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Abstract

Fairly little is known from a fundamental first principles level about the role of mag-
netism at material interfaces. This thesis will address (a) changes in spin density at
grain boundaries and surfaces; (b) the impact of these changes on interfacial energies
and structures; and (c) the behavior of point defects (including vacancies, impurities
and adatoms) at interfaces.

We first develop a simple, general energy functional for ferromagnetic materials
based upon a local spin density extension to the Stoner theory of itinerant ferromag-
netism and use it to explore the physics of grain boundaries in iron, such as interfacial
energies, structures, and magnetic effects. Our results show that magnetism, in addi-
tion to driving structural relaxation, also greatly enhances intergranular cohesion in
iron.

To explore the effects of point defects at material interfaces, we present an exten-
sive study of non-magnetic Molybdenum grain boundaries. This trend study which is
carried out with an appropriate atomistic potential reveals an important set of struc-
tural phase transitions involving the exchange of vacancies with the surrounding bulk
material. We also show that the same mechanism of vacancy driven structural phase
transitions appear when these systems are studied with first principles techniques.

Finally, we explore the role of magnetism in the diffusion of adatoms and vacancy
migration at surfaces and steps in a transition path study of Cobalt.
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Chapter 1

Introduction

Ever since the dawn of humankind, man has tried to understand the nature around
him, not only to bring some meaning to his existance, but also to use this under-
standing and the tools developed through this understanding to aid in his survival.
Ancient men, without being aware of the underlying principles, have stared at the
stars and invented fictituous gods to protect over them, used mechanical tools, for
example levers, wheels, pulleys and later, lenses to overcome their weaknesses, like
lack of strong body weapons such as sharp teeth and claws, and lack of better vision
and better sense of smell, endowed upon him by evolution.

Even though man has used these mechanical tools as he was trying to evolve,
history shows that scientific methods for astronomy, mathematics, chemistry and
medicine have already been vigorously developed as early as circa 3000 BC during the
time of the Old Kingdom in Egypt. However, our modern understanding of science has
emerged as late as the sixteenth century with Johannes Keppler’s (1571-1630) study
of planetory motion, experimental studies of electromagnetism by Otto von Guericke
(1602-1686), Pieter van Musschenbroek (1692-1761), Benjamin Franklin (1706-1790),
Joseph Priestley (1733-1804), and Sir Isaac Newton’s (1642-1727) formulation of laws
of mechanics, as well as Charles-Augustin de Coulomb (1736-1806), Michael Faraday
(1791-1867) and James Clerk Maxwell’s (1831-1879) formulation of electromagnetism.
Although mechanics and electromagnetism proved to be accurate in their own realm of

physics, development of quantum mechanics in the twentieth century by Max Planck
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(1858-1947), Albert Einstein (1879-1955), Niels Bohr (1885-1962), Arthur Compton
(1892-1962), Louis de Broglie (1892-1987), Werner Heisenberg (1901-1976), Wolfgang
Pauli (1900-1958), Paul Dirac (1902-1984), and Erwin Schrodinger (1887-1961) has

opened new doors of understanding and appreciation of the world we live in.

Today we see nature as layers of intertwined phenomena, each of which we try
to understand using various different theories and methods developed over the years.
As the astrophysicist is studying the effects of sun’s magnetic field on earth, the
condensed matter physicist aims to uhderstand materials and their properties, both
through experimental studies and through the theoretical framework developed and
perfected over the years. The work presented in this thesis aims to shed some light on
the properties of industrially important materials, in particular ferromagnetic iron,
brittle molybdenum and magnetic cobalt, by studying defects, so as to explain the

intruiging nature of interfaces in materials.

According to solid state physics, most materials in their solid form consist of crys-
tals, with perfectly periodic environments. However, as nothing is perfect and flawless
in nature, impurities and faults at crystal structure dominate materials properties.
In this thesis, we concentrate on these flaws, in particular grain boundaries (where
two or more perfect bulk-like grains or islands are attached to each other at different
orientations and twist and tilt angles), surfaces (where the bulk periodicity is bro-
ken and material is exposed to vacuum) and vacancies (where only a single atom is

missing in the perfect bulk environment) to explore real-life like systems.

Condensed matter theorist is equipped with different techniques to study such
systems, such as atomistic studies, density functional theory and intermediate tight-
binding approaches, all of which have their own advantages as well as weaknesses.

All of these methods have been discussed in detail and employed in this work.

In Chapter 2, in order to understand the effects of magnetism in iron, we refrain
from atomistic models, which coarse-grain over the electronic degrees of freedom
completely, giving a very simple yet unrealistic description of iron as they ignore
magnetism. Instead, we develop a simple, tight-binding description of iron, using a

general energy tunctional based upon a local spin density extension to the Stoner the-
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ory of itinerant ferromagnetism. We perform a trend study of the grain boundaries in
iron and show that magnetism drives structural relaxation, and also greatly enhances
intergranular cohesion in iron.

In Chapter 3, we shift our focus from magnetism to the effects of point defects
at material interfaces, and employ an appropriate atomistic model to perform an
extensive study of non-magnetic Molybdenum grain boundaries. This work reveals
an important set of structural phase transitions involving the exchange of vacancies
with the surrounding bulk material. Equipped with this knowledge, in Chapter 4, we
use density functional theory, which provides a rigorous, first principles approach to
finding the ground-state energy and single-particle properties of any electronic system,
to delve deeper into brittle nature of molybdenum. Our work shows that the same
mechanism of vacancy driven structural phase transitions appear when these systems
are studied with first principles techniques, which gives proof to the conclusions of
Chapter 3.

As Chapter 2 has shown that magnetism plays a key role in structural relaxations
and intergranular cohesion, Chapters 3 and 4 reveals that impurities such as vacancies
also act as driving forces in structural relaxations as well as fracture. However, as
all this work concentrates on grain boundaries in materials, in Chapter 5, we shift
focus from bulk-like defects to surfaces in magnetic cobalt. We first study the dif-
fusion of adatoms at surfaces with an atomistic transition path study of cobalt. We
then employ density functional theory, which when combined with the local-density
approximation to the exchange-correlation energy, provides an accurate and computa-
tionally feasible method for calculating the Born-Oppenheimer energy, atomic forces
and spin densities for any atomic configuration. Our results demonstrate a close link

between the motion of the adatom and the spin configuration of the material.
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Chapter 2

A tight-binding, Stoner-exchange

description of non-crystalline iron

Abstract:

We present a study of the active microscopic processes which control the physical
behavior of inhomogeneous systems of iron. We find that the underlying active de-
grees of freedom may be taken as consisting of only the nature of bonding between
the atomic d-orbitals and the spin polarization on each atom. We demonstrate this by
presenting a simple coarse-grained Hamiltonian. After fitting a limited set of param-
eters to the primitive physical properties of bulk a-iron, we find that our Hamiltonian
accurately predicts such complex phenomena as the energetics and magnetic structure
of grain boundaries, the melting temperature at constant volume, and the activation

energy for self-diffusion in the liquid state.
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2.1 Introduction

Our current understanding of the microscopic behavior of inhomogeneous systems
of iron, whether bulk material incorporating defects or the liquid state, is based on
two very different types of models: full-blown eb initio spin-dependent total energy
density-functional calculations[14] and calculations of lattice configurations based
upon empirical interatomic potential models, such as the embedded atom method
(EAM)[48, 28, 56, 44]. Ab wnitio calculations treat explicitly the relevant many-body
physics of the electronic degrees of freedom at lower temperatures where spin fluctu-
ations are not important. However, these calculations are very demanding computa-
tionally. In contrast, the EAM coarse-grains over the electronic degrees of freedom
completely[48], giving a very simple description which allows the study of complex

phenomena.

The computational demands of the density-functional calculations have so far
limited the application of these extremely detailed studies in iron to bulk crystals
and the simplest extended defects, such as small cluster studies for the £3(111)[24,
13, 35] and £5(310)[9] grain boundaries. The computational demands of this approach
preclude the possibility of understanding the microscopic phenomena controlling the
behavior of more complex grain boundaries, dislocations, and processes which occur

over long time-scales, such as melting and self-diffusion in the liquid.

EAM treatments, on the other hand, are feasible computationally for dislocation
[66] and fracture studies [44]. However, they are overly simple, and by ignoring
variations in exchange effects, they neglect processes such as the exchange mechanism

which control the ground-state lattice structure and the behavior of extended defects.

The works by Hasegawa and Pettifor[40] and Zhong, Overney, and Tomanek[51]
present intermediate descriptions of iron which include these exchange effects ex-
plicitly. Hasegawa and Pettifor go beyond mean-ficld Stoner theory[49] and include
many-body spin fluctuation effects[19, 18] in a d-band tight-binding description. This
description reproduces well the phase diagram of iron at higher temperatures. They

also show that below Ty = 500 K, their spin-fluctuation description reduces to Stoner
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theory. The results of Hasegawa and Pettifor thus lend support to the use of models
such as that of Zhong, Overney, and Tomanek[51] at temperatures below T;. This
latter model describes bulk crystalline iron based upon a combination of an spd tight-
binding approximation and the Stoner theory of itinerant ferromagnetism [49].

The aforementioned works in the previous paragraph, while providing a promis-
ing description intermediate to the embedded atom method and full blown density-
functional calculations, were limited to homogeneous bulk crystalline phases only. In
this paper, we extend such an intermediate-level description of iron to treat inhomo-
geneous systems, in particular grain boundary structures and the liquid state. We
shall use the Stoner description to treat the local atomic spins as active degrees of
freedom, and follow Hasegawa and Pettif@r and in considering only bonding among
the d-states.

While similar in spirit to the previous tight-binding based descriptions, the coarse-
grained Hamiltonian which we present differs in two important aspects. The most
significant difference is that the present model incorporates a local, environmentally
dependent treatment of the Stoner parameter, thereby allowing one to study inhomo-
geneous structures. In addition, to enable a simple Hellman-Feynman-like treatment
of the forces, which is necessary for relaxing defect structures and for molecular dy-
namics studies, we recast the total energy functional in a direct form rather than as

an integral over the densities of states for the majority and the minority carriers[51].

2.2 Tight-Binding model

2.2.1 Overview

The present Hamiltonian includes three basic contributions to the energy: (1) single-
particle terms to describe bonding among electrons, (2) exchange effects to describe
spin polarization effects, and (3) a repulsive potential between atomic cores. This
section introduces the various terms of the Hamiltonian. Section 2.3 describes the

parameterization of each of these terms.
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We represent the free energy for a periodic supercell of material as

By ) = 2wk {fakonk — TSnko) (2.1)
nko
b -
-+ 5 Z e PTas
a#f "

where the Fermionic entropy is

Snkoe = _kB [fnkcr In fnkcr + (1 - .fnlw) In (1 - fnka)} . | (22)

Here, n labels the electronic bands and & varies over an appropriately chosen recip-
rocal space mesh with weights w; for integration over the Brillouin zone. The band
structure sum also extends over the spin index ¢ = 4+1. The f,., are Fermi-Dirac

occupation numbers,
1
€nk—ho)/ksT 4 1’

fnka = ol (23)

where p, is the chemical potential of spin channel o. The separate Fermi levels for
the two spin channels are adjusted separately to minimize the total energy while
maintaining the correct total number of electrons. The energy levels ¢€,; are obtained

by diagonalizing a tight-binding Hamiltonian at each point of the Brillouin zone,

> Hylam., Bm) i (Bm,) = eapthui(am,). (2.4)
Bm,
Here, Hi(am., Sm)) is the matrix element at point & in the Brillouin zone connecting
the m, and m/, atomic d-orbitals of atoms & and 3. The ¢, (am,) are the expansion
coefficients of the wave function of band n at a point &k for d-orbital m, of atom
a. Finally, these expansion coefficients together with the Fermi occupation numbers

define the local up and down spin occupancy for atom o as

ne (o) = Z Wk frko |7/Jnk(amz)|2, (2.5)

n,k,my
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which, when combined with the local atomic Stoner parameters I,, complete the
magnetic energy term of Eq. (2.1).

Once the Stoner parameters f, for each atom are determined from the atomic
environment, and the €, are determined by diagonalizing the tight-binding Hamil-
tonian, we define the free energy of the system as the minimum of Eq. (2.1) over the
chemical potentials pi,—41, ty=—1 under the constraint of preserving the correct total

number of electrons.

2.2.2 Band structure energy

The first term of Eq. (2.1), the single-particle electronic term, represents an integral
over the Brillouin zone as a weighted sum over the eigenenergies €,,. The integration
over the Brillouin zone is carried out with a sum over a discrete set of k-points with
appropriate weights w;, as chosen in the conventional way [37]. To produce the correct
finite-temperature free energy of the system, the single-particle electronic term of Eq.
(2.1) also includes the electronic entropy defined in Eq. (2.2). This allows us to carry
out calculations at elevated electronic temperatures, a useful computational device
for smoothing the Fermi surface without significantly affecting the total energy. In
addition, including the entropy explicitly ensures that the familiar Fermi form of Eq.
(2.3) for the fillings automatically minimizes the free energy in Eq. (2.1), a fact which
we exploit below to calculate the forces. Maintaining separate Fermi levels for the up
and down electrons under the constraint of the correct total number of spin up and
down d-electrons, Ny = N,—,; + N,—_;, allows the possibility of spin polarization in
the system.

While it would be reasonable to include s and p states as well, we follow Hasegawa
and Pettifor and use d-orbitals only. Their work shows that a tight-binding descrip-
tion purely in terms of d-bands with a fixed occupation of N; = 7 electrons/atom
reproduces well the P—T phase diagram of a-iron. In Section 2.3, we find that we also
obtain such a good description by considering only d-states with a very similar popu-
lation of electrons. Working with d-states only, the variables m,, m/, = -2, -1,0,1,2

in Eq. (2.4) now vary over the full set of orbitals for each atom.
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In expressing the k-dependent matrix elements Hi(am,, Bm!), particularly when
evaluating forces, we find it most convenient to express the Slater-Koster angular fac-
tors explicitly in terms of the ¢ = 9 representation of SO(3), rather than employing
the usual Cartesian forms of Slater and Koster [22]. (In practice, any extra com-
putation involved in dealing with explicit rotation operators scales linearly with the
number of atoms and requires far less effort than diagonalizing the resulting matrices,
even for systems of relatively few atoms.) In terms of the ¢ — 2 representation, the

tight-binding Hamiltonian for d-states at point & in the Brillioun zone is then

Hy(am,, fml)) = ek(a=7a) (2.6)
[Mye_ieaﬂMJe_i%ﬁ X

e el [ ot®ap Myeieﬂﬂ MJ}mgmz )
Here, M, is the 5 x 5 matrix whose columns are the iy eigenstates expressed in the

L, basis, 7, are the atomic positions, and Tag 18 the distance between atoms « and

B. The angles which appear in the rotation matrices are defined through

-t

7_"'0—7';; = Taﬁ(QCOsga‘g'l-

$in 0,4 [Z cos @ap + U sin Pag)),

in terms of which the fina] interatomic rotation matrices are Oup = Bop L, and Q5 =
bapL;, where I, is the diagonal 5 x 5 matrix with diagonal elements -2,-1,0,1,2.
The terms appearing in square brackets in (2.6) thus account for the angular orien-
tation of the two atoms. These matrix operations rotate the atoms so that the dis-
placement between them lies along the z-direction. Finally, e=9%=s K is the matrix of
overlap integrals at distance Tap in this standard orientation. In this orientation, cylin-
drical symmetry ensures that only states of the same m, will couple. Thus, K, is a
diagonal matrix with diagonal elements corresponding to ddo, ddr, and ddé-bonding,
After the usual fashion, we take these matrix elements to decay exponentially with

distance, as the coefficient e~ 78 describes.
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The parameters which must be determined for this part of the tight-binding Hamil-
tonian are thus the exponential decay factor ¢ and the diagonal elements ddé,, ddr,,

ddo,, ddr,, ddd,, respectively, of K.

2.2.3 Exchange energy

The basic Stoner form [49] describes a mean-field energetic benefit of exchange of
magnitude N,,Im?/4, where N, is the total number of atoms in the crystal, m is
the spin polarization per atom and [ is the Stoner parameter. Although this mean-
field treatment ignores thermal fluctuations of the spin density, it represents the
low temperature limit of the more detailed single-band spin-fluctuation theory of
Hubbard and Hasegawa [19, 18]. We thus expect an energy functional based on a
Stoner approach to capture the influence of magnetic effects in complex structures
below Ty ~ 500 K.

As we will discuss below, disorder in the liquid causes our energy functional to
demagnetize at very high temperatures, reducing it in the liquid to a simple tight-
binding description, which is appropriate for iron well above the Curie temperature.
We thus have, within one unified framework, an energy functional for both liquid iron
(high temperature demagnetized phase) and complex structures in a-iron (low tem-
perature Stoner regime). To extend this work to the phases of iron at intermediate
temperatures, one could in principle generalize the framework of [40] to inhomoge-
neous systems following a path analogous to what we take below.

To extend the Stoner theory beyond homogeneous bulk systems, we introduce
a local approximation to the exchange energy in the same spirit as the local-density
approximation[47] of density functional theory[21]. For an inhomogeneous system, we
associate a separate energy contribution to exchange from each atom equal to what
we would expect on a per atom basis from a homogeneous system consisting of atoms
in identical environments with identical spin polarizations. The exchange energy
thus becomes a sum over atoms of the product of the Stoner parameter associated
with the environment of each atom and the square of the spin polarization on that

atom, as appears in Eq. (2.1). The physical basis for making this approximation is
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that the itinerant nature of magnetism in iron will result in smooth variations in the
spin polarization, so that any “gradient” (site-to-site difference) corrections to our
local Stoner approximation will tend to be small. This approach has the advantage
of requiring no additional fitting beyond the form of the Stoner parameter in bulk
materials.

What remains to be determined for this part of the energy functional is the de-
pendence of the atomic Stoner parameters I, on the atomic environment, and the

number of electrons in the d-manifold, /V,.

2.2.4 Interatomic energy

The final part of our tight-binding energy functional is the repulsive interatomic
potential. The role of this term is not only to embody the physical, screened repulsive
interaction of the ionic cores, but also to capture those more subtle effects which our
energy expression does not include explicitly. These effects include overlap repulsion,
distortions in the atomic orbitals, changes in the Hartree and exchange-correlation
energy due to distortions in the charge density, and band structure effects which arise
from the as of yet unaccounted s and p-orbitals. Our ansatz is that these effects vary
only mildly as the atoms move, and therefore may be captured by a simple two body
form as appears in the last term of Eq. (2.1). Our choice of an exponential two-body
form is governed by the fact that most of the effects which this term is to capture
decay exponentially with distance. Here we follow [38] in taking the repulsive part
as having a power law relationship with the hopping elements. This final part of the
energy introduces only two new parameters, the overall strength of the repulsive term

b and the associated decay factor p.

2.2.5 Forces

To calculate atomic forces, we note that although E(p,— 1, o—_1) depends explicitly
on 7Tag, Loy €nky frke and n,(a), the chosen forms for f,4, in Eq. (2.3) and n, () in

Eq. (2.5), through the minimization process described at the end of Section 2.2.1,
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make E' stationary so that the effects of their variation with motion of the atoms need
not be considered in computing the variation in total energy in Eq. (2.1). Thus, in
the spirit of the Hellman-Feynman theorem, to compute the forces Fy,=—dE [dTe, we
need to consider only changes in those terms which depend ezplicitly on the atomic

locations, namely Hy, /,, and e P74 The result is

O0H,
= _Zwkfnkcr<'¢nk:| ¢

nko

- Z (a—TeIa) (ne(3) — my (3))°

a#ﬁ

|7,[)nk (2.7)

Given the electronic state of the system, each term in this expression may be evaluated
directly, with no need for perturbation theory or explicit analytic understanding of

the density of states.

2.3 Parameterization of the model

Eq. (2.1) is among the simplest possible expressions for the free energy functional
of a system where the active degrees of freedom are bonding among the d-orbitals
and the local atomic spin polarizations. With such a limited set of degrees of free-
dom, there are correspondingly few parameters which must be specified in the energy
expression. These parameters are (1) the hopping elements of the Hamiltonian and
their decay with distance, (2) the number of electrons occupying the d-manifold and
the dependence of the local Stoner parameters I, on the atomic environment, and (3)

the variables & and p parameterizing the two-body repulsive interaction potential.

2.3.1 Tight-binding matrix elements

The parameterization of the tight-binding Hamiltonian for the energy expression in
Eq. (2.1) proceeds from ab initio calculations within the self-consistent linear muffin

tin orbital (LMTO) method in the atomic sphere approximation (ASA)[55].
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These LMTO calculations predict the stable phase of iron as the ferromagnetic
bee phase, which is the experimentally observed stable phase for iron at 1" = 0 K.
These calculations give an equilibrium atomic Wigner-Seitz (WS) radius for the bcc
phase of 2.64 Bohr (experimental value is 2.66 Bohr) and a bulk modulus within 1%
of the experiment. They also show that by far the largest contribution to the total
magnetic moment comes from the d-electrons. In the left panel of Figure 2-1, which
gives the corresponding density of states for the d-electrons, we see that the high
degree of polarization in the d-electrons originates from the opening of a pseudo-gap
at a location accessible to the spin-down Fermi level. The system thus stabilizes
the bce structure by adjusting the density of states so that the Fermi level for the

spin-down electrons falls in this gap.

A somewhat weaker pseudo-gap appears in the fcc density of states, but at a point
too low in the band structure to attract one of the Fermi levels without placing more
than five spin-up electrons in the d-band. Thus, in the end, bee is the naturally
favored structure at lower temperatures. These results all point to the fact that the

physics of the d-electrons is the key to the mechanical behavior of the iron lattice.

In this work, the ratios of the Slater-Koster parameters ddo,:ddm,:ddd, and the
exponential decay factor ¢ are adjusted to reproduce the ab initio density of states.
We find that a choice of ddo,:ddm,:dds, = —2 : 2 : —1 and ¢ = 0.63872 Bohr™!
reproduces the basic shape of the LMTO-ASA density of states[55]. Finally, we adjust
the absolute scale of the hopping elements to match the width of the LMTQO-ASA
density of states, obtaining a good fit with the choice of ddm, = 1 Ryd."

2.3.2 Local Stoner parameters

To specify the magnetic parts of the tight-binding Hamiltonian, we must determine
both the local Stoner parameters, I,, and the total number of electrons in the d-
manifold, Ny. In an ideal bulk structure, all atoms experience the same environment,
so that I, = [ takes on a constant value for a given crystal structure. However, Krasko

has shown that the bulk Stoner parameter I has a mild linear volume dependence[23,
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Figure 2-1: The density of states for the d-electrons in the bce phase. The vertical
lines are the Fermi levels. The left panel gives the density of states obtained in LMTO
calculations [1] and the right panel is produced with our energy functional.

34],
I'=1,- a(s— s,), (2.8)

where s, and I, are a reference WS radius and Stoner parameter, respectively, for the

given structure and o = 0.01 Hartree/Bohr.

Krasko also showed in his work that the Stoner parameters for the bee and the
fce structures have slightly different values, I’ = 0.0720 Ryd/u%, I7* = 0.0690
Ryd/u% at s, = 2.66 Bohr. In order to yield the correct ordering of states for the bec
and fcc phases and to make the zone-edge phonon stable, we found it necessary to

slightly adjust the bulk Stoner parameters to 72 = 0.0770 Ryd/u% and I/ = 0.0723
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Ryd/u%.
To go beyond the properties of bulk homogeneous systems, we generalize the
Stoner parameter I of Eq. (2.8) by using local WS radii s, and local coordination

numbers ¢J, in the expression
1
Ia =Ibcc—a'(sa _50) - Z(Ibcc_ffcc) (Qa_Qo)u (29)

where s, = 2.67 Bohr is the equilibrium bee WS radius, and @, = 8 is the bee
coordination number.
To define the local WS radii s,, we follow the lead of Sawada [46] and define the

local nearest neighbor distance R, and coordination number @, through

g Tap€ T

Ra = Zﬂ#a e—,\fraﬁ

(2.10)

, .
Qe = 3 e (rsfa) (2.11)

B#a
where, as before, 7,4 is the separation between atoms « and 4. In this work, we
choose the values A; = 4.502319 Bohr !, A\; = 10.63676 Bohr —2, which reproduces
to within 0.01% the correct coordination numbers for the diamond structure, simple

cubic, bee and fece lattices, when packed at the atomic density of bee iron.

To determine the local WS radius for use in Eq. (2.9), we must first obtain the
local volume per atom from Egs. (2.10-2.11). To a first approximation, this volume
is

47 RN\
v=2 (—“) . 2.12
5 \ 3 (2.12)
To improve this approximation, we note that the ratio of the calculated volume per
atom to the actual volume per atom in a perfect lattice structure should be a function

of the coordination number which approaches a constant in the limit of large coordi-

nation numbers. We find that the correct WS radii, s, = (Vcrys%)%, where V., is

26



the volume per atom for each crystal structure mentioned in the previous paragraph,

are reproduced to within 0.3% with the use of the asymptotic series

dr (&L)S 5
3 2 C
—a+ — : 2.13
‘/C'rys et Qa + ?1 ( )

with parameter values a = 1.7144356, b = —9.094819 and ¢ = 56.371742. Using this
series, the local WS radius needed in Eq. (2.9) is just

R, b e \F
Sq = 7 (a + @ + Q_ﬁ) . (2.14)

Note that, in accord with the microscopic origins of the exchange effect, the Stoner
parameter as calculated in Eq. (2.9) is a very local quantity, depending almost entirely
on the locations of the nearest-neighbor atoms.

Finally, we set the number of electrons in the d-manifold to N; = 6.7 elec-
trons/atom [55]. With this value for the occupancy, the Fermi level for the spin-
down electrons falls precisely into the pseudogap in the density of states for the bee
structure, thereby stabilizing the bcc phase and reproducing the physical behavior
observed in the ab initio calculations. Note that the filling Ny = 6.7 electrons/atom
is in good agreement with the value of Ny = 7.0 electrons/atom used with success in

[40].

2.3.3 Interatomic potential

With the electronic parts of the energy expression Eq. (2.1) fully specified, we now
adjust the parameters describing the empirical two-body repulsive interaction in order
to capture any residual effects not described in the electronic part of the energy. We
adjust the two parameters b and p defining the potential to reproduce the experimental
values for equilibrium lattice constant and bulk modulus for the bece phase of iron.
The resulting values for p and b are 2.2355 Bohr™! and 872.5174 Ryd, respectively
[65]. The power law relationship between the tight-binding matrix elements and the

interatomic repulsive part then has an exponent A = p/¢ which leads to a normalized
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Eg E.y Am Al in
lerg/cm?] [erg/cm?]
$5(310) < 001 > || 870 (770%) (1300%) | -1300 (23 %) 10% (8%°) 2%
%3(112) < 110 > 320 (3007 -900 (37 %) 6% 1%
¥3(111) < 110 > 900 -4500 (30 %) | 16% (15%2-18%°) | 4%
$9(114) < 110 > || 600 (770%} {1450°) | -1500 (35 %) 15% 2%

Expt: °[52], EAM: *[28]; Ab initio:°[9], 9[24], °[35].

Table 2.1: Summary of grain boundary results: boundary formation energy [Eg),
exchange contribution to the energy [E;], percentage change in magnetic moment on
the boundary plane [Am], percentage increase in Stoner parameter [Afl,,,]. Results
of other studies are given in parentheses.

hardness [38] ap = (A —1)/X = 0.7, well in line with the values of about 2/3, usually

observed for transition metals [38].

2.4 Results

2.4.1 Extended defects in a-iron

We now consider symmetric tilt grain boundaries, one of the fundamental topological
excitations of crystalline iron which govern mechanical response in general and inter-
granular cohesion and microstructure in particular. We carried out our calculations
using periodic boundary conditions in supercells containing two oppositely oriented
grain boundaries separated by at least eighteen layers of atoms and performed full
structural and supercell lattice relaxations with five layers of atoms (equidistant from
the boundaries in the cell) frozen at the bulk lattice spacing.

Table 2.1 summarizes the results. The first column identifies the boundaries in
our study. The second column gives the interfacial energy for each. The interfacial
energies show that our model correctly identifies the lowest energy boundary as the
naturally occurring £3 (112) < 110 > with an energy significantly lower than all
other boundaries in our study. EAM calculations (in parentheses) also produce a very

similar energy value for this coherent twin 3 (112) boundary, which is not surprising
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Figure 2-2: Atomic spin moment distribution in the vicinity of the ¥5(310) grain
boundary. The left panel gives the distribution obtained with the present tight-
binding energy functional, the right panel gives ab initio results of [9].

since this particular boundary is very bulk-like, and EAM potentials are traditionally
fit to reproduce well the properties of bulk iron well. A more objective comparison
can be made for the ¥£5 (310) < 001 > and X9 (114) < 110 > boundaries, with
structures which differ significantly from bulk material. While experimental studies
predict a mean typical boundary energy of 770 erg/cm?[52], EAM overestimates this
value by a factor of two whereas our model produces results in much better accord
with the experiment.

The third column of the table gives the contribution to the boundary energies
from the exchange term. The large negative values of this contribution indicate that
the exchange interaction, not accounted explicitly in the EAM, significantly stabilizes
the boundaries and enhances inter-granular cohesion by lowering the boundary ener-

gies. To understand the physical origin of this effect, we now analyze the individual
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contributions to the last term in Eq. (2.1), namely the Stoner parameters and the
atomic magnetic moments. Because we treat these two effects locally, a local change
in either of them could affect the exchange energy. Qur calculations show that for
each of the boundaries we studied, there is a 6 — 16% enhancement of the magnetic
moments on the symmetry plane (fourth column of Table 2.1, which is in excellent
agreement with the available ab initio predictions[24, 35] (listed in parentheses)). The
local Stoner values also increase (thereby further stabilizing the boundaries) but only

by about 1 — 4% (fifth column of the table) so that this is not the controlling effect.

To further understand this magnetic enhancement, Figure 2-2 compares the mag-
netic moment distribution for the ¥5(310) grain boundaries, obtained with the present
tight-binding energy functional and ab initio calculations [9]. Both sets of results show
a fractional enhancement of the moments on the boundary (10% with the present
model, 8% in ab wnitio calculations), followed by a spin-depression echo in the vicin-
ity of the boundary and an eventual healing back to the bulk value. While the spin
enhancement on the boundary is similar, our calculations place the location of the
spin depression somewhat farther away from the symmetry plane of the boundary.
Nonetheless, we find this remarkable level of agreement with the ab initio data for even
subtle effects such as the spin distribution. Given that our functional is extremely
simple and fitted to only bulk phase information, this result strongly supports the
soundness of the functional and its capability of capturing the correct microscopic
physics.

This spin enhancement, which we have seen to be the dominant contribution
stabilizing the boundaries, can be understood in terms of a simple band-structure
effect. First, we note that it is the states in the energy range near the band center
control the net magnetic moment because states with energy below both Fermi levels
Ho=—1 and pr,—qq are filled equally with up and down spins and contribute nothing to
the net moment as do the completely empty states with energies above both Fermi
levels. Combining this with the fact that such mid-band states tend to localize where
the bands spread less due to disruption in the bonding, we indeed expect the spin

moments to concentrate on the the grain boundaries.
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Figure 2-3: DOS for bulk (solid line) and LDOS for grain boundary layer (dashed
line) for ¥5(310) boundary.

We have confirmed the latter of the above effects leading to spin enhancement
on the boundaries by direct inspection of the electronic states. Also, by comparing
the local density of states (LDOS) for the symmetry plane atoms with the LDOS of
the bulk atoms in Figure 2-3, we can clearly see that there is an enhancement of the
LDOS for atoms on the boundary plane in the energy range between the Fermi levels.

Table 2.2 summarizes our results for the structural relaxation associated with a
number of grain boundaries. These results indicate a general trend toward outward
motion of the layers neighboring the symmetry plane, which tends to further disrupt
the bonding and enhance the magnetic moment and thus the energetic benefits of
exchange. In the case where we have ab inifto data, for the £3(111) boundary, we
find good agreement in the outward expansion of the layers of atoms neighboring the

boundary plane.
Table 2.3 makes a detailed comparison of our results and the available ab initio
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| £5(310) | ¥3(112) |  ¥3(111) | £9(114)
Azrgyers | 0.52 0.09 |0.68 (0.5-0.87) | 0.33
Azputk 0.36 0.01 0.55 1.23
Ab ingtio: ¢[36], 7[35]

Table 2.2: Qutward motion of planes immediately neighboring the boundary
[Azrayera) and the total outward motion of the bulk slab [Az,y] in Bohr for var-
ious boundaries.

structural predictions for the £3(111) boundary(35, 36]. In this table, a shift of zero
indicates that the corresponding atomic plane rests at the position which one would
expect in an unrelaxed CSL (coincident site lattice) boundary. The final column of the
table gives the displacement of the planes far into the bulk, which represents one-half
of the net outward expansion associated with the grain boundary. In interpreting the
results in the table, it is important to note that the data in each row associate with
different boundary conditions. The data in the first row is from an isolated cluster
with its outer atoms held fixed [35], which artificially hampers the outward relaxation
of the boundary. The data in the second‘row are for an infinite periodic slab exposed
to vacuum on both sides [36], which, with the tendency of metallic atoms to seek
a bulk-like environment, also tends to artificially hamper outward motion. Finally,
our results in the third row were from calculations in which we employed periodic
boundary conditions to large cells (12 layers of atoms between grain boundaries),
performed full lattice relaxation, and thereby allowed the boundary to relax outward
naturally.

Despite the apparent differences in the applied boundary conditions, we find good
agreement between our results and the ab initio conclusions. In particular, Table 2.3
shows the same ‘trends in the layers near the boundary (Layers 2-5): Layer 2 (which
neighbors the symmetry plane, and is least effected by the boundary conditions)
moves significantly outward, and Layers 3 and 4 move less (or inward in the case
of the cluster calculation). Layer 5, whose atoms are directly in line with those of
Layer 2, also shows a noticeable outward motion. For the outer layers, our results

quickly revert to the bulk inter-layer spacing, as indicated by the nearly constant
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Az (Bohr) | L2 L3 L4 Ls L6 L7 Bulk
Cluster [0.78 -0.81 -0.00 0.78 -0.81 -0.00 N/A
Free Slab [[0.54 024 0.18 023 018 010 77
TB 068 020 032 059 050 051 055

Table 2.3: Displacement of the atomic layers (L2-L7) from their geometric grain
boundary positions for the £3(111) boundary.

shifts for layers 6, 7 and 8. For these outer layers 6-8, the ab initio results give
reduced displacement, a direct artifact of the employed boundary conditions.

In summary, we find the following universal trends for the symmetric tilt grain
boundaries in iron: (a) the exchange contribution to the total energy stabilizes the
grain boundaries and increases inter-granular cohesion; (b) most of the contribution
to the exchange energy comes from the enhancement of magnetic moments on and
in the vicinity of the boundary plane, a band structure effect arising from the more
open environment of the boundary plane; (c) our model correctly describes, both
qualitatively and quantitatively, the outward relaxation of atomic layers neighboring

the boundaries.

2.4.2 Liquid phase

In the liquid phase, well above the Curie temperature, magnetic order is lost, and
exchange effects become far less important in iron. Although our tight-binding energy
functional does not describe spin correlation effects, which are quite important at
intermediate temperatures, disorder in the liquid causes our model to demagnetize.
This effect reduces our energy functional to a non-magnetic tight-binding description
appropriate for the liquid. We now explore how well this description captures liquid
phase behavior.

To predict the properties of liquid iron, we carried out molecular dynamics studies
using the Verlet algorithm[50] with a time step of 5.16 fs (about & the Debye period).
We employed a cubic supercell of 54 atoms in a fixed volume of (16.272 Bohr)? with

Brillouin zone sampling at 144 k-points, and ran constant volume simulations at
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Figure 2-4: Atomic mean square displacement as a function of time for different
temperatures.

1170 K, 1810K, 2160 K, 2260 K, 2320K, 2670K, 2750 K, 3910K and 4010K. Even
in this highly anharmonic regime, the total energy in all our runs was conserved to
better than 2 % over 1.2 ps with no detectable systematic drift.

Figure 2-4 presents our results for the average mean square displacement of the
atoms in our calculation as a function of simulation time. For all temperatures, the
mean square displacement begins with a quadratic ideal-gas like (ballistic) regime
during the first ~ 1/4 Debye period. At the lower temperatures, the mean square
displacement reaches an asymptotic value at long times. This indicates that the atoms
simply vibrate about their equilibrium lattice positions as is the characteristic of a
solid. The intermediate and higher temperature data, however, exhibit classic linear
diffusion behavior at long times, the signature of liquid behavior. The transition
between these regimes sets the constant volume melting temperature of our tight-

binding energy functional to somewhere between approximately 2160 K and 2260 K.
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In order to compare this prediction of the constant volume melting point with
available experimental data, we begin by noting that the thermodynamic relationship
between pressure and temperature at constant volume is dP/dT|,, = a/k, where «
and k are respectively the thermal expansion coeflicient and the isothermal compress-

ibility, so that the P — T curve for the solid at constant volume is

p=2r, (2.15)
K

Next, the phase boundary between solid and liquid phases is described by the relation

P = m(T —Tn), (2.16)
where L is the latent heat of fusion, 77, is the melting temperature at constant pres-
sure, and p;, and pg are the densities for the liquid and the solid phases, respectively.
Finally, the intersection of Eqs. (2.15) and (2.16) gives the melting temperature at
constant volume in terms of parameters which are all known experimentally and yield
a value of 2350 K. The prediction of our model of 2160 K-2260 K is within 8% of this

value, an excellent level of agreement.

Finally, we may extract the diffusivity and the activation energy for self-diffusion
in the liquid from our data. The diffusivity is the asymptotic slope of the mean square
displacement at longer times. Figure 2-5 shows an Arrhenius plot of our extracted
diffusivity as a function of inverse temperature. To extract the activation energy, we

note that in terms of microscopic parameters, the diffusivity is
D = nae PEa, (2.17)

where a is the lattice constant, F4 is the activation energy for self-diffusion, and n is a
constant of order unity. The slope of the Arrhenius plot gives our calculated value of
the activation energy as 0.31 eV, within 0.2 ¢V of the experimental result of 0.53 eV
[53]. Given the simplicity of our model and that full-blown ab initio calculations

regularly give errors on the order of 0.1 eV for such barriers, we find this agreement
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Figure 2-5: Arrhenius plot of the diffusivity of iron. The slope of the line is the
activation energy for self-diffusion in the liquid.

to be very good.

2.5 Conclusion

We have identified the active microscopic degrees of freedom which control the macro-
scopic behavior of inhomogeneous iron, bonding among the atomic d-states and the
atomic spin moments. From these degrees of freedom, we have shown that it is possi-
ble to build a coarse-grained Hamiltonian which provides an accurate understanding
of a wide array of physical properties of iron at both room temperature and in the
liquid. Below the Ty ~ 500 K shoulder of [40] where spin fluctuations become impor-
tant, such a description captures the physics of the magnetic moments of bce iron,

the relative ordering and elastic properties of the bulk phases, and the behavior of
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symmetric tilt grain boundaries. Our results from the grain boundary study are in
good quantitative agreement with the experimental and ab initio data for the ener-
getics of the defects. Analyzing the behavior of the aforementioned active degrees
of freedom in the vicinity of the grain boundaries gives insight into the stabilizing
role of exchange interaction and the forces driving the relaxation of the atomic struc-
ture. Finally, near and above the melting point, our tight-binding Hamiltonian also
describes well the liquid state, giving impressive agreement with experiment for both

the melting point at constant volume and the activation energy for self-diffusion.
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Chapter 3

Atomic-level physics of grain
boundaries in bcc metals:

molybdenum as a case study

Abstract:

We present a systematic trend study of the symmetric tilt grain boundaries about
the (110) axis in molybdenum. Our results show that multiple structural phases, some
incorporating vacancies, compete for the boundary ground state. We find that at low
external stress vacancies prefer to bind to the boundaries in high concentrations, and
moreover, that external stress drives structural phase transitions which correspond

to switching the boundaries on and off as pipe-diffusion pathways for vacancies.
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3.1 Introduction

Molybdenum, with its high melting point and relatively inert chemical nature, is often
considered for high-temperature structural applications, but its extreme brittleness
limits its usefulness. Quasi-static bicrystal stress-strain experiments[57, 59| demon-
strate that this brittleness is an intrinsic property of the material and largely unrelated
to the presence of impurities. Similar studies observe inter-granular fracture at about
1.7 GPa, suggesting that this brittleness arises from weak inter-granular cohesion
along the grain boundaries[58]. These results also show that impurity concentration
does affect inter-granular cohesion, but only as a secondary effect. Spallation ex-
periments, on the other hand, show contradictory results. Large-grained (~1 mm)
samples have been observed to exhibit trans-granular spall at what the authors of
that study consider to be relatively low stresses (~2.5 GPa)[60|, whereas spallation
in fine-grained (~5 pm) samples has been observed to be highly inter-granular in
nature and to occur at much higher stresses (15-25 GPa)[33]. In an attempt to shed
light on this complex situation, we have investigated the microscopic physics of these
boundaries. In particular, we have carried out a detailed, atomic-level trend study
of the behavior and structure of the low energy phases of these boundaries and the

transitions among these phases.

This study reveals new physics in the interaction of the grain boundaries with
vacancies. The traditional mechanisms of interplay between vacancies and grain
boundaries include pipe diffusion of vacancies along the boundary[10, 11, 12], and ab-
sorption and emission of vacancies during continuous climb of primary or secondary
dislocations[6, 17, 26, 5]. We find, in addition, that boundary vacancies prefer to
collect together at high densities on the boundary plane. Our results also indicate
that grain boundaries can either emit or absorb large concentrations of vacancies into
the surrounding bulk while undergoing structural phase transitions under applied
stress. Our focus in the present study is on the particular system of symmetric tilt
boundaries around the {110) axis in molybdenum, which are known to dominate the

recrystallization texture of this material[58].
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3.2 Procedure

The heavy computational demands of full-blown ab initio electronic structure calcula-
tions [14] and semi-empirical tight-binding models [8, 39, 27, 16, 1] restrict their use to
the study of relatively small systems and relatively few configurations. In order to un-
derstand complex processes such as fracture, dislocation migration and inter-granular
cohesion, computationally more feasible empirical potentials must be used. Moriarty
has developed such an empirical model based on a multi-ion interatomic potential
developed from first principles generalized pseudopotential theory[29]. The resulting
model generalized pseudopotential theory (MGPT) potential, which has been thor-
oughly described in literature[29, 30, 31, 32, 41], successfully predicts the cohesive,
structural, elastic, vibrational, thermal and melting properties of molybdenum|31], as
well as the ideal shear strength and self-interstitial and vacancy formation energies([32].

We use this potential throughout this work.

We would like to note here that even though the MGPT formalism has been gen-
eralized to include local volume changes[41] of potential importance in deformation,
defect and surface calculations, these effects have been shown to be small for bulk
defects (~ 0.01 eV vacancy formation energies in bce metals[32, 41]). Accordingly,
we here use the simpler form of the MGPT potential as Xu and Moriarty have done

in their work on dislocations|32].

Focusing on the (110) symmetric tilt boundaries, we consider ¥3(112) and $9(114),
which are among the lowest in energy, and ¥£3(111), £9(221), £11(113) and 3$11(332)
as examples of boundaries with higher energies. To study the physics of these bound-
aries, which reside in bulk material, we employ periodic boundary conditions as the
most natural. To minimize boundary-image interactions, we always maintain at least

seventeen layers of atoms between boundaries in our supercells.

Determination of the ground state and the low energy excited state structures in
principle requires the exploration of the phase space of all possible configurations,
which is an impractical task without taking into account some basic physics. The

primary consideration we use to restrict this phase space is that, due to the relatively
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a)

-

b)

Figure 3-1: Structural phases of the £9(114) grain boundary: (a) naive CSL boundary,
(b) relaxed full-material boundary, (c) relaxed vacancy phase boundary. (To aid
visualization, atoms from the two cubic sublattices are colored separately, light and
dark.)

strong directional bonding in molybdenum and similar bee metals, the structure of the
grain boundaries tends to preserve the internal topology of individual grains. Under
this restriction, there remain then only three considerations for each boundary: (1)
possible addition and removal of atoms to and from the faces of the grains at the
boundary, (2) displacement of the grains relative to one another, and (3) relaxation
of the internal atomic coordinates.

For the first consideration, the fact that the interstitial energy in molybdenum
(= 10 eV) is much larger than the vacancy energy (3 e¢V)[32] indicates that insertion
of additional material at the boundary leads to unlikely high interfacial energies.

We therefore concentrate only on the removal of atoms at the boundary. Direct
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calculations with the MGPT potential reveal that the most favorable sites for atom
removal are in the vicinity of the boundary. It turns out that, because the atoms
in the planes adjacent to the boundary plane (indicated by circles in Figure 3-1a)
pack closely together, these sites are the energetically most favorable for vacancy

formation.

This leads us to consider the following structural phases for the boundaries in
our study: grains joined with the amount of material expected from the naive coin-
cident site lattice (CSL) construction (“full-material phase”’), and boundaries where
we remove atoms from the circled sites in Figure 3-1a, which shows this construction.
Below, we find that binding energy per boundary vacancy is higher when vacancies
collect together at high density on the boundaries. Therefore, we first concentrate on
boundaries with high vacancy densities. Because removal of an entire plane of atoms
near the boundary is topologically equivalent to the initial “full material” phase under
appropriate relative displacement of the grains, we first focus on the phase where we
remove one half-plane of atoms from the layer adjacent to the boundary (“vacancy
phase”).

To determine the ground state of the above two structural phases, we next turn to
the second consideration above, the relative shifts of the grains. The displacement-
shift complete (DSC) cell, which we explore on a 16 x 16 sampling grid (which reduces
to 4 x 4 by symmetry), contains all possible unique relative planar shifts of the grains.
We then address the third consideration by performing full relaxations of the internal
grain coordinates in order to determine the most favorable DSC shift. To complete
our search, we then apply a series of external strains which cover the full range of
stresses explored below, and we perform full internal relaxations for each strain. This
allows us both to identify the ground state and to study the response of the boundary
to externally applied strain. We note here that fhis extensive survey requires force
and energy calculations of approximately 400,000 configurations, and would not be

feasible to carry out with electronic structure techniques.

To confirm the effectiveness of this survey in identifying ground state structures,

we repeat the above procedure with supercells in which we remove an entire plane of
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Boundary U, Az | Ay | Az | A(1/k) Ala)
[mJ/m? | [A] | [A] | [A] | (m]/m?] | [m"/mJ?
x10720 | x10-%
>3(112) | 610 |01[0.3]00]| 900 1
¥3(111) 2020 05103 0.0 4770 -306
$0(114) | 1730 | 05 | 0.1 [0.0| 3410 57
$9(221) || 2180 |04 ]01[0.0]| 100 15
S11(113) || 1740 | 05 |02 [0.0 | 1460 15
211(332) 2160 04105100 580 -29

Table 3.1: Full-material phase: energies ({4,), perpendicular expansions {Azr), shifts
(Ay and Az) relative to the CSL construction, compliances (A(1/k)) and anharmonic
coefficients (Aa) relative to bulk. Coordinates are as defined in Figure 3-1.

atoms from the boundary. For all six boundaries in our study, our procedure indeed
identifies the appropriate shift to recover the initial, topologically equivalent ground

Staté found for the full-material phase before the removal of the plane of atoms.

3.3 Results

3.3.1 Low Energy Phases

Our results reveal several general trends in the physics of the (110) tilt grain bound-
aries in molybdenum. As a specific example, consider the 39(114) boundary, which
Figure 3-1 shows. Figure 3-1a shows the naive CSL construction of the full-material
phase, whose ground state as identified through our procedure, appears in Figure 3-
1b. We find that this phase lowers its energy through both a perpendicular expansion
of the boundary and inter-granular shifts parallel to the boundary, both of which tend
to increase the local volume for the closely packed atoms near the boundary plane,
restoring them to a more bulk-like environment.

Table 3.1 shows that the outward expansion is a general trend among all grain
boundaries in our study and that shifts occur along the boundary in the direction
perpendicular to the tilt axis (y—direction, Figure 3-1) to allow for a more bulk-

like local environment. We find no significant shifts along the tilt axis (z—direction,
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Boundary U, Az | Ay | Az | A(1/k) A(a)
(mi/m? | (A] | [A] | [A] | [mJ/m"] | [m"/mJ?]
x10720 x 10730
T3(112) || 2130 |-01]04]00] 3030 24
$3(111) || 2450 | 0.1 10300 1440 62
T9(114) || 2360 | 0.3 |01 0.0 7250 11
(221) 2380 0.3 10.9]0.0 2210 17
$11(113) 2070 0.3 108100 2370 28
211(332) 2590 0.2 10408 2400 26

Table 3.2: Vacancy phase: energies (U,), perpendicular expansions (Az), shifts (Ay
and Az) relative to the CSL construction, compliances (A(1/k)) and anharmonic
coefficients (Aa) relative to bulk. Coordinates are as defined in Figure 3-1.

Figure 3-1) for this phase of any of the boundaries. The next column of the table
gives the mechanical compliance (1/k) of each boundary, where k is determined from
the quadratic response of the energy per unit area per boundary as the cell expands.
Finally, the last column of the table lists a = a/k® where o captures any non-

quadratic behavior in the energy expression,
1 2 1 3
L{:L{O+§k($—A$) +6C¥(CL‘—A.’E) + ... (31)

where z is the expansion of the cell, and Az and U, are the relaxed perpendicular
expansion and boundary energy given in the table, respectively. The table lists the
difference between 1/k and a for the boundary and for the same cell filled with bulk,
as it is these differences which define the response of the boundary, independent of

the bulk content of the cell.

Turning now to the vacancy phase, Figure 3-1c shows the results of our ground-
state search for the £9(114) boundary as formed by removing the circled atoms from
Figure 3-1a. We again find grain-shifting as well as local internal relaxations to create
more bulk-like local atomic environments, as Table 3.2 summarizes. The perpendic-
ular shift is always inward compared to the ground state of the full-material phase,

so as to close the material void associated with the vacancies. Finally, we frequently
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Figure 3-2: Energetics of grain boundary phases: full-material phase (black bars),
vacancy phase (hatched bars), bulk-vacancy phase (gray bars).

find for the vacancy phase, even for the highly stable ¥.3’s, parallel shifts relative to
the full-material phase which produce more natural bonding arrangements for the
boundary to accommodate the vacancies. This tendency for accommodation is so
strong as to induce the only shift along the tilt axis we observe in this study, for the

vacancy phase of the ¥11(332) boundary.

Figure 3-2 compares the ground-state boundary energies of the various phases.
In all cases, we find the full-material phase (black bars) to be lower in energy than
the vacancy phase (hatched bars), although often not by far. As in the experimental
case, MGPT predicts the lowest ground state interfacial energy to be for the naturally
occurring twin X3 (112) boundary[58]. Moreover, apart from this twin, all remaining
ground state boundary energies are fairly constant (within 25%), as also found in

experiment (within 30%[58]).

Figure 3-2 presents another relevant comparison. To transform physically into

the full-material phase, the vacancy phase must first expel its vacancies into the sur-
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Boundary U, Az | A(1/k) A(a)
[md/m?] | [A] | [mI/m?] | [m"/mJ’]
x1072° x 10730

£3(112) 130 |-0.003] 1050 1
$3(111) 100 [-0.002| 870 117
$9(114) 80 | 0.003 | 500 -32
$9(221) 60 |-0.001| 470 0
T11(113) 50 [-0.001| 130 5
T11(332) 60 |-0.005( 180 -39

Table 3.3: Isolated vacancy enthalpy information for each boundary orientation. Re-
sults are expressed for the number of vacancies per unit area of the corresponding
boundary-vacancy phase. Lattice expansion Az, compliance A(1/k) and anharmonic
Aa information are for longitudinal strain perpendicular to the boundary plane.

rounding bulk material. Thus, when considering transitions, the relevant comparison
is between the vacancy phase and a third phase, which consists of the full-material
phase plus the corresponding number of vacancies in the surrounding bulk material
(“bulk-vacancy phase”). To describe the enthalpies of isolated vacancies in bulk un-
der external stresses applied in the direction corresponding to the orientation of each
boundary, we repeat the procedure from Section 3.2 with the same supercells, but
filled with bulk material and a single vacancy. Table 3.3 summarizes the results. The
resulting energies may then be added to the full-material phase to produce the energy
of the bulk-vacancy phase (gray bars in Figure 3-2). Figure 3-2 shows that, although
creation of vacancies on the boundary always increases the boundary energy, the en-
ergy for creating the corresponding number of vacancies in the bulk is always higher.
Our results therefore are consistent with the fact that the boundaries act as reservoirs
for vacancies, as occurs during pipe diffusion.

To verity, as mentioned above, that boundary vacancies indeed prefer to cluster
together, we have also considered boundaries with nearly isolated vacancies within
our supercell approach. Table 3.4 presents energy, displacement, compliance, and an-
harmonic results for boundaries from supercells with low vacancy densities (“dilute-
vacancy phase”). In these calculations, the vacancy concentration (3.3%) is one fif-

teenth that of the vacancy phase. Table 3.5 compares the boundary-vacancy binding
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Boundary U, Az | Ay | Az | A(1/k) Ala)
[mJ/m? | [A) | [A] | [A] | (mI/m?] | [m"/mJ?]
%1020 x 10730
23(112) 720 | 0.1]03]00] 950 22
¥3(111) 2076 0510300 2060 2
T9(114) | 2360 | 0.4 |0.1[0.0| 3520 10
$9(221) | 2200 |03 [0.1 00| 260 69
%11(113) 1900 05102100 1900 -3
S11(332) || 2250 | 040500 990 125

Table 3.4: Dilute-vacancy phase: energies (i, ), perpendicular expansions (Az), shifts
(Ay and Az) relative to the CSL construction, compliances (A(1/k)) and anharmonic
coeflicients (Aa) relative to bulk. Coordinates are as defined in Figure 3-1.

energies for the vacancy and dilute-vacancy phases. As the larger binding energies
reflect, the concentrated phase (vacency phase) is more stable. This added stability
appears to arise from the structural relaxation through parallel shifting of the grains,
which is made possible by the high density of vacancies. Finally, we observe that in
the extreme case of the ¥11 boundaries, vacancies do not even bind to the boundary

at low concentrations.

3.3.2 Phase Transitions

Three trends which the preceding results exhibit can be expected from general,
material-independent considerations: (1) that the boundaries present preferred bind-
ing sites for vacancies because they disrupt the bulk bond-order, (2) that boundary
vacancies prefer to collect into the high-density vacancy phases because of the addi-
tional relaxation, which parallel shifting of the grains affords, and (3) that the binding
of vacancies to the boundary reduces the inter-granular spacing because this restores
more bulk-like interatomic separations. These phenomena open the intriguing possi-
bility that the application of tensile stress normal to grain boundaries in bec metals
generally drives transitions among these various structural phases, thereby providing
new forms of boundary-vacancy interaction.

To explore this possibility, we consider the thermodynamic potential which is
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Figure 3-3: Enthalpies of £3(112) boundary as a function external stress for all three
phases.

minimized under fixed external stress, the enthalpy. As a function of applied perpen-

dicular stress o, the enthalpy of a grain boundary structure relative to bulk is
1 2 1 3 4
AH =AU, — Az o — EA(l/k)U +6Aa0 + O(c*). (3.2)

Here AU, is the difference in the ground-state energy per unit area, Az is the differ-
ence in preferred perpendicular inter-granular separation, A{(1/k) is the difference in
compliance, and Aa = A(a/k?) captures the difference in the non-quadratic behavior
of the energies. Bach of these parameters appears for each relevant phase in Tables

3.1-3.4.

As an example, Figure 3-3 shows the behavior of the enthalpy, relative to bulk,

of the naturally occurring ¥3(112) boundary in its full-material, boundary-vacancy

49



Boundary || Binding energy | Binding energy
per vacancy at | per vacancy at
high density low density

[eV] [eV]
¥3(112) 0.7 0.6
¥3(111) 2.1 1.1
X9(114) 1.4 0.7
¥.9(221) 2.3 2.0
¥11(113) 1.4 -7.1
%11(332) 1.4 17

Table 3.5: Boundary-vacancy binding energies at high and low densities. (The X11
boundaries do not bind vacancies at low concentrations.)

and bulk-vacancy phases. Three first-order phase transitions (enthalpy crossings) are
evident in the figure. At zero stress, as observed above, the full-material phase is
the ground state of the boundary, and moreover, in the presence of vacancies, the
vacancy phase has lower energy than the bulk-vacancy phase, indicating that va-
cancies prefer the boundary over the bulk. However, at an applied stress of about
18 GPa (¢™*) within MGPT, the ©3(112) boundary system undergoes a first-order
phase transition in which the vacancy phase is no longer preferred, and the boundary
ejects its vacancies into the surrounding bulk material. A second transition occurs
near 25 GPa (c%%*), at which point the bulk-vacancy phase becomes lower in en-
thalpy than the full-material phase. This corresponds to the spontaneous formation
of vacancies in bulk, indicating breakdown of the bulk material. The third transition
occurs near 30 GPa (0%°). Were this transition accessible before the breakdown of the

bulk material, it would correspond to spontaneous formation of boundary vacancies.

It is important to note that many modes of failure in addition to spontaneous
formation of vacancies are accessible to the bulk and boundaries. The transition
stresses which we report for breakdown, therefore, can be regarded only as upper-

bounds when making comparisons to experimental results.

Table 3.6 presents the stresses for the above three transitions for all boundaries

in our study. In all cases, the emission stress is accessible before breakdown of the
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Boundary || o®™* | ofutk | g9t
[GPa] | [GPa] | [GPa]
S3(112) || 18 | 25 | 30
S3(111) | 15 | 20 | 66
T9(114) || 19 | 21 | 42
20(221) || 38 | 24 | 10
TI(113) | 21 | 27 | 45
$11(332) | 31 | 27 | 22

Table 3.6: Critical stresses for the phase transitions discussed in the text: emission

of vacancies from the boundary into the bulk (o
spontaneous formation of vacancies (o

boundary ().

[

bulk

c

emit) breakdown of the bulk through
), spontaneous formation of vacancies at the

Boundary || o™t | gbulk od®
(GPa] | [GPa] | [GPa]

¥3(112) 17 25 29
¥3(111) 11 20 40
¥9(114) 9 21 61
$9(221) 26 24 6
¥11(113) 56 27 81
¥11(332) 37 27 31

Table 3.7: Critical stresses for the same transitions as in Table 3.6, but at 3.3%

vacancy concentration.

9l



bulk material through spontaneous formation of vacancies. Moreover, except for the
outlying behaviors of the $9(221) and £11(332) boundaries, vacancies always first
form spontaneously in the bulk before they do so on the boundaries.

To verify that these results are not artifacts of the high-density vacancy phase,
we repeat the above enthalpy analysis for boundaries with low densities of vacancies
using the data of Table 3.4. As Table 3.7 summarizes, we again observe the same tran-
sitions. The X11 boundaries do not bind vacancies at low concentrations (Table 3.5),
and therefore, the transition stresses for the emission of vacancies for these boundaries
are not physically relevant. For the lower ¥ boundaries (except the ¥9(221) bound-
ary, which again exhibits an outlying behavior), diluting the vacancy concentration
reduces the critical emission stress at which the boundaries emit boundary vacancies
into the bulk (¢¢™*), thus making this transition more accessible.

Finally, as we expect from the fact that boundary vacancies are more stable in high
concentrations, the stress required to induce formation of vacancies on the boundaries
(0%) at low densities is generally greater than for the high-density vacancy phase. As

a last consistency check on our analysis, we note that the stress for breakdown of the

bulk
c

bulk through the spontaneous formation of vacancies (¢%“/*), as a characteristic of the
perfect crystal and not the boundary, remains essentially unchanged between the two

independent sets of calculations for low and high boundary vacancy concentrations.

3.4 Conclusions

We expect that the following conclusions likely hold generally for the interactions
among vacancies and tilt grain boundaries: (1) consistent with the traditional view
of grain boundaries as diffusion pathways, vacancies prefer the boundaries over the
bulk at low stresses, (2) boundary vacancies prefer to collect into high-density vacancy
phases, (3) application of sufficient tensile stress to a boundary induces a structural
phase transition which drives the vacancies from the boundaries into the bulk, thereby
shutting off pipe diffusion along the boundary. The last of these conclusions in partic-

ular may have important implications for crack growth through pipe-diffusion assisted
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void growth and void formation at grain boundaries.

Finally, in terms of precise gquantitative predictions of the critical stresses charac-
terizing these phenomena, it is important to bear in mind that the particular inter-
atomic potential which we have employed (MGPT), although one of the most reliable
for Mo, is known to exaggerate energy scales for complex structures[4). We therefore
expect to find these same transitions, but most likely at lower stresses, when studied

either experimentally or ab initio.

a3



o4



Chapter 4

Ab initio study of grain boundaries

in molybdenum

Abstract:

Our previous work, based upon atomistic potentials [3] indicated that multiple
structural phases compete for the ground state of symmetric tilt grain boundaries
in bee materials and that external stress may drive vacancy-mediated transitions
among these phases. In the present study, we verify these predictions through ab
initio density-functional calculations on the naturally occurring twin £3(112) (110).
Specifically, we confirm that the application of external stress drives a structural phase
transition for this boundary which causes it to emit vacancies into the surrounding

bulk material.
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4.1 Introduction

Understanding the nature of the brittleness of Molybdenum’has been a challenge for
researchers in the past three decades. While some experiments[57, 59] demonstrate
that brittleness is an intrinsic property of Molybdenum unrelated to the presence of
impurities with inter-granular fracture occuring at tensile stresses of 1.7 GPa, other
experiments show the nature of spallation and the stress at which it occurs to depend
on the material preparation.[33, 60]. These latter experiments show trans-granular
spall at ~2.5 GPa for large grained samples[60] and an inter-granular spall at 15-

25 GPa for fine-grained samples[33].

Our previous work explored the effects of impurities on the brittleness of Molyb-
denum by performing an atomistic trend study of Molybdenum grain boundaries.
We studied the symmetric tilt grain boundaries around the (110) axis (as they dom-
inate the recrystallization texture[58]), using the model generalized pseudopotential
theory (MGPT) potential of Moriarty and coworkers[29, 30, 31, 32, 41|, which has
been shown to successfully predict various properties of Molybdenum, such as the
cohesive, elastic, vibrational, thermal and melting properties[31] as well as the ideal

shear strength and self-interstitial and vacancy formation energies[32].

After performing force and energy calculations of over 400,000 configurations
within this potential, our results indicated that (a) consistent with the traditional
view of grain boundaries as diffusion pathways, vacancies prefer the boundaries over
the bulk at low stresses, (b} boundary vacancies prefer to collect into high-density
vacancy phases along the boundaries, and (c) application of sufficient tensile stress
to a boundary induces a structural phase transition which drives the vacancies from
the boundaries into the bulk, thereby shutting off the boundary as a pipe diffusion
pathway.

Although the MGPT is among the most reliable interatomic potentials for Mo, it
is known to exaggerate energy scales for complex structures[4]. While our results with
the MGPT placed the vacancy transition stresses at quite high values (15-38 GPa),

spallation experiments indeed reach tensile stresses at least as high as 25 GPa [33],
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” Al ‘ Expt | Error
a || 3.10] 3.15 | -1.6%
K [[160]| 1.36 18%

Table 4.1: Mo lattice constant a (A) and bulk modulus (Mbar). (Expt [54])

placing our prediction within the experimentally accessible range of stresses. Given
the tendency of the MGPT to exaggerate energy scales, however, it is important
to confirm our prediction and determine a reliable, ab initio value for the transition
stress. As ab initto trend studies of large systems is computationally very demanding,
we here focus on the most important and commonly occuring boundary, the naturally

occurring ¥3(112} (110} twin.

4.2 Procedure

To minimize the computational demands of this study, we begin with MGPT relaxed
structures as initial configurations for the ab initio calculations and relax these struc-
tures both electronically and ionically. These calculations are performed within the
total-energy plane-wave density functional pseudopotential approach [14], using the
Perdew-Zunger [61] parameterization of the Ceperley-Alder [2] exchange-correlation
energy with Kleinman-Bylander [7] nonlocal psendopotentials with s, p and d chan-
nels optimized according to the procedure of Rappe et al. [20]. With this potential,
we find that plane wave basis sets with an energy cutoff of 45 Ryd serve to converge
total energies to within 0.01 eV /atom. Table 4.1 summarizes the predictions of our
pseudopotential at this plane wave cutoff for the bulk material, showing that our ab
initio approach gives reasonable agreement with experiment for the lattice constant
and bulk modulus.

Our MGPT study identified the ground state structural phases of the symmetric
tilt grain boundaries around the (110) axis as either (a) the “full-material phase” in
which grain boundaries have the same amount of material as the naive coincident

site lattice (CSL) construction, or (b) the “vacancy phase” in which one half-plane of
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atoms from the layer adjacent to the boundary has been removed. (Chapter 3 gives
detailed discussion of the considerations used in identifying these phases and their
structural properties.) In this work, we use ab initio methods for the first time to
explore the effects of external stress on these structures for the ¥3(112} (110) twin
boundary.

To model the boundary we employ a periodic supercell of repeating boundaries
with alternate orientations separated by 12 layers of atoms so as to minimize the
boundary-boundary interactions and with sufficient in-plane extent so that a single
boundary vacancy in the supercell corresponds to the removal of one half-plane of
atoms, for final supercell dimensions of axbxc A3. To sample the Fermi surface
with a total energy convergence of 0.01 eV/atom, we employ a non-zero electronic
temperature of kg7 = 0.1 eV and sample the Brillouin zone of the supercell with 8
k-points, ky = ks = §, ks € £{55, &, &, & -

Finally, to study the effects of external stress, we apply a series of external strains,
and perform full ab nitio electronic and ionic relaxations at each strain. To provide
reference data on vacancies, we performed the same sequence of calculations for a cell
of the same size, containing a single vacancy embedded in otherwise a £3(112) (110)

commensurate perfect bulk material.

4.3 Results

Figure 4-1 shows the total interfacial energy for each boundary phase as a function

of external strain along with a cubic polynomial fit to the data of the form
1 s 1 3
U=b(o+§k(:v—A:c) +6a(:c-—Aa:) + ... (4.1)

where U4, is the ground state energy of the structure, z is the expansion of the cell
perpendicular to the boundary, k represents the quadratic response of the energy per
unit area per boundary as the cell expands, « captures anharmonic behaviors, and

Ar denotes expansion of the bulk material due to the presence of the boundary.
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Figure 4-1: Energies of ¥£3(112) boundary as a function of lattice expansion for all
three phases.

Table 4.2 gives the U,, Az, A(1/k), and A(a) = a/k> values calculated for the full
material and vacancy structural phases of £¥3(112) boundary as well as for an isolated
vacancy. Consistent with our previous atomistic results reported in Chapter 3, the
full-material phase is the lowest energy structure at zero stress with an interfacial
energy very close to the predictions of the atomistic potential, 610 mJ/m?, which
were consistent with the experimental results[58]. This level of quantitative agreement
in the energy of this boundary is not unexpected because the MGPT potential has
been fit to reproduce the properties of bulk Molybdenum and, as such, is expected
to predict well the energetics of bulk-like structures. Table 4.2 also confirms our
previous MGPT result that at zero stress, the vacancy phase (1420 mJ/m?) is much
higher in energy than the full-material phase (620 mJ/m?). Finally, the fact that the
vacancy energy which we provide in the table is within 7% of the experimental value

and MGPT prediction of 3 eV[32] indicates that the supercell in our calculations,
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Phase U, Az | A(1/k) A(a)
[m3/m?] | [A] | [mI/m%] | [m7/mJ?
x 10720 x10-%8
Full-material 620 0.11 350 220
Vacancy 1420 0.30 120 170
Isolated vacancy 1890 0.06 220 290
(2.78eV)

Table 4.2: Energies (U,), perpendicular expansions (Az), compliances (A(1/k)) and
anharmonic coefficients (Aa) relative to bulk for the structural phases of £3(112)
boundary.

though relatively small is sufficiently large to provide reliable results for the isolated
vacancy.

As discussed in our previous atomistic studies (Chapter 3), to transform physically
into the full-material phase, the vacancy phase must first expel its vacancies into
the surrounding bulk material. From Table 4.2, we see that, consistent with our
previous atomistic results, this “bulk-vacancy” phase (full material phase boundary
plus isolated vacancies in the bulk material) indeed has higher energy than the vacancy
phase at zero external stress. We thus have the first ab initio verification of our
previous result that at zero stress, vacancies prefer to be at the grain boundary instead
of inside the bulk and that this boundary can serve as a pathway for pipe-diffusion.
Section 4.4 explores further the implications of this result.

Whereas the energies of the grain-boundary phases suffice to predict behavior
at zero stress, to understand the effects of an applied stress, we must consider the
enthalpies of the various phases as the thermodynamic potential minimized under

fixed external stress. Under the requisite Legendre transformation, (4.1) becomes

1
AH = Al — Azo — SA(L/K) 0% + %Aa 7+ O(a"), (4.2)

where Al, is the difference in the ground-state energy per unit area, Az is the dif-
ference in preferred perpendicular inter-granular separation, A(1/k) is the difference

in compliance, and Aa = A(w/k?) captures anharmonic behavior.
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Figure 4-2: Enthalpies of £3(112) boundary as a function external stress for all three
phases.

Figure 4-2 shows the enthalpy of each relevant phase as a function of external
stress, evaluated according to (4.2) with the parameters which Table 4.2 provides.
The figure shows the existence of three first-order phase transitions (enthalpy cross-
ings). The figure shows, as discussed above, that at zero stress the full-material
phase is the ground state of the boundary and that the boundary-vacancy phase has
lower enthalpy than the bulk-vacancy phase (full-material phase with equal number
of vacancies in the surrounding bulk material) so that if vacancies are present in
the system, they prefer the boundary over the bulk. At an applied stress of about
16 GPa, however, the boundary-vacancy phase is no longer favored over the bulk-
vacancy phase, the boundary ejects its vacancies into the surrounding bulk material
and no longer serves as a pathway for pipe-diffusion. Near 24 GPa, a second en-
thalpy crossing occurs, which corresponds to spontaneous vacancy formation in bulk.

A third transition, which occurs near 37 GPa, long after the breakdown of the bulk
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material, indicates that if this transition were accessible, vacancies are last to form
spontaneously on the boundary. This general framework of structural phase transi-
tions is consistent with the MGPT findings. Moreover, the external stress required
to eject the vacancies from the boundary into the surrounding bulk, and the stress at
which spontaneous vacancies form inside the bulk are lower for the ab tnitio calcula-
tions than the MGPT calculations, whereas the breakdown of the boundary through
spontaneous formation of vacancies is placed at a higher external stress.

When interpreting experiments in light of the above results, it is important to keep
in mind that under stress, in reality, the material is likely to access many other modes
of failure before the spontaneous formation of vacancies. The latter two enthalpy
crossings, therefore, should be considered as upper-bounds to the breakdown of the

material.

4.4 Conclusions

We have carried out the first ab initio study of vacancy mediated structural phase
transitions in bcc molybdenum. We find that for the most common boundary, the
naturally occurring 33(112) twin boundary, the full-material phase is the ground
state structure at zero stress and that at tensile stresses less than 16 GPa, vacancies
prefer the boundary over the bulk so that it may serve as a pathway to pipe-diffusion.
However, application of a tensile stress in excess of 16 GPa drives a first-order struc-
tural phase transition which ejects the vacancies into the surrounding bulk and shuts
down the boundary as a pipe-diffusion pathway.

The results of this ab initio study confirm several of the conclusions from our
previous work employing atomistic potentials, in particular the existence of multiple
competitive structural phases for the boundaries and a vacancy-ejection transition
under application of large, but experimentally accessible tensile stress. However, due
to cell-size limitations our ab initio calculations to date have explored only the dense-
vacancy phase and not the dilute-vacancy phase. Thus, further ab initio studies will

be needed to fully confirm our previous finding that vacancies not only prefer the
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boundary over the bulk but that they also prefer to bind together into high-density
clusters along the boundaries. However, the overall reliability of our MGPT findings
to date strongly suggest that these other findings of our atomistic work likely will

continue to hold true under further ab initio scrutiny.
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Chapter 5

Atomistic and ab initio study of
non-Arrhenius diffusion of Co
adatoms on the magnetic Co(0001)

surface

Abstract:

We present a multiscale theoretical study of the motion of a cobalt adatom on a
Co(0001) surface. We begin with an atomistic molecular dynamics study and observe
a transition from thermally activated diffusion to ballistic behavior at a temperature
where recent experiments show an abrupt change in the character of surface evolution
in ion erosion experiments [42]. Using transition state theory, we show that this
transition corresponds to a low activation barrier for the adatom as it moves between
the energetically favorable sites on the surface. In order to understand the physics
underlying this behavior, we study the transition path using ab initio methods, which
confirm our atomistic finding and demonstrate a close link between the motion of the

adatom and the spin configuration of the material.
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5.1 Introduction

The technological potential for high-density magnetic storage devices based upon the
manipulation of electron spins, so-called spintronics[43], has brought recent attention
to the physics of the growth and sputtering of elemental magnetic material surfaces
such as that of cobalt. Recent experiments and modeling work [42] show that mor-
phology of the Co(0001) surface under low energy ion erosion goes under an abrupt
transition near 570 K from smooth layer-by-layer behavior to mounding at pitting,
with the motion of adatoms playing a key role.

The present work represents a multilevel theoretical study of the underlying
physics of motion of adatoms on the Co(0001) surface. We begin with a classical
molecular dynamics study which shows, intriguingly, a transition in the nature of
adatom diffusion from thermally activated diffusion to ballistic behavior somewhere
near a temperature of 500 K. As this result comes from an atomistic, and thus a
necessarily very approximate potential, to assure ourselves of its meaningfulness, we
identify its underlying cause through the use of transition state theory (TST). We
find this behavior in the atomistic model to result from a quite low activation barrier
of 0.057 eV (= kp660 K) for diffusion of the adatom from fcc to hep surface sites.
In Section 5.4 we explore the transition pathway with ab initio methods, confirming
this result and discovering that the motion of the adatom connects intimately with

the electronic spins of the underlying material.

5.2 Classical Molecular Dynamics Calculation

By their very nature of attempting to approximate a complex many-body potential
with a simple analytic form fitted to a limited amount of information, classical in-
teratomic potentials are necessarily approximate. Often in fact, the variations in the
predictions for any given process among different potentials are as large as the discrep-
ancies between the predictions and experimental observations. Thus, knowing that we

always intend to pursue any final conclusions with ab initio density-functional calcu-
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Figure 5-1: Periodic supercell used in molecular dynamics calculations: bulk cobalt
atoms (light), adatom (dark).

lations, we adopt the philosophy of choosing a potential based upon (a) its providing
agreement with a reasonable range experimental information and (b) its simplicity

and relative ease of implementation.

In the above regard, we find the potential described by Levanov and co-workers[15]
to suit our purpose well. This potential is formulated in the second moment tight-
binding approximation (TB-ASA) of [45, 25], with a repulsive Born-Mayer term in
the form of a pairwise sum of exponentially decaying interactions and an attractive
band-structure term in the form of a sum of non-linear functions of a pairwise sum of
exponentially decaying contributions. Specifically, we use the potential described in
Reference [15], which generalizes somewhat the form of [45, 25] and provides param-
eters relevant to the treatment of cobalt. This potential reproduces the experimental
values lattice constant and cohesive energy per atom of cobalt to within 0.008 Aand
0.009 eV, respectively, the various elastic moduli to within 0.22 Mbar (the bulk modu-

lus is 1.99 Mbar) and reproduces ab initio calculations of the energy of cobalt clusters
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Figure 5-2: Molecular dynamics trajectory of adatom on Co(0001) surface: atomic
sites of surface layer (squares), second layer (asterisks), adatom trajectory (lines), for
T=100 K (a), T=300 K (b), T=800 K (c).

of 2-4 adatoms on the Cu(100) surface to within 0.09 eV. The latter finding is par-
ticularly encouraging because it indicates an ability to reproduce not only bulk but
cluster and adatom properties. We also find the functional form simple and easy to

implement with its pairwise interactions with a natural exponential cutoff.

To study the diffusion of Co adatoms on Co, we model the surface within the
supercell approach using a slab geometry with periodic boundary conditions. The
supercell for our calculations is 18.3 A(8 layers) thick in the [0001] direction with
(1000) triangular lattice vectors in the surface plane of length 12.5 A. With the
adatom included, this supercell contains a total of 289 atoms. (See Figure 5-1.)
Using this geometry, we carry out classical molecular dynamics calculations allowing
all atoms to evolve within the microcanonical ensemble using the Verlet algorithm

with a time step of 2 fs (=~ 1/20 of the zone-edge phonon period).

Figures 5-2a-c show the resulting trajectories for the adatom at temperatures of
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Figure 5-3: Arrhenius plot of diffusion vs inverse temperature with diffusive regime
transition at 7' ~ 400 — 500K

100 K, 300 K and 800 K for runs of 0.3 ns. The trajectory at 100 K shows simply
oscillation of the adatom about its initial site immediately above the second surface
layer, a so-called hcp site where atoms in an hep layer would reside. At 300 K,
sufficient thermal energy is available for the adatom to begin to diffuse while clearly
dwelling at either hcp sites (above the asterisks) or fec sites (centered between three
hep sites), where atoms in an fce layer would reside. At 800 K the trajectory of the
adatom no longer dwells at particular locations and appears to meander randomly
about the surface.

To quantify this behavior, we have computed autocorrelation functions for the
adatom from our runs at each temperature T and extracted diffusion constants D
according to

b — i JECE+8) = F@)P),

t—oo t

(5.1)

Figure 5-3 summarizes our results on an Arrhenius plot. Rather then exhibiting
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Iigure 5-4: Energy along reaction coordinate connecting hep and fee sites from su-
percell used in molecular dynamics calculations.

the linear behavior characteristic of thermally activated processes, the results show
noticeable curvature at temperatures around ~500 K, suggestively close to where ex-
periments indicate a qualitative change in the evolution of surface morphology|[42].
These results also suggest that kinetic Monte Carlo analyses based upon simple ther-
mally activated diffusion cannot be relied upon to account properly for adatom dif-

fusion beyond this temperature.

5.3 Transition State Analysis

To explore the physical mechanism underlying the departure from Arrhenius behavior
in Figure 5-3, we consider the diffusion process in detail. The molecular dynamics tra-
Jectories in Figure 5-2 evolve by exploring alternating fcc and hep sites. We therefore
concentrate on these sites and the transition path between them.

From the relatively straight paths connecting the hep and fee sites in the molec-
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ular dynamics trajectories, we identify the projection along the straight-line path in
the 3N dimensional phase space connecting fully relaxed neighboring fcc and hep
configurations (with any arbitrary center of mass shift removed) as an appropriate
generalized coordinate to characterize the transition. To calculate the optimal tran-
sition path, we step along this reaction coordinate and relax the structure with the
value of the reaction coordinate as the only constraint.

Figure 5-4 summarizes the transition path results for both supercells. Note
that the transition barrier for the molecular dynamics supercell is only 0.057 eV
(= kp660 K). We should expect that as we approach this temperature, transitions
over the barrier are no longer limited by the thermal fluctuations, and the usual Ar-
rhenius behavior breaks down. We therefore trace the qualitative change in adatom
diffusion in the molecular dynamics calculations at temperatures near 500 K directly

to this very low transition barrier.

5.4 Ab w1nitio Calculations

5.4.1 Procedure

A well known pitfall of empirical potentials is that they provide poor energies, partic-
ularly for configurations which do not resemble those to which the model has been fit.
In this case, the potential was fit to the bulk elastic moduli and a few cobalt clusters
adsorbed onto a copper surface, none of which necessarily reflect an adatom of cobalt
changing coordination as it diffuses on a cobalt surface. Moreover, as [55] demon-
strates for grain-boundaries in iron, atomistic potentials which do not treat explicitly
the physics of electron spin often miss important exchange effects at interfaces. Thus,
ab initio calculations are critical in confirming our finding of non-Arrhenius diffusion
at around 500 K.

In order to study possible magnetic ordering effects, which require the exploration
of multiple electronic ground states, with computationally demanding ab initio cal-

culations, we must limit the size of our supercell. For our first principles electronic
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Figure 5-5: Energy along reaction coordinate connecting hep and fec sites: results
from supercell used in molecular dynamics calculations (solid curve, 289 atoms), and
from supercell used in ab initio calculations (dashed curve, 33 atoms).

structure calculations, we therefore employ a surface slab geometry with 8 layers in
the [0001] direction but with 1/3 of the original linear dimension in the two surface
directions. We believe the resulting supercell, 33 atoms including the adatom, to be
acceptable because each adatom shares no neighbors with any of its images.

To confirm the appropriateness of such a small cell and to give a quantitative
estimate of the corrections to any image effects, Figure5-5 compares the atomistic
potential results for the transition barrier in the supercell of our ab initio calculations
with our previous results within the much larger cell of Figure 5-4. The results in
the figure show the pathway in the smaller cell to exhibit the same overall behavior
with a transition barrier of 0.069 eV, only 0.012 eV more than the larger cell value.
We therefore expect our ab wnitio results from the smaller cell to reflect the basic
underlying physics but with a barrier slightly exaggerated by approximately 0.012 eV.

Our ab initio calculations employ the total-energy plane-wave density functional
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| AT | Expt| Error

a (A) 2.536 | 2.507 | 1.2%
c (A) 4.163 | 4.070 | 2.3%
K (GPa) || 180 | 160 |-11.1%

Table 5.1: Cobalt lattice constants (a and ¢) and bulk modulus (K) as calculated ab
initio in the present work (AI), measured in experiment (Expt), and the corresponding
fractional error.

pseudopotential approach [14], describing electronic correlations using the Perdew-
Zunger [61] parameterization of the Ceperley-Alder (2] exchange-correlation energy
for the homogeneous electron gas and describing valence-core electron effects with
Kleinman-Bylander nonlocal pseudopotentials with p and d channels[7] optimized
according to the procedure of Rappe et al. [20]. With this potential, expanding
the electronic wave functions in a basis of plane waves with kinetic energies up to
40 Ryd converges total energies to within 0.03 eV /atom. Table 5.1 summarizes the
predictions of our pseudopotential at this plane wave cutoff for the bulk material,
showing that our ab initio approach gives, without any adjustable parameters, quite
reasonable agreement with experiment for the lattice constants and bulk modulus of

Cobalt.

Our calculations of adatoms on the surface employ the thirty-three atom, eight
layer supercell described above, with lattice constants in the two surface-plane di-
rections set according to the ab initio values in Table 5.1. (The physics of system
sets the lattice constant in the surface normal direction.) To perform Fermi surface
integrations to within 0.05 eV /atom, we employ a non-zero electronic temperature
of kgT' = 0.2 eV and sample the Brillouin zone of the supercell with 4 k-points,
ky = ko =€ :I:i, k3 = 0, where directions 1 and 2 are in the surface plane and direc-
tion 3 is the surface normal. Finally, for the atomic positions, all calculations below
use as input the atomic configurations from the interatomic potential for the identical
geometry, scaled according to the small difference in bulk lattice constants between

the two models.

73



— 148

— 120
—100

«

— 60

66”670
6%6%69%s

Figure 5-6: Spin density for the slab configuration with no adatom.

5.4.2 Results

The previous experience of others[9] and ourselves [55] with the electronic structure
of interfaces in elemental magnetic materials (grain boundaries in iron in particular)
show that such surfaces are prone to induce spatial oscillations in the electron spin
density due to Fermi-surface ringing effects resulting from differing integration cutoffs
at the Fermi surfaces for the up and down electron species. As the termination of a
surface into vacuum is a far more severe disturbance to the electronic system than
the tilt grain boundaries studied previously[9], we anticipate the effect to be quite
strong for the current system. Thus, we first establish the spin configuration of the
pure surface before proceeding to study the effects of adding adatoms.

Figure 5-6 shows the electronic spin density of the slab when relaxed from an arbi-
trary electronic configuration. The resulting electronic structure shows the expected
spin ringing effect, but to an extent far greater than we observed previous at grain
boundaries in iron[55], so strong in fact as to disrupt the ferromagnetic ordering of
the bulk material.

'To convince ourselves that such a configuration is characteristic of the ground-
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Figure 5-7: Spin density for the fully relaxed hcp adatom configuration.

state of the slab and not merely a local minimum into which the energy-functional
minimization has become trapped, we have performed a large number of computa-
tional experiments on the surface slab, both with and without adatoms. We have
performed electronic relaxations while fixing the occupancy of up and down electrons
to reflect full spin-up polarization of all cobalt atoms (4523d33d?). Even under the
constraint of three excess up electrons per cobalt atom, the electronic relaxation al-
ways results in some cobalt atoms with clear net down spin. We have also taken the
electronic configurations corresponding to alternating spin orientations and forced the
spins to align by fixing the self-consistent potential to what it would be were the spins

to all have been aligned and even exaggerating the effect,

i) = SOEEO ) e - v
V(r) = Vi(r)

2

Vi(r) +(1+ ) [Vi(r) = Vi)l

where « > 0 is the fractional enhancement. Even with simple flipping of the potential

(o = 0), we find the alternation in the net spin orientation to remain unaffected.
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Figure 5-8: Spin density for the hep configuration, obtained from flipping the potential
so as to flip the densities.

Values of @ = 0.5 do result in complete ferromagnetic alignment; however, in all cases,
we always find the configurations with forced alignment to have very high energies

and always to relax back to configurations with the original misaligned configurations.

As an illustrative example, taking the fully relaxed hcp adatom configuration of
Figure 5-7 and forcing its spins to align to produce the configuration in Figure 5-8
increased the total energy of the system by 700 eV/atom, two orders of magnitude
larger than the binding energy of the solid. Upon relaxation, despite the extremely
excited nature of this electronic state, the system converged directly back to the initial
configuration in Figure 5-7. As a second example, we took this quite stable config-
uration and removed the adatom to produce the surface configuration of Figure 5-6.
We then subjected this slab to spin alignment, which again radically increased the
system energy. Upon electronic relaxation, the system again recovering the initial

mixed spin configuration.

From the above considerations, we conclude that, despite the ferromagnetic nature

of the bulk material, the intrinsic electronic structure of the Co(0001) surface, with or
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without adatoms, indeed involves misaligned spins and that these spin configurations
are quite stable. Figure 5-6 represents the lowest energy configuration we have yet
to find for the surface configuration and so we shall take it as characteristic of the

configuration of the surface.

Having established the nature of the electronic structure of the surface, we now
consider the addition of an adatom. Figure 5-7 shows the most stable electronic
configuration which we have found for an atom at an hep site. The adatom aligns with
the majority spin carrier of the bulk, while the atoms in the slab directly underneath
the adatom have electron spin in the opposite direction.

To understand the interaction of the motion of the adatom with the underly-
ing electronic structure, we now recalculate the electronic structure as the adatom
moves from the initially relaxed hcp configuration of Figure 5-7 through the tran-
sition state identified from the atomistic calculations in Section 5.3 to the fcc site.
To reflect the electronic system’s adiabatic following of the ionic motion within the
Born-Oppenheimer separation, we first take the electronic wave functions from Fig-
ure 5-7 and relax them in the presence of the ionic arrangement of the transition
state, and we then take the resulting wave functions and relax them within the ionic

arrangement of the fcc configuration.

Figure 5-9 compares the three resulting electronic configurations with the first
panel repeating the information from Figure 5-7. From this figure, we see that the
spin of the adatom increases strongly as it moves from the hep site to the transition
state (top right panel) and that, intriguingly, in moving to the stable fcc site (bottom
panel), the adatom flips its spin. We therefore find the spin arrangement of the
electrons and the motion of the adatom to be intimately interconnected with the

adatom spin flipping as it goes over the transition barrier between hep and fee sites.

We now return to the transition state analysis of the configurations in Figure 5-9.
Figure 5-10 compares the transition state path obtained from the atomistic molecular
dynamics calculations with the ab initio result. The ab initio transition path shows
the same overall behavior as the atomistic curve, and places the barrier energy at a

lower value than the classical barrier, at 0.036 eV (= kp420 K), in close alignment
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Figure 5-9: Spin densities for the hcp, intermediate and fcc configurations.

with the experimental observations.

5.5 Conclusions

We have performed both classical molecular dynamics and ab initio calculations to
understand the changes in the nature of cobalt adatom motion from thermally acti-
vated diffusion to ballistic behavior as it moves on Co (0001) surface. We observed
from our classical transition state theory studies that this change in behavior of the
adatom is a result of the low barrier energy on the surface. To confirm this result, we
then investigated this transition path using ab initio methods. Our results show that

(a) despite the ferromagnetic nature of bulk cobalt, the stable electronic configuration
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Figure 5-10: Energy along reaction coordinate connecting hcp and fec sites: results
from interatomic potential (dashed curve) and from @b initio calculations within the
the same cell (stars, 33 atoms).

of the Co (0001) surface involves misaligned spins, (b) as the adatom moves between
the energetically favorable hep and fee sites on the surface, it flips its spin, and (c)
the barrier energy for this transition path including the spin flip of the adatom is in
good agreement with the experiments.

The results of this ab initio study confirm the conclusions from the classical molec-
ular dynamics study and identify the existence of a low surface barrier energy as pos-
sibly the physics underlying the change in the nature of surface evolution observed
in experiments. Finally, our ab initio results suggest that this low energy barrier is
closely linked to the spin configuration of the slab in conjunction with that of the
adatom as it moves along the transition path. This intriguing link between the sur-
faces microscopic magnetic structure and macroscopic morphological evolution would

be impossible to identify without our application of ab initio techniques.
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