-
tion technique to generate a set containing every possible policy tree in a given state. Then,
he uses a linear programming approach to reduce this set to the trees corresponding the
vectors contained in the optimal set A*. The most important result from Monahan is the
formulation of a linear program (describe more clearly in [58] or [19]) that can determine
whether or not a policy is extraneous. Interestingly, Monahan attributes this LP to Sondik,
but Sondik’s algorithm did not contain this important step.
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Extraneous policies are those that cannot be part of the optimal solution. Policies can
be extraneous for one of three reasons (see Littman [58] p.20 for details). (1) It is strictly
dominated by another policy for every belief; (2) It is optimal only over a set of measure
zero, (3) It generates exactly the same value function as another policy tree (i.e., a tie, the
policy tree is redundant). The linear program used to find whether the vector & coefficients
is extraneous in the set A, is the following:

mnzr—»5b-&
beB

s8.t.
b-o, foralla’ € A,, 0’ £ &

v

T
151

Zbi - 1
i=1

b, > 0,Vi

where B is the belief space. If z # 0, then remove & from A,,. If z — b- & > 0, it means
that & is dominated for every possible belief state.

Eagle’s algorithm

Fagle [30] algorithm is not sigrificantly different from Monahan’s algorithm and should
perhaps be referred to as "Eagle’s variant of Monahan’s algorithm". This algorithm is
mentioned here because the small modifications can lead to insights that help understand
POMDPs. In particular, Eagle formulated the dual of Monahan’s linear program, which has
a rich geometric interpretation which shed some light into what the linear program actually
does. The dual formulation is the following;:

max v (2.7)
s.t.
|An|—1
Z Ao, —v Z A
i=1
|An|-1
ox =1
i=1
A2 0,V

The subseripts 7 = 1,2,...,(|4nf — 1) index all the a vectors in A, except the vector
being tested, &. If » > 0,then & is dominated and should be removed from A,,. If linear
program is feasible,the first series of inequality constraints imply that there exists a linear

32



[An|-1 |An|—1
combination Y. Ma; | of the elements in A, excluding & such that > oy > a. If
i=1

i=1
such a combination exists, then « is inside the convex hull of the set A,\& (A, without &).
Figure 2-8 illustrates two cases where the set A,\d& = {a(1),a(2),a(3)}. In the first one,
the vector being tested is & = o/ and it is not needed in the optimal solution. In the second,
the vector being tested is & = o” and it is potentially useful in the optimal solution.

n A o
@ a
" a(2)

a(3)

>
A

Figure 2-8: Geometric interpretation of Eagle’s linear program

Linear Support Algorithm

Cheng’s [23] linear support algorithm generates at each step t a sequence of sets of a vectors
that converges in a finite amount of time to the optimal set. An example makes it easy to
understand what is going on. Let A? denote the set of a’s for the endpoint of the belief
space. In a two dimension belief state, a plot of the value function induced by A? looks like
the one in figure 2-9.

Cheng’s algorithm finds the belief states (points) that separate the regions and generates
the optimal o vectors for those points. In figure 2-9, there is only one such point, which
is marked ¥. Call its corresponding optimal vector a’. The algorithm them updates A9 to
A} Ua := A}. The value function induced by A! could look like the one in figure 2-10. The
procedure described above for ¥ would then be repeated for boundary points 4] and bj.The
process is repeated until value function can’t be improved, at which time we are certain to
have A;.

A7 is then used to calculate the optimal a at the boundary points for A?,; and so on...

The problem with this algorithm is that it takes too long to check every boundary point.
It doesn’t look that way in the simple 2-dimensional illustrations in the section, but itera-
tions can take a long time in higher dimensions. The witness algorithm provides a way of
identifying belief points where the current set of vectors is not optimal, thus eliminating the
need to check every boundary point.
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Figure 2-9: A plot of the value function V? = maxb - &
€A}

T b1

Figure 2-10: A plot of the value function V;! = ma/.i}lcb e
acA;
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The Witness Algorithm

Littman’s [58] Witness algorithm is one of the most important recent contributions to the
efficient generation of A" from A™!. The Witness algorithm efficiently builds a set Q" such
that @™ 2 A" and then uses Monahan’s linear program (2.7) or an equivalent procedure to
reduce @™ to A™. The set Q" is defined as

= e

XeX

where each set @™ (X) contains the vectors a corresonding to the g-function defined by

product X. More precisely,

" (b, X) = b-a),
q" ( )aé}}?f‘m( )

and the g-function ¢™ (b, X) is the payoff obtained when the agent recommends product X
for the current period and acts optimally thereafter. Two properties immediately follow.
First,
n _un
max [¢" (b, X)] = V™ (X), (2.8)

implying the necessary conditions that Q® 2 A™. Second, the elements of Q™ (X) can be
expressed as

a (X) =p* (X) +7 > T (X)ad (X)
feco

where the matrices I'? (X) are defined as in (2.4) and of (X) € A*! for all &£ and for all 9.

The sets Q" (X) are built by iteratively adding new elements to a sequence of sets Q™ (X).
The Witness theorem establishes a condition for determining whether or not Q™ (X) 2
@™ (X) and the iterative process can be stopped.

Theorem 11 (Witness Theorem) The true g-function

" (b, X) = b-
q" (b, X) a\%?fm( )

differs from the approzvmate g-function

§*(b,X)= max (b-a)
€Qn(X)

if and only if there exists some oy (X) € Q™ (X ), 6 €O, o € A" for which there exists a
belief b where the condition

b- M (X)af (X)] <b- [ (X) ]
holds.
Proof. See Littman [58]. m
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The optimality conditions of the Witness Theorem can be verified by means of a linear
prograrnm.

max (b 3)
s.t.
by (X) > by (X)), Véy (X) € Q" (X)
>ob=1
%
b, >0, Vi
where

B =[I"(X)a" -1 (X)af (X)]

There will be one linear program for each oy (X) € Q" (X), for each § € ©, and for each
of € A" If the objective function is positive, then the corresponding belief b is a “witness”
(hence the name of the theorem) to the fact that Q" (X) is not optimal. A new vector
o (X) is then added to Q™ (X), where the components of a™* (X) are the same as those
of ay (X) except for o (X) = . The process is repeated until no more witness points can
be found and it can therefore be asserted that §* (b, X) = ¢” (b, X).

The Witness theorem establishes the important complexity result that any necessary
improvements to the g-functions can be made by solving at most |Q” (X )l -|©|- |A™7Y| linear
programs. The equivalent problem of improving the value function directly is NP-complete.
Even though the number of computations necessary to calculate the optimal g-functions can
be quite large, the running time of the algorithm can be bounded by a polynomial in the
size of |{Q™ (X)|, and empirical tests show that the algorithm performs very well in practice,

in particular when |©| is small.

Other exact solution methods

There are a few other exact algorihtms in the literature. These will not be discussed in
detail because they are essentially variants of the algorithms described above. The reader is
referred to the original references for the details of these algorithms. First, there is Sawaki’s
[84] partition algorithm. This algorithm is of theoretical interest in dynamic programming
because it is based on techniques that can be applied to any piecewise linear value function
(see [17] or [23] for details). For our purposes, however, it is essentially the same as Sondik’s
algorithm. The only difference is the way in which the partitions and the support sets
are constructed. Second, there is Cheng’s [23] relaxed region algorithm. This algorithm is
also a minor variation of Sondik’s algorithm. In this case, the difference is that support
regions are defined in a more efficient manner. Finally, there is incremental pruning ([21];
[103] improves upon the initial formulation). In this algorithim, the stages of generating and
testing a vectors are interleaved. Their algorithm is designed so that it is sometimes possible
to avoid generating vectors that are certain to be useless by "pruning" sets of partially
constructed vectors.
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2.4.4 Approximate Solution Methods

There are several approximate solution methods proposed in the literature. Many of them
consist of applying an exact solution method and stopping the algorithm before it is finished.
These methods are based on Bellman error method. The Bellman residual theorem pro-
vides the theoretical foundation for algorithms relying on the Bellman error method. The
formulation below is from [58].

Theorem 12 (Beliman residual): If the mazimum difference between Vi_, and V; (some-
times called the Bellman residual of Vi.1) is less than e, then the reward gathered by the
greedy policy on either Vi_and V; never differs from that of the optimal policy by more than

(IL:L) at any belief state.

Another class of approximations consist acting greedily with respect to approximate value
functions. These approximations are useful tools in the generation of control policies when
the optimal value function is not available. If V* (b} can be approximated by V (b), the
corresponding policy i (b) satisfies

ju (b) = arg max {R(b, X) 4+ P05, X)V (0 (b, H,X))} : (2.9)

There are several ways of approximating V (b). Bertsekas [9] discusses traditional ap-
proaches, and Bertsekas and Tsitsiklis [11] suggest recently developed methods based on
neural networks and simulations. This section gives an example of two approximation meth-
ods that can be used to generate policies.

Myopic Policy

The myopic policy consists of approximating the value function with a constant (which can
be zero, without loss of generality). Therefore, the myopic policy consists of maximizing
immediate payoffs

M (b) = argr)?g.;(c{é(b,X)}.

Simple as it may be, the myopic policy is frequently used in practice. It tends to perform
well with the prior belief is near the corners of the belief space simplex. It is also asymptot-
ically optimal when there are no actions that evoke equal reactions for different states (c.f.
[102]).

n-Step Lookahead

The n-step Lookahead policy consists of approximating the optimal value function V* (b)
with the value function V™ (b), obtained after n applications of the dynamic programming
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mapping (2.6). The n—step lookahead policy
pA B - X
can be obtained by substituting V" (b) for V (b) in (2.9), yielding:

yA = argr}rclg))({{l;’, (b, X) + ’Y[ZPw'baX) V(0 (5,6, X))}

o€

One important special case of the n-step lookahead policy is the 1-step lockahead policy
pttA, defined by

A arg mas {R(b,X) +9) P Ob, X) R (0 (5,64, X)) }
6ce

where

R (b) = max [R (b,X)] .
The theorem below shows how to estimate the difference between V* (b) and V™ (b).

Theorem 13 If V* (b) is the value function obtained with the k-step lookahead policy and
V* (b) is the optimal value function, then

2evy*

VE(®) - V()] <
sup |V (8) = V" (8)] <

where

€= 22113) [VE@®) -V (b)].

Proof. This is a standard result in infinite-horizon dynamic programming, and proofs
can be found in textbooks such as [9]. m

Perfect Information Upper Bound

The policy derived from the perfect information value function approximation is given by

PI D PI
u"' = argmax {R(b,X) +79;P(0{b, X)VF (o (b,0, X))} . (2.10)

The value function V7 (b) is a vector with [S| components. Each component V77 (b)
is the solution of the fully observable Markov decision problem when all components of the
belief vector are zeros except for the i'th component, which is equal to 1. Astrom [?] and
White [97] explain in detail how this problems are constructed and why they provide and

upper bound for the POMDP.
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The value function VP’ (b) can then be substituted into (2.10) to generate a control
policy. Lovejoy [63] invokes a theorem from Van Hee [94] and notes that the bound can be
tightened by applying the operator T (3.13):

TVE (b) < VP (b) Wb

Since the operator T is a contraction mapping, its repeated application generates an increas-
ingly better sequence of upper bounds until it converges to a fixed point solution:

T*VP (B) < TVF (b) Wb,
VP () < T WP (B Wb

VP () = TVP* (@),

Solving the fixed point equation yields

A ;
VPI* (b) — b . max b; (Xz)

T -prxy = )

Other Approximations

As mentioned at the beginning of this section, there are too many approximation methods
that could be mentioned. Just about any paper that describes a POMDP implementation
will contain an approximation of the value function based on characteristics of the specific
problem. Hauskrecht [44] provides a review of some approximations, as do Littman et al.
[59] in the wider context of reinforcement learning. White [100], White and Scherer [101],
and Lovejoy ( [60], [61] and [62]) also contain descriptions of approximate solution methods.

2.5 New Approximation Method

2.5.1 Approximating the Convex Hull

This section addresses the issue of generating control policies by approximating the convex
hull generated by the « vectors. This is a new approximation method, and can be used to
solve any POMDP. The general idea is to approximate the sets A™ with sets A® ¢ A" that
can be constructed efficiently. These sets can then be used to generate control policies that
lower-bound the value function, since

V" (b) = max (b-a) < max(b-a) =V" (b)
acAn a€ A"
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as long as A™ C A™.
The set of vectors A" is generated from A" ! according to the formula

A" = U U U U R(X)+7Z[‘91(X).aﬂi

XeX | afrean-1 |qf2cAn-1 afl®lean-1 #:€0

where R (X) is the |S|-dimensional vector whose components are R (X, S;). The equation
above implies that each vector in A™~! is used (]X] - |A"!|) times in the generation of A".
Figure 2-11 shows an example where|®| = 2, |X| = 4, |A"}| = 4, and there are only two
possible observations, i.e.,

a=Us U | U RE)+I" (0" +1% (X))

XeX {afr1cAn—1 |af2eAn-1

The graph in Figure 2 — 11a shows all 16 points that can be generated, and the graph in
Figure 2 — 11b shows how the update process can be approximated by choosing the 4 circled
points, reducing the complexity of the update rule from

|A™ = |X]| |A™)°.

to
Ae| = x| |41
a, A a; T
n n
> —p
o o
(a) (b)

Figure 2-11: Reducing the complexity of the update rule

A"| below them for

Figure 2-12 reproduces the sets from Figure 2-6 and adds the sets
n=1, 2, 3.
A

There are
( X
lead to lower bounds. In this section we consider one rule which is particularly appealing

) ways to choose | X| vectors from a set of size [A"~!|, and all of them
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Figure 2-12: Comparing actual sets A™ with their approximations An

because its corresponding control policy can be described in a closed-form solution. This
rule for generating sets A" consists of considering only pairs of vectors a’,a’ € A"~ such
that o = o, If sets A™ are created in this manner, we have

o = a€2}11)

r-{yfy

XeX \atcArn-1

U RX)+0% (X) o' +9T%(X) - aj)] }

aicAn-1

- U{ U (R(er/*m-aiHI“R‘X)'“i)}'

- U{_U (R(X)+F(X)-ai)}

where ' (X) = v [ (X) + I'* (X)].

2.5.2 Numerical Studies

This section presents the results of preliminary numerical experiments aimed at investingat-
ing the suitability of the algorithm presented in this section for the solution of POMDPs.
These simulations were done by randomly generating a set of a parameters within a given
framework (see the Appendix for details on the parameters) and simulating repeated in-
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teractions between the controller and the environment using different control policies. The
problems used for this experiment were partially observable stochastic shortest path prob-
lems, which ensure the existence of a trapping state and the termination of each trial in a
finite amount of time. Five hundred trials were performed for each set of parameters.

Figure 2-13a shows the value functions obtained for one of the sets of parameters. The
value function obtained by controlling according to the myopic policy, VM (b) performs
VA (b). This property is more clearly observed in Figure 2-13b, which shows ﬁ%—(‘# as
a function of the belief b.

A
Vib)
(a)
0 1 br
} F'
Vo)1 (b)
M)
(b)
/\/\ TAN o
1) v VARYE

Figure 2-13: Empirical comparison of the myopic policy V* (b) and the approximate policy
VA (b)

Figure 2-14 presents the results of the 16 simulations for 20 different priors. Five hundred
runs were performed for each prior for each set of parameters. The columns correspond the
different priors, and the rows to the set of parameters used. The results presented are the
percentage difference in value between the two policies, i.e., 100 VA(:}) _X,;w(b)
these results that the pattern depicted in 2-13 is typical, albeit in more or less pronounced
form in some cases. Note, for example, that the values in the columns 0.375 and 0.675 are
always positive and large (around 30% or so). As knowledge approaches certainty (i.e., as the
belief approaches 0 or 1) the two policies perform equally well. The percentage differences
can be positive or negative, but are always very small.

The optimal solution was calculated for a few small problems and the value function

. It is clear from
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Figure 2-14: Simulation Results. Columns are initial belief levels (priors). Rows are different
trials (parameter values). Entries are %W.

obtained through its numerical implementation was found to be statistically indistinguible
from the approximate value function described in this section. However, other approximation
methods such as 10-step lookahead also performed equally well. The the new approxima-
tion method has a theoretical appeal due to the manner in which it is constructe, building
indirectly on Sondik’s [86] result. Morevoer, the simulations performed so far suggest that
this method may also be appealing from an empirical perspective. However, a more precise
characterization of the circumstances under which the present method outperforms currently
existing approximations remains an open question and is the subject of current investigation.

2.6 Conclusions

POMDPs provide a rich analytical framework for a wide variety of problems in many different
fields. In particular,there is great opportunity for applying POMDPs in Management Science.
The advent of the internet and the possibility to model human/computer interactions as
POMDPs makes these problems more relevant then ever. To add to this momentum, the
recent interest in POMDPs from the Al community has generated a fertile ground for new
advances.

As always, the major obstacle to the widescale application of POMDPs continues to be
the lack of efficient exact solution methods. It seems to be the case that the computation of
optimal policies will continue to be impractical for most problems. Nevertheless, is imaportant
to keep searching for exact solution methods to inspire sub-optimal solution methods. History
has shown that even though exact solution methods are rarely adequate to implement real-
world problems they often provide a framework for the development of suboptimal control
policies.

43



2.7 Appendix

2.7.1 Parameter Values

This appendix describes the process for generating the parameters for numerical studies in
§2.5.2. This problem is similar to the customer/company interactions described in the next
chapter. Please refer to that chapter for an interpretation of the meaning of these parameters.

The state space consists of two customer types: S = {(51; B12), (821 Boe)}. The values
for the parameters # were chosen randomly from a uniform distribution over the interval
[—3,3]. The controls were X = {(), (;), (}), (;) } - The possible observations were Accept-
ing, Rejecting, and Leaving. The probabilities with which these observations occurred are
based on a random utility model as described in the next chapter. The revenues are also
as described in the next chapter: 1 if the customer accepts the recommendation, and 0
otherwise.

2.7.2 The Exploration/Exploitation tradeoff

The fundamental difficulty in solving POMDPs lies in the fact that the goal of maximizing
learning often stands in conflict with the goal of maximizing immediate payoffs. This con-
flict is referred to as the “exploration/exploitation tradeoff” in the Artificial Intelligence (AI)
literature. The exploration/exploitation tradeoff lies at the heart of a number of problems in
Al and has therefore received a significant amount of attention in recent years. The field
of Reinforcement Learning (also referred to as Machine Learning) has developed a number
of different techniques to control systems facing the exploration/exploitation tradeoff. Rein-
forcement learning is defined in [48] as “the problem faced by an agent that learns behavior
through trial-and-error interactions with a dynamic environment”. Given this general def-
inition, a comprehensive review of all the methods of reinforcement learning is beyond the
scope of this dissertation. The interested reader is referred to [48] as well as the textbooks
by Sutton and Barto [88] and Mitchell [68] for an introduction to this vast field. In this
appendix, we briefly review some recent developments in the Al literature that address the
exploration /exploitation tradeoff within the framework of POMDPs. These papers are not
directly relevant to this dissertation in that our focus is on the mathematical structure of
POMDPs and their interpretation in the context of managerial decision-making. However,
these papers are indirectly relevant in that good POMDP approximation methods could
prove to be useful in a large-scale implementation of the model developed in the next two
chapters.

One popular approach to implementing POMDP models has been to compute a belief-
state value function offline and keep track of the current belief online in order to implement
the control policy. The value function is typically computed using approximation methods
such as those described in §2.4.4. However, an additional problem in large-scale imple-
mentations is estimating the current belief. In order to solve this problem, a new class of
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aproximation methods using factored representations has been recently proposed. Boutilier
and Poole [16] showed how factored representations, which are common in other areas of ar-
tificial intelligence, can be integrated into the POMDP framework in such a way that allows
for state abstraction and simplifies computations during the implementation stage. Hansen
and Feng [42] devised new methods of implementing the ideas from [16] that outperform the
original implementation. Poupart and Boutilier [74] propose a new way of approximating
the belief state, where approximation quality is determined by the expected error in the
utility function (as opposed to an absolute error in the estimation of the belief itself). More
recently, Poupart and Boutilier [75] devise new search procedures for selecting approxima-
tion schemes These methods use a vector space analysis of the problem, and build on the
authors’ previous value-directed methods ([74]), but are significantly more efficient from a
computational perspective (up to two orders of magnitude faster).

Another important recent development is the use of hierarchical learning methods in the
implementation of control policies in stochastic domains. This line of reseach builts upon
the findings of Precup and Sutton [76] and Precup, Sutton and Singh [77] in the realm of
temporally abstract planning. Hauskrecht et al [45] derived control policies for an MDP using
macro-actions (from an abstract MDP) that use a reduced state space. Kaelbling applied
similar techniques to stochastic domains in [46]. She did so by developing the HDG algorithm,
which generalized her DG algorithm [47] which is analogous to Watkins’ Q-learning ([95],
(96]).
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Chapter 3

Design to Learn: Customizing
Services when the Future Matters

3.1 Introduction

The Internet presents unprecedented opportunities for the customization of services. Com-
panies can identify returning customers at almost no cost and present each of them with
a unique interface or service offering over a web page, voice interface, or wireless device.
Customization is important in online interactions because the possibilities of products and
services that companies can offer can be enormous and customers are often not able to find
and identify the alternative that best suits their preferences. More generally, the amount of
information available over the Internet is overwhelming and the costs to search and evaluate
all potentially relevant pieces of information can be prohibitive. This situation can lead
to interactions of low net utility to customers. Hence the need for software applications
generally called intelligent agents (or smart agents) that present customers with customized
recommendations from large sets of alternatives. These agents have the potential to create
great benefits for both consumers and companies. It is certainly desirable for customers to
reduce search costs and by going directly to a company that already knows them and gives
them high utility. At the same time, companies that learn about their customers can use
this knowledge to provide increasingly better service as the relationship progresses, making
it difficult for competitors to “steal” their customers. In order to fully reap the benefits of
customization, companies must overcome two obstacles. First, the strategies that maximize
their customers’ utility (or probability of sale in the current period) do not coincide with
strategies that maximize learning. Second, customers rarely forgive and return to smart
agents that make bad recommendations. Overcoming these obstacles depends on the agents’
ability to adequately balance the goals of learning at the expense of selling and selling at the
expense of learning.

The primary function of agents is to help customers make better decisions by reducing
search costs and making recommendations of products which present characteristics that
are difficult to describe and evaluate. Travel agents, for example, save their customers time

46



by looking through all the different tickets with all their restrictions and identifying the
cheapest fare that will satisfactorily fulfill the customers’ needs. Real estate agents not only
have access to a larger number of available houses than most customers do, but they can
also help househunters make their decisions by teaching them about important aspects of
evaluating a house before the purchase. On the Internet, smart agents can create customized
newspapers by searching enormous databases of news articles and selecting the best ones for
each individual customer. Or they can decide which songs to play in a web-based radio
station individually tailored for each user.

Agents are playing an increasingly important role in consumers’ lives because of the Inter-
net. The overwhelming amount of information available through the Internet has generated
a high demand for agents that reduce search costs. In addition to being an important neces-
sity, smart agents are also cost-efficient. Consequently, smart agents play a much larger role
in everyday decision-making and have considerable more autonomy to act on the consumers’
behalf [64]. Few consumers have human agents who choose newspaper articles, but these
types of services are feasible and increasingly popular over the Internet.

The essential task of learning about customers in order to provide better recommenda-
tions has been made more difficult by the migration of customer interfaces from human-
human to human-computer. Human agents can, in many cases, observe their clients and
make a number of inferences on the basis of their interactions. The lack of cues typical
of the personal encounter diminishes the opportunities for correcting incomplete advice or
wrong guesses. Software agents only register click patterns and browsing behavior. Smart
agents can only learn about customers by asking them questions and by observing their
behavior. The issues related to the benefits and limitations of asking questions have been
adequately addressed elsewhere: clients may not be willing nor have the patience to answer
questions [92], and their replies are not always truthful for various (and sometimes inten-
tional) reasons [98]. Regardless of how they answer surveys, customers spend their time and
money in the activities from which they derive the most utility. In the offline world, Rossi
et al. [82] found that the effectiveness of a direct marketing campaign was increased by 56%
due to the customization of coupons based on observations of one single purchase occasion.
In web-based settings, learning can occur regardless of whether or not customers are satisfied
with the products recommended to them. Therefore, companies must strive to learn about
their customers by observing how they react to recommendations.

Intelligent agents face a dilemma: they must either sell at the expense of learning or
learn at the expense of selling. In other words, they can either make recommendations that
they expect their customers to like and learn about their customers’ preferences at slow
rates or they can take more risks by suggesting products their customers might not accept
and learn at higher rates. The agent’s dilemma captures the essence of the selling versus
learning trade-off faced by companies that customize services on the Internet. Observing an
action that was already expected to happen only reconfirms something one already knew or
suspected to be true. But should an agent recommend a product with no prior knowledge
of how their customers would react? By taking this course of action, agents may learn a lot
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about their customers’ responses to recommendations of such products, regardless of whether
or not the item is purchased. However, they run the risk of causing an unsuccessful service
encounter that may lead to defection.

Customers who receive very bad recommendations can lose trust in the smart agent’s
ability to help them make better decisions and never return. Research in psychology and
marketing has repeatedly shown the importance of trust as the basis for building effective
relationships with customers in e-commerce as well as in regular commerce (e.g., [52], [55],
(4]). Doney and Cannon (27| established an important link between trust and profitability by
noting the importance of trust to build loyalty. Low trust leads to low rates of purchase, low
customer retention and, consequently, meager profits. Failure to sell has been equated with
failure to build trust ([55], [71]). Studies on human and non-human agents have extended the
findings of previous research by showing that trustworthy agents are more effective, i.e., they
are better at engaging in informative conversation and helping clients make better decisions.
Urban et al [93] have also shown that advice is mostly valued by less knowledgeable and
less confident buyers, and those are exactly the same customers less likely to trust external
agents to act as surrogates on their behalf.

Intelligent agents must strive to be trustworthy in two ways. First, customers must trust
that agents have their best interest in mind. This will be true whenever the agent’s payoffs
are proportional to each customer’s utility. Second, the customer must trust that the agent
is good. Models of online consumer behavior must take into account the fact that if the agent
makes a very bad recommendation the consumer loses trust and may never come back. The
consequences of giving bad advice are much worse for software agents than for human agents.
Ariely [4] conducted a series of experiments to compare trust online and offline and found
that even though customers are sometimes willing to forgive a mistake made by a human
agent, they rarely do so for a software agent. In one of his experiments, half of the subjects
received financial advice from a software agent, and the other half from a human agent.
Both agents were manipulated so that they made exactly the same serious mistake. After
realizing they had received bad advice, customers of the human agent were much more likely
to continue the relationship than customers of the software agent. People forgive people
but they don’t forgive software. Turning off the computer or clicking on a different website
entails much less psychological costs than terminating a personal relationship. Consequently
software agents face much higher churn rates than their human counterparts. The levels
of tolerance for incomplete, wrong or misleading advice are lower, yet the electronic agent
must rely on much more precarious information and cues regarding consumers’ tastes and
preferences.

The agent’s dilemma is related to a number of problems where decision-makers must
decide whether to exploit their knowledge of the system of to explore in order to gain more
knowledge to improve future payoffs. The most famous problem of this type is the multi-
armed bandit ([37],[38]), where the decision maker sequentially selects one of n different
independent stochastic processes (“arms”) for observation. The independence assumption is
crucial to the solution proposed by Gittins [37] and unacceptable in the problem studied in
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this paper. In many circumstances, agents can learn about a customer’s preferences about
product B by observing his or her reaction to product A. There have been efforts to allow
for dependent arms in the bandit problem by introducting covariates ([24], [39]) but there
1s no general solution method. Furthermore, none of the methods proposed in the literature
account for the fact that the process can be terminated at any time depending on the outcome
of the process, which corresponds to the customer leaving in this paper’s application.

The framework of partially observable Markov decision processes (POMDPS) (e.g.: [29],
[70], [19]) can be used to model the agent’s decision problem as formulated in this paper.
§3.2 shows how the agent’s dilemma. can fit into the framework of POMDPs. §3 establishes
the optimality conditions and basic solution procedures for the model introducted in §3.2.
§3.4 discusses how the optimal solution can be computed through numerical methods and
§3.5 shows how good recommendation policies can be constructed through value function
approximations or simplifications of the model. §3.6 discusses the significance of the results
of this paper in the managerial and academic contexts. Finally, §3.7 offers some directions
for further research.

3.2 Model Description

This section is divided into four parts. The first one presents a mathematical choice model
that captures the essential behavioral features of the choice process customers go through
when interacting with software agents. This is followed by a description of a dynamic system
used to model the interactions between customers and companies over time. The third section
shows how the company’s decision of how to customize products and services can be framed
in terms of a Markov Decision Process using the customer behavior model of §3.2.1 and the
dynamical system of §3.2.2. Finally, §3.2.4 summarizes the main features of the model before
proceeding to the analysis of the optimization problem.

3.2.1 Customer Behavior

"This section describes a customer behavior model that realistically captures the ways in which
customers react to recommendations of products and services made by software agents. Such
model is an essential step in the quantification of the costs and benefits of customization from
the company’s perspective. Customers are satisfied when they accept the suggested product
or service, and return to the same company the next time they need a service from the same
industry. If a recommendation is barely below the acceptance level, customers will purchase
elsewhere (or forego purchasing in the current period, as the case may be) but return the
next time they need recommendations. In this case, companies incur the cost of losing a sale
opportunity. If the utility of the suggested product is perceived to be significantly below
the acceptable level, customers infer that the agent is bad and unable to meet their needs.
Bad agents are not trustworthy, and customers will never return. The likelihood that the
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customer will accept the recommendation, reject the recommendation, or leave the company
are defined through a random utility model.

Random utility models were introduced in the psychology literature by Thurstone [91],
mathematically formalized by McFadden [66] and recently reviewed by Meyer and Kahn [67].
According to random utility theory, when a customer is offered product X the utility that is
actually observed has two components: a deterministic component « (X ), which corresponds
to the true underlying utility and an error term €. The error term accounts for factors such
as unobserved attributes, imperfect information, or measurement errors make the customer
unable to determine the exact utility of a product upon initial examination. Formally, this
can be expressed as

4(X) =u(X)+e

where 4 (X) is the observed utility.
Once customers evaluate the utility of X, the service they are being offered, they can
take one of three actions:

o Accept product X if u(X) +e > u ()
» Reject product but come back next time if —c < u (X) +¢& < u ()

e Leave the company and never come back if u {X) +¢ < —c

% (M) is the minimum utility required for the customer to accept the product. Without
loss of generality, it is assumed throughout this paper that u ()\) = 0, since this simply
amounts to scaling utilities.

The probabilities of accepting, leaving, or rejecting a product X (denoted p? (X), p¥ (X),
and pf (X), respectively) can be computed by defining the distribution of e. One useful
technique is to assume that ¢ is normally distributed with mean 0 and variance o?. The
parameter ¢ can be altered to represent different types of products or business settings,
where the customer observes products with more or less error. This model corresponds to
the ordered Probit model, and its properties are thoroughly discussed in Greene [40]. The
general formulation of the choice probabilities is shown in the first column of (3.1), and
the specific form they take when ¢ ~ N (0,0) is shown in the second column. Figure 3-
1 depicts the probabilities taking each of the three possible actions when the customer is
offered a recommendation with a deterministic utility component u. In this particular case,
u is below the acceptance threshold, but since the observed utility is u + € the probability
that the product will be accepted is positive.
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Action Probability of Action Probability if ¢ ~ N (0,0)
Accept  p? (X) =Pr(u(X) > 0) = (UX )

o

Leave pl(X)=Pr(u(X) < —c) = @ [ uX)+e

o

Reject  pf (X) = [1—p*(X) — p* (X)] :l_q,(m_gxz _@(_ux)+c)

o

(3.1)

The choice model of (3.1) captures customers’ reactions to recommendations made by
software agents in a way that is consistent with the behavior qualitatively described in the
psychology and marketing literature (e.g., [4]). Customers who observe a very low utility
(—c, in our notation) immediately lose trust in the agent as a reliable advisor and never
return. The recommendation will only be accepted (i.e., the product will only be purchased)
if the observed utility exceeds 0. Finally, the cost of not making a sale by experimenting
with different customization policies is captured by the probability that the observed utility
will fall in the interval [—c, 0].

A

fi)

Leave
() Reject
Accept

—>
u

Figure 3-1: Probabilities of Accepting, Rejecting, and Leaving when offered a product with
deterministic utility u

3.2.2 Dynamics of Customer-Company Interactions

Figure 3-2 describes the dynamics of customer/company interactions. This system is the
basis of the formulation of the agent’s dilemma as a Markov decision problem.

A new customer arrives from a population consisting of |S| different segments. Each
customer belongs to a segment S; € S. The company does not know the segment to which
the new customer belongs, but has prior beliefs. These beliefs are represented by a |S|-
dimensional vector b° € B, with each component corresponding to the probability that the
customer belongs to a given segment. More specifically, if 5* denotes the true segment to
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Figure 3-2: The dynamics of customer-company interactions

which the customer belongs the prior beliefs are

Pr (S* = Sl) bg
Pr (§* = Sjs)) b,

Is|
where 59 € [0,1] Vi and >_8) = 1.
=1

Each segment §; is defined by a utility function u,; (X) that maps products and services
X into real numbers

u:SxX—=R

One way to define these utility functions is by associating each segment .S; with a vector J;.
The components of 3; are the weights a customer of segment 4 gives to each attribute of the
products in X. In this case, the utility function could be defined as

w (%) = (8- %;)

where u; (X;) denotes the utility that product X; has to a customer of segment S;.

When the customer requests service, the company chooses a product from the set X =
{Xl,Xz, ...,X|x|}. X is a set of substitute products or services, and can be thought of as
the different ways in which a service can be customized. Each X; € X is a vector whose
components correspond to a different attribute of the product or service. The recommenda-
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tion made during the ¢’th interaction is denoted X*. The decision problem of which service
configuration should be chosen is directly addressed as an optimization problem in § 3.2.3.
The customer will either accept the recommendation, reject the recommendation, or
leave, as explained in the beginning of this section. The probabilities with which each of
these actions take place are given by {3.1). The company will observe the customer’s action
as described in Figure 3-2. The observation made during the #’th interaction is denoted
6*, and the set of possible observations is © = {BA,HR,GL}, corresponding to accepting
the recommendation, rejecting the recommendation, and leaving the system. For example,
° = 6* means that the customer accepted the product offered during the fifth interaction.
The company updates its beliefs every time it makes an observation through a function

v:BxXx0© —B

that determines the new belief given the previous belief and the action/observation pair of
the last interaction. If b* denotes the belief vector after ¢ interactions, then

PI' (S* = Sl|b01XlaelxXzaezr"aXtagt) bfi
* __ 0 1 pl 2 2 t pnt (4

B Pr(S* = S[p%, X1, 6%, X2,6%,..., X*,6") _| % , (3.2)
Pr (5 = Sg|t% X1, 6%, X2,6°,..., X*,6") bl

which can be written more compactly as

Pr (St = Sllbt—l,Xt,gt) btl
’ Pr(S* = Spt1, x40 | | &
Pr (S* = S|s|1bt-1, Xt,Gt) b|tS|

since b*~! is a sufficient statistic for {§°, X*,6%, X2,6%, ..., X*"1,0" 1}, ie,,
Pr($* = S, X1,6%, X2, 6%, .., X',0%) = Pr (" = S|4, X*, %) , vt

The new belief can be computed in a Bayesian manner, using the relationship

1

* _ g |pt-1 vt gty _ L [pt—1. tiQ. yt
Pr(S* = Si|b* %, X1, 6%) =0 (6571 Pr (6"S;, X1)]
where "
Pr (0%, Xt) = Y~ [bf1 - Pr (6%]5;, X1)] (3.3)

i=1

! Astrom [?] and Bertsekas [8] provide formal derivations of this property
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is a normalizing factor. The update function ¢ can then be defined by

bl-Pr(9|SI,X)
o0,6,X)= —— .| b PrOl&x) | (3.4)

Pr (6]5, X)
bis) - Pr (61551, X)

3.2.3 Optimization Problem

The company earns a payoff of 1 if the customer accepts the recommendation and 0 otherwise.
Since increasing the utility always increases the probability of purchase, the incentives of the
customer and the company are perfectly aligned. It is always in the company’s best interest
to please the customer, since the more utility the company provides to the customer, the
higher the payoff. The payoff function is defined by a mapping

R:SxX —R,

and the expected payoff of suggesting product X to a customer from segment S; is given by

R(S;,X;) = 1-pf(X;)+0-pf(X;)+0-pf (X)) (3.5)
= pf (X))

where p (X;) is the probability of purchase as defined in table 3.1.

If the company knows the customer’s true segment, the problem of making recommen-
dations reduces to a Stochastic Shortest Path (SSP) problem. This problem was initially
formulated by Eaton and Zadeh [31] and has received a significant amount of attention in
Electrical Engineering and Operations Research due to its many applications. Bertsekas and
Tsitsiklis [10] and Bertsekas [9] provide an extensive review of this literature and a summary
of the main results. Figure 3-3 depicts the dynamics of a problem where there are only two
possible customer segments. The transition probabilities and payoffs corresponding to each
arc are given as functions of the possible recommendations X. The agent’s problem is to
find a policy

p:8—X (3.6)

that maps each state of the system into a product, the states in this case being the segments to
which the customer can belong. The optimal policy maximizes the time to termination, i.e.,
the time the customer remains in the system before leaving. Technically, this is a “Stochastic
Longest Path” problem, but it can be converted to a SSP by changing the payoffs from R
to (—R).The SSP terminology is used in order to stay consistent with the literature. This
particular SSP has a trivial solution: always suggest the product with the highest expected
utility for that segment. Unfortunately, the problem is not trivial if the company does not
know the customer’s segment. The company will act based on beliefs.
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p=(-p/ (X))
R=p(X)

Figure 3-3: Transition probabilities and payoffs for the Fully Observable Stochastic Shortest
Path problem

The decision problem faced by companies is to find a policy
p:B—X (3.7)

that determines the best product to suggest for each possible belief. This policy has the
same range as the policy defined in (3.6), but it is much more complex because the domain
is no longer a finite set of states: it is a set of infinitely many beliefs. In the belief-state
problem, the payoff function must be map belief states and actions to revenues, 1.e.,

R:BxX — R

The function R is defined by

ISl
R(b,X) = D bi-R(S, X)) (3.8)
i=1

S}

= Zb@--pf(X),
=1

the last equality being an immediate consequence of (3.5).
There are only three possible transitions from any given belief state,

(18] .

Youhopf (XY if b= (0,64, XY)

i=1

Is| .

. =1 pR (XYY if b= (b1 6%, Xt

Pr (bt — blbt—l’Xt) = 4 7,|=Elbz D; (X) if b ¥ (b 19 :X) (39)
s| .

SBhopk (XY ifb=p (00", X) =L

=1

L 0 otherwise
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where L corresponds to the state when the customer has left the system. The belief-state
SSP problem (or Partially Observable SSP) corresponding to the problem in Figure 3-3 is
depicted in Figure 3-4. The new transition probabilities are given by (3.9), and the payoffs
are given by (3.8).

The customization policy that maximizes the agent’s expected revenue must solve the

o0
¥ t

where v € (0, 1) is a discount factor and r; is the reward at time ¢. Unlike the fully observable
problem, it is no longer obvious what the optimal policy must be. The next section will
derive some properties of the optimal solution. Before turning to that analysis, it is useful
to summarize the results of this section.

equation

PK(S =5)=0 R(b,X) Pr(S =8)=1
p=Pr(8"|b,X) p=Pr(0% |b,X)
k=1 R=0
(5,6, X) R=0|p=Pr(6" |b,X) @(b,0%,X)
A 4
p=1
R=0

Figure 3-4: Transition probabilities and payofis in the Partially Observable Stochastic Short-
est Path problem

3.2.4 Summary

This section has demonstrated how the problem of finding optimal customization policies is
equivalent to finding the policies satisfying the equation

' _ t
" = argmax {E (;7 rt)}.

The dynamics of customer/company interactions are described as repeated interactions be-
tween one customer and an agent that must decide how to make a recommendation from a set
X based on its beliefs, as defined in (3.2). Customers observe recommendations with error,
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as defined by the random utility model described in Section (3.2.1), and then decide whether
to accept the recomrmendation, reject the recommendation, or leave. The agent observes the
customer’s action and receives a payoff of 1 if the customer accepts the recommendation and
0 otherwise. Finally, the agent updates its beliefs about what segment the customer belongs
to according to the update function defined in (3.4). The optimization problem consists of
controlling a Partially Observable Stochastic Shortest Path Problem which is a special case
of the Partially Observable Markov Decision Process (POMDP) where the agent’s immediate
payoffs are given by (3.8) and the objective is to maximize the discounted stream of payoffs
until the customer leaves the company.

3.3 Properties of the Value Function

3.3.1 Optimality Conditions

Let V*(b) = max E ( ) 7%) - Then the optimal value function 1* (b) satisfies the Bellman
£=0

equation

V*(b) = max {R (b, X) +7) " Pb, X)V* (b’)} (3.10)
b'eB

where 22 (b, X) is the expected revenue the agent receives by suggesting product X when the
belief state is 5. We know from (3.9) that ¥ can only take three possible values, namely
0 (6,64, X), ¢ (b, HR,X), and o (b,6%, X*) . Therefore (3.10) can be written as

V" (b) = max {R(b,X) +7 ) P86, X) V* (0 (b, 0, X))} :
fee

which can be further simplified to

V*(b) = max{ R (b X) +~[P (6%}, X) V* (v (5,64, X)) (3.11)
+P (0516, X) V* (¢ (6,07, X))}

by noting that customers have no value after they leave, and therefore V'* (L) = 0. It follows
immediately that the optimal policy

/.L*:B——a»X

must satisfy the condition
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w(b) =argmax{  R(b,X)+[P (66, X) V* (o (b,6%, X)) (312)
+P (0%[6, X) V™ (¢ (5,67, X))]}

3.3.2 Value Iteration Algorithm
The DP mapping in this problem is

(V) () =maxl  R(b,X) +[P (670, X) V (1 (0.0%, X)) (3.13)
+P (676, X) V (i (5,67, X))]}

Note that (TV) (-) is itself a value function defined over B, so T' is a mapping that transforms
the value function V' into another value function TV. Using this notation, (3.11) can be

rewritten as
TV (b) =V (b).

The dynamic programming mapping has two important properties: it is monotonic and it
is a contraction under the supremum metric. Therefore, the repeated application of the
operator T to a value function V' converges to the optimal value function (e.g., [26] ). This
result is the basis for the value iteration algorithm, which consists of evaluating a sequence
of value functions V" = TV"~! until

sup|[V* (b)) = V" (b)| < e
beB

where ¢ is an arbitrarily small error factor known as the Bellman error. In order to solve
the infinite horizon problem, the operator T is applied to the value function V! until
(V* (b) — V™ (b)| < €, which can be expressed as a function of [V™(b) — V™! (b)]| (this is
a standard result, found in [9] or [58], for example).

One important problem must be solved before value iteration can be used to find the
optimal solution of (3.11): there is an infinitely large number of beliefs. The continuity of
the belief space could mean that there exists some n for which V™ cannot be represented
finitely or that the value function updates cannot be computed in a finite amount of time.
Section 3.3.3 looks at how these difficulties can be overcome.

3.3.3 Finite Representation of the Value Function

One important property of POMDPs is that the finite-horizon value function is piecewise
linear and convex. This implies that the optimal value function for the infinite horizon
problem can be approximated arbitrarily well by a piecewise linear convex function. To be
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Figure 3-5: A set A" of vectors and their corresponding value function

exact, the value function after n iterations of the value iteration algorithm can be written as

V7 (b) = max (b- @)
where A" is a finite set of |S| — dimensional vectors. Figure 3-5a shows an example of
the convex hull of a hypothetical set A" = {a(1),a(2),a(3),a(4)} and 3-5b shows the
corresponding value function V™ (b).

The piecewise linearity and convexity of the value function is stated and proved in the
form of a theorem below. This theorem is a special case of a more general result proved
by Sondik [86]. It is important to go through the steps of the proof in this particular case
because they give insight into the nature of the problem.

Theorem 14 The value function V" (b), obtained after n applications of the operator T' to
the value function V' (b), is piecewise linear and convez. In particular, there erists a set A™
of |S| —dimensional vectors such that

V™ (b) = max (b- ).

ac A"

Proof. The proof is by induction, and therefore consists of the verification of the base
case and of the induction step.
(1) Base case: V1 (b) = max (b-a).
ac

(2) Induction step: If

3A™ ! such that V™' (b) = max (b )

QEA"'—]‘
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then
JA" such that V" (b) = max (b- ).

acA™

The statement above can be proved by verifying that the elements oo € A™ are of the
form

a =p* (X) + 974 (@) + 977 (ay) (3.14)

where a; € A" !, a; € A" and T4 and T'® are diagonal matrices defined by

p(X) 0o -+ 0
Mo | 0 M
0 0 o (X)
and pf(X) 0 0
PR (x) - 0 pggX) 0
0 0 . pE(X)

It then follows that
V™ (b) = max (b- @)

ac A"

which can be verified to be true by defining

A"::U{ U [ U (pA(X)+7PA(X)-ai+7PR(X)-ai)]}.

XeX \ateAn! LaieAn—1

The details of the proof are in Appendix 3.8.1. =

Theorem 14 provides the missing link to ensure that the value iteration algorithm is
certain to arrive at the optimal solution for the finite-horizon problem and an arbitrarily good
approximation for the infinite horizon problem in a finite amount of time. Unfortunately,
this finite amount of time can be very large and often impractical. The essential difficulty
of solving POMDPs lies in the efficient computation of the sets A™ since the size of these
sets grows very fast with each step of the value iteration algorithm. More precisely, in each
iteration of the algorithm there is one new « vector for each possible product recommendation
X for each permutation of size 2 of the vectors in A®~!. This statement is formalized in the
corollary below.

Corollary 15 |A"| = |X|*"™*
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Figure 3-6: Generating sets A™ from A™~!

Proof. First, note that |A'| = |X|, which can be verified by recalling that

i (Xy) Pt (Xixi)
Al P8 (X1) 3 (Xix)
Pl (X1) pig) (Xixr)

Next, consider the set A" single step of value iteration

A”:U{ U [ U (pA(X)+'yI‘A(X)-a"+'yFR(X)-aj):'}.

XeX \atcAn-l |lafcAn-1

The size of | A" is:

A" = { U L U (pA(X)+71“A(X)-ai+7FR(X)-aj)]}‘ =[x |4
XxeX \aiean-1 Lajean—
Solving the recursion [A"| = |X||A™'* subject to the initial condition |A!| = IX| we

conclude that
|A"| = |IX|"" .

]

The way in which the sets A" generated make it impossible to determine the optimal
value function in closed-form, and the rate at which they grow often make numerical solutions
impractical. Figure 3-6 show the convex hull of a sequence of sets A™ for increasingly large n.
The next two sections describe solution approaches that can be used in absence of a closed-
form solution. Section 3.4 reviews methods that can be used to make the generation of the
sets A™ more efficient in order to find the optimal solution numerically. Setion 3.5 describes
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suboptimal control policies that can be easily computed and implemented efficiently.

3.4 Exact Solution Methods

POMDPs were first introduced by Drake [29] in the context of telecommunications. Sondik
([86],[85], and [87]) made significant theoretical contributions to the understanding of the
~ model. Applications in robot navigation resulted in a recent increase of interest in POMDPs
in the artificial intelligence community (e.g., [48]) which led to very important contributions
in computational methods. As pointed out in Section 3.3.3, the main difficulty in solving
POMDPs is the increasing size of the sets A™ of vectors a. Hence, the most important
developments in exact solution method have been either (i) making the sets A™ as small as
possible so as to minimize the size of A™*! and (ii) finding ways of quickly generating the
sets A" from sets A™~1.

Monahan [70] formulated a linear program that finds the smallest possible set A" that
contains all the vectors o used in the optimal solution. Eagle [30] presents a slight modifica-
tion of Monahan’s algorithm. Littman’s [58] Witness algorithm is one of the most important
recent contributions to the efficient generation of A™ from A"~'. The Witness algorithm
efficiently builds a set @™ such that Q™ O A™ and then uses Monahan’s linear program or
an equivalent procedure to reduce Q" to A™.

Figure 3-7 shows the results of numerical studies comparing the optimal policy p*,
defined in (3.12) and computed using the Witness algorithm, and the myopic policy p¥,
which satisfies

u™M (b) =argx§lg%c{fz(b,X)}.

These results were obtained from simulations where companies started out with the same
number of customers and gained no new customers over time. The graphs are typical of
simulations done with varying numbers of customer segments and products. Graph (a)
shows that the myopic policy is more likely to generate profits in the short-run, while the
optimal policy does better in the long-run. The agent that acts optimally sacrifices sales in
the beginning to learn about the customers to serve them better in the future. Graph (b)
shows the cost of learning in terms of the customer base. The optimal policy leads to more
customer defections due to low utility in the short-run, but the customers who stay receive
consistently high utility in later periods and defect at much slower rates than customers
being served by a myopic agent.

Exact solution methods, when feasible, are the best way to find the optimal solution.
Littman et al. [59] describe methods to solve POMDPs with up to nearly one hundred states.
However, for computational reasons, it is not always feasible to find the optimal solution.
Furthermore, closed-form solutions are necessary to gain insight into how managerially-
controllable variables can improve profit. The next section looks at easily computable policies
that are better than the myopic solution and can be implemented efficiently.

62



A A

Sales per — Optimal —— Myoni Number of — Optimal — ;
customer r Optima yopwq customers { Optima Myopic ]
> >
Number of Number of
interactions interactions
(a) (b)

Figure 3-7: Comparison of optimal and myopic customization policies

3.5 Derivation of Control Policies

The optimal policy p* (b), which satisfies (3.12), cannot always be computed in a reasonable
amount of time, as explained in Section 3.4. In the absence of the optimal policy, it would
be desirable to have policies with the following characteristics:

¢ Convergence to the optimal policy.

Lower the probability that the customer will leave after each interaction due to a bad
recommendation. '

Better revenues than the myopic policy.

Learn faster than the myopic policy.

Ease of computation (or, better yet, closed-form solution).

An ideal control policy should have as many of these characteristics as possible. This
section shows how control policies can be derived by finding approximations to the optimal
value function.

3.5.1 Value Function Approximations

Approximate value functions are useful tools in the generation of control policies when the
optimal value function is not available. If V* (b) can be approximated by V (b), the corre-
sponding policy p (b) satisfies

i = arg max {R(b,X) +7> P(6]b,X)V (0 (b,6, X))} : (3.15)
fco
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There are several ways of approximating V (b). Bertsekas [9] discusses traditional approaches,
and Bertsekas and Tsitsiklis [11] suggest recently developed methods based on neural net-
works and simulations. This section gives an example of two approximation methods that
can be used to generate policies. Both methods were chosen because their control functions
can be stated in simple terms, and are therefore better suited for insights into the nature of
optimal customization policies in managerial settings.

n-step Lookahead

The n-step Lookahead policy consists of approximating the optimal value function V* (b)
with the value function V™ (b), obtained after n applications of the dynamic programming
mapping (3.13). The n—step lookahead policy

ptA B X
can be obtained by substituting V™ (b) for V (b) in equation (3.12):
= argmax{R (b, X) +91P (0710, X) V™ (¢ (b0, X)) + P (6710, X) V™ {0 (6,67, X))}

One important special case of the n-step lookahead policy is the 1-step lookahead policy
plt4 | defined by

pttd = arg max{ R (b X) +~[P (6%]p, X) [‘P (6,64, X) - B (0 (b, QA’X))]

+P (9%p, X) [(,0 (6,6, X) - B (¢ (b, 9A,X))]]}

where
R* (b) = max [R (b,X)] .

The theorem below shows how to estimate the difference between V* (b) and V™ (b).

Theorem 16 If V* (b) is the value function obtained with the k-step lookahead policy and
V* (b} is the optimal value function, then

2ey*
1 -7

sup [V (5) — V* ()] <
beB

where

e =sup |[V* (b)) — V1 ()]
beB

Proof. This is a standard result in infinite-horizon dynamic programming, and proofs
can be found in textbooks such as [9]. m
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Perfect Information

The policy derived from the perfect information value function approximation is given by

pF = arg max {R (6, X) -+ > P (0]b, X) V' (p(b,8, X))} : (3.16)

fce

The perfect information stochastic shortest path problem is very easy to solve, as pointed
out in § 3.2.3. The solution is stated and proved below.

Proposition 17 IfV*C(S;) denotes the optimal value function of the fully observable prob-

lem when the customer is of segment S;, then

A
+FO (qy _ b (XZ)
VIS = ma T

and

PE (o P (X3)
VEIG) = b ma ey

(3.17)

Proof. See Appendix 3.8.2. m

The value function (3.17) can then be substituted into (3.16) to generate a control policy.
Lovejoy [63] invokes a theorem from Van Hee [94] and notes that the bound can be tightened
by applying the operator T (3.13):

TVEL () < VPT (b) vb.

Since the operator 7" is a contraction mapping, its repeated application generates an increas-
ingly better sequence of upper bounds until it converges to a fixed point solution:

VP (b)) < TVFI(b)Vp,
VP (b)) < T VP (b)) Wb

VPI* (b) — TVPI* (b) i

Solving the fixed point equation yields

A
PIx (B _ 1. pf (Xi)
Vi) =t XET =5 (1 - pF (%)

>V (b) (3.18)

Limited Learning

One way to derive control policies is to assume that the agent will stop learning after a fixed
number of interactions. This restriction in the agent’s actions implies that the same product
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will always be recommended after a given point. These approximations are very good in
situations where most of the learning occurs in the early stages.

Proposition 18 derives an expression for the policy g (b), which maximizes profits when
agents are not allowed to change their beliefs between interactions.

Proposition 18 3.8.3 If agents are constrained to recommend the same product in all in-
teractions with customers, then the infinite-horizon value function is given by

Is|
LL D; (X)
V() = max _S_ b; - ( Y=t (X))) : (3.19)
and the corresponding policy by
LL 1.
pe(b) = arg max E b; - ( S =t (X))) . (3.20)

Proof. See Appendix 3.8.3. =
The policy described in (3.20) can be re-written as

ptE (b) = argmax {¥' - A (X) - p* (X)}

where A (X) is a diagonal matrix that can be interpreted as the inverse of the risk associated
with each recommendation for each segment. There are many ways to choose the elements
of A(X). In the particular case of (3.20), the risk is fully captured by the probability of
leaving. In a real world application, this would be an appropriate place to incorporate the
knowledge of managers into the control problem. If all the diagonal elements of A (X) are
the same, p™” reduces to the myopic policy. The matrix A (X) scales the terms p{* (X) by
a risk factor unique to each product/segment combination. Therefore, under 1t products
that are very good (or very safe) for only a few segments are more likely to be chosen than
products that are average for all segments. The opposite would be true with the myopic
policy. Consequently, agents acting according to u*% would observe more extreme reactions
and have the potential to learn faster.

The policy described in (3.20) can be improved upon by allowing the agent to learn
between interactions. In other words, the agent acts according to (3.20) but would update
the beliefs after each interaction. This idea can be generalized to a class of policies where
during each period the agent solves a n—period problem and chooses the action that is
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Figure 3-8: Comparing the policies u““!) (limited learning) and p™ (myopic).

optimal for the first period, in a rolling-horizon manner. More precisely,

LL{n) __ t
o - s ()

s.t.

m(b) = VE(b)

In the specific case where n = J/ the correponding policy is given by

pHE® = arg max { R(b, X))+~ Z P06, X)VEE (o (b, 0, X))} : (3.21)
)

Figure 3-8 shows the results of a numerical experiment designed to compare the perfor-
mance of policies u“*™") and p™. This experiment consisted of simulating purchase experi-
ences for 500 customers. Figure 3-8a shows the customer base as a function of the number
of interactions. The myopic policy takes less risks and performs better in the short-run,
but agents using u““(!) learn faster and are able to retain a higher percentage of customers
after 4 or so interactions. The net result is that policy x““(®) leads to a consistently higher
customer base after 9 interactions. Figure 3-8b shows that the initial investment in learning
by uLX1) pays off in the long-run in the form of higher cumulative profits.
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3.5.2 Analyzing the Bounds

This section explains why using the policy prX™ described in the § 3.5.1 consistently yields

good results. The results of (3.19) and (3.18) can be combined to compute performance
bounds as a function of the belief state:

IS|

max Zb ( iSX). (X))) V)< Zb xex(l—wj(ofyzﬂ(X)))

Note, first of all, that the upper and lower bounds are very close to each other in the extreme
points of the belief space. The worst-case scenario happens when the company knows very
little about the customer. In this case, however, we would expect the upper bound to be
very loose, since it is based on the assurption of perfect information. This suggests that
using the lower bound value function as a basis for control may yield good results even if the
upper and lower bounds are not very close. The next paragraph presents further arguments
along these lines.

Figure 3-9 shows four possible configurations of products and customer segments. The
first column refers to the situation when there are few customer segments and they are
all very similar. Customization is of little value in this situation because one standardized
product should suit all customer segments equally well. The cases described by the first
row are equally uninteresting. If all products are very similar, the agent will learn very
little by observing customers over time. However, profits will not be affected because the
limited product variety would prevent the agent from catering to specific tastes in the first
place. If the products that the agent can recommend are all very similar to each other,
then the agent can pick any product and be confident that if that product is not optimal
then it is at least very close to optimal. Cell (4) accurately captures the situation of online
customization: different customer segments and different products. Since customers differ in
their reactions to recommendations, early observations are very informative. This is precisely
the situation when the policy performs well, because it observes “extreme” reactions from
different segments and learns fast, moving to one of the regions in the belief space where
pHV is more likely to coincide with the optimal policy. Therefore, it is not surprising that
pPH 1) performs so well empirically.

We conclude this section summarizing how policy u
described at the beginning of this section.

1. Convergence to the optimal policy

As the belief state approaches the extreme points of the belief space, the upper and lower
bounds are very close to each other. This implies that over time, as the company learns
about the customer, the policy described in (3.21) will be the same as the optimal policy.

2. Lower the probability that the customer will leave after each interaction
due to a bad recommendation.

This can only be guaranteed probabilistically because the observation error could the-

LL(1) measures up to the criteria
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Figure 3-9: Possible “extreme” configurations of customer segments and products

oretically be large enough to cause the customer to behave suboptimally. The likelihood
of this event happening decreases as the utility of the recommendation increases, and the
utility of the recommendations will increase over time.

3. Better revenues than the myopic policy.

When the company already knows the customer well, £}, the myopic policy, and the
optimal policy perform equally well. In situations where tthe agent needs to learn, pZXb
loses to the myopic policy in terms of short-run revenue, wins in terms of expected revenues
over time.

4. Learn faster than the myopic policy.

The myopic policy is more likely to suggest products that have similar utilities across all
customer segments when the agent is not sure about the customer’s true segment. This sit-
uation is likely to happen at the beginning of the relationship, and suggesting such products
leads to little, if any, learning,.

5. Ease of computation (or, better yet, closed-form solution).

The value function VEL (b) can be described in closed-form. Therefore, policies p=H™
are very easy to compute and implement for small n.
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3.6 Discussion

3.6.1 Solving the Agent’s Dilemma

The main question of this paper is how companies should customize their products and
services in settings such as the Internet. The analysis unambiguously shows that the pre-
dominant paradigm of maximizing the expected utility of the current transaction is not the
best strategy. Optimal policies must take into account future profits and balance the value
of learning with the risk of losing the customer. This paper describes two ways of obtain-
ing good recommendation policies: (i) applying POMDP algorithms to compute the exact
optimal solution (§3.4), (ii) approximating the optimal value function (§3.5.1).

The bounds analyzed in §3.5.2 make explicit why agents acting according to a myopic
policy perform so poorly. These agents fail to recommend products that can be highly
rewarding for some segments because they fear the negative impact that these recommenda-
tions could have on other segments. This fear is legitimate — companies can lose sales and
customers can defect — but it can be quantified through a matrix A (X) that captures the
risk associated with each possible recommendation for each segment. Optimally-behaving
agents make riskier suggestions than myopic agents, learn faster, and earn higher payoffs in
the long-run.

3.6.2 Learning and Loyalty

The more quality (utility) a company provides the customer, the more likely the customer
is to come back. The better the company knows the customer, the more quality it can
provide. Yet, learning about the customer can mean providing disutility (less quality) in
the short-run. The interaction policy described in this paper reconciles these two apparently
contradictory statements. The model suggests that the concept of loyalty must be expanded
to incorporate learning. The extent to which repeated purchases lead to high value and
loyalty depends on the company’s ability to learn about their customers as they interact.

The benefits of loyalty to profitability have been abundantly discussed in the OM litera-
ture. Reichheld [78] gives the following examples of how loyalty leads to profits:

¢ In an industrial laundry service, loyal customers were more profitable because drivers
knew shortcuts that made delivery routes shorter and led to cost reductions.

¢ In auto-service, if the company knows a customer’s car, it has a better idea of the type
of problem the car will have and will be able to identify and fix the problem more
efficiently.

e A shop that sells to the same group of people year after year saves on inventory costs
because it can stock only the items its customers like.
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Figure 3-10: The value of customers as a function of how well the company knows them

These examples suggest an intimate relationship between learning and loyalty. In the
laundry example, the fact that the customers have made a number of purchases from the
same service provider has no direct effect on cost reduction. If a particular customer were
to leave the company and its neighbor became a new customer, the cost savings would be
the same in spite of the newness of the new customer. What seems to matter is knowledge,
not length of tenure or number of previous purchases.

3.6.3 The Value of Knowing the Customer

'The model presented in this paper shows how to quantify the value of learning about cus-
tomers. Therefore, the optimal value function V* (b) can be interpreted as the lifetime value
of a customer as a function of how well the company knows that customer. The fact that
V* (b) is convex (as proved in §3.3.3) has interesting managerial implications.

Consider, for example, a company operating in an industry where customers of Segrment
1 are half as profitable as customers in Segment 2. Which marketing campaign would be
most profitable: (i) one that only brings in customers from Segment 1 or (ii) one that
brings customers from both segments with equal probability? The answer is that it depends
on the shape of the value function. Figure 3-10 shows three possible value functions. If
V* (b) = Vi (b), then campaign (ii) is better; if V* (b) = V¥ (b), then campaign (i) is better.
Both campaigns are equally profitable if V* (b) = V* (b). The intuition behind this result is
that sometimes it can be costly to learn about one’s own customers. In some situations the
company is better off knowing for sure that they are providing excellent value to the least
desirable segment. The lower the switching cost and the higher the variance in the utility
observation error, the more companies should invest in targeted advertising.

The more a company knows the preferences of a particular customer, the more it should
want to learn even more about that customer in order to transform knowledge into cus-
tomized, highly valued services. Intuitively, one may think the information is most valuable
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when the company doesn’t know anything about the customer. The convexity of the value
function implies the opposite. In qualitative terms, the change in the value of the customer
as the company’s level of knowledge changes from “very good” to “excellent” is greater than
the change in value as knowledge goes from “average” to “good”. This finding provides a
theoretical justification for the empirical finding that the difference in loyalty between “very
satisfied” and “satisfied” customers is much greater than the difference between “satisfied”
and “slightly dissatisfied” customers [?]. If a company knows a customer well, that customer
will receive consistently good recommendations and be very satisfied.

3.7 Directions for Future Research

The results obtained in this paper drew on previous research in Management Science and
Consumer Behavior. Future research in this topic can be pursued in both these directions.
From the Management Science perspective, the issue of the best way to implement web-
based customization policies remains open. The value function approximations derived on
§3.5 lead to important insights, but the exact numerical methods of §3.4 generate better
control policies. More work needs to be done to understand which approximation methods
work best in situations where the problem is too large to compute the optimal policy. A
second open question is how to recommend sets of products. In some situations agents are
asked to recommend more than one product. One obvious way of addressing this issue is to
consider each possible set as a single product and reduce the problem to the one solved in
this paper. This method can be inefficient if the set of possible products is large, because of
the exponential increase in the number of potential suggestions. Therefore, it is worthwhile
to explore other ways to generate good policies.

From the Consumer Behavior perspective, there are two topics of interest. First, the de-
velopment of efficient perception management devices to reduce the probability of defection.
In some situations, it may be possible to have a “suggestion” to explore tastes as well as a
“recommendation” to maximize utility. It has been shown that customers do not forgive
bad recommendations, but could they forgive bad suggestions? Second, it is important to
investigate how customers aggregate their experiences with agents over time. The model
in this paper assumes that customer behavior is solely determined by the current product
offering. In reality, the customers’ perceptions of the agent’s quality evolve over time. But
how exactly does this evolution take place? On one hand, there is a stream of research
which suggests that recency (the satisfaction derived in the last few interactions) is the most
important determinant of current satisfaction. On the other hand, first impressions are im-
portant and it can be very difficult for a customer to change his or her initial perception of
the agent’s quality. These two views are in direct opposition, and it is not clear which is
more important in web-based settings. Further research should investigate how customers’
expectations change as a function of the quality of the advice they receive.
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3.8 Appendix

3.8.1 Proof of Theorem 14

Theorem: The value function V" (b), obtained after n applications of the operator 7', is
piecewise linear and convex. In particular, there exists a set A of |S| —dimensional vectors
such that

V™ (b) = max (b- a).

€A™
Proof. The proof is by induction, and therefore consists of the verification of a base case

and the induction step.
(1) Base case: To prove that there exists a set of vectors Al such that

Vi) = b-a).
(b) = max (b- )

V! (b) is the value function with 1 step-to-go. The optimal policy with 1 step to go is
to act myopically with respect to immediate payoffs, completely ignoring any learning that
may occur. Specifically,

V() = max {R (b, X)}

XeX

IS|
= . pA

We can easily verify that V! () is of the form

V! (b) = max(b-a).

acAl
by letting
pi (X1) pig; (X1)
R L I es
Pig (X1) Pis; (Xix)
(2) Induction step
If
3A™ ! such that V™! (b) = max (b-a)
aEA™™
then

JA™ such that V™ (b) = max (b- a)

ac A"
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V™ (b) = TV™ 1 (b), and, by equation (3.13), can be written as

Vi) = r)xgg;(c{]%(b, X) +4[P (046, X) V™! (p (5,64, X)) (3.22)
+P (676, X) V™ (p (b,6%, X))} (3.23)

From the induction hypothesis, we can write V™! (t,o (b, 64, X )) and V! ((p (b, 0% X ))
as

Vi (p (5,04, X)) = max (o (1,0 X) -a) = p (5,0 X) 0™ (5,04, X)  (3.20

and

V' (@ (0,67, X)) = max (o (5,07, X)-a) = (5,0%X) ™" (5,0%X)  (3.25)

aeAn—l

where
a1 (b, HR,X) = argmax (p (b, 6", X) - a)

acAn-1
and
a™! (b, HR,X) = arg max (cp (b, 67, X) -a) i

acAn-1

Substituting (3.24} and (3.25) into (3.22) yields
V() = r)?g})cc{}?(b, X) +~Pr (645, X) [0 (6,64, X) - o™ (5,64, X)]  (3:26)
+yPr (8%1b, X) [ (b,6%, X) - ™" (5,607, X)]}.

Recall the definition of ¢ (b,8, X) from equation (3.4) and note that ¢ (b,HA,X ) and
¢ (b,6%, X) can be written as

b-T4 (X)
b,0% X) = — )
0 (0,0%,X) Pr (07]b, X)
and b- DR (X)
b0% X) = — 2

# (0% X) = 5 (b, x)

where ['* (X} and I'® (X) are diagonal matrices defined by

pi(x) o0 - 0
A
reo=| ©O R (3:27)
0 0 plél (X)
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and

pi(X) 0 0
R LY
TR (X) = 0 h fX) O | (3.28)
0 0 pI%I(X)

If we substitute the definition of R (b, X) from equation (3.8) and the expressions (3.27)
and (3.28) into equation (3.26) we note that V™ (b) simplifies to

V™ (b) =1)1{1g)acc{b-p’4 (X)+7-6-TH(X) - @™ (5,64, X) +v-b- T (X) - o™ (b,6%, X)}

by cancelling out the terms Pr (6|b, X) and Pr (8%]b, X) .

Factoring out the vector b yields

V() = max {b- [p? (X) +7T4 (X) - a™7* (5,64, X) + 9T (X) - ™! (5,07, X))}

XeX
Define the set A™ as
a= { U [ U (PA(X)+7FA(X)-a"+fyFR(X)-af)]}
XeX \aicAn-! lajcAn-1

Finally, we can conclude that

V™ (b) = max (b- a)

acAn

3.8.2 Proof of Proposition 17

Proposition: If V*7© (S;) denotes the optimal value function of the fully observable problem
when the customer is of segment S;,then

A
=FO A Y (X’l)
V) = e o )

and
]

A
P; X;
VP’(b):Zbi-ng)a{cl_ (Xi) . (3.29)
1=1

(1 - pf (X))

Proof. The steady-state equations for the fully observable problems described in Figure
3-3 are given by a system of equations

VEC (S, X) =p (X) + v (pf (X) + pF (X)) VFO(S,) +pF (X) VTO(L). (3-30)
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There is one such equation for each segment S;, and these equations are not connected since
the there are no arcs connecting the different segments. Using the fact that V¢ (L) =0,
we can rearrange the terms in (3.30) and simplify as follows:

p* (X)

FO (@ =
VS X) = A ) + pF ()

The optimality condition can be stated

A
@ = arg max
xex1—(pf (X) + pF (X))

yielding the value function

E]l A
A(X;)
VPIb= bi'ma.x pz( i '
)= 2 b pa T )

3.8.3 Proof of Propositionl8

Proposition: If agents are constrained to recommend the same product in all interactions
with customers, then the infinite-horizon value function is given by

S|
LL Pfl(x)
M Zbi'(l—v(1~pf(X))) | (330

=
and the corresponding policy by

K] A(x

Proof. If agents are not allowed to learn, then the value function that maximizes future
expected profits for the n—period problem is given by

Vr(b) = max (b-a).

a€An
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where the sequence of sets {Al, A2 A"}is defined by the recursion

At = A
A= (U [p’*(X)+P(X)-a"]);
XeX \qicAl

A" = U (U [pA(X)+I‘(X)-a‘])

where T' (X) = T4 (X) + TR (X), i.e,

[ pi (X) +pf (X) 0 0
oo - ? P00 £ ?
i 0 0 o i (X) +p§ (X)
[ (1-pf (X)) 0 0 |
~ 0 (1-pE(X)) - 0
i 0 0 (1—p|LSI (X)) A

Since the sets A™ are defined recursively, the value functions V™ (b) can be explicitly written
as maximizations over a € A! as follows:

Vi) = max(b-a)
= max (b-p* (X))
Vi) = max (b- o)

= max (b~ [p* (X) +T(X) -p* (X)])

V() = max(b-a)

acAn

= max (b- [p* (X) + T (X) [p* () + T (X) [p* () + -] -+ ] - p* (X))

= glggccb-pA(X)er-F(X)-PA(X)+"'+b'[F(X)l”_l-pA(X)

o

= maxb [I + nz—: [T (X)]"] p? (X)
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The sequence of functions & (b) converges:

Jim (V"H O % (b)) — (3.33)
n—1
= lim (r)?a.xb ”Z; [ (X)] } *(X) — maxb {HZ (X)) ] X))

n—oo \ XeX

=0

= Jtim (08 (0)

The last step follows from the fact that all the elements in I' (X)) are in (0, 1), and therefore
lim [[(X)]" is a matrix of zeroes. Now consider the difference

D"(b)=b-a—-V"(b)
where
a = argI}I(lg(c(b- 1-T0)™ [p*(X)]).

Substituting the full expression for V™ (b) yields

XeX XeX

20~ g 0= GO B 00) - (e 00 S o] o o)

Since all the elements of I' (X) are in (0, 1), the expression [I — I' (X)]™" is well-defined and
can be expanded to

I-TEO =T+ Y [P OOF

Substituting the expansion above into the expression for D" yields

o0 g ([ Swoor ] ).

lim D" (b) = 0, Vb (3.34)

n—oo
The result from (3.33) ensures that the sequence V™ (b) converges to a limit V* (b). Equation
(3.34) asserts that V™ (b) also converges to b+ & By Theorem 7, the limit is unique, so &
must the policy that maximizes the infinite horizon value function. m

It then follows that
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Chapter 4

The Costs and Benefits of Information
Acquisition

4.1 Introduction

Information is crucial to firms that offer customized services. The ability to provide services
of high utility to customers depends on knowledge of the customers’ preferences and the
ability to customize the service offerings so as to meet those preferences. Firms can learn
about their customers’ preferences by asking them questions and by observing their behavior.
Asking questions is one of the most effective ways to learn. Questions can be asked in many
different ways, as can be seen in the extensive literature dealing with the issue of questionnaire
and survey design (e.g., [98], [92]). Learning from observing interactions is significantly less
obstrusive, but also entails costs.

In situations where firms and customers interact repeatedly over time firms can use the
knowledge obtained by observing past interactions in order to server their customers bet-
ter. However, learning from interactions may involve experimenting with service design and
customization policies that can lead to unsuccessful interactions that can result in customer
defections. This situation suggests that asking questions can be highly desirable. If the
firm’s objective is to sell as much as possible (or to give the customer as much utility as
possible) then is it better to learn from observing interactions or by asking questions? The
answer is that it depends on how much the firm is willing to pay the customer to answer
questions. This is precisely the issue addressed in this chapter.

Asking questions can be expensive. This cost is not always explicit, as there are many
reasons why asking questions may not be desirable. Unlike learning from observations, ask-
ing questions is obtrusive and makes it explicit to the customer that the firm is actively
performing an activity that is directly related to service delivery. Customers go to agents
precisely because they have search costs. Consequently, they must also have costs in wasting
time teaching agents, whether it's by answering questions or by doing something else. Cus-
tomers interacting with web-based interfaces can be particularly impatient when it comes
to answering questions. The development of questionnaires and data collection can be very
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expensive in some situations. Some service interfaces (e.g., wireless devices} do not allow
for the implementation of questionnaires, and it may be necessary to incur the expense of
calling individual customers to collect data.

Finding the optimal balance between asking questions and providing service is an im-
portant decision faced by firms that deliver services through automated interfaces. firms
always have a prior belief about their customers’ preferences, but is that prior enough to
start providing service or does the firm need more information about the customer? The
agent needs to ask less questions upfront if it takes into account the learning that will occur
from observing future interactions. This means the customer has to wait less to get service.
On the other hand, in situation where customers are particularly sensitive to receiving bad
service the firm can ask questions before delivering the service to minimize the probability
of an unsuccessful service encounter.

This chapter is organized as follows. §4.2 provides a review of the relevant literature. §4.3
shows how to calculate the value of asking a question. This result help managers estimate
how much they should be willling to invest in order to obtain more knowledge about their
customers. In §4.4, the cost of asking questions is captured by the opportunity cost of not
providing service. This section analyzes the problem of whether firms should use an encounter
with a customer to provide service or to ask questions. §4.5 addresses the situation where
the firm has a limited amount of resources that must be allocated to either learning about
current customers or acquiring new customers. In this case, the cost of asking questions is
captured by a reduction the flow of incoming customers. Finally, §4.6 offers some concluding
remarks and managerial insights that follow from the analysis of the preceding sections.

4.2 Literature Review

The principle of the learning curve has been prominent in the Operations Management litera-
ture for decades. The general approach used states that the unit cost of production decreases
(or productivity increases, as in [1]) as the number of units produced increases. This function
exhibits diminishing marginal returns, as the cost converges to the lowest possible cost. The
earliest applications were in airline manufacturing (e.g., [5] and [7]), but the concept has
also been applied in a number of other settings (see [3] for a review containing more exam-
ples). The learning curve’s simplicity and theoretical appeal has resulted in applications in
a number of different settings, where the model usually displayed great predictive ability.
One important development in the application of learning curves to managerial situations
is the generalization of the assumption of early models that the choice of learning curve was
considered to be beyond the managers’ control and taken to be a fixed input into decision-
making models. Fine [34] shows how managers can effectively choose their learning curve
by controlling the quality level at which they choose to operate their production systems.
His model, known as the quality-based learning curve, explains that operating at higher
quality levels leads to an increase in the rate of learning, and hence to faster achievements
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of higher profitability levels. In [35] the quality-based learning curve is generalized to the
case of a imperfect production process, where the system sometimes produces defective items.
Whereas the level of quality was previously treated as a managerially-controlled variable, this
model considers it to be the stochastic output of the inspection policy. This generalization
leads to the conclusion that the learning benefits of quality control and inspection must be
considered so as to prevent underinvestment in quality improvement activities. Marcellus
and Dada [65] solve the problem of finding optimal strategies for investing in learning about
an imperfect production process. They find that the optimal policy is to invest in learning
until the probability of producing a defective product is sufficiently low. Dada and Marcellus
[25] generalize their previous study ([65]) by applying in Fine’s [35] operational context of
a workstation. In this case, the decision maker must not only consider whether or not to
perform maintenance (as in [35]) but also how much to invest in maintenance to learn about
the possible reasons for defects to reduce the necessity of performing maintenance in the
future (as in {65]). Their analysis concludes that the optimal policy is of the control-limit
type where the manager does not choose to learn if the probability of failure is low enough.

The rate of learning depends on the rate of production, and since the rate of production
varies over time learning per unit time is also variable. This limitation of the traditional
learning curve model was acknowledged in the early days by Asher [5] and mathematically
formalized by Alchian [2]. Variable learning rates were a relatively simple theorical addition
to the learning curve model, but they raise estimation problems which were only addressed
several years later by Gulledge, Tarimcilar, and Womer [41].

Rosen [79] made the distinction between learning by doing and learning by other means, a
concept subsequently generalized to the concept of “knowledge creation” (e.g., [18]). This is
an important distinction, as the term “experience curve” is often assumed to mean “learning
curve” in spite of the fact that learning can be acquired by means other than experience,
such as investment in quality and knowledge transfer. Mody [69] analyzed the case where
production resources could be allocated to knowledge discovery through “investment in en-
gineering”. Killingsworth [51] took a similar approach in his analysis of “investment in
training”.

Carillo and Gaimon [18] introduce a model that shows how process changes which lead
to short-term losses can lead to increases in long term capacity and hence profitability. In
their model, knowledge can be created in two ways: learning by doing and learning before
doing. Acquired knowledge leads to process changes, which are assumed to lead to higher
levels of profitability. Terwiesch and Bohn [89] extend this model to a dynamic optimization
framework where the firm has limited resources that can either be used to increase volume
and reap the benefits of selling in the present period or to learn so as to improve future yield.
Thomke and Bell [90] note that knowledge creation can occur at any point throughout the
production process. In their model, knowledge creation is operationalized through sequential
experiments through which managers learn about technical and customer-based aspects of
their product. They solve the optimization problem of the optimal number and timing of
experiments, and find and EOQ-like result where the optimal number of tests is the square
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root of the ratio of the avoidable costs and the cost of a test.

Dorroh, Gulledge, and Womer [28] present a model where managers have the option of
making direct investments in learning. This assumption radically breaks away from previous
models where investments in learning took the form of allocating constrained resources from
production or engineering to knowledge creation. In this sense, this is the closet model to the
one introduced in this chapter. However, there are some important differences. Their model
is applied in a manufacturing context where a firm produces specialized units to contractual
order. The learning curve in this context refers to cost reductions or increases in yield (per
fixed capacity or time unit), both of which have a linear impact on the firm’s profit function.
Therefore, one of their main findings is the rate of investment declines as the production
program matures. In this chapter, profit (or the value of the customer) is a convex function
of knowledge, and the most interesting findings relate to changes in the rate of investment
as knowledge increases.

4.3 The Value of Information

Consider a firm that provides a service that can be configured in many different ways to
customers from different segments. FEach customer belongs to a segment S; € S. The
firm’s beliefs about the segment to which a given customer belongs are represented by a
|S|-dimensional vector b € B, with each component corresponding to the probability that
the customer belongs to a given segment. The components of the belief vector have the

|S|
properties that b, € [0,1], Vi and }_ b, = 1.
i=1

The value function represents the customer lifetime value as a function of how well the
firm knows the customer. This function is convex, which means that the value of obtaining
an additional piece of information about the customer increases the more the firm already
knows the customer

Suppose that the current belief about a certain customer is b and the firm has the option
of asking the customer a question Y. Suppose that the question can only be answered in
two ways, Y (1) and Y (2). If the customer answers ¥ (1), the belief will change to by; if he
answers Y (2) the belief changes to b,. This situation is depicted in Figure 4-1. If the belief

is 51, then the customer would be worth V' (131) to the firm. If it is 132, then the customer

would be worth V (52). Therefore, the expected value of the customer after the question is

answered is

VY =Pr(y () )V (&) +Pr (¥ 2 )V ().

If the firm incurs a cost ¢ in order to ask this question, they should ask the question whenever
v (b) te<Pr (y (1) |B) v (51) +Pr (Y 2) |B) 1% (52) .
More generally, let Y = {Yl, Yo, ..., Y]y|} be the set of all possible questions that can be
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Figure 4-1: The value of asking a question

asked. Let Y;? = {¥i(1),Yi(2),..., Y;(|Y;%|)} be the set of possible responses to the question
Y;, and let ¢ (Y;) be the cost of asking question ¥;. The value of asking question Y; when the
belief is b is denoted V (Y;[B) and it is given by

[v7

v (11-]6) = Z:Pr (%6 |8) 1 (Bj) . (b) . (4.1)

If the current belief is b then the firm should choose to ask a. question whenever
IV, € Y stV (Y;]B) >V (b) +e(Y). (4.2)

The expression in (4.2) provides the necessary conditions to ensure that the firm asks
a question whenever it is optimal to do so. One immediate corollary from this condition
is that firms should always ask questions when there is no cost in asking. In other words,
if the costs is the same then more information is always better than less information. The
usefulness of this expression in real-life situations is limited in that the cost of asking questions
is not always directly quantifiable. In some cases, the cost can be the opportunity cost
of not making a product recommendation. In other cases, firms must decide whether to
allocate their marketing resources to learning about their current customer or in acquiring
new customers. The next two sections of this chapter address each of those two situations.
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4.4 To Provide Service or to Ask Questions?

In this section we analyze the decision problem faced by firms that must decide whether
to provide service or to ask questions. This is a problem constantly faced by firms that
communicate with customers through permission email. Permission email (REF) is a system
in which clients agree to receive personalized email messages with a pre-specified frequency.
There are many different types of firms using the channel to communicate with customers.
Permission email is common in industries such as news services, airlines, and a variety of
retailers.  Customized messages must be chosen carefully because customer defection is
often only one mouse-click away. The content of the messages can take a variety of forms.
In this paper, we consider the cases where the customized message can contain a question or
a recommendation. If the firm asks a question there is no chance of making a profit in that
interaction, but the chance that the customer will leave due to bad service is very small.
Recommendations can yield profit, but a bad recommendation can be perceived as a sign of
poor service and can therefore lead to defections.

Suppose that the firm has at its disposal a set Y = {Yl,Yg, ---’YIYI} of questions that
it can ask and a set X = {Xl, X3, ...,X|x|} of services it can provide. Customers behave
according to a random utility model. A customer from segment ¢ who is offered service X, will
accept the offering with probability p# (X), reject it and come back for future interactions
with probability pf (X) and leave the firm with probability pZ (X). Similarly, a customer
from segment 7 who is asked question Y, will give answer Y (j) with probability p}f(j ) (Y)
and leave the system with probability pZ (Y (j)}. We assume that the firm earns a payoff
of 1 when the customer accepts a recommendation and 0 otherwise. We also assume that
firms never earn a payoff when they ask a questions, and that the probability of leaving due
to asking a questions is lower than the probability of leaving when the customer is offered a
product.

Let Z = X UY denote the set of all possible actions that the firm can take. Also, let ©
be the set of all the possible observations that h firm can make after the customer reacts to
the action. The set © includes observing the actions of accepting, rejecting, or leaving (if the
firm chooses and action from X) and possible answers to the questions in Y. Furthermore, let
b* denote the belief vector after ¢ interactions. The components of b are defined recursively
according to the Bayesian rule

1
Pr (0151, 20)

b ="Pr(S* =S, 240" = [ Pr (6°]5;, 7)) (4.3)

where
(S|

Pr (816", 2°) = Y _ [bi7' Pr (6715, 2%)] -
i=1

It is also useful to define an update functioni ¢ (b, 8, Z), which maps beliefs, actions, and
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observations into new beliefs. This function is derived directly from (4.3) and is given by

bl'Pr(BIShZ)
1 bzPT(GISQ,Z)
0,7)=—— .
0 0.6.2) = 5. 2)
bis| - Pr (61Sis), Z)

The expected revenue per period is a function of the belief and the action taken. It is
denoted R (b, Z) and it is determined by the expressions

Is|
RMb,Z)=) bi-pi(Z)ifZeX
=1

and

R(b,Z)=0ifZeY.

There are two ways to approach the problem of deciding whether to ask a question or to
make a recommendation. In the first approach, firms assume that at each point in time they
will always have the choice of asking any of the available questions. In the second approach,
firms have the choice of either asking a question or providing service in the first period but
are constrained to provide service in all the future interactions. The set of policies available
in the second approach is a subset of the policies available in the first approach, implying
that a solution that uses the first approach will always be dominant. However, the second
approach has number of advantages. First, it is easier to compute. Second, it provides a
better description of policies used and available to firms operating in the real world. Finally,
when the policy can be implemented in a rolling-horizon basis, in which case the firm would
always have the option of asking questions. We now turn to the analysis of each of these two
cases.

4.4.1 One-Stage Interactions

The decision process analyzed in this section is depicted in Figure 4-2. At each point in time,
the firm has the option of asking any of | Y] questions of recommending any of |X| products.

X1 X2---)(|X| nr .. Y|Y|

Figure 4-2: One-stage decision process
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This decision problem can be modeled as a POMDP. The optimal policy is a mapping f
defined by the expresssion

00
* _ t
i (b) = argmax {Egv n}

where 7 is a discount factor and 7, is the revenue earned during the t'th interaction. The
optimal value function must satisfy the Bellman Equation

V* (b) = max {R(b, 2) 473 1P @b, )V (0, zm} ,

ZeZ pyere)

which implies that the optimal policy can be determined through the expression

8c®

" (b) = argmax {R(b, z) +1 S (P (61, Z) V" (9 (0.6, Z))]} :

The optimal value function can be calculated exactly or approximated by a number of meth-
ods, many of which are described in Chapter 2.

4.4.2 Two-Stage Interactions

The decision process analyzed in this section involves modeling the agent’s decision problem
as a two stage model. The two-stage model (not to be confused with the two-period model,
where the customer and the firm only interact twice) consists of analyzing the relationship
between customers and agents as having a period where the agent has the option of learning
about the customer by asking questions and then the agent is constrained to provide service
on all subsequent interactions. The decision trees corresponding to the decisions to be made
during each of the stages is depicted in Figure 4-3. In the first stage, depicted in Figure 4-3(a)
the firm can offer a service X; € {X1, Xz ..Xx} orask a question Y; € Y1, Y2, Y}
Figure 4-3(b) shows the possible actions for all subsequent periods, 1.e., always to provide
service.

X Xz X Y, Y2 .- Y X Xe--Xx

(a) (b)

Figure 4-3: Decision trees for the two-stage decision process
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The decision problem faced from the second period onwards is the solution of a POMDP
with |X| controls. This is exactly the problem that was solved in Chapter 3. The decision
in the first stage can be found by acting greedily with respect to the value function obtained
as the solution of this POMDP. two separate POMDPs. This result is important because it
greatly reduces the computational burden of finding the optimal solution The n’th update
of the value iteration algorithm involves the computation of only |X|*" ™', as opposed to
IX +Y|*"~" in the case of the 1-step formulation.

Let u% (b) be the policy that fulfills the condition

p,}(b)——argma.x{ & X))+ _[P(#Ib,X) V*(go(bGX))]}

fce

and let u} (b) be the solution of

py (b) = argmax {7 > _[P(@16,Y)V* (0 (0,6, Y))]} :

8cO

These two equations can be combined with (4.1) to generate a rule to decide whether to
provide service or to ask a question in the first period. The rule is to ask a question whenever

V (i (6) 16) > R (b, 3 (0)) + v D [P (Blb, s (B) V* (10 (5,6, i (b)) -
feq

4.5 Learning vs. Customer Acquisition

‘The decision of whether to ask a question or provide a service involves a tradeoff between
acquiring information and generating profits. This tradeoff can take a different form in
situations where the firm can pay their customers in order to learn about them. This
payment can occur through benefits such as frequent flyer miles, discounts, or coupons. In
these situations, firms must be able to estimate the value of the information they with to
acquire so they can devise their information acquisition policies accordingly. The value of
information is determined by the way in which the information will be used. Therefore, we
must begin by describing the setting in which the firm operates.

This chapter considers the setting where firms and customers interact over time. In
particular, the focus is on situations where firms customize the service so as to maximize
the total expected profits in the long run. This means that there is a customization policy
that maps beliefs about the customers’ prefernes into service configurations (or customized
products, as the case may be). Customers can react to these recommendations in three
different manners (see §4.4 for a more detailed description of the dynamics) and firms learn by
observing the customers’ reactions. As firms learn about customers they provide increasingly
better recommendations. This means that the higher the level of knowledge about customers
the lower the probability the customer will leave due to receiving a bad recommendation. The
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option to purchase information instead of learning through observations can be beneficial in
two ways. First, it will enable companies to earn levels of profit that would otherwise be only
attained after interacting with the customer for a long period of time. Second, it reduces
the probability that the customer will leave due to receiving a very bad recommendation.

4.5.1 Quantifying the value of learning
The Value of Customers as a function of Knowledge

In this section, we introduce a new variable, “knowlege” which represents how well the firm
knows the customer regardless of the segment to which the customer belongs. We define the
domain of this function to be [0,1] and assume that is has the following properties. First,
the value of customers increases as a function of knowledge, i.e.,

av (k)

W > (). (4.4)
Second, we assume that the function V (k) is convex. We know from §4.3 that the lifetime
value of customers is a convex function of the belief. As the belief state approaches the
corners of the belief simplex, the belief vector approaches a vector of all zeros except for one
of the elements, which has value 1. Based on this fact, it is resonable to assume that the
value of customers is a convex function of knowledge, and we write

d?V (k)

V(k)

Figure 4-4: The value of customers as a function of knowledge

Finally, we note that the value of the customer is always finite. Even if the company
knows the customer perfectly well the amount of profit it is able to extract from that customer
is not infinite, since the customer can leave or payoffs can be discounted over time. This
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property 1is expressed as
V(1) < oo. (4.6)

In the value function described above, knowledge can be thought of as an abstraction
of the belief vector. If a customer reacts to a recommendation in an unexpected manner
the belief vector can change significantly, causing the firm to believe that the customer is
more likely a member of a different segment than was previously assumed. Regardless of the
outcome, knowledge increases and so does the value of the customer.

Let C' denote the customers currently in the system. The value of the customer base is

where k. is the level of knowledge of the ¢’th customer.

The Learning Function

In order to model the value of learning, we introduce a function L (mz;k) that maps the
current level of knowledge (k) and the resources allocated to learning (m;) into a new level

of knowledge. More precisely,
L:K.M— K.

The set K represents the possible states of knowledge, and corresponds to the set [0,1). As
in random utility models, it is assumed that perfect knowledge, i.e., k = 1 is unattainable in
practice. M are the possible levels of resource allocation to learning, and it takes values in
the interval [0, fi7] where 7h is the total amount of resources available.

The first property of the learning function defined in this section is that if no resources
are invested, the state of knowledge remains the same:

L(0;k) =k (4.7)

for all k. This property is based on the assumption that customers do not change tastes over
time, and can eventually be relaxed.

The second property of the learning function is that knowledge always increases if firms
allocate resources to learning, i.e.,

oL (mL; k)

e > 0if my, > 0. (4.8)

It is more difficult to obtain knowledge about customers once the firm already knows some-
thing about them. When the firm does not know anything about the customers, simple
questions can make a large difference in improving the level of knowledge. As firms learn
about customers, they seek to refine their already good knowledge about customers. This
means that questionnaires can become longer and it is more expensive to learn. The inability
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to attain perfect knowledge is a feature of all random utility models, which assume that the
reactions of customers can vary in each particular interaction. This property is captured by

the expression
lim L(mg;k)=1 (4.9)

myr—00

tim (M) -0

mL—00 BmL

and implies that

Another important property that the learning function must satisfy is that the amount
of learning that occurs must depend only on the initial level of knowledge and the total
amount of resources invested, not on the order in which resources were invested. Suppose
that the firm is willing to invest (mz, +my,) in order to learn about a customer currently
at knowledge level k. If invests my,, the knowledge will change to L (my; k). If once the
knowledge has reached this level an additional my, is invested, then the knowledge will
change to L ((L (myg;k)),myg,). If, on the other hand, the company invests all resources at
once, the resulting knowledge level will be L (my; k). This must the same level of knowledge
attained by making the investmet sequentially. The analogous concept in information theory
is the information obtained from two independent events is the sum of the amounts of
information obtained from the single events (REF). This property is represented by the
functional equation

L(mg,,(L(mw,; k) = L (my,, (L {mr,; k))) = L (my, +mg,; k) (4.10)

Figure 4-5 shows the function L (my; %) for different values of k.

Figure 4-5: Learning functions for different levels of initial knowledge

The analysis that follows will make extensive use of the inverse learning function L~* (k1, ka).
The inverse learning function is the amount of investment that is necessary to achieve knowl-
edge ko if the initial level of knowledge is k;. This function is defined by the equivalence
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relationship
Lt (k‘], kg) =m<> L (m; kl) = ks. (411)

It follows immediate from (4.11) that if L (m, k1) = ko and L (my, k3) = ks then
L (L7 (k1 k3) + L7 ko, ks)  Ku) = k. (4.12)

The Lemma below proves a useful result about the inverse learning function that will be
important in the analysis contained later in this chapter.

Lemma 19 If k; < k2 then for all k € (k1, ky)
L7 (ki k) = L7 (ky, k) + L7 (k, k)

Proof. Since L is a learning function, it must satisfy (4.12). Therefore, we have
L (L7 (ky, k2) 1 k1) = L (L7 (k, ko) s L(L7Y (K, k)5 Ka))
= [ (L_l (k‘l, k) + L_l (k, kg) ; kl) [ |

Customer Arrival Process

Suppose that customer arrive according to a Poisson process with rate A (m,). We assume
that the higher the amount of resources allocated to customer aquisition (m,4) the higher the
customer arrival rate A (m,4). We also assume that after a certain amount of investment the
firm cannot increase the arrival rate significantly, i.e., there are diminishing returns. These
assumptions are based on models of customer response to advertising expenditure (e.g., [56],

[57]). If It then follows that
oA (m A)

BmA

lim -—6}\ (ma)
Mg —00 amA

> 0;

< 0.

Little [57] points out that response to advertising can be concave or S-shaped, so any as-
sumptions aboui the second derivative of A(m,) with respect to m, will depend on the
specific setting to which the model is being applied.

The probability distribution of the number of customer that arrive between interactions
is given by

Pr(N =n)= e—"(m)w:—!”)n, (4.13)

and the expected value of this random variable is given by

E(N) = A{my).
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4.5.2 The Resource Allocation Problem

Let 7 be the total available resources, m4 the resources allocated to customer acquisition
and my, the resources allocated to learning about customers. If we also assume that resources
cannot be allocated for any other purpose it follows that

ma +myp = m.

The optimization problem considered in this section is how to allocate 7 units of resources to
customer learning or customer acquisition. The analysis begins with the study of simplified
cases which provide insight into the nature of the optimal allocation policies. The results
from these analyses serve as building blocks that are combined to yield the optimal solution,
presented in Theorem .

One customer, constant acquisition rate

Unlimited Resources Suppose that the firm has one customer and its knowledge of that
customer is k. Then the value of the customer base is V' (k). If an investment of m;, is made
to learn about the customer, the value of the customer base will change to V (L (myg;k)).
Therefore, the revenue from the investment is [V (L (my; %)) — V (k)], and the profit from
making the investment is given by the function

I(my;k) =V (L(mg; k) = V (k) — mz. (4.14)

Regardless of the initial level of knowledge, the profit always goes to minus infinity as m
goes to infinity. This result is formalized below.

Lemma 20 lim II(m; k) = —oo for all k.

Proof. I1 (m; k) =V (L (m;k)) =V (k) —m
lim V (L (m; k)) = 1 follows from (4.9); V (k) is independent of m ; lim m = oco. There-

fore,
lim I (m;k)=1-0—00=—00

m—00
]

Figure 4-6 depicts the profit as a function of the investment for different levels of initial
knowledge (k). For low initial values of k, the profit first goes down then up then back down.
For medium values of £, it goes up then down. For high values of £ it always goes down.
These differing shapes are a consequence of the fact that it is very expensive to acquire
additional information when & is high (see (4.9)). Since the value of knowing the customer
perfectly is finite (recall (4.6)), for sufficiently high k the cost of acquiring additional far
outweights the benefits. The first order optimality conditions are

dIl (mz; k) _ v (L (mg; k))dL (mg; k)

—0—-1=
dmL dL dmL O 0
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IX m,'k)T

Figure 4-6: Profit from making an investment in learning of value m when the level of
knowledge is &k

which can be simplified to

dV (L (my; k) dL (mp; k)

=1
dL dmL

The term ﬂég}j—b@ is the slope of the value function, so it is strictly positive. The
term @5%?—"2 is the slope of the learning function and it is also strictly positive. Since

the learning function is concave it is possible that an extreme point of I (my; k) is a local
minimum. Therefore, it is important to look at the second order condition.

< 0.

d*1L (mp; k) d*V (L (mp; k) d(k,mp) N dV (L (myp; k) &®L (my; k)
dm? - dL? dmy dL dm?
The only one of the four terms that can be negative is %’,L—k) This gives us insights
L
into the situations when the investment is not a local maximum. Of all the points that fulfill
the first-order optimality conditions, the local maximum will be the one with the highest
value of k. The characterization of the optimal policy follows from a series of results below.

Lemma 21 For all k there is a level of investment m* (k) above which it is unprofitable to

invest.
Proof. The statement of the lemma can be restated as Yk 3Im™ (k) s.t. 11 (m*;k) <0
Vm > mf. This property follows immediately from lim (Il (m;k)) = —occ =
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Lemma 22 If k; < ke < k3 then
1 (L‘1 (k1, k2) ,kl) +1I (L‘1 (ka, k3) ,kg) =1I (L‘1 (k1,ks), k3)

Proof. LHS: IT (L7 (k1, k) , k1) + T (L7 (ky, k3) , k) =

= [V (k) =V (k1) — L7V (R, k)] + [V (k3) = V (ko) — L" (Ko, ks)]
=V (kg) -V (kl) — [L_l (k‘l, kz) + L1 (kQ, k3)]

By Lemma #,[L7! (ky, ko) + L7 (ka, k3)] = L7 (ky, k3)

Therefore the LHS can be simplified to

LHS =V (k) — V (k1) — L7 (1, k)

which is equal to the RHS by (4.14). =

Theorem 23 If m* (k1) > 0 and m* (k2) > 0 are the optimal levels of investment given
initial knowledge ki and ks respectively, then

L(m* (k1); k1) = L(m* (k2) i k2) .
Proof. The theorem will be proved by demonstrating that assuming
L(m* (k1) ; k1) # L{m* (k2); k2)

leads to a contradiction in the optimality of m* (k;) and m* (k).

First, let L (m* (k1) ; k1) = k} and L (m* (k2) ; k2) = k3. Since L is a learning function it
must satisfy (#), which taken with the statements m* (k;) > 0 and m* (k) > 0 implies that
k1 < ki and ko, < k3 Without loss of generality, asssume that k; < ky. If k] # k3 then one
of two statement is true: either (1) k7 < k3 or kf > k%. These two cases must be analyzed
separately.

Case (1) k7 > k3

We have

From Lemma (21) we have

I (L—1 (kl, k;) ) kl) =1I (Lgl (kl, k;) 1k1) +1I (L41 (k";a kf) ’k;)
IF TL(L (K3, k7). k3) = O then
I1 (L"1 (k1, k1), kl) =11 (L_l (kv  k3) , k1)
which means that either L™ (k3, k}) = 0 (which would imply that k] = k3) or that m* (k;) =
L7 (k1, k3), contradicting the optimality of L™ (kq, k7).
IF I (L1 (K3, k1), k3) > O then
II (L_1 (k2 k1) k2) =11 (L'1 (Ko, k3) , ko) + 11 (Lf1 (k3, k1), fc;) ,
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implies that
IT (L“1 (k2, k) ,kg) > 11 (L'1 (k2, k3), kg) ,

contradicting the optimality of k3.
IfIT (L~ (K3, k), k3) < O then
(L7 (ky, k3) , ka) > TL(L7 (Ko, &), Ko

contradicting the optimality of k7.
Case (2) k} < k3
Applying Lemma 22 we obtain

(L7 (ko, k3) ko) =TT (L7" (ko k), ka) + T0 (L1 (K7, K3) ,k})
If T (L7 (K3, k%), kt) = 0 then
IL(L7 (ko k3) ko) = TL (LY (Ko, k7Y, K2)

which means that either L~! (k{, k3) = 0 (which would imply that k} = k%) or that m* (k;) =
L7 (ko, k), contradicting the optimality of L= (k, k3).
If (L1 (7, k3), k) > O then

I (L7 (K1, k3) ki) =10 (L7 (K1, kY), ki) + 1 (L7 (k, k3) k7),

implies that
(L7 (ky k3)  ka) > TL(L7Y (K, D) ki)

contradicting the optimality of &7.
IFIT (L7 (k3,k3), k) < 0 then

II (L—l (kz, k;) ) kg) <II (L_l (k‘z, k;) ,kz)

which cannot be true because it contradicts the optimality of k5. =

Theorem 23 can be interpreted that the optimal information acquisition policy is to invest
until a certain level of information is attained. Corollary 24 relates this level of information
to the maximum level of information at which it is profitable to invest at all, from Lemma
21.

Corollary 24 If m* (k) > 0 then L (m* (k); k) = k¥
Proof. From Theorem 23 we have L (m* (k¥ — €) ;k7 — €} = L (m* (k) ; k). Taking the
limit
. * H __ LH — pH
ll_I’I{I) [L (m (k 6) 1k E)} k

yields the desired result. m
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The last few results have analyzed the investment policy when the initial knowledge is
high. Now we turn to the situation when the initial level of knowledge is low.

Lemma 25 IfIT (L' (0,k¥),0) < 0 then there exists a level of knowledge k" such that it
is never profitable to invest in learming if k < k°.

Proof. By the definition of the profit function, IT (L' (0,k),0) < 0 is equivalent to
V(") -V (0)- L (0,k7) <.
Consider the profit function when the initial knowledge is a small € > 0:
IT (L'1 (E,kH) &) =V (k") -V(e)- L (z—:,kH)

Since

IT(L7'(0,e),0) =V (e) =V (0) — L71(0,¢)

we can use Lemma 22 to rewrite this profit function as

(L' (k%) ,e) = M(L(0,k7),0) —II(L7'(0,¢),0)
= [VFED -V ()] - [L7(0,k) — L7 (0,6)]

For sufficiently small €, [V (k) —V (¢)] = [V (k) —V (0)] and L7 (0,€) = 0 which
implies that
II(L7" (e,k7) ,€) <O,

Letting k% be the highest £ that fulfills the condition imposed by the equation above yields
the result of the Lemma. m

When the conditions of Lemma 25 are met,it is not optimal to invest in information
acquisition. This is likely to happen when learning is expensive (the method of learning is
inefficient) or when the slope of the value function is low when knowledge is near 0. Issues
of sensitivity analysis with respect to the problems parameters will be dealt with in §4.5.3.

The optimal level of investment as function of the initial knowledge is depicted in Figure
4-7. The most salient feature of this curve is that it is discontinuous at k~. This is because
the conditions of Lemma 25 are satisfied in this case, and the optimal level of investment is
Zero.

The profit from investment when investment is optimal is depicted in Figure 4-8a. The
percentage increase in the value of the customer (ﬂ"{‘,—((,f)m) as a function of the initial knowl-
edge is depicted in Figure 4-8b. Finally, the return on investment (W ) is depicted in
Figure 4-8c.

Constrained Resources Suppose that the firm cannot invest more than 7 on learning.
kE.
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Figure 4-7: Optimal level of investment as a function of knowledge
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Figure 4-8: Profit function, relative increase in customer value, and return on investment

when investment is made optimally
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The optimization problem becomes

In (mL; k) = V(L (mL; k))) - V(k) —my

s.t.
mr < 17.
The optimality conditions are
dll (mL; k‘)
dmp, =H
and
p(m—m) =0

where 1 is a Lagrange multiplier. The case when the constraint is not binding is equivalent
to the unconstrained optimization case, therefore the analysis in this section will focus on
the case when u > 0.

Theorem 26 There is a level of knowledge knin such that, for all k, if the firm is unable to
reach that level of knowledge then it is better not to invest at all.

Proof. Let kmin = L (m* (k%) ; kL), where kL is the lowest level of knowledge at which it
is profitable to invest.If ki, = &7, then the constraint is never binding and the solution will
be the same as in the unconstrained problem. If the constraint is binding, i.e., i (k,ﬁ) > 0,
then m* (k%) = i, and for small e, m* (k% +¢) = 7. Since (k% +¢) > kL it must be the
case that L (; kf +¢e) > L (i k:) . =

The theorem above implies that when there is a maximum limit to the investment that
can be made, firms will invest less often than they would in the unconstrained problem. This
result is formalized in the Corollary below.

Corollary 27 There are situations where it is optimal to invest in the constrained problem
not in the unconstrained problem even when it would be feasible to make the investment..

Proof. Follows immediately from k% < kZ and Theorem 26. m

Figure depicts the optimal investment levels as a function of knowledge. In [0, k%] and
in [£#,1] the constraint is not binding. In region [k, k%] the constraint is binding but no
investment is made. In this region, if the firm could have invested any amount it would have
invested m* > 7, but if it is constrained to invest at most / then it is better not to invest
at alll Figure 4-10 shows I (m; k) for k£ = k% and k = k” to help explain this phenomenon.

Figure 4-11 depicts the profit assuming investment was made optimally as a function of
knowledge.

Theorem 28 Consider a firm that faces the problem of investing up to ™ in order to learn
about a customer currently at knowledge level k. The optimal investment policy can be
summarized by two simple rules: (1) if k < k% or k > k™, do not invest; (2) otherwise,
invest min (77, L~ (k, k7))
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Figure 4-9: Optimal level of investment under constraints

(m;k)|

Figure 4-10: Understanding the discontinuity in m* (k)
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Figure 4-11: Profit as a function of investment jnder constrained resources

Proof. Not investing when if k < k% follows from Lemma 25 Not investing when if

k > k" follows from Lemma 21, Investing min (7, L~ (k, k7)) follows from Corollary 24.
n

Two customers, constant acquisition rate

This section analyzes the situation when a company has a fixed amount of resources,r;,
that must be allocated to learning about two different customers. The profit function is

(e, meys ki ko) = V(L (ky,my,)) - VAL (k1)) + V(L k2, mp,)) — V(L (k) — my,
where the total resources allocated to learning are given by
mr, "LmLz =my < mL-

Letting
™y = max (M, [m* (k) + m* (%1)])

and substituting
My, =My —my,

into the profit function yields
(s ks, ka) = V(L (ki,me)) = V (k) + V (L (2, s —mp)) ~ V (ky) — 1,

which is a function of only one unknown variable and can be solved using the same techniques
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as in the previous section.
The KKT optimality conditions are

dIl (my; ki, k2) _ dV (L (ky,my)) dL (kz, mi) 4 (L(k2,mp)) dL (ky,my)
dmy, dL dmy, dL dmy, =#

and
p(mg — ) =0

The theorem below describes the optimal control policy, which follows immediately from
the insights obtained in §4.5.2.

Theorem 29 Let k' and k* denote the level of knowledge about the first and the second
customer respectively. The optimal policy to invest My, to learn about two customers is to
follow four steps: (1) Do mot invest in a customer with k < k% _ or k > k¥. (2) Invest on
the customer with the highest %}—L until %h:kl = %lk:kr (3) If k' # k? then invest in the
customer with the lower k until k' = k*. ({) If k' = k? invest equally in both customers as
long as g—g > 0.

Proof. Step (1) is an immediate consequence of Theorem 28. Step (2) follows from the
fact that the profit from investing Am increases with -g—g, ie.,

o A Ol
H(Am,k)NAm%

k=ki
and therefore
I (Am; &*) > I (Am; k7)
if and only if
on
om

21
ki OM

k=kJ

e 8 _om 2
Step (3) follows from the fact that if 3| ., = 8| , and k' # £? then &1 e 0 and

%} e < 0. Step (4) follows from the fact that investing money when S always generates

negative profits and is therefore always undersirable. m

n Customers, constant acquisition rate

‘This section generalizes the problem of §4.5.2 to the case when a budget of size /7, must be
allocated to learning about n different customers. The profit function becomes

11 (mL11mL27 MLy kla k’b seey k‘n) = Z [V (L (knijn)) -V (kn)] —my
i=1
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where
7

myp = Z [mz,]

=1

subject to the constraint
n

Z [mg,] < .

i=1
The KKT optimality conditions are

oIl
3m L;

=pfori=1,..,n

and .
H (Z [an] - 'ﬁlL) =0.

The Lagrange multiplier ¢ will be zero if the constraint is not binding. Since this problem
is a direct generalization of §4.5.2, the optimal control policy will be a generalization of the
policy described in Theorem 29.

Theorem 30 Let k' denote the level of knowledge about the i'th customer. The optimal
policy to invest Ty, to learn about n customers is to follow five steps: (1) Do not invest in a
customer with k <k, ork > k¥, (2) Rank all customers in descending order of $X so that
e > 82|, as long asi < j. (8) Invest in customer 1 until 22| ., = 2| . (4)
Invest in customers ¥V and 2 until g%lk:klzkz = g—ghzka (5) Repeat step 4 4 |k=k=‘ = g—g|k=ki
for all i,j. (6) Invest equally in all customers as long as §= > 0.

Proof. This theorem is a direct generalization of the policy in Theorem 29, and it is
optimal for the same reasons described in the proof of that theorem. m

Zero customers, variable acquisition rate

The customer acquision rate depends on the intensity of advertising, as described in §4.5.1.
We make the assumption that firms do not know anything about the preferences of new
customers, so the value of new customers is V' (0).
Suppose that the firm makes an investment of m4 in advertising. The expected profit

from this investment is given by

Ell(ma) =nV(0) —ma

n
. We know from (4.13) that the customer arrival process is Poisson with rate A (m,), so we

can write
E(I1(ma)) = X(ma) V(0) — m4.

n
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The function A (m,4) will be defined as
A (mA) =+ Cp In (mA) .

This function is depicted in Figure 4-12. According to Rao (REF), this function agrees with
empirical results in the usual range of advertising expenditures.

A(m)

Figure 4-12: Customer acquisition rate as a function of investment

Furthermore, it satisfies the properties described in 4.5.1, as proved below.

Claim 31 The function
A(ma) = ¢ +c2ln{ma)

where ¢; and ¢y are positive constants, satisfies the properties described in 4.5.1.

Proof. oA () 5
Ly .
amA = amA (Cl + ¢ In (mA)) >0
2
lim M < 0.

map—oo 3m?4
]
The optimization problem can now be formulated as

maxF (IT(ma)) = [¢1 + c2In (m4)] V (0) — m4 (4.15)

m4 N

subject to

Optimality conditions are



and
p(m —m)=0.

The profit function in (4.15) is depicted in Figure 4-11. Since the profit function is concave,
it is unnecessary to check second order conditions because we can be assured that the second
derivative will be negative any extreme points are certain to be maxima.

mm)]

II(m* )

v

Figure 4-13: Profitability of different levels of investment in customer aquisition

n Customers, variable acquisition rate

This section combines the results of §4.5.2 and §4.5.2 in order to analyze the general problem
faced by a company with a fixed budget that can be used to invest in learning or customer
acquisition. The profit function if given by

n

I (mr, mask) = [V (L (knymi,)) =V (k)] + ¢V (0) = (ma + my)

1=1

subject to
ma+mp <M

and .
mpr = Z [’ITL Ln] .
i=1
The KKT optimality conditions are

oIl
om L;

=pu,fori=1,...,n
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Figure 4-14: Value functions corresponding to different interaction strategies

and
u(mA+Z[an] —m) =0
i=1

The optimal investment policy is given in the theorem below. It extends the result of
Theorem by including and additional g—g index for investment in advertising.

Theorem 32 Let k' denote the level of knowledge about the i'th customer. The optimal
policy to invest my, to learn about n customers is to follow five steps: (1) Do not invest
m a customer with k < k% or k > k. (2) Rank all customers zn descendmg order of
a , so that ag[k:kl > an|k _.; aslong as i < j. (3) Calculate £ 28 for investment in
advertising and include this index in the mnkzng in (2) as if it was the (n + 1)st customer.
(4 ) Invest in C'u,stomer 1 until aﬂ| gl = am wei2 (0) Invest in customers ¥ and 2 until

|k Mgz = Ik " (6) Repeat step 5 g%lk:ki for all 4, 5. (7) Invest equally in
a,ll customers as long as > 0.

Ik KT

Proof. This theorem is a direct generalization of the policy in Theorem 30, and it is
optimal for the same reasons described in the proof of that theorem. m

4.5.3 Sensitivity Analysis
Quality of recommendation policy

In this section we demonstrate how different interaction policies can affect investment strate-
gies. Most companies that customize their services online use myopic recommendation poli-
cies. These companies often make significant investments in learning about their customers.
If they improve their customization strategy by taking learning into account, how should
their investmet strategy change? Figure 4-14 shows the value functions corresponding to a
good recommendation strategy (V5) and a bad recommendation strategy (V;).
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The parametrized profit function is
I (mz, ma; k, a) Z[V (knym)) — V (k)] + wV (0) — (ma +myz), r=1,2

subject to
ma+mg <M

where
n

mr = Z[mzm]-

i=1
Figure 4-15 shows the optimal investment levels for the two different value functions.
Figure 4-16 shows the profit corresponding to these investments.

P
"

m*(k)

Figure 4-15: Optimal investment levels for two different value functions

Effectiveness of Learning Method

Consider the situation where the company has the opportunity to use a questioning method
that learns faster but is costly to implement. An example might be calling the customer
over the telephone in order to learn about them or use a quesionnaire sent over mail (the
telephone call costs more but yields more information). How will the new learning system
affect the profit and the investment policy? Which system should be used?

The first step in performing this sensitivity analysis is to define a suitable learning func-
tion that allows us to parametrize the effectiveness of the learning method.

Claim 33 The function
L(mg;k)=1+(k—1)a™" (4.16)
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Im* @,k

Figure 4-16: Profit given optimal investment for two different value functions

where ¢ € (0,1) satisfies assumptions (4.7), (4.8), (4.9),and (4.10), making it a suitable
Learning function.

Proof. (Al): L(0;k) =k for all k

LOk)=1+(k-1)a’=1+(k-11=k

(A2) ZmE) g

Q@ =(k—1)a"Ina

a€(0,1) »Ina<0

kel0,1) = (k~1)<0

a™ >0

Therefore, QL{;%"“Z >0

(A3) 1111_1;130[/ (m;k) =1

ﬂlli_r’r;o(le(k—l)am)=1+(k—1)TTILL1{1)0am=1+(k—1)O:1

(Ad) L(ma; L (ma; k)) = L (my + my; k)

L(my; L(my; k) =14 ((1+ (k—1)a™) — 1) a™

=1+ ((k—1)a™)a™

=1+ (k— 1)am1+m2 :L(m1 +m2;k) |

The function (4.16) is particularly appropriate to describe the learning process because in
addition to possessing the necessary features the paramenter a has an interesting managerial
interpretation. It is the effectiveness of the learning method. The smaller the value of a, the
more effective the method of learning. Two learning functions are depicted in Figure 4-17.
In this case, L, is more efficient than L,.

The parametrized profit function is

II(mg,ma; k,a) = Z[V(1+(kn—1)a71"") -V (k)] +wV(0) —(ma+my), r=1,2

=1
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Figure 4-17: Learning policies of different effectiveness
subject to
ma+mp <

where

T

myp = Z [mr,] -

i=1

The optimal profit function can be written as a function of the parameter a:
IT* (a) = Il (m, (a) ,ma (a) ; k, ).
Differentiating both side with respect to a and simplifying the result yields

dil* (a) _ OIl(m (a),ma(a);k,a)
da Oa

my=mp(a),ma=m4(a)

Figure 4-18a shows the optimal investment levels for learning functions L; and L,. In
this figure, L;(represented by the solid line) is the better learning function. Figure 4-18b
shows the profit when investment is made optimally for learning functions L; and L. There
are two important results from this analysis. First, if a; < a3 then k{ < k¥ and kff > kI
Second, if a; < ay then II* (my; k,a,) > II* (my; k,a,) for all k.

4.6 Discussion

The analysis in §4.4 provides the theoretical framework for a decision-support support tool
that can be used to determine whether firms should provide service or ask questions. Having
the flexibility to ask questions at any point in time is better than the usual practice of asking
new customers to answer questionnaires and always provide service after that for two main
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Figure 4-18: Optimal investments and their corresponding profit for different learning func-
tions

reasons. First, because firms can ask fewer questions at the beginning of the relationship
and start providing service sooner. Second, because if a customer behaves in an unexpected
manner the firm is often better off asking a question rather than continuing trying to learn
through observations.

The learning function defined in § 4.5, based on four simple and non-controversial as-
sumptions leads to a number of insights into the value of information about customers’
preferences. First, that information is not most valuable when companies do not know any-
thing about the customer and neither is it most valuable when firms know the customer well.
It is most valuable somewhere in the middle, as shown in Figure 4-8. This result was found
by understanding the interaction between a concave learning function and a convex value
function. When firms don’t know anything about theirs customers, information is cheap but
it does not lead to significant changes in the value of the customer. When the firm already
knows the customer well and additional piece of information is very valuable, but it is also
very expensive to attain. The second important insight is that if the firm is unable to make
a significant investment in information acquisition then it is better not to invest at all. This
result, depicted in Figure 4-9, is a consequence of the fact that a minimum level of knowledge
must be achieved in order for the transaction to be profitable. Finally, as proved in Theorem
28, we note that the optimal information acquisition policy can be expressed in very simple
terms: invest only when the initial level of knowledge falls between two given thresholds,
and do so until the level of knowledge reaches the higher of the two thresholds..

The policy derived in § 4.5.2 captures the tradeoff between customer acquisition and
customer retention. This is an important building block in trying to obtain a fuller picture
of the financial aspects of providing services through automated interfaces. Information is
always desirable if it is free, but in the real world firms must weight the cost of acquiring
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information with other budgetary possibilities. The alternative investment considered here
is increasing advertising expenditure. The optimal level of advertising has been extensively
studied in the literature, and is therefore suitable as a point of comparison for investing in
information acquisition.

The sensitivity analysis in § 4.5.3 shows that firms that adopt new technologies should
change their information acquisition policies accordingly. T'wo changes must be made if firms
improve their interaction policies (i.e., obtain a better value function). First, the threshold at
which it is profitable to acquire information will be lower. This is because a better interaction
policy means that the firm has a greater ability to learn through interactions, and therefore
a small amount of information is sufficient to cause a significant improvement in the value
function. By contrast, if a firm uses a myopic interaction policy then a small improvement
in knowlege might not lead to any changes at all in the service to be recommended. Second,
the threshold at which firms should stop purchasing information is also lower. This change
is a direct consequence of the fact that value functions corresponding to bad recommedation
palicies have very steep slopes as firms approach perfect information. Firms that improve the
learning acquisition policy must also make changes in their information acquisition policies.

The results obtained in this chapter raise a number of further reserach questions. First,
how do information acquision policies change if the firm has the option of purchasing infor-
mation at any point in the relationship? This is essentially combining the models of §4.4 and
§4.5. Second, how can the methodology of §4.5 be modified to account for non-symmetric
value functions? The analysis conducted here assumes that all customers have the same
value if the firm knows them perfectly, which is not the case in many real-world applications.
Finally, there are a number of other applications in services operations management (e.g.,
pricing) where the learning function defined § 4.5.1 in may be useful.
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defined by the inner-product

((0,)) 1= v(t )T Wapu(t,) + /tfv(tJTWRw(t) dt.

Unfortunately, we are not yet ready to apply the TRQG algorithm due to a difficulty that has has
been introduced: system (5.19,5.20) now depends on Ay;, and 18, as a result, no longer decoupled
in time. We propose to use a known approzimation for the nonlinear term (KV2f (¥:)\iAy;) in
equation (5.20), thus decoupling the system in time and allowing for the use of the TRCG algorithm.

In solving for the inhomogenous terms, we solve the uncoupled system

Ay = AAy; QFAN + E, Ayr(0) = yo — yi(to), (5.23)
—AXy = ATAN — KV f(y) iy, + Ty, AXr(t) = —Wriip,, (5.24)

where Ay, is an approximation of Ay,. Given a method for determining Ay, system (5.23,5.24)
becomes uncoupled in time, allowing for the calculation of Ay; and the subsequent use of the
TRCG algorithm.

We must therefore finally propose a method for determining nyi. We do so iteratively: given

an index r and an iterate Ayyir, solve equations (5.23,5.24) with
Ay = Ay,,. (5.25)

We denote the result of this operation A}/IT. With this value, we can use the TRCG algorithm to

a0

for the next iterate A~yir +1- These iteration can then be repeated until some stopping criterion,

solve

HAﬁyiTH - Ayyz-rH < e for example, is observed. The crucial point is that since G is SPD in the inner-
product space defined above, the TRCG algorithm can be used without modifications to effectively

solve system (5.13) for Ay;.

9.4.3 Initializing the Algorithm

In order to execute the algorithm proposed above, an initial guess must be specified. Here we

address the final issue of choosing a suitable Aﬁyz‘o (r=0). Suppose we choose A@-O = 0 to start
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the algorithm. Then, solving the system
g A~yi1 = A~y1 0

for A~y“ provides us with an initial, first order approximation of Ay,. As we have shown in
previous chapters, a solution for the above equation exists, is unique, and can be found by the
TRCG algorithm. This is also true of each subsequent iteration (r = 1,2,3,...) regarding the
solution of the system (5.26).

Thus every Newton step Ap; can be calculated assuming the above procedure converges: Ay;, —
Ay, as r — oo. Here we make this assumption and show that it holds for our heat radiation example.
In addition, we note that the algorithm can only be considered efficient if the iteration converges

quickly; that is, 7 must not be too large before we attain sufficient convergence.

5.5 Sufficient Convergence for Lagging Procedure

It was noted in section 4.4.7 that exact convergence of the Newton iterations for IPMs is not
necessary for convergence of the full algorithm. The interpretation in that section was that the

solution need not move exactly along the central path for convergence to the true solution u*.

Here we are faced with a similar situation. Define the central path of the lagging procedure as
the exact solution of the stationary conditions (5.8)-(5.12) for all positive u* ¢ IR. Again, we are
not interested in the exact value of Ap; for any given Newton iteration i, but only in obtaining
good enough estimates of these values along the central path as we approach the true solution of
the problem. Therefore, it may be postulated that, similarly to IPMs, our lagging procedure need
not produce estimates Ap, that have converged fully to Ap; of system (5.13).

We further postulate that, much like in the case of IPMs, our estimates can be rather far from
the central path and allow for convergence. Here we’ve applied a very simple rule to take advantage
of this feature: take rjpgy = R where R is a small integer, typically less than 5. In section 5.8 we
present an example of the fully implemented algorithm where this simple rule has been successfully

used.
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5.6 Determining the Newton Step

Having determined an appropriately “close” approximation A~yz of Ay,, we may proceed to find

and approximation of the Newton step Ap;, which we denote dpi:

KppAp; = frp, (5.27)
where now B _
Wrr BT 0 -1 I
B 0 (A-&) o o
Kep=|0 (A"+%) we 0 0/
Zy; 0 0 Cii 0
Zai 0 0 0 Chi

as in section (4.4.8). The above fully determines A~pi since the right-hand side fpp now includes

the approximation term dyi.

5.7 NL-IPM-TRCG Algorithm

Algorithm NL-IPM-TRCG
Set k = 0;
Set uf=0 = M (M large);
Set up—p at the analytical center of If;
Calculate pg—o(uo);
while (u* > i) do
while (||Fj| > Fi1) do

Ayyl-r:O = 07
forr=1,...,R do
Ay; = Ayi;

Solve (5.23,5.24) for Ayr,;

Solve (5.26) by TRCG for Ay, 11;
end do;
Solve (5.27) for Ap,;

124




Iy
7% Y
s N .
\f Irs
Ip *1 Ip
o, Ol Oy
4 A A
Iy

q,= U q;= U qi= U

Figure 5-1: Diagram of sample nonlinear heat transfer problem domain (7cm x 3cm).

Solve for ¢; and f3; by Armijo rule and (4.65), respectively;
Pir1 = pi + (0.995)Bi0;Ap;;

end do;

" =p;;

if (¥ > pyo1) then
k=k+1;
Solve for p* by (4.64);

end if;

end do

5.8 Example Problem: Nonlinear, Constrained 2D Heat Transfer

5.8.1 Problem Statement

We now address a specific nonlinear problem governed by partial differential equations. In particu-
lar, we consider radiative heat transfer, where the geometry is similar to the one considered in the
problems of previous chapters.

Take the domain shown in Figure 5-1, where the reaction surface ['rs is now exposed to an
environment at temperature y;. Rather than imposing a Neumann condition on this boundary, we
allow heat exchange through radiation to occur. This process is nonlinear and governed by the

Stephan-Boltzmann law (5.1). The governing equations for this process can thus be expressed as:
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gte) =G0 in 9, (5.28)

- M
% =V (a(z)VF) + mz:%um(m) in Qx (to,tf), (5.29)
Vi-i=0 on Ty x (fo,tf), (5.30)
Vi-n=a(G—y}) on Tgrsx (to,ty), (5.31)
g=300K on Tp x (i), (5.32)

where all definitions and properties are as in previous chapters. We add here that we take ¢ =
5% 10~7 /m2 K? for the following examples. This value is unrealistically high for typical engineering
materials, making the effect of the nonlinear term more pronounced than may be expected to test

the proposed algorithm.

5.8.2 FEM Formulation

In stating the above problem in the FEM context, we recall the spaces defined in section 3.11.
To preserve desirable properties of the stiffness matrix, we deal directly with the time-discretized
form of the problem and treat the nonlinearity explicitly. By doing so we may state the problem

governing equations as

v = vo; (5.33)
yZ _ yé’fl
M (T) = Ayl — fF Y+ B+ FY,  i=1,...,L, (5.34)
where
Fh; = @@ N - u3) ) (5.35)

Having defined the problem as such, and following the procedures of section 3.11, we may easily

derive the stationarity conditions:
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¥ = yo;

yﬂ_ye—l
M(-—E——>=Ay£—f(ye_l)+3ué+Fg, g:].,...,L;

(M — At )T A = Wr(y* — yr) + Wa(y* — yr)At;

)\E _ /\2—}—1
M (—> = ATX 4+ Wy - vh) - VIWOXY,  £=L-1,....1

At

ut = ~W,; BTN, /=1,...,L—1.

where we define the matrix

V() = 4diag[(5(5°)°, 9)),

with

(v, #); = (v, ;).

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

Finally, in order to pose the Newton projection problem, we state the variations in stationarity

conditions as

Ayd =y — Y,

Ayl . Ayl—l . _ _
M (T = AjAy; - QTN + F,

- T
(M - AtAf) AN = Wr(AyE — i) + Wr(AY® - 35,) At

A/\Z _ A)\IH-l
M(

el BCCUS CRUAR RO

Auf = —(HF)"(BTA + BTAX + §i),
where we note that ﬁ'f and ff absorb the explicit nonlinearity terms, and

A= A+ V()

V3£ (yf) = 12diag[(5(5f)?, ¢)].
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Figure 5-2: Optimal control and I'rg temperature histories for nonlinear constrained problem,
J* =142 x 108

5.8.3 General Results

Having thus defined the problem, we may safely apply the NL-IPM-TRCG algorithm to the heat
transfer process of Figure 5-1. We preserve all the problem data given in sections 3.12.1 and 4.6.1.

Figure 5-2 presents the solution of optimal control and state histories. We note that the non-
linearity drastically changes the nature of the solution in comparison to the that of section 4.6.1.
The heat lost through the radiative surface causes the temperatures at I'gg to be generally lower
throughout the process than was observed with Neumann boundary conditions. In fact, increasing
the cost for these deviations will not impact this portion of the solution, since as the controllers
saturate in the early part of the process and cannot drive the system to the desired temperature
as fast as in the former situation.

We note that if hard bounds were not imposed on the problem, early control values would
increase far beyond practical limitations when driven by such strong nonlinearities. This example
demonstrates the strength of the TRCG algorithm in that it allows for effective incorporation of

both nonlinearities and hard bounds, making it very practical for engineering problems.
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Figure 5-3: Newton and last conjugate gradient convergence of NL-IPM-TRCG algorithm.

5.8.4 Numerical Performance

We chose R = 3 for the NL-IPM-TRCG algorithm, so that each circle shown on the left plot of
Figure 5-3 corresponds to 3 iterations to find Api. Comparing Figures 4-2 and 5-3, we conclude
that the deviation from the central path introduced by the nonlinearity has a minimal effect on the
convergence of Newton iterations when even this small number of lagging iterations is used. New
values of barrier parameters u* were calculated at iterations {1,6,11,15,17,20,21, 22, 23, 24}.

From the right plot of the figure, we note that the last TRCG calculation is still well conditioned,
as expected for Primal-Dual methods, converging in only 15 iterations.

The power of the method thus lies is the fact that TPMs tend to be forgiving of deviations from
the central path. A small number of lagging iterations (3 or 4) is therefore all that is required
to achieve sufficient convergence. The conditioning of the problem will not degrade as u* — u*
if Primal-Dual IPMs are used, guaranteeing that the TRCG calculations will converge quickly
throughout the process. These features, in conjunction with the stability of the central SPD

operator G, lead to a very efficient overall algorithm.
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Chapter 6

Concluding Remarks

6.1 Summary of Contributions

We presented in this work a method for solving quadratic cost, nonlinear state equations, con-
strained control optimal control problems. The core of the algorithm was developed for uncon-
strained LQP, but its fexibility allowed for extensions to more practical problems by applications
of IPMs and a lagging technique.

Though developed primarily in the context of ODEs, the goal of this work was to solve problems
governed by first-order parabolic partial differential equations. We showed that the method could
be very effectively extended to address these problems since the central requirement that G be SPD,
stable, and well-conditioned was not compromised by a FEM discretization, as would have been
the case, for example, if shooting techniques were employed.

We presented an engineering (heat transfer) problem as an example of the efficiency of the
method, and showed that its numerical performance was very favorable at all levels: conjugate
gradient, Newton projection, and lagging iterations.

The TRCG algorithm is derived from the idea of a state variable operator in the spirit of
HUM. Our formulation differs from HUM in that the redefined problem (which can be viewed as
a statement of the dual) is minimized over a space defined by a problem-specific inner product. In
this space, we showed that the G operator is symmetric positive-definite, allowing for the solution
of terminal and regulator problems by a conjugate gradient-based method. In addition, G is shown

to be well-conditioned, thus allowing the method to converge quickly and efficiently.

The most costly part of the algorithm is the acfion of G. Therefore, problems that are charac-
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terized by dynamical equations with sparse matrices can take advantage of this sparsity. For FEM
discretizations of parabolic partial differential equations, an initial value problem can be solved
with O(LN) operations, where N and L are the number of spatial and temporal nodes, respec-
tively. The action of G is twice this cost, and, since 20-30 iterations of the conjugate gradient
algorithm are required, the entire problem is solved by roughly twice the order of magnitude of a

single initial-value problem.

6.2 Possible Pitfalls

A certain amount of care must be taken in implementing the TRCG algorithm. Pitfalls, which
often arise in the discrete statement of the problem, can be avoided if the following precautions are

taken.

There is no way of predicting the correct form of the terminal conditions for A if the time-
discretized form of stationarity conditions is not derived directly from the discretized cost. Though
an incorrect terminal condition introduces only (J(At) error in the solution, it will likely destroy
the SPD property of G, possibly compromising conjugate gradient iterations. Therefore, it is rec-
ommended that time-discrete stationary conditions be derived from the discretized cost functional,
and that the SPD property of G be verified by a proof similar to the one found in section 3.8 with

an appropriate, discrete inner-product.

The spatial discretization of the problem in the FEM context introduces the mass matrix on
the left-hand side of stationary conditions. We observed that as long as we include this matrix
in the definition of operator R, no modifications need to be done to the algorithm. In fact, any
invertible symmetric matrix can be multiplied to the lefi-hand side of these equations if we define

‘R accordingly.

Finally we note that it is best to use Primal-Dual variants of IPMs. This guarantees that G
is well-conditioned throughout the solution process. Though Primal methods may be easier to
implement and may work for some problems, they cannot guarantee this important property of G

in general.
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6.3 Conclusions

The examples presented in the work demonstrated the predicted effectiveness of the method. The
operator G was shown to be central to the efficiency of the algorithm, due to the fact that it is stable,
we]l-conditioned, and SPD in an appropriate inner-product space. In addressing more general

problems, we noted that IPMs provided a way of guiding the solution to u* without compromising

since IPMs allow for deviations from the central path introduced by nonlinearities. In fact, we
propose that for unconstrained nonlinear problems, it would be advantageous to apply fictional
limits on 4 beyond expected values and employ the NL-IPM-TRCG algorithm to exploit this
guiding behavior of the method.
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Appendix A

Additional Time-Discretization

Schemes for TRCG

Here we present two additional time-discretization schemes that may be used with TRCG: Crank-
Nicholson and Second Order Backward Difference Formulas. The method is shown here to be
applicable for these schemes since the main results of chapter 3 hold given appropriate definitions

of the R operator and ((-,-)) inner-product.

As suggested in that chapter, we approach the derivation from the cost functionals. The results
in this appendix show that such an approach leads to the appropriate form of operators for general
time-discretizations. As a result, TRCG can accommodate any time-discretization scheme provided

care is taken in developing R and ((-,-)).

For completeness, we present the below in the context of logarithmic barrier functions of chapter
4. This is done to explicitly show the form of augmented cost functionals as new schemes are

introduced. Extensions to the lagging procedure for nonlinear problems are trivial.
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A.1 Crank-Nicholson

A.1.1 Cost Functional Definition

L
Faral AL o T .y - £1/2T ot1/2
Jh) = y oY Wr (g +5 EZ Wit /%) At
1.. ONT . . - .
+5@° — R Wa(I" - dR)AL/2+ Z g — i) W5 — iR At (A1)
2 L M
I L - X
+5 @ —GRTWR(" — R A2 - p) Y D Iy At
g=1 ¢{=1 m=1
where &, = (a2 - @t), and z¢71/% is defined as the value of z at t = (£ — 1/2)At

A.1.2 Optimality Conditions

Before applying a particular scheme, C‘Z must be defined. For Crank-Nicholson, C“Z dlag(ufn M2

uq). We then reintroduce the state and adjoint equations:

yO = Yo, (A2)
¢ 41

’ A?i = lz‘l(y’Z +yt ) + Buf Y2 4 F, (A.3)

A= Wrly"™ —yr), (A.4)

)\ _ >\€+1 1

22 = AT Y Wr( - vh), (A.5)
At 2

0= W2+ BTN — (cﬁmf1 + Clﬁm—1> e, (A.6)

where equations (A.3-A.6) are used for £=1,..., L.

136




A.1.3 TRCG Components

First, the discrete state-adjoint equations are put into linearized form and separated into the

inhomogeneous and homogeneous parts:

M — lA el ooy Loeryo AFL X + D2 A8
A 2 (vi™ + 1) 2Q (A7 + A7) + ’ (A-8)
= —Wryr, )

/\£+1 _ )\E 1 1
SO L = AT ) - WS + b)), (4.10)

At 2 2

and
& (A11)
v vk Laws 4ot - Tothzpen 4 ) A2
22 JH Yu Yir) Q (X7~ + Am), (4.12)
At 2 2

— (A.13)
A = g T X)WV +47), (A.14)

Similarly to the time-continuous case, equations (A.7) - (A.10) are uncoupled, and can be solved
for yf}, for £=1,..., L. The second set, however, is coupled. Again, we define a RT-operator Ry

that solves (A.11) and (A.12) with

e = Wrgh, (A.15)
A

1 1
= §AT(,\§;“1 +25) + 5WR(qZ+1 +¢9, (A.16)

such that y% = Rond’, V{¢ f:o € RN*(L+1) The problem can then be weakly stated as

((p, Geng))en = ((p,y1))on, (A.17)
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where Gong = ¢ — Reng, and

L-1
((v,w))on = (vr)" Wr(w’) + % S 4 )T Wa(w T+ wf) A,
=1 (AIS)
v {v}, {w} € RN*ETD,

A.1.4 TRCG Proofs

Proposition 8 The operator ({(v,w))cn defines an inner-product space.

Proof. Defining the norm ||v|cny = ((u,v))é/l\?, it is simple to show that for any v, w € RN *(L+1);
L ((v,w))en = ((w,v))on;

2. lvllen 2 0;

3. vllen =0 = v=0;

4. |lev| = |af||lv]lon, ¥V o € R.

g

Proposition 9 The R-T operator Ren s symmelric negative semi-definite in the space defined by

the above inner product.

Proof. This proof closely follows the discussion for the time-continuous case. We rewrite
equations (A.12) and (A.16) in gencric variables, {z1,v1,72,p1,p2} € RNV*(I+1) with corresponding

initial and final conditions:

zf'H ¢ 1

-z 1

s . 4o

Z

+1_72_1A(€+1+ )+ W(Z-H_I_ Z) L_W L
At - 2 o Y2 R\P Pa), Yo = ox

Reducing the above set,

£+1)Tzf+1

(72 )T i

—(73)" 21

1 1
(T TR )AL - ST + P WR(eL + 21)A,

5 (P2
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and adding from ¢ =1 to (L — 1),

(%) Wraf
lL—l L 1
=32 B+ QA + At - Z(p’“’+1 +p5) T Wr(2 + 29 A,
=1 E 1

where we have applied the initial (2 = 0) and final (v = Wypk) conditions of the problem.

Rearranging and applying the operator RCNP{ = z‘f we obtain

L

|
—

(P51 + ph 5)TWa(Ronpt ™t + Ronp?) At

b

(pD) T WrRonp? +

~
i
=

-3 Z(,y£+l £+1/2(,ye+1 + 49 AL,

By identifying the left-hand side of the above equation as ((p2, Rcnpi))on we see that

((p2, Renp1))on = ((Renprs p2))en

and that
1 L—1
((p, Renp)lon = -5 S ATV L AL <0, V{p} € RY¥ELFD,
=1

The operator Rcy is therefore SNSD in the ((-,-))on space. O

From the above, we see that Gon (Gonp = p — Reonp) is SPD in ((+,-))cn, and therefore a
unique solution ¢ € RN*{I+D) of equation (A.17) can be found by conjugate gradient methods in

the space defined by this inner product.
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A.2 Second-Order Backward Difference

A.2.1 Cost Functional Definition

n 1 . . . .
JHa] = §(yL — 47V W (gh — gr) +

L T
l 3012 _ ld&—a/z 3.e-1/2
3 z; ( W 3®

%al/zwual/?m

1 T
Efa‘""f‘/ 2) At

1 . o 1 .
+5(0° — GRTWRE" — dR)AY2+ 5 Z(:f — iR Wr(§* - gR)At

L M
1. X . . .
+5@" R WR@E - FRAY2=n ) DY (e At

g=1 /=1 m=1
where c‘2 . (ﬁ},{Q - &é) for /=1 and E’fn’q = (%ﬂf{lﬂ - %ﬁfn_a/z ) for £=2
A.2.2 Optimality Conditions
{7 1/2 1 . Y 3 Ii 1/2

For Second-Order BDF, Cf = diag(um " —uy) for £ = 1, and Cj = diag(5u
£=2,...,L,and

y* = yo;

y' -y 1 1/2

A7 Yy + Bu’T + 1

3.6 _9 £—1 1,.46-2

2Y yAt+zy = Ay’ + Bi' + F, for £=2,...,L;

3

DA = ATALAL 4 Wh(y® - yh)A/2+ Wr(y" — yr);

%/\L‘l — N = AT AL+ Wr(yE T —yE Y,

334 41 1y042

SAY —2X =A

2 At“ = ATM + Wr(yf — vh), for £=L—-2,...,2

1

Al —2x% 4 §A3 = ATA AL+ Wy(y' — yRh) AL

0 =W, + BTN = (Chin + Chax ) & for £=1,...,L,
where @i = u!/2 for £ =1 and @ = %UE_I/Q + %u£‘3/2 for{=2,...,L.
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(A.19)

uf}) for

(A.20)

(A.21)

(A.22)
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A.2.3 TRCG Components

We begin by rewriting the state-adjoint equations:

1_.0
0 Yr—yr 21,149 1(2,1 2.1, 1.0
= =A — - —-D =D A2
Y1 = Yo, Iy (391"‘3 ) Q (3/\1 +3D7+ D (A.28)
3,¢ 1 -2
3462
i ym 21— Ayt QA+ DY (for £=2,...,[-1), (A.29)
MAt=oxE A= —wapyr, (A.30)
314 el 1yE+2
SAT =207 4+ 2
271 = 2 =ATX — Wgrys  (for £=L—-1,...,1), (A.31)
and
1 0
0 _o YE“YH _ 4(2 N ¢
yH _ Qy + lyf 2
2 gt 2H Ay — QAN (for £=2,...,L 1), (A.33)
A =2xE, A=Wyt (@h =2t -yt (A.34)
312 41 | 1y8+2
SA% — 2) A
27H Zt“ B —ATX, +Wry*  (for £=L-1,...,1), (A.35)
where the first set of equations is uncoupled (and can be solved for yf,, for{=1,...,L —1, and
yb = 2yL 1 y£=2) while the second set is coupled. We define Ryp as solving (A.32) and (A.33
T I
with
At =oal AL =wrel, (¢F =24"1 - 7Y (A.36)
3y3e _ 2/\2+1 l)\2+2
2Tt * — AT + Waet  (for £=L—1,....1), (A.37)
such that given {qe}fgol € RV*! (Rppg)t = nyI for£=1,...,L-1,and (Rgpg)F = 2yI‘r}"1 —yﬁ_
The problem can then be weakly stated as
((r,GBDE))BD = ((P, ¥1))BD, (A.38)
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where Gppqg = ¢ — Rppg, and

L-1
1
(o, w)an = 220 — BT W2t — i) 4 3! Wa(w) AL
V{v,whiy € RV*L.

A.2.4 TRCG Proofs

Proposition 10 The operator ((v,w))pp defines an inner-product space.

Proof. Defining the norm ||v||gp = ((v,v))gg, it is simple to show that for any v,w € RV*%:
L ((v,w))BDp = ((w,v))BD;

2. |lvllsp 2 0;

3. vllp =0 <= v =0;

4. flavll = lallvllen, ¥ @ € I

Proposition 11 The R-T operator Rpp is symmetric negative semi-definite relative to the above

inner product.

Proof. Rewriting equations (A.33) and (A.37) in generic variables, {z1,v1,72,p1,p2} € RN*L,
1
ng — 251 4 Ezf_Q = AzfAt — QYyEAL

3 1
7275 — 2’)’5 'y 2 ’yé 2= AT'ygAt + W Rpf;At.
reducing,

1, ,7 ,_ T 4 T T
S8 AT ) = ok QAL - p WAL,

e T ¢
—2(yz 2 1“75“ 21)+2( 1 2
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and summing from £ = 2 to (L — 1), we obtain

T _ _ T 1
(=295 +1/298) o} + 95" (2271 = 1/2587Y) = 1/20f 1T

L-1 L-1
T T
==Y 9 QAL =Y ph WreiAt,
=2 =2

where 2] = 0 has been used. Now we note that according to (A.28) - (A.37): &' = 244,

vE = Wrpk; (Repp1)? = 22571 — 272 and

(=273 + 1/248)7 2t = 47 (Atd — 3/20)(AtA - 3/21) Q'YL AL = 1T QY AL

Substituting these terms where appropriate, and rearranging, we obtain:
1,7 =T =
5175 Wr(Repp1)® + > p§ We(Repp1) At = ~ 34§ Q%A
=2 =1

By identifying the left-hand side of the above equation as ((p2, Repp1))sp We see that

((p2, Repp1))ep = ((RBDP1,P2))BD

and that

-1
T
((p, RepP))BD = — Z YRRt AL <0, V{p} e RV*
=1

The operator Rpp is therefore SNSD in the ((-,-))sp space. O

Similarly to before, the operator Gpp is SPD in ((-,-))sp, and a unique solution g € RY*L of
equation (A.38) can be found by conjugate gradient methods in the space defined by this inner

product.
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