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Abstract

Signature schemes are fundamental cryptographic primitives, useful as a stand-alone appli-
cation, and as a building block in the design of secure protocols and other cryptographic
objects. In this thesis, we study both the uses that signature schemes find in protocols, and
the design of signature schemes suitable for a broad range of applications.

An important application of digital signature schemes is an anonymous credential sys-
tem. In such a system, one can obtain and prove possession of credentials without revealing
any additional information. Such systems are the best means of balancing the need of indi-
viduals for privacy with the need of large organizations to verify that the people they interact
with have the required credentials. We show how to construct an efficient anonymous cre-
dential system using an appropriate signature scheme; we then give an example of such a
signature scheme. The resulting system is the first one with satisfactory communication
and computation costs.

The signature scheme we use to construct an anonymous credential system is of inde-
pendent interest for use in other protocols. The special property of this signature scheme is
that it admits an efficient protocol for a zero-knowledge proof of knowledge of a signature.

Further, we consider the question of revocation of signatures. We obtain an efficient
revocation scheme. This has immediate consequences for revocation of credentials in our
credential system.

We explore other uses for signature schemes as building blocks for designing crypto-
graphic objects and secure protocols. We give a unique signature scheme which has impli-
cations for verifiable random functions and for non-interactive zero-knowledge proofs.

Finally, we consider the use of signatures for implementing a broadcast channel in a
point-to-point network. It was previously shown that while broadcast was impossible with-
out computational assumptions in a point-to-point network where one-third or more nodes
exhibited adversarial behavior, using an appropriate set-up phase and a signature scheme,
the impossibility could be overcome. We show that the situation is more complex than was
previously believed. We consider the composition of protocols in this model, and discover
severe limitations. We also show how to augment the model to overcome these limitations.

Thesis Supervisor: Ronald L. Rivest
Title: Viterbi Professor of Computer Science
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Chapter 1

Introduction

In a broad practical sense, cryptography is the study of securing communication and
computation against malicious adversaries. Two indispensable sides of this study are
ensuring that no adversary will be able to disrupt transactions carried out by honest
parties, and ensuring that no adversary will learn any of the private information held
by the honest parties.

For transactions carried out in today’s electronic world, the scenario with the
adversary is, unfortunately, the right scenario. An electronic message passes through
a number of routers on its way from sender to recipient, and some of these routers
may be controlled by malicious parties, and may run malicious code. They may alter
the message while it is in transit. They may leave it intact, but nothing prevents
them from reading it. Hundreds of thousands of credits card numbers stolen in this
fashion are evidence to this.

Hence, we cannot take integrity and privacy of communication for granted if we
are communicating over the Internet. But even once we have solved the problem of
ensuring the security of the network over which our sender and recipient communicate,
there are still questions such as: Do they trust each other? Is there a chance that one
of them is behaving maliciously, and what damage can it cause the other party?

Suppose that the two parties are a user who is buying some goods, and a vendor
selling them. The issue at stake for the vendor is to ensure that he will be paid
properly for the goods he delivers. The issue at stake for the user is that she receives
the goods paid for.

A privacy-conscious user would also care that the vendor be discreet with the
information he obtained about her. This may be in contradiction with the vendor’s
intent to sell the names of his customers to third parties, or to contribute them to
statistical surveys that help analyze customer behavior.! And even if the vendor
declares that he has no such intent, can the user trust him? What if the vendor goes
out of business and all of his assets, including his sales records, are auctioned to third
parties who made no such declaration? What if the vendor’s computer is broken into?

INote that just because the vendor is able to ship goods to the user doesn’t mean he knows the
user’s real name and home address. The user can, for example, ask the mail sent to a special post
office under an assumed name.
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The reason that a user should be more privacy-conscious in the context of elec-
tronic transactions as opposed to the transactions carried out in person, is that finding
patterns in digitally stored data is much easier than connecting the dots in the paper-
based world. We do not wear masks when we go to the supermarket, even though
some of the things we buy there may be of a very private nature. Provided we do
not run into someone we know, we can be reasonably sure that no one will ever find
out that a transaction has taken place. (Although security cameras in the store may
record enough information to make such faith ill-advised. Additionally, many shop-
pers use discount cards and thus give up their privacy in order to get a lower prices on
purchases.) But on-line transactions, if they are stored in a vendor’s database, may
come back to haunt the user later. One database may be combined with another,
and piece by piece a whole pattern may emerge, a picture this privacy-conscious user
does not want the world to see.

This side of the scenario becomes more complex once, for example, the vendor is
a pharmacist and needs to verify that his customer holds a valid prescription for the
medication being sold. How do we balance the requirement that the pharmacist be
able to verify that the user has the right prescription, with the desire of the user to
maintain his or her privacy? Can the customer remain anonymous and yet present
the proof that he has a valid prescription?

In this thesis, we address the question of ensuring data integrity. We also show
how to ensure that verifiable personal information can be provided without giving up
the privacy of individuals.

1.1 Digital Signature Schemes

The problem of ensuring integrity of data in a network such as the Internet is very
complex. It consists of ensuring that the hardware components, such as routers, are
able to handle a large volume of data; of making sure that this data reaches the
destination even if some hardware components fail; and of making sure that even if
part of the network is exhibiting adversarial behavior, the worst thing that can happen
is failure to deliver the data. The design of reliable computer networks presents a
compendium of challenging problems that have fascinated researchers in computer
science, electrical engineering and mathematics alike for the past few decades, and
are sure to continue to do so. Here, we will worry only about the third problem, i.e.,
what happens as data passes through adversarial hands.

In their seminal paper “New Directions in Cryptography” [DH76] Whitfield Diffie
and Martin Hellman invented public-key cryptography and, in particular, digital sig-
nature schemes. A digital signature scheme mirrors the paper-based idea of a signa-
ture. In it, every user has an identity, represented by her public key, i.e., a publicly
available string of bits. The user holds the corresponding secret key, i.e., a string of
bits that is available to the user only. A signature on a message m can be computed
using the secret key, and can be verified using the public key. Moreover, unless the
message m was signed by the user, no adversary can produce a valid signature on this
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message, even if the user can be convinced to sign other, possibly related, messages
of the adversary’s choice.

In the above purchasing scenario, signatures protect the customer and the vendor.
The vendor can promise to ship the goods upon receipt of the money, and provided
that there are some means to check whether the vendor has received the money and
whether the customer has received the goods, it is possible to carry out electronic
transactions with the same or even greater confidence as transactions conducted in
person, by mail or by telephone.

Of course, the use of signatures is pervasive not only in commerce, but in all forms
of official transactions. With digital signatures, all such transactions can be carried
out electronically. Just as paper-based signatures, digital signatures provide two
guarantees: (1) the guarantee that a given piece of data came from the right person
and remained intact in the transmission, even if it passed through adversarial hands;
and (2) the guarantee that the recipient of signed data can prove to a third party
that he received this data from the signer. Digital signatures have been recognized
by the United States’ and other governments as legally binding 2.

Digital signature schemes exist if and only if one-way functions exist [Rom90].
One-way functions are efficiently computable functions that are computationally in-
feasible to invert. For example, since no efficient integer factorization algorithm is
known, and it is conjectured that one does not exist, integer multiplication is conjec-
tured to be a one-way function®. At this point, it is still unknown whether one-way
functions exist. However, it is widely conjectured that they do.

The first digital signature scheme was constructed by Rivest, Shamir and Adle-
man [RSAT78], in the paper that also proposed the first public-key cryptosystem and
paved the way for further study of cryptography. Their signature scheme is based
on the assumption that they introduced, called “the RSA assumption.” By now,
the RSA assumption has become a standard cryptographic assumption. Early work
on signatures was also carried out by Lamport [Lam79], Merkle [Mer90], and Ra-
bin [Rab79).

Goldwasser, Micali, and Rivest [GMR88] gave the rigorous definition of security
for signature schemes and provided the first construction that provably satisfied that
definition, under a suitable assumption (namely, the assumption that claw-free pairs
of permutations exist, which is implied by the assumption that integer factorization is
hard). The earlier signature scheme due to Merkle [Mer90] was also shown to satisfy
this definition. Rompel [Rom90] (see also Naor and Yung [NY89]) showed how to
construct a digital signature scheme using any one-way function. The inefficiency
of the above-mentioned constructions, and also the fact that these signature schemes
require the signer’s secret key to change between invocations of the signing algorithm,
make these solutions less practical than desired.

2http://usinfo.state.gov/topical/global/ecom/00063001.htm

3To be precise, multiplication is conjectured to be a weak one-way function. A weak one-way
function is a function that is hard to invert for a fraction of inputs, rather than all inputs. It
has been shown that from weak one-way functions, one-way functions in the usual sense can be
constructed [Yao82, Gol01].
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Several more signature schemes have been shown to be secure in the so-called
random-oracle model. The random-oracle model is a model of computation in which
it is assumed that a given hash function behaves as an ideal random function. (An
ideal random function is a function where the input domain is the set of all binary
strings, such that each binary string is mapped to a random binary string of the same
length.) Although this assumption is evidently false, it formalizes the notion that the
hash function behaves essentially as a black box and its output cannot be determined
until it is evaluated. It is considered that a proof of security in the random-oracle
model gives some evidence of resilience to attack. The RSA [RSA78] signatures with
special message formatting [BR93], the Fiat-Shamir [FS87], and the Schnorr [Sch91]
signature schemes have been analyzed and proven secure in the random-oracle model.
However, it is known [CGH98| that security in the random-oracle model does not
imply security in the plain model.

Gennaro, Halevi, and Rabin [GHR99] and Cramer and Shoup [CS99] proposed the
first signature schemes whose efficiency is suitable for practical use and whose security
analysis does not assume an ideal random function. Their schemes are secure under
the so-called Strong RSA assumption.

1.1.1 Use of Signatures in Protocols

In all of the work on signature schemes cited above, signature schemes were considered
for use as a stand-alone application. However, signature schemes are used in numerous
other cryptographic protocols, and it is important to design them with the broadest
possible uses in mind.

Consider the use of signature schemes for constructing an anonymous credential
system. While such a system can be constructed from any signature scheme us-
ing general techniques for cryptographic protocol design [LRSW99], doing it in this
fashion is very inefficient. Let us explain this point in more detail.

In a credential system, a user can obtain access to a resource only by presenting
a credential that demonstrates that he is authorized to do so. In the paper-based
world, examples of such credentials are passports that allow us to prove citizenship,
voter registration cards that authorize us to vote, driver’s licenses that prove our
authorization to drive cars, etc. In the digital world, it is reasonable to imagine that
such a credential will be in the form of a digital signature. Let us imagine that each
user has an identity ID. Let us think of a credential as a signature on the user’s
identity and possibly some other information.

A credential system is anonymous if it allows users to demonstrate such credentials
without revealing any additional information about their identities. In essence, when
the user shows up before the verifier and demonstrates that he has a credential, the
verifier can infer nothing about who the user is other than that the user has the right
credential. Additionally, an anonymous credential system allows the user to obtain a
credential anonymously. Such systems were first envisioned by David Chaum [Cha85],
and have been further studied by Chaum and Evertse [CE87], Brands [Bra99], and
Lysyanskaya, Rivest, Sahai, and Wolf [LRSW99].
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Using general techniques of zero-knowledge proofs and zero-knowledge proofs of
knowledge [GMR85, GMR89, GMW86, GMW87b, BG92] it is possible to prove state-
ments such as “I have a signature,” without saying anything more than that (i.e.,
without disclosing what this credential looks like or the identity ID to which it was
issued). However, doing so requires that the problem at hand be represented as, for
example, a Boolean circuit, and then the proof that the statement is true requires a
proof that the circuit has a satisfying assignment. This method requires expensive
computations beyond what is considered practical.

An additional complication is obtaining credentials in a secure way. The simple
solution where the user reveals his identity ID to the credential granting organization,
who in turn grants him the credential, is ruled out: we want to allow the user to be
anonymous when obtaining credentials as well; we also want to make it possible to
combat identity fraud, and in such a case, ID should never become known to anyone
other than the user. (We further discuss the notion of identity in the electronic setting
in Section 1.2.2.)

Here, general techniques of secure two-party computation [Yao86, GMW87a, Gol98,
Lin01] save the day: the user and the organization can use a secure two-party proto-
col such that the user’s output is a signature on his identity, while the organization
learns nothing. But this is also very expensive: general secure two-party computation
also represents the function to be computed as a Boolean circuit, and then proceeds
to evaluate it gate by gate.

So far, we have described a construction of an anonymous credential system from
a signature scheme using zero-knowledge proofs of knowledge and general two-party
computation. We have also observed that this solution is not satisfactory as far as
efficiency is concerned. A natural question therefore is whether we can design a sig-
nature scheme that will easily yield itself to an efficient construction of an anonymous
credential system. In other words, we need signature schemes for which proving a
statement such as “I have a signature,” is a much more efficient operation than rep-
resenting this statement as a circuit and proving something about such a circuit. We
also need to enable the user to obtain a signature on his identity without compromis-
ing his identity.

In this thesis, we present signature schemes that meet these very general require-
ments. The generality of this approach enables the use of this signature scheme for
other cryptographic protocols in which it is desirable to prove statements of the form
“I have a signature,” and to obtain signatures on committed values.

Under the Strong RSA assumption, we construct a signature scheme which is ef-
ficient and for which there are efficient zero-knowledge proofs of knowledge. In turn,
this is of use in cryptographic protocols in general, and in anonymous credential sys-
tems in particular. We present this signature scheme in Chapter 4. We describe how
to incorporate such a system to obtain an anonymous credential system in Chapter 3.

We also describe how to use this signature scheme to implement an unlinkable elec-
tronic cash scheme. An electronic cash scheme consists of a bank, a set of customers,
and a set of vendors. Each user and vendor has a bank account. There are three
protocols: for withdrawal (between the bank and a customer), spending (between the
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customer and the vendor), and depositing (between the bank and the vendor). As a
result of the withdrawal protocol, the customer obtains a banknote, and his account
balance is decreased by the appropriate amount. During the spending protocol, the
banknote is given to the vendor (presumably in exchange for some goods that the
vendor sells), and during the depositing protocol, the bank increments the vendor’s
account by the appropriate amount. An electronic cash scheme is unlinkable if, even
if they cooperate, the bank and the vendor cannot link transactions carried out by the
samc customer. Unlinkable electronic cash was invented by David Chaum {Cha85].

Let us now return to our example of a pharmacist trying to verify that his cus-
tomer has a valid prescription without learning any other information about the
customer. Using our anonymous credential system, the customer can prove that he
has a prescription. He can then pay for his medication using electronic cash.

1.1.2 Revocation of Signatures

Another important aspect of the use of signatures is their revocation. In the paper-
based world, it is often possible to make a document no longer valid. For example, a
driver’s license can be revoked.

One way of doing so would be through black lists. This requires consulting a
large database of revoked signatures every time a signature is verified. Consider the
situation where proving possession of a signature is done without actually showing
the signature itself or revealing any information about it, such as in an anonymous
credential system described above. Having the database of revoked signatures as an
input to the signature verification protocol renders the running time of this protocol
dependent on the number of revoked signatures.

Another way of making sure that all issued signatures are valid, is to re-issue
signatures frequently, and not to reissue signatures on documents that are no longer
valid. The problem with this solution is that an operation, linear in the number of
valid documents, has to be carried out frequently.

In Chapter 5, we describe a solution to this problem. Our solution is based on
a generalization of one-way accumulators. One-way accumulators were introduced
by Benaloh and de Mare [BAM94], as a way to combine a set of values into one
short accumulator, such that there is a short witness that a given value was incor-
porated into the accumulator. At the same time, it is infeasible to find a witness
for a value that was not accumulated. Extending the ideas due to Benaloh and de
Mare [BdM94], Bari¢ and Pfitzmann [BP97] give an efficient construction of so-called
collision-resistant accumulators, based on the strong RSA assumption.

We propose a variant of the cited construction with the additional advantage that,
using additional trapdoor information, the running time of deleting a value from an
accumulator is independent of the number of accumulated values, and depends only
on the security parameter. Better still, once the accumulator is updated, updating
the witness that a given value is in the accumulator (provided that this value has not
been revoked, of course!) can be done without the trapdoor information at unit cost.
Accumulators with these properties are called dynamic.
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In order to use dynamic accumulators for revocation of signatures, we propose that
each signature issued should have some unique identifier that will be incorporated into
the dynamic accumulator at the time of issue. Once this signature is revoked, this
identifier will be deleted from the accumulator. In order to efficiently demonstrate a
statement such as “I have a signature on my identity that is still valid,” it is necessary
to (1) prove a statement of the form “I have a signature on my identity;” and (2) prove
the statement “The identifier of the signature on my identity is in the accumulator.”
We provide efficient protocols for such proofs.

1.1.3 Unique Signatures

Unique signature schemes are signature schemes where corresponding to each accept-
able public key PK and message m, there is a unique string ¢ that the verification
algorithm will accept as a valid signature on message m under public key PK.

Unique signatures are of interest for several reasons. As a stand-alone application,
unique signatures give a computation/storage trade-off in verifying signatures. Imag-
ine a signature scheme where coming up with a new signature on an already signed
message is a more efficient operation than verifying a signature. Such a signature
scheme is vulnerable to the following denial-of-service attack on behalf of a signer:
The signer will send the same document with different signatures to a server and
force the server to do a lot of work by verifying all these signatures. The solution
where a server stores a list of signed documents and looks up a document instead of
verifying the attached signature, is undesirable because it may lead to acceptance of
a document from an unauthorized party. Just because a document has been signed
in the past, does not mean that it ought to be accepted if received from a party
that fails to produce a valid signature. On the other hand, using a unique signature
scheme and a lot of storage, this problem can be solved by having the server store
all the documents and the signatures it has verified in the past, and upon receipt
of a document, check if it is already stored. If so, instead of performing a separate
computation to verify the attached signature on the document, compare the attached
signature to the one stored. If they are different, reject.

Unique signature schemes are also related to verifiable random functions [MRV99]
and non-interactive zero knowledge proofs [GO92], and as a result are valuable tools in
the design of cryptographic protocols. Verifiable random functions (VRFs) are cryp-
tographic objects that produce random-looking bits, and yet there is a mechanism to
convince a third party that all these bits came from the same source. This has proved
useful in the design of resettable zero-knowledge proof protocols [MRO1, Rey01].

Another interesting application of verifiable random functions, due to Micali and
Rivest [MRO02], is their use in non-interactive lottery systems that in turn are used
for micropayments. Here, the lottery organizer holds a public key PK of a VRF.
A participant creates his lottery ticket ¢ himself and sends it to the organizer. The
organizer computes the value of the verifiable random function on the lottery ticket,
and the corresponding proof. The value of the function determines whether the user
wins, while the proof guarantees that the organizer cannot cheat. Since a VRF is

17



hard to predict, the user has no idea how to bias the lottery in his favor. In order to
guarantee fairness of the lottery, a user can supply an additional random value to be
XORed with the value of the VRF.

In this thesis, we give a new construction of a unique signature scheme, and related
VRF constructions. Chapter 6 is dedicated to this theme.

1.1.4 Other Applications of Signatures in Protocols

With the use of cryptography, and digital signature schemes in particular, tasks that
are impossible in the plain model become feasible. One example of this phenomenon
was discovered by Pease, Shostack, and Lamport [PSL80] and Lamport, Shostack and
Pease [LSP82], in the context of Byzantine agreement protocols.

Byzantine agreement is the problem of implementing a broadcast channel in a
point-to-point network where some nodes behave maliciously. This is of great im-
portance for protocol design: it is much more convenient to design protocols for the
broadcast model than for the point-to-point network.

Pease, Lamport, and Shostack [PSL80] and Lamport, Shostack and Pease [LSP82]
showed that Byzantine agreement was infeasible if the number of malicious nodes is
at least one-third of the total number of nodes. They also showed that using a
signature schemes and a public-key infrastructure, any number of malicious nodes
can be tolerated.

Although this is a natural application of signature schemes, it was not previously
well-studied. In this thesis, we consider the problem of running Byzantine agreement
more than once. It turns out that signatures do not always help in case that the
Byzantine agreement is invoked more than once without session identifiers. Specifi-
cally, if several Byzantine agreement protocols are executed concurrently without ap-
propriate session identifiers for each invocation, then this protocol cannot tolerate one
third or more malicious nodes. The same impossibility applies to sequential composi-
tion of deterministic Byzantine agreement protocols. However, there is a randomized
Byzantine agreement protocol that composes sequentially without session identifiers.

Finally, appropriately chosen session identifiers enable composition of Byzantine
agreement for any number of malicious nodes.

These results illustrate both the power and the limitations of the use of signatures
in the design of distributed algorithms. They are exhibited in Chapter 7.

1.2 Privacy of Data

Several applications described in this thesis, such as anonymous credential systems,
efficient revocation of anonymous credentials, and electronic cash, are aimed at pro-
tecting personal information in on-line transactions and giving users control over what
they do and do not disclose about themselves. Let us discuss this topic in a broader
context.

Ensuring that information of personal nature does not become public knowledge
has become an increasing concern a few decades ago as computer databases became
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widely used. In the past, when most recorded information required a considerable
human effort to retrieve, putting together two unrelated pieces of information and
linking them to the same individual was not an easy task. As a result, even if
virtually all personal information was at some point or other recorded and stored in
a public archive, one did not need to worry that someone would be able easily to put
it all together to get a complete picture of one’s the private affairs. Clearly, in the
age of databases, this is no longer the case.

According to Simson Garfinkel’s book Database nation [Gar00], the U.S. govern-
ment recognized that this was a problem and created an executive committee on this
issue. The contribution of this committee was “a bill of rights for the computer age

. called the Code of Fair Information Practices.”

A natural question, raised by David Brin in his book Transparent Society [Bri98g], is
whether it is even possible to protect the privacy of individuals given the surveillance
technology increasingly available today. While Brin makes a strong case for making
sure that there are public mechanisms for monitoring all the information collected by
the government, it still requires a leap of faith to conclude that all information about
all individuals is necessarily collectable, and that a trade-off cannot be found that
would satisfy both the public’s needs for safety, and the individual’s need for privacy.
Just because there is technology to invade people’s privacy, does not mean that this
technology will be used in order to do so.

There are several approaches to the problem of protecting privacy. On the one
hand, there is the approach of defining exactly what privacy is in the society one lives
in, how much privacy an individual is entitled to (for example, maybe it is all right to
buy a prescription medication in private, but driving incognito should not be allowed:
should an accident happen, the driver should be accountable for it), and introduce
legislation that enforces this level of individual privacy (so a pharmacist selling goods
on-line will erase the user’s name and address as soon as the medication is shipped).
On the other hand, one can approach the problem by providing a cryptographic
solution which, even in case some of the players are malicious and act illegally, still
protects the honest parties involved.

To ensure privacy, both a legislative and a technological effort is required. Let us
briefly argue why.

Privacy can only exist in a society that recognizes it as a right. In a totalitarian
state, where everything is the government’s business, not simply as a law, but as a way
of living, a mentality, there can be no such thing. With or without modern technology,
totalitarian states such as Tsarist Russia and the Soviet Union that succeeded it, have
been successful in carrying out total surveillance over their subjects. In fact, as early
as the middle of the nineteenth century, the Russian secret police was well capable
of surveillance over whomever it found worthy of such attention. Mikhail Lermontov,
one of the key Russian poets and intellectuals of that age, wrote in 1841 of the
Russian secret police as having an “all-seeing eye” (as a Cyclope-like monster) and
“all-hearing ears.” A modern Russian intellectual, Alexander Solzhenitsyn described
some blood-chilling, but still primitive on the technological level, solutions to the total
surveillance problem, — those deployed by Stalin — in his novel The First Circle.
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Although intellectuals found this state of affairs stifling, it was known and accepted as
a fact of life that every person was watched. It is no surprise, then, that the Russian
language does not contain an adequate translation for the very word “privacy.”

On the other hand, in a free society, personal privacy is of supreme importance.
It is no coincidence that George Orwell’s 198/, as opposed to books on monsters and
vampires, is the ultimate horror novel. A feeling of being watched, and of one’s past
being always on record, is repugnant in a society that is based on the principle that
people ought to be free to say what they think and do as they like, without subjecting
themselves to the scrutiny and interference of others.

However, mere respect for privacy without a set of liabilities attached to violating
it, is not a sufficient guarantee. This is because an organization can respect its
customers’ privacy and not want to generally disclose their personal records, but not
object to using this information when there is something to be gained by using it.
Examples are selling customer data to telemarketers, or aggregating this data for
statistical purposes and publishing the results. Many people found such practices
disturbing, and as a result, privacy regulations have emerged both in the United
States and in the European Union, and policy with respect to privacy in electronic
transactions continues to be a subject of discussion for legal scholars around the world.

Garfinkel’s book Database Nation does an outstanding job of bringing attention
to the problem of privacy in the electronic world. He brings attention to some funda-
mental flaws in practices widely deployed today, and suggests a number of approaches
that legislators should consider.

However, a legally enforced commitment to privacy implies increased liabilities
for organizations. No matter how much a given organization strives to protect the
privacy of its customers, it may not be aware that someone broke into its database;
it may also be vulnerable to insider attacks. Thus, it is desirable to adopt a privacy-
enhancing technology that gives such an organization the opportunity to learn as little
about others’ personal information as is at all possible. That is to say, a technology
that would enable an organization to learn only what it needs to learn, and to make
sure that no other information is transmitted to the organization.

Another reason for privacy-enhancing technologies is that legal standards for pri-
vacy are not uniform throughout the world; yet people expect the same level of privacy
no matter where the other party is located.

1.2.1 Review of Existing Technologies

The most basic privacy-enhancing technology deployed today, is the P3P protocol
introduced by the World-Wide-Web Consortium (http://www.w3c.org/p3p). In a
nutshell, this technology enables the client and server to negotiate a privacy level that
both parties are comfortable with; this is done transparently to the user. The idea
is that a user’s privacy preferences are specified in a standard form and given to his
browser. The server’s privacy policy is written in a form that the user’s browser can
understand and compare to the user’s preferences, determining whether the two are
compatible, and if so, negotiate the privacy terms in compliance with both policies.
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It is evident that while P3P is a desirable technology, it is only effective in sit-
uations when a server in question honestly declares what data it is going to collect
and what it intends to do with the data obtained. A user may or may not believe
it. Moreover, many users are not aware of P3P and unwittingly waive away their
privacy. Thus, P3P is powerless against malicious attacks.

Another available technology is anonymizing services such as the ones provided
by Anonymizer.com. A user of such a service can browse the Web in such a way that
the server accessed cannot trace this user. In other words, such a service provides
users with anonymous channels. For on-line privacy, a service such as this is vital.
Without it, information about all of a given user’s on-line activities can be retrieved by
examining the log files of this user’s Internet service providers. However, anonymous
channels alone are not sufficient in order to effectively work with organizations that
require that their customers have some credentials. An anonymous credential system
is also necessary in such a case.

Anonymous credential systems were suggested by David Chaum [Cha85]. The
first proposed solution was a proof of concept and involved a semi-trusted third
party [CE87]. Later, Damgard [Dam90] and Chen [Che95] worked on the problem.
Their solutions did not have a trusted third party, but the notion of user’s identity was
not well-developed, and therefore it was not clear how their systems could function
in case malicious users shared their credentials with others. Both of these solution
were not satisfactory from the point of view of efficiency, while Chen’s solution also
lacked a rigorous definition and proof of security.

Stefan Brands [Bra99] worked on the problem of making possible a public-key
infrastructure (PKI) where encoded into each user’s public keys would be some at-
tributes. For example, attributes could encode this person’s age, level of education,
etc. A holder of a public key could choose which attributes to disclose; additionally,
it is possible to disclose any one of a rich set of algebraic relations on these attributes.
Brands proposes solutions based on the discrete-logarithm problem and its variants.

While Brands’ work developed a set of powerful techniques and lay a foundation
for privacy-enhancing public-key infrastructures, it only gives a solution for a special
case of the general problem of anonymous credential systems.

As in any public-key infrastructure, Brands’ PKI requires that a certification
authority (CA) certify that public keys belong to valid users. In Brands’ work, the
CA is the only credential-granting organization.

Second, if a user talks to two different entities and wants to prevent them from
discovering that they are talking to the same person, he needs to have two sepa-
rate, unlinkable public keys. That requires that the CA certify both of these keys.
Therefore, both the communication and the computational load on the CA is linear
in the total number of unlinkable transactions taking place in the entire public-key
infrastructure.
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1.2.2 Identity and Anonymity in the Electronic Setting

Above, we mentioned that it is desirable a user’s identity ID should remain secret to
prevent identity fraud. Let us now clarify what is meant by an identity and why, if
the value ID is leaked, identity fraud may result.

In an electronic setting, it is difficult to put a finger on what exactly an identity
is. Is any given computer terminal an identity? Or any given e-mail address? Or IP
address?

Let us analyze the notion of an identity as it relates to credentials. In a pragmatic
sense, a credential is issued to whomever it is that can later succeed in demonstrating
ownership of this credential. Therefore, the means that enable such a demonstration
define the identity of the credential owner.

For example, to prove that I may drive, I can demonstrate my driver’s license
which has my picture on it. Therefore, it is my picture, and also the fact that I have
my driver’s license in my wallet, that define that it is I who can prove possession
of this driver’s license, and therefore that the license was issued to me rather than
anyone else.

In general, in the electronic setting, the only means available for demonstrating
anything is the data stored on one’s machine, be it on the hard drive or on a special
dedicated device such as a smartcard. Therefore, the data stored on one’s machine
defines one’s electronic identity, and leaking this data can result in identity fraud.
Moreover, unless by some means this data can be implanted into humans, electronic
identity will not correspond to physical identity of people, since several people may
have access to a given machine, and also because electronic data can (almost always)
be duplicated.

It is therefore evident that the identity to which a credential is issued can be
defined by a string of bits. However, the contents of any machine changes over time.
Therefore, this string of bits should not be the entire contents of this user’s machine,
but simply a string that is sufficiently long to be unique to this machine and to be
hard to guess. This is true whether the electronic credentials are anonymous or not.
What is challenging in this context is discouraging users from making their credentials
available to others.

In order to link an electronic identity ID to a publicly recognizable entity such
as a person, an organization, or a pseudonym, some function f(ID) is published and
certified by a corresponding certification authority as corresponding to a person’s
physical identity.

An example of the above general scenario is a public-key infrastructure. In it, a
user’s ID is his secret key SK. The corresponding public key PK is published, and
the certification authority binds it to some publicly recognizable entity, such as this
user’s name. The user is the owner of this public key PK because the corresponding
secret key SK is stored on his machine. This is what enables the user to read mail
that is encrypted with this PK and to issue signatures under this PK.

In the context of a public-key infrastructure, discouraging users from making their
credentials available to others is simpler than in other contexts. It was suggested by
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Dwork, Lotspiech and Naor [DLN96] that making SK too valuable to give away, and
necessary for proving possession of a credential, makes the user unwilling to share
this credential.

How can SK be made too valuable to give away? For example, by having a
physical liability attached to disclosing it. Having to pay a lot of money should one’s
secret key SK become known to the police would be an incentive.

Without such external means, it is possible to discourage sharing the string ID
by making all of one’s credentials retrievable using this string [CLO1].

1.3 Summary of This Thesis

As stated earlier, cryptography helps make sure that electronic transactions bring
the integrity and privacy that individuals expect them to, and signature schemes are
instrumental in achieving that goal. In this thesis, we consider the uses of signature
schemes in the context of cryptographic protocols.

In Chapter 2 we introduce notation, and recall definitions for digital signature
schemes, commitment schemes, zero-knowledge proofs and proofs of knowledge, as
well as describe state-of-the-art on the composition of these protocols.

Next, in Chapters 3, 4 and 5, we turn to the use of signature schemes for anony-
mous credential systems. In Chapter 3 we define an anonymous credential system
and show how to construct it given an appropriate signature scheme. In Chapter 4
we give an appropriate signature scheme. Chapter 5 gives mechanisms for revoca-
tion of anonymous credentials. Preliminary versions of the credential system and and
revocation mechanisms presented here have been previously published [CL01, CL02].

Finally, Chapter 6 gives a new construction of unique signatures, and Chapter 7
explores the limits of applicability of signature schemes in protocols. Preliminary
versions of these have also been previously published [Lys02, LLR02].
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Chapter 2

Preliminaries

This chapter introduces the notation and definitions of security for such cryptographic
constructions as signature schemes, commitment schemes, zero-knowledge proofs and
proofs of knowledge. The aim of this chapter is to make this thesis self-contained. A
far better treatment of this subject can be found in Oded Goldreich’s book “Founda-
tions of Cryptography”[Gol01].

2.1 Notation

Let A be an algorithm. By A(-) we denote that A has one input (resp., by A(-,...,-)
we denote that A has several inputs). By A() we will denote that A is an indexed
family of algorithms.

y < A(z) denotes that y was obtained by running A on input z. In case A is
deterministic, then this y is unique; if A is probabilistic, then y is a random variable.
If S is a finite set, then y < S denotes that y was chosen from S uniformly at random.

Let A and B be interactive Turing machines. By (a « A() < B(:) — b),
we denote that ¢ and b are random variables that correspond to the outputs of A
and B as a result of their joint computation. Alternatively, we will use the no-
tation OUT 4(A(-) <> B(:)) for the output of A. We will also use the notation
VIEW o(A(-) <> B(-)) to denote the entire computation history of A, including its
input, the contents of its random tape, and all the messages A received from B. In
case of more than two players, we will also use the notation OUT and VIEW in the
analogous fashion. We will sometimes use notation such as [VIEW 4, OUT g|(A < B)
to denote the joint distribution on the view of A and output of B.

Let b be a boolean function. The notation (y < A(z) : b(y)) denotes the event
that b(y) is true after y was generated by running A on input z.

The statement

Pr[{xz < Ai(’yi)}lgiSn : b(zn)] =

means that the probability that b(z,) is TRUE after the value z, was obtained by
running algorithms A;,..., A, on inputs ¥,...,Yyn, IS &, where the probability is
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over the random choices of the probabilistic algorithms involved.

By AC)(.), we denote a Turing machine that makes oracle queries. Le., this ma-
chine will have an additional (read/write-once) query tape, on which it will write its
queries in binary; once it is done writing a query, it inserts a special symbol “#”. By
external means, once the symbol “#” appears on the query tape, an oracle is invoked
and its answer appears on the query tape adjacent to the “#” symbol. By

Q = Q(A°(x)) + A°(x)

we denote the contents of the query tape once A terminates, with oracle O and
input z. By (¢q,a) € @ we denote the event that ¢ was a query issued by A, and a
was the answer received from oracle O.

By AR B we denote that algorithm A has black-box access to algorithm B, i.e. it
can invoke B with an arbitrary input and reset B’s state.

We say that v(k) is a negligible function, if for all polynomials p(k), for all suffi-
ciently large k, v(k) < 1/p(k).

Let A(1%) and B(1*) be two probabilistic algorithms. By A = B we denote that for
all probabilistic polynomial-time families of adversaries {.Ax}, there exists a negligible
function v such that for all &,

Przy + A(1%);21 ¢ B(1F);0 + {0,1}; 0 + Axp) : b= V] =v(k)

2.2 Definitions of Security for Signature Schemes

The following definition is due to Goldwasser, Micali, and Rivest [GMR&8], and has
become the standard definition of security for signature schemes. Schemes that satisfy
it are also known as signature schemes secure against adaptive chosen-message attack.

Definition 2.2.1 (Signature scheme). Probabilistic polynomial-time algorithms
(G(),Sign(,(-),Verify (-, ), where G is the key generation algorithm, Sign is the
signature algorithm, and Verify the verification algorithm, constitute a digital sig-
nature scheme for a family (indexed by the public key PK ) of message spaces My
if:

Correctness If a message m is in the message space for a given public key PK, and
SK is the corresponding secret key, then the output of Signg, (m) will always be
accepted by the verification algorithm Verifyp,. More formally, for all values
m and k:

Pr[(PK, SK) < G(1F);0 «+ Signgg(m) : m € Mpg A ~Verifypx(m,0)] =0

Security Ewven if an adversary has oracle access to the signing algorithm which pro-
vides signatures on messages of the adversary’s choice, the adversary cannot
create a valid signature on a message not explicitly queried. More formally,
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for all families of probabilistic polynomial-time oracle Turing machines {Ag) }
there ezists a negligible function v(k) such that

Pr[(PK, SK) + G(1¥); (Q, z,0) « AJ®sx0(1k) .
Verifypr(m,0) =1A=(30" | (m,0) € Q)] = v(k)

2.3 Commitment Schemes

A commitment scheme is a two-party protocol between a committer and a receiver.
It consists of two stages: the Commit stage and the Reveal stage. The committer
receives a value z as input to the Commit stage, and reveals this value z to the
receiver at the Reveal stage. A protocol is a secure commitment scheme if at the
end of the Commit stage the receiver cannot compute anything about the committed
value, and there exists only one value that the committer can reveal at the Reveal
stage.

Commitment schemes sometimes have a pre-processing phase during which the
parameters of the commitment scheme are set up.

For the purposes of this thesis, we will consider a less general class of commitments
only, namely the class of non-interactive commitments. Sometimes, it is desirable to
reduce the amount of communication needed in a commitment scheme to one round
per stage.

Commitment are important building blocks for essentially all cryptographic pro-
tocols, from zero-knowledge proofs to multi-party computation. Here, we give a
definition of non-interactive commitment schemes. In general, a commitment scheme
need not be interactive. However, for the constructions we give in the sequel, there
is no need for the more general definition.

A non-interactive commitment scheme consists of a set-up algorithm G that sets up
the public parameters for the scheme, and a commitment function Commit. G takes
as input just the security parameter 1¥ and produces the public key PK. (Some
commitment schemes do not need a set-up phase; for these, we can imagine that G
simply outputs the unique PK = 1* on input 1*.) Corresponding to each public key
PK, there is a message space Mpg. Commit is a deterministic algorithm that takes
as input the values, PK, x € Mpg, and a k-bit random string r.

In order to commit to a value x € Mpg, the Committer generates a random
r, computes C = Commit(PK,z,r) and sends C to the receiver. In the Reveal
stage, the Committer reveals the values z and 7, and the Receiver verifiers that
C = Commit(PK,z,r). More formally:

Definition 2.3.1 (Commitment scheme). Algorithms (G, Commit) constitute a
non-interactive public-key commitment scheme if the key generation algorithm G runs
in probabilistic polynomial time, while Commit is a polynomial-time computable func-
tion that takes as input a value x and a random string R and outputs a commitment
C such that the following two properties hold:
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Hiding (a.k.a. semantic security): Even if the adversary chose the input distri-
bution D for the value x to which the Committer commits, he learns no more
information about this value than what is computable from the input distribution
itself. More formally, there exists an efficient simulator algorithm S such that
for all adversaries A, there ezists a negligible function v such that

Pr[PK + G(1%); (u, D) + A(1*, PK);

r < {0,1}%; 2 « D;

Co + Commit(PK,z,7);C, < S(PK, D);
b {0,110 + A(w,Cy) : bV =b]<1/2+v(k)

Binding: No probabilistic polynomial-time non-uniform adversary A can open
a commitment in two different ways. More formally for all A, there erists a
negligible function v such that

Pr[PK < G(1%) ; (z1,71,%2,73) « A(PK) : 1,5 € Mpx A 21 # 2
ACommit(PK, zq,71) = Commit(PK, xs,72)] = v(k)

Remark: The definition given above requires semantic security of the committed
value. It is a classical result due to Goldwasser and Micali [GM84] that equivalently,
we could state this definition as follows: the adversary chooses zg and z;, and receives
a commitment to a random one of them. The security of the commitment scheme
means that the adversary cannot tell a commitment to which one of them it received
any better than by random guessing.

Flavors of commitment schemes Since commitment schemes are of fundamen-
tal importance in cryptographic protocols, many special flavors of them have been
considered in the literature. Most notably, there are unconditionally hiding (resp.,
binding) commitments for which the hiding (resp., binding) property described above
holds even against a computationally unbounded recipient (resp., committer); non-
malleable and mutually independent commitments [DDN00, CKOS01, LLM*01] where
multiple players are committers and recipients at the same time; and universally com-
posable commitments [CF01] which are commitments whose security approaches the
security attainable with the use of an ideal trusted party.

2.3.1 Trapdoor commitments

For many cryptographic applications, a special flavor of commitment schemes, namely
trapdoor commitments are very attractive. A trapdoor commitment scheme, only
possible for commitments with a public key, are schemes in which corresponding to
the public commitment scheme PK, there is a trapdoor key TK. The knowledge of
TK allows one to open a commitment in any desirable way. The key generation is
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carried out in such a way that the committer does not know the value TK, and so a
trapdoor commitment can be a secure commitment.

Trapdoor commitments are very useful in cryptographic protocols, especially ones
whose definition requires simulation. This is because while an actual party in the
computation cannot know the trapdoor key corresponding to a commitment and
will therefore be bound by a commitment, the simulator can be given this key TK,
thus making it easier to create the view of the adversary. As a result, trapdoor
commitments are useful, for example, in zero-knowledge proofs [Dam00], threshold
cryptography [JLO0O], and signature schemes [STO01].

We will now give a formal definition of a trapdoor commitment scheme.

Definition 2.3.2. A commitment scheme (G,Commit) is trapdoor if there ezists a
key generation procedure G' such that

1. Procedure G'(1%) outputs a key pair (PK, TK).

2. Let G" be a procedure that runs G' and outputs the PK -part of its output only.
g(lk) = gl/(lk)_

3. There is a procedure Alter such that if (PK, TK) € G'(1%), then on input T,z €
Mpg, and r, € {0,1}*, it outputs ro € {0,1}" such that (PK,r) = (PK,r5)
and Commit(PK,z;,7;) = Commit(PK, xs,T2).

Remark: There are other notions of trapdoor commitments. A weaker notion would
be a commitment where the Alter procedure does not necessarily take as input just
any value ry: r; can come from a special distribution, indistinguishable from random.
A stronger notion would be one that did not require that Alter takes z; and r; as
input, but instead has Alter take just the values (TK,C,z) and find a value r such
that C = Commit(PK,z,r).

2.4 Zero-Knowledge Proofs

Introduced by Goldwasser, Micali and Rackoff [GMRS85] in their seminal paper “On
the Knowledge Complexity of Interactive Proof Systems,” zero-knowledge proofs con-
stitute a central class of cryptographic protocols.

In an interactive proof system, there are two players, the Prover, and the Verifier.
The Prover wants to convince the Verifier of the validity of some statement. For
example, the statement can be of the form “Formula ¢ is satisfiable,” or “Graph G is
three-colorable.” There are two requirements of a proof system: that it be complete,
that is to say, if the statement is true, then the Prover should be able to convince the
verifier with high probability 1 —c; and that it be sound, that is to say, if the statement
is false, then no prover should be able to convince the verifier with probability larger
than some small value s. Although in general a proof system can be defined for
any completeness and soundness so long as 1 — ¢ — s is non-negligible, we are only
interested in protocols with perfect completeness.
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Definition 2.4.1 (Interactive proof system). A pair of interactive probabilistic
Turing machines (P, V') constitute an interactive proof system for language L if:

Completeness If v € L, then V always accepts, that is Pr[P(z) + V(z) —
b:b=1]=1

s-Soundness For all x ¢ L for all provers P*, Pr[P* <+ V(z) > b :b=1] <
s(lz))-

We will be interested mostly in proof systems that have negligible s.

Note that a proof system can only be of interest if the Verifier alone cannot
determine whether x € L. Of particular interest are proof systems where the Verifier
is probabilistic polynomial-time.

On the other hand, when a protocol is designed for use in practice, it is a very nat-
ural question how a Prover can be more computationally powerful than probabilistic
polynomial-time. Therefore, it makes sense to consider interactive arguments, where
a Prover’s computational powers are also limited to probabilistic polynomial-time,
and the Prover’s power comes from the fact that the Prover also takes some auxiliary
input. More formally:

Definition 2.4.2 (Interactive argument). A pair of interactive probabilistic poly-

nomial-time Turing machines (P, V') constitute an interactive argument for language
L if:

Completeness If x € L, then there ezists a witness w such that

PriP(z,w) < V(z)=>b : b=1]=1

Soundness For all © ¢ L, for all probabilistic polynomial-time provers P*,
Pr[P* & V(z) = b :b=1] < s(|z|).

It is clear that any language in NP has a trivial interactive argument. For example,
if L is the language of all satisfiable formulae, then the Prover’s auxiliary input is the
satisfying assignment w. To convince the Verifier that the formula ¢ is satisfiable,
the Prover can simply give w to the Verifier.

The interesting thing about interactive arguments (and also about interactive
proofs) is that it is possible to convince the Verifier that ¢ is satisfiable without
revealing any information about w. An interactive proof system (resp., argument)
with this property is called a zero-knowledge proof system (resp., argument).

At the heart of the definition of a zero-knowledge proof system is the following
intuition: a proof system is zero-knowledge if, no matter what the verifier’s code,
anything that this verifier learns as a result of this interaction, it could compute on
its own. In other words, for any verifier V' there is a simulator S that, without talking
to the Prover at all, but just assuming that z € L, computes whatever it is that will
induce the Verifier to accept, and the Verifier will not even notice the difference. A
natural question is, of course, why should such a proof system be sound - since now

30



the Verifier will believe anything? The power that the simulator S has that the actual
prover does not, is that the simulator can run and re-run V' as it sees fit. For example,
if it issues a message that induces V to reject, it can simply rewind V' and issue a
different message. The actual Prover does not have that ability, hence the simulator
can get away with things that the Prover could not possibly get away with.

Definition 2.4.3 (Simulator). A probabilistic polynomial-time Turing machine S
is called a simulator for machine A’s interaction with machine B on input x, if
there exists a polynomial p(-) such that for all inputs a of length at most p(|z|),

VIEW 4(A(a,z) <> B,) = VIEW 4(A(a, 2) &5 (1%, z)).

We are now ready to give definitions for two flavors of zero-knowledge. The first
if these definitions, Definition 2.4.4, is the most general definition of zero-knowledge
proofs. The second definition is that of black-box zero knowledge (Definition 2.4.5).
This definition is provably stronger, and perhaps unnecessarily strong, but it is fre-
quently the most convenient for use in protocol design.

Definition 2.4.4 (Zero-knowledge proof system). A proof system (resp., argu-
ment) (P, V) is a zero-knowledge proof system (resp., argument) for language L if for
all verifiers V* there exists a machine S such that for all x € L, S is a simulator (as
in Definition 2.4.8) for V*’s interaction with P(z) (resp., P(x,w)) on input x.

The stronger definition of black-box zero-knowledge proofs is the same, except
that it has the quantifiers reversed:

Definition 2.4.5 (Black-box zero knowledge proof system). A proof system
(resp., argument) (P, V) is a black-boz zero-knowledge proof system (resp., argument)
for language L if there exists a machine S such that for all verifiers V* forallz € L, S
is a simulator (as in Definition 2.4.8) for V*’s interaction with P(x) (resp., P(z,w))
on input x.

2.5 Proofs of Knowledge

Here we recall a definition of a proof of knowledge protocol. Proofs of knowledge are,
as Bellare and Goldreich [BG92] wrote, “one of the many conceptual contributions
of the work of Goldwasser, Micali and Rackoff [GMR85].” They were first defined by
Feige, Fiat and Shamir [FFS88] and by Tompa and Woll [TW87], and further refined
by Bellare and Goldreich [BG92].

A proof of knowledge is a protocol whereby a verifier is convinced that a certain
quantity w that satisfies some polynomial-time computable relation R is known to
the prover. For example, w can be a satisfying assignment to a formula ¢ in which
case R(¢,w) = ¢(w). It is convenient for the purposes of notation to imagine R as
taking two inputs: one known to both the prover and the verifier (in this example,
the formula ¢) and the other w, known to the prover only.
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A proof of knowledge can be done trivially by producing w. However, it can also
be done in such a way that the verifier learns nothing new about w. A protocol that
satisfies this latter condition is called a zero-knowledge proof of knowledge protocol.

Roughly, a verifier V' is a knowledge verifier for a relation R if for any prover P
that induces the verifier to accept, there is a knowledge extractor K that, using V
and P, computes w such that R(z,w) is satisfied, where z is the common input. As
discussed by Bellare and Goldreich [BG92], the subtleties in formally defining proofs
of knowledge arise when it is necessary to demand a dependency of the running time of
K on the probability with which V' accepts when talking to P. An important quantity
in the definition of Bellare and Goldreich, is the knowledge error x which quantifies
how often a cheating prover is allowed to convince the verifier. The definition then
demands that for any prover P that convinces the verifier with probability p > &, the
knowledge extractor computes w in expected time O(poly(|z|)/(p — &)).

The work on defining proofs of knowledge that capture the most intuition is
on-going, as new protocol design techniques are discovered. A recent example of
this trend is Barak and Lindell’s [BL02] non-black-box knowledge extractor following
Barak’s [Bar01] study of non-black-box zero knowledge protocols. Their non-black-
box knowledge extractor, instead of using P just as an oracle, takes the description
of P as a separate input. The motivation for defining proofs of knowledge in this
fashion is that it yields strictly polynomial time of the knowledge extractor K.

Here, we recall the definition due to Bellare and Goldreich. However, we only
consider proofs of knowledge where knowledge error function « is exponentially small
in the length of a witness w. The reason that we insist on this stronger definition
is that it gives good composition results, and that the protocols we exhibit satisfy
it. Moreover, Bellare and Goldreich show how to construct protocols satisfying this
requirement out of weaker proof of knowledge protocols.

When the knowledge error is exponentially small, it is easier to examine how the
protocol behaves under composition. The theorem we will show is in fact stronger
than what was known before, although it seems to have been used implicitly in the
analysis of some cryptographic protocols. In particular we show that the property
that a protocol is a proof of knowledge is preserved under concurrent composition.

Definition 2.5.1 (Proof of knowledge (POK)). Let R(-,-) be a polynomially
computable relation. Let u(x) be such that |w| < u(z) for all w such that R(x,w)
holds, and assume that some such u(z) = poly(|z|) is efficiently computable.

A verifier V is a knowledge verifier with respect to R if:

Non-triviality: There exists a prover P such that for all z, w, if R(z,w) = 1,
then

Pr[P(z,w) &< V(z) =b : b=1]=1

Extraction with knowledge error 2% : There exists an extractor algorithm K
and a constant ¢ such that for all x, for all adversaries A, if

p(z) =PrlA & V(z) = b : b=1] > 274
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then, on input x and with access to the prover, K computes a value w such that

R(z,w) holds, within an expected number of steps bounded by p(;;t;(_ﬁ)():)

We say that V' is a verifier with respect to language L if V is a verifier with respect
to relation R(x,w) where R is true iff w is a witness to the statement z € L.

2.5.1 Concurrent Composition

We now turn to the question of concurrent composition of proofs of knowledge. Con-
current execution of several protocols is an execution where the messages from differ-
ent instances of the protocol are arbitrarily, even adversarially, interleaved between
each other. In other words, we assume that the adversary controls the scheduling of
all the messages, subject to the constraint that within each protocol, all messages are
scheduled in the right order.

In the cryptographic context, concurrent composition was first considered by
Dwork, Naor, and Sahai [DNS98] in their work on concurrent zero-knowledge proofs.
Unlike what we show here about proofs of knowledge under concurrent composi-
tion, zero-knowledge proofs do not necessarily remain zero-knowledge under con-
current composition. In fact, no constant-round black-box zero-knowledge proof is
zero-knowledge under concurrent composition [CKPRO1].

Let us now explain what it means to concurrently compose proofs of knowledge.
The behavior of the composed verifier is as expected: every time a new prover contacts
the verifier and wants to run a proof of knowledge protocol, a new copy of the verifier
is created, each running separately on its corresponding input. More formally:

We will assume that the instructions to initiate the protocols come from the
“outside,” i.e., from some higher-level process that may be acting adversarially. The
composed verifier V* acts as follows:

1. V* receives as input the security parameter 1* that determines the size of in-
stances .

2. Upon receiving an “Initiate x, ID” message from the “outside,” it creates a copy
of the verifier V on input (1%, z). If this is the 7’th “Initiate” message, then we
denote this copy of the verifier by V;, and this input by z;. The identifier ID is
used as a label to denote that a message received from the prover is concerning
the protocol invocation associated with the given identifier ID.

3. If V; computes a message m to be sent to its prover, the composed verifier V*
sends the message “ID,m” to the prover, where ID is the identifier correspond-
ing to this copy of the verifier.

4. Upon receiving a message “ID,m” from the prover, the composed verifier for-
wards it to the verifier V; that corresponds to the identifier ID.

5. Upon receiving the “Halt” message from the outside, the composed verifier halts
and outputs the vector X of all the inputs received, and an index set I that
indicates for which inputs the proofs of knowledge were accepted.
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Note that the composed verifier accepts some input values and rejects others.
The property we want is that, instead of running the composed verifier, we should
have been able to substitute him with a knowledge extractor such that the prover
would not notice the difference, and yet the knowledge extractor would output all the
witnesses for which the proof of knowledge went through successfully. More formally:

Definition 2.5.2 (Concurrent POK). Let V be a knowledge verifier for relation
R, and let V* be the concurrent version of V. We say that V can be concurrently
composed if there exists an extractor K* that has access to the prover, and runs in
expected polynomial time such that

Extraction: K*(1%) runs with (black-boz) access to the adversary A and outputs

(1) a value v = (X, I), where X is a vector of instances, X = (z1,... ,zs), and
I C [€] is a set of indices; and (2) for each i € I, a witness w; such that R(z;, w;)
holds.

Simulation: The adversary’s view is the same whether talking to the verifier V
or to the knowledge extractor K. More formally, for all adversaries A,

[VIEW 4, OUTy|(A  V*(1%)) £ [VIEW p, vg ] (A& K*(1%))
where vk« denotes the v-part of the output of the extractor K*.

Theorem 2.5.1 (Concurrent Composition of POK). If V is a knowledge veri-
fier with respect to R, then V' can be concurrently composed with respect to R.

Proof. Let us first describe the knowledge extractor algorithm K*. We will then
analyze its correctness and running time.

Let a combined extractor K’ be a machine that, on input z and with black-box
access to a prover P, does two things in parallel: it runs the extractor K, and it also
searches through all the u(z)-bit strings for a witness w such that R(z,w) = 1. If K
outputs such a w, K’ halts and outputs w, otherwise, K’ continues its search. If K’
discovers that no string w of length u(z) is a witness to R(z,w), then K’ rejects.

K* acts as follows:

1. Run the composed verifier V*, observe its output, and save its computation
history.

2. For each z; € I, extract a witness w;, as follows:
(a) Make a new copy of the computation, and rewind this copy to the moment

when the message “Initiate x;” was first issued.

(b) Replace the verifier V; with the combined extractor K'(z;) described above.
Run K’ to either obtain w; or discover that no w; exists, as follows:

e When K' sends a message to the adversary, this message is forwarded
to the adversary with the right ID.
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e When the adversary sends a message to V;, this message is forwarded
to K'.

e When K’ needs to rewind the adversary, the adversary is rewound as
directed by K'.

(c) In case K' rejects, K* will reject everything (output an empty index set)
and halt. Otherwise, it will store w; and proceed to extract the next
witness.

3. K* outputs the same values X and I output by the verifier V*, and all the
witnesses extracted.

It is clear that K* always terminates. It is also clear that whenever K™ outputs
an index set, it also outputs the corresponding witnesses. We must now show that
the following two claims hold:

Claim 1 (Running time) K* runs in expected polynomial time.

Claim 2 (Correctness) The values X and I output by K* are distributed correctly.

From these two claims, it follows that V' is concurrently composable, by Defini-
tion 2.5.2.

Let us first show Claim 1. Suppose that the adversary’s random coins are fixed.
The first stage of K* is just running several independent copies of the verifier V.
It takes a polynomial number of steps. Suppose that the output of V* is (X, I).
By A, let us denote an adversarial algorithm defined as follows: Run V*(1*) with
adversary A until you receive the i’th “Initiate z;” message. Upon receiving this
message, instead of making a new copy V; of the verifier, start interacting with V' (z;),
as directed by adversary A. Let p;(A) = Pr[(A}; «> V(z;)) — b: b = 1]. Note that
because V is a knowledge verifier for relation R, it follows that K (xz;) will extract w;

with in pi(% steps, if p;(A) > 27%@), by Definition 2.5.1.

Therefore, if p;(A) > 27%®), then K'(x;) will run for at most I—)m—-—% steps in

expectation. Otherwise, K'(z;) will run for at most O(2**)) steps since that’s how
long it takes to find w; by brute force or discover that it does not exist.

Moreover, once A is fixed, all the values p;(.A) are fixed as well. Even though the
event that V* accepts z; is not necessarily independent of the event that it accepts
xj, our calculation of expected running time will go through because of linearity of
expectation.

For each i < ¢, the extractor K* will do no work with probability 1 — p;(A4),
corresponding to the event that V* rejected z;; and with the remaining probability

pi(A), it will run for at most p('(ZA')tl;(_zuZZ) < 2(Iz;LJ(rj§zi)) steps if p;(A) > 27U+

and at for at most 2“*) steps otherwise. Therefore, in expectation, the extractor
K* will spend at most O((|z;| + u(z;))¢) steps extracting witness w;. By linearity of
expectation, the running time of K* is O(¢(|z| + u(z))¢), where z € X is the value
for which |z| + u(z) is maximized. This quantity is polynomial in % since all z;’s are
of length that is polynomial in k. Thus we have proved Claim 1.

Now let us prove Claim 2. The only case when K* does not output the value
obtained by running V* is when V* accepted some z; for which no witness exists.
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Suppose this happens with non-negligible probability. Then we show that there is no
knowledge extractor for verifier V. Namely, let us construct an adversarial prover P
who will induce V' to accept with probability greater than 27%(*) a string x for which
no witness exists. This in itself will imply that no extractor exists, since, no matter
what K is or how long an extractor will run, it will fail to find a witness, contradicting
the given. The adversarial prover will be A} described above. Since it fully emulates
the conditions of the interaction between V* and A, it induces V' to accept z; with
the same probability as the probability that V* accepts z;. O

Remark. Note that both the definition of concurrent composition, and the the-
orem can be formulated for an on-line composed verifier, i.e., the verifier that does
not wait until the end of the computation to output z; together with its accep-
tance/rejection decision. The modification to the definition is that the simulator
should also produce its output on-line, without waiting for the end of the computa-
tion, and its output should be indistinguishable from that of the on-line composed
verifier.

2.6 Protocols for Models with Public Parameters

In the public parameter model, we assume that some set-up phase (possibly run by
a trusted third party, or possibly by a secure distributed protocol among all parties),
was run before the protocol begins. We treat the adversary as fixed before this set-up
phase took place. An example of the public-parameter model is the public-key model,
where we assume that in the initial set-up phase each participant has obtained a key
pair: a public key that is published and available to all parties, and a secret key that
is only known to this party.

The reason we think of the non-uniform adversary as being fixed before the set-up
phase, is that, in the first place, this is a more realistic scenario since an adversary
will attack an algorithm as opposed to its specific incarnation. In addition, if the
adversary is allowed to be fixed after the set-up phase, then this set-up phase becomes
obsolete since the adversary may be designed especially for this specific setting of the
parameters, and for example in the public-key setting, such an adversary will know
all the secret keys.

Definitions of zero-knowledge proofs and proofs of knowledge in these models are
changed as follows: The adversary is fixed before the set-up phase, the players take
public parameters as input, and the simulator and knowledge extractor are allowed
auxiliary inputs that depend on the public parameters, and are computable from
the randomness that was used to generate these public parameters. Here, we omit
the formalism, but refer the reader to Reyzin’s work [Rey01] on secure protocols in
various such models.
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2.6.1 Concurrent Zero-knowledge Using Trapdoor Commit-
ments

Damgard [Dam00] showed that, assuming trapdoor commitments and the public-
parameter setting, it is easy to achieve concurrent zero-knowledge protocols using
Y-protocols.

First, let us define what it means for a zero-knowledge proof to compose concur-
rently. It is similar to concurrently composable proof of knowledge, except that here
we are concerned about both the composed Prover P* and the composed Verifier V*.
They are both similar to what we described in the previous section for the proof of
knowledge case. The composed verifier V* is, in fact, identical. For the presenta-
tion of these composed protocols, we will assume that the instructions to initiate a
protocol come from an adversary. The composed prover P*.

1. Upon receiving an input “Initiate z, w, ID” from the outside, create a copy of
the Prover P and run P(z,w). If this is the ¢’th “Initiate” message, then we
denote this copy of the prover by P;, and this input by (x;,w;). The identifier
ID is used as a label to denote that a message received from the prover is
concerning the protocol invocation associated with the given identifier ID.

2. If P, computes a message m to be sent to its verifier, the composed prover sends
(m, ID) to the composed verifier.

3. If the composed verifier sends the message (m, ID) to the composed prover,
direct that message to the prover P; corresponding to the right ID.

4. Upon receiving the “Halt” message from the outside, halt.

Definition 2.6.1. A proof system (P, V) is concurrently composable if

Completeness: The composed verifier V* will always accept everything that the
composed prover P* proves.

Soundness s: The probability that the composed verifier V* accepts a false state-
ment is Y, s(|x;i])-

Theorem 2.6.1. Any proof system with negligible soundness is concurrently compos-
able with negligible soundness.

Proof. (Sketch.) Completeness follows from the perfect completeness of the original
proof system, because all that the composed prover and verifier do is create copies of
P and V and forward messages between them.

Soundness is shown by contrapositive. Suppose that the soundness of the con-
current proof system is €. Then we show that the soundness of the underlying proof
system (P, V) is at least €. This is because we can (non-uniformly) see which false z;
the Verifier accepts with this probability, and then create a prover that would emulate
the concurrent conditions and force the verifier to behave in the same was as in the
concurrent conditions. 0
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Definition 2.6.2 (Concurrent ZK). A proof system (resp., argument) (P,V) for
language L 1s concurrently zero knowledge if for all probabilistic polynomial-time ad-
versaries A, for all £, there is a simulator S for A’s interaction with the composed
prover P* on input i,... ,z, € L (resp., where the composed prover P* also receives
as auziliary input the witnesses wy, ... ,wy).

Definition 2.6.3 (Black-box concurrent ZK). A proof system (resp., argument)
(P, V) for language L is concurrently zero knowledge if there is a simulator S for
all probabilistic polynomial-time adversaries A, for all £, for A’s interaction with the
composed prover P* on input x,...,xy € L (resp., where the composed prover P*
also receives as auziliary input the witnesses wy, ... ,wy).

It has been shown that if these two notions are non-trivial (i.e., if not all lan-
guages for which zero-knowledge proofs exist are in BPP), then these two notions
are distinct. This follows from the fact that, Canetti et al. [CKPRO01] showed that
at least a logarithmic number of rounds is required to achieve black-box concurrent
zero knowledge, while Barak [Bar01] showed that non-black-box concurrent ZK can
be achieved in constant rounds.

In the common random string (CRS) model, non-interactive zero knowledge proofs
are possible for any language in NP [BDMP91, FLS99] (assuming certified trapdoor
permutations; this assumption was later reduced to trapdoor permutations [BY96]).
Non-interactive zero-knowledge proofs are concurrently composable simply because
they are sequentially composable. However, general non-interactive zero knowledge
proofs can be quite inefficient, since the best know techniques to carry one out re-
quire going through the Cook-Levin theorem. Therefore, interactive zero-knowledge
protocols are also of interest in the CRS and common setup models, so long as they
are more efficient.

Definition 2.6.4 (Black-box concurrent ZK in the common setup model).
A proof system (P, V') is black-box concurrently composable in the common setup model
if there exist simulators Sy, Sy such that

o 5; is the simulator for the generation of the common setup. It takes as input
the security parameter 1¥, and outputs the setup string s, and some auziliary
information a. Let S1(1¥), denote the s-part of the output of Si.

e For all adversaries A that act as both a verifier and as the “outside” that sup-
plies the instances to the proof system, (s < G(1¥), VIEW 4(A(r) < P*)) =

(S(1¥),, VIEW 4(A(r)&S,(a))), where G(1¥) denotes the algorithm that, on in-
put 1%, outputs the setup parameters for the proof system (P,V).

Damgérd showed how to transform a special flavor of a zero-knowledge proof of
knowledge, namely, the ¥-protocol into a black-box concurrently composable zero-
knowledge argument of knowledge in this model using trapdoor commitments. Here,
we recall his result. In the sequel, we will give X-protocols for the languages we will
need a concurrent zero-knowledge proofs for.
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A Y-protocol is a three-round proof of knowledge protocol where in the second
round, all that the verifier needs to do is reveal its random coins; its security is
only against a verifier who chooses his coins adversarially. Although examples of
such protocols were known prior to his work, the term ¥-protocol was introduced by
Cramer [Cra97]. The reason that he called these protocols 3-protocol is the shape of
the letter . The definition we give here is slightly less restrictive than the one given
by Cramer and by Damgard [Dam02] in that we do not require knowledge extraction
to be as efficient as they do.

Definition 2.6.5 (X-Protocol). Let (P,V) be a three-round proof system for lan-
guage L, where V is a knowledge verifier with respect to language L. Suppose (P,V)
starts with a message from P to V, and where V'’s only message to P consists of its
random coins. Let A be a probabilistic polynomial-time adversary that on input x,
chooses the random coins for verifier V. By V4, let us denote the resulting verifier.
(P,V) is a X-protocol if there exists a simulator S such that for all A, and for all
x € L, S simulates the view of V4 for the interaction with prover P on input x, where
the Prover receives the auziliary input w that is the witness for x € L.

Damgard technique is as follows: the common setup produces a trapdoor com-
mitment key PK. The Y-protocol is then modified as follows:

1. Let m, be the prover P’s first message. Instead of sending m, the prover will
send M = Commit(PK,m,y,r) for random r.

2. The verifier sends R that is the contents of its random tape, as is prescribed by
the X-protocol.

3. The prover sends r, thereby revealing his first message m;. He also computes
and sends the prover P’s response to the message R from the verifier.

4. The verifier checks that M = Commit(PK,m;,r) and uses verifier V on ran-
domness R to verify prover’s messages (m, ms).

Let us called the proof system thus modified (P', V”).
Lemma 2.6.2. If (P,V) is a proof of knowledge for language L, then so is (P',V").

Proof. (Sketch) The completeness property is clear. The knowledge extraction prop-
erty holds because suppose that the soundness of the proof system got worse by e.
Let us show that this contradicts either the knowledge extraction property of the
proof system (P, V'), or the binding property of the commitment. Let us try to first
contradict the knowledge extraction property. We will interact with the adversary
as follows: In the first step, the adversary sends us the message M. In Step 2, we
will send him randomness, and obtain the response. We will repeat this step until
the prover induces us to accept (each time this will happen with probability s + ¢, so
this step must be repeated 1/¢ times.) So we have created an accepting transcript
with initial message M, with the verifier’'s randomness, let us call it R;. Now we
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rewind him to Step 2 and obtain another accepting transcript with message M, this
time with different randomness R,. Suppose that the probability that in this sort of
experiment, both times, the same value m; corresponding to M is revealed, is 1/2.
Since R, was chosen independently of Ry, and it took 1/e tries in expectation to
find it, and the probability that it was found is 1/2, it follows that for ¢/2 fraction
of possible R’s, the prover would send a message in Step 3 inducing the verifier to
accept. Then the knowledge error of the original proof system is at least €/2: this is
because if the initial message of Prover P is my, then it turns out that for ¢/2-fraction
of the possible R’s, there is a message ms that induces V' to accept. So suppose that
with probability more that 1/2, the adversary gives a different m; as corresponding
to commitment M. Then we have broken the commitment scheme. O

Lemma 2.6.3. (P, V') is concurrent black-bozx zero-knowledge proof of knowledge in
the auziliary string model.

Proof. (Sketch) As for the proof of knowledge part, it is taken care of by theorem 2.5.1.
Now let us show the zero-knowledge property. The simulator will act as follows:
In the common setup phase, it will run G’ of the trapdoor commitment scheme and
obtain not only a commitment public key PK, but also the trapdoor TK.
Then it will run the following code for each interaction with verifier V*:

1. Compute an arbitrary m} and random r, and let M = Commit(PK,m},r).
2. Receive the value R.

3. Run S, the simulator of the ¥-protocol (P, V), to obtain a transcript (my, my)
for randomness R. Alter M to be a commitment to m; and send this to the
verifier.

Note that this simulation can be carried out concurrently because it does not need
any rewinding of the verifier.

Due to the trapdoor property of the commitment scheme, the resulting simulation
will be indistinguishable from the interaction with the prover. O
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Chapter 3

Anonymous Credential System

As information becomes increasingly accessible, protecting the privacy of individuals
becomes more challenging. To solve this problem, an application that allows the indi-
vidual to control the dissemination of personal information is needed. An anonymous
credential system (also called pseudonym system), introduced by Chaum [Cha85], is
the best known idea for such a system.

An anonymous credential system [Cha85, CE87, Che95, Dam90, LRSW99] con-

sists of users and organizations. Organizations know the users only by pseudonyms.
Different pseudonyms of the same user cannot be linked even if all of the organiza-
tions cooperate. Yet, an organization can issue a credential to a pseudonym, and
the corresponding user can prove possession of this credential to another organization
(who knows her by a different pseudonym), without revealing anything more than
the fact that she owns such a credential. Credentials can be for unlimited use (these
are called multiple-show credentials) and for one-time use (these are called one-show
credentials). Possession of a multi-show credential can be demonstrated an arbitrary
number of times; these demonstrations cannot be linked to each other.
Basic desirable properties. It should be impossible to forge a credential for a
user, even if users and other organizations team up and launch an adaptive attack on
the organization. Each pseudonym and credential must belong to some well-defined
user [LRSW99]. In particular, it should not be possible for different users to team up
and show some of their credentials to an organization and obtain a credential for one
of them that this user alone would not have gotten. Systems where this is not possible
are said to have consistency of credentials. As organizations are autonomous entities,
it is desirable that they be separable, i.e., be able to choose their keys themselves and
independently of other entities, so as to ensure security of these keys and facilitate
the system’s key management.

The scheme should also provide user privacy. An organization cannot find out
anything about a user, apart from the fact of the user’s ownership of some set of cre-
dentials, even if it cooperates with other organizations. In particular, two pseudonyms
belonging to the same user cannot be linked [Bra99, Cha85, CE87, Che95, Dam90,
LRSW99].

Finally, it is desirable that the system be efficient. Besides requiring that it be
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based on efficient protocols, we also require that each interaction involve as few en-
tities as possible, and the rounds and amount of communication be minimal. In
particular, if a user has a multiple-show credential from some organization, she ought
to be able to demonstrate it without getting the organization to reissue credentials
each time.

Additional desirable properties. It is an important additional requirement that
the users should be discouraged from sharing their pseudonyms and credentials with
other users. One way of doing it is by ensuring that sharing a credential implies also
sharing a particular, valuable secret key from outside the system (e.g., the secret key
that gives access to the user’s bank account) [DLN96, GPR98, LRSW99].

In addition, it may be desirable to have a mechanism for discovering the identity of
a user whose transactions are illegal (this feature, called global anonymity revocation,
is optional); or reveal a user’s pseudonym with an issuing organization in case the
user misuses her credential (this feature, called local anonymity revocation, is also
optional). It can also be beneficial to allow one-show credentials, i.e., credentials that
should only be usable once and should incorporate an off-line double-spending test.
It should be possible to encode attributes, such as expiration dates, into a credential.

Related work. The scenario with multiple users who, while remaining anonymous
to the organizations, manage to transfer credentials from one organization to another,
was first introduced by Chaum [Cha85]. Subsequently, Chaum and Evertse [CE87]
proposed a solution that is based on the existence of a semi-trusted third party who
is involved in all transactions. However, the involvement of a semi-trusted third party
is undesirable.

The scheme later proposed by Damgard [Dam90] employs general complexity-
theoretic primitives (one-way functions and zero-knowledge proofs) and its complexity
renders it not applicable for practical use. Moreover, it does not protect organizations
against colluding users. The scheme proposed by Chen [Che95] is based on discrete-
logarithm-based blind signatures. It is efficient but does not address the problem of
colluding users. Another drawback of her scheme and the other practical schemes
previously proposed is that to use a credential several times, a user needs to obtain
several signatures from the issuing organization.

In an earlier work [LRSW99, Lys99], we proposed a general credential system.
While this general solution captured many of the desirable properties, it is not usable
in practice because the constructions are based on one-way functions and general zero-
knowledge proofs of unrealistic complexity. The other, more practical construction
we gave, based on a non-standard discrete-logarithm-based assumption, has the same
problem as the one due to Chen [Che95]: a user needs to obtain several signatures
from the issuing organization in order to use unlinkably a credential several times.

Other related work is that of Brands [Bra99] who provides a certificate system in
which a user has control over what is known about the attributes of a pseudonym.
Although a credential system with one-show credentials can be inferred from his
framework, obtaining a credential system with multi-show credentials is not immedi-
ate and may in fact be impossible in practice. Another inconvenience of these and the
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other discrete-logarithm-based schemes mentioned above is that all the users and the
certification authorities in these schemes need to share the same discrete logarithm
group.

The concept of revocable anonymity is found in literature on electronic payment
systems [BGK95, SPC95] and group signature and identity escrow [ACJT00, CS97,
CvH91, KP98| schemes.

Prior to our work, the problem of constructing a practical system with multiple-use

credentials eluded researchers for some time [Bra99, Che95, Dam90, LRSW99]. We
solve it by extending ideas found in the constructions of strong-RSA-based signature
schemes [CS99, GHR99] and group signature schemes [ACJTO00].
Our contribution. In Section 3.1 we present our definitions for a credential sys-
tem with the basic properties. Although not conceptually new and inspired by the
literature on multi-party computation [Can95, Can00] and reactive systems [PW00],
these definitions are of interest, as our treatment is more formal than the one usually
encountered in the literature on credential and electronic cash systems.

Our basic credential system, presented in Section 3.2.2, provably satisfies the
basic properties listed above given a signature scheme and a commitment scheme. Its
efficiency relies on the efficiency of the underlying schemes.

Our extended credential system, presented in Section 3.3, describes how to incor-
porate additional desirable properties into the basic credential system.

3.1 Formal Definitions and Requirements

We will define security for a credential system in two steps. First, we will define what
it means for a cryptographic system (CS) to conform to an ideal-world specification
(IS). Then we will give an ideal-world specification for a credential system.

3.1.1 Definition of a Secure System Conforming to an Ideal-
World Functionality

Our definition is inspired by Canetti’s universally composable framework [Can01].
However, the notion of security we require is weaker because we are not concerned
with a notion of composability of the same strength in this thesis.

Ideal-World Functionality

An ideal (static) functionality consists of a trusted party T through which all trans-
actions are carried out, a set of honest ideal players IS, the adversary A, and the
environment F. A transaction is an event involving two or more parties; it can take
several rounds of communication to complete; in the sequel we will give specifications
for several transactions relevant for credential systems.

All parties receive as input the security parameter 1%.

The environment E proceeds in periods. In each period, it tells one honest player
which transaction to initiate. An honest party P € IS, activated by the environment,

43



participates in the specified transaction by contacting the trusted party 7" and telling
T what transaction it intends to carry out and with whom. T then executes the
trusted code for this transaction, which may involve sending messages to other players
and receiving messages from them. In the end of the period, P tells E the outcome
of the transaction.

Adversary A can also send and receive messages to and from 7'. The environment
E has total control over all of the adversary’s actions: the adversary A forwards all
the received messages to E, and then E tells the adversary A which messages to send.

In Figure 3-1, we give an example of an ideal system.

Figure 3-1: An example of an ideal system where the environment interacts with the
ideal parties A, B, and C, and the adversary fully controls ideal parties D and E.

Cryptographic System

A (static) cryptographic system is modeled by a set of honest cryptographic players
CS, the adversary A, and the environment E.

Here, too, the environment E proceeds in periods. In the beginning of each period,
it tells some honest player which transaction to initiate. An honest party P € CS,
activated by the environment, participates in the specified transaction by contacting
the parties it needs to contact to carry out the given transaction, and running the
corresponding cryptographic protocol with these parties. In the end of the period,
P tells E the outcome of the transaction. (Note that here, these are periods of
execution of the system, not rounds of communication; each protocol may require
very many communication rounds; once it is completed, this is the end of this period
of execution).

Adversary A can also send and receive messages to and from any other player in the
system. The environment F has total control over all of the adversary’s actions: the
adversary A forwards all the received messages to E, and then E tells the adversary
A which messages to send and to whom.

Let Init denote the algorithm for initializing the system’s public parameters. A
designated (honest, incorruptible) party is responsible for making these parameters
known to all the parties. In case no public parameters are needed, assume that Init
is a void algorithm.
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Figure 3-2, is an example of a real system.

Figure 3-2: An example of a real system where the environment interacts with the
parties A, B, and C, fully controls parties D and E (and so parties D and E are the
adversary), and has some knowledge about the network’s behavior.

Cryptographic System Satisfying an Ideal Functionality

The idea of this definition is that no environment should be able to tell whether it is
talking to a cryptographic system, or to the ideal functionality. This idea originates
in the multi-party computation literature [GMW86].

Definition 3.1.1. A cryptographic system CS with initialization algorithm Init con-
forms to the ideal specification IS in a black-bozx fashion, if there exists simulator S
such that for all pairs probabilistic polynomial-time families of interactive Turning
machines {Ey, Ay} there exists a negligible function v(k) such that,

e
| Pr[PK + Init(1%); (CS (1%, PK)—Ay=Ey)—b : b=1] —

Pr[ (IS (1%) T(1%) S(Ay)SE)—b : b=1]| = v(k)

Note that in the definition above, the simulator is given black-boz access to the en-
vironment. Of course, since the simulator does not have black-box access to the ideal
parties, it cannot rewind the environment beyond the beginning of a given period,
and cannot read messages sent between the environment and the honest parties.

The reason that this definition is weaker than the universally composable defi-
nition, is precisely that the environment has to schedule an entire transaction to be
carried out in a given period, so it cannot interleave messages of different transactions
or have transactions conducted concurrently. This makes this notion of security much
less appealing than universal composability, but also easier to work with.

Figure 3-3 shows how to show that the real system from Figure 3-2 satisfies the
specification of the ideal system from Figure 3-1.

45



Figure 3-3: A simulator translating a real environment and adversary into an ideal
environment and adversary. S(A), S(B) and S(C) are simulators that translate the
real environment E’s instructions for ideal parties A, B, and C. The simulator S(7')
translates the messages of the real environment £ into messages that the trusted party
T understands, and back. The main simulator S translates the real environment E
and the real adversary into ideal behavior.

3.1.2 Ideal Basic Credential System Functionality

A basic credential system has users, organizations, and verifiers as types of players.
Users are entities that receive credentials. The set of users in the system may grow
over time. Organizations are entities that grant and verify the credentials of the users.
Each organization grants a unique (for simplicity of exposition) type of credential.
Finally, verifiers are entities that verify credentials of the users.

The system supports the following transactions:

FormNym(U, O): This protocol is a transaction between a user U and an organiza-
tion O. The user U contacts T with a request to establish a pseudonym between
herself and organization O. She further specifies the login name Ly by which T
knows her and the corresponding authenticating key K. If she does not have an
account with 7" yet, she first establishes it by providing to 7" a login name Ly and
obtaining Ky in return. She further specifies pseudonym Ny,0). Then T verifies
the validity of (Ly, Ky) and, if Ky is the authenticating key corresponding to login
name L, contacts O and tells it that some user wants to establish a pseudonym
Nw,0)- The organization either accepts or rejects. If it accepts, it generates a
random k-bit tag ¢t and stores it together with N. T notifies U of acceptance or
rejection.

GrantCred(U, N, O): This protocol is a transaction between a user U and an organi-
zation O. U approaches T, and submits her login name Ly, her authenticating
key Ky, the pseudonym N, and the name of organization O. If Ky is not a valid
authenticating key for Ly, or if N is not U’s pseudonym with O, then T replies
with a “Fail” message. Otherwise, T contacts O. If O accepts, then T notifies the
user that a credential has been granted, otherwise it replies with “Reject.”

VerifyCred(U, V, N, O): This protocol is a transaction between a user U and a verifier
V. A user approaches T and gives it her login Ly, her authenticating key Ky,
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a name of the verifier V, a pseudonym N and a name of a credential-granting
organization O. If Ky is a valid authenticating key for Ly, and N is U’s pseudonym
with organization O, and a credential has been granted by O to NV, then T notifies V'
that the user has a credential from O. Otherwise, T replies with a “Fail” message.

VerifyCredOnNym (U, V, Ny, No, O): This protocol is a transaction between a user U
and an verifier V. U approaches T and gives it her login name Ly, her authenti-
cating key Ky, a name of the verifier V', pseudonyms Ny and Np, and a name of
a credential-granting organization O. If Ky is a valid authenticating key for Ly,
and Ny is U’s pseudonym with V' while Np is U’s pseudonym with organization
O, and a credential has been granted by O to Np, then T notifies V' that the user
with pseudonym Ny has a credential from O.

Output: Once a transaction is completed, a user outputs the name of the transaction
just completed, and the name of the organization it was completed with, and if
it was a verification transaction, then also the name of the credential-granting
organization; an organization outputs just the name of the transaction and the
identifying tag t of the pseudonym with which the transaction was conducted.

This ideal system captures the intuitive requirements, such as unforgeability of
credentials, anonymity of users, unlinkability of credential showings, and consistency
of credentials. Ideal operations that allow additional desirable features can be imple-
mented as well.

Let us briefly illustrate the use of the credential system by a typical example. Con-
sider a user U who wants to get a credential from organization O. Organization O
requires the possession of credentials from organizations O; and O, as a prerequisite
to get a credential from O. Assume that U possesses such credentials. Then U can get
a credential from O as follows: she first establishes a pseudonym with O by execut-
ing FormNym (U, O) and then shows O her credentials from O; and O, by executing
VerifyCredOnNym(U, O, No, No,, O1) and VerifyCredOnNym(U, O, No, No,, O2). Now
O knows that the user it knows under Ny possesses credentials from O, and O, and
will grant U a credential, i.e., U can execute GrantCred(U, Np,O). We remark that
the operation VerifyCred(U, V, N, O) exists for efficiency reasons. This operation can
be used by U if she wants to show a party only a single credential, e.g., to access a
subscription-based service.

3.2 Constructing a Basic Scheme using Signatures
and Commitments

Suppose we are given a signature scheme (G, Sign, Verify) and a commitment scheme
(G¢,Commit). Suppose a protocol for proving knowledge of a committed value is
given. Let (P((C, PK¢, PK,), (z,1,0)),V(C, PK)) be the protocol for proving knowl-
edge of the values z, 7, o such that C' = Commit pg (z,7) and Verifyp, (z,0). We
will also need a protocol for signing a committed value, defined below.
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3.2.1 Signing a Committed Value

In this section, we will define a protocol needed as a building block for constructing
an anonymous credential system. This will be a protocol between a user and a signer.
As a result of the protocol, the user will obtain a signature on a value of her choice,
while the signer will not learn any information about the value he has signed.

Let (G,Sign,Verify) be a secure signature scheme and (G, Commit) be a non-
interactive commitment scheme. In this section, we show a two-party protocol be-
tween a user U and a signer S, with the following functional specification, where X},
and Ry are efficiently samplable domains:

Common Input Signature public key PK, commitment public key PK . and com-
mitment C.

User’s private input The value € X}, that needs to be signed, and value r € Ry
such that C' = Commit(PK ¢, z,7).

Signer’s private input Secret key SK that corresponds to PK.

User’s output The value o such that Verify,,(z,0) = 1.
The security specifications of the protocol (S <> U) are:

Security for the user : The protocol must reveal (almost) no information about
the user’s input z. More formally, there exists a negligible function v (k) such
that for all z,y € X, for all (unbounded) adversaries A, for all PK € G(1*),

Prr < Rg;b+— A+ U(PK,z,r) : b=0]-
Pr[r < Ry;b— A U(PK,y,r) : b=0]] < wv(k)

Security for the signer : A User cannot output a valid signature o on any value
unless o was issued by the Signer. Moreover, corresponding to any o, there is
a unique value x that a user can produce, such that this value is fired at the
beginning of the protocol. More formally, let S denote the interactive Turing
machine for the Signer’s protocol. There exists an eztractor algorithm E such
that the User’s view in interactions with the extractor is the same as in interac-
tions with the Signer, even though the extractor only has a single oracle access
to the Signer. More formally, for all probabilistic polynomial-time families of
Turing machines {Uy}, there exists a negligible function v (k) such that

| Pr[(PK, SK) «+ G(1%); S(SK) <+ Ux(PK) = b : b=0] —
Pr[(PK, SK) « G(1*); E®#exO (1M By (PK) 5 b : b=0]] = v(k)
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More strongly, let (S(-)) denote the sequentially composed signer protocol, i.e.,
the protocol that repeats the signer’s protocol sequentially with the adversary U
until the adversary stops it. Let the sequentially composed extractor (E¢)(-)) be
defined analogously. We require the following: For all probabilistic polynomial-
time families of Turing machines {Uy}, there exists a negligible function v(k)
such that

| Pr[(PK, SK) + G(1¥); (S(SK)) <> Uy (PK) = b : b=0] —
Pr[(PK, SK) « G(1%); (E™®rO) (1PN BUL(PK) = b : b=0]| = v(k)

It is clear that using general two-party computation that utilizes a mutually in-
dependent and extractable commitment scheme [LLM™01], this protocol can be im-
plemented for any combination of a signature scheme with a commitment scheme.

Lemma 3.2.1. No polynomial-time adversary can output a signature on a value for
which it did not run a protocol with the signer S.

Proof. This follows from the security properties of the signature scheme. Since the
adversary cannot distinguish whether he is talking to the extractor E or to the actual
signer S, he is just as likely to output a forgery when talking to S as when talking
to E. But if he outputs a forgery when talking to E, that’s a direct forgery on the
signature scheme. O

3.2.2 Basic Anonymous Credential System

We propose the following basic anonymous credential system:

Init The public parameters for the system is the security parameter 1%, and a public
key PK¢ of a commitment scheme.

User initialization The user U chooses a secret key SKy.

Org. initialization The organization O chooses a signature key pair using algorithm
G and publishes its public key PKo.

FormNym(U, O) User U forms a commitment to her secret SKy: N = Commit(zy,r),
sends it to the organization O and proves that she knows the value committed
to. Once that is done, U and O both store N as U’s pseudonym with O. O also
creates a random identifying tag for the pseudonym, t.

GrantCred(U, N, O) User U and organization O run a protocol for securely signing a
committed value, as defined in Section 3.2.1, on common input (PK o, PK ¢, N),
and the corresponding private inputs. User stores his output o.
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VerifyCred(U, V, N,O) User U who has previously input his pseudonym N into a
GrantCred(N, O) transaction, and obtained o, forms a commitment

C = Commit(PK,zy,r)

to his secret key zy. User U and verifier V' invoke the protocol (P, V) for
proving knowledge of a signature on a committed value, on common inputs
(PKo, PK¢,C), and user’s private input (zy,r, o).

VerifyCredOnNym(U, V| Ny, Np, O) User U who has previously input his pseudonym
No into a GrantCred(Np, O) transaction, and obtained o, and verifier V, with
whom U has established pseudonym Ny = Commit(PK ¢, zy, ), run the pro-
tocol (P, V) for proving knowledge of a signature on a committed value, with
common inputs (PKo, PK¢, Ny), and user’s private input (zy, 7, o).

Output The same as in the ideal system: Once a transaction is completed, a user
outputs the name of the transaction just completed, and the name of the or-
ganization it was completed with, and if it was a verification transaction, then
also the name of the credential-granting organization; an organization outputs
just the name of the transaction and the identifying tag ¢ of the pseudonym
with which the transaction was conducted.

3.2.3 Proof of Security

In order to show that our proposed basic credential system conforms to the ideal
functionality specification given in Section 3.1.2, we must exhibit a simulator S. In
this section, we describe such a simulator and give a sketch of a proof (it is only
a sketch because the proof is tedious and straightforward) for why the simulator is
correct.

The simulator represents the adversary-controlled parties to the ideal parties, and
the ideal parties to the adversary-controlled ones.

The simulator will do the following:

e Representing adversary-controlled users to the IS and ideal organizations to the
adversary-controlled users:

— The simulator generates public keys for ideal organizations.

— When an adversary-controlled user initiates a FormNym, the simulator ex-
tracts his secret key z. If this secret key has never been seen before, then
the simulator creates a new login name L and sends it to the trusted
party. The trusted party sets up a password K for this user and contact
the ideal organization to set up a pseudonym N. The simulator stores that
(z,L, K, (N,O). If z has been seen before, then the simulator uses the al-
ready existing login name L and password K, and once the pseudonym N
is set up, adds (NN, O) to its record on the key x.
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— When an adversary-controlled user initiates a GrantCred on pseudonym
N, the simulator runs the extractor of the signing on a committed values
protocol: it first obtains z, then initiates a GrantCred with O through the
trusted party T, and then once 7 notifies the simulator that the credential
has been granted, the simulator computes the signature on z and finishes
the code of the extractor.

— When an adversary-controlled user initiates a VerifyCred, the simulator
extracts his secret key x and initiates VerifyCred in the ideal system using
the values (L, K, (N, O)) corresponding to the key z.

e Representing adversary-controlled organizations to the IS and ideal users to the
adversary-controlled organizations:

— When T contacts S for a FormNym, create a commitment N on a random
value z and run FormNym with the adversary’s organization using N. Re-
spond to the trusted party to establish the ideal-world pseudonym N’ for
the anonymous user.

— When T contacts S for a GrantCred(N’,O), where N’ is the ideal-world
pseudonym that corresponds to pseudonym N, run the GrantCred(N, O)
with the adversarially-controlled organization O. If O issues a value o such
that Verifypy (z,0), then notify T that the credential is granted.

— When T contacts S for a VerifyCred(V, ?, O), form a random commitment
C and invoke the simulator for the zero-knowledge proof of knowledge of
a signature on the value committed to in C. (Note that O may be an
adversarially controlled organization, so it may be necessary to fake the
proof.)

— When T contacts S for a VerifyCred(V, N{,, 7, 0), where Ny, is the ideal-
world pseudonym corresponding to the real-world pseudonym Ny, invoke
the simulator for the zero-knowledge proof of knowledge of a signature on
the value committed to in Ny.

If a polynomial-time E distinguishes between a simulation and CS, then it dis-
tinguishes for at least one of these simulated transactions, by a standard hybrid
argument: we can run a hybrid system in which the first several transactions are
real-world ones, and the transactions following them are using the ideal systems and
the simulator.

There are eight cases for the transaction that is distinguishable. In all but two of
them (VerifyCred or VerifyCredOnNym between a dishonest user and an honest orga-
nization, where the credential issuer is also honest), distinguishing a real transaction
from the simulated one amounts to either distinguishing a prover from a simulator
in a zero-knowledge proof, or distinguishing a verifier from a knowledge extractor in
a proof of knowledge, or distinguishing a signer from an extractor in a protocol for
signing a committed value. All seven lead to straightforward contradictions.
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Suppose the adversary distinguishes whether VerifyCred is run with a real-world
organization or with a simulator. But it does not distinguish an extractor from a real
organization. Therefore, it must distinguish because it succeeds in proving knowledge
of a signature on a value z that has not been signed. But then we set up a reduction
from the signature scheme.

3.2.4 Discussion and Efficiency Analysis

The efficiency of this basic credential system depends on the efficiency of its building
blocks. It is clear that this system can be constructed from any one-way function
using the following well-known facts: (1) OWF = PRG [HILL99]; (2) PRG = se-
cure commitment [Nao91]; (3) OWF = secure signatures [Rom90]; and (4) NP ¢
ZKPOK [GMW8T7b], where ZKPOK denotes the class of languages for which there
exist zero-knowledge proofs of knowledge of a witness. However, going about it in
this way, it unsuitable for practical use.

In Chapter 4, we give an efficient signature scheme, together with an efficient com-
mitment scheme and efficient protocols for issuing a signature on a committed value
and for proving knowledge of a signature on a committed value. By “efficient,” we
mean that the communication complexity is going to be linear in the security param-
eter, and the computationally we will require a constant number of k-bit arithmetic
operations (such as modular exponentiation) per transaction.

3.3 Building in Additional Desirable Properties

In this section, we explain how to extend the basic credential system presented above
to provide additional desirable features. The exposition in this section is high-level,
because the low-level details are straightforward.

3.3.1 Credential Revocation

It is very desirable to be able to revoke a credential. In the anonymous setting, doing
so is tricky and introduces an extra communication and computation overhead. We do
not know how to do that from the general assumptions of commitment and signature
schemes. We address this issue by introducing dynamic accumulators in Chapter 5.

3.4 Credential Attributes and Limited-Use Cre-
dentials

Suppose we have a signature scheme for signing a block of messages. Then different
parts of the signed message can serve different functions. In Chapter 4, Section 4.4,
we give a signature scheme of this kind.

For example, if tuples of the form (SK, d) can be signed, where d is the expiration
date of a credential, or some other attribute, then in order to demonstrate that a
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credential has not expired at time ¢, it is sufficient to prove knowledge of a signature
on a tuple (SK,d) where d > t.

In order to create single-use credentials, if tuples of the form (SK,N) can be
signed, where N is a nonce, then in order to show a single-use credential, the user
can reveal the nonce N and prove knowledge of a signature on (SK, N). Then if the
user attempts to use the credential a second time, this can be detected.

An even better solution for single-use credentials, is as follows: the user obtains a
signature on (SK, N;, N;), where SK, N; € Z, for some prime number p, and N, is
just some random identifier for the credential. The verifying organization sends to the
user a random value a € Z,. The user reveals the values b = aSK 4+ N; mod p and N;,
and proves knowledge of a signature on (SK, N;.N) such that b = aSK + Ny mod p.
An organization that accepts the credential, will store the credential record (N3, a, b)
in a public archive. If the user ever runs the credential showing protocol again, then
most likely he will receive challenge o’ and will have to respond with ¥’ = o' SK + Ny,
and N,. Off-line, the organization can locate the credential record by searching for
N,, and solve for the value SK by solving the system of linear equations.

This method for preventing double-spending was originally proposed by Stefan
Brands. We refer the reader to his dissertation [Bra99].

3.4.1 Identity-based Properties

For this section, assume that we are within a public-key infrastructure (PKI). That
is to say, every (potentially anonymous) user in this system has an identity and a
public key corresponding to this identity.

Non-Transferability

Note that in our system, the identity corresponds to knowledge of a secret key. This
is the same as in any public-key infrastructure. If the secret keys in the two are the
same, then any user in our system will correspond to some actual identity.

In order to ensure such a correspondence, we make the certification authority
(CA) for the PKI part of our system. In the PKI, the job of the CA is to ensure that
the secret key underlying a given public key is known by the party to whose identity
the public key is attached. In the credential system, the job of the CA is to ensure
that only users with valid identities participate in the system.

In order to participate in a non-transferable credential system, a user will first
contact the CA and reveal his identity and public key PK to the CA. He will then
form a pseudonym with the CA, based on his secret key SK corresponding to PK.
He will then prove that the pseudonym formed corresponds to this SK. The CA will
issue a credential to this user, certifying that he has a valid identity. Let us call this a
“root credential.” Any organization that wants to talk to users with valid identities,
will request that the user prove possession of a root credential.

One may note that, even though now we have a user identity attached to each
transaction, we still don’t have the property that the users don’t share their creden-
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tials: all one needs to do in order to allow one’s friend to use one’s credentials is let
the friend get hold of the secret key SK and some other information. This limitation
is inherent, since digital data can always be duplicated. However, this can be dis-
couraged by making the value SK too valuable to give away. For example, each user
may deposit a big amount of money into the PKI, such that knowledge of the secret
key SK allows one to withdraw the money.

Identity-on-Demand Protocols

The mechanism described above discourages credential sharing, but does not prevent
it. Moreover, two users who completely trust each other (for example, husband and
wife) are not discouraged by such a mechanism at all. Therefore, in scenarios where
it is crucial that the identity of a given user be discovered, and the user is physically
available and required to prove his identity, it should be possible to enable the user
to prove that his digital identity (i.e., his SK') corresponds to his physical identity.
This is done by having the user provide his public key PK and show that the SK
underlying his pseudonym and credential corresponds to this PK. Using the PKI and
external physical notions of identity verification, it is then verified that this user is
indeed the owner of this PK.

Anonymity Revocation

The above is only possible when a user can be physically forced to reveal his identity.
In some cases, this is not an option. To cope with such situations, we introduce the
notion of anonymity revocation. Anonymity revocation works as follows: the user
encrypts his public key PK using some trusted third party’s encryption. He then
proves that the encryption is of the PK that corresponds to the SK underlying the
credential the possession of which is being proved. It is easy to see that so long as
the PK is a function of the SK, this method allows the trusted party to find out who
the user was.

Weaker Forms of Identity-on-Demand and Anonymity Revocation

A weaker form of identity-on-demand and anonymity revocation is when, instead of
finding out the identity of a user, it is possible to find out the pseudonym of the
user with the organization that granted the credential. For example, if the user
misbehaved, the credential granting organization may want to find out and revoke
the credential.

To achieve this, suppose every time a credential is issued, the issuing organization
must output at least some part of the signature ¢ on the user’s secret key SK. Denote
this part s(o). The security for signature scheme must be stronger than usual: not
only is is impossible to forge a signature on a message m' not explicitly queried, but
it is also hard to compute a signature ¢’ on already queried message m such that
s(o") # s(o), where o is the original signature on message m. The signature scheme
we give in Chapter 4 has this property.
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When a user proves possession of a credential, he encrypts the value s(o) under
some trusted party’s key. He then proves that the encrypted value corresponds to his
credential. In case it becomes necessary, the trusted party will decrypt this cipher-
text and obtain s(o) which will enable the issuing organization to identify the user’s
pseudonym and take appropriate action.
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Chapter 4

Signature Scheme with Efficient
Proof of Knowledge

4.1 Number-theoretic preliminaries

We assume that the reader has basic familiarity with modular arithmetic and/or
elementary abstract algebra. (For a crash course, read either Dana Angluin’s [Ang]
or Goldwasser-Bellare’s [GB] lecture notes.)

Here we give several relevant facts and definitions.

Definition 4.1.1 (RSA modulus). A 2k- or 2k —1-bit number n is called an RSA
modulus if n = pq, where p and q are k-bit prime numbers.

Definition 4.1.2 (Euler totient function). Letn be an integer. The Euler totient
function ¢(n) measures the cardinality of the group Zj,.

Fact 4.1.1. If n = pq is an RSA modulus, then ¢(n) = (p — 1)(¢ — 1).

Notation: We say that an RSA modulus n = pq is chosen uniformly at random with
security k if p and ¢ are random k-bit primes. Let RSAmodulus denote the algorithm
that, on input 1%, outputs a random RSA modulus with security k. Let RSApk(1¥)
denote the algorithm that, on input 1¥, chooses two random k-bit primes, p and g,
and outputs n = pg and a random e € Z such that gcd(e, #(n)) = 1. Such a pair
(n,e) is also called RSA public key, where the corresponding secret key is the value
d € Zy(y) such that ed = 1 mod ¢(n).

Assumption 4.1.1 (RSA Assumption). The RSA assumption is that given an
RSA public key (n,e), and a random element v € Z7,, it is hard to compute the value
v such that v = u mod n. More formally, we assume that for all polynomial-time
circuit families {Ax}, there ezists a negligible function v(k) such that

Pr[(n,e) + RSApk(1¥);u + ZX;v + Ap(n,e,u) : v* =u mod n] = v(k)

o7



Assumption 4.1.2 (Strong RSA Assumption). The strong RSA assumption is
that it is hard, on input an RSA modulus n and an element u € Z?, to compute
values e > 1 and v such that v¢ = uwmod n. More formally, we assume that for all
polynomial-time circuit families { A}, there exists a negligible function v(k) such that

Pr[n  RSAmodulus(1¥);u < Z%; (v,e) + Ag(n,u) :e>1 A v° =wumod n] = v(k)

The tuple (n,u) generated as above, is called a general instance of the flexible
RSA problem.

Notation: By QR,, C Z; we will denote the set of quadratic residues modulo n, i.e.,
elements a € Z;, such that 3b € Z} such that > = a mod n.

If (n,u) is a general instance of the flexible RSA problem, and u € QR,, then
(n,u) is a quadratic instance of the flexible RSA problem.

Note that since one quarter of all the elements of Z are quadratic residues, the
strong RSA assumption implies that it is hard to solve quadratic instances of the
flexible RSA problem. In the sequel, by an instance of the flexible RSA problem, we
will mean a quadratic, rather than general instance.

Corollary 4.1.1. Under the strong RSA assumption, it is hard, on input a flezible
RSA instance (n,u), to compute integers e > 1 and v such that v* = v mod n.

Definition 4.1.3 (Safe primes). A prime number p is called safe if p = 2p’ + 1,
such that p' is also a prime number. (The corresponding number p' is known as a
Sophie Germain prime.)

Definition 4.1.4 (Special RSA modulus). An RSA modulus n = pq is special if
p=2p" +1 and ¢ = 2¢' + 1 are safe primes.

Notation: We say that a special RSA modulus n = pq was chosen at random with
security k if p and ¢ are random k-bit safe primes.

Theorem 4.1.2 (Chinese Remainder Theorem). If n = pq, and ged(p,q) = 1,
then ® : Z, — Zp x Z,;, ®(z) = (z mod p,x mod q) is an efficiently computable
and invertible ring isomorphism.

Proof. Computing ®(z) is straightforward. Consider the function Q : Z,xZ, — Z,,
Q(z1,22) = z1vq + Tomp mod n, where v = ¢ ! mod p, 7 = p~! mod q. Note that
®(Q(z1,22)) = (21,22). Since |Z,| = |Z, X Z,], it follows that Q = &1, and @ is a
bijection.

Additive isomorphism:

Q(.’El +y1,x2+y2) = (Zl)l +y1)1/q+ (x2+y2)7rp mod n
= (z1vg + z2mp) mod n + (y1vq + Yowp) mod n
= Q(z1,22) + Uy1, v2)

Multiplicative isomorphism: we wish to show that ®(zy) = ®(z)®(y). ®(zy) =
(xy mod p, zy mod ¢). Suppose ®(z) = (z1,22), ®(y) = (y1,¥2). Then zy mod p =
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(z1+ap)(y1+bp) mod p = z,y; mod p for some integers a, b. Analogously, zy mod ¢ =
T2y2 mod q. Therefore, ®(zy) = (2191, T2y2) = (71, T2) (y1,y2) = (z)P(y). U

Lemma 4.1.3. If n=pq, p=2p' +1, g = 2¢' + 1 is a special RSA modulus, then
QR, is a cyclic group under multiplication, of size p'q’, where all but p' + ¢' of the
elements are generators.

Proof. It is clear that QR, is a group. It it easy to see (for example, by the Chinese
remainder theorem), that @R, is isomorphic to QR, x QR,. QR, (resp., QR, has
order p’ (resp., ¢'), and all but one of its elements are generators. Since ged(p’,¢') =1,
an element that is a generator for QR, and QR,, is a generator for ()R,. Therefore,
there are (p' — 1)(¢’ — 1) generators in QR,,. O

Corollary 4.1.4. If (n,u) is an instance of the flexible RSA problem, and n is a
special RSA modulus, we may assume that u is a generator of QR,.

The following lemma originates from the analysis of the primality test due to
Miller [Mil76] and Rabin [Rab80].

Lemma 4.1.5. Let a composite integer n be given. Given any value x such that
é(n) | z, one can find a non-trivial divisor of n in probabilistic polynomial time.

Proof. If n is even, we are done. So suppose n is odd. Suppose there exists a value
p > 2 such that p?> | n. Then p | ged(¢(n),n) | ged(z,n), and so ged(z,n) is a
non-trivial divisor of n.

Otherwise, n has at least two distinct odd prime factors. Call them p and q. Let
p=(p—1)/2%, ¢ = (q¢—1)/2’ be odd integers. Assume without loss of generality
that J, < J,.

Let u € Z* be chosen at random. With probability 1/2, u is a square modulo p,
and so

W2 = (922 = 27PY = (Yl = 1 mod p
With non-negligible probability, u is a generator modulo ¢, and so w2 # 1 mod
q, since ¢ — 1 = 274¢' { 27»=1¢'p’ because J,; > J,. Using the Chinese Remainder theo-
rem, it is easy to see that these events are independent, and therefore the probability
that a random wu is a square modulo p, and a generator modulo ¢, is non-negligible.

Therefore, if J, were known, we would get a value V = u??7'P'? mod n such
that V = 1 mod p and V # 1 mod ¢, and therefore p < ged(V — 1,n) < n, and so
ged(V — 1,n) is a non-trivial divisor of n.

But there are only logn possibilities for J,, and therefore we can try them all, and
we will be done. O

Corollary 4.1.6. Let n be an integer. Let e such that ged(e,d(n)) = 1 be given.
Given any value z such that ¢(n) | z, one can efficiently compute v such that v¢ =
w mod n.
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For special RSA moduli, it is also true that given z > 4 such that z | ¢(n), one
can factor n. The following lemma and proof are straightforward:

Lemma 4.1.7. Let n = pq be a special RSA modulus, i.e., p = 2p'+1 and q = 2¢'+1,
and p' and q' are primes. Suppose a value x > 4 is given such that z | ¢(n) = 4p'q’.
Then 1t is possible to efficiently factor n.

Proof. Suppose z = 2'p', for I € {0,1,2}. Then factoring n is immediate. The more
difficult case is z = 2/p'q’. This immediately gives us ¢(n). By Lemma 4.1.5, we are
done. O

Corollary 4.1.8. Given a special RSA modulus n, and an integer x such that

ged(4(n), z) > 4
, one can efficiently factor n.
The following lemma is due to Shamir:

Lemma 4.1.9. Let an integer n be given. Suppose that we are given the values
u,v € ZX and z,y € Z, gcd(z,y) = 1 such that v° = u?¥ mod n. Then there is an
efficient procedure to compute the value z such that z* = u mod n.

Proof. Since ged(z,y) = 1, by the extended GCD algorithm, find integers a and b
such that az + by = 1. Let z = u®v® mod n. Then

2% = ua:c(,vz)b — uaz(uy)b — uaz+by —umodn

(I

The following lemma is a generalization of Lemma 4.1.9, in that we are not re-
stricted to the case where ged(z,y) = 1. However, we were only able to show this
generalization for special RSA moduli.

Lemma 4.1.10. Let a special RSA modulusn = pq, p = 2p'+1, ¢ = 2¢'+1, be given.
Suppose we are gwen the values u,v € QR, and z,y € Z, ged(z,y) < x such that
v* = u¥ mod n. Values z, w > 1 such that 2 = w mod n can be computed efficiently.

Proof. Let ¢ = ged(z,y). If ged(4e, ¢(n)) > 4, then by Corollary 4.1.8, we factor n.
Otherwise, it must be the case that ged(c,p'q’) = 1. Therefore, there exists a value
d € Zj,, such that ed =1 mod p'q".

By the extended GCD algorithm, find integers a and b such that az + by = c.
Note that

0"/ = (1) = (u¥)? = w¥° mod n

Then, by Lemma 4.1.9, we find an element 2 such that 2%/ = u and we obtain e = z/c
and z. 0
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4.2 The Basic Scheme

Key generation. On input 1%, choose a special RSA modulus n = pg, p = 2p’ + 1,
g = 2¢’ + 1. Choose, uniformly at random, a,b,c € @QR,. Output PK =
(n,a,b,c), and SK = p. Let £, denote the length of the modulus n. ¢, = 2k.

Message space. Let £, be a parameter. The message space consists of all binary
strings of length £,,. Equivalently, it can be thought of as consisting of integers
in the range [0,2%").

Signing algorithm. On input m, choose a random prime number e > 2m+! of
length ¢, = ¢,, + 2, and a random number s of length ¢, = ¢, + ¢,, + [, where [
is a security parameter. Compute the value v such that

v® = a™b’c mod n
Output (e, s, v).

Verification algorithm. To verify that the tuple (e, s, v) is a signature on message
m in the message space, check that v¢ = a™b*c mod n, and check that 2%~ <
e < 2.

Efficiency analysis. In practice, ¢, = 1024 is considered secure. As for the message
space, if the signature scheme is intended to be used directly for signing messages,
then £,, = 160 is good enough, since, given a suitable collision-resistant hash function,
such as SHA-1, one can first hash a message to 160 bits, and then sign the resulting
value. Then ¢, = 162. The parameter [ guides the statistical closeness of the simulated
distribution to the actual distribution, hence in practice, [ = 160 is sufficient, and
therefore ¢, = 1024 + 160 + 160 = 1346.

Therefore, this signature scheme requires one short (160-bit) and two long (1024
and 1346) exponentiations for signing, while verification requires two short (162 and
160 bits) and one long (1346-bit) exponentiations. This is not as efficient as the
Cramer-Shoup signature, which requires three short (i.e., 160-bit) and one long (i.e.,
1024-bit) exponentiations for signing, and four short exponentiations for verifying.
However, our signature scheme has other redeeming qualities.

4.3 Proof of Security

We will show that the signature scheme in Section 4.2 is secure. Note that a forgery
(m, s, e,v) may have value e of length £, not necessary a prime number.

Suppose that a forger’s algorithm F is given. Suppose F makes K signature
queries in expectation before it outputs a successful forgery. By the Markov inequality,
half the time, F needs 2K or fewer queries. Without loss of generality, we may assume
that K is known (since if it is not, then it can be estimated experimentally).
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Suppose that the output of F is (m,s,e,v). Let us distinguish three types of
outputs.

e Type 1: The forger’s exponent e is relatively prime to all the exponents output
by the signature oracle.

e Type 2: The forger’s value e is not relatively prime to some previously seen
exponent e; and the root v is different from the corresponding root v;.

o Type 3: The forger’s values e is not relatively prime to some previously seen
exponent e;, v = v; , but the tuple (m, s) is new.

By Fi (resp., F», F3) let us denote the forger who runs F but then only outputs
the forgery if it is of Type 1 (resp., Type 2, Type 3). The following lemma is clear
by the standard hybrid argument:

Lemma 4.3.1. If the forger F success probability is €, then one of Fy, Fa, or F
succeeds with probability at least €/3.

Next, we will show that under the strong RSA assumption, success probabilities
for each of Fy, F,, F3 are negligible.

Lemma 4.3.2. Under the Strong RSA assumption, the success probability of F, is
negligible. More strongly, if F1 succeeds with probability €, in ezpected time O(p;(k)),
using ezpected number Q(k) queries, then there is an algorithm that runs in time
O(p1(k)) and solves the flexible RSA problem with probability /4.

Proof. Suppose F; succeeds with non-negligible probability. Let is show that this
contradicts the Strong RSA assumption.

Recall that @ is the expected number of queries, and by the Markov inequality,
half the time, F; will need at most 2Q) = O(p,(k)) queries.

Let us construct an algorithm A such that, on input a strong RSA instance (n, u),
and with access to F1, A will output (v, e) such that e > 1 and v® = v mod n.

Now A plays the role of the signer, as follows:

Key generation: Choose 2¢) prime numbers ey, ... ,esq. Choose, at random, value
71 € Zp2 and 79 € Zp2. Let a = uf, where E = Hffl e, b=a", c=a". Let
(n,a,b, c) be the public key.

Signing: Upon receiving the " signature query m;, choose a value s; of length 4,
uniformly at ranslom. Output (e;, s;,v;), where v; = a["b*c;, where a; = uf/
bi = a;', ¢; = a] . (In other words, a;, b; and ¢; are values such that o' = a,

by = b, and ¢* = ¢). Note that (e;, s;, v;) constitute a valid signature:

vt = (a]biie;)®

1
= a™bdic .
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Note that the public key and all the signatures are distributed correctly.

Suppose the forgery is (e,s,v) on message m, and e > 4. This gives us v¢ =
a™bc = yBlmimistr) - QObserve that if it is the case that e and E(m + rys + ry) are
relatively prime, then by Shamir’s trick (Lemma 4.1.9) we are done. We will not
necessarily have this nice case, but we will show that things will be good enough.

First, by assumption on F; we have gcd(e, F) = 1. Second, we will use the
following claim:

Claim. With probability at least 1/2 over the random choices made by the reduction,
it 1s the case that either ged(e,m + ris+ry) < e, or, on input e, one can efficiently
factor n.

The claim immediately gives us the conditions of Lemma 4.1.10, which gives us
values v, w > 1 such that v = u mod n.

We must now prove the claim. Suppose that it is false. Then the probability that
ged(e,m + 715 + r2) < e is less than 1/2. Suppose ry = = + ¢(n)z. Note that z is
independent of the view of the adversary and it is chosen statistically indistinguishable
from random over Z,,. Therefore, if with probability greater than 1/2, e | m+rys+7s,
this holds for greater than 1/2 of all the possible choices for z. Then there exists a
value 29 € Z, such that e | (m+rs+z+¢(n)z) and e | (m~+ris+x+@(m)(z0+1)).
Then it holds that e | ¢(n) with probability at least 1/2. Therefore, with probability
1/2, we either factor n (by Lemma 4.1.5) or v = ged(e,m + r1s + r2) < e.

Therefore, A succeeds in breaking the strong RSA assumption whenever the num-
ber of queries does not exceed 2Q) (which happens with probability 1/2 by Markov
inequality) and whenever the conditions of the claim are satisfied (which happens
with probability 1/2, independently on the number of queries), and so the success
probability of A is €;/4, while its running time is O(p;(k)). d

Lemma 4.3.3. Under the Strong RSA assumption, the success probability of F3 is
negligible. More strongly, if F3 succeeds with probability €; in expected time O(p;(k)),
using expected number Q(k) queries, then there is an algorithm that runs in time
O(p3(k)) and succeeds with probability €;/2.

Proof. The input to the reduction is (n,e), an instance of the flexible RSA problem.

The key generation and signatures in this case are as in the proof of Lemma 4.3.2.
The signatures (m,s,e,v) and (m;, s;,€;,v) give us the following: Note that from
ged(e;, ) # 1 and the fact that 2% > e, e; > 2% it follows that e; = e and thus a™b* =
a™ib%. This implies that m + 715 = m; + r1s; mod ¢(n). Since (m, s) # (m;, s;), and
1> m, ry > m;, m+rs #m; +ris;. Therefore, ¢(n) | m+r1s —m; +rys; # 0, and
so by Lemma 4.1.6, we are done.

The probability that A succeeds in breaking the Strong RSA assumption is at
least €/2 because with probability at least 1/2, the forger F3; will need at most 2¢Q)
queries. O

Lemma 4.3.4. Under the Strong RSA assumption, the success probability of F, is
negligible. More strongly, if Fo succeeds with probability es in expected time O(p2(k)),
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using expected number Q(k) queries, then there is an algorithm that runs in time
O(p2(k)) and succeeds with probability e(k)/8Q(k).

Proof. The input to the reduction is (n, u), an instance of the flexible RSA problem.

Choose a value 1 <4 < 2Q(k) uniformly at random. With probability 1/2Q(k),
the exponent e will be the same as in the 2’th query to the signature oracle.

The idea of this reduction is that we will set up the public key in such a way that,
without knowledge of the factorization of n, it is possible to issue correctly distributed
signatures on query j # ¢, in almost the same manner as in the proof of Lemma 4.3.2.
For query i, the answer will be possible only for a specific, precomputed value of
t = ma + s, where a = log, a.

Key Generation: Choose 2Q(k) random primes {e;}. Let E = (Hfgl e;)/ei. Choose
o, B € Zjy, uniformly at random. Choose a random value ¢ of length £,. Let
b = u” mod n. Let a = b* mod n, and ¢ = b%#~t. Let (n,a,b,c) be the public
key.

Signing: Upon receiving the j* signature query m;, j # i, choose a value s; of
length £, uniformly at random. Output (e;, s;,v;), where v; = a;nj bjj c;j, where
by = ufle a; = b2, ¢; = bj"ﬁ_t. (In other words, a;, b; and ¢; are values such
that af = a, b7 = b, and ¢; = c). Note that (e;,s;,v;) constitute a valid
signature.

Upon receiving the i signature query m;, compute the value s; = t — am,.
v; = bP. Note that v{* = 4Pt = bfc = g™ b%c. Note that if £, is sufficiently
long (e.g., €, + £, + 1, where £, is the length of the modulus n, £, is the length
of a message, and [ is a security parameter), s; is distributed statistically close
to uniform over all strings of length Z,.

Suppose the forgery gives (m, s, e, v) such that e is not relatively prime to e;. Then
e = e; because e is of length /.. Also, as the verification is successful for the forgery
as well as for the i’th query, v®% = a™b’c = pmetsteb—t — p(m-—miat(s=si)+ef et
a = ayp(n) + ap. Note that with probability very close to 1, the value oy € {0,1}.
Also, note that «; is independent on the adversary’s view. Therefore, if the probability
that e; | (m —m;)a + (s — s;) + €;3 is non-negligibly higher than 1/2, then it is the
case that e; | (m—m;)oe+(s—s;)+e;Bande; | (m—m;)(d(n)+ao)+(s—s;)+e,
and therefore e; | (m — m;) (note that by definition of a forgery m # m;). If the
length £, is two bits longer than the length of a valid message £,,,, this is impossible.

Therefore, with probability at least 1/2, the following condition is met: e; { (ma+
s+ e;8 —t) = 7. Therefore, we have the following: v*% = u®7, where ged(e;,v) = 1,
and so by Lemma 4.1.9, we compute e;’th root of u.

Therefore, A succeeds in solving an instance of the flexible RSA problem when 2Q
is a sufficient number of queries (with probability at least 1/2 this is the case by the
Markov inequality), when 4 is chosen correctly (this is the case with probability 1/2Q)
and when the condition is met (with probability 1/2 independently of everything else).
Therefore, A succeeds with probability €2/8Q in time pa(k). d

64



Since the number of signature queries is at most the running time, we have shown
the following theorem:

Theorem 4.3.5. Our signature scheme is secure under the Strong RSA assumption.
More precisely, if a forger breaks our signature scheme in time p(k) with probability
e(k), then the Strong RSA assumption can be broken in time O(p(k)) with probability

Q(e(k)/p(k))-

4.4 The Scheme for Blocks of Messages

Suppose, instead of signing a single message m, one wants to sign a block of L messages
my,...,mr. For most applications, these two problems are equivalent, since in order
to sign such a block, it is sufficient to hash it to a small message m using a collision-
resistant hash function, and then to sign m using a one-message signature scheme.

However, if the application we have in mind involves proving knowledge of a
signature and proving relations among certain components of my,...,my, it may be
helpful to have a signature scheme especially designed to handle blocks of L messages.
Here, we propose one such scheme. Note that in our proposed scheme, the value L is
fixed; i.e., the public key is designed to work for a specific value L.

Key generation. On input 1¥, choose a special RSA modulus n = pg, p = 2p’ + 1,
g = 2¢' + 1. Choose, uniformly at random, ai,...,ar,b,c € QR,. Output
PK = (n,ay,...,ar,b,c), and SK = p. Let £, denote the length of the modulus
n. £, = 2k.

Message space. Let ¢, be a parameter. The message space consists of all binary
strings of length /,,. Equivalently, it can be thought of as consisting of integers
in the range [0, 2).

Signing algorithm. On input m;,...,my, choose a random prime number e >
2tm+1 of length ¢, = £,, + 2, and a random number s of length ¢; = £, + £,,, + 1,
where [ is a security parameter. Compute the value v such that

v¢ =al"...altb’cmod n
Output the tuple (e, s, v).

Verification algorithm. To verify that the tuple (e, s, v) is a signature on message
m, check that v® = a]™ ...a7*b°c mod n, and check that e > 2%~1.

Theorem 4.4.1. The signature scheme above is secure for blocks of messages, under
the Strong RSA assumption.

Proof. We will show a reduction from a forger F for this signature scheme, to an
algorithm that breaks the basic signature scheme from Section 4.2. The reduction
receives as input the public key of the basic scheme: (n,a,b, c), and has oracle access
to the basic signature scheme.
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Key Generation. Choose an index I € [1,L] at random. Let Let a; = a. For
j € [1,L], j # I, choose and integer r; from Zs, uniformly at random, and let
a; = b"7. Output the public key (n,a4,...,az,b,¢).

Signature generation. On input signature query (m;,...,my), ask the signature
oracle for a signature on the value m;. Upon receiving the value (s,v,e€), let
s = s — ) i,rim;. The resulting signature is (s',v,e). It is easy to see
that it is distributed statistically close to the right distribution provided that

by =4, + 4, + 1, where [ is sufficiently long.

Suppose the adversary’s forgery is (my,... ,m, s,v,e). Then (8+2JL:2 T;M;j, v, €)
is a valid signature in the basic scheme on message m;. Suppose the signature’s e
is different from any previously seen e;. Then we are done: we have created forger
F~ and contradicted Lemma 4.3.2. So suppose this e = e;. But (my,... ,mp) #
(mi,...,m%). With probability at least 1/L, it is the case that m; < m%, and we
have created a forged signature on message mj.

Overall, if the adversary F succeeds in time p(k) with probability € using Q(k)
queries, the reduction succeeds against the basic scheme in time p(k) with probability
at least €¢/2L also using Q(k) queries. O

4.5 Protocol Preliminaries

In this section, we will show how to construct a secure protocol for signing a committed
protocol as defined in Section 3.2.1, under our basic signature scheme described in
Section 4.2.

4.5.1 Commitment Scheme

The following commitment scheme is due to Fujisaki and Okamoto [FO98] and elab-
orated on by Damgérd and Fujisaki [DF01]. Its security relies on the hardness of
factoring.

Key generation The public key consists of a special RSA modulus n of length £,,,
and h < QR,, g < (h), where (h) is the group generated by h.

Commitment The commitment Commit(PK,z,r) for inputs of length ¢, and ran-
domness r € Zy, is defined as follows: Commit((n, g, h),z,r) = g*h” mod n.

Lemma 4.5.1. The commitment scheme described above is statistically hiding and
computationally binding if factoring is hard.

Proof. Let us first show the hiding properties of the scheme. Let z be a string of
length ¢,. Let us show that for all correct keys PK = (n,g,h) the distribution
(r 4= Zp;c = Commit(PK,x,7) : c) is statistically close to (c «<~< h > : c). Since =
is fixed, and g €< h >, we can equivalently show that these two experiments induce
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statistically close distributions on ¢ = ¢/g%, i.e., (r + Zn;¢ = k" modn : ¢) is
statistically close to (¢ +~< h > : c¢). This follows because r was chosen from Z,,
T = r1¢(n) + r2, where r is statistically close to uniform to Zgyy).

Now let us show the binding property. Let us show that an adversary breaking
the binding property allows us to factor. Suppose our input is a special RSA modulus
n. Let a be a random number of length £, + 1. Note that the resulting public key
is distributed statistically close to the right distribution. Suppose that we are given
a commitment ¢, and two ways of opening it: ¢*h" = ¢ = ¢ kY mod n, such that
t#z'. Let X = azx+r, X' = az’' +7'. It follows X% = 1 mod n. Note that
since r and 7’ are only of length ¢,,, while « is of length ¢, + 1, it must be the case
that X # X’. Since AX~X = 1mod n, it follows that |h| divides X — X', and so
ged(X — X', ¢(n)) > 4, and so we are done by Corollary 4.1.8, as long as we know
a. O

Remark. Note that for the hiding property, the only requirement from the public key
is that g € (h), and so the public key can be generated adversarially provided that
this requirement holds.

We want to guarantee the security of this commitment scheme even when the key
is provided by the adversary. To ensure that, we add the following key certification
procedure: the party that generated the commitment keys (n, g, h) must prove ex-
istence of the discrete logarithm log, ¢ mod n. This can be done using well-known
techniques that we elaborate on in the sequel (cf. [DF01}).

4.5.2 Summary of the Protocols Used

All protocols assume that the public parameters were fixed after the adversary was
fixed (otherwise a non-uniform adversary may know secret keys).
The following known protocols are secure under the strong RSA assumption:

e Proof of knowledge of discrete logarithm representation modulo a compos-
ite [FO97]. That is to say, a protocol with common inputs (1) a (n,91,... ,gm),
where n is a special RSA modulus and ¢; € QR,, for all 1 < ¢ < m; and (2)
a value C € QR,, the prover proves knowledge of values ag, ... ,a,, such that
C =T1%, ¢ mod n.

(2

e Proof of knowledge of equality of representation modulo two (possibly different)
composite moduli [CM99b]. That is to say, a protocol with common inputs
(n1,91,--- ,9m) and (ng, hy, ... , hy) and the values C; € QR,, and Cy € QR,,,
the prover proves knowledge of values a, ... , am such that C; =[], ¢ mod

ny. and Cy =[x, b mod na.

e Proof that a committed value is the product of two other committed val-
ues [CM99a]. That is to say, a protocol with common inputs (1) a commitment
key (n, g, h) as described in Section 4.5.1; and (2) values C,, Cp, Cgp in QR,,
where the prover proves knowledge of the integers «, B, p1, p2, p3 such that
C, = ¢®h?* mod n, Cy = ¢g°h??> mod n, and Cy = g*’h** mod n.
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e Proof that a committed value lies in a given integer interval [Lip01]. That
is to say, a protocol with common inputs (1) a commitment key (n,g,h) as
described in Section 4.5.1; (2) a value C' € QR,; (3) integers a and b, where the
prover proves knowledge of the integers a and p such that C' = g*h? mod n and
a<a<hb

Notation: In the sequel, we will sometimes use the notation introduced by Ca-
menisch and Stadler[CS97] for various proofs of knowledge of discrete logarithms and
proofs of the validity of statements about discrete logarithms. For instance,

PK{(c, B,7) 1y =g°h* N §=3"h" A (u<a<v)}

denotes a “zero-knowledge Proof of Knowledge of integers «, 3, and v such that
y = g*h? and § = f}aiﬂ holds, where v < a < u,” where y,g,h,7,7, and h are
elements of some groups G = (g) = (h) and G' = (§) = (k). The convention is that
Greek letters denote quantities the knowledge of which is being proved, while all other
parameters are known to the verifier. Using this notation, a proof-protocol can be
described by just pointing out its aim while hiding all details.

We will now present the protocols themselves.

4.5.3 Proof of Knowledge of Commitment Opening

We now show a proof of knowledge protocol for proving knowledge of a committed
value. We give a X-protocol proof of knowledge of representation; it can be converted
into a general zero-knowledge proof using standard techniques based on trapdoor
commitment schemes, described in Section 2.6.1. All protocols are in the public-
parameter model.

Common inputs: security parameters £, and #;
(n,g,h): a public key of the commitment;
a commitment X = g*hY mod n.
Prover’s inputs: z and y.

P — V Choose ¢,-bit r1,ry at random. Send R = ¢g" h" to the Verifier.
P <— V Generate an £.-bit challenge c.
P — V Compute the response s; = r; + ¢z, s3 = 1 + cy.

Acceptance: The verifier accepts if RX¢ = ¢g°1hs2.

Figure 4-1: ¥-Protocol Proof of Representation Modulo a Composite
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Lemma 4.5.2. Under the Strong RSA assumption, the protocol described in Fig-
ure 4-1 is a X-protocol zero-knowledge proof of knowledge of witness (x,y) for the
relation

Roon=1{X,(z,y) : X =¢"h? mod n}

Proof. The completeness is obvious: if the prover follows the protocol, then RX¢ =
gm hrz (g:chy)c —_ gr1+cxhr2+cy — gsl hsz.

The ¥ zero knowledge property follows because suppose the challenge c is fixed in
advance. Then the simulator chooses s; and s, at random, and sets R = g**h®2/X°.
If ¢, = €. + max({y, ¢y, £,) + | where [ is a security parameter, then choosing s, and
so at random is statistically indistinguishable.

The extraction follows because suppose that with non-negligible probability over
the choice of the challenge c, the prover causes the verifier to accept. Then the verifier
can get two accepting transcripts based on the same R, with challenges ¢ and ¢/. This
results in the equations RX® = ¢*'h*? and RX¢ = ¢*1h%.

Claim. Let § = c— . Then ¢ | (sy —s}) and § | (s2 — 8}), under the Strong RSA
assumption.

Proof of claim. Suppose that (n,g) are an instance of the flexible RSA problem. The
extractor sets up the public key of the commitment by choosing a random « of length
¢, + 3 and letting PK = (n, g, h), where h = ¢g* mod n.

Now the extractor obtains equations RX¢ = ¢®*h®2 and RX® = g®1h®2. Let
S = (51— 8}) +a(sy— sh), 6 = c—, and suppose for contradiction that ¢ 1 (s2 — s5)
ordtS.

The equations give us that X° = ¢ mod n. Therefore, if § { S, we break the
Strong RSA assumption by Lemma 4.1.10 and we are done. So we wish to show that
this happens with non-negligible probability, say, at least 1/2.

Suppose, then, that, § | S and 6 { (s — s5). Let @ = a1¢(n) + ay. Since o is
independent of the adversary’s view, for some choice of a1, § | S = (s1—5})+(a10(n)+
a3)(s2 —sh) and 6 | S' = (s1— ) + (1 + 1)@(n) + aa) (s2 — s). Therefore, ¢ divides
(S'—8), i.e., 0| ¢(n)(s2— sh). Since 1 (s2 — s5), it follows that ged(d, #(n)) > 4 and
we are done by Corollary 4.1.8.

Thus, it must be that ¢ | (s2 — s5) and ¢ | S. It follows that J | (s; — s}). a

From the claim, it follows that, if we let z = (s; — s})/6, and y = (s2 — s4) /9, then
(z,y) are a representation of X in bases g and h, modulo n. Note that the extracted
values are not necessarily positive. O

Remark. It is easy to see how to generalize this protocol and the corresponding ex-
tractor to the case where instead of g, there are several bases (g1, ..., gu)-
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4.5.4 Proof of Equality of Committed Values

It will sometimes be necessary to prove equality of two committed values, possibly
committed to under different commitment keys. For that, we exhibit the following
Y-protocol:

Common inputs: security parameters £, and £i;
(n1, g1, k1) and (ng, g2, he): public keys of the commitment;
a commitment X = ¢g¥h{ mod n; and Y = g%hZ mod no.
Prover’s inputs: z, y, z.

P — V Choose £,-bit 71,79,73 at random. Send R; = g¢'h]?> mod ny, Ry =
goths® mod ng to the Verifier.

P +— V Generate an #,-bit challenge c.
P — V Compute the response s1 =71 + ¢z, sg = ro + ¢y, s3 = r3 + cz.

Acceptance: The verifier accepts if RiX® = gj'hj? modn; and RyY°¢ =
g1'h3? mod ny.

Figure 4-2: 3-Protocol Proof of Equality of Representation Modulo a Com-
posite

Lemma 4.5.3. Under the Strong RSA assumption, the protocol described in Fig-
ure 4-2 1s a Y-protocol zero-knowledge proof of knowledge of witness (x,y,z) for the
relation Ry g, b1 goh, = {X, Y, (2,9,2) + X =gfh{ mod n AY = gZhi}.

Proof. The completeness and zero-knowledge properties follow in the same way as in
the proof of Lemma 4.5.2. The extraction property follows because, as in the proof
of Lemma 4.5.2, it has to be the case that, if we obtain two accepting transcripts
both based on (Ry, R;), with challenges ¢ and ¢ = ¢+ 4, we get z = (s; — 8})/9,
y = (s2 — s5)/d, and z = (s3 — s4)/0, all over the integers, under the Strong RSA
assumption. O

Remark. Note that, while the protocol in Figure 4-1 only worked for a commitment
key chosen in a trusted setup phase uniformly at random, the proof of security for
the protocol in Figure 4-2 goes through so long as just one of the commitment keys
was chosen in this fashion. The other one may be chosen in an arbitrary way, with

various parameters known to the adversary. This observation is due to Camenisch
and Michels [CM99a).

4.5.5 Proof That a Committed Value Lies in an Interval

The last proof of knowledge protocol we will need in this section is a proof that a
committed value lies in an interval. This is due to Lipmaa [Lip01], using earlier work
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of Boudot[Bou00] and of Chan, Frankel and Tsiounis [CFT98].

Lipmaa’s is a simple and elegant result that gives statistical zero-knowledge pro-
tocols that a committed integer x lies within a given interval (a,b). The idea is as
follows:

1. The problem of showing that = € (a,b) is reduced to the problem to showing
that a number is positive: z € (a,b) & z—a > 0Ab—z > 0. If C = ¢*h" mod n,
then let C, = C/¢® mod n, and C} = ¢°/C mod n. Now we have to show that
C, and C} are both commitment to positive integers.

2. It is a well-known fact due to Lagrange that any non-negative integer can be
represented as a sum of four squares. Rabin and Shallit [RS86] gave an efficient
algorithm for computing this representation. Thus the task is to show that a
committed number is a sum of squares.

3. Showing that a committed number is a sum of several other committed values
is straightforward. Let X and Y be two commitments. To show that a commit-
ment Z is to the value z = x +y, it is sufficient to show that Z is a commitment
to the same value as XY

4. Prove that a committed number is a square, using the protocol for showing that
a committed number is a product of two other committed values, below.

The only remaining protocol to give is for proving that a committed number is
the product of two other committed numbers.

Common inputs: security parameters £, and £g;
(n,g,h): public key of a commitment scheme;
commitments C; = g*h™ mod n, Cy = g’h’v mod n
and C, = g*Yh"=.

Prover’s inputs: z, y, vy, 7y, 7.

P +— V Using the protocol given in Figure 4-2, carry out the following proofs,
using security parameters £, and f:

1. PK{(e, pz): Cy = g*hP=}.
2. PK{(B,py,p') : Cy = g°h?» A C, = CER"'}

Figure 4-3: X-Protocol for Proving That a Committed Number Is the Prod-
uct of Two Other Committed Numbers

Lemma 4.5.4. Under the Strong RSA assumption, the protocol described in Fig-
ure 4-2 is a X-protocol zero-knowledge proof of knowledge of witness (x,y,7z,7y,7))
for the relation R,op = {X,Y,Z,(2,y,7¢,7y,7.) : X = ¢g*h"modn AY =
g'h™ mod n A Z = g*h"}.
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Proof. First, let us give the knowledge extractor. Since both of the steps of the proof
are proofs of knowledge of equality of representation, by Lemma 4.5.3, we can extract
the values (a, 3, pz, py, p') such that C; = g®h*=, C, = ¢°h*v, and C, = CPH =
g*BRhP=B+¢ Output the values (o, B, pz, py, pB + p').

As for the zero-knowledge property, it follows from the fact that by Lemma 4.5.3,
the protocol for proving knowledge and equality of representation is a X-protocol. O

The following lemma follows from the discussion in this section:

Lemma 4.5.5. Under the Strong RSA assumption, Lipmaa’s protocol is a X-protocol
zero-knowledge proof of knowledge of witness (x,r) for the relation

Rn,g,h = {G’ a, b; (IE,T) : C = gxhr ANT € (a, b)}

4.6 Protocols for the Signature Scheme

In the sequel, we rely on X-protocol zero-knowledge proofs of knowledge of repre-
sentation protocols; they can be converted into a general zero-knowledge proof using
standard techniques based on trapdoor commitment schemes (cf. [Dam00]).

4.6.1 Protocol for Signing a Committed Value

Informally, in a protocol for signing a committed value, we have a signer with public
key PK, and the corresponding secret key SK, and a user who queries the signer for a
signature. The common input to the protocol is a commitment C for which the user
knows the opening (m,r). In the end of the protocol, the user obtains a signature
opk(m), and the signer learns nothing about m.

Lemma 4.6.1. Figure 4-4 describes a secure protocol for signing a committed value.

Proof. Let the extractor E be as follows: it runs the extractor for step 4.6.1 of the
protocol, and discovers z and r that are of lengths ¢, and /4, respectively. It then
queries the signature oracle for a signature on z. It obtains the signature (s,e,v).
Note that the value s is a random integer of length £;. The extractor then sets
r"=s—r. If {5 > £, + ¢, where ¢ is a security parameter guiding the statistical
closeness, then the value r’ obtained this way will be statistically close to the value '
generated by S, and so statistically, the adversary’s view is the same whether talking
to the real signer S, or to the extractor E. a

4.6.2 Proof of Knowledge of a Signature

In this section, we give a X-protocol zero-knowledge proof of knowledge protocol for
showing that a committed values is a signature on another committed value.
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Common inputs: Public key (n, a, b, ¢) of the signature scheme with parameters
b, £s, Le.
Commitment public key (n¢, g¢, he), commitment C.
User’s input: z and r¢ such that C' = g&h§ mod nc.
Signer’s input: Factorization of n.

U +— S Form commitment C; = a®b" mod n, and prove that C,, is a commitment
to the same value as C.
Prove knowledge of z, r. Prove that € (0,2%"), and r € (0, 2%).

U +— S Choose a random 7’ of length ¢, and a prime number of length £.. Com-
pute v = (Czb" c)/¢. Send (', e,v) to the user.

User’s output: Let s =7 + 7’. The user outputs a signature (s, e,v) on z.

Figure 4-4: Signature on a Committed Value

Lemma 4.6.2. The protocol in Figure /-5 is a ¥-protocol for proving knowledge of
the values (x,7,,s,e,v) such that C, = ¢g*h™ mod n and Verifypy(z, s, e, v).

Proof. The completeness property is clear. The zero-knowledge property follows be-
cause the simulator can form the commitments at random (since they reveal nothing
statistically), and then invoke the simulator for the zero-knowledge proofs of knowl-
edge of representation and belonging to an interval.

We must now show that there exists an extractor that computes a valid signature.
Our extractor will invoke the extractor for the proof protocols we use as a building
block. If our extractor fails, then we can set up a reduction that breaks the Strong
RSA assumption.

Suppose the extractor succeeds and computes (z, s, €, w, 2, T3, Ts, Te, T, Tz, T) Such
that C = (C,)®h" and C = a*b°cg*h”, and C, = g°*“h">. Note that this implies that
C¢ = a®b’cg®. Let v = C,/g". Note that v¢ = CZ/g* = a®b’c. Since we also know
that z is of length £,,,, s is of length /; and e is of length £, we are done: we output
(s,e,v) which is a signature on the message z. |

4.6.3 Protocols for Signatures on Blocks of Messages

We note that straightforward modifications to the protocols above give us protocols
for signing blocks of committed values, and to prove knowledge of a signature on
blocks of committed values. We also note that, using any protocol for proving relations
among components of a discrete-logarithm representations of a group element [Cam98,
CM99a, Bra99], can be used to demonstrate relations among components of a signed
block of messages. We highlight this point by showing a protocol that allows an
off-line double-spending test described in Section 3.4.

Recall that in order to enable an off-line double-spending test, a credential is a
signature on a tuple (SK, N;, N;), and in a spending protocol (i.e., credential showing)
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a user reveals the value b = aSK + N; mod g, for some prime number ¢, and N,, for a
value a € Z, chosen by the verifier. The user must then prove that the value revealed
corresponds to the signed block of messages (SK, Ny, Ns).

Here, we describe a mechanism that, combined with our signature scheme for
blocks of messages, achieves this. We note that these types of techniques are similar
to those due to Brands [Bra99].

We assume that we are given, as public parameters, public values (p = 2¢+1, g,)
where p and ¢ are primes, and g,Z, has order ¢. We require that ¢ > max(2%=, 2¢~)
where fy is the length of the nonce N;. We also assume that we are given another
commitment public key, (n¢, gc, he), same as in the rest of this Chapter.

In order to prove that the values (b, N3) correspond to the signature on his secret
key committed to in commitment Cgg the user forms commitments and C; to N; and
Cy to Ny. He then shows that he has a signature on the block of values committed
to by this block of commitments, and that the value committed to in C is of length
fxn. He reveals Ny and shows that Cs is a valid commitment to N,. He also carries
out the following proof of knowledge protocol:

PE{(, B,7a,78) : gb=1(g2)%¢" A
Cog = gghrca A
Cr=gche }

Lemma 4.6.3. The protocol described above is a proof of knowledge of a block of
values (SK, Ny) such that (SK, Ny, Ny) is signed, and Cgx is a commitment to SK,
and b = aSK + Ny mod q.

Proof. (Sketch) The completeness and zero-knowledge properties follow in the usual
way. We must now address the question of extraction. The fact that we extract
(SK, N1, N3) and a signature on them follows similarly as for the protocol in Figure 4-
5. The only thing we worry about is that b = aSK + N; mod ¢. Using a knowledge
extractor from the proofs of knowledge of equal representations, we extract values «
and [ of lengths £, and Zy such that log,_ (gg) =b = aa + B mod g, (since the order
of g, is ¢) and « is the value committed to in Csx while 3 is the value committed to
in ;. Under the strong RSA assumption, it follows that o = SK and 8 = N;, and
so b = SKa + N, mod g as we require. O
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Common inputs: Public key (n,a, b, ¢) of the signature scheme with parameters
b, £s, Le
Public key (g, h) of a commitment scheme modulo n
Commitment public key (n¢, g¢, hc), commitment C,,
User’s input: The values (z,7;) such that C; = g&h? mod n¢
and z is of length ¢,, and r; is of length £,.
Values (s, e,v), a valid signature on message z.

U +— V Choose, uniformly at random of length £,, values w, rg, re, 7y, 7, and
7. Compute the following quantities: Cs = g°h™ mod n, C, = g®h" mod n,
C, =vg® modn, Cy, =g*h™, z=ew, C, = g*°h™. C = (C,)®h" mod n.
It is important to note that C = (C,)¢h" = v¢g™°h" = (a®b°c)g*h" mod n.
Send the values (Cs, Ce, Cy, Cy, C,, C) to the verifier and carry out the fol-
lowing 3-protocol zero-knowledge proofs of knowledge:

1. Show that C is a commitment in bases (Cy, h) to the value committed
to in the commitment C.:

PK{(e,p,pe) : C = Cih? N Ce = g°h¥¢}

2. Show that C/c is also a commitment in bases ((a, b, g), k), to the values
committed to by commitments C,,Cs,C,, and that the power of h here
is the same as in C:

PK{(f, ag, Caevpz:pmpmp) : C/c = aﬁbagchp N Cp= gﬁhpz A
Cs =g°h” A C, =g"hP* A
C = (Cy)°h*}

3. Show that C, is a commitment to the product of the values committed
to by Cy and Ck:

PK{(C,‘U’ €, Pzaﬂw,Pe,P’) . C, = gCh”’ AN Cy = g“’h”“’ AN
Ce = g°h* A C, = (Cu)h*'}
4. Show that C; is a commitment to an integer of length ¢,,, Cs is a

commitment to an integer of length £, and C, is a commitment to an
integer in the interval (2%~1 2%).

Figure 4-5: Proof of Knowledge of a Signature
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Chapter 5

Dynamic Accumulators and
Revocation

5.1 Introduction

Suppose a set of users is granted access to a resource. This set changes over time:
some users are added, and for some, the access to the resource is revoked. When
a user is trying to access the resource, some verifier must check that the user is in
this set. The immediate solution is to have the verifier look up the user in some
database to make sure that the user is still allowed access to the resource in question.
This solution is expensive in terms of communication if the database is not local to
the verifier. Another approach is of certificate revocation chains, where every day
eligible users get a fresh certificate of eligibility. This is somewhat better because the
communication burden is now shifted from the verifier to the user, but still suffers
the drawback of high communication costs, as well as the computation costs needed
to reissue certificates. Moreover, it disallows revocation at arbitrary time as need
arises. A satisfactory solution to this problem has been an interesting question for
some time, especially in a situation where the users in the system are anonymous.

Accumulators were introduced by Benaloh and de Mare [BAM94] as a way to
combine a set of values into one short accumulator, such that there is a short witness
that a given value was incorporated into the accumulator. At the same time, it is
infeasible to find a witness for a value that was not accumulated. Extending the ideas
due to Benaloh and de Mare [BAM94], Bari¢ and Pfitzmann [BP97] give an efficient
construction of so-called collision-resistant accumulators, based on the strong RSA
assumption.

We propose a variant of the cited construction with the additional advantage
that, using additional trapdoor information, the work of deleting a value from an
accumulator can be made independent of the number of accumulated values, at unit
cost. Better still, once the accumulator is updated, updating the witness that a
given value is in the accumulator (provided that this value has not been revoked, of
course!) can be done without the trapdoor information at unit cost. Accumulators
with these properties are called dynamic. Dynamic accumulators are attractive for
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the application of granting and revoking privileges.

In the anonymous access setting, where a user can prove eligibility without re-
vealing his identity, revocation appeared impossible to achieve, because if a verifier
can tell whether a user is eligible or ineligible, he seems to gain some information
about the user’s identity. However, it turns out that this intuition was wrong! In-
deed, using accumulators in combination with zero-knowledge proofs allows one to
prove that a committed value is in the accumulator. We show that this can be done
efficiently (i.e., not by reducing to an NP-complete problem and then using the fact
that NP C ZK [GMW87b] and not by using cut-and-choose for the Bari¢ and Pfitz-
mann’s [BP97] construction).

From the above, we obtain an efficient mechanism for revoking group member-
ship for the Ateniese et al. identity escrow/group signature scheme [ACJT00] (the
most efficient secure identity escrow/group signature scheme known to date) and a
credential revocation mechanism for our credential system. The construction can be
applied to other such schemes as well. The idea is to incorporate the public key for
an accumulator scheme into the group manager’s (resp., organization’s) public key,
and the secret trapdoor of the accumulator scheme into the corresponding secret key.
Each time a user joins the group (resp., obtains a credential), the group manager
(resp., organization) gives her a membership certificate (resp., credential certificate).
An integral part of this certificate is a prime number e. This will be the value added
to the accumulator when the user is added, and deleted from the accumulator if the
user’s privileges have to be revoked. This provably secure mechanism does not add
any significant communication or computation overhead to the underlying schemes
(at most a factor of 2). We note that both our dynamic accumulator scheme and the
ACJT identity escrow/group signature scheme rely on the strong RSA assumption.

5.1.1 Related Work

For the class of group signature schemes [CP95, Cam97] where the group’s public
key contains a list of the public keys of all the group members, excluding a member
is straightforward: the group manager only needs to remove the affected member’s
key from the list. These schemes, however, have the drawback that the complexity
of proving and verifying membership is linear in the number of current members
and therefore becomes ineflicient for large groups. This drawback is overcome by
schemes where the size of the group’s public key as well as the complexity of proving
and verifying membership is independent of the number of members [CS97, KP98,
CM99b, ACJT00]. The idea underlying these schemes is that the group public key
contains the group manager’s public key of a suitable signature scheme. To become
a group member, a user chooses a membership public key which the group manager
signs. Thus, to prove membership, a user has to prove possession of membership
public key, of the corresponding secret key and of a group manager’s signature on a
membership public key.

The problem of excluding group members within such a framework without incur-
ring big costs has been considered, but until now no solution was satisfactory. One

78



approach is to change the group’s public key and reissue all the membership certifi-
cates (cf. [ATO01]). Clearly, this puts quite a burden on the group manager, especially
for large groups. Another approach is to incorporate a list of revoked certificates
and their corresponding membership keys into the group’s public key [BS01]. In this
solution, when proving membership, a user has to prove that his or her membership
public key does not appear on the list. Hence, the size of the public key as well as the
complexity of proving and verifying signatures are linear in the number of excluded
members. In particular, this means that the size of a group signature grows with the
number of excluded members.

Song [Son01] presents an alternative approach in conjunction with a construction
that yields forward secure group signature schemes based on the ACJT group signa-
ture scheme [ACJTO00]. While here the size of a group signature is independent of the
number of excluded members, the verification task remains computationally intensive,
and is linear in the number of excluded group members. Moreover, her approach does
not work for ordinary group signature schemes as it relies heavily on the different time
periods peculiar to forward secure signatures. Ateniese and Tsudik [AT01] adapt this
approach to the ACJT group signature/identity escrow scheme. Their solution re-
tains the property that the verification task is linear in the number of excluded group
members. Moreover, it uses so-called double discrete logarithms which results in the
complexity of proving/signing and verifying to be rather high compared to underlying
scheme (about a factor of 90 for reasonable security parameters).

Finally, we point out that the proposal by Kim et al. [KLLO1] is broken, i.e., ex-
cluded group members can still prove membership (after the group manager changed
the group’s key, excluded members can update their membership information in the
very same way as non-excluded members).

Thus, until now, all schemes have a linear dependency either on the number of
current members, or on the total number of deleted members. As we have noted
above, this linear dependency comes in three flavors: (1) the burden being on the
group manager to re-issue certificates in every time period; (2) the burden being on
the group member to prove that his certificate is different from any of those that have
been revoked and on the verifier to check this; or (3) the burden being on the verifier
to perform a computational test on the message received from the user for each item
in the list of revoked certificates.

In contrast, in our solution no operation is linearly dependent on the number of
current or total deleted members. Its only overhead over a scheme without revocation
is the following: We require some public archive that stores information on added
and deleted users. Then, the public key (whose size depends only on the security
parameter) needs to be updated each time a user is added or deleted. Each user must
read the public key from time to time (e.g., prior to proving his membership), and if
the public key has changed since the last time he looked, he must read the news in
the public archive and then perform a local computation. The amount of data to read
and the local computation are linear in the number of changes that have taken place
in the meantime, but not in the total number of changes. The additional burden on
the verifier is simply that he should look at the public key frequently (which seems
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unavoidable); the verifier need not read the archive.

5.2 Definition of Dynamic Accumulators

Definition 5.2.1. A secure accumulator for a family of inputs {Xx} is a family of
families of functions G = {IFy} with the following properties:

Efficient generation: There is an efficient probabilistic algorithm G that on input 1*
produces a random element f of Fx. Moreover, along with f, G also outputs
some auziliary information about f, denoted auzy.

Efficient evaluation: f € Fy is a polynomial-size circuit that, on input (u,z) € Uy %
Xk, outputs a value v € Uy, where Uy 1s an efficiently samplable input domain
for the function f; and Xy is the intended input domain whose elements are to
be accumulated.

Quasi-commutative: For all k, for all f € Fy, for all w € Uy, for all 21,29 € X,

F(f(u,z1),22) = f(f(u,22),21). If X = {x1,... ,Tm} is a list of elements of
Xk, possibly with repetitions, then by f(u, X) we denote f(f(...(u,21),-..), Tm)-

Witnesses: Let v € Uy and x € X;. A value w € Uy is called a witness for z in v
under f if v = f(w,z).

Security: Let U; x X denote the domains for which the computational procedure for
function f € Fy is defined (thus Uy C U;, Xp C X} ). For all probabilistic
polynomial-time adversaries Ay, there exists a negligible function v(k) such that

Prf + G(1F);u «+ Us; (z,w, X) + A(f,Us,u) :
XCXpywelpreXzr ¢ X; fw,z) = fu, X)] = v(k)

Note that only the legitimate accumulated values, (z1,... ,Z,), must belong to
Xy the forged value x can belong to a possibly larger set X .

(This definition is essentially the one of Bari¢ and Pfitzmann, with the difference
that they do not require that the accumulator be quasi-commutative; as a conse-
quence they need to introduce two further algorithms, one for generation and one for
verification of a witness value.)

The above definition is seemingly tailored for a static use of the accumulator. In
this paper, however, we are interested in a dynamic use where there is a manager con-
trolling the accumulator, and several users. First, let us show that dynamic addition
of a value is done at unit cost in this setting.

Lemma 5.2.1. Let f € Fy. Let v = f(u,X) be the accumulator so far. Let v' =
f(v,2") = f(u, X') be the value of the accumulator when z' is added to the accumulated
set, X' = X U{a'}. Let £ € X and w be the witness for x in v. The computation of
w' which is the witness for x in v', is independent on the size of X.
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Proof. w' is computed as follows: w’ = f(w,z’). Let us show correctness using the
quasi-commutative property: f(w',z) = f(f(w,2'),z) = f(f(w,z),2") = f(v,2') =
v'. O

We must also be able to handle dynamic deletions of a value from the accumula-
tor. It is clear how to do that using computations that are linear in the size of the
accumulated set X. Here, we restrict the definition so as to make the complexity of
this operation independent of the size of X:

Definition 5.2.2. A secure accumulator is dynamic if it has the following property:

Efficient deletion there ezist efficient algorithms D, W such that, if v = f(u, X),
z,7' € X, and f(w,z) = v, then
1. D(auzg,v,2') = v such that v' = f(u, X \ {z'}),
2. W(f,v,v,z,2") = w' such that f(w',z) ="

Now, we show that a dynamic accumulator is secure against an adaptive adversary,
in the following scenario: An accumulator manager sets up the function f and the
value u and hides the trapdoor information auz;. The adversary adaptively modifies
the set X. When a value is added to it, the manager updates the accumulator value
accordingly. When a value z € X is deleted, the manager runs algorithm D and

publishes the result. In the end, the adversary attempts to produce a witness that
x' ¢ X is in the current accumulator v.

Theorem 5.2.2. Let G be a dynamic accumulator algorithm. Let M be an interactive
Turing machine set up as follows:

Input: (f, auzy,u), where f € Fy and u € Uy.
Initialization: X := 0, v := u.
Response to messages:

(“ADD?”, z) In response to this message, set v := f(v,z), and X = X U{z}.

(“DELETE”, x) In response to this message, check that x € X, and if so, set
v:= D(auzys,v,z), and X := X \ {z}.

Supply the current value of v to the adversary.

Let U; x X denote the domains for which the computational procedure for function
f € Fy is defined. For all probabilistic polynomial-time adversaries Ay, there ezists a
negligible function v(k) such that

Pr(((f, auzy) < G(1¥);u « Us; (z, w) « Ak(f, Uy, u) <> M(f, auzs,u) — (X,):
weUpz Xz ¢ X f(w,z) = fu, X)] = v(k)
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Proof. Let us exhibit a reduction from the adversary that violates the theorem to the
adversary that breaks the security property of a secure accumulator. The reduction
will proceed in the following (straightforward) manner: On input (f,U,u), feed
these values to the adversary. To respond to an (“ADD”, z) query, simply update
X and compute v = f(u, X). To respond to a (“DELETE” ) query, compute v =
f(u, X\ {z}), and then update X. The success of the adversary directly corresponds
to the success of our reduction. O

Finally, in the application we have in mind we require that the accumulator allows
for an efficient proof that a secret value given by some commitment is contained in
a given accumulator value. That is, we require that the accumulator be efficiently
provable with respect to some commitment scheme (Commit).

Zero-knowledge proof of knowledge of an accumulated value There exists an
efficient zero-knowledge proof of knowledge system where the common inputs
are ¢ (where ¢ = Commit(z,r) with a r being a randomly chosen string), the
accumulating function f and v € Uy, and the prover’s inputs are (r, z € X,
u € Uy) for proving knowledge of z, w, 7 such that ¢ = Commit(z,r) and

v = f(w,z).

If by “efficient” we mean “polynomial-time,” then any accumulator satisfies this prop-
erty. However we consider a proof system efficient if it compares well with, for exam-
ple, a proof of knowledge of a discrete logarithm.

5.3 A Candidate Construction

The construction due to Barié¢ and Pfitzmann [BP97] is the basis for our construction
below. The differences from the cited construction are that (1) the domain of the
accumulated values consists of prime numbers only; (2) we give a method for deleting
values from the accumulator, i.e., we construct a dynamic accumulator; (3) we give
efficient algorithms for deleting a user and updating a witness; and (4) we provide an
efficient zero-knowledge proof of membership knowledge.

o [ is the family of functions that correspond to exponentiating modulo safe-
prime products drawn from the integers of length k. Choosing f € F, amounts
to choosing a random modulus n = pq of length k, where p = 2p'+1, ¢ = 2¢/+1,
and p,p’,q,¢" are all prime. We will denote f corresponding to modulus n and
domain X4 g by fn,4,8. We denote f, 4 p by f, and by f when it does not cause
confusion.

o X4 p is the set {e € primes: e #p',¢ A A <e < B}, where A and B can be
chosen with arbitrary polynomial dependence on the security parameter k, as

long as 2 < A and B < A% X, , is (any subset of) of the set of integers from
[2, A? — 1] such that X4 5 C X, 5.

e For f = f,, the auxiliary information auz is the factorization of n.

82



o For f = fn, Uy ={u € QR :u # 1} and U; = Z,, .
« For f = fu, f(u,7) = u* mod n. Note that f(f(u,1),22) = f(u, {@,22}) =

u**2 mod n

e Update of the accumulator value. As mentioned earlier, adding a value Z to the
accumulator value v can be done as v' = f(v,Z) = v* mod n. Deleting a value
# from the accumulator is as follows. D((p, q),v, ) = v* ' med(P=1(a=1) mod p.

e Update of witness: As mentioned, updating the witness u after £ has been
added can be done by ' = f(u,Z) = u*. In case, T # = € X} has be deleted
from the accumulator, the witness u can be updated as follows. By the extended
GCD algorithm, one can compute the integers a,b such that axz + bz = 1 and
then v’ = W (u,z,%,v,v") = ubv'®. Let us verify that f(u',z) = ¢/* mod n = v

ubv/azm - (5.1)
( ubvla)xac)l r (52)
((uz)bi(vr')az)l/w — (5.3)

(WF)E = yVE = (5.4)

Equation (5.2) is correct because Z is relatively prime to o(n).

We note that adding or deleting several values at once can be done simply by
letting =’ be the product of the added or deleted values. This also holds with respect
to updating the witness. More precisely, let m, be the product the z’s to add to and
w4 be the ones to delete from the accumulator value v. Then, the new accumulator
value v’ := y™ema med(P-1)(a=1) mod n. If u was the witness that z was contained in v
and z was not removed from the accumulator, i.e., z { 74, then w'u™y'® mod n is a
witness that z is contained in v', where a and b satisfy az +br; = 1 and are computed
using the extended GCD algorithm.

Theorem 5.3.1. Under the strong RSA assumption, the above construction is a se-
cure dynamic accumulator.

Proof. Everything besides security is immediate. By Theorem 5.2.2, it is sufficient to
show that the construction satisfies security as defined in Definition 5.2.1. Our proof
is similar to the one given by Bari¢-Pfitzmann for their construction (the difference
being that we do not require z’ to be prime). The proof by Barié¢-Pfitzmann is actually
the same as one given by Shamir [Sha83).

Note that the definition of security requires that for any domain X' for which the
accumulator function f is well-defined, it should be impossible to compute a value u’
such that u = f(u/, x); therefore we consider the set of possible forgery to be X} »
rather than X4 p.

Suppose we are given an adversary A that, on input n and u € QR,, outputs
m primes 1,...,%Tm € X4 p and v’ € Z;,, 2’ € X, p such that (u)® = ull® while

z' # x; for all 4. Let us use A to break the strong RSA assumption.
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Suppose n = pq that is a product of two safe primes, p =2p' +1 and ¢ = 2¢' + 1,
is given. Suppose the value u € @R, is given as well. To break the strong RSA
assumption, we must output a value e > 1, y such that y¢ = w.

We shall proceed as follows: Give (n,u) to the adversary. Suppose the adversary
comes up with a forgery (u', 2, (z1, ... ,Tm)), where x # z; for any i. Let z = [~ ;.
Thus we have u'® = wu®.

Claim. Let d = ged(2',z). Then eitherd =1 or d = x; for some1 < j <m.

Proof of claim: Suppose d|z and d # 1. Then, as z1, ... , z,, are primes, it follows
that d is the product of a subset of primes. Suppose for some z; and z; we have z;z;|d.
Then z;z;|2’. But this is a contradiction as z;z; > z’ must hold due to the definitions
of X4 and X, z: Because 2’ € X} 5 we have 2’/ < A®. For any z;,z; € Xap,
r;x; > A2 > 2, as 71,19 > A.

From the claim, it follows that d = gcd(2',z) < z: either (1) d =1, or (2) d = zy,
while z; # 7', so d = z; < 2. By Lemma 4.1.10, the values z and w > 1 can
be computed efficiently, such that 2 = u mod n. This contradicts the strong RSA
assumption. (]

5.3.1 Efficient Proof That a Committed Value Was Accumu-
lated

Here we show that the accumulator exhibited above is efficiently provable with respect
to the commitment scheme described in Section 4.5.1. Suppose that the public key of
the commitment scheme is (n¢, gc, hc), and that it was picked in an initial trusted
setup phase.

We also need to extend the accumulator public key (n,v) by random elements
(g, h) € QR, such that log, h is not known to the prover.

To prove that a given commitment C, and a given accumulator v contain the same
value e, the following protocol is carried out.

Lemma 5.3.2. The protocol in Figure 5-1 is a zero-knowledge proof of knowledge of
the values (e,u,r) such that u® = v mod n and C = g&hL.

Proof. The completeness property is clear. The zero-knowledge property follows be-
cause the simulator can form the commitments at random and fake the proofs. For the
extraction, note that we extract values (¢, w, p, @) such that (1) C = vg®h? = CEh?,
(2) @ = ew, and (3) € € X. From (1), we also get (4) C = vg®. Let u = C,/g”. Note
that u¢ = (C,/¢*)¢ = C:/g™ = vg*/g9™ = v, and so we output the value ¢ € X' and
proof of membership u. O

5.4 Application to the Credential System

Here, we show how to use the dynamic accumulator presented in Section 5.3 in or-
der to revoke credentials in the credential system presented in Chapter 3 where the
underlying signature scheme is as in Chapter 4.
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Common inputs: Public key (n,v, g, h) of the accumulator, range [A, B]
Commitment public key (n¢, gc, he), commitment C,
User’s input: The values (u, e,7¢) such that u® = v mod n and C, = g&h¢ mod

nec.

U +— V Choose, uniformly at random of length ¢,, values w, r,, r and compute
the following: C, = ug® mod n, C,, = g*h™ mod n, C = (Cy)¢h" mod n.
It is important to note that C = (C)¢h" = u¢g¥*h" (modn).
Send the values (Cy, Cy, C) to the verifier and carry out the following zero-

knowledge proofs of knowledge:

1. Show that C is a commitment in bases (Cy, k) to the value committed
to in the commitment Ce, and that C/v has the right representation
in (g, h), using the protocol described in Section 4.5.4.

PK{(€,p,pe;) : C =Cph modn A
Ce = gchs modne A CJv=g*h” mod n}
2. Show that C/v is also a commitment in bases (g, h), to the product of

the values committed to by C and C),, as done in Section 4.6.2.

3. Show that the value committed to in commitment C, in bases (Cy, h),
is in the range X/; p, as described in Section 4.5.5.

Figure 5-1: Proof That a Committed Value Is in the Accumulator

In general, each organization will have, in addition to its usual credential public
key, a public key (f, u) of a dynamic accumulator. Every time a credential o is issued
under the credential public key, the organization receives the value z(o) where z(-)
is an efficiently computable function such that z(c) € X. The value z(o) is added to
the accumulator when the credential ¢ is granted, and deleted from the accumulator
when the credential is revoked. Proof of knowledge of a credential involves proving
knowledge of (SK, o, w) such that o is a signature on SK, and f(z(0),w) = u, where
u is the current value of the accumulator. What is essential here is that no two
credentials have the same value z(0).

For the signature scheme described in Chapter 4, where signature ¢ on message
m is a tuple (s,e,v) such that a™b’c = v® mod n, let z(0) = e. No two credentials
will have the same value e.
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Chapter 6

Unique Signature Scheme

Since the seminal work of Goldwasser, Micali and Rivest [GMR88] on defining signa-
ture schemes, it has become clear that the first requirement from a signature scheme
is that it should satisfy the GMR definition of security. However, to be most useful,
two additional properties of signature schemes are desirable: (1) that the scheme be
secure in the plain model, i.e., without a random oracle or common parameters; and
(2) that the scheme be stateless, i.e., not require the signer to update the secret key
after each invocation.

The only signature schemes satisfying both of these additional properties are the
Strong-RSA-based schemes of Gennaro et al. [GHR99] and Cramer and Shoup [CS99],
and the scheme implied by the verifiable random function due to Micali et al. [MRV99],
based on RSA. An open question was to come up with a signature scheme satisfying
the two additional properties, such that it would be secure under a different type of
assumption. Here, we give such a signature scheme, based on a generalization of the
Diffie-Hellman assumption for groups where decisional Diffie-Hellman is easy.

Unique signatures. The signature scheme we propose is a unique signature scheme.
Unique signature schemes are GMR-secure signature schemes where the signature is
a hard-to-compute function of the public key and the message. They were introduced
by Goldwasser and Ostrovsky [GO92]'.

In the random-oracle model, a realization of unique signatures is well-known. For
example, some RSA signatures are unique: o, ¢ x(m) = (H(m))/¢ mod n is a function
of (n,e, H,m) so long as e is a prime number greater than n (this is because for a
prime e, e > n implies that e is relatively prime to ¢(n)). Goldwasser and Ostrovsky
give a solution in the common-random-string model. However, in the standard model,
the only known construction of unique signatures was the one due to Micali, Rabin,
Vadhan [MRV99].

Goldwasser and Ostrovsky have also shown how to construct unique signatures in
the common random string model using non-interactive zero-knowledge proofs. They

1They call it an invariant signature. In fact, invariant signatures are not exactly unique signatures
as defined here. But the concepts are sufficiently related not to worry about the subtleties of the
definitions.
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also gave the converse construction.

Goldwasser and Ostrovsky’s construction of a non-interactive zero-knowledge proof
(NIZK) for any language in NP for polynomial-time provers?, is the alternative to
the construction due to Feige, Lapidot and Shamir [FLS99]. Feige, Lapidot and
Shamir give a construction based on trapdoor permutations. In contrast, Goldwasser
and Ostrovsky show that the trapdoor property is not necessarily crucial, because
unique signatures are sufficient as well. Until the results in this thesis, there was
no application to the Goldwasser and Ostrovsky construction, since the only known
constructions of unique signatures, even in the common-random-string model, were
either based on RSA (which is conjectured to be a family of trapdoor permutations),
or on non-interactive zero knowledge. Our result therefore implies that trapdoor per-
mutations might not be necessary for NIZK with efficient provers. Specifically, our
result, combined with the result of Goldwasser and Ostrovsky, shows that our Many-
DH Assumption stated in Section 6.2 implies such NIZK proofs. At the same time,
this assumption is not known to imply existence of trapdoor permutations.

Verifiable random functions. Another reason why unique signatures are valuable
is that they are closely related to verifiable random functions. Verifiable random
functions (VRFs) were introduced by Micali, Rabin, and Vadhan [MRV99]. They
are similar to pseudorandom functions [GGMS86], except that they are also verifiable.
That is to say, associated with a secret seed SK, there is a public key PK and a func-
tion Fpx(-) : {0,1}* — {0,1}* such that (1) y = Fpg(x) is efficiently computable
given the corresponding SK; (2) a proof mpx(z) that this value y corresponds to the
public key PK is also efficiently computable given SK; (3) based purely on PK and
oracle calls to Fpg(-) and the corresponding proof oracle, no adversary can distin-
guish the value Fpg(z) from a random value without explicitly querying for the value
x.

VRFs [MRV99] are useful for protocol design. They can be viewed as a com-
mitment to an exponential number of random-looking bits, which can be of use in
protocols. For example, using verifiable random functions, one can reduce the num-
ber of rounds for resettable zero knowledge proofs to 3 in the bare model [MRO1].
Another example application, due to Micali and Rivest [MR02], is a non-interactive
lottery system used in micropayments. Here, the lottery organizer holds a public key
PK of a VRF. A participant creates his lottery ticket ¢ himself and sends it to the
organizer. The organizer computes the value y = Fpg(t) on the lottery ticket, and
the corresponding proof m = mwpg(t). The value y determines whether the user wins,
while the proof 7 guarantees that the organizer cannot cheat. Since a VRF is hard
to predict, the user has no idea how to bias the lottery in his favor.

These objects are not well-studied; in fact, only one construction, based on the
RSA assumption, was previously known [MRV99]. Micali, Rabin and Vadhan showed
that, for the purposes of constructing a VRF, it is sufficient to construct a unique
signature scheme. More precisely, from a unique signature scheme with small mes-

%In fact, their construction is using invariant signatures; however, using later techniques of Micali,
Rabin, and Vadhan, their construction can use unique signatures.
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sage space, they constructed a VRF with an arbitrary input size that tolerates a
polynomial-time adversary. They then gave an RSA-based unique signature scheme
for a small message space.

Constructing VRFs from pseudorandom functions (PRFs) is a good problem that
we do not know how to solve in the standard model. This is because by its definition,
the output of a PRF should be indistinguishable from random. However, if we extend
the model to allow interaction, it is possible to commit to the secret seed of a PRF and
let that serve as a public key, and then prove that a given output corresponds to the
committed seed using a zero-knowledge proof. This solution is unattractive because of
the expense of communication rounds. In the so-called common random string model
where non-interactive zero-knowledge proofs are possible, a construction is possible
using commitments and non-interactive zero knowledge [BFM88, BDMP91, FLS99].
However, this is unattractive as well because this model is unusual and non-interactive
ZK is expensive. Thus, construction of verifiable random functions from general
assumptions remains an interesting open problem.

DH-DDH separation. Recently, Joux and Nguyen [JNO1] demonstrated that one
can encounter groups in which decisional Diffie-Hellman is easy, and yet computa-
tional Diffie-Hellman seems hard. This is an elegant result that, among other things,
sheds light on how reasonable it is to assume decisional Diffie-Hellman. (The state-
ment of these assumptions is given in Section 6.1.)

Joux [Jou00] proposed using the DH-DDH separation to a good end, by exhibit-
ing a one-round key exchange protocol for three parties. Subsequently, insight into
such groups has proved relevant for the recent construction of identity-based en-
cryption due to Boneh and Franklin [BFO1] which resolved a long standing open
problem [Sha85]. Other interesting consequences of the study of these groups are a
construction of a short signature scheme in the random-oracle model [BLS01] and of
a simple credential system [Ver01].

Our results. We give a simple construction of a unique signature scheme based on
groups where DH is conjectured hard and DDH is easy. Ours is a tree-like construc-
tion. The message space consists of codewords of an error-correcting code that can
correct a constant fraction of errors. For n-bit codewords, the depth of the tree is n.
The root of the tree is labelled with g, a generator of a group where DH is hard and
DDH is easy. The 2" leaves of the tree correspond all the possible n-bit strings. The
2 nodes of depth 4, 1 <1 < n correspond to all the possible i-bit prefixes of an n-bit
string.

A pair of group elements (4;9 = ¢*°, A;1 = ¢g*!) is associated with each depth ¢
of the tree as part of the public key. The label of a node of depth ¢ is derived from
the label of its parent by raising the parent’s label to the exponent a; if this node is
its parent’s left child, or a,; if it is the parent’s right child.

Computing the signature on each codeword m amounts to computing the labels
of the nodes on the path from the root of the tree all the way down to the leaf
corresponding to m. The signature is this sequence of labels.

At first glance, this may seem very similar to the Naor-Reingold [NR97] pseudo-
random function. Indeed, their construction was an inspiration to mine. However the
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proof is not immediate. The major difference from the cited result is that here we
must give a proof that the function was evaluated correctly. That makes it harder
to prove security. For example, proof by a hybrid argument, as done by Naor and
Reingold [NR97] is ruled out immediately: there is no way we can answer some of the
adversary’s queries with truly random bits, since for such bits there will be no proof.

Our proof of security for the unique signature relies on a generalization of the
Diffie-Hellman assumption. We call it the “Many-DH” assumption. However, for
directly converting this simple US to VRF, we need to make a very strong assumption;
however the resulting VRF is very simple. We also suggest a more involved but also
more secure construction of a VRF based on the Many-DH assumption. This last
construction is closely related to that due to Micali et al. [MRV99].

Outline of the rest of this chapter. In Section 6.1 we give definitions of verifiable
random functions and unique signatures. In Section 6.2 we state our complexity
assumptions for unique signatures. In Section 6.3 we give our unique signature scheme
and prove it secure in Section 6.4. We then provide a simple construction for a VRF
under a somewhat stronger assumption, in Section 6.5. We conclude in Section 6.6
with a construction of a VRF based on the weaker assumption alone, but whose
complexity (both in terms of computation and in terms of conceptual simplicity) is
the same as that of Micali et al. [MRV99)].

6.1 Definitions

6.1.1 Unique Signatures

Unique signatures are secure signatures where the signature is a function as opposed
to a distribution.

Definition 6.1.1. A function family o(y(-) : {0,1}* — {0,1}¥® is a unique sig-
nature scheme (US) if there exists probabilistic algorithm G, efficient deterministic
algorithm Sign, and deterministic algorithm Verify such that G(1%) generates the
key pair PK, SK, Sign(SK,z) computes the value 0 = opk(x) and Verify(PK, z, o)
verifies that 0 = opk(x).

1. (Validity) If o = Sign(SK, z), and there ezists a random string and a value k
such that (PK, SK) is obtained by running G(1¥) on this random string, then
Verify(PK,z,0) = 1.

2. (Uniqueness of opx(m)) There do not ezist values (PK,m,o1,0,) such that
o1 # 02 and Verify(PK,m,o0,) = Verify(PK,m,0,5) = 1.

3. (Security) For all families of probabilistic polynomial-time oracle Turing ma-
chines {Ag)}, there exists a negligible function v(k) such that
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Pr[(PK, SK) + G(1%);
(Q,2,0) + AFEEEI(1R), ¢ Verify(PK,z,0) = 1A (2,0) ¢ Q] < v(k)

On a relaxed definition. Goldwasser and Ostrovsky [GO92] give a relaxed def-
inition. In their definition, even though the signature is unique, the verification
procedure may require, as an additional input, a proof that the signature is correct.
This proof is output by the signing algorithm together with the signature, and it
might not be unique. Here we give the stronger definition because we can satisfy it
(Goldwasser and Ostrovsky do not, even though they work in the common random

string model). However, note that the relaxed definition is sufficient for constructing
VRFs [MRV99].

Unique signatures are stateless. Since a unique signature is a function of the
public key and the message, a signature on a given message will be the same whether
this was the first message signed by the signer, or the n’th message. As a result,
it is easy to see that the signer does not need to remember anything about past
transactions, i.e., a unique signature must be stateless.

6.1.2 Verifiable Random Functions

The definition below is due to Micali et al. [MRV99]. We use somewhat different and
more compact notation, however.

The intuition of this definition is that a function is a verifiable random function
if it is like a pseudorandom function with a public key and proofs.

Definition 6.1.2. A function family Fiy(-) : {0,1}¥®) — {0,1}™® is o verifiable
random function (VRF) if there ezist probabilistic algorithm G, and deterministic
algorithms Eval, Prove, and Verify such that: G(1*) generates the key pair PK, SK;
Eval(SK,z) computes the value y = Fpg(x); Prove(SK,x) computes the proof w that
y = Fpi(z); and Verify(PK, z,y,n) verifies that y = Fpg(x) using the proof .
More formally:

1. (Computability of Fpx(x)) Fpx(z) = Eval(SK, z).
2. (Provability of Fpi(z)) If (y,7) = Prove(SK,z), then

Verify(PK,z,y, ) =1

3. (Uniqueness of Fpi(z)) There do not exist values (PK, SK , x, y1, Y2, 71, T2) Such
that y; # y2 and Verify(PK,xz,y1,m) = Verify(PK, x,yq, ) = 1.
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4. (Pseudorandomness of Fpy(x)) For all families of probabilistic polynomial-time
Turing machines {Ag), By}, there exists a negligible function v(k) such that

Pr[(PK, SK) + G(1%);

(Qa,,state) + Airove(SK,.) (1),

yo = Eval(SK,z);
1« {0, 1},
b+ {0,1};
(@, V) B ) (state,yp) : b=V A (z,Prove(SK,z)) ¢ Q4 U Q5]
<1/2 +v(k)

(The purpose of the state random variable is so that Ay can save some useful
information that By will then need.)

In other words, the only way that an adversary could tell Fpy(x) from a random
value, for x of its own choice, ts by querying it directly.

It is easy to see [MRV99] that given a VRF Fpg) : {0, 1}*® 5 {0,1}, one can
construct a VRF F(; : {0, 1% 5 {0,1}™%) | where £(k) = k) — [logm(k)], as
follows: F]’;-K(.’El 0...0 ZL‘gl(k)) = FPK(.’IJl O...0%p(g) O ’LLO) o FPK(xl O...0Tpk)© ul) o
..o Fpg(z10...0Tpk) 0 unk)) where u; denotes the [logm(k)]-bit representation
of the integer ¢, and “o” denotes concatenation.

Thus in the sequel we will focus on constructing VRFs with binary outputs.

Unique signatures vs. VRFs. Micali et al. showed how to construct VRFs from
unique signatures. The converse, namely construction of a unique signature from a
VRF, holds immediately if the proofs in the VRFs are unique. If the proofs are not
unique, then no construction satisfying our strong definition of unique signatures in
known. However, constructing relaxed unique signatures in the sense of Goldwasser
and Ostrovsky (see the end of Section 6.1.1) is immediate.

6.2 Assumptions

Let S be an efficient algorithm that, on input 1*, generates a group G = (x, q, g) with
efficiently computable group operation *, of prime order ¢, with generator g. We
require that g is written down in binary using O(logq) bits, and that every element
of the group has a unique binary representation.

We require that the decisional Diffie-Hellman problem be easy in G. More pre-
cisely, we require that there is an efficient algorithm D for deciding the following
language Lppy(G):

Lppu(G) ={(*,¢,9,X,Y,Z) | 3z,y € Z, such that X = ¢°,Y = ¢¥, Z = ¢*¥}
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One the other hand, we will need to make the following assumption which is some-
what stronger than computational Diffie-Hellman. It is essentially like computational
Diffie-Hellman, except that instead of taking two inputs, g* and ¢¥, and the challenge
is computing ¢*¥, we have a logarithmic number of bases g¥!,... , g%, as well as all
the products gllies¥% for all proper subsets J of the naturals up to and including ¢,
and the challenge is to come up with the value gn§=1 Yi,

Assumption 6.2.1 (Many-DH Assumption). For all £ = O(logk), for all prob-
abilistic polynomial-time families of Turing machines { Ax},

Pr((+,¢,9) ¢ S(1*){yi + 2 + 1< i <t}

{zs = Hyj;ZJ =g~ : JC [}
Z 4+ Ap(*%,q,9,{Z; - JC[€}) : Z= gny"] < v(k)

where by [¢] we denote the set of integers from 1 to £.

Groups of this flavor, where the decisional Diffie-Hellman problem is easy, and yet
generalizations of the computational Diffie-Hellman problem are hard, are said to have
“DH-DDH separation.” Examples of groups that are conjectured to have DH-DDH
separation are elliptic curve groups that allow the Weil pairing [Sil86]. For a more
thorough exposition of such groups, we refer the reader, for example, to the recent
papers by Joux and Nguyen [JNO1], Joux [Jou00] and Boneh and Franklin [BF01]. In
the sequel, we will not address the number-theoretic aspects of the subject.

6.3 Construction of a Unique Signature

Suppose the algorithms S, D, as in Section 6.2, are given. Let k be the security
parameter. Let the message space consist of strings of length ny. Our only assumption
on the size of the message space is that ny = w(logk).

Let Cny : {0,1}™ — {0,1}"™ be a family of error-correcting codes where n(ng)
is polynomial, and the distance of the code is cn(ng), where ¢ > 0 is a constant. In
other words, C is a function such that if M # M’ are strings of length ng, then C'(M)
differs from C(M’) in at least cn(no) places. For ease of notation, in the sequel we will
write n instead of n(ng). For an overview of error-correcting codes, see the lecture
notes of Madhu Sudan [Sud]. Here, we note that since we will not need the decoding
operation, only the encoding operation, we can easily achieve n = O(ng). We will
give an example of such a code in Section 6.3.1.

We will now show how to construct algorithms G, Sign, Verify as specified in
Definition 6.1.1.

Algorithm G Run S(1¥) to obtainG = (%, g, g). Choose n pairs of random elements

n qu (al,o,(llyl),... ,(an,o,an,l). Let Ai,b = gai'b, for 1 S ? S k, b e {0,1}
Output the following key pair:
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G1,01042,0 s Gn,0 Al,O Ag,o s An,O

SK = PK =
ai1|G2,1 e Qp,1 Al 1 A2 1 - An 1

) 1

Algorithm Sign On input a message M of length ny, compute the encoding of M
using code C: m = C(M). To sign the n-bit codeword m = my o ... 0 my,,
output opx(m) = (s1,...,8n), where sp = g and s; = (s;_1)%™ for 1 <14 < n.

Algorithm Verify Let s, o = ¢g. Verify that, for all 1 <17 < n,

D(*) 9,9, Sm,i—1, Ai,m“ Sm,i) = ACCEPT

Graphically, we view the message space as the leaves of a balanced binary tree of
depth n. Each internal node of the tree is assigned a label, as follows: the label of
the root is g. The label of a child, denoted . is obtained from the label of its parent,
denoted [,, as follows: if the depth of the child is 7, and it is the left child, then its
label is [, = I;"°, while if it is the right child, its label will be I, = I,"'. The signature
on an n-bit message consists of all the labels on the path from the leaf corresponding
to this message all the way to the root. To verify correctness of a signature, one uses
the algorithm D that solves the DDH for the group over which this is done.

Efficiency. In terms of efficiency, this signature scheme is a factor of O(n) worse
than the Cramer-Shoup scheme, in all parameters such as the key and signature
lengths and the complexity of relevant operations. This means that it is still rather
practical, and yet has two benefits: uniqueness, and security based on a different
assumption. In comparison to the unique signature of Micali et al., our construction
is preferable as far as efficiency is concerned. This is because our construction is
direct, while they first give a unique signature for short messages, then show how to
construct a VRF and a unique signature of arbitrary length from that.

Reducing the length of signatures. Boneh and Silverberg [BS02] point out that,
if the language L(*,q,9) = {g¥',..., g%, gli=1%} is efficiently decidable, then the
signature does not need to contain the labels of the intermediate nodes. lL.e., to sign
a message M, m = C(M), it is sufficient to give s = gIli=1%m:  This reduces the
length of a signature by a factor of n. However, finding groups where L(x,q,g) is
efficiently decidable, and yet the Many-DH Assumption is still reasonable, is an open
question [BS02].

On the need for an error-correcting code. The reason that the construction
uses an error-correcting code is purely a technical tweak that allows the signature
scheme to be provable under the Many-DH assumption. In order to contradict the
assumption, we reduce an instance of the Many-DH problem to an instance of the
signature scheme. We embed the values g¥% of the Many-DH problem into the public
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key of the signature scheme. In order for the reduction to go through, we need the
forged message to differ from all the previously queried messages on the bits where
{g¥'} are embedded. To guarantee that, we use the error-correcting code, which
ensures that the message on which the adversary computes a forgery differs from any
previous message on a substantial fraction of bits. The step of the proof that requires
error-correction is Lemma 6.4.4.

6.3.1 An Example of a Suitable Code

Consider a random code constructed as follows: n = 24ny random strings of length
ng are chosen, let us denote them by RY,... R" where each ' = rio...0 rju.
The encoding of message M = mj o...0my,, is C(M) = ¢; o...0c¢,, where the bit
¢ = @2, myrk.

Suppose M; and M, of length ng are fixed. Let d(C(M;),C(M,)) denote the
Hamming distance between the codewords for M; and Ms. Let X = C(M;) & C(M,),
and let X; denote the 7’th bit of X. Since IR; is a random ng-bit string, and M; # Mo,
Xi; = M1.R; ® My.R; = (M, & M>).R; is a 0-1 random variable such that Prg,[X; =
0] = Prg,[X; = 1] = 1/2 = p. Since R; is chosen independently of R;, ¢ # j, X;
is independent of X;. It is easy to see that Ec[d(C(M,),C(Ms))] = >0, Er,[Xi].
Therefore, by the Chernoff bound, and using e > 2,

Prld(C(My), C(Mp)) > ng] < Pr{ld(C(My), C(My) fr — 1/2) > 1/4
= B X/n—pl >
< 26‘75(6—1—2“_1’771
_1/9)?
= 2 12"
— 26—71/8 < 2—n/8 < 2—3no

Consequently, by the union bound, since there are less than 22" possible choices
for M, 7é M, PrC[ElMl 75 M, s.t. d(C(Ml),C(Mg)) < 710] < 2770,

6.4 Proof of Security for the Unique Signature

In this section, we show how to reduce breaking the Many-DH problem to forging a
signature of the construction in Section 6.3.
First, we show the following lemma:

Lemma 6.4.1. Suppose Verify(((*,q,9), {Aip}1<i<npeio,1}), M, (51,... ,8,)) = 1.
Then s; = glli=1%m: where a; ,, denotes the unique value Z, such that g%mi = A; . .

Proof. We show the lemma by induction on j. For 7 = 1, the verification algorithm
will accept only if s = Aj ;.
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Figure 6-1: Toy example of a public key produced by the reduction. In this example,
n = 10, £ = 3. The reduction randomly picked J = {3,4,9}, B = 101.

Let the lemma hold for j — 1. The verification algorithm will accept s; only if
D(*,4,9,5j-1, Ajm;»5;) = 1. But by definition of D, this is the case only if s; =
g°*™i, where o is the unique value in Z, such that ¢° = s; ;. By the induction

. i—1 - I ag
hypothesis, o = [/} aim,. Therefore, s; = g°%™ = glhi=1aim; O

6.4.1 Description of the Reduction

In the following, “we” refers to the reduction, and the forger for the signature scheme
is “our adversary.”
Recall that £ is the security parameter, and that ny = w(logk), n = O(ny).
Suppose that our adversary’s running time is ¢(k). Recall that ¢ is the distance of
the error-correcting code we use. Let £ = ggl(‘;u%%%%)- + 1. (Note that £ = O(logk)).
Assume G is as in Section 6.2.

Input to the reduction: Asin Assumption 6.2.1, we are given a group G = (%, ¢, g)
and £ elements Y3, Y,,...,Y, of G, where Y,, = ¢g¥*. We are also given the values

Zr = glluervs for I C [¢]. The goal is to break Assumption 6.2.1, i.e., compute
Hl= Yu
g u=1 .

Key generation: Pick a random ¢-bit string B = b; o ... 0 b; and a random /¢-bit
subset J C [n]. (For simpler notation, assume that the indices are ordered such that
Ju < Jus for all j, € J.)

Set up the public key as follows: A, , = Y,. To set up A;, where i ¢ J or
i = ju € J but b # by, choose value a;, < Z, and set A, = g**. Figure 6-1 gives an
example of what the reduction does in this step.

Responding to signature queries: We will respond to at most 2t signature
queries from the adversary, as follows.

Suppose the adversary’s query is M where C(M) = m = mjo...om,. Let J(m)
denote the string m;, o...om;,.

Check if J(m) = B. If so, terminate with “Fail.” Otherwise, compute the sig-
nature as follows: Let Zy = g. Let ¥ = b'(J) be an n-bit string such that b;, = b,
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for all 7, € J. By I, we denote the £-bit string which has a 1 in position u, and 0’s
everywhere else.
Compute (s1,. .., s,) using the following loop:

Initialize ¢ := 0¢
Fori=1ton

(1) If : = j, € J and m; = by, then c:=c P I,

(3) Increment 3%

j€J,5<i B my Hjemsnmj #bl; Giom;

(end of loop)

Processing the forgery: Now suppose that the adversary comes back with a forged
signature on message M’ for which it has not queried R. Let m' = C(M'). This
forgery is opx(m') = {smi}. This forgery is good if J(m') = B. If the forgery is good,

we obtain the value gni=1 Y« by Lemma 6.4.1, by simply computing (8 ;) Migsai "

6.4.2 Analysis of the Reduction

Let t = t(k) be the expected running time of the adversary. For the purposes of the
analysis, consider the following algorithms:

Algorithm 1 runs the signing algorithm and responds to the adversary’s queries
as the true signing oracle would. If the adversary outputs a valid forgery, this
algorithm outputs “Success.”

Algorithm 2 runs the signing algorithm but only responds to 2t queries. If
the adversary issues more queries, output “Fail.” Otherwise, if the adversary
outputs a valid forgery, this algorithm outputs “Success.”

Algorithm 3 is the same as Algorithm 2, except in one case. Namely, it chooses
arandom J C [n], |J| = £, J = {j1,... ,Je}, and outputs “Fail” if it so happens
that J(C(M')) = J(C(M)) where M’ is the adversary’s forgery, and M is any
previously queried message, and notation J(m) denotes m;, omj, o...om;,.

Algorithm 4 is just like Algorithm 3 except in one case. Namely, it chooses a
random /¢-bit string B and outputs “Fail” whenever the forged message M’ is
such that C(M’) = m' where J(m') # B.

Algorithm 5 is just like Algorithm 4 except in one case. Namely, it outputs
“Fail” whenever the queried message M is such that C(M) = m where J(m) =
B.

Algorithm 6 runs our reduction. It outputs “Success” whenever the reduction
succeeds in computing its goal.

By p;, let us denote the success probability of algorithm .
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Lemma 6.4.2. The success probability of Algorithm 1 is the same as the success
probability of the forger.

Proof. By construction, this algorithm outputs “Success” iff the forger succeeds. O
Lemma 6.4.3. ps > p/2.

Proof. Suppose a successful forgery requires ¢ queries on the average. Then by the

Markov inequality, 2¢ queries are sufficient at least half the time. O

Lemma 6.4.4. p; > py/2.

Proof. Recall that m’ = C(M') is a codeword of an error-correcting code of distance
cn. That implies that for all M, m' differs from m = C(M) on at least cn locations.
So, if we picked £ locations at random with replacement, Pr;[J(m) = J(m')] <
(1 —¢)~%. Since we are picking without replacement, Pr;[J(m) = J(m/)] < []oe,(n —
en —14)/n < (1 — ¢+ ¢€)f for any constant € > 0. Let € = .01c for simplicity. Let Q
denote the set of messages queried by the adversary. By the union bound

PJr[EIM € @Q such that J(C(M)) = J(m)] < 2t(1 —c+¢€) < 1/2

if 4¢ < (1/(1 — ¢+ ¢€))%. Taking the logarithm on both sides of the equation, we get
the condition logt+2 < £log(1/(1—.99c¢)), and so since we have set £ > ﬁ%@?
this is satisfied. ]

Lemma 6.4.5. py > p3/2°.

Proof. Note that Algorithm 3 and Algorithm 4 can be run with the same adversary,
but Algorithm 4 may output “Fail” while Algorithm 3 outputs “Success.” Consider
the case when both of them output “Success.” In this case, (1) J(C(M')) # J(C(M))
for all previously queried M, and (2) J(C(M)) = B. Note that, given that (1) is
true, the probability of (2) is exactly 27¢. O

Lemma 6.4.6. p5 = p4.

Proof. Note that the only difference between the two algorithms is that Algorithm
5 will sometimes output “Fail” sooner. Algorithm 4 will continue answering queries,
but, if Algorithm 5 has output “Fail,” then J(C(M')) # J(C(M)) = B, and so
Algorithm 4 will output “Fail” as well. O

Lemma 6.4.7. pg = ps.

Proof. First, note that whether we are running Algorithm 5 or Algorithm 6, the view
of the adversary is the same. Namely: (1) the public key is identically distributed;
(2) both algorithms respond to at most 2¢ signature queries; (3) both algorithms
pick J and B uniformly at random and refuse to respond to a signature query M if
J(C(M)) = B. Therefore, the probability that the adversary comes up with a forgery
in the two cases is the same. Now, note that the probability that the forgery is good
is also the same: in both cases, the forgery is good if J(C(M')) = B. O
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Putting these together, we have:

Lemma 6.4.8. If the forger’s success probability is p, and expected running time is
t, then the success probability of the reduction is p/2¢72 = p/O(t).

In turn, this implies the following theorem:

Theorem 6.4.9. Under Assumption 6.2.1, the construction presented in Section 6.3
1S a unique signature.

6.5 A Simple Construction of a VRF

Consider the following, rather strong, complexity assumption:

Assumption 6.5.1. (Very-Many-DH-Very-Hard Assumption) There ezists a
constant € > 0 such that for all probabilistic polynomial-time families of Turing ma-
chines { Ay} with running time O(2F°),

Pr[(*7q7g) — S(lk); {yz — Zq | < 1 < ke};
Z — Ako[*’%g’{yi}](‘)(*, q, g, {gyi : 1 -<_ 'L S ké}) . Z — gnyi] S pOly(k) % 2—2’6‘

where O[*,q,g,{vi}](:), on input an k¢-bit string I, outputs gn{.‘;y{i iff I is not an
all-1 string.

Definition 6.5.1 (VUF [MRV99]). A verifiable unpredictable function (VUF) fa-
mily (G,Eval,Prove, Verify) with input length a(k), output length b(k), and security
s(k) is defined as a VRF except that requirement 4 of Definition 6.1.2 is replaced with
the following: Let T(-,-) be any oracle algorithm that runs in time s(k) when its first
input is 1¥. Then:

Pr[(PK, SK) + G(1%);
(Q,z,y) + TFve5KI)(1%) .y = Eval(SK,z) A
(z,Prove(SK,z)) ¢ Q] < 1/s(k)

Lemma 6.5.1. The unique signature in Section 6.3 is a VUF with security 2%° under
Assumption 6.5.1.

Proof. (Sketch) Following the proof in Section 6.4, let £ = k€. Then, by Lemma 6.4.8,
using an adversary that succeeds in breaking the unique signature in 2 steps with
probability 2% corresponds to computing ¢I1% in time 25 with probability Q(27%¢),
which contradicts the assumption. O

The following proposition completes the picture:

Proposition 6.5.2 ([MRV99)]). If there is a VUF (G,Eval,Prove,Verify) with
input length a(k), output length b(k), and security s(k), then, for any da'(k) < a(k),
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there is a VRF (G',Eval’,Prove’,Verify’') with input length a'(k), output length
V(k) = 1, and security s'(k) = s(k)/3/(poly(k) - 2°®). Namely, the following is
a VRF with security s'(k):

o G'(1%) = (G(1%),r), where r is a b(k)-bit string chosen at random.
e Eval’(SK,z) = Eval(SK,z).r, where “.” denotes the inner product.
o Verify'(SK,z) = (Eval(SK,x),Verify(SK,z)).

Corollary 6.5.3. We have obtained a VRF with input length k, output length 1, and
security poly(k).

A natural open problem is to give better security guarantee to a VRF obtained
from a unique signature in this fashion, or to show evidence of impossibility.

6.6 Complicated but More Secure VRF

Here, we construct a VRF and a unique signature based on the weaker assumption
alone. This is the same as the Micali et al. [MRV99] construction, except that the
underlying verifiable unpredictable function is different.

Proposition 6.6.1 ([MRV99]). If there is a VRF with input length a(k), output
length 1, and security s(k), then there is a VRF with unrestricted input length, output
length 1, and security at least min(s(k)'/®, 20(k)/5),

The proof of the proposition gives the VRF construction, which we omit here.
Now let us restate Assumption 6.2.1 to make explicit use of security:

Assumption 6.6.1 (s(k)-Many-DH assumption). For some s(k) > poly(k), for
all {Ax}, if {Ax} is a family of probabilistic Turing machines with running time
t(k) = O(s(k)), then for all £ > logt(k),

Pr[(x,q,9) + S(1%); {yi + 2, : 1<i <}
{zs=1]viZs=97 : T}
jer
7+ A(*,q,0,{Z; : JC[f)}) : Z=g1¥%] <1/5%k)

We will construct a VUF with input length Q(log s'(k)), and security s'(k) =
2¢(0gk) hased on this assumption. By Propositions 6.5.2 and 6.6.1, this implies a
VRF with unrestricted input length and security min(s’(k)!/?,20(k)/5) = gu(logk)

This is the same as our unique signature construction, only here the public key
and the depth of the tree are smaller. The proof works in exactly the same way as in
the previous construction.
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Theorem 6.6.2. The following construction is a VUF: set a;p at random from Z,,
for 1 < i < ¢, ¢ > logs(k), b € {0,1}. Let PK = {g%* : 1 < i < {b €
{0,1}}, SK = {aip}. If J is a binary string of length ¢, then let Fpx (gTli=19.5). The
verification is as in the construction described in Section 6.3. Its security is at least
s(k) under Assumption 6.6.1.

Proof. (Sketch) This proof is essentially the same as in Section 6.4, with n = ¢ =
log s(k); except this case is simpler as there is no code. Here, too, we hope that
the adversary’s forgery will be good, and by Lemma 6.4.8, if s(k) is the size of the
message space, then 1/s(k) of the forgeries will be good. By contrapositive, in O(s(k))
running time, the probability of a forgery is 1/s(k). Therefore, the probability of a
good forgery is 1/s2(k). This contradicts Assumption 6.6.1. a

Combining the above, we get a VRF with unrestricted input length, output length
1, and security

min(s’(k)l/s, 2a(k)/5) — min(s(k)l/m, 210g(s(k))/5) — @(S(k:)l/lo) _ Qw(logk)
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Chapter 7

Signatures and Composition of
Authenticated Byzantine
Agreement

7.1 Introduction

The Byzantine Generals (Byzantine Agreement') problem is one of the most re-
searched areas in distributed computing. Numerous variations of the problem have
been considered under different communication models, and both positive results, i.e.
protocols, and negative results, i.e. impossibility and lower bounds on efficiency and
resources, have been established. The reason for this vast interest is the fact that the
Byzantine Generals problem is the algorithmic implementation of a broadcast chan-
nel within a point-to-point network. In addition to its importance as a stand-alone
primitive, broadcast is a key tool in the design of secure protocols for multiparty
computation.

Despite the importance of this basic functionality and the vast amount of research
that has been directed towards it, our understanding of the algorithmic issues is far
from complete. As is evident from our results, there are still key questions that have
not yet been addressed. In this thesis, we provide solutions to some of these questions.

The problem of Byzantine Generals is (informally) defined as follows: There are
n parties, one of which is the General who holds an input x. In addition, there is an
adversary who controls up to ¢ of the parties and can cause them to arbitrarily deviate
from the designated protocol specification. The (honest) parties need to agree on a
common value. Furthermore, if the General is not faulty, then this common value
must be his original input z.

Pease et al. [PSL80, LSP82| provided a solution to the Byzantine Generals prob-
lem in the standard model, i.e. the information-theoretic model with point-to-point
communication lines (and no setup assumptions). For their solution, the number of
faulty parties, t, must be less than n/3. Furthermore, they complemented this result

IThese two problems are essentially equivalent.
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by showing that the requirement for ¢ < n/3 is in fact inherent. That is, no protocol
which solves the Byzantine Generals problem in the standard model can tolerate a
third or more faulty parties.

The above bound on the number of faulty parties in the standard model is a severe
limitation. It is therefore of great importance to introduce a different (and realistic)
model in which it is possible to achieve higher fault tolerance. One possibility in-
volves augmenting the standard model such that messages sent can be authenticated.
By authentication, we mean the ability to ascertain that a message was in fact sent
by a specific party, even when not directly received from that party. This can be
achieved using a trusted preprocessing phase in which a public-key infrastructure for
digital signatures (e.g. [RSA78, GMRR&8]) is set up. (We note that this requires
that the adversary be computationally bounded. However, there exist preprocess-
ing phases which do not require any computational assumptions; see Pfitzmann and
Waidner [PW96].) Indeed, Pease et al. [PSL80, LSP82] use such an augmentation and
obtain a protocol for the Byzantine Generals problem which can tolerate any number
of faulty parties (this is very dramatic considering the limitation to 1/3 faulty in the
standard model). The Byzantine Generals problem in this model is referred to as
authenticated Byzantine Generals.

A common use of Byzantine Generals is to substitute for a broadcast channel.
Therefore, it is clear that the settings in which we would want and need to run
it involve many invocations of the Byzantine Generals protocol. The question of
whether these protocols remain secure when executed concurrently, in parallel or
sequentially is thus an important one. However, existing work on this problem (in
both the standard and authenticated models) focused on the security and correctness
of protocols in a single execution only.

It is easy to see that the unauthenticated protocol of Pease et al. [PSL80], and
other protocols in the standard model, do compose concurrently (and hence in par-
allel and sequentially). However, this is not the case with respect to authenticated
Byzantine Generals. The first to notice that composition in this model is problematic
were Gong, Lincoln, and Rushby [GLR95], who also suggest methods for overcoming
the problem. Our work shows that these suggestions and any others are futile; in
fact composition in this model is impossible (as long as 1/3 or more of the parties
are faulty). (We note that by composition, we refer to stateless composition; see
Section 7.2.3 for a formal discussion.)

Our Results. Our first theorem, stated below, shows that authenticated Byzan-
tine Generals protocols, both deterministic and randomized, cannot be composed in
parallel (and thus concurrently). This is a surprising and powerful statement with re-
spect to the issue of enhancing the standard model by the addition of authentication.
The theorem shows that this enhancement does not provide the ability to overcome
the impossibility result when composition is required. That is, if there is a need for
parallel composition, then the number of faulty players cannot be n/3 or more, and
hence the authenticated model provides no advantage over the standard model.
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Theorem 7.1.1. No protocol for authenticated Byzantine Agreement that composes
in parallel (even twice) can tolerate n/3 or more faulty parties.

Regarding the question of sequential composition, we show different results. We first
prove another (weaker) lower bound for deterministic protocols:

Theorem 7.1.2. Let Il be a deterministic protocol for authenticated Byzantine Agree-
ment that terminates within r rounds of communication. Then, II can be sequentially
composed at most 2r—1 times.

In contrast, for randomized protocols we obtain positive results and present a protocol
which can be composed sequentially (any polynomial number of times), and which
tolerates ¢t < n/2 faulty parties. The protocol which we present is based on a protocol
of Fitzi and Maurer [FMO00] that toleratest < n/2 faulty parties, and is in the standard
model augmented with an ideal three-party broadcast primitive. We show that this
primitive can be replaced by an authenticated protocol for three parties that can be
composed sequentially (and the resulting protocol also composes sequentially). Thus,
we prove:

Theorem 7.1.3. Assume that there ezists a signature scheme that is existentially
secure against chosen message attacks. Then there exists a randomized protocol for
authenticated Byzantine Generals with o bounded number of rounds, that tolerates
t <n/2 faulty parties and composes sequentially any polynomial number of times.

We also present a randomized Byzantine Generals protocol that tolerates any num-
ber of faulty parties, and composes sequentially any polynomial number of times.
However, the number of messages sent in this protocol is exponential in the num-
ber of parties. Therefore, it can only be used when the overall number of parties is
logarithmic in the security parameter of the signature scheme.

On the Use of Unique Session Identifiers. As will be apparent from the proofs
of the lower bounds (Theorems 7.1.1 and 7.1.2), what prevents agreement in this
setting is the fact that honest parties cannot tell in which execution of the protocol
a given message was authenticated. This allows the adversary to “borrow” messages
from one execution to another, and by that attack the system. In Section 7.5, we
show that if we further augment the authenticated model so that unique and com-
mon indices are assigned to each execution, then security under many concurrent
executions can be achieved (for any number of faulty parties).

Thus, on the one hand, our results strengthen the common belief that session
identifiers are necessary for achieving authenticated Byzantine Generals. On the other
hand, we show that such identifiers cannot be generated within the system. Typical
suggestions for generating session identifiers in practice include having the General
choose one, or having the parties exchange random strings and set the identifier to
be the concatenation of all these strings. However, Theorem 7.1.1 rules out all such
solutions (notice that just coming up with a common identifier involves reaching
agreement). Rather, one must assume the existence of some trusted erternal means
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for coming up with unique and common indices. This seems to be a very difficult, if
not impossible, assumption to realize in many natural settings.

A natural question to ask here relates to the fact that unique and common session
identifiers are anyway needed in order to correctly route incoming messages to the
right copy of the protocol, when several copies of the protocol are running concur-
rently. Indeed, global session identifiers solve this problem. However, it also suffices
for each party to allocate local identifiers for itself. That is, when a party begins a
new execution, it chooses a unique identifier sid and informs all parties to concatenate
sid to any message they send him within this execution. It is then guaranteed that
any message sent by an honest party to another honest party will be directed to the
execution it belongs to. We thus conclude that for the purposes of message routing
in concurrent executions, global identifiers are not needed.

Our impossibility results are in the model that assumes some initialization phase
before the execution of any protocol starts. Thus, we show that no initialization phase
can set up the protocol in such a way that global identifiers will be readily available
or easily established for concurrent, or even parallel, execution of protocols. We do
not rule out that some external auxiliary inputs, such as a global clock, may give us
appropriate session identifiers. Indeed, this is a subject of further study.

Implications for Secure Multiparty Computations. As we have stated above,
one important use for Byzantine Generals protocols is to substitute the broadcast
channel in a multiparty protocol. In fact, most known solutions for multiparty com-
putations assume a broadcast channel, claiming that it can be substituted by a Byzan-
tine Generals protocol without any complications. Our results therefore imply that
multiparty protocols that rely on authenticated Byzantine Generals to replace the
broadcast channel, cannot be composed in parallel or concurrently.

Another important implication of our result is due to the fact that any secure
protocol for solving general multiparty tasks can be used to solve Byzantine Generals.
Therefore, none of these protocols can be composed in parallel or concurrently, unless
more than 2/3 of the parties are honest or a physical broadcast channel is available.

Our Work vs. Composition of Secure Multiparty Protocols. There has been
much work on the topic of protocol composition in the context of multiparty compu-
tation [Bea92, MR92, Can00, DM00, Can01]. Much of this work has focused on zero-
knowledge and concurrent zero-knowledge protocols [GK96, DNS98, RK99, CKPRO1].
For example, Goldreich and Krawczyk [GK96] show that there exist protocols that
are zero-knowledge when executed stand-alone, and yet do not compose in parallel
(even twice). However, protocols that compose do exist (see, for example, Goldre-
ich [Gol02] and references therein). In contrast, we show that it is impossible to
obtain any protocol that will compose twice in parallel.
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7.2 Definitions

7.2.1 Computational Model

We consider a setting involving n parties, P, ... , P,, that interact in a synchronous
point-to-point network. In such a network, each pair of parties is directly connected,
and it is assumed that the adversary cannot modify messages sent between honest
parties. In this setting, each party is formally modeled by an interactive Turing
machine with n—1 pairs of communication tapes. The communication of the network
proceeds in synchronized rounds, where each round consists of a send phase followed
by a receive phase. In the send phase of each round, the parties write messages onto
their output tapes, and in the receive phase, the parties read the contents of their
input tapes.

This paper refers to the authenticated model, where some type of trusted prepro-
cessing phase is assumed. This is modeled by all parties also having an additional
setup-tape that is generated during the preprocessing phase. Typically, in such a pre-
processing phase, a public-key infrastructure of signature keys is generated. That is,
each party receives its own secret signing key, and in addition, public verification keys
associated with all other parties. (This enables parties to use the signature scheme
to authenticate messages that they receive, and is thus the source of the name “au-
thenticated”.) However, we stress that our lower bound holds for all preprocessing
phases (even those that cannot be efficiently generated).

In this model, a t-adversary is a party that controls t < n of the parties Py,... , Py,
where the corruption strategy depends on the adversary’s view (i.e., the adversary
is adaptive). Since the adversary controls these parties, it receives their entire views
and determines the messages that they send. In particular, these messages need not
be according to the protocol execution, but rather can be computed by the adversary
as an arbitrary function of its view. We note that our impossibility results hold
even against a static adversary (for whom the set of faulty parties is fixed before the
execution begins).

Note that our protocols for authenticated Byzantine Agreement that compose
sequentially rely on the security of signature schemes, and thus assume probabilistic
polynomial-time adversaries only. On the other hand, our impossibility results hold
for adversaries (and honest parties) whose running time is of any complexity. In fact,
the adversary that we construct to prove our lower bounds is of the same complexity
as the honest parties.

7.2.2 Byzantine Generals/Agreement

The existing literature defines two related problems: Byzantine Generals and Byzan-
tine Agreement. In the first problem, there is one designated party, the General, who
wishes to broadcast its value to all the other parties. In the second problem, each
party has an input and the parties wish to agree on a value, with a validity condition
that if a majority of honest parties begin with the same value, then they must termi-
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nate with that value. These problems are equivalent in the sense that any protocol
solving one can be used to construct a protocol solving the other, while tolerating
the same number of faulty parties. We relax the standard requirements on protocols
for the above Byzantine problems in that we allow a protocol to fail with probability
that is negligible in some security parameter. This relaxation is needed for the case of
authenticated Byzantine protocols where signature schemes are used (and can always
be forged with some negligible probability). Formally,

Definition 7.2.1 (Byzantine Generals). Let Pi,..., P, and G = P, be n par-
ties and let G be the designated party with input x. In addition there is an adversary
who may corrupt up to t of the parties including the special party G. A protocol
solves the Byzantine Generals problem if the following two properties hold (except
with negligible probability):

1. Agreement: All honest parties output the same value.

2. Validity: If G is honest, then all honest parties output x.

We denote such a protocol by BG,, ;.

In the setting of Byzantine Agreement it is not straightforward to formulate the
validity property. Intuitively, it should capture that if enough honest parties begin
with the same input value then they will output that value. By “honest,” we mean
the parties that follow the prescribed protocol exactly, ignoring the issue that the
first step of the party might be to change its local input.

Definition 7.2.2 (Byzantine Agreement). Let Py,..., P, be n parties, with as-
sociated inputs xi,...,%,. In addition there is an adversary who may corrupt up
to t of the parties. Then, a protocol solves the Byzantine Agreement problem if the
following two properties hold (except with negligible probability):

1. Agreement: All honest parties output the same value.

2. Validity: If max(n — t, [n/2]| + 1) of the parties have the same input value T and
follow the protocol specification, then all honest parties output x.

We note that for the information-theoretic setting, the validity requirement is usually
stated so that it must hold only when more than two thirds of the parties have the
same input value, because in the information-theoretic setting, n — ¢ > 2n/3.

Authenticated Byzantine Protocols: In the model for authenticated Byzantine
Generals/Agreement, some trusted preprocessing phase is run before any executions
begin. In this phase, a trusted party distributes keys to every participating party.
Formally,

Definition 7.2.3 (Authenticated Byzantine Generals/Agreement). A proto-
col for authenticated Byzantine Generals/Agreement is a Byzantine Generals/Agree-
ment protocol with the following augmentation:

e FEach party has an additional setup-tape.
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e Prior to any protocol execution, an ideal (trusted) party chooses a series of
strings sy, ..., Sp according to some distribution, and sets party P;’s setup-tape
to equal s; (for everyi=1,... ,n).

Following the above preprocessing stage, the protocol is run in the standard commu-
nication model for Byzantine Generals/Agreement protocols.

As we have mentioned, a natural example of such a preprocessing phase is one where
the strings s4, ... , S, constitute a public-key infrastructure. That is, the trusted party
chooses key-pairs (pk1, ski1), ..., (pkn, sk,) from a secure signature scheme, and sets
the contents of party P;’s tape to equal s; = (pky, ... ,pki-1, ki, Ski, pkiv1, ... , Pky).
That is, all parties are given their own signing key and the verification keys of all the
other parties.

We remark that the above-defined preprocessing phase is very strong. First, it is
assumed that it is run completely by a trusted party. Furthermore, there is no compu-
tational bound on the power of the trusted party generating the keys. Nevertheless,
our impossibility results hold even for such a preprocessing phase.

7.2.3 Composition of Protocols

This paper deals with the security of authenticated Byzantine Agreement protocols,
when the protocol is executed many times (rather than just once). We define the
composition of protocols to be stateless. This means that the honest parties act upon
their view in a single execution only. Furthermore, in stateless composition, there
is no unique session identifier that is common to all participating parties. (See the
Introduction for a discussion on session identifiers and their role.)

The reason that stateless composition is of interest, is that if it is the easiest kind
of composition. In particular, this means that the honest parties do not store in mem-
ory their views from previous executions or coordinate between different executions
occurring at the current time. Whenever possible, stateless composition simplifies
protocol design and reduces assumptions on the model.

We note that although the parties are stateless, the adversary is allowed to mali-
ciously coordinate between executions and record its view from previous executions.
Formally, composition is captured by the following process:

Definition 7.2.4 (sequential and parallel composition). Let Py, ... , P, be par-
ties for an authenticated Byzantine Generals/Agreement protocol I1. Let I C [n] be
an index set such that for every i € I, the adversary A controls the party P;,. QOuer
time, indices are added to I as the adversary chooses to corrupt additional parties,
with the restriction that |I| < t. Then, the sequential (resp., parallel) composition of
IT involves the following process:

e Run the preprocessing phase associated with I1 and obtain the strings sy,... , S,.
Then, for every j, set the setup-tape of P; to equal s;.

e Repeat the following process a polynomial number of times sequentially (resp.,
in parallel).

109



1. The adversary A chooses an input vector z,,... ,Zyp.

2. Fux the input tape of every honest P; to be x; and its random tape to be a
uniformly (and independently) chosen random string.

3. Invoke all parties for an execution of II (using the strings generated in
the preprocessing phase above). The execution is such that for i € I, the
messages sent by party P, are determined by A (who also sees P;’s view).
On the other hand, all other parties follow the instructions as defined in

II.

We stress that the preprocessing phase is executed only once and all executions
use the strings distributed in this phase. Furthermore, we note that Definition 7.2.4
implies that all honest parties are oblivious of the other executions that have taken
place (or that are taking place in parallel). This is implicit in the fact that in each
execution the parties are invoked with no additional state information, beyond the
contents of their input, random and key tapes. On the other hand, the adversary A
can coordinate between the executions, and its view at any given time includes all
the messages received in all other executions.?

Before proceeding, we show that any Byzantine Generals (or Agreement) protocol
in the standard model composes concurrently.

Proposition 7.2.1. Any protocol I for Byzantine Generals (or Agreement) in the
standard model, remains secure under concurrent composition.

Proof. We reduce the security of II under concurrent composition to its security for
a single execution. Assume by contradiction that there exists an adversary A who
runs [V concurrent executions of II, such that with non-negligible probability, in one
of the executions the outputs of the parties are not according to the requirements of
the Byzantine Generals. We construct an adversary A’ who internally incorporates
A and attacks a single execution of II. Intuitively, A’ simulates all executions apart
from the one in which A succeeds in its attack. Formally, A’ begins by choosing an
index ¢ €g {1,...,N}. Then, for all but the i*® execution of the protocol, A’ plays
the roles of the honest parties in an interaction with .4 (this simulation is internal to
A’). On the other hand, for the i*" execution, A’ externally interacts with the honest
parties and passes messages between them and .4 (which it runs internally). The key
point in the proof is that the honest parties hold no secret information (and do not
coordinate between executions). Therefore, the simulation of the concurrent setting
by A’ for A is perfect. Thus, with probability 1/N, the 't execution is the one in
which A succeeds. However, this means that A’ succeeds in breaking the protocol
for a single execution (where A4"’s success probability equals 1/N times the success
probability of A.) This contradicts the stand-alone security of II. ]

2The analogous definition for the composition of unauthenticated Byzantine Generals /Agreement,
is derived from Definition 7.2.4 by removing the reference to the preprocessing stage and setup-tapes.
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7.3 Impossibility Results

In this section we present two impossibility results regarding the composition of au-
thenticated Byzantine Agreement protocols. Recall that we are concerned with state-
less composition. First, we show that it is impossible to construct an authenticated
Byzantine Agreement protocol that composes in parallel (or concurrently), and is
secure when n/3 or more parties are faulty. This result is analogous to the Fischer
et al. [FLM86] lower bound for Byzantine Agreement in the standard model (i.e.,
without authentication). We stress that our result does not merely show that au-
thenticated Byzantine Agreement protocols do not necessarily compose; rather, we
show that one cannot construct protocols that will compose. Since there exist pro-
tocols for unauthenticated Byzantine Agreement that are resilient for any ¢t < n/3
faulty parties and compose concurrently, this shows that the advantage gained by
the preprocessing step in authenticated Byzantine Agreement protocols is lost when
composition is required.

Next, we show a lower bound on the number of rounds required for determinis-
tic authenticated Byzantine Agreement that composes sequentially. (Note that the
impossibility of parallel composition holds even for randomized protocols.) We show
that if an authenticated Byzantine Agreement protocol that tolerates n/3 or more
faulty parties is to compose sequentially r times, then there are executions in which it
runs for more than r/2 rounds. Thus, the number of rounds in the protocol is linear
in the number of times it is to compose. This rules out any practical protocol that
will compose for a (large) polynomial number of times.

Intuition. Let us first provide some intuition into why the added power of the
preprocessing step in authenticated Byzantine Agreement does not help when com-
position is required. (Recall that in the stand-alone setting, there exist authenticated
Byzantine Agreement protocols that tolerate any number of faulty parties. On the
other hand, under parallel composition, more than 2n/3 parties must be honest.) An
instructive step is to first see how authenticated Byzantine Agreement protocols typ-
ically utilize the preprocessing step, in order to increase fault tolerance. A public-key
infrastructure for signature schemes is used and this helps in achieving agreement for
the following reason. Consider three parties A, B and C participating in a standard
(unauthenticated) Byzantine Agreement protocol. Furthermore, assume that during
the execution A claims to B that C sent it some message . Then, B cannot differ-
entiate between the case that C actually sent z to A, and the case that C' did not
send this value and A is faulty. Thus, B cannot be sure that A really received x
from C'. Indeed, such a model has been called the “oral message” model, in contrast
to the “signed message” model of authenticated Byzantine Agreement [LSP82]. On
the other hand, the use of signature schemes helps to overcome this exact problem:
If C had signed the value = and sent this signature to A, then A could forward the
signature to B. Since A cannot forge C’s signature, this would then constitute a
proof that C indeed sent z to A. Therefore, utilizing the unforgeability property of
signatures, it is possible to achieve Byzantine Agreement for any number of faulty
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parties.

However, the above intuition holds only in a setting where a single execution of
the agreement protocol takes place. Specifically, if a number of executions were to
take place, then A may send B a value z along with C’s signature on z, yet B would
still not know whether C signed x in this execution, or in a different (concurrent or
previous) execution. Thus, the mere fact that A produces C’s signature on a value
does not provide proof that C' signed this value in this execution. As we will see in
the proof, this is enough to render the public-key infrastructure useless under some
types of composition.

We remark that it is possible to achieve concurrent composition, using state in
the form of unique and common session identifiers. However, as we have mentioned,
there are many scenarios where this does not seem to be achievable (and many others
where it is undesirable).

Theorem 7.1.1 No protocol for authenticated Byzantine Agreement that composes
in parallel (even twice) can tolerate n/3 or more faulty parties.

Proof. The proof of Theorem 7.1.1 is based on some of the ideas used by Fischer et
al. [FLM86] in their proof that no unauthenticated Byzantine Agreement protocol
can tolerate n/3 or more faulty parties. We begin by proving the following lemma:

Lemma 7.3.1. There exists no protocol for authenticated Byzantine Agreement for
three parties, that composes in parallel (even twice) and can tolerate one faulty party.

Proof. Assume, by contradiction, that there exists a protocol IT that solves the Byzan-
tine Agreement problem for three parties A, B and C, where one may be faulty. Fur-
thermore, I1 remains secure even when composed in parallel twice. Exactly as in the
proof of Fischer et al. [FLM86], we define a hexagonal system S that intertwines two
independent copies of II. That is, let A;, B;, C; and Az, By and C, be independent
copies of the three parties participating in II. By independent copies, we mean that
A; and A, are the same party A with the same key tape, that runs in two different
parallel executions of II, as defined in Definition 7.2.4. The system S is defined by
connecting party A; to Cy and B, (rather than to Cy and B,); party B; to A; and
Ch; party C) to B; and A,; and so on, as in Figure 7-1.

Ay B,

A—_»CZ )
B c

B, Ay

Figure 7-1: Combining two copies of II in a hexagonal system S.
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In the system S, parties A1, By, and C] have input 0; while parties Ay, By and C,
have input 1. Note that within S, all parties follow the instructions of IT exactly. We
stress that S is not a Byzantine Agreement setting (where the parties are joined in a
complete graph on three nodes), and therefore the definitions of Byzantine Agreement
tell us nothing directly of what the parties’ outputs should be. However, S is a well-
defined system and this implies that the parties have well-defined output distributions.
The proof proceeds by showing that if II is a correct Byzantine Agreement protocol,
then we arrive at a contradiction regarding the output distribution in S. We begin
by showing that B; and C; output 0 in S. We denote by rounds(II) the upper bound
on the number of rounds of IT (when run in a Byzantine Agreement setting).

Claim. Ezxcept with negligible probability, parties By and C) halt within rounds(IT)
steps and output O in the system S.

Proof. We prove this claim by showing that there exists a faulty party (or adversary)
A who participates in two parallel copies of IT and simulates the system S, with respect
to By and C1’s view. The faulty party A (and the other honest parties participating
in the parallel execution) work within a Byzantine Agreement setting where there are
well-defined requirements on their output distribution. Therefore, by analyzing their
output in this parallel execution setting, we are able to make claims regarding their
output in the system S.

Let A,, B; and C be parties running an execution of II, denoted II;, where B;
and C; both have input 0. Furthermore, let A3, By and C,; be running a parallel
execution of II, denoted Il;, where B, and C3 both have input 1. Recall that B;
and B, are independent copies of the party B with the same key tape (as defined in
Definition 7.2.4); likewise for C; and Cs.

Now, let A be an adversary who controls both A; in II; and A in IT, (recall that
the faulty party can coordinate between the different executions). Party A’s strategy
is to maliciously generate an execution in which B;’s and C}’s view in II; is identical
to their view in S. A achieves this by redirecting edges of the two parallel triangles
(representing the parallel execution), so that the overall system has the same behavior
as S; see Figure 7-2.

Al B,

\k —_—— G C,
Cy b !

B, A,

Figure 7-2: Redirecting edges of II; and II; to make a hexagon.

Specifically, the (A;,C1) and (A,, Cs) edges of II; and I, respectively are removed,
and the (A;,C5) and (Ay, C;) edges of S are added in their place. A is able to make
such a modification because it only involves redirecting messages to and from parties
that it controls (i.e., A; and A,).
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Before proceeding, we present the following notation: let msg;(A;, B;) denote
the message sent from A; to B, in the i*® round of the protocol execution. We now
formally show how the adversary A works. A invokes parties A; and A,, upon inputs 0
and 1 respectively. We stress that A; and A, follow the instructions of protocol IT
exactly. However, 4 provides them with their incoming messages and sends their
outgoing messages for them. The only malicious behavior of A is in the redirection
of messages to and from A; and A,. A full description of A’s code is as follows (we
e reader to refer to Figure 7-2 in order to clarify the following):

recommend th
1. Send outgoing messages of round i: A obtains messages msg;(A4;, B;) and
msg, (A1, C1) from A; in Iy, and messages msg, (A2, By) and msg;(As, Cs) from
A, in TIy (these are the round i messages sent by A; and A, to the other par-
ties; as we have mentioned, A; and A, compute these messages according to

the protocol definition and based on their view).

e In II;, A sends B; the message msg;(4;, B;) and sends C; the message
msg,(As, C2) (and thus the (A4;,C)) directed edge is replaced by the di-
rected edge (Ag, C1)).

e In II,, A sends By the message msg;(Az, Bs) and sends C the message
msg;(A1,C1) (and thus the (Ay, Cy) directed edge is replaced by the di-
rected edge (A;, Cs)).

2. Obtain incoming messages from round i: A receives messages msg,(B;, A;) and
msg,;(C1, A1) from By and C} in round i of II;, and messages msg,(Bz, A3) and
msg,(Cs, As) from By and Cs in round i of II,.

o A passes A; in II; the messages msg,(Bi, A;) and msg;(Cs, A3) (and thus
the (Cy, A;) directed edge is replaced by the directed edge (Ca, A4;)).

o A passes Ay in II; the messages msg,(Bs, A2) and msg,(C1, A1) (and thus
the (Cq, Ay) directed edge is replaced by the directed edge (Cj, A3)).

We now claim that B; and C;’s view in II; is identical to B; and C}’s view in S.3 This
holds because in the parallel execution of II; and II, all parties follow the protocol
definition (including A; and Ay). The same is true in the system S, except that party
Ay is connected to B, and C; instead of to By and C,. Likewise, A, is connected to
B, and (] instead of to By and C5. However, by the definition of A, the messages
seen by all parties in the parallel execution of I1; and II; are exactly the same as the
messages seen by the parties in S (e.g., the messages seen by C; in II; are those sent
by B; and Aj, exactly as in S). Therefore, the views of B; and C; in the parallel
execution maliciously controlled by A, are identical to their views in S.4

3In fact, the views of all the parties in the parallel execution with A are identical to their view
in the system S. However, in order to obtain Claim 7.3, we need only analyze the views of B; and
Ch.

4We note the crucial difference between this proof and that of Fischer et al. [FLM86]: the faulty
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By the assumption that Il is a correct Byzantine Agreement protocol that com-
poses twice in parallel, we have that, except with negligible probability, in II; both
B; and C; halt within rounds(IT) steps and output 0. The fact that they both out-
put 0 is derived from the fact that B; and C) are an honest majority with the same
input value 0. Therefore, they must output 0 in the face of any adversarial A;; in
particular this holds with respect to the specific adversary A described above. Since
the views of B; and Cy in S are identical to their views in II;, we conclude that in the
system S, they also halt within rounds(II) steps and output 0 (except with negligible
probability). This completes the proof of the claim. O

Using analogous arguments, we obtain the following two claims:

Claim. Ezcept with negligible probability, parties A; and By halt within rounds(II)
steps and output 1 in the system S.

In order to prove this claim, the faulty party is C and it works in a similar way to
A in the proof of Claim 7.3 above. (The only difference is regarding the edges that
are redirected.)

Claim. Ezcept with negligible probability, parties Ay and C) halt within rounds(II)
steps and output the same value in the system S.

Similarly, this claim is proven by taking the faulty party as B who follows a similar
strategy to A in the proof of Claim 7.3 above.

Combining Claims 7.3, 7.3 and 7.3 we obtain a contradiction. This is because,
on the one hand C; must output 0 in S (Claim 7.3), and A, must output 1 in S
(Claim 7.3). On the other hand, by Claim 7.3, parties A, and C; must output the
same value. This concludes the proof of the lemma. O

Theorem 7.1.1 is derived from Lemma 7.3.1 in the standard way [PSL80, LSP82] by
showing that if there exists a protocol that is correct for any n > 3 and n/3 faulty
parties, then one can construct a protocol for 3 parties that can tolerate one faulty
party. This is in contradiction to Lemma 7.3.1, and thus Theorem 7.1.1 is implied. O

The following corollary, referring to concurrent composition, is immediately derived
from the fact that parallel composition (where the scheduling of the messages is
fixed and synchronized) is merely a special case of concurrent composition (where the
adversary controls the scheduling).

Corollary 7.3.2. No protocol for authenticated Byzantine Agreement that composes
concurrently (even twice) can tolerate n/3 or more faulty parties.

party A is able to simulate the entire A; —C2— By — A2 segment of the hexagon system S by itself.
Thus, in a single execution of II with By and C;, party A can simulate the hexagon. Here, due
to the fact that the parties B2 and C; have secret information that A does not have access to, A
is unable to simulate their behavior itself. Rather, A needs to redirect messages from the parallel
execution of Il in order to complete the hexagon.
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7.3.1 Sequential Composition of Deterministic Protocols

We now show that there is a significant limitation on deterministic Byzantine Agree-
ment protocols that compose sequentially. Specifically, any protocol which terminates
within r rounds can only be composed sequentially for at most 2r—1 times. The lower
bound is derived by showing that for any deterministic protocol II, r rounds of the
hexagonal system S (see Figure 7-1) can be simulated in 2r sequential executions of
I1. As we have seen in the proof of Theorem 7.1.1, the ability to simulate S results in
a contradiction to the correctness of the Byzantine Agreement protocol II. However,
a contradiction is only derived if the system S halts. Nevertheless, since IT termi-
nates within r rounds, the system S also halts within 7 rounds. We conclude that
the protocol II can be sequentially composed at most 2r—1 times.

We remark that in actuality, one can prove a more general statement that says
that for any deterministic protocol, r rounds of 2 parallel executions of the protocol
can be perfectly simulated in 27 sequential executions of the same protocol. (More
generally, r rounds of £ parallel executions of a protocol can be simulated in &k - r
sequential executions.) Thus, essentially, the deterministic sequential lower bound is
derived by reducing it to the parallel composition case of Theorem 7.1.1. That is,

Theorem 7.1.2 Let II be a deterministic protocol for authenticated Byzantine Agree-
ment that concludes after v rounds of communication. Then, II can be sequential
composed at most 2r—1 times.

7.4 Sequentially Composable Randomized Proto-
cols

In this section we present two results. The first one is a protocol which tolerates
any t < n/2 faulty parties and has polynomial communication complexity (i.e., band-
width). The second one is a protocol that can tolerate any number of faulty parties
but is exponential in the number of participating parties.

The building block for both of the above protocols will be a randomized (sequen-
tially composable) protocol, ABGj ;, for authenticated Byzantine Generals between
3 parties and tolerating one faulty party. Recall that ABG,,; denotes an authenti-
cated Byzantine Generals protocol for n parties that tolerates up to t faults. We
first present the protocol ABGs; and then show how it can be used to achieve the
above-described results.

7.4.1 Sequentially Composable ABGg3

For this protocol we assume three parties: the general, G, and the recipients P;, P,.
The General has an input value z. According to Definition 7.2.1, parties P, and P,
need to output the same value z’, and, if G is not faulty, then z’ = z. As is evident
from the proofs of the impossibility, what hinders a solution is that faulty parties
can import messages from previous executions, and there is no means to distinguish

116



between those and the current messages. Thus, if some freshness could be introduced
in the signatures, then this would foil the adversary’s actions. Yet, agreeing on such
freshness would put us in a circular problem. Nevertheless, the case of three parties
is different: here there are only two parties who need to receive each signature.
Furthermore, it turns out that it suffices if the parties who are receiving a signature
can jointly agree on a fresh string. Fortunately, two parties can easily agree on a
new fresh value: they simply exchange messages and set the fresh string to equal the
concatenation of the exchanged values. Now, in the protocol which follows for three
parties, we require that whenever a party signs a message, it uses freshness generated
by the two remaining parties. We note that in the protocol, only the General, G,
signs a message, and therefore only it needs a public key. The protocol is described
in Figure 7-3. For simplicity, we assume that the signature scheme is defined such
that o,,(2) also contains the value z.

Public Input: Security parameter 1%

Public key PK associated with G

Private Input of G: Secret key SK corresponding to PK
Value z

1. P; and P» agree on a random label ¢, as follows:

(a) P; chooses a random k-bit string u; and sends it to P;
(b) Set £ = uj o ug, where o denotes concatenation.

2. P, and P, both send £ to G.

3. Let ¢; denote the message that G received from P; in the previous round. G
forms m = ogx(z,£1,¥¢2) and sends m to P, and Ps.

4. Denote by m; the message received by F; in the previous step from G. P;
checks whether the message m; is a valid signature on the label £ (and
another, possibly different, label). If so, P; forwards m; to P;.

5. P; denotes by mg the message that it received from P; in the previous step.
P; outputs according to the following rules based on the examination of m;
and m;:

If all valid signatures on messages containing the label £ are for the same
value z, then output z.
Otherwise, output a default value.

Figure 7-3: Authenticated BG for Three Parties

As we will wish to incorporate Protocol 7-3 into a protocol with n parties we state
a broader claim for the composition than for a simple three party setting.
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Lemma 7.4.1. Assume that the signature scheme o is existentially secure against
adaptive chosen message attacks. Then, Protocol 7—3 is a secure protocol for ABGs ;
that can be composed sequentially within a system of n parties, in which t may become
faulty, for any t < n.

Proof. We prove the theorem by contradiction. Assume that a series of ABGj,
protocols are run sequentially, such that in some (or all) of them, the adversary
succeeded in foiling agreement with non-negligible probability. We will show that in
such a case, we can construct a forger F for the signature scheme who succeeds with
non-negligible probability. This will then be in contradiction to the security of the
signature scheme.

As there are n parties and the adversary can control up to ¢ of them, there may
be executions where two or three of the parties are corrupted. However, in such a
case, agreement holds vacuously. On the other hand, any execution in which all three
parties are honest must be correct. Therefore, agreement can only be foiled in the
case that exactly one participating party is corrupted.

We first claim that when A plays the General in an execution, it cannot foil the
agreement. This is because P; and P,’s views of the messages sent by A (playing
G) are identical. Furthermore, their decision making process based on their view is
deterministic. Therefore, they must output the same value. We stress that this is
irrespective of how many executions have passed (and is also not dependent at all on
the security of the signature scheme being used).

Thus, it must be the case that the foiled execution is one where the general is an
honest party. As we have mentioned, we build a forger F for the signature scheme
o who uses A. The forger F receives as input a public verification-key PK, and
access to a signing oracle associated with this key. F begins by choosing at random
one of the parties, say P;, and associating the verification-key pk with this party.
Intuitively, with probability 1/n, this is the party who plays the general when A foils
the agreement. For all other parties, the forger F chooses a key pair, for which it
knows both the signing and verification keys. Then, F gives the adversary A the
key pairs for all the initially corrupted parties. F now invokes A and simulates the
roles of the honest parties in the sequential executions of Protocol 7-3, with A as the
adversary. In particular, F works as follows:

e In all executions where the recipient/s P; and/or P, are not corrupted, F plays
their role, following the protocol exactly as specified. This is straightforward as
the recipients do not use signing keys during such an execution.

e In all executions where the general is some uncorrupted party P, # P;, the
forger F plays the role of P, following the protocol and using the signing-key
which it associated with P initially.

e In all executions where the general is the uncorrupted P;, the forger F plays
the role of P; following the protocol. However, in this case, F does not have the
associated signing-key. Nevertheless, it does have access to the signing oracle
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associated with pk (which is P;’s public verification-key). Therefore, F executes
these signatures by accessing its oracle. In particular, for labels ¢, {5 that it
receives during the simulation, it queries the signature oracle for o,k (z, ¢1, £2).

e Corruptions: If at any point, A corrupts a party P, # P;, then F hands A the
signing-key that is associated with P, (this is the only secret information that
P, has). On the other hand, if at any point A corrupts P;, then F aborts (and
does not succeed in forging).

Throughout the above-described simulation, F monitors each execution and waits
for an execution in which exactly one party is corrupt and the agreement is foiled.
If no such execution occurs, then F aborts. Otherwise, in the first foiled execution,
F checks if the uncorrupted P; is the general in this execution. If not, then F
aborts (without succeeding in generating a forgery). Otherwise, we have an execution
in which P; is the general and agreement is foiled. In such a case, F succeeds in
generating a forgery as follows.

As we have mentioned, agreement can only be foiled if exactly one party is faulty.
Since by assumption P; is not corrupted, we have that one of the recipients P; or
P, are corrupted; without loss of generality, let P, be the corrupted party. (We note
that F plays the roles of both honest parties P; and P, in the simulation.) Now,
since the agreement was foiled, we know that P, does not output P;’s input value z,
which means that it defaulted in Step 5. This can only happen if P, received two
valid signatures on the label ¢ which it sent P; in this execution. Now, P, clearly
received a correct signature m on P;’s input using the label £ from P; itself. (In fact,
by the simulation, this signature is generated by F accessing its signature oracle.)
However, in addition, P, must have received a valid signature m’ from P;, where m/
constitutes P;’s signature on a string that contains label £ and a different message z'.
With overwhelming probability the label £ did not appear in any previous execution,
because P, is honest and chooses its portion of the label at random. Thus, previously
in the simulation, the signing oracle was never queried with a string containing /.
Furthermore, by the assumption that z’ # z, the oracle query by F in this execution
was different to the string upon which m’ is a signature. We conclude that m' is a
valid signature on a message, and that F did not query the signing oracle with this
message. Therefore, F outputs m’ and this is a successful forgery.

It remains to analyze the probability that F succeeds in this forgery. First, it is
easy to see that when F does not abort, the simulation of the sequential executions is
perfect, and that A’s view in this simulation is identical to a real execution. Further-
more, the probability that P; is the identity of the (uncorrupted) general in the first
foiled agreement equals 1/n exactly. The fact that P; is chosen ahead of time makes
no difference because the simulation is perfect. Therefore, the choice of P; by F does
not make any difference to the behavior of 4. We conclude that F succeeds in forg-
ing with probability 1/n times the probability that A succeeds in foiling agreement
(which is non-negligible). This contradicts the security of the signature scheme. [
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7.4.2 Sequentially Composable ABG,, /2

Fitzi and Maurer [FMO0O] present a protocol for the Byzantine Generals problem that
tolerates any ¢ < n/2 faulty parties. Their protocol is for the information-theoretic
and unauthenticated model. However, in addition to the point-to-point network, they
assume that every triplet of parties is connected with an ideal (3-party) broadcast
channel. As we have shown in Section 7.4.1, given a public-key infrastructure for
signature schemes, it is possible to implement secure broadcast among three parties
that composes sequentially. Thus, a protocol for ABG,, ,/; is derived by substituting
the ideal 3-party broadcast primitive in the protocol of Fitzi and Maurer [FM00] with
Protocol 7-3. Since Protocol 7-3 and the protocol of Fitzi and Maurer [FM00] both
compose sequentially, the resulting protocol also composes sequentially.

Theorem 7.1.3 Assume that there ezists a signature scheme that is existentially
secure against chosen message attacks. Then, there exists a randomized protocol for
authenticated Byzantine Generals that tolerates t < n/2 faulty parties and composes
sequentially any polynomial number of times.

As we show in Section 7.5, it is possible to execute many copies of an authenti-
cated Byzantine Generals protocol concurrently, by allocating each execution a unique
identifier that is common and known to all parties.

The Fitzi-Maurer protocol can be altered in such a way that a unique index is
allocated to invocation of the ABG;; within protocol. We can therefore run the
ABGs;, protocols in parallel (rather than sequentially), improving the round com-
plexity of the resulting protocol. In particular, our protocol is of the same round
complexity as the underlying Fitzi-Maurer protocol. (We stress that the fact that the
ABGg;; subprotocols can be executed in parallel within the ABG,, /> protocol does
not imply that the ABG,,,/, protocol itself can compose in parallel. Rather, by our
impossibility result, we know that it indeed cannot be composed in parallel.)

7.4.3 Sequentially Composable ABG,,; for any ¢

In this section we describe a protocol for the Byzantine Generals problem for n parties,
which can tolerate any number of faulty parties. However, this protocol is exponential
in the number of participating parties. Therefore, in our setting, the protocol can
only be carried out for n = log k parties (where k is a security parameter). We stress
that the fact that the number of parties must be logarithmic in the security parameter
is due to two reasons. First, we wish the protocol to run in polynomial time. Second,
we use a signature scheme and this is only secure for polynomial-time adversaries,
and a polynomial number of signatures.

Our protocol is constructed by presenting a transformation that takes a sequen-
tially composable ABG protocol for n — 1 parties which tolerates n — 3 faulty parties,
ABG,,_1 -3, and produces a sequentially composable ABG protocol for n parties
which tolerates n — 2 faulty parties, ABG,, ,_2. Then, given our protocol for broad-
cast among three parties which tolerates one faulty party, ABG;;, we can apply our
transformation and obtain ABG,, ,—, for any n.
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The idea for the transformation is closely related to the ideas behind the protocol
for Byzantine Generals for three parties. The solution for the three-party broadcast
assumes two-party broadcast (which is trivial). Using two-party broadcast, agree-
ment on a fresh label can be reached. Having agreed on this label, the two point
communications with the General are sufficient. Each party sends its claimed fresh
label to the General, and the General includes the two received labels inside any sig-
nature that it produces. Our general transformation will work in the same manner.
We use the ABG,,_1 ,_3 protocol to have all parties (apart from the General) agree
on a random label. Then, each party privately sends this label to the General, who
then includes all labels in its signatures. Thus, we prove:

Theorem 7.4.2. Assume that there ezists a signature scheme that is existentially
secure against chosen message attacks, for adversaries running in time poly(k). Then,
there exists a Byzantine Generals protocols for O(logk) parties, that tolerates any
number of faulty parties and composes sequentially.

7.5 Authenticated Byzantine Agreement using
Unique Identifiers

In this section we consider an augmentation to the authenticated model in which each
execution is assigned a unique and common identifier. We show that in such a model,
it is possible to achieve Byzantine Agreement/Generals that composes concurrently,
for any number of faulty parties. We stress that in the authenticated model itself, it is
not possible for the parties to agree on unique and common identifiers, without some
external help. This is because agreeing on a common identifier amounts to solving
the Byzantine Agreement problem, and we have proven that this cannot be achieved
for t > n/3 when composition is required. Therefore, these identifiers must come
from outside the system (and as such, assuming their existence is an augmentation
to the authenticated model).

Intuitively, the existence of unique identifiers helps in the authenticated model for
the following reason. Recall that our lower bound is based on the ability of the adver-
sary to borrow signed messages from one execution to another. Now, if each signature
also includes the session identifier, then the honest parties can easily distinguish be-
tween messages signed in this execution and messages signed in a different execution.
It turns out that this is enough. That is, we give a transformation from almost any
Byzantine Agreement protocol based on signature schemes, to a protocol that com-
poses concurrently when unique identifiers exist. By “almost any protocol,” we mean
that this transformation applies for any protocol that uses the signature scheme for
signing and verifying messages only. This is the natural use of the signature scheme
and all known protocols indeed work in this way.

More formally, our transformation works as follows. Let II be a protocol for
authenticated Byzantine Agreement. We define a modified protocol I1(id) that works
as follows:
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e Each party is given the identifier ¢d as auxiliary input.

e If a party F; has an instruction in II to sign a given message m with its secret
key sk;, then P, signs upon id o m instead (where o denotes concatenation).

e If a party P; has an instruction in II to verify a given signature o on a message
m with a public key pk;, then P; verifies that o is a valid signature for the
message id o m.

We now state our theorem:

Theorem 7.5.1. Let Il be a secure protocol for authenticated Byzantine Agreement
which uses an existentially unforgeable signature scheme. Furthermore, this scheme is
used for generating and verifying signatures only. Let the protocol I1(id) be obtained
from 11 as described above, and let idy, ... ,id; be a series of £ unique strings. Then,
the protocols I1(id;), . . . , I1(ide) all solve the Byzantine Agreement problem, even when
run concurrently.

We conclude by noting that it is not at all clear how such an augmentation to the
authenticated model can be achieved in practice. In particular, requiring the on-line
participation of a trusted party who assigns identifiers to every execution is clearly
impractical. (Furthermore, such a party could just be used to directly implement
broadcast.) However, we do note one important scenario where Theorem 7.5.1 can
be applied. As we have mentioned, secure protocols often use many invocations of a
broadcast primitive. Furthermore, in order to improve round efficiency, in any given
round, many broadcasts may be simultaneously executed. The key point here is that
within the secure protocol, unique identifiers can be allocated to each broadcast (by
the protocol designer). Therefore, authenticated Byzantine Agreement can be used.
Of course, this does not change the fact that the secure protocol itself will not compose
in parallel or concurrently. However, it does mean that its security is guaranteed in
the stand-alone setting, and a physical broadcast channel is not necessary.

7.6 Open Problems

Our work leaves open a number of natural questions. First, an unresolved question
is whether or not it is possible to construct randomized protocols for authenticated
Byzantine Generals that sequentially compose, for any n and any number of faulty
parties. Second, it is unknown whether or not it is possible to construct a deterministic
protocol that terminates in r rounds and sequentially composes ¢ times, for some
2 < ¢ < 2r—1. Another question that arises from this work is to find a realistic
computational model for Byzantine Agreement that does allow parallel and concurrent
composition for n/3 or more faulty parties.
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