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Abstract

To effectively combat multipath fading across multiple protocol layers in wireless networks,
this dissertation develops energy-efficient algorithms that employ certain kinds of cooper-
ation among terminals, and illustrates how one might incorporate these algorithms into
various network architectures. In these techniques, sets of terminals relay signals for each
other to create a virtual antenna array, trading off the costs-in power, bandwidth, and
complexity-for the greater benefits gained by exploiting spatial diversity in the channel.
By contrast, classical network architectures only employ point-to-point transmission and
thus forego these benefits.

After summarizing a model for the wireless channel, we present various practical coop-
erative diversity algorithms based upon different types of relay processing and re-encoding,
both with and without limited feedback from the ultimate receivers. Using information-
theoretic tools, we show that all these algorithms can achieve full spatial diversity, as if each
terminal had as many transmit antennas as the entire set of cooperating terminals. Such
diversity gains translate into greatly improved robustness to fading for the same transmit
power, or substantially reduced transmit power for the same level of performance. For
example, with two cooperating terminals, power savings as much as 12 dB (a factor of
sixteen) are possible for outage probabilities around one in a thousand. Finally, we discuss
how the required level of complexity in the terminals makes different algorithms suitable
for particular network architectures that arise in, for example, current cellular and ad-hoc
networks.

Thesis Supervisor: Gregory W. Wornell
Title: Professor
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. And what's the good of diversity?"

"I don't know. It's certainly more . . . interesting."

- from Ishmael, by Daniel Quinn

7



8



Contents

1 Introduction

1.1 Cooperative Diversity . . . . . . . . . . . . . . . . . .

1.2 Motivating Example . . . . . . . . . . . . . . . . . . .

1.3 Layered Architectures and Cross-Layer Design . . . .

1.4 Outline of the Dissertation . . . . . . . . . . . . . . . .

2 High-Level System Model

2.1 Radio Hardware and Constraints . . . . . . . . . . . .

2.2 Wireless Channel Impairments . . . . . . . . . . . . .

2.2.1 Multipath Propagation: Path-Loss and Fading

2.2.2 Interference and Other Issues . . . . . . . . . .

2.3 Network Architectures . . . . . . . . . . . . . . . . . .

2.3.1 Prevalent Wireless Network Architectures . . .

2.3.2 New Architectures Incorporating Cooperation

3 Background and Related Literature

3.1 Relay Channels and Extensions . . . . . . . . . . . . .

3.2 Fading Channel Capacity . . . . . . . . . . . . . . . .

3.2.1 Shannon Capacity . . . . . . . . . . . . . . . .

3.2.2 Capacity-vs.-Outage . . . . . . . . . . . . . . .

3.2.3 Average Capacity . . . . . . . . . . . . . . . . .

3.3 Multi-Antenna Systems . . . . . . . . . . . . . . . . .

3.3.1 Fundamental Performance Limits . . . . . . . .

3.3.2 Space-Time Codes . . . . . . . . . . . . . . . .

3.4 W ireless Networks . . . . . . . . . . . . . . . . . . . .

9

19

19

20

22

24

27

29

30

30

33

34

35

37

41

. . . . . . . . . . 42

. . . . . . . . . . 45

. . . . . . . . . . 45

. . . . . . . . . . 48

. . . . . . . . . . 49

. . . . . . . . . . 49

. . . . . . . . . . 52

. . . . . . . . . . 54

. . . . . . . . . . 5 4



3.4.1 Infrastructure Networks 54

3.4.2 Ad-Hoc Networks . . . . . . . . . . . . . . . . .

4 Cooperative Diversity with Full Temporal Diversity

4.1 Model and Definitions ......................

4.1.1 Block Diagram ......................

4.1.2 Parameterization . . . . . . . . . . . . . . . . .

4.1.3 Special Cases and Coding Strategies . . . . . .

4.1.4 D efinitions . . . . . . . . . . . . . . . . . . . .

4.2 Converse: Outer Bound on the Capacity Region . . .

4.3 Achievability: Inner Bounds on the Capacity Region .

4.3.1 Non-Cooperative Transmission . . . . . . . . .

4.3.2 Decode-and-Forward Transmission . . . . . . .

4.4 Rayleigh Multipath Fading . . . . . . . . . . . . . . .

5 Cooperative Diversity without Temporal Diversity

55

59

. . . . . . . . . . . . 6 0

. . . . . . . . . . . . 6 1

. . . . . . . . . . . . 6 2

. . . . . . . . . . . . 6 3

. . . . . . . . . . . . 6 5

. . . . . . . . . . . . 6 8

. . . . . . . . . . . . 7 1

. . . . . . . . . . . . 7 1

. . . . . . . . . . . . 7 4

. . . . . . . . . . . . 7 5

79

5.1 System M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.1 M edium Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.2 Equivalent Channel Models . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.3 Parameterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Cooperative Transmission Protocols . . . . . . . . . . . . . . . . . . . . . . 86

5.2.1 Fixed Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Adaptive Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Protocols with Limited Feedback . . . . . . . . . . . . . . . . . . . . 89

5.3 Outage Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Direct Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 Fixed Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.3 Adaptive Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3.4 Bounds for Cooperative Diversity Transmission . . . . . . . . . . . . 96

5.3.5 Protocols with Limited Feedback . . . . . . . . . . . . . . . . . . . . 98

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Asymmetric Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.2 Symmetric Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10

. . . . . . . . 54



6 Cooperative Diversity in Networks

6.1 Fully Cooperative Networks . . . . . . . . . . . . . . . . . .

6.1.1 System M odel . . . . . . . . . . . . . . . . . . . . . .

6.1.2 Repetition-Based Cooperative Diversity . . . . . . .

6.1.3 Space-Time Coded Cooperative Diversity . . . . . .

6.1.4 Diversity-Multiplexing Tradeoff . . . . . . . . . . . .

6.2 Partially Cooperative Networks . . . . . . . . . . . . . . . .

6.2.1 Centralized Partitioning for Infrastructure Networks

6.2.2 Clustering in Ad-Hoc Networks . . . . . . . . . . . .

6.2.3 Comments on Layering Issues . . . . . . . . . . . . .

7 Conclusions

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . .

A Coding Theorem for Cooperative Diversity

A .1 D efinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A .2 Prelim inaries . . . . . . . . . . . . . . . . . . . . . . . . . .

A.3 Decode-and-Forward Transmission . . . . . . . . . . . . . .

A.3.1 Codebook Generation . . . . . . . . . . . . . . . . .

A .3.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . .

A.3.3 Backwards Decoding . . . . . . . . . . . . . . . . . .

A.3.4 Probability of Error and Achievable Rates . . . . . .

B Asymptotic CDF Approximations

B.1 Results for Chapter 5 . . . . . . . . . . . . . . .

B.2 Results for Chapter 6 . . . . . . . . . . . . . . .

B.2.1 The Basic Result . . . . . . . . . . . . . .

B.2.2

B.2.3

Repetition Decode-and-Forward Cooperative

Space-Time Coded Cooperative Diversity .

109

. . . . 109

. . . . 112

. . . . 117

. . . . 121

. . . . 126

. . . . 127

. . . . 129

. . . . 135

. . . . 136

139

139

141

145

. . . 145

. . . 147

. . . 148

. . . 149

. . . 150

. . . 151

. . . 152

159

. . . . . . . . . . . . . . 159

. . . . . . . . . . . . . . 168

. . . . . . . . . . . . . . 168

Diversity . . . . . . . . 171

. . . . . . . . . . 172

C Mutual Information Calculations

C.1 Amplify-and-Forward Mutual Information . . . . . . . . . . .

C.2 Input Distributions for Transmit Diversity Bound .......

11

175

175

176



12



List of Figures

1-1 Illustration of radio signal transmit paths in an example wireless network

with two terminals transmitting information and two terminals receiving in-

form ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1-2 Layered protocol architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2-1 Block diagram for a wireless network model having four terminals. . . . . . 28

2-2 Radio block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2-3 Discrete-time, baseband-equivalent channel model for signal received by radio j 31

2-4 Protocol stack for a general layered network architecture. . . . . . . . . . . 35

2-5 Various relaying configurations that arise in wireless networks: (a) classical

relay channel, (b) parallel relay channel, (c) multiple-access channel with

relaying, (d) broadcast channel with relaying, (e) interference channel with

relaying. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-1 Block diagrams relating a point-to-point physical array (a) and a multi-user

virtual array (b) arising from cooperative diversity transmission. . . . . . . 50

3-2 Multi-antenna system model. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4-1 Block diagram for a multiple-access channel with cooperative diversity. . . . 61

4-2 Block diagram for a relay channel. . . . . . . . . . . . . . . . . . . . . . . . 64

4-3 Illustration of shape of various outer and inner bounds on the capacity region

of the Gaussian multiple access channel with cooperative diversity. Here the

SNRs take values so,1 = so,2 = 3, and S2,1 = si,2 = 15. . . . . . . . . . . . . 72

13



5-1 Illustration of radio signal transmit paths in an example wireless network

with two terminals transmitting information and two terminals receiving in-

form ation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5-2 Example time-division channel allocations for (a) direct transmission with

interference, (b) orthogonal direct transmission, and (c) orthogonal coopera-

tive diversity transmission protocols. We focus on orthogonal transmissions

of the form (b) and (c) throughout the chapter. . . . . . . . . . . . . . . . . 83

5-3 SNR loss for cooperative diversity protocols (solid) and orthogonal transmit

diversity bounds (dashed) relative to the (unconstrained) transmit diversity

bound (0 dB ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5-4 Outage event boundaries for amplify-and-forward (solid) and adaptive decode-

and-forward (dashed and dash-dotted) transmission as functions of the re-

alized fading coefficient las,r12 between the cooperating terminals. Out-

age events are to the left and below the respective outage event bound-

aries. Successively lower solid curves correspond to amplify-and-forward with

increasing values of |as,r2. The dashed curve corresponds to the outage

event for adaptive decode-and-forward when the relay can fully decode, i.e.,

SNRnormlas,r12 > 2, and the relay repeats, while the dash-dotted curve corre-

sponds to the outage event of adaptive decode-and-forward when the relay

cannot fully decode, i.e., SNRnormIas,r1 2 < 2, and the source repeats. Note

that the dash-dotted curve also corresponds to the outage event for direct

transm ission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5-5 Outage probabilities vs. SNRnorm, small R regime, for statistically symmetric

networks, i.e., 0 = 1. The outage probability curve for amplify-and-forward

transmission was obtained via Monte-Carlo simulation, while the other curves

are computed from analytical expressions. The dashed curve corresponds to

the transmit diversity bounds in this low spectral efficiency regime. . . . . . 106

5-6 Diversity order A vs. Rnorm for direct transmission and cooperative diversity

protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

14



6-1 Illustration of the two-phases of repetition-based and space-time coded coop-

erative diversity algorithms. In the first phase, the source broadcasts to the

destination as well as potential relays. Decoding relays are shaded. In the

second phase, the decoding relays either repeat on orthogonal subchannels

or utilize a space-time code to simultaneously transmit to the destination. . 111

6-2 Non-cooperative medium-access control. Example source allocations among

m transmitting terminals across orthogonal frequency channels. . . . . . . . 113

6-3 Repetition-based medium-access control. Example source channel allocations

across frequency and relay subchannel allocations across time for repetition-

based cooperative diversity among m terminals. . . . . . . . . . . . . . . . . 114

6-4 Space-time coded medium-access control. Example channel allocations across

frequency and time for m transmitting terminals. For source s, 'D(s) denotes

the set of decoding relays participating in a space-time code during the second

phase. ......... ....................................... 114

6-5 Comparison of numeric integration of the outage probability (solid lines) to

calculation of the outage probability approximation (6.10) (dashed lines) vs.

normalized SNR for different network sizes m = 1, 2, ... , 10. Successively

lower curves at high SNR correspond to larger networks. For simplicity of

exposition, we have plotted the case of R = 1 b/s/Hz and Ay = 1; more

generally the plot can be readily updated to incorporate a model of the

network geom etry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6-6 Comparison of numeric integration of the outage probability (solid lines) to

calculation of the outage probability approximation (6.19) (dashed lines) vs.

normalized SNR for different network sizes m = 1, 2,... ,10. Successively

lower curves at high SNR correspond to larger networks. For simplicity of

exposition, we have plotted the case of R = 1 b/s/Hz and Ay = 1; more

generally the plot can be readily updated to incorporate a model of the

network geom etry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

15



6-7 Diversity order A(Rnorm) for non-cooperative transmission, repetition-based

cooperative diversity, and space-time coded cooperative diversity. As Rnorm -+

0, all cooperative diversity protocols provide full spatial diversity order m,

the number of cooperating terminals. Relative to direct transmission, space-

time coded cooperative diversity can be effectively utilized for a much broader

range of Rnorm than repetition-coded cooperative diversity, especially as m

becom es large. . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 128

6-8 Matching algorithm performance in terms of average outage probability vs.

received SNR (normalized for direct transmission). . . . . . . . . . . . . . . 133

6-9 Matching algorithm results for an example network: (a) minimal matching,

(b) greedy matching. Terminals are indicated by circles, and matched termi-

nals are connected with lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6-10 Clustering with (a) direct transmission and (b) cooperative diversity trans-

m ission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A-1 Block-Markov encoding structure for decode-and-forward transmission.. . . 150

16



List of Tables

2.1 Form of aj,i[l; k] for a several important channel conditions. . . . . . . . . . 32

5.1 Summary of outage probability approximations. To capture the salient trade-

offs between signal-to-noise ratio SNR, spectral efficiency R b/s/Hz, and di-

versity gain of the various protocols, the results are specialized to the case of

statistically symmetric networks with fading variances o,= 1. . . . . . . . 105

17



18



Chapter 1

Introduction

Exploding demand for a growing number of wireless applications has fueled significant de-

velopment of wireless networks, especially several generations of cellular voice and data

networks and, more recently, ad-hoc data networks for wireless computer, home, and per-

sonal networking. Radio hardware and wireless services grow more efficient and cost effective

as system designers better understand the channel environment and multi-user communi-

cations in general, and technological advances in integrated circuits and radio-frequency

electronics increasingly allow for more sophisticated signal processing and channel coding

algorithms. However, compared to point-to-point links, it seems we are only beginning to

understand the fundamental performance limits of wireless networks and practical ways for

approaching them. Moreover, given their impact on society as well as other technologies,

wireless communications and networking remain important areas of research.

1.1 Cooperative Diversity

Taking advantage of the rich wireless propagation environment across multiple protocol

layers in a network architecture offers numerous opportunities to dramatically improve

network performance. In this dissertation, we develop an energy-efficient class of cross-

layer network algorithms called cooperative diversity that exploit the broadcast nature and

inherent spatial diversity of the channel. Through cooperative diversity, sets of wireless

terminals benefit by relaying messages for each other to propagate redundant signals over

multiple paths in the network. This redundancy allows the ultimate receivers to essentially

average channel variations resulting from fading, shadowing, and other forms of interference.

19



By contrast, classical network architectures only employ a single path through the network

and thus forego these benefits.

We develop various cooperative diversity algorithms that have the relays (1) simply

amplify what each receives, or (2) fully decode, re-encode, and re-transmit each other's

messages. In addition, we evaluate algorithms based upon repetition codes or more general

space-time codes, as well as algorithms with and without limited feedback from the ultimate

receivers. We demonstrate that cooperative diversity can provide full spatial diversity, as

if each terminal had as many transmit antennas as the entire set of cooperating terminals.

Such diversity gains translate into greatly improved robustness to fading for the same trans-

mit power, or substantially reduced transmit power for the same level of performance. For

example, power savings on the order of 12 dB (a factor of sixteen) are possible for outage

probabilities around one in a thousand. Although applicable to any wireless setting, these

algorithms are most beneficial when other forms of diversity-such as temporal coding,

spread-spectrum, and multi-antenna systems-cannot be exploited.

From an architectural perspective, we illustrate how repetition and space-time coded co-

operative diversity are each amenable to different settings. Repetition-based schemes require

relatively low complexity in the terminals, but require more complexity in the network for

deciding which terminals cooperate in order for the algorithms to be effective; thus, these

algorithms are well-suited to infrastructure networks, e.g., cellular, satellite, and certain

wireless local area network (LAN) configurations, in which terminals communicate directly

to a super-terminal that selects the cooperating groups. To manage complexity in the

super-terminal, we use our analytical results to develop a variety of grouping algorithms

based upon set partitioning and weighting matching in graphs. By contrast, space-time

coded cooperative diversity requires more complexity in the terminals, but readily extends

to distributed implementation; thus, these algorithms are well-suited to ad-hoc networks,

and especially ad-hoc networks with clusters. We also briefly discuss various layering and

other architectural issues.

1.2 Motivating Example

To illustrate the main concepts, consider the example wireless network in Fig. 1-1, in which

terminals Ti and T2 transmit to terminals T3 and T4 , respectively. This example might

20



(T2)

Figure 1-1: Illustration of radio signal transmit paths in an example wireless network with
two terminals transmitting information and two terminals receiving information.

correspond to a snapshot of a wireless network in which a higher-level network protocol has

allocated bandwidth to two users for transmission to their intended destinations or next

hops. For example, in the context of a cellular network, T, and T2 might correspond to

terminal handsets and T3 = T4 might correspond to the basestation. As another example,

in the context of a wireless LAN, the case T3 7 T 4 might correspond to an ad-hoc configu-

ration among the terminals, while the case T3 = T 4 might correspond to an infrastructure

configuration, with T3 serving as an access point. The key property of the wireless medium

that allows for cooperative diversity between the transmitting radios is its broadcast na-

ture: transmitted signals can, in principle, be received and processed by any of a number of

terminals. Thus, instead of transmitting independently to their intended destinations, T

and T 2 can listen to each other's transmissions and jointly communicate their information.

Although these extra observations of the transmitted signals are available for free (except,

possibly, for the cost of additional receive hardware) wireless network protocols often ignore

or discard them.

In the most general case, Ti and T2 can share their resources to cooperatively transmit

their information to their respective destinations, corresponding to a wireless multiple-access

channel with relaying for T3 = T4 , and to a wireless interference channel with relaying for

T3 5 T 4 . At one extreme, corresponding to a wireless relay channel, the transmitting

terminals can focus all their resources, in terms of power and bandwidth, on transmitting

the information of T 1. In this case, T acts as the "source" of the information, and T 2 serves

as a "relay". Such an approach might provide diversity in a wireless setting because, even

if the channel quality between T1 and T3 is poor, the information might be successfully

transmitted through T 2 . Similarly, Ti and T2 can focus their resources on transmitting the

information of T 2 , corresponding to another wireless relay channel.

21



To date, these channel models have been only partially addressed in the literature, and

mainly within the information theory community. For general memoryless channels, the

capacity region without cooperation is known for multiple-access channels, and remains an

open problem for interference channels, although several achievable rate regions have been

demonstrated [191. Several notions of channel capacity, including Shannon, delay-limited,

and information outage capacities, have been treated for wireless multiple-access channels

[83, 34, 52]. Multiple-access channels with varying degrees of cooperation between the

transmitting terminals have also been examined [88, 91, 89, 901. Reference [17] examines

certain relay channels, without specifically addressing wireless channels, and constructs

several coding schemes for achieving reliable communication over such channels. Multiple-

relay extensions have also been examined [66, 65, 33, 29, 28, 27]. As we will see, our work

on cooperative diversity for wireless networks blends many techniques and insights from

these references.

Recently, [68, 69, 70] considers cooperative diversity for a wireless multiple-access chan-

nel with relaying. The transmitters and receiver employ a two-user generalization of the

cooperation scheme developed in [17], and, under the condition that the signal-to-noise ra-

tio (SNR) between the transmitting terminals is high, cooperative diversity of this form is

shown to enlarge the achievable rate region (including increasing the sum rate for the case

in which both the transmitters and receivers possess knowledge of the channel conditions)

in ergodic settings, as well as improve outage performance under strict delay constraints or

in non-ergodic settings, when compared to the multiple-access channel without cooperative

diversity [69, 70]. We develop some new insights for ergodic settings, but the majority of

our results are for non-ergodic settings.

1.3 Layered Architectures and Cross-Layer Design

Several key properties of wireless environments make design of wireless networks particularly

complex and challenging. First, radio signals experience significant attenuation, called path-

loss, as well as self-interference, called fading, induced by multipath propagation through

a lossy medium. Generally speaking, these channel distortions require increasing power,

bandwidth, and receiver complexity to reliably communicate over longer distances. At

the same time, radios in a wireless network share a common transmission medium, e.g.,
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Figure 1-2: Layered protocol architecture.

a fixed amount of wireless spectrum; thus, radio signals are subject to interference from

other users in the system as well as from other wireless systems operating in the same

spectrum. Tradeoffs among required power, bandwidth, and receiver complexity naturally

arise because of the interference characteristics of the channel.

As a result of this rich channel environment, wireless system designers are presented with

many challenges. These include, for example: reliably transmitting information among radio

terminals; mitigating severe channel impairments such as multipath fading and interference

from other users; efficiently allocating and utilizing resources such as power and bandwidth;

scaling algorithms as the number of terminals in the network grows; and supporting a large

and ever-growing number of applications, such as voice, data, and multimedia networking.

Engineers have historically partitioned solutions to these problems into a stack of proto-

col layers, each serving a particular purpose. Fig. 1-2 illustrates these layers, and indicates

the functions they usually serve in the wireless setting. As examples, the Medium-Access

Control (MAC) Layer conventionally manages interference in the network, and the Physical

(PHY) Layer conventionally combats fading with coding, spread-spectrum, and multiple

antennas. Layering promotes development of understanding and technology within each
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layer; however, different communities often work on problems at the various layers. For ex-

ample, the data and computer networking community has developed a variety of standard

protocols for flow control in the Transport Layer, routing in the Network Layer, automatic

repeat request (ARQ) in the Link Layer, and collision resolution/avoidance in the Medium-

Access Control Layer. Traditionally, the communication theory, information theory, and

signal processing communities have played a role mainly at the Application Layer in the

form of source coding and at the Physical Layer in the form of channel coding.

From a broader perspective, one can ask whether the particular layers and allocation of

functions shown in Fig. 1-2 are appropriate, especially fading mitigation in the PHY Layer

and interference management in the MAC Layer, and whether there is a more natural set

of abstractions. Indeed, many new results seem to diffuse across the traditional protocol

layers, especially in the wireless setting. This phenomenon is perhaps attributable to the

rich channel environment, and presents opportunities for cross-fertilization of ideas among

various research communities, from computer and data networking, to communications, in-

formation theory, and signal processing. We view cooperative diversity as involving various

aspects of the physical, medium-access control, and network layers. More generally, return-

ing to Fig. 1-2, the channel and source coding communities appear to be expanding up and

down the protocol stack, respectively. Many interesting problem formulations have either

appeared or re-emerged in the last ten years, bearing direct applications in wireless settings.

These include, for example, various network source coding problems [26, 6, 8, 21], and net-

work channel coding, medium access, and power control problems [9, 31, 32, 46, 83]. More-

over, the data and computer networking communities appear to be expanding throughout

the layer hierarchy; see, for example, the work in [7, 15, 36, 37, 75] and references therein.

1.4 Outline of the Dissertation

This dissertation continues as follows. Chapter 2 describes a fairly general system model for

considering cooperative diversity in wireless networks. Chapter 3 summarizes a variety of

background literature that contributes insights and natural comparison points for our study.

Our main discussion and results are contained in Chapters 4-6, with detailed mathematical

development deferred to Appendices A-C. Chapter 4 treats cooperative diversity in ergodic

settings, when full temporal diversity can also be exploited by the coding strategy. Chapter 5
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treats cooperative diversity in non-ergodic settings, in particular when no temporal diversity

can be exploited by the coding strategy. Both Chapters 4 and 5 examine the case of

two cooperating terminals; Chapter 6 extends the algorithms of Chapter 5 to more than

two cooperating terminals and discusses a variety of related networking issues. Finally,

Chapter 7 summarizes our conclusions and points to areas for future research.
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Chapter 2

High-Level System Model

This chapter summarizes the key ingredients in a network model for examining cooperative

diversity and related problems. A useful model is rich enough to capture the significant

effects observed in practice, yet tractable enough to lend itself to analysis and design.

Any model incorporates simplifying assumptions, and these must be clearly stated and

reasonably justified.

The model we describe here is quite general, allowing an uninitiated reader to develop a

sense of context for the specific models that we emphasize later in the dissertation. Signifi-

cant features of our specific models include: radio hardware constraints such as half-duplex

operation, frequency-selective and slowly varying Rayleigh multipath fading, channel state

information available only to the receivers, and Gaussian noise and other forms of interfer-

ence.

The general multi-terminal network model of [19] serves as the basis for our model, with

the addition of wireless channel effects such as path-loss, fading, and interference. Consider

a collection of M radio terminals seeking to communicate information-bearing signals w2,j,

e.g., voice, music, images, binary data. Each terminal transmits a signal, denoted by xi,

and receives a signal, denoted by yj. We leave the details of the structure of the transmit

and receive signals to the specific instances of networks that we consider in later chapters.

As we discuss in Section 2.3, many networks transmit digital representations of wij, thereby

separating source and channel coding.

Fig. 2-1 depicts a block diagram for a wireless network with four terminals. It will be

helpful to keep this general diagram in mind as we specialize it in later chapters.
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Figure 2-1: Block diagram for a wireless network model having four terminals.
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Among many problem formulations for wireless communication, a fundamental one ad-

dresses the limiting tradeoffs among resources, computational complexity, and transmission

quality, e.g., end-to-end distortion, block error rates, and so forth. Just as important are

questions of how to practically approach these fundamental tradeoffs. Problem formula-

tions such as these can be made more specific by further developing the model. To this

end, Section 2.1 describes radio hardware and its constraints. Section 2.2 describes the

salient characteristics of wireless channels, including path-loss, fading, and interference. Fi-

nally, Section 2.3 discusses how the general problem is often simplified by imposing layered

network architectures.

2.1 Radio Hardware and Constraints

In a general wireless setting, each terminal exchanges information with any of a number of

other terminals in the system. Enabling such functionality requires a collection of radio de-

vices that can each be viewed according to Fig. 2-2. Each radio consists of radio-frequency

(RF) analog circuitry, and associated signal processing hardware and software, for emitting

and observing information-bearing signals over the wireless channel, as well as distributed

algorithms, or protocols, for coordinating the transmissions among the radios. In some

systems, radios employ multi-antenna elements for increased capacity and improved ro-

bustness.

Regulatory restrictions and practical limitations on radio implementation lead to several

system constraints in our system model. Among other possibilities, for example, regulatory
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bodies often place an average power constraint

lim Z xi[k]I < Pi, (2.1)
k=1

on the transmitted signals. Furthermore, because of the near-far effect', it appears necessary

to preclude radios from simultaneously transmitting and receiving on the same channel.

This restriction constrains a radio so that

n

lim E xi [k]yi[k] = 0, (2.2)
k=1

where the orthogonality can be imposed via time- or frequency-division between transmis-

sion and reception. Other constraints imposed by regulatory restrictions and implementa-

tion limitations include peak power and bandwidth constraints.

We note that we focus throughout the dissertation on algorithms that allow reductions

in transmit power, often considered to be the dominant source of power consumption in

wireless systems. Reductions in receiver power consumption can also improve terminal and

network lifetime.

2.2 Wireless Channel Impairments

Our system model for wireless networks cannot be complete without capturing the salient

effects of the wireless channels over which they operate. Indeed, many design decisions

depend upon the particular channel conditions that prevail for a given application. In this

section, we describe the significant channel distortions affecting wireless transmissions, and

provide a fairly general mathematical description for use in our system models.

2.2.1 Multipath Propagation: Path-Loss and Fading

Wireless transmissions are severely degraded by the effects of so-called multipath prop-

agation. A signal emitted by a radio antenna propagates, e.g., in all directions (omni-

directionally) or, if the antenna is directed, only in a somewhat more restricted set of

directions. Multipath arises because the propagated signal reflects off, refracts through,

'The near-far effect in this setting refers to a terminal's transmit signal drowning out the signals of other
terminals at its receiver input because of path-loss and circuit isolation issues.
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Figure 2-3: Discrete-time, baseband-equivalent channel model for signal received by radio

3J.

and diffuses around scattering objects in the channel environment. Example obstructions

include, e.g., buildings, trees, and cars in outdoor settings, and walls, furniture, and people

in indoor settings. Scattering and propagation over longer distances increasingly attenuates

signal power, an effect called path-loss. Thus, a radio receiver observes multiple attenuated

and time-delayed versions of the transmitted signal, that are further corrupted by additive

receiver thermal noise and other forms of interference. The copies of the transmitted signal

might add constructively, thereby increasing the signal-to-noise ratio (SNR), or destruc-

tively, thereby decreasing the SNR. With relative motion of the transmitters, receivers, and

scatterers in the channel environment, SNR fluctuations occur across both time and fre-

quency, and are generally called fading. We model the effects of path-loss and fading as a

time-varying linear filter.

Although radio transmissions are often continuous-time signals centered at carrier fre-

quencies ranging from kHz to GHz, i.e., passband signals, when the signals are bandlim-

ited, it is often conceptually convenient to model them as discrete-time signals centered at

0 Hz, i.e., baseband signals. Similarly, we model the continuous-time, passband channel

effects with an associated discrete-time, baseband channel. Baseband-equivalent models

are convenient because they suppress the issues of frequency up- and down-conversion, and

discrete-time models are appealing because architectures designed for them can be efficiently

implemented in digital signal processing (DSP) hardware.

Fig. 2-3 shows a fairly general, discrete-time, baseband-equivalent channel model for

each of the received signals in a wireless network consisting of M terminals. For a given

contiguous transmission bandwidth W, we use a baseband-equivalent, discrete-time channel

model with W (complex) channel uses per second. Transmitter i emits signal xi[k], and
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Time Selective Time Nonselective

Frequency Selective aj,i[l; k] aj,i [l; 0] 6[k]
Frequency Nonselective aji[0; k] 6[l] aji [0; 0] 3[l] 3[k]

Table 2.1: Form of aji[l; k] for a several important channel conditions.

receiver j observes signal yi[k]. The effects of multipath propagation on x [k] are modeled

as convolution with the time-varying, discrete-time, linear filter a,i [1; k], so that the received

signals are modeled by the relationship

M

yj [k] = aj,i [1; k] xi [k - 1] + zj [k], j = 1, 2, 1 M. (2.3)
i=1 I

Here zj[k] captures the effects of receiver thermal noise and other forms of interference.

Multipath propagation manifests itself in a variety of ways depending upon the form

of aj,i[l; k]. For example, if aj,i[l; k] = aj,i[A; k] J[l - A]-a single, time-varying tap with

delay A--the channel experienced by signal xi[k] in transmission to radio j is called time

selective and frequency nonselective. Table 2.1 characterizes the form of aj,i[l; k] for several

other important classes of wireless channels. The prevailing kind of channel can result from

system constraints, e.g., bandwidth limitations of regulatory bodies such as the FCC, or

design choices, e.g., allowing users to be mobile at varying speeds, or employing spread-

spectrum signals [42, 60, 61].

Statistical Characterization

Because the scattering environment is often too complex for precise physical modeling to be

tractable, system designers frequently employ statistical models for characterizing the chan-

nel effects. Such models are developed based upon the physics of radio-wave propagation

and augmented with data obtained from measurements of real-world channels [42, 61].

Under the well-known Rayleigh fading model, the fading coefficients aj,i[l; k] are mod-

eled as zero-mean, stationary complex jointly Gaussian random sequences in k that are

independent for different values of i and j (with radio separations greater than roughly

half the carrier wavelength, about 30 cm for a carrier frequency of 1 GHz) and sometimes

independent for different values of 1 (called the uncorrelated scattering model). Temporal
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correlation models have also been developed, e.g., the Jakes model [61, 42].

We assign path-loss between radios i and j using models based upon the network ge-

ometry. For example, field measurements suggest path-loss models proportional to G/d'j,

where dij is the distance between radio i and radio j, G captures the effects of antenna

gain and carrier wavelength, and v is a constant whose measured value typically lies in the

range 3 < v < 5 [61].

Channel State Information

An important issue affecting the design and analysis of transmissions protocols is channel

state information, i.e., how much radios know about each channel realization throughout

the network. For example, using training signals, e.g., pilot tones or symbols, the receivers

may estimate the multipath coefficients affecting their respective received signals. Such

channel measurement and estimation is reasonable when the channels are not over param-

eterized, e.g., systems with small numbers of users transmitting at the same time in the

same bandwidth within a given local area, channels exhibiting only a few significant non-

zero taps, and slow enough temporal variations that allow estimation to provide accurate

estimates.

Once channel state information is acquired at the distributed radio receivers, protocol

designs can feed this information back to the transmitters. Feedback allows the transmitters

to adapt their transmissions to the realized channel in effect, often leading to performance

improvements when accurate channel state information is obtainable.

2.2.2 Interference and Other Issues

In addition to the salient channel effects such as path-loss and fading, and radio model

variants such as multiple antennas at the transmitters and receivers, general wireless systems

exhibit instances of many simpler channel models, including: multiple-access, i.e., several

transmitters conveying information to a common receiver; broadcast, i.e., one transmitter

convening information to several separate receivers; interference, i.e., several transmitters

conveying information to several separate receivers; and two-way, i.e., two radios conveying

information two one another. Each of these simpler examples exhibit different types of

interference among multiple transmitted and/or received signals, and all of these types of

interference can arise in a general wireless network.
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Furthermore, any of these simpler models can incorporate feedback, i.e., (partial) knowl-

edge of the received signals at the transmitter, and relaying, i.e., terminals without infor-

mation to transmit or receive assist other transmitting and receiving terminals. These

possibilities correspond to different ways for the terminals to interact. In addition to these

interference and structural variations, networks might incorporate source-channel interac-

tions that introduce additional possibilities. One such example is voice-activity detection in

the IS-95 system [611. Indeed, general wireless networks represent a huge space for designing

and optimizing systems for various applications.

2.3 Network Architectures

Many different wireless network architectures have appeared in practice due to the broad

array of applications and the varying extent to which providers desire to leverage existing

infrastructure. For example, wireless network architectures for delivering voice or data and

multimedia services tend to be quite different.

Often, these complicated systems are simplified along several dimensions to make the

resulting problem formulations hierarchical and generally more tractable. For example, in a

cellular setting, the coverage area is divided into "cells", each with its own basestation and

a given amount of channel bandwidth. If the cell bandwidth is less than the total system

bandwidth, then the system employs frequency-reuse to limit interference between cells.

Within a cell, the bandwidth is often divided between a multiple-access uplink (mobiles to

basestation) and broadcast downlink (basestation to mobiles). Finally, even the uplink and

downlink channels are further divided into essentially orthogonal point-to-point channels to

reduce receiver complexity. Feedback is somewhat limited, and relaying has not been em-

ployed in these systems to date. We call a set of restrictions on the structure of the network

an architecture; thus, we have described a standard cellular architecture for delivering voice

traffic.

Although design and implementation of wireless networks, and communication networks

in general, can be approached in a variety of ways, many architectures are partitioned into

a set of protocol layers [10, 61] as shown in Fig. 1-2. We include Fig. 1-2 here in abbreviated

form as Fig. 2-4 for convenience. These layers range from the highest-layer (farthest from

the wireless channel, most abstracted), the application layer, to the lowest layer (closest
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Figure 2-4: Protocol stack for a general layered network architecture.

to the wireless channel, least abstracted), the physical layer. Roughly speaking, the tasks

allocated to each layer are as follows. The application layer generates or handles user

signals {wi,j}, and conveys them through an interface to the transport layer. The transport

layer often performs packet sequencing, end-to-end retransmission, and flow control. The

network layer routes messages through the network over a set of point-to-point links created

by the link layer. The link layer, and its associated medium-access control (MAC) sub-

layer, maintains a set of virtual point-to-point communication links built on top of the

physical layer. Finally, the physical layer incorporates a majority of the analog circuitry

and signal processing described in Section 2.1 and provides for transmission of signals {xi}

and reception and processing of signals {yj} over the wireless channel.

The layered approach is convenient because it allows for abstraction barriers in the

system. In particular, it allows for the design of general networks, from the network layer

down, that support a variety of applications. The simplest example of this type is the

separation of source and channel coding on a point-to-point link, where the interface between

the two subsystems is bits. Furthermore, standardized layered architectures allow different

manufacturers to provide components for different layers or complete radio implementations

that inter-operate.

2.3.1 Prevalent Wireless Network Architectures

It will be convenient throughout the dissertation to classify network architectures into two

broad classes called infrastructure and ad-hoc networks, respectively. Each of these has gone

by different names in the past, but we borrow our terminology from current wireless local

area network (LAN) standards [35] that allow for both configurations. We now describe

these two classes of architectures.
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Infrastructure Networks

In an infrastructure network, low-power, possibly mobile radio terminals connect via local,

high-power, usually stationary radios, called access points, that are themselves connected

via a backbone network. Typically, the backbone network is an existing wire-line network,

such as the public switch telephone network or the Internet. Examples of such infrastructure

networks include: current cellular networks, in which the basestations act as access points,

for voice and data services; satellite networks, in which case the satellites act as access

points, also for voice and data services, and certain wireless LANs, from which we have

borrowed the term "access point". Two distinctive features of infrastructure networks are

the power and processing asymmetries between radio terminals and access points, and the

fact that all communication occurs through at least one access point. Even closely located

radio terminals do not communicate directly, but instead communicate through their local

access point.

Nominally, the architecture of an infrastructure network is organized as follows. The

network layer assigns mobile radios to access points, using some information about channel

conditions. Once a mobile is assigned to an access point, all communication occurs with

that access point; thus, routing is not important within a cell. Sometimes, mobility requires

handoff between access points, and this function is also handled by the network layer. This

assignment of mobiles to access points creates a collection of "cells"; hence the name "cellu-

lar". The medium access control sub-layer at each access point allocates available channel

bandwidth to mobiles assigned to it. Frequency reuse among the cells and orthogonal uplink

(mobile to basestation) and downlink (basestation to mobile) transmissions limit interfer-

ence. The physical layer codes and modulates for point-to-point transmission to and from

the access point. Intra- and inter-cell interference is typically treated as noise, although

multi-user detection can be employed to combat intra-cell interference.

Ad-Hoc Networks

In an ad-hoc (or packet radio, or peer-to-peer) network, radio terminals generally have more

symmetric power and processing capabilities, and they do not leverage access points or a

backbone network, as in infrastructure networks. Examples of ad-hoc networks include CB

and amateur radio, emerging wireless LANs, and wireless sensor networks. In principle, the
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distinctive features of ad-hoc networks include their potentially fast and ad-hoc deployment

as well as their resulting robustness to loss of radio terminals. For these reasons, ad-hoc

networks initially found application primarily in military settings, but are more recently

penetrating certain commercial arenas such as home networking.

The layered architecture of ad-hoc networks is based largely upon wire-line store-and-

forward networks. Terminals communicate primarily with nearby terminals, and exchange

neighbor information to enable routing throughout the network. In contrast to infrastruc-

ture networks that employ direct wireless transmission between mobiles and a basestation,

ad-hoc networks have gravitated toward cascade transmission-often called multihop routing

in the ad-hoc networking literature-between source and destination terminals via several

intermediate terminals. Cascade transmission potentially conserves energy by combating

path-loss and limiting interference in the network.

Another architectural device frequently considered for ad-hoc networks is clustering.

Clustering arises in a variety of forms in large, dense ad-hoc networks. (See [15, 37] and

the references therein.) In essence, a clustering algorithm partitions a large ad-hoc network

into a set of clusters, each centered around a clusterhead. Terminals communicate directly

to their associated clusterhead, and routing is usually performed between clusterheads. In

this sense, clustering mimics some of the features of infrastructure networks: clusters cor-

respond to cells and clusterheads correspond to access points. However, in ad-hoc settings

the clusters and clusterheads may be varying as the network operates, the clusterheads

themselves can have information to transmit, and the clusterhead network must share the

wireless bandwidth.

2.3.2 New Architectures Incorporating Cooperation

Many options arise for cooperative diversity in wireless settings. Fig. 2-5 depicts block

diagrams for a number of these options. The configurations in Fig. 2-5 specialize to well

known channel models when cooperation is not employed. For example, as we discuss in

Section 3.4, the classical relay channel in Fig. 2-5(a) specializes to direct transmission when

the relay is removed, and cascade transmission when the destination cannot receive (or

ignores) the source transmission. The configurations in Fig. 2-5(c)-(e) specialize to the

classical multiple-access channel, broadcast channel, and interference channel, respectively.

Of these configurations, we focus throughout the dissertation on the multiple-access and
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Figure 2-5: Various relaying configurations that arise in wireless networks: (a) classical relay
channel, (b) parallel relay channel, (c) multiple-access channel with relaying, (d) broadcast
channel with relaying, (e) interference channel with relaying.
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interference channel versions of Fig. 2-5(c) and Fig. 2-5(e), respectively. We include the

other possibilities for completeness as well as to encourage their study.
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Chapter 3

Background and Related Literature

This chapter summarizes important references from a broad array of literature that relate to

the problems studied by the dissertation. Our objective is to make the reader aware of the

many considerations involved, highlight the particular scenarios that we study throughout

the dissertation, and encourage further work in the area. Because cooperative diversity is a

network problem, it can be viewed as living across several of the layers in a layered network

architecture as discussed in Section 2.3. While the ideas build significantly from work on

the relay channel within the information theory community, there are several other bodies

of research to build from and relate to, including single-user multi-antenna systems and

various results for ad-hoc networks, specifically in multihop routing.

Section 3.1 begins by summarizing work on the classical relay channel, the simplest

cooperative example in Fig. 2-5. Evaluating the utility of cooperation in wireless systems

starts with considering the issue of fading. Section 3.2 summarizes relevant notions of

channel capacity in fading environments. It then seems natural to compare performance of

cooperative transmission and reception protocols for creating virtual arrays to the perfor-

mance of physical antenna arrays. Section 3.3 surveys important results from the physical

array literature. Finally, Section 3.4 cites several interesting results that have studied wire-

less networks with an eye toward breaking barriers within the standard layered network

architectures in order to improve performance.

In principle, fundamental performance limits for general wireless systems can be de-

veloped. Most generally, results would indicate the limiting tradeoffs between achievable

channel rates and distortions on the information-bearing signals, without regard to com-
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putational complexity. However, surprisingly many of even the simplest network channel

models have not been yet fully characterized. For example, the capacity for general relay

channels, broadcast channels, and interference channels remain unknown [19]. Since a gen-

eral wireless system generalizes these models, as well as all the models shown Fig. 2-5, there

is much work to be done.

3.1 Relay Channels and Extensions

Relay channels and their multi-terminal extensions are central to our study of cooperative

diversity. Much of the work on these channel models to date has focused on discrete or ad-

ditive white Gaussian noise channels, and examined performance in terms of the well-known

Shannon capacity (or capacity region) [19]. Only the more recent work has considered the

issue of multipath fading, which is another central issue of this dissertation. We also focus

on the multi-terminal aspects of relaying or cooperative diversity problems, in particular,

the multiple-access channel case and, to some extent, the interference channel case.

The classical relay channel models a class of three terminal communication channels (cf.

Fig. 2-5(a)), originally introduced and examined by van der Meulen [84, 85], and subse-

quently studied by a number of authors, primarily from the information theory community.

The distinctive property of relay channels in general is that certain terminals, called "re-

lays", receive, process, and re-transmit some information bearing signal(s) of interest in

order to improve performance of the system. As we illustrated in Fig. 2-5, in some cases

extra terminals in the network, without information to transmit or receive, serve as relays,

while in other cases transmitting and/or receiving terminals can cooperate by serving as

relays for one another.

Cover and El Gamal [17] examine certain non-faded relay channels, developing lower

and upper bounds on the channel capacity via random coding and converse arguments,

respectively. Generally these lower and upper bounds do not coincide, except in the class of

degraded relay channels [17]. While the class of degraded relay channels is mathematically

convenient, we stress that none of the wireless channels found in practice fall into this class.

The lower bounds on capacity, i.e., achievable rates, are obtained via three structurally

different random coding schemes, referred to in [17] as facilitation, cooperation, and obser-
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vation, respectively.'. The facilitation scheme is nothing special: the relay does not actively

help the source, but rather, facilitates the source transmission by inducing as little interfer-

ence as possible. The cooperation and observation schemes are more involved, as we now

describe.

In the cooperation scheme of [17], the relay fully decodes the source message, and re-

transmits some information about that signal to the destination. More precisely, the relay

encodes the bin index of the previous source message, from a random binning of the source

messages as in well-known Slepian-Wolf coding [19]. The source transmits the superposition

of a new encoded message and the encoded bin index of the previous message, in a block-

Markov fashion. The destination suitably combines the source and relay transmissions,

possibly coherently combining the identical bin index transmissions, in order to achieve

higher rates than with the direct transmission alone. We note that practical implementa-

tions of this cooperation scheme can be obtained with suitable configurations of multi-level

codes [87].

Of course, full decoding at the relay can, in some circumstances, be a limiting factor;

the rates achieved using this form of cooperation are no greater than the capacity of direct

transmission from the source to the relay. As one alternative in such circumstances, Cover

and El Gamal propose the observation scheme, in which the relay encodes a quantized

version of its received signal. The destination combines information about the relay received

signal with its own in order to form a better estimate of the source message. For Gaussian

noise channels, the destination can essentially average to two observations of the source

message, thereby reducing the noise.

Broadly speaking, we can expect cooperation (resp. observation) to be most beneficial

when the channel between the source and relay (resp. relay and destination) is particularly

good. For intermediate regimes, Cover and El Gamal propose superposition of the two

schemes in order to maximize the achievable rates.

Of the remaining configurations depicted in Fig. 2-5, only parallel relay channels (cf.

Fig. 2-5(b)) and multiple-access channels with relaying (cf. Fig. 2-5(c)) have received at-

tention in the literature. Schein and Gallager [66] introduced the parallel relay channel

model in an attempt to make the classical relay channel symmetric. Schein [65] considers a

'The names facilitation and cooperation were introduced in [171, but the authors did not give a name to
their third approach. We use the name observation throughout the dissertation for convenience
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number of coding techniques for various regimes, and develops tighter converse results for

certain discrete alphabet channels based upon ideas from distributed source coding [8].

Willems and others [88, 91, 89, 90] have examined the multiple-access channel with

varying degrees of cooperation and generalized feedback between the transmitting terminals.

Kramer and Wijngaarden [48] study a multiple-access channel model in which the mobiles

share a common relay between themselves and the basestation. Sendonaris et. al [68, 69,

70] consider cooperative diversity for a multiple-access channel with relaying and fading,

building upon the earlier work of Willems [91]. The transmitters and receiver employ a two-

user generalization of the cooperation scheme developed in [17], and, under the condition

that the signal-to-noise ratio (SNR) between the transmitting terminals is high, cooperative

diversity of this form is shown to enlarge the achievable rate region (including increasing the

sum rate for the case in which the transmitters and receivers possess knowledge of the fading)

for ergodic fading, as well as improve outage performance under strict delay constraints or

for non-ergodic fading [69, 70]. Most recently, a variety of results for extensions to multiple

relays have appeared in the work of Gupta, Gastpar, and others [33, 29, 28, 27].

These studies offer techniques for analyzing certain multi-terminal communications

problems, and suggest coding and decoding strategies that can be appropriately reduced

into practice. There appear to be two general classes of approaches to relay processing and

re-transmission. In one class, the relay decodes the source message and re-transmits some

information about the message. We refer to techniques in this class broadly as decode-and-

forward schemes. For example, the relay might decode the message and simply repeat the

transmission, as in regenerative repeaters, or it might transmit additional parity bits about

the message, as in the cooperation scheme of [17]. In the other class, the relay tries to

convey a representation of its received signal to the destination, so that the destination can

effectively combine two receive signals and decode the message. We refer to this second

class broadly as observe-and-forward schemes. For example, the relay might simply amplify

its received signal, as in amplifying repeaters [66], or it might quantize or rate-distortion

code its received signal and encode for transmission to the destination [17]. As we have

mentioned, superposition of the two classes was proposed in [17].
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3.2 Fading Channel Capacity

Because of the wide variety of conditions under which wireless systems--even single-user

point-to-point links-can operate, several notions of capacity have been developed for fading

channels. These include Shannon (ergodic) capacity, capacity-vs.-outage (with delay-limited

capacity as a special case), and average capacity. A very nice and more in-depth review of

these notions of capacity is given by Berry [9].

Two issues that significantly influence the capacity notions are the extent to which

the fading varies during a coding interval, or the degree to which temporal diversity may

be exploited, and the amount of channel state information available at the transmitters

and receivers. Of the various settings that we mention in this section, we stress that we

focus throughout the rest of the dissertation scenarios in which accurate channel state

information is available at the receivers but not the transmitters. While we address ergodic

fading environments in which temporal diversity can be fully exploited in Chapter 4, we

focus on non-ergodic fading environments in which no temporal diversity can be exploited

throughout the remainder of the dissertation in Chapters 5 and 6.

To briefly describe the various notions of capacity, consider a single-user additive white

Gaussian noise (AWGN) channel with frequency nonselective fading. We model the channel

in complex baseband-equivalent form as

y[n] = a[n] x[n] + z[n] , (3.1)

where x[n] is the transmitted signal, a[n] captures the effects of multipath fading, and z[n]

captures the effects of receiver thermal noise and other forms of interference.

3.2.1 Shannon Capacity

In this section, we discuss Shannon capacity for several cases of the model in (3.1).

Ergodic Fading, Full Temporal Diversity

When a[n] corresponds to a stationary and ergodic process, its ergodic structure emerges if

coding is performed over long blocklengths, and Shannon capacity becomes a useful measure

of the maximum rate of reliable communication over the channel. In terms of diversity, we
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note that these temporal variations allow the coding strategy to fully exploit temporal

diversity.

Reliable communication is in the sense of codeword error probabilities approaching zero

asymptotically. Several different quantities for Shannon capacity (and their associated

coding and decoding schemes) arise depending upon whether the receiver or transmitter

obtain fading state information.

For example, if only the receiver measures the fading process to high accuracy, then the

fading can be viewed as an additional channel output, and the mutual information between

input and output may be written as

I(x; y, a) = I(x; a) + I(x; y~a)

= I(x; ya)

=E[I(x;ya= a)] , (3.2)

where the first equality results from the well-known chain rule for mutual information,

the second equality results from the fact that the transmit signal x is independent of the

fading process a, and the third equality results from the definition of conditional mutual

information. In the case of z[n] being i.i.d. complex Gaussian with variance No and x[n]

being i.i.d. complex Gaussian 2 with variance P, the mutual information in (3.2) becomes

the channel capacity [22]

CCSIR = E log (I+ N , (3.3)

which can be computed using the stationary distribution of the fading process a [n].

If the receiver can share channel state information with the transmitter, e.g., by means

of a separate feedback channel, then the transmitter can adapt x[n] to the channel states.

A simple adaptation rule would be to conserve power by not transmitting when the channel

SNR falls below a certain threshold, and transmit with high power when the SNR lies above

the threshold. Any adaptations must be performed subject to appropriate average or peak

power constraints. More generally, Shannon capacity is achieved in the Gaussian noise case

by a "water-pouring" power allocation [19] over the fading states [30]. In this case, the

2The choice of x[n] complex Gaussian achieves capacity under an average power constraint of P.

46



Shannon capacity expression can be written in the form [30]

CCSIR,CSIT = Max E log I + aIP(a) (3.4)
P(-) No

where P(-) represents the power allocation function, subject to, e.g., an average power

constraint E [P(a)] < P. The case of state information available to the transmitter causally

can be addressed [9], but the resulting capacity expressions are too complicated to lend

much insight.

The case of channel state information available to neither to the transmitter nor the

receiver has also been examined. Abou-Faycal et. al [1, 2] were the first to examine this

case. While no convenient expressions for capacity were obtained, the authors prove the

interesting result that capacity achieving input distributions are discrete and have value

zero as a high probability input.

Finally, we note that all of the above results suggest that fading channel capacity with

additive white Gaussian noise increases as log(SNR) for high SNR. Another interesting set

of results suggest that fading channel capacity instead increases as log(log(SNR)). While

we focus throughout the dissertation on the prior framework, it is important to keep these

emerging results in mind.

Non-Ergodic Fading, No Temporal Diversity

In certain circumstances, delay constraints on the system may prevent the fading process

from revealing its ergodic structure within the coding interval. Or more generally, the fading

process may be non-ergodic, as in the case of completely stationary environments whose

geometries are unknown at system design time. In terms of diversity, we note that lack of

temporal variations in the channel prevent the coding strategy from exploiting temporal

diversity. In these cases Shannon capacity is not a useful performance measure for system

design because it is often zero.

To see why this is so, let us consider the non-ergodic fading process a[n] = a for all n

in the model (3.1). In this case, the wireless channel is appropriately modeled as a family

of channels indexed by the value of a = a, i.e., a compound channel [50]. The Shannon
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capacity of the compound channel can be shown to be

Ccompound = max inf I(x; yIa) (3.5)
px(x) a

The problem with Shannon capacity in this context is that, for families in which a can be

very close to 0, as with Rayleigh fading, the Shannon capacity (3.5) is arbitrarily small or

zero. Thus, Shannon capacity is not a useful tool for system design in such scenarios.

Essentially, Shannon capacity breaks down because we cannot guarantee reliable com-

munication of any fixed, non-zero rate a priori since the realized channel SNR may not

support that rate. There are several approaches to developing useful performance measures

in such cases, and we briefly describe capacity-vs.-outage and average capacity next. Both

rely on a probability distribution over the family of channels, corresponding to a composite

channel framework [50].

3.2.2 Capacity-vs.-Outage

The notion of capacity-vs.-outage examines the tradeoff between a fixed rate and the prob-

ability that rate is achievable over the composite channel. For example, continuing with

our non-ergodic Gaussian fading channel discussed above, for a fixed rate R certain channel

realizations will support the rate, i.e., those with

log (I+ ;aP > R

and other channel realizations will not support the rate, i.e., those with

log 1+ ap)< R.
No)

The event log (1 + jaj2 P/No) < R is referred to as an outage event, and the probability

of this event is referred to as the outage probability of the channel. Since generally Ro

achievable implies R achievable for all R ; R 0 , we expect the outage probability to be a

non-decreasing function of R. In the Gaussian case, this can be readily shown because the

outage probability for successively larger values of R corresponds to the cumulative distri-

bution function of the fading random variable for successively larger arguments. Finally,

the capacity-vs. -outage is defined to be the maximum rate with outage probability less than
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some level. Delay-limited capacity is the special case of capacity-vs.-outage corresponding

to zero outage.

Capacity-vs .-outage was introduced by Ozarow, Shamai, and Wyner [59] to examine the

performance of certain cellular systems with delay constraints. It is intimately related to the

more general and precise c-capacity framework of Verdu and Han [86], and this relationship

was solidified in the work of Caire, Taricco, and Biglieri [13]. Both [59, 13] extend the

notion (beyond our simple example outlined in the above discussion) to handle block-fading

models with delay constraints limiting the number of blocks available for transmission.

3.2.3 Average Capacity

In the capacity-vs.-outage framework, coding and modulation are performed at some fixed

and pre-specified rate, and given the channel realization, this rate is either achievable or

unachievable. Another option for coding and modulation would be to code for a monotoni-

cally increasing set of rates, e.g., by means of general superposition codes for the broadcast

channel [19]. Depending upon the channel realization, rates only up to a certain point are

achievable. In this case, one can design the coding scheme to maximize the expected achiev-

able rate. This average capacity framework may only be useful if paired with appropriate

source-coding techniques, such as successive refinement coding [62]. Such an approach was

originally proposed for fading channels by Shamai [71].

3.3 Multi-Antenna Systems

Recently there has been great interest in the use of multi-antenna physical arrays at the

transmitters and/or receivers in a wireless system. Physical arrays offer space diversity to

combat fading, or when sufficient knowledge of the channel conditions are available at both

the transmitter and receiver, offer beamforming to combat both fading and interference

from other terminals, and other wireless systems in the same band. As a result, physical

arrays increase capacity and improve robustness to fading. Motivated by these possible

gains, a great deal of research effort has focused on design of practical space-time codes

and their associated decoding algorithms. Several studies have shown that, aside from

suitable encoding and decoding algorithms, the key to leveraging spatial diversity with

physical arrays is to have separation among the antennas on the order of several (3-10)
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Figure 3-1: Block diagrams relating a point-to-point physical array (a) and a multi-user
virtual array (b) arising from cooperative diversity transmission.

wavelengths of the carrier frequency so that the fading coefficients are uncorrelated. As

carrier frequencies increase, this constraint becomes less restrictive; however, terminal size

also decreases with time and circuit integration, thereby limiting the number of antennas

that can be effectively placed in a transmitter or receiver.

For systems in which size constraints limit the number of antennas that can be placed

in the transmitters or receivers, our research examines issues associated with creating a

virtual array by allowing multiple users to cooperate and effectively share their antennas.

Fig. 3-1 compares block diagrams for physical and virtual arrays. While multi-antenna

array problems are generally treated at the physical layer, virtual arrays can be dealt with

at a variety of layers, including interaction across layers.

Clearly, much can be gained from comparing virtual arrays to physical arrays, as in

Fig. 3-1. As we exploit in Chapters 4 and 5, the performance of physical array systems

50



ZI

x1  '9ii - Yi ---

\ a12 12L-

1R Z2
a22

,92R

aT1 ZR

3TR + YR

Figure 3-2: Multi-antenna system model.

provides useful performance bounds for virtual array systems. Furthermore, space-time

code designs for physical arrays can be readily adapted to cooperative settings.

Fig. 3-2 shows a general model for multi-antenna systems utilizing T transmit and R

receive antennas. The model can be expressed in vector form as

y = Ax + z (3.6)

where A is a R x T matrix, and y and z (resp. x) are column vectors of size R x 1 (resp.

T x 1). Here the element [A]r,t = ar,t captures the effects of multipath fading between

transmit antenna t and receiver antenna r, while Zr captures the effects of receiver thermal

noise and other forms of interference. Note that the multi-antenna model of Fig. 3-2 is a

special case of the general wireless network (cf. Chapter 2) consisting of a single transmitter

and receiver, with vector inputs and outputs, respectively.

There has been great and growing interest in channels of the form shown in Fig. 3-2.

Initially, attention focused on systems with multiple receiver antennas and their associated
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diversity combining algorithms, e.g., maximum-ratio and selection combining, and array

processing techniques, e.g., beamforming and interference mitigation, [42, 60], but more

recently systems employing multiple transmitter antennas, possibly with multiple receiver

antennas, have been emphasized. Transmit antenna arrays generally require more sophis-

ticated algorithms than receive antenna arrays alone, both because different signals can

be transmitted from the multiple antennas and because these signals superimpose at the

receiver antennas. Substantial energy has focused on characterizing the ultimate limits

on performance for multi-antenna systems, and designing practical coding and decoding

algorithms that approach these limits.

3.3.1 Fundamental Performance Limits

Of late, there has been substantial work characterizing the limiting performance of multi-

antenna systems under a variety of fading conditions. For example, as discussed in Sec-

tion 3.2.1, for systems without delay constraints and with sufficient fading variability (er-

godicity), within the coding interval, classical Shannon theory provides the capacity of the

channel. The Shannon, or ergodic, capacity for the channel model in Fig. 3-2 has been

developed for several different cases of channel state information available to the transmit-

ter and/or receiver: no channel state information [1, 2, 55, 94]; channel state information

available to the receiver only [79, 57]; state information available to both transmitter and

receiver [79].

Shannon (Ergodic) Capacity

The ergodic capacity results to date suggest that dramatic increases in capacity are pos-

sible using multi-antenna systems. For example, for the case of channel state information

available to the receiver only, the ergodic capacity increases by min{T, R} b/s/Hz for each

additional 3 dB of SNR, in the high SNR regime [79].3

For the case of no channel state information at either the transmitter or receiver, the

channel capacity depends upon the number of transmit and receive antennas as well as

the coherence time K of the channel, defined to be the number of samples for which the

3The ability to employ beamforming when channel state information is additionally available at the
transmitter further provides an SNR gain, but the slope of the capacity function remains min{T, R} b/s/Hz
for each additional 3 dB of SNR in the high SNR regime [79, 11].
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channel remains constant in the assumed block fading model before it changes to another

independent realization. In this case, the ergodic capacity has been shown to increase as

T'(1 - T'/K) b/s/Hz for each additional 3 dB of SNR in the high SNR regime, where

T' = min{T, R, [K/2j } [94]. The slope is maximized by employing T = LK/2] transmit

antennas, assuming R > T, and in fact degrades if more than this number of transmit

antennas is utilized. In this case, the capacity increases as T/2 b/s/Hz for each additional

3 dB of SNR.

As a point of reference, the capacity of an AWGN channel (without fading) increases by

only 1 b/s/Hz for each additional 3 dB of SNR in the high SNR regime. Thus, quite large

spectral efficiencies can, in principle, be achieved using multi-antenna systems. Adding

antenna elements, along with suitable transmitter coding and receiver processing methods,

is akin to adding cabling in a wire-line setting.

Capacity-vs.-Outage, Delay-Limited Capacity

As discussed in Section 3.2.2, for systems with tighter delay constraints, the channel may not

exhibit its ergodic nature within a coding interval, so that the Shannon capacity is zero. In

such cases, alternative performance metrics such as capacity-vs.-outage/outage probability

[59, 12] or delay-limited capacity [34] can be employed to evaluate the efficacy of multi-

antenna schemes. The work of Foschini and Gans [25] treats the case of burst transmissions

and examines multi-antenna outage probability. Telatar [79] performs a similar analysis,

and provides analytic forms of the outage probabilities. Narula, Trott, and Wornell [57] also

utilize outage to compare the performance of practical multi-antenna schemes, several of

which are mentioned below. Finally, Biglieri, Caire, and Taricco [13, 11] examine the outage

probability when coding across a finite number of independent channel realizations. Foschini

and Gans, Telatar, and Narula et. al treat the case of channel state information available to

the receiver only, while Biglieri et. al treat the case of channel state information available

to both the transmitter and receiver. Again, capacity increases as min{T, R} b/s/Hz for

each additional 3 dB of SNR in the high SNR regime; this result is observed for capacity-

vs.-outage in [25, 79], and for delay-limited capacity in [11].

In addition to increasing capacity, multi-antenna systems can be viewed as improving

system robustness to fading conditions. Specifically, dramatic decreases in outage probabil-

ity for a fixed rate have been observed [25, 79, 57].
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3.3.2 Space-Time Codes

To approach the high spectral efficiencies forecast by the results in Section 3.3.1, many

authors have examined suitable coding and decoding methods, called space-time codes, for

multi-antenna systems. Early schemes consisted of scalar-coded methods, e.g., repetition

diversity over orthogonal frequency bands as well as bandwidth-conserving schemes such

as time-shifting and phase-sweeping diversity. See [57] and the references therein. Notable

developments in the area of vector-coding for multi-antenna systems have come from the

work of Foschini and Gans [24, 25] on the BLAST system; the work of Alamouti [5] on

simple block codes that achieve full diversity and have particularly simple, linear decoding

algorithms; the work of Tarokh et. al [77, 76] on space-time trellis and block codes; and

the work of Hochwald, Marzetta, and others [39, 40, 38] on non-coherent and differential

space-time coding and modulation methods.

3.4 Wireless Networks

As we have emphasized, opportunities for exploiting cooperative diversity arise primarily in

networks of radio terminals, and, except in the simplest cases (e.g., the three-terminal relay

channel described above), these networks require rather involved architectures in order

to function. Furthermore, depending upon the application and amount of pre-existing

infrastructure, these architectures can take on very different forms. We now summarize

important results obtained for both infrastructure networks and ad-hoc networks.

3.4.1 Infrastructure Networks

There is a vast array of literature on specific cellular systems, e.g., TDMA (GSM, IS-136),

CDMA (IS-95). From the perspective of fundamental performance limits at the physical

layer, infrastructure networks are treated primarily at the cell level, typically treating inter-

cell interference as noise. Specifically, the uplink and downlink transmission in the cell

are often modeled as multiple-access and broadcast channels, respectively, with or with-

out multiple-antennas at the basestation, channel state information at the basestation and

mobiles, and inter-cell interference through the cell.

Early fundamental work by Wyner [92] on cellular uplink models treated systems with-

out fading and dealt with inter-cell interference by allowing all the basestations to coopera-
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tively decode transmissions from the mobiles. It was determined that intra-cell TDMA was

sufficient for optimality, but that inter-cell TDMA degrades performance. Building upon

this model, Shamai and Wyner [72, 73] incorporate fading measured only at the receivers

into the model, and examine lower complexity receivers, and their associated inter-cell in-

terference issues, in which only one or two basestations decode the transmissions of mobiles.

Other work incorporates fading measured by the receivers and fed back to the trans-

mitters, allowing more sophisticated forms of power control in the network. Knopp and

Humblet [46] showed in the symmetric case, and Tse and Hanly [83] in the more general

case, that to maximize the total uplink throughput, in terms of Shannon capacity, it is suf-

ficient to have only the user with the strongest channel to the basestation transmit at any

given time-a multi-user generalization of Goldsmith and Varaiya's results [30] on single-

user water-pouring over fading channel states. Moreover, such power control schemes offer a

form of multiuser diversity in that, as the number of users increase, it is more likely that at

least one of them has a strong channel to the basestation. This multiuser diversity translates

into the total throughput of a multiple-access channel with fading being much larger than

that of a non-faded channel. These results have been extended to downlink channels [53]

and other forms of channel capacity such as delay-limited capacity and capacity-vs.-outage

[34, 54, 52].

3.4.2 Ad-Hoc Networks

Ad-hoc networks, under the name packet radio networks, were introduced by [43, 44] as

a wireless extension of packet switching in wire-line networks. Later research, particularly

[51] and references therein, re-examined the issues in light of technological advances. Nu-

merous authors have compared direct, or singlehop, transmission and cascade, or multihop,

transmission under a variety of channel conditions and perspectives; see [80] and references

therein. Still more authors have examined issues such as scheduling, routing, and organiza-

tional problems associated with these networks. A thorough review of this work is given by

Kassab [45]. Ad-hoc networks have traditionally been developed within the computer and

data networking communities, and recent work in the information theory community has

contributed some fundamental performance and scaling laws.

In a landmark paper [32], Gupta and Kumar prove that certain fixed ad-hoc networks

containing M stationary terminals have total throughputs per terminal that decay to zero
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with increasing M in a constant area. Specifically, under no interference, or limited inter-

ference, protocols utilizing only direct or cascade transmission, the capacity per terminal

decreases on the order of 1/ M for carefully constructed scenarios-terminal locations,

traffic patterns, and transmit powers optimally chosen-and on the order of 1//M log M

for more random scenarios-terminals locations and traffic patterns random, fixed power.

The fixed protocol maximizes transport capacity (bit-meters/second) by having terminals

transmit to their nearest neighbors. It is interesting that Shepard [75] draws essentially

the same conclusion, that terminals should transmit only to their nearest neighbors, by ex-

amining the asymptotic behavior of the interference from non-nearest neighbors. In Gupta

and Kumar's analysis, nearest neighbors are on the order of i/v'M away in normalized

distance. To travel a normalized distance of 1 to its destination, each packet must travel

over on the order of JMA hops. This growing number of hops in the protocol limits the

throughput per terminal. These results suggest that, without more sophisticated network

protocols, providing high data rates requires fixed networks to consist of small numbers of

terminals, or utilize extremely large bandwidths as in Shepard [75].

Building upon [32], a clever paper by Grossglauser and Tse [31] examines highly mobile

ad-hoc networks and proves that a suitable cascade transmission policy provides throughput

of order 1 per terminal as the network density increases, provided long delays are tolerable

to the application. The basic idea of the mobile protocol is as follows. At any given time, a

terminal transmits packets-either its own or packets to be forwarded on behalf of another

terminal-only to the receiving terminal to which it is closest. As the terminal density

increases, the distances over which the transmissions occur become very small, so that

very little power is required and interference is minimal. Over time, every terminal carries

queued packets for every other terminal, and each packet is only forwarded once, when

an intermediate terminal is close to the intended destination. Thus the protocol offers

a so-called multi-user diversity effect: each time the destination terminal receives it will

very likely be near either the original source terminal or an intermediate terminal carrying

packets for the source.

We emphasize that the models, protocols, and results of [32] and [31] represent certain

endpoints in the spectrum of possible conditions in which ad-hoc networks might oper-

ate in practice. Emerging research appears to be addressing some of the interior points.

First, while both papers address the throughput capacity per terminal as the number of
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terminals within a constant area becomes large, recent work by Toumpis and Goldsmith

[82] has formulated an achievable rate region for multihop routing among a given finite

number of terminals. Interestingly, [82] introduces rate vectors with negative rates corre-

sponding to forwarding information for another terminal. We also note that Toumpis and

Goldsmith have obtained asymptotic results [81] similar to [32]. Second, both [32] and [31]

address path-loss and deal with inter-user interference; however, both leave out the issue

of multipath fading and only consider transmission formats based upon direct and cascade

transmission. In addition to our work on relay and cooperative transmission, Gupta and

Kumar appear to be incorporating ideas from the classical relay channel into their work

[33] to address fading more explicitly. Third, along the mobility dimension, [32] examines

completely stationary networks, while [31] examines completely mobile networks. Fourth,

both works allow the delay to become arbitrarily large. To our knowledge, no work has

addressed either of these last two issues in a comprehensive way.
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Chapter 4

Cooperative Diversity with Full

Temporal Diversity

In this chapter, we specialize our wireless network channel models of Chapter 2 to multiple-

access channels with cooperative diversity (cf. Fig. 2-5(c)). As in Chapter 2, we focus on

channels with additive white Gaussian noise, with and without multipath Rayleigh fad-

ing. Our objective is to characterize fundamental performance limits when the channels are

ergodic, so that full temporal diversity can be exploited, by examining the well-known Shan-

non capacity region [19]. The capacity region represents the largest set of transmission rates

that can be reliably communicated over the channel, in the sense of asymptotically negligible

codeword error probability with long codewords and unconstrained decoding complexity.

Our basic models are similar to those employed by Sendonaris et. al [68, 67, 69, 70],

who were the first to examine cooperative diversity in the wireless setting. Sendonaris et.

al examined the case of channel phase information being available to the transmitters, and

demonstrate that cooperative diversity increases the sum-rate over non-cooperative trans-

mission. We demonstrate that the degree of channel knowledge available to the transmit-

ters significantly influences the relative utility of cooperative diversity over non-cooperative

transmission in such settings. In particular, for the case of channel state information avail-

able only to the receivers emphasized throughout the dissertation, we show that cooperative

diversity does not increase the maximum sum-rate over non-cooperative transmission.

In addition, we discuss how the multiple-access channel with cooperative diversity gen-

eralizes various relay channel models. The classical relay channel [17], parallel relay channel
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[66, 65], and multiple relay channel [33, 29, 28, 27] models all can be viewed as multiple-

access channels with only one of the terminals sending information. Because the perfor-

mance advantages in terms of sum capacity for the multiple-access case must be shared by

the cooperating terminals, various results for relay channels can be interpreted as focusing

all of network resources on a particular terminal, which reaps all of the associated gains.

More generally, we point out that multiple-access channels with cooperative diversity

are special cases of multiple-access channels with generalized feedback, a model originally

developed by Carleial [14] and also studied by Willems [88, 91]. Within the generalized

feedback setting, channel outputs are available at the encoders as well as at the decoder.

These "feedback" outputs are generally different, and may have varying relationships with

the channel output at the decoder. In the cooperative diversity setting, all three channel

outputs are conditionally independent given the inputs. Thus, the feedback signals in our

setting are more a means for the cooperating encoders to observe each others transmissions,

and suitably adapt their own transmissions, instead of a means for listening to what the

decoder receives. In this sense, "cooperative diversity" seems a more appropriate term than

"feedback".

And outline of this chapter is as follows. First, we setup the mathematical framework for

treating the multiple-access channel with cooperative diversity throughout the rest of the

chapter. Second, we focus on the Gaussian case without fading, and develop insights from

inner and outer bounds on the capacity region. Third, with this substantial development

for the Gaussian case without fading, extension to the Gaussian case with fading is fairly

straightforward using well-established results. Consequently, we keep the discussion on

fading brief and focus on the central issue how having channel state information available

at the transmitters impacts the relative utility of cooperative diversity over non-cooperative

transmission.

4.1 Model and Definitions

In this section, we setup the mathematical framework for the rest of the chapter by specifying

our model for Gaussian multiple-access channels with cooperative diversity. We point out

several special cases of the model that have received attention in the literature, and we

qualitatively describe coding strategies that offer good performance in certain regimes.

60



Y1

Source 1 Encoder 1 31. User YO W

Cooperation Decoder

Source 2 0-Encoder 2 Channel 2

Figure 4-1: Block diagram for a multiple-access channel with cooperative diversity.

Finally, we define various objects such as the random channel codebooks, probability of

error, achievable rates, and the capacity region. For convenience, we repeat some of the

more relevant material from Chapter 2, and simplify notation wherever possible.

4.1.1 Block Diagram

Fig. 4-1 shows a general block diagram of a two-user multiple-access channel with coopera-

tive diversity. Although the model can be naturally extended to more than two cooperating

terminals, we restrict our attention to the two-user cases for simplicity of exposition.

Two sources generate independent messages wi and w2. These messages are encoded

into codewords x, and x2 that can also depend causally on the channel outputs (generalized

feedback signals) yi and Y2, respectively. The decoder observes the channel output yo and

estimates the source messages as vi and i v2, respectively.

In the complex Gaussian case, a discrete-time, baseband equivalent channel model has,

for each sample time k,

yo [k] [k] aO,2[k] 1 - zo[k]

y2[k] = 1,[k] ai,2 [k] -x 2[k] + zi[k] (4.1)

y2[k] a2,1[k] a2,22 [k] J

We point out that, throughout this chapter, we relax the half-duplex constraint discussed in

Section 2.1 and allow the encoders to simultaneously transmit and receive. This explains,

why x 1 [k] (resp. x2 [k]) affects yi [k] (resp. x2 [k]) in (4.1). In principle, each encoder knows

its channel input and can remove the effects of the input from the corresponding channel
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output. Thus, in effect,

y1[k] = al,2[k] x 2 [k] + zik , (4.2)

and similarly for y2 [k].

As in Chapter 2, aj,i[k] captures the effects of attenuation and multipath fading between

input i and output j, and zj[k] captures the effects of additive noise and other forms of inter-

ference. In this section, we treat the case of aj,i[k] being fixed coefficients aj,i that are known

to the encoders and decoder, while in later sections we model aj,j [k] as stationary and ergodic

random processes known to at least the decoder and possibly the encoders. Throughout we

model z [k] as mutually independent, zero-mean, circularly-symmetric complex Gaussian

white noise processes, each with variance Nj.1

4.1.2 Parameterization

In the sequel, we consider n consecutive channel uses of the channel, where n is large.

Where appropriate we group collections of samples of the same signal into (possibly random)

vectors. For example, we write

xi[l] = [Xil] xi[l i+ 1] ... xi[l + n - 1] , (4.3)

and similarly for yj [1] and zj [1]. When the block index can be inferred from the context, we

drop it for notational compactness.

Because of transmit power constraints in the system, the transmit signals are constrained

to satisfy the average power constraints

Jxj[k]| (44
k=1

with high probability for large n. With this parameterization, it is useful to express our

results in terms of the signal-to-noise ratios (SNRs)

Pi
sjti = jaj,ij N' . (4.5)

'Recall that a unit-variance random variable u being circularly-symmetric means u = U- + juI, where
the real and imaginary parts, UR and uj, respectively, are uncorrelated and each have variance 1/2.
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In later sections of this chapter, when the fading coefficients are random variables ajj, we

denote the corresponding SNR random variables by sj,i and parameterize performance by

the average SNRs E [sj,i].

4.1.3 Special Cases and Coding Strategies

Given the channel model and parameters described above, we now illustrate various special

cases of the network in Fig. 4-1, including the multiple-access channel (without cooperative

diversity), the relay channel, and multi-relay channels. These special cases are important

because work by other researchers on these problems contributes insights to our understand-

ing of the more general problem. In particular, work on these special cases provide certain

coding strategies, some of which we employ directly or modify in this and later chapters.

Furthermore, examination of the more general problem in the sequel lends certain insights

about the special cases.

Multiple-Access Channel

The well-known Gaussian multiple-access channel [19] is an immediate special case of the

general channel model in Fig. 4-1. It arises if, for example, yj = 0, j = 1, 2. Because

the encoder channel outputs are useless, the encoders cannot cooperate in any fashion and

instead transmit independently. When used for the more general channel, we refer to in-

dependent signaling as non-cooperative transmission. As we might expect, non-cooperative

transmission is effective in the general model when s1,2 and s2,1 are extremely small.

Relay Channel

The well-known Gaussian relay channel without feedback [19] is another immediate special

case of the general channel model in Fig. 4-1. It arises if, for example, encoder 2 transmits

no information of its own, i.e., w2  0, and encoder 1 has no channel output, i.e., yi _ 0.

For convenience, Fig. 4-2 shows Fig. 4-1 redrawn under these conditions, with Encoder 1

relabeled simply "Encoder", and Encoder 2 relabeled "Relay".

As we discussed in Section 3.1, there are three basic coding strategies that have been

developed for the general Gaussian relay channel by Cover and El Gamal [17]. In the

first strategy, which Cover and El Gamal call "facilitation" in [17] and we call "direct"

transmission throughout the dissertation, the relay chooses a channel input to maximize
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Figure 4-2: Block diagram for a relay channel.

the amount of information that can be transmitted between the encoder and decoder. In

essence, the relay tries to minimize the amount of interference it causes the encoder. Direct

transmission becomes appealing when either 82,1 or so,2 is very small. In the second strategy,

which Cover and El Gamal call "cooperation" in [17] and we call "decode-and-forward"

throughout the dissertation, the relay fully decodes the source message wi from its channel

output Y2. With the message available to both the encoder and relay, the two cooperatively

transmit correlated signals that coherently combine at the decoder. Decode-and-forward

is appealing when sO,2 is not too small and S2,1 is large. Finally, in the third strategy,

which Cover and El Gamal do not name and we call "observe-and-forward" throughout the

dissertation, the relay communicates a representation 92 of its channel output Y2 to the

decoder, in effect giving the decoder another observation from the channel with which to

fuse its own observation yo. The observation is generally useful when S2,1 is not too small

and sO,2 is large enough that 92 is a high-quality representation of Y2.

Multiple-Relay Channels

More recent extensions of the relay channel are also special cases of the Gaussian multiple-

access channel with cooperative diversity, but with typically more than two users. For

example, the multi-relay channel model of [33, 29, 28, 27] with M relays is a special case

of the (M + 1)-user multiple-access channel with cooperative diversity, and has structure

similar to that shown in Fig. 4-2 but with M relays instead of one. The parallel relay

channel [66, 65] is a special case of the multi-relay channel in which the encoder signal does

not affect the decoder channel output, e.g., ao,1[k] = 0. All these cases consider only a

single information source.
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In addition to coding strategies based upon generalizations of decode-and-forward trans-

mission [33] and generalizations and combinations of decode-and-forward and observe-and-

forward transmission [27], the authors in [66, 65, 28] also consider coding strategies in

which the relays simply amplify what they receive subject to their power constraint. These

"amplify-and-forward" strategies, as we refer to them throughout the dissertation, are also

shown to be appealing in certain regimes. For example, [29, 28] shows that amplify-and-

forward asymptotically achieves capacity of the Gaussian multi-relay channel as M -+ oc.

4.1.4 Definitions

We confirm some of the intuitive statements made in the previous section by partially

characterizing, in the next few sections, the so-called capacity region [19, Chapter 14] of

the Gaussian multiple-access-channel with cooperative diversity. In this section, we provide

the necessary definitions. As we might expect, since the cooperative diversity scenario is a

special case of the multiple-access channel with generalized feedback, our definitions mirror

those of Willems [91]. More generally, we assume throughout the sequel that the reader

is familiar with the concepts and properties of entropy, differential entropy, and mutual

information as developed in Cover and Thomas [19].

A (two-user) memoryless Gaussian multiple-access channel with cooperative diversity

consists of the following:

" Channel inputs x, and x2 , with corresponding alphabets X 1, X2 , and channel outputs

yo, yi, and y2, with corresponding alphabets Yo, Y1, and Y2. Due to complex-valued

additive Gaussian noise in the channel model (4.1), Yo,Y1, and Y2 are the complex

plane C. Generally, X1 and X 2 will also be the complex plane C, though this is not

necessary.

" Channel probability law mapping inputs to outputs

2

Pyo,y1,y2J 1,x2 (yo,1,Y2JX1,x2) = 1JPyix1,x2(yilX1,x2) . (4.6)
i=O

By memoryless, we mean that the probability law for n consecutive uses of the channel
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is the product

pyo,yI,y2jx1,x2(y, yiy21, X2)=

n

11 Pyo[k],y1[k],y 2 [k]Ix1[k],x 2 [k](yo[k], Yi[k], y 2 [k]jx$ [k], x2 [k]) . (4.7)
k=1

A communication strategy for the Gaussian multiple-access channel with cooperative

diversity consists of the following:

e Messages wi C Mi {1, 2,... , }, i = 1, 2, distributed uniformly and independently.

The rates in bits per channel use are then

1
- log 2 Mn

i = 1,2. (4.8)

* Encoding functions,

message wi and past

xi, i = 1, 2. That is

one for each encoder for each time k, that map the encoder's

channel observations yj [1], ... , yi [k - 1] into its transmitted signal

xi[k] = fi,k(wi, y[1], yi[2], . .. , y [k - 1]) , i = 1,2 . (4.9)

Note that each encoder is a causal function of the encoder's message wi and channel

output yi, i = 1, 2.

A decoding function mapping the channel output vector yo into M 1 x M 2 , i.e.,

(w, w2 ) = 9(Yo) . (4.10)

One way to characterize system performance for a particular communication strategy

over a given channel is in terms of the average probability of error in the decoder. This

quantity is defined in the standard way as follows.

Definition 1 The average probability of error for a communication strategy operating over

a Gaussian multiple-access channel with cooperative diversity is

p(n) = Pr [g(yo) = (wi, w2)]
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Note that the probability defined in (1) is for error events in a block of n channel uses.

Generally it is the case that p n) is decreasing in n for fixed transmission rates, and in-

creasing in transmission rates for fixed n. A reasonable objective for a system designer is

to determine communication strategies that have minimal average probability of error for

a given blocklength; however, solving such constructive problems becomes intractable as

n becomes large. Alternatively, using extensions of arguments originally due to Shannon

[74], we can ascertain whether there exist communication strategies with fixed transmission

rates having negligible average probability of error as n becomes large. Although we cannot

characterize the strategies explicitly, i.e., the arguments are not constructive, we can deter-

mine certain conditions on the rates that guarantee the existence of such communication

strategies.

Definition 2 A pair of transmission rates (R 1 , R 2 ) is said to be achievable on a Gaussian

multiple-access channel with cooperative diversity if there exists a sequence of communication

strategies operating over the channel with

M ) = 2[nR , i =1, 2,

and

p) -+as n -+oo.

Given this conventional definition for achievable rates, it is natural to consider the largest

set of achievable rate pairs that can be reliably transmitted over the channel. This set of

rate pairs is the well-known capacity region, and is defined as follows.

Definition 3 The capacity region of a Gaussian multiple-access channel with cooperative

diversity is the closure of the set of achievable rates.

As in many other multi-terminal communication settings [19, Chapter 14], the capacity

region has a compact and useful interpretation: rates inside the capacity region can be reli-

ably transmitted over the channel, in the sense of Definition 2, by communication strategies
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that go largely unspecified; however, certain structural properties of the effective strategies

can be ascertained. Rates outside the capacity region cannot be reliably transmitted over

the channel using any communication strategy.

4.2 Converse: Outer Bound on the Capacity Region

To develop an outer bound on the capacity region for the Gaussian multiple-access channel

with cooperative diversity, we specialize the well-known cut-set bounds to the Gaussian

case. To our knowledge, this outer bound has not been explicitly stated or examined for

the multiple-access channel with cooperative diversity, but it does bear a striking similarity

to the corresponding converse developed by Ozarow [58] for the multiple-access channel

with noiseless feedback. Specifically, we have the following theorem.

Theorem 1 For the Gaussian memoryless multiple-access channel with cooperative diver-

sity, if the rate pair (R 1 , R 2 ) is achievable, then there exists a 0 < IpI 5 1 such that2

R1 5 log (1 + [1 - 1p12][so, + S2,1]) (4.12)

R 2 5 log (1 + [1 - Ip12] [so, 2 + si, 2]) (4.13)

R 1 + R 2 5 log (1 + SO,1 + sO,2 + 21p so,iso,2) . (4.14)

We note that a proof of Theorem 1 follows along the same lines as the proof of the cut-

set bounds [19, Theorem 14.10.1], with the additional steps of appealing to the fact that

the Gaussian distribution maximizes entropy subject to a covariance constraint, utilizing

convexity properties of the logarithm, and applying the power constraints. Due to the

similarity of the multiple-access channels with cooperative diversity and with feedback, the

detailed converse proof given by Ozarow [58] also applies with yi substituted for yo at the

respective encoders. For these reasons, we do not provide a complete proof here.

To see how, for example, (4.12) results, consider the cut-set corresponding to transmis-

sion from encoder 1 and reception at both encoder 2 and the decoder, i.e., a "broadcast"

cut-set. According to the cut-set bound [19, Theorem 14.10.1], if R1 is achievable then

2 As throughout the dissertation, all logarithms are to base-2 unless stated otherwise.
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there exists a joint probability distribution Pxi,x 2 (X1, x 2 ) on x1 and x 2 such that

(4.15)

For the additive white Gaussian noise case in (4.1), we define covariance matrices

Ax 1 ,x2 =

-P* /Ax1 Ax2

p/Ax1Ax2

Jx

Ayo,y 1 ,y 2 =AAx 1,x2 A t+Azo,Z1,Z2I

where Ax1 = Var [xi], i = 1, 2, p is the (complex) correlation coefficient between x, and x 2,

and [A],i = aj,.

Then, following arguments similar to those in [17, 58], we have

I(xi; yo, y2Ix2) = h(yo, y2 |x2) - h(yo, y2 Ix2 , xi)

= h(yo, y2 |x2) - h(zo, z 2 )

= E [h(yo, y2Ix2 = X 2)] - log det(7re)AzO,z 2

< E [log det (re)AyO,y2x2=x2] - log det(7re)Az,0 , 2

= E [log det Ay A-'

< log( E [ao,A1 2  ± a2,1 
2

= E lo 1 A dx2 22 N 0 N 2 .JJ

The first inequality follows from the fact that the circularly-symmetric complex Gaussian

distribution maximizes entropy [78], and the second inequality follows from the well-known

Jensen's inequality.

Finally, for any pair of random variables, standard estimation results tell us the condi-

tional variance AX1 x2=x2 of x, around the conditional mean estimate is no greater than the
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conditional variance of xi around the linear estimate ,1 = (p/Ax2 )X 2 . Thus

E [AI11J2 X21 < E x1 - A X 2 2j

=Ax, (I - Ip12) (4.17)

Substituting (4.17) into (4.16), and applying the power constraint Ax, < E [Jxi12] < p,

yields the desired result (4.12). The result (4.13) follows in the same fashion.

To see why (4.14) is true, consider the cut-set corresponding to transmission from en-

coders 1 and 2 and reception at the decoder, i.e., the multiple-access cut-set. If R1 + R 2

is achievable, then the corresponding cut-set bound implies there exists a joint probability

distribution Px1,x 2 (Xi, X2 ) on xi and x 2 such that

R 1 + R 2 < I(x1, x 2 ; yo) . (4.18)

Again, following arguments similar to those in [17, 58] for the Gaussian case, we have

I(xi, x 2 ; yo) = h(yo) - h(yoIxi, x2 )

= h(yo) - h(zo)

= h(yo) - log(7reNo)

< log(nreVar [yo]) - log(7reNo)

= log(7re[aAx1 ,X2at + No]) - log(7reNo)

= log(1 + [aAx1,x 2at]/No)

=log 1 + AxNIao,2
No

+ 2cos(Zp+

<log 1 + AxI lao,1
2

No

SAx2ao, 2 12

No

aO,1 - Iao ao,1 2 Ax2 |ao,2 2

- a,2)jPj Nx1N

Ax2 lao,2
2  Ax1 ao,1:2 Ax2 ao,2! 2

No N N

< log(1 + so,1 + so, 2 + 21pl ssO5,2)-
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where a = [aoi ao, 2]. The first inequality again follows from the fact that circularly

symmetric complex Gaussians maximize entropy subject to a covariance constraint. The

second inequality follows from matching the phase of the correlation coefficient so that

4p + Zao,1 - Zao,2 = 0, ensuring that the transmitted signals coherently combine at the

decoder. The final inequality follows from substitution of each of the power constraints

Ax, < E [Ix,12] < P, i = 1, 2.

Fig. 4-3 illustrates the shape of the outer bound on the capacity region obtained from

Theorem 1, as well as the achievable rate regions described in more detail in the next section.

4.3 Achievability: Inner Bounds on the Capacity Region

In this section, we describe several communication strategies for the Gaussian multiple-

access channel with cooperative diversity. We compare the corresponding sets of achievable

rates of these strategies with the outer bound obtained in Theorem 1. In particular, we com-

pare the sum-rates in high and low SNR regimes. We focus on non-cooperative transmission

and decode-and-forward transmission. A complete treatment of observe-and-forward trans-

mission requires better understanding of distributed source coding. A nice survey of this

area along with recent progress can be found in [21].

4.3.1 Non-Cooperative Transmission

If the encoders do not exploit their observations yi and y2 from the channel due to complexity

or legacy issues, or these observations are too noisy to be very useful, the transmissions can

take the form of non-cooperative transmission. In this case, the system model reduces to

the classical multiple-access channel, for which the set of achievable rates is well-known [19,

Section 14.3.1].

Theorem 2 The set of achievable rates for non-cooperative transmission over a memoryless

Gaussian multiple-access channel with cooperative diversity is given by the set of all (R 1 , R 2 )
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satisfying

R 1 < log (1 + so,1) , (4.20)

R 2 < log (1 + 80,2) , (4.21)

R 1 + R 2 < log (1 + so,1 + so,2) . (4.22)

Fig. 4-3 also illustrates the pentagon region given by Theorem 2. To compare the

achievable sum rate (4.22) with the outer bound (4.14), let - = (sO,1 + sO, 2)/2 be the

arithmetic mean of the SNRs from the encoders to the decoder. Then non-cooperative

transmission achieves sum-rate log(1 + 2-). The outer bound on the sum rate (4.22) satisfies

log(1 + 23+ 2 |p1 s0,iso,2) < log(1 + 2- + 2 |p|3) (4.23)

< log(1 + 4-) , (4.24)

where the first inequality follows from the fact that the geometric mean of positive numbers

is no greater than their arithmetic mean, and the second inequality follows from the fact

that the magnitude of the correlation coefficient p is no greater than one.

Now we observe that as 3 -* 0, the ratio

log(1 + 43)/ log(1 + 23) - 2 , (4.25)

so that cooperative diversity increases the sum rate by at most a factor of two for low

average SNR. On the other hand, as - -+ oc, the difference

log(1 + 43) - log(1 + 2-) -* 1 , (4.26)

so that cooperative diversity increases the sum rate by at most 1 b/s/Hz for high average

SNR. For M encoders, one can show that cooperative diversity provides sum rate no more

than log(1 + M 2 -), while non-cooperative transmission provides sum rate at most log(1 +

M3), leading to gains in sum rate of at most a factor of M for low SNR and an additional

log(M) b/s/Hz for high SNR. In the following section, we illustrate some regimes in which

such capacity increases can be realized.
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4.3.2 Decode-and-Forward Transmission

The communication strategy described in this section has the encoders exploit their chan-

nel outputs by decoding each other's transmissions and forwarding cooperative refinement

information in order to assist the decoder.

The following theorem is proven in Appendix A.

Theorem 3 The set of achievable rates for decode-and-forward transmission over a mem-

oryless Gaussian multiple-access channel with cooperative diversity is given by the set of all

(R 1 , R 2 ) satisfying

R1 < log (1 + a1s2,1) , (4.27)

R 2 < log (1 + 2s1,2) , (4.28)

R1 + R 2 < log (1 + so,1 + SO,2 + 21(1 - a1)(l - a2)so,lso,2 . (4.29)

for some 0 ai 1, i = 1,2.

The proof in Appendix A utilizes superposition block-Markov coding [18] and backward

decoding [90]. It can be viewed as a two-user generalization of the cooperation strategy

introduced by Cover and El Gamal [17] for the relay channel, or a simplified version of the

strategy developed by Willems, van der Meulen, and Schalkwijk [91] for the multiple access

channel with generalized feedback.

To highlight the communication strategy, we describe the structure of the random code-

books used in the proof; details of encoding and decoding are left to Appendix A. Suppose

x1 = aiPi vi + f(1 - ai)Piu (4.30)

X2 = V a 2P2 v 2 + V(1 - a2 )P 2 u (4.31)

where u and vi, i 1,2, are mutually independent complex Gaussian random variables,

and 0 < a < 1, i = 1, 2. Then xi +-+ u + x2 forms a Markov chain, the development in

Appendix A applies, and the region in Theorem 3 is obtained by varying aj, i = 1, 2. The

signals vi, i = 1, 2 convey fresh information in the current block, and the signal u conveys

cooperative refinement information about the fresh information in the previous block. To

transmit identical refinement information in the current block, each encoder decodes the
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fresh information of the other encoder from the previous block.

This decode-and-forward communication strategy performs well for regimes in which the

inter-encoder SNRs are large, as the example in Fig. 4-3 illustrates. In fact, this strategy

offers the full capacity increases of cooperative diversity in such regimes. As one example,

suppose the 3 = so,1 = so,2 and S1,2, 82,1 -+ 00. We can then allow al, a 2 -> 0 in such a way

that the sum rate bound (4.29) is always smaller than the sum of the other two bounds

(4.27) and (4.28). In the limit, the achievable sum rate approaches log(1 + 4k). Thus, for

small s, the sum rate is essentially doubled over non-cooperative transmission, and for large

- roughly an additional 1 b/s/Hz can be achieved over non-cooperative transmission.

4.4 Rayleigh Multipath Fading

In this section, we briefly consider the scenario in which the fading coefficients aji[k] are i.i.d.

random processes in time and mutually independent of one another. Our discussion can be

extended to the case of stationary and ergodic fading processes as in [83]. As throughout

the rest of the dissertation, we focus on the case of channel state information available to

the receivers only. We preclude the possibility of beamforming and power control by the

transmitters in our discussion, but stress that this is an important area of future work on

the topic.

We will see that the degree of channel state information available at the transmitters can

have a dramatic effect on the utility of cooperative diversity over non-cooperative trans-

mission. For example, for the case in which channel state information is unavailable at

the transmitters but available to the receivers, the sum rate for cooperative diversity is no

greater than the sum rate without cooperation. Achieving gains similar to those obtained

in the Gaussian case requires accurate channel phase information at the encoders, as devel-

oped in [67]. Whether or not cooperative diversity is beneficial when power control is an

option remains an open question.

When the receivers can accurately track the appropriate fading processes, but the trans-

mitters either do not have access to such information or other do not exploit it, as is standard

practice in such conditions [78], we can view the channel observations at the encoders as

the modified outputs

y1 = (y1, a1 ,2) , = (y2, 2, 1) , (4.32)
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respectively, and the channel observations at the decoder as the modified output

5O = (Yo, ao,1, ao,2) - (4.33)

Under this effective channel model, mutual informations between inputs and outputs

reduce to appropriate expectations over the fading distributions. For example,

I(xi,x 2;io) I(xI,x 2 ; a0 ,1 , ao,2 ) + I(x1,x 2 ;yo l ao,, ao, 2 ) (4.34)

= I(xi, x2; yo lao,1, ao,2) (4.35)

= E [I(xi, x2 ; yo lao,1 = ao,1, aO,2 = ao,2)] , (4.36)

where the first equality follows form the chain rule for mutual informations, the second

equality follows from the fact that the channel inputs are independent of the fading processes

when the transmitters have no channel state information, and the final equality follows from

the definition of conditional mutual information.

Similarly,

I(xi;y 21x 2 ) = E [I(xi;y 2 x2 , a2,1 = a 2,1 )] (4.37)

I(x2 ; i x1) = E [I(x 2 ; y Ixi, 21,2 = a1,2)] , (4.38)

and so forth.

Following arguments similar to those leading to (4.19), we have

E [I(xi, x2 ; yoJaoI = ao, 1, aO,2 = ao,2)] E [log(1 + [aAx1,x2a]/No)] , (4.39)

with equality for xi circularly-symmetric complex jointly Gaussian inputs, where a =

[aO,1 ao,2]. We may diagonalize the input covariance matrix Ax1 ,x 2 = UDUt, for some

unitary U and diagonal D, with [D]i,i < P, i = 1,2, according to the power constraints.

More generally, for the case of i.i.d. Rayleigh fading, the distribution of a is invariant to a

unitary transformation aU, where U is a unitary matrix [78]. This fact implies that expec-

tations of aAx1 ,x2at correspond to expectations of aDat, so that (4.39) becomes, after some
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substitutions and simplifications,

E [I(xi, x 2 ; yolao,1 ao, 1, aO, 2 = ao,2)] < E [log (1 1+ So,I + SO,2)] . (4.40)

Note that (4.40) corresponds to several important quantities in our study. Using our

converse result (4.14) with the preceding steps, it represents an upper bound on the sum

rate of the Gaussian multiple-access channel with cooperative diversity and i.i.d. Rayleigh

fading known only to the receivers. Using our achievability result (4.22) with the preceding

steps, it represents a lower bound on the sum rate of the Gaussian multiple-access channel

without cooperation and i.i.d. Rayleigh fading known only to the receivers. Thus, we can

employ independent inputs to achieve the sum-rate of the Gaussian multiple-access channel

with cooperative diversity and i.i.d. Rayleigh fading known only to the receivers. In other

words, non-cooperative transmission achieves the sum rate under these conditions. Thus, for

this particular scenario of channel state information not being available at the transmitters,

cooperative diversity is not useful in terms of increasing sum capacity.

By contrast, Sendonaris et. al [68, 67, 69, 70] consider the case of channel phase infor-

mation available the transmitters. This information allows the encoders to appropriately

phase their input signals so that the coherently combine at the decoder, as in (4.19). Under

these conditions, the sum-rate bound (4.39) becomes

E [I(xi,x 2 ;yojao,i = ao,1, aO,2 = ao,2)] <; E [log(1 + so, + sO, 2 + 21p /so,2sol)] . (4.41)

As in the Gaussian case, such phase information allows the sum-rate for cooperative diversity

to be larger than the sum-rate for non-cooperative transmission. More generally, if the

transmitters also obtain amplitude information, sophisticated power control becomes an

option [83]. However, the degree to which distributed radio hardware can obtain and exploit

accurate phase and amplitude information is not well-known.
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Chapter 5

Cooperative Diversity without

Temporal Diversity

In Chapter 4, we examined communication strategies and capacity regions for multiple-

access channels with cooperative diversity in ergodic fading environments where full tem-

poral diversity can be exploited. We found that, under certain channel conditions, namely,

when fading channel state information is available at the receivers but not the transmitters,

cooperative diversity does not increase the achievable sum-rate when compared to non-

cooperative transmission. In this chapter, we examine cooperative diversity in non-ergodic

fading environments, e.g., scenarios in which the fading varies slowly or delay constraints

limit the coding interval to a finite number of channel realizations. As we discussed in

Chapter 3, outage probability is a useful performance measure in this context. We will see

in this chapter that cooperative diversity can dramatically improve outage performance in

non-ergodic environments when no temporal diversity can be exploited, with benefits quite

similar to those of transmit antenna arrays [57].

This chapter develops low-complexity cooperative diversity protocols that take into ac-

count certain implementation constraints in the system, such as orthogonal transmission

and half-duplex relaying. In contrast to Chapter 4, where these constraints complicate the

analysis, the orthogonal transmission constraint allows for our algorithms to be readily in-

tegrated into existing networks and makes the analysis of outage probability more tractable

and convenient for exposition. Essentially, by separating the transmissions into orthogonal

channels, we eliminate the usual coupling of outage probabilities due to interference [52].
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The half-duplex constraints can be dealt with in a straightforward way within this setting.

We describe several cooperative transmission protocols and demonstrate their robustness

to fairly general channel conditions. In addition to direct transmission, we examine fixed

cooperative protocols in which the relay either amplifies what it receives, or fully decodes,

re-encodes, and re-transmits the source message. We refer to these options as amplify-and-

forward and decode-and-forward, respectively, with the caveat that the algorithms developed

in this chapter are special cases of the more involved communication strategies discussed

in Chapter 4. Our analysis suggests that cooperating terminals may also employ threshold

tests on the measured SNR between them, to obtain adaptive protocols that choose the

strategy with best performance. In addition, protocols based upon limited feedback from

the destination terminal are also developed.

We evaluate performance of these protocols in terms of outage probability [59] in the

presence of slow fading and compare to appropriate performance bounds. Each of our coop-

erative protocols achieve full (i.e., second-order in the case of two terminals) diversity; that

is, the outage probability decays proportional to 1/SNR2 , where SNR is signal-to-noise ratio of

the channel, while it decays proportional to 1/SNR without cooperation. At fixed low rates,

the schemes without feedback are at most 1.5 dB from optimal and offer substantial power

savings over direct transmission. For sufficiently high rates, direct transmission becomes

preferable to the protocols without feedback because they essentially repeat information all

the time and are bandwidth inefficient as a result. Protocols that exploit limited feedback

overcome this bandwidth inefficiency by repeating only rarely. The degree to which these

protocols are optimal among all cooperative schemes remains an open question, especially

for high rates. More broadly, the relative attractiveness of amplify-and-forward and decode-

and-forward, and adaptive versions thereof, can depend upon the network architecture and

implementation considerations.

An outline of the chapter is as follows. In Section 5.1, we describe a system model for the

wireless networks under consideration. The model exhibits slow frequency nonselective fad-

ing to capture performance when delay constraints are on the order of the coherence time of

the channel. While we focus on a pair of cooperating terminals, the orthogonality conditions

we impose for integration into existing wireless standards allow the transmission protocols

developed in Section 5.2 to be generalized to multiple cooperating terminals and multi-

ple relays. We develop one extension among many possible in Chapter 6. In Section 5.2,
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(T2)

Figure 5-1: Illustration of radio signal transmit paths in an example wireless network with
two terminals transmitting information and two terminals receiving information.

we describe fixed amplify-and-forward transmission and decode-and-forward transmission,

adaptive versions of these, and protocols that exploit limited feedback from the destination

terminal. Section 5.3 characterizes the outage behavior of the various protocols in terms of

outage events and outage probabilities, using several results for exponential random vari-

ables in Appendix B. Section 5.4 compares the results from a number of perspectives and

offers some concluding remarks.

5.1 System Model

We focus on the case of two cooperating terminals communicating to either the same or

separate destination terminals. Fig. 5-1 again depicts this setting, shown previously in

Fig. 1-1. In our model for the wireless channel in Fig. 5-1, narrowband transmissions suffer

the effects of frequency nonselective fading and additive noise. Our analysis in Section 5.3

focuses on the case of slow fading, and measures performance by outage probability, to iso-

late the benefits of space diversity. Our cooperative protocols can be naturally extended to

the kinds of wide-band and highly mobile scenarios in which frequency- and time-selective

fading, respectively, are encountered; however, we expect the potential impact of our proto-

cols becomes less substantial as other forms of diversity can be exploited in the system. A

detailed study of the relative benefits of cooperative diversity in conjunction with temporal

and spectral diversity represents an important area of future research, but remains beyond

the scope of the dissertation.
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5.1.1 Medium Access

Medium-access control in our model imposes the practical system constraints or orthogo-

nal transmission and half-duplex relaying, as discussed in Chapter 2. In this section, we

motivate these constraints more fully and describe the medium-access employed by our

algorithms.

As in many current wireless networks, we divide the available bandwidth into orthogonal

channels and allocate these channels to the transmitting terminals. The medium-access con-

trol (MAC) sublayer typically performs this function. For example, the MAC in many cel-

lular networks seeks to allocate orthogonal channels, e.g., frequency-division, time-division,

or code-division, to the terminals in a cell for communicating to the basestation of that cell.

As another example, the MAC in the IEEE 802.11 wireless LAN standard uses similar struc-

tures for LANs controlled by an access point, or a distributed contention-resolution/collision

avoidance algorithm which facilitates random time-division.

We maintain this division into orthogonal channels in the sequel to allow our transmis-

sion protocols to be readily integrated into existing networks. As a convenient by-product of

this choice, we are able to treat the multiple-access (single receiver) and interference (mul-

tiple receivers) cases described in Section 1.2 simultaneously, as a pair of point-to-point

channels with signaling between the transmitters. Furthermore, removing the interference

between the terminals at the destination radio(s) substantially simplifies the receiver algo-

rithms and the outage analysis for purposes of exposition.

For our cooperative diversity protocols described in Section 5.2, transmitting terminals

must also process their received signals; however, as current limitations in radio implemen-

tation preclude the terminals from transmitting and receiving at the same time in the same

frequency band. Because of severe signal attenuation over the wireless channel, and insuffi-

cient electrical isolation between the transmit and receive circuitry, a terminal's transmitted

signal drowns out the signals of other terminals at its receiver input.1 Thus, we further

divide each channel into orthogonal subchannels. Fig. 5-2 illustrates our channel allocation

for an example time-division approach with two terminals. As Fig. 5-2(c) suggests, and we

further develop in Section 5.2, our cooperative diversity protocols can be adaptive: based

upon the SNR between the transmitting terminals, they can decide to continue their own

'Typically a terminal's transmit signal is 100 - 150 dB above its received signal.
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T1 Tx+T 2 Rx IT1 Tx/T 2 Relay T 2 Tx+T1 Rx T 2 Tx/T Relay

N14 < N14NN1->-BN/ >>

(c)

Figure 5-2: Example time-division channel allocations for (a) direct transmission with inter-
ference, (b) orthogonal direct transmission, and (c) orthogonal cooperative diversity trans-
mission protocols. We focus on orthogonal transmissions of the form (b) and (c) throughout
the chapter.

transmission or relay for one another.

5.1.2 Equivalent Channel Models

Under the above orthogonality constraints, we can now conveniently, and without loss

of generality, characterize our channel models using a time-division notation; frequency-

division counterparts to this model are straightforward. Due to the symmetry of the channel

allocations, we focus on the message of the "source" terminal Ts, which potentially employs

terminal Tr as a "relay" terminal, in transmitting to the "destination" terminal Td, where

s, r E {1, 2} and d(s) E {3, 4}. We utilize a baseband-equivalent, discrete-time channel

model for the continuous-time channel, and we consider N consecutive uses of the channel,

where N is a large integer.

For direct transmission, our baseline for comparison, we model the channel as

yd [n] = as,d(s) xs [n] + Zd [n] (5.1)

for, say, n = 1,.. . ,N/2, where x,[n] is the source transmitted signal, and yd[n] is the
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destination received signal. The other terminal transmits for n = N/2+ 1, .. ., N as Fig. 5-

2(b) depicts. Thus, in the baseline system each terminal utilizes only half of the available

degrees of freedom of the channel.

For cooperative diversity transmission, we model the channel during the first half of the

block as

yr [n] as,r xs[n] + z. [n] (5.2)

yd[n] as,d(s) xs [n + zd[n] (5.3)

for, say, n = 1, . . . , N/4, where x8 [n] is the source transmitted signal and yr [n] and yd[n] are

the relay and destination received signals, respectively. For the second half of the block, we

model the received signal as

yd[n] = ar,d(s) xr [n] + zd[n] (5.4)

for n = N/4 + 1,.... N/2, where xr[n] is the relay transmitted signal and yd[n] is the

destination received signal. A similar setup is employed in the second half of the block,

with the roles of the source and relay reversed, as Fig. 5-2(c) depicts. Note that, while

again half the degrees of freedom are allocated to each source terminal for transmission to

its destination, only a quarter of the degrees of freedom are available for communication to

its relay.

In (5.1)-(5.4), aij captures the effects of path-loss, shadowing, and frequency nonselec-

tive fading, and z [n] captures the effects of receiver noise and other forms of interference in

the system, where i E {s, r} and j E {r, d}. We consider the scenario in which the fading co-

efficients are known to, i.e., accurately measured by, the appropriate receivers, but not fully

known to (or not exploited by) the transmitters. Statistically, we model aij as zero-mean,

independent, circularly-symmetric complex Gaussian random variables with variances afy,

so that the magnitudes jaiji are Rayleigh distributed (jaIj12 are exponentially distributed

with mean ouy) and the phases Kaij are uniformly distributed on [0, 27r). Furthermore, we

model zj [n] as zero-mean mutually independent, circularly-symmetric, complex Gaussian

random sequences with variance No.
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5.1.3 Parameterizations

Two important parameters of the system are the SNR without fading and the spectral effi-

ciency. We now define these parameters in terms of standard parameters in the continuous-

time channel. For a continuous-time channel with bandwidth W Hz available for transmis-

sion, the discrete-time model contains W two-dimensional symbols per second (2D/s).

If the transmitting terminals have an average power constraint in the continuous-time

channel model of P, Joules/s, we see that this translates into a discrete-time power con-

straint of P = 2Pc/W Joules/2D since each terminal transmits in half of the available

degrees of freedom, under both direct and cooperative diversity transmission. Thus, the

channel model is parameterized by the SNR random variables SNR Ialij 12, where

A 2Pc P
SNR (5.5)

N0W No

is the SNR without fading.

In addition to SNR, transmission schemes are further parameterized by the transmission

rate r b/s, or spectral efficiency

R A 2r/W b/s/Hz (5.6)

attempted by the transmitting terminals. Note that (5.6) is the transmission rate normalized

by the number of degrees of freedom utilized by each terminal, not by the total number of

degrees of freedom in the channel.

Nominally, one could parameterize the system by the pair (SNR, R); however, our results

lend more insight, and are substantially more compact, when we parameterize the system

by either of the pairs (SNRnorm, R) or (SNR, Rnorm), where2

A SNR A R
SNRnorm - 1 Rnorm - log (5.7)

For an additive white Gaussian noise (AWGN) channel with bandwidth (W/2) and SNR

SNR o-2d(S), SNRnorm > 1 is the SNR normalized by the minimum SNR required to achieve

spectral efficiency R [23]. Similarly, Rnorm < 1 is the spectral efficiency normalized by the

2Unless otherwise indicated, logarithms in this chapter are taken to base 2.
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maximum achievable spectral efficiency, i.e., channel capacity [93]. In this sense, parame-

terizations given by (SNRnorm, R) and (SNR, Rnorm) are duals of one another. In our setting

with fading, the two parameterizations yield tradeoffs between different aspects of system

performance: results under (SNRnornm, R) exhibit a tradeoff between the normalized SNR

gain and spectral efficiency of a protocol, while results under (SNR, Rnorm) exhibit a tradeoff

between the diversity order and normalized spectral efficiency of a protocol.

We note that communication engineers are familiar with parameterizing systems by

(SNRnorm, R). Results are often displayed for a given modulation and coding scheme with

fixed R for varying SNRnorm. An example is the bit-error rate of binary phase-shift keying

for different SNRnorm. For systems parameterized by (SNR, Rnorm), varying SNR with Rnorm

fixed actually implies different coding and modulation schemes with different R. An example

could be binary phase-shift keying for low SNR and quadrature phase-shift keying for higher

SNR. While this parameterization may seem unnatural for comparing performance within a

given family of systems, it is useful for comparing systems in two different families operating

at the same SNR and Rnorm.

Note that, although we have parameterized the transmit powers and noise levels to be

symmetric throughout the network for purposes of exposition, asymmetries in average SNR

and path-loss can be lumped into the fading variances ag. Furthermore, while the tools

are powerful enough to consider general rate pairs (R1 , R2 ), we consider the equal rate point,

i.e., R1 = R2 = R, for purposes of exposition.

5.2 Cooperative Transmission Protocols

In this section, we describe a variety of simple cooperative transmission strategies that

can be utilized in the network of Fig. 5-1. These protocols employ different types of pro-

cessing by the relay terminals, as well as different types of combining at the destination

terminals. For fixed cooperative protocols, we allow the relays to either amplify their re-

ceived signals subject to their power constraint, or to decode, re-encode, and re-transmit

the messages. Again, we refer to these two options generally as amplify-and-forward and

decode-and-forward, respectively. In addition to fixed strategies, we consider, among many

possible adaptive strategies, simple protocols in which the cooperating terminals accurately

estimate the realized SNR between them and use this estimate to select a suitable cooper-
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ative action; the terminals decide between continuing their own transmission, or relaying

the transmissions of the other terminal using amplify-and-forward or decode-and-forward.

With direct, decode-and-forward, and adaptive combinations of the two, the radios may

employ repetition or more powerful codes. In any of these cases, destination radios can

appropriately combine their received signals by exploiting control information in the pro-

tocol headers. We stress that adaptation is performed in the absence of feedback from the

destination terminal; we also describe one simple protocol that exploits limited feedback

from the destination.

5.2.1 Fixed Protocols

Amplify-and-Forward Transmission

For amplify-and-forward transmission, the appropriate channel model is (5.2)-(5.4). The

source terminal transmits its information as x, [n], say, for n = 1,. .. , N/4. During this

interval, the relay processes yr[n], and relays the information by transmitting

xr[n] = # yr [n - N/4] , (5.8)

for n = N/4 + 1,..., N/2. To remain within its power constraint (with high probability),

an amplifying relay must use gain

P

Ias,rI2 PP+ No

where we allow the amplifier gain to depend upon the fading coefficient as,r between the

source and relay, which the relay estimates to high accuracy. This transmission scheme

can be viewed as repetition coding from two separate transmitters, except that the relay

transmitter amplifies its own receiver noise. The destination can decode its received signal

yd[n] for n = 1, . . . , N/2 by first appropriately combining the signals from the two subblocks

using a suitably designed matched-filter (maximum-ratio combiner) [49].

Decode-and-Forward Transmission

For decode-and-forward transmission, the appropriate channel model is again (5.2)-(5.4).

The source terminal transmits its information as x, [n], say, for n = 0, . . . , N/4. During this
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interval, the relay processes yr[n] by decoding an estimate x,[n] of the source transmitted

signal.

Under a repetition coded scheme, the relay transmits the signal

x,[n] = x,[n - N/4]

for - = N/4+ 1,..., N/2.

Decoding at the relay can take on a variety of forms. For example, the relay might fully

decode the source message by estimating the source codeword, or it might employ symbol-

by-symbol decoding and allow the destination to perform full decoding. These options allow

for trading off performance and complexity at the relay terminal. Because the performance

of symbol-by-symbol decoding varies with the choice of coding and modulation, we focus

on full decoding in the sequel; symbol-by-symbol decoding of binary transmissions has been

treated from uncoded perspective in [49].

5.2.2 Adaptive Protocols

As we might expect, and the analysis in Section 5.3 confirms, fixed decode-and-forward

is limited by direct transmission between the source and relay. However, since the fading

coefficients are known to the appropriate receivers, as,, can be measured to high accuracy

by the cooperating terminals; thus, they can adapt their transmission format according to

the realized value of as,r.

This observation suggests the following class of adaptive algorithms. If the measured

I as,r 12 falls below a certain threshold, the source simply continues its transmission to the

destination, in the form of repetition or more powerful codes. If the measured Ia,,r12 lies

above the threshold, the relay forwards what it received from the source, using either

amplify-and-forward or decode-and-forward, in an attempt to achieve diversity gain.

Adaptive protocols of this form should offer diversity because in either case, two of the

fading coefficients must be small in order for the transmission to be lost. Specifically, if

I as,r12 is small, then IaS,d(s) 12 must also be small for the transmission to be lost when the

source continues its transmission. Similarly, if Ias,r12 is large, then both Ias,d(s) 2 and ar,d(s)12

must be small for the transmission to be lost when the relay employs amplify-and-forward

or decode-and-forward. We formalize this notion when we consider outage performance of
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adaptive protocols in Section 5.3.

5.2.3 Protocols with Limited Feedback

As we will see, the fixed and adaptive protocols described above can make inefficient use

of the degrees of freedom of the channel, especially for high transmission rates, because

the relays essentially repeat the transmissions all the time. In this section, we describe a

very simple protocol that exploits limited feedback from the destination terminal, e.g., a

single bit indicating the success or failure of the direct transmission, that we will see can

dramatically improve spectral efficiency over the fixed and adaptive protocols. A complete

treatment of protocols for this and more general scenarios with feedback is beyond the scope

of the dissertation.

As one example, consider the following protocol utilizing feedback and amplify-and-

forward transmission. Protocols based upon feedback and decode-and-forward transmission

are also possible, but the analysis is more involved and their performance is slightly worse

that the following protocol.

We nominally allocate the channels according to Fig. 5-2(b). First, the source transmits

its information to the destination at spectral efficiency R. The destination indicates success

or failure by broadcasting a single bit of feedback to the source and relay, which we assume

is detected reliably by at least the relay.3 If the SNR between the source and destination

is sufficiently high, the feedback indicates success of the direct transmission, and the relay

does nothing. If the SNR between the source and destination is not sufficiently high for

successful direct transmission, the feedback requests that the relay amplify-and-forward

what it received from the source. In the latter case, the destination tries to combine the

two transmissions. As we will see, protocols of this form make more efficient use of the

degrees of freedom of the channel, because they repeat only rarely.

3 Such an assumption is reasonable if the destination encodes the feedback bit with a very low-rate code.
Even if the relay cannot reliably decode, useful protocols can be developed and analyzed. For example,
a conservative protocol might have the relay amplify-and-forward what it receives from the source in all
cases except when the destination reliably receives the direct transmission and the relay reliably decodes
the feedback bit.
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5.3 Outage Behavior

For fixed fading values, the effective channel models induced by the transmission protocols

described in Section 5.2 are variants of well-known channels with additive white Gaussian

noise. In this section, we compare the performance of the various transmission protocols

in terms of outage events and outage probabilities [59, 571, and focus our attention on

performance in the high SNR regime. Outage events specified in terms of the fading random

variables Iaj 12 have useful interpretations in both coded and uncoded settings, but we will

develop our results from a coded perspective and determine events in which the realized

mutual information of the channel falls below a target transmission rate. We convert this

event into an equivalent event defined in terms of the fading coefficients of the channel.

Since the channel average mutual information / is a function of the fading coefficients

of the channel, it too is a random variable. The event / < R that this mutual information

random variable falls below some fixed spectral efficiency R, is referred to as an outage

event, because reliable communication is not possible for realizations in this event.' The

probability of an outage event, Pr [/ < R], is referred to as the outage probability of the

channel.

We note that outage events are independent of the distribution of the underlying random

variables, while outage probabilities are intimately tied to them. For example, if the outage

event of a scheme at a particular rate is a strict subset of the outage event of another

scheme at that rate, then the first scheme has smaller outage probability regardless of the

probability distribution on the channel parameters. Furthermore, as we will see, several of

our cooperation strategies have similar outage probabilities, but the structure of their outage

events is sufficiently different that we might prefer one over the other in various regimes.

As a result, both outage events and outage probabilities are useful for characterizing our

transmission protocols.

We now develop outage events and outage probabilities for our transmission protocols.

To facilitate their comparison in the sequel, we also derive high SNR approximations of the

outage probabilities using results from Appendix B.

4 When specified in terms of the fading random variables of the channel, the outage event is sometimes
called an outage region.
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5.3.1 Direct Transmission

To establish baseline performance, under direct transmission, the source terminal transmits

over the channel (5.1). The maximum average mutual information between input and

output in this case, achieved by independent and identically-distributed (i.i.d.) zero-mean,

circularly-symmetric complex Gaussian inputs, is given by

ID = log (1 + SNR IaS,d(S)12 ) (5.9)

as a function of the fading coefficient asd(,). The outage event for spectral efficiency R is

given by ID < R and is equivalent to the event

-1s,d(s)12 < R . (5.10)SNR

For Rayleigh fading, i.e., las,d(s) 2 exponentially distributed with parameter o-- 2  thes,d(s)'

outage probability satisfies5

2 R-
pDgt (SNR, R) -Pr [ID <a] = Pr as,d(s) SNR

1 - exp - 2 R 1
SNR sd(s)

1 2 R - 1
S R , SNR large, (5.11)

s,d(s)

where we have utilized the results of Fact 1 in Appendix B with A = 1/o2d(S), t = SNR, and

g(t) = ( 2 R - 1)It.

Note the 1/SNR behavior in (5.11), which implies that increasing SNR by 10 dB reduces

the outage probability by only a factor of 10. We will see that our cooperative diversity

protocols decrease the outage probability by roughly a factor of 100 when SNR is increased

by 10 dB, for SNR large.

5 As we develop more formally in Appendix B, the approximation f(SNR) ~ g(SNR), SNR large, is in the

sense of f(SNR)/g(SNR) -+ 1 as SNR -> oo. Thus, the approximation can be made as accurate as we like for
SNR sufficiently large.
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5.3.2 Fixed Protocols

Amplify-and-Forward Transmission

The amplify-and-forward protocol produces an equivalent one-input, two-output complex

Gaussian noise channel with different noise levels in the outputs. As Appendix C.1 details,

the maximum average mutual information between the input and the two outputs, achieved

by i.i.d.complex Gaussian inputs, is given by

1AF = 1 log (1 + SNR aSd(S)1 2 + f (SNR Ias,r12 , SNR Iar,d(s)12 ) ) (5.12)

as a function of the fading coefficients, where

ln Xy
f(x, y) = .x+y+1

(5.13)

The outage event for spectral efficiency R is given by IAF < R and is equivalent to the event

ia 2 +1 2 2R -1i
Ias,d(s) 2 SNR f (SNR Ias,r 12, SNR Iar,d(s)12) < SNR (5.14)

For Rayleigh fading, i.e., lai,j 2 independent and exponentially distributed with pa-

rameters a_, analytic calculation of the outage probability becomes involved, but we can

approximate its high SNR behavior as

1 02, Ar + U2_ ) 22R ___ 2
PAuF (SNR, R) = Pr [1AF < ( d 2 r~d(S) 2 -

wS, we h u t a r,d(s) x t

where we have utilized the results of Claim 1 in Appendix B, with

u = I as,d(s)2, V = las,r12,

)= (-2 =

g(E) =( 22R _ 1)'E' t =SNR,

SNR large , (5.15)

A a-2w r,d(s)

h(t) = l/t

The 1/SNR2 behavior in (5.15) indicates that amplify-and-forward achieves full second-

order diversity. Thus, increasing SNR by 10 dB reduces the outage probability by a factor

of 100.
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Decode-and-Forward Transmissions

To analyze decode-and-forward transmission, we examine a particular decoding structure at

the relay. Specifically, we require the relay to fully decode the source message; examination

of symbol-by-symbol decoding at the relay becomes involved because it depends upon the

particular coding and modulation choices. Requiring both the relay and destination to

decode perfectly, the maximum average mutual information for repetition-coded decode-

and-forward can be readily shown to be

IDF = min {log (1 + SNR Ias,r 2) , log (1 + SNR IaS,d(S)I2 + SNR Iar,d(s) 2) (5.16)

as a function of the fading random variables. The first term in (5.16) represents the maxi-

mum rate at which the relay can reliably decode the source message, while the second term

in (5.16) represents the maximum rate at which the destination can reliably decode the

source message given repeated transmissions from the source and destination. We note that

such mutual information forms are typical of relay channels with full decoding at the relay

[17].

The outage event for spectral efficiency R is given by IDF < R and is equivalent to the

event

min {Ias,r12 |as,d(s) 2 + Iar,d(s)I 2 N2 R - 1 (5.17)
SNR

For Rayleigh fading, i.e., lag,5I 2 independent and exponentially distributed with param-

eters o,2 the outage probability for repetition-coded decode-and-forward can be computed

according to

put (SNR, R) A Pr [IDF < R

= Pr [las,r12 < g(SNR)] + Pr [las,r12 > g(SNR)] Pr [lasd(S)12 + Iar,d(s) 12 < g(SNR)]

(5.18)

where g(SNR) = [2 2R - 1]/SNR. Although we may readily compute a closed form expression

for (5.18), for compactness we examine the large SNR behavior of (5.18) by computing the
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limit

1 1I p Out (SNR, R) = Pr [las,r12 < g(SNR)]
g(SNR) ' g(SNR)

-1/Od,r

+ Pr [las,r 12 > g(SNR)] 9 (SNR)Pr [Ias,d(s)12 + Iar,d(s)1 2 < g(SNR)]

1/J-2

as SNR -+ oc, using the results of Facts 1 and 2 in Appendix B. Thus, we conclude that

(u R R 1 2 2R _ 1
pD 2 (SNR, R) ~ -2- - , SNR large. (5.19)

The 1/SNR behavior in (5.19) indicates that fixed decode-and-forward does not offer

diversity gains for large SNR, because requiring the relay to fully decode the source trans-

missions limits the performance of decode-and-forward transmission to that of direct trans-

mission between the source and relay.

5.3.3 Adaptive Protocols

To overcome the shortcomings of decode-and-forward transmission, we described adaptive

versions of the amplify-and-forward and decode-and-forward protocols, both of which fall

back to direct transmission if las,r12 falls below some threshold.

As an example analysis, we analyze the performance of adaptive decode-and-forward

transmission. The mutual information of this adaptive hybrid is somewhat involved to

write down, but in the case of repetition coding at the relay, can be readily shown to be

1ADF log (1 + 2 SNRIas,d(S) 12) las,r12 < g(SNR) (5.20)

log (1 + SNRIa1,d(5 )12 + SNRIar,d(s)1 2 ) Ias,r 12 > g(SNR)

where g(SNR) = [22R - 1]/SNR. The first case in (5.20) corresponds to the maximum average

mutual information of repetition coding from the source to the destination, hence the extra

factor of 2 in the SNR. The second case in (5.20) corresponds to the maximum average mu-

tual information of repetition coding from the source and relay to the destination, assuming
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the relay can fully decode the source transmission.

The outage event for spectral efficiency R is given by /ADF < R and is equivalent to the

event

({as,r 2 < g(SNR)} n {2Ia s ,d(s)12 < g(SNR)})

U ({las,r12 > g(SNR)} f {Ias,r 2 + Iar,d(s)12 < g(SNR)}) (5.21)

The first (resp. second) event of the union in (5.21) corresponds to the first (resp. second)

case in (5.20). We observe that adapting to the realized fading coefficient ensures that the

protocol performs no worse than direct transmission, except for the fact that it potentially

suffers the bandwidth inefficiency of repetition coding.

Because the events in the union of (5.21) are mutually exclusive, the outage probability

becomes the sum

PAu'F (SNR, R) = Pr [IADF < R]

= Pr [Ias,r12 < g(SNR)] Pr [21aS,d(,)1 2 < g(SNR)]

+ Pr [Ias,r12 > g(SNR)] Pr [laS,d(8 )12 + Iar,d(s)12 < g(SNR)] , (5.22)

and we may readily compute a closed form expression for (5.22). For comparison to our

other protocols, we compute the large SNR behavior of (5.22) by computing the limit

1 out (c I Pr DP'r1 < (SNR) I Pr [2Iasd(s)12  g(SNR)

g 2(SNR) PADF (SNR, R) g(SNR) [ g(SNR)

o,, 1/(2,2

+ Pr [las,r12 > g(SNR)] g2 (SNR) Pr [Ias,d(s)12 + Iar,d(s)I2 < g(SNR)]

-1
+1 (2 ,,d(s) r, d(s))

/ 2 2
1 oSr + 0rd(s) (5.23)

2a 2  U2 0
s,d(s) s,r r,d(s)

as SNR -+ oc, using the results of Facts 1 and 2 of Appendix B. Thus, we conclude that the

large SNR performance of adaptive decode-and-forward transmission is identical to that of

fixed amplify-and-forward transmission.

Analysis of more general adaptive protocols becomes involved because there are ad-
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ditional degrees of freedom in choosing the thresholds for switching between the various

options such as direct, amplify-and-forward, and decode-and-forward. A detailed analysis

of such protocols is beyond the scope of this chapter.

5.3.4 Bounds for Cooperative Diversity Transmission

We now develop performance limits for fixed and adaptive cooperative diversity transmission

protocols. If we suppose that the source and relay know each other's messages a priori, then

instead of our direct transmission protocol, each would benefit from using a space-time code

for two transmit antennas. In this sense, the outage probability of conventional single-user

transmit diversity [57] represents an (optimistic) lower bound on the outage probability of

our cooperative diversity protocols. The following two sections develop two such bounds:

an unconstrained transmit diversity bound, and an orthogonal transmit diversity bound

that takes into account orthogonality constraints at the relay.

Transmit Diversity Bound

To utilize a space-time code for each terminal, we allocate the channel as in Fig. 5-2(b).

Both terminals transmit in all the degrees of freedom of the channel, so their transmitted

power is P/2 Joules/2D, half that of direct transmission. The spectral efficiency for each

terminal remains R.

For transmit diversity, we model the channel as

yd[n] = as,d(s) ar,d(s)] E [n] + zd[n] , (5.24)
xr [n]

for, say, n 0,..., N/2. As developed in Appendix C.2, an optimal signaling strategy,

in terms of minimizing outage probability in the large SNR regime, is to encode informa-

]Ttion using [X, Xr] Ti.i.d.complex Gaussian, each with power P/2. Using this result, the

maximum average mutual information as a function of the fading coefficients is given by

( SNH
IT = log 1 + -2 [Ias,d(s)12 + I3r,d(s)12] . (5.25)
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The outage event IT < R is equivalent to the event

ja s ,d(s) 2 + jar,d(s) 2 (sNR/2) . (5.26)

For Iaj 12 exponentially distributed with parameters a- , the outage probability satisfies

outA
PT (SNR, R) = Pr [/T < R]

2 2 R _ 1 2

~ 2 2 ( Ri SNR large , (5.27)
s,d(s) r,d(s) SNR

where we have applied the results of Fact 2 in Appendix B.

Orthogonal Transmit Diversity Bound

The transmit diversity bound (5.27) does not take into account the inability of a relay to

simultaneously transmit and receive in the same band. To capture this effect, we constrain

the transmit diversity scheme to be orthogonal, so that the transmissions of the source and

relay are emitted and received over parallel channels.

When the source and relay can cooperate perfectly, an equivalent model to (5.24), in-

corporating the relay orthogonality constraint, consists of parallel channels

yd[n] = as,d(s) xs[fn] + zd [n], n = 0, ... , N/4 (5.28)

yd[n] = ar,d(s) xr[n] + zd[n], n = N/4 + 1,... ,N/2 (5.29)

This set of parallel channels is utilized half as many times as the corresponding direct

transmission channel, so the source must transmit at twice spectral efficiency in order to

achieve the same spectral efficiency as direct transmission.

For each fading realization, the maximum average mutual information can be obtained

using independent complex Gaussian inputs. Allocating a fraction a of the power to xs,

and the remaining fraction (1 - a) of the power to xr, the average mutual information is

given by
1

/P log [(1 + 2aSNRIas,d(s) 12) (1 + 2(1 - a)SNRIar,d(s)12 )] , (5.30)
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The outage event Ip < R is equivalent to the outage region

al as,d(s)I2 + (1 - a)Iar,d(s)12 + 2a(1 - a)SNRIaS,d(s)12 |ar,d(s)12 <2 2R . (5.31)

As in the case of amplify-and-forward transmission, analytical calculation of the outage

probability (5.31) becomes involved; however, we can approximate its high SNR behavior

for Rayleigh fading as

outA

p (SNR, R) Pr [1p < R]

1 22 R [2R ln(2) - 1] + 1
4a(~ - d),2 d)2 SNR 2  , SNR large , (5.32)

4a( 8 -- a dogs) ar,d(s) R

using the results of Claim 2 in Appendix B, with

u = a Ias,d(s) 2, V = (1 - a) Iar,d(s) 12

AU= 1/(aao2S)), AV = 1/((1 - a)o,d(S))

= [22R - 1]/(2SNR), t = 22R _I

Clearly (5.32) is minimized for a = 1/2, yielding

out 1 2 2R [2Rln(2) - 1] + 1
pp (SNR, R) ~ 2 2 2 , SNR large , (5.33)

s,d(s) r,d(s) SNR

so that i.i.d.complex Gaussian inputs again minimize outage probability for large SNR. Note

that for R -+ 0, (5.33) converges to (5.27), the transmit diversity bound without orthogonal-

ity constraints. Thus, the orthogonality constraint has little effect for small R, but induces

a loss in SNR loss proportional to

Rln(2)

with respect to the (unconstrained) transmit diversity bound for large R.

5.3.5 Protocols with Limited Feedback

Outage analysis of protocols with feedback is complicated by, among other things, their

variable-rate nature. In addition to outage probability, another relevant quantity in the

analysis of protocols with feedback is the expected spectral efficiency.
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For amplify-and-forward with feedback, the outage probability is given by

PAFF (SNR, R) =Pr [las,d(s)12 < g(SNR)]

Pr IIas,d(s)12 + S1 f(SNRIas,r12, SNRiar,d(s)12) g(SNR) Ias,d(s)I 1 g(SNR)
L ~SNR sN1

=Pr las,d(s) 1 + SNRf( Ias,r2, SNRIgr,d(s) 1) < g(SNR) , (5.34)

where g(SNR) = [2 R - 1]/SNR and where f(-,-) is given in (5.13). The second equality follows

from the fact that the intersection of the direct and amplify-and-forward outage events is

exactly the amplify-and-forward outage event. Furthermore, the expected spectral efficiency

can be computed as

R =RPr Iasd(s) 2> 2 RI + Pr Ias,d(s)I2 K 2R
2 SNR 2 - SNR

= Rex SNR ) 2 SNR

R 2R__ ] A

21 + exp SNR = hSNR(R) , (5.35)

where the second equality follows from substituting standard exponential results for Ias,d(S) 12.

A fixed value of R can arise from several possible R, depending upon the value of SNR;

thus, we see that the pre-image h-1 (A) can contain several points. We define a function

miN hsN() to capture a useful mapping from R to R; for a given value of R, it

seems clear from the outage expression (5.34) that we want the smallest R possible.

For fair comparison to protocols without feedback, we characterize the outage expression

out SNR, hI (A)) in the large SNR regime, specifically

J0-1 \ 2 , 2 o 2 2 R - 1 2

ou ~r,d(s) ___
PAFF 1NR "SN 2 s,r r,d(s) SN 2 , SNR large , (5.36)

SN 22g, U2 2 SNR

where we have combined the results of Claims 1 and 3 in Appendix B.

Bounds for the simple feedback protocol developed in this section can be obtained by

suitably normalizing the results developed Section 5.3.4; however, we stress that treating

protocols that exploit more general feedback, along with their associated performance limits,

is beyond the scope of this chapter.
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5.4 Discussion

In this section, we compare the outage results of Section 5.3. We begin with some obser-

vations for statistically asymmetric networks, and then specialize the results to the case of

statistically symmetric networks, e.g., a = 1, without loss of generality.

5.4.1 Asymmetric Networks

As the results in Section 5.3 indicate, for fixed rates, simple protocols such as fixed amplify-

and-forward, adaptive decode-and-forward, and amplify-and-forward with feedback each

achieve full (i.e., second-order) diversity: their outage probability performance decays pro-

portional to 1/SNR2 (Cf. (5.15), (5.23), and (5.36)). We now compare these protocols to the

transmit diversity bound, discuss the impacts of spectral efficiency and network geometry

on performance, and examine their outage events.

Comparison to Transmit Diversity Bound

In the low spectral efficiency regime, the protocols without feedback are within a factor of

2 2R _ 1 1 ord(S) + r,d(s)

2(2R - 1)1 + 2 02

in SNR from the optimum transmit diversity bound, suggesting that the powerful benefits

of multi-antenna systems can indeed be obtained without the need for physical arrays. For

statistically symmetric networks, e.g., o-? = 1, the loss is only v2_ or 1.5 dB; more generally

the loss decreases as the path between the source and relay improves relative to the link

between the relay and destination.

For larger spectral efficiencies, the fixed and adaptive protocols lose an additional 3 dB

per transmitted bit/s/Hz with respect to the transmit diversity bound. This additional loss

is due to two factors: the orthogonality constraint imposed at the relay, and the repetition-

coded nature of the protocols. As Fig. 5-3 suggests, of the two, repetition-coding appears

to be the more significant source of inefficiency in our protocols. In Fig. 5-3, the SNR

loss of orthogonal transmit diversity with respect to (unconstrained) transmit diversity is

intended to indicate the cost of imposing orthogonality at the relay, while the loss of our

cooperative diversity protocols with respect to the transmit diversity bound indicates the

100



10
Cooperative Diversity

9 - - Orthogonal Transmit Diversity -

8.... ..... .................. ................ ..........8- -

~ 6.......................
7 ............ .. , . . . . . . . . . . .

.z.. . ..........7

S 4 .. ... ... .
4.K

-2 -4..

z 4

2.

10 10 10 10

Spectral Efficiency R b/s/Hz

Figure 5-3: SNR loss for cooperative diversity protocols (solid) and orthogonal transmit
diversity bounds (dashed) relative to the (unconstrained) transmit diversity bound (0 dB).
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cost of both imposing orthogonality at the relay and employing repetition-like codes. The

figure suggests that, although the orthogonality constraint contributes, "repetition" in the

form of amplifying or repetition codes is the major cause of SNR loss for high rates. By

contrast, the amplify-and-forward protocol with feedback overcomes these additional losses

by repeating only when necessary.

Outage Events

It is interesting that the amplify-and-forward and adaptive decode-and-forward have the

same high SNR performance, especially considering the different shapes of their outage

events (cf. (5.14), (5.21)), which are shown in the low spectral-efficiency regime in Fig. 5-4.

When the relay can fully decode the source message, i.e., SNRnrmIas,r 2 > 2, and repeat it,

the outage event for adaptive decode-and-forward is a strict subset of the outage event of

amplify-and-forward, with amplify-and-forward approaching that of decode-and-forward as

Ias,,12 -4 oc. On the other hand, when the relay cannot fully decode the source message,

i.e., SNRnormlas,r12 < 2, and the source repeats, the outage event of amplify-and-forward

is neither a subset nor a superset of the outage event for adaptive decode-and-forward.

Apparently averaging over the Rayleigh fading coefficients eliminates the differences between

amplify-and-forward and adaptive decode-and-forward, at least in the high SNR regime.

Effects of Geometry

To study the effect of network geometry on performance, we compare the high SNR behav-

ior of direct transmission with that of amplify-and-forward with feedback. Using a common

model for the path-loss (fading variances), we set a? x d-', where dij is the distance be-

tween terminals i and j, and a is the path-loss exponent [61]. Under this model, comparing

(5.11) with (5.36), assuming both approximations are good for the SNR of interest, we prefer

amplify-and-forward with feedback whenever

dsr) a drd(s))*

ds a+ < 2 SNRnorm . (5.37)
ds,d(s) ) s,d(s)

Thus, amplify-and-forward with feedback is useful whenever the relay lies within a certain

normalized ellipse having the source and destination as its foci, with the size of the ellipse

increasing in SNRnorm. What is most interesting about the structure of this "utilization
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Figure 5-4: Outage event boundaries for amplify-and-forward (solid) and adaptive decode-
and-forward (dashed and dash-dotted) transmission as functions of the realized fading co-
efficient |as,r 2 between the cooperating terminals. Outage events are to the left and be-
low the respective outage event boundaries. Successively lower solid curves correspond
to amplify-and-forward with increasing values of las,r 2. The dashed curve corresponds
to the outage event for adaptive decode-and-forward when the relay can fully decode,
i.e., SNRnormIas,r 12 > 2, and the relay repeats, while the dash-dotted curve corresponds
to the outage event of adaptive decode-and-forward when the relay cannot fully decode,
i.e., SNRnormIas,r| 2 < 2, and the source repeats. Note that the dash-dotted curve also
corresponds to the outage event for direct transmission.
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region" for amplify-and-forward with feedback is that it is symmetric with respect to the

source and destination. By comparison, the utilization region for fixed decode-and-forward

is given by a certain circle about only the source.

Utilization regions of the form (5.37) may be useful in terms of developing higher layer

network protocols that select between direct transmission and cooperative diversity trans-

mission using one of a number of potential relays. Such algorithms and their performance

represent an interesting area of further research, and a key ingredient for fully incorporating

cooperative diversity into wireless networks.

5.4.2 Symmetric Networks

We now specialize all of our results to the case of statistically symmetric networks, e.g.,

-T = 1 without loss of generality.

Results under Different Parameterizations

In the sections to follow, we compare performance of the various protocols under the two

parameterizations described in Section 5.1.3, namely, (SNRnorm, R) and (SNR, Rnorm), respec-

tively. Parameterizing the outage results from Section 5.3 in terms of (SNRnorm, R) is straight-

forward because R remains fixed; we simply substitute SNR = SNRnorm(2R - 1) to obtain the

results listed in the second column of Table 5.1. Parameterizing the outage results from

Section 5.3 in terms of (SNR, Rnorm) is a bit more involved because R = Rnorm log(1 + SNR)

increases with increasing SNR.

The results in Appendix B are all general enough to allow this latter parameteriza-

tion. To demonstrate their application, we consider amplify-and-forward transmission. The

outage event for amplify-and-forward under this alternative parameterization is given by

Ias,d(s) 2 + I f (SNR Ia,,,12 , SNR Iar,d(s 2) < 2 2R -1 _ (1 + SNR)norm - 1
SNR SNR SNR

For Rnorm < 1/2, the outage probability is approximately

out (sNR F SNR 1-
PAu (S, N rm) ~ 2R ~ 1/SNR2 (1-2 Rnorm) , SNR largePW I norm) (I + SNR) 2Rorm _- 1
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Protocol P oUt (SNRnorn R) , high SNRnorm pout (SNR, Rnorm) , high SNR

Direct 1/SNRnorm 1/SNR(l1-Rorm)

Amplify-and-Forward (2R + )2 /SNRorm 1/SNR2 (- 2Rorm)
Decode-and-Forward (2R + 1)/SNRnorm 1/SNR(- 2 Rnom)

Adaptive Decode-and-Forward (2 R + 1) 2 /SNR2orm 1/SNR
2(1-

2Rnorm)

Amplify-and-Forward with Feedback 1/SNRnorm 1/SNR2 (-Rnom)

Transmit Diversity Bound 2/SNRnorm 2/SNR2 (1-Rnorm)

Orthogonal Transmit Diversity Bound ( 22
R[
2a ( )21+ /SNRnorm 2[Rnorm ln(SNR) + 11/SNR2

(-Rlorm)

Table 5.1: Summary of outage probability approximations. To capture the salient tradeoffs

between signal-to-noise ratio SNR, spectral efficiency R b/s/Hz, and diversity gain of the

various protocols, the results are specialized to the case of statistically symmetric networks
with fading variances o2 = 1.

where we have utilized the results of Claim 1 in Appendix B with

U = jas,d(s) 2, V = tas,r 2, W = Iar,d(s) 2, AU = Av = Aw = 1

g(E) = E [(1 + i/E)2Rnorm - 1], t = SNR, h(t) = 1/t .

Table 5.1 summarizes the results, which can be obtained in similar fashion using appro-

priate results from Appendix B.

Fixed R Systems

Fig. 5-5 shows outage probabilities for the various protocols as functions of SNRnorm in the

small, fixed R regime. The approximations in the second column Table 5.1 are accurate for

moderate to large values of the SNRnorm. The diversity gains of our cooperative diversity

protocols appear as a steeper slopes in Fig. 5-5, from a factor of 10 decrease in outage prob-

ability for each additional 10 dB of SNR in the case of direct transmission, to a factor of 100

decrease in outage probability for each additional 10 dB of SNR in the case of cooperative

diversity transmission. The relative loss of 1.5 dB for our fixed and adaptive cooperative

diversity protocols with respective to the transmit diversity bound is also apparent. These

curves shift to the right by 3 dB for each additional bit/s/Hz of spectral efficiency in the high

R regime. By contrast, the performance of amplify-and-forward with feedback is unchanged

at high SNR for increasing R. Note that, at outage probabilities on the order of 10-, our

cooperative diversity protocols achieve large energy savings over direct transmission-on

the order of 12-15 dB.
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Figure 5-5: Outage probabilities vs. SNRnorm, small R. regime, for statistically symmetric
networks, i.e., 2 = 1. The outage probability curve for amplify-and-forward transmission

was obtained via Monte-Carlo simulation, while the other curves are computed from ana-
lytical expressions. The dashed curve corresponds to the transmit diversity bounds in this
low spectral efficiency regime.
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Fixed Rnorm Families of Systems

Another way to examine the high spectral efficiency regime as SNR becomes large is to allow

R to grow with increasing SNR. In particular, the choice of R = Rnorm log(1 + SNR), with Rnorm

fixed, is a natural one: for slower growth, the outage results essentially behave like fixed R

systems for sufficiently large SNR, while for faster growth, the outage probabilities all tend

to 1. These observations motivate our parameterization in terms of (SNR, Rnorm) in the third

column of Table 5.1. As we stressed in Section 5.1.3, while not as familiar to communication

engineers, this parameterization can be used to compared systems in different families for

a given SNR and Rnorm.

Parameterizing performance in terms of (SNR, Rnorm) leads to interesting tradeoffs be-

tween the diversity order and normalized spectral efficiency of a protocol. Because these

tradeoffs arise naturally in the context of multi-antenna systems [93], it is not surprising

that they show up in the context of cooperative diversity. Diversity order can be viewed

as the power to which SNR- 1 is raised in our outage expressions in the third column of

Table 5.1. To be precise, we can define diversity order as

L - log pout (SNR, Rnorm)
A (Rnorm) =lim .(5.38)

SNR-+oo log SNR

Larger A(Rnorm) implies more robustness to fading (faster decay in the outage probability

with increasing SNR), but A(Rnorm) generally decreases with increasing Rnorm. For example,

the diversity order of amplify-and-forward transmission and adaptive decode-and-forward

transmission is

AAF(Rnorm) = AADF(Rnorm) = 2(1 - 2Rnorm) ; (5.39)

thus, their maximum diversity order A -- 2 is achieved as Rnorm -> 0, and minimal diversity

order A -+ 0 results as Rnorm -+ 1/2. Fig. 5-6 compares the tradeoffs for direct transmission

and cooperative diversity transmission. As we might expect from our previous discussion,

amplify-and-forward with feedback yields the highest A(Rnorm) for each Rnorm; this curve

also corresponds to the transmit diversity bound in the high SNR regime. What is most

interesting about the results in Fig. 5-6 is the sharp transition at Rnorm = 1/3 between our

preference for amplify-and-forward transmission (as well as adaptive decode-and-forward)

for Rnorm < 1/3 and our preference for direct transmission for Rnorm > 1/3.
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Chapter 6

Cooperative Diversity in Networks

This chapter builds upon the results of Chapter 5 and explores several issues related to

integrating cooperative diversity into networks with more than two terminals. We begin

by considering fully cooperative networks in which all the terminals in the network serve

as relays for each other. We generalize the repetition-based algorithms of Chapter 5, and

then improve upon their bandwidth efficiency by exploring space-time coded cooperative

diversity algorithms. Both classes of algorithms offer full spatial diversity in the number

of cooperating terminals, but these diversity gains may not outweigh system losses due to

bandwidth inefficiency and path-loss in practical operating regimes. In later sections, we

also consider partially cooperative networks in which only certain subsets of terminals serve

as relays for each other. We describe various grouping algorithms and relate their impor-

tance and implementation to architectural aspects of the networks. We illustrate example

scenarios of current interest in infrastructure networks and ad-hoc networks with clusters.

We also briefly comment on layering cooperative diversity within and across traditional

network protocol layers (cf. Fig. 1-2). As we will see, because cooperative diversity is in-

herently a network approach, it meshes with functionality typically implemented with the

network, link, medium-access control, and physical layers

6.1 Fully Cooperative Networks

Chapter 5 developed various cooperative diversity algorithms for a pair of terminals. In

this section, we show that these algorithms readily extend to combat multipath fading in

larger networks. Full spatial diversity benefits of these repetition-based cooperative diversity
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algorithms, as we refer to them throughout this section, come at a price of decreasing

bandwidth efficiency with the number of cooperating terminals, because each relay requires

its own subchannel for repetition. As in Chapter 5, limited feedback from the destination

terminal provides one means of overcoming such bandwidth inefficiencies, but we do not

repeat the analysis here. Instead, this section develops an alternative approach to improving

bandwidth efficiency of the algorithms based upon space-time codes that allow all relays

to transmit on the same subchannel. Requiring more computational complexity in the

terminals, we will see these space-time coded cooperative diversity algorithms also offer full

spatial diversity benefits and are more amenable to distributed implementation, without

requiring feedback.

We consider a wireless network with a set of transmitting terminals denoted M =

{1, 2,..., m}. Each transmitting source terminal s E M has information to transmit to

a single destination terminal, denoted d(s) M, potentially using terminals M - {s} as

relays. Thus there are m cooperating terminals communicating to d(s). For algorithms

in which we require the relays to fully decode the source message, we define the decoding

set D(s) to be the set of relays that can decode the message of source s. In the case of

amplify-and-forward cooperative diversity, we take D(s) =M - {s}.

Both classes of algorithms consist of two transmission phases, as in Chapter 5. Fig. 6-1

illustrates these two phases, and allows us to point out the similarities and differences be-

tween the algorithms. In the first phase, the source broadcasts to its destination and all

potential relays. During the second phase of the algorithms, the other terminals relay to

the destination, either on orthogonal subchannels in the case of repetition-based coopera-

tive diversity, or simultaneously on the same subchannel in the case of space-time coded

cooperative diversity.

To summarize our results, we show the outage probability performance of repetition-

based cooperative diversity decays asymptotically in SNR proportional to 1/SNRm(l-mRnorm))

where SNR corresponds to the average signal-to-noise ratio (SNR) between terminals, and

0 < Rnorm < 1/m corresponds to a suitably-normalized spectral efficiency of the protocol.

In this context, full diversity refers to the fact that, as Rnorm -+ 0, the outage probability

decays proportional to 1/SNRm . By contrast, the outage probability performance of non-

cooperative transmission decays asymptotically as 1/SNR(-Rnorm), where 0 < Rnorm < 1

is allowed, and as 1/SNR as Rnorm -+ 0. Thus, while the outage probability performance
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Figure 6-1: Illustration of the two-phases of repetition-based and space-time coded coop-

erative diversity algorithms. In the first phase, the source broadcasts to the destination as

well as potential relays. Decoding relays are shaded. In the second phase, the decoding re-

lays either repeat on orthogonal subchannels or utilize a space-time code to simultaneously

transmit to the destination.

of cooperative diversity can decay faster, it does so only for small Rnorm, in particular,

for Rnorm < 1/(m + 1). For Rnorm > 1/(m + 1), the inherent bandwidth inefficiency of

repetition-based cooperative diversity outweighs the benefits of diversity gain, so that non-

cooperative transmission is preferable in this regime. Of course, there are more general

forms of decode-and-forward transmission than repetition, just as there are more general

forms of space-time codes. Space-time coded cooperative transmission leads to schemes

whose outage probability performance decays asymptotically as 1/SNRm(1- 2 Rorm). Thus,

they (a) achieve full spatial diversity order m as Rnorm -+ 0, (b) have larger diversity order

than repetition-based algorithms for all Rnorm, and (c) are preferable to non-cooperative

transmission if Rnorm < (m - 1)/(2m - 1). Moreover, we will see that these protocols may

be readily implemented in a distributed fashion, because they only require the relays to

estimate the SNR of their received signals, decode them if the SNR is sufficiently high,

re-encode with the appropriate waveform from a space-time code, and re-transmit in the

same subchannel.

In broader context, both classes of cooperative diversity can be viewed as a form of

network coding, in this case designed to exploit spatial diversity in the network. There is

a growing body of work focused on network coding for enhancing performance of wireless

and other communication systems and networks [33, 29, 47]. In the area of wireless ad-hoc
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networks in particular, many authors have attempted to determine the capacity region, i.e.,

the set of all reliably achievable rates in the network. A nice summary of this literature can

be found in [29].

6.1.1 System Model

This section highlights the system model that we use to develop extensions of the repetition-

based algorithms in Chapter 5 as well as the space-time coded cooperative diversity algo-

rithms. Differences between the model employed here and the one employed in Chapter 5

include a larger number of terminals and different medium-access control protocols for

repetition-based and space-time coded cooperative diversity. As a result, we repeat only

the more fundamental elements of the system model in this section.

As throughout the dissertation, narrowband transmissions suffer the effects of frequency

nonselective Rayleigh fading and additive white Gaussian noise. We consider the scenario in

which the receivers can accurately measure the realized fading coefficients in their received

signals, but the transmitters either do not possess or do not exploit knowledge of the realized

fading coefficients. As in Chapter 5, we focus on the case of slow fading and measure

performance by outage probability to isolate the benefits of space diversity. As before, we

utilize a baseband-equivalent, discrete-time channel model for the continuous-time channel.

Medium-Access Control

For medium-access control, terminals transmit on essentially orthogonal channels as in many

current wireless networks. As a baseline for comparison, Fig. 6-2 illustrates example channel

allocations for non-cooperative transmission, in which each transmitting terminal utilizes a

fraction 1/m of the total degrees of freedom in the channel.

For cooperative diversity transmission, the medium-access control protocol also manages

orthogonal relaying to ensure that terminals satisfy the half-duplex constraint and do no

transmit and receive simultaneously on the same subchannel. Note that these are the

same basic restrictions on medium-access control protocols described in Chapter 5. We

now describe how the medium-access control protocol differs under repetition-based and

space-time coded cooperative diversity.

Fig. 6-3 illustrates example channel and subchannel allocations for repetition-based co-

operative diversity, in which relays either amplify what they receive or fully decode and
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1 Transmits

2 Transmits

3 Transmits

m Transmits

Time

Figure 6-2: Non-cooperative medium-access control. Example source allocations among m
transmitting terminals across orthogonal frequency channels.

repeat the source signal, as in Chapter 5. In order for the destination to combine these

signals and achieve diversity gains, the repetitions must occur on essentially orthogonal

subchannels. For simplicity, Fig. 6-3 shows channel allocations for different source termi-

nals across frequency, and subchannel allocations for different relays across time. More

generally, for a given source s and destination d(s), the relays M - {s} can repeat in any

pre-determined order. Arbitrary permutations of these allocations in time and frequency

do not alter the conclusions to follow, as a long as causality is preserved and each of the

subchannels contains a fraction 1/M 2 of the total degrees of freedom in the channel. As in

non-cooperative transmission, transmission between source s and destination d(s) utilizes

a fraction 1/m of the total degrees of freedom in the channel. Similarly, each cooperating

terminal transmits in a fraction 1/m of the total degrees of freedom.

Fig. 6-4 illustrates example channel and subchannel allocations for space-time coded

cooperative diversity, in which relays utilize a suitable space-time code in the second phase

and therefore can transmit simultaneously on the same subchannel. Again, transmission

between source s and destination d(s) utilizes 1/m of the total degrees of freedom in the

channel. However, in contrast to non-cooperative transmission and repetition-based cooper-

ative diversity transmission, each terminal employing space-time coded cooperative diversity

transmits in 1/2 the total degrees of freedom in the channel. It is important to keep track

of these fractions when normalizing power and bandwidth in the sequel.
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P Transmits 2 Repeats 1 3 Repeats I ... m Repeats 1

2 Transmits 2 Repeats 2 3 Repeats 2 .. m Repeats 2

3 Transmits 1 Repeats 3 2 Repeats 3 m Repeats 3

m Transmits I Repeats m 2 Repeats m ... m Repeats M-1

Time

Figure 6-3: Repetition-based medium-access control. Example source channel allocations
across frequency and relay subchannel allocations across time for repetition-based cooper-
ative diversity among m terminals.

PHASE I PHASE II

1 Transmits D(1) Relay

2 Transmits D(2) Relay

3 Transmits D(3) Relay

m Transmits D(m) Relay

Time

Figure 6-4: Space-time coded medium-access control. Example channel allocations across
frequency and time for m transmitting terminals. For source s, D(s) denotes the set of
decoding relays participating in a space-time code during the second phase.

114

C.)

C.)

PHASE I PHASE II

i



Equivalent Channel Models

Under the above orthogonality constraints, we can now conveniently, and without loss of

generality, characterize our channel models. Due to symmetry of the channel allocations,

we focus on transmission of a message from source s to its destination d(s) using terminals

M - {s} as relays.

During the first phase, each potential relay r E M - {s} receives

yr [n] = as,r xs [n] + z[n] , (6.1)

in the appropriate subchannel, where again x,[n] is the source transmitted signal and yr[n]

is the received signal at r. For decode-and-forward transmission, if the SNR is sufficiently

large for r to decode the source transmission, then r serves as a decoding relay for the

source s, so that r E D(s). Again, for amplify-and-forward transmission, we can think of

D(s) as being the entire set of relays for source s, i.e., D(s) = M - {s}.

The destination receives signals during both phases. During the first phase, we model

the received signal at d(s) as

Yd(s)[n] = as,d(s) xs[n] + zd(s) [n] (6.2)

in the appropriate subchannel. During the second phase, the equivalent channel models are

different for repetition-based and space-time coded cooperative diversity. For repetition-

based cooperative diversity, the destination receives separate re-transmissions from each of

the relays, i.e., for r E M - {s}, we model the received signal at d(s) as

yd(s)[n] = ar,d(s) xr [n] + zd(s) n] , (6-3)

in the appropriate subchannel, where Xr[n] is the transmitted signal of relay r. For space-

time coded cooperative diversity, all of the relay transmissions occur in the same subchannel

and superimpose at the destination, so that

yd(s) [n] ard(s) Xr [n] + zd(s) , (6.4)
rED(s)

in the appropriate subchannel.
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As before, in (6.1)-(6.4), aij captures the effects of path-loss, shadowing, and frequency

nonselective fading, and zj[n] captures the effects of receiver noise and other forms of inter-

ference in the system. Note that all the fading coefficients are constant over the example

time and frequency axes shown in Figures 6-2-6-4. We again focus on the scenario in

which the fading coefficients are known to, i.e., accurately measured by, the appropriate

receivers, but not fully known to, or not exploited by, the transmitters. Statistically, we

again model a2,j as zero-mean, independent, circularly-symmetric complex Gaussian ran-

dom variables with variances 1/A,, so that the magnitudes IaijI are Rayleigh distributed

(Iai,j12 are exponentially distributed with parameter Aij) and the phases Za,j are uniformly

distributed on [0, 27r). Furthermore, we model z [n] as zero-mean mutually independent,

circularly-symmetric, complex Gaussian random sequences with variance No.

Parameterizations

As we saw in Chapter 5, two important parameters of the system are the transmit signal-to-

noise ratio SNR and the spectral efficiency R. Again, it is natural to define these parameters

in terms of standard parameters in the continuous-time channel with non-cooperative trans-

mission (cf. Fig. 6-2) as a baseline.

For a continuous-time channel with total bandwidth W Hz available for transmission,

the discrete-time model contains W two-dimensional symbols per second (2D/s). If the

transmitting terminals have an average power constraint in the continuous-time channel

model of P, Joules/s, we see that this translates into a discrete-time power constraint of

P = mPc/W Joules/2D, since each terminal transmits in a fraction 1/m of the available

degrees of freedom for non-cooperative transmission (cf. Fig. 6-2) and repetition-based

cooperative diversity (cf. Fig. 6-3). Thus, the channel model is parameterized by the SNR

random variables SNR Ia, 12, where

A mPc P
SNR- - (6.5)

N0 W N0

is the SNR without fading. For space-time coded cooperative diversity (cf. Fig. 6-4), the

terminals transmit in half the available degrees of freedom, so the discrete-time power

constraint becomes 2P/m.

In addition to SNR, transmission schemes are further parameterized by the spectral
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efficiency R b/s/Hz attempted by the transmitting terminals. Note that throughout this

section R is the transmission rate normalized by the number of degrees of freedom utilized

by each terminal under non-cooperative transmission, not by the total number of degrees

of freedom in the channel.

As in Chapter 5, our results can be parameterized by either of the pairs (SNRnorm, R)

and (SNR, Rnorm), where SNRnorm and Rnorm are normalized SNR and spectral efficiency,

respectively.

6.1.2 Repetition-Based Cooperative Diversity

We now analyze performance of a repetition decode-and-forward cooperative diversity al-

gorithm for more than two terminals. Such protocols consist of the source broadcasting its

transmission to its destination and potential relays. Potential relays that can decode the

transmission become decoding relays and participate in the second phase of the protocol

by repeating the source message on orthogonal subchannels. Although the set of decoding

relays D(s) is a random set, we will see that protocols of this form offer full spatial diversity

in the number of cooperating terminals, not just the number of decoding relays participat-

ing in the second phase. Interestingly, potential relays that cannot decode contribute as

much to the performance of the protocol as the decoding relays, just as in the adaptive

decode-and-forward algorithm developed for two terminals in Chapter 5. We note that

similar high SNR results should be obtainable for amplify-and-forward transmission using

suitable extensions of the appropriate results in Appendix B.1.

Mutual Information and Outage Probability

Since the channel average mutual information /rep is a function of, e.g., the coding scheme,

the rule for including potential relays into the decoding set D(s), and the fading coefficients

of the channel, it too is a random variable. As in Chapter 5, the event /rep < R that this

mutual information random variable falls below some fixed spectral efficiency R is referred

to as an outage event, and the probability of an outage event, Pr [/rep < R], is referred to as

the outage probability of the channel.
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Since D(s) is a random set, we utilize the total probability law and write

Pr [/rep <RI = > Pr [D(s)] Pr [/rep < RID(s)] . (6.6)
D(s)

Outage Conditioned on the Decoding Set For repetition coding, the random code-

books at the source and all potential relays are generated i.i.d. circularly-symmetric, com-

plex Gaussian. Conditioned on D(s) being the decoding set, the mutual information between

s and d(s) is

1
/rep = - log I + SNR IaS,d(,)12 + SNR .ard(s)12 (6.7)

rED(s)

Thus Pr [rep < RID(s)] involves' ID(s)I + 1 independent fading coefficients, so we expect

it to decay asymptotically proportional to 1/SNRID(S)I+1. Indeed, we develop the following

high SNR approximation2 in Appendix B.2.2:

Pr [/rep < RID(s)] ~ IR X As,d(s) H Ar,d(s) X 1 (6.8)~SNR ID ~ 1711S (ID(s) I ± 1)!
rED(s)

Note that we have expressed (6.8) in such a way that the first term captures the dependence

upon SNR and the second term captures the dependence upon {A}.

Decoding Set Probability Next, we consider the term Pr [D(s)], the probability of a

particular decoding set. As one rule for selecting from the potential relays, we can require

that a potential relay fully decode the source message in order to participate in the second

phase. Indeed, full decoding is required in order for the mutual information expression

(6.7) to be correct; however, nothing prevents us from imposing additional restrictions on

the members of the set D(s). For example, we might require that a potential relay fully

decode and see a realized SNR some factor larger than its average, to either the source, the

destination, or both.

Since the realized mutual information between s and r for i.i.d. complex Gaussian code-

books is given by
1

- log (1 + SNR Ias,r ,2

m

'For a set S, ISI denotes the cardinality of the set. This should not be confused with the usual notation
for absolute value jxI of a variable x.

2 As before, the approximation f(SNR) ~ g(SNR) is in the sense of f(SNR)/g(SNR) -+ 1 as SNR -> oo.
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under this rule we have

Pr [r E D(s)] = Pr [Ias,r12 > (2 m - 1)/SNR]

= exp[-As,r(2mR - 1)/SNR] .

Moreover, since each potential relay makes its decision independently under the above

restrictions, and the fading coefficients are independent in our model, we have

Pr [D(s)] = 7 exp[-As,r (2mR - 1)/SNR] x H (1 - exp[--As,r(2mR - 1)/SNR])
reD(s) rgD(s)

F2 mR. _ 1-m-IV(s)I--1

S[SNR I '< f Asr . (6.9)
roD(s)

Note that any selection means by which Pr [r E D(s)] - 1 and (1 - Pr [r E D(s)]) oc 1/SNR,

for SNR large, independently for each r, will result in similar asymptotic behavior for

Pr [D(s)].

Combining (6.8) and (6.9) into (6.6), we obtain

2 mR M 1 1
Pr [/rep < R] ~ SNR X V As,d(s) Ar,d(s) As,r X (D )I + 1)! (6.10)

- (S) rEV(s) rgo(S)

Fig. 6-5 compares the results of numeric integration of the actual outage probability to

computing the approximation (6.10), for an increasing number of terminals with Aij = 1. As

the result (6.10) and Fig. 6-5 indicate, repetition decode-and-forward cooperative diversity

achieves full spatial diversity of order m, the number of cooperating terminals, for sufficiently

large SNR. However, the SNR loss due to bandwidth inefficiency is exponential in m.

Convenient Bounds

While the approximation given in (6.10) is quite general and can be numerically evaluated

to determine performance, it is not very convenient for further analysis. Its complexity

results from dependence upon {AijJ. In this section, we developed upper and lower bounds

for (6.10) that we exploit in the sequel.

Our objective is to simplify the summation in (6.10). To this end, we note that for a

given decoding set D(s), either r E D(s), in which case Ar,d(s) appears in the corresponding
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Figure 6-5: Comparison of numeric integration of the outage probability (solid lines) to
calculation of the outage probability approximation (6.10) (dashed lines) vs. normalized
SNR for different network sizes m = 1, 2, ... , 10. Successively lower curves at high SNR
correspond to larger networks. For simplicity of exposition, we have plotted the case of
R = 1 b/s/Hz and Ay = 1; more generally the plot can be readily updated to incorporate
a model of the network geometry.
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term in (6.10), or r D(s), in which case AS,d(S) appears in the corresponding term in

(6.10). We therefore define

Ar = min{/r,d(s), As,rJ , Ar = max{Ar,d(s), As,r} , (6.11)

-A A
and A, = A = As,d(s). Then the product dependent upon {Aij} is bounded by

Am < As,d(s) ] Ar,d(s) 17 Asr < m , (6.12)

rED(s) rED(s)

where A is the geometric mean of the Ai and A is the geometric mean of the Ai, for i E M.

We note that the upper and lower bounds in (6.12) are independent of D(s). We also note

that the bounds in (6.12) coincide, i.e., A A if though not only if, A4 = A for all i E M.

Viewing Aij as a measure of distance between terminals i and j, the class of planar network

geometries that satisfy this condition are those in which all the relays lie with arbitrary

spacing along the perpendicular bisector between the source and destination. A complete

study of the effects of such network geometry on performance is warranted, but beyond the

scope of this dissertation.

Substituting (6.12) into (6.10), we arrive at the following simplified bounds for outage

probability

2mR _ 1 2 2mR _ i I
< Pr [rep < R] < mR] 1 (6.13)

SNR/A J Z (ID(s)I + 1)! - [ SNR/A (D(s)I + 1)!T'(s) D(s)

6.1.3 Space-Time Coded Cooperative Diversity

We now analyze performance of a decode-and-forward space-time cooperative diversity al-

gorithm. Such protocols operate in similar fashion to the repetition decode-and-forward

cooperative diversity algorithm analyzed in the previous section, except that all the re-

lays transmit simultaneously on the same subchannel using a suitable space-time code.

Again, we will see that protocols of this form offer full spatial diversity in the number of

cooperating terminals, not just the number of decoding relays participating in the second

phase. In addition, these algorithms have superior bandwidth efficiency to repetition-based

algorithms.
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Mutual Information and Outage Probability

As above, we utilize the total probability law to write

Pr [/st, < R] = Y Pr [D(s)] Pr [/stc < RID(s)] , (6.14)
V(s)

and examine each term in the summation.

Outage Conditioned on the Decoding Set Conditioned on D(s) being the decoding

set, the mutual information between s and d(s) for random codebooks generated i.i.d.

circularly-symmetric, complex Gaussian at the source and all potential relays can be shown

to be

stc = log 1 + SNR Ias,d(s) 12 + 1log 1+ 2SNR r ard(s)2 , (6.15)

the sum of the mutual informations for two "parallel" channels, one from the source

to the destination, and one from the set of decoding relays to the destination. Again,

Pr [/st, < RD(s)] involves JD(s) + 1 independent fading coefficients, so we expect it to

decay asymptotically proportional to 1/SNRID(s)I+1. We develop the following high SNR

approximation in Appendix B.2.3:

Pr [/stD < R)D(s)] ~ 2R 'Asd(s) Ar,d(s) 2R(s)(
rEV(s)

where

An (t) = 1 1w)dw n > 0 ,(6.17)
(n - 1)! 0 (1 + tw)

and Ao(t) = 1. Note that we have expressed (6.16) in such a way that the first term captures

the dependence upon SNR and the second term captures the dependence upon {Aij}.

Decoding Set Probability Next, we consider the term Pr [D(s)], the probability of a

particular decoding set. As before, we require that a potential relay fully decode the source

message in order to participate in the second phase, a necessary condition for the mutual

information expression (6.15) to be correct.

Since the realized mutual information between s and r for i.i.d. complex Gaussian code-
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books is given by

- log 1 + -SNR I as,r 12,
2 m

under this rule we have

Pr [r E D(s)] = Pr las,r 1 > 22R -
12SNR/m_

= exp [ As,r 22R-- ]

2SNR/m_

Moreover, since each potential relay makes its decision independently, and the fading coef-

ficients are independent in our model, we have

22NR/_nl - 11(i-~ 22a_
Pr [D(s)] =r exp As,r - I - exp As,r -1

rE() - 2SNR/m nZ)()2SNR/m

[ 2 2RI m-xD(s)I-1 X Asr (6.18)
2SNR/m rOD(s)

Combining (6.16) and (6.18) into (6.14), we obtain

2 2R -1 -m m-
Pr [/stc < R] ~ 2 2 1/m X E As,d(s) 11 Ar,d(s) 1 As,r X AID(s)I(2 2R _ 1) . (6.19)

[2SNR/m D(s) rEV(s) r D(s)

Fig. 6-6 compares the results of numeric integration of the actual outage probability to

computing the approximation (6.19), for an increasing number of terminals with Aij = 1. As

the result (6.19) and Fig. 6-6 indicate, space-time coded cooperative diversity achieves full

spatial diversity of order m, the number of cooperating terminals, for sufficiently large SNR.

In contrast to repetition-based algorithms, the SNR loss for space-time coded cooperative

diversity is only linear in m.

Convenient Bounds

Again, although the approximation given in (6.19) is quite general and can be numerically

evaluated to determine performance, it is not very convenient for further analysis. There

are two factors contributing to its complexity: dependence upon {Aij}, and the involved

closed-form expression for A, (t) as n grows. In this section, we developed upper and lower

bounds for (6.19) that we exploit in the sequel.
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Figure 6-6: Comparison of numeric integration of the outage probability (solid lines) to
calculation of the outage probability approximation (6.19) (dashed lines) vs. normalized
SNR for different network sizes m = 1, 2, ... , 10. Successively lower curves at high SNR
correspond to larger networks. For simplicity of exposition, we have plotted the case of
R = 1 b/s/Hz and Ay = 1; more generally the plot can be readily updated to incorporate
a model of the network geometry.
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Our objective is to simplify the summation in (6.19). The product dependent upon

{A} can again be bounded as in (6.12). To avoid dealing with (6.17), we exploit the

bounds

< An(t)< - . (6.20)
(n + 1)!(1 + t) - n!

Combining (6.12) and (6.20) into (6.19), we arrive at the following simplified bounds for

outage probability

22R 1 1 m 1
Pr {Istc < R] > 2 2R/- I 2 -2R > (6.21)

12SNR/ (mA)I ) (I El(s) I+ 1)!
- - D(s)

Pr [/sc < R] < - .1 (6.22)
- 2SNR/(mX) D(s)

Practical Issues

Space-Time Code Design The outage analysis in Section 6.1.3 relies on a random

coding argument, and demonstrates that full spatial diversity can be achieved using such a

rich set of codes. In practice, one may wonder whether or not there exist space-time codes

for which the number of participating antennas is not known a priori and yet full diversity

can be achieved. More specifically, if we design a space-time code for a maximum of N

transmit antennas, but only a randomly selected subset of n of those antennas actually

transmit, can the space-time code offer diversity n? It turns out that the class of space-

time block codes based upon orthogonal designs have this property [56]. Essentially, these

codes have orthogonal waveforms emitted from each antenna, corresponding to columns in

a code matrix. Absence of an antenna corresponds to deletion of a column in the matrix,

analogous to that antenna experiencing a deep fade, but the columns remain orthogonal,

allowing the code to maintain its diversity benefits. Thus space-time coded cooperative

diversity protocols may be readily deployed in practice using these codes.

Distributed Implementation Given a suitably designed space-time code, space-time

coded cooperative diversity reduces to a simple, distributed network protocol. The network

must possess a means for distributing columns from the code matrix to the terminals, as

well as coordinating the medium-access control. With these elements in place, when each

terminal transmits its message, the other terminals receive and potentially decode, requiring

only an SNR measurement. If a relay can decode, it transmits the information in the second
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phase using its column from the space-time code matrix. Because the destination receiver

can measure the fading, it can determine which relays are involved in the second phase

and adapt its decoding rule appropriately. Although certainly the terminals could exchange

more information in order to adapt power to the network geometry, for example, such

overhead is not required in order to obtain full diversity.

One of the key challenges to implementing such protocols could be block and symbol

synchronization of the cooperating terminals. Such synchronization might be obtained

through periodic transmission of known synchronization prefixes, as proposed in current

wireless LAN standards [35]. A detailed study of issues involved with synchronization is

beyond the scope of this dissertation.

6.1.4 Diversity-Multiplexing Tradeoff

As we saw in Chapter 5, an interesting tradeoff between diversity and multiplexing arises

when we parameterize ours results in terms of (SNR, Rnorm). Specifically, when we approx-

imate Pr [/ < R] = SNR-a(Rorm), in the sense of equality to first-order in the exponent,

log(Pr [/ < R])
A (Rnorm) = lim - , (6.23)

SNR-+oo log(SNR)

we find that increasing Rnorm reduces A.

Utilizing the lower and upper bounds (6.13) in (6.23) yields diversity order

Arep(Rnorm) = m(1 - mRnorm) (6.24)

for repetition decode-and-forward cooperative diversity. Similarly, utilizing the lower and

upper bounds (6.21)-(6.22) in (6.23) yields upper and lower bounds, respectively, on the

diversity order

m(1 - 2Rnorm) Astc(Rnorm) m 1 - [M 1 2Rnorm (6.25)

for space-time coded cooperative diversity.

Fig. 6-7 compares the diversity exponents, along with the corresponding tradeoff for non-

cooperative transmission, Adir(Rnorm) = 1 - Rnorm, from Chapter 5. Both repetition-based

and space-time coded cooperative diversity offer full diversity m as Rnorm - 0. Clearly,
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space-time coded cooperative diversity offers larger diversity order than repetition-based

algorithms and can be effectively utilized for higher spectral efficiencies than repetition-

based schemes.

6.2 Partially Cooperative Networks

The results in Section 6.1 suggest that, although the fully cooperative protocols provide full

spatial diversity gains (steeper slopes), SNR losses (shifts of the curves to the right) due

to bandwidth inefficiency and geometry-dependent path-loss can grow with the number of

cooperating terminals, to the point that they outweigh the diversity benefits in practical

operating regimes. This observation, coupled with the fact that diversity gains generally

exhibit diminishing returns, suggests that it can be beneficial in large networks to partition

the terminals into relatively small cooperating groups.

Grouping terminals requires additional network overhead in terms of disseminating in-

formation about the network, e.g., path-losses among terminals, executing an algorithm to

collect terminals into cooperating groups, and controlling medium access for the cooperat-

ing groups as in Figures 6-3 and 6-4. More than anywhere else in the dissertation, the issue

of layering becomes particularly important in this context.

In the remainder of this section, we illustrate how, from an architectural perspective,

repetition and space-time coded cooperative diversity may each amenable to different set-

tings. Repetition-based schemes require relatively low complexity in the terminals, but

require more complexity in the network for deciding which terminals cooperate in order for

the algorithms to be effective; thus, these algorithms are well-suited to infrastructure net-

works, e.g., cellular, satellite, and certain wireless LAN configurations, in which terminals

communicate directly to an access point that selects the cooperating groups. To manage

complexity in the access point, we use our analytical results from Section 6.1 to describe

a variety of potential grouping algorithms in Section 6.2.1 based upon set partitioning and

weighting matching in graphs. By contrast, space-time coded cooperative diversity requires

more complexity in the terminals, but readily extends to distributed implementation; thus,

these algorithms may be well-suited to ad-hoc networks, and especially ad-hoc networks

with clusters. As we illustrate in Section 6.2.2, space-time coded cooperative diversity can

leverage existing clustering algorithms to perform grouping; thus, our discussion of this case
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Figure 6-7: Diversity order A(Rnorm) for non-cooperative transmission, repetition-based
cooperative diversity, and space-time coded cooperative diversity. As Rnorm --+ 0, all coop-
erative diversity protocols provide full spatial diversity order m, the number of cooperating
terminals. Relative to direct transmission, space-time coded cooperative diversity can be
effectively utilized for a much broader range of Rnorm than repetition-coded cooperative
diversity, especially as m becomes large.
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is brief. Finally, in Section 6.2.3, we briefly comment on layering issues for consideration

by protocol designers. In all these sections, our study is by no means complete.

6.2.1 Centralized Partitioning for Infrastructure Networks

Our focus in this section is on infrastructure networks (cf. Section 2.3.1), in which all

terminals communicate through an access point (AP). In such scenarios, the AP can gather

information about the state of the network, e.g., the path-losses among terminals, select

a cooperative mode based upon some network performance criterion, and feed back its

decision on the appropriate control channels. Here cooperative diversity lives across the

medium-access control, and physical layers (cf. Fig. 1-2); routing is not considered.

Although centralized grouping can be performed for both repetition-based and space-

time coded cooperative diversity, we expect it to be most beneficial for repetition-based

algorithms because of their exponentially growing SNR loss in the number of cooperating

terminals. Because repetition-based algorithms generally allow for lower computational

complexity in the terminals, repetition-based algorithms with centralized grouping seem

well-matched to infrastructure networks. This observation biases our discussion through

the remainder of this section.

Managing Complexity

In Section 6.1, we developed a particular pair of algorithms in which all the cooperating

terminals performed a single cooperating action on behalf of one another. More generally,

terminals can utilize any of several different cooperating modes, leading to various combi-

natorial optimization problems for selection of network-wide policies. Designing a practical

grouping algorithm for a partially cooperative network requires balancing the performance

of the resulting scheme with the computational complexity required in the access point. For

small networks, the access point may be capable of performing brute-force optimization; for

growing networks, reasonable approximations must be employed. We discuss some ideas for

reducing grouping algorithm complexity in this section.

To develop a sense of the inherent complexity of general cooperation schemes, consider

the case of m terminals communicating to the AP using any of n cooperating modes, e.g.,

direct, amplify-and-forward, decode-and-forward, and superpositions thereof. For a given

source, each of the remaining m-I terminals acting as relays has n options for cooperation.
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Thus, there are n(m-1) options for the particular source, or nm(m-) options for the entire

network. While optimizing over all these options might be feasible for small m and n, it

becomes intractable as m becomes large, even for small n. The combinatorial nature of the

general problem prevents us from obtaining structured ways of reducing the search options

while maintaining optimal solutions.

Of course, we can impose restrictions on the search in order to reduce the complexity

of the problem. For example, we can impose certain symmetries in the communication

schemes, so that terminals in a pair operate similarly on each other's behalf. We can also

limit the number of cooperating modes and then ask how terminals should be grouped

using only those modes. With a suitable cost function, this problem is an instance of the

classical set partitioning problem [63], an integer programming problem which is, in general,

NP-complete. Even with these simplifying constraints, complexity considerations limit the

suitability of such algorithm for large m.

Based upon our earlier results, we can develop reasonable heuristics for further reducing

the search. For example, because of the increasing bandwidth penalties for exploiting

repetition-based cooperative diversity, as well as the diminishing returns of the diversity

gains, it seems reasonable to only allow small sets of cooperating terminals, in the range of

2 - 5 terminals, for example. Furthermore, using the results of Chapter 5 and Section 6.1,

we can relate the performance of a given cooperating set to the set of fading variances

ij among members of the set. Using path-loss models of the form Aij oc d - for the

variances, where dij is the distance between a pair of terminals and 2 < a < 5 is the

path loss exponent, we see that selection of cooperating sets can be related to network

geometry. Although the dependence upon the geometry in this case is more involved, recall

that many routing algorithms utilize network geometry as a basis for selecting routes, e.g.,

shortest-path routing algorithms.

Based upon these heuristics, we now examine several algorithms for matching terminals

into cooperating pairs. We then give an example of their performance. Finally, we comment

on hierarchical matching algorithms.

Matching Algorithms

We first consider grouping terminals into cooperating pairs, due to complexity issues and

for simplicity of exposition. Matching algorithms seem well-suited to repetition-based algo-
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rithms for infrastructure networks. While we comment on more general grouping algorithms

later, a detailed study of grouping algorithms is beyond the scope of this dissertation.

As we will see, choosing pairs of cooperating terminals is an instance of a more general

set of problems known as matching problems on graphs [63, Section 10.2]. To outline

the general matching framework, let g = (V, S) be a graph, with V a set of vertices and

£ C V x V a set of edges between vertices. A subset M of S is called a matching if edges

in M are pairwise disjoint, i.e., no two edges in M are incident on the same vertex. Note

that

1MI < [IVI/2] , (6.26)

where MI is again the cardinality of the set M and [x] denotes the usual floor function.

When the bound (6.26) is achieved with equality, the matching is called a perfect matching.

Since we will be working with complete graphs, i.e., there is an edge between each pair of

vertices, there will always be a perfect matching for IVI even. As a result, we will not be

concerned with so-called maximal matching problems.

Instead, we focus on weighted matching problems. Given an edge e in E, the weight of

the edge is some real number w(e). Given a subset S of E, we denote its sum weight by

w(S) = E w(e). (6.27)
eeS

The minimal weighted matching problem is to find a matching M of minimal weight [63].

We also consider two other matching algorithms, both based upon randomization, that

approximate minimal weighted matching and offer lower complexity.

Specifically, we consider the following algorithms:

" Minimal Weighted Matching: Since algorithms for implementing minimal weighted

matching are well-studied and readily available [4, 63], we do not go into their details.

We note, however, that more recent algorithms for minimal weighted matching have

complexity O(V13) [63].

* Greedy Matching: To reduce complexity and approximate minimal weighted match-

ing, we consider a greedy algorithm in which we randomly select a free vertex v and

match it with another free vertex v' such that the edge e = (v, v') has minimal weight.

The process continues until all of the vertices have been matched. Since each step of
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the algorithm takes at most IVI comparisons, and there are IVf/2 steps, the complexity

of this algorithm is O(1VI 2). We note that this greedy algorithm need not be optimal

for this order of complexity.

e Random Matching: To reduce complexity still further, we consider a random

matching algorithm where we vertex pairs randomly. The complexity of this algo-

rithm is O(IVI).

In addition to the algorithms outlined above for matching cooperating terminals, there

are a variety of other possibilities. Instead of the general weighted matching approach, we

can randomly partition the terminals into two sets and utilize bipartite weighted matching

algorithms, which have slightly lower complexity (in terms of their coefficients, not order)

and are conceptually simpler to implement than general weighted matching algorithms

[63, Section 10.2.2]. Another possibility is to again randomly partition the terminals into

two sets and utilize stable marriage algorithms with still lower complexity O(V12 ). Such

algorithms may be suitable for decentralized implementation [4, Section 12.5].

Example Performance

Fig. 6-8 shows a set of example results from the various matching algorithms described

above. Terminals are independently and uniformly distributed in a square of side 2000 m,

with the basestation/access point located in the center of the square. Fading variances are

computed using a d- path-loss model, with a = 3. The weight of an edge e = (v, v') is

the average of the outage probabilities for terminal v using v' as a relay, and vice versa.

In particular, we utilize the adaptive decoding-and-forward performance result (5.22) from

Chapter 5 for this example; more generally, we can employ any of the outage probability

expressions for a pair of cooperating terminals as developed in this dissertation. Each set

of results is averaged over 100 trial networks with the various matching algorithms applied.

The results are normalized so that the direct performance is the same in each trial, i.e.,

the received SNR for direct transmission averaged over all the terminals in the network is

normalized to be the horizontal axis in Fig. 6-8.

We note several features of the results in Fig. 6-8. First, all the matching algorithms

exhibit full diversity gain of order two with respect to direct transmission. As we would ex-

pect, random, greedy, and minimal matching perform increasingly better, but only in terms
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Figure 6-8: Matching algorithm performance in terms of average outage probability vs.

received SNR (normalized for direct transmission).

of SNR gain. Although diversity gain remains constant because we only group terminals

into cooperating pairs, the relative SNR gain does improve slightly with increasing network

size. This effect appears most pronounced in the case of greedy matching. This observation

suggests that optimal matching is more crucial to good performance in small networks,

because there are fewer choices among a small number of terminals. In general, the SNR

gains of the more computationally demanding matching algorithms are most beneficial in

low to moderate SNR regimes where the benefits of the diversity gains are smallest. As the

diversity gains increase for higher SNR, its becomes less crucial to utilize complex matching

algorithms.

Fig. 6-9 compares the results of minimal and greedy matching for a sample network

with 50 terminals. We see that the minimal matching tends to have pairs such that one of

the terminals is almost on the line connecting the basestation and the other terminal. By

comparison, the greedy matching algorithm exhibits much more randomness.

Constrained Partitioning Algorithms and Hierarchical Matching

General weighted matching can be viewed as an instance of the classical set partitioning

problem with subsets constrained to be of size two. More generally, grouping into triplets,

quartets, and so on, can be viewed as an instance of the set partitioning problem with
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Figure 6-9: Matching algorithm results for an example network: (a) minimal matching, (b)
greedy matching. Terminals are indicated by circles, and matched terminals are connected
with lines.

subsets constrained to be of sizes 3, 4, and so on, respectively. While such partitioning

problems can be solved in principle, their complexity grows dramatically with the size of

the network.

To reduce this complexity for large networks, one can employ matching algorithms in

hierarchical fashion. As an illustration, consider grouping into triplets. We first randomly

partition the network into subnetworks of size 2n/3 and n/3, respectively. We execute a

matching algorithm on the subnetwork of size 2n/3 to obtain n/3 pairs of terminals. Next we

execute another matching algorithm between the n/3 pairs and the remaining n/3 terminals

to form triplets. Alternatively, the greedy matching algorithm described previously can be

generalized to first find the best pair of terminals in the network, and then find the best

third terminal to join the pair. If n is reasonably large, then the results of Fig. 6-8 suggest

that low-complexity algorithms of this form might perform well.

Our point in this discussion is to illustrate some reasonable ways of approximating set

partitioning when the size of the network is too large for a brute-force approach. Looking

at the case of matching, and hierarchical matching, we obtain relatively simple algorithms

that offer full diversity and reasonable SNR gain. A complete examination of the tradeoff

between performance and computational complexity is beyond the scope of this dissertation,

but we note that the conclusions of any such study will depend upon operating regimes and
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Figure 6-10: Clustering with (a) direct transmission and (b) cooperative diversity transmis-
sion.

other system factors.

6.2.2 Clustering in Ad-Hoc Networks

Our focus in this section is on clustering in ad-hoc networks (cf. Section 2.3.1), and how

cooperative diversity can be integrated into such architectures. As we discussed in Chap-

ter 2, clustering arises in a variety of forms in large, dense ad-hoc networks. Clustering

algorithms partition a large ad-hoc network into a set of clusters, each centered around a

clusterhead. Terminals communicate directly to their associated clusterhead, and routing

is usually performed between clusterheads. In this sense, clustering mimics some of the fea-

tures of current cellular networks: clusters correspond to cells and clusterheads correspond

to basestations. However, in ad-hoc settings the clusters and clusterheads may be varying

as the network operates, the clusterheads themselves can have information to transmit, and

the clusterhead network must share the wireless bandwidth.

There are many tradeoffs in the design of clustering algorithms, too many to fully address

in this dissertation. For example, clustering algorithms can be designed in order to reduce

the complexity and overhead of routing through the network [20]; they can be designed

in coordination with turning radios on and off in order to reduce power consumption in

the network [15]; and they can be designed to facilitate fusion of measurements in sensor

networks [36, 37].

Instead our objective in this section is to illustrate how cooperative diversity can be

integrated into an existing clustered ad-hoc network. To this end, we consider three clus-

ters as in Fig. 6-10. Fig. 6-10(a) illustrates how direct transmission can be utilized to

communicate information between terminals in different clusters. A terminal transmits to
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its clusterhead, clusterheads route the transmission to the destination cluster, and finally

the destination clusterhead transmits to the destination terminal. Fig. 6-10(b) illustrates

how each of inter-cluster direct transmissions can be converted into cooperative diversity

transmissions along the lines developed in Chapter 5 and Section 6.1. If the average inter-

terminal spacing is T, we see that inter-cluster transmissions occur roughly over a distance

2T on average. There are likely to be useful relays between clusterheads, and in order to

coordinate the transmissions we utilize relays in the originating cluster.

As we increase the cluster size, the number of clusters in the network decreases. Thus

the complexity of routing across the entire network decreases as well; however, the utility

and complexity of routing within a cluster increases. From a diversity standpoint, the

inter-cluster direct transmissions are over longer and longer distances, but there are more

and more potential relays to exploit. The complexity and benefits of cooperative diversity

between clusters thus increases as well. Again, at least from a diversity standpoint because

of reduced bandwidth efficiency and diminishing returns of diversity gains, there is no reason

to grow the cluster size too large. On the other hand, growing the cluster size allows more

and more terminals to be asleep when they are not transmitting and still conserve the

transport of the network [15]. The point is, there are a variety of issues to explore here,

and cooperative diversity should be one of them.

6.2.3 Comments on Layering Issues

As the examples in Sections 6.2.1 and 6.2.2 suggest, cooperative diversity can be exploited

in a variety of wireless network architectures. A natural question that arises is how well

cooperative diversity fits within traditional layered architectures (cf. Fig. 1-2), or, alter-

natively, how much layered architectures must be modified in order for us to implement

cooperative diversity. In this section, we comment on the various components of coopera-

tive diversity and suggest where they might best be implemented. We discuss variations on

our main theme depending upon the network and application. It is important to stress that

our breakdown into protocol layers is coarse; indeed, new wireless network architectures

with more layers and cross-layer functionality are constantly being proposed.

In this chapter and the preceding chapters, we have conceptually separated cooperative

diversity into two sets of problems. The first set of problems involves deciding which ter-

minals cooperate using what strategies. The second set of problems involves executing a
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particular strategy within a set of cooperating terminals, i.e., cooperatively transmitting,

processing, and receiving signals to exploit spatial diversity in the channel. We generally

envision the first set of problems being addressed at the medium-access control and per-

haps link and network layers, using suitable models developed for the latter set of problems

when addressed at the medium-access control and physical layers. Clearly, the medium-

access control layer plays a central role in our vision for cooperative diversity in wireless

networks.

The extent to which cooperative diversity can be completely implemented at the medium-

access control layer can depend upon several considerations, including the connection for-

mat, the relaying strategy, and the type of diversity combining. Full maximum-ratio com-

bining of real-valued received signals, or fine quantizations thereof, is difficult to implement

at the medium-access control layer in datagram networks, because real valued signals must

be passed up the protocol stack. Similarly, amplify-and-forward relaying can be difficult to

implement at the MAC layer. On the other hand, selection combining at the destination

and decode-and-forward transmission at the relay can be implemented in the medium-access

control layer in such networks without substantial modifications to the data paths. Because

selection combining performs 3 dB worse than maximum-ratio combining, which we have fo-

cused on throughout the dissertation, again the system designer must balance performance

with computational and architectural complexity.
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Chapter 7

Conclusions

This final chapter summarizes the contributions of the dissertation and highlights numerous

areas for further research.

7.1 Contributions

In this dissertation, we have created a framework for designing and evaluating wireless

network algorithms that take advantage of certain kinds of cooperation among terminals.

Specifically, in these cooperative diversity techniques, as we have referred to them through-

out, sets of terminals relay signals for each other to create a virtual antenna array. In so

doing, the terminals trade off the costs, in power, bandwidth, and computational complex-

ity, for the greater benefits gained by exploiting spatial diversity in the channel to combat

multipath fading.

Tradeoffs among multiple cooperating terminals, each with its own information to com-

municate, seem natural, and were a key ingredient of our treatment. By contrast, in the

classical relay channel model and its extensions, there is a single source terminal with infor-

mation to communicate, and additional relay terminals without information to communi-

cate. At a high-level, the relays represent additional resources, e.g., power and computation,

that can be freely utilized by the source terminal; thus, there is no tradeoff. Not surpris-

ingly from this perspective, work on the relay channel often demonstrates that cooperative

diversity is beneficial in certain regimes.

Our examination of a multiple-access channel with cooperative diversity in Chapter 4

led to refined or alternative conclusions. Specifically, we showed in the Gaussian noise
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case, with and without ergodic fading, that the performance advantages in terms of ergodic

capacity must be shared by the cooperating terminals; thus, there is an essential tradeoff

in terms of which terminals receive the benefits of cooperative diversity. Moreover, we also

demonstrated that, at least in terms of sum-rate in ergodic Rayleigh fading, there are no

advantages to cooperative diversity if the cooperating terminals do not have channel state

information available to them. These observations suggest that conclusions about the utility

of cooperative diversity can vary with the channel model and system characteristics as well

the target performance objective.

The next key ingredient of our framework was a focus on non-ergodic Rayleigh fading

settings using outage probability as performance measures. We focused on scenarios in

which the appropriate receivers obtain channel state information, but the transmitters do

not obtain this information, or otherwise do not exploit it. Although certainly not the most

general setting, we surveyed in Chapters 5 and 6 numerous issues that arose in the context of

designing practical cooperative diversity algorithms, evaluating their performance in terms

of outage probability, and formulating approaches to system design and architecture with

these algorithms. These issues included:

" Practical System Constraints

- Orthogonal transmission, for integration into many current network architectures

- Half-duplex constraints, which led to performance losses due to inefficient use of

channel bandwidth

" Channel Model Features

- Geometry-dependent path-losses, which led to SNR losses or gains

- Limited feedback from the destination, which allowed for improved bandwidth

efficiency by re-transmitting only when necessary

" Terminal Coding and Processing

- Source terminal channel coding and modulation

- Relay processing, including amplify-and-forward and decode-and-forward

- Destination processing, largely focusing on maximum-ratio combining, though

the results can be carried through for selection or other forms of combining if

desired.
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" Grouping Algorithms, for grouping terminals into cooperating sets

" Layering and Cross-Layer Architectures

Many of these issues will arise under other channel models and system characteristics, so

these chapters can serve as a blueprint for further design and analysis.

Chapter 5 developed energy-efficient algorithms for two cooperating terminals based

upon the relays amplifying what they receive or fully decoding, re-encoding, and repeating

the source messages. We designed simple protocols that achieved full spatial diversity and

led to improved robustness to fading or substantial power savings, up to an order of mag-

nitude or more in certain regimes. Chapter 6 extended these repetition-based cooperative

diversity algorithms to fully cooperative networks, and also improved upon their bandwidth

efficiency by developing space-time coded cooperative diversity. These developments also

demonstrated that performance losses due to network geometry and bandwidth inefficiency

can grow with the number of cooperating terminals, and even outweigh the benefits of ad-

ditional diversity gain in practical operating regimes. For such circumstances, Chapter 6

also considered various grouping algorithms for collecting terminals into smaller cooperat-

ing sets. For infrastructure networks in which a centralized terminal can gather network

information and implement a centralized algorithm, we proposed set partitioning as well as

low-complexity approximations to it. For ad-hoc networks with clusters, we illustrated how

grouping might occur in a more distributed fashion and take hints from other architectural

considerations in the network, such as cluster formulation algorithms. These examples con-

tribute reasonable guidelines for system design and architecture with cooperative diversity

algorithms.

7.2 Future Research

There are a variety of fruitful areas for future research on cooperative diversity and related

topics. We have mentioned many issues in earlier chapters, but we repeat some of the larger

and more important ones here.

9 Radio and Network Implementation: There are a number of modeling and an-

alytical considerations that can be further explored in the context of cooperative

diversity, as we point out below. We feel it is just as important, if not more impor-
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tant, to prototype an implementation of cooperative diversity with practical hardware

for some wireless network application. Our analysis has assumed a reasonable amount

of block and symbol synchronization among the radios belonging to distributed termi-

nals, but precluded the possibility of perfect phase synchronization and beamforming;

a test-bed implementation would indicate the degree to which these assumptions are

reasonable. Moreover, by fleshing out what it is and is not possible with distributed

radio hardware in various regimes, a test-bed implementation would help prioritize

the analytical issues to follow, as well as potentially reveal many other issues.

From a networking perspective, we suspect there are a whole host of issues related to

layering and cross-layer design that we have not explored because we did not set out to

fully specify protocols. A protocol designer trying to implement cooperative diversity

within a given network stack could again help prioritize the analytical issues to follow

as well as reveal many other important issues. For example, while we have briefly

addressed the issue of limited feedback from the destination, it would be interesting to

determine how general cooperative diversity transmissions and ARQ should interact,

what the right abstractions are, and so forth.

* Relative Value of Cooperative Diversity with Temporal or Spectral Diver-

sity: We saw that cooperative diversity may not be very beneficial when temporal

diversity can be fully exploited in ergodic settings. We focused in the latter parts of

the dissertation on scenarios in which only spatial diversity can be exploited through

cooperative diversity. In more general channel environments, the channel may ex-

hibit variations across time and frequency as well as space. Since there are many

simple and effective methods for exploiting both temporal and spectral diversity, it

is important to address whether, and to what extent, it is useful to additionally ex-

ploit spatial diversity through cooperative diversity. We expect spatial diversity gains

obtained through cooperative diversity to be especially attractive in indoor settings

where large amounts of bandwidth are required to experience frequency selectivity,

and fixed wireless scenarios where there is little or no temporal selectivity.

* General Channel Models and System Characteristics: We focused through the

dissertation on Rayleigh fading channels using capacity regions and outage probability

as a performance measure. Moreover, we have considered scenarios in which channel
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state information is available only to the appropriate receivers. We expect our results

will readily extend to more general fading distributions, and in fact depend only upon

the characteristics of those distributions near the origin. More general communication

strategies than the ones considered in preceding chapters arise under different system

characteristics and using alternative performance measures.

For example, if the transmitters obtain channel state information, power control be-

comes possible. For Gaussian multiple-access channels with ergodic fading, allocating

the channel only to the terminal with the largest instantaneous SNR at each given in-

stant achieves the maximum sum-rate for reliable communication in Shannon's sense

[83]. Such operation can be viewed as a form of cooperation, in the sense that the

terminals do not interfere with one another; however, it is not cooperation in the sense

of cooperative diversity. It would be interesting to determine whether cooperative di-

versity with power control improves substantially over the case of power control alone,

what the salient characteristics of effective algorithms are, and how they relate to the

basic algorithms developed in this dissertation.

As another example, instead of using outage probability as a measure, in which a given

fixed rate is either achieved or not, using channel superposition coding as in the classi-

cal broadcast channel allows for a range of rates to be achieved, and expected capacity

becomes a relevant performance measure [16], assuming successive-refinement source

coding techniques [62] are employed. This "broadcast approach" was first studied in

the context of fading channels by Shamai [711. In the context of cooperative diversity,

superposition coding might lead to ways of having relays partially decode information

from the source. For example, suppose the source encoded information into two-level

superposition code. A relay not able to decode both levels might be able to decode

the first level, strip it out, and amplify the second level. After suitable combining,

the destination might receive both levels or only the first level. Superposition coding

generally allows for larger expected capacity, and it would be interesting to see how

cooperative diversity gains, if any, would reveal themselves in this context.

* General Networks, Feed-Forward Graphs, and Network Coding: Through-

out the dissertation we have focused on multiple-access and to some extent interference

channels with cooperative diversity because there is a natural way to tradeoff power
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between the cooperating transmitters in these channels. As we pointed out in Chap-

ter 2, cooperative diversity can arise in many other simple networks, such as broadcast

networks. The broadcast network can be viewed as a generalization of the relay chan-

nel in which the relays also have information to receive. It would be useful to develop

a framework for trading off system resources and performance in such networks.

More generally, in this dissertation we evaluated our algorithms for cooperative diver-

sity in terms of essentially local transmissions in which the source and destination are

determined by higher layer algorithms, such as a multihop routing algorithm. Our

perspective has been to improve the performance on each of these links by having

nearby terminals cooperate with each other. At a high level, grouping into cooper-

ating sets and determining one or several routes through a wireless network could be

performed jointly. An example in this area is the generalization of the relay channel

decode-and-forward to communication of feed-forward graphs by Gupta and Kumar

[33]. Another potentially useful framework for further study of cooperative diversity

is the network coding approach of Koetter and Medard [47]. It seems clear that the

basic building block of such algorithms should be something more general than a

point-to-point link, but should not be something so complicated that the resulting

algorithms become intractable. Much more research is necessary to obtain a better

understanding of these issues.

* Practical Coding and Decoding Algorithms: Throughout the dissertation we

have employed random coding arguments to evaluate performance of coded coop-

erative diversity schemes. In both uncoded and coded settings, different practical

decoding algorithms at the relays as well as combining and decoding algorithms at

the destination induce many possible communication strategies with related, but pos-

sible different code design criteria. We have performed some analysis of detectors in

uncoded settings [49], and obtained similar performance advantages in terms of bit-

error rate to those obtained here in terms of outage probability. Recent work on coded

settings has also appeared [41]. More generally, designing effective algorithms, evalu-

ating performance, and selecting codes are necessary for practical implementation of

cooperative diversity.
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Appendix A

Coding Theorem for Cooperative

Diversity

This appendix proves a coding theorem for an achievable rate region for the multiple-

access channel with cooperative diversity, the model described in Section 4.1. In particular,

we focus on decode-and-forward transmission, in which the encoders decode each other's

messages and cooperatively send refinement information to the ultimate decoder. We treat

the discrete memoryless channel, with the usual extension to the Gaussian case following

in the standard way by incorporating the power constraints into the conditions on the joint

typicality at the decoder.

The proof utilizes a random coding argument with superposition block-Markov coding

[18] and backward decoding [90]. It can be viewed as a two-user generalization of the

cooperation strategy introduced by Cover and El Gamal [17] for the relay channel, or a

simplified version of the strategy developed by Willems, van der Meulen, and Schalkwijk

[91] for the multiple access channel with generalized feedback. Although backwards decoding

incurs longer decoding delay than the list decoding techniques employed in, e.g., [17], the

proofs are conceptually simpler.

A.1 Definitions

For convenience, we repeat here the definitions of Section 4.1.4.

A (two-user) discrete memoryless multiple-access channel with cooperative diversity con-

sists of the following:
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" Channel input alphabets X 1 , X 2 , and channel output alphabets Yo, Y 1 , and Y 2 .

" Channel probability law mapping inputs to outputs

2

PyO,yj,y2jx1,x2(YO, V1, Y2 JX1, X2) =1 Pyi lx1,x2 (Yi Jx, X2) .(A.1)
i=O

By memoryless, we mean that the probability law for n consecutive uses of the channel

is the product

Pyo,y1,y2jxi,x2 (YO, 1 Y1 2|X1, X2)=

flPyo[k],y[k},y2 [k]x1[k],x 2[k](yo[k], y [k], Y2 [k] x[k],X2 [k]) . (A.2)
k=1

A communication strategy for the discrete memoryless multiple-access channel with co-

operative diversity consists of the following:

" Messages wi E Mi = {1, 2, .. ., Mi }, i = 1, 2, distributed uniformly and independently.

The rates in bits per channel use are then

1

n

* Encoding functions, one for each encoder for each time k, that map the encoder's

message wi and past channel observations y [1], ... ,y [k -1] into its transmitted signal.

That is

xi[k] = fi,k(wi,yi [1], yi[2],.. .,yi[k - 1]) , i = 1,2 . (A.4)

Note that these encoders are causal functions of the respective channel outputs.

" A decoding function mapping the channel output vector yo into M 1 x M 2 , i.e.,

(wiV, W2) = g(yO) . (A.5)

Definition 4 The average probability of error for a communication strategy operating over

a discrete memoryless multiple-access channel with cooperative diversity is

p(n) = Pr [g(yo) / (wi, w2)] . (A.6)
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Definition 5 A pair of transmission rates (R 1 , R 2 ) is said to be achievable on a discrete

memoryless multiple-access channel with cooperative diversity if there exists a sequence of

communication strategies operating over the channel with

M i = 2Fn1 , i = 1,2

and

p) -+0 , as n -oo

Definition 6 The capacity region of a discrete memoryless multiple-access channel with

cooperative diversity is the closure of the set of achievable rates.

A.2 Preliminaries

The random coding argument to follow relies on properties of jointly typical sequences for

a probability distribution. We summarize the relevant properties in this section. These

definitions and properties are taken directly from [19, Section 14.2], where more details are

also available.

Let (xi, x2 ,. .. , xk) denote a finite collection of discrete random variables with joint

probability distribution function

Pxl,x2,.,Xk (X1, X2, - - -, Xk) -

Let s denote any ordered subset of these random variables, and consider n independent

copies si, s2 ,. .. , s,, of s. Then

n

Psi,s2.s2(S1, S2, - - -, Sn) = Jps(si)
i=1

and, by the weak law of large numbers, we have

11n
log ps1,s2,...,Sn (si, s2,. .,s) = log ps(si) - H(s) , w.p. 1.

n n
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Definition 7 The set A ()( , xk) of jointly c-typical n-sequences (xi,x 2, . -. ,xk) is

defined by

An)(X,...,x) - xI,...,xk)

1
-logps 1,s2. s (s1,s2, I S2 , sn) - H(s) < e, Vs C (x1,x2, ...,xk)}
n

(A.7)

The following Lemma, often called the joint asymptotic equipartition property (AEP), is

proven in [19, Theorem 14.2.1], and captures all the properties we need for the achievability

proof to follow.

Lemma 1 For any c > 0, and for sufficiently large n,

1. Pr [A )(s) > 1 - E , Vs C (x1, X2, ... , Xk).

2. If s E A ()(s), then

2 ~n[H(s)+e] < p(s) < 2

3. 2 n[H(s)-2E] < IA[H(s)+2 < 2

4. Let si, s2 9 (xl, x2, ...,xk). If (S1, S2) E AE( 51,52), then

2 -n[H(si 1s2)+2E < p(si Is2) < 2 -n[H(si 1s2)-2E]

A.3 Decode-and-Forward Transmission

We now prove a coding theorem for decode-and-forward transmission. In this communi-

cation strategy, the cooperating users decode each other's messages and jointly transmit

"refinement" information for the destination's benefit. Specifically, we prove the following

theorem.

Theorem 4 The set of achievable rates for decode-and-forward transmission over a discrete-

memoryless multiple-access channel with cooperative diversity is given by the closure of the
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convex hull of all (RI, R 2 ) satisfying

R1 < I(x1; y2 x2, u) , (A.8)

R 2 < I(x2 ; yilxI, u) , (A.9)

R 1 + R 2 < I(x1 , x 2 ; y) , (A.10)

for some distribution potU)Pxl 1(x1|U)Px2Iu(X2|U) on U x X1 x X 2 .

As is frequently done in random coding arguments, we break the proof into the follow-

ing steps: generation of random codebooks, encoding and decoding, and analysis of the

probability of error.

A.3.1 Codebook Generation

Fix a blocklength n. Let Mi {1,2,...,MJ}, with Mi = 2 fnR1, i = 1,2. Suppose

wi E M, i = 1, 2, and wo E M 1 x M 2 . Throughout the proof, wi (resp. w 2 ) indexes "fresh"

information at encoder 1 (resp. encoder 2), and wo indexes "refinement" information at

both encoders.

We fix a distribution p,(u)p, 1 1 (xI|u)px 21u(x 2 Iu). Note that xi and x 2 are conditionally

independent given u under this distribution, or, equivalently, x1 +-+ u - x 2 forms a Markov

chain. Also note that u +-+ (xi, x2 ) +-+ (y, yi, y2) forms a Markov chain.

The random codebooks are generated according to the following steps:

" Generate M 1 - M 2 codewords u(wo) i.i.d.according to pu(u) = H i Pu(ui). As we will

see, u(wo), wo E MI x M 2 , communicates refinement information in each block.

" For each u(wo), generate Mi codewords x1(wi, wo) i.i.d.according to

n

px1IU(x1Iu(wo)) = fJpXiU(x1,ilui(wo))
i=1

As we will see, x,(wi, wo), with wl E M 1 and wo fixed, communicates fresh informa-

tion from encoder 1 in each block.

" Similarly, for each u(wo), generate M 2 codewords x 2 (w 2 , wO) i.i.d.according to

n

px2 1u(x 2Iu(wo)) = JpIx2u(x2,ilui(wo))
i=1
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Block 1 Block 2 -_-_-Block B - 1 Block B

x1(w1,1, (1, 1)) x1(wl,2, (w 1, 1 , W2,1)) - x1(wl,B-1, (w1,B-2, 2,B-2)) x1(1, (w1,B-1, W2,B-1))

X2 (W2,11, , 2 )) x(W2,2, (W1 ,1, W2,1)) - - x2(W2,B--1, (W1,B-2, W2,B-2)) x2(1, (Wi,B-1, W2, B-1))

Figure A-1: Block-Markov encoding structure for decode-and-forward transmission.

As we will see, x 2 (w 2 , WO), with w2 E M 2 and wo fixed, communicates fresh informa-

tion from encoder 2 in each block.

A.3.2 Encoding

As in many superposition block-Markov encoding strategies, we encode information into B

blocks each of length n channel uses. The same codebooks of length n are used in each

of the B blocks. Fig. A-1 shows what the encoders send in the respective blocks. For

block b = 2, . . ,B - 1, the encoders send fresh information from block b superimposed

on refinement information from block b - 1. In block b = 1, the encoders only send fresh

information, while in block b = B, the encoders only send refinement information. Note

that the actual transmission rates Ri = Ri(B - 1)/B approach Ri as B -+ oo.

To determine the refinement information for block b, each encoder must estimate the

other's fresh information from block b - 1. These estimates are denoted in Fig. A-1 by W2,b

and Wv1,b at encoders 1 and 2, respectively. If these estimates contain no errors, i.e., Wlb =

Wl,b and W2,b = w2,b, then the separate encoders each superimpose their fresh information

onto the same refinement information U((W1,b, w2,b)). It is in this sense that the two encoders

cooperate to refine the decoder's estimate of the fresh information in the previous block.

To determine these estimates, each encoder looks for a sequence that is jointly typical

with its emission and channel observations. For example, in block 1, knowing w1,1 and that

wi,o = w2,o = 1, encoder 1 looks for a unique w2 E M 2 such that the event

(U((1, 1)), X1 (Wi,1, (1, 1)), x2(W2, (1, 1)), yl) E A( n(uxi, x2, y1) (A. 11)

occurs. If no such w 2 exists, or more than one exists, then the encoder 1 declares an error.

Otherwise, it sets its estimate v2 ,1 to the unique w 2 satisfying (A.11). Similarly, knowing
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w2,1 and that wi,o = w2 ,o = 1, encoder 2 looks for a unique wi E M 1 such that the event

(u((1, 1)), x1(wi, x 2 (w2,1, (1, 1)), Y2) E Ain)(u,xix 2 ,y 2 ) (A.12)

occurs. If no such wi exists, or more than one exists, then the encoder 2 declares an error.

Otherwise, it sets its estimate 1,1 to the unique w, satisfying (A.12).

In each of blocks b = 2, 3, ... , B - 1, knowing w1,b, Wl,b_1, encoder 1 looks for a unique

w2 E M 2 such that the event

(u((wl,b 1, W2,b-1)), x1 (w1,b, (wl,b-1, W2,b-1)), x 2 (w 2 , (wlb1, W2,b-1)), yi) E AtCj) (u, x 1 , x 2 , Y)

(A.13)

occurs. If no such w 2 exists, or more than one exists, then encoder 1 declares an error.

Otherwise, it sets its estimate V2,b to the unique w 2 satisfying (A.13). Similarly, knowing

W2,b, W2,b-1, encoder 2 looks for a unique w, E M1 such that the event

(U(( ',b_1, W2,b-1)), x1 (wi, (Wl,b- 1, W2,b-1)), X2 (W2,b, (W1,b- 1, W2,b-1)), Y2) E A( ) (u, xi, x2, y2)

(A.14)

occurs. If no such w, exists, or more than one exists, then encoder 2 declares an error.

Otherwise, it sets its estimate LV1,b to the unique w, satisfying (A.14).

A.3.3 Backwards Decoding

Backwards decoding at the decoder operates as follows. The decoder waits for all B blocks to

be received, and then begins decoding with block B. It decodes the refinement information

in block b given knowledge of the fresh information in block b. The refinement information

in block b determines the fresh information in block b - 1, and the process continues.

In block B, knowing that wi,B = W2,B = 1, the decoder looks for a unique wo E M 1 x M 2

such that the event

(u(wo), x1(1, wo), x2 (1, wo), y) E A n)(u, xi, x2 , y) (A.15)

occurs. If no such wo exists, or more than one exists, then the decoder declares an error.

If such a wo exists, then its components are the decoder estimates of the messages in block

B - 1, i.e., ( 1,B_1, W2,B-1) = wo-
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Similarly, in block b = B - 1, B - 2,..., 2, with estimates W1,b and W2,b obtained from

decoding refinement information in block b+1, the decoder looks for a unique wo E M 1 X M 2

such that the event

(uWO), X1 ( V,b, WO), x2( V2,b, WO), Y) e A(')(u, xi, x2, y) (A.-16)

occurs. If no such wo exists, or more than one exists, then the decoder declares an error. If

such a wo exists, then its components are the estimates of the messages in block b - 1, i.e.,

( Vl,b-l, 2,b-d) = WO.

We note that, under backwards decoding, the fresh signals xi, i = 1, 2, are mainly used

to share information among the encoders. The decoder recovers the message exclusively

from u. By contrast, under list decoding as employed in [17], both xi, i = 1, 2, and u are

utilized to recover the message at the decoder.

A.3.4 Probability of Error and Achievable Rates

In this section, we examine the probability of error in the sequence of B blocks. The analysis

is somewhat complicated by the fact that the encoders operate in the forward direction,

while the decoder operates in the backward direction. Nevertheless, backward decoding

allows us to avoid the more involved list decoding and its associated analysis.

An outline of the proof is as follows. We show that the error probability can be made

arbitrarily small given certain conditions on the transmitted rates. To bound the overall

probability of error at the decoder, we first separate the event that the encoders make errors

from the event that the decoder makes error given perfect encoders. We then break the error

events for all B blocks into a union of simpler, conditional error events in the individual

blocks. Finally, fixing the transmission rates so that they fall below the appropriate mutual

informations, we show that the error events in the individual blocks have arbitrarily small

probability of error.

Sequence Errors to Block Errors

Let E = {(Wi, 2) $ (w 1 , w 2 )}, the event that either encoder makes an error in estimating

the other's fresh information during any of the B blocks. Similarly, let D = {(Wi, W2 ) #

(wI, w 2 )}, the event that the decoder makes an error in estimating the encoder messages
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during any of the B blocks. Note that these error events are defined not only over the

uniform distribution for the messages, but also the random codebooks.

Using the total probability law, and the fact that probabilities are bounded by 1, we

have

Pr [D] = Pr [DI.] Pr [E] + Pr [DIE] Pr [E]

< Pr [S] + Pr [DIE] . (A. 17)

Conveniently, (A.17) allows us to separately examine the error probability of the encoders

and the error probability of the decoders assuming no encoder errors. To show that, for

any c > 0, Pr [D] < c, we will show that Pr [E] : 6/2 and Pr [DI] < E/2 for n sufficiently

large.

Let Eb = {(vib, b2,b) : (Wi,b, w2,b)}, b = 1, 2, ... , B - 1. Then Eb is the event that either

encoder makes a decoding error in block b. Using basic properties of sets and probabilities,

we have

B-1

Pr [E] = Pr U eb
.b=1 .

=Pr U{ Sb - UEb}
.b=1 b'=1
B-i

=Pr U enlfn...fnEb-1
b=1

B-1

= Pr [Eb n fE n ... n b_1]
b=1

B-1

< Pr [En b1(]
b=1

B-1

< Pr [9b $b_1] (A. 18)
b=1

Thus, to show that Pr [E] < e/2, it is sufficient to show that Pr [Eb jb-a_] E/(2B), as we

develop in Section A.3.4

Let Ah = {( '1,b-1, W2,b-1) 5 (wi,b-1, W2,b-1)} be the event that the decoder makes an

error in block b = 2, 3, ... , B. Because of the backwards decoding, we define the reversed
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block index b' = -b + B + 1. As in (A.18), we have

B-1

Pr[D|Y] = Pr U Db' El

b'=1

B-1

= Pr [Db Db+1,S -Y + Pr [DB El
b=2

Thus, to show that Pr [D |E] < e/2, it is sufficient to show that Pr [Db +Db, Y] < E/(2B),

as we develop in Section A.3.4.

Encoder Block Error Probability

Let b,i = {i,b wi,b}, i = 1, 2. Then

Pr [Eb Jb-i] = Pr [4,1 U E4,2 b-i I

<Pr [Eb,1 b-1] + Pr [Eb,2 Ib-i]

Our objective in this section is to show that, for any E > 0, Pr [Ebi Eb_1] < e/(4B) for n

sufficiently large given certain conditions on the transmitted rates.

We now upper bound Pr [Eb,2 tyb-1], for b = 1,2,..., B - 1, and note that a similar

argument applies to Pr [Eb,1 Ifbi]. Given event Eb-1, the pair of encoders have correct esti-

mates, i.e., Wi,b_1 = Wi,b-1, Z = 1, 2, allowing them to select identical refinement information

U(W,b1, w2,b-1) in block b (cf. Fig. A-1).

As is often done in random coding arguments [19], we exploit the symmetry of the

random codebook to obtain

Pr [S,2 J5b-1] = Pr [E4,2 |b-1, W1,bi = Wi,b = W2,b-1 = W2,b = 1]

That is, we may, without loss of generality, consider the conditional probability space in

which both current and previous messages take the value 1. With this in mind, for w 2 E M 2 ,

we define the events

Ti(w 2 ) = {(u((1, 1)), x 1(1,(1, 1)), x 2 (w2, (1, 1)), y) E A (u, x1, x2, y1)
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so that the joint typicality decoder (A.11) and (A.13) has conditional error event

T 1 (1) U U T(w 2 ),
w2 =2

i.e., either the codewords corresponding to message 1 are not jointly typical with the channel

output, or the codewords corresponding to some other message are jointly typical with the

channel output. The conditional error probability then becomes

Pr [Sb,l Jb-1] = Pr 1 (1) U U T 1 (w2)
IT W2=2 I

M 2

< Pr [Ti (1)] + Pr [T1(w 2 )] . (A.19)
W2=2

By the joint AEP, Pr [71(1)] --+ 0 as n --+ oc. For each of the terms in the summation,

with W2 $ 1, we have

Pr [T(w2 )] = Pr [(u((1, 1)), xi(1, (1, 1)), x 2 (w2, (1, 1)), yi) E A n)(U,

pu(U)P 11u(Xi Iu)px2iu(x2Iu)py1Iu,.x (YI Iu, x1)

(U,x1,x2,yI)EAf (Uix1,x2,yI)

< E 2-n[H(u)-E]--n[H(x1u)-2E] 2 -n[H(x 21u)-2E] 2 -n[H(y1u,x1)-2]

(U,x1,x2,y1)EAF (U,X1,x2,y1)

< n[H(u,x1,x2,y1)+2c] . 2-n[H(u)-E) .2-n[H(xi lu)--2E] .2g-n{H (x2|u)-2EJ .2-n[H (yi lu,x1)-2fJ

< 2 -n[I(x2;y1|u,x1)- 9 1 . (A.20)

Substituting (A.20) into (A.19), we obtain

Pr [4,2 A-1] 5 Pr [T1(1)] + M 2 -2-n(I(x2;yiu,x1)-9E) (A.21)

< Pr [7 1(1)] + 2 . 2 nR 2 2 -n[I(x 2 ;y1Iu,x1)-9e] (A.22)

= Pr [T1(1)] + 2 . 2 --n[I(x2 ;yIlu,x1)-9E-R 2] (A.23)

--+0 (A.24)

as n -> oo if R 2 + 96 < I(x 2 ; y1Iu, xI).

Similarly, Pr [6b,1 1 _1] -+ 0 as n -+ oo if R 1 + 9c < I(xi; y2Iu, x 2 ).
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Decoder Block Error Probability

Our objective in this section is to show that, for any e > 0, Pr [Db f9b+1,] e/(2B) for

n sufficiently large given certain conditions on the transmitted rates.

Again, by symmetry of the random code construction,

Pr [Db b+1, ] = Pr [Db Ab+1,, Wi,b-1 = W,b = W2,b-1 = W2,b = 1] . (A.25)

As we did with the encoders, for wi E M 1 , W2 E M 2, we define the events

T(wi, w 2) = {(u((wi, w2 )), x1(1, (WI, W 2)), x 2 (1, (wi, W2 )), y) E A (u, xi, x2, y) , (A.26)

so that the joint typicality decoder (A.15) and (A.16) has conditional error event

Mi M2MI M2

T(1, 1)U U T(wi, 1)U U T(1, w2 )U U U T(wI, W2 ) ,
w1=2 W2=2 w1=2W2=2

i.e., either the codewords corresponding to the message (1, 1) are not jointly typical with the

channel output, or the codewords corresponding to some other message are jointly typical

with the channel output. Then by the union of events bound for probabilities,

Pr [Db Db+1, E]
UI M21 ,) M1 M2=Pr (1, 1) U T(wi, 1) U T(1, w 2)U U UT(wi,w2)

w12 W2=2 w1 =W2 2 -

MI M2

Pr [T(1, 1)] + E Pr [T(wi, 1)] + Pr [T(1, w 2 )]
w1=2 W2=2

MI M 2

+ E E Pr [T(w1 ,W 2 )]. (A.27)
w1=2 w2=2

By the joint AEP, Pr [7(i, 1)] -+ 0 as n -+ oo. For the terms in each of the sums, with
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wi # 1 or w2 # 1, we have

Pr [T(wi, w 2 )] = Pr [(u((wi, W2 )), x1(1, (Wi, W2 )), x2 (1, (wi, W 2 )), y) E A ) (u, xi, x2, y)

PU(U)PXI U(x1 IU)Px21-(X2 |U)Py (Y)

2,y)

2-n[ H (u)-E] 2-n[H (xI u)-2E] -2 --n[H(x2 l u)-2c] 2 -n[H(y)-c]

Substituting (A.29) into (A.27) and collecting terms, we have

Pr [Db 'Db+1,&] E Pr [T(I, 1)] + 2 - MI - M 2 -n[I(xx2;y)- 8E]

K Pr [T(1, 1)] + 8 - 2 -n[R1+R 2]2-n[I(x1,x 2 ;y)-8]

K Pr [T(1, 1)] + 8 - 2 -n[I(x,x 2 ;y)-8E-(R+R 2 )]

-+0

as n - oc if R 1 + R 2 + 8c < I(xi, x2; y).
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(U,x1,x2,y) E A,() (u,xi,x

< E1

- 2 n[I(x,x2;y)-8]

(Ux1,x2,y)EAn) "(Ux1,x2,y)

<2n[H (u,x1,x2,y)+2,E] 2 g-n[H(u)-c] 2 g-n[H(x1|u)-2E] .2 -n[H(x2l u)--2c] -2 n[H (y)-F]

(A.28)

(A.29)

(A.30)
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Appendix B

Asymptotic CDF Approximations

B.1 Results for Chapter 5

To keep the presentation in the Chapter 5 concise, in this appendix we collect several

results for the limiting behavior of the cumulative distribution function (CDF) of certain

combinations of exponential random variables. All our results are of the form

lim PU(t) (gi (t)) (B.1)
t-+to g2(t)

where: t is a parameter of interest; Pu(t) (g, (t)) is the CDF1 of a certain random variable

u(t) that can, in general, depend upon t; gi (t) and g2(t) are two (continuous) functions; and

to and c are constants. Among other things, for example, (B.1) implies the approximation

Pu(t) (gi (t)) - cg2(t) is accurate for t close to to. For example, in the case of approximations

for large channel SNR, i.e., SNR -+ oo, we identify t with SNR and to with 00; similarly, in

the case of approximations for low spectral efficiency, i.e., R -+ 0, we identify t with R and

to with 0.

Recall that an exponential random variable u with parameter Au has probability density

function (PDF)

pu(u) = U (B.2)

10 U <; 0

'Given random variable u, we denote its cumulative distribution function (CDF) by the function Pu(-) and

its probability density function (PDF) by pu(-). The two are related by Pu(u) = Pr [u < u] = f+ pu(v)dv.
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expectation E [u] = 1/Au.

Fact 1 Let u be an exponential random variable with parameter Au. Then the CDF Pu(u) =

1 - e-Auu satisfies
1

lim - Pu(e) = A.
e-+O e

Moreover, if a function g(t) is continuous about t = to and satisfies g(t) -+ 0 as t -+ to,

then
1

lim 1P (g(t)) = A ut to g(t)

Fact 2 Let w = u + v, where u and v are independent exponential random variables with

parameters Au and AV, respectively. Then the CDF

e-A"' + _ e
P (W) ( ){I I1 + Aw)e-Aw

-A v I A# AV

A -N Ay = A

satisfies

lim AP(e) = (B.6)
0 2

Moreover, if a function g(t) is continuous about t to and satisfies g(t) -+ 0 as t -> to,

then
1 AeAl

lim P(g(t)) = 2 . (B.7)
t-to g2 (t) 2

Claim 1 Let u, v, and w be independent exponential random variables with parameters A,

AV, and Aw, respectively. Let f (x, y) = (xy)/(x + y + 1) as in (5.13). Let E be positive, and

let g(e) > 0 be continuous with g(e) -+ 0 and e/g(e) -+ c < oo as e -* 0. Then

1
lim Pr [u + e f (v/E, w/e) < g(e)}
E-0 g (e)

Au (AV + Aw)
2

Moreover, if a function h(t) is continuous about t = to and satisfies h(t) -+ 0 as t -> to,

then

(B.9)1 _oA +2 wlim 1 Pr [u + h(t) f (v/h(t), w/h(t)) < g(h(t))] - u(Av + Aw)t-to g2(h(t)) 2
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The following lemma will be useful in the proof of Claim 1.

Lemma 2 Let 6 be positive, and let rb = 6 f (v/6, w/6), where v and w are independent

exponential random variables with parameters Av and Aw, respectively. Let h(6) > 0 be

continuous with h(6) -+ 0 and 6/h(6) -- d < oc as 6 -> 0. Then the probability Pr [rb < 6]

satisfies

lim Pr [r6 < h(6)] = Av + Aw. (B.10)
J-o h(6)

Proof: (Of Lemma 2) The proof of this result is not as straightforward as that of the

previous facts. Without assuming the limit exists, we upper bound the lim sup and lower

bound the liminf. When the bounds are the same, we can immediately conclude that the

lim inf and lim sup are equal (because, in general, lim inf < lim sup); hence, the limit exists

and corresponds to the value of the identical bounds.

Starting with the lower bound,

Pr [r6 < h(6)]

= Pr [1/v + 1/w + /(vw) 1/h(6)]

" Pr [1/v + 1/w > 1/h(S)]

" Pr [max(1/v, 1/w) 1/h(S)]

= 1 - Pr [v > h(6)] Pr [w > h(6)]

= 1 - exp[-Avh(6)] exp[-Awh(6)]

= 1 - exp[-(Av + A w)h(6)] (B.11)

so, utilizing Fact 1,

lim inf Pr [rb < h(6)] Av + Aw . (B.12)
6-6 h(6)
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To prove the other direction, let 1 > 1 be a fixed constant.

Pr [r6 < h(J)]

= Pr [1/v + 1/w + 6/(vw) > 1/h(6)]

= jPr [1/v >

< Pr [w < lh(J)]

(1/h(6) - 1/w)/(1 + /w)]pw(w)dw

+ I Pr [1/v > (1/h(S) - 1/w)/(1 + S/w)] pw(w)dw

Pr [w < lh(6)] /h(6) < Awl I (B.14)

which takes care of the first term of (B.13). To bound the second term of (B.13), let k > I

be another fixed constant, and note that

Pr [1/v > (1/h(S) - 1/w)/(1 + 6/w)] pw(w)dw

= j Pr [1/v > (1/h(b) - 1/w)/(1 + 6/w)] p,(w)dw

J kh(b)

lh(6)
Pr [1/v > (1/h(S) - 1/w)/(1 + 6/w)] pw(w)dw

< Pr [1/v > (1 - 1/k)/(h(6) + 6/k)]

Pr [1/v > (1/h(6) - 1/w)/(1 + 6/w)] dw , (B.15)

where the first term in the bound of (B.15) follows from the fact that

Pr [1/v > (1/h(6) - 1/w)/(1 + 6/w)]

is non-increasing in w, and the second term in the bound of (B.15) follows from the fact

that pw(w) = Awexp(-Aww) < Aw.

Now, the first term of (B.15) satisfies

Pr [1/v > (1 - 1/k)/(h(6) + S/k)] /h(6) < Av,(1 + 6/(kh(6)))/(1 - 1/k) (B.16)
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and, by a change of variable w' = w/h(6), the second term of (B.15) satisfies

1
h(6) J kh(6)

lh(6)
Pr [1/v > (1/h(6) - 1/w)/(1 + 6/w)] dw

- h(6) (6) - expAv(h(J) + J/w/) dw'I e (p (1-1w') IJJ

< h(6) AV 1 + 1(wh(6)) dw',

B(,h(3) ,k,I)

where B(6, h(6), k, 1) remains finite for any k > I > 1 as 6 -+ 0.

Combining (B.14), (B.16), and (B.17), we have

I Pr [rj < h(6)] Awl + AV (1 + 6(kh(6)) + h(6)B(6, h(6), k, 1) ,

and furthermore

1
urn sup h()Pr [r6 < h(6)] < AwlI

since limj-o B(6, h(6), k, 1) < oo and, by assumption, h(6) --+ 0 and 6/h(6) -- + d as 6 -- 0.

The constants k > 1 > 1 are arbitrary. In particular, k can be chosen arbitrarily large,

and I arbitrarily close to 1. Hence,

lim sup - Pr [r6 < h(6)]
6-+0 h(6)

Combining (B.12) with (B.19), the lemma is proved.

Proof:(Of Claim 1)

Pr [u + E f (v/e, w/e) < g(E)]

= Pr [u + r < g(e)]

< Aw + AV. (B.19)

0

= 
g(E)

/ne Pr [rE < g(E) - u]pu(u)du

= g( E)
W 0

Pr [rE < g(6)(1 - u')] A e~-Aug(E)u'du/

= 92 ( 0) j(i _ u') [Pr [rE < g(E)(1 - u')] A e-Aug()U'du',
o . g(E) (1 - U') .1
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where in the second equality we have used the change of variables u' = u/g(e). But by

Lemma 2 with 3 = c and h(6) = g(6)(1 - u'), the quantity in brackets approaches A, + A,

as E -+ 0, so we expect

lim 2 Pr [u + rE < g(E)] = A o(Av + A w) j(1 - u)du = " 2 . (B.21)
E-*-O g2(6) f

To fully verify (B.21), we must utilize the lower and upper bounds developed in Lemma 2.

Using the lower bound (B.12), (B.20) satisfies

1
lim inf Pr [u + r, < g()]6-0 g2 (E)

> lim J 1 - exp [- (Av + AW)g()(1 - U') e-Aug(E)U'du'
-- -0 g(O)

- Au(Ay + Aw) f(I - u')du' =_ " 2 (B.22)

where the first equality results from the Dominated Convergence Theorem [3] after noting

that the integrand is both bounded by and converges to the function A"(Av + Aw)(1 - u').

Using the upper bound (B.19), (B.20) satisfies

1
lim sup Pr [u + rE < g(0)

E-O 9 2(e)

< limsup (Av/(1 - 1/k) + Awl) j(I - u')A ueA'"9(6)u'du'

+limsup 6/g(E) AvAue-Aug()u'/(k - 1)du'
-0 JO

+ lim sup g(E) (1- u')2 B(E, g(c)(1 - u'), k, l)A Au(E)u'du'
E-0 0

D(E,g(E),k,1)

Au [xv (1$c' + Awl1
L -2 (B.23)

2

where the last equality results from the fact E/g(E) -+ c and D(E, g(E), k, 1) remains finite

for all k > 1 > 1 even as E -- 0.

Again, the constants k > 1 > 1 are arbitrary. In particular, k can be chosen arbitrarily

large, and 1 arbitrarily close to 1. Hence,

lim sup 1 Pr [u + r, < g(E)] ; A(Av + Aw) (B.24)
e-0 92(f) 2
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Combining (B.22) and (B.24) completes the proof. m

Claim 2 Let u and v be independent exponential random variables with parameters

AV, respectively. Let e be positive and let g(E) > 0 be continuous with g(e) - 0 as

Define

h(e) ' E2 [(g(E)/E + 1) ln(g(e)/e + 1) - g(e)/e]

Then

lim Pr [u + v + uv/E < g(e)] = AA.
E-O h(c)

Moreover, if E(t) is continuous about t = to with e(t) -- + 0 as t -+ to, then

1
ur n Pr [u + v + uv/e(t) < g(e(t))] = A aA.

Proof: First, we write CDF in the form:

Pr [u + v + uv/e < g(e)]

= Pr [ u+ v + uv/E < g(e)| v = v]pv(v) dv

= fg(E) Pr u < ) v = V Ave--vv dv

= () [1 - exp (- AU [2 + II Ave-Avv dv

= g(E) 1 - exp - Au 0 1 + ) AveAv'(E)w dw

where the last equality follows from the change of variables w = v/g(e).

To upper bound (B.28), we use the identities 1 - e- < x for all x > 0 and

all y 0, so that (B.28) becomes

Pr [u + v + uvle < g(e)]

- g2(E)AA j 1+g()w/ dw

(g(E)/E + 1) ln(g(e)/E + 1) - g(E)/E

(g(e)/c)
2

- AuAvh(E) ,
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E -+ 0.

(B.25)

(B.26)

(B.27)

(B.28)

e- < 1 for



whence
1

lim sup Pr [u + v + uv/c < g(e)] < A,,Av
E-+O h(e)

(B.29)

To lower bound (B.28), we use the concavity of 1 - e-X, i.e., for any t > 0, 1 - e-X >

1e t x for all x < t, and the identity e- > 1 - y for all y > 0, so that (B.28) becomest [ + v +

Pr [u + v + uv/c <g(,E)]

> ge 
g

0 A,,g (c)

= Aulv 9 (E)

> AjAg,(E - e- A"g(E)

A,,g(c)

+g()- w)
1 +I wg(6)/6

L
(1 - Avg(e))

IAv(1 - Avg(e)w) dw

F1 1 -w
1w dw

S10 + wg(C) /E

- Au 1A 1 - e-Aug(E))

- AuAv
Aug(E)

(1 - Ag()

(1 - Avg(,)) h(E) .

Thus,

lim inf h() Pr [u + v + uv/e < g(e)]

> AuAv lim
E--

=AuAv .

1 e- A9(E)

Aug(E)
(1 - Avg(e))

Since the bounds in (B.29) and (B.30) are equal, the claim is proved. 0

Claim 3 Suppose ft(s) -+ g(s) pointwise as t - to, and that ft(s) is monotone increasing

in s for each t. Let ht(s) be such that ht(s) s, ht(s) --*s pointwise as t -+ to, and ht(s)/s

is monotone decreasing in s for each t. Define h 1(r) min ht 1 (r). Then

lim ft(h7I(r)) = g(r)
t-* to

(B.31)

Proof: Since ht(s) < s for all t, we have r < h 1(r), and consequently ft(r) < ft(h'(r))
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because ft(-) is monotone increasing. Thus,

lim inf ft(h-1(r)) > g(r)
t-+to

The upper bound is a bit more involved. Fix 6

there exists t* such that ht 1 (r) K r/(1 - 6) for all t

have

> 0. Lemma 3 shows that for each r

such that It - to| < |t* - to|. Then we

ft(hj(r)) ft(r/(1 - 6)) .

Thus,

lim sup ft(h 1 (r)) < g(r/(l -6)),
t-to

and since 6 can be made arbitrarily small,

lim sup ft(ht-1(r)) g(r)
t-*to

(B.33)

Combining (B.32) with (B.33), we obtain the desired result. .

The following Lemma is used in the proof of the upper bound of Claim 3.

Lemma 3 Let ht(s) be such that ht(s) < s, ht(s) -+ s pointwise as t -+ to, and ht(s)/s is

monotone decreasing in s for each t. Define h 1 (r) = min ht1 (r). For each ro > 0 and any

6 > 0, there exists t* such that

h1(ro) K ro/(1 - 6),

for all t such that It - to| < It* - toI.

Proof: Fix ro > 0 and 6 > 0, and select so such that so > ro/(1 - 6).

Because ht(s)/s -+ 1 point-wise as t -+ to, for each s > 0 and any 6 > 0, there exists a

t* such that

ht(s) ;> s(1 - J), all t : It - tol < It* - tol.

Moreover, since ht(s)/s is monotone decreasing in s, if t* is sufficient for convergence at so,

then it is sufficient for convergence at all s < so. Thus, for any so > 0 and 6 > 0 there
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exists a t* such that

he(s) s(1 - 6), all s so,t: It - tol < It* -to .

Throughout the rest of the proof, we only consider s < so and t such that It - toI < It* - tot.

Consider the interval I = [ro, ro/(1 - 6)], and note that s E I implies s < so. Since

ht(s) < s, we have ht(ro) < ro. Also, since ht(s) > s(1 - 6) by the above construction, we

have ht(ro/(1-6)) > ro. By continuity, ht(s) assumes all intermediate values between ht(ro)

and ht(ro/(1 - 6)) on the interval (ro, ro/(1 - 6)) [64, Theorem 4.23]; in particular, there

exists an si E (ro, ro/(1 -6)) such that ht(x 1) = ro. The result follows from h- (ro) < x1 I

ro/(1 - 6), where the first inequality follows from the definition of ht 1 (.) and the second

inequality follows from the fact that xi E I. m

B.2 Results for Chapter 6

We gather in this section the analytical results for Chapter 6, in order to focus the body

of the chapter on discussion and interpretation of the results. We begin in Section B.2.1

by developing a general result about asymptotic properties of the CDF of a sum of inde-

pendent random variables. We then apply this result to obtain large SNR approximations

for repetition decode-and-forward cooperative diversity in Section B.2.2 and for space-time

coded cooperative diversity in Section B.2.3.

B.2.1 The Basic Result

Both of the arguments later in this appendix rely upon the following result, which is a

generalization of Fact 2 to several random variables with fairly general PDFs.

Claim 4 Let Uk, k = 1,2,... ,m, be positive, independent random variables with

lim inf pak (eu) Ak , (B.34)
E-0

and

Puk (Eu) Ak . (B.35)
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Then 1
1 m

lim -Pr _ <E r=- A--,- (B.36)
e-0 m k=1 . k=1

Before proving Claim 4, we note that the exponential distribution satisfies both re-

quirements (B.34) and (B.35). More generally, however, this result suggests that many

of our results hold for a much larger class of PDFs, and, in particular, depend mainly

upon properties of the PDFs near the origin. Although we do not provide a proof, we

conjecture that random variables resulting from amplify-and-forward transmission, i.e.,

Uk = (vk Wk)/(Vk + wk + 1), with Vk and wk independent exponential random variables with

parameters AVk and Awk, respectively, satisfy (B.34) and (B.35) with Ak = Avk + Awk.

Proof: Let sn Zkl I Uk, n < m. Then

Pr Uk<E =Pr[sm<Ec

.k=1 .

= 0pSm(s)ds (B.37)

= jE Psm(Ew)dw , (B.38)

where the last equality results from the change of variables w = s/c. Thus, it is sufficient

for us to compute the limit

lim 1 Psm(Ew)dw. (B.39)
E6 -+0 (rn-1) Jo

To lower bound the lim inf, we exploit Fatou's lemma [3] to obtain

lim inf 1 Ps(ew)d> lim inf 1 1 Ps ' (EW) dw . (B.40)
E- (rn 1)1 P0 (Ew-d - E1 mn (rn-) Is~w

Now, sm = sm-1+ urn, and by independence the PDF of sm is the convolution of the PDFs

of s,-, and urn. Specifically, since urn is positive, we have

Psm (S) = ps m-1(s - r)pum (r)dr

= sj PSm-1 (s(1 - y))Pum (sy)dy , (B.41)

where the last equality results from the change of variables y = r/s.

169



Am(w) = lim inf Ps. (Ew),
g-*O E(Tn-1

substituting into (B.41), and again exploiting Fatou's lemma, we obtain the recursion

Am(w) = lim inf 1ps(cw)dw
E-0 O pim nf -) ( 1

> wj {lim inf E'rn2) pr-, (Ew (I

> Amw j A(m-1)(w(1 - y))dy ,

- Y)) {lim inf Pum (EWY) dy

(B.43)

where the last inequality follows from (B.34) and substitution of A(m- 1) (w(1 - y)). Begin-

ning with Ai(w) > A from (B.34), the recursion (B.43) yields

Am(W) 1 w(M-i)1f Ak. (B.44)
A) (B4)! k=1

As a result, (B.40) with (B.42) and (B.44) yields,

1
lim inf -Pr [sm

E-0 EM

1 m
< J7 Ak.

m.k=1
(B.45)

To upper bound the lim sup, we obtain a recursive upper bound for the PDF of 5
m

similar to the lower bound developed above. Specifically, letting

Bm(w, E) A psm (Ew) , (B.46)

we have

Bm(w, c)

=W j0 PSmi (cw(1 - y))Pum (Ewy) dy

EAmw 1 m-i(W(1 - y),,E)dy, (B.47)

where the equality comes from the convolution (B.41), and the inequality follows from

(B.35) and substitution of Bm-(w(1 - y)). Beginning with Bi(w, E) < A from (B.35),
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(B.47) yields an upper bound very similar to the lower bound in (B.44), namely,

Bm(w,E) < E(m-)(m-1) - .Ak
(m - 1)

1 f
Psm(Ew)dw < lim sup 1)E-+0 '( - 0

1 m

k=1

Bm(w, c)dw

(B.49)

Together with the fact that, in general liminf < lim sup, (B.45) and (B.49) yield the desired

result (B.36). m

B.2.2 Repetition Decode-and-Forward Cooperative Diversity

In this section, we utilize the result of Claim 4 to obtain a large SNR approximation for

Pr [Irep < RID(s)], the conditional outage probability for repetition decode-and-forward co-

operative diversity for source s given a set of decoding relays D(s). As in (6.7), /rep is of

the form

/rep = log 1( + SNR uk)

where Uk are independent exponential random variables with parameters Ak, k = 1, 2, . .. , m.

After some algebraic manipulations, the outage probability reduces to exactly the same

form as in Claim 4,

Pr [rep < RID(s)] = Pr
k=1

Uk < E] (B.51)

with e = (2 mR - 1)/SNR -- 0 as SNR -+

approximation

Pr [/rep < RID(S)] ~ [
o. Thus, Claim 4 and continuity yield the

2 mR __ 1- m m

2NR Ak, (B.52)
k=1

for large SNR.
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B.2.3 Space-Time Coded Cooperative Diversity

In this section, we compute a large SNR approximation for Pr [Istc < RID(s)], the conditional

outage probability for space-time coded cooperative diversity for source s given a set of

decoding relays D(s). As in (6.15), /stc is of the form

'stc = - log I+
2

2
-SNR umJ
m

+ - log 1
2

2 m- I
+ -SNR E ,

k=1

where again Uk are independent exponential random variables with parameters Ak, k

1,2, ... Im.

Let sm- = Ek=1 Uk, t = ( 2 2R - 1), and E = ( 22R - 1)/(2SNR/m). Then

Pr [/st, < RID(s)] = Pr um + sm-1 + -SNRumsm-1 < E

/ r UM - s ~ S- s
- 0 Pr ur < 1 + (2SNR/m)s1 Psm-1(s)ds

= - o Pr [um < 1+tw -1PSMi(Ew)dw

- exp ( Am -W) Psm-1(cw)dw .
(B.54)

Note the penultimate equality in (B.54) follows from the change of variables w = s/E, and

the last equality follows from substituting the CDF for um.

We now compute the limit

1
lim -Pr [/st, < RID(s)]
E-+0 Er

that, along with continuity, provides the large SNR approximation

(B.55)

Pr [/st, < RED(s)] ~ 22R - 1

12SNR/m I (m

1
9)! 9 J Am

(22 - 1w l ] (m--2) (B.56)
k=1
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To lower bound the liminf, we exploit Fatou's lemma in (B.54) to obtain

1
lim inf -Pr [/stc < RID(s)]

E-+o 6m
_ i 1 - (E(1 _ i r

> Iliminf 1 - exp -Am 1+ tW liminf 2)psm-1(EW) dw
Jo LE-0~ IE 1 + tw /1J 6 -0 m-)r J

- Aj [I1w Am_1(w)dw
0 .1+ tw

1 m w (-2)dw (B 57)
-(m - 2)! ]7J 1k + tw~

where the first equality follows from Fact 1 and substitution of Am-i(w) from (B.42), and

the second equality follows from the result (B.44) in the proof of Claim 4.

To upper bound the lim sup, we derive

1
lim sup -Pr [/st, < RID(s)]

E-*OE

< limsup j 1 - exp (Am 1 + )tw } {( 2 )Bm-1(w,,E) dw

< lim sup J 1 + ( w) 12) Bm-i(wc) dw

< sp 1 + tw (m

1 m[1F((m- 2 )dW, (B.58)
(m+ I+tw ( - 2)!w H

where the first inequality follows from substitution of Bm- 1(w, E) from (B.46), the second

inequality follows from the fact that 1 - exp(-x) < x for all x > 0, and the third inequality

follows from the result (B.48) in Claim 4.

Taken together with the fact that lim inf < lim sup, (B.57) and (B.58) yield the desired

result (B.55).
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Appendix C

Mutual Information Calculations

C.1 Amplify-and-Forward Mutual Information

In this section, we compute the maximum average mutual information for amplify-and-

forward transmission. We write the equivalent channel (5.2)-(5.4), with relay processing

(5.8), in vector form as

y[n] as,(s) 0 1 0 Zr[n]

x,[n] + zd[n]

Yd[n + N4] ar,d(s)I3as,rJ [ar,d(s) p 0 1-
- L o zr[n + N/4]j

Yd[n] A B .
z[n]

where the source signal has power constraint E [x,] < Ps, and relay amplifier has constraint

Pr
'3 < IasrIP (C.1)

-- |s, r Ps +Nr'

and the noise has covariance E [zzt] = diag(Nr, Nd, Nd). Note that we determine the

mutual information for arbitrary transmit powers and noise levels, even though we utilize

the result only for the symmetric case. Since the channel is memoryless, the average mutual

information satisfies

1AF G (Xs; Yd) :! log det (I + (PsAAt)(B E 1zzt Bt)-- ,
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with equality for x, zero-mean, circularly symmetric complex Gaussian. Noting that

AAt = I as,d(s) 2 as,d(s) (ar,d(s) 3as,r)*

as, d(s) ard(s)/as,r Iar,d(s)3as,r 2

BE [zzt] Bt [Nd

0 lar,dts) 0|2Nr + Nd

we have

det (12 + (PSAAt) (BE zzI Bt) - 1 +i P asd(s) + ard(s)13 s,r12 . (C.2)
I/ Nd (9rd(s 312 Nr + Nd)

It is apparent that (C.2) is increasing in #, so the amplifier power constraint (C.1) should

be active, yielding, after substitutions and algebraic manipulations,

P, ' 2[)a~ 
2 PflZ,r 

2 dd~s) )

1AF = log 1 + Ias,d(s) N N2 +r,d(s) p d.2 I

Nd ~ ~ ~ ~ ~ rds [ar1 ,)+ 1rs12+Ii

= log (1 + Ias,d(s)I 2 SNRS,d(S) + f (Iasr 12 SNR5,r, lar,d(s)2SNRr,d(s))) ,

with f(., -) given by (5.13).

C.2 Input Distributions for Transmit Diversity Bound

In this section, we derive the input distributions that minimize outage probability for trans-

mit diversity schemes in the high SNR regime. Our derivation extends that of [78, 79] to

deal with asymmetric fading variances.

An equivalent channel model for the two-antenna case can be summarized as

y[n] = [a a2]1 +z[n], (C.3)
0'X2 [n]

x[n]

where a represents the fading coefficients and x[n] the transmit signals from the two transmit

antennas, and z[n] is a zero-mean, white complex Gaussian process with variance No that

captures the effects of noise and interference. Let Q = E [xxt] be the covariance matrix for
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the transmit signals. Then the power constraint on the inputs may be written in the form

tr(Q) _ P.

We are interested in determining a distribution on the input vector x, subject to the

power constraint, that minimizes outage probability, i.e.,

max Pr [I(x; yfa = a) <RI . (C.4)
px:tr(Q)<P

As [78, 79] develops, the optimization (C.4) can be restricted to optimization over zero-mean,

circularly symmetric complex Gaussian inputs, because Gaussian codebooks maximize the

mutual information for each value of the fading coefficients a. Thus, (C.4) is equivalent

to maximizing over the covariance matrix of the complex Gaussian inputs subject to the

power constraint, i.e.,
F ( aQat

max Pr log 1 + R I . (C.5)
Q:tr(Q)<P I No ) I

We now argue that Q diagonal is sufficient, even if the components of a are independent

but not identically distributed. We note that this argument is a slight extension of [78, 79],

in which i.i.d. fading coefficients are treated. Although we treat the case of two transmit

antennas, the argument should extend naturally to more than two antennas.

We write a = 5E, where 5 is a zero mean, i.i.d. complex Gaussian vector with unit

variances and E = diag(u-, 0-2). Thus, the outage probability in (C.5) may be written as

Pr log 1 + N0  < R.
I ~ No -

Now consider an eigen-decomposition of the matrix EQEt = UDUt, where U is unitary and

D is diagonal. Using the fact that the distribution of 5 is rotationally invariant, i.e., 5U has

the same distribution as 5 for any unitary U [78, 79], we observe that the outage probability

for covariance matrix EQEt is the same as the outage probability for the diagonal matrix

D.

For D = diag(di, d2 ), the outage probability can be written in the form

Pr d Ial2 + d21a212< 2  _1
h u SNR

which, using Fact 2, decays proportional to 1/(SNR 2 det D) for large SNR if dI, d2 7 0. Thus,
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minimizing the outage probability for large SNR is equivalent to maximizing

det D = det EQEt - 2(QII2,2 - Q1,2 2) (C.6)

such that Qi,i + Q2,2 < P. Clearly, (C.6) is maximized for Qi,1 = Q2,2 = P/2 and

Q1,2 = Q2,1 = 0. Thus, zero-mean, i.i.d.complex Gaussian inputs minimize the outage

probability in the high SNR regime.
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