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Abstract

In this thesis properties of various condensed matter systems are studied, whose de-
pendency on electronic behavior is incorporated through coarse-grained interactions.
Three specific systems are considered.

In the first system of study, high momentum, plane wave states of the electronic
wave function are coarse-grained, while the low momentum states are fully resolved.
Moreover, the coarse-graining procedure incorporates the response of the high mo-
mentum states to environmental changes and its couplings to changes in the low
momentum states. Within density functional theory this allows the representation of
the electronic wave function, when using a plane wave basis, to be computationally
feasible without having to make the pseudopotential approximation. This coarse-
graining procedure is beneficial for the study of high pressure systems, where the
response of the core region is important. With this method we study a number of
solid phases of boron and reveal a number of important structural and electronic
properties on its high pressure and superconducting phase.

The second system of study focuses on a slightly coarser scale, where a theory
for the elasticity of nanometer sized objects is developed. This theory provides a
powerful way of understanding nanoscale elasticity in terms of local group contri-
butions and acts as a bridge between the atomic and the continuum regimes. This
theory properly describes elastic fluctuations on length scales on the order of the
decay length of the force constant matrix; allowing for straightforward development
of new relations between the bending and stretching properties of nanomechanical
resonators, which prove to be much more accurate than the continuum-based rela-
tions currently employed in experimental analysis. This theory is then used to link
features of the underlining electronic structure to the local elastic response in silicon
nanoresonators, emphasizing the importance of electronic structure on the local and
overall elastic response.

Our final system of study focuses on the longest length scales, the continuum.
It is shown that the inclusion of electronic structure is crucial in the study of the
role of dislocations on the macroscopic property of slip. This thesis explores the
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discrepancy between experimental data and theoretical calculations of the lattice
resistance in bec metals. This thesis presents results for the temperature dependence
of the Peierls stress and the first ab initio calculation of the zero-temperature Peierls
stress which employ periodic boundary conditions. The ab initio value for the Peierls
stress is over five times larger than current extrapolations of experimental lattice
resistance to zero-temperature. Although it is found that the common techniques for
such extrapolation indeed tend to underestimate the zero-temperature limit, in this
work it is shown that other mechanisms other than the simple Peierls mechanism are
important in controlling the process of low temperature slip.
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Title: Professor

Thesis Supervisor: John D. Joannopoulos
Title: Professor
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Chapter 1

Introduction

Proper description of physical phenomena occurring over multiple length scales 1s
a highly active field of research in condensed matter systems (73, 74, 87]. In such
problems, fluctuations occurring over the shortest relevant length scales have impor-
tant effects on physical phenomena occurring over the largest relevant length scales.
When solving such problems difficulties occur as proper theoretical description of the
shortest scales are, in general, either mathematically or computationally too demand-
ing to properly describe physical phenomena occurring over the largest length scales.
It is therefore crucial to extract the relevant physical effects imposed on the largest
length scale phenomena by the smallest scale processes in a computationally and
mathematically efficient manner. The crux of this thesis is to develop coarse-graining
procedures to properly account for the electronic behavior in a number of condensed
matter systems.

In Chapter 2 I develop a method, through the use of perturbation theory, which
allows for a substantial reduction in the size of the plane wave basis used within
density-functional theory. In this method, the high momentum plane waves states of
the electronic wave function are coarse-grained within the system of study. An effec-
tive Hamiltonian is generated for this system which acts on the low momentum states.
Moreover, this coarse-graining procedure allows for the recovery of the high momen-
tum states to first order within perturbation theory, and, therefore, the response of

such states can be incorporated into the computation. It is shown in Section 2.3 that
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accurate predictions for the error in calculating the energy, due to coarse-graining, can
be made in any environment. Therefore, accurate predictions for the transferability
of this method can be made in any system. Moreover, this method is incorporated

into the conjugate gradient technique and it is therefore computationally efficient.

This procedure allows for the study of systems with a plane wave basis without
having to make the pseudopotential approximation and is therefore ideal for high
pressure systems. In such systems, the number of plane wave states needed to de-
scribe the core region is dramatically reduced while properly accounting for the cores
response. In Section 2.4 this method is applied to the study of high pressure phases
of boron. It is found that boron undergoes a phase transition from the icosahedral
family to the a-orthorhombic structure, both of which are semiconducting. The a-
orthorhombic structure has lower energy than traditional mono-atomic structures,
which supports the assertion that the metallic, and hence superconducting, phase for
boron is much more complicated than a simple mono-atomic crystal. Moreover, we
conclude this chapter with the argument that the S-orthorhombic structure could be

a candidate for the superconducting phase of boron.

The revolution in nanoscale technology has opened a wonderful opportunity for
theoretical physics, as such systems lay at a cross-over between continuum physics and
atomic physics. In Chapter 3 a theory of the elasticity of nanometer sized objects
is presented. This theory coarse-grains ionic and electronic interactions into well-
defined local moduli. Such moduli are able to describe elastic fluctuations over scales
on the order of the decay length of the force constant matrix and, therefore, can
describe nanoscale elasticity more accurately than current continuum theories. In
Sections 3.6 and 3.7 specific examples are presented regarding the benefit of using
this approach over continuum approaches. New relations between the bending and
extensional properties for nanowires are presented which are much more accurate than
continuum theories currently employed in experimental analysis. In Section 3.8 this
theory is finally used to demonstrate correlations between the underlying electronic

structure and the local elastic response.

The final system of study is the effects of electronic structure on the physics of
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mechanical slip. More specifically the importaﬁce of including electronic structure
in the calculation of the Peierls stress in bee tantalum will be addressed, the stress
needed to move an infinite, straight dislocation. For bcc metals the extrapolated
experimental value for the Peierls stress is at least a factor of two less [100, 25] than
the values calculated from empirical potentials. This discrepancy has generally been
attributed to the empirical nature of such potentials, which completely coarse-grains
away electronic properties into interatomic potentials. However, other phenomena
may also contribute to this discrepancy, as measuring the effects of a single isolated
dislocation on the process of slip is a daunting experimental task. Therefore, to help
resolve the discrepancy between theoretical and experimental Peierls stresses, the the-
sis provides the first ab initio predictions for the Peierls stress in a cell compliant with
the system’s electronic behavior. The effects of electronic structure are incorporated

through the use of density-functional theory.

Prior to calculating the Peierls stress, the computational demands imposed by
density-functional theory must be addressed. These costs limits the size of the unit
cells (order = 100 atoms for transition metals) which can be used and the range of
phase space that can be explored in order to calculate the Peierls stress. In such small
cells the effects imposed by the boundary conditions become extremely important.
It remains unclear if these effects can properly be taken into account, in order to
extract the stress needed to move an isolated dislocation in an infinite bulk medium.
Moreover, if such boundary effects can be accounted, it remains unclear if the range
of phase space needed to be explored in order to account for such effects will make
the density-functional theory calculation infeasible. In Chapter 4 it is shown how
to properly account for the boundary effects in an efficient manner which minimizes
the search through phase space and allows a density-functional theory calculation

possible.

In Chapter 5 the density-functional theory results are reported. It is shown that
inclusion of the electronic structure in the mechanism of slip is indeed very important
for bee metals. The calculated value for the Peierls stress is a factor of ~ six larger

than extrapolations of experimental data. This discrepancy is much larger than any

21



effects which could be attributed to the use of either our relatively small unit cell
or the local density approximation made to density-functional theory. One must
therefore consider the possibility of other factors to explain the discrepancy between
theoretical and experimental predictions for the Peierls stress.

To explore possible effects leading to this discrepancy, we study the extrapolation
of experimental data to determine the zero-temperature Peierls stress. Such extrap-
olations generally employ fits from mesoscopic or thermodynamics/kinetic models.
However, it has not been established that such models can accurately describe the
lowest temperature regime correctly. Using molecular dynamics simulations, within
an empirical potential framework, finite-temperature values for the Peierls stress are
calculated. Moreover, using finite-temperature results and current fitting models, it
is shown that extrapolation of finite-temperature data leads to an underestimation
of the zero-temperature Peierls stress. This underestimation may contribute to the
discrepancy between the experimental extrapolated results and the density-functional

theory calculation.



Chapter 2

New ab initio approach for high
pressure systems with application
to a new high-pressure phase for
boron: perturbative

momentum-space potentials.

Experimental techniques are now able to probe condensed matter systems at higher
and higher pressures through the use of diamond-anvil cells or dynamical shock meth-
ods [3, 27]. At these newly attainable pressures, structural and electronic phase tran-

sitions can occur, opening the door to exploration for new physical phenomena.

Such systems offer an exciting avenue for first principle calculations, as their pre-
dictions can not only follow but also sometimes lead results from new experimental
techniques [67, 68, 91, 30, 34, 101, 58, 27]. When applying traditional first principle
calculations to such systems, care must be taken, as most basis sets take advantage
of the distinction between the core regions and valence regions which is prominent at
ambient conditions. However, when studying systems over a wide range of pressures,

this distinction vanishes, and both regions need to be treated on an equal footing.
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The following section discusses some problems that can occur when applying some of

the most popular basis sets to high pressure systems.

To overcome the above potential pitfalls and to allow for accurate description
of both the core and valence regions while keeping the mathematical stability and
systematic convergence of the plane-wave basis, we have developed a method based
on perturbation theory. This method can be used for direct all-electron calculations,
dramatically reduces the size of the plane-wave basis while properly accounting for all
higher momentum states, accounts accurately for the core electrons and their inter-
action with the valence region, and automatically generates pseudopotentials which
change with the environment thereby enhancing transferability. Moreover, the effect
of pseudizing in the crystal can be quantified; hence, accurate predictions for trans-
ferability can be made in any environment. Finally, the method can be implemented
into current state of the art minimization techniques, such as the conjugate gradient

method, and is therefore computationally efficient.

As an application, we study high pressure phases of boron. Boron crystallizes
into many complex structures, which are governed by the regular icosahedron [23, 1].
Boron is semiconducting at ambient conditions, turns metallic under pressure (~
170 GPa [27]) and superconducting above 160 GPa [27]. Theoretically, Mailhiot
and coworkers [58] were the first to apply density-functional techniques to the study
of the phases of Boron at high pressures. To date, however, such studies have been
limited to a modest selection of phases and were based on traditional techniques which
artificially separate the physics in the core and valence regions. In this chapter, we
apply our new, unbiased technique to a wider range of phases and find a new phase,
the a-orthorhombic structure, to be lower in energy at high pressure than any phase
reported previously and to have important potential implications for the observed
semiconductor-metallic phase transition associated with the superconductivity.

We proceed as follows: Section 2.1 describes the various methods that can be used
to study systems under high pressure, specifically, the pros and cons of each method.
Then our method is developed and tested in Sections 2.2 and 2.3. Finally, we will

apply our approach to study the high pressure phases of boron in Section 2.4.
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2.1 Methods

Within current state of the art electronic structure calculations, various approaches
can be taken, mainly differentiated by the choice in basis set. Each set has its own
benefits and disadvantages. Some of the most common basis sets are the plane-
waves [45], Gaussian [48], linearized methods [86, 2], and wavelets [7]. We will now
go over the various basis sets and focus on problems that may occur when each is

applied to high pressure systems.

The Gaussian basis set expands the wave functions in terms of linear combina-
tions of Gaussians designed to represent the atomic orbitals well. Such a basis set
has the advantageous property of expanding the wave functions in a small number
of computationally efficient basis functions. There are, however, some drawbacks.
Notably, such a basis set cannot be improved systematically. This does not tend to
be a practical problem for normal systems; however, such a problem can manifest
itself for a system studied at various volumes, as the basis set will span a different
percentage of real space for systems whose volume differ appreciably. Because it is
unclear of how to convergence such a basis set systematically, it is unknown whether
standard Gaussian basis sets will perform well at high-pressures, particularly because
such bases are biased toward orbitals constructed at ambient conditions. It is thus
unclear if such a bias can hamper calculations at high pressures, where unknown

phenomena may occur.

Linearized methods generally fall under one of two methods: the Linear Muffin Tin
Orbital (LMTO) [2] method or the Linearized Augmented Plane-Wave (LAPW) [86]
method. Of these two, the LAPW is more accurate and we will therefore concentrate
on this approach. When studying systems under high pressure, the most notable
problem that can occur with the LAPW method is the treatment of the core elec-
trons. At high pressures, certain core electrons need to be promoted and treated as
valence electrons, and care must be taken with this method when promoting such
electrons. Two widely used approaches to promote such electrons are the multiple

window approach [86] and the localized orbital approach [86]. Both of these ap-
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proaches could be particularly problematic for high pressure systems, particularly for
first row elements. The multiple window method is not guaranteed to give a good so-
lution [86], as different basis sets are used to expand the core and valence electrons. In
the localized orbital approach, this problem is resolved by using one energy window.
However, problems may exist, as there are very large energy separations between the

valence bands and the core bands, particularly for first row elements.

The plane-wave approach, when used with the pure Coulomb potential, has the
advantageous property that convergence of the energy can be systematically improved
in a stable and controllable framework. Moreover, such a basis is unbiased and can
therefore represent core and valence regions on an equal footing. However, such an
approach has only been used for the simplest systems, such as hydrogen [10, 66, 11]
and lithium [11] as it requires a huge number of plane-waves to properly account
for the singular Coulomb potential and the exclusion principle. Therefore such an

approach is not practical beyond the simplest systems.

The pseudopotential approach had been developed to circumvent the above dif-
ficulties with plane waves bases [33, 50, 74]. However, pseudopotentials are poorly
suited for studying high pressure systems because, although some key properties are
known [33, 95, 32|, the transferability of pseudopotentials is not systematically un-
derstood, particularly when the pseudized regions occupy a large percentage of the
available volume as they do at high densities. More fundamentally, apart from non-
linear core corrections in the exchange-correlation potential {55, pseudopotentials
completely ignore the core region, which have been shown to play a vital role for high
pressure systems [67, 68].

One of the most successful techniques, which keeps the benefits of the pseudopo-
tential approach and can allow for core electrons and can recover details of the true
wave function in the core region, is the Projected Augmented Wave (PAW) [13]
method. This method has been used to study Lithium and Sodium [67, 68] under
high pressure. Such a method is quite elegant; however, it must be constructed from
a referenced atomic state. Moreover, the construction of such a potential still requires

a real space cutoff. In order to effectively study high pressure systems, such a cut-
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off should be made quite small, so that the pseudized regions do not overlap. The
approach then looses many of its computational benefits.

The final type of basis set of which we are aware in the study of solid state systems
are wavelet bases [7]. Such bases have the attractive property of using multi-resolution
analysis to provide the necessary resolution in each region of space in a systematic
and mathematically stable manner and thereby efficiently handle valence and core
electrons exactly. However, such a basis set has just come to the fore and has not yet
been adopted by many groups.

‘We now describe a technique which has the advantage of using a plane-wave basis
without pseudopotentials. This method has the added benefit of greatly reducing
the size of the plane-wave basis set by generating the important high momentum
states through perturbation theory. Below, we show that a properly constructed
perturbation expansion can be quite accurate in this context. Finally, we show that
this method can easily be implemented in current conjugate gradient techniques and

therefore can be used with highly optimized minimization techniques.

2.2 Perturbative Derivation

In the next two sections, the method will be derived. To gain insight into this method,
it will first be derived for the simple case of directly diagonalizing the single-particle
Hamiltonian. Then, connections will be made to previous approaches [56]. In Sec-
tion 2.3, the procedure will be implemented into the conjugate gradient framework,
so that optimized calculations can be performed. Technical details will be discussed
in Section 2.3.3. For simplicity in the formal developments below, we sample the Bril-

louin zone at the Gamma point. Adding in k-point dependence is straightforward.

2.2.1 Derivation for fixed potentials

Standard electronic structure calculations seek for the minimum of an energy

functional E[{C}] as a function of a set of basis function coefficients {C} subject
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to an orthonormality constraint. The variational derivative of this energy functional

and constraint then lead to the standard eigenvalue problem
HC =¢C, {2.1)

where H is the single-particle Hamiltonian (fixed and not updated self-consistently
for the discussion in this section), C is an eigenvector and e is the corresponding eigen-
value. Note that we here assume that the basis set is orthonormal as our objective

here is to work with plane waves.

Separating the coefficients into two groups, those describing behavior in the low
spatial frequency space P as CF and those describing behavior in the high spatial
frequency space @ as C%, also separates the couplings which H describes into four
groups, couplings from low-frequency to low-frequency H"'?, from low- to high- fre-
quency H9F, from high to low H”% and from high to high /2%, The above equation

then decomposes simply into

HPPCP  HPRC? = CF (2.2)

HOPCP + 9909 = 9. (2.3)

Solving for the ()-space components of the eigenfunction in terms of the P-space

components leads to
1

Col=——n —
HRY — ¢

HeFCP, (2.4)
where the fraction means the inverse of an operator.

A standard technique [28, 56, 54] is to substitute Equation (2.4) into Equa-

tion (2.2) in order to generate an effective eigenvalue equation for the P-space,

1

PP PQ
(H™"+H p—T]

HOPYCFP = <CF. (2.5)

This equation reduces the problem to the P-space only. If standard diagonalization

techniques are used, this reduces the time to diagonalize the Hamiltonian by a factor
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H°? which we may then approximate to be the kinetic energy operator HY® whose
a, 3 component is

1.
1% = LG, (2.6

Here 8, 5 is the Kronecker delta and Gisa reciprocal lattice vector, and atomic units

have been assumed.

In principle, the eigenvalues appearing in the left side of Equation (2.5) must
be calculated self~consistently, but this leads to difficulties. Each eigenstate sought
then sees a different Hamiltonian and orthonormality is lost. Alternately, in practice
one employs on the left-hand side a constant, approximate ¢ which one hopes to be
appropriate for all desired eigenvalues. For us, neither approach is satisfactory. To

circumvent these difficulties, we linearize C? in terms of the eigenvalue

a)% (2.7)

Note that in a plane-wave basis such an expansion will converge quickly, as the cutoff

Substituting Equation (2.7), to linear order in €, into Equation (2.2), gives an

effective generalized elgenvalue equation,

(HP? + HINHGP ~ coor (2.8)

29



Here

1
eff __ _ gPQ QP
HS! = ~H g H (2.9)

is the effective single-particle Hamiltonian and

1 1

— PQ
O=1+H HO9 99

HEP (2.10)

is a positive-definite overlap matrix. This equation will generate errors of order
(¢/ET)? in the eigenvalue, where EF is the cutoff energy for the P-space. We below,
we show that this truncation error proves to be a good measure of the error in the
energy per atom. Thus, our method provides for accurate a priori predictions for

transferability errors.

In addition to computing the eigenvalue spectrum, we often require access to
the eigenstates, particularly for density functional theory calculations which require
self-consistent solution of the electronic states within a potential dependent upon
those states. Calculation of the self-consistent potential requires not only the P-
space components CT from (2.8) but also the Q-space components. The most direct
choice for generating the C“ is to use Equation (2.7); however, we wish to eventually
apply this technique to the conjugate gradient method and defining C? as in Equa-
tion (2.7), no longer preserves orthonormality for the full eigenvector set {C} and

post-reorthonormalization can make the conjugate gradient procedure unstable.

To avoid these difficulties, we note that the solutions to the generalize eigenvalue

problem (2.8) automatically satisfy

& = citoct
1

p po 1 p
_ Pt Q- _por\ P
C (1 0™ g gaall ) C!

where the subscripts indicate the coefficients for individual states 7 and j and we have
substituted the definition (2.10). Regrouping terms, we find that identically
Pt P 1 PQAP ! 1 PQ AP
&; = Cy'Cy + H"™CY HYCCr ),

- g9° - HO%

o] o]
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so that the set of complete states {C'} will be exactly orthonormal provided we make

the identification,

CcY = —H—LQHQPOP, (2.11)

which is nothing other than (2.7) truncated at zeroth order. We thus conclude that to
avoid issues of orthonormality to allow simple implementation of conjugate gradient
techniques, one must construct C9 at this order. Accordingly, we employ (2.11) as

the construction for C% throughout the reminder of this chapter.

2.2.2 Connections with Lowdin Perturbation Theory

To carry out full density-functional calculations based upon the results from the
previous section, one in principle first would solve (2.8) using direct diagonalization
techniques to find C¥ and then construct C? from (2.11). Next, from the wave
functions, one would update the charge density, Hartree and exchange-correlation
potentials, recompute HFF, H¢/f and ©. Finally, one would iterate this procedure
to self-consistency. As this approach is quite similar to the Lowdin perturbation
theory [56] which was used in the mid 1980’s by a number of groups [99, 114] with
regard to electronic structure calculations, this section briefly reviews the Lowdin
approach as described in Reference [99] and discuss the major differences between that
approach and ours. The following section, Section , shows how conjugate gradient
techniques may be applied directly to our approach but not to Lowdin perturbation

theory.

Lowdin perturbation theory also decomposes behavior into high and low momen-
tum plane-wave states. This approach also solves an eigenvalue problem UP¥C¥ =

¢CT for a renormalized Hamiltonian UF? similar to that of Equation (2.5),
(2.12)

Self-consistency is reached by calculating the charge density either with C¥ alone, or
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with both C¥ and C9, with as

1
C9 = ——zU°PCP. 2.13
. HOQQ ( )
Here U%F is similar to UFF, except that the first index is in the -space. For the

reasons discussed above in Section 2.2.1, if C? is employed, then the wave functions

must be re-orthonormalized.

In practice [99], the value employed for € in Equation (2.12) depends upon the
physics under exploration. Thus, prior to the calculation, the shape of the band struc-
ture should be approximately known and should have a relatively narrow band-width,
requiring great care for the study of systems under unusual physics conditions such
as extremely high pressures. Moreover, the approximation of € by € is always a first
order error in the solution to the eigenvalue. This can simply be seen by Taylor ex-
panding Equations (2.12) and (2.13) in a similar fashion as Equations (2.7) and (2.8).
If € is close to ¢, then this error is small as is the next order. However, if there
is a large discrepancy between € and €, then these errors are manifestly first order.
This is particularly troublesome for calculations including core electrons where the
core states energies have large separations from the valence states. We thus expect
Lowdin perturbation to be useful primarily only within a pseudopotential framework.
In our approach, by contrast, all band energies are treating on an equal footing to
second order. This is because Equation (2.8) includes all terms through first order by

shifting some terms to the right-hand side to form the generalized eigenvalue problem.

The great advantage of Lowdin perturbation theory for its time is that it reduces
the time for standard diagonalization from (N” + N9)3 to (NF)3. However, in the
mid 1980’s standard diagonalization techniques were dropped in lieu of much more
efficient Car-Parrinello [17, 71] and conjugate gradient [96, 71, 9] techniques, which,
being based on minimization, require the the eigenvalue equations to represent the
variational derivative of some energy functional. It is not clear that the Hamiltonian
used within Lowdin perturbation theory is a good approximation to the variational

derivative of an energy functional. What particularly complicates this is the depen-
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dence of the Hamiltonian on the eigenvalue and that the unfolding of the wave vector
into the @-space does not preserve orthonormality. Therefore, it is unclear how one
would employ Lowdin perturbation theory in conjunction with such optimized mini-
mization techniques. The next section demonstrates that, in contrast, our approach
represents a very good approximation to the variational derivative of an energy func-
tional and, because it preserves orthonormality, can be used directly with optimized

minimization techniques.

2.3 Applications To Conjugate Gradient Techniques

We first discuss applicability to a traditional conjugate gradient techniques in Sec-
tion 2.3.1 and generalize to the analytic continued approach [9, 40] in Section 2.3.2.
Section 2.3.3 gives details of our computational implementation and Section 2.3.4
provides specific computational studies of the various approximations and the con-

vergence of the approach.

2.3.1 Application to Traditional Conjugate Gradient Tech-

niques

Again, we seek the minimum of an energy functional of the form FE[{C}] as a function
of a set of wave function coefficients {C}. To formulate the separation into low-
and high- spatial frequency components as a variational principle associated with an
energy functional, we express the energy functional directly in terms of the {CF} and
{C?} before taking any variations, E[{C¥}, {C¥}]. We now seek the minimum of

this functional subject to the orthonormalization condition
PtoyoP —

Here O is an overlap matrix, which should give the correct overlap matrix at the
minimum of the energy functional. Section 2.3.3 will describe the overlap matrix that

we use in our calculations. Finally, the {C?} are left unconstrasned.
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The sets {CF} and {C?} are treated as independent variables. However, at each
{CP} point, the functional is directly minimized with respect to the set {C?}. The

gradients are

% HPPCP 4 HPOCQ — cOCP (2.15)
and
% =0= H@9’CT  H99C?, (2.16)

where the second term is set to zero, emphasizing that the energy functional is mini-

mized with respect to {C?} at each point {CF}.

The flowchart in Figure 2-1 describes the minimization procedure within the tradi-
tional conjugate gradieﬁt framework. Given a point at {CF} and {C¥}, calculate the
energy. Next, calculate the gradient for the set {CF}, Equation (2.15) or (2.18), and
hold the set {C?} fixed. Minimize the energy functional for the set {CF} only, along
the conjugate direction {XF}. After the functional is minimized along this particular
direction, the functional is then minimized with respect to {C?}, Equation (2.16),

by setting
1
HQQ

o

c9=— HOPCP, (2.17)

Finally, this process iterates until the energy functional reaches its minimum.

In calculating C?, we have again approximated H%? by H2?, and therefore do not
exactly minimize C'?. Although the form for C¥ is not that which exactly minimizes
our functional, we have found the approximation to be sufficiently close that the
conjugate gradient technique is quite stable and efficient. Using such a form for C¥,

the gradient for C¥ indeed becomes

OF
ackt

HFPCP + HYICE — eOCY, (2.18)

where H¢// is as defined in Equation (2.9). Thus, we find that, unlike the Léwdin per-
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Figure 2-1: Flow chart for application to traditional conjugate gradient techniques.

turbation theory approach, the prescription in Section 2.2.1 represents a set of equa-
tions to represent to a very good approximation a variational principle and therefore
to be amenable to solution with conjugate gradient methods.

To underscore the effectiveness of conjugate-gradient methods for use within our
framework, Figures 2-2 and 2-3 show the iterative convergence of the total energy
within the local density approximation (LDA) [72] to density-functional theory for
cubic hydrogen and an eight atom cell of fcc carbon, respectively. The calculations use
the preconditioner of Teter, Payne and Allen [96], cutoffs of Ef = 8H and E? = 16 H
for hydrogen and EF = 30 H and E¥ = 60 H for carbon, and the overlap operator
O from Section 2.3.3. The hydrogen calculation uses the pure Coulomb potential
and an 8 x 8 x 8 Monkhorst-Pack [64] sampling grid, and the carbon calculation uses
the Goedecker, Teter and Hunter pseudopotential [31] with simple I'-point sampling.
Finally, the cubic lattice constants were 2.753 bohr and 6.746 bohr for sc hydrogen
and fcc carbon, respectively.

[t can be seen that the conjugate gradient technique is stable and that fluctua-
tions occur only in the final stages when the error is AE/E,;n = 1071° well within

acceptable convergence. These fluctuations are associated with the fact that H3% is
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Figure 2-2: Energy error versus iteration number for the new method, within the
conjugate gradient framework for simple cubic hydrogen when using the Coulomb
potential.

Tteration

Figure 2-3: Energy error versus iteration number for the new method, within the
conjugate gradient framework for fcc carbon when using a nonlocal pseudopotential.

used instead of H2@. In general, we have found that the stability of the conjugate
gradient does not depend on the approximation for C?, but mainly depends on how
and when we update C?. Table 2.1 compares the error in the energy per atom with
the new approach, with cutoffs stated above, to that with the traditional approach,
with cutoff E*¢ = E. The fully converged results are considered to be that of
the traditional approach with energy cutoff E™ = E2. The results for the new

procedure show a vast improvement.

As noted above, one of the advantages of our approach is that it allows for an a

priori estimate of the transferability errors. We define this ¢ransferability prediction
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AE,.(Ec=EN) | AE, ., | AEPredeied
Hydrogen (sc) 9mH 1mH 2mH
Carbon (fcc) 16mH 0.3mH | 02mH

Table 2.1: The error in calculating the energy per atom for simple cubic hydrogen
and fcc carbon. The first column shows the error in energy when using the tradi-
tional approach. The next column shows the error in energy when using the new
approach. The final column shows the transferability prediction of the new approach,
Equation (2.19).

as

AEﬁZ;diCt = Z Estates (Estates/Ef)2a (219)

states
where the sum is over occupied states. For the specific cases of the present two
calculations, our prediction gives AFPredict ~ (.5(0.5/8)? ~ 2mH for hydrogen and

new

AEPedict o 2 % 0.5(0.5/30)2 ~ 0.2mH for carbon, where for simplicity we consider
only the 2 s-states. These predictions also appear in Table 2.1. The predicted values
are very similar to AF,.,,, demonstrating that this prediction, which may be applied
in any environment, gives sensible estimates of the errors.

Sections 2.3.4 and 2.4 show that in practice the present method is particularly

beneficial for all-electron calculations of first row elements, where the reduction in

the cutoffs is much more dramatic than the cases presented here.

2.3.2 Application in the Analytic Continued Approach

Our procedure can be easily incorporated into the analytic continued conjugate gradi-
ent approach [9]. In such an approach, constrained variables, {C'}, are not minimized,
but unconstrained variables {Y'} are minimized. This approach allows for much bet-
ter convergence, as all directions are allowed in the search space when minimizing the
energy functional [9].

In the analytic continued approach, the sets {C} and {Y'} are related by
C=Yu:Vi (2.20)

where bold faced quantities refer to the expansion coefficients for all states gath-
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ered into matrices, each of whose columns represents a particular state. Here, V
is a unitary transformation which allows for subspace rotations [9, 40] and v is the

expectation value of Y with respect to the overlap matrix O,
u=Y'OY. (2.21)

Note that Equation (2.20) is constructed so that the C automatically satisfy the
orthogonality constraint (2.14), as direct substitution verifies. This approach allows
the total energy to be found by minimizing the energy F[Y] directly using standard,

unconstrained conjugate-gradient techniques.
In our case, the gradient becomes

oE
oY Ft

(1 — OCPCPY(HFPP + HHCP RV
+ OCPVQ(VI[H, F]V), (2.22)

where H®// is as defined in Equation (2.9), F is a diagonal “filling” matrix composed
of the state occupancies, O is the overlap matrix, defined similarly to Equation (2.10),

and Q() is the Q-operator [9, 40], defined by

: _ wtaw), .
(WQAW),, = =

where W is the unitary, column order, eigenvector matrix for 4 and p are the cor-
responding eigenvalues. In Equation (2.22), the Q-operator operates on the matrix
VI[H, F)V, where [H, F] is the commutator between the filling matrix F and the

subspace Hamiltonian matrix,
0 = CPI(IPP + He/)CP.

Finally, the solution for C? becomes

1

Q_ _
%=~

HAYPCP. (2.23)
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We note that H¢// in Equation (2.22) acts as a pseudopotential generated directly
from the crystal environment and not from a referenced atomic calculation which one
must hope to be transferable. The overlap matrix O acts to preserve the correct
orthonormalization for the P-space wave function. This overlap matrix is similar to
those found in the Ultra-Soft Pseudopotentials (USSP) [98] and Projected Augmented
Wave [13] methods. In those methods, the softening procedure is generated in a real
space formalism, from a specific reference state, and depends on the choice of a
cutoff in real space cutoff. In this work, the softening is done in a momentum space
formalism without artificial core radii, making the procedure ideal for high-pressure
studies where the loss of distinction between core and valence regions is precisely the
physics of interest. As a final advantage of the present approach, Equation (2.19)

gives a direct measure of transferability errors.

2.3.3 Computational details

We will now describe briefly efficient calculation of specific terms in our proce-
dure. The text focuses on all-electron calculations as these are of interest in the
present work. Appendix A discusses details for the use of this approach with hard

but transferable Kleinman-Bylander pseudopotentials.

Form for overlap matrix

The overlap matrix has the form

11
0 =1+ (H2+HE) 5T (a2 + B3, (2.24)
o o

where ;};a is the inverse of the kinetic energy, H;,, is the contribution from the
local ionic potential and Hj g, is the contribution from the Hartree and exchange-
correlation potentials, which depends on the density. There are a number of viable
options for implementing (. We have explored both the option of fixing Hj, ., and

thus O to some value and the option of updating it self-consistently.
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The benefit of holding the overlap matrix fixed is that

00

so that Equation (2.15) is the exact variational derivative of the energy functional.
Appendix A further shows that such a fixed operator makes efficient implementation
of Kleinman-Bylander pseudopotentials possible. A clear choice for a fixed overlap
matrix is to hold Hj, 5 in Equation (2.24) to that of the “free-atom” crystal, a crystal
whose charge density is just the superposition of the charge densities from isolated

atoms. In such a case, the overlap matrix becomes

1 1
_ cr—at,PQ cr—ot,QP
O = 1+H et , (2.26)

where Her—obF@ = ff ,f:c“t’PQ-I-HiI;? and H ;)T;cat’PQ is Hartree and exchange-correlation
potential for the “free-atom” crystal. One possible cause for concern when using
a fixed overlap matrix is that the orthonormalization is no longer exact (so that,
for instance, the electronic charge will not be precisely conserved) because H%¥ in
Equation (2.23) will differ from its free-atom crystal value. However, we have found

this to never affect the convergence of the calculations and to yield quite accurate

results, as Figures 2-2 and 2-3 and Table 2.1 show.

Alternately, exact orthonormalization can be preserved when using a fixed overlap

operator if one chooses to redefine C? as
1
CO = — g HT®9FCP, (2.27)
o

While this preserves orthonormality among the states, it does give a slightly different
approximation to C9, which causes a slight change in the H¢/f which should be used
in (2.8). We find, however, that ignoring this discrepancy makes no practical differ-
ence in the final results. With this alternate approach, the convergence is quite similar
to those of Figures 2-2 and 2-3, and the energy per atom is within 12 H, as compared

to using Equation (2.23) for C2. Another benefit of using the form Equation (2.27)
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comes when using non-local pseudopotentials, as this form is computationally more

efficient. (See Appendix A for details.)

Finally, the H®/f which should be used with the construction in Equation (2.27)
is

1
eff _ _ z7PQ cer—at,QP
HY = —H —(?QH . (2.28)

Maintaining this consistency comes at the cost of introducing a slightly non-Hermitian
Hamiltonian. Despite this, we again have not experienced any practical problems

working with this form.

The second option for implementing the overlap matrix is to use the Hartree
and exchange correlation potentials self-consistently. When doing so, the gradient
of the total energy involves terms including the derivative of the overlap matrix.
Unfortunately, we have yet to find a method for calculating these contributions to
the gradient which does not require multiplication by matrices of size N¥ x NF, a

completely impractical feat for all but the most trivial of systems.

We have found somewhat to our surprise, however, that updating the overlap
matrix self-consistently while completely ignoring these contributions to the gradient
that, despite that with this approximated gradient, the gradient technique remains
stable and maintains its good convergence, as Figures 2-4 and 2-5 show. In these
calculations, H,ff;c’” was used only at the first iteration to initialize the calculation.
After that, the overlap was updated self-consistently and the gradient was always
calculated ignoring the aforementioned contributions from the changes in O. The
discontinuity in Figure 2-4 is a result of the fact that the error in the variational
derivative is larger than before, as H¥? and H*~% were only minor discrepancies.

Perhaps a more stable approach would be to use HF" % for a number of iterations

h,zc
and then restart the conjugate gradient techniques using the self-consistent overlap
matrix. In any event, we find the final energy per atom again to be within 1 H of

all of the approaches above.
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Figure 2-4: Energy convergence versus iteration for simple cubic hydrogen when the
overlap matrix is updated self-consistently, but its variational derivative is not taken

into account.
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Figure 2-5: Energy convergence versus iteration for fcc carbon when the overlap
matrix is updated self-consistently, but its variational derivative is not taken into
account.
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Numerical implementation

Specifying the mathematical form of the overlap matrix in one of the forms from the
previous section and thus also the forms for C% and H®/ leaves the task of evaluating
these and related quantities numerically. This section first discusses efficient methods
for this evaluation and then describes how to build conjugate gradient minimization
from the ability to perform these evaluations.

The term OY? must be calculated for defining u, Equation (2.21), and in the
gradient, Equation (2.22). The most efficient method for calculating this term is to
perform four Fourier transforms per electronic wave function, always multiply terms
in the space in which they are diagonal. We find it useful to keep this term in storage
so as to only calculate it once in a conjugate gradient loop. Such storage is minimal,
as will be seen.

To reduce the time spent in Fourier transforms, we make the approximation of
using a slightly smaller Fourier transform grid than might normally be used. The
gradient, the C?, and the overlap matrix only involve momentum transfers of P+ Q.
Higher momentum transfers do not occur because H9?9 is approximated by HZ?,
which is diagonal. Accordingly, rather than Fourier grids of size 2¢), when employ
grids of size P + (). We find that using the full Fourier transform grid decreases the
energy minimally: for hydrogen and carbon doing so decreases the energy per atom
by only 0.5 H and 0.8y H, respectively.

The reduction of the Fourier transform grid to size P+ () from a size of 2¢), which

would be needed in a non-perturbative approach, saves significant storage in the ratio

1 3
FFT 1 Ep\: Ep Ep\:?
— == |1+3| = — — . 2
FFTpy 8 ( N (EQ) +3(EQ)+(EQ (2.29)
In our boron calculation, this is a factor of nearly three, which can make the difference
between being able to perform the calculation on a workstation or requiring parallel
computing capability.
We find the following procedure to be very stable for performing conjugate gradi-

ent minimization. First, given C¥ generate C? according to Equation (2.23) or (2.27).

43



Next, calculate the total energy and the gradient for Y¥ at this point from Equa-
tion (2.22). Holding C® fixed, minimize CP along the search direction, and generate
a new CF, and iterate to convergence.

This procedure for solving for the P-space and generating the (J-space, when
needed, is very beneficial for plane-wave calculations when using either the Coulomb
potential or a very hard, yet highly transferable, pseudopotentials because, generally
for such calculations the computational bottleneck is memory and this approach re-
quires permanent storage only in the P-space. (The Q-space wave functions for a
particular band can be generated only when needed.) Moreover, in terms of compu-
tational time, a savings of 1 + Ng/Np for all direct matrix multiplications occurs,
and the P-space approach is therefore also more efficient in terms of computational

time for systems with many bands.

2.3.4 Application to the Coulomb Potential

To demonstrate the benefits of our approach, this section presents all-electron cal-
culations for fcc boron at two different volumes (V; = 3.83 Adand V, = 35 A3),
exploring covergence with energy cutoff, usage of memory and computational time,
and our ability to predict transferability errors. We carry out all calculations within
the local density approximation with ten special k-points in the reduced Brillouin
zone and a Fermi surface integration temperature of 7" = 0.0037 H.

Figure 2-6 shows the convergence of the energy as a function of cutoff for the
direct plane wave approach. The data in the figure demonstrate that the traditional
plane-wave approach converges quite slowly, requiring an energy cutoff of over 12000
Ryd to bring the total energy to within 0.1 eV per atom. However, as is well known,
the higher-energy plane wave states provide convergence mostly to the inert region of
the core near the nucleus and thus physically meaningful energy differences converge
much more rapidly than the absolute total energy. As a more meaningful reference,
Figure 2-7 shows the convergence of the energy difference between volume states V)
and V; using the direct plane wave approach.

Figure 2-8 shows the convergence with /’-space cutoff of the total energy when
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Figure 2-6: Energy per atom as a function of cutoff energy for fcc boron, when
using the Coulomb potential in the traditional plane-wave approach. The squares
correspond Vi = 3.83 A® and the circles correspond to V; = 3.5 A3,

using the perturbative approach with a Q-space cutoft of 7000 Ryd and employing
HY “ for construction of @. The figure shows show that there is almost no difference
in the total energy predictions (circles and squares for the two volume states) when
reducing the cutoff in the P-space to 3500 Ryd and that reducing the P-space cutoff
down to 1000 Ryd gives just as accurate total energies as a 6000 Ryd cutoff in the
traditional approach. The figure also shows that the transferability prediction based

on the two core electrons (diamonds) gives the correct order of magnitude and is

never off by more than a factor of three in this case.

Figure 2-9 shows the performance of the new approach in computing energy dif-
ferences. Energy differences in the perturbative approach tend to fluctuate slightly
and lack the monotonic behavior which the traditional approach exhibits due to loss
of ability to describe physical changes in the high momentum states. Perturbation
theory recovers these changes nearly perfectly and so the resulting error in energy
difference is smaller and loses systematic behavior. From these results we conclude
that a a cutoff in the P-space of 1200 Ryd and of 7000 Ryd in the @-space is more

than suflicient to predict accurate energy differences and to capture any unforeseen
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Figure 2-7: Energy difference as a function of cutoff for fcc boron, when using the
traditional plane-wave approach. The volumes per atom are Vi = 3.83 A% and V, =

3.5 A3,
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Figure 2-8: Energy convergence versus P-space cutoff, using the new method, when
EQ = 7000 Ryd. The squares correspond to V; = 3.83 A?, the circles correspond
to Vo = 3.5 A® and the diamonds correspond to the transferability prediction, Equa-
tion (2.19). The horizontal lines correspond to the energy calculated using the tradi-
tional approach at a cutoff energy of 7000 Ryd.
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Figure 2-9: Energy difference in the new approach as a function of the P-space cutoff.

physical processes which come into play.

To make a direct comparison of computational savings, we note that the total
energy and energy difference, when using the new method with EX = 1200 Ryd and
ES = 7000 Ryd, is very close to the traditional approach with energy cutoff Etred —
6500 Ryd. At these cutoffs, the memory savings from the perturbative approach is
a factor of 12.5 for the wave functions and 2.7 for the FFT’s. The time for matrix
multiplications decreases by a factor of 5.4 and for Fourier transforms by a factor of 2.7

which largely compensates the need for a few more Fourier transforms in generating

C? and OYY.

2.4 Application to High Pressure Boron

As a physical application, we study the high-pressure phases of boron, whose rich
physics remains mysterious. Boron is known to exhibit a semiconducting to metal-
lic phase transition at = 170 GPa [27], and under high pressure and low tempera-
tures, boron superconducts [27]. Previous theoretical studies of Boron under pressure
include that of Mailhiot et. al. [58], who used both the LMTO method and the

pseudopotential method. They have found their pseudopotential results to be more
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reliable and predict a sequence of structural phase transitions with increasing pres-
sure from the icosahedral structure (0-12) to a body centered tetragonal structure
(bet) to the face-centered cubic structure (fcc). They find the a-12 — bet transition
to occur at 210 GPa, and established this as an upper bound for the semiconducting

to metallic phase transition.

To calculate the energy for different phases in boron we use our perturbative
potential approach with the analytically continued conjugate gradient approach as
described in Section 2.3 with O, C? and Hef/ calculated as in Section 2.3.4. Al
calculations employ the local density approximation with the parameterization of

Perdew-Zunger [72] to the Ceperley-Alder [19] exchange-correlation energy.

We consider a wider range of structures than explored previously, not only fec,
bet, and a-12 structures but also orthorhombic boron with the a-gallium and -
gallium basis. We consider these orthorhombic structures because they are the struc-
ture for gallium, another Group IIT element, which has as its ground-state structure
a-orthorhombic at low pressures and B-orthorhombic at high pressures [23]. Below,

we show that these structures play quite important roles.

For the bet structure, we use the same c/a = 0.65 ratio as was used in Refer-
ence (58], where this ratio was shown to give the ground state at a volume ~ 3.91
A3 within the pseudopotential calculation. We have tested this ratio for a number of
high pressure states and have found the ideal ratio to remain constant over a wide
range of pressures. Hence, we hold c¢/a at this value for all calculations in our study,

and thus our bet energies results represent a quite close upper-bound.

For the a-12 structure, we use the structure listed in Table 5 of Reference (23],
the same used by Mailhiot, ef. al. [58]. This structure is rhombohedral with angle

@ = 58.06°. The basis locations for the atomic positions are

+(zy21 21 T121T1; Z1T1T0; TaTp29; ToZoTo: ZoToTs),

where 7, = 0.0104, 2, = —0.3427, z5 = 0.2206 and Zz = —0.3677. The space

group for the a-12 structure is R3m. Note that we may regard this a-12 structure
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as representative of the low-pressure states of boron which are all governed by the

icosahedron.

For the orthorhombic structures, we use the Gallium structures as found in Wyck-
off’s book [109]. For the a-orthorhombic structure, we hold the lattice vector ratios

to a/b = 0.99867 and a/c = 0.590035 and place the atomic basis at coordinates
+(0,u,v; 1/2,u+1/2,7; 1/2,u,v+1/2; 0,u+1/2,1/2 — v),

where u = 0.0785 and v = 0.1525. The space group is Cmca. For the -orthorhombic
structure, we hold the the lattice vector ratios at a/b = 0.3567 and a/c = 0.9148 and

place the atomic basis at
+(0,u,1/4; 1/2,u+1/2,1/4),

where u = 0.133. The space group is Cmem. Note that we do not optimize the lattice
vector ratios for the orthorhombic structures for boron but here hold them fixed to
that of gallium at standard conditions. Therefore, the energies which we report for

these structures should be regarded simply as upper bounds.

2.4.1 Convergence

We now establish plane wave cutoffs for our specific study which will both make for
practical calculations (particularly for the a-12 structure) and give accurate structural
energy differences. For this we shall compare the energy per atom as a function of
volume for the fcc, bet and al2 structure. As these are convergence tests, we employ
relatively modest Brillouin sampling: 4x4x4, 4x4x6, and 1x1x1 (the I' point)
meshes for the fce, bet and @12 structure, respectively. To facilitate integration over

the Fermi surface, we employ an electronic temperature of kT ~ 0.0037 H.

Figure 2-10 summarizes the results for the three structures when using the plane

wave cutoffs from Section 2.3.4, EY = 7000 Ryd and Ef = 1200 Ryd. The curves

49



€I

o fcc (1200-7000)
» bct (1200-7000)
» ¢ o 12 (1200-7000)

Energy per Atom [eV]

Volume per Atom [A3]

Figure 2-10: Energy per atom versus volume per atom for the fcc (circles), bet (stars)
and «-12 (diamonds) structures. Energy cutoff for the P-space is 1200 Ryd and for
the Q-space 7000 Ryd. The curves are fitted to Equation (2.30).

from the figure are simple fits to
E=ay+a, V40,V gV (2.30)

Having established previously that the above cutoffs give extremely good energy
differences, we then searched for possible reductions in the cutoffs which continue to
reproduce these results accurately. We find reducing the cutoffs to 200 Ryd for the
P-space and 1200 Ryd for the @Q-space to both lead to efficient calculations and to
give highly accurate results. Figure 2-11 compares the results at this reduced cutoff

(data points) with the previous results at the higher cutoffs (curves).

As a comparison, we also calculate the energy when using a traditional, direct
plane-wave approach with a cutoff of 200 Ryd. Figure 2-12 shows a similar plot,
where the points are the plane wave data and the curves represent the fit to the
fully converged results. Note that, although fec structure is fairly well converged
at this low cutoff, there are rather large errors for the @-12 structure. Thus, such
a low cutoff is unreliable for the study of such systems. The fact the low cutoff

represents one structure well and not another demonstrates the unpredictability of
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Figure 2-11: Energy per atom versus volume per atom. The results from new method
using the cutoffs EX'=200 Ryd and F¥=1200 Ryd are displayed as circles (fcc), stars
(bet) and diamonds (@-12). The results from new method using the cutoffs EX=1200
Ryd and E?=7000 Ryd are displayed as lines by fitting the data to Equation (2.30):
fee (dashed), bet (dotted), a-12 (solid).

transferability errors, underscores the need to predict those errors reliably, and places
pseudopotential studies of such systems, which assume that errors in processes at
such high energy scales cancel, in doubt.

Finally, we note that the memory savings of using the new method, with cutoffs
of 200 Ryd and 1200 Ryd, versus the traditional approach, which would require a
cutoff of 1200 Ryd to produce results of similar reliability, is quite substantial, a
factor of = 15 for wave functions and ~ 3 for the FFT box. The time for the matrix
multiplication correspondingly reduces by a factor of 6 and for the Fourier transforms
by a factor of 3, similar to Section 2.3.4. Because of these savings, particularly in
memory, all of our calculations below were possible on a single desktop computer and

there was no need for parallel supercomputing.

2.4.2 Results

Having found appropriate plane wave cutoffs, we next converged both the Brillouin

sampling and the fictitious Fermi temperature. We find that a fictitious Fermi tem-
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Figure 2-12: Energy per atom versus volume per atom. The results from using the
traditional approach with cutoff £=200 Ryd are displayed as circles (fcc), stars (bet)
and diamonds (a-12). The results from new method using the cutoffs EF=1200 Ryd
and E9=7000 Ryd are displayed as lines by fitting the data to Equation (2.30): fcc
(dashed), bet (dotted), a-12 (solid).

perature of kT = 0.001H converges the total energy to a within a few tenths of a
millihartree per atom (0.2mH for the fcc structure). For the fcc and bet structures,
Brillouin sampling on 6x6x6 and 4x4x6 meshes, respectively, suffice to converge
the total energy per atom to within the same tolerance. We then generate meshes for
the remaining structures by maintaining the same reciprocal space sampling density
as closely as possible, resulting in meshes of size 2x2x2, 4x4x4 and 6x4x6 for the

«-12, a-orthorhombic and S-orthorhombic structures, respectively.

Figure 2-13 shows our final results, which are converged to within a few tenth of
a millihartree per atom. Most notably, we find a new phase, the @-orthorhombic , to
be the lowest in energy phase under high pressure. «-orthorhombic boron becomes
energetically favorable over a-12 boron at a pressure of 71 GPa, and remains the
energetically favored phase up to the highest pressures we have studied, which are
over 500 GPa. Although there are other structures in the same icosahedral family for
boron, due to the dramatic rise in energy of the a-12 structure, we do not expect these

alternate structures to have a significantly lower energies. Finally, optimizing the
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Figure 2-13: Energy per atom versus volume per atom, for the fec (circles), bet
(stars), a-12 (diamond), a-orthorhombic (left facing triangles) and B-orthorhombic
(right facing triangles) structures. The results are from the new method using the
cutoffs EF=200 Ryd and E?=1200 Ryd.

lattice vectors ratios for the orthorhombic phases will only make them more favorable.
We, therefore, expect our prediction of a phase transition from the icosahedral family
to the a-orthorhombic structure to be robust.

As a point of comparison to the existing pseudopotential calculations [58], which
had not considered the orthorhombic structures, ignoring those structures, we also
find the sequence of transitions @-12 — bet — fee. Although our value of 194 GPa for
the first of these transitions agrees well with the pseudopotential result of 210 GPa,
our prediction of ~ 475 GPa for the second transition differs substantial from the
pseudopotential result of 360 GPa. This large discrepancy most likely results from
the inadequacies of the pseudopotential to effectively account for the response within
the core. The inconsistent performance of the pseudopotential results underscores
the importance of control over transferability when studying high pressure systems.

Given the availability of high-pressure resistivity data for boron [27], it is inter-
esting to consider the electronic structure of the hitherto unexplored «-orthorhombic
phases for boron. Figures 2-14 and 2-15 show low-resolution plots of the density

of states for a-orthorhombic and S-orthorhombic boron at 250 GPa and 217 GPa,
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Figure 2-14: Density of states for the valence electrons for the a-orthorhombic boron
structure. The straight line corresponds to the chemical potential at k7 = 0.001 H.

respectively, as generated using the Brillouin zone sampling from the total energy
calculations. The plots have low resolution because, as is well known, meshes which
give reliable total energies often are too modest to give detailed density of states.
(Providing smooth curves required a Gaussian broadening of width 1 eV.) The fig-
ures clearly show that, whereas the S-orthorhombic phase is semimetallic, the density
of states of the a-orthorhombic phase clearly exhibits a gap at the Fermi level, even

at high pressures.

Experimentally, the room-temperature resistance of boron decreases discontinu-
ously as a function of pressure at 30 GPa, 110 GPa and 170 GPa [27]. In comparing
our results to these data, it is important to recall that the @-12 structure is only
meant to be representative of the icosahedral family of low-pressure structures and
that, with optimization of the aspect ratios, the curves for the a-orthorhombic and
B-orthorhombic structures will displace to even lower energies. In particular, a down-
ward shift of only 0.15 eV ( 10%) in the a-orthorhombic curve would lower our pre-
diction for the a-12—a-orthorhombic transition from 71 GPa to 30 GPa. Thus, while
further investigation is clearly needed, these data suggest that a structural transition

from the icosahedral family to the orthorhombic phase is a viable candidate for the
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Figure 2-15: Density of states for the valence electrons for the g-orthorhombic boron
structure. The straight line corresponds to the chemical potential at k7 = 0.001H.

resistance discontinuity observed in boron at 30 GPa.

Because Boron is observed experimentally to be metallic above 160 GPa, our re-
sults imply that another, yet unexplored, structure must become energetically favored
at this pressure and be responsible for the highest of the observed discontinuities in
the room-temperature resistance. Whatever this metallic structure is, it cannot be
simple as the fcc, bet, bee and hep structures because none are competitive at high
pressures. It is suggestive, however, that our energetic upper-bound for the metal-
lic S-orthorhombic structure is quite competitive with the fcec and bet structures at
the very highest pressures. Although further calculations would certainly be needed
to verify this conjecture, it is quite possible that the observed discontinuity in the
resistivity at 170 GPa represents a structural transition from the semiconducting

a-orthorhombic to the metallic F-orthorhombic phase.

2.5 Conclusions

We have developed a new method which allows for dramatic reduction in the number

of plane waves needed in all-electron density functional theory calculations or in cal-
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culations with hard, but highly transferable pseudopotentials. The foundation of the
approach is to treat the higher energy plane wave components of the electronic states
implicitly through a perturbative approach, thereby allowing these components to be
recovered quickly only when needed, thus alleviating memory storage requirements
by factors as high as fifteen in practical calculations. The approach lends itself well to
current optimized minimization techniques such as conjugate gradient methods and
has the benefit of allowing quantitative estimates of transferability to new systems
for which there is little or no experience and for which the transferability of pseu-
dopotentials is in question, such as condensed matter at high pressure where effects
in the core region become much more important.

In addition, the first application of this approach has led to new intriguing con-
jectures as to the structure of boron at high pressures. We have carried out the first
ab wnetio calculations of the orthorhombic structures of boron, which we show to play
an important role in the high pressure behavior of this material. We find that, prior
to becoming metallic, boron makes a phase transition from the icosahedral family to
the semiconducting a-orthorhombic structure. The low energy of this semiconduct-
ing phase indicates that the structure of the superconducting phase for boron is more
complicated that the simple monotonic lattices explored to date. While further cal-
culations including optimization of the lattice ratios for the orthorhombic phases are
needed, our results lead to the conjecture that the metallic 3-orthorhombic structure

is a good candidate for the superconducting phase.
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Chapter 3

Elasticity of nanometer-sized

objects

The recent development of artificial free-standing structures of nanometer dimensions
has led to great interest in their mechanical properties. A wealth of experimental
information is now available for nanowires [105, 20, 69, 18] and nanotubes[105, 97,
46], and a computational literature is developing on the subject[112, 36, 57, 77, 62,
63, 15]. Many of these works make use of results from the continuum theory of
elasticity to analyze the behavior of nanometer structures. However, the applicability
of continuum theories to nanoscale objects, where atomic-level inhomogeneities come
to the fore, has yet to be explored in depth.

Rigorous understanding of the elastic properties of nanoscale systems is crucial
in understanding their mechanical behavior and presents an intriguing theoretical
challenge lying at the cross-over between the atomic level and the continuum. In the
absence of an appropriate theoretical description at this cross-over, critical questions
remain to be answered: To what extent can continuum theories be pushed into the
nanoregime? How to provide systematic corrections to continuum theory? What
effects do different bonding arrangements have on elastic response? What signatures
in the electronic structure correlate with the mechanical properties of the averall
structure?

Recently, there have been a number of theoretical explorations of the impact of
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nanoscale structure on mechanical properties[15, 60, 5, 59, 83, 47]. These studies
fall under two broad approaches, either the addition of surface and edge corrections
to bulk continuum theories[15, 60] or the extraction of overall mechanical response
from atomic scale interactions[5, 59, 83, 47]. The latter approach has the distinct
advantage of allowing first principles understanding of how different chemical groups
and bonding arrangements contribute to overall elastic response, thus opening the

potential for the rational design of nanostructures with specific properties.

In coarse graining from interatomic interactions to mechanical response, some
works rely upon the problematic decomposition of the total system energy into a direct
sum of atomic energies[5, 59}, which is always arbitrary and particularly inconvenient
for connection with ab initio electronic structure calculations. The remaining works
which attempt to build up overall response from atomic level contributions|83, 47]
fail to account properly for the Poisson effect. Below we show that failure to account

for this effect leads to surprisingly unphysical results.

This chapter presents the first theory for the analysis of overall mechanical re-
sponse in terms of atomic-level observables which suffers from neither difficulty from
the preceding paragraph. This analysis allows, for the first time, quantitative un-
derstanding of how continuum theory breaks down on the nanoscale, of how to make
appropriate corrections, and of how to predict the effects of different bonding arrange-
ments on overall elastic response. It is well known that the decomposition of overall
elastic response into a sum of atomic level contributions is not unique. It is shown
here, however, that with the additional constraint of dependence of moduli on local
environment our definition of atomic level moduli becomes physically meaningful and
essentially unique when coarse-grained over regions of extent comparable to the decay

range of the force-constant matrix.

For concreteness, we focus on nanowires. However, a brief description will be
presented of how to extend this work to any system with nanometer dimensions.
‘This chapter proceeds as follows. Section 3.1 briefly overviews the present state of
the field. Next, as the traditional concept of Young’s modulus becomes ill-defined

on the nanoscale well defined continuum elastic constants, appropriate for nanowires,
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are presented in Section 3.2. It is then shown how to decompose these constants
exactly into atomic-level contributions based on true physical observables (rather
than individual atomic energies) using a straight-forward application of Born and
Huang’s method of long waves [14], resulting in a decomposition similar in spirit
to those in [83, 47] (Section 3.3). Section 3.4 demonstrates the surprising, radical
breakdown of this approach when applied to nanoresonators. Then, in Section 3.5,
we identify the source of the difficulty as the Poisson effect and furthermore present,
the first local analysis of mechanical response truly applicable to nanoresonators.
The chapter then goes on to applications. Section 3.6 verifies the physical mean-
ingtulness of our newly defined quantities by verifying that they predict response to
modes of strain for which they were not directly constructed. Then, in Section 3.7,
this approach is used to generate a new, much more accurate, relationship between
experimentally accessible observables describing response to flexural and extensional
strain in nanomechanical resonators. F inally, Section 3.8 uses this theory to explore

possible links between underlying electronic structure and local elastic response.

3.1 Overview

As this introduction mentions, the literature pursues two broad categories of approach
to the study of mechanical properties on the nanoscale, either surface and edge cor-
rections to continuum theory or extraction of overall response from the underlying
atomic interactions. In the former category, Reference [15], through scaling argu-
ments and numerical examples, notes that the Young’s modulus for nanomechanical
resonators scales as a bulk term plus surface and edge corrections. Although providing
insight and motivation, this work leaves completely open how one should understand
these corrections from first principles. Reference [60] provides a more rigorous study
based on separating nanoscale systems into continuum surface and bulk regions. This
latter approach allows prediction of changes in stiffness properties as one approaches
nanometer length scales and has the appeal of generating physically motivated cor-

rection terms. However, it relies on the separation of a nanomechanical resonator
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into bulk and surface continua as an ansatz and therefore neither predicts when such

a picture suffices to give an accurate description nor prescribes further corrections.

References [5, 59, 83, 47], on the other hand, start from the more general atomic
level description and then try to unveil physical properties from the underlying atomic
description. It is important to note that these works do not deal directly with
nanoscale systems but rather focus on the effects of nanoscale inhomogeneities in

bulk systems.

References [5] and [59] concern the elastic properties of grain boundaries. These
works define atomic-level elastic moduli as the second derivative of the energy asso-
ciated with each atom with respect to strain and then go on to study the behavior
of such moduli near grain boundaries. The difficulty with this approach is that it re-
quires a breakdown into individual contributions from each atom of the total energy
of any system. Such an atomic energy is neither observable nor uniquely defined and

therefore cannot serve as an appropriate basis for theoretical understanding.

Although References [83] and [47] work from valid physical observables, the com-
ponents of the force-constant matrix, these works focus on bulk-like or mesoscopic
scale systems and fail for nanoscale systems for the reasons which that will be de-
scribed in this chapter. Reference [83] investigates nonlocal elastic constants on the
mesoscopic scale and links them to the underlying atomic interactions. It theﬂ pro-
ceeds to define an elastic constant for each atom and studies the behavi;)r of these
quantities near surfaces and grain boundaries. Reference [47] defines a bond fre-
quency from the force-constant matrix from which it deduces the possibility of bond
rupture during crack nucleation. Neither of the above works properly accounts for
the Poisson effect, which is shown in Sections 3.3, 3.4 and 3.5 to play a critical role in
the elasticity of nanoscale systems. Moreover, straightforward generalization of these
works to include this effect fail for the the same reasons as does the related approach

which is described in Section 3.3.
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3.2 Nanowire rigidities

The prime difficulty in the application of continuum theory to objects of nanometer
cross-section is the loss of the ratio of the inter-atomic spacing to the cross-sectional
dimension as a small parameter. However, so long as the length of an object and
the wavelength of the distortions considered both greatly exceed the inter-atomic
spacing and the cross-sectional dimension, the object properly may be viewed as a one-
dimensional continuum. Although this work focuses on nanowires, the generalization
of the discussion below to nanoscale systems of other dimensionality such as thin
plates or nanoscopic objects is straightforward.

Viewed as a linear continuum, the free energy per unit length f of a nanowire is
[=(Bv®+FR 2 Tr%)2, (3.1)

where u is the linear strain of extension, R is the radius of curvature and r is the
rate of twist of the torsion. The coupling constant F is the extensional rigidity, F
is the flezural rigidity and T is the torsional rigidity. Unlike traditional bulk contin-
uum concepts, the free-energy function Eq. (3.1) is observable in principle and thus
provides an unambiguous operational definition of the rigidities. The use of tradi-
tional continuum concepts, such as the Young’s modulus and the cross-sectional area,
is avoided because such concepts are neither uniquely nor well-defined for nanoscale
systems.

The rigidities in Eq. (3.1) are related to the phonon frequencies through

wra = VE/(Am)g, (3.2)
Wrg = +/ F/()\m)qQ, (33)
VTT O, (3.4)

{l

Wra

where w is the frequency for either the longitudinal, transverse or rotational acoustic
modes, respectively, A is the linear atomic number density, ¢ is the wave vector and

m is the mass of a single atom. (This work focuses on single species systems for
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simplicity.) Finally, I, is defined unambiguously as the mean rotational moment
I, = (1/N.) 3 _(z2 + 32), where the sum ranges over all atoms in the cell, N, is the
number of atoms per unit cell, the wire is assumed to run along the z-axis and the
origin lies on the center line of the wire.

Finally we note, that although the rigidities in Eq. (3.1) are well-defined, certain
traditional continuum relations between them do not hold. Specifically, we show below
that the traditional continuum relationship between the extensional rigidity £ and the
flexural rigidity F', which has recently been used in the analysis of experiments[105,

97, 46, 69], fails on the nanoscale.

3.3 Method of long waves

One reason for breakdown of traditional continuum relations on the nanoscale is that
the continuum perspective course grains away important fluctuations which occur
over distances on the order of the inter-atomic spacing. To overcome this shortcoming
we propose to course grain only on distances over which the underlying interatomic
interactions vary, the decay length of the force-constant matrix. The straightforward
approach to generate such a theory is the “method of long waves” developed by Born
and Huang[14], which is somewhat similar to the approaches which have been used
previously to defects in bulk systems[83, 47]. This section applies the method of
long waves to nanoresonators. The next section shows how, surprisingly, this and
related approaches fail in the study of systems with free surfaces and therefore, in
general, cannot be used to describe nanoscale systems. Section 3.5, describes how to
go beyond the straightforward application of the “method of long waves” in order to
achieve a meaningful description.

Initially longitudinal waves are focused on and, as noted in Section 3.2, we choose
our origin to lie on the center line of the wire, which runs along the z-axis. For
nanowires, the presence of surfaces breaks periodicity in the transverse directions
resulting in a one-dimensional crystal with an extremely large unit cell of length

L. = N_./\, where N, and X are as in Section 3.2. In all expressions below, boldfaced
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quantities are 3N _-dimensional and arrowed vector quantities are three-dimensional.
Finally, sums with Greek indices range over atoms in the unit cell.

To relate the rigidities to the dynamical matrix, we begin similarly to Born and
Huang and choose to factor the Bloch phases (e'%%) out of the representation of the
phonon polarization vector u, incorporating them into the definition of the dynamical
matrix D, so that the acoustic phonon polarization vectors are periodic across the cell
boundaries. This ensures a uniform description of the distribution of elastic energy
along the axis of the wire. To generate a scalar equation for the phonon frequency,

Born and Huang project the secular equation for the dynamical matrix,
Du = —mw*u, (3.5)

against the zeroth-order polarization vector ul¥. Here, however, to more symmet-
rically represent the distribution of elastic energy, the full polarization vector u is
projected onto Equation (3.5). Equating the frequency w in Eq. (3.5) with the longi-
tudinal frequency in Eq. (3.2) gives

t 2 1 _1)s
_E_ Dy _ T (=1 il ple=s-1 g4 (3.6)

A ufu .
s,t=0

where the numerator of the Rayleigh quotient has been expanded to second-order in
powers of (ig) and where the 3 x 3 sub-block of D™ which couples atoms « and £, is
n 1 o f = D = =3\"
Dy = > Bas(R) (2 (R+75 - 7)) (3.7)
B
Here, R is a lattice vector along the z — axis, ®,5(R) is the 3 x 3 sub-block of the
force-constant matrix which couples atoms o and £ located at positions 7, and R'—i—ﬁ%

respectively, and
o*U
87,0(R + 75)
where U is the energy of the unit cell.

Finally, substituting Eq. (3.7) and [u¥], = % into Eq. (3.6), allows E to be
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expressed as a sum over atoms (a) in the unit cell and all atoms (4, é) in the system,

P = L > ea (3.8)

L.
o = Z{ — AZop @ap(R) - AZap/2 + i) Bop(R) - )
o
+AZog - Bop(B) 1) — all)- @ag(R) - AZos }- (3.9)

Here, AZag =22 (Ta—Tp — ﬁ), ﬁg] is the first-order polarization vector and e, is
refered to as the “atomic moduli”.

The atomic moduli as currently defined in Eq. (3.9} provide a useful microscopic
analysis of elastic response in bulk systems which is similar in spirit to the decom-
positions used previously in the study of bulk material systems [83, 47]. To see that
Eq. (3.9) indeed decomposes the overall elastic response of bulk systems into atomic
contributions coarse-grained over distances on the order of the decay-length of the
force-constant matrix, first we note that for infinite bulk systems, elastic waves are
planar. This implies that the first-order polarization vector (a’Q]) is uniform from
primitive cell to primitive cell and thus depends only on the local environment of
each atom. Next, we note that although the strain terms (Afaﬂ) scale linearly with
distance between atoms, the terms which contribute to the final result are bounded in
range by the inter-atomic interactions (®(R)). Thus, the atomic moduli depend only

on the local atomic environment over distances which the decay of the force-constant

matrix determines.

3.4 Failure of straightforward approach in nanowires

It is now demonstrated through direct calculations that the approach outlined in the
previous section gives unphysical results when applied to nanoresonators. Specifically,
this section studies the behavior of [100]-oriented nanoresonators of silicon, which re-
cent ab initio studies[43] predict to undergo a size-dependent structural phase transi-

tion between the two structures in Figure 3-1 at a cross-section of ~3 nm. (The inter-
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Figure 3-1: Atomic structure of silicon nanowires with an approximate cross-sectional
diameter of 1.5 nm. The wires are viewed along the longitudinal axis: ¢(2 x 2)
structure (left), 2 x 1 structure (right).

ested reader may refer to Reference[43] for explicit details of the microscopic structure
of these wires.) Initially, we use the Stillinger-Weber inter-atomic potential[88], which
suffices for the exploration of general nanoelastic phenomena and which allows study
of cells with many thousands of atoms. Later in the chapter (Section 3.8) we use the
Sawada tight-binding model[79] with modifications proposed by Kohyama[52] to ex-
plore the correlation between our local approach and the underlying electronic struc-
ture. For all calculations below, the atomic coordinates, the periodicity of the wire
and, need be, the electronic structure are fully relaxed. Finally, periodic boundary
conditions along the z-direction are employed.

Figure 3-2a shows that the atomic moduli e, predicted for nanowires using the
straightforward approach of Eq. (3.9) are unphysical in that they depend upon the
macroscopic dimensions of the system and not simply on the local environment of
each atom. In particular, the atomic moduli on the surface grow linearly with the
diameter of the wire and the moduli in the center of the wire fail to approach the
expected bulk limit, e, = Y,/ps, where Y} is the Young’s modulus in bulk and p, is the
number density in bulk. (Note that these two effects are interelated, as the moduli
must sum to give the macroscopic value in the bulk limit.)

Although one has some freedom in choosing the terms used in the perturbation
expansion Eqs. (3.5) and (3.8), for example to project Eq. (3.5) against ul” instead

of u, all such expansions will lead to similar linear scaling along the surface of the

65



bulk

eq [eV]

Radial distance [nm]

Figure 3-2: Predictions of atomic moduli e, for ¢(2x 2) nanowires of varying diameter:
(a) straightforward theory (Eq. (3.9)) and (b) new theory (Eq. (3.11)). The insets
denote the approximate diameters of the wires. The value of the atomic modulus
(Eq. (3.9) or Eq. (3.11)) is along the ordinate and radial distance of the atom from
the center line is along the abscissa.

wire and approach an incorrect value at the center of the wire. Thus, straightfor-
ward application of the method of long waves fails to result in a local, and hence
physically meaningful, description of elastic response in nanoscale systems, as will

straightforward variations thereon such as those in References [83, 47].

3.5 Method of long waves in nanowires

To cure the difficulties uncovered in the previous section, we first identify the cause of
the pathological behavior and then exploiting the freedom in Eq. (3.9) this pathology
is removed.

The failure of the straightforward approach arises from the fact that elastic waves
in nanoresonators, or any system with free surfaces, are not strictly planar. In partic-
ular, the Poisson effect, which the first order polarization vector ul!! contains, causes
each atom to displace by an amount in direct proportion to its distance from the
center line of the system. Eq. (3.9) then leads directly to linear scaling of the atomic

moduli at the surfaces of the wire.
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Defining an atomic elastic reponse dependent soley on the local enivornment re-
quires separation of extensive elastic effects from intensive nanoscopic effects. To
seperate the extenive motion in the first order polarization vector from that of its in-
tensive motion, we define the atomic displacements (@7) as the intensive nanoscopic

motions,

—~rl

! = Al - (—0,dE - —0,§i) Ta (3.10)

where 0., are the Poisson ratios. There are three logical choices for the Poisson
ratios: some sort of local atomic definition, an overall average for the wire, or the
bulk values. We choose to use bulk Poisson ratios for a number of reasons. First,
a locally varying definition makes it impossible to exploit the continuous rotational
and translational symmetries in the dynamical matrix, which is found necessary to
employ below in constructing atomic moduli with local behavior. Second, only by
employing the bulk (rather than average) Poisson ratios is a definition found which
approaches the appropriate bulk value in the centers of wires of finite width. Finally,
we note that one always has the freedom of working with bulk Poisson ratios because
any motion along the surface in addition to that resulting from bulk Poisson effect will
not scale extensively with the diameter of the wire and can therefore be incorporated

into the intensive atomic displacements @7'.

After making the decomposition in Eq. (3.10), the continuous rotational and trans-
lational symmetries of the dynamical matrix are exploited to eliminate all extensive
dependencies in Eq. (3.9). Appendix B outlines the procedure for doing this, which
then transforms Eq. (3.9) into

ta = > { —Afup - Uog(R) - Afag/2+ T Boy(R) - @}
SR

+ AT Bop(R) - @ — T - Bop(B) - Afag }, (3.11)
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where Ar,z represents the fotal strain between atoms « and 3,
Afop = (—0uk% — 0,99 +82) - (T — 7 — R),
and Wag(ﬁ) renormalizes as
Tos(R) = 20,4(R) — (Tr B (R) -2) =1

where Y, = 0;,05, is a diagonal 3 x 3 matrix with elements o, 0, and o, = —1,
respectively and 4, is the Kronecker delta.

This new construction ensures that the modulus of each atom depends only upon
its local atomic environment because 4% no longer includes extensive motions and,
although Ar, still depends on relative atomic distances, the renormalized ¥ decays
as ® does. Thus, it is now the range of the force-constant matrix which controls the
size of the neighborhood upon which each atomic modulus can depend. Therefore,
the moduli of atoms in the interior now must correspond to the expected bulk value,
the moduli of the atoms on the surface now cannot depend upon the extent of the
system, and the resulting description is physically meaningful. Figure 3-2b illustrates
the success of Eq. (3.11).

The fact that decomposition of elastic response into atomic level contributions is
not unique raises questions as to the physical meaning of such a decomposition. Qur
new decomposition Eq. (3.11) is the first which remains dependent only upon local
environment for systems with free surfaces. Any other definition which respects local-
ity can only redistribute portions of each atom’s modulus among other atoms within a
region of extent comparable to the decay of the force-constant matrix. Any sum over
such a region of the moduli will always be nearly the same. Therefore, coarse grained
over such regions, properly localized atomic moduli become physically meaningful.
Section 3.6 and Appendix C demonstrate this explicitly by comparing the predictions
for flexion from either properly localized moduli or straightforwardly defined moduli,
respectively. To further demonstrate that alternate local definitions are equivalent in

this coarse-grained sense, we have explored alternate local constructions. In partic-
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ular, while the present construction takes care to employ the continuous syminetries
of the dynamical matrix in such a way so as to respect symmetry among the z,y, 2
Cartesian coordinates, atomic moduli have also been constructed while treating the
z,y coordinates symmetrically but not the z coordinate and we have found nearly

identical results for all of the applications below.

This section is closed with a brief description of how the above approach extends
to any system of nanometer dimensions. To be considered small in this context, a
dimension must be much smaller than the wavelength of the distortions considered.
This thesis focuses on nanowires, systems with two small dimensions. For a system
with one small dimension, for instance a plate with nanometer thickness, the above
approach develops in the same way with the one minor change that the definition of
a7} (Eq. (3.10) involves the Poisson effect only in the one small dimension. For an
object with three small dimensions, for instance adiabatic loading of a nano-object,
the nature of the Poisson effect depends upon the mode of loading, and the system
should treated as either of the above cases accordingly. Finally, objects of no small
dimension, and hence no Poisson effect, can be described straightforwardly as bulk-

like using Eq. (3.9).

3.6 Transferability

To establish that these newly defined atomic moduli are not mere convenient mathe-
matical constructions but are physically meaningful, we now consider their transfer-
ability to phenomena not considered in their original construction. In particular, we
consider flexion, where the elastic distortion is no longer homogeneous throughout

the cross-section.

If our newly defined atomic moduli are indeed a measure of the local elastic

response, then under flexion the free energy per unit length will take the form

fo= (/L)Y equl/2, (3.12)
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where u, 15 a measure of the longitudinal strain which atom « experiences. For this
form to be sensible, the diameter D of the wire must not become comparable to the
range of the force-constant matrix so that the atoms which contribute to each e, all

experience similar strains 4.

Within continuum theory, uniform flexion with radius of curvature R corresponds
to a longitudinal strain which varies linearly across the wire, u = z/R. (This holds to
better than to two parts in 10° for all wires in this thesis.) This would then predict

a flexural rigidity of

1
F, = 7 zﬁ: Cala’. (3.13)
Figure 3-3a shows the fractional error (6F,;)
0Fy = (Fou— F)/F, (3.14)

in predicting the flexural rigidity from Eq. (3.13), where F' is determined directly
through numerical calculations. The figure shows that these errors are indeed quite
small. Note that use of the straightforward definition in Eq. (3.9) with its unusually
scaling surface moduli leads to invalid predictions for flexion. (Appendix C shows this
directly through scaling arguments.) As a result, to have predictive power, definitions

of atomic moduli must properly account for the Poisson effect.

To demonstrate that this new approach has greater predictive power than tra-
ditional continuum approaches, the figure also shows the fractional error (§F;.) in

predicting the flexural rigidity when using the traditional continuum relation

F. = BE(I/4), (3.15)
6F = (Fe—F)/F (3.16)

where I/A defines the mean bending moment, which is defined unambiguously as

IJA = (1/N)) =2 (3.17)

70



(2x1) & Fte

| o(2x2) § Fic

@@ 8Fat | aam=mT

.......
o~

»o e

20
(2x1) & Fat

& F [%]

c(2x2) 5 Eat
(2x1) & Eat
(2x1) 8 Etc
c(@x2) 8 Etc

* o x 0

« D [nm]

Figure 3-3: Fractional error as a function of inverse diameter 1/D in predicting (a)
flexural rigidity from extensional properties (0 F,:, Eq. (3.14) and 6 F;., Eq.(3.16)) and
(b) extensional rigidity from flexural properties (6 Eq,, Eq. (3.20) and d B, Eq. (3.21)).
Note, for convenience, the abscissa is labeled by D and not 1/D.

The linear behavior of the fractional error §F;, as a function of 1/D indicates
that continuum theory does not properly account for surface effects, a result of the
fact that flexion places a larger emphasis on the surface than does extension. The
dramatic improvement from the use of Eq. (3.13) arises because the atomic moduli
place proper emphasis on the surface and on the interior, as they properly treat
each atomic environment locally. The atomic moduli therefore properly account for
elastic fluctuations along the cross-section of the wire which are on scales too small

for traditional continuum theories to capture.

Finally, the only appreciable error within the new framework occurs for the small-
est wires (D= 1.5nm). At this point, the cross-sectional dimension becomes compara-
ble to the range of the force-constant matrix, and Eq. (3.12) represents an improper
use of the physical concept of atomic moduli. As described above (second from last
paragraph in Section 3.5), only sums of atomic moduli over regions of extent com-
parable to the range of the force-constant matrix carry physical meaning. Any sum
sensitive to variations over shorter scales, as is Eq. (3.12) when limited to wires nar-
rower than the range of the force-constant matrix, cannot be depended upon to lead

to meaningful results. This underscores the fact that properly construed atomic mod-
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uli are not truly atomic-level quantities but a concept coarse grained over the range
of the force constant matrix. As it has been seen, however, this coarse-graining is on

scales significantly smaller than those captured by traditional continuum theory.

3.7 Extension from flexion

Our newtly defined atomic moduli is now applied to derive a new relation for the
extensional modulus in terms of the flexural modulus and other experimentally ac-
cessible abservables, a relation often needed in experimental analyses [105, 97, 46, 69)].
It is then show that the new relation is much more accurate than the standard
continuum-theory based relation currently employed in experimental analyses. Fi-
nally, our concept of atomic moduli is employed to provide quantitative insight into

the improvement of our new relation over the traditional continuum relation.

The basis for the following analysis is the fact that Eq. (3.13) gives a very good
estimate of the true flexural modulus, as Figure 3-3a confirms. Using the exact
relation for E, Eqs. (3.8) and (3.11), and Eq. (3.13), we derive the following leading-

order prediction £y for the extensional modulus,

1/ F A
Ey = 5 (I/_A +Yi;a) ) (3.18)
with a predicted error 6E® of
N
6By = 77 {Bulleds —al+ [{ede — (]} (3.19)

Here, N, is the number of “surface” atoms, defined as those for which e, differs
significantly from the limiting bulk value ey, (e;).2 is the inertia weighted average

surface moduli
<6s>a:2 = 723 63113?
- ?
DI
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with the sums ranging over “surface” atoms, (e,) is the average surface moduli
s ging g

and . 5 ,
— T
By = (1/2)%=22 1,
’ N D 2
where Y implies sums over all atoms in the unit cell. This result holds for any
division of the atoms into “surface” and “bulk” to the extent that each “bulk” atom

has atomic modulus e;.

Figure 3-3b shows the relative error é Ey,
6By =(Eyu—E)/E, (3.20)

between the extensional modulus E determined directly from numerical calculation
and as determined from our new relation, Eq. (3.18). (Note that 6Ec(£) = 6,y exactly
when the moduli prediction F,; = F holds.) As the relevant point of comparison, the

figure also shows the relative error § Fy.,
5Etc = (Etc - E)/E7 (3-21)

associated with the traditional continuum result

4

B =F7 (3.22)

Hence, Eq. (3.18) is much more accurate than the standard continuum result Eq. (3.22).

To understand the improvement of the new relation, Eqgs. (3.8) and (3.13) may also
be combined to yield a prediction for the fractional error in the traditional continuum

analysis,
N

OB = o7
[

{Bte [(es)s2 — es] + [(€5)a2 — (es)]}, (3.23)
which takes precisely the same form as Eq. (3.19) except for the change in the prefactor
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in the first term from B, to By = 2B, + 1. For continuous wires of homogeneous
circular or regular polygonal cross-section, we have exactly B,; = 0. Thus, generally
we expect B, to be close to zero and By, to be close to unity. It is now noted that the
term in the first set of square brackets ([{e;),2 — €;]) in both Eq. (3.19) and Eq. (3.23)
is an average difference between surface and bulk atoms and, therefore, is generally
much larger than the term in the second set of square brackets [(e,);2 — (e,)], which
is the difference between two differently weighted averages over the surface atoms.
Thus the larger term nearly vanishes in our new relation, Eq. (3.19), but not in the
traditional continuum relation, Eq. (3.23). From this analysis, it is seen that the
reason why the traditional continuum relation has larger errors is that it does not

properly differentiate between the local surface and bulk environments.

The atomic moduli also lead to a quick, intuitive argument to understand the
improvement of Eq. (3.18) over Eq. (3.22). From the results it is seen that the surface
moduli can be quite different than those of the bulk. It is also known that flexion
places larger emphasis on the surface than does extension. If the average surface
modulus is less/more than that of the bulk then the first term in Eq. (3.18) (F- A/I)
will underestimate/overestimate the extensional rigidity, while the second term will
overestimate/underestimate it. Therefore, errors will tend to cancel in the average of

the two.

3.8 Correlation between local atomic moduli and

electronic structure

The local atomic moduli are know used to explore the link between local elastic
properties and the underlying electronic structure. To do this, we calculate the atomic
moduli, Eq. (3.11), for both the ¢(2 x 2) and (2 x 1) structures, using the Sawada [79]
tight-binding model with modifications proposed by Kohyamal52]. Various wires have
been studied, all of which give similar results. For brevity, we report only wires with

cross-sectional diameter = 2.4nm. The supercell of our calculation is four bulk cubic
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lattice constants long in the periodic direction, and hence sampling the Brillouin zone

at the I' point in the electronic structure calculations is more than sufficient.

The left panels of Figures 3-4 and 3-5 show the resulting atomic moduli, with
values color coded so that yellow corresponds to the bulk value (17.1 eV /atom). The
figure shows that deviations from this value concentrate near the surface in patterns
characteristic of the structure of the wire. Moduli near the surface fluctuate widely,
ranging from 6-27 eV /atom for the ¢(2 x 2) structure and from 4-26 eV /atom for the

2 x 1 structure.

To allow comparison with the underlying electronic structure, the right panels
in the figures display the valence charge densities from the tight-binding calculation
projected (integrated along the wire axis) onto the cross-section of the wire. (To
compute the electron density from the tight-binding coeflicients, orbitals from a den-
sity functional calculation of the silicon atom are employed.) The figures display the
electron densities using a color map similar to that employed for the atomic moduli.
Intriguingly, there is an apparent correlation between the values of the atomic moduli
and the underlying electron density. In particular, large/small atomic moduli corre-
late with regions of large/small electron density in Figure 3-4, indicating that charge
distribution along the surface of these wires greatly affects the local elastic properties
and thereby the overall elastic response, particularly to flexion which emphasizes sur-
face effects. Figure 3-5 exhibits a similar correlation, but not as pronounced. Note
that, in this figure, coincidence of red atomic moduli just under the surfaces of the

first layer of atoms correlates with red charge densities in the same location.

Unlike in the classical potential case, where properly defined surface moduli are
systematically lower or equal to the bulk value due to decrease in the number of bonds
(Figure 3-2b), we find that in a quantum model, surface moduli may even greatly
exceed the bulk value due to changes in local charge density which can enhance the
mechanical strength of bonds (Figures 3-4 and 3-5.) This contrast underscores both
the importance of considering contributions of the electronic structure to mechanical
response and the need for a definition of atomic moduli which can be computed from

physical observables obtainable from electronic structure calculations.
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Figure 3-4: ¢(2 x 2) wire, with cross-section &~ 2.4nm. Results are from the tight-
binding model described in the text. Left: atomic moduli color coded from small to
large: blue-green-yellow-red. Right: valence electronic density projected (integrated
along the wire axis) onto the cross-section color coded from low to high: blue-green-
yellow-red. White dots in the right figure indicate the location of atom cores. Note
the correlation of large atomic moduli with large charge density along the surface.

Figure 3-5: 2 x 1 wire, with cross-section = 2.4nm: same conventions as Figure 3-4.
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Structure 6Fic (SFat 5Et;c 5Eat
2x1 13.1% | 2.86% -11.6% | 1.78%
c(2x2) |491% | 1.79% | | -4.68% | 2.02%

Table 3.1: Comparison of errors between the traditional continuum theory
and the atomic moduli description when predicting flexural response through
Egs (3.15) and (3.13) (first and second columns, respectively) and when inferring
extensional response from flexural response through Eqgs. (3.22) and (3.18) (third and
fourth columns, respectively).

The ultimate use of atomic level moduli is to understand mechanical response.
Table 3.1 compares the errors from both continuum theory and the use of atomic-
level moduli in predicting mechanical response for the two wires under consideration
in this section. The quantities compared exactly parallel those of the previous sec-
tion. The first two columns of the table consider prediction of flexural response from
continuum theory and our atomic moduli, respectively, and the second two columns
consider prediction of extensional response from flexural response using either the
traditional continuum relation or our new relation, respectively. The table shows
that the new relations, Egs. (3.13) and (3.18) are again very accurate. The table also
shows that these predictions are superior to the corresponding continuum results,

Egs. (3.15) and (3.22), respectively.

Interestingly, the continuum predictions for the ¢(2 x 2) wire are fairly reliable.
The atomic moduli provide an avenue for understanding this as well. Fluctuations
in the moduli in the ¢(2 x 2) wires are localized and hence average out over regions
of extent comparable to the decay of the force-constant matrix. Moreover, in this
particular case they tend to average to values close to that expected of the bulk.
Without meaningful fluctuations on the length scales of the decay of the force-constant
matrix, we expect continuum theory to perform well for this wire. In contrast, the
2 x 1 wire exhibits much more systematic variations in the moduli. The outermost
surface atoms have a consistent and significantly reduced modulus, and there is also a
clear significant and systematic variation in the moduli throughout the cross-section of
the wire. Because this second wire does exhibit meaningful fluctuation over distances

comparable to the decay range of the force constant matrix, we expect traditional
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continunm relations to give particularly poor results, underscoring the importance of

the local atomic-level moduli description.

3.9 Conclusions

We have presented the first definition of atomic-level elastic moduli for nanoscale
systems which are defined in terms of physical observables, correctly sum to give the
exact overall elastic response and depend only on the local environment of each atom.
Although these moduli are not necessarily uniquely defined, their sum over regions of
extent comparable to the range of the force constant matrix is physically meaningful
and may be used to make accurate predictions of mechanical response. The mod-
uli resulting from our formulation transfer to different modes of strain and correctly
account for elastic fluctuations on the nanoscale. They also lead to a quantitative
understanding of when traditional continuum relations breakdown and how to prop-
erly correct them properly. Specifically, we demonstrated a more accurate method
for relating extensional and flexural properties. These moduli provide a clear and
natural method for distinguishing mechanically between “surface” atoms and “bulk”
atoms and give insight into the correlation between the local mechanical response and
the underlying electronic structure. Finally, these moduli allow the identification of
which atomic arrangements lead to more pliant or stiffer response opening the possi-
bility of their use as a tool to aid in the rational design of nanostructures with specific

mechanical properties.
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Chapter 4

Accurate calculations of the Peierls

stress in small periodic cells

Long, low-mobility [111]-screw dislocations control low temperature plastic behavior
in bee metals. Unlike their fce counter parts, bee metals violate Schmid behavior
and have many active slip planes. The microscopic origins of such behavior is crucial
in the understanding of their plastic behavior. Therefore detailed and accurate first
principle calculations are invaluable.

The Peierls stress, the zero temperature limit of the critical stress for slip, has been
calculated in a variety of ways using various types of boundary conditions [102, 82,
65, 111, 93, 113, 16, 76]. These calculations, in general, rely on empirical potentials
to simulate various configurations and incorporate a relatively large number of atoms.
In general three types of boundary conditions are used, fixed cylindrical boundary
conditions [82, 65, 111, 93], lattice greens functions [75, 113, 76] or periodic boundary
conditions [102, 16]. For these approaches a large number of atoms is generally
taken in order to minimize any artificial effects the boundary conditions may impose.
Generally, this number is too large to be suited for ab initio calculations, even on the
fastest and largest super-computers. Applying corrections to these effects is therefore
important in order to have a reliable ab initio calculation.

The simplest approach is to use fixed cylindrical boundary conditions. However,

care must be taken due to the mismatch of the boundary with the dislocation, partic-
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ularly when the dislocation moves. This mismatch can be minimized by performing
calculations in very large systems, effectively extrapolating to the limit of infinite
cylinder size. The size of the system needed to extract accurate values can be greatly
reduced by applying leading order corrections due to the mismatch in the bound-
ary [82]. However, even with these corrections, accurate calculations can generally
be made only for a cylinder with a radius of ~30A4 or greater, which corresponds
to ~700 atoms when using periodic boundary conditions along the dislocation line.
Such fixed cylindrical boundary conditions are generally ill-suited for an ab initio
calculation due to both this large number of atoms and the artificial effects of the
free surface at the boundary on the electrons. An alternative approach to account
for boundary effects, and thereby reduce the size of the system needed for accurate
calculation, is to use lattice greens function techniques (113, 76, 75]. This technique,
although quite elegant, still faces the issue of free surface effects when applied to
first principles quantum mechanical calculations. In Section 5.1 we shall detai] such

problems.

Periodic boundary conditions are in general the most natural and straight forward
way to calculate the Pejerls stress in a density functional theory calculation. In pe-
riodic boundary conditions one is forced to have a net zero Burgers vector per unit
cell. This is generally accomplished by using either a dipole or quadrupole array of
dislocations [78, 12, 53]. Peierls stress calculations have been done in periodic bound-
ary conditions using empirical potentials, however, to avoid dislocation-dislocation
interactions, generally requires the use of unit cells [16] which would be impracticable
for ab initio calculations. Wang et al.[102] have introduced a promising method for
use in small, periodic cells, but this approach requires the decomposition of the to-
tal energy into individual atomic contributions, which while feasible for inter-atomic
potential approaches, is not well-defined in quantum mechanical calculations.

In this chapter it is shown how an accurate Peierls stress can be obtained in
very small periodic cells. It is shown how leading order effects, due to the array of
closely packed dislocations, can be accurately accounted. It is further shown how an

accurate Peierls stress can be obtained by simply applying a pure shear to the system
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and minimizing the energy. This is a tremendous advantage in ab initio calculations
as it minimizes the number of atomic configurations which need be explored. As an
application of these ideas, we focus specifically on the calculation of the Peierls stress
in bee tantalum for a [111]-screw dislocation in which the maximum resolved shear
stress is along a {110}. This is among the most relevant geometries in understanding
the plastic response of this material.

The chapter is organized as follows. Section 4.1 presents the results of Peierls
stress calculations in very large cylindrical cells, as a reference against which we shall
compare our new approach. Section 4.2 presents the results of calculations using
periodic boundary conditions and underscores the problems that arise. Section 4.3
shows how to overcome these problems, and, finally, Section 4.4 presents several

techniques for accelerating the calculation. Finally, Section 4.5 concludes the chapter.,

4.1 Reference Calculations

All calculations presented throughout this chapter employ a quantum-based, embed-
ded atom force field (QqEAMFF) developed in [89]. To provide the reference value of
the Peierls stress for our calculations within periodic boundary conditions, we first
perform calculations for isolated dislocations in a cylindrical geometry with fixed
boundary conditions.

To form the dislocation, we proceed as follows. First, we define coordinates for
our calculations as follows: the z-axis lies along the [110] direction, the y lies along
the [112], and the z lies along the [111]. A cylinder with radius R2 of Ta is then
taken (Figure 4-1) which has two regions, a fixed region and a relaxation region. In
the relaxation region (r < R1), where r is the radial distance from the center, the
atoms are allowed to relax in response to their interatomic forces. The atoms in the
fixed region (K1 < r < R2) are held fixed to their positions according to the solution
of anisotropic elasticity theory. Finally, periodic boundary conditions (with period of
one Burger’s vector) are employed along the direction of the dislocation. Thus, these

calculations consider only straight, infinite dislocations. A [111]-screw dislocation
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Figure 4-1: Peierls stress calculation within cylindrical boundary conditions: atoms
whose distance from the center is less than R1 are relaxed under inter-atomic potential
forces, while those in the region between R1 and R2 are held fixed to the anisotropic
elasticity theory solution.

then is obtained by displacing all atoms in the cylinder according to the solution of
anisotropic elasticity theory [90, 35] and then optimizing the positions of the atoms
in the relaxation region.

To calculate the Peierls stress, we then apply a strain to the system which ensures
that the resulting stress has only one component, o,,, which generates a force on the
dislocation line in the [112] direction [38]. We then optimize the locations of the atoms
in the relaxation region subject to this external strain. Figure 4-2 shows the resulting
dislocation structure in a large cyllinder (R1 ~ 1204) for a series of different strains
using a differential displacement {DD) map [100]. In these maps, the circles represent
columns of atoms viewed along the [111] direction. The arrows indicates the change
in relative displacement that neighboring atomic columns make, relative to the bulk,
due to the presence of the dislocation. The lengths of the arrows are normalized so
that a displacement of 1/3 of a Burgers vector corresponds to an arrow of full length.
The first panel (a) shows the ground-state structure of the dislocation at zero stress.
The center of the dislocation is located at a diamond encased in triad of arrows. Going
around this triad makes three displacements of one-third of a Burgers vector for a
net displacement of one full Burgers vector relative to the bulk. The ground state
structure of the core is seen to break the symmetry of the lattice by extending outward

along three {110} planes. This “degenerate split core” is consistent with molecular
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Figure 4-2: Differential displacement (DD) maps of a [111] screw dislocation at in-
creasing stress computed within cylindrical boundary conditions: a) zero applied
stress, b) initial jump along (110) at a stress > 0.74 Gpa (P1), c) second jump, along
(211) at a stress > 0.91 GPa (P2), d) subsequent jump along (211), e) orientation
of {110} and {112} planes.
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Figure 4-3: Convergence of P1 and P2 as a function of 1/R1, for cylinders ranging
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dynamic results, using periodic boundary conditions, found in reference [102] when

using the same interatomic potential.

As the strain is applied to the ground state structure (Figures 4-2b-d), the dis-
location feels force along the (110)-plane. As the applied strain obtains a critical
value, the dislocation center moves one lattice spacing along the (110)-plane (Fig-
ure 4-2b). As the strain is increased further, the dislocation then glides along the
(211) (Figures 4-2 c,d) in two steps, first along (101) and then spontaneously along
(110). There are consequentially two Peierls barriers that the dislocation must over-
come, the first along (110) and the second along (101). This leaves some ambiguity
for the definition of the Peierls stress. Different authors have used different defini-
tions [102, 111, 93, 113]. For clarity we will consider the value of the ¢,, stress for
the first jump (Figure 4-2a-b) as the first Peierls stress (P1) and the value of the o,

stress for the second jump (Figure 4-2b-c) as the second Peierls stress (P2).

To extract the limit of these critical stresses for an isolated dislocation in an
infinite crystal, we have repeated the above calculations in cylinders of various sizes

ranging from R1 = 304 to R1 = 1204 and extracted the Peierls stress as a function
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of radius. Figure 4-3 summarizes our results. In the limit, we find values of 0.74 GPa
and 0.91 GPa for P1 and P2, respectively.

As a consistency check that we indeed expect finite-size effects to be small for
our largest cylinders, one can employ the method of Shenoy and Phillips [82]. This
methods estimates the unaccounted restoring stress that the boundary applies to a

displaced dislocation to be
Kb A i
27 R?’

where K, = (511/(511514 — 5%))}/? in terms of the modified elastic compliances
Si; 190], b is the Burgers vector, d is the distance the dislocation has moved from
the center of the cylinder, R is the radius of the cylinder, and A is a dimensionless
constant that can be calculated through elasticity theory or computationally. In our
case, A ~ 2, K, = 68GPa and b = 2.9A. Finally, for P1 we have d ~ .14 and for
P2 we have d ~ 2.7A. For our largest cylinder {R1 = 1204), we calculate a restoring
stress of 0.0004GPa and 0.012GPa, respectively. Both values are quite small, well

within the uncertainties in Figure 4-3.

4.2 Periodic Boundary Conditions

In periodic boundary conditions, the unit cell must contain a net zero Burgers vec-
tor. In practice this is generally accomplished through the use of either a dipo-
lar or quadrupolar array of dislocations [78, 12, 53]. Our calculations employ a
quadrupole array, which has been shown to be the more appropriate choice for screw-
dislocations [53]. Figure 5-3 illustrates a cell containing 270 atoms.

As our first attempt to calculate the Peierls stress in periodic boundary conditions,
we take a quadrupole array with lattice vectors fixed at the values corresponding to
the perfect bulk material, that is the appropriate lattice vectors prior the insertion
of dislocations. Below, we refer to this choice as “unrelaxed” lattice vectors, as they
generally do not correspond to the lattice vectors of an unstrained quadrupole array.

To extract an estimate of the Peierls stress, we then follow a procedure analogous

to that in Section 4.1, applying strain until the dislocations move. Here, rather than
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Figure 4-4: Dislocation displacement (DD) map of a quadrupole dislocation array
within a 270 atom cell with periodic boundary conditions. The cell may be reduced
to 135 atoms with appropriate choice of lattice vectors.

applying the strain to the fixed region (R1 < r < R2), we strain the unrelared lattice
vectors. Then, we then compute the critical stress from the strain through the elastic

constant matrix,
o = C-g (4.1)

where o is a column vector of the stresses, € is the applied strain vector, and C is the
elastic constant matrix, assumed to equal that of the bulk material. The advantage
of this approach is that it requires exploration of a minimal number of configurations
and bulk lattice and elastic constants are relatively easy to obtain from first principles
calculations. The disadvantage of this approach is that its underlying assumptions

cast doubt of the accuracy of the results for unit cells of modest size.

Figure 4-5 explores the convergence of this approach with increasing cell size for
calculation of the first Peierls stress (P1). The two smallest cells contain 90 atoms
(~ 2.94 x 24A x 24A) and 270 atoms (~ 2.94 x 424 x 424) (or 45 and 135 atoms, if

symmetry is exploited), and are the only cells convenient for detailed ab initio studies.
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Figure 4-5: Convergence of P1 calculated within periodic boundary conditions using
unrelaxed lattice vectors and bulk elastic constants: Peierls stress calculated using
Eq. 4.1 (squares), limit exacted from Figure 4-3 (solid line with width indicating
numerical uncertainty). Uncertainties in the periodic calculations are smaller than
the square symbols.

The results in these cells, however, are extremely poor, with errors of 200% and 53%,
respectively. Thus, great care must be taken when working with such small cells and

a method is needed to correct for these finite-size effects.

4.3 Corrections

The preceding calculations make two major assumptions: {1) that the quadrupole
array of dislocations does not change the elastic constant matrix from that of bulk
material, and (2) that the use of unrelaxed lattice vectors is appropriate. To explore
the impact of these assumptions, we repeat the above calculations while using both

the relaxed lattice vectors and elastic constants of the quadrupolar array.

Numerical calculations show that the symmetry of the elastic constant matrix of

the quadrupolar array (C’) is the same as that of the bulk, although the individual
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components may differ. In particular, the stress-strain relation takes the form

o = C'-¢ (4.2)
[ Oz ] - €z ]
Fyy 4 % 4 O €yy
. 0 (2x2)]|.
| Oay | | €ay |

In this equation, the lower 2 x 2 sub-block couples the o,, and o, stresses only to
the corresponding strains, while the upper 4 x 4 block couples the 0,4, 0y,,0,, and
0y, stresses only to their corresponding strains. Note, therefore, that for the present

Peierls stress calculations only the lower 2 x 2 block is relevant.

Figure 4-6 shows the results (diamonds in the figure) of the extraction of the
Peierls stress when using relaxed lattice vectors and the elastic constants for the
quadrupole. The figure shows that the Peierls stress now converges much more quickly
with cell size. (The figure does not include results for the smallest cell, which proved
unstable to the relaxation of the lattice vectors.) For the smallest stable cell (135
atoms including symmetry), the error is reduced from 53% to only 18%, indicating
the possibility of extracting reasonable results from cells of size suited to ab initio
calculations. Although results for reasonably sized cells are accurate, this approach,
however, is not necessarily well suited for ab initio calculations because relaxation
of the lattice vectors and the calculation of the elastic constant matrix requires the

exploration of many new atomic configurations.
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4.4 Accurate and Efficient Peierls Stress Calcula-

tion

Having found an accurate approach, we now explore how to minimize that calcula-
tions associated with the above corrections. We begin by considering the necessity of
relaxing the lattice vectors and then consider computation of the relevant components

of the elastic constant matrix C’.

4.4.1 Benefit of fixed lattice vectors

Working with unrelaxed lattice vectors generates spurious strains in the unit cell.
The question is whether these strains create spurious stresses which confound the
extraction of the Peierls stress. The elastic force which any such stresses would

generate on the dislocation take the form [38):

Fr=b.oxn. (4.4)

Here, Fy is the force per unit length on the dislocation, b is the Burgers vector,
o is the stress tensor written as a matriz, and 7 is the sense vector, the direction
along which the dislocation runs. For a [111]-screw dislocation b and 5 both lie along
the z—axis, and, therefore, only two components of stress can generate a force on
the dislocation, o,, and oy,, and confound the extraction of the Peierls stress. We
now consider whether the strains associated with the unrelaxed lattice vectors can
generate such stresses. We distinguish two types of strain, dilation and shear.

The presence of the quadrupolar array tends to dilate the unit cell in the (111)
plane. Due to symmetry, this dilation tends to be uniform, as we have confirmed by
direct numerical calculation on the unit cells. The above form of the elastic constant
matrix C' prevents such dilation from generating any o, component. The second

confounding component o,, would also vanish were the 4 x 4 subblock of the elastic
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Figure 4-7: The first nearest neighbors cannot generate any elastic force on the center
dislocation, since they are equally spaced. From the core asymmetry there can be a
core-core force in only in the [110]. Note that these symmetry arguments works for
higher order neighbors too.

constant matrix to have precisely the same symmetry as that of the bulk. Numerically,
we find that that this is almost the case, and that the dilation contribution to oy,
ranges from 0.02% (in our largest cell) to only 4% (in the 135 atom cell) of the
stress experienced in the unrelazed cell. The diagonal components of strain €; do
not significantly affect the extraction of the Peierls stress, and therefore need not be
relaxed to extract meaningful Peierls stresses.

Turning to shear strains, the equal spacing of the dislocation array leads to zero
shear within linear elasticity theory. From symmetry, however, core-core interaction
(non-elastic) can generate a force in the [110]-direction only, Figure 4-7, which results
in one non-zero component of strain, €,,. From direct calculations it is shown that
this is in fact the only non-zero component of shear strain. Relaxing this component
of strain, therefore, creates a artificial material environment, different from what iso-
lated dislocations would experience. To more quickly approach the limit of isolated
dislocations, one should therefore not relax this component of the strain. This advan-
tage of using of unrelaxed lattice vectors is well known and commonly exploited in the

materials literature in the study of two-dimensional defects such as grain boundaries
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or surfaces[6, 103]. We therefore expect to be able to extract accurate Peierls stresses

without the need for relaxing either off-diagonal or diagonal components of strain.

Figure 4-6 shows the results (circles in the figure) of extracting the Peierls stress
when using unrelazed lattice vectors, but while still computing the stresses with the
appropriate elastic constant matrix C'. The results converge even more quickly than
those obtained by relaxing the lattice vectors, thus supporting our analysis. Therefore,
extremely good results (already within 2% in the 135 atom cell) can be obtained by
not relaxing the lattice vectors. This not only produces results of far superior quality,

it also reduces the computational effort.

4.4.2 Extraction of elastic constants

The results of Section 4.4.1, while quite impressive, still require calculation of the
elastic constant matrix C’ of the quadrupolar array. Significant savings can be gained
with the simple realization that only the 2 x 2 sub-block of the elastic constant matrix
enters calculation of P1 and P2 through Eq. 4.3. Moreover, within linear elasticity
theory, these components can be extracted equally well at the relaxed or unrelaxed
lattice vectors, thereby again mitigating the need for relaxation of the lattice vectors.
Not all of the components of the 2 x 2 sub-block,
1 —C

Cy = R (4.5)
— ™16 C(55

need be computed independently.

To see this, consider the application of a pure, shear strain ¢, to the system. As
a result of the symmetry of C’, this generates only two components of stress, ¢, and
Ogzy. From equation 4.4, however, o,, does not generate any forces on the dislocation
and thus, within linear elasticity, does not effect our calculation of the Peierls stress.
The remaining stress, whose critical value is the Peierls stress, can be computed from

just one component of C’5,

Tpz = 0;461‘2' (4-6)
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Figure 4-8: Energy of a 424 x 424 x 2.94 cell (270 atoms) plotted as a function of
applied pure shear strain e,,: direct calculations (squares), quadratic fit (curve).

Finally, we note that this pre-factor can be extracted without any additional cal-
culation. Figure 5-4 shows the total energy of the quadrupole array plotted as a
function of strain during the extraction of the critical Peierls stress. Prior to the first

dislocation glide event at €, ~ 0.015, the energy increases quadratically according to

1
AE = 50;4622, (4.7)

which contains precisely the same pre-factor as in Eq. 4.6.

Figure 4-6 shows the result (triangles in the figure) of the extraction of the Peierls
stress from the application of a pure, shear strain e, to the unrelazed lattice vecotrs
and extracting the relevant elastic constant from the curvature of the energy prior to
the glide events. The results are of nearly the same quality as working with unrelaxed

lattice vectors and using the full elastic constant matrix C’.

Finally, we note that although o,, does not generate an elastic force on the dis-
location, through equation (4.4), it can affect the value of the Peierls stress, as was

shown by Duesbery [24]. For systems in which the ratio of C},/C!, is small such
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an effect should be relatively small. In all cells used the ratio C},/C1s varies from
=~ 1/90, for bulk, to & 1/5, for the smallest quadrupole cell. It can be seen from
Fig. 4-6 that this effect is indeed small and the value of the Peirls stress is quite
accurate. In Section 5.3 we shall show more explicitly that such an effect is minimal

for the cases of interest in this thesis.

4.4.3 Second Peierls stress: P2

Figure 4-9 shows our preliminary results for the the extraction of the second Peierls
stress P2. These results are complicated by the fact that after the first transition P1,
the quadrupole array is now distorted and no longer a perfect quadrupole, thereby gen-
erating non-negligible dislocation-dislocation forces and further modifying the elastic
constant matrix of the cell. As a possible correction to this effect, we are presently ex-
ploring moving the distorted cores back to their original quadrupole locations before
further increasing the stress. Nonetheless, we find that significant improvements can
be made by using the elastic constant matrix of a perfect quadrupole array and ignor-
ing the dislocation-dislocation interactions. Finally, results for pure shear calculations

are quite encouraging.

4.5 Conclusion

This chapter present an accurate and effective way to calculate the {110} Peierls
stress in a [111] screw dislocation in a bee material. The results show that accurate
results can be obtained even for the smallest cells while using unrelaxed lattice vectors
and extracting the elastic constants directly from the calculations. The method most
importantly appears to make ab snitio calculations of Peierls stresses viable in periodic

boundary conditions for the first time.
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Chapter 5

Ab initio and finite-temperature
molecular dynamics studies of

lattice resistance in tantalum

The study of the plasticity of crystalline materials is a rich many-body problem involv-
ing physics on multiple length scales, with many remaining unexplained mysteries.
The plasticity of bee metals, for instance, is particularly challenging. Unlike their fec
and hcp counterparts, the bee metals exhibit many active slip planes, have a strong
temperature dependence in their plasticity and violate the simple empirical Schmid
law [80]. Moreover, theoretical calculations of the most basic question in plasticity,
the stress needed to induce yield at low temperature in a pure sample, differ from
experimental extrapolations by over a factor of two [25]. The purpose of this work is
to provide needed insight into this discrepancy.

Ultimately, it is the physics of the (111) screw dislocation defect which controls
the low-temperature plasticity of bee materials [100, 25]. The Peierls stress, the yield
stress at which these dislocations first begin to move spontaneously, is difficult to
compare directly with experiment. Whereas most computational work on the Peierls
stress measures the stress to move an isolated, infinitely straight dislocation at zero
temperature [100, 24, 81, 102, 76, 107, 108, 113, 111, 65, 110, 93, 44)], experiments

measure the Peierls stress at a finite temperature in systems with many interacting,
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curved dislocations and in media with defects and surfaces. As an example of the
present challenges which the literature faces, using model generalized pseudopotential
theory (MGPT) [110], Yang et. al[113] predict for the T=0 Peierls stress a value
2.5 times greater than experimental extrapolations [94]. Because such potentials
are not based upon first principles, it is impossible to determine a priori whether
this discrepancy is due to the interatomic potential, the environmental complexities
discussed above, or to a flaw in our understanding of the relation between the Peierls

stress and the experiments.

As it is a daunting experimental task [84] to observe properties of a single dis-
location locked deep in the heart of a material, accurate theoretical calculations of
such systems is essential. Nearly all theoretical calculations to date, concerning such
dislocations, have relied upon empirical potentials [100, 24, 81, 102, 82, 65, 111, 110,
44,113, 76, 16, 93]. Given the empirical nature of such calculations, the complex di-
rectional bonding properties of bee materials, and the lack of direct comparison with
experiments for validation, first principles ab initio calculations of dislocations in such
systems are clearly needed. Ismail-Beigi and Arias [42] were the first to show that
density functional theory calculations were crucial in understanding the fundamen-
tal properties of the (111) screw dislocation core structure in bec molybdenum and
tantalum. Until that work, most computational studies based on empirical poten-
tials [100, 24, 76, 110, 102, 111, 63, 81], supported the idea that the dislocation core
breaks symmetry, with two energetically equivalent ground state structures which
spread outward along two different equivalent sets of three {110} planes [100], similar
to the concept originally proposed by Hirsch [37, 61]. Until the availability of the ab
initio calculations, the prevailing view of the violation of the Schmid law in the bec
metals was based upon this structure [100]. Ismail-Beigi and Arias [42], in contrast,
showed that for both molybdenum and tantalum the ground-state structure within
density functional theory was a non-degenerate symmetric core, strongly supporting
the work of Suzuki and Takeuchi {92, 93, 49] which first suggested that it is the
Peierls potential itself that controls the lattice resistance and not the details of the

core structure. To help resolve the discrepancy between theoretical and experimental
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Peierls stresses, the work below provides a reliable ab initio prediction of the Peierls
stress in bee tantalum which is free of the unrealistic electronic boundary conditions

employed in the only other ab injtio prediction of the Peierls stress [107, 108].

Here, we show that the Peierls stress, calculated within density function theory,
is over a factor of five larger than expected from extrapolation of experimental re-
sults [94]. This supports the view that the discrepancy between the experimental
and computational predictions are largely due to the aforementioned environmental
complexities, to a flaw in relating the experimenta] data to the Peierls stress, or to a

combination of both.

ics/kinetic models [94, 51, 22, 21]. However, it has not been established that such
models can accurately describe the lowest temperature regime correctly, placing doubt
on the quality of these extrapolations. To address this issue, the work below also pro-
vides the first temperature- and orientation- dependent study of the Peierls stress i
a bee metal. We moreover show that extrapolation of our finite temperature results
using a current fitting model leads to an underestimation of the zero-temperature
Peierls stress. This underscores the difficulty in extrapolating the experimental data

accurately but accounts only for the observed discrepancy.

Peierls stress in a bec material. Section 5.3 describes our technique for obtaining
Peierls stresses within small unit cells with periodic boundary conditions. Finally,
Section 5.4 presents our ab initio prediction for the Peierls stress and compares and

contrasts it to currently available experimental and computational values.
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5.1 Boundary Conditions

The fundamental distinction among theoretical approaches to calculation of the Peierls
stress is the choice of boundary condition. The literature describes three types of
boundary conditions: cylindrical boundary conditions [100, 81, 82, 110, 111, 93, 44,
24], Greens function (or “flexible”) boundary conditions [85, 75, 113, 76, 100, 107,
108], and periodic boundary conditions [81, 102, 16]. We now briefly review each with

emphasis on the unique challenges of ab initio electronic structure calculations.

5.1.1 Cylindrical Boundary Conditions

In the practice of cylindrical boundary conditions, anisotropic elasticity theory [38,
90, 35] is used to generate a dislocation in the center of a cylinder. The cylinder
is then separated into inner and outer regions. The atoms in the outer region are
held fixed to the solution of anisotropic elasticity theory while the atoms in the inner
region relax under the inter-atomic forces. To calculate the Peierls stress, a stress is
applied to the system until the dislocation moves.

This approach suffers numerous draw backs when applied to density functional
theory. To avoid surface effects and to properly account for the non-linear nature
of the dislocation, such ‘cylinders generally have to be quite large. First, even the
outer cylinder is of finite size and therefore the outer region must be sufficiently large
enough so that forces generated by it onto the inner region are equivalent to those
generated from an infinite continuum. The inner region also must be sufficiently large
to mitigate two effects. The inner region must be large enough so that linear elasticity
theory represents well the forces which it imposes on the outer region. The inner
region also must be large enough so that motion of the dislocation is not adversely
affected by the fixed outer region, which is a concern because the fixed outer region
represents the displacement field when a dislocation is at its center and therefore
generates a extraneous force which tends to prevent motion of the dislocation [82].
When using simple, inter-atomic potentials, the use of large cylinders mitigates all of

these effects. However, this approach is not viable for density functional calculations
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with their extreme computational demands.

This approach, moreover, is particularly ill-suited for electronic structure calcu-
lations because the artificial surface at the outside of the outer region, being far
different from the bulk, give rise to strong scattering of the electrons far different
than would an infinite continuum. This is particularly problematic for metals, be-
cause the single-particle density matrix, which quantifies the effects of this scattering
on the inter-atomic forces, decays only algebraically in metals [41]. The following
subsection demonstrates that the boundary regions should be quite large in order for
these surface effects not to result in large fictitious forces in the active region of the

calculation.

5.1.2 Greens Function Boundary Conditions

The use of Greens function, or flexible, boundary conditions [85, 75, 100], is an
effective way to reduce the size of the simulation cell. This approach also employs a
cylindrical geometry. However, rather than the “inner” and “outer” atomistic regions
of the cylindrical boundary approach, the Greens function approach employs three
interatomic regions: an inner “core” region containing the center of the dislocation, an
intermediate “buffer” region, and an outermost “continuum-response” region. With
proper implementation, the outer and inner regions couple only indirectly through
the response of the buffer region.

In this method, all three regions respond to the presence of a dislocation; however
the response of each region is treated differently through a number of steps. Initially,
all regions are displaced by the solution to anisotropic elasticity theory. Each iteration
then begins by relaxing the atoms in the core region according to the forces which they
experience, as computed from either an inter-atomic potential or an ab instio method.
The forces generated from the mismatch between the outer and inner regions, which
the cylindrical approach above ignores, are then relieved by moving the atoms of
all three regions according to the elastic Greens function, leaving only the nonlinear
effects from the core region unaccounted. The next iteration then begins by relaxing

these forces as described above. Iterations proceed until until the forces in the core
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and buffer region are negligible.

What distinguishes this approach from simple cylindrical boundary conditions is
that the continuum region, via the Greens function response, is allowed to respond to
the motion of the dislocation and to the elastic response generated by the core region
as the dislocation moves. So long as the continuum response region (a) accurately
represents the structure induced by the presence of the dislocation and (b) is suffi-
ciently wide to properly reproduce the forces on the atoms in the buffer and inner
regions, this approach accurately describe basic properties of a dislocation.

In order for the first assumption (a) above to hold, the inner core region must be
sufficiently large to contain all atoms with displacements outside of the linear regime
and the buffer region must be sufficiently wide so that displaced atoms in the core
have no effect on the forces experienced in the continuum-response region. The second
assumption (b) requires that the continuum-response region to be sufficiently large
so that its termination has no effect on the forces on the atoms in the buffer or inner
region. The radius of the calculation must therefore exceed the sum of the non-linear
core radius plus twice the range over which motion of atoms creates forces within the
lattice. As the latter range can be quite large for electronic structure calculations in
metals, the application of this approach to electronic structure calculations can be

problematic.

The Greens function approach has predicted successfully dislocation properties
when applied to time consuming empirical potentials [76, 113] which have a limited
interaction range. The approach also has been applied to density functional cal-
culations of the Peierls stress for molybdenum and tantalum [107, 108], where its
application is more questionable due to the above interactions. In these latter works,
the artificial boundary on the outside of the continuum-response region have been
treated in one of two ways [107, 108], either by keeping the surface free in vacuum or
by embedding in periodic boundary conditions with the vacuum filled with material
which must contain severe domain boundaries due to the incompatibility of a net

Burgers vector with periodic boundary conditions.

To gauge the effects which this artificial boundary may have and how far these ef-
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fects penetrate from the continuum-response region into the buffer region, we perform
a test calculation within the density functional theory pseudopotential approach [71]
of the magnitude of the forces generated onto the system due to the presence of a

domain boundary similar to those in the works cited above [107, 108].

For this calculation, we employ the same computational procedure as for our
production calculations in Section 5.4. Here, however, as this is a test, we employ only
a single k-point to sample the Brillouin zone (I'). We begin with an orthorhombic
cell of 24 atoms of tantalum in a bulk arrangement with supercell lattice vectors
71 = a(110), 7 = 4a(112) and 73 = a/2(111). We choose this cell because its length
along 7, is the same as the smallest simulation cell used in References [107] and [108].
We then generate a domain boundary at the edge of cell along the (112) plane by
changing the lattice vector 7y to 7 = 4a(112) + a7 and holding the atoms fixed
in their bulk locations (v = 0). « is chosen such that the shift is small and the
nearest neighbor distance is always within 95% of the bulk, representing even less
of a disturbance that in Reference [107], where atom were within 90% of the bulk
nearest neighbor distance. To estimate the effect of the scattering of electrons at the
domain boundary on the interatomic forces, we hold the atoms fixed and compute

the ab initio forces acting upon them.

Figure 5-1 shows the forces along the (111) direction as a function of distance from
the center of each domain. Note that relatively large forces develop deep within the
cell. These data indicate that the continuum-response region should be quite large
(22 5—10 A) in order for the response of the electrons not to adversely effect the forces
in the buffer region. Note also that the the buffer region should be of similar width to
prevent forces from the non-linear displacements in the core from penetrating into the
linear continuum-response region. Such large continuum-response and buffer regions
can make the calculation infeasible with current computational techniques.

In fact, the only density functional calculations of the Peierls stress in this system
to date employ the Greens function method but with a distance from the buffer region
to the domain boundary of only ~ 3.7 A. It thus is unclear whether the continuum

region in these calculations is sufficiently large to lead to reliable results and clearly
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Force along the (111)[eV/ A]

Distance from center [A]

Figure 5-1: Force on the atoms, along the (111), due to the presence of a domain
boundary. The forces are plotted as a function of distance from the center of the unit
cell. The domain boundary is generated such that the nearest neighbor distance is
always within 95% of the bulk (o = 1/4).

further calculations are needed to support those results. Below, we provide just such
calculations using the method of periodic boundary conditions, which perturb the

electronic system far less than the introduction of domain boundaries.

5.1.3 Periodic Boundary Conditions

The final common choice for boundary conditions is to repeat the dislocation core
periodically throughout space, so that the dislocation is no longer isolated, but em-
bedded in bulk material containing an array of dislocations. Consistency with peri-
odic boundary conditions then demands that the unit cell contain an even number
of dislocations with Burgers vectors of alternating sign, arranged typically in dipo-
lar [78, 8, 53] or quadrupolar [12, 53, 42] arrays. For static properties of the dislocation
core, such cells give reliable results as the elastic fields of the surrounding dislocations
effectively cancel at the location of each core.

Periodic boundary conditions can also been used to calculate the Peierls stress [81,
102, 16]. Care must be taken, however, because the symmetry of the dipole/quadrupole

array breaks as the dislocations move and the dislocation-dislocation interaction then
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ceases to be negligible. The use of large unit cells can control this effect [16]; however,
such a direct, brute-force approach is not practical for computationally demanding
ab initio calculations. To make such calculations feasible, they must occur in small
periodic cells, thereby demanding proper accounting of the dislocation-dislocation
interactions.

We have shown in another work [81] that, under certain conditions, such interac-
tions can be accounted accurately with minimal extra computational effort, so that
accurate values of the Peierls stress can be obtained from density functional calcula-
tions in periodic cells. As the residual errors with this approach are associated with
the boundary conditions, the magnitude of such an error can be tested by other com-
putational methods, such as empirical potentials. Our previous work shows that that
this residual error is relatively small [81], a fact which we confirm explicitly below.

Because the deviations from the bulk arrangement at periodic boundaries are
relatively mild, such calculations are ideal for mitigating electronic boundary effects.
Given the simplicity of working with these boundary conditions and the possibility of
the extraction of accurate values for the Peierls stress from small unit cells, we choose
to work with periodic boundary conditions throughout this work. Section 5.3 outlines
our procedure for calculating the Peierls stress while working with periodic boundary
conditions and describes the sources and the magnitude of the residual errors. (See

Reference [81] for a full discussion of these issues.)

5.2 Dependence of the Peierls stress on orientation

and temperature

To illustrate the complexities of relating computational predictions to experimen-
tal findings, we now explore the dependence of the Peierls stress in bee tantalum on

orientation and temperature. The strong dependencies which we shall find underscore

!The calculations in this section were done by Alejandro Strachan from the Process Simulation
Center, Beckman Institute, California Institute of Technology.
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the unique properties of dislocations in this material.

Despite recent advances in ab initio quantum mechanical methods, such methods
are still too computationally intensive to study such properties as the temperature
dependence of the Peierls stress. Therefore, for these calculations, we employ a molec-
ular dynamics (MD) framework carried out using a first-principles-based, many body
force field (FF) for tantalum, which we denote qEAM, which we have developed to al-
low accurate and computationally efficient evaluation of atomic interactions [89, 102].

As described above, we carry out these calculations within periodic boundary
conditions. The super-cell consists of a quadrupolar arrangement [12, 53] of disloca-
tions containing 5670 atoms with lattice parameters a, = 70.59 A, a, = 73.39 Aand
a, = 20.11 A, where the z-, y-, and 2- axes of our coordinate system are along (110),
(112), and (111) directions, respectively. As we have shown in a another work [81],

such a cell gives very accurate values for the Peierls stress.

5.2.1 Orientation dependence of the zero-temperature Peierls

stress of the (111) screw dislocation

To calculate the zero temperature Peierls stress, we start with a fully relaxed quadrupole
dislocation configuration at zero stress and increase the stress in steps of 50 MPa until
the dislocations move. Once the dislocations move, we restart the calculation from
the structure equilibrated just prior to the motion and increase the stress in smaller
steps (5 MPa) in order to more narrowly define the critical stress. At each incre-
mental target stress, we relax the atoms and stresses in the cell by running two very
low temperature (T=0.001 K) MD simulations. The first run is for 15 ps at constant
stress and temperature (NoT ensemble) using a Rahman-Parrinello barostat [70] and
a Hoover [39] thermostat, and the second run is for 50 ps at constant volume and
temperature (NVT ensemble). We find this approach to be quite stable for relaxing
the cell and the atoms of the system.

The (111) screw dislocation has three equivalent {112} and three equivalent {110}

potential slip planes, with such planes occurring at 30° intervals. To study the orien-
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Potential
gEAM FF
MGPT [113]

575 MPa | 655 MPa | 1075 MPa 1.6412
605 MPa | 640 MPa | 1400 MPa
Table 5.1: Peierls stress for the (111) screw dislocation in tantalum in the twinning,

(112) and anti-twinning directions; the last column shows the ratio between anti-
twinning and twinning Peierls stresses. MGPT results from Yang et al [113].

tation dependence of the Pejerls stress, we apply three types of pure shear stress to the
system: a oy, stress, a positive Oy Stress and a negative Oy stress. (Note that with
coordinate axes as defined above, the z-axis lies along the dislocation line.) These
stresses leads to forces on the dislocation in the (112), {110)-twinning and (110)-
antitwinning directions, respectively [38]. Along these directions, we find Peierls
stresses of 71, = 655 MPa, 7, = 575 MPa, and Tantitwin = 1075 MPa, respectively.
Table 5.1 shows that our essentially zero-temperature results are in good agreement
with those of Yang and collaborators [113], who employed model generalized pseu-
dopotential theory (MGPT) [110], a different inter-atomic potential. The result of
such a strong dependence of the Peierls stress on orientation Is consistent with the

experimentally observed breakdown of the Schmid law in bee metals.

To make quantitative comparison with experiments, which are carried out at
nonzero temperature, we compare our results to those of Tang et. ¢l [94], who fit
experimental data [104] to a mesoscopic model and then extrapolate to extract the
zero-temperature Peierls stress. Their predicted value of 248 MPa for the (112) Peierls
stress is over a factor of two lower than our result. This type of discrepancy, where
the theoretical Peierls stress overestimates the zero-temperature extrapolation of the
experimental data by a factor of two to three, is quite generally observed [25]. This
discrepancy may be due either to Inaccuracies in the theoretical calculations or, per-
haps, to a flaw in the comparison between the zero-temperature extrapolation of the

experimental data and theoretical predictions.
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5.2.2 Temperature dependence of the Peierls stress of the

(111) screw dislocation

To explore potential difficulties with the zero-temperature extrapolation, we now
present what to our knowledge is the first temperature-dependent study of Peierls
stress using a realistic potential for a bce metal. For these calculations, we continue to
employ the gEAM FF and begin with the zero-temperature, equilibrated structures.
We then apply various constant shear stresses (lower than the T=0 Peierls stress)
to the system while slowly increasing the temperature (in steps of 10 K) until the
dislocations move. Similarly to the T = 0.001K case, for each temperature we first

run for 10 ps in the NoT ensemble and then for 25 ps in NVT ensemble.

Because the Peierls stress can depend on the rate at which the strain is applied,
to place our results in context, we first estimate the strain rate in our computations.
The strain rate is approximately ¥ = puyb, where vy is the dislocation velocity, p is the
dislocation density and b is the Burgers vector. Using a dislocation density typical
of the experiments [94] (p = 10''1/m?) and estimating the dislocation velocity as
the ratio between the distance traveled in one jump (1/3a(112) = 2.717 A) and the
simulation time (35 ps), we obtain an effective strain rate of ~ 10%1/s, which is
large compared to the strain rates (4 x 107%) in the experiments used for the zero-

temperature extrapolations [94, 104].

Figure 5-2 summarizes our results for the temperature dependence of the Peierls
stress as a function of temperature for the three directions ({112), twinning and
anti-twinning). As expected, the Peierls stress obtained from our MD simulations
decreases rapidly with increasing temperature, particularly for very low temperatures.
It is important to mention that, although our simulations are three dimensional, the
dislocations move as straight lines without the formation of double kinks because our
simulation cell is only seven Burger’s vectors long along the dislocation lines. Such
double kinks are quite important at finite temperatures as they tend lower the lattice
resistance at non-zero temperatures. Our results are approximately a factor of 2 — 4

larger than the fit of Tang ef. al. [94] to the experimental data of Wasserbich [104].
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Figure 5-2: Temperature dependence of the Peierls stress along various directions:
the (112), twinning and anti-twinning directions. The fits are done for the high
temperature data using Equation (5.1). The temperature is in Kelvin, and the stress
in MegaPascals.

We feel that this is reasonable, considering the facts that our simulation cells do not
allow for double kink formation and that, as discussed above, our strain rates are

much higher than those in the experiments [94, 104].

Experimental extrapolations of the Peierls stress to zero temperature generally
come from mesoscopic or kinetic/thermodynamic model [94, 51, 22, 21] fits to ex-
perimental data and extrapolated to zero temperature. To explore the effects of this
procedure, we fit our atomistic data to such a model, perform the extrapolation and

then compare with our direct zero-temperature results.

For the fit we use an analytical expression for the dependence of the Peierls stress
with temperature at constant strain rate [21, 22] based on a mechanism involving dou-

ble kink nucleation and propagation. This model gives for the temperature dependent

Peierls stress
_ TO . 'Y BEkink
TTp = Wasmh (We ) y (51)

where 8 is 1/kpT, with kg being Boltzmann’s constant and T the absolute temper-

ature, E¥"* is the kink energy [38], 7 is the effective Peierls stress and 4%k is the
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reference strain rate. Here, the effective Peierls stress is

Ekink
o = _——bLki"klp (5.2)
and the reference strain rate is
o™ = 2bplpvp, (5.3)

where b is the Burgers vector, L¥"™ is the kink length, p is the dislocation density and
vp is the attempt frequency which may be identified with the Debye frequency to a
first approximation [21, 22|, and [p is the distance between two consecutive Peierls
valleys. Physically, E*"* is the minimum energy to form a double kink, L¥%% is the
minimum length for this double kink and 7, is the stress, whose work to move a

dislocation a distance Ip is equal to EXk,

Figure 5-2 shows the fit of Equation {5.1) to our atomistic data. To mimic how
zero-temperature lattice resistances are generally extracted, we adjust the three un-
known parameters (9, E*™* and 4§°k) to fit our higher temperature data only. In-
triguingly, extrapolation of our higher temperature results to zero-temperature leads
to an underestimation of the Peierls stress of between 10% and 20%. We would ex-
pect that a fit to data from a cell sufficiently large to allow for double kink formation
(which is active in the experiments at non-zero temperatures) would lead to an even
a larger underestimation of the zero-temperature stress. These results therefore sug-
gest that the general discrepancy between extrapolated experimental values and the
calculated values for the zero-temperature Peierls stress may be the result of fail-
ure of nonzero-temperature models to describe properly the low-temperature regime.

This illustrates one possible difficulty in relating the experiments to computational

predictions and underscores the need for first principles studies of such a phenomena.
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Figure 5-3: Quadrupolar unit cell of size 42A x 41A: relative displacements of neigh-
boring columns of atoms (arrows), dislocation centers (plus signs).

5.3 Accurate Peierls Stress Calculations in small

periodic cells

Having underscored the need for first principles electronic structure studies and al-
ready determined the most effective boundary conditions for such studies as periodic,
we now focus on determination of the cell of minimal size appropriate to calculation
of the zero-temperature Peierls stress for a (111) screw dislocation in bee tantalum
for shear along the (110) plane.

To minimize image effects, we employ periodic boundary conditions with a quadrupo-
lar unit cell. Figure 5-3 shows a differential displacement map [100] of such a cell of
size 42A x 41Ain the plane perpendicular to the Burgers vector. In such a map, the
dots indicate columns of atoms along the (111), and the vectors between the columns
of atoms indicate the relative shift along the Burgers vector due to the presence of a
dislocation between each pair of columns, with the vectors scaled so that a vector of
full length between the columns corresponds to 1/3 a Burgers vector. In this ground
state structure of the dislocation, triads of full length vectors surrounds the center of
each dislocation, corresponding to a new displacement by a full Burgers vector upon

completion of a closed loop about the each center.
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As Section 5.1 notes, for calculations of static properties such as the ground-
state dislocation core structure, the strain fields from the surrounding dislocations
in a quadrupolar array essentially cancel at each dislocation core. However in a
dynamical problem such as the calculation of the Peierls stress, the dislocations begin
to interact with the stress fields of the others as they begin to move. Qur previous
work [81] shows that, for the particular geometry considered here, accurate values for
the Peierls stress can be extracted from quite small unit cells provided the proper
procedure is followed. We now outline that procedure while reviewing the relevant

background.

5.3.1 Calculation of Peierls stress within periodic boundary

conditions

To calculate the Peierls stress in a small periodic cell, we begin with lattice vectors
appropriate to bulk material in the absence of dislocations and then, while relaxing
the internal coordinates of the cell, apply increasing pure €,, strains (same Cartesian
coordinates from Section 5.1.3) until the dislocations move. Such a strain drives the
dislocation along the {112} direction [38]. Before the dislocation moves, the strain
energy of the cell increases quadratically,

B= 0%, (5.4)
where C” is an elastic constant associated with the quadrupole unit cell which can
be extracted simply from the energies of the cell as the strain increases. The stress

associated with this strain is

aa:z - 0’6.'1:2) (55)

so that at the strain at which the dislocation moves, Equation (5.5) gives the Peierls

stress.

The great benefit of the above procedure is that it requires a minimal search

through phase space in order to calculate the Peierls stress and accounts accurately for
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the effects of the dislocation-dislocation interactions. The C' elastic constant, which
comes as a direct byproduct of the procedure and requires no further calculations,
suffices to account accurately for the leading order effects of the inter-dislocation
interactions. This correction captures most of the effects from working with small
unit cells and and can differ from that of an equivalent bulk cell by a value of two or

more.

The above procedure involves several approximations requiring justification. First,
we apply strain relative to the lattice vectors of the bulk cell in the absence of the
dislocation, rather than those of the quadrupole array. Previously, we have shown
through explicit calculation on model inter-atomic potentials that working with the
relaxed lattice vectors of the quadrupolar array does not improve the value calculated
for the Peierls stress and therefore is not needed [81]. The reason for this is that
although working with the bulk lattice vectors generates artificial stresses, these are
primarily diagonal (o;;), because the greatest effect of the presence of the dislocations
is to dilate the system [81]. In the present geometry, such diagonal stresses result only
in a constant shift in the energy over the range of applied strain and do not generate

driving (Peach-Kohler [38]) forces on the dislocations [81].

Some slight care must be taken with the above argument. Duesbery and others [24,
44] have pointed out that stresses which do not result in driving forces on a dislocation
still may affect the overall value of the Peierls stress needed to drive the dislocation,
because such stresses may modify the dislocation core structure [26], an effect not
accounted in linear elasticity theory. This effect of non-driving stresses is, in fact,
one of the commeon violations of the Schmid law which bec metals exhibit. Diagonal
stresses, however, do not have a large effect [24] on the value for the Peierls stress, as
they tend to only compress or expand the core. Fortunately, because the bulk lattice
vectors should be relatively close to the that of the dislocation cell, we expect all of
these effects to be quite small, as we have found previously [81] and again verify in

the test calculations below.

The second simplification in our procedure is that rather than applying a stain

which imposes a pure 0., stress, we apply a pure €., stain, which also generates a
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residual o, stress [38]. To generate a pure stress of the form o, one would have
to apply an additional €, stain of a magnitude determined by yet another elastic
constant of the quadrupolar array. Because the calculation of this constant would
increase significantly the number of calculations required and because the residual
Ogy stress [38] acts on the plane perpendicular to the dislocation and thus does not
create a driving force on the dislocations, we simply apply the pure ¢, strain. As
with the diagonal stress components, although the residual in-plane o, stress does not
drive the dislocations, it can affect the Peierls stress by modifying the core structure.
Unlike the diagonal stress components, the in-plane stress does significantly affect
the Peierls stress in bee metals [24, 44]. This effect, however, will be small so long as
the residual oy, stress is small compared to the driving o, stress. The ratio Ozy/ sz,
is equal to C"/C’ where C" is the elastic constant appearing in Equation (5.4) and
C” is another combination of elastic constants. In pure bulk cubic materials these

constants have the form [38]

c' =

W =

(Ci1 + Cyy — Ch3)

2
c" = —%(2044 + Ch2 — Chy),

where the Cj; are the standard elastic constants for cubic materials.

As evidence of the correlation between the ratio of these constants and the errors
in the Peierls stress, we note that in our previous study [81] with same empirical
potential as in Section 5.2, the ratio C"/C’ varied from approximately 1/5 in the
smallest cell studied to less than 1/10 for all other cells while the error in extracting
the Peierls stress went from 18% to less than 2%, respectively. For the potential used
in that study, the value of C"/C" computed from bulk elastic constants is 1/90. As
the bulk value of C"/C” within density functional theory is less than 1/100 [42], we
expect the errors in our ab initio value of the Peierls stress to be even somewhat
smaller. Lending further support to this view is the result of Duesbery and Vitek [26]
demonstrating that the effect of Ozy Stresses on core structure is much less for the

non-degenerate core structure which we have in our density functional calculations
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than for the degenerate core structures in our inter-atomic potential calculations.

5.3.2 Demonstration

To demonstrate the efficacy of the above procedure, we now proceed to extract the
(110)-plane Peierls stress for vanadium and tantalum from calculations in small pe-
riodic cells. To allow comparison with the Peierls stress of isolated dislocations, we
employ empirical potentials for this demonstration. For vanadium we use the Finnis-
Sinclair [29] potential with modifications made Ackland and Thetford [4], and for
tantalum we use the same potential as in Section 5.2 but with a slight adjustment of
parameters to produce a non-degenerate core structure. The bulk ratios for C”/C’ for
vanadium and tantalum within these models are 1/10 and 1/6.5, respectively, much
larger than the density functional theory value.

To determine the reference value for the Peierls stress, we employed cylindrical
boundary conditions with large amounts of material, increasing the radius of the
cylinders until the boundary forces were small [82] and the Peierls stress approached
an asymptotic value, where we define the Peierls stress as the critical stress for the
dislocation core to first move to a new triad of neighboring columns of atoms. To
extract the Peierls stress from within periodic boundary conditions, we follow precisely
the procedure which Section 5.3.1 outlines.

Figure 5-4 shows the resulting energy versus stain curve for vanadium within a
periodic cell of size 424 x 20A. At a strain 2 0.054, the curve exhibits a discontinuity
signaling the critical strain for moving the dislocation. The curvature of the fit
determines the elastic constant C' through Equation (5.4). Finally, combining this
value of C’ with the observed critical stress through Equation (5.5) yields the Peierls
stress. We repeated this procedure for tantalum as well.

Table 5.2 summarizes our results for both vanadium and tantalum. The table
shows that the errors are relatively small, much smaller than the general discrepancy
between empirical potentials and the experimental extrapolations. It is also note-
worthy that the potentials employed in this demonstration exhibit C"”/C' ratios over

an order of magnitude larger than density functional theory. From these and previ-
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Figure 5-4: Energy versus strain of vanadium in a quadrupolar cell of size 42A x 20A.

Diamonds denote the energy calculated at various strains. The line is a quadratic fit
up to the Peierls stress.

23Ax 11.5A [ 424 x 20A
Ta 25% 10%
V 26% 11%

Table 5.2: Magnitude of percentage error in calculating the Peierls stress in periodic
supercells of two different sizes from empirical potentials for vanadium and tantalum.

ous results [81], we conservatively estimate that the error in the Peierls stress in the

density functional calculations below should be no greater than ~ 20%.

5.4 Density functional results and discussion

5.4.1 Computational Details

All of our first principles electronic structure calculations employ the plane-wave
density-functional pseudopotential approach [71] within the local density approxi-
mation [19, 72]. We employ pseudopotential of the Kleinman-Bylander form [50]
with s, p and d non-local channels which has been used successfully in previous
works [106, 42] and a plane wave basis with cut off of 40 Rydberg. As justified above,

we employ a super-cell containing a quadrupolar array of dislocations with lattice
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vectors d; = 5a[1,1,0], d = 3a[l,1,2], and @ = a[1,1,1]/2, where a = 3.25 Ais
the lattice constant of the cubic unit cell. To carry out the integrations over the
Brillouin we use a non-zero electronic temperature of kT = 0.1 eV to facilitate
integration over the Fermi surface and sample the zone at eight special k-points
ki =ky =0, k3 € +{%, 2,2, L}. These choices give energy differences reliably to
within 0.1 eV /atom. Finally, to determine the electronic structure, we minimize using
the analytically continued functional approach [6], expressed within the DF T+ [40]

formalism.

5.4.2 Energy landscapes
2

To demonstrate the discrepancies that occurs between the predictions of empiri-
cal potentials and first principles electronic structure studies, we compare the energy
landscape for a dislocation moving along a reaction coordinate from the easy core
configuration to the hard core configuration [100, 111] for both molybdenum and tan-
talum as determined within MGPT [110] and as calculated ab initio. Within MGPT,
we have carried out the calculation for molybdenum ourselves and we used the hard-
easy core energy difference reported in the literature [65] for tantalum. Within density
functional theory, we have calculated the energy at a number of points along the re-
action pathway for tantalum, and for molybdenum we report the difference between
the easy core and hard core configurations as found in Reference [42]. We also note
that, for molybdenum, within density functional theory, the hard core configuration
was not stable and therefore the stable structure found within MGPT was used as
the reference state.

Figure 5-5 shows the results. Most noticeably, the atomistic landscapes are three
times stiffer than the ab ¢nitio landscapes. This raises the question whether the
approximate factor of three overestimate of theoretical calculations over the extrap-

olation of the experimental Peierls stresses to zero-temperature is due to defects in

“The calculations in this section were done by Sohrab Ismail-Beigi from the Department of
Physics, University of California at Berkeley.
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Figure 5-5: Energy landscape along a reaction coordinate when going from the easy
core to the hard core configurations in tantalum and molybdenum: density functional
theory (squares in upper panels), MGPT (curves in lower panels). Ab initio results
for molybdenum are from Reference [42], and the MGPT tantalum results are from
Reference [65].

the inter-atomic potentials or to failures in the connection between the experiments

and the theoretical calculations.

5.4.3 Verification of cell size

To compute the Peierls stress, we shall employ a cell of dimensions 11.5Ax 23A.
To verify that long-range electronic structure effects in metals do not interfere with
results in such a cell, we compare the core structure reported previously [42] for this
cell with a new calculation using a larger cell. Figure 5-6 shows the result for the core
structure in cell of size 21Ax 40A. Such a cell has size 7, = (9/2)a[1,1,0], 7 =
5a[1,1,2], and 73 = a[l,1,1]/2. The lattice vectors are a; = 7 — /2 + r3/2, a; =
71 4+ 72/2 +r3/2 and a3 = r3. The k-point sampling is the same as above.

We note that the core structure is very similar to previous results [42] which
used a smaller cell equal in size to that we shall employ for our calculation of the
Peierls stress. We therefore do not expect the long-range nature of electronic effects
in metallic systems to greatly effect the value which shall extract for the Peierls stress

from the smaller periodic cell. We also note that the empirical potential results for
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Figure 5-6: Easy core structure for tantalum calculated within density functional
theory. This cell of size 214 x 40 Agives very similar results to the cell of size 11.54 x
23A, used in Reference [42]. The diamond in the figure represents the center of the
dislocation.

tantalum (Section 5.3) had a very large cutoff of 9Aand accurate results were obtained
in the smallest cells in those calculations. These facts lend confidence in the reliability

of our density-functional theory predictions below.

5.4.4 Results for the Peierls Stress

Figure 5-7 shows the present status of our density functional theory results for energy
as a function of strain following the procedure of Section 5.3.1. We regard each data
point as fully relaxed when the magnitude of the residual force on each atom is less
than 0.005 eV/A. In interpreting this data, it is important to note that only the data
for strains less than 0.045 have reached this criterion. We present all of the data
points, however, as bounds on the value for the Peierls stress can still be obtained.
From Figure 5-7 it is apparent that, at a strain of 0.060 the Peierls stress has been
exceeded, whereas at a strain of 0.045 the energy curve lies on the elastic solution.
At present, it remains unclear whether the energy for a strain of 0.050 will place it
above or below the Peierls stress. From the curvature of the data in the elastic region

and these critical strains, we bound the Peierls stress to be between 1.3 GPa and
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with strain above 0.045 have not been fully converged. The graph indicates that the
points with strain above 0.05 (stress = 1.7GPa) will be at a stress above the Peierls
stress.

2.0 GPa, where for these values we quote the full magnitude of the applied stress
and not the resolved shear stress, as do some authors. These results are consistent
with the previous density functional result of 1.9 GPa obtained using Greens function

boundary conditions [108].

Figures 5-8 and 5-9 show differential displacement maps [100] of the dislocation
configuration at stresses of 1.3 GPa and 3.0 GPa, respectively, where the diamonds
represent the location of the center of the dislocation before the application of stain.
Note that the ions have been fully relaxed in Figure 5-8, but not in Figure 5-9.
Figure 5-8 shows the relaxed dislocation core to remain in the position of its unstressed
state, whereas Figure 5-9 shows that at a stress of 3.0 GPa, the dislocation moves into
the split core configuration, in which over half of the core has moved to a new triad,
along a [110] plane. Further relaxation should result in a configuration in which the

core has moved onto the next triad of columnns of atoms.

Intriguingly, despite the fact that the ab initio energy landscape is less corrugated

than that of the interatomic potential by a factor of nearly three (Figure 5-3), the
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Figure 5-8: Differential displacement map at a stress of 1.3 GPa. The cell has con-
verged to within the tolerance defined in the text. The diamond in the figure is the
location of the center of the dislocation, under no stress. The center of the dislocation,
at this applied stress, has not moved.
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Figure 5-9: Differential displacement map at a stress of 3.0 GPa. The cell has not
converged to within the tolerance defined in the text. This figure shows a split core,
where a majority of the dislocation has moved to a new triad along a [110] direction.
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above ab initio result for the Peierls stress is a factor of two larger than the empirical
potential result (Table 5.1). Moreover, our result is a factor of six larger than ex-
trapolations of experimental data to zero-temperature [94], a discrepancy much larger
than any effects from the use of either our relatively small quadrupolar cell or the
local density approximation to density-functional theory. Certainly, as Section 5.2
shows, some of this discrepancy can be due to the extrapolation of experimental data
to zero temperature. However, errors in the zero-temperature extrapolation may not
likely does not account for all of the discrepancy as the underestimation in Figure 5-2
is only ~ 10 — 20%. One must therefore consider the possibility of other factors such
as the effects of kinks, defects, surfaces, strain-rate dependencies and screening from

the presence of other dislocations.

5.5 Conclusion

This work explores various aspects of the the Peierls stress for the (111) screw dislo-
cation in bec tantalum. The first non-zero temperature results for the Peierls stress
in this system shows both a strong orientation and temperature dependent response,
consistent with experimental results. These data also demonstrate that common ex-
trapolations of experimental data tend to underestimate the zero-temperature limit.

We have also presented the first density functional theory calculation for the
Peierls stress within boundary conditions, the approach best suited to metallic sys-
tems. The value we find for the Peierls stress is substantially larger than both the
experimental extrapolations and current empirical potential results. This difference
1s much larger than errors which could normally be attributed to the use of a rela-
tively small unit cell or the local density approximation to density-functional theory.
The error is also significantly larger than the underestimation we have seen in the
the extrapolation of nonzero-temperature data to zero temperature, thus supporting
the notion that mechanisms other than the simple Peierls resistance may play an

important role in controlling the process of low temperature slip.
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Appendix A

Application to Kleinman-Bylander

pseudopotentials

This appendix reviews briefly the application of our approach to norm-conserving
pseudopotentials of the Kleinman-Bylander form, where the approach essentially be-
comes a softening procedure without transferability biases. The softening comes at
the cost of generating a generalized eigenvalue problem, similar in spirit to the ultra-
soft pseudopotential (USSP) [98] and projector augmented wave (PAW) [13] methods.
However, unlike the USSP and PAW approaches, where the softening takes place ref-
erenced to a spherical atomic environment, in our approach the softening occurs
in the full crystalline environment and thereby includes nonlocal interactions from
multiple scattering events from different atoms in the crystal but at minimal extra
computational cost.

Here, we develop the approach to work with standard separable non-local poten-

tials of the form

nl (—j é Z |Vat,pr fpr( atpr(G’)' (Al)

at,pr
where the sum is over all atoms in the cell and all projectors on a given atom.
For such potentials it proves much more computationally efficient to use the forms

similar to Equations (2.26), (2.27) and (2.28) for the overlap matrix @, C? and H¢//
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respectively. The overlap matrix then takes the form

0O = 1+ (A.2)
cr—at,P 1 P —at,
(H:cQ + Hpp " Q) aeae (Hﬁ + Hp, QP) )

where Hf;c_“t is the local term for the “free-atom” crystal, a crystal whose charge
density is a direct superposition of the charge densities from isolated atoms. This
term includes the local part of the ionic potential, the Hartree term and the exchange-
correlation term. Ignoring the identity, expansion of Equation (A.2) results in four
terms, which we refer to as nonlocal-nonlocal, nonlocal-local, local-nonlocal and local-
local, respectively. The local-local term is exactly the same as that of the Coulomb
potential and therefore should be treated as in the manuscript. The advantage of
employing a fixed, rather than self-consistent, overlap matrix is that each of the

remaining terms contract contract onto the P-space only. We now consider each of

these in turn.

The p, 7 component of the nonlocal-nonlocal term is

Onl,nt (ﬁ; 15') = Z |V:zt,pr (ﬁ))fprA(E},pr‘ fpr’ (Vat' pr! (ﬁ) |’ (AS)

af
at,pr

at’,pr’
where

at',pr’

2
Q= S WVar @1 (175 ) Watge@ (A4)

q
This term quantifies how the high-momentum states components couple to the ions,
including not only couplings to individual atoms but also to pairs of atoms through
A(fg,pr,, thereby including environmental effects directly into the potential and en-
h;;lgirng transferability. In terms of implementation, this term requires almost no
additional memory as the only additional storage is for A® and scales as N, x N,
where N, is the number of bands. The computatioral demands are quite light as

A®) requires an amount of computing comparable to a single orthonormalization of

the electronic bands and only need be compute once at the very beginning of the
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calculation.

The local-nonlocal and nonlocal-local terms are just hermitian conjugates of each

other. The p, 7" component of the nonlocal-local term has the form

Onl,loc Z |Vatpr 35) fPT< atpr( )l‘ (AS)
at,pr
where ,
1
FE )] = Varr @) (133 ) B @7 (4.6)
2

F®) can also be simply calculated in the beginning of the calculation through Fourier
2
transforms of (Vg ;- (§)] (%) |.
2

The effective Hamiltonian H¢// can also be contracted onto the P-space. H¢//

has the form

loc

Heff — (Hlac HPQ) HLQ (Hcrfat,QP + Hcr at, QP) .

]

The nonlocal term on the left-hand side can be contracted onto H ~*:%9% in a similar

fashion as was done to O, giving two terms:

Hnl nl Z |Vat BT ﬁ) prA(i'?pr fpr < at’ ,pr’ (ﬁ)|a (A7)

at, pr at',pr’

at’,pr’

where
1
A =5 0 @ (157 ) Warar @), (A3)
at',pr (j‘ 2
and
Hnl Joc P p) - Z I‘/:ltpr ]5) fpr( at,p'r(p )| (Ag)
at,pr
where
1
(P )] = Vit 15 ) Hi (0 (A.10)
3

This will reduce almost all matrix multiplications onto the P-space. The only re-

maining &)-space multiplication would be in Hj,.,; A final simplification that can be
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made is to take

Heff _ _Hcrfat,PQ ;Q Hcrfat,QP
H )

and thereby make the full effective Hamiltonian contractible onto the P-space.
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Appendix B

Use of continuous symmetries to

produce local moduli

This appendix outlines the use of rotational and translation symmetries of the force
constant matrix to reformulate the ill-defined atomic moduli in Eq. (3.9) into the

well-defined form in Eq. (3.11).

From continuous translational symmetry, all force-constant matrices obey

Y Pap(B)-G = 0, (B.1)
B,E
for any vector ¢z = ¢ that is the constant vector for all atoms in the unit cell.

Moreover, the SO(3) rotational symmetries imply

Z Pagps (R‘)Tﬁt = Z (Dﬂq,ﬁt(ﬁ)rﬁm (B.2)
8B B,k

where the ¢, s,t correspond to one of the z,y, z Cartesian coordinates, @aq,gs(ﬁ) is

—

the ¢, s component of &, 5(R) and rg, corresponds to the s component of the position
vector 7.

The ill-defined atomic moduli, Egs. (3.8)-(3.9), contain divergent terms which are
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in one of the following two forms:

Z Usras(bas,ﬁt(ﬁ)uglt, (B3)
a,BR
or
Z Usras(pas,ﬂt (E)Tﬁtat- (B4)
a,ﬁﬁ

All of these terms scale linearly along the surface of the wire and give rise to the
linear scaling of the surface moduli with system size evident in Figure 3-2a.

From Eq. (B.1), one can set Eq. (B.3) equal to

Z T (Tas - T/Bs)(pas,ﬁt(ﬁ)u};lt- (B5)
a,ﬂﬁ

Using both Egs. (B.1) and (B.2), one can set Eq. (B.4) equal to

- Z Tg [ (Tas - Tﬁs)(pas,,@t(R‘)(Tat - Tﬁt)
a,ﬂﬁ

—%(Tas - Tﬂs)(pat,ﬂt(ﬁ) (Tas — TﬁS)

—%(Tm‘r - Tﬁi)cbas,ﬂs(ﬁ) (Tat - Tﬂt) ] Ot. (B.ﬁ)

The above terms now only depend on relative distances over a range controlled
by the decay of the force-constant matrix and therefore no longer scale linearly with
the size of the system. Combining the above transformations with the separation of
the extensive motion from the intensive motion in the first-order polarization vector,

Eq. (3.10), then results in the well defined form Eq. (3.11).
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Appendix C

Failure of straightforward

approches to predict flexion

It is now demonstrated that although the moduli defined in Eq. (3.9) indeed sum to
give the correct overall extensional response, their unphysical scaling properties lead
to invalid physical predictions when used in other contexts and, therefore, that they
are ill-defined. In particular, simple scaling arguments are used to prove that these
ill-defined moduli give a nonnegligible error in predicting the flexural rigidity in the

continuum limit.

Consider a circular wire whose radius R is sufficiently large such that continuum
theory applies. From Figure 3-2a it is seen that the surface moduli defined by Eq. (3.9)
scale linearly with R. Because of this, and in order to arrive at an analytic result for
the error in predicting the flexural rigidity, it can assume, to a good approximation,
that all surface moduli e, are proportional to their radial distance r from the center
of the wire,

€s = €T

Here, &, is the same for all surface atoms. Next, R, is defined as the inner radius such
that all atoms at position r < R; are in the bulk and all atoms with positions r > R,

are on the surface. Finally AR= R — R,.

Because of the facts that the surface moduli scale linearly with the system and
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that the sum of all atomic moduli must equal the extensional rigidity, the moduli in
the bulk region of the wire, derived from Eq. (3.9), €} cannot equal the average value
of the bulk material e,. (Figure 3-2a also evidences this behavior.) The two above

facts imply that the following equality must hold,

R R; R
/ esrdr +/ eyr dr =/ epr dr,
R 0 0

or to leading order in AR,
esAR +€,/2 = ep(1/2+ AR/R;). (C.1)

In the continuum limit, the traditional continuum relation Eq. (3.15) holds, and
therefore the fractional error in predicting the flexural rigidity from the ill-defined
atomic moduli Eq. (3.9) is equal to

fozr df) (ﬂ: dr z2e,r + fORi dr 1172627')

(SFH —at = -1
ot f27r df fOR dr eyt

0

or to leading order in AR,

§Fyny = &sAR+ e, /4 — g AR/R; N (©2)
6;,/4

Using Eq. (C.1) to solve for &;AR, Eq. (C.2) becomes

_ 6_L+ 4(6[,* 6{,)

€p €y

0Fy o = 1 AR/R.

Therefore, in the continuum limit, the ill-defined moduli do not approach the cor-
rect result and thus give a prediction which is even worse than that of traditional

continuum theory.
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