
May 1986 LIDS-P-1564

ON DISTRIBUTED NETWORK PROTOCOLS FOR CHANGING TOPOLOGIES

Stuart R. Soloway

Pierre A. Humblet

ABSTRACT

A number of distributed networks rotocols for reliable data
transmission, connectivity test ortest path and topology
broadcast have been proposed with claims that they operate
correctly in the face of changing topology, without need for
unbounded numbers to identify different runs of the algorithms.
This paper shows that they do not possess all the claimed
properties. However some of them can be modified so that that
their correct operation can be demonstrated, at a cost of longer
running time and of higher communication complexity.

Stuart Soloway is with Codex Corporation, 20 Cabot Boulevard,
Mansfield MA 02048

Pierre Humblet is with the Laboratory for Information and
Decision Systems Rm 35-203, Massachussets nstitute of Technology,
Cambridge, MA 02139. His work on this research was supported in part
by Codex Corporation and in part by the National Science Foundation
under contract ECS 8310698.

Page 1

1 INTRODUCTION

A remarkable protocol has been introduced [Fin79] to

guarantee reliable end to end data transmission in a network in

the presence of arbitrary link and intermediate node failures

while not requiring unbounded numbers to identify messages; it

also provided a network connectivity test. The basic idea has

also been used in [Seg83] to construct other protocols for

connectivity test, shortest path and path updating with similar

properties. These works relied partially on techniques set forth

in [Gal76].

This article shows that although they contain valuable ideas

the previous papers share a basic flaw and that the algorithms do

not always operate correctly. This will be demonstrated in the

case of [Fin79] in the following section. It is possible to

modify some of the algorithms to insure the bounded sequence

number property, but unfortunately at an increase in running time

and communication cost compared to the previous (incorrect)

versions. Such a modified algorithm will be explained and proved

to be correct in sections 3 and 4.

Although it is of theoretical importance, the usefulness of

achieving the bounded sequence number property for algorithms

running in the network layer or above in the ISO/OSI hierarchy

should not be overemphasized, as the overhead penalty involved in

having increasing sequence numbers is often negligible. In

addition to the previous family of algorithms which use a single

sequence number for each network component, [Per83] and [Hum86]

contain topology broadcast algorithms with an unbounded sequence

number for each node, while [Spi86] proposes a topology broadcast

algorithm that does not rely at all on numbering messages.

Before proceeding with Finn's algorithm we outline our

model. We have a finite network of unreliable links and nodes;

to simplify the notation we assume that there is at most one link

between two nodes, so that a link can be identified by the

identities of its end points. Nodes execute distributed

algorithms that consist of exchanging messages over links and

Page 2

processing.

We assume the existence of a link protocol that provides the

following interface to the processes that execute the algorithms

(a valid scenario appears in Figure 1):

A link between two nodes X and Y can appear to be either Up or

Down at each node independently, subject to the restrictions

below. Messages can only be sent and received at a node while

the link is Up there.

If a link goes Down at X while it is Up at Y, then it will go

Down at Y within a finite time.

If a message is transmitted during the mth Link Up Period (LUP)

at X then

- either it is never received at Y; in that case the link is

declared Down at X within a finite time.

- or it is received correctly within a finite time, during the

nth LUP at Y say. In that case no message sent after it will be

received before it, and, for all k, the kth message received

during the nth LUP at Y (resp. mth LUP at X) is the kth message

sent during the mth LUP at X (resp. nth LUP at Y).

Similarly nodes can be Up or Down. A node operates without

errors while it is Up but loses all its memory when going Down.

When a node goes Down, all Up links at adjacent nodes go Down

within a finite time.

2 FINN'S ALGORITHM

This section outlines the basic mechanism of Finn's

algorithm and shows the problem that can appear in presence of

link or node failures. We view the algorithm as only providing

for a connectivity test, i.e. when it halts at a node after a

finite number of link or node failures, the node is aware of what

other nodes are in the same connected network component.

Each node I will maintain a vector D(I) with an entry

D(I)(J) for each node J in the network. D(I)(J) can take the

values 0,1 and 2 with the following meanings.

A value of 0 indicates that it is not known at node I if J is in

Page 3

the same connected component.

The value 1 indicates that J is in the same component, but that

the identities of all its connected neighbors might not be known

as no message has been received from all of them.

The value 2 indicates not only that J is in the same component,

but also that a message has been received from all its connected

neighbors (thus D(J)(K) is 1 or 2 for all connected neighbors K

of J).

Initially D(I) is set to all 0, except D(I)(I) which is set

to 1 (at all nodes I). Nodes exchange their identities and D(.)

vectors with their neighbors; when a vector D(K) is received a

node I, D(I)(J) is set to MAX(D(I)(J), D(K)(J)) for all J and if

D(I)(L) is equal to 1 or 2 for all neighbors L of I then D(I)(I)

is set to 2. If this update causes any change in D(I) the

updated value of D(I) is communicated to all neighbors of I,

where similar updates take place.

It is easy to see that in case of a "cold start" in absence

of topological change the algorithm will terminate a node I with

the entries of D(I) set to 0 or 2, the later values corresponding

to nodes in the same component as I.

The case of changing topology can be handled quite naturally

by restarting the algorithm every time a topological change is

noticed. To distinguish algorithm cycles it is enough to use

restart numbers, choosing a larger number at each restart. By

including the restart number in each message one can insure that

all nodes in a connected component participate in the latest

restart (discarding messages from previous ones). The problem

with this approach is that restart numbers increase

monotonically.

To remedy this problem [Fin79] has suggested that a node

transmit only the difference between its current restart number

and the previous one, and that each node maintain "link counters"

to track the differences between the numbers of the restarts

taking place at its neighbors. Transmitting and tracking

differences solves the problem of monotonic increasing sequence

Page 4

numbers, but poses a problem when a link comes up: with respect

to what should the difference be interpreted ? To solve this

last problem [Fin79] delayed the processing of a link coming UP

until both ends have terminated the algorithm and all "link

counters" are zero; the "link counter" of a link coming up in

these conditions is initialized to zero. (We refer the reader to

[Fin79] for the details).

To see that this does not work consider the following

example where there are 4 nodes.

1 2 --- 3 4

Initially links (1,2) and (2,3) are Up, no node has started

the algorithm, all link counters are 0.

Node 3 starts its first restart and transmits D(3) = (0,0,1,0) to

2.

In answer node 2 transmits D(2) = (0,1,1,0) to 1 and 3

Node 3 replies by sending (0,1,2,0), that message arrives at 2

and is forwarded to 1.

At this point the link between 2 and 3 fails, but it takes at

very long time for the failure to be noticed at 2. During that

time node 3 terminates the algorithm then connects with node 4

and both run the algorithm until completion. When this is done

the link between 1 and 3 can come Up, as node 1 has not yet

joined any restart. We then have the following picture of the

network:

1------2---- 3- 4
l I

Both 1 and 3 start the algorithm by sending (1,0,0,0) and

(0,0,1,0) to their respective neighbors 2,3 and 1,4; assume that

the message from 3 to 4 suffers a long delay.

Now node 1 receives (0,1,1,0) from 2 and (0,0,1,0) from node

3; It sends (2,1,1,0) to its neighbors 2 and 3.

After receiving this message node 2 has a vector (2,2,2,0), it

sends it to 1 and terminates the algorithm, even though it does

not know about 4! (in fact node 4 has not even started the

Page 5

algorithm in its current network component).

At this point the algorithm has halted at 2 without

fulfilling its promise, but one might hope that this is not

disastrous: node 2 will eventually receive notification that its

link to 3 has failed and will restart and, in absence of

topological changes, correctly terminate. However another event

with catastrophic consequences can also occur.

It is now acceptable for link (4,2) to come Up, as none of

its extremities are involved in the algorithm. The situation is

then as follows

I I
------ 2--- 3 - 4

Nodes 2 and 4 restart (the second time for 2, but only the

first for 4 in the current network component) indicating a

restart number increment of 1. The restart from 2 will be

interpreted by 1 as being the SECOND one; node 1 will immediately

also restart, answer to 2 and notify 3. The restart from 4 will

be interpreted by 3 as being the FIRST one, and when notice of a

second restart arrives from 1 node 3 dutifully relays it to 4,

where it will arrive after the first restart from 1, thus

triggering a message to 2 that a new restart is to take place.

Node 2 then notifies 1 that a new restart (the THIRD one 1) is to

occur and the reader realizes that the algorithm is now chasing

its tail, never terminating. That node 2 is eventually notified

that its link to 3 has failed does not help.

A similar counterexample can be constructed for the

algorithm EMH-Version B in [Seg83]. The proof of theorem EMH-B-1

has a flaw in the second column of page 32.

3 A NUMBERING ALGORITHM

In this section we give an algorithm that allows all nodes

in a network to identify the restarts while not requiring

monotonically increasing numbers, and we prove its correctness.

Page 6

However in order to achieve that goal we assume that the nodes

have the capability to detect that a special condition

(inactivity) has taken place. A method to actually implement

this detection follows in section 4.

We now proceed with the description of the numbering

algorithm. Each node maintains for itself an integer, called

LEVEL, and for each of its links a binary flag. Setting

(resetting) the flag associated with a link is called marking

(unmarking) the link. To signal the beginning of a restart,

nodes exchange messages called New-Restart (abbreviated NR) that

carry a level.

The numbering algorithm is defined as follows:

A) For any reason a node can originate a restart, but it

must do so when a local link is detected as changing status

(going Up or Down):

-Increment LEVEL

-Send NR(LEVEL) on all adjacent Up links

-Unmark all adjacent links

B) When receiving NR(NUMBER) on link L, a node acts as

follows:

-If NUMBER > LEVEL or link L is marked:

Set LEVEL to NUMBER

Send NR(LEVEL) on all adjacent Up links

Unmark all adjacent links except link L which is marked

-else if NUMBER = LEVEL mark link L

When a node executes A) above, we say that it ORIGINATES a

restart; when it changes LEVEL and sends NR's in A) or B) we say

that it RESTARTS. Before continuing with the description of the

algorithm we make three definitions:

1) Two nodes X and Y are "joined" at some time if link (X,Y)

is Up at both X and Y and there is no NR in transit on the link.

2) A resynch set is a maximal set of joined nodes.

3) A resynch set is inactive if all links adjacent to nodes

in the set are marked and if no NR is in transit on a link

Page 7

outgoing from the set. A node is inactive if it belongs to an

inactive set, else it is active.

We now complete the description of the algorithm,

introducing the key element that prevents a monotonic increase in

LEVEL; contrary to the algorithms mentioned in section 2 it does

not rely at all on sending and tracking differences between

restart numbers.

C) Whenever a node becomes inactive, it can arbitrarily

change the value of LEVEL (e.g. reset it to 0).

To prove that the algorithm works correctly we characterize

the set of its legal states. The state of the algorithm at any

time includes the state of the nodes (Active or Inactive, value

of LEVEL), the state of the links at a node (Down, unmarked,

marked) and the set of messages in transit on the links.

Initially a node is inactive and isolated. Just after a

link comes Up at a node, it is unmarked there, the node is active

and a NR is in transit on the link.

The legal states for a link that is Up at both ends, X and Y, are

listed in Table 1.

When link (X,Y) goes Down at X but is still Up at Y, the state of

Y and the messages in transit to Y are those characterized by

columns 2 and 4 in table 1.

To establish the correctness of this characterization of the

legal states it is enough to notice that it is true initially,

and remains true no matter what events occur.

We point out two properties that are important in proving the

correctness:

Property 1: An inactive node can only become active by

restarting, and not by having another node in its resynch set

restart, as a node that restarts leaves its previous resynch set

and becomes the single element in a new set. On the other hand a

number of events (NR arriving at its destination, restart, link

going Down) at remote nodes can cause an active node to become

inactive.

Page 8

Property 2: If a node is active, it can only restart at a higher

level. This is not directly imposed by the description of the

algorithm, which allows a restart at any level when a NR is

received on a marked link. It holds as long as the state of the

algorithm is legal (according to table I), as only NR's at a

higher level can be received on a marked link at an active node.

Relying on those two properties it is easy but tedious to

prove the validity of table I; the possible events in each legal

state and the possible following states are listed in Table II.

We can now state the key theorem:

Theorem I.

If a finite number of restarts originate, eventually no NR

messages are in transit and all nodes in the same connected

component end up in the same inactive resynch set.

Proof: Consider a network component the last time a NR

originates there; by assumption on the link behavior all links

will be Up or Down consistently at both ends. At that time,

consider a highest level active node X.

- From Table I if it has a neighbor Y at a lower level there is a

NR in transit (with the highest level) to Y, which will

eventually become active at the highest level; in the meantime X

cannot become inactive.

- If Y is at the same level as X then either both are in the same

resynch set, or there is a NR in transit from one of them on a

link unmarked at the other. In any case one cannot become

inactive without the other.

Thus all nodes must become active at the highest level and

join the same resynch set and no such active node can become

inactive unless they all do. Also no such active node can

restart, as it would be at a higher level (by Property 2); thus

all NR's must stop flowing. Again from table 1 this implies that

all nodes will be active with all their links marked, which leads

to inactivity.

Page 9

The previous theorem is important because of the following

corollary that allows us to combine another distributed algorithm

with the numbering algorithm just presented:

Corollary I

Assume a distributed algorithm that halts when executed in a

network with fixed topology is started at each node of the

network (with some initial conditions) each time a restart (in

the numbering algorithm) occurs there, and assume that its

messages are processed at another node only when they arrive on a

marked link.

Then after a finite number of topological changes and spontaneous

restarts the algorithm will halt at all nodes in the network in

the same state as if it had run once on a network with the final

topology (starting with the same initial conditions).

Proof:

This is clear from the previous theorem if the algorithm is

started after all nodes become inactive. From the point of view

of the algorithm messages it makes no difference if the algorithm

is started instead at the beginning of the last restart, as no

message flows from X to Y between the moment X restarts and the

moment X becomes inactive.

The previous theory rests on rather sandy foundations: how

is it possible for a node to detect that it is inactive ? In the

next section we give and prove the correctness of an algorithm

that does it, but we start by introducing new concepts that will

be useful later.

Assume that the nth time a node I restarts it becomes a

"virtual node" with "virtual identity" (I,n) in a "virtual

network". A directed "virtual link" appears from a virtual node

(I,n) to a virtual node (J,m) when (if ever) one of the NR's sent

by I during its nth restart causes the link to be marked at J

during the mth restart there. Once a virtual link (or virtual

node) appears in a virtual network it never disappears. However

when a node I restarts for the n+lth time we will say that

Page 10

virtual node (I,n) "dies".

Note the following:

- From table I if there is a virtual link from (I,n) to (J,m) and

a virtual link from (J,m) to (I,o), then n = o.

- If I and J were joined during the nth restart at I and the mth

restart at J, then there are virtual links in both directions

between (I,n) and (J,m). The converse need not hold; in fact a

virtual link may never have been up at both ends simultaneously.

- It is possible to have many virtual nodes corresponding to the

same node in the same component of a "virtual network", but only

one can be alive at any time.

4 A MINIMUM HOP SHORTEST PATH ALGORITHM.

The following distributed algorithm is based on ideas from

[Gal76]. It can be seen as a partially synchronized

implementation of the Ford-Bellman algorithm used in the original

ARPANET routing procedure [McQ77]. When run on a network with

fixed topology it stops with each node knowing what other nodes

are in the same connected component at distance k (in hops), for

all k. When run (as specified in Corollary 1) in conjunction

with the numbering algorithm presented in section 3 it halts at a

node ONLY when the node is inactive. It relies heavily on the

assumption that all nodes have distinct identities. We first

give a narrative outline, next follow it with a precise

description and finally prove the main property.

Each node I maintains a vector D(I). Its Jth entry D(I)(J)

is set to the minimum distance (in hops) from I to J; we will see

that the distances will be measured in a virtual network and we

should accept the possibility that many nodes with the same

identity may be present in a connected component of that network.

Nodes exchange messages consisting of node identities. An

identity J is included in the kth message from I to its neighbors

if there is a node with identity J at distance k from I, and none

closer. Link counters C(I)(K) serve to remember how many

messages have been received on a link K at I. When all neighbors

Page 11

of I have informed it of the identities of the nodes at distance

k-1 from them, node I sets a counter HOP(I) to k, it finds the

set T of all nodes at distance k, and it informs its neighbors by

sending T.

If at some point T is empty and if nodes have distinct identities

then all nodes in the connected network component have been

discovered and the radius of the network (as seen by I) is

HOP(I) - 1. However we cannot assume that all nodes have

distinct identity (Figure 3). When T is empty, node I merely

sets the variable R(I) to HOP(I) - 1 (i.e. what it assumes the

radius to be) and keeps running the algorithm until HOP(I) is

greater than three times R(I). If this ever happens then the

node must be inactivel The proof that follows the formal

description will make clear why this is so; we distinguish

between a node stopping, i.e. setting its STATE to STOPPED, and

the algorithm terminating, e.g. because no more messages are in

transit.

Shortest Path Algorithm at node I:

A) Initially (whenever a restart occurs):

D(I)(I) = 0, D(I)(J) = 00, V J # I

C(I)(K)=O V Up links K at I

HOP(I) = R(I) = 0

If no link is Up, STATE(I) = STOPPED else STATE(I) = ORKING

B) When all Up adjacent links become marked:

Send {I} on all links

C) Receive set S on link K while STATE(I) = MORKING

C(I)(K) = C(I)(K) + 1

for all J in S : D(I)(J) = min (D(I)(J), C(I)(J))

If C(I)(K) > HOP for all Up links K, then

HOP(I) = HOP(I) + 1

Send T = {all nodes J I D(I)(J) = HOP(I)} on all Up links

If R(I) = 0 and T = empty then R(I) = HOP(I) - 1

If HOP(I) > 3 R(I) then

send {} {} on all Up links (i.e. two empty sets)

reset LEVEL (in the numbering algorithm)

Page 12

STATE(I) = STOPPED

We will now prove Theorem 2:

1. The previous algorithm terminates correctly when run on

a network with fixed topology and unique node identities.

2. If the algorithm stops at a node I, then

2.1 I is inactive.

2.2 there was a time when all nodes J with D(I)(J) < 00

formed a single network component with all links marked at both

ends (this is the "resynch" property that [Fin79] attempted to

obtain).

It can be shown easily by induction on HOP (see [Gal76] or

[Seg83]) that the D(.)'s are correctly set when the algorithm

runs on a network with fixed topology and that at any time the

values of HOP(.) at neighboring nodes that have not stopped

differ by at most 1.

It is also easy to see that nodes with the smallest R will stop,

after sending three empty messages (T and two others). This in

turn guarantees that their neighbors, whose R differs by at most

1, will also stop; continuing the argument one sees that all

nodes stop (Figure 2).

To handle the case of changing topology, consider the

operation of the shortest path algorithm at a node I during a

time interval between executions of step A, i.e. the algorithm

as it executes at a virtual node (I,n). In particular consider

the virtual network of that node, assuming that a "dead" virtual

node maintains the latest value of the algorithm variables set

during its life.

(I,n) can only receive a message from a node J if there are

virtual links in both directions between nodes (I,n) and (J,m)

(for some m), as J (resp. I) will only send (resp. receive) a

message on a marked link.

It follows from this that the D(I)(.), which are set in answer to

message receptions, reflect the connectivity of the nodes in the

virtual network. Also the values of HOP(.) at adjacent MVORKING

nodes can differ by at most 1, and this extends to nodes at

Page 13

distance d.

To prove 2.1, i.e. that a node stops only if it is

inactive, we consider the moment t (if ever) at the start of a

Step C in the shortest path algorithm in which R((I,n)) will be

set to the current value of HOP() at a virtual node (I,n) (i.e.

the node will shortly discovered that there is no node with a new

identity at distance R((I,n)) + 1 in the virtual network and all

links between nodes at distance no more than R((I,n)) + 1 from

(I,n) have been marked); we distinguish between two cases:

A) If there is a dead node (J,s) at distance R((I,n)) or

less at time t, we claim that (I,n) can never stop. Assume to

the contrary that it is the first to eventually stop under these

conditions and consider the situation at time t (Figure 3.a, I=1,

J=3).

We first show that no node X on a shortest path between

(I,n) and (J,s) can have stopped yet:

- if R(X) has not been set, X cannot have stopped

- if R(X) has been set then either (J,s) or another dead node

closer to X must be within R(X) of X and node X cannot have

stopped, as (I,n) was assumed to be the first to stop under these

conditions.

It follows that HOP((J,s)) is within R((I,n)) of HOP((I,n)),

i.e. not greater than 2 R((I,n)); it will never change, insuring

that HOP((I,n)) will never exceed 3 R((I,n)) and that (I,n) will

never stop.

B) If all virtual nodes at distance R((I,n)) or less from

(I,n) in the virtual network are still alive then

a) the links between those live nodes must still be marked

b) these nodes may have marked links to virtual nodes at distance

R((I,n)) + 1 from node (I,n) but those virtual nodes (if any)

have the same ID as a live node and are thus dead (Figure 3.b,

I=1, J=3).

Consequently those live nodes constitute an inactive resynch

set. If the algorithm later stops at (I,n), I must still be

inactive (property 1 in section 3).

Page 14

This establishes part 2.1 of theorem 2; we now turn our

attention to part 2.2 and show that it holds at time t if node

(I,n) stops. In light of a) and b) above we only need to show

that if (I,n) stops there cannot have been dead nodes at distance

R((I,n)) + 1 .

If there is a dead node (J,s) at distance R((I,n)) + 1 from

(I,n), there must be another node (J,t) (with t > s) at distance

not greater than R((I,n)) from (I,n). Consider the moment where

a path of length not exceeding 2 R((I,n)) + 1 joined (J,t) and

(J,s) (this must occur). Some intermediate node on such a path

had not executed step B in the shortest path algorithm and thus

its neighbor toward (J,s) still had HOP(.) = 0, and all the nodes

on the path were still active (thus they had not stopped). We

can conclude that HOP((J,s)) must have been less than 2 R((I,n))

and this would prevent HOP((I,n)) from exceeding 3 R((I,n)) and

stopping.

Figure 4 illustrates a number of scenarios that help understand

the workings of the algorithm.

Before closing we make three observations:

1) Our goal in presenting the previous algorithms was to

keep the discussion simple, not to minimize the number of

messages or the time to completion. In particular, assuming that

all nodes start simultaneously, that each message transmission

requires one time unit and that processing time is negligible,

the algorithm takes about 3 times the network diameter to

complete in a fixed topology.

There exist various methods to reduce this to 2 times the

diameter, which is about twice the time required by the

(incorrect) algorithms mentioned in the introduction. One such

method is for a node to broadcast a STOP message to its neighbors

before stopping. On reception of this message, a node that has

not stopped yet forwards the STOP message and stops.

Page 15

2) There exist other algorithms that detect inactivity, but

all those known to us contain a phase similar to what the

shortest path algorithm does.

3) The fact that LEVEL is reset from time to time does not

imply that it is bounded. However boundedness is easy to insure

[Fin79] by not allowing a link to come Up and not originating

spontaneous restarts when LEVEL is above a threshold. LEVEL can

only increase above the threshold due to link failures and this

guarantees its boundedness.

REFERENCES

S.G. Finn, "Resynch Procedures and a Fail-Safe Network
Protocol", IEEE Trans. Cormmun., vol. COM-27, pp. 840-845, June
1979.

P.A. Humblet, S.R. Soloway and B. Steinka "Al orithms
for Data Communication Networks - Part 2", Submit ed for
publication, 1986.

J.M. McQuillan and D.C. Walden, "The ARPANET design
decisions", Comput. Networks, vol 1, Aug. 1977.

R. Perlman, "Fault-Tolerant Broadcast of Routing
Information", Proc. IEEE Infocom '83, San Diego, 1983.

A. Segall "Distributed Network Protocols", IEEE Trans. on
Info. Theory, 4ol. IT-29, no. 1, Jan. 1983.

J. Spinelli, "Broadcasting Topology and Routing Information
in Computer Networks", submitted for publication.

TABLE 1: Legal states when a link (X,Y) is up at both ends

In all cases messages in transit are in order of increasing levels and
the last message if any has the current level of its source.

number of messages
State State State ordering in transit on:
Label atX(*) atY (*) of levels X -> Y Y -> X

1 I,m I,m any 0 0
2.a A,u I,m any > 1 0
2.b I,m A,u any 0 > 1
3.a A,u A,u X > Y > 1 > 0
3.b X < Y > 0 > 1
3.c " X=Y > I >
4.a A,u A,m X = Y 0 > 1
5.a . X > Y > (**) > 0
4.b A,m A,u X = Y > 0
5.b X < Y > 0 > I (**)
6 Am A,m X = Y 0 0

(*) I = node inactive; A = node active; u = link unmarked; m = link marked
(**) Message(s) in transit have level(s) greater than the destination level.

TABLE il: Verification of Table I

Events that can trigger a change in state at X, Y, or on the link (X,Y) and
the possible resulting states are given next to each state.

States x.b are not treated explicitly, they behave as the corresponding
x.a states with the roles of X and Y exchanoged

"Restart" means the beginning of a restart for a reason other than the
reception of a message over the link

"Reception" means the processing of a message arriving on the link.

I Restart at X: 2.a Restart at Y: 2.b

2.a Restart at X: 2.a Restart at Y.: 3a, 3:b , 3:c
Reception at Y: 4.a, 5.a

3.a Restart at X: 3.a Restart at Y: 3.a, 3.b, 39,
Reception at X: 3.a Reception at Y: 2.a, 3.a, 4.a, 5.a

3.c Restart at X: 3.a Restart at V: 3.b
Reception at X: 3.c, 4.b Reception at Y: 3.c, 4a

4.a Restart at X: 5.a Restart at Y: 3.b
Reception at X: 1. 4.a 6

5.a Restart at X: 5.a Restart at Y: 3.a, 3.b, 3.c
Reception at X: 5.a Reception at Y: 4.a, 5.a
If no message is in transit from Y an event in Y's resUnch set can
cause a transition to 2.a.

6 Restart at X: 5.a Restart at Y: 5.b
An event in the common resynch set can cause a transition to 1

AtF: Up i

Dowr

Figure 1

1 lustration of link state history.
- indicate successfull message transmissions.

indicate unsuccessfull transmissions.

HOP
0 (1) (2) {3) (4) (5)
1 (2) {1,3) {2,4) {3,5) {4)
2 {3) (4} {1,5) (2) (3)
3 (} {(5)} { R=2 (1) }2)
4 {5 } { R=3 {} {} R=3 (1)
5 {} R=4 {} {} {} {} R=4

7 { } {} Stop {} {}
8 {} {} {} {} {}
9 {} {} {} {} {}
10 () {} Stop {} Stop {}
11 {} {} {} {}
12 {} {} {} {}
13 () Stop (} Stop
14 {} {}
15 {} {}

Figure 2

The sets T sent by the nodes at different value of HOP are shown.
The instants where R is set are shown together with R's values
The instants where the nodes stop are also indicated, but the

sending of the extra empty sets is shown at the subsequent
values of HOP.

live node node 1's resynch setdead node

Figure 3 a

Node 3 appears twice in the virtual network,
R(1) is set to 1
NR messages may still be in transit

to the right of node 4 so that the inactivity
of node 1 cannot be guaranteed.

Ar-live nodes

dead node

4,- node 1's resynch set

Figure 3 b

Node 3 appears twice in the virtual network,
R(1) is set to 1
nodes 1,2 and 3 may become inactive,
but they will not stop in the shortest path algorithm

HOP
0 1 {2} {3 {4} {5)

((3,51 (41
2 {2} {(3)
3 Fiur 4

Figure 4

a) Initial phase
Messages initially exchanged.
Node 1 has not started the current update
After this initial phase link (4,5) fails

but node 4 is not notified

HOP
O (1) 21 (}3) (4) (5)
1 (2) I {1,3} {(4} {3,5) ({}
2 (3) (4) (1,5) {(2) (3)
3 {4} {5) {} R=2 (1)} {2}
4 (5} {} R=3 {} {} R=3
5 {} R=4 {} {}
6 {} {}

b) Scenario 1:
Node I eventually starts the update.
No more topological change occurs

All the nodes were inactive when their R was set.
None of the node stops

HOP
o {99} {5} {1 } {2} {3} {4} {5}
1 {5} {(1,99) (2,5) (1,3} (2 {,4) (3,5) (4)
2 {1} {2} (3,j99) (4,5) 1,5} (2) (3)
3 {2} {3)} { {99} } R=2 (1} (2}
4 (3) {4})) R=3 () R=3 (99) {} R=3
5 (4) {} R=4 {} {} {}
6 {} R=5 {} {} {}
7? {} {} {}
8 {} {}
9 }

c) Scenario 2
Node 5 connects and completes an update with 99,

then connects with 1

Node 2 was not inactive when its R was set
None of the nodes stops

HOP
0 {53 {1} {21} {3} {4} {5}
1 {1} {2,5} 1,3} i {3,5} {4}
2 {2} {3} {4,5} { 1,5} {2} {3}
3 {3} {4} {} R=2 {} R=2 {1 {2}
4 {4)} {} R=3
5 {} R4 {} {} {}
6 {} {} {}
7 {
s H}

d) Scenario 3
Node 5 connects to node 1.
Both start the update

All nodes are inactive when their R is set.
None of the nodes terminates, although

node 2 was close.

