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Abstract

The first precision measurement of the spin-dependent asymmetry in the threshold
region of 3ﬁe(é’, ¢/) was carried out in Hall A at the Jefferson Laboratory, using a
longitudinally polarized continuous wave electron beam incident on a high-pressure
polarized *He gas target. The polarized electron beam was generated by illuminating
a strained GaAs cathode with high intensity circularly polarized laser light, and an
average beam polarization of about 70% was achieved. The He target was polar-
ized based on the principle of spin-exchange optical pumping and the average target
polarization was about 30%. The scattered electrons were detected in the two Hall
A high resolution spectrometers, HRSe and HRSh. The data from HRSh were used
for this analysis and covered both the elastic peak and the threshold region. Two
kinematic points were measured in the threshold region, one with a central Q?-value
of 0.1 (GeV/c)? at an incident beam energy Ey = 0.778 GeV and the other with a
central @*-value of 0.2 (GeV/c)? at Ey = 1.727 GeV. The average beam current was
10 nA, which was mainly due to the limitation of the polarized *He target.

The measured asymmetry was compared with both plane wave impulse approxi-
mation (PWIA) calculations and non-relativistic full Faddeev calculations which in-
clude both final-state interactions (FSIs) and meson-exchange currents (MECs) ef-
fects. The poor description of the data by PWIA calculations at both Q?-values sug-
gests the existence of strong FST and MEC effects in the threshold region of 3He(€, ¢').
Indeed, the agreement between the data and full calculations is very good at Q% = 0.1
(GeV/c)?. On the other hand, a small discrepancy at Q% = 0.2 (GeV/c)? is observed,
which might be due to some Q*-dependent effects such as relativity and three-nucleon
forces (3NFs), which are not included in the framework of non-relativistic Faddeev
calculations. Some preliminary results show that 3NF effects are indeed non-negligible



in the threshold region and more theoretical work is currently underway towards a
better understanding of both effects. With the recent development and success of
the chiral perturbation theory, it is hopeful that a future application of the resulting
chiral NN forces to electrodisintegration of *He might solve the present discrepancy.

Thesis Supervisor: Haiyan Gao
Title: Associate Professor
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Chapter 1

Introduction

1.1 Physics Motivation

A thorough understanding of the forces between nucleons, the basic constituents of
all nuclei, has been a fundamental goal in nuclear physics for many decades. Realistic -
models for.nucleon-nucleon (NN) interactions have been constructed to fit a large
body of pp and pn scattering data accumulated over the past half century. The
resulting NN potentials have been applied to the simplest two-nucleon bound state
and are able to explain most properties of the deuteron. It is also of great interest
to investigate how the nuclear forces are modified in nuclear systems with more than
two nucleons. Three-nucleon systems, *He and *H, are the simplest systems where
some of these modifications, in particular three-nucleon forces, start to play a role
and thus a careful study of three-nucleon systems, both the bound states and the
scattering states, is essential for a complete understanding of the nuclear forces.
With the rapid development of both experimental techniques and computational
resources, which are essential for modern few-body theoretical calculations, such a
study has become possible. Indeed, in the past decade three-nucleon systems have
been an excellent testing ground between theory and experiment in nuclear physics [1].

In the context of electromagnetic processes, exact non-relativistic Faddeev calcula-
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tions for both the ground state and the continuum of *H and 3He have been carried
out using a variety of modern nucleon-nucleon (NN) potentials [2-4]. The exact
treatment of final-state interactions (FSI) in the Faddeev calculation results in a
much improved description of unpolarized pd capture and breakup channels [2,4],
as well as unpolarized electron scattering from three-nucleon systems [3]. This has
provided important information on the nuclear ground-state structure and thus al-
lows a deeper understanding of the underlying nuclear force. With the availability
of polarized beams and polarized targets, it has become possible to study additional

spin-dependent quantities. Polarized *He is an ideal target for such a study.

Polarized 3He is also important as an effective neutron target [5,6], because its
ground state wave function is dominated by the S-state in which the proton spins
cancel and the nuclear spin is carried entirely by the neutron. The spin-dependent
asymmetry is thus sensitive to the neutron electromagnetic form factors in the vicin-
ity of the quasielastic peak of polarized electrons scattering from a polarized 3He
target [5-10]. Recently there has been significant progress in extracting neutron elec- -
tromagnetic form factors from double-polarization electron-*He quasielastic scattering
experiments [11-15]. In recent years, there have also been extensive efforts [16-19]
in studying polarized inelastic scattering of electrons from polarized *He targets in
the deep inelastic and resonance regions aiming at understanding the underlying nen-
tron spin structure. The extraction of the neutron spin structure functions from
these experiments requires detailed knowledge of the *He nuclear ground-state struc-

ture [6, 20, 21].

However, to probe the nuclear ground state structure, to extract the neutron elec-
tromagnetic form factors or to extract the neutron spin structure function in the
resonance region, the reaction mechanism, especially IS and meson-exchange cur-
rents (MEC) effects, must be well understood. Recently, a non-relativistic Faddeev
calculation which includes both FSI and MEC has been carried out [4] for the first

time, and describes very well the new precision data [12] on the transverse asymme-
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try A near the top of the quasielastic peak from the 3ﬁe(é’, ¢') process at low Q2.
However, since FSI and MEC effects are relatively small in this region, it is highly
desirable to study another region where these two effects are larger to provide a more
stringent constraint on the theory. The threshold region of inclusive electron scat-
tering from *He, which extends from the two-body breakup threshold (with breakup
energy of 5.5 MeV), the three-body breakup threshold (with breakup energy of 7.7
MeV) to the low energy transfer side of the quasielastic peak, is an ideal place for
such a study. First, FSI effects are expected to be large in the threshold region since
the final state nucleons have less kinetic energy and thus have a higher probability
of interacting with each other. Secondly, it has been shown that a substantial con-
tribution from MEC is needed to describe the measured elastic electromagnetic form
factors of three-nucleon systems [22]. Therefore one would expect a large MEC effect

in the threshold region as well.

A first systematic measurement of the unpolarized cross sections in the threshold
region of inelastic electron scattering from *He and 3H was carried out in 1994 [23).
The cross sections were measured for excitation energies below 18 MeV and longitu-
dinal and transverse response functions Ky and Ry were extracted using Rosenbluth
separations for a three-momentum transfer from 0.88 to 2.87 fm~!. Agreement be-
tween data and Faddeev calculations with FSI effects was very good. The inclusion
of FSIs was found to be very important, changing the response functions by factors

of two or three in some kinematics.

To explore the spin-dependent response functions in the threshold region, a first
measurement of the spin-dependent asymmetry in the threshold region of ¥He(€, ¢')
was carried out in 1995 [24]. Comparison between data and plane wave impulse
approximation showed significant discrepancy, which suggested that a more sophisti-
cated calculation including I'SI effects and possibly MEC effects might be necessary.
However, the large statistical error in the data prevented further conclusions to be

drawn.
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Thus a precision measurement of spin observables in the threshold region of
SI—fe(f?, e’} is necessary to provide us with more complete information on the reaction
mechanism, thereby placing significant constraints on the theoretical uncertainties
in probing the *He ground state structure and in extracting the neutron electromag-
netic form factors from electron scattering from *He. In addition, such a high precision
measurement would almost surely provide strong motivation for the development of
more sophisticated few-body theoretical calculations. In this thesis we report the first
precision measurement of the spin-dependent asymmetry in the threshold region of
3Hé(€, ¢') and compare the results with state-of-the-art Faddeev calculations which

include both FSI and MEC effects.

1.2 Nuclear Interaction

Tradivionally a nucleus is regarded as a system of interacting protons and neutrons. .

The non-relativistic Hamiltonian of this system can be written as

2
H:;%Jr;viﬁi;kwﬁ--- (1.1)
where the nucleons interact via two-, three-, and possibly many-body interactions.
This much simplified picture was proposed shortly after the discovery of the neutron
in 1932, and after decades of theoretical and experimental work, it was finally justified
in a field-theoretical framework with the development of chiral perturbation theory,
the low-energy effective theory of QCD [25].

In this section we will describe the dominant part of the nuclear interaction, the
nucleon-nucleon (N N) interaction, and some of its natural extensions. We then pro-
ceed to discuss an important topic of meson-exchange currents, which follow naturally
from the nucleon-nucleon interaction and have been an essential ingredient in explain-

ing many experimental observables in nuclear electroweak processes.
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1.2.1 Nucleon-Nucleon Potentials

The NN interaction has been known for a long time to have a very rich structure.
Its Hamiltonian involves both the spin operator o, which represents the intrinsic
angular momentum of the nucleon, and the isospin operator 7, which represents the
two charge states of the nucleon, the proton and neutron. It is well-known that the
NN interaction has a long-range attractive part and a short-range repulsive part.
The long-range component of the NN interaction is due to the exchange of the
lightest meson, the pion, and is described by the Yukawa potential, also called the

one-pion exchange potential (OPEP), which can be written as

v ?NTN_?}[YW(T)W'C’j+Tn(T)5ij]Ti'”"j (1.2)

Y,(r) = ewr (1.3)
3 3

T.(r) = [1+E+W]Y,T(T) (1.4)

where m, is the mass of the exchanged pion, u is the inverse pion mass, f,yn is the
coupling constant, and

Sij:?JO'i'f‘O'j'f‘—O'i'O'j (15)

is the tensor operator. The OPEP is clearly spin dependent through the o; - o; term
and the tensor operator, and the spatial and spin degrees of freedom are strongly

correlated in nuclear systems also due to the tensor operator.

At intermediate and short distances, the NN interaction is much more compli-
cated. However, the large body of pp and pn scattering data accumulated over the
past half century provides very strong constraints on the form of the interaction.
Five modern NN potentials have been constructed by fitting to the experimental
database. These include the Argonne 115 (AV18) potential, the CD-Bonn potential,
and three Nijmegen potentials (Nijm I, Nijm II and Reid 93). Each model fits the

NN database extremely well, with a x?/datum of nearly one.
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The AV18 potential [26] contains an electromagnetic interaction and a phenomeno-
logical short- and intermediate-range component, in addition to the long range OPEP.
The electromagnetic component includes the magnetic moment interaction and one-
photon exchange Coulomb interaction, among others. The short- and intermediate-

range component is parameterized in the form
VE = ver(r) + vp(r)L? + by (r) Sy + vir(n)L - S + v (r) (L - S)° (1.6)
The radial functions all have the form
Vi = TopT(r) + [Psr + pr Qs + (ur)>Rep]W(r) (1.7)

where Iiy, Pip, Qbp, and Ryy are parameters obtained from fit. T (r) is the tensor

Yukawa function with a range parameter o

)= (142 + 25 (1) (18)

ur

and W (r) is the Woods-Saxon function

1

W(T) = —-———1 + 6(T—To)/ﬂ,

(1.9)

where rp and a are shape parameters also obtained from fit. The AV18 potential is
maximally local, since it contains at most terms proportional to L.

The CD-Bonn potential [27] was constructed based on field theoretical perturba-
tion theory. The lowest order contributions to the NN interaction are the one-boson
exchange diagrams, which include all mesons with masses below the nucleon mass,
ie., m, 7, pand w. However 7 18 dropped because its coupling constant to the nucleon
is very small. There are also higher order multimeson exchanges, such as 27 ex-
change and 7p exchange, which are approximated by introducing two scalar-isoscaler

o bosons. Thus the CD-Bounn potential is completely defined in terms of one-boson
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exchange, and the Feynman diagrams are shown in Figure 1-1. The CD-Bonn po-
tential is the only fully nonlocal, or momentum-dependent, potential among modern
potentials, due to its field theoretical approach. This is consistent with the nonlocal
character of the nuclear force. In fact, the composite structure of hadrons should lead

to large nonlocalities at short range [28].

Figure 1-1: One-boson exchange Feynman diagrams that define the CD-Bonn NN
potential.

The Nijmegen potentials [29] include traditional Ionghrange OPEP and use ex-
changes of heavy mesons such as p, w, ap and f; for the short range part of the
interaction. The Nijm I potential contains certain nonlocal terms, which are removed

in the Nijm II potential.

1.2.2 Three-Nucleon Forces and Relativistic Effects

All the local NN potentials give nearly identical results for the triton binding energy:
7.62 = 0.01 MeV, as compared to the experimental value of 8.48 MeV. Thus it is
clear that local two-body potentials are not sufficient to reproduce the three-nucleon
binding energy. Two natural extensions to two-nucleon interactions are three-nucleon
interactions (3NF's) and relativistic corrections.

The earliest three-nucleon force, proposed in 1957 by Fujita and Miyazawa [30],

corresponds to single-pion exchanges between three nucleons with the intermediate
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excitation of a A-isobar resonance, as shown in Figure 1-2. The interacting potential

can be written as

1
Vik = Ags [{XWXM}{T%- T T Te) + Z[X@j,Xm][Ti Ty, T Tk (1.10)

ij

where

Xij = Ya(r)oi- o+ Ti(r)Sy (1.11)

and {A, B} and [A, B] represent anticommutators and commutators of two operators

Aand B.

N N N

Figure 1-2: Fujita-Miyazawa three-nucleon force through the exchange of two pions
between three nucleons, during which one of the nucleons is excited to a A resonance.

One of the most widely used modern three-nucleon forces is the Urbana IX

(UTX) [31], which contains a Fujita-Miyazawa term V7 and a phenomenological

short-range repulsive term Vif,‘ﬂr

Ve = Vi + Vi (1.12)
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with
zgk =0l Z T (ng Tzk) (113)

cye

The constants A4,, and U, are adjusted to reproduce the triton binding energy.

Other modern 3NF's include the Brazil force [32], the Tucson-Melbourne force [33]
and the Texas-Los Alamos force [34]. The Brazil force contains the Fujita-Miyazawa
term and adds some chiral corrections. The Tucson-Melbourne force also contains
the Fujita-Miyazawa term and includes current algebra constraints. The Texas-Los

Alamos force is entirely motivated by chiral perturbation theory.

A wide variety of relativistic calculations of light nuclei bound state properties
have been carried out by extending the one-boson-exchange mechanism to relativistic
treatments. Moderate success has been achieved. For example, using the relativistic
'one—boson—e;{chahge formalism, the triton binding energy was calculated to be 8,19

MeV [27], which is much closer to the experimental value.

It is also possible to perform calculations within a v/c expansion scheme. One
class of relativistic corrections within this scheme is purely kinematics, i.e., replacing
the nonrelativistic kinetic energy with the corresponding relativistic expression and
including a momentum-dependence in the two- and three-nucleon interactions in the

Hamiltonian [35]

H= Z Y, p? +m? + va (ri;, Pys) Z Vige( Tijy Lip Pyj) (1.14)

<] i<j<k

where Py; and P, are the total momentum of the two- and three-body subsystems.

However, fully relativistic calculations within a relativistic Hamiltonian formalism

are not yet well developed.



1.2.3 Meson-Exchange Currents

The nuclear electromagnetic current operators are needed to describe the electromag-
netic processes involving nuclei, such as electron scattering from *He and proton-
neutron radiative capture. In the so-called impulse approximation (IA), the nuclear
electromagnetic current operators are expressed in terms of those associated with in-
dividual protons and neutrons, and thus are all one-body operators. However, such
a description is certainly incomplete and the existence of additional meson-exchange
current operators follows naturally from the fact that the nucleon-nucleon interaction
is mediated by pion exchanges at large distances and other meson-exchange mecha-
nisms at short and intermediate distances. In essence, the meson-exchange currents
are simply effective two- and many-body current operators arising from the elimi-
nation of the mesonic degrees of freedom from the nuclear state vector. Thus this
picture is only valid at energies below the threshold for meson production, since above
this threshold the mesonic degrees of freedom have to be explicitly included ir the

nuclear state vector.

To see clearly how two- and many-body meson-exchange current operators follow
naturally from the nucleon-nucleon interaction, let us expand the nuclear electromag-
netic current operators, namely the charge (p(q)) and current (j(q)) operators, into
a sum of one-, two-, and many-body terms that operate on the nucleonic degrees of

freedom:

pl@) = D a(a)+ DA (e + (1.15)

i<y

i@ = i@+ i+ (1.16)

<]

(1.17)

where the one-body operators pgl)(q) and jgl)(q) arc obtained from the covariant

28



single-nucleon current [36]

= 8 [F (@ + P @) D] u(e) (1.18)

where p and p’ are the initial and final momenta of a nucleon of mass m, and F;(Q?)
and F3(Q?) are its Dirac and Pauli form factors as a function of the minus four-

momentum transfer squared @2.

The electromagnetic current operators must satisfy the continuity equation

a-j(a) = |H o] (1.19)

where the Hamiltonian H includes two- and three- nucleon interactions

2
H= Z ;;1 +Z’UU‘ + Z Vijk (1.20)

i<j i<j<k

" To lowest order in l/m, the cohtinuity équétion'separa‘.ces into separate equations for

the one-, two- and many-body current operators [35]:

2
. P,
a-ia) = [2=,o(a)] (121

a-iP(@ = [vgorl@) + oala) (1.22)

(1

and higher order terms. Note that we use p; yz(d) because p(l)

;' (q) also contains
relativistic corrections which are of orders 1/m? and higher. In the following we focus

on two-body meson-exchange currents.

The most important two-body currents are constructed from the nucleon-nucleon
interaction and are constrained by the continuity equation. Thus they do not con-
tain any free parameters and are essentially model-independent. For example, in
the CD-Bonn potential, at intermediate and large distances the nuclear interaction

15 mediated by m-meson and p-meson exchanges, as shown in Figure 1-3. The cor-
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responding isovector two-body currents can be obtained from the 7NN and p/NN
coupling Langrangians following the Riska prescription [37]. At short distances the
nucleon-nucleon interaction leads to o-like and w-like meson-exchange currents for
the isospin-independent terms and p-like meson-exchange currents for the isospin-

dependent terms [38].

Sor e

(a) (b) (c)

Figure 1-3: Feynman diagram representation of the isovector currents associated with
7 and p exchanges. Solid lines represent nucleons, dashed lines represent 7 or p mesons
and wavy lines represent photons.

In addition, there are also model-dependent two-body currents which are purely
transverse and thus not constrained by the continuity equation. One class of model-
dependent currents that has been commonly considered in the literature is associated
with electromagnetic transition couplings between different mesons, for example, the
pry and wmy mechanisms as shown in Figure 1-4. The associated two-body currents
have short range due to the large masses of p- and w-mesons [39,40]. A second class
of model-dependent currents is associated with the A-isobar degrees of freedom. In
the current theoretical framework we view the nucleus as made up of nucleons and
assume that all other subnucleonic degrees of freedom can be eliminated in favor of
effective two- and many-body operators acting on the nucleon’s coordinates. As a first
order correction to this picture, we can take the lowest excitation of the nucleon, the
A isobar, as additional constituents of the nucleus [41,42]. With the inclusion of A

admixtures in the nuclear wave function, we need to consider interactions involving
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both nucleons and the A isobars, such as NN — NA and NN — AA transition
interactions, the Feynman diagrams of which are shown in Figure 1-5. Additional

electromagnetic currents can then be constructed from these interactions [35].

Figure 1-4: Feynman diagram representation of the isoscaler pmy and isovector wwy
transition currents. Solid lines represent nucleons, dashed lines represent pions while
thick-dashed lines vector mesons p or w, and wavy lines represent photons.

(a) ' (b)

Figure 1-5: Feynman diagram representation of the NN — NA and NN — AA
transition interactions. Solid lines represent nucleons, thick-solid lines represent A
isobars, and wavy lines represent photons.

1.3 Spin-Dependent Asymmetry in Quasielastic 31—fé(é’, e')

The spin-dependent asymmetry in quasielastic scattering of longitudinally polarized

electrons from polarized *He nuclei was first calculated in a plane wave impulse ap-
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proximation (PWIA) within the closure approximation, where a spin-dependent mo-
mentum distribution was employed to describe the nuclear effects [5]. Later, a PWIA
calculation was carried out using a spin-dependent spectral function, which summa-
rizes all of the nuclear structure information in the process [8]. One major drawback
of a PWIA calculation is that it does not take the interactions between the final-state
nucleons into account. There are quite a few techniques available to include the FSI
effects. One is the Green’s-function Monte Carlo which relies upon the path-integral
approach to evaluate the imaginary-time propagation of the wave function [43]. How-
ever, as for any Monte Carlo methaod, there is inherent statistic error in this method.
The second technique, called Faddeev methods, can take F'SI exactly into account for
any type of realistic NN force. In addition, it is also straightforward to include meson
exchange currents (MECs) in Faddeev calculations.

We will first derive the general formalism for inclusive electron scattering from a
nucleus, in particular the spin-dependent asymmetry in quasielastic 3I—fe(€, e') process,
then describe the PWIA calculations and non-relativistic Faddeev calculations which

include both FSI and MEC effects in detail.

1.3.1 General Formalism for Inclusive Electron Scattering

Before presenting the results for quasielastic 3ﬁe(é’, e'), it is useful to examine the
general polarized (e, e') process. For such an inclusive experiment, the final nuclear
state is not observed. A general (e, €’) spectrum is shown in Figure 1-6, where the
cross section is plotted as a function of the energy transfer w for a fixed minus four-
momentum transfer squared Q2.

The first sharp peak is due to electron elastic scattering from the nucleus as a
whole while the next few sharp peaks correspond to nuclear excitation to discrete
states. Note that in real experiments these peaks are much smoother because of ra-
diative effects. Immediately following is a broad peak called the “Giant Resonance”,

which is due to the excitation of collective modes in the nucleus. Then there is a
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Figure 1-6: A general (e, ') spectrum.

very broad bump peaked at w ~ Q?/2My, which is called the quasielastic peak and
corresponds to the electron being elastically scattered from a single nucleon inside the
nucleus. The next few bumps cbrrespond.to the excitation of a nucleon to A and N*
states. Finally comes a relatively flat region called the deep inelastic scattering re-
gion, where the nucleon resonances are broad, overlapping and thus not distinguished
as bumps. In this region, the electron may be thought of as being scattered from
individual constituent quarks of the nucleon. For electron scattering from 3He, there
are no discrete nuclear excited states and giant resonance, so the quasielastic peak
immediately follows the elastic peak, and we are only interested in these two channels

in this work.

Consider the inclusive scattering of a longitudinally polarized electron with four-
momentum k = (E,k) from a spin-7 nucleus with four-momentum P, = (M,,0)
and polarization four-vector S4. The scattered electron is detected and thus its four-
momentum &' = (E', k') is known, while the final hadronic matter X is not observed.

Denote ¢ = k£ — k' as the four-momentum transfer and @? = —¢®. There are two
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kinds of interactions between the electron and the nucleus, the electromagnetic inter-
action via virtual photon exchange and the weak interaction through the exchange of
massive Z° boson. However, since the intermediate energy scale is much smaller than
the mass of the Z° boson, the electromagnetic interaction dominates the weak inter-
action by many orders of magnitude. Also, we will assume only one virtual photon
1s exchanged since Zo < 1, where Z is the number of protons inside the nucleus and
o = 1/137 is the fine structure constant. The Feynman diagram in the first-order

Born approximation is shown in Figure 1-7.

(My P =2F) X
A AN
Py P/ P

(EVK)

Figure 1-7: The Feynman diagram for the first-order Born approximation.

The inclusive cross section can be written as [44]

do 4o B y
deE’ = @EI’W/VI/# (123)
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where the leptonic tensor is given by
Ly = kyky + kyky = gk’ -k + imee,aps™q” (1.24)

and the hadronic tensor for a spin-1 nucleus is given by

q“q W,
W = n W, + P4pPy—
( g q° ) L 4 MA

G (s
+25,u,ucxﬁQOz I:SA;@M [(q PA)SAﬁ - (q SA)PAﬁ] Ma:l (125)

where W, and W, are the spin-averaged structure functions while G; and G, are the

spin-dependent ones, and

- q-Pu
q

Py = Py— (1.26)

In the center-of-mass system the structure functions are related to the frame-
independent nuclear response functions, namely the spin-averaged transverse and lon-
gitudinal ones Rr and Rp, and the spin-dependent transverse and mixed transverse-

longitudinal ones Ry and Ryps [45]

Q, 1@
M Q* 1 w
G = ———A[ gRre = R ] 1.29
1 AL v~ g i (1.29)
l.M 1
G, = [I ‘\[RTUH%T,J (1.30)

The final cross section in terms of the response functions can be written as

do a? cos

20
2
dQdE'  4E?sin'¢

{ULRL (QZ, LL)) + ’U'I‘RT(Q2, LU)



—h|vp cos 8 Ry (Q?, w) + 2vpy, sin 8* cos ¢* Ry (Q7, w)] } (1.31)

where 6* and ¢* are the polar and azimuthal angles of the target spin direction with

respect to the three-momentum transfer 7, as is shown in Figure 1-8.

Figure 1-8: The scattering plane.

The v, are kinematic variables-defined as

v = % (1.32)
vp = %lg—; + tan® g (1.33)
v = tang g—z + tan? g (1.34)
vrp = —\%% tang (1.35)

where 6 is the scattering angle.

. . . ht_ h— . . .
The spin-dependent quasielastic asymmetry, defined as A = Z=%=, is given in
terms of the response functions as

4o _ co8 8* v R + 2sin 0* cos ¢* vpp Rype (136)
I/LRL + I/TRT
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By choosing 6* = 0° (90°), one selects the transverse asymmetry Ay (longitudinal-
transverse asymmetry Apr).

The nuclear structure functions or equivalently, the response functions, for quasielas-
tic processes have been obtained through both PWIA calculations and full Faddeev

calculations.

1.3.2 PWIA Calculations

The simplest description of the quasielastic process is the Plane Wave Impulse Ap-
proximation (PWIA), where the virtual photon is totally absorbed by one of the
nucleons, which comes out without further interaction with the residual nucleus and

thus can be treated as a plane wave. The first-order Feynman diagram for this process

is shown in Figure 1-9.

\ e (E.K)

B (M, 0)
Figure 1-9: The Feynman diagram in Plane Wave Impulse Approximation.

Within the framework of PWIA, the nuclear current tensor is calculated as an

operator in nuclear spin space [§]

m
(W2 (q, Pa)lsa) ZZ/ P T [ AE(y W (an.px)lsn)

tn snsly
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x sy 54 |S Dy Ftn)|shysa) (1.37)

where py = (/M% + p%.pwn) is the four-momentum of the struck nucleon, gn is
the four-momentum transfer to the nucleon from the electron (Q% = —g% being
positive), sy(ty) is the nucleonic spin (isospin) projection, and E is the so-called
separation energy. W ﬁlgtlv)(qN,pN) is the nucleonic current tensor and S(py, E,tx)
is the spectral function which contains the nuclear structure information. The spin-
independent part of S(py, E,ty) is identical to the usual spectral function described
in [46] and is interpreted as the probability of finding a nucleon of isospin ) and
momentum py in the target nucleus A, with the residual (A — 1) nucleus having
an excitation energy determined by the separation energy E. Both the nucleonic

current tensor Wﬁ?tN)(qN, pn) and the spectral function S(py, E,tn) are considered

operators in spin space and were derived in [8].
The Nucleonic Current Tensor

The nucleonic current tensor has the following form [8]

Moy
v adnadN v Nty gn - PN
W]l\Lf(tN)(qNapN) = _|: g%\i\/ +gﬂ :|W1 ( )(Q?Vv MN )

Nty -1
W2 (t )( 1’2\1' qz]\\r/]i,N)

M3,

+pn'pv”

Nt ‘N

G (@, )
My

+ie" P g e |:3ﬂ(O'N) + {QN -pysplon)

Gy QY ey
N M
—4qN - S/S(O'N)pNﬂ} e = } (1.38)
N
with
Py = PNt w ‘QquN (1.39)
N
PN -OpnN PN - ON ]
s(o = |———, o8+ 1.40
(o) My TN T ML (M %)Y (1.40)
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where T/VIN ) and WQN(t“‘) are the spin-averaged nucleonic structure functions, while

GV and G are the spin-dependent nucleonic structure functions.

For elastic scattering from the nucleon, the structure functions are determined by

the elastic Sachs form factors Gg(t'“’) and GAN/I“N ):

W s, T = rla @i

My
X2Mn(2qy - Py — Q%) (1.41)

ey @] + e @]

Wy (Qf, TP~

My 1+7
x2Mn8(2gn - pv — Q%) (1.42)
GV g, WPy Gu(@R) GE(@QR) + G (QR)
! N My 2 1+7
X2IWNI§(2(]N ‘PN — Q?V) (143) v

G oy G (@) G (@) — 76 (QR)

2 N My 4 1+7
x2Mn6(2gn - py — Q) (1.44)
with
Qi
= 1.
T T (1.45)

Spin-Dependent 3He Spectral Function

The spin-dependent nuclear spectral function is an operator in the nucleonic and

nuclear spin space, whose matrix elements are defined by [§]

(snsalS(Pn, Etn)lsysa) = A D S(E+Ea—ear(fanr))

sa-1fa-

X(P s |pnsytn(Pa — Pn)sa 1fa)
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(Pasyty(P, — PN)Sa_1 fay [Pas4) (1.46)

where £, is the nuclear binding energy, fa_; are quantum numberg of excitation in
the residual 4 _ I nuclens, ang €a-1(fa_1) is the excitation “nergy of this residug]
nucleus. Since the tensor structure of the nuclear current tensor in PWIA IS carries
by the nucleonic current tensor, the Spectral function mugg be a Loreny scalar. In

the nuclear center-of-mags System it is a gcalar with respect to rotation and parity

O Bot) = S { Ao, £.68) + i ipu, 5 t)oy - o

+L(lpwl, B, tN)[(O'N “Pw)(o 4 “Dw) ~ %UN ' O'AJ} (1.47)

where Jollpw|, £, tn) is the Spin-averaged part of the spectral function whije Jo(lpn !, E, ty)

and fi(Ipy], E,ty) are the spin-dependent opeg,

The target nucleus with Spin 2i 1$ charactei*ized by the general polarization vector

A4 in itg center-of-magg System

T4 'ﬁAlnA> = 1”A> (1-48)

Pa(ty) = %(1 to4ny) (1.49)

where the OpPerator p, is the corresponding density operator and [74) denotes the
polarization State, which can he eXpanded in terms of SPIn states (s,4) with the Z axis

being the quantization axig [n4) = ZSA ISA)(SA’nA>. Define a new four-vector

S(pN,E,tN,ﬁA) = TT[S((TN)S(I)N,E,fN)[)A(ﬂA)J (1.50)
= @[5 0pal, £,t) < L b)) +
5(Pw)(fiy Pufallpa|, E. ta)) (1.51)
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where n4 and py are boosted by the nucleon momentum py to

. Py Dy PN Hiy ]
— 1.52
5(fi,) [ My A My (M + oy Py (1.52)
) p !
s(by) = [—lMIL’,p Mljv (1.53)

With the nucleonic current tensor and the nuclear spectral function at hand, the

nuclear structure functions in PWIA can be written as [8]

A 3 MN i) Wwa'eo) 2

Z/dSPN@/dE{WlN(tN)g—j[ g]

N(tN Q4 . 2 1 2
N " PN - 2
W [ (0 + g3 ) +==]a x ]} Bt

w;'

I M2 Q1 o,
A A 3 n la 0 3o Dex
= E d’p dE X

. GN . .
[Sa(PN, E:tN:nA)M—iv + {(QN pn)Sa (PN, E iy, 0ia) — g - S(pNyEatN:nA)pNa}

iMN[ {01 1 1 0 3 0
dE q—g"‘+—(q 9“—\q\g“) X
P ny nd \Y

M2
tv

. GV . .
[SQ(PN,E, tn, nA)ML; + {(QN -pN)Sa(Pr, E,tn,0a) — gy - S(PN,E,tN,HA)PNa}

which can be numerically calculated.

1.3.3 Non-Relativistic Full Faddeev Calculations

The Faddeev decomposition of the three- and four-body problem has proven to be a
tremendous computational tool in studies of light nuclei. In addition to being useful

for studies of bound states and low-energy scattering, the Faddeev decomposition can
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be readily applied to higher-energy scattering problems. Using the Faddeev decompo-
sition, the coordinate-space Schrodinger equation for three nucleons with two-nucleon
interactions can be written as three Faddeev equations, with each equation involving
only the interaction between one pair of the nucleons, thus achieving a significant
simplification [35]. In momentum space the three Faddeev equations can be written
as three integral equations.

First applications of the Faddeev formalism to unpolarized pd and ppn electrodis-
integration of *He were done in [47, 48] with full inclusion of all final-state rescattering
processes. This calculation was subsequently applied to electrodisintegration of po-
larized *He in [10] and later in [49] with the additional inclusion of meson-exchange
currents.

The response functions can be written as [10]

Ry = Zfdf’é(Mer AT (158)
Re = 30 [ a6 - BN+ N-SP) (159
R = Y [ a5 - BN - (NP (1.60)
Ry = ) /df’ci(M 4w — P))2Re[—Ny (Ny + N_;)*] (1.61)

where the summation over all spin and isospin magnetic quantum numbers and mo-
menta in the final state is indicated by ', 7’ and df’. The nuclear matrix elements

Ny and Ny are

No = (U5, 1o(@)|spe) (1.62)

Niy = (050154 (@) Wape), (1.63)

where |W,11,.) is the *He ground state, and |\Il§f,_), ,) is a 3N scattering state with the

T

asymptotic quantum numbers f'm'7'. p(q) 1s the electromagnetic hadronic charge



density operator and ji,(¢) are the spherical components of the electromagnetic
hadronic current operator. In the nonrelativistic framework, the argument of the

d-function is

&
IW+W—P[; = EsHe+w—6m —Efr
N

where €,y, is the *He binding energy (negative), my the nucleon mass, the final total

momentum P' = ( and Ey the internal 3N energy related to the quantum numbers

f

Define

Rap

S [ 5B - B A1) (V) BN
> / Af (Wspiel BYWS), )3(B = Ep) (W, 1AW, )

- / Af (1ol BT6(E — H) [0, 05, A Wage)

miT’

= <‘113He|BT6(E - H)AI]‘IISH& (1-65)

where H is the 3N Hamiltonian, then the four structure functions can be expressed

as

R = Ry (1.66)
Rr = Rjjn +Rii, (1.67)
Ry = Ry = Rirjon (1.68)
Rryy = —2RelR;, ., +Rj_,,] (1.69)
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Introducing scattering states

(£y = 1

oy = — Al 1) (1.70)
(Hy — 1

] = — — _BlU .

V5 ) E+ie—H [Vatte) (171)

then

1 1

1 1
Rap = — AVa|Bl = =A R
AB 27Tz'< 3He| E—iwe—-H ‘\IISHE) 2m1

/] S — |}
(Wste 1B g =g AlYete)

_ 1 (- 1 (+)
= %<‘I’3HG|BT|‘I’A >_E<q;3He|BT|‘IIA )
1 *
= o (TapgelA!TE)" — (oo BT S)) (1.72)

The states |\I!£;f33>, defined in Eqs. (1.71) and (1.71) contain all the complexity of
the interaction among the three rucleons and are evaluated as in (3, 50] using the

Faddeev scheme. The result 1s

057 = Go(1+ P)Uc (1.73)
with
Ue = (1 +1Go)CW| T, go) + tGoPUc (1.74)

where t is the NN t-matrix, which accounts for the rescattering between the final state
nucleons. In this way FSI effects are naturally incorporated in the Faddeev formalism.
GGy is the free 3N propagator and P is the sum of a cyclic and anticyclic permutation

of 3 objects. C is cither A or B (for instance p or ji) and can be decomposed as

c=> cv (1.75)
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and each current operator C) can be further decomposed into two parts, the single
particle current operator and the two-body current operator [49]

cW=c{) 4+ (1.76)

sing ezch

where the two-body currents follow from the Riska prescription, which via the con-
tinuity equation relates NN forces and exchange currents in a model independent
manner. In this way the meson-exchange currents effects are also naturally included.

To solve the Faddeev equation (1.74) numerically, a set of standard basis in mo-

mentum space is introduced [51]

lpua T M) = lpa(ls)3 (A3).JT M (t5)TMz), (1.77)

where p and q are magnitudes of Jacobi momenta and the set of discrete quantum

numbers o comprises angular momenta, spins and isospins for a three-nucleon system. .

The *He state polarfzed in the direction 8%, ¢* is
IqjaHe 9 p* — Z I‘IjaHe 1/2 ( Cb 5_0*a0)7 (178)

where |¥;11,m) is quantized with respect to the z-direction and the Wigner D-function

occurs as

9* . o*
.. fcos%  —sinI
DU/ (g7, -0",0) = ¢ ' ( r 93) (1.79)
2 3

With the above formalism, the response functions can finally be written as [10, 52]:
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where the sums in j include the summation over the magnetic quantum number
M of the total 3N angular momentum 7. The response functions thus obtained can

be calculated numerically with the computing power of supercomputers.
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Chapter 2

The Experimental Apparatus

2.1 Overview

The Thomas Jefferson National Accelerator Facility (Jefferson Lab), located in New-
port News, Virginia, is one of the most powerful microscopes in the world for studying
the quai_"k structure of matter and the pnderlyiﬂg strong interaction. Designed to be '
the world’s premiér medium energy electron scattering laboratory, the facility’s con-
struction was started in 1987 and the first physics experiments were performed in
1994.

The Lab consists of a state-of-the-art continuous-wave electron accelerator, three
complementary experimental halls, named Hall A, Hall B and Hall C, that utilize
the electron beam to explore different aspects of nuclear and particle physics, a free
electron laser (FEL) facility and an applied research center. Figure 2-1 is an aerial
view of the Lab.

The accelerator (Figure 2-2) is capable of delivering high quality continuous elec-
tron beam of up to 6 GeV to the three halls simultaneously, and is planned to be
upgraded to 12 GeV in the near future. The beam is generated in the following man-
ner. Electrons are initially accelerated to 45 MeV at the injector site, from where

they are delivered to a racetrack-shaped accelerator, which consists of two 400 MeV
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Figure 2-1: An aerial view of Jefferson Lab accelerator site and the three experimental
halls.
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Figure 2-2: Schematics of JLab accelerator configuration.

linacs and two recirculation arcs. The electrons pass through the first linac and pick
up 400 MeV. Then they travel through a 180° turn in the first recirculation arc and
acquire another 400 MeV while they pass down the second linac. Now the electrons
can either be delivered to one of the three experimental halls, or enter the second
recirculation arc and start another pass. The 400 MeV linac acceleration is a nominal
amount, in reality electrons can acquire up to 1.2 GeV with each pass. A total of

up to five passes are allowed which amounts to a maximum beam energy of about 6

GeV.

Experiment E95-001 was conducted in Hall A in Spring 1999. There were two
goals to this experiment. The first was to measure the transverse asymmetry Az on
top of the quasielastic peak of 3I—fe(é’, e') and then to extract the neutron magnetic
form factor ;. The second goal was to measure the spin-dependent asymmetry

in the threshold region of 3}fe(€, e'). Two beam energies, 778 MeV at one pass and
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1727 MeV at two passes, were used during the experiment and the average beam
current was 10 pA, which was due to the limitation of the polarized 3He target.
Figure 2-3 shows the Hall A configuration during the experiment. The beam was
longitudinally polarized at the injector and the polarization was determined with
a Mpller polarimeter. The beam energy was measured using an Arc Energy Device
while the beam current and position were monitored continuously using Beam Current
Monitors (BCMs) and Beam Position Monitors (BPMs). The polarized electron beam
was incident on a 40 cm polarized 3He target cell, based on the principle of spin-
exchange optical pumping, where the reaction took place. The scattered electrons
passed through two High Resolution Spectrometers, HRSe and HRSh, focused by
three quadrupoles and deflected by a dipole to the focal plane. Both spectrometers
were configured to detect electrons in single-arm mode using nearly identical detector
packages consisting of two dual-plane vertical drift chambers (VDCs) for tracking,
two planes of segmented plastic scintillators for trigger formation, and a CO, gas
Cerenkov detector and lead-glass total-absorption shower counter for pion Tejection.
'The HRSe was set for quasi-elastic kinematics while the HRSh covered both the elastic

peak and the threshold region.

2.2 Polarized Electron Beam

2.2.1 Beam source

The polarized electron source at Jefferson Lab is similar to the one used at SLAC [53].
The electron beam is generated by illuminating a strained GaAs cathode, placed in
a ultra-high vacuum, with high intensity circularly polarized laser light.

The strained GaAs cathode is created by growing GaAs on a substrate of GaAsy 79Pg.25
as shown in the left panel of Figure 2-4. The shorter lattice spacing of GaAsg72P.08,
which is 5.5968 A, causes the natural spacing of GaAs, which is 5.6533 A to shrink a

little bit, thus creating strain in the GaAs crystal. This strain splits the sublevels of
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Figure 2-3: Hall A Configuration for E95-001.

the Py, electrons in the valence band of GaAs, making the m = 3/2 sublevel higher
than m = 1/2 sublevel (see the right panel of Figure 2-4). By tuning a circularly po-
larized laser to the proper frequency, electrons from the P3/, m = 3/2 sublevel can be
excited to the S3/, m = 1/2 sublevel in the conduction band. A very thin film of Cs-F
is deposited over the GaAs layer to lower the energy of the conduction band below the
vacuum energy, thus allowing the excited electrons to escape from the crystal into the
vacuum. The cathode is maintained at a negative voltage of 60-120 kV which gives
the electrons the initial acceleration. Because the strain creates a sufficiently wide
gap between the P3/; sublevels, electrons in the m = 1/2 state will not be excited by
the laser. Thus theoretically the electrons leaving the surface of the cathodes can be

100% polarized. In practice, beam polarization over 70% has been achieved.

The incident laser is circularly polarized using two Pockels cells, one acting as a
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half waveplate and the other as a quarter waveplate. The helicity of the laser, thus
the helicity of the electron beam, can be flipped using the half waveplate Pockels cell.
The flip rate was 1 Hz in the beginning of the experiment and was later changed to

30 He.

2.2.2 Mygller Polarimeter

The beam polarization measurement is based on the process of Mgller scattering,
which is simply elastic scattering of incoming electrons on target electrons, which in
this case are atomic electrons in a target. Consider the scattering of a longitudinally
polarized electron incident on a polarized target electron. The cross section in the

center-of-mass system is

do do
— = (—=)o(1 + PP 2.1
70 = (ol + Fa TA(9¢M)) (2.1)
with .
(7 + cos? Bear) sin® By
A(f = = 2.2
( CM) (3 + cos? QGM)Z ( )
where (g—g) is the unpolarized cross section, Py is the beam polarization, Pr is the

target polarization projected onto the beam direction, and ¢y is the center-of-mass
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Conduction Band
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Figure 2-4: The different layers of strained GaAs cathode and the level diagram of
the conduction and valence bands of GaAs.
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scattering angle. When 8¢y = 90°, A(f¢ar) achieves a maximum of 7/9.

The measured asymmetry

ot — gt

Am = o = PpPrA(fcu) (2.3)

is proportional to the beam and target polarization and can be used to determine the
beam polarization if the target polarization is known.

The Mgller polarimeter in Hall A is shown in Figure 2-5. It uses a 12 pm thick
supermendur foil (Fe plated onto a Cu foil) as the target. This is a soft ferromagnetic
material and is driven to saturation by placing it in a 300 G magnetic field. Due to
boundary conditions, 2 electrons out of 26 in Fe will be polarized along the foil plane,
thus the foil polarization Py, is about 7.69%. Ideally the foil should be placed along
the beam line to maximize the asymmetry, which is not practical because it is very
thin. During the actual measurement the foil was tilted at an angle 6, from 20°

to 160° with respect to the beam line, resulting in an effective target polarization of

o Peff = Pf:lil X COoS Htgt-

Scattered electrons are detected by two Mgller spectrometers in coincidence to im-
prove the signal-to-noise ratio. Each spectrometer is comprised of three quadrupoles
and one dipole, which are followed by one scintillator and one lead-glass shower
counter. The angular acceptance of the spectrometer ranges from 76° to 104° in
the center-of-mass system. Taking into account the acceptance effect, the average
value of A(fcyr) is 0.759 as determined by a Monte-Carlo simulation.

Six Mgller measurements were taken in our experiment and the results are shown

in Table 2.1 together with the statistical and systematic errors.

2.2.3 Beam Current Monitors

The beam current was measured using two Beam Current Monitors (BCMs) placed in

the beamline about 24.5 m upstream of the target (Figure 2-6). The BCM is simply
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Figure 2-5: Schematics of Hall A Mgller polarimeter.

a cylindrical resonant cavity tuned to the frequency of the electron beam, which is
1497 MHz at JLab. Inside each cavity there are two coaxial loop antennas. The outer
one has a radius coupled to one of the resonant modes of the cavity, and is used to
couple the beam signal out of the cavity. The inner one can be used to periodically
test the response of the cavity by sending a 1497 MHz calibration signal through it
and detecting the output signal from the outer antenna. When the electron beam
passes through the cavity, it excites the resonant transverse electromagnetic mode
TMaoio at 1497 MHz. The outer antenna would then detect this magnetic field and

output a signal proportional to the beam current.



Date Pbeam(%) 5stat(%) 551;3(%)
Jan. 22 70.0 2.00 3.5
Jan. 26 72.5 0.50 3.5
Jan. 31 74.2 0.30 3.5
Feb. 04 67.7 0.30 3.5
Feb. 08 69.5 0.20 3.5
Feb. 12 69.4 0.15 3.9
Feb. 19 71.3 0.15 3.5
Feb. 28 72.0 0.15 3.5

Table 2.1: Beam polarization results from Mgller measurements.

Since the BCM output signal has a high frequency of 1497 MHz and thus has
high attenuation rate, it is first converted to a 1 MHz signal using a down-converter
installed close to each cavity. This 1MHz signal is then recorded in two ways. The
first method records the signal every 4, 10 and 50 seconds, and sends all signals to a
VME crate. The second method converts the voltage signal into a frequency signal

using a Voltage-to-Frequency (VtoF) converter, which is then recorded by a scaler.

The BCMs have excellent linearity over a wide range of beam currents and thus
can serve as accurate relative current monitors. However, they require an absolute
calibration which is provided by an Unser monitor [54] sandwiched between them.
The Unser uses a Direct Current Transformer which is composed of two identical
toroidal cores driven in opposite ways by an external source. A comimon sensing wire
is wound around both cores and in the absence of any beam current passing through
the center of the toroids there is no signal from the sensing wire. A DC-current
passing through the cores would produce a flux in-balance, and thus a signal in the
sensing wire. The Unser is calibrated by passing a reference current, generated by a
high precision current source, along a wire that is placed through the device along
the beam line to simulate the beam current. The Unser itself cannot be used to
continuously monitor the beam current because its output signal drifts significantly

on a time scale of several minutes. Thus, it is only used to calibrate the BCMs. Since
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Figure 2-6: Schematics of Hall A Beam Current Monitor.

there is a constant uncertainty of about 250 nA in the U nser fnea,surement, the BCM
calibration is better performed at a relatively high current to reduce the relative error.
The calibration constant thus obtained can be used to convert the scaler counts from

BCMs to the beam charge.

2.2.4 Beam Position Monitors

The beam position was monitored using two Beam Position Monitors (BPMs) lo-
cated along the beamline and about 1 meter and 7 meters upstream of the target,
respectively. The BPM is a cavity with four antennae surrounding the beam line in
a diamond configuration (Figure 2-7). The signal picked up by each antenna from
the electron beam is inversely proportional to the vertical distance between the beam
and the antenna. The beam position can thus be accurately determined using the

four signals. At a current of 10 pA, the beam position can be determined to about
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Figure 2-7: Schematics of Hall A Beam Position Monitors.

To reduce the effect of beam heating on the target cell entrance and exit windows, a
fast raster was used in the experiment to slightly move the beam around the beamline.
The size of the beam spot on the target entrance window was typically 3 mm x 4
mm, and the beam center was kept to be within 0.5 mm from a nominal target center,

which was selected to minimize the background during the experiment.

2.2.5 Beam Energy

In our experiment, three methods were used to determine the beam energy: measuring
the electron trajectory in a magnetic field (Arc measurement), elastic electron-proton
scattering (eP measurement) and elastic electron-3He scattering.

The Arc measurement is based on the principle that in a uniform magnetic field
an electron moves in a circular pattern, the radius of which depends on the strength
of the magnetic field and the electron energy. The Hall A Arc setup is shown in
Figure 2-8. Before entering Hall A, the beam passes through a bend. The beam

energy 1s determined by the following relation:

_ B

E
Ll

(2.4)

where B, is the magnetic field perpendicular to the beam path plane, [ Bidl is the
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Figure 2-8: Hall A Arc Measurement.

integration of B, along the heam path, and ) is the angle by which the bear is
deflected. @), is simply the difference between the entrance angle, which is determined
by measuring two beam positions before the entrance to the bend, and the exit angle,
which is determined by measuring two beam positions after the exit from the bend.
The beam positions are measured using two sets of superharps. A superharp is a
set of three wires that are spaced evenly apart. During the Arc measurement, the
superharp is moved across the beam path. When the beam strikes a wire, a current
is generated in that wire and the beam’s position is determined. With the precise
knowledge of B, and 0)), the beam energy can be determined to a precision of 2x1074.

In eP elastic scattering, the electron energy can be determined from the knowledge

of the angles of the scattered electron and the recoiling proton as follows:
be
E = M,(cot 5 ccot fp — 1) (2.5)

where M, is the proton mass, 6, is the angle of the scattered electron and #, the angle

of the recoiling proton.
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Figure 2-9: Hall A eP Measurement.

The P measuring device in Hall A consists of a Cerenkov chamber, a few scintil-
lators, a few silicon microstrips, and a CH, target, as shown in Figure 2-9. Incident
electrons get scattered by protons in the CH; target. The scattered electrons first
pass thro_ugh a microstrip, then a scintillator and finally a Cerenkov chamber. The
Cerenkov lighf is detected by a phototube. In a similar manner, the recoiling protons
pass through a microstrip and then a set of scintillators. The coincidence signal be-
tween the electron and proton scintillators defines an event while the positions of the
fired microstrips allow for a precise determination of both electron and proton angles.

The eP measurement has an accuracy of 1x10~%.

In the e-*He elastic scattering method, the beam energy is determined with knowl-

edge of the energy and scattering angle of the scattered electron from data:

E=—— (2.6)

where £’ and @ are the energy and scattering angle of the scattered electron, measured

by the HRSh, and Map, is the mass of the 3He nucleus.



2.3 Polarized *He Target

Polarizing *He atoms has a long history dating back to 1960s and has stimulated great
interest and extensive efforts of decades of nuclear physicists ever since. The early
applications of polarized *He targets include the development of *He magnetometers,
which can be used to measure the earth and the interplanetary magnetic fields, and
the study of quantum properties of polarized *He fluids at ultralow temperature.
With the advent of advanced laser technology, it has become feasible to develop
polarized *He targets for electron scattering experiments. The basic technique is
called optical pumping, which is a method of transferring angular momentum from

polarized photons to the atoms, thereby polarizing the latter.

2.3.1 Optical Pumping and Spin Exchange

Traditionally optical pumping of an atom involves the transition of the ground state
of the atom to the first excited state. However this is impractical for *He because it is
difficuli to produce laser beams with a high energy of 21 eV (59 nm), the excitation
energy of the first excited state for *He. Instead, two indirect methods have been
developed to optically pump *He atoms.

The first one is called metastability-exchange optical pumping and was developed
in the early 1960s [55]. The *He metastable 2°S; atoms are produced using a weak
radio-frequency (RF) discharge on a glass cell filled with a few torr of pure 3He gas.
These 2°S; atoms are then pumped to 2°Pg states with 1083.4 nm circularly polarized
photons. The sample is placed in a weak uniform magnetic field which defines the
spin direction and thus only certain magnetic sublevels of 233, states will be excited
to 23P, states, which then decay back to all sublevels of 2°S;. The net effect is that
the metastable atoms become polarized. A hyperfine interaction would then mix the
electronic polarization into the nuclear polarization for these metastable atoms. The

polarization of these atoms is subsequently transferred to the ground state through
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metastability-exchange collisions in which only the excitation of the electronic cloud
is exchanged. Now if the ground state of a *He atom is polarized, the nucleus must
be polarized since the atom is in a J = 0 state. This process can be expressed

schematically as:

*He +° He* —® He +° He* (2.7)

The *He polarization can reach as high as 40% using this technique, but unfortunately
it only works for low pressure 3He gas target, because at high pressure the lifetime
of the metastable atoms is drastically reduced and it is also difficult to maintain a

uniform discharge under high pressure conditions.

The second method, which was employed in this experiment, involves the optical
pumping of alkali metals and the spin exchange collisions between the polarized alkali
atoms and *He nuclei. A review of optical pumping of alkali metals can be found in [56]

and more recently in [57).

Optical Pumping

The alkali metal used1nth1s experifneﬁﬁ is rubidiurﬁ, 'v‘v'hich has a single outer sheil
electron (58 ,). When plaéed in a magnetic field, the Hamiltonian for the system of

this electron and the Rb nucleus is:

H=AL-S+ gupS,B, — %1232 (2.8)

where the first term shows the vector coupling of the electron spin S to the nuclear
spin I, with a coupling strength of A. The last two terms show the coupling of the
electron spin and nuclear spin to the external magnetic field, which we assume to be
along z-axis, B,. The coupling strength depends on the g value for electron and the
Bohr magneton ug for the electron spin, and the nuclear magnetic moment y; and
the nuclear spin quantum number I for the nuclear spin, which is 5/2 for Rb (76.6%

natural abundance) and 3/2 for ®Rb (23.4% natural abundance).

Without the magnetic field (B, = 0), the electron eigenstates can be characterized
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Figure 2-10: The energy level diagram for *¥Rb in an external magnetic field.

by the tetal spin yuantum number F, which equals 3 or 2 for 3Rb, and 2 or 1 for
*"Rb. With the presence of a magnetic field, the energy level will be further divided
due to the last two terms of Equation 2.8, and is shown in Figure 2-10 for the case of
8Rb.

During the optical pumping, a circularly polarized laser light with a wavelength of
795 nm, which corresponds to the D1 transition (5510 — 5P1/2) of rubidium atoms,
1s applied to a sample of rubidium vapor placed in a uniform magnetic field. If the
photon helicity is in the same direction as the magnetic field, then all electrons in the
5512 sublevels, except the mp = 3 sublevel, will be excited to the 5P/ sublevels.
The excited electrons will decay back to any of the sublevels in the ground state and
thus in time all but the mr = 3 sublevel will be depopulated and the atoms are
polarized.

A simplified form of the optical pumping process is shown in Figure 2-11. The
281/2 electrons from the m; = -1/2 sublevel will be excited to the 2P1/2 m; = 1/2

sublevel, from where they will decay to both the m; = -1/2 and the m; = 1/2 sublevels
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in the ground state. After a while the m; = -1/2 ground state will be depopulated.

Collisional Mixing

e O e O

Y
]

Zeeman Splitting

mj=-1/2 m;=1/2
Figure 2-11: A simplified optical pumping process for rubidium.

A practical issue involves the photons emitted by excited electrons when they
decay back to the ground state. These photons are randomly polarized and thus can
excite the electrons in the mp = 3 ground state, thereby reducing the polarization.
A buffer gas Ny is introduced to reduce this depolarization effect through a process
called quenching, whereby the collisions between rubidium atoms and N, allow the
electrons to decay without emitting photons, through the mechanical excitation of N,,.
The density of Ny gas is chosen to be a few orders of magnitude less than the density of
*He gas, while a few orders of magnitude more than the density of rubidium atoms.

Under this condition only about 5% of excited electrons would decay by emitting
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photons.
The polarization of the rubidium vapor Pg, is determined by the optical pumping

rate (R) and the spin destruction rate (I'sp):

R

Pry= — 2.9
Kb R+Tgsp ( )

The spin destruction rate is typically much smaller than the pumping rate and thus
the rubidium vapor is nearly 100% polarized in regions with abundant laser light.
Spin Exchange
When a rubidium atom collides with a *He nucleus, it will transfer part of its
polarization to the latter via a weak hyperfine interaction between the *He nucleus

and the outer electron of the rubidium atom. The *He polarization is given by:

YSE
P = ——_(P 2.10
s He 75E+T( Rb) (2.10)

where (Pgy) is the volume-averaged rubidium polarization, vsg s the spin exchange
rate, which is proportional to rubidium density, and T is the *He nuclear spin velax-
ation rate in the absence of rubidium vapor and electron beam. For the target cell
used in our experiment, ysg was about 1/(10 hrs), and I' was measured to be around
1/(40 hrs). However the average rubidium polarization was not measured during the

experiment and had to be extracted from the measured *He polarization.

2.3.2 The JLab Hall A Polarized *He Target

The JLab Hall A polarized *He target was built based on the design of a similar target
used at SLAC [58]. As is shown in Fig. 2-12, there are four main systems to this target:
an optical pumping system, a target system, a Nuclear Magnetic Resonance (NMR)
system and an Flectron Paramagnetic Resonance (EPR) system. The NMR system
will be discussed in the next section. The EPR measurement was not used for our

analysis work, so we will not discuss it here. The interested reader is encouraged to
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refer to [59] for details.
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Figure 2-12: Schematics of Hall A polarized *He target.

- Optical Pumping System

The optical pumping system is comprised of two sets of Helmholtz coils used to
create a holding field in any direction in the scattering plane and the laser system
used for optical pumping.

The two sets of Helmholtz coils are used to create a uniform field of about 20
Gauss around the target. They are perpendicular to each other and are turned 19°
off the beam line so as not to block the scattered particles. Both the magnitude and
the direction of the holding field can be adjusted by varying the currents running in
these two sets of coils.

The laser system consists of four diode lasers, a set of polarizing optics to circularly
polarize the laser light and a set of mirrors and lenses to direct the light towards the
target. Fach diode laser can produce light with a central wavelength of 795 nm and

a F'WHM smaller than 2.5 nm and can achieve a maximum power of 30 Watts. The
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laser light 1s circularly polarized using a few polarizing cubes and quarter waveplates
and the polarized light is directed by a few mirrors and lens onto the target, pointing
62.5° to the right of the incident electron beam. The helicity of the lasers can be
reversed remotely using a set of half waveplates. The whole system was shielded in a
concrete hut near the target in Hall A for radiation protection.

Target System

The main ingredient of the target system is a *He target cell (Figure 2-13) where

the optical pumping and spin exchanges processes actually take place.
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Figure 2-13: A typical 3He target cell.

The target cell is made of aluminum-silicate glass (Corning 1720 or GE 180)
and is a one-piece cell with three parts: a pumping chamber, a target chamber and a
transfer tube. The pumping chamber is spherical and was placed within a plastic oven
to control the rubidium vapor density during the experiment. The target chamber
is a 40 cm tube which was placed along the electron beam during the experiment.
The transfer tube simply connects the two chambers. During the construction of
the target cell, first rubidium was chased into the pumping chamber and N; gas was

filled into the cell to about 40 torr. The target chamber was then cooled to about 10
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K to keep the pressure in the cell below 1 atm and 3He gas was filled to a density
such that the *He pressure would be 9-10 atms in room temperature. The initial N,
pressure of about 40 torr was chosen so that the final N, pressure was about 60-70
torr in room temperature. For a detailed account of the cell-construction process,
please refer to [59].

The target cell was mounted to a target ladder (Figure 2-14) which also has spaces
for a reference cell and a BeO) target. The reference cell can be filled with N, or 3He
gas up to 70 psi. It was used for the determination of target cell He and N, density
and the study of N, and empty dilution factors in the target cell. The reference cell

system was designed and constructed by the MIT group.

*He target

BeQ target

8| Reference cell

To Reference Gas

Handling System

Figure 2-14: Hall A target ladder.

The target ladder was mounted to a Torlon oven. Hot ajr was passed into the
oven through a pipe which was heated with an electric heater. The pumping chamber
was placed inside the oven and could be heated to 170-180°C to produce Rb vapor
during the experiment. The oven itself was mounted to an electric rod that could

move vertically, allowing different targets to be put into the beamline. To reduce
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the electron beam heating, cooling jets of ‘He were flew through the entrance and
exit windows of the target chamber. The cooling jets system was also designed and
constructed by the MIT group. The oven temperature and target cell temperature
were monitored using many Resistive Thermal-couple Devices (RTDs) both attached

to the target cell and inside the oven.

2.3.3 Target Polarization Measurement

As will be discussed in Chapter 3, the product of beam and target polarization can be
monitored continuously via elastic polarimetry during the experiment. However, as a
cross-check, it is still a good idea to measure the beam and target polarization sepa-
rately using Mgller polarimetry and NMR polarimetry. In this section, we will discuss
the NMR polarimetry in detail: the Adiabatic Fast Passage (AFP) technique [60],
water calibration and the NMR system.

Adiabatic Fast Passage

To explain the idea of AFP, let us consider a polarized *He sample placed in a
main heolding field in the z-direction, H = Hj k, and apply an oscillating RF field in
the x-direction, H, = 2H; cos(wot)i, to the sample.

The RF field can be decomposed into two counter-rotating components, each of
magnitude H;:

H, = Hii, + Hii_ (2.11)

~
.

where 1, = cos(wpt)i % sin(wot)j. To consider the influence of the oscillating field on
the magnetization of the polarized *He sample, it is useful to go to a reference frame
rotating around z-axis at wp, with the x'-axis along i= I’+ The effective field in the

rotating system is then (Figure 2-15)
Wo ~r
H, = (Hy— —)k + Hiji (2.12)
Y

where v is the gyromagnetic ratio for *He. For our experiment, % = 28.06 G,
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Figure 2-15: Principle of Adiabatic Fast Passage (AFP).

H, = 90.8 mG, and Hy is swept from 25 G to 32 G. Initially [Hy — “J—;r"l > H,y, so
the effective field is parallel to the z-axis. When Hp increases, the z-component of
the effective field becomes smaller and effectively the field is rotating towards the
x'-axis. If the sweep is slow enough, the *He magnetization will follow the changing
field adiabatically. When Hy = 28.06 G, it will be completely aligned with the x'-
axis, which is called a resonance. Viewed from the lab frame, the x'-component of
the 3He magnetization is rotating rapidly around z-axis and will produce a signal in
the pick-up coils. The signal peaks at resonance and its size is proportional to the

x'-axis component of the magnetization:

§ o o AMsne (2.13)
/(Ho = <02+ 13
where
(Msge) = Py X page x |*He) (2.14)
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is the average *He magnetization and is proportional to *He polarization, the magnetic

moment of *He and the density of *He.

As mentioned above, the sweep rate must be slow enough to make sure the mag-
netization follows the effective field adiabatically. On the other hand, it must be fast
enough so that spin relaxation is not a concern. The condition for adiabatic fast

passage 1s:

DIARE Hy < (2.15)
—_— — Wo .
H? H,
where D is the 3He diffusion rate and 2 'ﬁff"lz is the spin relaxation rate, while g—?
1

is the rate of change of the effective field near resonance. For our experiment, both
conditions were easily met:

D|AH,|?

o1y Ho _ .
T 107257 « = = 24[s7Y < wp = 5.7 x 10°[s ] (2.16)

H,

Water Calibration

In order to extract the polarj.zation.of the 3He target, the NMR signal has to
be calibrated. This can be done by performing an NMR measurement for a material
with known polarization, under exactly the same condition as the NMR measurement
for polarized ®He target. The ratio of the *He polarization to the known material’s

polarization is proportional to the ratio of the magnitudes of the two NMR signals.

A natural candidate for this calibration is water. This is because when placed in
a magnetic field, the protons contained in water will be thermally polarized with the
polarization given by the Boltzmann distribution:

h ppB
PL]:)]ZJ.ter = tanh ka (217)

where p, 1s the magnetic moment of the proton, B is the applied magnetic field, k is
the Boltzmann constant and T is the temperature. Under the experimental condition

the water polarization is about 7x107%.
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NMR System

As can be seen in Figure 2-12, an extra pair of Helmholtz coils (NMR RF Drive
Coils) were placed around the target to create a vertical RF field. The frequency of
the RF field was determined by a RF generator located in the counting house, and
was set to be 91 kHz during the experiment. The magnitude of the RF field was 90.8
mG. The main holding field was swept from 18 to 25 Gauss and then back, at a rate
of 1.2 G/s. A pair of pickup coils were placed around the target chamber to pick up
the NMR resonance. The plane of the pickup coils was parallel to the vertical RF
field to maximize the signal, which was read by a lock-in amplifier referenced to the

same RE generator. The whole system was controlled by an Apple computer in the

A

— Holding Field

. Coils

counting house (Figure 2-16).

RF Coils Pickup Coils

L)
Pre Amp. C
== Capacitor
RF Amplifier Kepco
Q > iy
Lock-In Amplifier RF Generator Sweep Generator

- ' : * ref.
Computer I l

GPIB

Figure 2-16: Schematics of NMR electronics.

Three NMR measurements were performed on the *He target every day. The



water calibration was performed once before the experiment and once after. The

average “He polarization during the experiment was about 30%.

2.4 High Resolution Spectrometer

There are two identical High Resolution Spectrometers (HRS) in Hall A, which were
designed to achieve high accuracy in the determination of both particle momentum
and scattering angle. Looking down the beamline, the one to the left of the electron
beam is called the electron arm (HRSe) while the other one is called the hadron arm.
(HRSh). Each spectrometer consists of three gquadrupoles (Q1, Q2, Q3) and one
dipole (D} in a QQDQ configuration. Q1 provides dispersive {vertical) focusing while
Q2 and Q3 provide transverse (horizontal) focusing. The dipole has a bending angle
of 45° in the vertical direction and is used to accurately select the particle momentum..
Its magnetic field increases with the radial distance, providing a natural focusing in -
the dispersive direction

The momentum range of the spectrometer is from 0.3 to 4.0 GeV/c and the main

characteristics of the spectrometer are listed in Table 2.2.

2.5 Detector Packages

The detector package for the electron arm (HRSe) is shown in Figure 2-17. There
are a pair of Vertical Drift Chamber (VDC) to precisely locate the trajectories of
the charged particles and determine their momenta, two scintillator planes (S1 and
S2) to generate event triggers and provide time-of-flight information, a Gas Cerenkov
detector sandwiched between S1 and S2 used for e”/m~ separation, and finally a
lead-glass preshower and shower counter to provide additional e” /7~ separation. The

detector package is similar in HRSh except that there is no preshower.
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Momentum Range 0.3 - 4.0 GeV/c
Configuration QQDQ
Optical Length 234 m
Momentum Acceptance + 4.5%
Dispersion (D) 12.4 em%
Radial Linear Magnification (M) 2.5
D/M 5
Momentum Resolution (FWHM) 1 x 104
Angular Acceptance
Horizontal + 28 mr
Vertical + 60 mr
Solid Angle:
(rectangular approximation) 6.7 msr
(elliptical approximation) 5.3 msr
Angular Resolution: (FWHM)
Horizontal 0.6 mr
Vertical 2.0 mr
Transverse Length Acceptance + 5 cm
Transverse Position Resolution (FWHM) 1.5 mm
Spectrometer Angle Determination Accuracy 0.1 mr

Table 2.2: Hall A High Resolution Spectrometer (HRS) general characteristics.

2.5.1 Vertical Drift Chamber

The trajectory of a charged particle is the key element in determining its momentum
and reconstructing its target variables. Two paired vertical drift chambers (VDCs)
are used in Hall A to determine trajectories of charged particles at the focal plane.
From Figure 2-18, it can be seen that these two VDCs are identical and parallel to
each other. The bottom one is placed on the actual focal plane, while the top one is
about 35 cm above and is shifted by about 35 cm with respect to the bottom one in
the dispersive direction. The size of each VDC is about 240 cm x 40 cm x 10 cm,
with an active area of about 211.8 ¢cm x 28.8 cm.

Each VDC consists of two gas windows, two wire planes (U plane and V plane),

and three high voltage (HV) planes. Each gas window is made of Mylar coated with
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Total Absorption Shower Counter

Pre-Shower (HRSE only)
Scintillator (S2)

Gas Cerenkov

Scintillator (Sl)\

VDCs

Figure 2-17: Hall A detector package in the electron arm. The detector package in
the hadron arm is similar, expect that there is no preshower.

aluminum to shield the signals from noise. The three high voltage planes are made of
Mylar coated with gold for good conductivity. Each wire plane is sandwiched between.
two high voltage planes. The two wire planes are perpendicular to each other and each
one has 400 wires. The first and last 16 wires are grounded to shape the electric field
and the remaining 368 wires are all 20-um diameter signal wires which are made of
tungsten coated with gold. The wires are oriented at +45° to the dispersive direction.

The VDC is filled with an equal mixture of argon and ethane.

When a charged particle passes through the VDC, the gas atoms along its trajec-
tory will be ionized. The free electrons thus created will drift along the electric field
line towards the nearest wire. In the vicinity of a wire, the electric field increases as
1/r, thus the electrons can gain enough energy to ionize other gas atoms. The newly
produced free electrons will also drift along the electric field towards the wide and
gain enough energy to induce even more ionizations. This process, called avalanche,
goes on and on until the electrons collide with the wire and create a negative signal

which is fed into a Time-Digital Converter (TDC) and an Analog-Digital Converter
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Figure 2-18: Schematics of Hall A VDC wire planes.

(ADC). The time difference between the TDC signal and the trigger signal from the
scintillators measures the time elapsed between the initial ionization and the induc-
tion of the signal on the wire. With the knowledge of the drift velocity of the particle
in the VDC gas this time gap can be used to calculate the shortest drift distance
of the particle (called geodetic distance) and eventually the perpendicular distance
between fhe pafticle trajecfbry and the wire. Generally five or six adjacent wires fire
for one trajectory in each ‘Wire plane. From the perpendicular distances between the
trajectory and the five or six wires the intersection point between the trajectory and
the wire plane can be determined (Figure 2-19). Since there are four wire planes, four
intersection points will be obtained which can be used to determine both the position

(T ¢p, Ysp), and the angle (f¢,, ¢y,) of the trajectory on the focal plane.

2.5.2 Scintillator

Two planes of scintillators (S1 and S2) are used to generate event triggers. Each
scintillator is fragmented into 6 paddles with 0.5 cm overlap between two paddles
(Figure 2-20). At each side of a paddle, there is a 2-inch phototube which generates
signals that are sent to both an ADC and a TDC. The active area of S1 is about 170

cm X 35 ¢m, while the active area of 52 is about 220 em x 54 cm.
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Figure 2-19: A typical trajectory in one of the VDC wire planes. The geodetic is
the shortest drift distance and can be used to calculate the perpendicular distance.
The intersection point of the particle with the wire plane can be determined with the
knowledge of all perpendicular distances from the five fired wires.

2.5.3 Gas Cerenkov

The Gas Cerenkov was used to separate electrons from pions. To understand its
principle, let us consider a particle traveling in a medium with refractive index n. If

the particle is moving faster than the speed of light inside the medium, § > 1t

n?

will emit light in a forward cone with an apex angle given by 6, = cos”(ﬁ). At

same momentum, elcctrons move faster than pions. So if we select a medium with a

refractive index such that & < 4, and 1 > [, then Cerenkov light will be emitted



Scintillator Paddle

Phototube

Figure 2-20: Schematics of a scintillator plane. There are six scintillator paddles and
one phototube is installed at each side of 2 paddle.

only if the particle is an election. By collvec{-ing‘the emitted photons one can thus tel]
whether a particle is an electron or p»ioﬁ..'

The Hall A Cerenkov detector (Figure 2-21) is a rectangular tank flled with
1 atm of CO,, which has a reflective index of n = 1.00041, therefore the threshold
momentum for electrons to emit Cerenkov light is only 0.017 GeV, while the threshold
for pions is 4.8 GeV. There are ten spherical mirrors in front of the exit window of the
detector and five 5-inch photo-multiplier tubes (PMTs) on each side of the detector.
Emitted photons are reflected by the mirrors into the PMTs and the photon detection

efficiency was found to be larger than 99% during the experiment.

2.5.4 Shower Detector

The shower detector was used in conjunction with Cerenkov detector to reject pions
during the experiment. A shower detector is essentially an energy depositor. When

a particle passes through some material, it emits Bremsstrahlung radiation along its
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Figure 2-21: Hall A gas Cerenkov detector.

path. This radiation then creates secondary particles which in turn, creates even
more particles. This process is called a cascade and in this way part or all of the
incoming particle’s energy is converted into phot"ons, which can be detected using
PMTs. The total amount of photons detected is proportional to the particle energy.
A properly calibrated shower detector has an energy over momentum (E/p) ratio of
one for electrons and less than one for pions since pions do not deposit as much energy

as electrons. Thus the e /7~ separation can be done based on the E/p ratio.

The shower detectors for Hall A HRSe and HRSh are shown in Figure 2-22. The
HRSe shower detector has two layers. The first layer is called the preshower and is
made of 48 (24x2) blocks of TF-1 lead glass. Each block measures 10 cm x 10 em x
35 cm, and the total radiation length of the preshower is 3.65. The second layer, the
shower counter, is made of 96 (16x6) blocks of SF-5 lead glass. Each block measures
15 cm x 15 ¢cm x 35 em and the total radiation length for the shower counter is 15.2.
The photons are collected by the PMTs attached to both ends of the glass blocks.
The HRSh shower detector is made of 32 (16x2) blocks of SF-5 lead glass, and the

total radiation length is about 6.
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Figure 2-22: Hall A shower detectors.

2.6 Data Acquisition System
2.6.1 'Trigger Electronics

The trigger electronics determines whether an event should be recorded by the data
acquisition system. Typically there are five S triggers and one timing trigger. The
S triggers are generated by the signals from the two sides of each scintillator paddle
while the timing trigger is generated by a 1024 Hz electronic clock. The detailed logic
of the S trigger electronic is shown in Figure 2-23 for the electron arm and Figure 2-24
for the hadron arm.

Only a certain hit pattern, called S-ray, is taken as a good trigger. The S-ray is
defined in the following manner: if paddle n of one scintillator plane fires, then on
the other scintillator plane, there must be a hit from one of the three paddles n-1, n,

n+1, or the overlap between two of them. The S triggers are further divided into five
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Figure 2-23: Hall A electron arm trigger electronics.
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Figure 2-24: Hall A hadron arm trigger electronics.
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different kinds depending on the S-ray logic and some other criteria:

e 51 trigger: both scintillator planes fire and a S-ray logic is satisfied in the

glectron arm.

e S2 trigger: only one of the scintillator planes and Gas Cerenkov detector fire in

the electron arm.
e 53 trigger: same as S1, but in the hadron arm.
e 54 trigger: same as 52, but in the hadron arm.

e S5 trigger: AND of S1 and S3 signal in a certain timing gate from the timing

signal.

S1, S3 and SH triggers are taken to be good events, while S2 and 5S4 triggers
are used to study scintillator inefficiencies. All triggers are sent to scalers to be
recorded and are also sent to the Trigger Supervisor (TS). The TS synchronizes the
readout crates, administers the deadtime logic of the entire system, and prescales the

S triggers.

2.6.2 Data Acquisition

The Hall A Data Acquisition System is shown in Figure 2-25. For each spectrometer,
there are one VME crate, one Fastbus crate and one Trigger Supervisor, all located
inside the spectrometer shielding house. All TDCs and ADCs are Fastbus based,
because Fastbus electronics provides higher data acquisition rates than traditional
CAMAC electronics. The scalers are fed into the VME crate.

The software to control data acquisition is called CODA (CEBAF Online Data
Acquisition), a toolkit developed at JLab by the Data Acquisition Group. A HP-9000
computer in the counting house was used to run CODA. There are three components

to CODA:
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Figure 2-25: Hall A Data Acquisition System.

e Readout Controllers (ROCs) which provide interfaces with the detector system.

In this experiment, ROCs were some CPUs in the Fastbus and VME crates. The

Trigger Supervisor controls the state of each run, and generates the triggers that

cause ROCs to be read out.

e An Event Builder (EB) which collects all ROC data fragments and incorporates

necessary CODA header information to build an event.

¢ An Analyzer/Data Distribution (ANA /DD) which analyzes and sends the events

to hard disks of computers in the counting house and later transfers them to
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main storage.

Most events are physics events, which record important variables to reconstruct
the scattering process. There are also a few special events. If the status of a run is

changed from a previous run, a series of status events wil] he written to the beginning

seconds.
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Chapter 3

Data Analysis

In this chapter we will mainly focus on the analysis of the HRSh data to get the
spin-dependent asymmetry in the threshold region of 3I—fe(é’, e'). One of the major
advantages of an asymmetry measurement is that it is much less dependent on the
usual systematic uncertainties associated with a cross-section measurement, such as
detector i-ne-fﬁc'iencies,vtarget density, beam charge, data acquisition (DAQ) deadtime
and spectrometer acceptance, and thus produces a very clean physics signal. However;
at the end of the chapter we will also present the analysis of the experimental cross

section and compare it with a state-of-the-art Faddeev calculation.

3.1 Overview of Asymmetry Analysis

The experimental raw asymmetry is calculated as

erp N4 — IV

_ Y- 3.1
N, + N_ (3:1)

where N and N_ are the electron yields normalized by charge and electronic live
time for positive and negative electron helicities, respectively.

To get the physics asymmetry, we have to correct for the beam and target po-
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larizations, subtract the empty target and Ny background and elastic radiative tail
contribution and then perform the radiative correction on the quasielastic asymmetry.
Finally, since the experimental asymmetry is always formed over a certain energy bin
and averaged over the spectrometer acceptance, while the theoretical calculation for
the physics asymmetry is performed at each energy point for the central kinematics,

we also have to correct for the bin-averaging and acceptance effects.

The exact formula can be written as:

¢ Nay AT
A = 1 erty (1 ermnp 2N
(1+ R}l + R + R )Pth
Aemp AN
(14 REOYREMP_ (] 4 RETHYRN2 I
(1+R7) PE, (1+ RT)R 97
—RIAT | AAT 4 AAYT (3.2)

where P,P; is the product of beam and target polarizations, R*™ and A®”F are the
dilution factor and false asymmetry for the empty cell background, R™? and A™? are
the dilution factor and false asymmetry for the Ny background, R** and A®" are
the dilution factor and asymmetry for the elastic radiative tail, AA% is the radiative
correction to the quasielastic asymmetry, and AAY" is the correction for bin-averaging

and acceptance effects.

Ideally the empty target and N, false asymmetries should be consistent with zero,
and we will perform this check for each kinematics. After the consistency check is

done, the physics asymmetry can be calculated as

Aerp
PP,
_RertAe'r'L 4+ AA%T ¢ AAbm (33)

A — (1+R6Tt)(1 +Remp+RNg)

Among these factors, A, R*™P AP RNz AM: can be determined directly from
data, while Re*, A" A A% and AAY have to be determined using a simulation

program. As previously mentioned, PP, was monitored continuously during the ex-
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periment via elastic polarimetry, and is determined as the ratio between the measured
elastic asymmetry and the simulated elastic asymmetry. We will discuss each of the

above factors in the following sections.

3.2 Experimental Raw Asymmetry

As was previously mentioned, the HRSh data covered both the elastic peak and the
threshold region and were taken at two kinematics with Q*-values of 0.1 (GeV/c)?
and 0.2 (GeV/c)?, respectively.

The elastic data were used as elastic polarimetry to determine the product of the

beam and target polarizations. The raw elastic asymmetry was formed by

Nel _ Nel
el — + — 4
4 N§'+ N (34)

where N? and N¢ are the electron yields normalized by charge and electronic live
tume for positive and negative electron helicities, and averaged over a 2-MeV. bin
~ from -1 MeV to 1 MeV in the excitation energy spectrum.

The raw quasielastic asymmetry in the threshold region was calculated in a similar
way, but averaged over 5-MeV bins. Thus at Q® = 0.1 (GeV/c)?, there were six data
points from 5.5 MeV to 35.5 MeV in the excitation energy spectrum, while at Q? =
0.2 (GeV/c)?, there were 9 data points from 5.5 MeV to 50.5 MeV.

For asymmetry measurements, there can be various false asymmetries due to
helicity-correlated variations in the experimental system, such as helicity-correlated
beam current shift, helicity-correlated beam position shift, helicity-correlated detector
inefficiencies, or non-helicity-correlated empty target false asymmetry and N, false
asymmetry. To minimize the effect of these false asymmetries, the experimental data
were taken with different settings by flipping the target polarization direction and
taking a half-wave plate in and out to change the beam helicity. The basic premise

1s that while the physics asymmetry should always change sign whenever the target
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polarization is flipped or the beam wave plate status is changed, the false asymmetries
need not to (the helicity-correlated false asymmetries should not change sign when
the target polarization is flipped, while the non-helicity-correlated false asymmetries
should not change sign in cither case). Thus by combining the asymmetries from the
four different settings, with their signs reversed when necessary, the falsc asymmetries
will largely cancel out. On the other hand, it is still necessary to understand various

false asymmetries and study systematic uncertainties due to them.

The target polarization angle with respect to the beam line, f,,;,, was initially
set at -62.5°, and could be rotated to -243.6° and back through a magnetic field
rotation program during the experiment. The flipping angle was not exactly 180°
due to an offset in the rotation program. At O, = —62.5°, the corresponding
target polarization angle with respect to the three-momentum transfer, 8%, varied
from 131.2° to 136.5° for @* = 0.1 (GeV/c)?, and from 134.2° to 140.0° for Q* = 0.2
(GeV/c)2. At b, = —243.6°, 6 varied from 42.4° to 47.7° for Q* = 0.1 (GeV/c)?,
and from 38.9° to 44.7° for Q* = 0.2 (GeV/c)®. At these 6" ranges, it was found that
the contribution to the spin-dependent asyinmetry from Rpp. was comparable to that ..

from Ryp.

The raw quasielastic asymmetries for the four different settings at Q% = 0.1 (GeV/c)?
are shown in Figure 3-1. The elastic asymmetry is also shown as the leftmost point at
zero excitation energy. In Figure 3-2 the asymmetries at the four different settings are
multiplied by their signs and plotted together. The difference between these asym-
metries is mainly due to the change in the product of beam and target polarizations
from run to run. For example, the asymmetries with the beam wave plate OUT are
consistently higher than those with beam wave plate IN at almost all points, which
suggests that the product of beam and target polarizations, P, %, was higher when the
beam wave plate was taken out during the experiment. To confirm this, we plot the
ratios of the quasielastic asymmetry to the elastic asymmetry, which are not affected

by P,P,, for different settings in Figure 3-3. As can be seen, A, /A, for different
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settings agree with each other within the statistical error at all data points, which
confirms our intuition that the difference in Figure 3-2 is only due to the difference

n Pb_Pt

3.3 Background Subtraction

3.3.1 Empty Target and Ny Dilution Factors

To minimize the empty target contribution, a study of the empty target yield versus
the beam position was carried out prior to the experiment and five beam positions
relative to the target center were studied. The results are shown in Table 3.1. It can
be seen that the beam position with X = 0 mm and Y = 0 mm gave the lowest empty

target rate, and this was set to be the nominal beam center during the experiment.

X (mm) | Y (mm) | T; (Hz) | T3 (Hz)
0.0 0.0 178.8 87.9
1.5 0.0 189.5 99.8
-1.5 (1.0 311.5 131.6
0.0 1.5 390.0 176.8
0.0 -1.5 186.0 94.7

Table 3.1: Empty target yields versus beam positions

The background from the two target cell windows can be substantial during the
experiment. At Q* = 0.1 (GeV/c)?, the two windows were out of spectrometer ac-
ceptance, so this was not a big concern. However at Q% = 0.2 (GeV/c)?, the two
windows were observed in the y-spectrum, and a software cut on y had to be applied
to exclude the window contribution.

To get the empty and N, dilution factors, several runs were taken with empty
reference cell and N, reference cell as the target for each kinematics during the ex-

periment. The empty dilution factor was then calculated as the ratio of the empty
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Figure 3-1: Raw asymmetries for different target polarization angle and beam half-
wave plate settings at Q2 = 0.1 (GeV/c)?. The leftmost point is the elastic asymmetry
while the rest are quasielastic asymmetry.
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Figure 3-2: Raw asymmetries for different target polarization angle and beam half-
wave plate settings at Q% = 0.1 (GeV/c¢)?, multiplied by their signs. The leftmost
point is the elastic asymmetry while the rest are quasielastic asymmetry. The differ-
ence between these four settings are mainly due to the change in the product of beam
and target polarization from run to run.
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Figure 3-3: The ratios of the quasielastic asymmetry to the elastic asymmetry
for different target polarization angle and beam half-wave plate settings at Q? =
0.1 (GeV/c).
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cell yield to the pure *He yield, corrected by charge and deadtime. The N, dilution
factor was obtained in a similar way, with the additional knowledge of the Ny, pressure

inside the target cell, which was obtained through a method called pressure study.
N, Pressure Study

The exact N pressure inside the target cell was not known very well when the cell
was constructed. Also, due to the temperature gradient from the pumping chamber
to the target chamber, the Ny pressure during the experiment was different from
that under normal temperature. To determine the N, pressure inside the target cell
during the experiment, some reference N, runs were taken for each kinematics. By
comparing the N, elastic peak from the reference cell spectrum to that from the target
cell spectrum, the [V, pressure can be determined as follows
Ngﬁak

veak
ref

Pigt = Prey X (3.5)
~where Py is the Ny pressure inside the target cell, P,.s is the Ny pressure insidé the
reference cell, while Ngfk and Nf:j?k are the N, elastic peak yields from the target
spectrum and the reference spectrum, respectively, corrected by charge and deadtime.
A comparison between these two spectra is shown in Figure 3-4. The leftmost peak
is the Ny elastic peak and the slight shift of the peak position between these two
runs is due to the difference in energy loss. The two peaks were not centered at zero
excitation energy due to an offset in the spectrometer central momentum setting,
which was later corrected. Both elastic peaks were shifted to zero excitation energy

before taking their ratio.

The N, pressure inside the target cell was determined in this way to be 2.2 4 0.05 psi,

which was confirmed in another independent analysis [79].
Dilution Factors

With the knowledge of N, Pressure inside *He target cell, the dilution factors

were obtained in the following way. To improve statistics, all empty runs in the
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Figure 3-4: N, excitation energy spectra for a typical reference Ny run (above) and a
target run (below). The leftmost peak is the Ny elastic peak and the slight shift of the
peak position between these two runs is due to the difference in energy loss. The two
peaks were not centered at zero excitation energy due to an offset in the spectrometer
central momentum setting, which was later corrected. Both elastic peaks were shifted
to zero excitation energy before taking their ratio.
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same kinematics were added together, corrected by charge and deadtime, and then
divided by the total empty run number to form a pure empty spectrum. For each N,
run in the same kinematics, the pure empty spectrum was subtracted from the N,
spectrum, also corrected by charge and deadtime. All N, spectra after this treatment
were then normalized to the N pressure inside the target cell and averaged to form
a pure Ny spectrum, with the same goal of improving statistical accuracy. With a
pure empty spectrum and N, spectrum thus obtained, a pure *He spectrum could
easily be formed by subtracting the pure empty and N, spectra from a *He spectrum
in the same kinematics, also corrected by charge and deadtime. The dilution factors
were then obtained by taking ratios of them for each bin. The results are shown in
Table 3.2 for Q* = 0.1 (GeV/c)? and Table 3.3 for Q% = 0.2 (GeV/c)?. The statistical

errors were negligible.

Fx. (MeV) | R7 (%) | R™ (%)
000, | o027 0.76
800 | 277 6.32
13.00 263 | 5.62
18.00 2.37 4.83
23.00 2.08 417
28.00 1.94 3.73
33.00 1.86 3.44

Table 3.2: Empty and Ny dilution factors at Q* = 0.1 (GeV/c)?

3.3.2 Empty Target and N, False Asymmetry

Though specific measures were taken during the experiment to minimize the effect
of false asymmetry, it is still a good idea to check whether the empty and N, false
asymmetries are indeed consistent with zero. For each run, the raw asymmetry was
calculated in the same way as described in Section 3.2 for 3He raw asymmetry. Before

averaging the asymmetry for each run, it had to be corrected for the beam wave plate
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Ex. (MeV) | R%™ (%) | RY> (%)
0.00 0.31 2.73
8.00 1.36 13.12
13.00 1.10 11.12
18.00 0.95 9.47
23.00 0.83 8.19
28.00 0.71 7.16
33.00 0.63 6.30
38.00 0.55 5.49
43.00 0.50 4.62
48.00 0.50 3.86

Table 3.3: Empty and N, dilution factors at Q* = 0.2 (GeV/c)?

status for that specific run. We chose to multiply the asymmetry by -1 if the beam
wave plate was out. The corrected asymmetry was then averaged over all empty or
Ny runs to improve statistical accuracy. The results and their statistical errors are

shown in Table 3.4 for Q% = 0.1 (GeV/c)* and Table 3.5 for G% = 0.2 (GeV/c)?.

Ex. (MeV) | A7 (%) | AM (%)
0.00 -1.51 £ 0.86 | 0.05 £ 0.10
8.00 0.00 £ 0.47 | 0.01 £ 0.06

13.00 0.61 &£ 0.45 | -0.01 £+ 0.06
18.00 0.04 + 0.44 | 0.02 + 0.06
23.00 1.82 £ 0.43 | -0.05 £ 0.06
28.00 0.75 £ 0.41 | -0.01 £ 0.06
33.00 0.26 + 0.44 | 0.11 &£ 0.06

Table 3.4: Empty and N, false asymmetries at Q* = 0.1 (GeV/c)?

Indeed, except for a couple of outliers, the empty and No false asymmetries are

consistent with zero within statistical errors.
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Bx. (MeV) | A (%) | A™ (%)
0.00 -0.54 &£ 1.45 | -0.29 + 0.17
8.00 -0.75 + 0.81 | -0.07 &£ 0.09

13.00 | 0.61 £ 0.76 | 0.06 + 0.08
18.00 -1.37 £ 0.70 | 0.11 £ 0.08
93.00 | -0.96 + 0.65 | 0.07 & 0.07
28.00 | 2.39 £ 0.60 | 0.09 + 0.07
33.00 | 0.27 £ 0.57 | 0.00 £ 0.06
38.00 | -0.99 + 0.56 | -0.09 = 0.06
43.00 | 052+ 0.57 | 0.11 & 0.07
48.00 051 £0.71| 0.06 4+ 0.09

Table 3.5: Empty and N, false asymmetries at Q? = 0.2 (GeV/c)?
3.4 Monte Carlo Simulation

Monte Carlo simulation has become an indispensable tool for electron scattering ex-
periments, primarily for the purposes of acceptance study and radiative correction, -
~ both of which are difficult issues to solve in order to extract meaningful physics sig-
nals from raw experimental data. In this analysis a Monte Carlo simulation program

was built to specificly solve the following problems:

e Simulate the elastic asymmetry with known 2He elastic form factors for each
kinematics, and take the ratio of the simulated elastic asymmetry to the ex-
perimental elastic asymmetry to determine the product of beam and target

polarizations.

¢ Simulate the elastic radiative tail under the quasielastic spectrum, get the elastic

tail dilution factor and asymmetry.
e Calculate the radiative correction to quasielastic asymmetry.

e Study the bin-averaging and acceptance effects.
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Finally, although it is not necessary to have an accurate understanding of the
spectrometer acceptance for an asymmetry measurement, a Monte Carlo program can

be used to study the systematic uncertainties due to the spectrometer acceptance.

3.4.1 Overview

A C++ simulation program, Polarized Radiative Correction (PRC), was specificly
designed for this experiment to exactly calculate the radiative correction in elastic and
quasielastic scattering of polarized electrons from polarized targets. In Appendix A
there will be a detailed discussion of this program and here we will only give some
general introduction.

Following a popular Hall A simulation program, MCEEP [61], PRC employs a -
uniform random sampling method to populate the experimental acceptance. This

method differs from the traditional method of generating events according to a pre-

determined weighting function, usually the cross section. which more closely resemn-. -

bles the actual experiment. The major advantage of the random sampling method
is that it allows us to obtain precise statistics for processes with small cross sections
in the presence of a dominant contribution. An event is defined as a set of vari-
ables which completely specific the reaction in the laboratory. For each event, some
weight variables such as the cross section and asymmetry are calculated according to
user-selected physics models. In our simulation, the cross section for elastic scattering
from ®He or *He can be directly calculated from elastic form factor parameterizations,
which are fits to previous experimental data. In the case of quasielastic scattering
from ®He, the *He response functions have to be calculated using PWIA or Full Fad-
deev calculations. This is a very slow process and to save computer time, we provide
a two-dimensional look-up table for each response function, which is typically a grid
of 30x30 to 100x100 in the (w,Q?) space, covering the entirc experimental accep-
tance. A two-dimensional spline interpolation is then utilized to obtain the response

functions at any (w,@?) point. The incident electrons traverse through some mate-
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rials before the scattering takes place, and the scattered electrons also pass through
some materials before reaching the focal plane. Thus the program has to handle the
external radiative correction both before and after the scattering, as well as internal
radiative correction which takes place during the primary interaction. The spectrom-
eter model specifies how the scattered electrons are transported to each magnet inside
the spectrometer, deflected by the dipole and focused by the quadruples before they
reach the focal plane. For each magnet entrance and exit plane, there is an aperture
defined by the magnetic field, which defines the spectrometer acceptance.

As can be seen, a simulation process is very complicated and care must be taken
to ensure each step comes out right. In the following sections we will discuss each of

these issues in more details.

3.4.2 External Radiative Correction

When a charged parficl_e tfaverses through a medium, it might expériénce small angle
deflections due to Coulomb scattering from atomic nuclei in the material. This is
called multiple scattering. In addition, the particle might also suffer from ionization
energy loss via collisions with atomic electrons. Finally, real photons can be emitted
from the interaction between the charged particle and the electromagnetic field of the
nuclei in the traversed medium. This process is called external bremsstrahlung.

Multiple Scattering

The distribution of the deflection angle due to Coulomb interaction is described
by the theory of Moliére [62]. For small angles, it is roughly a Gaussian with a width

given by [63]:
136 MeV

Bep

where p, Bc and z are the momentum, velocity and charge number of the incident

6o zv/2/Xo[1 4+ 0.038 In(z/Xo)] (3.6)

particle, and z/Xj is the thickness of the scattering medium in radiation lengths.

In the simulation program, a polar scattering angle 8, is first generated according
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to a Gaussian distribution with width ;. The final direction of the particle is then
randomized over an azimuthal angle of 27 around the initial direction of (8, ¢), and

the deflection angles are sampled by

A§ = 8, x cos(27R)
A¢p = 6, xsin(27R) (3.7)

where R is a random number within [0,1].

Most Probable Energy Loss and Energy Straggling

The ionization energy loss results from the collision between a charged particle
and atomic electrons in the medium. The allowed maximum energy transfer from the

incident particle to the atomic electrous is

2mec*n?

14 2s8y/1+n?+ 2

where s = m,/M,, with m. being the electron mass and M; the mass of the incident

Emaa: - (38)

particle, and 7 = v, with § = v/c and v = 1/\/1———_@’7 for the incident particle.
When the incident particle is an electron, the above equation reduces to By, =
Ey — mec?, with E; being the incoming electron energy, which means the incoming

electron can lose almost all of its energy due to ionization.

The most probable energy loss is given by

Ime*t N 72 [ Are*t N 72

B = S emy L P P

— B2 40.198 — 5} (3.9)

where
N: the number of electrons per cm?® in the material,
p: the density of the material in g/cm?;
[ the mean excitation potential of the material in eV;

Z: the charge number of the incident particle;
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t: the path length in the material in g/cm?;
0: the correction for the density effect.

In general, the ionization energy loss of any given particle will not be equal to
the most probable energy loss because of statistical fluctuations in the number of
collisions and in the energy lost in each collision. The distribution of the energy
loss, also called energy straggling, is determined by a parameter &, which is the ratio
between the most probable energy loss and the maximum energy transfer possible in

a single collision, as follows:

Kk < 0.01 Landau distribution
0.01 < x <10.0 Vavilov distribution (3.10)
10.0 < & Gaussian distribution

In this experiment, the most probably energy loss is a few MeV, while the maximum
energy transfer possible, which is close to the incoming electron energy, is on the order
of 1 GeV, thus the energy straggling effect is best described by a Landau distribution.

Define
_ 27me'tNZ?
- mec2ﬂ2

£ (3.11)

then the energy loss of an electron, AE, can be transformed to a dimensionless

variable ) as
_AE - AV -

A 3.12
¢ (3.12)
which follows the Landau distribution with the probability density function given by
1 agt1oo . A
A - ulnu ud .
P(A) el e u (3.13)

The shape of ¢(A) is shown in Figure 3-5 together with the integrated probability

v = [ pax (3.14)
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In the simulation A is sampled using a Landau random number generator, and the

energy loss AFE can be determined from Equation (3.12) as

AE = AEp, + A (3.15)
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Figure 3-5: The Landau distribution ¢()) and the integrated probability ().

External Bremsstrahlung

Following [64], the probability for a particle with initial energy Fjy to radiate real
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A g g b e 1 s e

photons with energy AL when traversing though a material is:

Teai (B, A, ) = F(lb—lt— bt) (AEf)bt{AlE [1 - AEE * Z(AEE)Q]} (3.16)

where ¢ is the material thickness measured in radiation length, and b is the bremsstrahlung

parameter given by

4 Z+1
=-[1+ ]

= 1 (3.17)
9(Z + () In(183273%)

3

in which 7 is the charge number of target nuclei and ¢ is defined as

In(1440Z ¢
¢ = n(144077%) (3.18)

In(1832-%)
To generate the AFE distribution according to Eq. (3.16), we adopt the accept-reject
technique from [65]. We first define an envelop function that is always bigger than

I.+(Eo, AE,t) as
bt

bt-—-1
TR b_t)EgtAE (3.19)

‘ 5(AE) = 1.1

~Since the envelop function can be integrated analytically, it is straightforward to gen-
erate a trial value of AE that follows the distribution given by the envelop function.

This can be seen by looking at the integral and partial integral of the envelop function:

Eog 1.1
/0 (z)dz T(1 + bt)
ar 1.1 AE®
/[; E(z)dr = T+ b1 EE (3.20)

Thus to create a AFE distribution with £(AFE) as its shape, we simply generate a

uniform random number 7, on [0, 1“(11—-:1715)] and set

S T(1+but) EM '

1
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or

I'(1 4+ bt) 7‘1) o (3.22)

AEyq = Eo( T1

Equivalently we can also generate a random number 71 on [0,1] , then simply set
1
AFEyia = Eory* (3.23)

We then use the accept-reject technique to determine whether this candidate value

AFE, i i accepted or not. Generate another random number 7 on [0, 1], if
TZg(AEtria,l) > Iezt(EOa AEtTiala t) (324)

then the generated value does not fall within the true bremsstrahlung distribution,
and the process is restarted with new values for r; and 73, otherwise AE},;,; is accepted
as the true bremsstrahlung energy loss for this event.

Materials Before and After Scattering

To apply external radiative corrections to each event in the simulation,l we need to
know the property of each material the electron passes through, both before and after
the scattering process. A schematic drawing of the materials is shown in Figure 3-6

and their properties are shown in Table 3.6.

3.4.3 Internal Radiative Correction

Consider a typical (e,e) reaction. Most theoretical work is only concerned with the
first-order Born approximation, which is the one-photon exchange Feynman diagram
shown in Chapter 1. However, in reality there are also higher order Feynman dia-
grams contributing to this process, and it is up to the experimentalist to make the
so-called “radiative corrections” on the data before any meaningful comparison be-
tween the theory and the experiment can be made. In our analysis we only need to

consider the second order corrections, because at our energy the higher order con-
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Figure 3-6: Schematic drawing of radiation materials before and after scattering

tributions are completely negligible. Also since the target mass is much larger than
the electron mass, we only need to concern ourselves with the radiation on the elec-
tron side of the diagram. The six relevant Feynman diagrams for radiative correction
are shown in Figure 3-7. Diagrams a and b involve real photons radiation and are
called internal bremsstrahlung. Diagrams c and d correspond to the emission and
re-absorption of a virtual photon by the incident or scattering electron, which results
in the renormalization of the electron mass. Diagram e shows emission of a virtual
photon by the incident electron and then the reaborption of the same photon by the
scattered electron, and gives rise to the vertex renormalization. Diagram f is called

vacuum polarization and involves the creation of a virtual electron-positron pair from
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material Z Z/A Xo length density
(g/cm?) | (cm) (g/cm?)
beryllium | 4 0.44384 | 65.19 0.0254 1.848
air 14.5 | 0.49919 | 36.66 2.54 1.205x1073
aluminum | 13 0.48181 | 24.01 0.0254 2.70

1He 2 | 0.49968 | 94.32 25.7 1.664x10°*
Si0y 30 | 0.49707 | 28.30 0.013 2.23
3He 2 1 0.66667 | 70.74 20.0 1.544x1073
Si0, 30 | 0.49707 | 28.30 0.13 2.23
‘He 2 10.49968 | 94.32 25.7 1.664x10~4

aluminum | 13 0.48181 | 24.01 0.0254 2.70
air 14.5 | 0.49919 | 36.66 64.2 1.205x 1073

Kapton 2.7 1 0.51264 | 40.56 0.0178 1.42

Titanium | 22 (0.45948 16.17 0.0102 4.54

Table 3.6: Properties of radiation materials before and after scattering

the exchanged virtual photon.

Currently there are two methods to Calculaté:the internal radiative correction.
In thé first method, real photons are classified acco.rding tb whether their energies
are below a certain cutoff energy (soft photons) or above the cutoff (hard photons).
Usually the cutoff energy is chosen to be the experimental energy resolution. The
virtual photon and soft photon contributions together are referred to as the Schwinger
correction [66], which is just a multiplication factor dependent on the photon cutoff
energy and some kinematics factors, and thus has the remarkable property of being
spin-independent. The hard photon emission leads to the radiative tail, which can be
calculated using the peaking approximation method proposed by Mo and Tsal [67],

but only for the case of unpolarized scattering.

The second method [68], originally proposed by Bardin and Shumeiko in [69], and
developed in [70-72], uses a covariant formalism to exactly calculate the radiative
correction for deep inelastic scattering of polarized lepton scattering from polarized

nuclei. This method can be easily generated to the case of quasielastic scattering,
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Figure 3-7: Second order Feynman diagrams for internal radiative correction

and can be used to calculate the spin-dependent elastic radiative tail and quasielastic

radiative tail in our case.

In the simulation, we separate the elastic spectrum into two parts. The first part
is the elastic peak, where the kinematics is calculated assuming no radiation. The
second part is the elastic radiative tai] with the radiated photon energy larger than
the soft photon cutoff. We will apply the Schwinger correction with the soft photon
cutoff to the elastic peak, while using the covariant method to calculate the elastic

radiative tail and the quasielastic cross section with radiative correction.
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3.4.3.1 Schwinger Correction

There are many versions for the Schwinger correction factor, and the one we will use

is taken from Penner [73] and has the following form
Cschw = 6_6?‘(1 - 61;) (3.25)

where 6, is the real soft photon contribution and d, is the virtual photon contribution.

There factors are given by

o 2 E? 1
(ST == ;(11’1 @ — 1) In [F F:l (326)
a2 13 Qo 2 be
611 = ; ’:E - —6—' In 5 "6— - QB(COS —2—):| (327)

for elastic scattering, where

“and #{x) is the Spence function defined by

d(x) = —/Dw #dy (3.29)

In the above, A is the soft photon cutoff energy.

During the simulation Ci.p,, 1s applied to the elastic cross section as a multipli-
cation factor, and the kinematics factors are all evaluated at the elastic peak, which
is reasonable since the photon cutoff energy is chosen to be around the experimental

energy resolution.

3.4.3.2 Covariant Methods for Polarized Radiative Correction

As previously mentioned, the covariant method for calculating radiative correction

was originally developed for deep inelastic scattering process, and the formula used
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there is quite different from the one we described in Chapter 1. Thus we will first
introduce the new Born cross section formula from [68] and compare it with the
original formula, then write down the results for radiative corrected cross section,

also from [68].
Born Cross Section

The Born cross section for inclusive scattering of polarized electrons from polarized

spin—% nuclei, such as proton and *He, can be written as

d’c  4ra”® S8, Jo
dedy X, QF {(Q2 2 (X = M0
+hPymM [2(6226 -n — qnky - 6)%
J
+(Saky - € — 26 - pQ*)g - nﬁi] } (3.30)

where m and M are the masses of the electron and the target, ki, k2, p are the four-
momenta of the incident election, the scattered electron and the initial target, g is
the four-momentum transfer and @7 is the minus four-momenturn transfer squared,
Q> = —q?, h is the electron helicity while P, is the beam polarization. The other

kinematics variables are defined as

S = 2p- Kk
Sz = 2p-gq
X = 2p-ky
2
"o 21?-q
y = ;_fl (3.31)

and § and 7 are the electron and target polarization four-vectors. Finally J,, J,, J3

and J4 are four dimensionless structure functions for the target nucleus.

After some algebraic manipulation, the above equation can be transformed into a
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more familiar formula

d?o a? cos? g
1

dE'dQ  AE?Msin*!

6
{-]2 + 2 tan2 ‘2*.]1

+2h Py, tan® g[ — (L cosb, + E'cos(f — 9,,)){—;

—(E + E")(E'cos(f — 6,) — Ecos Gp)%] } (3.32)

Compare Equation (3.32) with Equation (1.31) in Chapter 1, we find

(1= MW,
b= MW,

I ? (3.33)
Jo= —MP,(Gy + 4Gy)
J4 - —MPth

\

Thus the four new structure functions can be calculated from the structure functions .

we introduced in Chapter 1.
For quasielastic scattering, the structure functions can be expressed as a combi- .

nation of response functions as follows:

Wy = %RT
4 102
Wy~ i
1 M? 2
Gy = 2|(ﬂ2[ \/_Cji/fcj'l T +_RT:|
2
Gy = ~%%5[ \/L—UMRTL +RT’]
where ¢ 1s the three-momentum transfer, and
71? =w’ +Q* (3.34)

For elastic scattering, the structure functions can be calculated from electric and
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magnetic form factors as

2
R
W, = ,GM(5(1 2Mw)
G% + 7G3, Q?
W = 1+ 6(1m2ﬂ'fw)
Gy Gg +7G Q2
G 2 147 5(1 2Mw)
C;Al C;Al - (;l? 692
= IMZMT YEs(q _
G 4 1+7 ( 2Mw)
where 7 = 4%’;2. Thus for elastic scattering, we have
J= Joe(1- Qz)
T 2Mw
iY = My,
j;l _ MG%—I—TG?M '
147
jge[ _ MPtGM2GE
- Gu(Gg—G
it = e EmlCe=Cn) (3.35)
4(1+4 1)

Radiative Cross section

Following the covariant method, the cross section with second order radiative

corrections can be written explicitly as follows

where

ay:
61}87“5 :
Jvac:
§TR:

Of:

o, = [1 + %(&,m T 5};’*)]00 Y og (3.36)

Born cross section

vertex correction term (divergent)

vacuum polarization term (finite)

infrared divergent part extracted from internal bremsstrahlung radiative tail

internal bremsstrahlung radiative tail, with the infrared divergent part extracted
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Considering the multiple photon emission effects and noting that the divergent
terms, dyer¢ and 6L, cancel cach other to leave a finite term, the above radiative cross

section becomes [74]

) X
op = o {1 + = (5w + 51,@.3)] oo+ OF (3.37)
where
(W2 — M?2)?
6inf = (lm—1)In ¢ 3.38
r = Uk s (3:38)
2 10 &m?
6’UG.C = 3 2 ? m T =y - 2 m .
3(Q +2m*)L 5 +3Q2(1 2m* Ly} (3.39)
3 1., X =? S5X —Q*M*?
bpr = =lp—2—-In?= - — 4
2 55wy 60
with
W2 = M? - Q"+ 2Mw (3.41)
| Q? L
In ﬁ“’?.
L, = — Y@ 3.43
A m ( )
A = Q'+ 4m*Q? (3.44)

M., is the invariant mass corresponding to the threshold of the reaction channel.
For deep inelastic scattering of electrons from protons, M, corresponds to the pion
threshold, M, = M, + M,. For 3He quasielastic scattering, it corresponds to the
two-body breakup threshold, M. = Msg, + Fy, with £, = 5.5 MeV.

The major advantage of the covariant method is that it gives an exact, albeit
complicated, formula for the last term, the internal bremsstrahlung radiative tail with

infrared divergent part subtracted, and the formula is applicable to both unpolarized
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and polarized inclusive scattering

4

a3 EV Tmaz R7naz dR J (R 7—) ] (O 0)
= — d 91 T - : - - ’
oF orME /m ! Z { (1) /0 R [(Q? + R7)? Q4 }

i=1

ki

+30,(7) /0 o dR(QQ}iJ_—RT)QJi(R, T)} (3.43)

j=2

with k being the emitted photon four-momentum and

R = 2p-k
Rmin = 0
2 _ a2
R, = WV M
1+7
S k- (k1 — k)
p-k
_ Se— /g
e = o
‘ B S + \//\Q
Tmaz = — M2 _
Ao = S?4+4M?Q? (3.46)

f;;’s are some very complicated variables depending only on kinematics factors and

please refer to [68] for details on k; and 8;;.

To get the elastic radiative tail, simply plug Eq. (3.35) into Eq. (3.45), and we

obtain g e . - s B
oo = -2 /m mgj b, B (3.47)
with )
Ry = Si ;? (3.48)

Practical Issues in Simulation

There are two major issues in applying the above formulas to a simulation pro-

gram, mainly due to the numerical integration over the integrand.
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Figure 3-8: Integration region over R and 7 is not a rectangle

The first issue involves the two-dimensional integration over R and 7. The inte-
gration region over R and 7 is not a rectangle, as shown in Figure 3-8, so it is not
casy to apply numerical metheds. Té make the numerical methods applicable, we

have to transform R to another dimmensionless variable v as

14+ 7)R

and Eq. (3.45) becomes

AR [T O s gyt Ji(R,7) Ji(0,0)
o = _27TME/T d’Z{Q“(T)/O 7{(Q2+R7)2_ ot ]

i =1
£ v
l mar 9w RI
;i d Ji (R, 3.50
+],:2 J(T)/[; Ul T (Q2 +RT)2 ( T)} ( )
with
Umin — 0
{ R (3.51)
Umez — 2Mw

and now the integration region becomes a rectangle, as shown in Figure 3-9. Also in
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numerical integration v, should be chosen to be some very small number instead of

0.

Vmax

7

Tmin

aly

Tmax

Figure 3-9: Integration region over v and 7 is a rectangle

The second issue concerns the integration over 7. As is well known, the integrand
in Eq. (3.45) is very sharply peaked when 7 is equal to 75 or 7,, namely most of the
photons are emitted along the direction of the incident or scattered electron. This
feature of the integrand is actually the basis for the peaking approximation method
of Mo and Tsai [67]. In our case, it introduces significant difficulty in numerical
integration over the integrand, and an unacceptably long computing time is needed to
achieve a certain precision. However, a careful study shows that all ;;'s, complicated
as they appear, can be analytically integrated out, and since the structure functions
and all other factors besides # in the integrand changes slowly across the two peaks,
we can analytically integrate the two peaks out by setting these other factors to their
values at each peak, and then use numerically methods to integrate the residual part,
which is much smaller compared with the peak and thus the integration converges

very rapidly.
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3.4.4 Spectrometer Model and Acceptance

A spectrometer model is used to transport charged particles through elements of
the spectrometer on an event-by-event basis to see whether they can reach the focal
plane. A realistic model is essential for a deep understanding of the spectrometer
acceptance, which is of ultimate importance to any cross section measurement. For an
asymmetry measurement as our experiment, an exact determination of the acceptance
is not necessary. On the other hand, a spectrometer model can be used to understand
the systematic errors of physics asymmetry due to the acceptance, as we will see in
Chapter 4.

The spectrometer model for Hall A High Resolution Spectrometers is based on
SNAKE models. It consists of a set of forward transfer functions, which transport
particles from the target region to Q1 exit, dipole entrance and exit, Q3 entrance
and exit, and the focal plane, a set of reverse transfer functions, which can be used
to reconstruct the target region variables from the focal plane variables, and the
geomietric aperture of each magnet entrance or exit pldne, which defines the nominal -
spectrometer acceptance: if the particle transported to thié magnet plane is outside
of the geometric aperture, it is discarded.

The geometric aperture at Q1 exit is a circle of radius 0.1492 m, those at Q3
entrance and exit are circles of radius 0.300 m, while the apertures at the dipole en-
trance and exit are trapezoids. However, these apertures do not necessarily represent
the physics apertures, which depend on both the magnetic field inside each magnet
and the particle charge and momentum. This is manifested in Figure 3-10, which
compares the electron distribution at the dipole entrance from data and that from a
simulation with only geometric aperture cuts.

A careful determination of the spectrometer acceptance by means of physics aper-
tures inside each magnet can only be done for each individual experiment, as was
done for JLab Hall A experiment E94-010 [75]. Another popular method to under-

stand the acceptance, called R-function, was proposed after our analysis was finished
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Figure 3-10: The electron distribution at the entrance of dipole from data and that
from a simulation with geometric aperture cuts. The trapezoid shown is the geometric
aperture for the dipole entrance

and focuses on the target region variable distribution instead of the magnet aper-
tures. However this method usually requires substantial cuts on the data, thereby
greatly reduces the statistical accuracy. As previously mentioned, for an asymmetry
measurement as our experiment, a precise determination of the spectrometer accep-
tance is not necessary. A simple yet powerful method we adopted is to look at the
electron distribution at the above magnet entrance and exit planes from data, de-
termine a suitable aperture for each plane and apply it to the simulation. In spite

of its simplicity, this method turns out to be quite successful in understanding the
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experimental acceptance. The same comparison of the electron distribution at the
entrance of dipole from data and that from a simulation with physics aperture cuts

is shown in Figure 3-11.

LI SR NPT B PR

UL I PRI L B N SRR O i-‘-‘J T

Figure 3-11: The electron distribution at the entrance of dipole from data and that
from a simulation with physics aperture cuts

However, it is to be noted that this method is only one step ahead towards a thor-
ough understanding of the spectrometer acceptance, which is a notoriously difficult
problem for all Hall A experiments, mainly due to the lack of precise knowledge of the
ficld distribution inside each magnet. New spectrometer models incorporating some

R-function cuts are still being designed and tested [76].
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3.4.5 “He Radiative Tail Simulation

To test the radiative correction part of the simulation, some reference “He runs
were taken at each kinematics during the experiment. This is because the two-body
breakup energy of the *He nucleus is 19.81 MeV and thus the elastic scattering of
electrons from *He has a very long radiative tail. The *He elastic form factors are
very well known factors, thus by comparing the shape of the radiative tail from the
simulation to that from the data, we can get some idea of how good is the treatment
of radiative correction in the simulation. In addition, since the *He density in the
reference cell was measured to a high precision during the experiment, the overall
normalization shows how good is our understanding of the spectrometer acceptance.

Such a comparison is shown in Figure 3-12 for Q? = 0.1 (GeV/c)?. As can be
seen, the agreement for both the elastic peak and the elastic radiative tail is excellent

between data and simulation, which gives us confidence in the simulation program.

3.5 Elastic Polarimetry

The product of beam and target polarizations, P,P;, were monitored continuously
during the experiment using the technique of elastic polarimetry. This is based on the
fact that the *He elastic form factors, the charge form factor F, and the magnetic form
factor Fy,, are known very well experimentally [77], and the 3He elastic asymmetry

can be calculated to a good precision as:

e —27v7r cos * % F2 + 24/27(1 + T)ury sin 0% cos ¢* ua Z Fp Fl
B (14 T)v, Z2F2 + 2rupp F2

(3.52)

If we simulate the elastic asymmetry under the same conditions as in the experiment,
the ratio between the measured asymmetry and the simulated asymmetry, after cor-
recting for the empty target and NN, dilution factors, should give us the product of

beam and target polarizations. The comparison between data and simulation for both
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Figure 3-12: *He elastic radiative tail at Q> = 0.1 (GeV/c)?2.
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the elastic and quasielastic spectrum in 3Pfe(€, ‘é’) is shown in Figure 3-13. The slight
discrepancy between data and simulation in the high excitation energy region at Q?
= (.1 (GeV/c)? might be due to the fact that the spectrometer transfer functions

were not optimized for low spectrometer momentum settings [78].
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Figure 3-13: Comparison between data and simulation for both the elastic and
quasielastic spectrum at Q% = 0.1 and 0.2 (GeV/c)%.

A 2-MeV bin from -1 MeV to 1 MeV in the excitation spectrum is used for the
purpose of extracting P, F,. In reality, the value of F, P, for each run is not explicitly
extracted because the average P, F; is the same for elastic scattering and quasielastic
scattering, thus one can use the raw elastic asymmetry, raw quasielastic asymine-

try and the simulated elastic asvmmetry to determine the quasielastic asymmetry
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corrected for the beam and target polarizations directly as:

A
Alor = Alzp % A (3.53)

However, it might still be of interest to obtain the average value of F,F, to com-

pare with the Mgller measurement and NMR measurement. It was found to be

0.208 &+ 0.005 [79], which is in good agreement with the value obtained from Mgller

measurement and NMR measurement, 0.215 4+ 0.013.

3.6 Elastic Radiative Tail Dilution Factor and Asym-

metry

With the precise knowledge of 3He elastic form factors and the confidence from *He

elastic radiative tail study, we can calculate the elastic radiative tail dilution fac-

tor and asymmetry to a high precision, which is very important in obtaining the

physics quasielastic asymmetry from the raw asymmetry, especially near the two-

body breakup threshold, where the spectrum is dominated by the elastic radiative

tail.

The dilution factors and asymmetry for each bin is shown in Table 3.7 for Q% =

0.1 (GeV/c)?, and in Table 3.8 for Q? = 0.2 (GeV/c)%

Ex. (MeV) R AT (%)
8.00 | 0.830 = 0.045 | 5.934 + 0.130
13.00 | 0.326 & 0.017 | 5.905 + 0.132
18.00 | 0.176 = 0.020 | 5.875 £ 0.131
23.00 | 0.109 & 0.017 | 5.849 + 0.131
28.00 | 0.074 + 0.011 | 5.816 + 0.130
33.00 | 0.058 4+ 0.004 | 5.642 + 0.133

Table 3.7: Elastic radiative tail dilution factors and asymmetry at Q* = 0.1 (GeV/c)?
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Ex. (MeV) R AT (%)
8.00 | 0.749 £ 0.037 | 5.426 £ 0.179
13.00 | 0.268 & 0.015 | 5.409 + 0.174
18.00 | 0.144 £ 0.007 | 5.384 + 0.179
23.00 | 0.086 + 0.004 | 5.362 % 0.179
28.00 | 0.057 + 0.002 | 5.332 + 0.175
33.00 | 0.040 & 0.001 | 5.296 & 0.173
38.00 | 0.029 & 0.001 | 5.241 + 0.169
43.00 | 0.023 4 0.001 | 5.045 & 0.185
48.00 | 0.018 £ 0.001 | 4.817 & 0.230

Table 3.8: Elastic radiative tail dilution factors and asymmetry at Q* = 0.2 (GeV/c)?
3.7 Quasielastic Asymmetry Radiative Correction

The radiative correction to quasielastic asymmetry is calculated as

_ A%

Tad

AAT = AL

“horn,

(3.54)

where A% is the simulated asymmetry without radiative correction (thus using

born

and A¥ . is the simulated asymmetry with both internal

only Born cross section) .

and external radiative corrections. The results are shown in Table 3.9 for Q? =

0.1 (GeV/c)?, and in Table 3.10 for Q* = 0.2 (GeV/c)>.

Ex. (MeV) | AA™(%)
8.00 | -0.092 £ 0.020
13.00 | -0.239 -+ 0.014
18.00 | -0.129 + 0.010
93.00 | -0.037 + 0.008
28.00 0.011 £ 0.008
33.00 0.018 % 0.010

Table 3.9: Radiative correction to quasielastic asymmetry at Q% = 0.1 (GeV/c)?
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Ex. (MeV) | AA®(%)
8.00 0.040 £ 0.018
13.00 | -0.213 + 0.034
18.00 | -0.131 + 0.075
23.00 | -0.064 £ 0.012
28.00 0.023 = 0.006
33.00 0.029 + 0.012
38.00 0.041 + 0.015
43.00 0.034 4 0.018
48.00 0.048 % 0.020

Table 3.10: Radiative correction to quasielastic asymmetry at Q* = 0.2 (GeV/c)?
3.8 Bin-Averaging and Acceptance Effects

The correction due to the bin-averaging and acceptance effects is calculated as
A}lbin = A,m - AS'im (355)

where Ay, is the asymmetry from the theoretical calculation, and A,,,, is the simulated
asymmetry using the same theoretical calculation. The simulation is performed under
the experimental conditions, and Ag, is calculated over the same energy bin as
used for raw experimental asymmetry. Thus A, includes both the spectrometer
acceptance and bin-averaging effects.

The results are shown Table 3.11 for Q%> = 0.1 (GeV/c)?, and in Table 3.12 for
= 0.2 (GeV/c)2

3.9 Experimental Cross Section

Although the major purpose of this experiment was to obtain the spin-dependent
asymmetry, and thus no specific attention was paid to some factors crucial to a cross

section measurement, such as target density and spectrometer acceptance, during the
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Ex. (MeV)

AAM”(%)

8.00
13.00
18.00
23.00
28.00
33.00

0.195 £ 0.032
-0.030 £ 0.015
0.000 £+ 0.009
0.029 + 0.023
0.043 £ 0.009
0.082 = 0.009

Table 3.11: Correction due to bin-averaging and acceptance effects at Q?

0.1 (GeV/c)?

Ex. (MeV) | AA™(%)

8.00 0.522 £ 0.014
13.00 0.017 & 0.011
18.00 | -0.060 £ 0.035
23.00 | -0.063 & 0.021
28.00 | -0.033 + 0.021
33.00 0.009 £ 0.017
38.00 0.049 + 0.013
43.00 0.095 + 0.011
48.00 0.149 % 0.022

Table 3.12: Correction due to bin-averaging and acceptance effects at Q2

0.2 (GeV/c)?

experiment, it is still of certain interest to extract the experimental cross section and

compare it with theoretical calculations. However, it should be noted that this study

is independent of the rest of the analysis.

We extract the experimental cross section based on the comparison between the
experimental spectrum and the simulated spectrum with full Faddeev calculations

for 3He response functions. After the subtraction of elastic radiative tail, the ratio

between the experimental spectrum and the simulated spectrum is proportional to

the ratio between the experimental cross section and the theoretical calculation at

127



the central kinematics; thus the experimental cross section can be determined as

r
Ne:cp - ]\’ert

Oerp = Otheory X
P Y AAfﬂim - ]vert

(3.56)

where 0., i3 the experimental cross section, Ogpeory is the theoretical cross section,
while Ngzp, Ngim and Ny are the yields from the experimental spectrum, the simu-
lated spectrum and the simulated elastic radiative tail, respectively. The experimental
spectrum is corrected by deadtime and detector inefficiencies, and the correct target
density and charge must be used in the simulation. In addition, as we previously
noted, a major factor affecting the simulation is the spectrometer acceptance. We
will discuss these important issues before presenting the results for the experimental

cross sectiomn.

3.9.1 °3®He Density Determination

3He density inside the target chamber can be determined in the same way as the N,
pressure study discussed in Section 3.3 of this chapter. A few reference *He runs were
taken at each kinematics during the experiment. The density of unpolarized *He gas
in the reference cell was known precisely with the knowledge of its pressure and the
reference cell temperature during the run, thus by comparing the *He elastic peak
between a target *He run and a reference *He run, the target *He gas density can be
determined. The result is (3.094£0.15) x 10%° em™3, which agrees with the result from

a second technique, called the pressure broadening measurement [59], to within 5%.

3.9.2 Deadtime and Detector Inefficiencies

The deadtime for each run can be easily obtained from the number of events written

to a scaler counter and the number of events actually recorded by ESPACE

Scaler Counts
ime = 1 — 3.57
Deadtime = 1 = pob o1 Counts (3.57)
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and thus it is corrected run-by-run.

The trigger inefficiency refers to the percentage of good events that do not fire
both scintillator planes and thus trigger a signal. The trigger inefficiency can be
approximated by one minus the ratio of the T1 events to the sum of T1 events and

T2 events times the prescaler factor, which was 25 during the entire experiment

T1

T1+25 xT2 (3.58)

Trigger Inefficency ~ 1 —

The trigger inefficiency for this experiment was found to be around 3 -5 % and is also
correctable by adding the T1 spectrum and twenty five times T2 spectrum together
to form the experimental spectrum.

The VDC inefficiency is the percentage of good events that do not form a track
because of the inefficiencies of the VDC wires. It was determined to be less than 1%
for the entire experiment, which shows that the VDC performed very well during our

experiment.

3.9.3 Spectrometer Acceptance

The spectrometer acceptance is defined through spectrometer transfer functions,
which are used to transfer an event from the target region to the entrance and exit
planes of each magnet, and the magnet apertures. It is very difficult to study the
uncertainty in the transfer functions, but we can study the effects of magnet aper-
tures by placing the same magnet aperture cuts on both data and simulation and
then varying the aperture cuts to see the agreement between data and simulation. A

norminal 10% uncertainty in spectrometer acceptance was assigned from this study.

3.9.4 Results for Experimental Cross Section

The experimental cross sections for both Q?-values are shown in Figure 3-14 together

with the Faddeev calculations which include both FSI and MEC effects. The sta-
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tistical error is negligible and the systematic error is mainly due to the uncertainty
in 3He density determination, which is 5%, and the uncertainty in the spectrometer
acceptance, which we assume to be 10%.

The unsatisfactory agreement in the high excitation energy region at Q? = 0.1
(GeV/c)? might be due to the fact that the spectrometer transfer functions were
not optimized for low gpectrometer momentum settings [78]. To get a really good
understanding of the spectrometer acceptance, more sophisticated analysis using R-

functions might be necessary.
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Figure 3-14: The comparison between experimental cross section and theoretical cross
section with full Faddeev calculations at @% = 0.1 (above) and 0.2 (GeV /c)? (below).
The statistical error of the data is negligible while the systematic error is due to the
uncertainty in the determination of *He target density and spectrometer acceptance.
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Chapter 4

Systematic Uncertainties

For a typical asymmetry measurement, some major systematic uncertainties come
from various false asymmetries, the sources of which include the helicity-correlated
beam current shift, the helicity-correlated beam position shift, helicity-correlated de-
tector inefficiencies, and empty target and N, false asymmetries. Empty target and
N, false asymmetries were shown to be consistent with zero in Chapter 3, so we will

not discuss them here.

Other systematic uncertainties come from the extraction of physics asymmetry
from raw experimental asymmetry, which includes empty target and Ny background
subtraction, elastic radiative tail subtraction, radiative correction on quasielastic
asymmetry and correction for bin-averaging and acceptance effects. Systematic un-
certainties due to empty target and N, dilution factors can be obtained by studying
the variation of the dilution factors from run to run. Systematic uncertainties due
to other factors must be understood through the simulation program by systemat-
ically varying different inputs to the simulation, which include elastic form factors,
quasielastic response functions, the thickness of all materials that incoming and scat-
tered electrons pass through, and the spectrometer acceptance. Finally, a potential
contribution to systematic uncertainties is the pion contamination which, as we will

show, is completely negligible in our analysis because of the kinematics and good
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particle identification (PID).

4.1 Systematic Uncertainties from False Asymme-

tries

4.1.1 Helicity-Correlated Beam Current Shift

There are two practical reasons to study the helicity-correlated beam current shift.
First, it has been known that the beam energy varies slightly with the beam current,
which is called the beam loading effect. Thus if there is a helicity-correlated beam
current difference, there will be a false asymmetry contribution to the experimental
asymmetry due to the beam energy shift, since the physics cross section is energy
dependent, especially for the elastic scattering process. Secondly, as we discussed in -
Chapter 3, the experimental data have to be corrected for the charge before the raw
asymmetry is formed. The charge is determined from the scaler readout of BCMs and
BCM calibration constants, and it is a well-known fact that BCM current calibration
constants are dependent on the beam current. Thus if there is a helicity-correlated
beam current and we use the same BCM calibration constants for both helicities, we

will introduce a current-related false asymmetry to the experimental asymmetry.

During the experiment two independent methods were used to check the helicity-
correlated beam current shift. One method calculated the beam current asymmetry
directly from the readouts of all eight BCMs, and the results are shown in Figure 4-1
for a typical run. The second method used an independent DAQ system from the
Happex experiment to perform a direct on-line measurement of the current asymme-
try, and the result is shown in Figure 4-2 for the same run. Both methods showed
that the beam current asymmetry was on the order of 2 ppm during the experiment,

thus the induced false asymrmetry i1s completely negligible.
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Figure 4-1: Beam current asymmetry distribution for a typical run from the scaler
readouts of all right BCMs. As can be seen, the beam current asymmetry is consistent
with zero.
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4.1.2 Helicity-Correlated Beam Position Shift

As we mentioned earlier, the empty target yield was dependent on the central beam
position on the target, and a nominal beam position was chosen to minimize the
empty target yield before the experiment was conducted. If there was a helicity-
correlated beam position shift, this would introduce a false asymmetry to the exper-
imental asymmetry because the empty target yields would then be different for the
two helicities.

We plot the central beam positions for different helicities and their difference in
Figure 4-3 for some runs at electron arm @? = 0.3 (GeV/c)?, which corresponds
to hadron arm Q? = 0.2 (GeV/c)?. As can be seen, the helicity-correlated beam
position shift was consistent with zero. The resulting false asymmetry was estimated
to be less than 5 ppm, which is negligible compared to the statistical accuracy of the

experimental asymmetry.

4.1.3 Data Acquisifion Deadtime

There are two kinds of data acquisition (DAQ) deadtime: the electronics deadtime
and the computer deadtime. The electronics deadtime is due to the time duration, 7,
of the logic pulse passed to the scaler. If two independent pulses arrive at the scaler
within a time interval shorter than 7, then only one pulse will be recorded. Since 7
was about 100 ns and the maximum rates for this experiment was a few kHz, the
electronics deadtime is less than 1% and thus negligible. The computer deadtime is
due to the fact that the data acquisition system can only process up to about 1250
events per second, thus a lot of events will not be recorded if the event rates are too
high. The deadtime in this experiment was typically 20 — 30%.

From the above discussion it should be clear that the DAQ deadtime is strongly
correlated with event rate, and for an asymmetry measurement, the event rate is

obviously helicity-dependent (otherwise there would not be any asymmetry), thus
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there will necessarily be a non-negligible false asymmetry due to DAQ deadtime.
The livetime (which is simply one minus deadtime) difference between the two beam
helicities is plotted in Figure 4-4 for some runs and on average it is about 0.25% (note

that the change of sign is due to the change of the beam half-wave plate status).

Thus there will be a false asymmetry due to the helicity-correlated deadtime
which, fortunately, is easily correctable since the deadtime can be obtained for each
helicity. This is the reason why we always correct for both charge and deadtime in

forming the experimental raw asymmetry.

4.1.4 Trigger Efficiency

As discussed in Chapter 2, a good event is defined as one that passes both scintillator
planes, S1 and S2. However, not all good events will fire the phototubes on the tWo
edges of each scintillator paddle and generate a trigger signal, because of the inefhi-
ciencies of the phototubes. For a cross section measurement, the trigger inefliciency
must be studied carefully and the experimental yield must be corrected for this ineffi-
ciency. For an asymmetry measurement, it is not necessary to correct the yield in this
way, but if the trigger efficiency depends on the electron helicity, it would introduce

false asymmetry into the physics asymmetry.

The trigger efficiency depends on the scintillator efficiency of each paddle in S1
and S2 planes in a rather complicated way [79]. However, for the purpose of false
asymmetry study, it is sufficient to check the helicity dependence of the scintilla-
tor efficiency paddle-by-paddle. In Figure 4-5 the difference in scintillator efficiency
between the two beam helicities for each paddle is shown for all runs at Q* = 0.2
(GeV/c)? It is clear that the scintillator efficiency is helicity-independent and the

introduced false asymmetry is consistent with zero.
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4.1.5 VDC Efficiency

When a charged particle passes through a wire chamber, typically four or five wires
will fire instead of one wire. Thus, 1t is very complicated to quantify the overall VDC
efficiency since it involves many different wires. In practice, another quantity, the
wire efficiency, is commonly used. The wire efficiency is defined as the probability for
a wire to fire when its neighboring wires fire and form a cluster. It is clear that the
VDC performs well if each wire functions properly and thus the wire efficiency is an
excellent substitute for the overall VDC efliciency.

The wire efficiency was determined to be above 99% for most wires, which shows
that the VDC performed very well during our experiment. The false asymmetry of
the wire efficiency with respect to the beam helicities was consistent with zero, as can

be seen in Figure 4-6.
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Figure 4-6: Helicity dependence of the wire efficiency for each wire of the four VDC
chambers.
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4.2 Systematic Uncertainties from Background Sub-

traction

4.2.1 Empty Target and N, Dilution Factors

As was described in Chapter 3, to obtain the empty target or N, dilution factors, all
empty or Ng runs in the same kinematics were added together to improve statistical
accuracy. However, since different runs were taken at slightly different experimental
conditions, for example, the beam position on the target might differ slightly from run
to run, the dilution factors might be different for each run. Also there might be some
error in measuring N pressure in the reference cell for different reference N, runs.
Thus we must assign a systematic uncertainty to the dilution factors. In Figure 4-7
the overall empty target dilution factors obtained using different empty target runs
are plotted together. The variation from run to run is within +15%. In Figure 4-8
the overall Ny dilution factors obtained using different N, runs are plotted together.
The variation from run to run is typically within £3%. We assign corresponding

systematic uncertainties to empty target and Ny dilution factors.

4.2.2 Pion Contamination

Pion contamination can be a serious problem for electron scattering experiment, es-
pecially for high energy deep inelastic scattering. However its effect is expected to be

very small for our kinematics.

A particle identification (PID) package consisting of a pair of preshower and shower
counters and a Cerenkov detector was employed in this experiment to separate elec-
trons from pions. The resulting PID cut is very effective and the pion contamination

was found to be less than 0.1%; thus its effect is completely negligible.
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4.3 Systematic Uncertainties from Simulation

As discussed in Chapter 3, to extract the physics asymmetry from the experimental
raw asymmetry, many factors must be obtained from simulation. These factors in-
clude the elastic radiative tail dilution factor and asymmetry, the radiative correction
to the quasielastic asymmetry and the correction for bin-averaging and acceptance
effects.

In this section we will discuss various inputs to the simulation and how uncertain-
ties in each input affect one or more of the above factors. Systematic uncertainties
of each factor due to all inputs will be added in quadrature and then propagated
through Eq. (3.3) to obtain the systematic uncertainty of the physics asymmetry due

to this factor, which will be shown in Chapter 5.

4.3.1 Elastic Form Factors

3He elastic form factors were nsed as inputs to the simulation in two ways. [irst,
they were used to simulate the elastic asymmetry a.nd determine the product of beam
and target polarizations. Secondly, a range of *He elastic form factors were used to
simulate the elastic radiative tail under the quasielastic spectrum and calculate both
the asymmetry and dilution factors of the elastic radiative tail.

In [77], *He elastic form factors werc measured to an accuracy of 2%, thus we vary

them by £2% in the simulation to study their effects on various factors.

4.3.2 Quasielastic Response Functions

3He quasielastic response functions obtained from full Faddeev calculations with AV18
as the Nuclcon-Nucleon potential and including both FSI and MEC effects were used
in the simulation with a three-fold purpose. First, they were used to get the elastic ra-
diative tail dilution factors by comparing the elastic radiative tail and pure quasiclas-

tic spectrum with radiative correction. Secondly, they were used to get the radiative
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correction to the quasielastic asymmetry by subtracting the simulated quasielastic
asymmetry with radiative correcﬁon from the simulated quasielastic asymmetry with-
out radiative correction. Finally, they were also used to get the correction due to bin-
averaging and acceptance effects by subtracting the simulated quasielastic asymmetry
without radiative correction from the theoretical quasielastic asymmetry.

It is hard to estimate the uncertainties of quasielastic response functions in the
threshold region, especially the spin-dependent ones, since the currently available ex-
perimental data have too large error bars. Thus we simply vary the response functions

by +10% and see the effects, which we believe is a very conservative estimate.

4.3.3 Thickness of External Radiative Material

The thickness of the materials that electrons pass through is a very important input to
the simulation because they will directly affect the external radiative correction, which
includes most probably energy loss, energy straggling and external bremsstrahlung.
The dominant contribution to external radiative correction comes from the wall thick-
ness of the ta,rgét céll. The wéll tﬂickness was measured ﬁsing laser interferometry [80]
at different points along the beam direction. The results are shown in Table 4.1. The
average wall thickness was determined to be 1.20 + 0.02 mm. Thus in the simulation

we vary the material thickness by £2% and study the effect on various factors.

4.3.4 Spectrometer Acceptance

For an asymmetry experiment, most of the systematic uncertainties due to spectrom-
eter acceptance will cancel out when forming the ratio. However, it is still necessary
to understand the residual systematic uncertainties in such a high precision mea-
surement as our experiment. In addition, in our case, the elastic asymmetry, elastic
radiative tail asymmetry, radiative correction and the correction due to bin-averaging
and acceptance effects all have direct dependence on the spectrometer acceptance.

As was mentioned, the spectrometer acceptance is not very well understood in Hall A
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Relative Position | Thickness
(inch) mm
5.0 1.237
4.0 1.208
2.2 1.198
1.7 1.218
-0.5 1.230
-1.8 1.196
-3.0 1.187
-4.0 1.184

Table 4.1: Target wall thickness at different positions along the beam line relative to

the target center.

and thus we made a very conservative estimate of its effect by calculating each factor
using two sets of simulations, one with the original geometric magnet apertures and
the other with much improved physical magnet apertures, as described in Chapter 3,
and taking the difference of them as the systematic uncertainty of this factor due
to acceptance. This sounds not to be a good idea because the simulated spectrums
are wildly different with these two sets of magnet apertures, but as it turns out, the

effect on various factors that go into the physics asymmetry is very small. This will

be clear when we look at the results in Chapter 5.
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Chapter 5

Results and Discussion

In this chapter we will first present the results for the physics asymmetries at both
@* = 0.1 and 0.2 (GeV/c)? and their systematic uncertainties. We then compare the
results with different theoretical calculations, including plane wave impulse approxi-
mation (PWIA) calculations and state-of-the-art non-relativistic Faddeev calculations
with final-state interactions {FSIs) and meson-exchang.e currents (MECs), and discuss
various theoretical uncertainties. With the insights gained from this comparison, we
will investigate two extensions to the current framework of non-relativistic Faddeev
calculations, three-nucleon forces (3NFs) and relativistic corrections, and study their

effects on our results. Finally we will summarize the results and draw the conclusion.

5.1 Physics Asymmetry and Comparison with The-
oretical Calculations

The physics asymmetries are shown in Table 5.1 for Q* = 0.1 (GeV /c)? and Table 5.2
for @* = 0.2 (GeV/c)?, together with their statistical and systematic uncertainties.
The systematic uncertainties include contributions from the determination of P,P,,
empty target and N, background subtraction, elastic radiative tail subtraction, ra-

diative correction and the correction of spectrometer acceptance and bin-averaging
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effects. A careful analysis of various systematic uncertainties was carried out and has

been discussed in Chapter 4.

E:c A -+ §etat 5pal 5dil gert sre gaoee
(MeV) (%) (%) (k) (B) (%) (%)
8.0 3.602 £ 0.157 0.153 0.048 0.105 0.020 0.032
13.0 1.666 £ 0.100 0.073 0.021 0.061 0.014 0.015
18.0  1.399 £ 0.082 0.050 0.012 0.076 0.010 0.009
23.0 1.553 £0.071 0.043 0.009 0.066 0.008 0.023
28.0 1768 £0.063 0.043 0.008 0.042 0.008 0.009
33.0  1.756 £ 0.066 0.039 0.007 0.016 0.010 0.009

Table 5.1: The physics asymmetry as a function of excitation energy (E,) at @* = 0.1
(GeV/c)?, together with its statistical and systematic uncertainties. The systematic
uncertainties include contributions from the determination of P,P, (67!, target wall
and N, dilution (§%), elastic radiative tail subtraction (%), radiative correction
(67¢) and the correction of spectrometer acceptance and bin-averaging effects (67°°).
The physics asymmetry (A) and statistical uncertainties (6°*) are also shown.

A comparison between the physics asymmetries. and various theoretical calcula-
tions i1s shown in Fig. 5-1. The uncertainty in determining the excitation energy is
about 0.4 MeV at Q% = 0.1 (GeV/c)?, and 1.0 MeV at Q* = 0.2 (GeV/c)?, dom-
inated by the uncertainty in the beam energy. The vertical error bars on the data
are the statistical and systematic errors added in quadrature. All theoretical cal-
culations were performed using AV18 [26] as the NN interaction potential and the
Héhler nucleon form factor parameterization[81]. Plane wave impulse approximation
(PWIA) calculations [9,82] are shown as dot-dashed lines. Non-relativistic Faddeev
calculations with FSI only (48] are shown as dashed lines. Non-relativistic Faddeev
calculations which include both FSI and MEC [49] are shown as dotted lines without
the inclusion of the A isobar current, and solid lines with the inclusion of the A isobar
current.

As can be seen from Figure 5-1, the agreement between PWIA calculations and the

data is very poor at both kinematics, which confirms the intuition that at low Q* and
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E, A + §stat grol 5{115 gert gre gace
(MeV) (%) %)  (B)  (B) (%) (%)
8.0 3.161 +£0.170 0.121 0.070 0.121 0.018 0.014
13.0 0.676 £ 0.094 0.044 0.022 0.064 0.034 0.011
18.0  0.190 £ 0.071 0.022 0.010 0.036 0.075 0.035
23.0 0.446 + 0.058 0.020 0.008 0.021 0.012 0.021
28.0  0.625 £ 0.049 0.019 0.006 0.012 0.006 0.021
33.0 1.025+0.045 0.024 0.007 0.007 0.012 0.017
38.0 1.241 £ 0.041 0.026 0.007 0.005 0.015 0.013
43.0 1.300 + 0.041 0.026 0.006 0.005 0.018 0.011
48.0  1.5337 & 0.050 0.028 0.005 0.005 0.020 0.022

Table 5.2: The physics asymmetry at Q% = 0.2 (GeV/c)®. Symbols are the same as
in Table 5.1.

in the threshold region, the FSI and MEC effects are important. Indeed, the addition
of FSI in the calculation improves the theoretical picture significantly. However, FSI
alone is not enough to explain the discrepancy between the PWIA calculations and
the data, and only full calculations which include both FSI and MEC effects can .
describe the data very well. This is not surprising because MEC effects are expected
to be very strong in the threshold region. The MECs were chosen according to
the Riska prescription [37], which relates nucleon-nucleon (NN) forces and meson-
exchange currents in a model-independent manner though the continuity equation.
For AV18 NN force, the MECs are dominated by 7- and p- exchange currents and
more details can be found in [49]. To study the effects of model-dependent MECs,
Faddeev calculations including additional exchange currents associated with A-isobar
degrees of freedom (the A current) were also carried out and compared with the
Faddeev calculations without the A current. The difference is very small and suggests

that model-dependent MECs have negligible effects.

It is interesting to study the MEC effects on individual response functions. Fig-
ure 5-2 compares Faddeev calculations with FSI effect only and full Faddeev calcu-

lations for all four response functions at Q% = 0.1 (GeV/c)?, while Figure 5-3 shows
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the same comparison at Q* = 0.2 (GeV/c)2. It can be seen that the MEC effects on

Rpyr are the largest.

Theoretical uncertainties due to nucleon form factors, G%, G%,, G% and G},
were studied using PWIA [6,83]. The relative difference between the asymmetries
calculated with the nucleon form factors from the Hohler parameterization and from
experimental data [12-15,84-87] was found to be around 1%, and thus theoretical

uncertainties due to nucleon form factors are completely negligible,

To investigate the effects of different NV potentials, we compare our data with
full Faddeev calculations using the AV18 potential and the Bonn-B potential {27]. For
the Bonn-B potential, standard 7- and p-meson exchange currents augmented by the
strong form factors used in Bonn-B [49] are used in the full calculation. The Bonn-B
potential and its closely related cousin, the CD-Bonn potential, are very different
from other modern potentials in that they are fully non-local potentials while all
other potentials apply local approximations one way or another. As a consequence,
Bonn-B and CD-Bonn have a weaker tensor farce than others. This is manifested in
the predicted D-state probability, Pp, of deuteron. While CD-Bonn predicts Pp =
4.85%, the other potentials predict some larger value around 5.7%. Thus by com-
paring theoretical calculations with two very different modern realistic potentials as
AV18 and Bonn-B, we can get a very good sense of the dependence of the theoretical
calculation on the choice of NNV potentials. The result is shown in Fig. 5-4. As can be
seen, the difference between the theoretical calculations using these two potentials is
very small, which suggests that for the kinematic region being considered, this observ-
able is not sensitive to the choice of different NN potentials and the corresponding

exchange currents.

The good agreement between the full calculation and the data at Q2 = 0.1
(GeV/c)® suggests the validity of the current way of treating FSI and MEC in the
full calculation. The small discrepancy at Q2 = 0.2 (GeV/c)? may be due to the

fact that some Q*-dependent effects, such as the relativistic and 3NF effects, are not
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Figure 5-3: MEC effects on individual response functions at @ = 0.2 (GeV/c¢)2.

155



(a)
\ — AV18: FSIL-MEC(with A current)

R R Bonn B: FSI+MEC(with A current)

A (%)
o

F -9

Q? = 0.1 (GeV/c)?

N 3 :
N 1wt s e @

||lIIIlll]l|l|[I|ITll|lIHIIHIIIJII|IIII]IIH

-
(34

lllllll[lllllllllllllllIIIlLlllIIIIIII

5 o 15 20 25 30, 38
e EX. (Me

b
O

40

(b)
——— AVIB: FSIHMEC(with A current)

A

aeem Bonn B: FSI+MEC(with A current)

Q? = 0.2 (GeV/c)?

lllI|II[Illll||lll!|llr|TlIIIII[TI

0 10 20 30 40 5. 50 60
He Ex. (MeV)

Figure 5-4: The physics asymmetry together with two full Faddeev calculations, one

using AV18 as the NN potential, the other using Bonn-B: (a) @* = 0.1 (GeV/c)?
and (b) Q% = 0.2 (GeV /¢)?.

156



included in the current non-relativistic Faddeev calculation, which will be discussed

in the following section.

5.2 Theoretical Investigations

Two of the most prominent ingredients missing from the current non-relativistic Fad-
deev calculations are relativistic corrections and three-nucleon (3NF) interactions.
It has been shown that they are important in reproducing binding energies of light
nuclei [35], and we would expect them to have large effects in scattering processes.
Indeed, 3NFs are shown to be necessary to explain the spin observables Ay, T,
and Cy, in a recent proton-deuteron elastic scattering experiment [88]. Theoretically
these two effects are related to each other and phenomenologically their contributions
are comparable.

We will discuss each of these two effects, in particular their Q? dependence, and
- then an effective Chiral Lagrangian approach, in which these two effects occur natu-

rally together in a systematic and controlled way through a power-counting scheme.

5.2.1 Three-Nucleon Force Effects

The conventional nuclear theory behind three-nucleon forces was explained in Chap-
ter 1 and here we only study their effects on two-body and three-body breakup chan-
nels in this experiment. To investigate the Q*-dependence of 3NF effects in two-body
breakup (pd) channel, one can study the pd elastic scattering. It has been shown that
in NVd elastic scattering the 3NF starts to take effect when the kinetic energy of the
incident nucleon is around 60 MeV [89], which corresponds to around 340 MeV of Nd
relative momentum, and becomes larger with higher energy. The pd relative momen-
tum in our experiment for two-body breakup channel was found to range from about
30 MeV to 480 MeV at Q2 = 0.1 (GeV/c)?, and from 0 MeV up to 650 MeV at Q% =
0.2 (GeV/c)?, thus one would expect the 3NF effects on two-body breakup channel
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to be larger at ) = 0.2 (GeV/c)?. Similarly, the (J>-dependence of 3NF effects in
three-body breakup (ppn) channel can be investigated by studying pd breakup reac-
tion. It has been found that in this channel the 3NF effects also increase with the
energy of the incoming nucleon [90]. Thus we might expect the 3NF effects to be

larger at higher Q? values in the threshold region of 31—fe(é’, e').

Very recently Golak et al. [91] has been working to incorporate a 3NF into the
framework of non-relativistic Faddeev calculations. The 3NF' force was chosen to be
Urbana IX, which is usually used with the AV18 nucleon-nucleon force. The Faddeev

equation (1.74) in Chapter 1 now becomes [92]:
Ue = (1 +tGo)CV | ¥, p,) + <tG’0P + (1 + 4GP0+ P)GO) Ue (5.1)

where V4(1) is the 3N force. These Faddeev equations were then solved for our exper-
imental conditions and the preliminary results for physics asymmetries at both % =
0.1 and 0.2 (GeV/c)?* are shown in Figure 5-5 together with the data and the same:

caleulations without the inclusion of the 3NFE.

As can be seen, the preliminary results with 3NF are in much better agreement
with the data at both kinematics. This suggests that 3NF does play an important
role in describing the threshold region asymmetry. To better understand the effects of
3NF's, we compare the response functions calculated with or without the inclusion of
3NF's in Figure 5-6 through Figure 5-9. We can see that the inclusion of 3NFs makes
all response functions smaller, thus the 3NF effects turn out to cancel in forming the
asymmetry, which suggests that the cross section might be a better observable to

study the 3NF effects in the threshold region.

On the other hand, it is to be noted that theoretical calculations including 3NF's
are still in the early stage and more work has to be done to thoroughly understand

their effects.
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Figure 5-5: The physics asymmetry together with two full Faddeev calculations, one
using AV18 as the NN potential, the other using Bonn-B: (a) Q% = 0.1 {GeV/c)?
and (b) Q% = 0.2 (GeV /c)2

129



R_L [1/MeV]

R_L [1/MeV]

AV18 with MEC  g**2=0.1 (GeV/c)**2

0.02

o018 |

0016 |

0.014

0.012 |

0.008

0.006

~,

T
new wf, new dt

e new Whsfew dt with 3NF - ———

20

40 50
w [MeV]

AV18 with MEC  ¢**2=0.2 (GeV/c)"2

60

70

0.011

0.0

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

T H ¥

T 1
new wi, new at

naw wf, new dt with 3NF

0.001

80

100 120 140
w [MeV]

160 180

Figure 56: The effects of three-nucleon forces on R; at both @

(GeV/c)2

160

= 0.1 and 0.2



R_T [1/MeV]

[1/MeV]

A_T

0.012

0.01

0.008
0.006 [—
0.004

0.002

0.012

0.01

0.008

0.006

0.004 |

0.002

AVIBwithMEC g™2=0.1 (GeVic)*"2

k new wf.'new dt I
aew wf, new dt with 3NF

] 1 1 " J 1

20

30 40 50 60 70
w [MeV]

AVIB with MEC  g**2= 0.2 (GeV/g)**2

™ I T T - T T T
’ new wf, new dt =-~-=--
new wf, new dt with ANF  ———

- 1 1 1 1 1 1

40

80 100 120 140 160 180 200
w [MeV]

Figure 5-7: The effects of three-nucleon forces on Ry at both ¢? = 0.1 and 0.2

(GeV/e)2

161



[1/MeV]

R_T

R_T' [1/MeV]

Figure 5-8: The effects of three-nucleon forces on Ry at both Q?
(GeV/c)?.

0.0025

0.002

0.0015

0.001

0.0005

-0.0005

0.0018

0.c016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

-0.0002

AV18 with MEC g**2=0.1 (GeV/c)**2

Inew wi, new dt
new wf, new dt with BNF  ———

| 1 | 1 1

20

30 40 50 80 70
w (MeV]

AV18 with MEC  g**2=0.2 (GeV/c)**2

PETT Fo— i —

nEr)w wi, new &t
rew wf, new dt with BNF ———

1 ' | 1 I 1 Il 1

40

120 140 160 180

w (MeV]

60 80 100

162

200

= 0.1 and 0.2



AV1B with MEC g**2=0.1 (GeV/c)**2

0.0018 T T T T T T
~ new wf, new dt  -------
SN new wt, new dt with BNF ——

0.0016

0.0014

00012

0.001

[1/MeV]

0.0008

R_TL

0.0006

0.0004

0.0002

T

0 ] 1 1 1 1
20 30 40 50 60 70

w [MeV]

AVI8 with MEC  g**2= 0.2 (GeV/c)™2
0.0008 r r —= T l

~,

” \ néw wi, new cit -------
new wf, new dt with 3NF

[
0.0007 |
0.0006
0.0005

0.0004

[1/MeV]

0.0003

R_TL'

0.0002

0.0001

-0.0001

-0.0002 . ] 1 I 1 L 1 1
40 60 80 100 120 140 160 180 200

w [MeV]

Figure 5-9: The effects of three-nucleon forces on Ryyr at both Q% = 0.1 and 0.2
(GeV/e)2

163



5.2.2 Relativistic Effects

It is natural to expect relativistic effects to be larger at higher Q? values, and thus
a theoretical calculation with relativistic correction is highly desirable to explain the
discrepancy between theory and our data at Q% = 0.2 (GeV/c)?. Unfortunately, it
has proven to be notoriously difficult to perform Faddeev calculations in a relativistic
framework.

One first step toward relativity is to use a relativistic current in the non-relativistic
Faddeev equations [91]. However the problem with this approach is that the kinemat-
ics is not consistent with the current and the original way of calculating the t-matrix
is no longer appropriate. Recently Kamada et al. [91] has been working on this prob-
lem and hopefully a scheme will emerge soon to calculate the t-matrix and build the

proper kinematics in the Faddeev equations.

5.2.3 Recent Development of Chiral Perturbation Theory

It is irﬁportant to note the recent development of chiral perturbation theory (xPT') [93], -
an effective field theory of QCD based on the chiral symmetry present in QCD La-
grangian. yPT is essentially the low energy theory of QCD and can be calculated
perturbatively in the sense of a certain power counting, and has been applied to a
large variety of systems, such as pion physics. It can also be used to construct nuclear
forces in a systematic and controlled manner [94].

Besides the aesthetic beauty, there is another very attractive point in this ap-
proach: both 3NF terms and relativistic corrections occur systematically in higher
orders of perturbation series. Thus there is no need for manually including these
effects as we have to do with the phenomenological models. The chiral NN forces
developed to next-to-leading order (NLO) have been applied to 3N and 4N systems
by solving the Faddeev-Yakubovsky equations rigorously and surprisingly, the long

standing A,-puzzle in elastic nd scattering seemed to be resolved [95]. More re-

164



cently a next-to-next-leading (NNLQO) calculation for three-body system has been
performed [96] without the inclusion of 3NF's, and the resulting description of 3N ob-
servables is very poor, which shows that 3NFs have to be taken into account at NNLO
because of consistency in the power counting. Thus, unlike conventional models for
NN forces, which to a large extent describe the data well and 3NFs are only needed
as a relatively small correction, 3NF's are an essential ingredient in xPT.

It is thus necessary to perform NNLO calculations with the inclusion of 3NFs and
probably even NNNLO calculations in the future, and it would be very interesting
to observe how 3NFs and relativity occur naturally in these calculations and how
they work together to describe the vast reservoir of recent experimental data in few-
nucleon systems. In particular, and of more relevance to the present work, we would
hope that in the future chiral VN forces can be applied to electrodisintegration of

3He in the threshold region.

5.3 Summary and Conclusion

In summary we have presented the first precision data on the spin-dependent asym-
metry in the threshold region of 3H-'e(é', ¢’). The poor description of the data by PWIA
calculations suggests the existence of strong FSI and MEC effects in this region. In-
deed, the agreement between the data and non-relativistic Faddeev calculations which
include both FSI and MEC effects is very good at Q% = 0.1 (GeV/c)2. On the other
hand, a small discrepancy at Q2 = 0.2 (GeV /c)? is observed, which might be due to
some (% dependent effects such as relativity and three-nucleon forces, which are not
included 1n the current framework of non-relativistic Faddeev calculations.

Some preliminary results show that their effects are indeed non-negligible in the
threshold region and more theoretical work is currently underway towards a better
understanding of both effects. A full Faddeev calculation within the framework of

relativity which also include 3NF is highly desirable to understand our asymmetry
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results in the threshold region.

More recently, a completely new approach, called the chiral perturbation theory,
has been dcveloped and the resulting chiral NV forces have been applied to three-
nucleon systems. Surprisingly, the long-standing A, puzzle seemed to be solved at
next-to-leading order. Relativity and three-nucleon forces occur naturally in chiral
perturbation theory through a power-counting scheme and it is hopeful that a future
application of chiral NN forces to electrodisintegration of *He might help us better

understand our results.
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Appendix A

Polarized Radiative Correction

The C++ simulation program, Polarized Radiative Correction (PRC), was built pri-
marily to deal with the internal radiative correction for inclusive polarized electron
scattering from polarized nuclear targets. Although only elastic and quasielastic
scattering from *He and elastic scattering from ‘He and N, are implemented, it is
straightforward to add new targets and reaction channels due to thé object-oriented
feature of this prograﬁn. In the following we will first discuss the class structure and

then show how to run a sample main program.

A.1 Class Structure and General Description

The PRC program was built upon the platform of ROOT [97], which is the most
popular data analysis package in high energy physics and recently has also been
widely used in medium energy physics. As a result, most of its classes are derived
from the TObject base class, as can be seen from the class inheritance tree shown
in Figure A-1. PRClInclusive contains all important kinematics factors to describe a
general inclusive electron scattering as either member variables or member functions.
In addition, it contains all member functions useful to calculate the internal radia-

tive correction for inclusive scattering of polarized electrons from polarized targets,
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Figure A-1: The class inheritance structure for simulation program Polarized Radia-
tive Correction (PRC).

for example, the 8;;'s and their definite integrals discussed in Chapter 3. PRCHe3
describes inclusive scattering of polarized electrons from polarized *He in specific,
and it contains member functions to calculate spin-dependent elastic cross section
and quasielastic cross section of 3qu(€, ¢'), with elastic form factors and quasielas-
tic response functions as inputs. It can be easily extended to include other reaction
channels, such as deep inelastic scattering, with the additional knowledge of struc-
ture functions in these channels. Since PRCHe3 is inherited from PRClInclusive, it
can use the laiter’s member functions to calculate radiative correction for 3}fe(€, e').
PRCHe4 and PRCN2 are similar classes for *He and N, targets, respectively. It
should be noted that it is very straightforward to write similar classes for other tar-

gets, providing the appropriate form factors or structure functions as inputs. The
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class Event is a separate class describing a general simulation process, with member

functions ranging from random number generators, to spectrometer transfer functions

and magnet aperture cuts, to those calculating external radiative corrections. Some

member functions, such as those related to the spectrometer and magnet apertures,

are experiment-specific and must be modified for other experiments, while others,

such as random number generators and functions for external radiative corrections,

are portable. The classes EventHe3, EventHed and EventN2 are derived from the

Event class and the PRC classes for each target, and their objects are used directly in

main simulation programs, with access to all necessary member functions from their

basis classes.

In the following we describe each of the above classes in detail.

TObject

PRClInclusive

Base class in ROOT. It provides default behavior and protocol
for all objects in the ROOT system.

Inherited from TObject. All kinematics factors and polariza-
tion variables necessary to describe a general polarized inclusive
scattering are contained in this class as either member variables
or member functions. The most important member functions in
this class are those related to the internal radiative correction
for an inclusive scattering of polarized electrons from polarized
targets, for example, the 8;;’s and their definite integrals dis-
cussed 1n Chapter 3. For the expressions of these complicated

functions, please refer to [68].
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PRCHe3

PRCHe4

PRCN2

Event

EventHe3
EventHe4

EventN2

Inherited from PRCInclusive. The elastic 3He(&, ¢') cross sec-
tion is calculated in a member function which calls a Fortran
subroutine to determine the elastic form factor as a function of
@*. The quasielastic 5Pfe(é', e') cross section is calculated with a
two-dimensional interpretation table for *He response functions
from PWIA calculations or Full Faddeev calculations, obtained
from an input file to be read in whenever a PRCHe3 object is
instantiated. Elastic radiative tail and quasielastic cross section
with internal radiative correction are also calculated by calling

the member functions in PRCInclusive.

Similar to PRCHe3, but with only member functions to calculate

elastic cross sections.

Similar to PRCHe3, but with only member functions to calculate
elastic cross sections.

This class contains member functions to generate randor num-
bers from uniform distribution, Gauss distribution or Landau
distribution. It also contains member functions to calculate
the most probable energy loss, energy straggling, multiple scat-
tering for incident or scattered electrons. Finally, it contains
all spectrometer-related functions, such as spectrometer trans-
fer functions and magnet aperture cuts, useful to transport the
scattered electrons through the spectrometer and magnets to

the focal plane.

Inherited from both PRCHe3 and Event.
Inherited from both PRCHe4 and Event.

Inherited from both PRCN2 and Event.
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A.2 Structure of a Main Simulation Program

With the above classes at disposal, it is straightforward to write a main simulation
program for a given target, desired reaction channels, and specified central kinematics.

First, an input file containing the kinematics, beam profile, target polarization
angle, radiation options, event numbers for each reaction channel and other necessary
information is read in.

Then, for each reaction channel an event loop will be run. Inside the loop, an event
is generated as an object of the specific class, for example, EventHe3 if the target is
*He, with the initial beam energy, central kinematics and polarization information. A
reaction point will be randomly generated inside the target volume and external ra-
diative corrections are applied to the event for each material it passes through before
reaching the reaction point. The scattering angles and final momentum (in the case
of elastic scattering, the final momentum is calculated from scattering angles) are
sampled in a range much larger than the experimental acceptance. After scattering,
the event is transported to the entrance to the spectrometer and again external ra-
diativ‘e corrections are applied for each material it passes through. The spectrometer
transfer function will be used to transfer the event to each magnet aperture and test
whether the event is inside the aperture. If the event falls outside of the aperture,
it will be discarded and a new event will be generated. If the event goes through
all magunet apertures and reaches the focal plane, some important weights, including
cross section and asymmetry, will be calculated and written into an ntuple together
with the kinematics information.

After the finish of all event loops, the ntuple will be saved in a ROOT file to be

studied after the simulation.
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